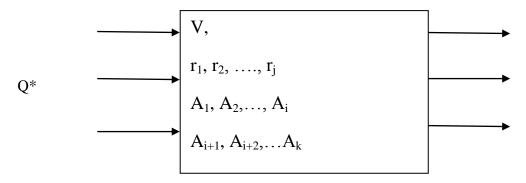
MASS BALANCE ANALYSIS OF REACTIONS AND REACTORS


1. General mass balance concept

Mass_i inflow – Mass_i outflow + Mass_i generation = Mass_i accumulation

2. Multiple mass balances required for process that have coupled reactions, with overlapping reactants and products

- a. Oxidation of organic matter and oxygen uptake
- b. Heterotrophic cell synthesis uptake of organic matter
- c. Cell synthesis uptake of nitrogen
- d. Oxidation of ammonia and autotrophic cell synthesis
- e. Reduction of nitrate and simultaneous consumption of organic matter
- f. Lysis of cells and generation of degradable organic matter
- g. And others...

Mass balance schematic for reactor volume, V, with multiple reactions r_j , with inflow/outflow rate, Q, multiple reactants A_i , and multiple products A_k is appropriate for biological wastewater treatment reactor, where we will keep track of COD, N, O_2 , cells, etc.

3. Two elements of mass balances:

- h. Components (products and reactants)
- i. Rates (kinetics)

For component A_1 , mass balance on mixed volume with a single reaction rate, r_1 :

$$Q*A_{1.0} - Q*A_{1.e} + V*r_1 = V$$

Where V = reactor volume (m³), Q = volumetric flow rate (m³/d), $A_{1,0}$ = influent concentration of A_1 , $A_{1,e}$ = effluent concentration of A_1 , and A_1 = reactor concentration (g/m³).

NOTE: one mass balance per component. For the system above, could write k mass balances each with $1 \rightarrow j$ reaction terms.

- 4. **Stoichiometric analysis and coefficients** enables us to express consumption and production of a reactant or product in terms of other components in the reactor system which is necessary to evaluate multiple reactions
 - a. For example, calculating the oxygen requirement for consumption of inflows of COD and ammonia nitrogen require the stoichiometric coefficients for oxygen in both reactions
- 5. **Kinetic** (rate) expressions are second element of mass balances required to predict effluent and reactor component concentrations.