# MERCURY

Optimized Software for (Single Site) Hybrid Simulation From Pseudo Dynamics to Real Time Hybrid Simulation

# Theory Manual

Ver. 1

Dae-Hung Kang Gary Haussmann Victor E. Saouma

## Fast Hybrid Testing Laboratory

 $\rm http://fht.colorado.edu$ 

Department of Civil Environmental and Architectural Engineering University of Colorado, Boulder Boulder, Colorado 80309-0428

### Contents

| 1 | ELE | MENT            | FORMULATION                                                            | 9        |  |  |  |  |  |
|---|-----|-----------------|------------------------------------------------------------------------|----------|--|--|--|--|--|
|   | 1.1 | Truss           | Element                                                                | 9        |  |  |  |  |  |
|   |     | 1.1.1           | Formulation                                                            | 9        |  |  |  |  |  |
|   |     | 1.1.2           | Coordinate system for 2D truss element                                 | 10       |  |  |  |  |  |
|   |     | 1.1.3           | State determination                                                    | 11       |  |  |  |  |  |
|   | 1.2 | Beam-           | Column Element                                                         | 11       |  |  |  |  |  |
|   |     | 1.2.1           | Stiffness-based 2D beam-column element                                 | 11       |  |  |  |  |  |
|   |     | 1.2.1           | 1211 Formulation                                                       | 11       |  |  |  |  |  |
|   |     |                 | 1212 Coordinate system for stiffness-based 2D heam-column element      | 13       |  |  |  |  |  |
|   |     |                 | 1.2.1.2 Coordinate system for stimess-based 2D beam-contain element    | 10<br>19 |  |  |  |  |  |
|   |     |                 | 1.2.1.6 State determination                                            | 15       |  |  |  |  |  |
|   |     | 100             | 1.2.1.4 Nonlinear analysis using stiffness-based formulation           | 11       |  |  |  |  |  |
|   |     | 1.2.2           | Flexibility-based 2D beam-column element                               | 21       |  |  |  |  |  |
|   |     |                 | 1.2.2.1 Formulation                                                    | 22       |  |  |  |  |  |
|   |     |                 | 1.2.2.2 Coordinate system for flexibility-based 2D beam-column element | 24       |  |  |  |  |  |
|   |     |                 | 1.2.2.3 State determination                                            | 25       |  |  |  |  |  |
|   |     |                 | 1.2.2.3.1 With element iterations                                      | 25       |  |  |  |  |  |
|   |     |                 | 1.2.2.3.2 Without element iterations                                   | 32       |  |  |  |  |  |
|   |     |                 | 1.2.2.4 Nonlinear analysis using flexibility-based method              | 34       |  |  |  |  |  |
|   |     |                 | 1.2.2.4.1 With element iterations                                      | 34       |  |  |  |  |  |
|   |     |                 | 1.2.2.4.2 Without element iterations                                   | 40       |  |  |  |  |  |
|   | 1.3 | Laver           | /Fiber Section                                                         | 45       |  |  |  |  |  |
|   | 14  | Zero-I          | ength 2D Element Formulation                                           | 47       |  |  |  |  |  |
|   | 1.1 | 141             | Formulation                                                            | 48       |  |  |  |  |  |
|   |     | 1 4 9           | Coordinate system in zero langth 2D element                            | 50       |  |  |  |  |  |
|   |     | 1.4.2<br>1/1/2  | Floment state determination                                            | 50       |  |  |  |  |  |
|   | 1 5 | 1.4.0<br>Zana I | Element state determination                                            | 50       |  |  |  |  |  |
|   | 1.5 | Zero-L          | P Let                                                                  | 52       |  |  |  |  |  |
|   |     | 1.5.1           | Formulation                                                            | 03<br>74 |  |  |  |  |  |
|   |     | 1.5.2           | Coordinate system in zero-length 2D section element                    | 94<br>24 |  |  |  |  |  |
|   |     | 1.5.3           | Element state determination                                            | 54       |  |  |  |  |  |
|   | 1.6 | Eleme           | nt Force                                                               | 56       |  |  |  |  |  |
|   | 1.7 | Summ            | ary                                                                    | 58       |  |  |  |  |  |
| 2 | CON | ISTITU          | TIVE MODELS                                                            | 59       |  |  |  |  |  |
|   | 2.1 | Steel 1         | Models                                                                 | 59       |  |  |  |  |  |
|   |     | 2.1.1           | "Exact" Models                                                         | 60       |  |  |  |  |  |
|   |     |                 | 2.1.1.1 Isotropic hardening model                                      | 60       |  |  |  |  |  |
|   |     |                 | 2.1.1.2 Combined isotropic and kinematic hardening model               | 63       |  |  |  |  |  |
|   |     |                 | 2.1.1.3 Determination for isotropic and kinematic harding parameters   | 66       |  |  |  |  |  |
|   |     | 919             | Houristic Models                                                       | 66       |  |  |  |  |  |
|   |     | 2.1.2           | 2121 Simplified Bilineer model with instruction bardening              | 50<br>66 |  |  |  |  |  |
|   |     |                 | 2.1.2.1 Simplified Dimeral model with isotropic hardening              | 50<br>66 |  |  |  |  |  |
|   |     |                 | 2.1.2.1.1 Stress-strain feation                                        | 00<br>CC |  |  |  |  |  |
|   |     |                 | 2.1.2.1.2 Determination for simplified bilinear model                  | 00       |  |  |  |  |  |
|   |     |                 | 2.1.2.2 Giumre-Menegotto-Pinto Model Modified by Filippou et al.       | эб<br>ас |  |  |  |  |  |
|   |     |                 | 2.1.2.2.1 Stress-strain relationship                                   | 56       |  |  |  |  |  |
|   |     |                 | 2.1.2.2.2 Determination for modified Giuffre-Menegotto-Pinto Model     | 72       |  |  |  |  |  |
|   | 2.2 | Concre          | Concrete Models                                                        |          |  |  |  |  |  |
|   |     | 2.2.1           | Heuristic Models                                                       | 72       |  |  |  |  |  |
|   |     |                 | 2.2.1.1 Modified Kent And Park Model                                   | 72       |  |  |  |  |  |

7281

82

82

82

82

85

86

86

87

90

93

94

96

96

96

98

99

99

#### 2.2.1.1.12.2.1.1.22.2.1.1.3Determination for modified Kent and Park model 2.2.2 2.2.2.1Anisotropic damage model with effective damage and stiffness recovery . . . . . . 2.2.2.1.1Constitutive model 2.2.2.1.2Uniaxial multi-fiber formulation 2.2.2.1.32.2.2.1.3.12.2.2.1.3.22.2.2.22.2.2.2.1Uniaxial numerical scheme 2.3Lumped Plasticity Model 2.42.52.5.12.5.2Zero length section element 2.5.32.6Summary ..... 3 Structural Modeling 101101 3.1Uniaxial Concrete Nonlinear Element, Cyclic Displacement 3.23.3 3.43.53.6 Zero-length Section, and Beam Column, Fiber, Nonlinear Steel Element, load control..... 117 Beam-column, Fiber Section, Nonlinear Material, multi-d.o.f.s displacement control, Pushover Analysis 120 3.73.83.9Ex29: Full Reinforced Concrete Frame, HHT, Shing ..... 130 3.9.0.14 NONLINEAR PUSHOVER ANALYSIS 141 4.14.24.34.4 4.54.5.14.5.25 DYNAMIC ANALYSIS 147 5.1 Preliminaries ..... 1475.1.1Variational Formulation 1475.1.2148 5.1.2.1Lumped mass 148 5.1.2.25.1.35.1.45.25.2.1Newmark $\beta$ implicit method $\ldots \ldots 152$ 5.2.1.15.2.25.2.2.1Free Vibration 5.36 Notation 159

# List of Figures

| 1.1               | Internal forces and corresponding displacements, 2D truss element                                                                                                                                                     |   |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1.2               | Internal forces and corresponding displacements, stiffness-based 2D element                                                                                                                                           |   |
| 1.3               | State determination for stiffness-based method                                                                                                                                                                        |   |
| 1.4               | State determination procedure for stiffness-based method                                                                                                                                                              |   |
| 1.5               | Flow chart of nonlinear analysis using stiffness-based method (1) 18                                                                                                                                                  |   |
| 1.6               | Flow chart of nonlinear analysis using stiffness-based method (2)                                                                                                                                                     |   |
| 1.7               | Flow chart of nonlinear analysis using stiffness-based method (3) 20                                                                                                                                                  |   |
| 1.8               | 2D beam-column element without rigid body modes                                                                                                                                                                       |   |
| 1.9               | Sign convention on section forces                                                                                                                                                                                     |   |
| 1.10              | Internal forces and corresponding displacement, flexibility-based 2D element                                                                                                                                          |   |
| 1.11              | The relationship between rigid body modes and no rigid body modes                                                                                                                                                     |   |
| 1.12              | State determination procedure for flexibility-based method with Newton-Raphson iteration in the element 26                                                                                                            |   |
| 1.13              | State determination procedure for flexibility-based method without Newton-Raphson iteration in the element 22                                                                                                         | 7 |
| 1.14              | State determination for flexibility-based method with element iteration (?)                                                                                                                                           |   |
| 1.15              | Element and section state determinations                                                                                                                                                                              |   |
| 1.16              | State determination for flexibility-based method without element iteration                                                                                                                                            |   |
| 1.17              | Flow chart of nonlinear analysis, flexibility-based $w/$ element iteration(1)                                                                                                                                         |   |
| 1.18              | Flow chart of nonlinear analysis, flexibility-based w/ element iteration(2)) $\ldots \ldots \ldots \ldots \ldots 36$                                                                                                  |   |
| 1.19              | Flow chart of nonlinear analysis, flexibility-based w/ element iteration $(3)$ $37$                                                                                                                                   |   |
| 1.20              | Flow chart of nonlinear analysis, flexibility-based $w/o$ element iteration(1)                                                                                                                                        |   |
| 1.21              | Flow chart of nonlinear analysis, flexibility-based $w/o$ element iteration(2)                                                                                                                                        |   |
| 1.22              | Flow chart of nonlinear analysis, flexibility-based $w/o$ element iteration(2) $\cdots \cdots \cdots$ |   |
| 1.23              | Stress and strain dirstibution of nonliner material                                                                                                                                                                   |   |
| 1.24              | Laver/fiber section 47                                                                                                                                                                                                |   |
| 1.25              | Layer/fiber section state determination                                                                                                                                                                               |   |
| 1.26              | Zero-length 2D element(1)                                                                                                                                                                                             |   |
| 1.20              |                                                                                                                                                                                                                       |   |
| 1.21              | Flow chart of zero-length 2D element for element state determination 51                                                                                                                                               |   |
| 1.20              | Zero-length 2D section element (1) 53                                                                                                                                                                                 |   |
| 1.20              | Zero-length 2D section element $(2)$ 54                                                                                                                                                                               |   |
| 1.00              | Flow chart of zero-length 2D section element for element state determination 55                                                                                                                                       |   |
| 1.32              | For each of an element 56                                                                                                                                                                                             |   |
| 1.32              | Nodal equivalent forces of an element 57                                                                                                                                                                              |   |
| 1.34              | Example with element distributed forces and nodal displacement 58                                                                                                                                                     |   |
| 1.04              | Example with element distributed fores and nodal displacement                                                                                                                                                         |   |
| 2.1               | Uniaxial stress-strain curve for steel 59                                                                                                                                                                             |   |
| 2.2               | Idealized stress-strain response hardening material                                                                                                                                                                   |   |
| 2.3               | The tangent modulus for isotropic hardening model.                                                                                                                                                                    |   |
| 2.4               | The evolution of elastic domain in isotropic hardening model                                                                                                                                                          |   |
| 2.5               | Isotropic and kinematic hardening plasticity                                                                                                                                                                          |   |
| $\frac{2.0}{2.6}$ | The evolution of elastic domain in isotropic and kinematic hardening model 65                                                                                                                                         |   |
| 2.7               | Determination for isotropic and kinematic hardening model 67                                                                                                                                                          |   |
| 2.8               | Bilinear model 68                                                                                                                                                                                                     |   |
| $\frac{2.0}{2.9}$ | Determination for simplified bilinear model 69                                                                                                                                                                        |   |
| 2.0<br>2.10       | Manegotta-Pinto steel model 70                                                                                                                                                                                        |   |
| 2.10              | Definition of curvature parameter $R$ in Menegotto-Pinto steel model 70                                                                                                                                               |   |
| 2.11              | Determination (1) for modified Giuffre-Menegotto-Pinto Model 72                                                                                                                                                       |   |
| 2.12              | Determination (2) for modified Giuffre-Menegotto-Pinto Model 73                                                                                                                                                       |   |
| 2.10              | Determination (2) for modified Giuffre-Menegotto-Pinto Model 74                                                                                                                                                       |   |
| 4.17              | poterinination (b) for instance of anticipation of into model                                                                                                                                                         |   |

| 2.15 | Determination (4) for modified Giuffre-Menegotto-Pinto Model                                                           |     |   |   |     |   | 75  |
|------|------------------------------------------------------------------------------------------------------------------------|-----|---|---|-----|---|-----|
| 2.16 | Concrete material model in compression                                                                                 |     |   |   |     |   | 76  |
| 2.17 | Concrete material model under cyclic loading in compression                                                            |     |   |   |     |   | 78  |
| 2.18 | Concrete material model under cyclic loading in tension                                                                |     |   |   |     |   | 80  |
| 2.19 | Determination (1) for modified Kent and Park model                                                                     |     |   | • |     |   | 83  |
| 2.20 | Determination (2) for modified Kent and Park model                                                                     |     |   | • |     |   | 84  |
| 2.21 | Cracks induced by compression, tension, tension and compression                                                        |     |   | • |     |   | 85  |
| 2.22 | Strain-stress curve for anisotropic damage model without permanent strain                                              |     | • | • |     |   | 89  |
| 2.23 | Determination (1) for the anisotropic damage model                                                                     |     |   | • |     |   | 90  |
| 2.24 | Determination (2) for the anisotropic damage model                                                                     |     | • | • |     | • | 91  |
| 2.25 | Determination (3) for the anisotropic damage model                                                                     |     | • | • |     | • | 92  |
| 2.26 | Strain-stress curve for anisotropic damage model with permanent strain                                                 |     | • | • |     | • | 94  |
| 2.27 | Longitudinal bar bond stress, steel stress, and strain profiles, (?)                                                   |     | • | • |     |   | 95  |
| 2.28 | Stress slip curve                                                                                                      |     | • | • |     | · | 96  |
| 2.29 | Hysteretic model with strength and stiffness deterioration, (?)                                                        |     | • | • |     | · | 97  |
| 2.30 | Compatibility of NA between beam-column and zero length fiber section                                                  |     | • | • |     | · | 99  |
| 2.31 | Zero length element and section                                                                                        | • • | • | • |     | · | 99  |
|      |                                                                                                                        |     |   |   |     |   |     |
| 3.1  | Ex10: Truss, ModGMP material, load control, HHT                                                                        | • • | • | • | • • | · | 101 |
| 3.2  | Cyclic wave without dimension                                                                                          | • • | • | • | • • | · | 106 |
| 3.3  | Examples 11-12                                                                                                         | • • | • | • | • • | · | 100 |
| 3.4  | Examples 16-19                                                                                                         | • • | • | • | • • | · | 108 |
| 3.5  | Examples 20- 22                                                                                                        | • • | • | • | • • | · | 112 |
| 3.0  | Examples 23                                                                                                            | • • | • | • | • • | · | 110 |
| 3.7  | Examples 24                                                                                                            | • • | • | • | • • | · | 118 |
| 3.8  | Examples 25- 26                                                                                                        | • • | • | • | • • | · | 120 |
| 3.9  | Beam-column elements for Ex27 and Ex28 $\dots$ | • • | • | • | • • | · | 123 |
| 3.10 | Bar slip zero-length fiber section element (?)                                                                         | • • | • | • | • • | · | 124 |
| 3.11 | Numerical model for real-time hybrid simulation                                                                        | • • | • | • | • • | · | 131 |
| 3.12 | Shake table test of remforce concrete frame, :                                                                         | • • | • | • | • • | · | 132 |
| 3.13 | Section properties of Ex29                                                                                             | • • | • | • | • • | · | 132 |
| 3.14 | Seismic excitation for Ex29                                                                                            | • • | • | • | • • | · | 132 |
| 11   | Puchavar analycic                                                                                                      |     |   |   |     |   | 149 |
| 4.1  | Determination of nucleonard displacements magnitudes                                                                   | • • | • | • | • • | • | 142 |
| 4.2  | Pushover Analysis of a Frame                                                                                           | • • | • | • | • • | • | 142 |
| 4.0  | Implementation for displacement control                                                                                | • • | • | • | • • | · | 142 |
| 4.4  |                                                                                                                        | • • | • | • | • • | • | 140 |
| 5.1  | Ravleigh damping                                                                                                       |     |   |   |     |   | 149 |
| 5.2  | Geometric interpretation of Euler's method                                                                             |     |   |   |     | • | 151 |
| 5.3  | Flow chart (1) using the Newmark $\beta$ implicit method                                                               |     |   |   |     | • | 154 |
| 5.4  | Flow chart (2) using the Newmark $\beta$ implicit method                                                               |     |   |   |     | • | 155 |
| 5.5  | Flow chart using the HHT implicit method                                                                               |     |   |   |     | • | 157 |
| 0.0  |                                                                                                                        | · · |   | • | • • | • |     |

### List of Tables

| 3.1  | Features of Example Problems                                                                                                                                                    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.2  | Material properties of concrete for Ex27 (unit: kips, in)                                                                                                                       |
| 3.3  | Material properties of concrete for Ex28 (unit: kips, in)                                                                                                                       |
| 3.4  | Material properties of reinforcement for Ex27 and Ex28 (unit: kips, in)                                                                                                         |
| 3.5  | Property of shear spring in zero-length element for Ex27 and Ex28 (unit: kips, in)                                                                                              |
| 3.6  | Concrete material properties of concrete for Ex29 (unit:kips, in)                                                                                                               |
| 3.7  | Material properties of reinforcement for Ex29 (unit: kips, in)                                                                                                                  |
| 3.8  | Property of shear spring for Ex29 (unit: kips, in)                                                                                                                              |
| 3.9  | Properties of rigid elements (unit: kips, in)                                                                                                                                   |
| 3.10 | Mass properties in first floor column nodes (unit: $kips \cdot sec^2/in$ )                                                                                                      |
| 3.11 | Mass properties in column nodes except first floor columns (unit: $kips \cdot sec^2/in$ )                                                                                       |
| 3.12 | Mass properties in beam nodes (unit: $kips \cdot sec^2/in$ )                                                                                                                    |
|      |                                                                                                                                                                                 |
| 5.1  | Properties of the Newmark $\beta$ method $\ldots \ldots \ldots$ |
|      |                                                                                                                                                                                 |

### **Chapter 1**

### **ELEMENT FORMULATION**

This chapter will describe the formulation of the elements in Mercury. It will start with the simplest one, truss and then proceed with beam-column of increasing levels of complexity. Finally zero length element and section element will be addressed.

#### **1.1 Truss Element**

The truss element has only one degree of freedom associated with each node in local reference whether in 2D or 3D.

#### 1.1.1 Formulation

As with all finite elements, stiffness matrix derivation hinges on three requirements.

#### Compatibility of:

**Displacement** Section displacements are determined from the element nodal displacements through the shape function. Since the truss element has only one d.o.f per node, the generalized relationship between section displacement vector  $\mathbf{d}_s(x)$  and element nodal displacement vector  $\mathbf{d}_e$  is expressed through the displacement interpolation functions (shape functions),  $\mathbf{N}_d(x)$  as

$$\mathbf{d}_{s}(x) = \left\{ \begin{array}{c} u(x) \end{array} \right\}$$
$$= \underbrace{\left[ \begin{array}{c} -\frac{x}{L} + 1 & \frac{x}{L} \end{array} \right]}_{\mathbf{N}_{d}(x)} \cdot \underbrace{\left\{ \begin{array}{c} \overline{u}_{x1} \\ \overline{u}_{x2} \end{array} \right\}}_{\mathbf{d}_{e}}$$

**Deformation** of displacements: Under the assumption that displacements are small, the section deformation vector  $\boldsymbol{\varepsilon}_s(x)$  is related to the element nodal displacement vector by

$$\boldsymbol{\varepsilon}_{s}(x) = \left\{ \begin{array}{c} \boldsymbol{\varepsilon}_{x}(x) \end{array} \right\} \\ = \underbrace{\left[ \begin{array}{c} -\frac{1}{L} & \frac{1}{L} \end{array}\right]}_{\mathbf{B}_{d}(x)} \cdot \overline{\mathbf{d}}_{e} \tag{1.1}$$

where  $\mathbf{B}_d(x)$  is the matrix which relates displacement to strain through the derivatives of  $\mathbf{N}_d(x)$ .

#### Constitutive law is expressed as

$$\underbrace{\left\{\begin{array}{c}N_{x}(x)\\ \bullet\\ \sigma_{s}(x)\end{array}\right\}}_{\boldsymbol{\sigma}_{s}(x)} = \mathbf{k}_{s}(x) \cdot \boldsymbol{\varepsilon}_{s}(x) \tag{1.2}$$

where  $\sigma_s(x)$  is the section<sup>1</sup> force vector, and  $\mathbf{k}_s(x)$  is the section stiffness matrix.

For linear elastic analysis  $\mathbf{k}_s(x)$  is simply a scalar equal to

 $\mathbf{k}_s(x) = \left[ E(x) \cdot A(x) \right]$ 

where, E(x) and A(x) are elastic modulus and cross sectional area.

Equilibrium (weak form) through the principle of virtual work (displacement) which is expressed as

$$\underbrace{\delta \overline{\mathbf{d}}_{e}^{T} \cdot \overline{\mathbf{f}}_{e}}_{\text{External}} = \underbrace{\int_{0}^{L_{e}} \delta \varepsilon_{s}(x)^{T} \boldsymbol{\sigma}_{s}(x) \, \mathrm{d}x}_{\text{Internal}}$$
(1.3)

<sup>&</sup>lt;sup>1</sup>The notion of section is not essential to understand the formulation of the truss element stiffness matrix. It is nevertheless introduced to be consistent with the subsequent formulation of beam-column (Sec. 1.2)

Substitution of Eq. 1.1 and 1.2 into Eq. 1.3 and since the latter must hold for any arbitrary  $\delta \mathbf{d}_e$  leads to

$$\delta \overline{\mathbf{d}}_{e}^{T} \cdot \overline{\mathbf{f}}_{e} = \int_{0}^{L_{e}} \delta \overline{\mathbf{d}}_{e}^{T} \cdot \mathbf{B}_{d}(x)^{T} \cdot \mathbf{k}_{s}(x) \cdot \boldsymbol{\varepsilon}_{s}(x) \, \mathrm{d}x$$
$$\overline{\mathbf{f}}_{e} = \int_{0}^{L_{e}} \mathbf{B}_{d}(x)^{T} \cdot \mathbf{k}_{s}(x) \cdot \boldsymbol{\varepsilon}_{s}(x) \, \mathrm{d}x$$
$$= \underbrace{\int_{0}^{L_{e}} \mathbf{B}_{d}(x)^{T} \cdot \mathbf{k}_{s}(x) \cdot \mathbf{B}_{d}(x) \, \mathrm{d}x \cdot \overline{\mathbf{d}}_{e}}_{\overline{\mathbf{k}}_{e}}$$
$$\overline{\mathbf{f}}_{e} = \overline{\mathbf{k}}_{e} \cdot \overline{\mathbf{d}}_{e}$$

The element stiffness matrix in local reference is thus given by

$$\overline{\mathbf{k}}_e = \int_0^{L_e} \mathbf{B}_d(x)^T \cdot \mathbf{k}_s(x) \cdot \mathbf{B}_d(x) \, \mathrm{d}x$$

#### 1.1.2 Coordinate system for 2D truss element



Figure 1.1: Internal forces and corresponding displacements in global and local coordinate system for the 2D truss element

The element nodal forces and displacements are expressed with respect to the global reference, Fig. 1.1(a) as:

 $\mathbf{F}_{e} = \begin{bmatrix} N_{X1}, V_{Y1}, N_{X2}, V_{Y2} \end{bmatrix}^{T}$  $\boldsymbol{\delta}_{e} = \begin{bmatrix} u_{X1}, v_{Y1}, u_{X2}, v_{Y2} \end{bmatrix}^{T}$ 

Furthermore, the element nodal forces and displacements can also be expressed with respect to the local reference, Fig. 1.1(b)

$$\overline{\mathbf{f}}_e = [\overline{N}_{x1}, \ \overline{N}_{x2}]^T$$
$$\overline{\mathbf{d}}_e = [\overline{u}_{x1}, \ \overline{u}_{x2}]^T$$

The rotation matrix which transform global reference, Fig. 1.1(a), to local reference, Fig. 1.1(b), is given by  $\Gamma_e$  such that

 $egin{aligned} \overline{\mathbf{f}}_e &= \mathbf{\Gamma}_e \cdot \mathbf{F}_e \ \overline{\mathbf{d}}_e &= \mathbf{\Gamma}_e \cdot oldsymbol{\delta}_e \ \mathbf{K}_e &= \mathbf{\Gamma}_e^T \cdot \overline{\mathbf{k}}_e \cdot \mathbf{\Gamma}_e \end{aligned}$ 

where,  $\mathbf{K}_{e}$  is the element stiffness matrix in global reference and the rotation matrix is

$$\mathbf{\Gamma}_e = \begin{bmatrix} N_{X1} & V_{Y1} & N_{X2} & V_{Y2} \\ \hline N_{x1} & \cos\alpha & \sin\alpha & 0 & 0 \\ \hline N_{x2} & 0 & 0 & \cos\alpha & \sin\alpha \end{bmatrix}$$

#### 1.1.3 State determination

In a nonlinear structural analysis, state determination for 2D truss element is identical to the stiffness-based 2D beam-column element. It will be discussed in Sec. 1.2.1.3 and 1.2.1.4.

#### 1.2 Beam-Column Element

The formulation of nonlinear frame structure using elements with layer/fiber sections can be achieved using the stiffness-based (displacement) method or the flexibility-based (force) method. Both formulations will be presented, with the assumption that deformations are small and plane sections remain plane during the loading history. The stiffness-based method assumes displacement interpolation functions along the element, while the flexibility-based one has force interpolation functions along the element. As will be shown later, a smaller number of flexibility based elements (albeit with a greater number of integration points) than stiffness based ones is often needed to achieve the same level of accuracy.

However, the element formulation in the flexibility-based method is more complex than that of the stiffness-based one as we need to perform an additional loop of iterations at the element level in order to obtain  $\varepsilon$  from material constitutive models which are usually expressed as  $\sigma = \sigma(\varepsilon)$  (?). On the other hand, stiffness based elements are much simpler to formulate.

Both formulations are described next.

#### 1.2.1 Stiffness-based 2D beam-column element

We next formulate the stiffness matrix of the beam-column elements (also known as "frame" element) by considering the "classical" stiffness-based formulation first. The formulation is based on linear polynomial interpolation for the axial displacements, and cubic for the transverse ones.

#### 1.2.1.1 Formulation

As for the truss element we consider each of the three requirements which must be met.

#### Compatibility of

**Displacement** Section displacements are determined from the element nodal displacements through the shape functions. The generalized relationship between section displacement vector  $\mathbf{d}_s(x)$  and the element nodal displacement vector  $\overline{\mathbf{d}}_e$  can be expressed as

$$\mathbf{d}_{s}(x) = \left\{ \begin{array}{c} u(x) \\ v(x) \end{array} \right\}$$
$$= \mathbf{N}_{d}(x) \cdot \underbrace{\left[ \overline{u}_{x1}, \overline{v}_{y1}, \overline{\theta}_{z1}, \overline{u}_{x2}, \overline{v}_{y2}, \overline{\theta}_{z2} \right]^{T}}_{\overline{\mathbf{d}}_{e}}$$

where  $\mathbf{N}_d(x)$  is the matrix of displacement interpolation functions which can be expressed as

$$\mathbf{N}_d(x) = \begin{bmatrix} \psi_1(x) & 0 & 0 & \psi_2(x) & 0 & 0 \\ 0 & \phi_1(x) & \phi_2(x) & 0 & \phi_3(x) & \phi_4(x) \end{bmatrix}$$

where  $\psi_1$ ,  $\psi_2$ ,  $\phi_1$ ,  $\phi_2$ ,  $\phi_3$  and  $\phi_4$  are the interpolation functions for axial and transverse displacements respectively and are given by

$$\begin{split} \psi_1(x) &= -\frac{x}{L_e} + 1 & \psi_2(x) &= \frac{x}{L_e} \\ \phi_1(x) &= 2\frac{x^3}{L_e^3} - 3\frac{x^2}{L_e^2} + 1 & \phi_2(x) &= \frac{x^3}{L_e^2} - 2\frac{x^2}{L_e} + x \\ \phi_3(x) &= -2\frac{x^3}{L_e^3} + 3\frac{x^2}{L_e^2} & \phi_4(x) &= \frac{x^3}{L_e^2} - \frac{x^2}{L_e} \end{split}$$

We note the uncoupling between axial and transverse displacements since geometric nonlinearity is ignored.

**Deformation** Under the assumptions of small displacements and plane sections remaining plane (Euler Bernouilli as opposed to Timoshenko), the section deformation vector  $\boldsymbol{\varepsilon}_s(x)$  (axial strain  $\varepsilon_x(x)$  and curvature  $\phi_z(x)$ ) is related to the element nodal displacement vector

$$\varepsilon_s(x) = \begin{cases} \varepsilon_x(x) \\ \phi_z(x) \end{cases}$$
  
=  $\mathbf{B}_d(x) \cdot \overline{\mathbf{d}}_e$  (1.4)

where  $\mathbf{B}_d(x)$  is the matrix obtained from the appropriate derivatives of the displacement interpolation functions.

$$\mathbf{B}_{d}(x) = \begin{bmatrix} \psi_{1}^{'}(x) & 0 & 0 & \psi_{2}^{'}(x) & 0 & 0 \\ 0 & \phi_{1}^{''}(x) & \phi_{2}^{''}(x) & 0 & \phi_{3}^{''}(x) & \phi_{4}^{''}(x) \end{bmatrix}$$

with

$$\begin{split} \psi_1'(x) &= -\frac{1}{L_e} & \psi_2'(x) &= \frac{1}{L_e} \\ \phi_1''(x) &= \frac{12x}{L_e^3} - \frac{6}{L_e^2} & \phi_2''(x) &= \frac{6x}{L_e^2} - \frac{4}{L_e} \\ \phi_3''(x) &= -\frac{12x}{L_e^3} + \frac{6}{L_e^2} & \phi_4''(x) &= \frac{6x}{L_e^2} - \frac{2}{L_e} \end{split}$$

#### Constitutive law

Section constitutive law relates axial strain and curvature to axial force and moment

$$\underbrace{\left\{\begin{array}{c}N_{x}(x)\\M_{z}(x)\end{array}\right\}}_{\boldsymbol{\sigma}_{s}(x)} = \mathbf{k}_{s}(x) \boldsymbol{\varepsilon}_{s}(x)$$
(1.5)

where  $\boldsymbol{\sigma}_s(x)$  is the section force vector, and  $\mathbf{k}_s(x)$  is the section stiffness matrix.

If  $\mathbf{k}_s(x)$  is not derived from layer/fiber discretization of the cross section, and for linear elastic case  $\mathbf{k}_s(x)$  is simply equal to

$$\mathbf{k}_s(x) = \begin{bmatrix} E(x) \cdot A(x) & 0\\ 0 & E(x) \cdot I_z(x) \end{bmatrix}$$
(1.6)

where, E(x), A(x), and  $I_z(x)$  are elastic modulus, cross sectional area, and section moment of inertia.

Equilibrium will be satisfied only in the weak sense through the principle of virtual displacement expressed as

$$\underbrace{\delta \overline{\mathbf{d}}_{e}^{T} \cdot \overline{\mathbf{f}}_{e}}_{\text{External}} = \underbrace{\int_{0}^{L_{e}} \delta \boldsymbol{\varepsilon}_{s}(x)^{T} \cdot \boldsymbol{\sigma}_{s}(x) \, \mathrm{d}x}_{\text{Internal}}$$
(1.7)

Substituting Eq. 1.4 and Eq. 1.5 into Eq. 1.7 and since the latter must hold for any arbitrary  $\delta \mathbf{d}_e$ , the principle of virtual work leads to

$$\delta \overline{\mathbf{d}}_{e}^{T} \cdot \overline{\mathbf{f}}_{e} = \int_{0}^{L_{e}} \delta \overline{\mathbf{d}}_{e}^{T} \cdot \mathbf{B}_{d}(x)^{T} \cdot \mathbf{k}_{s}(x) \cdot \boldsymbol{\varepsilon}_{s}(x) \, \mathrm{d}x$$
$$\overline{\mathbf{f}}_{e} = \int_{0}^{L_{e}} \mathbf{B}_{d}(x)^{T} \cdot \mathbf{k}_{s}(x) \cdot \boldsymbol{\varepsilon}_{s}(x) \, \mathrm{d}x$$
$$= \underbrace{\int_{0}^{L_{e}} \mathbf{B}_{d}(x)^{T} \cdot \mathbf{k}_{s}(x) \cdot \mathbf{B}_{d}(x) \, \mathrm{d}x}_{\overline{\mathbf{k}}_{e}} \cdot \overline{\mathbf{d}}_{e}$$
$$\overline{\mathbf{f}}_{e} = \overline{\mathbf{k}}_{e} \cdot \overline{\mathbf{d}}_{e}$$

Mercury

The element stiffness matrix in local reference is thus given by

$$\overline{\mathbf{k}}_{e} = \int_{0}^{L_{e}} \mathbf{B}_{d}(x)^{T} \cdot \mathbf{k}_{s}(x) \cdot \mathbf{B}_{d}(x) \, \mathrm{d}x \tag{1.8}$$

#### 1.2.1.2 Coordinate system for stiffness-based 2D beam-column with Bernoulli beam theory



Figure 1.2: Internal forces and corresponding displacements in global and local coordinate system for the stiffnessbased 2D beam-column element

The element nodal forces and displacements are expressed with respect to the global reference, Fig. 1.2(a) as

 $\mathbf{F}_{e} = \begin{bmatrix} N_{X1}, \ V_{Y1}, \ M_{Z1}, \ N_{X2}, \ V_{Y2}, \ M_{Z2} \end{bmatrix}^{T} \\ \boldsymbol{\delta}_{e} = \begin{bmatrix} u_{X1}, \ v_{Y1}, \ \theta_{Z1}, \ u_{X2}, \ v_{Y2}, \ \theta_{Z2} \end{bmatrix}^{T}$ 

Again, the element nodal forces and displacements of the element can be expressed with respect to the local reference as shown in Fig. 1.2(b)

$$\overline{\mathbf{f}}_e = \begin{bmatrix} \overline{N}_{x1}, \ \overline{V}_{y1}, \ \overline{M}_{z1}, \ \overline{N}_{x2}, \ \overline{V}_{y2}, \ \overline{M}_{z2} \end{bmatrix}^T \\ \overline{\mathbf{d}}_e = \begin{bmatrix} \overline{u}_{x1}, \ \overline{v}_{y1}, \ \overline{\theta}_{z1}, \ \overline{u}_{x2}, \ \overline{v}_{y2}, \ \overline{\theta}_{z2} \end{bmatrix}^T$$

As for the truss element, the rotation matrix which transforms from global reference, (Fig. 1.2(a)) to local reference (Fig. 1.2(b)) is given by  $\Gamma_e$  such that

$$\overline{\mathbf{f}}_{e} = \mathbf{\Gamma}_{e} \cdot \mathbf{F}_{e} 
\overline{\mathbf{d}}_{e} = \mathbf{\Gamma}_{e} \cdot \boldsymbol{\delta}_{e} 
\mathbf{K}_{e} = \mathbf{\Gamma}_{e}^{T} \cdot \overline{\mathbf{K}}_{e} \cdot \mathbf{\Gamma}_{e}$$
(1.9)

where,  $\mathbf{K}_e$  is the element stiffness matrix in global reference. The rotation matrix is then given by

|              | Г                   | $N_{X1}$       | $V_{Y1}$      | $M_{Z1}$ | $N_{X2}$       | $V_{Y2}$      | $M_{Z2}$ |
|--------------|---------------------|----------------|---------------|----------|----------------|---------------|----------|
|              | $N_{x1}$            | $\cos \alpha$  | $\sin \alpha$ | 0        | 0              | 0             | 0        |
|              | $\overline{V}_{y1}$ | $-\sin \alpha$ | $\cos \alpha$ | 0        | 0              | 0             | 0        |
| $\Gamma_e =$ | $\overline{M}_{z1}$ | 0              | 0             | 1        | 0              | 0             | 0        |
|              | $\overline{N}_{x2}$ | 0              | 0             | 0        | $\cos \alpha$  | $\sin \alpha$ | 0        |
|              | $\overline{V}_{y2}$ | 0              | 0             | 0        | $-\sin \alpha$ | $\cos \alpha$ | 0        |
|              | $\overline{M}_{z2}$ | 0              | 0             | 0        | 0              | 0             | 1        |

#### 1.2.1.3 State determination

It is important to note that we do operate at three different levels in the structural analysis: a) structure level, b) element level, and c) section level. Fig. 1.3 shows the interaction of those three levels, and accompanying state

determinations.

In an incremental nonlinear analysis, to each increment of force corresponds an increment of displacement from which the total displacement is then determined. Those nodal displacements are in turn used to determine internal section forces.

State determination is the process of determining internal forces and tangent stiffness matrix corresponding to element nodal displacements. It is composed of three parts, Fig. 1.3:

- **1. Structure** state determination, Fig. 1.3(a). The element tangent stiffness matrices and internal element force vector of all the elements are assembled to form the (augmented) tangent stiffness matrix  $\mathbf{K}_{S}^{tan}$  and internal nodal force vector  $\mathbf{P}_{S}^{int}$  ( $\mathbf{P}_{S}^{int} = \mathbf{P}_{t}^{int} + \mathbf{P}_{u}^{int}$ ) of the structure. Subscript t and u refer to free and constrained degrees of freedom respectively (that is along the natural and essential boundaries).
- **2. Element** state determination, Fig. 1.3(b). The element tangent stiffness matrices and internal element nodal forces of each element are determined from the internal section forces for each element which are in turn computed from section deformations
- **3. Section** state determination, Fig. 1.3(c), where internal section forces are computed from section deformations which are in turn determined from element nodal displacements.

Once the structure state determination is complete, the internal nodal force vector  $(\mathbf{P}_{t,n}^{int})$  is compared with the total applied external nodal force vector  $(\mathbf{P}_{t,n}^{ext})$  and the difference  $(\mathbf{P}_{t,n}^{R})$ , is the residual nodal force vector which is then reapplied to the structure in an iterative solution process until convergence (equilibrium) is satisfied.

The state determination procedure is straightforward for a stiffness-based 2D beam-column element. The section deformation vectors  $\boldsymbol{\varepsilon}_{s,e}(x)$  are determined from the element nodal displacement vector  $\overline{\mathbf{d}}_e$  as shown in Eq. 1.4. The corresponding section tangent stiffness matrices  $\mathbf{k}_{s,e}^{tan}(x)$  and the internal section force vectors  $\boldsymbol{\sigma}_{s,e}^{int}(x)$  are determined from the section constitutive law, Eq. 1.5. The element tangent stiffness matrices  $\overline{\mathbf{k}}_e^{tan}$  are obtained from Eq. 1.8, while the internal element nodal force vectors  $\overline{\mathbf{f}}_e^{int}$  are determined from the principle of virtual work

$$\overline{\mathbf{f}}_{e}^{int} = \int_{0}^{L_{e}} \mathbf{B}_{d,e}(x)^{T} \cdot \boldsymbol{\sigma}_{s,e}^{int}(x) \mathrm{d}x$$
(1.10)

It is important to note that this method leads to an erroneous element response in the nonlinear case. This problem is again illustrated by Fig. 1.3 which shows the evolution of the structure, element and section states during one incremental external force vector at free degrees of freedom  $\Delta \mathbf{P}_{t,n}$  that requires several iterations k, (?). Subscript n refers to external force step, superscript k the  $k^{th}$  iteration within the external force step n.

The Newton-Raphson iteration method operates in the global coordinate (structural level) system. At each Newton-Raphson iteration, Fig. 1.4, the incremental nodal displacement vector at the structure level is determined from the nodal incremental force vector, and then the total element nodal displacement vectors (2) are determined next.

At the  $k^{th}$  Newton-Raphson iteration, the element nodal displacement vectors in local reference  $\overline{\mathbf{d}}_{e,n}$  (3) of the nodal displacement vector  $\mathbf{u}_{S,n}^k$  ( $\mathbf{u}_{S,n}^k = \mathbf{u}_{t,n}^k + \mathbf{u}_{u,n}^k$ ) of degrees of freedom at the structure level are determined for each element.

Using Eq. 1.5 the section deformation vectors  $\boldsymbol{\varepsilon}_{s,e,n}^{k}(x)$  (④) for each section are computed. This is the first approximation of the element state determination, since  $\mathbf{B}_{d,e}(x)$  is exact only in the linear elastic case of a prismatic member.

Assuming that the section constitutive law is explicitly known, the section tangent stiffness matrices  $\mathbf{k}_{s,e,n}^{tan,k}(x)$  and the internal section force vectors  $\boldsymbol{\sigma}_{s,e,n}^{int,k}(x)$  are readily determined from  $\boldsymbol{\varepsilon}_{s,e,n}^{k}(x)$  (5). Then, using Eq. 1.8 and Eq. 1.10 the element stiffness matrices  $\overline{\mathbf{k}}_{e,n}^{k}$  in local reference and the internal element nodal force vectors in local reference  $\overline{\mathbf{f}}_{e,n}^{int,k}$  are determined next (6).

Finally, through assembly of the global stiffness matrix, the structures' tangent stiffness matrix and vector of nodal internal forces are determined  $(\overline{O})$ , before the residual is computed  $(\mathfrak{S})$  for convergence assessment.

Since  $\mathbf{B}_{d,e}(x)$  is only approximate<sup>2</sup> (since we are approximating the displacement field), the integrals for the element tangent stiffness matrix in local reference and the internal element nodal force vector in local reference will also yield approximate results. The approximation of  $\mathbf{B}_{d,e}(x)$  leads to stiffer solution, Fig. 1.3 (a) and (b). Note that the curve labeled "Exact solution" is only exact within the assumptions of the section constitutive law and the kinematic approximations that deformations are small and plane sections remain plane.

To overcome numerical errors that arise from the approximation of  $\mathbf{B}_{d,e}(x)$ , analysts resort to fine mesh discretization of the structure, especially, in frame regions that undergo highly nonlinear behaviors, such as the member ends. Even so, numerical convergence problems persist. This is precisely why the flexibility based element (as will be shown later) yields better results.

 $<sup>^{2}</sup>$ We shall see later that the corresponding term in the flexibility based element is not approximate.



Figure 1.3: State determination for stiffness-based method





where,  $\mathbf{A}_{b,e}$  and  $\mathbf{A}_{b,e}^{T}$  are the displacement extracting operator and the force assembling operator.

Figure 1.4: State determination procedure for stiffness-based method

#### 1.2.1.4 Nonlinear analysis using stiffness-based formulation

With reference to Fig. 1.4 to 1.7, we will examine one single step of the Newton-Raphson mehthod for the nonlinear analysis with section constitutive law. Force and displacement control, mentioned here, are discussed in Sec. 4.4 and 4.5. Layer or fiber section procedure in Fig. 1.7 will be described in Sec. 1.3.

Again step numbers refer to those in Fig. 1.3.

① Compute the incremental nodal force vector  $\Delta \mathbf{P}_{t,n}^{ext}$ .

$$\Delta \mathbf{P}_{t,n}^{ext} = \mathbf{P}_{t,n}^{ext} - \mathbf{P}_{t,n-1}^{ext}$$

<sup>(2)</sup> Expressing the augmented stiffness matrix  $\mathbf{K}_S$  as

$$\left\{ \begin{array}{c} \mathbf{P}_t \\ \mathbf{P}_u \end{array} \right\} = \left[ \begin{array}{c} \mathbf{K}_{tt} & \mathbf{K}_{tu} \\ \mathbf{K}_{ut} & \mathbf{K}_{uu} \end{array} \right] \left\{ \begin{array}{c} \mathbf{u}_t \\ \mathbf{u}_u \end{array} \right\}$$
(1.11)

where subscript t and u are associated with free end constrained degrees of freedom respectively, compute the incremental nodal displacement vector  $\delta \mathbf{u}_{t,n}$  and corresponding total nodal displacement vector  $\mathbf{u}_{t,n}$  in the structure level. Initially, iteration starts from Eq. 1.12 with k = 1.

If 
$$k = 1$$
,

$$\delta \mathbf{u}_{u,n}^{k} = \mathbf{u}_{u,n} - \mathbf{u}_{u,n-1}, \ \mathbf{u}_{u,n} = \mathbf{u}_{u,n-1} + \delta \mathbf{u}_{u,n}^{k}$$

$$\delta \mathbf{u}_{t,n}^{k} = [\mathbf{K}_{tt,n}^{tan,k-1}]^{-1} \cdot [\Delta \mathbf{P}_{t,n}^{ext} - \mathbf{K}_{tu,n}^{tan,k-1} \delta \mathbf{u}_{u,n}^{k}]$$

$$\mathbf{u}_{t,n}^{k} = \mathbf{u}_{t,n}^{k-1} + \delta \mathbf{u}_{t,n}^{k}$$
(1.12)

If  $k \neq 1$ ,

$$\mathbf{P}_{t,n}^{R,k} = \mathbf{P}_{t,n}^{ext} - \mathbf{P}_{t,n}^{int,k} \\
\delta \mathbf{u}_{t,n}^{k+1} = [\mathbf{K}_{tt,n}^{tan,k}]^{-1} \cdot \mathbf{P}_{t,n}^{R,k} \\
\mathbf{u}_{t,n}^{k+1} = \mathbf{u}_{t,n-1} + \Delta \mathbf{u}_{t,n}^{k+1} = \mathbf{u}_{t,n}^{k} + \delta \mathbf{u}_{t,n}^{k+1}$$
(1.13)

where, superscript k is the iteration counter,  $\mathbf{P}_t^R$  the residual nodal force vector in structural level,  $\Delta \mathbf{u}_{t,n}^{k+1}$  the total incremental displacement vector from the last converged step, and  $\delta \mathbf{u}_n^{k+1}$  the last incremental displacement vector.

- 3 Loop over all the elements and determine their state.
  - Determine the element nodal displacement vector in global reference.

If k = 1,

$$\delta \boldsymbol{\delta}_{e,n}^{k} = \mathcal{A}_{b,e} \cdot \delta \mathbf{u}_{t,n}^{k} + \mathcal{A}_{b,e} \cdot \delta \mathbf{u}_{u,n}^{k}$$

If  $k \neq 1$ ,

$$\delta \boldsymbol{\delta}_{e,n}^k = \mathcal{A}_{b,e} \cdot \delta \mathbf{u}_{t,n}^k$$

where,  $\mathcal{A}_{b,e}$  is a displacement extracting operator.

$$\boldsymbol{\delta}_{e,n}^k = \boldsymbol{\delta}_{e,n}^{k-1} + \delta \boldsymbol{\delta}_{e,n}^k$$

and,  $\boldsymbol{\delta}_{e,n}^0$  corresponds to  $\boldsymbol{\delta}_{e,n-1}$ .

• Determine the element nodal displacement vector in local reference

$$egin{aligned} &\delta \overline{\mathbf{d}}_{e,n}^k = \mathbf{\Gamma}_e \cdot \delta oldsymbol{\delta}_{e,n}^k \ &\overline{\mathbf{d}}_{e,n}^k = \overline{\mathbf{d}}_{e,n}^{k-1} + \delta \overline{\mathbf{d}}_{e,n}^k \end{aligned}$$

and,  $\overline{\mathbf{d}}_{e,n}^{0}$  corresponds to  $\overline{\mathbf{d}}_{e,n-1}$ .

(4) Start the section state determination by looping over the element's sections. The total number of section may vary from element to element. Therefore, the total number of sections in an element is  $nIp_e$  and it depends on the number of integration points in the Gauss Legendre quadrature rule.



Figure 1.5: Flow chart of nonlinear analysis using stiffness-based method (1)



Figure 1.6: Flow chart of nonlinear analysis using stiffness-based method (2)



Figure 1.7: Flow chart of nonlinear analysis using stiffness-based method (3)

For the section state determination, we first need to distinguish between general section and fiber section as described later in Sec. 1.3. Presently, we only consider general section. The state determination of each section is commputed within loop s which refers to the  $s^{th}$  section.

$$\delta \boldsymbol{\varepsilon}_{s,e,n}^{k} = \mathbf{B}_{d,s,e} \cdot \delta \overline{\mathbf{d}}_{e,n}^{k}$$

where,  $\mathbf{B}_{d,s,e}$  is the matrix derived (derivatives) from the displacement interpolation functions at  $s^{th}$  section of  $e^{th}$  element.

$$\boldsymbol{\varepsilon}_{s,e,n}^{k} = \boldsymbol{\varepsilon}_{s,e,n}^{k-1} + \delta \boldsymbol{\varepsilon}_{s,e,n}^{k}$$

and,  $\boldsymbol{\varepsilon}_{s,e,n}^{0}$  corresponds to  $\boldsymbol{\varepsilon}_{s,e,n-1}$ .

(5) Determine the section tangent stiffness matrix and the internal section force vector. If the section constitutive law is explicitly known, then  $\mathbf{k}_{s,e,n}^{tan,k}$  and  $\boldsymbol{\sigma}_{s,e,n}^{int,k}$  are determined from  $\boldsymbol{\varepsilon}_{s,e,n}^{k}$ . For linear elastic section, we need not to recompute  $\mathbf{k}_{s,e,n}^{tan,k}$  as it is identical to the initial section stiffness matrix  $\mathbf{k}_{s,e}$ .

Thus, for elastic sections:

$$egin{array}{rcl} \mathbf{k}^{tan,k}_{s,e,n} &=& \mathbf{k}_{s,e} \ oldsymbol{\sigma}^{int,k}_{s,e,n} &=& \mathbf{k}^{tan,k}_{s,e,n} \cdot oldsymbol{arepsilon}^k_{s,e,n} \end{array}$$

where,  $\mathbf{k}_{s,e,n}^{tan,k}$  is the section tangent stiffness matrix at  $k^{th}$  iteration.

<sup>®</sup> Determine first the internal element nodal force vector and the element tangent stiffness matrix, then from Eq. 1.10 and Eq. 1.8, determine  $\overline{\mathbf{f}}_{e,n}^{int,k}$  and  $\overline{\mathbf{k}}_{e,n}^{tan,k}$ .

$$\overline{\mathbf{f}}_{e,n}^{int,k} = \sum_{s} \mathbf{B}_{d,s,e}^T \cdot \boldsymbol{\sigma}_{s,e,n}^{int,k} \text{ wt}_{s,e}$$

where,  $wt_{s,e}$  is the weight coefficient associated with the Jacobian at the  $s^{th}$  section of the  $e^{th}$  element.

$$\overline{\mathbf{k}}_{e,n}^{tan,k} = \sum_{s} \mathbf{B}_{d,s,e}^{T} \cdot \mathbf{k}_{s,e,n}^{tan,k} \cdot \mathbf{B}_{d,s,e} \cdot \mathbf{w}_{ts,e}$$

where,  $\overline{\mathbf{k}}_{e,n}^{tan,k}$  is the element tangent stiffness matrix in local reference. Finally, from Eq. 1.9, determine  $\mathbf{F}_{e,n}^{int,k}$  and  $\mathbf{K}_{e,n}^{tan,k}$ .

$$\begin{split} \mathbf{F}_{e,n}^{int,k} &= \mathbf{\Gamma}_{e}^{T} \cdot \overline{\mathbf{f}}_{e,n}^{int,k} \\ \mathbf{K}_{e,n}^{tan,k} &= \mathbf{\Gamma}_{e}^{T} \cdot \overline{\mathbf{k}}_{e,n}^{tan,k} \cdot \mathbf{\Gamma}_{e} \end{split}$$

O Determine the internal nodal force vector and the augmented tangent stiffness matrix.

where,  $\mathcal{A}_{b,e}^{T}$  is a force assembling operator, and  $\mathbf{K}_{S,n}^{tan,k}$  encompasses the four submatrices,  $\mathbf{K}_{tt,n}^{tan,k}$ ,  $\mathbf{K}_{tu,n}^{tan,k}$ ,  $\mathbf{K}_{uu,n}^{tan,k}$ ,  $\mathbf{K}_{uu,n}^{tan,k}$ , and  $\mathbf{K}_{uu,n}^{tan,k}$  as shown Eq. 1.11.

(8) Compute the residual nodal force vector at the structural level from Eq. 1.13 and check for convergence:

- If  $\mathbf{P}_{t,n}^{R,k}$  is within the specified tolerance, go to next force increment.
- If  $\mathbf{P}_{t,n}^{R,k}$  is not within the specified tolerance, k is updated to k+1 and the next Newton-Raphson iteration starts. Eq. 1.13 in 2 through 8 are repeated until convergence occurs at the structure level.

#### 1.2.2 Flexibility-based 2D beam-column element

Flexibility-based 2D beam-column elements are "nonconformist" finite elements since they yield the element flexibility matrix rather than the classical stiffness matrix, and are based on the equations of equilibrium rather than on assumed displacement field. Nevertheless, they do offer some important advantages which will be highlighted later.

#### 1.2.2.1 Formulation

In this section we will derive the element flexibility matrix  $\tilde{\mathbf{c}}_e$  without rigid body modes and then invert it to obtain the corresponding element stiffness matrix  $\tilde{\mathbf{k}}_e$  (again without rigid body modes). The retained degrees of freedom are the axial force at node 2, and the two end moments.

This is particularly interesting in those instances where stiffness-based method formulations are approximate and flexibility-based method formulations are exact such as a section varying along the element and elements with material nonlinearity.

Whereas we have used the principle of virtual work (displacement) for the derivation of the stiffness based element, we shall now use the principle of complementary virtual work (force) through the usual three steps.

Equilibrium will now be strongly enforced (whereas it was satisfied in the weak sense previously), Fig. 1.8



Figure 1.8: 2D beam-column element without rigid body modes

$$\underbrace{\mathbf{w}_{e}(x)}_{\text{External}} + \underbrace{\mathcal{L}_{f} \cdot \boldsymbol{\sigma}_{s}(x)}_{\text{Internal}} = \mathbf{0}$$

$$\begin{cases} w_{x}^{(e)}(x) \\ w_{y}^{(e)}(x) \end{cases} + \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}x} & 0 \\ 0 & \frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}} \end{bmatrix} \left\{ \begin{array}{c} N_{x}(x) \\ M_{z}(x) \end{array} \right\} = \mathbf{0}$$

$$(1.14)$$

where,  $\mathbf{w}_{e}(x)$  is the external element traction vector and  $\mathcal{L}_{f}$  is the force differential operator which enforces equilibrium.

By analogy, in the stiffness formulation, the compatibility was "strongly" enforced, and it has led to the interpolation functions for displacements (also known as shape functions in that particular case).

In here, we will be expressing the equilibrium of sectional stresses in terms of the nodal forces through equilibrium. We first assume that there are no external element traction<sup>3</sup>, that is  $\mathbf{w}_e(x) = \mathbf{0}$ . Whereas we previously used displacement interpolation functions, we now need force interpolation functions,  $\mathbf{N}_f(x)$  in order to exactly satisfy equilibrium (Eq. 1.14) along the element

$$\begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}x} & 0\\ 0 & \frac{\mathrm{d}^2}{\mathrm{d}x^2} \end{bmatrix} \left\{ \begin{array}{c} N_x(x)\\ M_z(x) \end{array} \right\} = \mathbf{0}$$

will yield

$$\frac{\mathrm{d}N_x(x)}{\mathrm{d}x} = 0$$
$$\frac{\mathrm{d}^2 M_z(x)}{\mathrm{d}x^2} = 0$$

Integrating these equations, we obtain

$$N_x(x) = c_3$$
  
 $M_z(x) = c_1 x + c_2$ 
(1.15)

Applying the natural boundary condition from Fig. 1.8 with the sign convention (on section force) shown in Fig. 1.9,

<sup>&</sup>lt;sup>3</sup>This restriction will be later removed.



Figure 1.9: Sign convention on section forces

 $N_x(L) = N_{x2}$  $M_z(0) = -M_{z1}$  $M_z(L) = M_{z2}$ 

we obtain

or

$$c_{1} = \frac{M_{z1} + M_{z2}}{L_{e}}$$

$$c_{2} = -M_{z1}$$

$$c_{3} = N_{x2}$$
(1.16)

Substituting Eq. 1.16 into Eq. 1.15,

$$N_x(x) = N_{x2}$$
$$M_z(x) = \left(\frac{x}{L_e} - 1\right) M_{z1} + \frac{x}{L_e} M_{z2}$$

$$\underbrace{\left\{\begin{array}{c}N_{x}(x)\\M_{z}(x)\end{array}\right\}}_{\boldsymbol{\sigma}_{s}(x)} = \underbrace{\left[\begin{array}{ccc}0&0&1\\\frac{x}{L_{e}}-1&\frac{x}{L_{e}}&0\end{array}\right]}_{\mathbf{N}_{f}(x)} \underbrace{\left\{\begin{array}{c}M_{z1}\\M_{z2}\\N_{x2}\end{array}\right\}}_{\tilde{\mathbf{f}}_{e}}$$
(1.17)

where,  $\tilde{\mathbf{f}}_e$  is the element nodal force vector without rigid body modes.

Finally, from Eq. 1.17, we extract the matrix of force interpolation functions.

$$\mathbf{N}_f(x) = \begin{bmatrix} 0 & 0 & 1\\ \frac{x}{L_e} - 1 & \frac{x}{L_e} & 0 \end{bmatrix}$$

It should be noted that these shape functions enforce equilibrium at any section along the element.

**Constitutive law**: Whereas we have previously expressed section forces in terms of section deformations (Eq. 1.5), we now need to express section deformations in terms of section forces

$$\boldsymbol{\varepsilon}_s(x) = \mathbf{c}_s(x) \cdot \boldsymbol{\sigma}_s(x) \tag{1.18}$$

where,  $\mathbf{c}_s(x)$  is the section flexibility matrix. If  $\mathbf{c}_s(x)$  is not derived from fiber section (which will be discussed in Sec. 1.3), then for linear elastic analysis  $\mathbf{c}_s(x)$  is simply.

$$\mathbf{c}_{s}(x) = \left[ \begin{array}{cc} \frac{1}{E(x) \cdot A(x)} & 0\\ 0 & \frac{1}{E(x) \cdot I_{z}(x)} \end{array} \right]$$

which is simply the inverse of Eq. 1.6. We note that shear deformations (but not shear forces) are absent in this classical Euler-Bernouilli formulation, whereas they are included i the so-called Timoshenko formulation.

#### **Compatibility** of displacements:

This requirement will be enforced only in a weak form through the principle of complementary virtual work (as

opposed to the principle of virtual work for the stiffness-based method in Eq. 1.7).

$$\underbrace{\delta \tilde{\mathbf{f}}_{e}^{T} \tilde{\mathbf{d}}_{e}}_{\text{External}} = \underbrace{\int_{0}^{L_{e}} \delta \boldsymbol{\sigma}_{s}(x)^{T} \cdot \boldsymbol{\varepsilon}_{s}(x) \mathrm{d}x}_{\text{Internal}}$$
(1.19)

where  $\tilde{\mathbf{d}}_e$  is the element nodal displacement vector without rigid body modes.

Substituting Eq. 1.17 and Eq. 1.18 into Eq. 1.19 and since the latter must hold for any arbitrary  $\delta \tilde{\mathbf{f}}_e$ , we obtain

$$\delta \tilde{\mathbf{f}}_{e}^{T} \tilde{\mathbf{d}}_{e} = \int_{0}^{L_{e}} \delta \tilde{\mathbf{f}}_{e}^{T} \cdot \mathbf{N}_{f}(x)^{T} \cdot \mathbf{c}_{s}(x) \cdot \boldsymbol{\sigma}_{s}(x) \, \mathrm{d}x$$
$$\tilde{\mathbf{d}}_{e} = \int_{0}^{L_{e}} \mathbf{N}_{f}(x)^{T} \cdot \mathbf{c}_{s}(x) \cdot \boldsymbol{\sigma}_{s}(x) \, \mathrm{d}x = \underbrace{\int_{0}^{L_{e}} \mathbf{N}_{f}(x)^{T} \cdot \mathbf{c}_{s}(x) \cdot \mathbf{N}_{f}(x) \, \mathrm{d}x}_{\tilde{\mathbf{c}}_{e}} \cdot \tilde{\mathbf{f}}_{e}$$
$$\tilde{\mathbf{d}}_{e} = \tilde{\mathbf{c}}_{e} \cdot \tilde{\mathbf{f}}_{e}$$

The element flexibility matrix without rigid body modes in local reference is thus given by

$$\tilde{\mathbf{c}}_{e} = \int_{0}^{L_{e}} \mathbf{N}_{f}(x)^{T} \cdot \mathbf{c}_{s}(x) \cdot \mathbf{N}_{f}(x) \, \mathrm{d}x \tag{1.20}$$

which is the counterpart of Eq. 1.8, and the corresponding element stiffness matrix without rigid body modes in local reference is simply

$$\tilde{\mathbf{k}}_e = [ ilde{\mathbf{c}}_e]^{-1}$$

#### 1.2.2.2 Coordinate system for flexibility-based 2D beam-column element with Bernoulli beam theory



Figure 1.10: Internal forces and corresponding displacements in local coordinate system with or without rigid body for the flexibility-based 2D beam-column element

Contrarily to the reference system of the stiffness-based method in Fig. 1.2, we need to consider forces and displacements in local reference with and without rigid body modes as shown in Fig. 1.10.

Element nodal force vector without rigid body modes in local reference are (arbitrarily) selected as

 $\tilde{\mathbf{f}}_e = \lfloor \tilde{M}_{z1}, \ \tilde{M}_{z2}, \ \tilde{N}_{x2} \rfloor^T$ 

and the corresponding element nodal displacement vector without rigid body modes in local reference are given by

$$\tilde{\mathbf{d}}_e = [\tilde{\theta}_{z1}, \ \tilde{\theta}_{z2}, \ \tilde{u}_{x2}]^T$$



Figure 1.11: The relationship between rigid body modes and no rigid body modes

The relationship between rigid body modes and no rigid body modes is obtained through equilibrium, Fig. 1.11.

$$\begin{cases}
\overline{N}_{x1} \\
\overline{V}_{y1} \\
\overline{M}_{z1} \\
\overline{N}_{x2} \\
\overline{V}_{y2} \\
\overline{M}_{z2} \\
\overline{V}_{y2} \\
\overline{M}_{z2} \\
\overline{V}_{z2} \\
\overline{F}_{e} \\
\hline{\mathbf{f}}_{e} = \tilde{\mathbf{\Gamma}}_{e}^{T} \cdot \tilde{\mathbf{f}}_{e} \\
\overline{\mathbf{d}}_{e} = \tilde{\mathbf{\Gamma}}_{e}^{T} \cdot \tilde{\mathbf{d}}_{e} \\
\mathbf{K}_{e} = \tilde{\mathbf{\Gamma}}_{e}^{T} \cdot \tilde{\mathbf{K}}_{e} \cdot \tilde{\mathbf{\Gamma}}_{e}
\end{cases} (1.21)$$

$$(1.21)$$

which is the counterpart of Eq. 1.9.

Finally, the derivation of the stiffness matrix from the flexibility one and the equations of equilibrium parallels the one which yielded Eq. ??

$$[\mathbf{K}] = \begin{bmatrix} \mathbf{[d]}^{-1} & [\mathbf{d]}^{-1} [\mathcal{B}]^T \\ \hline [\mathcal{B}][\mathbf{d}]^{-1} & [\mathcal{B}][\mathbf{d}]^{-1} [\mathcal{B}]^T \end{bmatrix}$$
(1.23)

#### 1.2.2.3 State determination

In their early and pioneering publication ? did not provide a clear and consistent method for calculating the internal element force vectors from element deformations. Possibly because the finite element formulation is based on the complementary principle of virtual work and the corresponding flexibility-based 2D beam-column elements do not have shape functions that relate deformation field inside the element with element nodal displacement vector.

Since the global finite element formulation is based on the stiffness (displacement) formulation, the flexibility (force) based element formulation will have to be reconciled with the global formulation. Furthermore, internal element force vectors of all elements should be determined during the phase of state determination. Hence, the state determination is obtained from the mixed stiffness-based and flexibility-based methods.

The nonlinear algorithm for the mixed stiffness-based and flexibility-based methods will be divided into two methods (a) with Newton-Raphson iteration in the element level to determine element state, (b) without iteration in the element level to determine element state. The former is based on the formulation of (?) and the later on the one of (?).

**1.2.2.3.1 With element iterations** As with the state determination of stiffness-based 2D beam-column in a nonlinear structural analysis the state determination process for the mixed stiffness-based and flexibility-based methods with Newton-Raphson iteration loop in the element level is made up of three parts as shown in Fig. 1.14 (which is the counterpart of Fig. 1.3).

- 1. Section state determination, Fig. 1.14(c)
- 2. Element state determination, Fig. 1.14(b)
- 3. Structure state determination, Fig. 1.14(a)



Figure 1.12: State determination procedure for flexibility-based method with Newton-Raphson iteration in the element



Figure 1.13: State determination procedure for flexibility-based method without Newton-Raphson iteration in the element



Figure 1.14: State determination for flexibility-based method with element iteration (?)



Figure 1.15: Element and section state determinations for flexibility-based 2D beam-column element with Newton-Raphson iteration loop in the element level

Where, superscript j in Fig. 1.14(b) denotes the iteration scheme at the element level in the element state determination process. This iteration loop is necessary for the determination of the internal element nodal force vector  $\tilde{\mathbf{f}}_{e}^{int,k}$  that correspond to the element nodal displacement vector  $\tilde{\mathbf{d}}_{e}^{k}$  at the  $k^{th}$  Newton-Raphson iteration.

It is again assumed that the Newton-Raphson is used for the iteration process in the structural level and that this does not affect the iterative scheme in the element level (which determines the internal element nodal force vector  $\tilde{\mathbf{f}}_{e}^{int}$  for the element nodal displacement vector  $\tilde{\mathbf{d}}_{e}$ ).

Broadly speaking, this formulation can be decomposed as follows:

- 1. First, determine the element nodal force vector  $\tilde{\mathbf{f}}_{e,n}^{k,j}$  (6) from the current element nodal displacement vector using the element tangent stiffness matrix  $\tilde{\mathbf{k}}_{e,n}^{tan,k,j-1}$  (3) of the previous iteration.
- 2. Through the force interpolation functions  $\mathbf{N}_{f,e}(x)$  determine the section force vectors  $\boldsymbol{\sigma}_{s,e,n}^{k,j}(x)$  along the element. These are two complications in this procedure.
  - a) The determination of the section deformation vectors  $\boldsymbol{\varepsilon}_{s,e,n}^{k,j}(x)$  from section force vectors since the nonlinear section force-deformation relation is commonly expressed as an explicit function of section deformation vector (④).
  - b) Changes in the section tangent stiffness matrices  $\mathbf{k}_{s,e,n}^{tan}(x)$  produce a new element tangent stiffness matrix which, in turn, changes the element nodal force vector for the given element nodal displacement vector (<sup>6</sup>).

These problems are solved through a nonlinear approach which first determines residual element nodal displacement vector  $\tilde{\mathbf{d}}_{e,n}^{R,k,j}$  at each iteration. Then, compatibility of displacement at the structural level requires that this residual element nodal displacement vector be corrected.

This is accomplished at the element level by applying corrective element nodal force vector based on the current element tangent stiffness matrix. The corresponding section force vectors are then determined from the force interpolation functions so that equilibrium will always be satisfied along the element. These section force vectors will not change during the section state determination in order to maintain equilibrium along the element.

Finally, the linear approximation of the section force-deformation relation about the present state results in residual section deformation vectors  $\sigma_{s,e,n}^{R,k,j}(x)$ . These are then integrated along the element to obtain new residual element nodal displacement vector (⑤) and the whole process is repeated until convergence occurs. It is important to stress that compatibility of element nodal displacement vector and equilibrium along the element are always satisfied in this process.

The nonlinear solution procedure for the element and section state determinations in Fig. 1.14 are illustrated in details in Fig. 1.15 for one Newton-Raphson iteration k. For illustrative purposes, convergence in loop j is reached in three iterations in Fig. 1.15.

The goal of the Newton-Raphson iteration loop in the element level is to determine the internal element nodal force vector (<sup>®</sup>) for the current element nodal displacement vector at the  $k^{th}$  Newton-Raphson iteration, hence

$$\tilde{\mathbf{d}}_{e,n}^k = \tilde{\mathbf{d}}_{e,n}^{k-1} + \delta \tilde{\mathbf{d}}_{e,n}^k$$

An iterative process in the element level denoted through the superscript j will be introduced inside the  $k^{th}$ Newton-Raphson iteration, and the first iteration corresponds to j = 1.

The initial state of the element, represented by the point  $\mathbf{A}$ , and j = 0 and k = 0 in Fig. 1.15, corresponds to the state at the end of the last convergence in structural level. With the initial element tangent stiffness matrix given by

$$\tilde{\mathbf{c}}_{e,n}^{tan,k=1,j=0} = \tilde{\mathbf{c}}_{e,n-1}^{tan}$$

and the given incremental element nodal displacement vector

$$\delta \tilde{\mathbf{d}}_{e,n}^{k=1,j=1} = \delta \tilde{\mathbf{d}}_{e,n}^{k=1}$$

hence, the corresponding incremental element nodal force vector is

$$\delta \tilde{\mathbf{f}}_{e,n}^{k=1,j=1} = \left[\tilde{\mathbf{c}}_{e,n}^{tan,k=1,j=0}\right]^{-1} \cdot \delta \tilde{\mathbf{d}}_{e,n}^{k=1,j=1} = \tilde{\mathbf{k}}_{e,n}^{tan,k=1,j=0} \cdot \delta \tilde{\mathbf{d}}_{e,n}^{k=1,j=1}$$

The incremental section force vectors can now be determined from the force interpolation functions

$$\delta \boldsymbol{\sigma}_{s,e,n}^{k=1,j=1}(x) = \mathbf{N}_{f,e}(x) \cdot \delta \tilde{\mathbf{f}}_{e,n}^{k=1,j=1}$$

With the section tangent flexibility matrices at end of the last convergence in structural level given by

$$\mathbf{c}_{s,e,n}^{tan,k=1,j=0}(x) = \mathbf{c}_{s,e,n-1}^{tan}(x)$$

Mercury

the linearization of the section force-deformation relation yields the incremental section deformation vectors.

$$\delta \boldsymbol{\varepsilon}_{s,e,n}^{k=1,j=1}(x) = \mathbf{c}_{s,e,n}^{tan,k=1,j=0}(x) \cdot \delta \boldsymbol{\sigma}_{s,e,n}^{k=1,j=1}(x)$$

The section deformation vectors are updated to the state that corresponds to point **B** in Fig. 1.15(b), and the updated section deformation vector (B) will be given by

$$\boldsymbol{\varepsilon}_{s,e,n}^{k=1,j=1}(x) = \boldsymbol{\varepsilon}_{s,e,n}^{k=1,j=0}(x) + \delta \boldsymbol{\varepsilon}_{s,e,n}^{k=1,j=1}(x)$$

For the sake of simplicity we will assume that the section force-deformation relation is explicitly known, then the section deformation vectors  $\boldsymbol{\varepsilon}_{s,e,n}^{k=1,j=1}(x)$  will correspond to internal section force vectors  $\boldsymbol{\sigma}_{s,e,n}^{int,k=1,j=1}(x)$  and updated section tangent flexibility matrices  $\mathbf{c}_{s,e,n}^{tan,k=1,j=1}(x)$  in Fig. 1.15(b) can be defined.

The residual section force vectors are then determined

$$\boldsymbol{\sigma}_{s,e,n}^{R,k=1,j=1}(x) = \boldsymbol{\sigma}_{s,e,n}^{k=1,j=1}(x) - \boldsymbol{\sigma}_{s,e,n}^{int,k=1,j=1}(x)$$

and are transformed into residual section deformation vectors  $\boldsymbol{\varepsilon}_{s,e,n}^{R,k=1,j=1}(x)$ 

$$\boldsymbol{\varepsilon}_{s,e,n}^{R,k=1,j=1}(x) = \mathbf{c}_{s,e,n}^{tan,k=1,j=1}(x) \cdot \boldsymbol{\sigma}_{s,e,n}^{R,k=1,j=1}(x)$$

The residual section deformation vectors are thus the linear approximation of the deformation error made in the linearization of the section force-deformation relation (Fig. 1.15(b)). While any suitable section flexibility matrix can be used to calculate the residual section deformation vector, the section tangent flexibility matrices offer the fastest convergence rate.

The residual section deformation vectors are integrated along the element using the complimentary principle of virtual work to obtain the residual element nodal displacement vector ( $\mathfrak{S}$ ).

$$\tilde{\mathbf{d}}_{e,n}^{R,k=1,j=1} = \int_0^{L_e} \mathbf{N}_{f,e}(x)^T \cdot \boldsymbol{\varepsilon}_{s,e,n}^{R,k=1,j=1}(x) \mathrm{d}x$$

At this stage the first iteration (j = 1) is completed. The final element and section states for j = 1 correspond to point **B** in Fig. 1.15. The residual section deformation vectors  $\varepsilon_{s,e,n}^{R,k=1,j=1}(x)$  and the residual element nodal displacement vector  $\tilde{\mathbf{d}}_{e,n}^{R,k=1,j=1}$  were determined in the first iteration, but the corresponding element nodal displacement vector have not yet been updated. Instead, they constitute the starting point of the remaining steps within iteration loop j.

The presence of residual element nodal displacement vector  $\tilde{\mathbf{d}}_{e,n}^{R,k=1,j=1}$  will violate compatibility, since elements sharing a common node would now have different element nodal displacement vector. In order to restore the interelement compatibility, corrective force vector  $\delta \tilde{\mathbf{f}}_{e,n}^{k=1,j=2}$  must be applied at the ends of the element as follows

$$\delta \tilde{\mathbf{f}}_{e,n}^{k=1,j=2} = -\left[\tilde{\mathbf{c}}_{e,n}^{k=1,j=1}\right]^{-1} \cdot \tilde{\mathbf{d}}_{e,n}^{R,k=1,j=1} \tilde{\mathbf{c}}_{e,n}^{k=1,j=1} = \int_{0}^{L_{e}} \mathbf{N}_{f,e}(x)^{T} \cdot \mathbf{c}_{s,e,n}^{tan,k=1,j=1}(x) \cdot \mathbf{N}_{f,e}(x) \mathrm{d}x$$
(1.24)

Thus, in the second iteration (j = 2), the element nodal force vector (6) is updated as

$$\tilde{\mathbf{f}}_{e,n}^{k=1,j=2} = \tilde{\mathbf{f}}_{e,n}^{k=1,j=1} + \delta \tilde{\mathbf{f}}_{e,n}^{k=1,j=2}$$

and the section force and deformation vectors are also updated to

$$\begin{split} \delta \boldsymbol{\sigma}_{s,e,n}^{k=1,j=2}(x) &= \mathbf{N}_{f,e}(x) \cdot \delta \tilde{\mathbf{f}}_{e,n}^{k=1,j=2} \\ \boldsymbol{\sigma}_{s,e,n}^{k=1,j=2}(x) &= \boldsymbol{\sigma}_{s,e,n}^{k=1,j=1}(x) + \delta \boldsymbol{\sigma}_{s,e,n}^{k=1,j=2}(x) \\ \delta \boldsymbol{\varepsilon}_{s,e,n}^{k=1,j=2}(x) &= \boldsymbol{\varepsilon}_{s,e,n}^{R,k=1,j=1}(x) + \mathbf{c}_{s,e,n}^{tan,k=1,j=1}(x) \cdot \delta \boldsymbol{\sigma}_{s,e,n}^{k=1,j=2}(x) \\ \boldsymbol{\varepsilon}_{s,e,n}^{k=1,j=2}(x) &= \boldsymbol{\varepsilon}_{s,e,n}^{k=1,j=1}(x) + \delta \boldsymbol{\varepsilon}_{s,e,n}^{k=1,j=2}(x) \end{split}$$

The state of the element and sections within the element at the end of the second iteration j = 2 corresponds to point **C** in Fig. 1.15. It should be noted that the updated tangent flexibility matrices  $\mathbf{c}_{s,e,n}^{tan,k=1,j=2}(x)$  and residual section deformation vectors  $\boldsymbol{\varepsilon}_{s,e,n}^{R,k=1,j=2}(x)$  are computed for all sections.

The residual section deformation vectors are then integrated to the bottom the residual element nodal deformation vector  $\tilde{\mathbf{d}}_{e,n}^{R,k=1,j=2}$  and the new element tangent flexibility matrix  $\tilde{\mathbf{c}}_{e,n}^{k=1,j=2}$  is determined by integration of the section flexibility matrices  $\mathbf{c}_{s,e,n}^{tan,k=1,j=2}(x)$  according to Eq. 1.24. This completes the second iteration within loop j.

The third and subsequent iterations follow exactly the same scheme. Convergence is achieved when the selected convergence criterion is satisfied. With the conclusion of iteration loop j the internal element nodal force vector for the given element nodal displacement vector  $\tilde{\mathbf{d}}_{e,n}^{k=1}$  are established, as represented by point  $\mathbf{D}$  in Fig. 1.14 and Fig. 1.15. The Newton-Raphson iteration process can now proceed with step k + 1. When incremental element nodal displacement vector  $\delta \tilde{\mathbf{d}}_{e,n}^{k,j=1} = \delta \tilde{\mathbf{d}}_{e,n}^{k}$  is added to the element nodal displacement

When incremental element nodal displacement vector  $\delta \mathbf{d}_{e,n}^{k,j=1} = \delta \mathbf{d}_{e,n}^k$  is added to the element nodal displacement vector  $\tilde{\mathbf{d}}_{e,n}^{k-1}$  at the end of the previous Newton-Raphson iteration, it is important to make sure that the element nodal displacement vector  $\tilde{\mathbf{d}}_{e,n}^{k}$  do not change except in the first iteration j = 1 during iteration loop j

Equilibrium along the element is always strictly satisfied since section force vectors (B) are derived from element nodal force vector by the force interpolation functions.

$$\boldsymbol{\sigma}_{s,e,n}^{k}(x) = \mathbf{N}_{f,e}(x) \cdot \tilde{\mathbf{f}}_{e,n}^{k} \quad \text{and} \quad \delta \boldsymbol{\sigma}_{s,e,n}^{k}(x) = \mathbf{N}_{f,e}(x) \cdot \delta \tilde{\mathbf{f}}_{e,n}^{k}$$

Compatibility is also satisfied, not only at the element ends, but also along the element.

$$\delta \tilde{\mathbf{f}}_{e,n}^{k,j} = -\left[\tilde{\mathbf{c}}_{e,n}^{k,j-1}\right]^{-1} \cdot \tilde{\mathbf{d}}_{e,n}^{R,k,j-1}$$

$$\delta \boldsymbol{\sigma}_{s,e,n}^{k,j}(x) = \mathbf{N}_{f,e}(x) \cdot \delta \tilde{\mathbf{f}}_{e,n}^{k,j}$$

$$\delta \boldsymbol{\varepsilon}_{s,e,n}^{k,j}(x) = \boldsymbol{\varepsilon}_{s,e,n}^{R,k,j-1}(x) + \mathbf{c}_{s,e,n}^{tan,k,j-1}(x) \cdot \delta \boldsymbol{\sigma}_{s,e,n}^{k,j}(x)$$

$$(1.25)$$

The second term of Eq. 1.25 expresses the relation between section deformation vectors and element nodal displacement vector. However, it should be noted that residual section deformation vectors  $\boldsymbol{\varepsilon}_{s,e,n}^{R,k,j-1}(x)$  do not strictly satisfy this compatibility condition. This requirement can only be satisfied by integrating the residual section deformation vectors  $\boldsymbol{\varepsilon}_{s,e,n}^{R,k,j-1}(x)$  to obtain  $\tilde{\mathbf{d}}_{e,n}^{R,k,j-1}$ . Since this is rather inefficient from a computational standpoint, the small compatibility error in the calculation of residual section deformation vectors  $\boldsymbol{\varepsilon}_{s,e,n}^{R,k,j-1}(x)$  will be neglected.

While equilibrium and compatibility are satisfied along the element during each iteration of loop j, the section force-deformation relation and the element force-deformation relation is only satisfied within a specified tolerance when convergence is achieved at point in Fig. 1.15.

**1.2.2.3.2 Without element iterations** This alternative method, first introduced by (?) has the added advantage (over the previous approach) of avoiding an inner element loop, at the expenses however of additional iterations at the structural level.

As with the state determination of stiffness-based 2D beam-column in a nonlinear structural analysis the state determination process for the mixed stiffness-based and flexibility-based method without iteration in the element level is made up of three phases as shown in Fig. 1.16.

- 1. Section state determination, Fig. 1.16(c)
- 2. Element state determination, Fig. 1.16(b)
- 3. Structure state determination, Fig. 1.16(a)

Starting with completion of the structure state determination, the internal nodal force vector at  $k^{th}$  iteration  $\mathbf{P}_{t,n}^{int,k}$  is compared with the total applied external nodal force vector  $\mathbf{P}_{t,n}^{ext}$  and the difference, if any, yields the residual nodal force vector  $\mathbf{P}_{t,n}^{R,k}$  (①) which is then reapplied to the structure in an iterative solution process until the difference of total applied external force vector and internal nodal force vector satisfies within a specified tolerance.

The state determination procedure is straightforward for a flexibility-based 2D beam-column element without element iteration like stiffness-based 2D beam-column element. The element nodal displacement vector  $\tilde{\mathbf{d}}_{e,n}^{k}$  (③) without rigid body modes at the  $k^{th}$  iteration is determined from Eq. 1.22

$$\begin{split} \delta \tilde{\mathbf{d}}_{e,n}^k &= \tilde{\mathbf{\Gamma}}_e \cdot \delta \tilde{\mathbf{f}}_{e,n}^k \\ \tilde{\mathbf{d}}_{e,n}^k &= \tilde{\mathbf{d}}_{e,n}^{k-1} + \delta \tilde{\mathbf{d}}_{e,n}^k \end{split}$$

and the element nodal force vector  $\tilde{\mathbf{f}}_{e,n}^k$  (④) without rigid body modes is determined from Eq. 1.20

$$\delta \tilde{\mathbf{f}}_{e,n}^k = \tilde{\mathbf{k}}_{e,n}^{tan,k-1} \cdot \delta \tilde{\mathbf{d}}_{e,n}^k$$

$$\tilde{\mathbf{f}}_{e,n}^k = \tilde{\mathbf{f}}_{e,n}^{k-1} + \delta \tilde{\mathbf{f}}_{e,n}^k$$
(1.26)

The section force vectors at the  $k^{th}$  iteration  $\boldsymbol{\sigma}_{s,e,n}^{k}(x)$  (⑤) are determined from the element nodal force vector  $\tilde{\mathbf{f}}_{e,n}^{k}$ , and then the section deformation vectors at  $k^{th}$  iteration  $\boldsymbol{\varepsilon}_{s,e,n}^{k}(x)$  (⑥) are determined from the section force vectors



Figure 1.16: State determination for flexibility-based method without element iteration (?)

 $\mathbf{34}$ 

$$\begin{split} \delta \boldsymbol{\sigma}_{s,e,n}^{k}(x) &= \mathbf{N}_{f,e} \cdot \delta \tilde{\mathbf{f}}_{e,n}^{k} \\ \boldsymbol{\sigma}_{s,e,n}^{k}(x) &= \boldsymbol{\sigma}_{s,e,n}^{k-1}(x) + \delta \boldsymbol{\sigma}_{s,e,n}^{k}(x) \\ \delta \boldsymbol{\varepsilon}_{s,e,n}^{k}(x) &= \mathbf{c}_{s,e,n}^{tan,k-1}(x) \cdot \delta \boldsymbol{\sigma}_{s,e,n}^{k}(x) \\ \boldsymbol{\varepsilon}_{s,e,n}^{k}(x) &= \boldsymbol{\varepsilon}_{s,e,n}^{k-1}(x) + \delta \boldsymbol{\varepsilon}_{s,e,n}^{k}(x) \end{split}$$

Assuming that the section constitutive law is explicitly known, the section tangent flexibility matrices  $\mathbf{c}_{s,e,n}^{k}(x)$  and the internal section force vectors  $\boldsymbol{\sigma}_{s,e,n}^{int,k}(x)$  (⑦) are readily computed from  $\boldsymbol{\varepsilon}_{s,e,n}^{k}(x)$  (⑧).

In this approach the residual section force and deformation vectors are first determined from the section tangent flexibility matrices  $\mathbf{c}_{s,e,n}^{k}(x)$ .

$$\begin{aligned} \boldsymbol{\sigma}_{s,e,n}^{R,k}(x) &= \boldsymbol{\sigma}_{s,e,n}^{k}(x) - \boldsymbol{\sigma}_{s,e,n}^{int,k}(x) \\ \boldsymbol{\varepsilon}_{s,e,n}^{R,k}(x) &= \mathbf{c}_{s,e,n}^{k}(x) \cdot \boldsymbol{\sigma}_{s,e,n}^{R,k}(x) \end{aligned}$$

The residual section deformation vectors are integrated along the element using the complimentary principle of virtual work to obtain the residual element nodal displacement vector (B).

$$\tilde{\mathbf{d}}_{e,n}^{R,k} = \int_0^{L_e} \mathbf{N}_{f,e}(x)^T \cdot \boldsymbol{\varepsilon}_{s,e,n}^{R,k}(x)$$

The element flexibility matrix without rigid body modes  $\tilde{\mathbf{c}}_{e,n}^k$  is determined from Eq. 1.20, and then the residual element nodal force vector will be determined form the residual element nodal displacement vector.

$$\tilde{\mathbf{f}}_{e,n}^{R,k} = [\tilde{\mathbf{c}}_{e,n}^k]^{-1} \cdot \tilde{\mathbf{d}}_{e,n}^{R,k}$$
(1.27)

The internal element nodal force vector (1) without rigid body modes is determined from Eq. 1.26 and Eq. 1.27.

$$ilde{\mathbf{f}}_{e,n}^{int,k} = ilde{\mathbf{f}}_{e,n}^k - ilde{\mathbf{f}}_{e,n}^{R,k}$$

Finally, the internal element nodal force vector is obtained from Eq. 1.22.

$$\overline{\mathbf{f}}_{e,n}^{int,k} = \widetilde{\boldsymbol{\Gamma}}_{e}^{T} \cdot \widetilde{\mathbf{f}}_{e,n}^{int,k}$$

The flexibility-based 2D beam-column element without iteration in the element level to determine element state is straightforward method for the state determination procedure unlike the flexibility-based 2D beam-column element with Newton-Raphson iteration in the element level to do. This element formulation uses the force interpolation functions without any assumption unlike stiffness based element with displacement interpolation functions. Due to the exact character of the force interpolation functions, no intrinsic errors exist in the flexibility-based 2D beam-column element formulation without iteration in the element level to do. In addition, there are no limitations to the size of the element has consistent section along longitudinal axis, for this reason (?)

#### 1.2.2.4 Nonlinear analysis using flexibility-based method

With reference to Fig. 1.14 and 1.15, and Fig. 1.17 to Fig. 1.19 for the method with Newton-Raphson iteration loop in the element level and Fig. 1.20 to Fig. 1.22 for The method without iteration in the element level, we will examine one single step of the Newton-Raphson method in structural level for nonlinear analysis using the flexibility-based method with section constitutive law due to force and displacement control. Force and displacement control are discussed in Sec. ??. Layer/fiber section procedure in Fig. 1.7 will be described in Sec. 1.3.

**1.2.2.4.1 With element iterations** We first examine the nonlinear analysis of flexibility-based 2D beam-column element with element iterations with reference to Fig. 1.17 to 1.19.

Step numbers are shown in Fig. 1.14, and numbers in Fig. 1.15 indicate the procedure for element and section determination during iterations.

① Compute the incremental nodal force vector  $\Delta \mathbf{P}_{t,n}^{ext}$ .

$$\Delta \mathbf{P}_{t,n}^{ext} = \mathbf{P}_{t,n}^{ext} - \mathbf{P}_{t,n-1}^{ext}$$

<sup>(2)</sup> Compute the incremental nodal displacement vector  $\delta \mathbf{u}_{t,n}$  and total nodal displacement vector  $\mathbf{u}_{t,n}$  in structure level. Initially, iteration started from Eq. 1.28 and k = 1.



Figure 1.17: Flow chart of nonlinear analysis using flexibility-based method with Newton-Raphson iteration in the element level (1)



Figure 1.18: Flow chart of nonlinear analysis using flexibility-based method with Newton-Raphson iteration in the element level (2)


Figure 1.19: Flow chart of nonlinear analysis using flexibility-based method with Newton-Raphson iteration in the element level (3)

If k = 1,

$$\delta \mathbf{u}_{u,n}^{k} = \mathbf{u}_{u,n} - \mathbf{u}_{u,n-1}$$

$$\mathbf{u}_{u,n} = \mathbf{u}_{u,n-1} + \delta \mathbf{u}_{u,n}^{k}$$

$$\delta \mathbf{u}_{t,n}^{k} = [\mathbf{K}_{tt,n}^{tan,k-1}]^{-1} \cdot [\mathbf{P}_{t,n}^{ext} - \mathbf{P}_{t,n-1}^{ext} - \mathbf{K}_{tu,n}^{tan,k-1} \delta \mathbf{u}_{u,n}^{k}]$$

$$\mathbf{u}_{t,n}^{k} = \mathbf{u}_{t,n}^{k-1} + \delta \mathbf{u}_{t,n}^{k}$$
(1.28)

If 
$$k \neq 1$$
,

$$\mathbf{P}_{t,n}^{R,k} = \mathbf{P}_{t,n}^{ext} - \mathbf{P}_{t,n}^{int,k} \\
\delta \mathbf{u}_{t,n}^{k+1} = [\mathbf{K}_{tt,n}^{tan,k}]^{-1} \cdot \mathbf{P}_{t,n}^{R,k} \\
\mathbf{u}_{t,n}^{k+1} = \mathbf{u}_{t,n-1} + \Delta \mathbf{u}_{t,n}^{k+1} = \mathbf{u}_{t,n}^{k} + \delta \mathbf{u}_{t,n}^{k+1}$$
(1.29)

where, superscript k is the iteration counter,  $\mathbf{P}_{t}^{R}$  the residual nodal force vector in structural level,  $\Delta \mathbf{u}_{t,n}^{k+1}$  the total incremental displacement vector from the last converged step, and  $\delta \mathbf{u}_{n}^{k+1}$  the last incremental displacement vector.

- 3 Loop over all the elements and determine their state.
  - Determine the element nodal displacement vector in global reference.

If 
$$k = 1$$
,

$$\delta \boldsymbol{\delta}_{e,n}^{k} = \mathcal{A}_{b,e} \cdot \delta \mathbf{u}_{t,n}^{k} + \mathcal{A}_{b,e} \cdot \delta \mathbf{u}_{u,n}^{k}$$

If 
$$k \neq 1$$
,

$$\delta \boldsymbol{\delta}_{e,n}^k = \mathcal{A}_{b,e} \cdot \delta \mathbf{u}_{t,n}^k$$

where,  $\mathcal{A}_{b,e}$  is displacement extracting operator.

$$\boldsymbol{\delta}_{e,n}^{k} = \boldsymbol{\delta}_{e,n}^{k-1} + \delta \boldsymbol{\delta}_{e,n}^{k}$$

and  $\boldsymbol{\delta}_{e,n}^0$  corresponds to  $\boldsymbol{\delta}_{e,n-1}$ .

• Determine the element nodal displacement vector in local reference.

$$\begin{split} \delta \overline{\mathbf{d}}_{e,n}^{k} &= \mathbf{\Gamma}_{e} \cdot \delta \boldsymbol{\delta}_{e,n}^{k} \\ \overline{\mathbf{d}}_{e,n}^{k} &= \overline{\mathbf{d}}_{e,n}^{k-1} + \delta \overline{\mathbf{d}}_{e,n}^{k} \end{split}$$

and  $\overline{\mathbf{d}}_{e,n}^{0}$  corresponds to  $\overline{\mathbf{d}}_{e,n-1}$ .

• Determine the element nodal displacement vector without rigid body modes in local reference.

$$\begin{split} \delta \tilde{\mathbf{d}}_{e,n}^k &= \tilde{\mathbf{\Gamma}}_e \cdot \delta \overline{\mathbf{d}}_{e,n} \\ \tilde{\mathbf{d}}_{e,n}^k &= \tilde{\mathbf{d}}_{e,n}^{k-1} + \delta \tilde{\mathbf{d}}_{e,n}^k \end{split}$$

and,  $\overline{\mathbf{d}}_{e,n}^0$  and  $\widetilde{\mathbf{d}}_{e,n}^0$  correspond to  $\overline{\mathbf{d}}_{e,n-1}$  and  $\widetilde{\mathbf{d}}_{e,n-1}$ .

- **3a** Start the element state determination. Loop over all elements in the structure. The state determination of each element is performed within loop j.
  - Determine the element nodal force vector without rigid body modes

$$\begin{split} \delta \tilde{\mathbf{f}}_{e,n}^{k,j} &= \tilde{\mathbf{k}}_{e,n}^{tan,k,j-1} \cdot \delta \tilde{\mathbf{d}}_{e,n}^{k,j} \\ \tilde{\mathbf{f}}_{e,n}^{k,j} &= \tilde{\mathbf{f}}_{e,n}^{k,j-1} + \delta \tilde{\mathbf{f}}_{e,n}^{k,j} \end{split}$$

 $\delta \tilde{\mathbf{d}}_{e,n}^{k,j=1}, \, \tilde{\mathbf{f}}_{e,n}^{k,j=0}, \, \text{and and}, \, \tilde{\mathbf{k}}_{e,n}^{tan,k,j=0} \text{ correspond to } \delta \tilde{\mathbf{d}}_{e}^{k}, \, \tilde{\mathbf{f}}_{e,n}^{k-1}, \, \text{and } \, \tilde{\mathbf{k}}_{e,n}^{tan,k-1}.$ 

(4) Start the section state determination by looping over the element's sections. The total number of section may vary from element to element. Therefore, the total number of sections in an element is  $nIp_e$  and it depends on the number of integration points in the Gauss Lobatto quadrature rule.

38

• Determine the section force vector.

For the section state determination, we first need to differentiate between general section and layer/fiber section as described in Sec. 1.3. For the sake of this description we consider general section only. The state determination of each section is performed within loop s where the subscript corresponds to the  $s^{th}$  section.

$$\delta \boldsymbol{\sigma}_{s,e,n}^{k,j} = \mathbf{N}_{f,s,e} \cdot \delta \tilde{\mathbf{f}}_{e,n}^{k,j}$$
  
 $\boldsymbol{\sigma}_{s,e,n}^{k,j} = \boldsymbol{\sigma}_{s,e,n}^{k,j-1} + \delta \boldsymbol{\sigma}_{s,e,n}^{k,j}$ 

where,  $\mathbf{N}_{f,s,e}$  is the matrix derived from the force interpolation functions at  $s^{th}$  section of  $e^{th}$  element, and  $\boldsymbol{\sigma}_{s,e,n}^{k,j=0}$  corresponds to  $\boldsymbol{\sigma}_{s,e,n}^{k-1}$ .

• Determine section deformation vector.

$$\begin{split} &\delta \boldsymbol{\varepsilon}_{s,e,n}^{k,j} = \boldsymbol{\varepsilon}_{s,e,n}^{R,k,j-1} + \mathbf{c}_{s,e,n}^{tan,k,j-1} \cdot \delta \boldsymbol{\sigma}_{s,e,n}^{k,j} \\ & \boldsymbol{\varepsilon}_{s,e,n}^{k,j} = \boldsymbol{\varepsilon}_{s,e,n}^{k,j-1} + \delta \boldsymbol{\varepsilon}_{s,e,n}^{k,j} \end{split}$$

and,  $\boldsymbol{\varepsilon}_{s,e,n}^{k,j=0}$  and  $\mathbf{c}_{s,e,n}^{tan,k,j=0}$  correspond to  $\boldsymbol{\varepsilon}_{s,e,n}^{k-1}$  and  $\mathbf{c}_{s,e,n}^{tan,k-1}$ , and  $\boldsymbol{\varepsilon}_{s,e,n}^{R,k,j=0} = 0$ .

- Determine the section tangent flexibility matrix and the internal section force vector. If we assume that the section constitutive law is explicitly known,  $\mathbf{c}_{s,e,n}^{tan,k,j}$  and  $\boldsymbol{\sigma}_{s,e,n}^{int,k,j}$  are both determined from  $\boldsymbol{\varepsilon}_{s,e,n}^{k,j}$ . However, in elastic section, we need not compute  $\mathbf{c}_{s,e,n}^{tan,k,j}$  again as it is identical to the initial section flexibility matrix  $\tilde{\mathbf{c}}_{s,e}$ .
- Determine the residual section force and deformation vector.

$$oldsymbol{\sigma}_{s,e,n}^{R,k,j} = oldsymbol{\sigma}_{s,e,n}^{k,j} - oldsymbol{\sigma}_{s,e,n}^{int,k,j} \ oldsymbol{arepsilon}_{s,e,n}^{R,k,j} = oldsymbol{c}_{s,e,n}^{tan,k,j} \cdot oldsymbol{\sigma}_{s,e,n}^{R,k,j}$$

(5) Determine the updated element flexibility matrix and the residual element nodal displacement vector.

The residual section deformation vectors and the section tangent flexibility matrices are integrated along the element using the complimentary principle of virtual work to obtain the residual element nodal displacement vector and the element tangent flexibility matrix.

$$\begin{split} \tilde{\mathbf{d}}_{e,n}^{R,k,j} &= \sum_{s} \mathbf{N}_{f,s,e}^{T} \cdot \boldsymbol{\varepsilon}_{s,e,n}^{R,k,j} \cdot \mathbf{w}_{ts,e} \\ \tilde{\mathbf{c}}_{e,n}^{tan,k,j} &= \sum_{s} \mathbf{N}_{f,s,e}^{T} \cdot \mathbf{c}_{s,e,n}^{tan,k,j} \cdot \mathbf{N}_{f,s,e} \cdot \mathbf{w}_{ts,e} \\ \tilde{\mathbf{k}}_{e,n}^{tan,k,j} &= [\tilde{\mathbf{c}}_{e,n}^{tan,k,j}]^{-1} \end{split}$$

where,  $wt_{s,e}$  is the weight coefficient associated with the Jacobian at the  $s^{th}$  section of the  $e^{th}$  element.

Convergence at the element level must be satisfied with the residual element nodal displacement vector.

- If  $\tilde{\mathbf{d}}_{e,n}^{R,k,j}$  is within the specified tolerance, go to **6**.
- If  $\tilde{\mathbf{d}}_{e,n}^{R,k,j}$  is not within the specified tolerance, j and  $\delta \tilde{\mathbf{d}}_{e,n}^{k,j+1}$  are updated to j+1 and  $-\tilde{\mathbf{d}}_{e,n}^{R,k,j}$ , and the next Newton-Raphson iteration initiates. We then repeat  $\Im \mathbf{a}$  through  $\mathfrak{S}$  until convergence occurs at the element level.
- <sup>®</sup> Determine the internal element nodal force vector and the element tangent stiffness matrix.

$$\begin{split} \tilde{\mathbf{f}}_{e,n}^{int,k} &= \tilde{\mathbf{f}}_{e,n}^{int,k,j} \\ \overline{\mathbf{f}}_{e,n}^{int,k} &= \tilde{\boldsymbol{\Gamma}}_{e}^{T} \cdot \tilde{\mathbf{f}}_{e,n}^{int,k} \\ \mathbf{F}_{e,n}^{int,k} &= \boldsymbol{\Gamma}_{e}^{T} \cdot \overline{\mathbf{f}}_{e,n}^{int,k} \end{split}$$

$$\begin{split} \mathbf{c}_{s,e,n}^{tan,k} &= \mathbf{c}_{s,e,n}^{tan,k,j} \\ \tilde{\mathbf{k}}_{e,n}^{tan,k} &= \tilde{\mathbf{k}}_{e,n}^{tan,k,j} \\ \overline{\mathbf{k}}_{e,n}^{tan,k} &= \tilde{\mathbf{\Gamma}}_{e}^{T} \cdot \tilde{\mathbf{k}}_{e,n}^{tan,k} \cdot \tilde{\mathbf{\Gamma}}_{e} \\ \mathbf{K}_{e,n}^{tan,k} &= \mathbf{\Gamma}_{e}^{T} \cdot \overline{\mathbf{k}}_{e,n}^{tan,k} \cdot \mathbf{\Gamma}_{e} \end{split}$$

 $\ensuremath{\overline{\mathcal{O}}}$  Determine the internal nodal force vector and the augmented tangent stiffness matrix.

$$\begin{aligned} \mathbf{P}_{t,n}^{int,k} &= \sum_{e} \mathcal{A}_{b,e}^{T} \cdot \mathbf{F}_{e,n}^{int,k} \\ \mathbf{K}_{S,n}^{tan,k} &= \sum_{e} \mathcal{A}_{b,e}^{T} \cdot \mathbf{K}_{e,n}^{tan,k} \cdot \mathcal{A}_{b,e} \end{aligned}$$

where,  $\mathcal{A}_{b,e}^{T}$  is force assembling operator, and  $\mathbf{K}_{S,n}^{tan,k}$  is consist of  $\mathbf{K}_{tt,n}^{tan,k}$ ,  $\mathbf{K}_{tu,n}^{tan,k}$ ,  $\mathbf{K}_{ut,n}^{tan,k}$ , and  $\mathbf{K}_{uu,n}^{tan,k}$ .

- (8) Compute the residual nodal force vector at the structural level from Eq. 1.29. We then satisfy convergence with the residual nodal force vector.
  - If  $\mathbf{P}_{t,n}^{R,k}$  is within the specified tolerance, go to next force increment.
  - If  $\mathbf{P}_{t,n}^{R,k}$  is not within the specified tolerance, k is updated to k+1 and the next Newton-Raphson iteration initiates. Eq. 1.29 in (2) through (8) are repeated until convergence occurs at the structure level.

**1.2.2.4.2 Without element iterations** We then consider the methodology first proposed by (?) in which there are no element iteration with reference to Fig. 1.16 and Fig. 1.20 to 1.22.

① Compute the incemental nodal force vector  $\Delta \mathbf{P}_{t,n}^{ext}$ .

$$\Delta \mathbf{P}_{t,n}^{ext} = \mathbf{P}_{t,n}^{ext} - \mathbf{P}_{t,n-1}^{ext}$$

<sup>(2)</sup> Compute the incremental nodal displacement vector  $\delta \mathbf{u}_{t,n}$  and total nodal displacement vector  $\mathbf{u}_{t,n}$  in structure level. Initially, iteration started from Eq. 1.30 and k = 1.

If 
$$k = 1$$
,  

$$\delta \mathbf{u}_{u,n}^{k} = \mathbf{u}_{u,n} - \mathbf{u}_{u,n-1}$$

$$\mathbf{u}_{u,n} = \mathbf{u}_{u,n-1} + \delta \mathbf{u}_{u,n}^{k}$$

$$\delta \mathbf{u}_{t,n}^{k} = [\mathbf{K}_{tt,n}^{tan,k-1}]^{-1} \cdot [\mathbf{P}_{t,n}^{ext} - \mathbf{P}_{t,n-1}^{ext} - \mathbf{K}_{tu,n}^{tan,k-1} \delta \mathbf{u}_{u,n}^{k}]$$

$$\mathbf{u}_{t,n}^{k} = \mathbf{u}_{t,n}^{k-1} + \delta \mathbf{u}_{t,n}^{k}$$
(1.30)

If  $k \neq 1$ ,

$$\mathbf{P}_{t,n}^{R,k} = \mathbf{P}_{t,n}^{ext} - \mathbf{P}_{t,n}^{int,k}$$

$$\delta \mathbf{u}_{t,n}^{k+1} = [\mathbf{K}_{tt,n}^{tan,k}]^{-1} \cdot \mathbf{P}_{t,n}^{R,k}$$

$$\mathbf{u}_{t,n}^{k+1} = \mathbf{u}_{t,n-1} + \Delta \mathbf{u}_{t,n}^{k+1} = \mathbf{u}_{t,n}^{k} + \delta \mathbf{u}_{t,n}^{k+1}$$
(1.31)

where, superscript k is the iteration counter,  $\mathbf{P}_t^R$  the residual nodal force vector in structural level,  $\Delta \mathbf{u}_{t,n}^{k+1}$  the total incremental displacement vector from the last converged step, and  $\delta \mathbf{u}_n^{k+1}$  the last incremental displacement vector.

- 3 Loop over all the elements and determine their state.
  - Determine the element nodal displacement vector in global reference.

If 
$$k = 1$$
,  
 $\delta \boldsymbol{\delta}_{e,n}^{k} = \mathcal{A}_{b,e} \cdot \delta \mathbf{u}_{t,n}^{k} + \mathcal{A}_{b,e} \cdot \delta \mathbf{u}_{u,n}^{k}$ 
If  $k \neq 1$ ,  
 $\delta \boldsymbol{\delta}_{e,n}^{k} = \mathcal{A}_{b,e} \cdot \delta \mathbf{u}_{t,n}^{k}$ 

Mercury



Figure 1.20: Flow chart of nonlinear analysis using flexibility-based method without iteration in the element level (1)



Figure 1.21: Flow chart of nonlinear analysis using flexibility-based method without iteration in the element level (2)



Figure 1.22: Flow chart of nonlinear analysis using flexibility-based method without iteration in the element level (3)

 $\mathbf{43}$ 

where,  $\mathcal{A}_{b,e}$  is displacement extracting operator.

$$\boldsymbol{\delta}_{e,n}^{k} = \boldsymbol{\delta}_{e,n}^{k-1} + \delta \boldsymbol{\delta}_{e,n}^{k}$$

and  $\boldsymbol{\delta}_{e,n}^0$  corresponds to  $\boldsymbol{\delta}_{e,n-1}$ .

• Determine the element nodal displacement vector in local reference.

$$\begin{split} \delta \overline{\mathbf{d}}_{e,n}^{k} &= \mathbf{\Gamma}_{e} \cdot \delta \boldsymbol{\delta}_{e,n}^{k} \\ \overline{\mathbf{d}}_{e,n}^{k} &= \overline{\mathbf{d}}_{e,n}^{k-1} + \delta \overline{\mathbf{d}}_{e,}^{k} \end{split}$$

and  $\overline{\mathbf{d}}_{e,n}^0$  corresponds to  $\overline{\mathbf{d}}_{e,n-1}$ .

• Determine the element nodal displacement vector without rigid body modes in local reference.

$$\begin{split} \delta \mathbf{\hat{d}}_{e,n}^k &= \mathbf{\Gamma}_e \cdot \delta \overline{\mathbf{d}}_{e,n} \ \tilde{\mathbf{d}}_{e,n}^k &= \tilde{\mathbf{d}}_{e,n}^{k-1} + \delta \tilde{\mathbf{d}}_{e,n}^k \end{split}$$

and,  $\overline{\mathbf{d}}_{e,n}^0$  and  $\widetilde{\mathbf{d}}_{e,n}^0$  correspond to  $\overline{\mathbf{d}}_{e,n-1}$  and  $\widetilde{\mathbf{d}}_{e,n-1}$ .

④ Determine the element nodal force vector without rigid body modes

$$\begin{split} \delta \tilde{\mathbf{f}}_{e,n}^k &= \tilde{\mathbf{k}}_{e,n}^{tan,k-1} \cdot \delta \tilde{\mathbf{d}}_e^k \\ \tilde{\mathbf{f}}_{e,n}^k &= \tilde{\mathbf{f}}_{e,n}^{k-1} + \delta \tilde{\mathbf{f}}_{e,n}^k \end{split}$$

and,  $\tilde{\mathbf{f}}_{e,n}^{k=0}$  and  $\tilde{\mathbf{k}}_{e,n}^{tan,k=0}$  correspond to  $\tilde{\mathbf{f}}_{e,n-1}$ , and  $\tilde{\mathbf{k}}_{e,n-1}^{tan}$ .

- (5) Start the section state determination by looping over the element's sections. The total number of section may vary from element to element. Therefore, the total number of sections in an element is  $nIp_e$  and it depends on the number of integration points in the Gauss Lobatto quadrature rule.
  - Determine the section force vector.

$$\delta \boldsymbol{\sigma}_{s,e,n}^{k} = \mathbf{N}_{f,s,e} \cdot \delta \tilde{\mathbf{f}}_{e,n}^{k}$$
$$\boldsymbol{\sigma}_{s,e,n}^{k} = \boldsymbol{\sigma}_{s,e,n}^{k-1} + \delta \boldsymbol{\sigma}_{s,e,n}^{k}$$

where,  $\mathbf{N}_{f,s,e}$  is the matrix derived from the force interpolation functions at the  $s^{th}$  section of the  $e^{th}$  element, and  $\boldsymbol{\sigma}_{s,e,n}^{k=0}$  corresponds to  $\boldsymbol{\sigma}_{s,e,n-1}$ .

6 Determine the section deformation vector. We again assume a general section. The state determination of each section is performed in loop s.

$$\delta \boldsymbol{\varepsilon}_{s,e,n}^{k} = \mathbf{c}_{s,e,n}^{tan,k-1} \cdot \delta \boldsymbol{\sigma}_{s,e,r}^{k}$$
$$\boldsymbol{\varepsilon}_{s,e,n}^{k} = \boldsymbol{\varepsilon}_{s,e,n}^{k-1} + \delta \boldsymbol{\varepsilon}_{s,e,n}^{k}$$

and,  $\mathbf{c}_{s,e,n}^{tan,k=0}$  and  $\boldsymbol{\varepsilon}_{s,e,n}^{k=0}$  correspond to  $\tilde{\mathbf{c}}_{s,e,n-1}^{tan}$  and  $\boldsymbol{\varepsilon}_{s,e,n-1}$ .

- $\widehat{\mathcal{O}}$  Determine the section tangent flexibility matrix and the internal section force vector. If we assume that the section constitutive law is explicitly known,  $\mathbf{c}_{s,e,n}^{tan,k}$  and  $\boldsymbol{\sigma}_{s,e,n}^{int,k}$  are both determined from  $\boldsymbol{\varepsilon}_{s,e,n}^{k}$ . However, in elastic section, we need not to compute  $\mathbf{c}_{s,e,n}^{tan,k}$  again as it is identical to the initial section flexibility matrix  $\tilde{\mathbf{c}}_{s,e}$ .
  - Determine the residual section force vector.

$$\boldsymbol{\sigma}_{s,e,n}^{R,k} = \boldsymbol{\sigma}_{s,e,n}^k - \boldsymbol{\sigma}_{s,e,n}^{int,k}$$

(8) Determine the residual section deformation vector.

$$\boldsymbol{\varepsilon}_{s,e,n}^{R,k} = \mathbf{c}_{s,e,n}^{tan,k} \cdot \boldsymbol{\sigma}_{s,e,n}^{R,k}$$

(9) Determine updated element flexibility matrix and the residual element nodal displacement vector.

The residual section deformation vectors and the section tangent flexibility matrices are integrated along the element using on the complimentary principle of virtual work to obtain the residual element nodal displacement

vector and the element tangent flexibility matrix.

$$\begin{split} \tilde{\mathbf{d}}_{e,n}^{R,k} &= \sum_{s} \mathbf{N}_{f,s,e}^{T} \cdot \boldsymbol{\varepsilon}_{s,e,n}^{R,k} \cdot \mathbf{w} \mathbf{t}_{s,e} \\ \tilde{\mathbf{c}}_{e,n}^{tan,k} &= \sum_{s} \mathbf{N}_{f,s,e}^{T} \cdot \mathbf{c}_{s,e,n}^{tan,k} \cdot \mathbf{N}_{f,s,e} \cdot \mathbf{w} \mathbf{t}_{s,e} \\ \tilde{\mathbf{k}}_{e,n}^{tan,k} &= [\tilde{\mathbf{c}}_{e,n}^{tan,k}]^{-1} \end{split}$$

where,  $wt_{s,e}$  is the weight coefficient associated with the Jacobian at the  $s^{th}$  section of the  $e^{th}$  element.

**1** Determine the internal element nodal force vector and the element tangent stiffness matrix.

$$\begin{split} \tilde{\mathbf{f}}_{e,n}^{R,k} &= \tilde{\mathbf{k}}_{e,n}^{tan,k} \cdot \tilde{\mathbf{d}}_{e,n}^{R,k} \\ \tilde{\mathbf{f}}_{e,n}^{int,k} &= \tilde{\mathbf{f}}_{e,n}^{k} - \tilde{\mathbf{f}}_{e,n}^{R,k} \\ \overline{\mathbf{f}}_{e,n}^{int,k} &= \tilde{\boldsymbol{\Gamma}}_{e}^{T} \cdot \tilde{\mathbf{f}}_{e,n}^{int,k} \\ \mathbf{F}_{e,n}^{int,k} &= \boldsymbol{\Gamma}_{e}^{T} \cdot \overline{\mathbf{f}}_{e,n}^{int,k} \\ \overline{\mathbf{k}}_{e,n}^{tan,k} &= \tilde{\boldsymbol{\Gamma}}_{e}^{T} \cdot \tilde{\mathbf{k}}_{e,n}^{tan,k} \cdot \tilde{\boldsymbol{\Gamma}}_{e} \\ \overline{\mathbf{k}}_{e,n}^{tan,k} &= \tilde{\boldsymbol{\Gamma}}_{e}^{T} \cdot \bar{\mathbf{k}}_{e,n}^{tan,k} \cdot \tilde{\boldsymbol{\Gamma}}_{e} \end{split}$$

① Determine the internal nodal force vector and the augmented tangent stiffness matrix.

$$\begin{aligned} \mathbf{P}_{t,n}^{int,k} &= \sum_{e} \mathcal{A}_{b,e}^{T} \cdot \mathbf{F}_{e,n}^{int,k} \\ \mathbf{K}_{S,n}^{tan,k} &= \sum_{e} \mathcal{A}_{b,e}^{T} \cdot \mathbf{K}_{e,n}^{tan,k} \ \mathcal{A}_{b,e} \end{aligned}$$

where,  $\mathcal{A}_{b,e}^{T}$  is force assembling operator.

Compute the residual nodal force vector at the structural level from Eq. 1.29. We then satisfy convergence with the residual nodal force vector.

Check convergence

- If  $\mathbf{P}_{t,n}^{R,k}$  is within the specified tolerance, go to next force increment.
- If  $\mathbf{P}_{t,n}^{R,k}$  is not within the specified tolerance, k is updated to k+1 and the next Newton-Raphson iteration initiates. Eq. 1.31 in (2) through (2) are repeated until convergence occurs at the structure level.

### 1.3 Layer/Fiber Section

So far, we have assumed that a section is characterized by a moment curvature relation, and that when the moment reaches the plastic/yield moment, it instantaneously plastifies. This is only an approximation, as in reality there is a gradual plastification starting from the outer fibers, and this plastification zone gradually spreads inward until the whole section ultimately becomes plastic. To capture this gradual spread one can either resort to continuum 2D/3D solid (finite) elements, which is computationally expensive/inefficient, or use layered elements. Hence, our objective is to derive  $\mathbf{k}_{s,e}^{tan}(x)$  such that

$$\left\{ \begin{array}{c} N(x) \\ M_z(x) \end{array} \right\} = \mathbf{k}_{s,e}^{tan}(x) \left\{ \begin{array}{c} \varepsilon(x) \\ \phi_z(x) \end{array} \right\}$$

Ignoring the effects of transverse shear deformation (accounted for in the so-called Timoshenko beam), and thus assuming a linear strain distribution (Euler-Bernouilli beam), but a non linear stress-stain behavior, the stress distribution can be readily determined from

$$\sigma_t(x) = \frac{N_x(x)}{A(x)} \pm \frac{M_z(x)}{I_z(x)}y$$

At this point, from the nodal displacement, we can determine the section deformations (axial strain,  $\varepsilon(x)$  and curvature,  $\phi(x)$ ) (and thus the linear strain distribution), and since we have a nonlinear material, the exact location

of the neutral axis is not yet known, and at each fiber elevation we do have a different  $E_r^{tan}(x)$ . Hence, with reference to Fig. 1.23.



Figure 1.23: Stress and strain dirstibution of nonliner material

**Primary Terms** are those due to pure axial and flexure:

**Pure axial force due to**  $\sigma(x)$  is simply determined from

$$N_x(x) = \int_{-y_1}^{y_2} \sigma(x) dA = \int_{-y_1}^{y_2} E_r^{tan}(x) \cdot \varepsilon(x) dA$$
  

$$\simeq \sum_r E_r^{tan}(x) \cdot A_r(x) \cdot \varepsilon(x)$$
(1.32)

**Pure moment due to**  $\sigma_M(x)$  is considered next, and again we week an expression of (M(x)) in terms of the curvature and and  $E_r^{tan}(x)$ , and recalling that  $I = \int y^2 dA$  and  $\sigma_M(x)_{@y_r} = E_r^{tan}(x) \cdot \phi_z(x) \cdot y_r$ 

$$M_{z}(x) = \int_{-y_{1}}^{y_{2}} \sigma_{M}(x) \cdot y dA$$
  

$$= \int_{-y_{1}}^{y_{2}} E_{r}^{tan}(x) \cdot \phi_{z}(x) \cdot y \cdot y dA$$
  

$$= \phi_{z}(x) \int_{-y_{1}}^{y_{2}} E_{r}^{tan}(x) \cdot \phi_{z}(x) \cdot y^{2} dA$$
  

$$\simeq \sum_{r} E_{r}^{tan}(x) \cdot A_{r}(x) \cdot y_{r}^{2} \cdot \phi_{z}(x)$$
  
(1.33)

Secondary Terms of axial force or moment are thus caused by curvature or axial strain.

### Second axial force due to curvature

$$dN_x(x) = -E_r^{tan}(x) \cdot \varepsilon_M(x) dA = -E_r^{tan}(x) \cdot \phi_z(x) \cdot y dA$$

$$N_x(x) = -\int_{-y_1}^{y_2} E_r^{tan}(x) \cdot \phi_z(x) \cdot y dA$$

$$\simeq -\sum_r E_r^{tan}(x) \cdot A_r(x) \cdot y_r \cdot \phi_z(x)$$
(1.34)

where the strain  $(\varepsilon_M(x))$  is obtained from the curvature  $(\phi_z(x))$ .

### Secondary moment due to axial strain

$$dM_z(x) = -E_r^{tan}(x) \cdot \varepsilon(x) \cdot y \cdot dA$$

$$M_z(x) = -\int_{-y_1}^{y_2} E_r^{tan}(x) \cdot \varepsilon(x) \cdot y dA$$

$$\simeq -\sum_r E_r^{tan}(x) \cdot A_r(x) \cdot y_r \cdot \varepsilon(x)$$
(1.35)

Summing up from Eq. 1.32 to 1.35 within a matrix,  $\mathbf{k}_{s,e}^{tan}(x)$  takes the form:

$$\left\{ \begin{array}{c} N\\ M \end{array} \right\} = \sum_{r} \left[ \begin{array}{c} E_{r}^{tan}(x) \cdot A_{r}(x) & -E_{r}^{tan}(x) \cdot A_{r}(x) \cdot y_{r} \\ -E_{r}^{tan}(x) \cdot A_{r}(x) \cdot y_{r} & E_{r}^{tan}(x) \cdot A_{r}(x) \cdot y_{r}^{2} \end{array} \right] \left\{ \begin{array}{c} \varepsilon(x)\\ \phi_{z}(x) \end{array} \right\}$$
(1.36)

The implementation of this layer or fiber section will require an additional discretization of the cross section into layers or fibers as shown in Fig. 1.24.



Figure 1.24: Layer/fiber sections-Distribution of control sections and section subdivision into layers/fibers

Noting that layer/fiber stress-strain relations are typically expressed as explicit functions of strain, state determination is shown in Fig. 1.25,

We note that this cross sectional definition allows us to easily specify longitudinal steel reinforcement. Shear reinforcement, on the other hand, can not be explicitly modeled, however, common practice is to assign modified properties to the confined concrete (?).

## 1.4 Zero-Length 2D Element Formulation

As discussed in Sec. ?? a methodology to account for nonlinearities in frame analysis is lumped plasticity. In this approach we consider that plastic hinges (or their formulation) contribute for the structural nonlinearity. Those hinges typically form at the end node regions. Therefore, zero-length element can be used at the end of beam or beam-column elements.

Mercury



Figure 1.25: Layer/fiber section state determination

## 1.4.1 Formulation

The element end deformations in the reinforced concrete are composed of two types:

- flexural deformation that causes inelastic strains
- element end rotation which may be caused be the slip of longitudinal reinforcement in reinforced concrete or plastic hinges in steel members.

Fig. 1.26 describes zero-length 2D element and examples for usage. Its formulation does not account for coupling of the three possible degrees of freedom.

Constitutive law Section constitutive law is expressed as

$$\underbrace{\left\{\begin{array}{c}N_{x}\\V_{y}\\M_{z}\end{array}\right\}}_{\boldsymbol{\sigma}_{s}} = \underbrace{\left[\begin{array}{ccc}[EA]^{tan} & 0 & 0\\0 & [GA]^{tan} & 0\\0 & 0 & [EI_{z}]^{tan}\end{array}\right]}_{\mathbf{k}_{s}^{tan}} \underbrace{\left\{\begin{array}{c}\overline{u}_{x2} - \overline{u}_{x1}\\\overline{v}_{y2} - \overline{v}_{y1}\\\overline{\partial}_{z2} - \overline{\partial}_{z1}\end{array}\right\}}_{\boldsymbol{\varepsilon}_{s}}$$

where,  $[EA]^{tan}$ ,  $[GA]^{tan}$  and  $[EI_z]^{tan}$  are tangent stiffnesses associated with axial, shear and moment.

## Equilibrium

Composing equilibrium equations between point A and point B in Fig. 1.27,

$$N_{x1} = [EA]^{tan} \cdot (\overline{u}_{x1} - \overline{u}_{x2})$$

$$\overline{V}_{y1} = [GA]^{tan} \cdot (\overline{v}_{y1} - \overline{v}_{y2})$$

$$\overline{M}_{z1} = [EI_z]^{tan} \cdot (\overline{\theta}_{z1} - \overline{\theta}_{z2})$$
(1.37)

Likewise between point B and point C,

$$\overline{N}_{x2} = [EA]^{tan} \cdot (\overline{u}_{x2} - \overline{u}_{x1})$$

$$\overline{V}_{y2} = [GA]^{tan} \cdot (\overline{v}_{y2} - \overline{v}_{y1})$$

$$\overline{M}_{z2} = [EI_z]^{tan} \cdot (\overline{\theta}_{z2} - \overline{\theta}_{z1})$$
(1.38)



Figure 1.26: Zero-length 2D element(1)

 $\mathbf{49}$ 



Figure 1.27: Zero-length 2D element(2)

Rewriting Eq. 1.37 and 1.38 to matrix form, the relationship between element nodal force and displacement vector is given by

$$\underbrace{\left\{\begin{array}{c} \overline{N}_{x1} \\ \overline{V}_{y1} \\ \overline{M}_{z1} \\ \overline{N}_{x2} \\ \overline{V}_{y2} \\ \overline{M}_{z2} \end{array}\right\}}_{\overline{\mathbf{f}}_{e}} = \overline{\mathbf{k}}_{e}^{tan} \underbrace{\left\{\begin{array}{c} \overline{u}_{x1} \\ \overline{v}_{y1} \\ \overline{\partial}_{z1} \\ \overline{u}_{x2} \\ \overline{v}_{y2} \\ \overline{\partial}_{z2} \end{array}\right\}}_{\overline{\mathbf{d}}_{e}}$$

where,  $\overline{\mathbf{k}}_{e}^{tan}$  is the element stiffness matrix in local reference.

$$\overline{\mathbf{k}}_{e}^{tan} = \begin{bmatrix} [EA]^{tan} & 0 & 0 & -[EA]^{tan} & 0 & 0 \\ 0 & [GA]^{tan} & 0 & 0 & -[GA]^{tan} & 0 \\ 0 & 0 & [EI_{z}]^{tan} & 0 & 0 & -[EI_{z}]^{tan} \\ -[EA]^{tan} & 0 & 0 & [EA]^{tan} & 0 & 0 \\ 0 & -[GA]^{tan} & 0 & 0 & [GA]^{tan} & 0 \\ 0 & 0 & -[EI_{z}]^{tan} & 0 & 0 & [EI_{z}]^{tan} \end{bmatrix}$$
(1.39)

### 1.4.2 Coordinate system in zero-length 2D element

Coordinate system in zero-length 2D element is same as in Sec. 1.2.1.2, Fig. 1.2.

## 1.4.3 Element state determination with 2 Dimension and 3 degrees of freedom per node

With reference Fig. 1.28, we will examine one single step of zero-length 2D element for nonlinear analysis.

Step 1: Determine the section deformation vector, axial deformation, shear deformation and curvature.



Figure 1.28: Flow chart of zero-length 2D element for element state determination

For each deformation, we extract the associated components from  $\overline{\mathbf{d}}_{e.n}^{k}$ .

$$\overline{\mathbf{d}}_{e,n}^{k} = \left[\overline{u}_{x1,e,n}^{k} \overline{v}_{y1,e,n}^{k} \overline{\theta}_{z1,e,n}^{k} \overline{u}_{x2,e,n}^{k} \overline{v}_{y2,e,n}^{k} \overline{\theta}_{z2,e,n}^{k}\right]^{T} \\
\varepsilon_{s,e,n}^{k} = \left[\varepsilon_{x,e,n}^{k}, \gamma_{y,e,n}^{k}, \phi_{z,e,n}^{k}\right]^{T} \\
\varepsilon_{x,e,n}^{k} = \overline{u}_{x2,e,n}^{k} - \overline{u}_{x2,e,n}^{k} \tag{1.40} \\
\gamma_{y,e,n}^{k} = \overline{v}_{y2,e,n}^{k} - \overline{v}_{y2,e,n}^{k} \tag{1.41}$$

$$\phi_{z,e,n}^{k} = \overline{\theta}_{z2,e,n}^{k} - \overline{\theta}_{z2,e,n}^{k}$$

$$(1.42)$$

where, Eq. 1.40 defines axial section deformation, Eq. 1.41 the shear deformation, and Eq. 1.42 the curvature.

Step 2: Determine the section tangent stiffness associated with axial force-deformation, shear force-deformation, and moment-curvature in the section constitutive laws. Section constitutive laws modified with several variables in function of material constitutive law associated with uniaxial stress-strain relationship can be used (?). The internal section force vector is determined next. If we assume that the section constitutive law is explicitly known,  $\mathbf{k}_{s,e,n}^{tan,k}$  and  $\boldsymbol{\sigma}_{s,e,n}^{int,k}$  are determined from  $\boldsymbol{\varepsilon}_{s,e,n}^{k}$ . However, in elastic section, we need not to compute  $\mathbf{k}_{s,e,n}^{tan,k}$  again as it is identical to the initial section stiffness matrix  $\mathbf{k}_{s,e}$ .

For an elastic section,

$$\underbrace{\left\{\begin{array}{ll} \mathbf{k}_{s,e,n}^{tan} &= \mathbf{k}_{s,e} \\ \left\{\begin{array}{c} N_{x,e,n}^{int,k} \\ V_{y,e,n} \\ M_{z,e,n}^{int,k} \end{array}\right\}}_{\boldsymbol{\sigma}_{s,e,n}^{int,k}} &= \mathbf{k}_{s,e,n}^{tan} \underbrace{\left\{\begin{array}{c} \varepsilon_{x,e,n}^{k} \\ \gamma_{y,e,n}^{k} \\ \phi_{z,e,n}^{k} \end{array}\right\}}_{\boldsymbol{\varepsilon}_{s,e,n}^{int,k}} \end{array}\right.$$

where,  $\mathbf{k}_{s,e,n}^{tan,k}$  is the section tangent stiffness matrix at  $k^{th}$  iteration.

Step 3: Determine the internal element nodal force vector and the element tangent stiffness matrix from Eq. 1.39.

$$\overline{\mathbf{f}}_{e,n}^{int,k} = \lfloor N_{x,e,n}^{int,k}, V_{y,e,n}^{int,k}, M_{z,e,n}^{int,k}, -N_{x,e,n}^{int,k}, -V_{y,e,n}^{int,k}, -M_{z,e,n}^{int,k} \rfloor^T$$

$$\overline{\mathbf{k}}_{e}^{tan,k} = \begin{bmatrix} EA_{e,n}^{tan,k} & 0 & 0 & -EA_{e,n}^{tan,k} & 0 & 0 \\ 0 & GA_{e,n}^{tan,k} & 0 & 0 & -GA_{e,n}^{tan,k} & 0 \\ 0 & 0 & EI_{z,e,n}^{tan,k} & 0 & 0 & -EI_{z,e,n}^{tan,k} \\ -EA_{e,n}^{tan,k} & 0 & 0 & EA_{e,n}^{tan,k} & 0 & 0 \\ 0 & -GA_{e,n}^{tan,k} & 0 & 0 & GA_{e,n}^{tan,k} & 0 \\ 0 & 0 & -EI_{z,e,n}^{tan,k} & 0 & 0 & EI_{z,e,n}^{tan,k} \end{bmatrix}$$

where,  $\overline{\mathbf{k}}_{e,n}^{tan,k}$  is the element tangent stiffness matrix in local reference. We determine  $\mathbf{F}_{e,n}^{int,k}$  and  $\mathbf{K}_{e,n}^{tan,k}$ .

$$\begin{aligned} \mathbf{F}_{e,n}^{int,k} &= \mathbf{\Gamma}_{e}^{T} \cdot \overline{\mathbf{f}}_{e,n}^{int,k} \\ \mathbf{K}_{e,n}^{tan,k} &= \mathbf{\Gamma}_{e}^{T} \cdot \overline{\mathbf{k}}_{e,n}^{tan,k} \cdot \mathbf{\Gamma}_{e} \end{aligned}$$

### 1.5 Zero-Length Section Element Formulation

Zero-length section element is analogous to the zero length element, however, it uses layer/fiber. This element enables us to model the shift in center of section rotation which may occur (in bar-slip for example). The element is formulated on the basis of coupled axial force and moment.

Fig. 1.29 describes zero-length 2D section element.



Figure 1.29: Zero-length 2D section element(1)

## 1.5.1 Formulation

Constitutive law Section constitutive law is expressed as

$$\underbrace{\left\{\begin{array}{c}N_{x}\\M_{z}\end{array}\right\}}_{\boldsymbol{\sigma}_{s}}=\underbrace{\left[\begin{array}{c}\mathbf{k}_{s,11}^{tan}&\mathbf{k}_{s,12}^{tan}\\\mathbf{k}_{s,21}^{tan}&\mathbf{k}_{s,22}^{tan}\end{array}\right]}_{\mathbf{k}_{s}^{tan}}\cdot\underbrace{\left\{\begin{array}{c}\overline{u}_{x2}-\overline{u}_{x1}\\\overline{\theta}_{z2}-\overline{\theta}_{z1}\end{array}\right\}}_{\boldsymbol{\varepsilon}_{s}}$$

where,  $\mathbf{k}_{s}^{tan}$  is the section tangent stiffness matrix obtained from layer/fiber state determination.

Equilibrium Zero-length section element is based on Bernoulli beam theory.

Composing equilibrium equations between point A and point B in Fig. 1.30,

$$\overline{N}_{x1} = k_{s,11}^{tan} \cdot (\overline{u}_{x1} - \overline{u}_{x2}) + k_{s,12}^{tan} \cdot (\overline{\theta}_{z1} - \overline{\theta}_{z2})$$

$$\overline{M}_{z1} = k_{s,21}^{tan} \cdot (\overline{u}_{x1} - \overline{u}_{x2}) + k_{s,22}^{tan} \cdot (\overline{\theta}_{z1} - \overline{\theta}_{z2})$$
(1.43)

Likewise between point B and point C,

$$\overline{N}_{x2} = k_{s,11}^{tan} \cdot (\overline{u}_{x2} - \overline{u}_{x1}) + k_{s,12}^{tan} \cdot (\overline{\theta}_{z2} - \overline{\theta}_{z1})$$

$$\overline{M}_{z2} = k_{s,21}^{tan} \cdot (\overline{u}_{x2} - \overline{u}_{x1}) + k_{s,22}^{tan} \cdot (\overline{\theta}_{z2} - \overline{\theta}_{z1})$$
(1.44)

Rewriting Eq. 1.43 and 1.44 to matrix form, the relationship between element nodal force and displacement vector is given by

$$\underbrace{\left\{ \begin{array}{c} \overline{N}_{x1} \\ 0 \\ \overline{M}_{z1} \\ \overline{N}_{x2} \\ 0 \\ \overline{M}_{z2} \end{array} \right\}}_{\overline{\mathbf{f}}_{e}} = \overline{\mathbf{k}}_{e}^{tan} \underbrace{\left\{ \begin{array}{c} \overline{u}_{x1} \\ 0 \\ \overline{\theta}_{z1} \\ \overline{u}_{x2} \\ 0 \\ \overline{\theta}_{z2} \end{array} \right\}}_{\overline{\mathbf{d}}_{e}}$$



Figure 1.30: Zero-length 2D section element(2)

where,  $\overline{\mathbf{k}}_{e}^{tan}$  is the element stiffness matrix in local reference.

$$\overline{\mathbf{k}}_{e}^{tan} = \begin{bmatrix} \mathbf{k}_{s,11}^{tan} & 0 & \mathbf{k}_{s,12}^{tan} & -\mathbf{k}_{s,11}^{tan} & 0 & -\mathbf{k}_{s,12}^{tan} \\ 0 & 0 & 0 & 0 & 0 \\ \mathbf{k}_{s,21}^{tan} & 0 & \mathbf{k}_{s,22}^{tan} & -\mathbf{k}_{s,21}^{tan} & 0 & -\mathbf{k}_{s,22}^{tan} \\ -\mathbf{k}_{s,11}^{tan} & 0 & -\mathbf{k}_{s,12}^{tan} & \mathbf{k}_{s,11}^{tan} & 0 & \mathbf{k}_{s,12}^{tan} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\mathbf{k}_{s,21}^{tan} & 0 & -\mathbf{k}_{s,22}^{tan} & \mathbf{k}_{s,21}^{tan} & 0 & \mathbf{k}_{s,22}^{tan} \end{bmatrix}$$
(1.45)

## 1.5.2 Coordinate system in zero-length 2D section element

Coordinate system in zero-length 2D element is same as in Sec. 1.2.1.2, Fig. 1.2.

### 1.5.3 Element state determination with 2 Dimension and 3 degrees of freedom per node

With reference Fig. 1.31, we will examine one single step of zero-length 2D section element for nonlinear analysis.

Step 1: Determine the section deformation vector, axial deformation and curvature.

For each deformation, we extracts the associated components from  $\overline{\mathbf{d}}_{e,n}^{k}$ .

$$\overline{\mathbf{d}}_{e,n}^{k} = [\overline{u}_{x1,e,n}^{k} \ 0 \ \overline{\theta}_{z1,e,n}^{k} \ \overline{u}_{x2,e,n}^{k} \ 0 \ \overline{\theta}_{z2,e,n}^{k}]^{T}$$

$$\boldsymbol{\varepsilon}_{s,e,n}^{k} = [\boldsymbol{\varepsilon}_{x,e,n}^{k}, \boldsymbol{\phi}_{z,e,n}^{k}]^{T}$$

$$\boldsymbol{\varepsilon}_{x,e,n}^{k} = \overline{u}_{x2,e,n}^{k} - \overline{u}_{x2,e,n}^{k}$$

$$\boldsymbol{\phi}_{z,e,n}^{k} = \overline{\theta}_{z2,e,n}^{k} - \overline{\theta}_{z2,e,n}^{k}$$

Step 2: Determine the section tangent stiffness associated with axial force-deformation and moment-curvature using layer/fiber state determination in Sec. 1.3. Determine next the internal section force vector. If we assume that the material constitutive law is explicitly known,  $\mathbf{k}_{s,e,n}^{tan,k}$  and  $\boldsymbol{\sigma}_{s,e,n}^{int,k}$  are determined from  $\boldsymbol{\varepsilon}_{s,e,n}^{k}$ . However, in the section with elastic material, we need not to compute  $\mathbf{k}_{s,e,n}^{tan,k}$  again as it is identical to the initial section stiffness matrix  $\mathbf{k}_{s,e}$ .



Figure 1.31: Flow chart of zero-length 2D section element for element state determination

If we have a section with elastic material, then

$$\underbrace{ \begin{array}{lll} \mathbf{k}_{s,e,n}^{tan} &=& \mathbf{k}_{s,e} \\ \underbrace{ \left\{ \begin{array}{c} N_{x,e,n}^{int,k} \\ M_{z,e,n}^{int,k} \end{array} \right\}}_{\boldsymbol{\sigma}_{s,e,n}^{int,k}} &=& \mathbf{k}_{s,e,n}^{tan} \underbrace{ \left\{ \begin{array}{c} \varepsilon_{x,e,n}^{k} \\ \phi_{z,e,n}^{k} \end{array} \right\}}_{\boldsymbol{\varepsilon}_{s,e,n}^{k}} \end{array}$$

where,  $\mathbf{k}_{s,e,n}^{tan,k}$  is the section tangent stiffness matrix at  $k^{th}$  iteration.

Step 3: Determine the internal element nodal force vector and the element tangent stiffness matrix from Eq. 1.45.

$$\overline{\mathbf{f}}_{e,n}^{int,k} = [N_{x,e,n}^{int,k}, 0, M_{z,e,n}^{int,k}, -N_{x,e,n}^{int,k}, 0, -M_{z,e,n}^{int,k}]^{T}$$

$$\overline{\mathbf{k}}_{e,n}^{tan,k} = \begin{bmatrix} \mathbf{k}_{s,e,n,11}^{tan,k} & 0 & \mathbf{k}_{s,e,n,12}^{tan,k} & -\mathbf{k}_{s,e,n,11}^{tan,k} & 0 & -\mathbf{k}_{s,e,n,12}^{tan,k} \\ 0 & 0 & 0 & 0 & 0 \\ \mathbf{k}_{s,e,n,21}^{tan,k} & 0 & \mathbf{k}_{s,e,n,22}^{tan,k} & -\mathbf{k}_{s,e,n,21}^{tan,k} & 0 & -\mathbf{k}_{s,e,n,22}^{tan,k} \\ -\mathbf{k}_{s,e,n,11}^{tan,k} & 0 & -\mathbf{k}_{s,12e,n,}^{tan,k} & \mathbf{k}_{s,e,n,11}^{tan,k} & 0 & \mathbf{k}_{s,e,n,12}^{tan,k} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -\mathbf{k}_{s,e,n,21}^{tan,k} & 0 & -\mathbf{k}_{s,e,n,22}^{tan,k} & \mathbf{k}_{s,e,n,11}^{tan,k} & 0 & \mathbf{k}_{s,e,n,22}^{tan,k} \end{bmatrix}$$

where,  $\overline{\mathbf{k}}_{e,n}^{tan,k}$  is the element tangent stiffness matrix in local reference. We determine  $\mathbf{F}_{e,n}^{int,k}$  and  $\mathbf{K}_{e,n}^{tan,k}$ .

$$\begin{split} \mathbf{F}_{e,n}^{int,k} &= \mathbf{\Gamma}_{e}^{T} \cdot \overline{\mathbf{f}}_{e,n}^{int,k} \\ \mathbf{K}_{e,n}^{tan,k} &= \mathbf{\Gamma}_{e}^{T} \cdot \overline{\mathbf{k}}_{e,n}^{tan,k} \cdot \mathbf{\Gamma}_{e} \end{split}$$

## **1.6 Element Force**

Structures should resist applied external forces. Applicable external forces of an element basically are divided into three forces; element nodal forces, element distributed forces and element nodal displacements such as settlements or pushover tests due to displacement control. These external forces are shown in Fig. 1.32.



Figure 1.32: Forces of an element

Element nodal forces shown in Fig. 1.32 (a) are applied directly at the corresponding degrees of freedom. However, so far we have not accounted for the element forces  $\mathbf{w}_e(x)$  (as defined in Eq. 1.14) shown in Fig. 1.32 (b). Those can be lumped as concentrated forces at suitably selected arbitrary nodes, and the degrees of freedom at these and the actual joints are treated as the unknowns. For element distributed forces, we should consider the nodal equivalent forces  $\overline{\mathbf{f}}_e^{nef}$  of element distributed forces in structural level irrespective of whether we use the stiffness-based or the mixed stiffness-based and flexibility-based method.  $\overline{\mathbf{f}}_e^{nef}$  on element distributed forces of an element is based on stiffness-based formulation.

$$\mathbf{N}_{d}(x) = \begin{bmatrix} 1 - \frac{x}{L_{e}} & 0 & 0 & \frac{x}{L_{e}} & 0 & 0 \\ 0 & \frac{2x^{3}}{L_{e}^{3}} - \frac{3x^{2}}{L_{e}^{2}} + 1 & \frac{x^{3}}{L_{e}^{2}} - \frac{2x^{2}}{L_{e}} + x & 0 & \frac{3x^{2}}{L_{e}^{2}} - \frac{2x^{3}}{L_{e}^{3}} & \frac{x^{3}}{L_{e}^{2}} - \frac{x^{2}}{L_{e}} \end{bmatrix}$$
$$\mathbf{w}_{e}(x) = \begin{cases} w_{e,x}(x) \\ w_{e,y}(x) \end{cases} \\ \mathbf{f}_{e}^{nef} = \int_{o}^{L_{e}} \mathbf{N}_{d}(x) \cdot \mathbf{w}_{e}(x) dx \tag{1.46}$$

For a uniformly distributed force vector  $\mathbf{w}_e(x) = \begin{cases} w_x \\ w_y \end{cases}$ , then Eq. 1.46 reduces to the classical

$$\overline{\mathbf{f}}_{e}^{nef} = \lfloor \frac{w_x \cdot L_e}{2}, \frac{w_y \cdot L_e}{2}, \frac{w_y \cdot L_e^2}{12}, \frac{w_x \cdot L_e}{2}, \frac{w_y \cdot L_e}{2}, -\frac{w_y \cdot L_e^2}{12} \rfloor^T$$
(1.47)

which are shown in Fig. 1.33.



Figure 1.33: Nodal equivalent forces of an element

Element nodal displacements considered as external forces are shown in Fig. 1.32 (c). Those are applied as constraint degrees of freedom.

Let us consider the equilibrium equation considered by element nodal forces, element distributed forces, and element nodal displacements in an element shown in Fig. 1.34.

 $\mathbf{57}$ 



Figure 1.34: Example with element distributed forces and nodal displacement applied at constraint degree of freedom



If the element has elastic section, we obtain equilibrium equation, Eq. 1.48.

where, superscript ? indicates unknown forces and displacements, and  $\checkmark$  known forces and displacements.

## 1.7 Summary

This chapter has presented the details of the element formulation coded in Mercury. The Mercury supports most of the elements (in particular flexibility based fiber elements, zero length and zero length section elements). These elements are widely used and tested and would enable the analysis of complex structure such as reinforced concrete frame.

# Chapter 2 CONSTITUTIVE MODELS

The nonlinear analysis of structures hinges on the constitutive relation relating strains to stresses, better yet incremental strains to incremental stresses through  $E^{tan}$ . This chapter is devoted to the derivation of such relations for steel and concrete. In each case we will consider both analytically (or thermodynamically) derived models as well as heuristic ones which are found to be acceptable.

It should be noted that the constitutive models expressed in terms of stress-strain relationships are to be used in fiber/layered sections (though the simplified bilinear model can be used in zero-length elements).

### 2.1 Steel Models

Most metallic materials, when subjected to high stress level, exhibit plasticity behavior, i.e. when force is removed, the body does not return to its original shape, but has some permanent plastic deformation associated with it.

Materials such as steel or concrete, commonly used in structures, show yielding and plastic deformation. A typical uniaxial stress-strain curve for steel is shown in Fig. 2.1. Following a linear response, steel exhibits an abrupt change



Figure 2.1: Uniaxial stress-strain curve for steel

in stiffness which occurs at the yield point. Beyond yielding, a permanent deformation is introduced upon unloading. This behavior can be idealized by a bilinear stress-strain relationship with two slopes, the second being called the tangent modulus  $E^{tan}$ . After reaching the yield point, the slope could be smaller, equal, or greater than zero as shown in Fig. 2.2(a).

Fig. 2.2(b) illustrates on elastic-perfectly plastic situation, that is after reaching the yield stress, the material starts flowing plastically without any further increase or decrease. The specimen is first loaded to point A, reaches its yield stress, and then flows plastically at point B, we unload the specimen until we reach a zero-load condition at point C. However, since we have loaded the specimen beyond the yield point, we observe that a permanent deformation or a permanent strain has been introduced in the material. We denote this permanent strain in one dimension the plastic strain  $\varepsilon^p$  which is permanent deformation.



Figure 2.2: Idealized stress-strain response hardening material

The total strain  $\varepsilon$  can thus be decomposed into an elastic strain  $\varepsilon^{e}$  and a plastic one.

$$\varepsilon = \varepsilon^{e} + \varepsilon^{p}$$

$$\sigma = E \cdot \varepsilon^{e}$$

$$\sigma = E \cdot (\varepsilon - \varepsilon^{p})$$
(2.1)

Eq. 2.1 describes the stress-strain relation with plastic behavior for the elastic-perfectly plastic uniaxial loading conditions.

Next we will present the mathematical structure of two classical phenomenological isotropic hardening model (?).

### 2.1.1 "Exact" Models

0

### 2.1.1.1 Isotropic hardening model

Formulation of this constitutive law is based on classical theory of plasticity and is thus developed as follows:

**Helmholtz free energy potential** The general format of associated dissipative models starts from the Helmholtz free energy expansion. Expanding the free energy into two terms, an elastic and a plastic one, we have

$$\rho \cdot \phi(\varepsilon^e, \xi) =: \underbrace{\frac{1}{2}\varepsilon^e \cdot E \cdot \varepsilon^e}_{\text{Elastic}} + \underbrace{\frac{1}{2} \cdot \xi \cdot H \cdot \xi}_{\text{Plastic}}$$

where  $\rho$  is density,  $\phi(\varepsilon^e, \xi)$  the Helmholtz free energy potential function in terms of elastic strain  $\varepsilon^e$  and a strain-like internal variable  $\xi$ , E elastic modulus, and H plastic modulus.

The elastic and plastic moduli E and and H are shown in Fig. 2.3. The elastic and plastic stress,  $\sigma$  and q respectively, are (by definition) given by

Linear elasticity: 
$$\sigma := \rho \cdot \frac{\partial \phi}{\partial \varepsilon^e} = E \cdot \varepsilon^e$$
 (2.2)

Plasticity: 
$$\mathbf{q} := \rho \cdot \frac{\partial \phi}{\partial \xi} = H \cdot \xi$$
 (2.3)

where, q is the initial yield stress  $\sigma_y$  at  $\xi = 0$ .

60



Figure 2.3: The tangent modulus for isotropic hardening model

Assuming E and H constant, we can rewrite Eq. 2.2 and Eq. 2.3 in rate form as

$$\dot{\sigma} = E \cdot \dot{\varepsilon}^e = E \cdot (\dot{\varepsilon} - \dot{\varepsilon}^p)$$

$$\dot{q} = H \cdot \dot{\xi}$$
(2.4)
(2.5)

**Yield function** The yield function (in 1D) is defined as

$$f(\sigma, q) := |\sigma| - q$$

Thus if  $f(\sigma, q) < 0$ , then the stress is within the elastic domain. Alternatively, if  $f(\sigma, q) = 0$ , the stress has reached its plastic limit. Fig. 2.4 shows the evolution of the elastic domain. First the strain reaches yielding



Figure 2.4: The evolution of elastic domain in isotropic hardening model

 $(q_0 = \sigma_y)$ , and then at that point further increase in strain results in an expansion of q this will in turn expand the elastic domain.

**Evolution equation** We must define two of them<sup>1</sup>:

<sup>&</sup>lt;sup>1</sup>We have established a yield criterion. When the stress is inside the yield surface, it is elastic, Hooke's law is applicable, strains are recoverable, and there is no dissipation of energy. However, when the load on the structure pushes the stress tensor to be beyond the yield surface, the stress tensor locks up on the yield surface, and the structure deforms plastically (if the material exhibits

1. Plastic flow for  $\dot{\varepsilon}^p$  defined by

$$\dot{\varepsilon}^p := \dot{\gamma} \cdot \frac{\partial g}{\partial \sigma} \tag{2.6}$$

where,  $\dot{\gamma}$  is a plastic multiplier or consistency parameter (as we shall see later, this term will ultimately drop of from  $E^{tan}$ , and g is the plastic potential function in terms of  $\sigma$  and q. In isotropic hardening models, we assume  $g(\sigma, q) = f(\sigma, q)$ , thus  $\frac{\partial g}{\partial \sigma} = \operatorname{sign}(\sigma)$  where  $\operatorname{sign}(\sigma)$  is 1 if  $\sigma \ge 0$ 

In isotropic hardening models, we assume  $g(\sigma, q) = f(\sigma, q)$ , thus  $\frac{\partial g}{\partial \sigma} = \operatorname{sign}(\sigma)$  where  $\operatorname{sign}(\sigma)$  is 1 if  $\sigma \ge 0$  or -1 if  $\sigma < 0$ . Then, we rewrite Eq. 2.6 as

$$\dot{\varepsilon}^p = \dot{\gamma} \cdot \operatorname{sign}(\sigma)$$

or

 $\dot{\gamma} = |\dot{\varepsilon}^p| \ge 0$ 

2. The second plastic flow is associated with the strain-like internal state variable associated with plasticity.

$$\xi := \dot{\gamma} \cdot h(\sigma, \mathbf{q})$$

where,  $h(\sigma, q)$  is a dimensionless hardening function. For simplicity and under the assumption of elastoplastic hardening material with bilinear curve,

$$h(\sigma, \mathbf{q}) = -\frac{\partial g}{\partial \mathbf{q}} = 1$$

Therefore, we can rewrite Eq. 2.4 and Eq. 2.5 as follows

$$\dot{\sigma} = E \cdot (\dot{\varepsilon} - \dot{\gamma} \cdot \frac{\partial g}{\partial \sigma})$$
  
=  $E \cdot (\dot{\varepsilon} - \dot{\gamma} \cdot \text{sign}(\sigma))$  (2.7)

and

$$\dot{\mathbf{q}} = H \cdot \dot{\gamma} \cdot h(\sigma, \mathbf{q})$$

$$= H \cdot \dot{\gamma}$$
(2.8)

Kuhn-Tucker conditions and consistency condition In the elastic regime, the yield function f must remain negative and the plastic multiplier is zero. On the other hand, during plastic flow the yield function f must be zero while plastic multiplier is positive. This is succinctly expressed by the so-called Kuhn-Tucker condition,

Elastic loading and unloading 
$$: f < 0, \quad \dot{\gamma} = 0$$
 (2.9)

Plastic loading : 
$$f = 0, \quad \dot{\gamma} > 0$$
 (2.10)

Eq. 2.9 and Eq. 2.10 can be combined for the general case of  $f \leq 0$  and  $\dot{\gamma} \geq 0$ , then

$$f \cdot \dot{\gamma} = 0 \tag{2.11}$$

**Consistency Condition:** During plastic loading the stress path is constrained to move along the yield surface, thus this consistency condition precludes us from going beyond the yield surface and is mathematically expressed as  $\dot{f}(\sigma, 1) = 0$ , or

$$\dot{f}(\sigma, \mathbf{q}) = \frac{\partial f}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial t} + \frac{\partial f}{\partial \mathbf{q}} \cdot \frac{\partial \mathbf{q}}{\partial t}$$

$$= \frac{\partial f}{\partial \sigma} \cdot \dot{\sigma} + \frac{\partial f}{\partial \mathbf{q}} \cdot \dot{\mathbf{q}} = 0$$
(2.12)

**Tangent Modulus** Finally, we need to evaluate tangent modulus  $E^{tan}$  such that  $\dot{\sigma} = E^{tan} \dot{\varepsilon}$ . Substituting Eq. 2.7

hardening as opposed to elastic-perfectly plastic response, then the yield surface expands or moves with the stress point still on the yield surface). At this point, the crucial question is what will be direction of the plastic flow (that is the relative magnitude of the components of  $\varepsilon^{P}$ . This question is addressed by the **flow rule**, or **normality rule** 

and Eq. 2.8 into Eq. 2.12, we obtain

$$\frac{\partial f}{\partial \sigma} \cdot E \cdot \left( \dot{\varepsilon} - \dot{\gamma} \cdot \frac{\partial g}{\partial \sigma} \right) + \frac{\partial f}{\partial \mathbf{q}} \cdot H \cdot \dot{\gamma} \cdot h(\sigma, \mathbf{q}) = 0$$

Therefore,

$$\dot{\gamma} = \frac{\frac{\partial f}{\partial \sigma} \cdot E \cdot \dot{\varepsilon}}{\frac{\partial f}{\partial \sigma} \cdot E \cdot \frac{\partial g}{\partial \sigma} - \frac{\partial f}{\partial \mathbf{q}} \cdot H \cdot h(\sigma, \mathbf{q})}$$
(2.13)

Substituting Eq. 2.13 into Eq. 2.7, we obtain an explicit expression for the incremental stress,

$$\begin{split} \dot{\sigma} &= E \cdot \left( \dot{\varepsilon} - \dot{\gamma} \cdot \frac{\partial g}{\partial \sigma} \right) \\ &= \left( E - \frac{\frac{\partial f}{\partial \sigma} \cdot E^2 \cdot \frac{\partial g}{\partial \sigma}}{\frac{\partial f}{\partial \sigma} \cdot E \cdot \frac{\partial g}{\partial \sigma} - \frac{\partial f}{\partial \mathbf{q}} \cdot H \cdot h(\sigma, \mathbf{q})} \right) \cdot \dot{\varepsilon} \\ &= E^{tan} \cdot \dot{\varepsilon} \end{split}$$

For elasto-plastic hardening material with bilinear curve in one dimension,

$$\dot{\gamma} = \frac{\operatorname{sign}(\sigma) \cdot E \cdot \dot{\varepsilon}}{E + H}$$

and the tangent modulus reduces to

$$E^{tan} = E - \frac{\operatorname{sign}(\sigma) \cdot E^2 \cdot \operatorname{sign}(\sigma)}{\operatorname{sign}(\sigma) \cdot E \cdot \operatorname{sign}(\sigma) - (-1) \cdot H \cdot (1)}$$
$$= E - \frac{E^2}{E + H}$$
$$= \frac{E \cdot H}{E + H}$$

## 2.1.1.2 Combined isotropic and kinematic hardening model

We describe isotropic and kinematic hardening model. Finally, we summarize the major equations governing plasticity.



Figure 2.5: Isotropic and kinematic hardening plasticity

Yield surface of isotopic hardening plasticity is symmetric about the origin at  $\sigma = 0$ , Fig. 2.5(a), whereas for kinematic hardening plasticity the yield surface is unsymmetric, Fig. 2.5(b). This lack of symmetry is caused by the classical Bauschinger effect.

**Helmholtz free energy potential** The Helmholtz free energy function is now enriched by a set of strain-like internal state variables for combined isotropic and kinematic hardening (as opposed to a single value previously):

$$\rho \cdot \phi(\varepsilon^{e}, \boldsymbol{\xi}) = \underbrace{\frac{1}{2} \cdot \varepsilon^{e} \cdot E \cdot \varepsilon^{e}}_{\text{Elastic}} + \underbrace{\frac{1}{2} \cdot \boldsymbol{\xi}^{T} \cdot \mathbf{H} \cdot \boldsymbol{\xi}}_{\text{Plastic}}$$

where,  $\boldsymbol{\xi}$  is a strain-like vector of internal state variables, and **H** is the hardening matrix.

$$\boldsymbol{\xi} = \begin{bmatrix} \xi^{iso}, \ \xi^{kin} \end{bmatrix}^T$$
$$\mathbf{H} = \begin{bmatrix} H^{iso} & 0\\ 0 & H^{kin} \end{bmatrix}$$

where,  $\xi^{iso}$  is a strain-like internal state variable of isotropic plasticity,  $\xi^{kin}$  a strain-like internal state variable of kinematic plasticity,  $H^{iso}$  the isotropic plastic modulus, and  $H^{kin}$  the kinematic plastic modulus. The thermodynamically stress-like vector of internal state variables is thus given by

$$\begin{aligned} \mathbf{q}^{\xi} &= \mathbf{H} \cdot \boldsymbol{\xi} \\ &= \lfloor H^{iso} \cdot \xi^{iso}, \ H^{kin} \cdot \xi^{kin} \rfloor^{T} \\ &= \lfloor \mathbf{q}^{iso}, \ \mathbf{q}^{kin} \rfloor^{T} \end{aligned}$$

where,  $q^{iso}$  is an isotropic stress-like internal state variable and  $q^{kin}$  a kinematic stress-like internal state variable. Therefore, the rate form of stress-like vector of internal state variables becomes

$$\dot{\mathbf{q}}^{\xi} = \mathbf{H} \cdot \dot{\boldsymbol{\xi}}$$

$$= \lfloor H^{iso} \cdot \dot{\boldsymbol{\xi}}^{iso}, \ H^{kin} \cdot \dot{\boldsymbol{\xi}}^{kin} \rfloor^{T}$$

$$= \lfloor \dot{\mathbf{q}}^{iso}, \ \dot{\mathbf{q}}^{kin} \rfloor^{T}$$
(2.14)

**Yield function** Having stress-like internal state variable  $q^{iso}$ , we redefine the yield function as

$$f(\sigma, \mathbf{q}^{\xi}) := |\sigma - \mathbf{q}^{kin}| - \mathbf{q}^{iso}$$

As mentioned above, if  $f(\sigma, \mathbf{q}^{\xi}) < 0$ , the stress is in the elastic domain, otherwise, if  $f(\sigma, \mathbf{q}^{\xi}) = 0$ , the stress reaches plasticity.

**Evolution Equations** Again, we consider two of them:

1. Plastic flow of  $\dot{\varepsilon}^p$  is again given by

$$\dot{\varepsilon}^p := \dot{\gamma} \cdot \frac{\partial g}{\partial \sigma} \tag{2.15}$$

and we again assume that  $g(\sigma, q^{iso})$  to be the same as  $f(\sigma, q^{iso})$ .

Fig. 2.6 depicts the evolution of the elastic domain for  $H^{iso} = 0$  (isotropic perfectly plastic) and  $H^{kin} > 0$ . The size of elastic domains is the same after evolution.

2. The evolution of  $\dot{\boldsymbol{\xi}}$  is defined by

$$\boldsymbol{\xi} := \dot{\gamma} \cdot \mathbf{h}(\sigma, \ \mathbf{q}^{\xi}) \tag{2.16}$$

where,  $\mathbf{h}(\sigma, \mathbf{q}^{\xi})$  is a dimensionless hardening function.

$$\begin{aligned} \mathbf{h}(\sigma, \ \mathbf{q}^{\xi}) &= -\frac{\partial g}{\partial \mathbf{q}^{\xi}} \\ &= \lfloor -\frac{\partial g}{\partial \mathbf{q}^{iso}}, \ -\frac{\partial g}{\partial \mathbf{q}^{kin}} \rfloor^{T} \\ &= \lfloor 1, \ \mathrm{sign}(\sigma - \mathbf{q}^{kin}) \rfloor^{T} \end{aligned}$$

Combining Eq. 2.14 and Eq. 2.16,

$$\dot{\mathbf{q}}^{\xi} = \mathbf{H} \cdot \dot{\boldsymbol{\xi}} = \mathbf{H} \cdot \dot{\boldsymbol{\gamma}} \cdot \mathbf{h}(\sigma, \ \mathbf{q}^{\xi}) \tag{2.17}$$



Figure 2.6: The evolution of elastic domain in isotropic and kinematic hardening model for  $H^{iso} = 0$  (isotropic perfectly plastic) and  $H^{kin} > 0$ 

**Tangent Modulus** To determine  $E^{tan}$ , we again invoke the consistency condition given by Eq. 2.12 and where  $\dot{q}$  has now been replaced by  $\dot{q}^{\xi}$ 

$$\dot{f}(\sigma, \mathbf{q}^{\xi}) = \frac{\partial f}{\partial \sigma} \cdot \dot{\sigma} + \frac{\partial f}{\partial \mathbf{q}^{\xi}} \cdot \dot{\mathbf{q}}^{\xi} = 0$$
(2.18)

Substituting Eq. 2.7 and Eq. 2.17 into Eq. 2.18,

$$\frac{\partial f}{\partial \sigma} \cdot E \cdot \left( \dot{\varepsilon} - \dot{\gamma} \cdot \frac{\partial g}{\partial \sigma} \right) + \frac{\partial f}{\partial \mathbf{q}^{\xi}} \cdot \mathbf{H} \cdot \dot{\gamma} \cdot \mathbf{h}(\sigma, \ \mathbf{q}^{\xi}) = 0$$
(2.19)

 $\dot{\gamma}$  is determined from Eq. 2.19

$$\dot{\gamma} = \frac{\frac{\partial f}{\partial \sigma} \cdot E \cdot \dot{\varepsilon}}{\frac{\partial f}{\partial \sigma} \cdot E \cdot \frac{\partial g}{\partial \sigma} - \frac{\partial f}{\partial \mathbf{q}^{\xi}} \cdot \mathbf{H} \cdot \mathbf{h}(\sigma, \mathbf{q}^{\xi})}$$
(2.20)

From Eq. 2.7,

$$\begin{split} \dot{\sigma} &= E \cdot \left( \dot{\varepsilon} - \dot{\gamma} \cdot \frac{\partial g}{\partial \sigma} \right) \\ &= \left( E - \frac{\frac{\partial f}{\partial \sigma} \cdot E^2 \cdot \frac{\partial g}{\partial \sigma}}{\frac{\partial f}{\partial \sigma} \cdot E \cdot \frac{\partial g}{\partial \sigma} - \frac{\partial f}{\partial \mathbf{q}^{\xi}} \cdot \mathbf{H} \cdot \mathbf{h}(\sigma, \mathbf{q}^{\xi})} \right) \cdot \dot{\varepsilon} \\ &= E^{tan} \cdot \dot{\varepsilon} \end{split}$$

Thus, for elasto-plastic hardening material with bilinear curve, Eq. 2.20 reduces to:

$$\dot{\gamma} = \frac{\operatorname{sign}(\sigma - \mathbf{q}^{kin}) \cdot E \cdot \dot{\varepsilon}}{E + H^{iso} + H^{kin}}$$

Finally, we determine the tangent modulus,  $E^{tan}$ ,

$$\begin{split} E^{tan} &= E - \frac{\frac{\partial f}{\partial \sigma} \cdot E^2 \cdot \frac{\partial g}{\partial \sigma}}{\frac{\partial f}{\partial \sigma} \cdot E \cdot \frac{\partial g}{\partial \sigma} - \frac{\partial f}{\partial \mathbf{q}^{\xi}} \cdot \mathbf{H} \cdot \mathbf{h}(\sigma, \mathbf{q}^{\xi})} \\ &= E - \frac{\operatorname{sign}(\sigma - \mathbf{q}^{kin})^2 \cdot E}{\operatorname{sign}(\sigma - \mathbf{q}^{kin})^2 \cdot E - \lfloor -1, \ -\operatorname{sign}(\sigma - \mathbf{q}^{kin}) \rfloor \begin{bmatrix} H^{iso} & 0\\ 0 & H^{kin} \end{bmatrix} \begin{cases} 1\\ \operatorname{sign}(\sigma - \mathbf{q}^{kin}) \end{cases} \\ &= \frac{E \cdot (H^{iso} + H^{kin})}{E + H^{iso} + H^{kin}} \end{split}$$

#### 2.1.1.3 Determination for isotropic and kinematic harding parameters

Fig. 2.7 illustrates the procedure to determine uniaxial stress  $\sigma$  and tangent modulus  $E^{tan}$  from uniaxial strain  $\varepsilon$ .

### 2.1.2 Heuristic Models

### 2.1.2.1 Simplified Bilinear model with isotropic hardening

Whereas the proceeding model is rooted in plasticity theory, its implementation may be problematic. Alternatively, a phenomenologically similar model can be derived based on (?) and as implemented in (?).

**2.1.2.1.1 Stress-strain relation** Instead of determining the  $E^{tan}$  with H in Sec. 2.1.1.1, the simplified bilinear model computes it through a strain-hardening coefficient b which is the ratio of the post-yield tangent modulus  $E^{tan}$  and the initial elastic modulus E, and only considers isotropic hardening with Eq. 2.21 and Eq. 2.22 (?). Fig. 2.8 describes this simplified bilinear model.

$$E^{tan} = b \cdot E$$

To account for the evolution of elastic domain in isotropic harding, a stress shift  $\sigma_{\Delta}$  is determined as follow:

• If the incremental strain  $\Delta \varepsilon$  changes a positive value into a negative one:

$$\Delta^{N} = 1 + a_{1} \cdot \left(\frac{\varepsilon^{max} - \varepsilon^{min}}{2 \cdot a_{2} \cdot \varepsilon_{y}}\right)^{0.8}$$
  

$$\sigma_{\Delta} = \Delta^{N} \cdot \sigma_{y} \cdot (1 - b)$$
(2.21)

• If the incremental strain  $\Delta \varepsilon$  changes a negative value into a positive one:

$$\Delta^{P} = 1 + a_{3} \cdot \left(\frac{\varepsilon^{max} - \varepsilon^{min}}{2 \cdot a_{4} \cdot \varepsilon_{y}}\right)^{0.8}$$

$$\sigma_{\Delta} = \Delta^{P} \cdot \sigma_{y} \cdot (1 - b)$$
(2.22)

where,  $a_1$  and  $a_3$  are isotropic hardening parameter which reflect an increase of the compression yield envelope through a fraction of the yield strength after a plastic strain  $a_2 \cdot \frac{\sigma_y}{E}$ , and tension yield envelope as a fraction of the yield strength after a plastic strain of  $a_4 \cdot \frac{\sigma_y}{E}$ .  $a_2$  and  $a_4$  are isotropic hardening parameter with respect to  $a_1$  and  $a_3$ , and  $\varepsilon_{max}$  and  $\varepsilon_{min}$  are the strain at the maximum and minimum strain reversal point. Limiting factor of this model is that  $a_1$ ,  $a_2$ ,  $a_3$  and  $a_4$  must be determined through curve fitting of the model with experimental results. Default values are  $a_1 = 0$ ,  $a_2 = 55$ ,  $a_3 = 0$ , and  $a_4 = 55$  in (?).

**2.1.2.1.2 Determination for simplified bilinear model** Fig. 2.9 shows the procedure to obtain uniaxial stress  $\sigma$  and tangent modulus  $E^{tan}$  from uniaxial strain  $\varepsilon$ .

### 2.1.2.2 Giuffre-Menegotto-Pinto Model Modified by Filippou et al.

This section is based on doctoral dissertation of ?.

**2.1.2.2.1 Stress-strain relationship** The reinforcing steel stress-strain behavior is described by the nonlinear model of **?**, as modified by **?**, to include isotropic strain hardening. This model introduces smooth curve to describe similar behavior to experimental one instead of bilinear curve.



Figure 2.7: Determination for isotropic and kinematic hardening model

67



Figure 2.8: Bilinear model

The model presented in ? starts from the following empirical form of the stress-strain relation which is found to be close enough to experimentally determined ones.

$$\sigma^* = b \cdot \varepsilon^* + \frac{(1-b) \cdot \varepsilon^*}{(1+\varepsilon^{*R})^{1/R}}$$
(2.23)

where,

$$\varepsilon^* = \frac{\varepsilon - \varepsilon_{rev}}{\varepsilon_0 - \varepsilon_{rev}}$$

$$\sigma^* = \frac{\sigma - \sigma_{rev}}{\sigma_0 - \sigma_{rev}}$$
(2.24)

The tangent modulus  $E^{tan}$  is obtained by differentiating Eq. 2.23 and 2.24,

$$E^{tan} = \frac{\mathrm{d}\sigma}{\mathrm{d}\varepsilon} = \frac{\sigma_0 - \sigma_{rev}}{\varepsilon_0 - \varepsilon_{rev}} \cdot \frac{\mathrm{d}\sigma^*}{\mathrm{d}\varepsilon^*}$$
(2.25)

where,

$$\frac{\mathrm{d}\sigma^*}{\mathrm{d}\varepsilon^*} = b + \left[\frac{1-b}{(1+\varepsilon^{*R})^{1/R}}\right] \cdot \left[1 - \frac{\varepsilon^{*R}}{1+\varepsilon^{*R}}\right]$$
(2.26)

In Fig. 2.10, Eq. 2.24 represents a curved transition from a straight line asymptote with slope E (a) to another asymptote with slope  $E^{tan}$  (b),  $\sigma_{rev}$  and  $\varepsilon_{rev}$  are the stress and strain at the point of strain reversal (point A), which also forms the origin of the asymptote with slope E (a), and  $\sigma_0$  and  $\varepsilon_0$  are the stress and strain at the point of intersection of the two asymptotes (point B).

b is the strain hardening ratio between slope  $E^{tan}$  and E, and R is a parameter that influences the curvature of the transition curve between the two asymptotes and permits a good representation of the Bauschinger effect. As indicated in Fig. 2.10,  $\sigma_0$ ,  $\varepsilon_0$ ,  $\sigma_{rev}$  and  $\varepsilon_{rev}$  are updated after each strain reversal.

In Fig. 2.11, R is dependent on the absolute strain difference between the current asymptote intersection point (point B) and the previous maximum or minimum strain reversal point (point C) depending on whether the current strain is increasing or decreasing, respectively. There are two reported expression for  $R(\xi)$ :

• Menegotto-Pinto original model (?),

$$R(\xi) = R_0 - \frac{cR_1 \cdot \xi}{cR_2 + \xi}$$
(2.27)



Figure 2.9: Determination for simplified bilinear model



Figure 2.10: Menegotto-Pinto steel model (?)



Figure 2.11: Definition of curvature parameter R in Menegotto-Pinto steel model (?)

• Steel2 in OpenSees (?),

$$R(\xi) = R_0 \left( 1 - \frac{cR_1 \cdot \xi}{cR_2 + \xi} \right)$$
(2.28)

where,  $R_0$  is the value of the parameter R during first loading, and  $cR_1$  and  $cR_2$  are experimentally determined parameters to be defined together with  $R_0$ .  $\xi$  can be expressed as

$$\xi = \left| \frac{\varepsilon^m - \varepsilon_0}{\varepsilon_y} \right| \tag{2.29}$$

where,  $\varepsilon^m$  is the strain at the previous maximum or minimum strain reversal point depending on whether the current strain is increasing or decreasing, respectively.  $\varepsilon_0$  is the strain at the current intersection point of the two asymptotes.

As shown in Fig. 2.10, both  $\varepsilon^m$  and  $\varepsilon_0$  lie along the same asymptote and  $\varepsilon_y$  is the initial yield strain. Fig. 2.11 shows how  $\xi$  is updated following a strain reversal.

Some clarification is needed in connection with the set of rules for unloading and reloading which are implied by Eq. 2.23 to 2.29, allowing for a generalized load history. If the analytical model had a memory extending over all previous branches of the stress-strain history, then it would allow for the resumption of the previous reloading branch, as soon as the new reloading curve reached it. However, this would require that the model store all necessary information to retrace all previous incomplete reloading curves, and this is clearly impractical from a computational standpoint. Memory of the past stress-strain history is therefore limited to a predefined number of parameters, which in the present model are:

- 1. stress and strain at the last state of the model
- 2. stress and strain at the last state reversal point
- 3. stress and strain at the last asymptote intersection point
- 4. flag indication whether the last branch is ascending or descending
- 5. strain at the previous minimum strain reversal point
- 6. strain at the previous maximum strain reversal point

As a result of these restrictions reloading following partial unloading does not hit the original curve following unloading started, but, instead, continues on the new reloading curve until reaching the monotonic envelope. However, the discrepancy between the analytical model and the actual behavior is typically very small, ?.

The above implementation of the model corresponds to its simplest form, as proposed by ?: elastic and yield asymptotes are assumed to be straight lines, the position of the limiting asymptotes corresponding to the yield surface is assumed to be fixed at all times and the slope E remains constant, Fig. 2.10.

In spite of the simplicity in formulation, the model is capable of reproducing well experimental results and its major drawback stems from its failure to allow for isotropic hardening. To account for this effect ? proposed a shift of  $\sigma_0$  and  $\varepsilon_0$  in the linearly yield asymptote as follows:

• If the incremental strain  $\Delta \varepsilon$  changes a positive value to a negative value:

$$\Delta^{N} = 1 + a_{1} \cdot \left(\frac{\varepsilon^{max} - \varepsilon^{min}}{2 \cdot a_{2} \cdot \varepsilon_{y}}\right)^{0.8}$$

$$\varepsilon_{0} = \frac{-\sigma_{y} \cdot \Delta^{N} + E^{tan} \cdot \varepsilon_{y} \cdot \Delta^{N} - \sigma_{rev} + E \cdot \varepsilon_{rev}}{E - E^{tan}}$$

$$\sigma_{0} = -\sigma_{y} \cdot \Delta^{N} + E^{tan} \cdot (\varepsilon_{o} + \varepsilon_{y} \cdot \Delta^{N})$$
(2.30)

• If the incremental strain  $\Delta \varepsilon$  changes a negative value to a positive value,

$$\Delta^{P} = 1 + a_{3} \cdot \left(\frac{\varepsilon^{max} - \varepsilon^{min}}{2 \cdot a_{4} \cdot \varepsilon_{y}}\right)^{0.8}$$

$$\varepsilon_{0} = \frac{\sigma_{y} \cdot \Delta^{P} - E^{tan} \cdot \varepsilon_{y} \cdot \Delta^{P} - \sigma_{rev} + E \cdot \varepsilon_{rev}}{E - E^{tan}}$$

$$\sigma_{0} = \sigma_{y} \cdot \Delta^{P} + E^{tan} \cdot (\varepsilon_{o} - \varepsilon_{y} \cdot \Delta^{P})$$
(2.31)

where,  $a_1$  and  $a_3$  are isotropic hardening parameter which reflect an increase of the compression yield envelope through a fraction of the yield strength after a plastic strain  $a_2 \cdot \frac{\sigma_y}{E}$ , and tension yield envelope as a fraction of the yield strength after a plastic strain of  $a_4 \cdot \frac{\sigma_y}{E}$ .  $a_2$  and  $a_4$  are isotropic hardening parameter with respect to  $a_1$  and  $a_3$ , and  $\varepsilon_{max}$  and  $\varepsilon_{min}$  are the strain at the maximum and minimum strain reversal point. Limiting factor of this model is that  $a_1$ ,  $a_2$ ,  $a_3$  and  $a_4$  must be determined through curve fitting of the model with experimental results. Default values are  $a_1 = 0$ ,  $a_2 = 55$ ,  $a_3 = 0$ , and  $a_4 = 55$  in (?).

**2.1.2.2.2 Determination for modified Giuffre-Menegotto-Pinto Model** Fig. 2.12 to 2.15 show the procedure to obtain uniaxial stress  $\sigma$  and tangent modulus  $E^{tan}$  from uniaxial strain  $\varepsilon$ .



Figure 2.12: Determination (1) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al.

### 2.2 Concrete Models

## 2.2.1 Heuristic Models

## 2.2.1.1 Modified Kent And Park Model

This section is based on doctoral dissertation of (?).

**2.2.1.1.1 Stress-strain relation** The concrete model describes the concrete stress-strain relation under an arbitrary cyclic strain history. In particular, the model implemented takes into account four important factors:

- 1. effect of concrete confinement on the monotonic envelope curve in compression
- 2. successive degradation of stiffness of both the unloading and reloading curves, for increasing values of compressive strain
- 3. effect of tension stiffening
- 4. hysteretic response under cyclic loading in compression
| if Foceflag <sub><math>r,n = 0</math></sub>                                |                                                                                                                                                                                      |                                                                                                                               |  |  |  |  |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                            |                                                                                                                                                                                      |                                                                                                                               |  |  |  |  |  |
| if $\Delta \varepsilon = 0$                                                | else if $\Delta \varepsilon < 0$                                                                                                                                                     | else if $\Delta \varepsilon > 0$                                                                                              |  |  |  |  |  |
| $\mathcal{E}_{rev,r,n} = 0$                                                | $\varepsilon_{rev,r,n} = 0$                                                                                                                                                          | $\varepsilon_{rev,r,n} = 0$                                                                                                   |  |  |  |  |  |
| $\sigma_{rev,r,n} = 0$                                                     | $\sigma_{rev,r,n}=0$                                                                                                                                                                 | $\sigma_{rev,r,n}=0$                                                                                                          |  |  |  |  |  |
| $\mathcal{E}_{0,r,n} = 0$                                                  | $\varepsilon_{0,r,n} = \sigma_{y,r} / E_r$                                                                                                                                           | $\varepsilon_{0,r,n} = -\sigma_{y,r} / E_r$                                                                                   |  |  |  |  |  |
| $\sigma_{0,r,n}=0$                                                         | $\sigma_{0,r,n} = \sigma_{y,r}$                                                                                                                                                      | $\sigma_{0,r,n} = -\sigma_{y,r}$                                                                                              |  |  |  |  |  |
| $\boldsymbol{\varepsilon}_{r,n}^{\max} = \boldsymbol{\sigma}_{y,r} / E_r$  | $\varepsilon_{r,n}^{\max} = \sigma_{y,r} / E_r$                                                                                                                                      | $\varepsilon_{r,n}^{\max} = \sigma_{y,r} / E_r$                                                                               |  |  |  |  |  |
| $\boldsymbol{\varepsilon}_{r,n}^{\min} = -\boldsymbol{\sigma}_{y,r} / E_r$ | $\varepsilon_{r,n}^{\min} = -\sigma_{y,r} / E_r$                                                                                                                                     | $\varepsilon_{r,n}^{\min} = -\sigma_{y,r} / E_r$                                                                              |  |  |  |  |  |
| $\operatorname{Forceflag}_{r,n} = 0$                                       | $\boldsymbol{\varepsilon}_{pe,n} = \boldsymbol{\varepsilon}_{r,n}^{\min}$                                                                                                            | $\boldsymbol{\varepsilon}_{pe,n} = \boldsymbol{\varepsilon}_{r,n}^{\max}$                                                     |  |  |  |  |  |
| $\sigma_{r,n} = \sigma_{ini,r}$                                            | $Forceflag_{r,n} = 1$                                                                                                                                                                | $\operatorname{Forceflag}_{r,n} = -1$                                                                                         |  |  |  |  |  |
| $E_{r,n}^{	an}=E_r$                                                        | $\boldsymbol{\xi} = \frac{\boldsymbol{\varepsilon}_{pe,n} - \boldsymbol{\varepsilon}_{0,r,n}}{\boldsymbol{\varepsilon}_{y,r}}$                                                       | $\xi = \frac{\varepsilon_{pe,n} - \varepsilon_{0,r,n}}{\varepsilon_{y,r}}$                                                    |  |  |  |  |  |
|                                                                            | $R = R_0 - R_0^{nratio} \cdot \frac{cR_1 \cdot \xi}{cR_2 + \xi}$                                                                                                                     | $R = R_0 - R_0^{nratio} \cdot \frac{cR_1 \cdot \xi}{cR_2 + \xi}$                                                              |  |  |  |  |  |
|                                                                            | $\dot{\boldsymbol{\varepsilon}} = \frac{\boldsymbol{\varepsilon}_{r,n} - \boldsymbol{\varepsilon}_{rev,r,n}}{\boldsymbol{\varepsilon}_{0,r,n} - \boldsymbol{\varepsilon}_{rev,r,n}}$ | $\dot{\mathcal{E}} = \frac{\mathcal{E}_{r,n} - \mathcal{E}_{rev,r,n}}{\mathcal{E}_{0,r,n} - \mathcal{E}_{rev,r,n}}$           |  |  |  |  |  |
|                                                                            | $\mathbf{c}_1 = 1 + \left  \dot{\boldsymbol{\varepsilon}} \right ^R$                                                                                                                 | $c_1 = 1 + \left  \dot{\varepsilon} \right ^R$                                                                                |  |  |  |  |  |
|                                                                            | $\mathbf{c}_2 = \mathbf{c}_1^{1/R}$                                                                                                                                                  | $c_2 = c_1^{1/R}$                                                                                                             |  |  |  |  |  |
|                                                                            | $\sigma_{r,n} = b_r \cdot \dot{\varepsilon} + (1 - b_r) \cdot \frac{\dot{\varepsilon}}{c_2}$                                                                                         | $\sigma_{r,n} = b_r \cdot \dot{\varepsilon} + (1 - b_r) \cdot \frac{\dot{\varepsilon}}{c_2}$                                  |  |  |  |  |  |
|                                                                            | $\sigma_{r,n} = \sigma_{r,n} \cdot (\sigma_{0,r,n} - \sigma_{rev,r,n}) + \sigma_{rev,r,n}$                                                                                           | $\sigma_{r,n} = \sigma_{r,n} \cdot (\sigma_{0,r,n} - \sigma_{rev,r,n}) + \sigma_{rev,r,n}$                                    |  |  |  |  |  |
|                                                                            | $E_{r,n}^{\tan} = b_r + \frac{(1-b_r)}{c_1 \cdot c_2}$                                                                                                                               | $E_{r,n}^{\tan} = b_r + \frac{(1-b_r)}{c_1 \cdot c_2}$                                                                        |  |  |  |  |  |
|                                                                            | $E_{r,n}^{\text{tan}} = E_{r,n}^{\text{tan}} \cdot \frac{\sigma_{0,r,n} - \sigma_{rev,r,n}}{\varepsilon_{0,r,n} - \varepsilon_{rev,r,n}}$                                            | $E_{r,n}^{\tan} = E_{r,n}^{\tan} \cdot \frac{\sigma_{0,r,n} - \sigma_{rev,r,n}}{\varepsilon_{0,r,n} - \varepsilon_{rev,r,n}}$ |  |  |  |  |  |
|                                                                            |                                                                                                                                                                                      |                                                                                                                               |  |  |  |  |  |

Figure 2.13: Determination (2) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al.

| else if $\operatorname{Foceflag}_{r,n} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| if $\Delta \varepsilon < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | else if $\Delta \varepsilon > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| $\begin{split} \mathcal{E}_{rev,r,n},  & \boldsymbol{\sigma}_{rev,r,n} \\ \Delta^{N} = 1 + a_{1} \cdot \left( \frac{\mathcal{E}_{r,n}^{\max} - \mathcal{E}_{r,n}^{\min}}{2 \cdot a_{2} \cdot \mathcal{E}_{y}} \right)^{0.8} \\ \mathcal{E}_{0,r,n} = \frac{-\boldsymbol{\sigma}_{y,r} \cdot \Delta^{N} + E_{r}^{sh} \cdot \mathcal{E}_{y,r} \cdot \Delta^{N} - \boldsymbol{\sigma}_{rev,r,n} + E_{r} \cdot \mathcal{E}_{rev,r,n}}{E_{r} - E_{r}^{sh}} \\ \boldsymbol{\sigma}_{0,r,n} = -\boldsymbol{\sigma}_{y,r} \cdot \Delta^{N} + E_{r}^{sh} \cdot (\mathcal{E}_{0,r,n} + \mathcal{E}_{y,r} \cdot \Delta^{N}) \\ \mathcal{E}_{r,n}^{\max} = \operatorname{Max} \left[ \mathcal{E}_{r,n}^{\min}, \mathcal{E}_{r,n-1} \right] \\ \mathcal{E}_{r,n}^{\min} = \operatorname{Min} \left[ \mathcal{E}_{r,n}^{\min}, \mathcal{E}_{r,n-1} \right] \\ \mathcal{E}_{pe,n} = \mathcal{E}_{r,n}^{\min} \\ \operatorname{Forceflag}_{r,n} = -1 \\ \boldsymbol{\xi} = \left  \frac{\mathcal{E}_{pe,n} - \mathcal{E}_{0,r,n}}{\mathcal{E}_{y,r}} \right  \\ R = R_{0} - R_{0}^{nratio} \cdot \frac{\mathcal{C}R_{1} \cdot \boldsymbol{\xi}}{\mathcal{C}R_{2} + \boldsymbol{\xi}} \\ \dot{\boldsymbol{\varepsilon}} = \frac{\mathcal{E}_{r,n} - \mathcal{E}_{rev,r,n}}{\mathcal{E}_{0,r,n} - \mathcal{E}_{rev,r,n}} \\ c_{1} = 1 + \left  \dot{\boldsymbol{\varepsilon}} \right ^{R} \\ \boldsymbol{\sigma}_{r,n} = \boldsymbol{\sigma}_{r,n} \cdot (\boldsymbol{\sigma}_{0,r,n} - \boldsymbol{\sigma}_{rev,r,n}) + \boldsymbol{\sigma}_{rev,r,n} \\ E_{r,n}^{\max} = b_{r} + \frac{(1 - b_{r})}{c_{1} \cdot c_{2}} \\ E_{r,n}^{\max} = E_{r,n}^{\max} \cdot \frac{\boldsymbol{\sigma}_{0,r,n} - \boldsymbol{\sigma}_{rev,r,n}}{\mathcal{E}_{0,r,n} - \mathcal{E}_{rev,r,n}} \end{split}$ | $\begin{aligned} & \mathcal{E}_{rev,r,n},  \mathcal{O}_{rev,r,n},  \mathcal{E}_{0,r,n},  \mathcal{O}_{0,r,n} \\ & \mathcal{E}_{r,n}^{\max} = \operatorname{Max} \left[ \mathcal{E}_{r,n}^{\max}, \mathcal{E}_{r,n-1} \right] \\ & \mathcal{E}_{r,n}^{\min} = \operatorname{Min} \left[ \mathcal{E}_{r,n}^{\min}, \mathcal{E}_{r,n-1} \right] \\ & \mathcal{E}_{pe,n} = \mathcal{E}_{r,n}^{\max} \\ & \operatorname{Forceflag}_{r,n} = 1 \\ & \mathcal{E}_{q} = \left  \frac{\mathcal{E}_{pe,n} - \mathcal{E}_{0,r,n}}{\mathcal{E}_{y,r}} \right  \\ & \mathcal{R} = \mathcal{R}_{0} - \mathcal{R}_{0}^{nratio} \cdot \frac{C\mathcal{R}_{1} \cdot \mathcal{E}}{C\mathcal{R}_{2} + \mathcal{E}} \\ & \dot{\mathcal{E}}_{q} = \frac{\mathcal{E}_{r,n} - \mathcal{E}_{rev,r,n}}{\mathcal{E}_{0,r,n} - \mathcal{E}_{rev,r,n}} \\ & \mathcal{C}_{1} = 1 + \left  \dot{\mathcal{E}} \right ^{\mathcal{R}} \\ & \mathcal{C}_{2} = c_{1}^{1/\mathcal{R}} \\ & \mathcal{O}_{r,n} = \mathcal{O}_{r} \cdot \dot{\mathcal{E}} + (1 - \mathcal{O}_{r}) \cdot \frac{\dot{\mathcal{E}}}{c_{2}} \\ & \mathcal{O}_{r,n} = \mathcal{O}_{r,n} \cdot (\mathcal{O}_{0,r,n} - \mathcal{O}_{rev,r,n}) + \mathcal{O}_{rev,r,n} \\ & \mathcal{E}_{r,n}^{\max} = \mathcal{D}_{r} + \frac{(1 - \mathcal{D}_{r})}{c_{1} \cdot c_{2}} \\ & \mathcal{E}_{r,n}^{\max} = \mathcal{E}_{r,n}^{\max} \cdot \frac{\mathcal{O}_{0,r,n} - \mathcal{O}_{rev,r,n}}{\mathcal{E}_{0,r,n} - \mathcal{E}_{rev,r,n}} \end{aligned}$ |  |  |  |  |

Figure 2.14: Determination (3) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al.

| else if Foceflag <sub><math>r,n = -1</math></sub>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| if $\Delta \varepsilon > 0$                             | else if $\Delta \varepsilon < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\int_{a,r,n} \sigma_{rev,r,n}, \xi_{0,r,n}, \sigma_{0,r,n}$ $\lim_{x} = \operatorname{Max} \left[ \varepsilon_{r,n}^{\max}, \varepsilon_{r,n-1} \right]$ $\lim_{n} = \operatorname{Min} \left[ \varepsilon_{r,n}^{\min}, \varepsilon_{r,n-1} \right]$ $\lim_{n} = \varepsilon_{r,n}^{\min}$ $\operatorname{rceflag}_{r,n} = -1$ $= \left  \frac{\varepsilon_{pe,n} - \varepsilon_{0,r,n}}{\varepsilon_{y,r}} \right $ $= R_0 - R_0^{\operatorname{nratio}} \cdot \frac{cR_1 \cdot \xi}{cR_2 + \xi}$ $= \frac{\varepsilon_{r,n} - \varepsilon_{rev,r,n}}{\varepsilon_{0,r,n} - \varepsilon_{rev,r,n}}$ $= 1 + \left  \dot{\varepsilon} \right ^R$ $= c_1^{1/R}$ $n = b_r \cdot \dot{\varepsilon} + (1 - b_r) \cdot \frac{\dot{\varepsilon}}{c_2}$ $n = \sigma_{r,n} \cdot (\sigma_{0,r,n} - \sigma_{rev,r,n}) + \sigma_{rev,r,n}$ $\prod_{n}^{n} = b_r + \frac{(1 - b_r)}{c_1 \cdot c_2}$ $\prod_{n}^{n} = E_{r,n}^{\max} \cdot \frac{\sigma_{0,r,n} - \sigma_{rev,r,n}}{\varepsilon_{0,r,n} - \varepsilon_{rev,r,n}}$ |  |  |  |  |  |

Figure 2.15: Determination (4) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al.

The monotonic envelope curve of concrete in compression follows the original model of ? and extended by ?. Even though more accurate and complete models have been published since, the so-called modified Kent and Park model offers a good balance between simplicity and accuracy.

Tension stiffening is the ability of concrete between cracks to resist tensile stress and contribute to the flexural stiffness of the member. Due to the discrete nature of the cracks, concrete in between cracks remains bonded to the reinforcement and, thus, contributes to the stiffness of the member. However, as the magnitude of load increases, additional cracks form at closer intervals, hence reducing the tensile stress that can be developed in the concrete. Therefore tension stiffening is gradually reduced as load is increased in the post-cracking stage. Past investigators have taken tension stiffening into account by modifying the concrete stress-strain relation such that, after reaching the tensile strength (cracking), the tensile stress reduces gradually to zero as tensile strain is increased. The gradual reduction of tensile strength is often approximated as linear, multi-linear or exponential. A similar approach with a linear rate of reduction is adopted. However, the results indicate that the application of tension stiffening is a localized phenomenon that affects the concrete in the immediate vicinity of the reinforcement. In analytical studies, only the concrete fibers within an effective area around the reinforcements are assigned tension softening. Clearly, the size of the effective area has a significant effect on tension stiffening behavior of the member.



Figure 2.16: Concrete material model in compression
(?)

In the modified Kent and Park model (?) shown in Fig. 2.16, the monotonic concrete stress-strain relation in compression is empirically defined by three regions. Adopting the convention that compression is positive, the three regions are,

• Segment OA:  $\varepsilon_c \leq \varepsilon_0$ 

$$\sigma_c = K \cdot f_c \cdot \left[ 2 \cdot \frac{\varepsilon_c}{\varepsilon_0} - \left( \frac{\varepsilon_c}{\varepsilon_0} \right)^2 \right]$$

From this equation, we can determine the maximum compressive strength of confined concrete:

$$f_{c,confined}' = K f_c' \tag{2.32}$$

 $\mathbf{76}$ 

• Segment  $AB: \varepsilon_0 < \varepsilon_c \leq \varepsilon_{20}$ 

$$\sigma_c = K \cdot f_c \cdot [1 - Z(\varepsilon_c - \varepsilon_0)]$$

• Segment BC:  $\varepsilon_c > \varepsilon_{20}$ 

 $\sigma_c = 0.2 \cdot K \cdot f_c$ 

The corresponding tangent moduli are given by the following equations

• Segment OA:  $\varepsilon_c \leq \varepsilon_0$ 

$$E^{tan} = \frac{2 \cdot K \cdot f_c}{\varepsilon_0} \cdot \left(1 - \frac{\varepsilon_c}{\varepsilon_0}\right)$$

• Segment  $AB: \varepsilon_0 < \varepsilon_c \leq \varepsilon_{20}$ 

$$E^{tan} = -Z \cdot K \cdot f_c$$

• Segment BC:  $\varepsilon_c > \varepsilon_{20}$ 

$$E^{tan} = 0$$

where,

$$\begin{aligned} \varepsilon_0 &= 0.002 \cdot K \\ K &= 1 + \frac{\rho_s \cdot f_{ys}}{f_c} \\ Z &= \frac{0.5}{\frac{3 + 0.29 \cdot f_c}{145 \cdot f_c - 1000} + 0.75 \cdot \rho_s \cdot \sqrt{\frac{h}{s_h}} - 0.002 \cdot K} \end{aligned}$$

 $\varepsilon_0$  is the concrete strain corresponding maximum stress,  $\varepsilon_{20}$  the concrete strain at 20 percent of maximum stress, K a factor which accounts for the strength increase due to confinement, Z the strain softening slope,  $f_c$  the concrete compressive cylinder strength in MPa (1 MPa = 145 psi),  $f_{ys}$  the yield strength of stirrups in MPa,  $\rho_s$  the ratio of the volume of hoop reinforcement to the volume of concrete core measured to outside of stirrups, h the width of concrete core measured to outside of stirrups, and  $s_h$  the center to center spacing of stirrups or hoop sets.

From the previous equations,  $\varepsilon_{20}$  can be determined from

$$\varepsilon_{20} = \varepsilon_0 + \frac{K f'_c - 0.2 f'_{c,confined}}{Z K f'_c}$$
(2.33)

The cyclic unloading and reloading behavior is represented by a set of straight lines. Fig. 2.16 shows that hysteretic behavior occurs under, both, tensile and compressive stress. Although the compressive and tensile hysteresis loops are continuous, they will be discussed separately for the sake of clarity.

On the compressive side of the model, there is a successive degradation of stiffness of both the unloading and reloading lines for increasing values of maximum strain, as shown in Fig. 2.16. The degradation of stiffness is such that the projections of all reloading lines intersect at a common point R in Fig. 2.17. Point R is determined by the intersection of the tangent to the monotonic envelope curve at the origin and the projection of the unloading line from point B that corresponds to concrete strength of  $0.2 \cdot f_c$  (Fig. 2.17). The strain and stress at the intersection point are given by the following expressions

$$\varepsilon_R = \frac{0.2 \cdot K \cdot f_c - E_{20} \cdot \varepsilon_{20}}{E_c - E_{20}}$$

$$\sigma_R = E_c \cdot \varepsilon_R$$
(2.34)

where  $E_c$  is the tangent modulus of the monotonic envelope curve at the origin,  $E_{20}$  is the unloading modulus at point B of the monotonic envelope curve with a strength of  $0.2 \cdot f_c$ . The magnitude of  $E_{20}$  has to be determined experimentally.

After unloading from a point on the compressive monotonic envelope (point D in Fig. 2.17), and before reaching the zero stress axis (point H in Fig. 2.17), the model response follows two smaller envelopes that are defined by the following equations,



Figure 2.17: Concrete material model under cyclic loading in compression  $(\ref{eq:constraint})$ 

• Maximum envelope (line HD)

$$\sigma_{max} = \sigma_m + E_R \cdot (\varepsilon_c - \varepsilon_m) \tag{2.35}$$

• Minimum envelope (line HE)

$$\sigma_{min} = 0.5 \cdot E_R \cdot (\varepsilon_c - \varepsilon_t) \tag{2.36}$$

where,

ł

$$\begin{aligned}
\mathcal{E}_R &= \frac{\sigma_m - \sigma_R}{\varepsilon_m - \varepsilon_R} \\
\varepsilon_t &= \varepsilon_m - \frac{\sigma_m}{E_R}
\end{aligned}$$
(2.37)

 $\sigma_m$  and  $\varepsilon_m$  are the stress and strain at the unloading point on the compressive monotonic envelope, respectively. Therefore, the positions of the two smaller envelopes depend on the position of the unloading point. For partial loading and unloading cycles within the smaller envelopes the model follows straight line with modulus  $E_c$ .

In the numerical implementation a trial stress and tangent modulus are assumed based on linear elastic behavior with slope  $E_c$ ,

$$\sigma_{c,n}^{tr} = \sigma_{c,n-1} + E_c \cdot \Delta \varepsilon_{c,n} \tag{2.38}$$

where  $\sigma_{c,n}^{tr}$  is the updated trial stress,  $\sigma_{c,n-1}$  is the previous stress state and  $\Delta \varepsilon_{c,n}$  is the strain increment. The following rules are then used to determine actual stress and modulus of the model

if 
$$\sigma_{min} \leq \sigma_{c,n}^{tr} \leq \sigma_{max}$$
 then  $\sigma_{c,n} = \sigma_{c,n}^{tr}$  and  $E^{tan} = E_c$   
if  $\sigma_{c,n}^{tr} < \sigma_{min}$  then  $\sigma_{c,n} = \sigma_{min}$  and  $E^{tan} = 0.5 \cdot E_r$  (2.39)  
if  $\sigma_{c,n}^{tr} > \sigma_{max}$  then  $\sigma_{c,n} = \sigma_{max}$  and  $E^{tan} = E_r$ 

The rules governing the hysteretic behavior of the model in compression according to Eq. 2.34 to 2.39 are illustrated by a sample history in Fig. 2.17. If unloading occurs from point D to point E, reloading will be on the same path back to D. If unloading reaches point F, the hysteresis loop DEFGD will result upon reloading. If complete unloading to point H occurs, reloading will result in the hysteresis loop DEHD. It is important to note that the reloading line will always rejoin the compression monotonic envelope at the point of initial unloading. For the case when unloading continues past point H and the model starts reloading in tension, a different set of rules govern the hysteretic behavior. However upon reloading in compression, the model will reenter the compression region at the point on the zero stress axis at the completion of unloading (point H) and whatever happens in the tension region will not affect the behavior of the model, once it returns to the compression region.

The tensile behavior of the model, as shown in Fig. 2.18, takes into account tension stiffening and the degradation of the unloading and reloading stiffness for increasing values of maximum tensile strain after initial cracking. The maximum tensile strength of the concrete (modulus of rupture) is assumed equal to,

$$f_t = 0.6228\sqrt{f_c}$$
 (2.40)

where  $f_t$  and  $f_c$  are expressed in MPa.

Fig. 2.18 shows two consecutive tensile hysteresis loops which are part of a sample cyclic history that also include compressive stresses. The model assumes that tensile stress can occur anywhere along the strain axis, either as a result of initial tensile loading or as a result of unloading from a compressive state. In the latter case a tensile stress occurs under a compressive strain. The tensile stress-strain relation is defined by three points with coordinates ( $\varepsilon_t$ , 0), ( $\varepsilon_{tp}$ ,  $\sigma_{tp}$ ) and ( $\varepsilon_u$ , 0), as represented by points J, K and M in Fig. 2.18, respectively.  $\varepsilon_t$  is the strain at the point where the unloading line from the compressive stress region crosses the strain axis.  $\varepsilon_t$  is given by Eq. 2.37 and changes with maximum compressive strain.  $\varepsilon_{tp}$  and  $\sigma_{tp}$  are the strain and stress at the peak of the tensile stress-strain relation and are given by the following expressions,

$$\varepsilon_{tp} = \varepsilon_t + \Delta \varepsilon_t$$

$$\sigma_{tp} = f_t \cdot \left(1 + \frac{E_t}{E_c}\right) - E_t \cdot \Delta \varepsilon_t$$
(2.41)

where  $\Delta \varepsilon_t$  is the previous maximum differential between tensile strain and  $\varepsilon_t$  as shown in Fig. 2.18. Before initial cracking,  $\Delta \varepsilon_t$  is equal to  $f_t/E_c$ .  $E_t$  is the slope of the softening branch of concrete in tension (typically -1/10 to -1/5



Figure 2.18: Concrete material model under cyclic loading in tension (?)

of  $E_c$ ),  $\varepsilon_u$  is the strain at the point where the tensile stress is reduced to zero and is given by the expression,

$$\varepsilon_u = \varepsilon_t + f_t \cdot \left(\frac{1}{E_t} + \frac{1}{E_c}\right) \tag{2.42}$$

Given these three control points, the tensile stress-strain relation and tangent moduli are defined by the following equations (tension is positive),

• Segment  $JK: \varepsilon_t < \varepsilon_c \le \varepsilon_{tp}$ 

$$\sigma_c = E^{tan} \cdot (\varepsilon_c - \varepsilon_t), \quad E^{tan} = \frac{\sigma_{tp}}{\varepsilon_{tp} - \varepsilon_t}$$
(2.43)

• Segment KM:  $\varepsilon_{tp} < \varepsilon_c \leq \varepsilon_u$ 

$$\sigma_c = \sigma_{tp} + E^{tan} \cdot (\varepsilon_c - \varepsilon_{tp}), \quad E^{tan} = -E_t \tag{2.44}$$

• Segment MN:  $\varepsilon_c > \varepsilon_u$ 

$$\sigma_c = 0, \quad E^{ian} = 0 \tag{2.45}$$

If  $\varepsilon_{tp} \geq \varepsilon_u$  then  $\sigma_{tp}$ ,  $\sigma_c$  and  $E^{tan}$  are all assumed to be zero. The modulus  $E_t$  controls the degree of tension stiffening by controlling the slope of Eq. 2.44. The steeper the slope, the smaller will be the effect of tension stiffening. Tensile unloading and reloading are governed by Eq. 2.43 which also includes stiffness degradation for increasing values of strain differential  $\Delta \varepsilon_t$ . The value of  $\Delta \varepsilon_t$  changes whenever  $\varepsilon_c - \varepsilon_{tp}$ .

The tensile behavior of the model, as characterized by Eq. 2.40 to 2.45, can be better understood by following the example load paths in Fig. 2.18. As the model unloads from compression, it crosses the strain axis at the point J. It then loads in tension until initial cracking occurs at point K. Beyond point K softening commences until the strain reversal point L. The unloading path follows a straight line from point L to point J where the model reloads in compression. The second time the model goes into tension is at point J'. The reloading path J'K' is exactly the duplication of the previous unloading path LJ that has been shifted a distance JJ' along the strain axis. At point K' the model rejoins the softening branch which continues until the tensile stress is reduced to zero at point M'. The stress remains zero through the strain reversal point N' until the model reloads in compression at point J'. Henceforth, the tensile stress capacity of the model is reduced to zero.

The present concrete model is relatively economical in terms of the amount of memory required of the past stressstrain history. The parameters that are used as memory can be listed as follows:

- 1. the stress and strain at the point corresponding to the last model state
- 2. the strain at the last unloading point on the compressive monotonic envelope,  $\varepsilon_m$
- 3. The differential  $\Delta \varepsilon_t$  between maximum previous tensile strain and  $\varepsilon_t$

The concrete damage considered in the present model is in the form of unloading and reloading stiffness degradation for increasing values of maximum strain. But actual concrete damage also includes the reduction of the monotonic envelopes under cyclic loading.

#### 2.2.1.1.2 Data preparation for modified Kent and Park model





| 78                               | end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 79                               | fprintf(fid,' UNCONFINED CONCRETE\n\n');                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 80                               | fprintf(fid,'Intial tangent modulus in tension%8.2f\n', E_t_unconfined);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 81                               | $fprintf(fid, 'Confined compressive strength%8.2 f \n', - f_c_unconfined);$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $^{82}$                          | fprintf(fid,'Peak strain in compression%8.2f\n',-epsilon_0_unconfined);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 83                               | $fprintf(fid, 'Strain at 20 percent of peak stress \% 8.2 f n', -epsilon_{20} -unconfined);$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $^{84}$                          | $fprintf(fid, Stress at 20 percent of peak stress 8.2 f\n', -f_c_20_unconfined);$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 85                               | fprintf(fid , 'Tensile strength%8.2f\n', sigma_t_unconfined);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 86                               | fprintf(fid,'Coefficient Lambda%8.2f\n\n', lambda);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 87                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 88                               | fprintf(fid,' CONFINED CONCRETE\n\n');                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 89                               | fprintf(fid,'Intial tangent modulus in tension%8.2f\n', E_t_confined);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 90                               | $f_{\text{res}} = f_{\text{res}} + f_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                  | iprinti (iid, Contined compressive strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 91                               | $\beta$ in triangle in the compressive strength $\beta$ is $\beta$ in |
| $91 \\ 92$                       | fprintf(fid, 'Peak strain in compression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 91<br>92<br>93                   | <pre>fprintf(fid, 'Deak strain in compressive strength</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 91<br>92<br>93<br>94             | <pre>iprint(fid, 'Peak strain in compressive strength%8.2f\n', -epsilon_0_confined);<br/>fprintf(fid, 'Strain at 20 percent of peak stress%8.2f\n', -epsilon_20_confined);<br/>fprintf(fid, 'Stress at 20 percent of peak stress%8.2f\n', -f_cc_20_confined);<br/>fprintf(fid, 'Tensile strength%8.2f\n', sigma_tconfined);</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 91<br>92<br>93<br>94<br>95       | <pre>iprint(fid, 'Peak strain in compressive strength%0.21\n', -lc_confined);<br/>fprintf(fid, 'Peak strain in compression%8.21\n', -epsilon_0_confined);<br/>fprintf(fid, 'Strain at 20 percent of peak stress%8.21\n', -fc_c20_confined);<br/>fprintf(fid, 'Tensile strength%8.21\n', sigma_t_confined);<br/>fprintf(fid, 'Coefficient Lambda%8.21\n', sigma_t_confined);</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 91<br>92<br>93<br>94<br>95<br>96 | <pre>iprint(fid, 'Deak strain in compressive strength</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

**2.2.1.1.3 Determination for modified Kent and Park model** Fig. 2.19 and 2.20 show the procedure to obtain uniaxial stress  $\sigma$  and tangent modulus  $E^{tan}$  from uniaxial strain  $\varepsilon$ .

#### 2.2.2 "Exact" Models

#### 2.2.2.1 Anisotropic damage model with effective damage and stiffness recovery

Whereas the modified Kent-Park model has been successfully used in may applications, it remains a heuristic empirical model which accurate performance may not be assured within the context of real-time hybrid simulation with limited number of iterations. To address this possible handicap amore, rigorous and thermodynamically correct constitutive model for concrete is implemented <sup>2</sup>. Such a model was developed by **?**.

### 2.2.2.1.1 Constitutive model

**Thermodynamic potential** The Gibbs potential  $\rho \cdot \phi^*$  is based on the Ladeveze's framework (?) for anisotropic damage model. The splitting of the stress tensor into deviatoric and hydrostatic components allows us to consider seperately the shear and the hydrostatic parts. Furthemore, each component is again splitted into two additional ones: the positive and the negative in order to model the unilateral effect, Fig. 2.21. The damage influences only the positive part through the damage tensor **D**.

$$\rho \cdot \phi^* = \frac{1+\nu}{2 \cdot E} \left[ \operatorname{Tr} \left( \mathbf{H} \cdot \boldsymbol{\sigma}_+^D \mathbf{H} \cdot \boldsymbol{\sigma}_+^D \right) + \operatorname{Tr} \left( \langle \boldsymbol{\sigma}^D \rangle_- \langle \boldsymbol{\sigma}^D \rangle_- \right) \right] + \frac{1-2\nu}{6 \cdot E} \left[ \frac{\langle \operatorname{Tr} \boldsymbol{\sigma} \rangle_+^2}{1-D_H} + \langle \operatorname{Tr} \boldsymbol{\sigma} \rangle_-^2 \right]$$
(2.46)

where  $\rho$ ,  $\nu$  and E are respectively the density, the Poisson's ratio and Young modulus. The tensor **H** is defined by

$$H = (1 - D)^{\frac{1}{2}}$$

where  $(\cdot)^D$  is the deviatoric of  $(\cdot)$ ,

$$(\cdot)^D = (\cdot) - \frac{1}{3} \operatorname{Tr}(\cdot) \cdot \mathbf{1}$$

 $\langle \cdot \rangle_{+,-}$  is the positive or negative part of  $(\cdot)$ , and  $D_H$  is the hydrostatic part of **D**,

$$D_H = \frac{1}{3} \text{Tr} \mathbf{D}$$

In Ladeveze's framework (?),  $\sigma_{+}^{D}$  is an unusual positive part of  $\sigma^{D}$ : if  $\lambda_{I}$  are the eigenvalues of  $\mathbf{H}\sigma^{D}$  and  $\mathbf{T}^{I}$  the corresponding eigenvectors,  $\sigma_{+}^{D}$  is

$$\boldsymbol{\sigma}^{D}_{+} = \sum_{I} \langle \boldsymbol{\lambda}_{I} \rangle_{+} \left( \mathbf{H}^{-1} \cdot \mathbf{T}^{I} \right) \left( \mathbf{H}^{-1} \cdot \mathbf{T}^{I} \right)^{T}$$

<sup>&</sup>lt;sup>2</sup>Implementation of this model was made possible through the collaboration of Prof. Ragueneau and Mr. Lebon from ENS/Cachen



Figure 2.19: Determination (1) for modified Kent and Park model





Figure 2.20: Determination (2) for modified Kent and Park model



Figure 2.21: Cracks induced by compression, tension, tension and compression

**Constitutive law** The constitutive law is derived from Gibbs potential using Eq. 2.46:

$$\begin{split} \boldsymbol{\varepsilon} &= \boldsymbol{\rho} \cdot \frac{\partial \boldsymbol{\phi}^*}{\partial \boldsymbol{\sigma}} \\ &= \frac{1+\nu}{E} \left[ \left( \mathbf{H} \cdot \boldsymbol{\sigma}_{+}^{D} \mathbf{H} \right)^{D} + \langle \boldsymbol{\sigma}^{D} \rangle_{-}^{D} \right] + \frac{1-2\nu}{3 \cdot E} \left[ \frac{\langle \operatorname{Tr} \left( \boldsymbol{\sigma} \right) \rangle_{+}}{1-D_{H}} + \langle \operatorname{Tr} \left( \boldsymbol{\sigma} \right) \rangle_{-} \right] \cdot \mathbf{I} \\ &= \frac{1+\nu}{E} \cdot \tilde{\boldsymbol{\sigma}} - \frac{\nu}{E} \cdot \operatorname{Tr} \left( \tilde{\boldsymbol{\sigma}} \right) \cdot \mathbf{I} \end{split}$$

where  $\tilde{\sigma}$  is the effective stress obtained by rewriting the stress strain law in terms of the effective stress:

$$\tilde{\boldsymbol{\sigma}} = \left[ \left( \mathbf{H} \cdot \boldsymbol{\sigma}_{+}^{D} \mathbf{H} \right)^{D} + \langle \boldsymbol{\sigma}^{D} \rangle_{-}^{D} \right] + \left[ \frac{\langle \operatorname{Tr} \left( \boldsymbol{\sigma} \right) \rangle_{+}}{1 - D_{H}} + \langle \operatorname{Tr} \left( \boldsymbol{\sigma} \right) \rangle_{-} \right] \cdot \mathbf{I}$$

**Damage evolution law** The damage evolution law should account for cyclic loading. Hence, the damage criterion f should depend on an effective damage  $d_{\varepsilon}$  (?) such that

$$f = \hat{\varepsilon} - \kappa (d_{\varepsilon})$$
$$d_{\varepsilon} = \frac{\mathbf{D} : \langle \boldsymbol{\varepsilon} \rangle_{+}}{\max (\boldsymbol{\varepsilon}_{I})}$$

where  $\hat{\varepsilon}$  is Mazars strain defined by

$$\hat{\varepsilon} = \sqrt{\langle \boldsymbol{\varepsilon} \rangle_+ : \langle \boldsymbol{\varepsilon} \rangle_+}$$

and  $\kappa$  the consolidation function,

$$\kappa\left(d_{\varepsilon}\right) = a \cdot \tan\left[\frac{d_{\varepsilon}}{aA} + \arctan\left(\frac{\kappa_{0}}{a}\right)\right]$$

where A and a are two damage coefficients, and  $\kappa_0$  is initial elasticity threshold.

Thus, if the damage criterion is negative, the material is in the linear elastic range, and if it is positive, the damage increases along the positive strain:

$$\dot{\mathbf{D}} = \dot{\lambda} \langle \boldsymbol{\varepsilon} \rangle_+$$

where the damage Lagrange multiplier  $\dot{\lambda}$  is determined from the Kuhn-Tucker condition (f = 0 and f' = 0).

**2.2.2.1.2 Uniaxial multi-fiber formulation** Multi-fiber formulation based on Euler-Bernoulli beam theory is equivalent to a uniaxial loading. Hence, the stress tensor and the strain tensor are reduced to

$$\boldsymbol{\sigma} = \left(\begin{array}{ccc} \sigma_{11} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right)$$

and,

$$\boldsymbol{\varepsilon} = \left(\begin{array}{ccc} \varepsilon_{11} & 0 & 0\\ 0 & \varepsilon_{22} & 0\\ 0 & 0 & \varepsilon_{33} \end{array}\right)$$

The damage tensor becomes diagonal and the constitutive law can be rewritten as (?),

$$\boldsymbol{\varepsilon} = \mathbf{B} \left( D_1, D_2 \right) \cdot \frac{\boldsymbol{\sigma}}{E} \tag{2.47}$$

where **B** is a diagonal tensor which depends on the damage variable and loading, and  $D_1$  and  $D_2$  are associated with tension and compression damage respectively.

Rewriting Eq. 2.47 with matrix form,

$$\boldsymbol{\sigma} = \begin{pmatrix} \sigma & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 & 0 & 0 \\ 0 & \epsilon_2 & 0 \\ 0 & 0 & \epsilon_2 \end{pmatrix} \boldsymbol{D} = \begin{pmatrix} D_1 & 0 & 0 \\ 0 & D_2 & 0 \\ 0 & 0 & D_2 \end{pmatrix}$$

 $\mathbf{SO}$ 

$$\boldsymbol{\sigma}^{D} = \begin{pmatrix} \frac{2\sigma}{3} & 0 & 0\\ 0 & \frac{-1\sigma}{3} & 0\\ 0 & 0 & \frac{-1\sigma}{3} \end{pmatrix} \boldsymbol{H} = \begin{pmatrix} \frac{1}{\sqrt{1-D_{1}}} & 0 & 0\\ 0 & \frac{1}{\sqrt{1-D_{2}}} & 0\\ 0 & 0 & \frac{1}{\sqrt{1-D_{2}}} \end{pmatrix}$$
$$\operatorname{Tr}(\boldsymbol{\sigma}) = \boldsymbol{\sigma} \qquad D_{H} = D_{1} + 2D_{2}$$

$$\epsilon_{e} = \frac{1+\nu}{E} \left( \left( \boldsymbol{H}\boldsymbol{\sigma}_{+}^{D}\boldsymbol{H} \right)^{D} + \boldsymbol{\sigma}_{-}^{D} \right) + \frac{1-2\nu}{3E} \left[ \frac{\langle \operatorname{Tr}\left(\boldsymbol{\sigma}\right) \rangle_{+}}{1-D_{H}} + \langle \operatorname{Tr}\left(\boldsymbol{\sigma}\right) \rangle_{-} \right] \boldsymbol{I}\boldsymbol{d}$$

For tension  $(\sigma > 0)$ , we assume that only  $D_1$  increases.

$$\epsilon_e = \begin{pmatrix} \epsilon_1 & 0 \\ 0 & \epsilon_2 \end{pmatrix} = \frac{\sigma}{E} \mathbf{B}^t = \frac{\sigma}{E} \begin{pmatrix} B_1^t & 0 \\ 0 & B_2^t \end{pmatrix}$$
$$B_1^t = \frac{1+\nu}{9} \begin{pmatrix} \frac{4}{1-D_1} + \frac{2}{1-D_2} \end{pmatrix} + \frac{1-2\nu}{3} \frac{1}{1-(D_1+2D_2)}$$
$$B_2^t = \frac{1+\nu}{9} \begin{pmatrix} \frac{-2}{1-D_1} - \frac{1}{1-D_2} \end{pmatrix} + \frac{1-2\nu}{3} \frac{1}{1-(D_1+2D_2)}$$

For compression  $(\sigma < 0)$ , we assume that only  $D_2$  increases.

$$\epsilon_{e} = \begin{pmatrix} \epsilon_{1} & 0\\ 0 & \epsilon_{2} \end{pmatrix} = \frac{\sigma}{E} \mathbf{B}^{c} = \frac{\sigma}{E} \begin{pmatrix} B_{1}^{c} & 0\\ 0 & B_{2}^{c} \end{pmatrix}$$
$$B_{1}^{c} = \frac{1+\nu}{9} \begin{pmatrix} \frac{4}{1-D_{1}} + \frac{2}{1-D_{2}} \end{pmatrix} + \frac{1-2\nu}{3}$$
$$B_{2}^{c} = \frac{1+\nu}{9} \begin{pmatrix} \frac{-2}{1-D_{1}} - \frac{1}{1-D_{2}} \end{pmatrix} + \frac{1-2\nu}{3}$$

#### 2.2.2.1.3 Determination for anisotropic damage model

## **2.2.2.1.3.1 Tension loading:** $\varepsilon_{11} > 0$

• Constitutive equations

If 
$$f = \hat{\varepsilon} - \kappa_0 \ge 0$$
 and  $\eta_t = 1$  then:

$$\begin{split} \sigma &= \frac{E}{B_{11}^t} \epsilon \\ \sigma &= \frac{E}{\frac{1+\nu}{9} \cdot \left(\frac{4}{1-D_1} + 2\right) + \frac{1-2\nu}{3\left(1-\frac{D_1+2D_2}{3}\right)}} \cdot \epsilon \\ D_1 &= a \cdot A\left(\operatorname{atan}\left(\frac{\varepsilon_{11}}{a}\right) - \operatorname{atan}\left(\frac{\kappa_0}{a}\right)\right) \end{split}$$

(2.48)

where,  $\hat{\varepsilon} = \sqrt{\langle \boldsymbol{\varepsilon} \rangle_+ : \langle \boldsymbol{\varepsilon} \rangle_+} = \varepsilon_{11} \ge 0$ ,  $\langle \boldsymbol{\varepsilon} \rangle_+ = \begin{pmatrix} \varepsilon_{11} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$ 

 $D_2$  is constant and tangent modulus is determined with Eq. 2.48:

$$\dot{\sigma} = E^{tan} \cdot \dot{\varepsilon} \tag{2.49}$$

However, if  $f = \hat{\varepsilon} - \kappa_0 < 0$ , the tangent modulus is equal to the secant one.

$$E^{tan} = \frac{E}{B_{11}^t}$$

• Coherent tangent stiffness modulus in numerical implementation

If  $f = \hat{\varepsilon} - \kappa_0 \ge 0$  and  $\eta_t = 1$ , tangent modulus is determined with Eq. 2.48 and 2.49:

$$\begin{split} E_n^{tan} &= \frac{\partial \sigma_n}{\partial \varepsilon_n} \\ B_{11,n}^t &= \frac{1+\nu}{9} \cdot \left(\frac{4}{1-D_{1,n}} + 2\right) + \frac{1-2\nu}{3 \cdot \left(1 - \frac{\left(D_{1,n} + 2 \cdot D_{2,n-1}\right)}{3}\right)} \\ D_{1,n} &= a \cdot A \left(\operatorname{atan}\left(\frac{\varepsilon_{11,n}}{a}\right) - \operatorname{atan}\left(\frac{\kappa_0}{a}\right)\right) \end{split}$$

where n is current excitation step.

$$\frac{\partial \sigma_n}{\partial \varepsilon_n} = \frac{\partial}{\partial \varepsilon_n} \left( \frac{E}{B_{11,n}^t} \cdot \varepsilon_n \right) = \frac{E}{B_{11,n}^t} - E \cdot \varepsilon_n \frac{1}{(B_{11,n}^t)^2} \cdot \frac{\partial B_{11,n}^t}{\partial \varepsilon_n}$$

where,

$$\begin{aligned} \frac{\partial B_{11,n}^{t}}{\partial \varepsilon_{n}} &= \frac{\partial B_{11,n}^{t}}{\partial D_{1,n}} \cdot \frac{\partial D_{1,n}}{\partial \varepsilon_{n}} \\ C_{1} &= \frac{\partial B_{11,n}^{t}}{\partial D_{1,n}} = \frac{1+\nu}{9} \cdot \frac{4}{(1-D_{1,n})^{2}} + \frac{1-2\nu}{9\left(1-\frac{D_{1,n}+2D_{2,n-1}}{3}\right)} \\ C_{2} &= \frac{\partial D_{1,n}}{\partial \varepsilon_{n}} = \frac{\partial}{\partial \varepsilon_{n}} \left(a \cdot A\left(\operatorname{atan}\left(\frac{\varepsilon_{n}}{a}\right) - \operatorname{atan}\left(\frac{\kappa_{0}}{a}\right)\right)\right) = \frac{A}{1+\left(\frac{\varepsilon_{n}}{a}\right)^{2}} \end{aligned}$$

Finally, we obtain tangent modulus:

$$E_n^{tan} = \frac{E}{B_{11,n}^t} - E \cdot \varepsilon_n \cdot \frac{1}{(B_{11,n}^t)^2} \cdot C_1 \cdot C_2$$

### **2.2.2.1.3.2 Compressive loading:** $\varepsilon_{11} < 0$

- Constitutive equations
  - If  $f = \hat{\varepsilon} \kappa_0 \ge 0$  and  $\eta_t = 1$  then:

$$\sigma = \frac{E}{\frac{1+\nu}{9} \cdot \left(\frac{2}{1-D_2} + 4\right) + \frac{1-2\nu}{3}} \cdot \varepsilon$$

$$D_2 = \frac{a \cdot A}{2} \left( \operatorname{atan}\left(\frac{\sqrt{2} \cdot \varepsilon_{22}}{a}\right) - \operatorname{atan}\left(\frac{\kappa_0}{a}\right) \right)$$

$$\varepsilon_{22} = \frac{B_{22}^c}{B_{11}^c} \cdot \varepsilon_{11}$$
(2.50)

where,  $\hat{\varepsilon} = \sqrt{\langle \boldsymbol{\varepsilon} \rangle_+ : \langle \boldsymbol{\varepsilon} \rangle_+} = \sqrt{2 \cdot \varepsilon_{22}^2} \ge 0$ ,  $\langle \boldsymbol{\varepsilon} \rangle_+ = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \varepsilon_{22} & 0 \\ 0 & 0 & \varepsilon_{33} = \varepsilon_{22} \end{pmatrix}$ 

 $D_1$  is constant and tangent modulus is determined with Eq. 2.50:

$$\dot{\sigma} = E^{tan} \cdot \dot{\varepsilon} \tag{2.51}$$

However, if  $f = \hat{\varepsilon} - \kappa_0 < 0$ , the tangent modulus is equal to the secant one.

$$E^{tan} = \frac{E}{B_{11}^c}$$

• Coherent tangent stiffness modulus in numerical implementation

If  $f = \hat{\varepsilon} - \kappa_0 \ge 0$  and  $\eta_t = 1$ , tangent modulus is determined with Eq. 2.50 and 2.51:

$$\begin{split} E_n^{tan} &= \frac{\partial \sigma_n}{\partial \varepsilon_n} \\ B_{11,n-1}^c &= \frac{1+\nu}{9} \cdot \left(4 + \frac{2}{1-D_{2,n-1}}\right) + \frac{1-2\nu}{3} \\ B_{22,n-1}^c &= -\frac{1+\nu}{9} \cdot \left(2 + \frac{1}{1-D_{2,n-1}}\right) + \frac{1-2\nu}{3} \\ B_{11,n}^c &= \frac{1+\nu}{9} \cdot \left(4 + \frac{2}{1-D_{2,n}}\right) + \frac{1-2\nu}{3} \\ B_{22,n}^c &= -\frac{1+\nu}{9} \cdot \left(2 + \frac{1}{1-D_{2,n}}\right) + \frac{1-2\nu}{3} \end{split}$$

where n is current excitation step.

$$\tilde{\nu}_{n-1} = -\frac{B_{22,n-1}^c}{B_{11,n-1}^c}, \quad \varepsilon_{22,n}^{tr} = -\tilde{\nu}_{n-1} \cdot \varepsilon_{11,n},$$
$$\tilde{\nu}_n = -\frac{B_{22,n}^c}{B_{11,n}^c}, \quad \varepsilon_{22,n} = -\tilde{\nu}_n \cdot \varepsilon_{11,n}$$

where,  $\varepsilon_{22,n}^{tr}$  is trial strain on  $\varepsilon_{22}$ .

$$\frac{\partial \sigma_n}{\partial \varepsilon_n} = \frac{\partial}{\partial \varepsilon_n} \left( \frac{E}{B_{11,n}^c} \cdot \varepsilon_n \right) = \frac{E}{B_{11,n}^c} - E \cdot \varepsilon_n \frac{1}{(B_{11,n}^c)^2} \cdot \frac{\partial B_{11,n}^c}{\partial \varepsilon_n}$$

where,

$$\begin{split} \frac{\partial B_{11,n}^c}{\partial \varepsilon_n} &= \frac{\partial B_{11,n}^c}{\partial D_{2,n}} \cdot \frac{\partial D_{2,n}}{\partial \varepsilon_n} \\ C_1 &= \frac{\partial B_{11,n}^c}{\partial D_{2,n}} = \frac{2(1+\nu)}{9(1-D_{2,n})^2} \\ C_2 &= \frac{\partial D_{2,n}}{\partial \varepsilon_n} = \frac{\partial}{\partial \varepsilon_n} \left( a \cdot A \left( \operatorname{atan} \left( \frac{-\tilde{\nu}_{n-1} \cdot \sqrt{2} \cdot \varepsilon_{11,n}}{a} \right) - \operatorname{atan} \left( \frac{\kappa_0}{a} \right) \right) \right) \\ &= -\tilde{\nu}_{n-1} \frac{A}{\sqrt{2}} \cdot \frac{1}{1 + \left( \frac{-\tilde{\nu}_{n-1} \cdot \sqrt{2} \cdot \varepsilon_{11,n}}{a} \right)^2} \end{split}$$

Finally, we obtain tangent modulus:

$$E_n^{tan} = \frac{E}{B_{11,n}^c} - E \cdot \varepsilon_n \cdot \frac{1}{(B_{11,n}^c)^2} \cdot C_1 \cdot C_2$$



Figure 2.22: Strain-stress curve for anisotropic damage model without permanent strain

Fig 2.23 to 2.25 show the procedure to obtain uniaxial stress  $\sigma$  and tangent modulus  $E^{tan}$  from uniaxial strain  $\varepsilon$ .



Figure 2.23: Determination (1) for the anisotropic damage model

#### 2.2.2.2 Anisotropic damage model with effective damage, stiffness recovery and permanent strains $\epsilon_{an}$

The proceeding anisotropic damage model did not account for permanent deformations. The following extension of the model shell address this limitation.

This model is based on the anisotropic damage model  $\psi_e^*$  previously identified as  $\psi^*$ .

$$\rho\psi^* = \rho\psi^*_e + \rho\psi^*_{an} \tag{2.52}$$

For the damaged part of the model, the consolidation function is altered to take into consideration the elastic feedback in compression:

$$\kappa \left( d_{\epsilon} \right) = \frac{d_{\epsilon}}{A} + \kappa_0 \tag{2.53}$$

where A and  $\kappa_0$  are two parameters which depend on the material.

The damage criterion will depend on the elastic strains and not on total ones:

$$f = \epsilon_{el} - \kappa \left( d_{\epsilon} \right) \tag{2.54}$$

The anelestic part of the model is:

$$\rho\psi_{an}^* = \boldsymbol{\sigma}: \boldsymbol{\epsilon}_{an} \tag{2.55}$$

This corresponds to the partition of the total strain into an elastic and permanent component.

$$\boldsymbol{\epsilon} = \frac{\partial \rho \psi^*}{\partial \boldsymbol{\sigma}} = \frac{\partial \rho \psi^*_e}{\partial \boldsymbol{\sigma}} + \frac{\partial \rho \psi^*_{an}}{\partial \boldsymbol{\sigma}} = \boldsymbol{\epsilon}_e + \boldsymbol{\epsilon}_{an}$$
(2.56)

The evolution of the permanent strains are derived by the following equations:

$$\dot{\boldsymbol{\epsilon}}_{an} = g_D \left( \boldsymbol{d}_{\boldsymbol{\epsilon}} \right) \ \dot{\boldsymbol{D}}^D + g_H \left( \boldsymbol{d}_{\boldsymbol{\epsilon}} \right) \ \dot{\boldsymbol{d}}_{\boldsymbol{\epsilon}} \ \boldsymbol{I} \boldsymbol{d} \tag{2.57}$$



Figure 2.24: Determination (2) for the anisotropic damage model





Figure 2.25: Determination (3) for the anisotropic damage model

with  $g_D(d_{\epsilon}) g_H(d_{\epsilon})$  two functions depending on the activate damage to respect the dissymmetry tension/compression. Two continuum bilinear functions are proposed here:

$$\text{if } d_{\epsilon} < 1 \quad g_{D}\left(d_{\epsilon}\right) = \frac{k_{D}}{K_{D}}d_{\epsilon} \quad \text{else} \quad g_{D}\left(d_{\epsilon}\right) = \frac{k_{D}}{K_{D}} + k_{D}\left(d_{\epsilon} - 1\right) g_{H}\left(d_{\epsilon}\right) = \frac{k_{H}}{K_{H}}d_{\epsilon} \qquad g_{H}\left(d_{\epsilon}\right) = \frac{k_{H}}{K_{H}} + k_{H}\left(d_{\epsilon} - 1\right)$$

$$(2.58)$$

**2.2.2.2.1 Uniaxial numerical scheme** The loading state is defined by the sign of the elastic strain. Thus to determine the loading state at the timestep n, the increment of strain  $\Delta \epsilon$  is compared with the elastic strain at timestep n-1: If  $\epsilon_{n-1}^e < 0$  and  $\Delta \epsilon < -\epsilon_{n-1}^e$ , the loading state remains in compression, else it switches to tension. If  $\epsilon_{n-1}^e > 0$  and  $\Delta \epsilon < -\epsilon_{n-1}^e$ , the loading state remains in tension, else it switches to compression. In tension:

- Elastic forecast :  $\epsilon_{1,n}^e = \epsilon_{1,n-1}^e + \Delta \epsilon_1$
- Damage criterion test: f

- if f < 0, elastic behavior:

$$D_{1,n} = D_{1,n-1} D_{2,n} = D_{2,n-1} \epsilon_{1,n}^{an} = \epsilon_{1,n-1}^{an} \epsilon_{2,n}^{an} = \epsilon_{2,n-1}^{an}$$
(2.59)

- else, damaging behavior:

$$D_{1,n} = A \left( \epsilon_{1,n}^{e} - \kappa_{0} \right) D_{2,n} = D_{2,n-1} \epsilon_{1,n}^{an} = \epsilon_{1,n-1}^{an} + \left( \frac{2k_{D}}{3K_{D}} + \frac{k_{H}}{K_{H}} \right) D_{1,n} \epsilon_{2,n}^{an} = \epsilon_{2,n-1}^{an} + \left( \frac{-k_{D}}{3K_{D}} + \frac{k_{H}}{K_{H}} \right) D_{1,n}$$
(2.60)

• Computation of  $\sigma$  and  $\epsilon_{2,n}^e$ :

$$B_{1,n} = \frac{1+\nu}{9} \cdot \left(\frac{4}{1-D_{1,n}} + 2\right) + \frac{1-2\nu}{3 \cdot \left(1 - \frac{D_{1,n} + 2 \cdot D_{2,n-1}}{3}\right)}$$

$$B_{2,n} = \frac{1+\nu}{9} \cdot \left(\frac{2}{1-D_{1,n}} + 1\right) + \frac{1-2\nu}{3 \cdot \left[1 - \frac{\eta_t}{3} \cdot (D_{1,n} + 2 \cdot D_{2,n-1})\right]}$$

$$\sigma_n = \frac{E}{B_{1,n}} \epsilon_n^e$$

$$\epsilon_{2,n}^e = \frac{B_{2,n}}{B_{1,n}} \epsilon_{1,n}^e$$
(2.61)

In compression:

- Elastic forecast :  $\epsilon_{1,n}^e = \epsilon_{1,n-1}^e + \Delta \epsilon_1$
- Damage criterion test: f

- if f < 0, elastic behavior:

$$D_{1,n} = D_{1,n-1} D_{2,n} = D_{2,n-1} \epsilon_{1,n}^{an} = \epsilon_{1,n-1}^{an} \epsilon_{2,n}^{an} = \epsilon_{2,n-1}^{an}$$
(2.62)

- else, damaging behavior:

The evolution of the permanent strain must be estimate:

$$\dot{\epsilon}_{1,n}^{an} = \gamma (d_{\epsilon_{n-1}}) * d_{\epsilon_{2,n}} \\
\dot{\epsilon}_{1,n}^{an} = 2\gamma (d_{\epsilon_{n-1}}) * (D_{2,n} - D_{2,n-1})$$
(2.63)

The damage evolution becomes:

$$D_{2,n} = \frac{A\left(-\sqrt{2n}\tilde{u}_{n-1}\left(\epsilon - \epsilon_{1,n-1}^{an} - \dot{\epsilon}_{1,n}^{an}\right) - \kappa_0\right)}{2}$$
(2.64)

$$D_{2,n} = \frac{A\left(-\sqrt{2}\tilde{n}\tilde{u}_{n-1}\left(\epsilon - \epsilon_{1,n-1}^{an} + 2\gamma\left(d_{\epsilon_{n-1}}\right)D_{2,n-1} - \kappa_{0}\right)\right)}{2\left(\sqrt{2}A\tilde{n}\tilde{u}_{n-1}\gamma\left(d_{\epsilon_{n-1}}\right)\right)}$$
(2.65)

$$\begin{aligned}
\epsilon_{2,n}^{e}{}^{trial} &= \frac{B_{2,n-1}}{B_{1,n-1}} \epsilon_{1,n}^{e} \\
D_{1,n} &= D_{1,n-1} \\
\epsilon_{1,n}^{an} &= \epsilon_{1,n-1}^{an} + \left(\frac{-2k_{D}}{3K_{D}} + \frac{k_{H}}{K_{H}}\right) D_{1,n} \\
\epsilon_{2,n}^{an} &= \epsilon_{2,n-1}^{an} + \left(\frac{k_{D}}{3K_{D}} + \frac{k_{H}}{K_{H}}\right) D_{1,n}
\end{aligned}$$
(2.66)

• Computation of  $\sigma$  and  $\epsilon_{2,n}^e$ :

$$B_{1,n} = \frac{1+\nu}{9} \cdot \left(4 + \frac{2}{1-D_{2,n}}\right) + \frac{1-2\nu}{3}$$

$$B_{2,n} = -\frac{1+\nu}{9} \cdot \left(2 + \frac{1}{1-D_{2,n}}\right) + \frac{1-2\nu}{3}$$

$$\sigma_n = \frac{E}{B_{1,n}} \epsilon_n^e$$

$$\epsilon_{2,n}^e = \frac{B_{2,n}}{B_{1,n}} \epsilon_{1,n}^e$$
(2.67)

Fig. 2.26 describes the relationship between strain and stress in anisotropic damage model with permanent strain.



Figure 2.26: Strain-stress curve for anisotropic damage model with permanent strain

## 2.3 Bond-Slip

Slip due to longitudinal reinforcing bar near the column and from the anchorage can be easily determined if we assume a uniform bond stress  $u_b$  along the bars within the development length inside the footing or the beam-column

joint, (?). From equilibrium

$$u_b(\pi d_b)l_d = \frac{\pi d_b^2}{4} f_s \tag{2.68}$$

where  $d_b$  is the bar diameter,  $l_d$  is the development length over which the slip occurs, solving for  $l_d$ 

$$l_d = \frac{d_b f_s}{4u_b} \tag{2.69}$$

Assuming that the maximum strain occurs at the end of the column, and a linear variation of strain along the development length, the integral of the strain curve will give the total bar slip at the footing-column interface or beam-column interface

$$S = \frac{\varepsilon_s l_d}{2} = \frac{f_s l_d}{2E_s} \tag{2.70}$$

Substituting Eq. 2.69 for  $l_d$  in the preceding equation

$$S = \frac{\varepsilon_s d_b f_s}{8u_b} \tag{2.71}$$

Finally, assuming that the cross section rotates about its neutral axis when slip occurs  $(\phi_y = \varepsilon_y/(d-c))$ , the displacement related to the bar slip at a point at a distance L from the column base will be

$$\Delta_{slip} = \frac{\phi_y d_b f_y L}{8u_b} \tag{2.72}$$

? presented a simplified bond model for bond stress in terms of the actual steel stress. It assumes a constant bond stress of  $u_e = 12\sqrt{f_c}$  prior to steel yielding, and another constant bond stress of  $u_p = 6\sqrt{f_c}$  past steel yielding, Fig. 2.27. Based on this assumption, the total bar slip at the edge of the anchorage is obtained by integrating the steel



Figure 2.27: Longitudinal bar bond stress, steel stress, and strain profiles, (?)

strains over the embedded length.

? used this model to obtain a monotonic relation for bar slip versus bar stress at the column base. Assuming sufficient anchorage:

$$S_1 = \frac{\varepsilon_s f_s}{8u_e} d_b; \qquad \varepsilon_s \le \varepsilon_y \tag{2.73}$$

$$S_2 = \frac{\varepsilon_y f_y}{8u_e} d_b + \frac{(\varepsilon_s + \varepsilon_y)(f_s - f_y)}{8u_p} d_b; \qquad \varepsilon_s > \varepsilon_y$$

$$(2.74)$$

where  $d_b$  is the bar diameter,  $u_e$  is the elastic bond stress =  $12\sqrt{f'_c}$  (psi), and  $u_p$  is the plastic bond stress =  $6\sqrt{f'_c}$ . The following Matlab code generates a plot of normalized stress versus bond slip.

#### Mercury

#### Theory Manual; V. 1.

Listing 2.2: Bond-slip



This code generates the stress slip curve shown in Fig. 2.27.



Figure 2.28: Stress slip curve

### 2.4 Lumped Plasticity Model

#### To be completed later

### 2.5 Constitutive models for zero length and zero length section elements

#### 2.5.1 Zero Length Element

Zero length elements are used primarily for lumped plasticity models. In fiber models, they are used to provide a finite shear stiffness, whereas the axial and flexural ones can be considered as rigid (no corresponding entries in Mercury implies rigid connection).

$$K_S = \frac{\alpha G A_g}{L} \tag{2.75}$$



Figure 2.29: Hysteretic model with strength and stiffness deterioration, (?)

where  $\alpha$  is the shape section coefficient (5/6 for rectangular section), G is the shear modulus ( $G = E_c/2(1 + \nu)$ ); Concrete Poisson ratio is about 0.25.

Future release of Mercury, should have zero length elements enriched by limit state material properties to act as a fuse to possible failure.

#### 2.5.2 Zero length section element

This section is an adaptation of ?

Zero length section element should be used only when fiber elements are used if we want to capture the bond slip between concrete and rebar. Though many models have been proposed for bond-slip, we will adopt the model of ? as it is the most rational one in handling the shifting position of the neutral axis (essential to determine the bond slip displacement).

From Fig. 2.28 we have a nonlinear post-peak response, and we need to linearize it, and then solve for  $u_p$  (which will be different than the previously given value of  $6\sqrt{f'_c}$  suitable for the nonlinear hardening segment.

We seek to have the linearized segment intersect the nonlinear one at  $1.25 f_y$ , hence

$$\varepsilon_u = \varepsilon_y + 0.25 \frac{f_y}{E_s/h} = \frac{f_y}{E_s} + 0.25h \frac{f_y}{E_s} = 0.26h\varepsilon_y \tag{2.76}$$

where h is the hardening parameter set to 100. Substituting in Eq. 2.74

$$S_u = \frac{\varepsilon_y f_y}{8u_e} d_b + \frac{(26\varepsilon_y + \varepsilon_y)(1.25f_y - f_y)}{8u_p} d_b$$
(2.77)

$$= S_y + \frac{27\varepsilon_y \times 0.25f_y}{8u_p} d_b \tag{2.78}$$

$$= S_y + \frac{0.13\varepsilon_y J_y}{8u_p} d_b \tag{2.79}$$

We can reasonably assume that

$$S_u = \varepsilon_s \frac{S_y}{\varepsilon_y} = 26S_y \tag{2.80}$$

Substituting in Eq. 2.79

$$26S_y = S_y + \frac{6.75\varepsilon_y f_y}{8u_p} d_b$$
(2.81)

or

$$25\frac{\varepsilon_y f_y}{8u_e} d_b = \frac{6.75\varepsilon_y f_y}{8u_p} d_b \tag{2.82}$$

$$u_p = \frac{6.75}{25} u_e \tag{2.83}$$

$$= \frac{6.75}{25} 12\sqrt{f_c'} \tag{2.84}$$

$$= 3.24\sqrt{f_c'}$$
 (2.85)

 $u_p$  may be used in so-called limit state elements to assess bond slip induced failure.

Irrespective of which steel model is used in the beam-column, it is recommended to use the bilinear one for this element. Using a bilinear model, with h = 0.01 will be equivalent to having a bar slip curve such that the second segment intersect the exact one at  $f_s = 1.25 f_y$  with  $u_p = 3.24 \sqrt{f_c}$ .

In the steel bilinear model, the Young's modulus should be adjusted to reflect bond slip, by replacing  $E_s$  byh  $E_{bs}$  which is equal to

$$E_{bs} = \frac{f_y}{S_y} \tag{2.86}$$

It should be noted that inherent in this assumption is a *unit length* of the zero length element.

Finally, to maintain the same material stiffness ratio between bar-slip steel in the zero length section element, and the one in the frame element (longitudinal steel), we multiply the bar slip concrete material strains by  $E_s/E_{bs}$ .

The concrete properties for the zero length section element are such that the location of the neutral axis in the beam-column element and the zero length fiber section is the same. Thus



Figure 2.30: Compatibility of NA between beam-column and zero length fiber section

Hence all fiber strains (corresponding to steel and concrete) in the zero length section must be scaled by  $\frac{S_s}{\varepsilon_s}$ . This can be easily achieved in altering the material input data such that

- 1. All stress values remain unchanged
- 2. Strains are scaled by  $\frac{S_y}{\varepsilon_y}$

## 2.5.3 Summary

Fig. 2.31 highlight the modeling of the zero length element and section.



Figure 2.31: Zero length element and section

### 2.6 Summary

This chapter has presented the details of the constitutive models coded in Mercury. The model selected are well known and tested and would enable the analysis of complex steel or reinforced concrete frame.

## **Chapter 3**

## **Structural Modeling**

This chapter addresses the major issues in modeling structure for a nonlinear static or transient analysis.

- Table. **??** provides a concise summary of the example validation problems. In it, we adopt the following shortcuts: SBC: Stiffness-based 2D beam-column
  - FBC1: Flexibility-based 2D beam-column with element iteration
  - FBC2: Flexibility-based 2D beam-column without element iteration
  - Damage1: Anisotropic damage 1D material model without permanent strain
  - Damage2: Anisotropic damage 1D material model with permanent strain
  - ModKP: Modified Kent-Park material model
  - ModGMP: Modified Giuffre-Monegotto-Pinto material model
- Disp(disp): Displacement.

### 3.1 Truss, Material Nonlinearity, Static and Dynamic

This is a transient nonlinear analysis of a truss based on the HHT algorithm ( $\alpha$  method), and the elements are modeled by the modified Giuffre-Monegotto-Pinto materials. Truss, and results are shown in Fig. 3.1.



Figure 3.1: Ex10: Truss, ModGMP material, load control, HHT

In static analysis, incremental forces that increase by -20 kN from -20 kN to -200 kN at node 1 along the Y direction are applied.

| Document Section | ID   | Element                         | Zero Length           | Formulation                 | Section     |
|------------------|------|---------------------------------|-----------------------|-----------------------------|-------------|
| 3.1              | Ex10 |                                 |                       |                             |             |
| 3.2              | Ex11 |                                 |                       |                             |             |
|                  | Ex12 |                                 |                       |                             |             |
| 2.2              | Ex16 | Truss                           |                       | Stiffnoor                   | General     |
|                  | Ex17 |                                 |                       | Stimess                     |             |
| 0.0              | Ex18 |                                 |                       |                             |             |
|                  | Ex19 |                                 |                       |                             |             |
|                  | Ex20 |                                 | ]                     |                             |             |
| 3.4              | Ex21 | ]                               |                       | Flexibility, With Iteration | Fiber       |
|                  | Ex22 | ]                               |                       | Flexibility, No Iteration   |             |
| 3.5              | Ex23 | Boom                            | Element               | Stiffnoss                   | Conoral     |
| 3.6              | Ex24 | Column                          | Section               | Based                       | General     |
| 27               | Ex25 | Corumn                          |                       | Dased                       |             |
| 5.1              | Ex26 | ]                               |                       | Flexibility, iteration      | Fibor       |
| 3.8              | Ex27 |                                 | Element               | Flexibility                 | FIDEI       |
| 3.9              | Ex29 | ]                               | &                     | (itera-                     |             |
|                  |      |                                 | Section               | tion)                       |             |
| Document Section | ID   | Constitutive Model              | Hardening             | &tatic                      | Transient   |
| 3.1              | Ex10 | Elastic and ModGMP              | Kinematic             | Lostiffarescol              | HHT         |
| 3.0              | Ex11 | Damage                          |                       |                             |             |
| 0.2              | Ex12 | ModKP                           | ]                     |                             |             |
|                  | Ex16 | Simplified Bilinear             | No                    |                             |             |
| 3.3              | Ex17 | Simplified Bilinear             | Isotropic             | Cyclic                      |             |
|                  | Ex18 | ModGMP                          | Kinematic             | disp                        |             |
|                  | Ex19 | ModGMP                          | Kinematic & Isotropic | control                     |             |
| 3.4              | Ex20 | Classical                       | Isotropic             |                             | HHT         |
|                  | Ex21 | Uassical                        | Kinematic             |                             | Shing       |
|                  | Ex22 | Hardennig                       | Kinematic & Isotropic |                             |             |
| 3.5              | Ex23 | Elastic and Simplified Bilinear | No                    | Load                        |             |
| 3.6              | Ex24 | Elastic and Bilinear            |                       | control                     |             |
| 3.7              | Ex25 | Classical                       | Isotropic             | Pushovor                    |             |
|                  | Ex26 | Hardening                       |                       | i usilovei                  |             |
| 3.8              | Ex27 | ModGMP and ModKP                | Kinematic             |                             | HHT/Shin    |
| 3.9              | Ex29 | Multiple                        | &                     | Cyclic disp control         | 11111/01111 |

SBC: Stiffness-based 2D beam-column Isotropic

FBC1: Flexibility-based 2D beam-column with element iteration

FBC2: Flexibility-based 2D beam-column without element iteration

Damage1: Anisotropic damage 1D material model without permanent strain

Damage2: Anisotropic damage 1D material model with permanent strain

ModKP: Modified Kent-Park material model

ModGMP: Modified Giuffre-Monegotto-Pinto material model

Disp(disp): Displacement.

102

#### 3.1.1 MATLAB

```
Listing 3.1: MATLAB; Truss
```

```
Mercury Matlab Version 1.0.1
Written by Dae-Hung Kang, CU-NEES
Copyright 2009, CU-NEES
Written : September 2009.
File name: Ex10.m
              Description

1. Static and transient analysis

2. Load control

3. Iterative method

4. Simple 2D truss element

5. General section

6. Elastic and modified Giuffre-Monegotto-Pinto material
  10 \\ 11 \\ 12
 13
14
15
16
17
18
19
          % Select type of analysis.
% AnalysisType = 1: Static analysis
% AnalysisType = 2: Transient analysis
AnalysisType = 2;
20
21
22
23
24
25
26
27
        % Preface

Unit = {'kN', 'mm'};

% ndim, ndofpn

StrMode = {2, 2};
               Control block
                                                                                { 'NewtonRaphson', 10, 1.0e-8, 'DisplNorm'};
{ 'ModifiedNewtonRaphson', 20, 1.0e-8, 'EnrgyNorm'};
{ 'InitialStiffness', 30, 1.0e-8, 'ForceNorm'};
 28
          Iteration = {'static', {
 29
30
31
32
33
34
35
                                                                                          {'NewtonRaphson', 10, 1.0e-8, 'DisplNorm'};
{'ModifiedNewtonRaphson', 20, 1.0e-8, 'EnrgyNorm'};
{'InitialStiffness', 30, 1.0e-8, 'ForceNorm'};
                                                'transient', {
                                                                           }

;
;
if (AnalysisType == 2)
Integration = {'HHT', 0, -0.1, 0.3025, 0.6, 0, 0};
eigens = {0.02, 0.02};

 36
37
38
 39
40
41
42
          end
           % Geometry block
                                           \begin{array}{l} \text{nodtag}, \mathbf{x}, \mathbf{y} \\ = \{1, 0, 0; \\ 2, 1500, 0; \\ \end{array} 
\begin{array}{r} 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ \end{array}
          nodcoord
                                         2, 1500, 0;
3, 3000, 0;
4, 1500, 2000;
5, 3000, 2000;
nodtag, x, y
= {3, 1, 1;
5, 1, 1};
          constraint = \{3, 5, 5, 5\}
               Element block
                                             ock
eletag, 'Simple2DTruss', in, jn, sectag}
{1, 'Simple2DTruss', 1, 2, 1};
{2, 'Simple2DTruss', 2, 3, 1};
{3, 'Simple2DTruss', 2, 4, 1};
{4, 'Simple2DTruss', 2, 4, 1};
{5, 'Simple2DTruss', 3, 4, 2};
{6, 'Simple2DTruss', 4, 5, 2}};
           elements = \{
 62
63
64
65
           % Section block
          Ix, Iy, Iz}
 66
67
68
                Material block
          % Material block
% mattag, 'Elastic', E, G, density
materials = { {1, 'Elastic', 190, 0, 7850*10<sup>^</sup>-9}
% mattag, 'ModGMP', E, sy, b, R0, cR1, cR2, density, a1, a2, a3, a4
{2, 'ModGMP', 200, 0.25, 0.2, 15, 0.925, 0.15, 7850*10<sup>^</sup>-9, 0, 55, 0, 55} };
 \begin{array}{c} 69\\ 70\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\\ 77\\ 78\\ 79\\ 80\\ 81\\ 82\\ 83\\ 84\\ 85\\ 86\\ 87\\ \end{array}
               Force block
          % Force block
if (AnalysisType == 1)
    forces = { 1, 'Static', {'NodalForces', {1, 2, -20}};
        2, 'LoadCtrl', {1, 2, {-40, -60, -80, -100, -120, -140, -160, -180, -200}} };

         2, 'LoadCtrl', {1, 2, {-40, -
elseif (AnalysisType == 2)
ga = load('ElCentro_g_0_0_1_Matlab.txt');
nga = size(ga, 1);
for i = 1:nga
groundacceleration{i,1} = ga(i,1);
groundacceleration{i,2} = ga(i,2);
groundacceleration{i,3} = ga(i,3);
end
                     end
                                         = { 1, 'Static', {'NodalForces', {1, 2, 0} };
    2, 'Acceleration', {9810, groundacceleration} };
                      forces
          end
  88
```

## 3.1.2 C++

Listing 3.2: C++; Truss

```
*****
                                                                                                        *****
                                 {1, 0, 0, 'mass', 6.28, 6.28},
{2, 1500, 0, 'mass', 7.85, 7.85},
{3, 3000, 0},
{4, 1500, 2000, 'mass', 14.915, 14.915},
{5, 3000, 2000} }
         %nodes = {
  10
11
       Simple2DTruss = 'truss2d
  12
  13
  14
15
  16
  17
18
  19
 20
 21
22
 23
24
25
26
27
 ^{28}
 29
30
                                                                                   *****
        Static analysis
if (AnalysisType == 1) then
print("Static analysis started\n")
staticloading = LoadDescription()
staticloading :addLoad({'incrementalnodalload', 1, 2, -20, -40, -60, -80, -100, -120, -140, -160, -180, -200})
 31
 32
33
34
 35
                 displ = {}
function displperstep(increment)
dx1,dy1 = model:nodeDisplacements(1)
dx2,dy2 = model:nodeDisplacements(2)
dx4,dy4 = model:nodeDisplacements(4)
table.insert(displ, dx1)
table.insert(displ, dy1)
table.insert(displ, dy2)
table.insert(displ, dx4)
table.insert(displ, dx4)
table.insert(displ, dy4)
end
 36
37
38
 39
40
41
42
  43
 \begin{array}{r} 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 66\\ 68\\ 970\\ 71\\ 72\end{array}
                 react = {}
function reactperstep(increment)
  fx3,fy3 = model:nodeRestoringForces(3)
  fx5,fy5 = model:nodeRestoringForces(5)
    table.insert(react, fx3)
    table.insert(react, fy3)
    table.insert(react, fy5)
end
                  end
                  --- Set output file
function writedata6(x, fname)
local f = assert(io.open(fname,'w'))
local writenl = 0
for i,v in ipairs(x) do
f.write(v, " ")
writenl = writenl + 1
--- length of row size: writenl
if (writenl > 5) then
writenl = 0
f:write("\n")
end
                                     outpu
 \begin{array}{c} 73\\74\\75\\76\\77\\89\\80\\81\\82\\83\\84\\85\\86\\87\\88\end{array}
                            end
end
f:close()
                  end
                 function writedata4(x, fname)
    local f = assert(io.open(fname,'w'))
    local writenl = 0
    for i,v in ipairs(x) do
        f.write(v, " ")
        writenl = writenl + 1
        -- length of row size: writenl
        if (writenl > 3) then
            writenl = 0
            f:write("\n")
        end
 89
90
91
 92
93
94
95
                                     end
                            end
                            f:close()
                  end
 96
97
98
                  writedata6(displ,'Ex10StaticNodalDisp_1_2_4.dat')
writedata4(react,'Ex10StaticReact_3_5.dat')
print("Static analysis ended\n")
 99
100
         end
        end
if (AnalysisType == 2) then
    print(" Transient analysis started\n")
    earthquakeloading = LoadDescription()
    accelamp = 9810
101
102
103
104
105
                  accelamp = 9810
earthquakeloading:addLoad({'groundmotion', 'ElCentro_g_0_01_OpenSees.txt,dt=0.01', 1,accelamp})
106
```

```
displ = {}
function displpertime(time)
    dx1, dy1 = model:nodeDisplacements(1)
    dx2, dy2 = model:nodeDisplacements(2)
    dx4, dy4 = model:nodeDisplacements(4)
    table.insert(displ, dx1)
    table.insert(displ, dy2)
    table.insert(displ, dx2)
    table.insert(displ, dy2)
    table.insert(displ, dy4)
end
108
108
109
110
111
112
113
\begin{array}{c} 114 \\ 115 \end{array}
116
117
118
                          end
119
120
                         react = {}
function reactpertime(time)
  fx3, fy3 = model:nodeRestoringForces(3)
  fx5, fy5 = model:nodeRestoringForces(5)
    table.insert(react, fx3)
    table.insert(react, fy3)
    table.insert(react, fy5)
    end
 121
122
123
124
 125
126
127
128
129
                          end
130
                         veloc = {}
function velocpertime(time)
    vx1,vy1 = model:nodeVelocities(1)
    vx2,vy2 = model:nodeVelocities(2)
    vx4,vy4 = model:nodeVelocities(4)
    table.insert(veloc, vx1)
    table.insert(veloc, vy1)
    table.insert(veloc, vy2)
    table.insert(veloc, vy4)
    table.insert(veloc, vy4)
    table.insert(veloc, vy4)
end
131
132
133
134
135
 136
137
138
139
 140
141
142
                          end
 143
 144
                                                   {}
                         accel = {}
function accelpertime(time)
    ax1, ay1 = model:nodeAccelerations(1)
    ax2, ay2 = model:nodeAccelerations(2)
    ax4, ay4 = model:nodeAccelerations(4)
    table.insert(accel, ax1)
    table.insert(accel, ay1)
    table.insert(accel, ay2)
    table.insert(accel, ay2)
    table.insert(accel, ay4)

145
146 \\ 147
 148
149
150
151
 152
153
154
                                        table.insert(accel, ay4)
155
                          end
                    156
157
 158
 159
160
161
162
163
164
165
                         function writedata6(x, fname)
    local f = assert(io.open(fname, 'w'))
    local writenl = 0
    for i,v in ipairs(x) do
        f:write(v, " ")
        writenl = writenl + 1
        --- length of row size: writenl
        if (writenl > 5) then
            writenl = 0
            f:write("\n")
    end
166
167
168
169
170
171
172
173
 174
                                      end
f
175
176
170
177
178
179
                                        f:close()
                          end
180
                         function writedata4(x, fname)
    local f = assert(io.open(fname, 'w'))
    local writenl = 0
    for i,v in ipairs(x) do
    f:write(v, " ")
    writenl = writenl + 1
    -- length of row size: writenl
    if (writenl > 3) then
        writenl = 0
        f:write("\n")
end
181
 182
183
184
185
186
187
188
 189
190
                                        end
end
f:close()
191
192
 193
                          end
194
195
                          writedata6 (displ, 'Ex10TransientNodalDisp_1_2_4.dat')
writedata4 (react, 'Ex10TransientReact_3_5.dat')
writedata6 (veloc, 'Ex10TransientNodalVelo_1_2_4.dat')
writedata6 (acce_1, 'Ex10TransientNodalAcce_1_2_4.dat')
print ("Transient analysis ended\n")
196
 197
198
199
200
201
            end
                               *******
202
```

#### 3.2 Uniaxial Concrete Nonlinear Element, Cyclic Displacement

These examples assume concrete members and seek to compare the modified Kent-Park model with the anisotropic damage model with permanent strain when subjected to cyclic displacement statically, Fig. 3.2. Fig. 3.3 describes the static analysis with cyclic displacements applied at node 2 in the X direction.



Figure 3.2: Cyclic wave without dimension



Figure 3.3: Examples 11- 12

Mercury

#### 3.2.1 MATLAB

```
Mercury Matlab Version 1.0.1
Written by Dae-Hung Kang, CU-NEES
Copyright 2009, CU-NEES
Written : November 2009.
File name: Ex11to12.m
 2
 6
         Description
        Description

1. Static analysis

2. Displacement control

3. Iterative method

4. Simple 2D truss element

5. General section

6. Anisotropic damage material(Ex11)

and modified Kent-Park material(Ex12)
11
12
13
14
15
16
17
     % Select material type
% MatType = 1: anisotropic damage material with permanant strain (Ex11)
% MatType = 2: modified Kent-Park material (Ex12)
MatType = 1;
18
19
20
21
22
23
24
25
     % Preface
Unit = { 'kN', 'mm' };
StrMode = { 2, 2 };
26
     27
28
29
30
31
32
                         };
    33
\frac{34}{35}
36
37
38
39
     % Element block
elements = { {1, 'Simple2DTruss', 1, 2, 1} };
40 \\ 41 \\ 42 \\ 43 \\ 44
     % Section block
sections = { 1, 'General', \{1, 1, 0, 0, 0\};
45
     46
47
48
\begin{array}{r} 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 57 \\ 58 \\ 59 \end{array}
     end
if (MatType == 2)
% {tag, 'ModKP', sc, ec, scu, ecu, lambda, st, Ets, density};
materials = {{1, 'ModKP', -3.57, -0.0026, -1.19, -0.0078, 0.3, 0.448121077, 549.2307692, 0}};
     % Force block
DispInput = load('cyclicwave.txt');
row = size(DispInput,1);
for i = 1:row
            DispCell{i} = 0.005*DispInput(i);
60
61
62
     end
     end
% forcetag, 'Static', {'NodalForces', {nodnum, globalaxis, m}}
forces = { 1, 'Static', {'NodalForces', {2, 1, 0}};
2, 'DispCtrl', {2, 1, DispCell } };
63
64
65
```

3.2.2 C++

```
*******
   — MatType = 1: Anisotropic damage model with permanant strain
— MatType = 2: Modified Kent-Park model
MatType = 2
         *****
              **********
  10
11
12
13
14
15
16
   17
   end
18
   model =
           StructureModel (2,2)
20
  model = StructureModel(2,2)
model:addNodes(nodes)
model:addMaterials(materials)
model:addElements(elements)
model:constrainNode(1,1,1)
model:constrainNode(2,1,1)
21
22
23
24
25
26
27
   function generateincrementalload()
  -- format: tag nu
local loadform = {'incrementalnoaldisplacement', 2
local f = assert(io.open('cyclicwave.txt','r'))
local n = f:read("*number")
while (n ~= nil) do
^{28}
                                                        node dof
29
30
31
32
```

```
table.insert(loadform, 0.005*n)
n = f:read("*number")
end
33
34
35
36
       f:close()
return loadform
37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44
      end
      ****
      -- Static analysis

print("Static analysis started\n")

displ = {}

function displperstep(increment)

dx2,dy2 = model:nodeDisplacements(2)

table.insert(displ, dx2)
45
40
47
48
49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54
      end
      react = {}
function reactperstep(increment)
    fx1,fy1 = model:nodeRestoringForces(1)
    table.insert(react, fx1)
55 \\ 56 \\ 57 \\ 58 \\ 59 \\ 60 \\ 61 \\ 62
      end
      63
-- Set output file
function writedata1(x, fname)
local f = assert(io.open(fname,'w'))
local writenl = 0
for i,v in ipairs(x) do
f: write(v, " ")
writenl = writenl + 1
--- length of row size: writenl
if (writenl > 0) then
writenl = 0
f: write("\n")
end
\begin{array}{c} 67\\ 68\\ 69\\ 70\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\\ 77\\ 78\\ 80\\ 81\\ 82 \end{array}
              end
f·
               f:close()
      end
      if (MatType == 1) then
writedata1(displ,'Ex11StaticDamageNodalDisp_2.dat')
writedata1(react,'Ex11StaticDamageReact_1.dat')
83
84
85
      end
if (MatType == 2) then
writedata1(displ,'Ex12StaticModKPNodalDisp_2.dat')
writedata1(react,'Ex12StaticModKPReact_1.dat')
86
87
88
89
      end
90
      print ("Static analysis ended \n")
```

# 3.3 Uniaxial Steel Nonlinear Element, Cyclic Displacement

Bilinear and modified Giuffre-Monegotto-Pinto constitutive models with cyclic displacement are examined next, Fig. 3.2. Fig. ?? shows the results of the static analysis with cyclic displacements applied at node 2 in the X direction. Ex16 has bilinear material without isotropic hardening, Ex17 has bilinear material with isotropic hardening, Ex18 has modified Giuffre-Monegotto-Pinto material without isotropic hardening, and Ex19 has modified Giuffre-Monegotto-Pinto material with isotropic hardening material.

## 3.3.1 MATLAB

```
Mercury Matlab Version 1.0.1
Written by Dae-Hung Kang, CU-NEES
Copyright 2009, CU-NEES
Written : October 2009.
File name: Ex16to17.m
  3
  6
            Description

1. Static analysis

2. Displacement control

3. Iterative method

4. Simple 2D truss element

5. General sections

6. Bilinear material
10
\frac{11}{12}
13

    \begin{array}{c}
      14 \\
      15 \\
      16 \\
      17
    \end{array}

            A36 Steel properties
Density of 7.8 g/cm
Minimum yield strength of 250 MPa(0.25 GPa)
Ultimate tensile strength of 400-550 MPa(0.4-0.55 GPa)
18
19
20
21
      % Select material type
% MatType = 1: Bilinear matierial without isotropic hardening
% MatType = 2: Bilinear matierial with isotropic hardening
MatType = 2;
%
22
23
24
25
       % Preface
Unit = { 'kN', '
StrMode = { 2, 2 };
26
20
27
28
29
                                                     \operatorname{'mm'} \};
       30
31
32
```


Figure 3.4: Examples 16-19



3.3.2 C++

```
end
if (MatType == 2) then
materials = { {1,'bilinear', 200, 0, 0.25, 0.2, 10, 60, 10, 60} }

    16 \\
    17

        end
 18
                ****
 19
                                                                        *****
       19
20
21
22
23
\frac{24}{25}
26
      function generateincrementalload()
-- format: tag node dof
local loadform = {'incrementalnodaldisplacement', 2 , 1}
local f = assert(io.open('cyclicwave.txt','r'))
local n = f:read("*number")
while (n <sup>-</sup> = nil) do
table.insert(loadform, 0.005*n)
n = f:read("*number")
end
f:close()
return loadform
end
--
                *****
                                                                                        27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
       42
 \frac{43}{44}
45
       -- Static analysis
print("Static analysis started\n")
displ = {}
function displperstep(increment)
dx2,dy2 = model:nodeDisplacements(2)
table.insert(displ, dx2)
end
46
47
48
 49
50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56
        \mathbf{end}
        react = {}
function reactperstep(increment)
    fx1,fy1 = model:nodeRestoringForces(1)
    table.insert(react, fx1)
57
58
59
60
        end
         solver = NonlinearSolver("initialstiffness", { displacementdeltatolerance=1e-3, iterations=10000})
       solver = NonlinearSolver("InitialStiffness", { displacement
analysis = StaticAnalysis(solver)
analysis:setStructureModel(model)
analysis:addcallback(displperstep, "increment")
analysis:solve(staticloading)
- Set output file
function writedatal(x_fname)
61
62
63
64
65
66
67
       -- Set output file
function writedata1(x, fname)
local f = assert(io.open(fname, 'w'))
local writenl = 0
for i,v in ipairs(x) do
    f.write(v, "")
    writenl = writenl + 1
    -- length of row size: writenl
    if (writenl > 0) then
        writenl = 0
        f:write("\n")
end
\begin{array}{c} 68\\ 69\\ 70\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\\ 77\\ 78\\ 79\\ 80\\ 81\\ 82 \end{array}
                end
f:r
                 f:close()
        \mathbf{end}
        if (MatType == 1) then
    writedata1(displ,'Ex16StaticNonIsotropicNodalDisp_2.dat')
    writedata1(react,'Ex16StaticNonIsotropicReact_1.dat')
83
84
85
86
        end
        end
if (MatType == 2) then
writedata1(displ,'Ex17StaticIsotropicNodalDisp_2.dat')
writedata1(react,'Ex17StaticIsotropicReact_1.dat')
87
88
89
90
         end
```

print ("Static analysis ended \n")

```
Mercury Matlab Version 1.0.1
Written by Dae-Hung Kang, CU-NEES
Copyright 2009, CU-NEES
Written : October 2009.
File name: Ex18to19.m
  2
  \mathbf{5}
             Description
             Description

1. Static analysis

2. Displacement control

3. Iterative method

4. Simple 2D truss element

5. General sections

6. Modified Giuffre-Monegotto-Pinto material
 10
 \frac{11}{12}
 13
 14 \\ 15
             A36 Steel properties
Density of 7.8 g/cm
Minimum yield strength of 250 MPa(0.25 GPa)
Ultimate tensile strength of 400-550 MPa(0.4-0.55 GPa)
16
17
18
19
20
       % Select material type
% MatType = 1: ModGMP matierial without isotropic hardening
% MatType = 2: ModGMP matierial with isotropic hardening
MatType = 2;
21
22
23
24
25
         % Preface
26
27
26 % Preface
27 Unit = { 'kN', 'mm' };
28 StrMode = \{2, 2\};
```

```
% Control block
Iteration = {'static', { {'NewtonRaphson',
30
31
32
                                                       'NewtonRaphson', 10, 1.0e-8, 'DisplNorm'};
'ModifiedNewtonRaphson', 20, 1.0e-8, 'EnrgyNorm'};
'InitialStiffness', 30, 1.0e-8, 'ForceNorm'};
33
34
35
36
     37
38
39
40
\begin{array}{r} 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \end{array}
         Element block
      elements = { {1, 'Simple2DTruss', 1, 2, 1}; };
      % Section block
sections = { 1, 'General', \{1, 1, 0, 0, 0\};
      %-----
% Material block
48
     % Material block
if MatType == 1
% mattag, 'ModGMP', E, sy, b, R0, cR1, cR2, density, a1, a2, a3, a4
materials = { {1, 'ModGMP', 200, 0.25, 0.2, 15, 0.925, 0.15, 0, 0, 55, 0, 55} };
elseif MatType == 2
materials = { {1, 'ModGMP', 200, 0.25, 0.2, 15, 0.925, 0.15, 0, 10, 60, 10, 60} };
end
%
49
50
51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 57 \\ 58 \\ 59
     % Force block
DispInput = load('cyclicwave.txt');
row = size(DispInput,1);
for i = 1:row
60
61
62
             DispCell{i} = 0.005 * DispInput(i);
     end
     63
64 \\ 65
```

```
2
 3
    6
10
11 \\ 12
^{13}_{14}
15
     end
if (MatType == 2) then
materials = { {1,'modifiedGMPsteel', 200, 0, 0.25, 0.2, 15, 0.925, 0.15, 10, 60, 10, 60, 0} }
16
17
18
19
20
21
     model = StructureModel(2,2)
model:addNodes(nodes)
model:addElements(materials)
model:addElements(elements)
model:constrainNode(1,1,1)
model:constrainNode(2,1,1)
22
23
24
25
26
27
28
                                                                       **********************
     function generateincrementalload()
-- format: tag
     -- format: tag incrementationad()
local loadform = {'incrementalnodaldisplacement', 2
local f = assert(io.open('cyclicwave.txt','r'))
local n = f:read("*number")
while (n '= nil) do
table.insert(loadform, 0.005*n)
n = f:read("*number")
end
f:close()
                                                                                                   node dof
29
                                                                                                              1}
30
31
32
33
34
35
36
37
38
39
      f:close()
return loadform
     end
     -- staticloading = LoadDescription ()

-- format: 'staticnodalload ' <node> <dof> <amplitude>

1 = generateincrementalload ()

staticloading: addLoad (1)

--

    \begin{array}{r}
      40 \\
      41 \\
      42 \\
      43 \\
      44 \\
    \end{array}

     -- Static analysis

print ("Static analysis started \n")

displ = {}

function displperstep(increment)

dx2,dy2 = model:nodeDisplacements(2)

table.insert(displ, dx2)

end
45
46
47
48 \\ 49 \\ 50 \\ 51 \\ 52
     end
     react = {}
function reactperstep(increment)
    fx1,fy1 = model:nodeRestoringForces(1)
    table.insert(react, fx1)
53
54
55
56
57
58
59
     end
    60
61
62
63
64 \\ 65
66
67 function writedata1(x, fname)
```



# 3.4 Steel Beam-columns, Fiber Section, Static, Transient (HHT and Shing)

Beam column elements with layered section, and hardening material are analyzed next, Fig. ??. The Cyclic displacement shown in Fig. 3.2, magnified by a factor of 50 are applied on node 3 in the X direction. Ex20 has stiffness-based beam-column, Ex21 has flexibility-based beam-column with element iteration, and Ex22 has flexibility-based beam-column without element iteration. For transient analysis, HHT integration scheme in Ex20 and Shing method in Ex21 are used with  $\alpha = -0.1$ ,  $\beta = 0.3025$  and  $\gamma = 0.6$ .



Figure 3.5: Examples 20- 22

Mercury Matlab Version 1.0.1 Written by Dae-Hung Kang, CU-NEES Copyright 2009, CU-NEES Written : October 2009. File name: Ex20to22.m 4  $\mathbf{5}$ Description 1. Static and transient analysis 2. Load control 3. Iterative method 4. Stiffness-based 2D beam-column, flexibility-based 2D beam-column 1 and 2 5. Layer sections 6. Hardening material Description 10 11 13 14 15 16 % Section AnalysisType % AnalysisType = 1: Displacement Control % AnalysisType = 2: Transient analysis AnalysisType = 2; 17 18 19 2021 22 % Section DynType % Section DynType % DynType = 1: Newmark beta % DynType = 2: HHT % DynType = 3: Shing % DynType = 4: None DwrTwre = 2:  $\frac{23}{24}$ DynType = 3;% % Section EleType % EleType = 1: Stiffness-based 2D beam-column % EleType = 2: Flexibility-based 2D beam-column by Spacone % EleType = 3: Flexibility-based 2D beam-column by Carol EleType = 2; % 32 33 34 35 36 37 38 % Preface Control block ( (EleType == 1 || EleType Iteration = {'static', { { 39 40 41 42 be == 2) && (DynType == 1 || DynType == 2) )
{'NewtonRaphson', 100, 1.0e-6, 'ForceNorm'};
{'ModifiedNewtonRaphson', 1000, 1.0e-6, 'ForceNorm'};
{'InitialStiffness', 10000, 1.0e-6, 'ForceNorm'}; if  $\begin{array}{r} 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \end{array}$ 'transient',{ {'NewtonRaphson', 10, 1.0e-3, 'DisplNorm'}; {'ModifiedNewtonRaphson', 100, 1.0e-3, 'DisplNorm'}; {'InitialStiffness', 1000, 1.0e-3, 'DisplNorm'}; };
'element', { {'NewtonRaphson', 100, 1.0e-3, 'DisplNorm'};
 {'ModifiedNewtonRaphson', 1000, 1.0e-3, 'DisplNorm'};
 {'InitialStiffness', 100000, 1.0e-3, 'DisplNorm'} } };
,
,
pe == 3) && (DynType == 1 || DynType == 2) )
{ 'static ', { { 'InitialStiffness ', 10000, 1.0e-6, 'ForceNorm'};};
 'transient ', { { 'InitialStiffness ', 100000, 1.0e-3, 'DisplNorm'};
 };}; elseif ( (EleType Iteration = { end  $\begin{array}{c} 62 \\ 63 \\ 64 \\ 65 \\ 66 \\ 67 \\ 68 \\ 69 \\ 70 \\ 71 \\ 72 \end{array}$ }; 'transient', { {'InitialStiffness', 100000, 1.0e-3, 'DisplNorm'}; % for shing method : {'NewtonRaphson', 100, 1.0e-3, 'DisplNorm'}; {'ModifiedNewtonRaphson', 1000, 1.0e-3, 'DisplNorm'}; {'InitialStiffness', 100000, 1.0e-3, 'DisplNorm'} 'element', { } }; end 73 74 75 76 77 78 79 80 if (DynType == 1)
 Integration = {'Newmark', 0, 1/4, 1/2, 0, 0};
 eigens = {0.02, 0.02}; if (DynType == 2)
 Integration = { 'HHT', 0, -0.1, 0.3025, 0.6, 0, 0 };
 eigens = { 0.02, 0.02 }; end end
if (DynType == 3)
Integration = {'Shing', 0, -0.1, 0.3025, 0.6, 0, 0, 10};
eigens = {0.02, 0.02}; 84 85 86 87 88 end % Geometry block if (EleType == 1  $\begin{array}{ccc} 0\;, & 0\;; \\ 0\;, & 100\;; \\ 0\;, & 200\;; \end{array}$ nodcoord =  $\{1,$ 92 93 94 95 5 0. 300 3, 0, 400else nodcoord =  $\{1,$ 0, 0 96 97 98 0, 200; 0, 400; 0, 400; $\frac{2}{3}$ ,  $\mathbf{end}$ % Element block % elements = { { eletag, 'eletype', in, jn, nIp, sectag } }; if (EleType == 1) elements = { {1, 'StiffnessBased2DBeamColumn', 1, 4, 5, } 103 104 105 {1, 'StiffnessBased2DBeamColumn ', 1, 4, 5, 1}; {2, 'StiffnessBased2DBeamColumn ', 4, 2, 5, 1}; {3, 'StiffnessBased2DBeamColumn ', 2, 5, 5, 1};

12 13

25 26 27

28 29 30

31

43

61

81 82 83

89 90 91

99 100 101

102

103

```
{4, 'StiffnessBased2DBeamColumn', 5, 3, 5, 1};}

elseif (EleType == 2)

elements = { {1, 'FlexibilityBased2DBeamColumn1', 1, 2, 5, 1};

{2, 'FlexibilityBased2DBeamColumn1', 2, 3, 5, 1};};
 108
109
110
 111
                              elseif (EleType =
                                 elseif (EleType == 3)
    elements = { {1, 'FlexibilityBased2DBeamColumn2', 1, 2, 5, 1};
    {2, 'FlexibilityBased2DBeamColumn2', 2, 3, 5, 1};};
 112
  113
\begin{array}{c} 114 \\ 115 \end{array}
                             end
116
                           117
118
119
 120
  121
 122
                           end
nlay = size(lay,1);
for i = 1:nlay
laycell{i,1}=lay(i,1); laycell{i,2}=lay(i,2); laycell{i,3}=lay(i,3);
 123
 124
  125
                             end
 126
                           end
% sections = { sectag, 'Layer', {mattag, A, y} }
sections = {1, 'Layer', laycell };
clear area; clear mtag; clear count; clear nlay; clear lay;
clear laycell; clear i; clear ydis;
 127
 128
  129
 130
                           clear ia,
%
Material block
% mass density = 15.2 (slug/ft^3)
% = 15.2 (lb*s<sup>2</sup>/ft/ft<sup>3</sup>)
% = 15.2*(10<sup>-3</sup>)/(12<sup>4</sup>) (kips*s<sup>2</sup>/in<sup>4</sup>)
% = 15.2*(10<sup>-3</sup>)/(12<sup>4</sup>) (kips*s<sup>3</sup>/in<sup>4</sup>)
% = 15.2*(10<sup>-3</sup>)/(12<sup>4</sup>) (kips*s<sup>3</sup>/in<sup>4</sup>) 
 131
132
133
 134
 135
  136
 137
 138
                           % Force block
if (AnalysisType == 1)
    DispInput = load('cyclicwave.txt');
    row = size(DispInput,1);
    for i = 1:row
        DispCell[i] = 50*DispInput(i);
    end
    force = [ 1 _ 2Static _ 2NadelEcond

 139
  140
 141
 142
                                                  bispCell{i} = 50*DispInput(i);
end
forces = { 1, 'Static', {'NodalForces', {3, 1, 0} };
2, 'DispCtrl', {3, 1, DispCell } };
clear DispInput; clear row; clear i; clear DispCell;
eaf (AnalysisType == 2)
ga = load ('ElCentro_g_0_01_Matlab.txt');
nga = size(ga, 1);
for i = 1:nga
groundacceleration{i,1} = ga(i,1);
groundacceleration{i,2} = ga(i,2);
groundacceleration{i,3} = ga(i,3);
for ces = { 1. 'Static', (Northermal);
 142 \\ 143 \\ 144
 145
 146
  147
  148
                                 els
 149
 150
 151
  152
 153
 154
 155
                                                            end
forces = { 1, 'Static', {'NodalForces', {3, 1, 0} };
2, 'Acceleration', {50*386.4, groundacceleration} };
clear ga; clear nga; clear i; clear groundacceleration;
 156
 157
 158
  159
                               end
```

```
- AnalysisType = 1: Static analysis
-- AnalysisType = 2: Transient analysis
AnalysisType = 1: Stiffness-based beam-column
-- EleType = 1: Stiffness-based beam-column
EleType = 1: Then
nodes = {{1,0,0};
{{2,0,0}, 'mass', 0.0146604, 0.0146604, 0};
{{2,0,00, 'mass', 0.0146604, 0.0146604, 0};
{{2,0,00, 'mass', 0.0146604, 0.0146604, 0};
{{3,0,00, 'mass', 0.0073302, 0.0073302, 0.0073302, 0.0073302, 0.0073302, 0.0073302, 0.0073302, 0.0073302, 0.0073302, 0.0073302, 0.0073302, 0.0073302, 0.0073302, 0.0146604, 0.146004, 0};
{{3,0,0,00, 'mass', 0.0073302, 0.0073302, 0.0146604, 0,1;
{{3,0,0,00, 'mass', 0.0293208, 0.0293208, 0};
{{3,0,0,00, 'mass', 0.0146604, 0.0146604, 0};
{{3,0,0,00, le-3}
elements = {{1,0,0,1}
{{2, 'FlexibilityBased2DBeamColumn', 1, 2, {1,5}, flexparams};
elements = {{1,00,0,1, e-3}
{{1,0,0,-5,0;
{1,10,-6,5,0;
{1,10,-6,5,0;
{1,10,-6,5,0;
{1,10,-2,5,0;
{1,10,-2,5,0;
{1,10,-2,5,0;
{1,10,-2,5,0;
{1,10,-2,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10,0,5,0;
{1,10
```

```
1, 10, 9.5, 0; \};
 53
54
55
56
57
58
59
       materials = { \{1, 'hardening ', 29000, 0, 100, 290, 0\} }
      model = StructureModel(2,3)
model:addNodes(nodes)
model:addMaterials(materials)
model:addSections(sections)
       model:addElements(elements)
model:constrainNode(1,1,1,1)
if (AnalysisType == 1) then
model:constrainNode(3,1,0,0)
 60
 ^{61}_{62}
 63
 64
65
66
       end
       67
68
69
70
71
              function generateincrementalload()
--- format: tag
               -- format: tag not
local loadform = {'incrementalload()
local loadform = {'incrementalnodaldisplacement', 3
local n = f:read("*number")
while (n '= nil) do
table.insert(loadform, 50*n)
n = f:read("*number")
end
f:close()
return loadform
and
                                                                                                                 node dof
 \begin{array}{c} 72\\ 73\\ 74\\ 75\\ 76\\ 77\\ 78\\ 80\\ 81\\ 82\\ 83\\ 85\\ 86\\ 87\\ 88\\ 90\\ 91\\ 92\\ 93\\ 94\\ 95\\ 96\\ 97\\ \end{array}
              end
                                                                        *******
              staticloading = LoadDescription()
-- format: 'staticnodalload ' <node> <dof> <amplitude>
l = generateincrementalload()
               staticloading:addLoad(1)
                 ispl = {}
inction displperstep(increment)
dx3,dy3,dz3 = model:nodeDisplacements(3)
table.insert(displ, dx3)
               displ
              function
              end
              react = {}
function reactperstep(increment)
    fx1, fy1, fz1 = model:nodeRestoringForces(1)
    table.insert(react, fx1)
98
99
100
              end
              101
102
103
104
105
106
107
              --- Set output file
function writedatal(x, fname)
local f = assert(io.open(fname, 'w'))
local writenl = 0
for i,v in ipairs(x) do
f:write(v, " ")
writenl = writenl + 1
--- length of row size: writenl
if (writenl > 0) then
writenl = 0
f:write("\n")
end
108
                            output
109
110
111
112
113
114
115
116
117
                     end
f
119
120
120
121
122
123
                      f:close()
              end
              if (EleType == 1) then
    writedata1(displ,'Ex20StaticNodalDisp_3.dat')
    writedata1(react,'Ex20StaticReact_1.dat')
124
125
126
127
              end
if (EleType == 2) then
writedata1(displ,'Ex21StaticNodalDisp_3.dat')
writedata1(react,'Ex21StaticReact_1.dat')
128
129
130
131
              end
132
              \texttt{print} (\texttt{"Static analysis ended} \backslash \texttt{n"})
133
       end
                               *******
134
       if (AnalysisType == 2) then
    print(" Transient analysis started\n")
    earthquakeloading = LoadDescription()
    accelamp = 50*386.4
    earthquakeloading:addLoad({ 'groundmotion ', 'ElCentro_g_0_01_OpenSees.txt,dt=0.01', 1,accelamp}))
    ____
135
136
137
138
139
140
              displ = {}
function displpertime(time)
    dx3,dy3,dz3 = model:nodeDisplacements(3)
    table.insert(displ, dx3)
141
142
143
143 \\ 144 \\ 145
146
              react = {}
function reactpertime(time)
    fx1,fy1,fz1 = model:nodeRestoringForces(1)
    table.insert(react, fx1)
147
148
149
150
151 \\ 152
              end
           153
154
155
156
157 \\ 158
              if (EleType == 1) then
```

| 159 | model: setRayleighCoefficients(9.693343, 0.000038) |
|-----|----------------------------------------------------|
| 60  | end                                                |
| 61  | if (EleType == 2) then                             |
| 162 | model:setRayleighCoefficients(0.757867,0.000287)   |
| 63  | end                                                |
| 164 | transientanalysis : solve (4000)                   |
| 165 | —— ***********************************             |
| 166 | function writedata1(x, fname)                      |
| 167 | local f = assert(io.open(fname, 'w'))              |
| 68  | local writen l = 0                                 |
| 169 | for i, v in ipairs(x) do                           |
| 170 | f:write(v, "")                                     |
| 171 | writenl = writenl $+$ 1                            |
| 172 | length of row size: writenl                        |
| 173 | if $(writenl > 0)$ then                            |
| 174 | writen $l = 0$                                     |
| 175 | f:write("\n")                                      |
| 176 | end                                                |
| 177 | end                                                |
| 178 | f:close()                                          |
| 179 | end                                                |
| 180 |                                                    |
| 181 | if (EleType == 1) then                             |
| 182 | writedata1 (displ, 'Ex20HHTNodalDisp_3.dat')       |
| 183 | writedata1 (react, 'Ex20HHTReact_1.dat')           |
| 84  | end                                                |
| 185 | if (EleType == 2) then                             |
| 186 | writedata1 (displ, 'Ex21HHTNodalDisp_3.dat')       |
| 187 | writedata1 (react, 'Ex21HHTReact_1.dat')           |
| 188 | end                                                |
| 189 | print ("Transient analysis ended \n")              |
| 190 | end                                                |
| 191 | ************                                       |
|     |                                                    |

# 3.5 Zero-length and Beam Column, Nonlinear Steel Element, load control

The implementation of the zero-length element is examined next in combination with stiffness-based beam-column and zero-length element, elastic and bilinear materials, Fig. 3.6. The incremental forces are increase by -10kN up to -50kN at node 2 in the X direction.

```
Mercury Matlab Version 1.0.1
Written by Dae-Hung Kang, CU-NEES
Copyright 2009, CU-NEES
Written : October 2009.
File name: Ex23.m
  5

    <sup>%</sup> Description
    % 1. Static analysis
    % 2. Static force and load control
    % 3. Iterative method
    % 4. Stiffness-based 2D beam column and Zero-Length 2D element
    % 5. General section
    % 6. Bilinear material

10
11
 12
13
14
15
16
17
18
19
20
21
22
23
      % Preface
Unit = { 'kip ', 'in '};
StrMode = { 2, 3 };
       % Control block

% Control block

Iteration = {'static',{ {'InitialStiffness', 100, 1.0e-8, 'ForceNorm'};

}
24
25
26
27
       % Geometry block
nodcoord = \{1, 2, 2\}
       28
29
30
31
32
33
34
35
36
37
38

        %
        Element
        block

        elements
        = { {1, 'ZeroLength2D', 1, 2, 0, 1, 0, deg2rad(90)} {2, 'StiffnessBased2DBeamColumn', 2, 3, 1, 1};};

        %
%
Section block
sections = { 1, 'General', {2, 20, 0, 0, 1400} };
       39
40
41
42
        \begin{cases} & \text{Force block} \\ \text{forces} = \{ 1, \text{'Static'}, \{ \text{'NodalForces'}, \{2, 1, -10\} \}; \\ & 2, \text{'LoadCtrl'}, \{2, 1, \{-20, -30, -40, -50\} \} \}; \end{cases} 
43
44
45
46
```

```
**********
10
11
12^{11}
13 \\ 14
```



Figure 3.6: Examples 23

```
model = StructureModel(2,3)
model:addNodes(nodes)
model:addMaterials(materials)
model:addSections(sections)
model:addElements(elements)
 15
 16
17
18
19
19
20
21
22
       model:constrainNode(1,1,1,1)
model:constrainNode(3,1,1,1)
^{23}
                     *****
23
24
25
26
27
       staticloading = LoadDescription ()
staticloading:addLoad({'incrementalnodalload', 2, 1, -10,-20,-30,-40,-50})
--
      displ = {}
function displperstep(increment)
dx2,dy2,dz2 = model:nodeDisplacements(2)
table.insert(displ, dx2)
28
29
30
31
32
33
       end
solver = NonlinearSolver("newtonraphson", { displacementdeltatolerance=le-5, iterations=100})
analysis = StaticAnalysis(solver)
analysis:selStructureModel(model)
analysis:addcallback(displerestep,"increment")
analysis:solve(staticloading)
-- Set output file
34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41
      \begin{array}{r} 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \end{array}
                end
end
f:close()
       end
        writedata1 (displ, 'Ex23NodalDisp_2.dat')
53
```

# 3.6 Zero-length Section, and Beam Column, Fiber, Nonlinear Steel Element, load control

The zero length section element is validated next in a similar way as in the preceding example, Fig. 3.7. Incremental forces of -20kN up to -400kN are applied on node 2 in the X direction.

```
Mercury Matlab Version 1.0.1
Written by Dae-Hung Kang, CU-NEES
Copyright 2009, CU-NEES
Written : October 2009.
File name: Ex24.m
       4
       5
                                 Description

1. Static analysis

2. Static force and load control

3. Iterative method

4. Stiffness-based 2D beam column and Zero-Length 2D section element

5. General section

6. Bilinear material
   10
11
12
   13
  14
15
16
17
18
19
                                  Preface
                     %_____
% Control block
 20
20
21
22
23
                       Iteration = {'static', { {'InitialStiffness', 100, 1.0e-8, 'ForceNorm'}; }
                                                                                                          };
                   %
% Geometry block
nodcoord = \{1, 0, 0; 0; 2, 0, 0; 3, 0, 120\};
constraint = \{1, 1, 1, 1, 1; 3, 1, 1, 1\};
24
25
26
27
 28
29
30
31
32
33
34
35
                     % Element block
elements = { \{1, \{2, \}\}
                                                                                                                                          'ZeroLength2DSection ', 1, 2, deg2rad(90), 1}
'StiffnessBased2DBeamColumn ', 2, 3, 3, 2};};
                       % Section block
sections = { 2, 'Layer', {2, 12,
\begin{array}{r} 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ \end{array}
                                                                                                             2, 'Layer', {2, 12, 5.5;

2, 12, 4.5;

2, 12, 2.5;

2, 12, 2.5;

2, 12, 0.5;

2, 12, -1.5;

2, 12, -0.5;

2, 12, -0.5;

2, 12, -3.5;

2, 12, -5.5};

1, 'Layer', {1, 12, 5.5;

1, 12, 3.5;

1, 12, 2.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;

1, 12, 0.5;
                                                                                                                                                                                                                                                            5.5;
                                                                                                                                                                                                           1.
                                                                                                                                                                                                                              12, 0.5;
                                                                                                                                                                                                                              1.
                                                                                                                                                                                                               1.
 58
                                                                                                                                                                                                            1, 12, -3.5;
```

A

120in

A





Figure 3.7: Examples 24



# 3.7 Beam-column, Fiber Section, Nonlinear Material, multi-d.o.f.s displacement control, Pushover Analysis

Validation of displacement control at multiple free degrees of freedom, as described in 4.5 is performed next. Layered sections beamcolumn elements with hardening material are used, Fig. ??. Cyclic displacements shown in Fig. 3.2 are applied at node 2 and 3 magnified by a facotr of -30 and 50 respectively. Ex25 has stiffness-based beam-column and Ex26 has flexibility-based beam-column.



Figure 3.8: Examples 25- 26

| 1                                                                                               |                                                                                                                                                                                                                                                                                                                            |                                             |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| $     \begin{array}{c}       1 \\       2 \\       3 \\       4 \\       5 \\     \end{array} $ | 1 %                                                                                                                                                                                                                                                                                                                        |                                             |
| 6<br>7                                                                                          | 6 % File name: Ex25to26.m<br>7 %                                                                                                                                                                                                                                                                                           |                                             |
| 8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                                      | <ul> <li>8 % Description</li> <li>9 % 1. Static analysis</li> <li>0 % 2. Multiple displacement control</li> <li>1 % 3. Iterative method</li> <li>2 % 4. Stiffness-based 2D beam-column,</li> <li>3 % flexibility-based 2D beam-column 1 and 2</li> <li>4 % 5. Layer sections</li> <li>5 % 6. Hardening material</li> </ul> |                                             |
| 10<br>17<br>18<br>19<br>20                                                                      | <pre>0 %<br/>7 % Section EleType<br/>8 % EleType = 1: Stiffness-based 2D beam-column<br/>9 % EleType = 2: Flexibility-based 2D beam-column by Spacone<br/>0 EleType = 2;<br/>ef = 2;</pre>                                                                                                                                 |                                             |
| 21<br>22<br>23<br>24<br>25                                                                      | 2 % Preface<br>3 Unit = {'kip', 'in'};<br>4 StrMode = {2, 3};<br>5 %                                                                                                                                                                                                                                                       |                                             |
| 26<br>27<br>28<br>29                                                                            | <pre>6 % Control block 7 Iteration = {'static', { {'NewtonRaphson', 100, 1.0e-8, 'ForceNor</pre>                                                                                                                                                                                                                           | m'};<br>'ForceNorm'};<br>rceNorm'};         |
| 31<br>32<br>33<br>34                                                                            | <pre>'element', { {'NewtonRaphson', 100, 1.0e-5, 'DisplN 'element', { 'ModifiedNewtonRaphson', 1000, 1.0e- {'InitialStiffness', 100000, 1.0e-5, };</pre>                                                                                                                                                                   | Norm'};<br>5, 'DisplNorm'};<br>'DisplNorm'} |
| 35                                                                                              | 5 };                                                                                                                                                                                                                                                                                                                       |                                             |
| 37                                                                                              | 7 % Geometry block                                                                                                                                                                                                                                                                                                         |                                             |
| 38                                                                                              | 8 if (EleType == 1)<br>nodecord = $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$                                                                                                                                                                                                                                                |                                             |
| 40                                                                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                       |                                             |
| 41                                                                                              | 1 2, 0, 200;                                                                                                                                                                                                                                                                                                               |                                             |
| 42<br>43                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                       |                                             |
| 44                                                                                              | 4 elseif (EleType == 2)                                                                                                                                                                                                                                                                                                    |                                             |
| 45<br>46                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                       |                                             |
| 47                                                                                              | $\{7, 3, 0, 400\};$                                                                                                                                                                                                                                                                                                        |                                             |
| 49                                                                                              | 9 % nodtag, x, y, z                                                                                                                                                                                                                                                                                                        |                                             |
| 50<br>51                                                                                        | $\begin{array}{l} 0  \text{constraint} = \{1, 1, 1, 1\}; \\ 1  \  \  \  \  \  \  \  \  \  \  \  \  \$                                                                                                                                                                                                                      |                                             |
| 52                                                                                              | 2 % Element block                                                                                                                                                                                                                                                                                                          |                                             |
| 53<br>54                                                                                        | 3 % elements = { { eletag, 'eletype', in, jn, nIp, sectag } };                                                                                                                                                                                                                                                             |                                             |
| 55                                                                                              |                                                                                                                                                                                                                                                                                                                            |                                             |
| 56<br>57                                                                                        | 6 {2, 'StiffnessBased2DBeamColumn', 4, 2, 5, 1};<br>7 {3, 'StiffnessBased2DBeamColumn', 2, 5, 5, 1};                                                                                                                                                                                                                       |                                             |
| 58                                                                                              | 8 $\{4, 'StiffnessBased2DBeamColumn', 5, 3, 5, 1\};$                                                                                                                                                                                                                                                                       | };                                          |
| 60                                                                                              | elements = { {1, 'FlexibilityBased2DBeamColumn1', 1, 2, 5, :                                                                                                                                                                                                                                                               | 1 } ;                                       |
| $61 \\ 62$                                                                                      | 1 {2, 'FlexibilityBased2DBeamColumn1', 2, 3, 5, 2<br>end                                                                                                                                                                                                                                                                   | 1};};                                       |

```
-- EleType = 1: Stiffness-based beam-column
-- EleType = 2: Flexibility-based beam-column
EleType = 2
   з
           \begin{array}{c} \hline \\ \text{if} & (\text{EleType} == 1) \text{ then} \\ & \text{nodes} = \{\{1, 0, 0\}, \\ & \{4, 0, 100\}, \\ & \{2, 0, 200\}, \\ & \{5, 0, 300\}, \\ & \{3, 0, 400\}\} \\ & \text{elements} = \{\{1, 2, 2\}, \\ & \{2, 2, 3\}\} \end{array} 
   \mathbf{6}
 10

300},
400};
41, 'StiffnessBased2DBeamColumn', 1, 4,
(2, 'StiffnessBased2DBeamColumn', 4, 2,
(3, 'StiffnessBased2DBeamColumn', 2, 5,
(4, 'StiffnessBased2DBeamColumn', 5, 3,

11
12
13
14
15
16
17
18
19
                                                                                                                                                                                                                     end
          if (EleType == 2) then
    nodes = {{1, 0, 0},
        {2, 0, 200},
        {3, 0, 400}}
    flexparams = {1000, 1e-5}
    elements = { {1, 'FlexibilityBased2DBeamColumn', 1, 2, {1, 5}, flexparams };
        {2, 'FlexibilityBased2DBeamColumn', 2, 3, {1, 5}, flexparams } }
20
21
22
23
\begin{array}{c} 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ \end{array}
         ************
\begin{array}{r} 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 57 \\ 58 \\ 59 \\ 60 \end{array}
         1, 10, 9.5, 0; } };
materials = { {1,'hardening',29000, 0, 100, 290, 0} }
model = StructureModel(2,3)
model: addModes(nodes)
model: addMaterials(materials)
model: addSections(sections)
model: addElements(elements)
model: constrainNode(1,1,1,1)
model: constrainNode(2,1,0,0)
model: constrainNode(3,1,0,0)
61
62
63
                                                                                                                                             *******************
                       format: tag node dof
local loadform = { 'incrementalload2()
local f = assert(io.open('cyclicwave.txt','r'))
local n = f:read("*number")
while (n '= nil) do
table.insert(loadform, -30*n)
n = f:read("*number")
          function generateincrementalload2()
--- format: tag
64
65
66
67
68
69
70
```

end f:close() return loadform 72737475767778798081828384858687end format: tag node dof
local loadform = { 'incrementalload3()
local f = assert (io.open('cyclicwave.txt', 'r'))
local n = f:read("\*number")
while (n ~= nil) do
table.insert(loadform, 50\*n)
n = f:read("\*number")
end
fi.close() function generateincrementalload3() end f:close() return loadform end \*\*\*\*\*\* staticloading = LoadDescription ()
-- format: 'staticnodalload ' <node> <dof> <amplitude>
l2 = generateincrementalload2 ()
l3 = generateincrementalload3 ()
staticloading:addLoad (l2)
staticloading:addLoad (l3)
--89 90 91 93 94 displ = {}
function displperstep(increment)
 dx2,dy2,dz2 = model:nodeDisplacements(2)
 dx3,dy3,dz3 = model:nodeDisplacements(3)
 table.insert(displ, dx2)
 table.insert(displ, dx3)
end \*\*\*\*\* 96 97 98 101 react = {}
function reactperstep(increment)
 fxl,fyl,fzl = model:nodeRestoringForces(1)
 print("Work\n"); 104 105 table.insert(react, fx1)  $\mathbf{end}$ end -- solver = NonlinearSolver("newtonraphson", { displacementdeltatolerance=1e-5, iterations=100}) -- solver = NonlinearSolver("initialstiffness", { displacementdeltatolerance=1e-5, iterations=10000}) -- multisolver <type> <disp delta> <residual> <max iterations> solver = NonlinearSolver("multisolver", "newtonraphson", 1e-5, 1e-5, 100, "initialstiffness", 1e-5, 1e-5, 1000) 117 analysis = StaticAnalysis(solver) analysis:setStructureModel(model) analysis:addcallback(displperstep,"increment") analysis:addcallback(reactperstep,"increment") - set output file --- Set output file
function writedatal(x, fname)
local f = assert(io.open(fname, 'w'))
local writenl = 0
for i,v in ipairs(x) do
f:write(v, "")
writenl = writenl + 1
--- length of row size: writenl
if (writenl > 0) then
writenl = 0
f:write("\n")
end end f· f: close()
end
function writedata2(x, fname)
 local f = assert(io.open(fname, 'w'))
 local writenl = 0
 for i, v in ipairs(x) do
 f: write(v, " ")
 writenl = writenl + 1
 -- length of row size: writenl
 if (writenl > 1) then
 writenl = 0
 f: write("\n")
end f:close() 147 end f:close() end if (EleType == 1) then
 writedata2(displ,'Ex25NodalDisp\_2\_3.dat')
 writedata1(react,'Ex25React\_1.dat') end end
if (EleType == 2) then
writedata2(displ,'Ex26NodalDisp\_2\_3.dat')
writedata1(react,'Ex26React\_1.dat') end

# 3.8 Reinforced Concrete Beam-Column, Fiber Section, Transient Analysis

This example consists of four types of beam-column element with layer section and material constitutive models for reinforced concrete, Fig. 3.9. In Ex27, material constitutive model of confined (core) or unconfined (cover) concrete using the modified Kent-Park model, whereas in Ex28, material constitutive model of confined (core) or unconfined (cover) concrete based on the anisotropic damage model with permanent strain are used. Steel is modeled with the modified Giuffre-Monegotto-Pinto model, and the shear spring in the zero-length element has a bilinear model.

At the base, a zero-length section and zero-length element are used to capture bond-slip. Fig. 3.10 succinctly describes the bar-slip zero-length fiber-section element (?) used. ? uses an empirically derived stress-deformation relation for the bar-slip fiber material between concrete and reinforcement. The material properties of the concrete are the same as those in the adjacent column element



Figure 3.9: Beam-column elements for Ex27 and Ex28



Figure 3.10: Bar slip zero-length fiber section element (?)

except the residual stress at large strains is taken as  $0.8 \cdot \sigma'_c$  (?). Zero-length elements are used to account for shear-deformations using elastic spring elements at both ends of beams and columns as well. The joints are assumed to be rigid otherwise. Table 3.2 to 3.5 describe material properties of Ex27 and Ex28. Applied masses from node 2 to node 5 are 2.50712E - 05, 0.000137891, 0.000137891,  $(2.50712E - 05 + 9.0/386.4)kips/in^3$  respectively. There are no rotation masses.

Table 3.2: Material properties of concrete for Ex27 (unit: kips, in)

| Element              | Concrete | $E_{ts}$ | $\sigma_c$ | $\epsilon_c$ | $\sigma_{cu}$ | $\epsilon_{cu}$ | $\lambda$ | $\sigma_t$ |
|----------------------|----------|----------|------------|--------------|---------------|-----------------|-----------|------------|
| Boom column          | Cover    | 549.231  | -3.57      | -0.0026      | -1.19         | -0.0078         | 0.3       | 0.448      |
| Beam-column          | Core     | 549.451  | -7.5       | -0.00546     | -7.35         | -0.01638        | 0.3       | 0.650      |
| Zoro longth soction  | Cover    | 105.000  | -3.57      | -0.0136      | -1.19         | -0.0408         | 0.3       | 0.448      |
| Zero-iengtii section | Core     | 104.167  | -7.5       | -0.0288      | -6.75         | -0.0864         | 0.3       | 0.650      |

Table 3.3: Material properties of concrete for Ex28 (unit: kips, in)

| Element             | Concrete | E     | ν   | $\kappa_0$ | A     | $k_h$     | $k_d$   | $K_{h}$     | $K_d$ | $D_c$ |
|---------------------|----------|-------|-----|------------|-------|-----------|---------|-------------|-------|-------|
| Beers achume        | Cover    | 2829  | 0.2 | 5.855E-08  | 1870  | 0.003248  | 0.05168 | 3.889E + 10 | 22.27 | 1.00  |
| Beam-column         | Core     | 1804  | 0.2 | 6.483E-06  | 503.6 | 3.125E-07 | 0.4054  | 3.159E + 09 | 102   | 1.00  |
| Zero-length section | Cover    | 569.3 | 0.2 | 1.689E-19  | 371.8 | 0.832     | 1.461   | 9.529E+13   | 100.4 | 1.00  |
| Zero-rength section | Core     | 396.7 | 0.2 | 0.0008326  | 124.8 | 2.084E-07 | 1.61    | 8.856E+11   | 62.48 | 1.00  |

Table 3.4: Material properties of reinforcement for Ex27 and Ex28 (unit: kips, in)

| Element                     | E     | $\sigma_y$ | b    | R0 | cR1   | cR2  | <i>a</i> 1 | a2 | a3 | a4 |
|-----------------------------|-------|------------|------|----|-------|------|------------|----|----|----|
| Beam-column element         | 26500 | 87.5       | 0.01 | 15 | 0.925 | 0.15 | 0          | 55 | 0  | 55 |
| Zero-length section element | 6949  | 87.5       | 0.01 | 15 | 0.925 | 0.15 | 0          | 55 | 0  | 55 |

Fig. ?? describes results of Ex27 and Ex28.



|                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                            | Element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $E \sigma_y$                                                      | b $a1$                                                         | a2 $a3$ $a4$                                                                     |                                                                                  |                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|
|                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                            | Shear spring in zero-length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1690 78.2                                                         | 0.173 0                                                        | 55 0 55                                                                          |                                                                                  |                                                      |
| $\begin{array}{c} 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\\ 77\\ 78\\ 79\\ 80\\ 81\\ \end{array}$                                                                                            | 3, 'Layer',                                                                                                                                                                                                                                                                                | $ \begin{array}{c} \text{Shear spring in zero-length} \\ \hline \\ 2, 2.31125, & -0.80625; \\ 2, 2.31125, & -1.34375; \\ 2, 2.31125, & -1.88125; \\ 17, 0.147, & 2.15; \\ 17, 0.098, 0; \\ 17, 0.147, & -2.15; \}; \\ \{5, 5.1, & 2.575; \\ 5, 5.1, & -2.575; \\ 5, 0.91375, & 1.88125; \\ 5, 0.91375, & 0.26875; \\ 5, 0.91375, & -0.26875; \\ 5, 0.91375, & -0.26875; \\ 5, 0.91375, & -0.26875; \\ 5, 0.91375, & -1.88125; \\ 5, 0.91375, & -1.88125; \\ 5, 0.91375, & -1.88125; \\ 5, 0.91375, & -1.88125; \\ 6, 2.31125, & 1.34375; \\ 6, 2.31125, & 0.80625; \\ 6, 2.31125, & 0.26875; \\ 6, 2.31125, & 0.26875; \\ 6, 2.31125, & 0.26875; \\ 6, 2.31125, & 0.26875; \\ 6, 2.31125, & 0.26875; \\ 6, 2.31125, & 0.26875; \\ 6, 2.31125, & 0.26875; \\ 6, 2.31125, & 0.26875; \\ 6, 2.31125, & 0.26875; \\ 6, 2.31125, & 0.26875; \\ \end{array} $ | 1690 78.2                                                         | 0.173 0                                                        | 55 0 55                                                                          |                                                                                  |                                                      |
| 82<br>83<br>84<br>85<br>86<br>87<br>88                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   |                                                                |                                                                                  |                                                                                  |                                                      |
| 89                                                                                                                                                                                                                  | materials = $\{ \{ 1 \} \}$ ;                                                                                                                                                                                                                                                              | , 'ModKP' , $-3.57$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.0026 ,                                                         | -1.19 ,                                                        | -0.0078 , $0.3$ ,                                                                | 0.448121077 , 5                                                                  | 49.2307692 , 0                                       |
| 90                                                                                                                                                                                                                  | $\{ 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$                                                                                                                                                                                                                                             | , 'ModKP' , $-7.5$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.00546                                                          | , -7.35                                                        | , -0.01638 ,                                                                     | 0.3 , 0.6495190                                                                  | 53, 549.4505495                                      |
| 91<br>92                                                                                                                                                                                                            | { 5<br>{ 6                                                                                                                                                                                                                                                                                 | , 'ModKP' , $-3.57$ ,<br>, 'ModKP' , $-7.5$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} -0.0136 \\ -0.0288 \end{array}$ ,               | -1.19 ,<br>-6.75 ,                                             | $\begin{array}{cccc} -0.0408 & , & 0.3 & , \\ -0.0864 & , & 0.3 & , \end{array}$ | $\begin{array}{cccccccc} 0.448121077 & , & 1 \\ 0.649519053 & , & 1 \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| 93                                                                                                                                                                                                                  | };<br>{ 17                                                                                                                                                                                                                                                                                 | , 'ModGMP' , $26500$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87.5 ,                                                            | 0.01 ,                                                         | 15 , 0.925 ,                                                                     | 0.15 , 0 ,                                                                       | 0, 55,                                               |
| 94                                                                                                                                                                                                                  | $0, 55$ ; { 19                                                                                                                                                                                                                                                                             | $, \ '{\rm ModGMP'}  , \qquad 6949 \qquad , \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87.5 ,                                                            | 0.01 ,                                                         | 15 , $0.925$ ,                                                                   | 0.15 , 0 ,                                                                       | 0, 55,                                               |
| $95 \\ 96$                                                                                                                                                                                                          | %{26                                                                                                                                                                                                                                                                                       | , 'Bilinear' , 1690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , 78.2                                                            | , 0.173                                                        | , 0 , 0 ,                                                                        | 55 , $0$ , $5$                                                                   | 5 };};                                               |
| 99<br>100<br>101<br>102<br>103<br>104<br>105<br>106                                                                                                                                                                 | <pre>ga = load (in generation);<br/>for i = l:nga<br/>groundacceleration {<br/>groundacceleration {<br/>end<br/>forces = { 1, 'Static',<br/>2, 'Acceleration {</pre>                                                                                                                       | <pre>i,1} = ga(i,1);<br/>i,2} = ga(i,2);<br/>i,3} = ga(i,3);<br/>{'NodalForces', {5, 1, 0};<br/>tion', {386.4, groundaccele</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre>}; eration} };</pre>                                         |                                                                |                                                                                  |                                                                                  |                                                      |
| $     \begin{array}{c}       1 \\       2 \\       3 \\       4 \\       5 \\       6 \\       7 \\       8 \\       9 \\       10 \\       11 \\       12 \\       13 \\       14 \\       15 \\     \end{array} $ |                                                                                                                                                                                                                                                                                            | -based beam-column with 2 i<br>y-based beam-column with 5<br>-based beam-column with 5<br>ith and zero-Length section<br>port)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | integration po<br>integration po<br>elements (bott                | oints<br>points<br>oints<br>om bar slip                        | and shear deformati                                                              | on )                                                                             |                                                      |
| 13<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29                                                                                                                              | elements = {}<br>                                                                                                                                                                                                                                                                          | n node coordinates<br>ss', 0, 0,0};<br>ss', 2.50712E-05, 2.50712E-<br>ss', 0.000137891, 0.0001378<br>ss', 2.50712E-05+9.0/386.4;<br>mes<br>SColDFSection '<br>SColDFSS'<br>'olDSection '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -05,0};<br>91,0};<br>91,0};<br>91,0};<br>2.50712E-05              | +9.0/386.4, 0                                                  | } }                                                                              |                                                                                  |                                                      |
| $30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44$                                                                                                                            | columnrigidsection = 'C<br>nIp-stif = 3;<br>nIp-flex = 5;<br>flexparams = {10000,1e-<br>Define elements<br>barslipbottom = { 1, '<br>plasticcolumn1 = { 2, '<br>flexcolumn2 = { 4, '<br>table.insert(elements,<br>table.insert(elements,<br>table.insert(elements,<br>Set section properti | olRigidSection '<br>6}<br>InterfaceElement2D', 1, 2,<br>StiffnessBased2DBeamColumn '<br>FlexibilityBased2DBeamColumn '<br>barslipbottom)<br>plasticcolumn1)<br>flexcolumn)<br>plasticcolumn2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | { {barslipspr<br>, 2, 3, {colu<br>.n', 3, 4, {cc<br>,4, 5, {colur | ingf, {1,0,0,<br>mnsection, n<br>lumnsection,<br>nnsection, nI | } } , { {barslipse<br>]p_stif} }<br>nIp_flex }, flexpara:<br>p_stif} }           | ctionf}}, {0,1,0},{                                                              | -1,0,0} }                                            |

Table 3.5: Property of shear spring in zero-length element for Ex27 and Ex28 (unit: kips, in)

| 45<br>46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | allsections = {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{47}{48}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 'ColDSection', 'Fiber',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 49<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tag, Area, y-loc, z-loc<br>{ 'ColDCover', 5.1, 2.575, 0,<br>}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 51<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ColDCover', 5.1, -2.575, 0, ,<br>'ColDCover', 0.91375, 1.88125, 0, ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\frac{53}{54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $^{\prime}{ m ColDCover}^{\prime}$ , $0.91375$ , $1.34375$ , $0$ , $^{\prime}{ m ColDCover}^{\prime}$ , $0.91375$ , $0.80625$ , $0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\frac{55}{56}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $^{\prime}{ m ColDCover}^{\prime}$ , $0.91375$ , $0.26875$ , $0$ , $^{\prime}{ m ColDCover}^{\prime}$ , $0.91375$ , $-0.26875$ , $0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $57 \\ 58$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 'ColDCover', $0.91375$ , $-0.80625$ , $0$ ,<br>'ColDCover', $0.91375$ , $-1.34375$ , $0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 59<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 'ColDCover', 0.91375, -1.88125, 0, 'ColDCover', 2.31125, 1.88125, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 61<br>62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 'ColDCore', 2.31125, 1.34375, 0,<br>'ColDCore', 2.31125, 0.80625, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 63<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 'ColDCore', 2.31125, 0.26875, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ColDCore', 2.31125, -0.80625, 0, (ColDCore', 2.31125, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80625, -0.80                                                                                  |
| 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ColDCore', 2.31125, -1.34375, 0,<br>'ColDCore', 2.31125, -1.88125, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 69<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ColDSteel     ,     0.147     ,     2.15     ,     0       'ColDSteel     ,     0.098     ,     0     ,     0       'ColDSteel     ,     0.147     ,     2.15     ,     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (ColDES_refer ) (Cold (                                                                                       |
| 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{cases} BSColDFCover', 5.1, 2.575, 0, \\ BSCOLDFCOVER', 5.575, 0, \\ BSCOLDFC$ |
| 74<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $^{\circ}BSColDFCover'$ , 5.1, $-2.575$ , 0, $^{\circ}BSColDFCover'$ , 0.91375, 1.88125, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $^{\circ}$ BSColDFCover , 0.91375 , 1.34375 , 0 ,<br>$^{\circ}$ BSColDFCover , 0.91375 , 0.80625 , 0 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 78<br>79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $^{\circ}$ BSColDFCover', 0.91375, 0.26875, 0 ,<br>$^{\circ}$ BSColDFCover', 0.91375, -0.26875 , 0 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 80<br>81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $^{3}$ BSColDFCover', 0.91375', $-0.80625$ ', 0', $^{3}$ BSColDFCover', 0.91375', $-1.34375$ ', 0',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 82<br>83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 'BSColDFCover', 0.91375, -1.88125, 0,<br>'BSColDFCore', 2.31125, 1.88125, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\frac{84}{85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 'BSColDFCore', 2.31125, 1.34375, 0,<br>'BSColDFCore', 2.31125, 0.80625, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\frac{86}{87}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $^{\prime}\mathrm{BSColDFCore}^{\prime}$ , 2.31125 , 0.26875 , 0 ,<br>$^{\prime}\mathrm{BSColDFCore}^{\prime}$ , 2.31125 , $-0.26875$ , 0 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\frac{88}{89}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $90 \\ 91$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 'BSColDFCore', 2.31125, -1.88125, 0,<br>'BSColDFSteel', 0.147, 2.15, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 92<br>93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 'BSColDFSteel', 0.098, 0, 0,<br>'BSColDFSteel', 0.147, -2.15, 0}; }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\frac{94}{95}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | **********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\frac{96}{97}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | concretemat = 'ConcreteLinearTensionSoftening'<br>steelmat = 'GiuffreMenegottoPinto'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\frac{98}{99}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sspringmat = 'Bilinear'<br>materials = {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $100 \\ 101$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | {'ColDCover', concretemat, 549.2307692, 0, -3.57, -0.0026, -1.19, -0.0078, 0.3, 0.448121077},<br>{'ColDCore', concretemat, 549.4505495, 0, -7.5, -0.00546, -7.35, -0.01638, 0.3, 0.649519053},                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 102 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | {'BSColDFCover', concretemat, 105 , 0, -3.57, -0.0136, -1.19, -0.0408, 0.3, 0.448121077},<br>{'BSColDFCore', concretemat, 104.1666667, 0, -7.5, -0.0288, -6.75, -0.0864, 0.3, 0.649519053},                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | { 'BSColDFSteel', steelmat, 20500, 0, 87.5, 0.01, 15, 0.925, 0.15, 0, 55, 0, 55, 0},<br>{ 'BSColDFSteel', steelmat, 6949, 0, 87.5, 0.01, 15, 0.925, 0.15, 0, 55, 0, 55, 0},                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | { BSColDFS5 ', sspringmat, 1090, 0, 78.2, 0.173, 0, 55, 0, 55}, }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | function dumptable (x)<br>local result = $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | for i, v in ipairs (x) do<br>if $(true (x) - true (x)) = -true (x)$ then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 113<br>114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | result = result dumptable(v)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $115 \\ 116$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | result = result v ','                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $117 \\ 118$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | end<br>return result '}\n'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c} 119 \\ 120 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $121 \\ 122$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | print (dumptable (nodes ))<br>print (dumptable (elements ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $123 \\ 124$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | print (dumptable (materials))<br>print (dumptable (all sections))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $125 \\ 126$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ***********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $127 \\ 128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | model = StructureModel(2,3)<br>Assign all input data to Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | model: addNodes(nodes)<br>model: addMaterials (materials)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $131 \\ 132 \\ 132$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | model: addSections ( allsections )<br>model: addElements ( elements )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 133<br>134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | **********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 135<br>136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | model: constrain Node (1,1,1,1)<br>**********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 137<br>138<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | earthquakeloading = LoadDescription ()<br>earthquakeloading = LoadDescription ()<br>earthquakeloading cad(Lignundmotion ', 'NR, g, dt 0, 01, Orac Sect. tot. dt = 0, 01, -1, -286, 41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $139 \\ 140 \\ 141$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $141 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 $ | $\frac{d_{1}}{function} \frac{d_{1}}{d_{1}} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 144<br>145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | table.insert(displ, dx5)<br>print("Workln"):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $146 \\ 147$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $148 \\ 149$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre>react = {} function reactpertime(time)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} 150 \\ 151 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>fx1,fy1 = model:nodeRestoringForces(1) table.insert(react, fx1)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

```
\mathbf{end}
152
       153
154
155
156
157
158
159
      transientanalysis:solve(7641)
function writedatal(x, fname)
    local f = assert(io.open(fname, 'w'))
    local writenl = 0
    for i,v in ipairs(x) do
        f:write(v, "")
        writenl = writenl + 1
        --- length of row size: writenl
        if (writenl > 0) then
            writenl = 0
            f:write("\n")
        end

                                                                  /
***********
160
161
162
163
164
165
166
167
168
169
170
171
               end
f ·
172
173
               f:close()
174
       end
       end
writedata1(displ,'Ex27HHTNodalDisp_5.dat')
writedata1(react,'Ex27HHTReact_1.dat')
print("Transient analysis ended\n")
175
176
177
```

```
Mercury Matlab Version 1.0.1
Written by Dae-Hung Kang, CU-NEES
Copyright 2009, CU-NEES
Written : October 2009.
File name: Ex28.m (1 column)
    23
                   Preface
                                              ğ
            Unit
 \begin{array}{c} 10 \\ 11 \end{array}
            StrMode
12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22
            }
23
24
25
            };
Integration =
addMass =
                                                                \frac{26}{27}
28
29
30
            31
                                                                                     0;
6;
32
33
34
35
36
37
            constraint = \{1, 1, 1, 1, 1\};
38
                                                              {1, 'ZeroLength2D', 1, 2, 0, 26, 0, pi()/2};
{2, 'ZeroLength2DSection ', 1, 2, pi()/2, 3};
{3, 'StiffnessBased2DBeamColumn ', 2, 3, 3, 1};
{4, 'FlexibilityBased2DBeamColumn1', 3, 4, 5, 1
{5, 'StiffnessBased2DBeamColumn ', 4, 5, 3, 1};
39
40
41
            elements = { \begin{cases} 1, \\ 2, \end{cases}
42
                                                                                                                                                                                                                                                1 \};
 43
44
45
            % sections = \{1, \text{'Layer'}, \{1, 5.1, 1, 5.1, 1, 5.1, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.91375, 1, 0.913755, 1, 0.912555, 1, 0.91255555
                                                                                                                                                      2.575;
                                                                                                                                                       \begin{array}{c} -2.575;\\ 1.88125;\\ 1.34375;\\ 0.80625; \end{array}
\begin{array}{c} 0.80623;\\ 0.26875;\\ -0.26875;\\ -0.80625;\\ -1.34375;\end{array}
                                                                                                                       0.91375
0.91375
0.91375
                                                                                                             1,
                                                                                                           -1.88125
1.88125;
1.34375;
                                                                                                                      \begin{array}{c} 2.31125,\\ 2.31125,\\ 2.31125,\\ 2.31125,\\ 2.31125,\\ 2.31125,\\ \end{array}
                                                                                                                                                                     \begin{array}{c} 0.80625;\\ 0.26875;\\ -0.26875;\\ -0.80625;\end{array}
                                                                                                            2.
                                                                                                                       2.31125,
                                                                                                                                                                      -1.34375
                                                                                                       -1.88125
                                                          3, 'Layer',
                                                                                                                                                              1.88125;
1.34375;
0.80625;
0.26875;
                                                                                                           5, 5, 5, 5, 5, 5
                                                                                                                       \begin{array}{c} 0.91375 \\ 0.91375 \\ 0.91375 \\ 0.91375 \\ \end{array},
                                                                                                           5, 5, 5, 5, 5, 5, 5, 5
                                                                                                                       0.91375
                                                                                                                                                                       -0.26875
                                                                                                                       \begin{array}{c} 0.91375 \\ 0.91375 \\ 0.91375 \\ 0.91375 \\ \end{array},
                                                                                                                                                                      -0.20375;
-0.80625;
-1.34375;
-1.88125;
                                                                                                            6
                                                                                                                       2.31125
                                                                                                                                                                      1.88125;
                                                                                                                       2.31125
                                                                                                                                                                        1.34375
                                                                                                             6, 2.31125, 6, 2.31125,
                                                                                                                                                                   0.80625;
```



| 72                              | 'BSColDFSection', 'Fiber'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 73                              | { 'BSColDFCover', 5.1, 2.575, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| $^{74}$                         | 'BSColDFCover', $5.1$ , $-2.575$ , $0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 75                              | 'BSColDFCover', 0.91375, 1.88125, 0, 'PSColDFCover', 0.91375, 1.88125, 0, 'PSColDFCover', 0.91375, 0, 'PSCOLDFCOVE, 0.91375, 0, 'PSCOLDFCover' |                     |
| 77                              | 'BScolDFCover', 0.91375, 0.80625, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| 78                              | 'BSColDFCover', 0.91375, 0.26875, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| 79                              | 'BSColDFCover', $0.91375$ , $-0.26875$ , $0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| 80                              | 'BSColDFCover', 0.91375, -0.80625, 0,<br>'BSColDFCover', 0.91375, -1.34375, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| 82                              | 'BSColDFCover', 0.91375, -1.88125, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| 83                              | 'BSColDFCore' , 2.31125 , 1.88125 , 0 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| 84<br>85                        | 'BSColDFCore', 2.31125, 1.34375, 0 ,<br>'BSColDFCore', 2.31125, 0.80625, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| 86                              | 'BSColDFCore', 2.31125, 0.26875, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| 87                              | 'BSColDFCore', 2.31125, -0.26875, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| 88                              | 'BSColDFCore', 2.31125, -0.8025, 0,<br>'BSColDFCore', 2.31125, -1.34375, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| 90                              | 'BSColDFCore', 2.31125, -1.88125, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| 91                              | 'BSColDFSteel', 0.147, 2.15, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 92<br>93                        | $\begin{array}{cccc} (BSColDFSteel', 0.098, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| 94                              | **********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| 95                              | Set material properties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 96<br>97                        | concretemat = 'ConcreteLinearlensionSoftening'<br>steelmat = 'GiuffreMenegottoPinto'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| 98                              | sspringmat = 'Bilinear'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| 99                              | $materials = \{ (10)   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 169                 |
| 100                             | $\{ concover , anisotropic damage 2, 2829, 0, 0.2, 5.855E-08, 1870, 0.005248, 0.053889000000, 22.27, 0.9999999 \};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108 ,               |
| 101                             | $\{ \text{`ColDCore'}, \text{`anisotropicdamage2'}, 1804 , 0 , 0.2 , 0.000006483 , 503.6 , 3.125 \pm -07 , 0.4054 \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , 3159000000        |
| 109                             | , 102 , 0.9999999 };<br>[UBSCHEDEComments] / Sec. 2 0 0 0 0 1 680E 10 271.8 0.820 1 461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 50000112          |
| 102                             | $(1000, 1000, 4)$ , $(0.9999999)$ };                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , <i>э</i> .э∠э⊵+13 |
| 103                             | {'BSColDFCore', 'anisotropicdamage2', 396.7, 0, 0.2, 0.0008326, 124.8, 2.084E-07, 1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                   |
| 104                             | $8.856E+11$ , $62.48$ , $0.9999999$ };<br>J'ColDSteel' steelmat 26500 0 87.5 0.01 15 0.925 0.15 0.55 0.55 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| 104                             | ('BSCOIDFSteel', steelmat, 20000, 0, 87.5, 0.01, 15, 0.925, 0.15, 0, 55, 0, 55, 0},                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| 106                             | $\{$ 'BSColDFSS', sspringmat, 1690, 0, 78.2, 0.173, 0, 55, 0, 55 $\}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| 107                             | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 109                             | function dumptable (x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| 110                             | local result = $\langle 1 \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| 112                             | if $(type(v) = 'table')$ then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| 113                             | result = result dumptable(v)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| 115                             | result = result v ','                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| 116                             | end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| 117                             | ena<br>return result '}\n'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| 119                             | end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| $120 \\ 121$                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 122                             | print (dumptable (elements))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| 123                             | print(dumptable(materials))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| $124 \\ 125$                    | print (dumptable (alisections ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| 126                             | Preface ndim and ndofpn (ndim: dimension, ndofpn: number of degrees of freedom per node)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 127                             | model = StructureModel(2,3)<br>Assign all input data to Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 129                             | model:addNodes(nodes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| 130                             | model: add Materials (materials)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| 132                             | model: addElements (elements)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| 133                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 134                             | constrain bottom nodes model: constrain bottom nodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| 136                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| $137 \\ 138$                    | print("iransient analysis started(n")<br>earthquakeloading = LoadDescription ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 139                             | earthquakeloading:addLoad({'groundmotion','NR_g_dt_0_01_OpneSees.txt,dt=0.01', 1, 386.4})                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| 140                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| $142 \\ 142$                    | function displpertime(time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| 143                             | dx5, dy5, dz5 = model: nodeDisplacements (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| $144 \\ 145$                    | print ("Workha");                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 146                             | end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| 147<br>148                      | react = $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| 149                             | function reactpertime (time)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| 150                             | fx1, fy1 = model: nodeRestoringForces(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 151                             | end end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| 153                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| $154 \\ 155$                    | solver = NonlinearSolver("initialstiffness", { displacement deltatolerance=le-3, iterations=100000}) transient analysis = DynamicAnalysis("HHT", model, solver, earthquakeloading, $0.01, -0.2, 0.36, 0.7$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| 156                             | transientanalysis:addcallback(displpertime, "timestep")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| 157<br>158                      | transientanalysis: addcallback (reactpertime, "timestep")<br>model: setRavleich Coefficients (0.63187992791943990.00015503501814608252)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| 159                             | transientanalysis:solve(7641)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| $160 \\ 161$                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 162                             | local f = assert(is.open(fname,'w'))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| 163                             | local writenl = $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| 104<br>165                      | for $r_{y}$ in spars $(x)$ do for $r_{y}$ ( $r_{y}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| 166                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 167                             | writenl = writenl + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| 168                             | <pre>writenl = writenl + 1 length of row size: writenl if (writenl &gt; 0) then</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| $168 \\ 169$                    | <pre>writenl = writenl + 1<br/> length of row size: writenl<br/>if (writenl &gt; 0) then<br/>writenl = 0</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| 168<br>169<br>170<br>171        | <pre>writenl = writenl + 1<br/> length of row size: writenl<br/>if (writenl &gt; 0) then<br/>writenl = 0<br/>f:write("\n")<br/>end</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 168<br>169<br>170<br>171<br>172 | <pre>writenl = writenl + 1<br/> length of row size: writenl<br/>if (writenl &gt; 0) then<br/>writenl = 0<br/>f:write("\n")<br/>end<br/>end</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |



Figure 3.11: Numerical model for real-time hybrid simulation

# 175 writedata1(displ,'Ex28HHTNodalDisp\_5.dat') 176 writedata1(react,'Ex28HHTReact\_1.dat') 177 print("Transient analysis ended\n")

# 3.9 Ex29: Full Reinforced Concrete Frame, HHT, Shing

This most complex validation example, Fig. 3.11, analyses the reinforced concrete frame tested on a shake table by ?, Fig. 3.9, and which will be later used to assess the real time hybrid simulation of Mercury, Fig. 3.9. This example is sufficiently complex to warrant detailed description.

#### 3.9.0.1 Frame discretization and properties

Beams and columns are modeled with one stiffness-based beam-columns (3 integration points) at each end, and one flexibility-based beam-column with 5 integrations.

Nodes 7, 14, 21 and 49 are monitored, in Fig. 3.11 to assess the seismic while ignoring self-weight. Columns **A** and **B** are shear critical (i.e under-reinforced), while **C** and **D** are ductile. Sectional characteristics are shown in Fig. 3.13 while Table 3.6 to 3.9 summarize those properties and constitutive model parameters used<sup>1</sup>.

Nodal masses are used in the dynamic analysis, Table 3.10 to 3.12, where each beam has an added lead bundle masses at  $4^{th}$  and  $5^{th}$  nodes. For comparison HHT integration scheme is used in OpenSees, and HHT and Shing integration scheme are used in Mercury

<sup>&</sup>lt;sup>1</sup>Col: Column, Beam: Beam, F: Footing section, D: Ductile section, ND: Shear critical section, BS: Bar-Slip section, Rigid: Rigid section, Cover: Concrete cover fiber, Core: Concrete core fiber, SS: Shear spring of zero-length element, steel: Reinforcement fiber, ModKP: modified Kent-Park model, ModGMP: modified Giuffre-Monegotto-Pinto



Figure 3.12: Shake table test of reinforce concrete frame, ?



Figure 3.13: Section properties of Ex29

| Fiber name        | Material | $E_t s$ | $\sigma_c$ | $\epsilon_c$ | $\sigma_{cu}$ | $\epsilon_{cu}$ | $\lambda$ | $\sigma_t$ |
|-------------------|----------|---------|------------|--------------|---------------|-----------------|-----------|------------|
| Col-D-Cover       | ModKP    | 549.23  | -3.57      | -0.0026      | -1.19         | -0.0078         | 0.3       | 0.4481     |
| Col-D-Core        | ModKP    | 549.45  | -7.5       | -0.00546     | -7.35         | -0.01638        | 0.3       | 0.6495     |
| BS-Col-D-Cover    | ModKP    | 105.00  | -3.57      | -0.0136      | -1.19         | -0.0408         | 0.3       | 0.4481     |
| BS-Col-D-Core     | ModKP    | 104.17  | -7.5       | -0.0288      | -7.35         | -0.0864         | 0.3       | 0.6495     |
| BS-Col-D-F-Cover  | ModKP    | 105.00  | -3.57      | -0.0136      | -1.19         | -0.0408         | 0.3       | 0.4481     |
| BS-Col-D-F-Core   | ModKP    | 104.17  | -7.5       | -0.0288      | -6.75         | -0.0864         | 0.3       | 0.6495     |
| Col-ND-Cover      | ModKP    | 549.23  | -3.57      | -0.0026      | -1.19         | -0.0078         | 0.3       | 0.4481     |
| Col-ND-Core       | ModKP    | 549.30  | -3.9       | -0.00284     | -3.51         | -0.00852        | 0.3       | 0.4684     |
| BS-Col-ND-Cover   | ModKP    | 105.00  | -3.57      | -0.0136      | -1.19         | -0.0408         | 0.3       | 0.4481     |
| BS-Col-ND-Core    | ModKP    | 106.85  | -3.9       | -0.0146      | -3.51         | -0.0438         | 0.3       | 0.4684     |
| BS-Col-ND-F-Cover | ModKP    | 144.24  | -3.57      | -0.0099      | -1.19         | -0.0297         | 0.3       | 0.4481     |
| BS-Col-ND-F-Core  | ModKP    | 106.85  | -3.9       | -0.0146      | -3.51         | -0.0438         | 0.3       | 0.4684     |
| Beam-Cover        | ModKP    | 549.23  | -3.57      | -0.0026      | -1.19         | -0.0078         | 0.3       | 0.4481     |
| Beam-Core         | ModKP    | 549.30  | -3.9       | -0.00284     | -3.51         | -0.00852        | 0.3       | 0.4684     |
| BS-Beam-Cover     | ModKP    | 105.00  | -3.57      | -0.0136      | -1.19         | -0.0408         | 0.3       | 0.4481     |
| BS-Beam-Core      | ModKP    | 106.85  | -3.9       | -0.0146      | -3.51         | -0.0438         | 0.3       | 0.4684     |

Table 3.6: Concrete material properties of concrete for Ex29 (unit:kips, in)

Table 3.7: Material properties of reinforcement for Ex29 (unit: kips, in)

| Fiber name        | Material | E     | $\sigma_y$ | b    | R0 | cR1   | cR2  | <i>a</i> 1 | a2 | a3 | a4 |
|-------------------|----------|-------|------------|------|----|-------|------|------------|----|----|----|
| Col-D-Steel       | ModGMP   | 26500 | 87.5       | 0.01 | 15 | 0.925 | 0.15 | 0          | 55 | 0  | 55 |
| BS-Col-D-Steel    | ModGMP   | 5067  | 87.5       | 0.01 | 15 | 0.925 | 0.15 | 0          | 55 | 0  | 55 |
| BS-Col-D-F-Steel  | ModGMP   | 6949  | 87.5       | 0.01 | 15 | 0.925 | 0.15 | 0          | 55 | 0  | 55 |
| Col-ND-Steel      | ModGMP   | 27300 | 80         | 0.01 | 15 | 0.925 | 0.15 | 0          | 55 | 0  | 55 |
| BS-Col-ND-Steel   | ModGMP   | 5220  | 80         | 0.01 | 15 | 0.925 | 0.15 | 0          | 55 | 0  | 55 |
| BS-Col-ND-F-Steel | ModGMP   | 5220  | 80         | 0.01 | 15 | 0.925 | 0.15 | 0          | 55 | 0  | 55 |
| Beam-Steel        | ModGMP   | 27300 | 80         | 0.01 | 15 | 0.925 | 0.15 | 0          | 55 | 0  | 55 |
| BS-Beam-Steel     | ModGMP   | 5220  | 80         | 0.01 | 15 | 0.925 | 0.15 | 0          | 55 | 0  | 55 |

Table 3.8: Property of shear spring for Ex29 (unit: kips, in)

| Fiber name     | Material | E    | $\sigma_y$ | b     | <i>a</i> 1 | a2 | <i>a</i> 3 | a4 |
|----------------|----------|------|------------|-------|------------|----|------------|----|
| BS-Col-D-SS    | Bilinear | 1690 | 78.2       | 0.173 | 0          | 55 | 0          | 55 |
| BS-Col-D-F-SS  | Bilinear | 1690 | 78.2       | 0.173 | 0          | 55 | 0          | 55 |
| BS-Col-ND-SS   | Bilinear | 1690 | 78.2       | 0.173 | 0          | 55 | 0          | 55 |
| BS-Col-ND-F-SS | Bilinear | 1690 | 78.2       | 0.173 | 0          | 55 | 0          | 55 |
| BS-Beam-SS     | Bilinear | 1545 | 75.8       | 0.396 | 0          | 55 | 0          | 55 |

Table 3.9: Properties of rigid elements (unit: kips, in)

| Element    | Model   | E       |
|------------|---------|---------|
| Col-Rigid  | Elasitc | 1E + 10 |
| Beam-Rigid | Elastic | 1E + 10 |

c++ version with  $\alpha = -0.2$ . This last model is particularly relevant for the real-time hybrid simulation which will be conducted later. Rayleigh damping coefficients were determined to be 1.177 for mass and 0.001599 for stiffness. The reinforced concrete frame is subjected to the seismic excitation shown in Fig. 3.14 (which was measured at the base of the shake table in Ghannoum's tests).

Figure 3.14: Seismic excitation for Ex29

| First floor node | $m_x$     | $m_y$     | $m_z$      |
|------------------|-----------|-----------|------------|
| $7 \mathrm{th}$  | 0.0000752 | 0.0000752 | 0.00000752 |
| 6th              | 0.0000188 | 0.0000188 | 0.00000188 |
| 5th              | 0.0000251 | 0.0000251 | 0.00000251 |
| 4th              | 0.0001379 | 0.0001379 | 0.00001379 |
| 3rd              | 0.0001379 | 0.0001379 | 0.00001379 |
| 2nd              | 0.0000251 | 0.0000251 | 0.00000251 |
| 1st              | 0.0000000 | 0.0000000 | 0.00000000 |

Table 3.10: Mass properties in first floor column nodes (unit:  $kips \cdot sec^2/in$ )

Table 3.11: Mass properties in column nodes except first floor columns (unit:  $kips\cdot sec^2/in)$ 

| Other floor node | $m_x$     | $m_y$     | $m_z$      |
|------------------|-----------|-----------|------------|
| 8th              | 0.0000627 | 0.0000627 | 0.00000627 |
| $7 \mathrm{th}$  | 0.0000188 | 0.0000188 | 0.00000188 |
| 6th              | 0.0000251 | 0.0000251 | 0.00000251 |
| 5th              | 0.0001379 | 0.0001379 | 0.00001379 |
| 4th              | 0.0001379 | 0.0001379 | 0.00001379 |
| 3rd              | 0.0000251 | 0.0000251 | 0.00000251 |
| 2nd              | 0.0000188 | 0.0000188 | 0.00000188 |

| - 1 (   | ala ala                              | , ala ala ala ala ala a              | ata ata ata ata a |                                                                                      |  |  |  |  |  |  |  |  |
|---------|--------------------------------------|--------------------------------------|-------------------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| - 5     | ~ ~                                  | earthquakefiles = {                  |                   |                                                                                      |  |  |  |  |  |  |  |  |
| 3       | car                                  | 'Tee                                 | 164 c             | col H Half Vield tyt '                                                               |  |  |  |  |  |  |  |  |
| - 4     |                                      | , Tee                                | 1040              | calHistCollarse tyt '                                                                |  |  |  |  |  |  |  |  |
| 5       |                                      | 'Test                                | 30 A c            | cellfardCollapse txt '                                                               |  |  |  |  |  |  |  |  |
| 6       |                                      | 'Tes                                 | 32Ac              | cellBardCollapse_tyt '                                                               |  |  |  |  |  |  |  |  |
| 7       | 1                                    | 100                                  | 02110             |                                                                                      |  |  |  |  |  |  |  |  |
| 8       | ј<br>еаг                             | earthquakefile = earthquakefiles [2] |                   |                                                                                      |  |  |  |  |  |  |  |  |
| ğ       | Dri                                  | caronquakenie – caronquakenies [2]   |                   |                                                                                      |  |  |  |  |  |  |  |  |
| 10      | print (Excitation: ,eartinquakefile) |                                      |                   |                                                                                      |  |  |  |  |  |  |  |  |
| 11      | alp                                  | ha =                                 | -0.2              |                                                                                      |  |  |  |  |  |  |  |  |
| 12      | bet                                  | a =                                  | (1 - a)           | pha $*(1 - alpha)/4$                                                                 |  |  |  |  |  |  |  |  |
| 13      | gam                                  | ma =                                 | (1 - 2)           | $a \ln ha / 2$                                                                       |  |  |  |  |  |  |  |  |
| 14      |                                      | alpha                                | · alm             | ha coefficient in HHT integration                                                    |  |  |  |  |  |  |  |  |
| 15      |                                      | heta                                 | · bet             | a coefficient in HHT integration                                                     |  |  |  |  |  |  |  |  |
| 16      |                                      | gamma                                | : gam             | ma coefficient in HHT integration                                                    |  |  |  |  |  |  |  |  |
| 17      |                                      | *****                                | *****             | ***************************************                                              |  |  |  |  |  |  |  |  |
| 18      |                                      | Multi                                | le ba             | w/floor building model                                                               |  |  |  |  |  |  |  |  |
| 19      |                                      | *****                                | ****              | · / · · · · · · · · · · · · · · · · · ·                                              |  |  |  |  |  |  |  |  |
| 20      |                                      | Column                               | : fi              | rst floor                                                                            |  |  |  |  |  |  |  |  |
| $^{21}$ |                                      | 0                                    | (43.5             |                                                                                      |  |  |  |  |  |  |  |  |
| $^{22}$ |                                      |                                      |                   | Elastic stiffness-based beam-column                                                  |  |  |  |  |  |  |  |  |
| $^{23}$ |                                      | 0                                    | (39)              |                                                                                      |  |  |  |  |  |  |  |  |
| $^{24}$ |                                      |                                      |                   | Zero-Length and zero-Length section elements (top bar slip and shear deformation)    |  |  |  |  |  |  |  |  |
| 25      |                                      | 0                                    | (39)              |                                                                                      |  |  |  |  |  |  |  |  |
| 26      |                                      |                                      |                   | Stiffness-based beam-column with 2 integration points                                |  |  |  |  |  |  |  |  |
| 27      |                                      | 0                                    | (33)              |                                                                                      |  |  |  |  |  |  |  |  |
| $^{28}$ |                                      |                                      |                   |                                                                                      |  |  |  |  |  |  |  |  |
| 29      |                                      |                                      |                   | Flexibility-based beam-column with 5 integration points                              |  |  |  |  |  |  |  |  |
| 30      |                                      |                                      |                   |                                                                                      |  |  |  |  |  |  |  |  |
| 31      |                                      | 0                                    | (6)               |                                                                                      |  |  |  |  |  |  |  |  |
| 32      |                                      |                                      | (0)               | Stiffness-based beam-column with 2 integration points                                |  |  |  |  |  |  |  |  |
| 33      |                                      | 0                                    | (0)               |                                                                                      |  |  |  |  |  |  |  |  |
| 34      |                                      |                                      | (0)               | Zero-Length and zero-Length section elements (bottom bar slip and shear deformation) |  |  |  |  |  |  |  |  |
| 26      |                                      | _0_                                  | (0) (             | rixed support)                                                                       |  |  |  |  |  |  |  |  |
| 37      |                                      | *****                                | *****             |                                                                                      |  |  |  |  |  |  |  |  |
| 38      |                                      | Colum                                | : 01              | ther floor                                                                           |  |  |  |  |  |  |  |  |
| 39      |                                      | 0                                    | (48)              |                                                                                      |  |  |  |  |  |  |  |  |
| 40      |                                      | - Ĩ                                  | ()                | Elastic stiffness-based beam-column                                                  |  |  |  |  |  |  |  |  |
| 41      |                                      | ò                                    | (43.5             |                                                                                      |  |  |  |  |  |  |  |  |
| 42      |                                      |                                      | ×                 | Zero-Length and zero-Length section elements (top bar slip and shear deformation)    |  |  |  |  |  |  |  |  |
| 43      |                                      | 0                                    | (43.5             |                                                                                      |  |  |  |  |  |  |  |  |
| $^{44}$ |                                      |                                      |                   | Stiffness-based beam-column with 2 integration points                                |  |  |  |  |  |  |  |  |
| $^{45}$ |                                      | o                                    | (37.5             |                                                                                      |  |  |  |  |  |  |  |  |
| 46      |                                      |                                      |                   |                                                                                      |  |  |  |  |  |  |  |  |
| $^{47}$ |                                      |                                      |                   | Flexibility-based beam-column with 5 integration points                              |  |  |  |  |  |  |  |  |
| $^{48}$ |                                      |                                      |                   |                                                                                      |  |  |  |  |  |  |  |  |
| 49      |                                      | 0                                    | (10.5)            |                                                                                      |  |  |  |  |  |  |  |  |
| 50      |                                      |                                      |                   | Stiffness-based beam-column with 2 integration points                                |  |  |  |  |  |  |  |  |
| 51      |                                      | 0                                    | (4.5)             |                                                                                      |  |  |  |  |  |  |  |  |
| 52      |                                      |                                      |                   | Zero-Length and zero-Length section elements (bottom bar slip and shear deformation) |  |  |  |  |  |  |  |  |
| 53      |                                      | 0                                    | (4.5)             |                                                                                      |  |  |  |  |  |  |  |  |

| Tab | le 3.12: | Mass | properties | in | beam | nodes | (unit: | $kips \cdot$ | $sec^2$ | /in | ) |
|-----|----------|------|------------|----|------|-------|--------|--------------|---------|-----|---|
|-----|----------|------|------------|----|------|-------|--------|--------------|---------|-----|---|

| Beam node       | $m_x$     | $m_y$     | $m_z$      |
|-----------------|-----------|-----------|------------|
| 2nd             | 0.0000188 | 0.0000188 | 0.00000188 |
| 3rd             | 0.0000752 | 0.0000752 | 0.00000752 |
| 4th             | 0.0080899 | 0.0080899 | 0.00080899 |
| 5th             | 0.0080899 | 0.0080899 | 0.00080899 |
| 6 th            | 0.0000752 | 0.0000752 | 0.00000752 |
| $7 \mathrm{th}$ | 0.0000188 | 0.0000188 | 0.00000188 |

Elastic stiffness-based beam-column (0) $55 \\ 56 \\ 57 \\ 58 \\ 59 \\ 60 \\ 61$ \*\*\*\*\*\* Beam  $\begin{array}{c} 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ 72\\ 73\\ 74 \end{array}$ 76 77 80 83 84 87 88 90 91 92 94 95 96 97 98 99 nbmnod= 8; cllen = 43.5; colen = 48; bmlen = 70; bmlen = 70; clnod = {0,0,6,33,39,39,43.5}; conod = {0,4.5,4.5,10.5,37,5,43.5,43.5,48}; bmnod = {0,3,3,15,55,67,67,70}; bmaddWeight = 3 bmaddMass = bmaddWeight/g 105 106 107  $\begin{array}{l} \hline & & & & & & \\ c1nodmass = \{0.0, \ 2.50712E-05, \ 0.000137891, \ 0.000137891, \ 2.50712E-05, \ 1.88034E-05, \ 7.52135E-05\} \\ conodmass = \{0.0, \ 1.88034E-05, \ 2.50712E-05, \ 0.000137891, \ 0.000137891, \ 2.50712E-05, \ 1.88034E-05, \ 6.26779E-05\} \\ bmnodmass = \{0.0, \ 1.88034E-05, \ 7.52135E-05, \ 0.000325925+bmaddMass, \ 0.000325925+bmaddMass, \ 7.52135E-05, \ 1.88034E-05, \ 0.0\} \\ \end{array}$  $\begin{array}{l} n\,Ip\_elas\ =\ 1;\\ n\,Ip\_stif\ =\ 3;\\ n\,Ip\_flex\ =\ 5; \end{array}$ \*\*\*\*\* 118 -- Set nodes and elements nodes =  $\{\}$ elements =  $\{\}$ 121 122 function nodename(bay,floor)
 return string.format('node\_%d\_%d', bay, floor)
end return columnnodename (bay, floor -1, n1cnod) else return columnnodename (bay, floor -1, nocnod) end else return string.format('colnode\_%d\_%d', bay, floor, subsection) end end function beamnodename(bay, floor, subsection)
-- section 1 nodes re-use the column nodes
if (subsection == 1) then
return columnnodename(bay, floor, 1)  $143 \\
 144$ else

```
return string.format('beamnode_%d_%d', bay, floor, subsection)
146
                             end
147
              end
149
             150
151 \\ 152
153 \\ 154
155
 156
158
159
 160
                                                                            k=1,nlcnod do
y = nodeyfirst[k]
masscd1 = clnodmass[k]
curnode = { columnnodename(colbay,colfloor,k), x,y, 'mass', masscd1, masscd1, 0.1*masscd1 }
table.insert(nodes,curnode)
161
162
 163
 164
165
                                                             end
166
                                              else
 167
                                                             bottomnode = columnnodename (colbay, colfloor -1, nocnod)
168
                                                              for
                                                                            k=2,nocnod do
                                                                            k=2,nocnod do
y = cllen + colen * (colfloor -2) + nodeyhigher [k]
masscdo = conodmass[k]
curnode = { columnnodename(colbay,colfloor,k), x,y, 'mass', masscdo, masscdo, 0.1*masscdo }
table.insert(nodes,curnode)
169
170
172
                            end
end
-- figure out section names
barslipsectionf = 'BSColDFSs'
columnsection = 'ColDSection'
barslipspring = 'BSColDSs'
barslipsection = 'ColNigidSection'
columnigidsection = 'ColNigidSection'
if (colfloor==1) then
node1 = columnodename(colbay, colfloor,1)
node2 = columnodename(colbay, colfloor,2)
node3 = columnodename(colbay, colfloor,3)
node4 = columnodename(colbay, colfloor,5)
node5 = columnodename(colbay, colfloor,5)
node6 = columnodename(colbay, colfloor,7)
-- Define elements
barslipbottom = { string.format('columnbab.%d.%d',colbay,colfloor), 'InterfaceElement2D', node1, node2,
flexcolumn = { string.format('columnpl1.%d.%d',colbay,colfloor), 'StiffnessBased2DBeamColumn', node3,
plasticcolumntog = { string.format('columnpl2.%d.%d',colbay,colfloor), 'StiffnessBased2DBeamColumn', node4, node5, its format('columnpl2.%d.%d',colbay,colfloor), 'StiffnessBased2DBeamColumn', node4, node7, its format('columnpl2.%d.%d',colbay,colfloor), 'StiffnessBased2DBeamColumn', node4, nod6, its format('columnpl2.%d.%d',colbay,colfloor), 'StiffnessBased2DBeamColumn', node4, nod6, its format('columnpl2.%d.%d',colbay,colfloor), 'StiffnessBased2DBeamColumn', node6, its format('column12, %d.%d',colbay,colfloor), 'StiffnessBased2DBeamColumn', node6, its format('column12, %d.%d',colbay,colfloor), 'StiffnessBased2DBeamColumn', node6
table.insert(elements, barslipbottom)
table.insert(elements, flexcolumn1)
table.insert(clements, flexcolumn1)
table.insert(clements, flexcolumn2)
table.insert(clements, barsliptop)
itable.insert(clements, barsliptop)
itable.insert(clements, barsliptop)
itable.insert(clements, barsliptop)
itable.insert(clements, barsliptop)
173
                                                             end
                                             end
174
175
176
177
178
179
180
181
 182
183
184
 185
 186
 187
188
189
 190
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       { {barslipspring
191
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ode3, {columnsed
, node4, {column
ode5, {columnsect
{barslipspring,
192
193
 194
195
196
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            node7, {column
197
 198
199
200
201
202
203
                              else
                                             if (colfloor == 2) then
    node1 = columnnodename(colbay, colfloor -1, n1cnod)
    else
204
205
                                                              nodel = columnnodename(colbay, colfloor -1, nocnod)
end
206
207
208
                                                    bind
node2 = columnodename(colbay, colfloor, 2)
node3 = columnodename(colbay, colfloor, 3)
node4 = columnodename(colbay, colfloor, 5)
node6 = columnodename(colbay, colfloor, 7)
node8 = columnodename(colbay, colfloor, 7)
node8 = columnodename(colbay, colfloor, 8)
-- Define elements
rigidcolumnbottom = { string.format('columnbb_%d_%d', colbay, colfloor), 'InterfaceElement2D', node2, node3, { {barslipspr
plasticcolumn1 = { string.format('columnpl1_%d_%d', colbay, colfloor), 'InterfaceElement2D', node2, node3, { {barslipspr
plasticcolumn2 = { string.format('columnpl1_%d_%d', colbay, colfloor), 'StiffnessBased2DBeamColumn', node5, node5, {colum
plasticcolumn2 = { string.format('columnpl2_%d_%d', colbay, colfloor), 'StiffnessBased2DBeamColumn', node5, node6, {column
barsliptop = { string.format('columnbt_%d_%d', colbay, colfloor), 'StiffnessBased2DBeamColumn', node5, node6, {column
barsliptop = { string.format('columnbtz_%d_%d', colbay, colfloor), 'StiffnessBased2DBeamColumn', node5, node6, { column
barsliptop = { string.format('columnbtz_%d_%d', colbay, colfloor), 'InterfaceElement2D', node6, node7, { {barslipsprin
rigidcolumntop = { string.format('columnbtz_%d_%d', colbay, colfloor), 'StiffnessBased2DBeamColumn', node7, node8, {colum
table.insert(elements, tarslipbottom)
table.insert(elements, plasticcolumn1)
table.insert(elements, plasticcolumn2)
table.insert(elements, plasticcolumn2)
table.insert(elements, tarslipbotp)
table.insert(elements, rigidcolumntop)
                                                              node2 = columnnodename(colbay, colfloor, 2)
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
                              end
              end
233
234
             -- create shear critical column node coordinates
for colbay = ncold+1,nbays+1 do
    for colfloor = 1,nflrs do
        x = (colbay -1)*bmlen
        nodeyfirst = clnod
        nodeyfirst = conod
        constant = node;
235
236
237
238
239
240
                                            indeyingher = cond
- create nodes
if (colfloor==1) then
bottomnode = columnnodename(colbay, colfloor,1)
for k=1,n1cnod do _ color()
241
242
243
244
                                                                            x = nodeyfirst[k]
masscnd1 = clnodmass[k]
curnode = { columnodename(colbay,colfloor,k), x,y, 'mass', masscnd1, masscnd1, 0.1*masscnd1 }
table.insert(nodes,curnode)
245
246
 247
248
249
                                                             end
250 \\ 251
                                                              bottomnode = columnnodename (colbay, colfloor -1, nocnod)
```

```
for k=2,nocnod do
    y = cllen + colen * (colfloor -2) + nodeyhigher[k]
    massendo = conodmass[k]
    curnode = { columnnodename(colbay,colfloor,k), x,y, 'mass', massendo, massendo, 0.1*massendo }
    table.insert(nodes,curnode)
253
254
 255
256
257
                                            end
-- figure out section names
barslipsectionf = 'BSCoINDFSection'
barslipspringf = 'BSCoINDFS'
columnsection = 'CoINDSection'
columnigidsection = 'BSCoINDS'
barslipspring = 'BSCoINDS'
barslipsection = 'BSCoINDS'
barslipsection = 'CoINStation'
columnigidsection = 'CoINgidSection'
columnigidsection = 'CoINgidSection'
if (colfloor==1) then
node1 = columnnodename(colbay, colfloor, 2)
node3 = columnnodename(colbay, colfloor, 2)
node4 = columnnodename(colbay, colfloor, 3)
node5 = columnnodename(colbay, colfloor, 5)
node6 = columnnodename(colbay, colfloor, 6)
node7 = columnnodename(colbay, colfloor, 7)
-- Define elements
barslipbottom = { string.format('column1%d.%d', colbay, colfloor), 'InterfaceElement2D', node1, node2,
flexcolumn = { string.format('column1%d.%d', colbay, colfloor), 'StiffnessBased2DBeamColumn', node3
plasticcolumn2 = { string.format('column12.%d.%d', colbay, colfloor), 'StiffnessBased2DBeamColumn', node4, n
barslipbot = { string.format('column12.%d.%d', colbay, colfloor), 'StiffnessBased2DBeamColumn', node6, n
barsliptop = { string.format('column12.%d.%d', colbay, colfloor), 'StiffnessBased2DBeamColumn', node6, n
barsliptop = { string.format('column14.%d.%d', colbay, colfloor), 'StiffnessBased2DBeamColumn', node6, n
barsliptop = { string.format('column14.%d.%d', colbay, colfloor), 'StiffnessBased2DBeamColumn', node6, n
barsliptop = { string.format('column14.%d.%d', colbay, colfloor), 'StiffnessBased2DBeamColumn', node6, n
bale.insert(elements, barsliptotm))
table.insert(clements, flexcolumn1)
table.insert(clements, flexcolumn1)
table.insert(clements, flexcolumn2)
table.insert(clements, flexcolumn2)
table.insert(clements, barsliptop)
else
if (colfloor = 2) then
                                                                                             end
                                                                     end
258
 259
260
261
262
 263
 264
265
266
 267
268
269
270
  271
272
273
 274
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  { {barslipspring
 275
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ode3, {columnsed
, node4, {column
ode5, {columnsect
{barslipspring,
276
277
279
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        node7,
280
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   {column
281
 282
283
284
 285
 286
287
                                              else
                                                                      if (colfloor == 2) then
    node1 = columnnodename(colbay, colfloor -1, n1cnod)
    else
288
 289
 290
291
                                                                                                                     node1 = columnnodename(colbay, colfloor -1, nocnod)
                                                                                              end
 292
                                                                                            end
node2 = columnnodename(colbay, colfloor, 2)
node3 = columnnodename(colbay, colfloor, 3)
node4 = columnnodename(colbay, colfloor, 4)
node5 = columnnodename(colbay, colfloor, 5)
node6 = columnnodename(colbay, colfloor, 7)
node7 = columnnodename(colbay, colfloor, 7)
node8 = columnnodename(colbay, colfloor, 8)
-- Define elements
 293
 294
295
296
 297
 298
299
                                                                                 node8 = columnnodename(colbay,collioor,8)
-- Define elements
rigidcolumnbottom = { string.format('columndb_%d_%d',colbay,colfloor), 'StiffnessBased2DBeamColumn', node1, node2, {colu
barslipbottom = { string.format('columnbsb_%d_%d',colbay,colfloor), 'InterfaceElement2D', node2, node3, { {barslipspr
plasticcolumn1 = { string.format('columnpl1_%d_%d',colbay,colfloor), 'StiffnessBased2DBeamColumn', node3, node4, {column
flexcolumn = { string.format('columnpl2_%d_%d',colbay,colfloor), 'FlexibilityBased2DBeamColumn', node5, node6, { column
barsliptop = { string.format('columnbst_%d_%d',colbay,colfloor), 'FlexibilityBased2DBeamColumn', node6, node6, { column
barsliptop = { string.format('columnbst_%d_%d',colbay,colfloor), 'InterfaceElement2D', node6, node7, { { barslipsprin
rigidcolumnt0p = { string.format('columnbst_%d_%d',colbay,colfloor), 'StiffnessBased2DBeamColumn', node7, node8, { column
table.insert(elements, trigidcolumnt0t_%d_%d',colbay,colfloor), 'StiffnessBased2DBeamColumn', node7, node8, { column
table.insert(elements, barslipbottom)
table.insert(elements, flexcolumn1)
table.insert(elements, flexcolumn1)
table.insert(elements, barsliptop)
table.insert(elements, barsliptop)
table.insert(elements, torsliptop)
table.insert(elements, torsliptop)
table.insert(elements, rigidcolumnt0p)
 300
                                                                                                                Define
                                                                                                                                                          elements
 301
302
303
304
305
306
 307
  308
 309
310
311
 312
313
314
315
 316
                                              end
                    end
317
318
                                            319
                       for
 320
321
322
  323
324
                                                        x = (beambay-1)*bmlen + bmnod[k]
massbm= bmnodmass[k]
curnode = { beamnodename(beambay, beamfloor, k), x ,y, 'mass', massbm, massbm, 0.1*massbm }
table.insert(nodes,curnode)
325
326
 327
 328
                                            end
--- figure out section names
beamsection = 'BeamSection'
barslipsection = 'BSBeamSection'
bearslipsection = 'BSBeamSection'
barslipspring = 'BSBeamSS'
--- figure out noda tag for node connectivity
node1 = beamnodename (beambay, beamfloor,1)
node2 = beamnodename (beambay, beamfloor,2)
node3 = beamnodename (beambay, beamfloor,3)
node4 = beamnodename (beambay, beamfloor,4)
node5 = beamnodename (beambay, beamfloor,5)
node6 = beamnodename (beambay, beamfloor,6)
node7 = beamnodename (beambay, beamfloor,7)
node8 = beamnodename (beambay, theamfloor,1)
-- Define elements
329
                                                                      end
 330
332
333
334
 335
336
337
 338
 339
340
 341
 342
                                             node1 = UnindetEnnet(Ining) +1, beamfloor,1)
-- Define elements
rigidbeamleft = { string.format('beamrdl_%d_%d',beambay,beamfloor), 'StiffnessBased2DBeamColumn', node1, node2, { beamrigidsectior
barslipleft = { string.format('beambl.%d_%d',beambay,beamfloor), 'InterfaceElement2D', node2, node3, { tring.format('beambl.%d_%d',beambay,beamfloor), 'FlexibilityBased2DBeamColumn', node4, node5, { beamsection
plasticbeam1 = { string.format('beampl1.%d_%d',beambay,beamfloor), 'FlexibilityBased2DBeamColumn', node4, node5, { beamsection
plasticbeam2 = { string.format('beampl2.%d_%d',beambay,beamfloor), 'FlexibilityBased2DBeamColumn', node4, node5, { beamsection,
barslipright = { string.format('beampl2.%d_%d',beambay,beamfloor), 'StiffnessBased2DBeamColumn', node4, node5, { beamsection,
barslipright = { string.format('beampl2.%d_%d',beambay,beamfloor), 'StiffnessBased2DBeamColumn', node4, node5, { beamsection,
barslipright = { string.format('beampl2.%d_%d',beambay,beamfloor), 'StiffnessBased2DBeamColumn', node4, node5, { beamsection,
barslipright = { string.format('beampl2.%d_%d',beambay,beamfloor), 'StiffnessBased2DBeamColumn', node7, node6, { beamsection,
barslipright = { string.format('beampl2.%d_%d',beambay,beamfloor), 'StiffnessBased2DBeamColumn', node7, node6, { beamsection,
barslipright = { string.format('beampl2.%d_%d',beambay,beamfloor), 'StiffnessBased2DBeamColumn', node7, node8, { beamsection,
table.insert(elements, plasticbeam1)
table.insert(elements, plasticbeam1)
table.insert(elements, plasticbeam2)
table.insert(elements, rigidbeamright)
table.insert(elements, rigidbeamright)
table.insert(elements, rigidbeamright)
 343
344
 345
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            {beamrigidsection
  346
 347
348
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 {beamsectio
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        a, hodes, {beamsection,
node6, {beamsection,
{ {tarslipspring, {0
node8, {beamrigidsec
 349
 350
351
352
 353
 354
355
 356
```

| 350        | end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 360        | end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 361        | ***********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 362        | Set section properties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 363        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 364        | allsections = {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 366        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 367        | 'ColDSection', 'Fiber',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 368        | Tag, Area, y-loc, z-loc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 369        | { 'ColDCover', 5.1, 2.575, 0, ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 371        | ColDCover', 0.91375, 1.88125, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 372        | 'ColDCover', 0.91375, 1.34375, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 373        | 'ColDCover', 0.91375, 0.80625, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 374        | 'ColDCover', 0.91375, 0.26875, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 376        | ColDCover , 0.91375 , -0.80625 , 0 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 377        | 'ColDCover', 0.91375, -1.34375, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 378        | 'ColDCover', $0.91375$ , $-1.88125$ , $0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 379        | 'ColDCore', 2.31125, 1.88125, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 381        | ColDCore , 2.31125 , 1.34375 , 0 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 382        | 'ColDCore', 2.31125, 0.26875, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 383        | 'ColDCore', $2.31125$ , $-0.26875$ , $0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 384        | ColDCore', 2.31125, $-0.80625$ , 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 386        | ColDCore , 2.31125 , -1.34375 , 0 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 387        | 'ColDSteel', 0.147 , 2.15 , 0 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 388        | 'ColDSteel', 0.098 , 0 , 0 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 389        | ColDSteel', $0.147$ , $-2.15$ , $0$ };                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 391        | 'BSColDSection', 'Fiber'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 392        | { 'BSColDCover', 5.1, 2.575, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 393        | $^{\prime} \mathrm{BSColDCover}$ , 5.1 , $-2.575$ , 0 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 394<br>30= | 'BSColDCover', $0.91375$ , $1.88125$ , $0$ , 'BSColDCover', $0.91275$ , $1.24275$ , $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 396        | $^{\circ}BSColDCover'$ , $0.91375$ , $0.80625$ , $0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 397        | 'BSColDCover', 0.91375, 0.26875, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 398        | 'BSColDCover', $0.91375$ , $-0.26875$ , $0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 399        | 'BSColDCover', 0.91375, -0.80625, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 400        | 'BSColDCover', 0.91375, -1.84375, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 402        | 'BSColDCore', 2.31125, 1.88125, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 403        | 'BSColDCore', 2.31125, 1.34375, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 404        | 'BSColDCore', 2.31125, 0.80625, 0, ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 406        | 'BSColDCore', 2.31125, -0.26875, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 407        | 'BSColDCore', $2.31125$ , $-0.80625$ , $0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 408        | 'BSColDCore', 2.31125, -1.34375, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 410        | 'BSColDSteel', 0.147, 2.15, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 411        | 'BSColDSteel', 0.098 , 0 , 0 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 412        | 'BSColDSteel' , $0.147$ , $-2.15$ , $0$ };                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 413        | 'BSColDESection' 'Fiber'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 415        | { 'BSColDFCover', 5.1, 2.575, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 416        | 'BSColDFCover', 5.1, -2.575, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 417        | 'BSColDFCover', 0.91375, 1.88125, 0, ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 419        | 'BSColDFCover', 0.91375, 0.80625, 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 420        | 'BSColDFCover', 0.91375, 0.26875, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 421        | $^{\prime}BSColDFCover', 0.91375, -0.26875, 0, 0.26875$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 422        | $^{\circ}$ BSColDFCover', 0.91375, -0.80025, 0, ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 424        | 'BSColDFCover', 0.91375, -1.88125, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 425        | 'BSColDFCore' , 2.31125 , 1.88125 , 0 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 426        | 'BSColDFCore' , 2.31125 , 1.34375 , 0 ,<br>'PSColDFCore' , 2.31125 , 0.80625 , 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 428        | 'BSColDFCore', 2.31125, 0.26875, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 429        | 'BSColDFCore', 2.31125, -0.26875, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 430        | 'BSColDFCore', 2.31125, -0.80625, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 431        | 'BSColDFCore', 2.31125, -1.34375, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 433        | 'BSColDFSteel', 0.147 , 2.15 , 0 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 434        | 'BSColDFSteel', 0.098 , 0 , 0 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 435        | 'BSColDFSteel', 0.147 , -2.15 , 0 };                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 437        | 'ColNDSection', 'Fiber',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 438        | $\{ ColNDCover', 5.1, 2.575, 0, \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 439        | ColNDCover', $5.1$ , $-2.575$ , 0, $ColNDCover'$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.1275$ , $0.12$ |
| 440<br>441 | (CoINDCover', 0.91375, 1.88125, 0,, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.91375, 0.913755, 0.913755, 0.913755, 0.91375, 0.913755, 0.91375, 0.91375, 0.91375, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.913755, 0.9137555, 0.9137555, 0.9137555, 0.9137555, 0.9135555, 0.91375555, 0.91375555, 0.9155555555, 0.9125555, 0.915555555555, 0.915555, 0.91555                                                                                                                                                                                                               |
| 442        | 'ColNDCover', 0.91375, 0.80625, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 443        | 'ColNDCover', $0.91375$ , $0.26875$ , $0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 444        | (ColNDCover', 0.91375, -0.26875, 0, 0.91275, 0.90625, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 440<br>446 | (1.34375), $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.34375)$ , $(1.$                                               |
| 447        | 'ColNDCover', $0.91375$ , $-1.88125$ , $0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 448        | 'ColNDCore', 2.31125, 1.88125, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 449<br>450 | ConvDuore', $2.31125$ , $1.34375$ , $0$ , ConvDuore', $2.31125$ , $0.80625$ , $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 451        | 'ColNDCore', 2.31125, 0.26875, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 452        | 'ColNDCore', $2.31125$ , $-0.26875$ , $0$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 453        | (ColNDCore', 2.31125, -0.80625, 0, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 454<br>455 | ConvDuore', $2.31125$ , $-1.34375$ , $0$ , 'ColVDuore', $2.31125$ , $-1.88125$ , $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 456        | 'ColNDSteel', 0.33 , 2.15 , 0 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 457        | 'ColNDSteel' , 0.22 , 0 , 0 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 458        | 'ColNDSteel', $0.33$ , $-2.15$ , $0$ };                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 460        | 'BSColNDSection', 'Fiber',                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 461        | $\{ \text{'BSColNDCover'}, 5.1, 2.575, 0, \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 462        | 'BSColNDCover', $5.1$ , $-2.575$ , $0$ , 'BSColNDCover', $0.01375$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 463<br>464 | $^{\circ}BSColNDCover'$ , 0.91375, 1.88125, 0, $^{\circ}BSColNDCover'$ , 0.91375, 1.34375, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 465        | 'BSColNDCover', 0.91375, 0.80625, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 466               | 'BSColNDCover'                      | , 0.91375                              | , 0.26875 ,             | 0      | ,        |                     |                |                     |                |                        |   |
|-------------------|-------------------------------------|----------------------------------------|-------------------------|--------|----------|---------------------|----------------|---------------------|----------------|------------------------|---|
| 467               | 'BSCoINDCover'                      | , 0.91375                              | , -0.26875              | ,      | 0        | ,                   |                |                     |                |                        |   |
| 469               | 'BSColNDCover'                      | , 0.91375                              | , -1.34375              | ,      | ŏ        | ,                   |                |                     |                |                        |   |
| 470               | 'BSColNDCover'                      | , 0.91375                              | , -1.88125              | ,      | 0        | ,                   |                |                     |                |                        |   |
| 471               | 'BSColNDCore'                       | , 2.31125                              | , 1.88125 ,             | 0      | ,        |                     |                |                     |                |                        |   |
| 472               | 'BSColNDCore'                       | , 2.31125                              | , 1.34375 ,             | 0      | ,        |                     |                |                     |                |                        |   |
| 474               | 'BSColNDCore'                       | , 2.31125                              | , 0.26875 ,             | 0      | ,        |                     |                |                     |                |                        |   |
| 475               | 'BSColNDCore'                       | , 2.31125                              | , -0.26875              | ,      | ó        | ,                   |                |                     |                |                        |   |
| 476               | 'BSColNDCore'                       | , 2.31125                              | , -0.80625              | ,      | 0        | ,                   |                |                     |                |                        |   |
| 477               | 'BSColNDCore'                       | , 2.31125                              | , -1.34375              | ,      | 0        | ,                   |                |                     |                |                        |   |
| 478               | 'BSCoINDCore'                       | , 2.31125                              | , -1.88125              | ,<br>0 | 0        | ,                   |                |                     |                |                        |   |
| 480               | 'BSColNDSteel '                     | , 0.22                                 | , 2.10 ,                |        | ,        |                     |                |                     |                |                        |   |
| 481               | 'BSColNDSteel '                     | , 0.33                                 | , -2.15 ,               | ó      | };       |                     |                |                     |                |                        |   |
| 482               |                                     |                                        |                         |        |          |                     |                |                     |                |                        |   |
| 483               | 'BSColNDFSection',                  | 'Fiber',                               | 0.555                   |        |          |                     |                |                     |                |                        |   |
| $\frac{484}{485}$ | { BSCoINDFCover '                   | , 5.1 ,<br>5.1                         | 2.575 , 0<br>-2.575 0   | ,      |          |                     |                |                     |                |                        |   |
| 486               | 'BSColNDFCover '                    | , 0.91375                              | . 1.88125 .             | ,<br>o |          |                     |                |                     |                |                        |   |
| 487               | 'BSColNDFCover '                    | , 0.91375                              | , 1.34375 ,             | 0      | ,        |                     |                |                     |                |                        |   |
| 488               | 'BSColNDFCover '                    | , 0.91375                              | , 0.80625 ,             | 0      | ,        |                     |                |                     |                |                        |   |
| 489               | 'BSCoINDFCover'                     | , 0.91375                              | , 0.26875 ,             | 0      | ,        |                     |                |                     |                |                        |   |
| $490 \\ 491$      | 'BSColNDFCover '                    | 0.91375                                | -0.80625                | ,      | 0        | ,                   |                |                     |                |                        |   |
| 492               | 'BSColNDFCover '                    | , 0.91375                              | , -1.34375              | ,      | õ        | ,                   |                |                     |                |                        |   |
| 493               | 'BSColNDFCover '                    | , 0.91375                              | , -1.88125              | ,      | 0        | ,                   |                |                     |                |                        |   |
| 494               | 'BSColNDFCore'                      | , 2.31125                              | , 1.88125 ,             | 0      | ,        |                     |                |                     |                |                        |   |
| 495               | 'BSColNDFCore '                     | , 2.31125                              | , 1.34375 ,             | 0      | ,        |                     |                |                     |                |                        |   |
| 497               | 'BSColNDFCore '                     | , 2.31125                              | , 0.26875 ,             | ŏ      | ,        |                     |                |                     |                |                        |   |
| 498               | 'BSColNDFCore '                     | , 2.31125                              | , -0.26875              | ,      | 0        | ,                   |                |                     |                |                        |   |
| 499               | 'BSColNDFCore '                     | , 2.31125                              | , -0.80625              | ,      | 0        | ,                   |                |                     |                |                        |   |
| 500               | 'BSColNDFCore'                      | , 2.31125                              | , -1.34375              | ,      | 0        | ,                   |                |                     |                |                        |   |
| 502               | 'BSColNDFSteel '                    | , 2.31123                              | , 2.15 .                | ,<br>o |          | ,                   |                |                     |                |                        |   |
| 503               | 'BSColNDFSteel '                    | , 0.22                                 | , 0 , 0                 | ,      | <i>,</i> |                     |                |                     |                |                        |   |
| 504               | 'BSColNDFSteel '                    | , 0.33                                 | , -2.15 ,               | 0      | };       |                     |                |                     |                |                        |   |
| 505               | · Deservention ·                    | IT:Land                                |                         |        |          |                     |                |                     |                |                        |   |
| 506<br>507        | { 'BeamCover'                       | $5.1 \cdot 4.07$                       | 5.0.                    |        |          |                     |                |                     |                |                        |   |
| 508               | 'BeamCover',                        | 5.1 , $-4.0$                           | )75 , 0 ,               |        |          |                     |                |                     |                |                        |   |
| 509               | 'BeamCover',                        | 1.55125 ,                              | 3.19375, 0              | ,      |          |                     |                |                     |                |                        |   |
| 510               | 'BeamCover',                        | 1.55125 ,                              | 2.28125 , 0             | ,      |          |                     |                |                     |                |                        |   |
| 511<br>512        | 'BeamCover',                        | 1.55125,<br>1.55125                    | 1.30875, 0<br>0.45625 0 | ,      |          |                     |                |                     |                |                        |   |
| 513               | 'BeamCover',                        | 1.55125 ,                              | -0.45625 ,              | ,<br>o | ,        |                     |                |                     |                |                        |   |
| 514               | 'BeamCover',                        | 1.55125 ,                              | -1.36875 ,              | 0      | ,        |                     |                |                     |                |                        |   |
| 515               | 'BeamCover',                        | 1.55125 ,                              | -2.28125 ,              | 0      | ,        |                     |                |                     |                |                        |   |
| 517               | 'BeamCover',                        | 1.00120 ,                              | -3.19375 ,              | 0      | ,        |                     |                |                     |                |                        |   |
| 518               | 'BeamCore'                          | 3.92375 .                              | 2.28125, 0              | ,      |          |                     |                |                     |                |                        |   |
| 519               | 'BeamCore',                         | 3.92375 ,                              | 1.36875 , 0             | ,      |          |                     |                |                     |                |                        |   |
| 520               | 'BeamCore',                         | 3.92375 ,                              | 0.45625 , $0$           | ,      |          |                     |                |                     |                |                        |   |
| 521               | 'BeamCore',                         | 3.92375 ,                              | -0.45625 ,              | 0      | ,        |                     |                |                     |                |                        |   |
| 522<br>523        | 'BeamCore',                         | 3.92375,<br>3.92375                    | -1.36875 ,              | 0      | ,        |                     |                |                     |                |                        |   |
| 524               | 'BeamCore',                         | 3.92375 ,                              | -3.19375 ,              | ŏ      | ,        |                     |                |                     |                |                        |   |
| 525               | 'BeamSteel',                        | 0.44 ,                                 | 3.65 , 0                | ,      |          |                     |                |                     |                |                        |   |
| 526               | 'BeamSteel',                        | 0.44 ,                                 | -3.65 , 0               | };     |          |                     |                |                     |                |                        |   |
| 527<br>528        | 'BSBeamSection '                    | 'Fiber'                                |                         |        |          |                     |                |                     |                |                        |   |
| 529               | { 'BSBeamCover '                    | , 5.1 ,                                | 4.075 , 0               | ,      |          |                     |                |                     |                |                        |   |
| 530               | 'BSBeamCover '                      | , 5.1 ,                                | -4.075 , 0              | ,      |          |                     |                |                     |                |                        |   |
| 531               | 'BSBeamCover '                      | , 1.55125                              | , 3.19375 ,             | 0      | ,        |                     |                |                     |                |                        |   |
| 532               | 'BSBeamCover'                       | , 1.55125                              | , 2.28125 ,             | 0      | ,        |                     |                |                     |                |                        |   |
| 534               | 'BSBeamCover '                      | . 1.55125                              | , 0.45625 .             | ő      | ,        |                     |                |                     |                |                        |   |
| 535               | 'BSBeamCover '                      | , 1.55125                              | , -0.45625              | ,      | Ó        | ,                   |                |                     |                |                        |   |
| 536               | 'BSBeamCover '                      | , 1.55125                              | , -1.36875              | ,      | 0        | ,                   |                |                     |                |                        |   |
| 537               | 'BSBeamCover '                      | , 1.55125<br>1.55125                   | , -2.28125              | ,      | 0        | ,                   |                |                     |                |                        |   |
| 539               | 'BSBeamCore '                       | , 3.92375                              | , 3.19375 .             | ,<br>0 |          | ,                   |                |                     |                |                        |   |
| 540               | 'BSBeamCore '                       | , 3.92375                              | , 2.28125 ,             | 0      | ,        |                     |                |                     |                |                        |   |
| 541               | 'BSBeamCore '                       | , 3.92375                              | , 1.36875 ,             | 0      | ,        |                     |                |                     |                |                        |   |
| 543               | 'BSBeamCore '                       | , 3.92375                              | , -0.45625              | 0      | ò        |                     |                |                     |                |                        |   |
| 544               | 'BSBeamCore '                       | , 3.92375                              | , -1.36875              | ,      | 0        | ,                   |                |                     |                |                        |   |
| 545               | 'BSBeamCore '                       | , 3.92375                              | , -2.28125              | ,      | 0        | ,                   |                |                     |                |                        |   |
| 546<br>547        | 'BSBeamCore'                        | , 3.92375                              | , -3.19375              | ,<br>0 | 0        | ,                   |                |                     |                |                        |   |
| 548               | 'BSBeamSteel '                      | , 0.44                                 | , -3.65 ,               | 0      | ;<br>;;  |                     |                |                     |                |                        |   |
| 549               |                                     | ,                                      | , ,                     |        | ,,       |                     |                |                     |                |                        |   |
| 550               | 'ColRigidSection',                  | 'general',                             | 2                       |        |          |                     |                |                     |                |                        |   |
| 552<br>552        | { ColRigid ' ,                      | 30 , 108                               | };                      |        |          |                     |                |                     |                |                        |   |
| 553               | 'BeamRigidSection'.                 | 'general'.                             |                         |        |          |                     |                |                     |                |                        |   |
| 554               | { 'BeamRigid',                      | 54 , $364$ .                           | 5 };                    |        |          |                     |                |                     |                |                        |   |
| 555               | }                                   |                                        |                         |        |          |                     |                |                     |                |                        |   |
| 256<br>557        | *********************************** | ************************************** | ******                  | ****   | ****     | ******              | ******         | * * * *             |                |                        |   |
| 558               |                                     | opernes.                               |                         |        |          |                     |                |                     |                |                        |   |
| 559               |                                     |                                        |                         |        |          |                     |                |                     |                |                        |   |
| 560               | concretemat = 'Conc                 | reteLinearTer                          | nsionSoftening          | ,      |          |                     |                |                     |                |                        |   |
| 561               | steelmat = 'Giuff                   | reMenegottoP                           | 'into '                 |        |          |                     |                |                     |                |                        |   |
| 563               | materials = {                       | ear                                    |                         |        |          |                     |                |                     |                |                        |   |
| 564               | Concrete (Concre                    | teLinearTensi                          | ionSoftening)           |        |          |                     |                |                     |                |                        |   |
| 565               | `Tag,                               | mat_type ,                             | Ets,                    | densit | у,       | sc,                 | ec,            | scu,                | ecu, lam,      | s                      | t |
| 566               | {'ColDCover', co                    | oncretemat, 5                          | 549.2307692, 0          | , -3.  | 57, -    | -0.0026 ,           | -1.19,         | -0.0078 ,           | 0.3, 0.4481210 | 077},                  |   |
| 007<br>568        | { 'BSColDCover', co                 | oncretemat, 5<br>oncretemat 1          | 049.4000495, 0<br>05 0  | , -7.8 | 57, 57   | -0.00546, $-0.0136$ | -1.19          | -0.01638, $-0.0408$ | 0.3, 0.6495190 | ) 3 3 } ,<br>) 7 7 } . |   |
| 569               | {'BSColDCore', co                   | oncretemat, 1                          | 04.1666667, 0           | , -7.8 | 5,       | -0.0288 ,           | -7.35,         | -0.0864 .           | 0.3, 0.649519  | 053},                  |   |
| 570               | {'BSColDFCover', co                 | oncretemat, 1                          | .05 , 0                 | , -3.  | 57, -    | -0.0136 ,           | -1.19,         | -0.0408 ,           | 0.3, 0.448121  | 077},                  |   |
| 571<br>572        | {'BSColDFCore', co                  | oncretemat, 1                          | 04.1666667, 0           | , -7.5 | 5, -57   | -0.0288 , $-0.0026$ | -6.75, $-1.10$ | -0.0864 ,           | 0.3, 0.6495190 | 053},                  |   |
| J14               |                                     | more counder, c                        |                         | 0      | VI. 1    | 0.0040              | 1.10,          | 0.0010 .            | 0.0, 0.4401210 |                        |   |

577 580  $\frac{581}{582}$  $591 \\ 592$ \*\*\*\*\*\* function dumptable(x)
local result = '{'
for i,v in ipairs(x) do
 if (type(v) == 'table') then
 result = result .. dumptable(v)
 else 607 else result = result ... v ... ', 'end end return result .. '}\n'  $613 \\ 614$ end end  $640 \\ 641$ 649 disp\_06\_13\_20 = {}
disp\_06\_13\_20 = {}
disp\_06\_13\_20 = {}
dx06, dy06, dz06 = model:nodeDisplacements(node06)
dx13, dy13, dz13 = model:nodeDisplacements(node13)
dx20, dy20, dz20 = model:nodeDisplacements(node20)
table.insert(disp\_06\_13\_20, dx06)
table.insert(disp\_06\_13\_20, dx06)
table.insert(disp\_06\_13\_20, dx13)
table.insert(disp\_06\_13\_20, dx13)
table.insert(disp\_06\_13\_20, dx13)
table.insert(disp\_06\_13\_20, dx13)
table.insert(disp\_06\_13\_20, dx20)
table.insert(disp\_06\_13\_20, dx20) \*\*\*\*\*\*\* \*\*\*\*\* end disp\_07\_14\_21 = {} function disp2pertime(timestep) dx07,dy07,dz07 = model:nodeDisplacements(node07) dx14,dy14,dz14 = model:nodeDisplacements(node14) dx21,dy21,dz21 = model:nodeDisplacements(node21) table.insert(disp\_07\_14\_21,dx07) table.insert(disp\_07\_14\_21,dx07) table.insert(disp\_07\_14\_21,dx07) table.insert(disp\_07\_14\_21,dx14) table.insert(disp\_07\_14\_21,dx14) table.insert(disp\_07\_14\_21,dz14) table.insert(disp\_07\_14\_21,dz14) table.insert(disp\_07\_14\_21,dz21) table.insert(disp\_07\_14\_21,dz21) end 668 675 

```
end
disp_48_49 = {}
function disp3pertime(timestep)
dx48,dy48,dy48 = model:nodeDisplacements(node48)
dx49,dy49,dx49 = model:nodeDisplacements(node49)
table.insert(disp_48_49,dx48)
table.insert(disp_48_49,dx48)
table.insert(disp_48_49,dx48)
table.insert(disp_48_49,dx49)
table.insert(disp_48_49,dx49)
table.insert(disp_48_49,dx49)
table.insert(disp_48_49,dx49)
end
         \mathbf{end}
680
681
682
683
684
685
686
687
688
689
690
691
          end
       end

react = {}

function reactpertime(timestep)

fx01,fy01,fz01 = model:nodeRestoringForces(node01)

fx22,fy22,fz22 = model:nodeRestoringForces(node22)

fx43,fy43,fy43 = model:nodeRestoringForces(node43)

table.insert(react, fx01)

table.insert(react, fx01)

table.insert(react, fx22)

table.insert(react, fx22)

table.insert(react, fx43)

table.insert(react, fx43)

table.insert(react, fx43)

table.insert(react, fx64)

end

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
        end
                                                                                                             *****
         earthquakeloading = LoadDescription ()
715
716
717
        accelamp = 1.0*g
earthquakeloading:addLoad({ 'groundmotion ', earthquakefile .. ', dt=0.005', 1, accelamp})
         -- transientanalysis = DynamicAnalysis ("hht", model, solver, earthquakeloading, --[[ dt, alpha, beta, gamma]] 0.005, alpha, beta, gamma, iteration]] 0.005, al model: setRayleighCoefficients (1.1770500887303603,0.0015992014979696392)
718
719
720
721
722
        723
724
725
726
727
728
729
      730
                                                                                         *****
731
732
733
734
735
736
737
738
739
740
741
                  end
end
f:close()
742
743
         end
745
746
        function writedata9(x, fname)
    local f = assert(io.open(fname,'w'))
    local writenl = 0
    for i,v in ipairs(x) do
    f:write(v, "")
    writenl = writenl + 1
    -- length of row size: writenl
    if (writenl > 8) then
        writenl = 0
        f:write("\n")
end
746
747
748
749
750
751
752
753 \\ 754
755
756
                  end
f
757
758
759
                   f:close()
         end
760
761
        function writedata12(x, fname)
    local f = assert(io.open(fname, 'w'))
    local writenl = 0
    for i,v in ipairs(x) do
    f:write(v, " ")
    writenl = writenl + 1
    -- length of row size: writenl
    if (writenl > 11) then
        writenl = 0
        f:write("\n")
end
762
763
764
765
766
767
768
769
770
771
772
773
774
                           end
                  end
f:close()
         end
775
776
777
778
779
                 *******
          780
781
        783
784
785
786
```

# Chapter 4 NONLINEAR PUSHOVER ANALYSIS

first part requires some major editing

## 4.1 pushover

A pushover analysis is a nonlinear static procedure wherein monotonically increasing lateral loads are applied to the structure till a target displacement is achieved or the structure is unable to resist further loads.

A pushover analysis is associated with a load pattern. In this case, use the same later load pattern that was used for the seismic design. It is necessary to apply dead and live loads before doing a pushover analysis. Since the pushover procedure is nonlinear, it is necessary to setup a new load case for dead and live which is also nonlinear The recent advent of performance based design has brought the static nonlinear analysis, also known as sequential yield analysis, or simply "push-over" analysis has gained significant popularity during the past few years. It is a static, nonlinear procedure in which the magnitude of the structural loading is incrementally increased in accordance with a certain predefined pattern. Typically, a predefined lateral load pattern is distributed along the building height. The lateral forces are then monotonically increased in constant proportion with a displacement control at the top of the building until a certain level of deformation is reached. The target top displacement may be the deformation expected in the design earthquake in case of designing a new structure, or the drift corresponding to structural collapse for assessment purposes. The method allows tracing the sequence of yielding and failure on the member and the structure levels as well as the progress of the overall capacity curve of the structure, (?).

With the increase in the magnitude of the loading, weak links and failure modes of the structure are found. The loading is monotonic with the effects of the cyclic behavior and load reversals being estimated by using a modified monotonic force-deformation criteria and with damping approximations. Static pushover analysis is an attempt by the structural engineering profession to evaluate the real strength of the structure and it promises to be a useful and effective tool for performance based design. The ATC-40 and FEMA-273 documents have developed modeling procedures, acceptance criteria and analysis procedures for pushover analysis. These documents define force-deformation criteria for hinges used in pushover analysis.

The design of structures based on plastic approach is called **limit design** and is at the core of most modern design codes (ACI, AISC).

# 4.2 Shakedown

A structure subjected to a general variable load can collapse even if the loads remain inside the elastic plastic domain of the load space. Thus the elasto plastic domain represents a safe domain only for monotonic loads.Under general, non-monotonic loading, a structure can nevertheless fail by incremental collapse or plastic fatigue. The behavior of a structure is termed **shakedown** 

# 4.3 Control Method

In pushover analysis it is highly desirable to first subject the structure to an initial force without constrained degrees of freedom for imposed pushover displacements. This would allow the structure to properly deform, be subjected to the correct state of initial stress prior to the application of the actual imposed pushover displacements. This section presents a simple method to perform such an analysis in one step. Traditional method in Sec. 4.4 would require two separate analysis shown in Fig. ??. Sec. 4.5 describes pushover analysis with imposed displacement on unconstrained degrees of freedom.

# 4.4 Classical Pushover

A nonlinear pushover analysis entails two parts, Fig. 4.3:

- Vertical Load is the first step where the structure is subjected to the vertical load (such as gravity and possibly a fraction of the live load).
- Lateral Loas is the application of increasing lateral force or displacement up to failure. Imposed displacement is preferred as it enables us to capture the post-peak response.
- A nonlinear pushover analysis can not separate the vertical loads from the lateral loads. Application of the vertical loads will results in an initial state of stress to which those induced by the lateral loads must be added.
- Traditional methods entail performing the first analysis under load control, and then results are either used as part of the restart (correct), or they are added to the results of the displacement control when this one is complete (erroneous).
- Since only imposed displacements can enable us to capture the post-peak response, the question is how should those displacements be applied.

With reference to Fig. 4.2, one could apply a single imposed displacement at the top of the discretized building. However, the resulting displacements may not be compatible with the dynamic response of the structure.

A better approach consists in first evaluating the first mode shape, determine the normalized displacements (with respect to the one of the top floor) of each floor  $\alpha_i$ , and then use this  $\alpha_i$  distribution for the imposed lateral displacements in the subsequent nonlinear pushover analysis.

# 4.5 Improved Pushover Analysis Procedure

With reference to Fig. 4.3, we shall examine the two steps of the pushover analysis.



Figure 4.1: Pushover analysis



Figure 4.2: Determination of pushover displacements magnitudes



Figure 4.3: Pushover Analysis of a Frame
### 4.5.1 Load Control

This first part is consistent with classical methods where the governing equilibrium equation of a nonlinear system can be expressed as

$$\underbrace{\left\{\begin{array}{c} \mathbf{P}_{t}^{ext} \\ \mathbf{P}_{u} \end{array}\right\}}_{\mathbf{P}} = \underbrace{\left[\begin{array}{c} \mathbf{K}_{tt} & \mathbf{K}_{tu} \\ \mathbf{K}_{ut} & \mathbf{K}_{uu} \end{array}\right]}_{\mathbf{K}} \underbrace{\left\{\begin{array}{c} \mathbf{u}_{t} \\ \mathbf{u}_{u} \end{array}\right\}}_{\mathbf{u}}$$
(4.1)

where **P**, **u** and **K** are the nodal force, nodal displacement and stiffness terms expressed in the structural level, and the subscript u and t are associated with  $\Gamma_u$  and  $\Gamma_t$  where the essential and natural boundary conditions are defined. Equilibrium is satisfied when external nodal forces are equal to the internal ones,

$$\mathbf{P}^{ext} - \mathbf{P}^{int} = 0 \tag{4.2}$$

and  $\mathbf{P}^{int}$  is determined from state determination in Ch. 1.

In nonlinear system, the incremental displacement vector is defined by

$$\Delta \mathbf{u}_n = \mathbf{u}_n - \mathbf{u}_{n-1}$$

and the corresponding nodal displacement vector at the  $k^{th}$  iteration is given by:

 $\mathbf{u}_n^k = \mathbf{u}_n^{k-1} + \delta \mathbf{u}_n^k$ 

where 
$$\delta \mathbf{u}_n^k = \mathbf{u}_n^k - \mathbf{u}_n^{k-1}$$

We can rewrite Eq. 4.1 in incremental form at the  $k^{th}$  iteration of the  $n^{th}$  increment as:

$$\underbrace{\left\{\begin{array}{c} \mathbf{P}_{t,n}^{k,k} = \mathbf{P}_{t,n}^{ext} - \mathbf{P}_{t,n}^{int,k} \\ \mathbf{P}_{u,n}^{R,k} = \mathbf{P}_{u,n}^{k} - \mathbf{P}_{u,n}^{int,k} \\ \end{array}\right\}}_{\mathbf{P}_{n}^{R,k} = \delta \mathbf{P}_{n}^{k}} = \underbrace{\left[\begin{array}{c} \mathbf{K}_{t,n}^{k-1} & \mathbf{K}_{tu,n}^{k-1} \\ \mathbf{K}_{ut,n}^{k-1} & \mathbf{K}_{uu,n}^{k-1} \\ \end{array}\right]}_{\mathbf{K}_{n}^{k-1}} \underbrace{\left\{\begin{array}{c} \delta \mathbf{u}_{t,n}^{k,2} \\ \Delta \mathbf{u}_{u,n}^{ext} \\ \end{array}\right\}}}_{\mathbf{K}_{n}^{k-1}} \underbrace{\left\{\begin{array}{c} \delta \mathbf{u}_{t,n}^{k,2} \\ \delta \mathbf{u}_{u,n}^{k} \\ \end{array}\right\}}}_{\mathbf{K}_{n}^{k-1}} \underbrace{\left\{\begin{array}{c} \delta \mathbf{u}_{t,n}^{k} \\ \delta \mathbf{u}_{u,n}^{k} \\ \end{array}\right\}}}_{\mathbf{K}_{n}^{k-1}} \underbrace{\left\{\begin{array}{c} \delta \mathbf{u}_{t,n}^{k} \\ \delta \mathbf{u}_{u,n}^{k} \\ \end{array}\right\}}}_{\mathbf{K}_{n}^{k-1}} \underbrace{\left\{\begin{array}{c} \delta \mathbf{u}_{t,n}^{k} \\ \delta \mathbf{u}_{u,n}^{k} \\ \end{array}\right\}}}_{\mathbf{K}_{n}^{k}} \underbrace{\left\{\begin{array}{c} \delta \mathbf{u}_{t,n}^{k} \\ \delta \mathbf{u}_{u,n}^{k} \\ \end{array}\right\}}}_{\mathbf{K}} \underbrace{\left\{\begin{array}{c} \delta \mathbf{u}_{t,n}^{k} \\ \delta \mathbf{u}_{u,n}^{k} \\ \end{array}\right\}}}_{\mathbf{K}_{n}^{k}} \underbrace{\left\{\begin{array}{c} \delta \mathbf{u}_{t,n}^{k} \\ \delta \mathbf{u}_{u,n}^{k} \\ \end{array}\right\}}}_{\mathbf{K}} \underbrace{\left\{\begin{array}{c} \delta \mathbf{u}_{u,n}^{k} \\ \end{array}\right\}}}_{\mathbf{K}_{n}^{k}} \underbrace{\left\{\begin{array}{c} \delta \mathbf{u}_{u,n}^{k} \\ \end{array}\right\}}}_{\mathbf{K}_{n}^{k}} \underbrace{\left\{\begin{array}{c} \delta \mathbf{u}_{u,n}^{k} \\ \end{array}\right\}}}_{\mathbf{K}} \underbrace{\left\{\begin{array}{c} \delta \mathbf{u}_{u,n}^{k} \\ \end{array}\right\}}}_{\mathbf{K}_{n}^{k}} \\ \underbrace{\left\{\begin{array}{c} \delta \mathbf{u}_{u,n}^{k} \\ \end{array}\right\}}}_{\mathbf{K}_$$

where, superscript ' $\checkmark$ ' and '?' refer to known and unknown quantities. It should be noted that the known imposed displacement  $\Delta \mathbf{u}_{u,n}^{ext}$ ' is applied in the first iteration only, and then it is set to **0**.

The incremental displacements can now be expressed as:

$$\delta \mathbf{u}_{t,n}^{k} = \mathbf{u}_{t,n}^{k} - \mathbf{u}_{t,n}^{k-1}$$
$$\Delta \mathbf{u}_{u,n}^{ext} = \mathbf{u}_{u,n}^{ext} - \mathbf{u}_{u,n-1}^{ext}$$

and the essence of the finite element analysis is to first determine the displacement  $\delta \mathbf{u}_{t,n}^{k}$ , and then  $\mathbf{P}_{u,n}^{k}$  from Eq. 4.3.

In this preliminary analysis, the structure is subjected to its original load, the (yet to be constrained dofs in the pushover analysis) are left as free. At the end of this analysis, we keep track of the nodal displacement

#### 4.5.2 Displacement Control

Following the load control part, we now move to displacement control for the pushover analysis.

Rewriting Eq. 4.1 with prescribed external nodal displacements  $\begin{pmatrix} p_1^{f_1} \\ p_2 \end{pmatrix} = \begin{bmatrix} w_1^{f_2} \\ w_2^{f_2} \end{bmatrix} = \begin{bmatrix} w_1^{f_2} \\ w_2^{f_2} \end{bmatrix} = \begin{bmatrix} w_1^{f_2} \\ w_2^{f_2} \end{bmatrix}$ 

$$\left\{\begin{array}{c}
\mathbf{P}_{t}^{T} \\
\mathbf{P}_{t}^{P} \\
\mathbf{P}_{u}^{T} \\
\mathbf{P}_{u}^{T}
\end{array}\right\} = \left[\begin{array}{c}
\mathbf{K}_{tt}^{T} & \mathbf{K}_{tt}^{T} \\
\mathbf{K}_{tt}^{P} & \mathbf{K}_{tu}^{P} \\
\mathbf{K}_{tt} & \mathbf{K}_{tu}
\end{array}\right] \left\{\begin{array}{c}
\mathbf{u}_{t}^{T} \\
\mathbf{u}_{t}^{P, \varepsilon t \checkmark} \\
\mathbf{u}_{t}^{P, \varepsilon t \checkmark} \\
\mathbf{u}_{u}^{\nabla}
\end{array}\right\}$$

$$(4.4)$$

where, superscript 'f' and 'p' refer to unknown and prescribed displacement. With reference to Fig. ??, we would have

$$\mathbf{P}_{t}^{f\checkmark} = \lfloor V_{B}, M_{B} \rfloor^{T}$$
$$\mathbf{P}_{t}^{p?} = \lfloor N_{B} \rfloor^{T}$$
$$\mathbf{P}_{u}^{?} = \lfloor N_{A}, V_{A}, M_{A} \rfloor^{T}$$
$$\mathbf{u}_{t}^{f?} = \lfloor v_{B}, \theta_{B} \rfloor^{T}$$
$$\mathbf{u}_{t}^{p,ext\checkmark} = \lfloor u_{B} \rfloor^{T}$$
$$\mathbf{u}_{t}^{\checkmark} = \lfloor u_{A}, v_{A}, \theta_{A} \rfloor^{T}$$

Again, in the context of a nonlinear pushover analysis, we rewrite the  $\mathbf{K}_{tt}$  submatrix in incremental form for the  $k^{th}$  iteration of the  $n^{th}$  increment, and since we are now in displacement control, there are no more applied forces. Thus:

$$\begin{cases} \mathbf{0} \\ \delta \mathbf{P}_{t,n}^{p,k-1?} \end{cases} = \begin{bmatrix} \mathbf{K}_{tt,n}^{ff,k-1} & \mathbf{K}_{tt,n}^{fp,k-1} \\ \mathbf{K}_{tt}^{p,k-1?} & \mathbf{K}_{tt}^{p,k-1} \end{bmatrix} \begin{cases} \delta \mathbf{u}_{t}^{f,k-1?} \\ \Delta \mathbf{u}_{t}^{p,ext} \checkmark \end{cases}$$

$$(4.5)$$

We should keep in mind that we are primarily interested in  $\delta \mathbf{P}_{t,n}^{p,k-1}$  which is the vector of force(s) corresponding to the imposed displacement(s) in the pushover analysis. Also, it should be noted that  $\Delta \mathbf{u}_t^{p,ext}$  is only applied in the first iteration, and in subsequent ones, it is **0**.

We first solve for the unknown displacements corresponding to the free degrees of freedom  $\delta \mathbf{u}_t^{f,k-1?}$ .

$$\mathbf{0} = \mathbf{K}_{tt,n}^{ff,k-1} \cdot \delta \mathbf{u}_t^{f,k-1}^{?} + \mathbf{K}_{tt,n}^{fp,k-1} \cdot \delta \mathbf{u}_t^{p,ext\checkmark}$$

$$\delta \mathbf{u}_t^{f,k-1}^{?} = -[\mathbf{K}_{tt,n}^{ff,k-1}]^{-1} \cdot \mathbf{K}_{tt,n}^{fp,k-1} \cdot \Delta \mathbf{u}_t^{p,ext\checkmark}$$

$$(4.6)$$

Then we address the second row of Eq. to solve for the forces corresponding to the imposed displacements in the pushover analysis,  $\delta \mathbf{P}_{t,n}^{p,k-1?}$ .

 $t_n^{n}$  it should be noted that the original ID matrix which refers to the global degrees of freedom has to be readjusted into a new one dispID.

Also, the internal forces computed from the load control part are transferred to the displacement control part. Thus the entire nonlinear pushover analysis can be performed in a single analysis in Mercury without the need for a restart. The algorithm for this procedure is shown in Fig. 4.4.



147

# Chapter 5 DYNAMIC ANALYSIS

## 5.1 Preliminaries

1 When the frequency of excitation of a structure is less than about a third of its lowest natural frequency of vibration, then we can neglect inertia effects and treat the problem as a quasi-static one.

2 If the structure is subjected to an impact load, than one must be primarily concerned with (stress) wave propagation. In such a problem, we often have high frequencies and the duration of the dynamic analysis is about the time it takes for the wave to travel across the structure.

3 If inertia forces are present, then we are confronted with a dynamic problem and can analyse it through any one of the following solution procedures:

- 1. Natural frequencies and mode shapes (only linear elastic systems)
- 2. Time history analysis through modal analysis (again linear elastic), or direct integration.

4 Methods of structural dynamics are essentially independent of finite element analysis as these methods presume that we already have the stiffness, mass, and damping matrices. Those matrices may be obtained from a single degree of freedom system, from an idealization/simplification of a frame structure, or from a very complex finite element mesh. The time history analysis procedure remains the same.

## 5.1.1 Variational Formulation

5 In a general three-dimensional continuum, the equations of motion of an elementary volume  $\Omega$  without damping is

| $\mathbf{L}^{\prime} \boldsymbol{\sigma} + \mathbf{b} = \mathbf{m}\mathbf{\ddot{u}}$                                                          | (5.1) |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|
| where m is the mass density matrix equal to $\rho I$ , and b is the vector of body forces. The Differential operator L is                     |       |
| $\begin{bmatrix} \frac{\partial}{\partial x} & 0 & 0\\ 0 & \frac{\partial}{\partial y} & 0 \end{bmatrix}$                                     |       |
| $\mathbf{L} = \begin{bmatrix} 0 & 0 & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \end{bmatrix}$ | (5.2) |

6 For linear elastic material

 $\frac{\partial}{\partial z}$ 

 $\begin{array}{c} 0 \\ 0 \\ \frac{\partial}{\partial z} \\ \frac{\partial}{\partial y} \end{array} \xrightarrow{\frac{\partial}{\partial y}}$ 

$$\boldsymbol{\sigma} = \mathbf{D}_e \boldsymbol{\varepsilon} \tag{5.3}$$

(5.4)

for nonlinear material, the constitutive equations can be written as

$$\dot{\sigma} = \mathbf{D}_{i}$$

an

where  $\mathbf{D}_i$  is the tangent stiffness matrix.

 $\tau$  Whereas Eq. 5.1 describes the body motion in a strong sense, a weak formulation is obtained by the principle of minimum complementary virtual work (or Weighted Residual/Galerkin)

 $\int_{\Omega} \delta \mathbf{u}^T [\mathbf{L}^T \boldsymbol{\sigma} + \mathbf{b} - \mathbf{m} \ddot{\mathbf{u}}] d\Omega = 0$ (5.5)

Applying Gauss divergence theorem, Eq. ??:

$$\int \int_{A} \phi \operatorname{div} \mathbf{q} dA = \oint_{s} \phi \mathbf{q}^{T} \mathbf{n} ds - \int \int_{A} (\nabla \phi)^{T} \mathbf{q} dA$$
(5.6)  
d recalling that  $\mathbf{L} \mathbf{u} = \boldsymbol{\varepsilon}$ ,

$$\int_{\Omega} \delta \mathbf{u}^T \mathbf{L}^T \boldsymbol{\sigma} d\Omega = -\int_{\Omega} \delta \boldsymbol{\varepsilon}^T \boldsymbol{\sigma} d\Omega + \int_{\Gamma} \delta \mathbf{u}^T \boldsymbol{\sigma} \mathbf{n} d\Gamma$$
(5.7)

thus, Eq. 5.5 transforms into

$$\int_{\Omega} [\delta \mathbf{u}^{T} (\mathbf{m} \ddot{\mathbf{u}} - \mathbf{b}) + \delta \boldsymbol{\varepsilon}^{T} \boldsymbol{\sigma}] d\Omega - \int_{\Gamma} \delta \mathbf{u}^{T} \mathbf{t} d\Gamma = 0$$
(5.8)

so far no assumption has been made with regard to material behavior.

s Next we will seek the spatial discretization of the virtual work equation (Eq. 5.8). From the previous chapters, we have the following relations  $T_{1}$ ,  $T_{2}$ ,  $T_{3}$ ,

9 For implicit time integration, equilibrium was reached at time step n-1, and we write the equation of equilibrium for time step n. thus Eq. 5.8 transforms into

$$\int_{\Omega} \delta \mathbf{u}^T \mathbf{m} \mathrm{d}\Omega \ddot{\mathbf{u}}^{t+\Delta t} + \int_{\Omega} \delta \boldsymbol{\varepsilon}^T \boldsymbol{\sigma}_{t,n} \mathrm{d}\Omega = \int_{\Gamma} \delta \mathbf{u}^T \mathbf{t}_{t,n} \mathrm{d}\Gamma + \int_{\Omega} \delta \mathbf{u}^T \mathbf{b}_{t,n} \mathrm{d}\Omega$$
(5.10)

10 For linear problems

J

$$\boldsymbol{\sigma}_{t,n} = \mathbf{D}_e \mathbf{B} \overline{\mathbf{u}}_{t,n} \tag{5.11}$$

11 Again, upon proper substitution, this would yield

$$\delta \overline{\mathbf{u}}^{T} \left[ \underbrace{\int_{\Omega} \mathbf{N}^{T} \mathbf{m} \mathbf{N} \mathrm{d}\Omega}_{\mathbf{M}_{tt}} \ddot{\overline{\mathbf{u}}}_{t,n} + \underbrace{\int_{\Omega} \mathbf{B}^{T} \mathbf{D}_{e} \mathrm{B} \mathrm{d}\Omega}_{\mathbf{K}} \overline{\overline{\mathbf{u}}}_{t,n} - \underbrace{\left(\int_{\Omega} \mathbf{N}^{T} \mathbf{P}_{t,n}^{ext} \mathrm{d}\Omega + \int_{\Gamma} \mathbf{N}^{T} \mathbf{t}_{t,n} \mathrm{d}\Gamma\right)}_{\mathbf{P}_{t,n}^{ext}} \right] = 0$$
(5.12)

or

$$\mathbf{M}\ddot{\overline{\mathbf{u}}}_{t,n} + \mathbf{K}\overline{\mathbf{u}}_{t,n} = \mathbf{P}_{t,n}^{ext}$$
(5.13)

Which represents the semi-discrete linear equation of motion in the implicit time integration.

Generalizing the previous equation to include the effect of damping, and replacing  $\overline{u}$  by u we have

$$\mathbf{M}_{tt} \cdot \ddot{\mathbf{u}}_t + \mathbf{C}_{tt} \cdot \dot{\mathbf{u}}_t + \mathbf{P}_t^{int} = \mathbf{P}_t^{ext}$$

(5.14)

where  $\mathbf{M}_{tt}$  and  $\mathbf{C}_{tt}$  are the mass and viscous damping matrices for the idealization of the structure;  $\ddot{\mathbf{u}}_t$  is the nodal acceleration vector,  $\dot{\mathbf{u}}_t$  is the nodal velocity vector,  $\mathbf{P}_t^{int}$  is the static restoring or internal nodal force vector resulting from the nodal displacement vector  $\mathbf{u}_t$ , and  $\mathbf{P}_t^{ext}$  is the vector of applied nodal forces due to a seismic loading. Numerical methods for solving Eq. 5.14 are divided into two major categories; explicit and implicit methods. This chapter will limit its coverage to implicit schemes and in particular: 1) Newmark  $\beta$  method, 2) the Hilber-Hughes-Taylor(HHT) method.

#### 5.1.2 Mass Representation

There are two possible representation of the mass matrix: lumped and consisten.

Nodal lumped masses contribute only to the diagonal terms of the mass matrix and the terms associated with the rotational degrees of freedom are often taken as zero. However, in some cases the rotational inertias can be accounted for. The x, y and z inertia quantities may be different in a structure particularly in a two-dimensional analysis where the frame being analyzed is flanked by adjoining frames which carry vertical loads but have relatively insignificant lateral stiffness. In this case the vertical inertia is associated only with that of the frame being analyzed while the horizontal inertia has to represent the sum of the inertia contributions of all frames being supported, in the lateral direction, by the frame being analyzed.

The mass matrix may take one of two forms.

- 1. In this formulation it is assumed that all the masses are concentrated at the end nodes. Though not exactly correct, the advantage of this model is that we will have a diagonal matrix which can be easily inverted. The term associated with rotation is often neglected.
- 2. The consistent mass model uses a kinematically equivalent mass matrix where inertia forces are associated with all degrees of freedom. This will result in a mass matrix for the structures with the same skyline form as that of the stiffness matrix. The consistent mass model requires a greater computational cost in the multiplication by the nodal accelerations to get the inertia forces at each time-step in the analysis. It also includes all natural frequencies and consequently gives a slight bias to the frequency content of the structure.

#### 5.1.2.1 Lumped mass

In prismatic 2D framed structure, the lumped mass matrix in the global reference is simply given by

|                                         | [1/2] | 0   | 0                      | 0   | 0   | 0                      |
|-----------------------------------------|-------|-----|------------------------|-----|-----|------------------------|
| $\mathbf{M}_e = \rho \cdot A \cdot L_e$ | 0     | 1/2 | 0                      | 0   | 0   | 0                      |
|                                         | 0     | 0   | $\alpha_r \cdot L_e^2$ | 0   | 0   | 0                      |
|                                         | 0     | 0   | 0                      | 1/2 | 0   | 0                      |
|                                         | 0     | 0   | 0                      | 0   | 1/2 | 0                      |
|                                         | LO    | 0   | 0                      | 0   | 0   | $\alpha_r \cdot L_e^2$ |

Here  $\alpha_r$  is a nonnegative coefficient for rotation.  $\alpha_r$  zero will result in a singular mass matrix which is undesirable if we have to invert the mass matrix. An *ad hoc* solution to define  $\alpha_r$  is to imagine that a uniform slender bar of length  $L_e/2$  and mass m/2 is attached to each node and rotates with it. The associated mass moment of inertia would  $I_z = (m/2)(L_e/2)^2/3$ , and consequently  $\alpha_r = 1/24$ , (?). It should be noted that models based on lumped mass can run substantially faster than those based on consistent mass.

#### 5.1.2.2 Consistent mass

The consistent mass matrix is defined in the local reference frame as

$$\mathbf{m}_{e} = \int_{0}^{L_{e}} \rho \cdot A(x) \cdot \mathbf{N}_{d}(x)^{T} \cdot \mathbf{N}_{d}(x) dx$$

where,

$$\mathbf{N}_{d}(x) = \begin{bmatrix} 1 - \frac{x}{L_{e}} & 0 & 0 & \frac{x}{L_{e}} & 0 & 0 \\ 0 & 1 + 2(\frac{x}{L_{e}})^{3} - 3(\frac{x}{L_{e}})^{2} & x\left(1 - \frac{x}{L_{e}}\right)^{2} & 0 & -2(\frac{x}{L_{e}})^{3} + 3(\frac{x}{L_{e}})^{2} & x\left((\frac{x}{L_{e}})^{2} - \frac{x}{L_{e}}\right) \end{bmatrix}$$
ee,
$$\begin{bmatrix} 140 & 0 & 0 & 70 & 0 & 0 \\ 0 & 156 & 22 \cdot L_{e} & 0 & 54 & -13 \cdot L_{e} \end{bmatrix}$$

Hence,

$$\mathbf{m}_{e} = \frac{\rho \cdot A \cdot L_{e}}{420} \begin{bmatrix} 140 & 0 & 0 & 70 & 0 & 0\\ 0 & 156 & 22 \cdot L_{e} & 0 & 54 & -13 \cdot L_{e} \\ 0 & 22 \cdot L_{e} & 4 \cdot L_{e}^{2} & 0 & 13 \cdot L_{e} & -3 \cdot L_{e}^{2} \\ 70 & 0 & 0 & 140 & 0 & 0 \\ 0 & 54 & 13 \cdot L_{e} & 0 & 156 & -22 \cdot L_{e} \\ 0 & -13 \cdot L_{e} & -3 \cdot L_{e}^{2} & 0 & -22 \cdot L_{e} & 4 \cdot L_{e}^{2} \end{bmatrix}$$
(5.16)

The mass matrix is then transformed into the global reference by rewriting Eq. 5.16 in terms of the rotation matrix,  $\Gamma_e$ .

 $\mathbf{M}_e = \mathbf{\Gamma}_e^T \cdot \mathbf{m}_e \cdot \mathbf{\Gamma}_e$ 

## 5.1.3 Damping Representation

All structures are damped, otherwise their oscillations will never stop. Damping can be viewed as a frictional force which dissipates energy, and can take different form.

The most commonly used form of damping is the so-called viscous or Rayleigh damping which, when inserted in the equation of motion, has the following form

$$\mathbf{M}_{tt} \cdot \ddot{\mathbf{u}}_{t,n} + \mathbf{C}_{tt} \cdot \dot{\mathbf{u}}_{t,n} + \mathbf{P}_{t,n}^{int} = \mathbf{P}_{t,n}^{ex}$$

where,  $\ddot{\mathbf{u}}_{t,n}$ ,  $\dot{\mathbf{u}}_{t,n}$  and  $\mathbf{u}_{t,n}$  are the nodal acceleration, velocity, and displacement vectors at the current time step, respectively;  $\mathbf{P}_{t,n}^{int}$  is the static restoring or internal nodal force vector at the current time step.

Damping is supposed to model the dissipation of energy. In a nonlinear analysis, this is accounted for by some constitutive models which include hysterisis damping, such as the Modified Kent and Park model for concrete (Sect. 2.2.1.1). In linear elastic analysis, the most common form of damping is the so-called viscous damping (better known as Rayleigh damping). In this simplification, we assume the presence of a viscous damper (which by definition is sensitive to velocity) between the structure and an external fixed point (mass proportional), and another set of dampers inside the structure connecting all the degrees of freedom (stiffness proportional damper). Hence, we assume that

$$\mathbf{C}_{tt} = a_m \cdot \mathbf{M}_{tt} + b_k \cdot \mathbf{K}_{tt} \tag{5.17}$$

where,  $a_m$  and  $b_k$  are coefficients which pre-multiply the mass and stiffness terms respectively. Eq. 5.17 is known as proportional Rayleigh damping, Fig. 5.1.



Figure 5.1: Rayleigh damping

Rayleigh damping is the most widely used (but not only) model for damping. The coefficients  $a_m$  and  $b_k$  in Eq. 5.17 are calculated based upon two circular frequencies ( $\omega_1$  and  $\omega_2$ , radians/sec.) to be damped at  $\xi_1$  and  $\xi_2$  respectively. Where  $\omega_m$  and  $\xi_m$  are the circular frequency and the damping ratio of the  $m^{th}$  mode.

We recall that the damping ratio for a single degree of freedom (SDF) for mode m is given by

$$\zeta_m = \frac{C_{tt,m}}{2 \cdot M_{tt,m} \cdot \omega_m} \tag{5.18}$$

Thus for mass proportional damping of multi degree of freedom (MDF) system, with  $\mathbf{C}_{tt,m} = a_m \cdot \mathbf{M}_{tt,m}$ , this would lead to

$$\zeta_m = \frac{a_m}{2} \cdot \frac{1}{\omega_m}$$

The damping ratio is thus inversely proportional to the natural frequency and  $a_m$  can be selected to obtain a specified damping ratio in any one mode i or

$$a_m = 2 \cdot \zeta_i \cdot \omega_i \tag{5.19}$$

Similarly, and recalling that  $\mathbf{K}_{tt} \cdot \phi_m = \omega_m^2 \cdot \mathbf{M}_{tt} \cdot \phi_m$ , a stiffness proportional damping  $\mathbf{C}_{tt,m} = b_k \cdot \mathbf{K}_{tt,m}$  combined with Eq. 5.18 will lead to

$$\zeta_m = \frac{b_k}{2} \cdot \omega_m \tag{5.20}$$

In this case the damping ratio is proportional to the natural frequency and  $b_k$  can be selected to obtain a specified damping ratio in any one mode j or

$$b_k = \frac{2 \cdot \zeta_j}{\omega_j} \tag{5.21}$$

Combining Eq. 5.19 and 5.21 leads to the following linear equations

$$\frac{1}{2} \begin{bmatrix} \frac{1}{\omega_i} & \omega_i \\ \frac{1}{\omega_j} & \omega_j \end{bmatrix} \begin{cases} a_m \\ b_k \end{cases} = \begin{cases} \zeta_i \\ \zeta_j \end{cases}$$
(5.22)

If one assumes the same damping ratio  $\zeta$  for both modes (reasonable practical assumption), then

$$a_m = \zeta \frac{2\omega_i \cdot \omega_j}{\omega_i + \omega_j}$$
$$b_k = \zeta \frac{2}{\omega_i + \omega_j}$$

Again, it should be emphasized that different damping coefficients should be used in linear and in nonlinear analysis (specially if the nonlinear constitutive model accounts for hysterisis damping. Furthermore, if Rayleigh damping is used in a nonlinear analysis, then coefficients  $a_m$  and  $b_k$  may have to be updated at each time increment to reflect the change in the tangential stiffness matrix  $\mathbf{K}_t$ .

#### 5.1.4 Euler Methods

Euler method is a numerical procedure to solve initial values ordinary differential equations (as in structural dynamics). In other words, given a solution t time  $t_n$ , how do we get the solution at time  $t_{n+1}$ .

In our case, we discretize space by the finite element, and discretize time by the finite difference. Spatial discretization is by now well understood, the question is how do we discretize time, or in its most elementary form a derivative.

As with Newton's method, it all start with the Taylor's series. We begin with the forward version

$$y(t_n + h) \equiv y_{n+1} = y(t_n) + h \left. \frac{dy}{dt} \right|_{t_n} + O(h^2)$$

$$\Rightarrow y_{n+1} \simeq y_n + hf(y_n, t_n)$$
(5.23-a)
(5.23-b)

This forward Euler method is also referred to as explicit since  $y_{n+1}$  is given explicitly in terms of known quantities such as  $y_n$  and  $f(y_n, t_n)$  and there is no equation to solve. Explicit methods are easy to implement but are conditionally sable (i.e. h should be smaller than a critical value).

An alternative formulation is one based on the backward Euler method which starts with the following Taylor series expansion

$$y(t_n) \equiv y_n = y(t_{n+1} - h) = y(t_{n+1}) - h \left. \frac{dy}{dt} \right|_{t_{n+1}} + O(h^2)$$
(5.24-a)

$$\Rightarrow y_{n+1} \simeq y_n + hf(y_{n+1}, t_{n+1}) \tag{5.24-b}$$

This is an *implicit* method since  $f(y_{n+1}, t_{n+1})$  is not known and a (usually) nonlinear equation must be solved at every time step (possibly by the Newton-Raphson method). Evidently, this is more computationally expensive than the explicit method, however the method is unconditionally stable.

The geometric interpretation of Euler's method is shown in Fig. 5.2. We note that the implicit method (at the cost of a Newton-Raphson solution) always provides an "exact" solution. In the context of structural dynamics, we can say that equilibrium is satisfied. This is not the case in the explicit method.

#### Example 5.1. Euler Method

1...

Solve the following ordinary linear first order differential equation:

$$\frac{dy}{dt} = 1 + (t - y)^2; \qquad 2 \le t \le 3; \qquad y(2) = 1$$
(5.25)

Solution:

 $y_{n+1} = y_n + hf(y_n, t_n)$ 

 $y_1 = 1 + 0.1 \left[ 1 + (2. - 1.)^2 \right] = 1.2$ (5.26-b)

The Backward Euler will give

Forward Euler with h=0.1

 $y_{n+1} = y_n + hf(y_{n+1}, t_{n+1})$ (5.27-a)  $y_1 = 1 + 0.1 \left[ 1 + (2.1 - y_1)^2 \right]$ (5.27-b)  $0 = 0.1y_1^2 - 1.42y_1 + 1.541$ (5.27-c) (5.27-d)

$$y_1 = 1.1839$$

In this case we had a quadratic equation to solve, however in general we may have to use Newton's method to solve for  $y_n$ .

## 5.2 Time Integration Methods

Time integration is performed through a finite difference solution of the time discretization. We will (have to) assume that equilibrium was reached in the previous time step  $n\,-\,1$ 

 $\mathbf{M}_{tt} \cdot \ddot{\mathbf{u}}_{t,n-1} + \mathbf{C}_{tt} \cdot \dot{\mathbf{u}}_{t,n-1} + \mathbf{P}_{t,n-1}^{int} = \mathbf{P}_{t,n-1}^{ext}$ 

At the current time step n, the equation of motion will be given by

 $\mathbf{M}_{tt} \cdot \ddot{\mathbf{u}}_{t,n} + \mathbf{C}_{tt} \cdot \dot{\mathbf{u}}_{t,n} + \mathbf{P}_{t,n}^{int} = \mathbf{P}_{t,n}^{ext}$ 

Mercury

(5.26-a)

(5.28)



Figure 5.2: Geometric interpretation of Euler's method

There are two broad classes of solution to solve this equation

1. Explicit methods

The nodal displacement vector  $\mathbf{u}_{t,n}$  at the current time step can be calculated from a function of structural response solutions at the previous time step n-1. The effective stiffness matrix for solving the equation of motion consists of mass matrix and/or damping matrix. This indicates that it is not necessary to invert the structural stiffness matrix.

2. Implicit methods

The nodal displacement vector  $\mathbf{u}_{t,n}$  at the current time step is often represented as a function of structural response quantities with both the previous time step n-1 and the current time step n. For this reason, iteration procedure such as Newton-Raphson iterative method has to be applied so as to solve equations and to achieve convergence if the response is nonlinear.

Advantages of using explicit methods for transient analysis include the simplicity of the algorithm, easy implementation and their fast and efficient computation without the demand for iterations. In addition, there are no need for the knowledge of the tangent stiffness during the test. However, explicit methods are only conditionally stable. This means that the computed response may grow without bond when the product of the time step and the highest natural frequency of the structure  $\Delta t \cdot \omega$  exceeds a limitation. In analyzing a structure with a very high natural frequency  $\omega$ , a small time interval needs to be used and it can be too small to be practical. On the other hand, most implicit methods are unconditionally stable. This means that it is possible to analyze a multi-degree-of-freedom system with high frequency modes using a reasonably large time step without stability problems. Furthermore, implicit methods can be customized to provide favorable numerical energy dissipation properties. In addition to the prescribed viscous damping matrix  $\mathbf{C}_{tt}$ , implicit methods provide numerical damping which can be controlled by certain parameters. The value of these parameters can be selected in order to suppress the spurious higher-mode responses, excited by experimental errors during the test. However, an iterative solution procedure for a nonlinear system is computationally more demanding. It introduces the possibility of inducing undesirable loading and unloading hysteresis in a structure whose behavior can be highly sensitive to prior inelastic deformation history. Last but not least implicit methods are ideal candidates fro real time hybrid simulation.

### **5.2.1** Newmark $\beta$ method

Euler's method is now generalized for second order differential equations (equation of motion)

$$\begin{pmatrix} \mathbf{u} \\ \dot{\mathbf{u}} \end{pmatrix}^{n} = \begin{pmatrix} \mathbf{u} \\ \dot{\mathbf{u}} \end{pmatrix}^{n-1} + \Delta t \begin{pmatrix} \dot{\mathbf{u}} \\ \ddot{\mathbf{u}} \end{pmatrix}^{n-1}$$
Forward Euler  
$$\begin{pmatrix} \mathbf{u} \\ \dot{\mathbf{u}} \end{pmatrix}^{n} = \begin{pmatrix} \mathbf{u} \\ \dot{\mathbf{u}} \end{pmatrix}^{n-1} + \Delta t \begin{pmatrix} \dot{\mathbf{u}} \\ \ddot{\mathbf{u}} \end{pmatrix}^{n}$$
Backward Euler (5.29)

Newmark's method is a variation of Euler's method, where higher order derivatives (Eq. 5.28) are computed with lower accuracy for the sake of efficiency.

Again, we first consider the Taylor series expansions of the nodal displacement and velocity vector terms about the values at the previous time n - 1.

$$\mathbf{u}_{t,n} \approx \mathbf{u}_{t,n-1} + \frac{\partial \mathbf{u}_{t,n-1}}{\partial t} \Delta t + \frac{\partial^2 \mathbf{u}_{t,n-1}}{\partial^2 t} \frac{\Delta t^2}{2!} + \frac{\partial^3 \mathbf{u}_{t,n}}{\partial^3 t} \frac{\Delta t^3}{3!} + \cdots$$
  
$$\dot{\mathbf{u}}_{t,n} \approx \dot{\mathbf{u}}_{t,n-1} + \frac{\partial^2 \mathbf{u}_{t,n-1}}{\partial^2 t} \Delta t + \frac{\partial^3 \mathbf{u}_{t,n}}{\partial^3 t} \frac{\Delta t^2}{2!} + \cdots$$
(5.30)

The above two equations represent the approximate displacement and velocity vectors  $(\mathbf{u}_{t,n})$  and  $\dot{\mathbf{u}}_{t,n}$  except for high order terms

| Tał | ole | 5.1: | Properties | of | the | Newmark | β | metho | d |
|-----|-----|------|------------|----|-----|---------|---|-------|---|
|-----|-----|------|------------|----|-----|---------|---|-------|---|

| Method                | Type     | β   | $\gamma$ | Stability condition             | Order of accuracy |
|-----------------------|----------|-----|----------|---------------------------------|-------------------|
| Constant acceleration | Implicit | 1/4 | 1/2      | Unconditional                   | 2                 |
| Linear acceleration   | implicit | 1/6 | 1/2      | $\Delta t \le 2\sqrt{3}/\omega$ | 2                 |
| Central difference    | Explicit | 0   | 1/2      | $\Delta t \le 2/\omega$         | 2                 |

of Taylor series. We represent the last terms of the above two equations as follow:

$$\frac{\partial^{3} \mathbf{u}_{t,n}}{\partial^{3} t} \frac{\Delta t^{3}}{3!} \approx \frac{\frac{\partial^{2} \mathbf{u}_{t,n}}{\partial^{2} t} - \frac{\partial^{2} \mathbf{u}_{t,n-1}}{\partial^{2} t}}{\Delta t} \frac{\Delta t^{3}}{3!} \approx (\ddot{\mathbf{u}}_{t,n} - \ddot{\mathbf{u}}_{t,n-1}) \frac{\Delta t^{2}}{3!}$$

$$\approx \beta (\ddot{\mathbf{u}}_{t,n} - \ddot{\mathbf{u}}_{t,n-1}) \Delta t^{2} \qquad (5.31)$$

$$\frac{\partial^{3} \mathbf{u}_{t,n}}{\partial^{3} t} \frac{\Delta t^{2}}{2!} \approx \frac{\frac{\partial^{2} \mathbf{u}_{t,n}}{\partial t} - \frac{\partial^{2} \mathbf{u}_{t,n-1}}{\partial t}}{\Delta t} \frac{\Delta t^{2}}{2!} \approx (\ddot{\mathbf{u}}_{t,n} - \ddot{\mathbf{u}}_{t,n-1}) \frac{\Delta t}{2!}$$

$$\approx \gamma \left( \ddot{\mathbf{u}}_{t,n} - \ddot{\mathbf{u}}_{t,n-1} \right) \Delta t \tag{5.32}$$

where  $\beta$  and  $\gamma$  are parameters which depict numerical approximations. These parameters will account for Eq. 5.31 and Eq. 5.32 including additional terms which were dropped from Taylor series approximation. Substituting Eq. 5.31 and Eq. 5.32 into Eq. ?? and Eq. 5.30, respectively, we obtain the two equations as follow:

$$\mathbf{u}_{t,n} = \mathbf{u}_{t,n-1} + \Delta t \cdot \dot{\mathbf{u}}_{t,n-1} + \frac{\Delta t^2}{2} \cdot \ddot{\mathbf{u}}_{t,n-1} + \Delta t^2 \cdot \beta \cdot (\ddot{\mathbf{u}}_{t,n} - \ddot{\mathbf{u}}_{t,n-1})$$

$$\dot{\mathbf{u}}_{t,n} = \dot{\mathbf{u}}_{t,n-1} + \Delta t \cdot \ddot{\mathbf{u}}_{t,n-1} + \Delta t \cdot \gamma \cdot (\ddot{\mathbf{u}}_{t,n} - \ddot{\mathbf{u}}_{t,n-1})$$
(5.33)

Hence, we obtain the Newmark  $\beta$  method, which consists of the following equations:

0

$$\mathbf{P}_{tn}^{ext} = \mathbf{M}_{tt} \cdot \ddot{\mathbf{u}}_{tn} + \mathbf{C}_{tt} \cdot \dot{\mathbf{u}}_{tn} + \mathbf{P}_{tn}^{int}$$

$$\mathbf{P}_{t,n}^{ext} = \mathbf{M}_{tt} \cdot \ddot{\mathbf{u}}_{t,n} + \mathbf{C}_{tt} \cdot \dot{\mathbf{u}}_{t,n} + \mathbf{P}_{t,n}^{int}$$
(5.34)  
$$\mathbf{u}_{t,n} = \mathbf{u}_{t,n-1} + \Delta t \cdot \dot{\mathbf{u}}_{t,n-1} + \frac{\Delta t^2}{2} [(1 - 2\beta) \ddot{\mathbf{u}}_{t,n-1} + 2\beta \cdot \ddot{\mathbf{u}}_{t,n}]$$
(5.35)

$$\dot{\mathbf{u}}_{t,n} = \dot{\mathbf{u}}_{t,n-1} + \Delta t \left[ (1-\gamma) \ddot{\mathbf{u}}_{t,n-1} + \gamma \cdot \ddot{\mathbf{u}}_{t,n} \right]$$
(5.36)

where, Eq. 5.34 is the equation of equilibrium expressed at time n + 1, and Eq. 5.35 and Eq.5.36 are finite difference formulas describing the evolution of the approximation solution.  $\beta$  and  $\gamma$  are parameters that determine the stability and accuracy characteristics. Stability conditions for the Newmark  $\beta$  method follows:

1. unconditionally stable if

$$\begin{array}{rcl} \gamma & \geq & \frac{1}{2} \\ \beta & \geq & \frac{\gamma}{2} \end{array}$$

2. conditionally stable if

$$\begin{array}{rcl} \gamma & \geq & \frac{1}{2} \\ \beta & < & \frac{\gamma}{2} \end{array}$$

with the following stability limit:

$$\omega \cdot \Delta t \le \Omega_{crit} = \frac{\xi(\gamma - 1/2) + [\gamma/2 - \beta + \xi^2(\gamma - 1/2)^2]^{1/2}}{\gamma/2 - \beta}$$
(5.37)

where  $\omega$  is maximum natural frequency,  $\Omega_{crit}$  is critical sampling frequency, and  $\xi$  is the damping ratio.

The constant acceleration (trapezoidal rule) method is implicit and unconditionally stable. The linear acceleration method is implicit and conditionally stable. The central difference method is conditionally stable. Note that if  $\gamma = 1/2$  has no effect on stability. In practice it is more convenient to express Eq. 5.37 in terms of the period of vibration,  $T = 2\pi/\omega$ , in which case Eq. 5.37 becomes  $\Delta t/T \leq \Omega_{crit}/(2\pi)$ . In the case of the linear acceleration,  $\Delta t/T$  is calculated as follows:

$$\frac{\Delta t}{T} \le \frac{1}{2\pi} \frac{1}{\sqrt{\gamma - 2\beta}} = 0.551$$

A summary for the Newmark  $\beta$  method is shown in Table. 5.1.

## 5.2.1.1 Newmark $\beta$ implicit method

The Newmark  $\beta$  implicit method can be expressed with Eq. 5.34, 5.35, and 5.36. Rewritting Eq. 5.35 and 5.36:

| $\mathbf{u}_{t,n}$       | = | $	ilde{\mathbf{u}}_{t,n} + \Delta t^2 \cdot eta \cdot \ddot{\mathbf{u}}_{t,n}$  | (5.38) |
|--------------------------|---|---------------------------------------------------------------------------------|--------|
| $\dot{\mathbf{u}}_{t,n}$ | = | $	ilde{\mathbf{u}}_{t,n} + \Delta t \cdot \gamma \cdot \ddot{\mathbf{u}}_{t,n}$ | (5.39) |

where we have labeled the known quantities at time step n-1 as (.)

$$\begin{split} \tilde{\mathbf{u}}_{t,n} &= \mathbf{u}_{t,n-1} + \Delta t \cdot \dot{\mathbf{u}}_{t,n-1} + \frac{\Delta t^2}{2} (1 - 2\beta) \ddot{\mathbf{u}}_{t,n-1} \\ \tilde{\ddot{\mathbf{u}}}_{t,n} &= \dot{\mathbf{u}}_{t,n-1} + \Delta t (1 - \gamma) \ddot{\mathbf{u}}_{t,n-1} \end{split}$$

Rewritting Eq. 5.38, we can solve for  $\ddot{\mathbf{u}}_{t,n}$ :

$$\ddot{\mathbf{u}}_{t,n} = \frac{\mathbf{u}_{t,n} - \tilde{\mathbf{u}}_{t,n}}{\Delta t^2 \cdot \beta} \tag{5.40}$$

Substituting Eq. 5.40 into Eq. 5.39, we can rewrite  $\dot{\mathbf{u}}_{t,n}$ :

$$\dot{\mathbf{u}}_{t,n} = \tilde{\mathbf{u}}_{t,n} + \frac{\gamma}{\Delta t \cdot \beta} (\mathbf{u}_{t,n} - \tilde{\mathbf{u}}_{t,n})$$
(5.41)

Substituting Eq. 5.40 and Eq. 5.41 into Eq. 5.34, we have:

$$\mathbf{M}_{tt} \left[ \frac{\mathbf{u}_{t,n} - \tilde{\mathbf{u}}_{t,n}}{\Delta t^2 \cdot \beta} \right] + \mathbf{C}_{tt} \left[ \tilde{\tilde{\mathbf{u}}}_{t,n} + \frac{\gamma}{\Delta t \cdot \beta} (\mathbf{u}_{t,n} - \tilde{\mathbf{u}}_{t,n}) \right] + \mathbf{P}_{t,n}^{int} = \mathbf{P}_{t,n}^{ext}$$
(5.42)

Rewriting Eq. 5.42,

$$\frac{1}{\Delta t^2 \cdot \beta} \mathbf{M}_{tt} \cdot \mathbf{u}_{t,n} + \frac{\gamma}{\Delta t \cdot \beta} \mathbf{C}_{tt} \cdot \mathbf{u}_{t,n} + \mathbf{P}_{t,n}^{int} 
= \mathbf{P}_{t,n}^{ext} + \frac{1}{\Delta t^2 \cdot \beta} \mathbf{M}_{tt} \cdot \tilde{\mathbf{u}}_{t,n} + \frac{\gamma}{\Delta t \cdot \beta} \mathbf{C}_{tt} \cdot \tilde{\mathbf{u}}_{t,n} - \mathbf{C}_{tt} \cdot \tilde{\mathbf{u}}_{t,n}$$
(5.43)

If the trial solutions in given iteration step k are  $\mathbf{u}_{t,n}^k$ , and  $\mathbf{P}_{t,n}^{int,k}$ , then it does not satisfy the equations of motion. Hence, we can write for this particular step with residual force vector  $\mathbf{P}_{t,n}^{R,k}$ :

$$\mathbf{P}_{t,n}^{R,k} = \mathbf{P}_{t,n}^{ext} + \overline{\mathbf{M}}_{tt} \left( \tilde{\mathbf{u}}_{t,n} - \mathbf{u}_{t,n}^k \right) - \mathbf{C}_{tt} \cdot \tilde{\hat{\mathbf{u}}}_{t,n} - \mathbf{P}_{t,n}^{int,k}$$

where,

$$\overline{\mathbf{M}}_{tt} = \frac{\mathbf{M}_{tt} + \Delta t \cdot \boldsymbol{\gamma} \cdot \mathbf{C}}{\Delta t^2 \cdot \boldsymbol{\beta}}$$

Using initial stiffness iterative method, we can solve for  $\Delta \mathbf{u}_{t,n}^k$ :

$$\mathbf{P}_{t,n}^{R,k} = \mathbf{K}_{eff} \cdot \Delta \mathbf{u}_{t,n}^{k} \tag{5.44}$$

where,  $\mathbf{K}_{eff}$  is the effective stiffness matrix, and  $\Delta \mathbf{u}_{t,n}^k$  is:

 $\Delta \mathbf{u}_{t,n}^k = \mathbf{u}_{t,n} - \mathbf{u}_{t,n}^k$ 

In elastic section, we can rewrite  $\mathbf{P}_{t,n}^{int}$  to compute the effective stiffness matrix with initial stiffness matrix  $\mathbf{K}_{tt}$ :

 $\mathbf{P}_{t,n}^{int} = \mathbf{K}_{tt} \cdot \mathbf{u}_{t,n} \tag{5.45}$ 

Substituting Eq. 5.45 into Eq. 5.43, we can solve for  $\mathbf{u}_{t,n} {:}$ 

 $\mathbf{K}_{eff} \cdot \mathbf{u}_{t,n} = \mathbf{P}_{t,n}^{ext} + \overline{\mathbf{M}}_{tt} \cdot \tilde{\mathbf{u}}_{t,n} - \mathbf{C}_{tt} \cdot \tilde{\dot{\mathbf{u}}}_{t,n}$ 

where,

 $\mathbf{K}_{eff} = \overline{\mathbf{M}}_{tt} + \mathbf{K}_{tt}$ 

From Eq. 5.44, we can solve for  $\delta \mathbf{u}_{t,n}^k$  and the updated displacement vector  $\mathbf{u}_{t,n}^{k+1}$  at the next iteration step k+1:

$$\delta \mathbf{u}_{t,n}^{k} = [\mathbf{K}_{eff}]^{-1} \cdot \mathbf{P}_{t,n}^{R}$$
$$\mathbf{u}_{t,n}^{k+1} = \mathbf{u}_{t,n}^{k} + \delta \mathbf{u}_{t,n}^{k}$$

Fig. 5.3 and 5.4 explain the implementation of transient analysis using the Newmark  $\beta$  implicit method with flexibility-based 2D beam-column elements.

## 5.2.2 Hilber-Hughes-Taylor Method

#### 5.2.2.1 General Formulation

A major drawback of Newmark  $\beta$  method is the tendency for high frequency noise to persist in the solution. On the other hand, when linear damping or artificial viscosity is added via the parameter  $\gamma$ , the accuracy is markedly degraded. The  $\alpha$  method, (?) improves numerical dissipation for high frequency without degrading the accuracy as much.

Equation of motion in HHT method is written at current time step n (forward difference) as:

$$\mathbf{M}_{tt} \cdot \ddot{\mathbf{u}}_{t,n} + \mathbf{P}_{t,n}^{int} = \mathbf{P}_{t,n}^{ext}$$

Seeking an approximate solution of this equation by one-step difference, we write,

$$\mathbf{M}_{tt} \cdot \ddot{\mathbf{u}}_{t,n} + (1+\alpha)\mathbf{P}_{t,n}^{int} - \alpha \cdot \mathbf{P}_{t,n-1}^{int} = \mathbf{P}_{t,n}^{ext}$$

with Eq. 5.33.

We note that the HHT method introduces  $\alpha(\mathbf{P}_{t,n}^{int} - \mathbf{P}_{t,n-1}^{int})$  which is akin of stiffness proportional damping (indeed it is commonlay said that the  $\alpha$  method provides numerical damping). If the above equation is expanded, effect of damping introduced, and possible material nonlinearity introduced, we obtain:

$$(1+\alpha)\mathbf{P}_{t,n}^{ext} - \alpha \mathbf{P}_{t,n-1}^{ext} = \mathbf{M}_{tt} \cdot \ddot{\mathbf{u}}_{t,n} + (1+\alpha)\mathbf{C}_{tt} \cdot \dot{\mathbf{u}}_{t,n} - \alpha \cdot \mathbf{C}_{tt} \cdot \dot{\mathbf{u}}_{t,n-1} + (1+\alpha)\mathbf{P}_{t,n}^{int} - \alpha \cdot \mathbf{P}_{t,n-1}^{int}$$
(5.46)

If  $-1/3 \le \alpha \le 0$ ,  $\beta = (1 - \alpha)^2/4$ , and  $\gamma = (1 - 2\alpha)/2$ , then the  $\alpha$  method is unconditionally stable and has a second-order accuracy. Hence, Eq. 5.33 and 5.46 must all be simultaneously satisfied through an iterative method.

Assuming that we have obtained the response at the previous time step n-1, i.e.  $\mathbf{u}_{t,n-1}$ ,  $\dot{\mathbf{u}}_{t,n-1}$  and  $\ddot{\mathbf{u}}_{t,n-1}$  which satisfy the equation of motion, we now seek to determine the solution at the current time step n by iteration. First of all, we need to determine



Figure 5.3: Flow chart (1) of transient analysis using the Newmark  $\beta$  implicit method



Figure 5.4: Flow chart (2) of transient analysis using the Newmark  $\beta$  implicit method

(5.48)

effective external force and effective stiffness. These are calculated from Eq. 5.40, 5.41 and 5.46.

$$\frac{1}{\Delta t^2 \cdot \beta} \mathbf{M}_{tt} \cdot \mathbf{u}_{t,n} + \frac{\gamma}{\Delta t \cdot \beta} (1+\alpha) \mathbf{C}_{tt} \cdot \mathbf{u}_{t,n} + (1+\alpha) \mathbf{P}_{t,n}^{int}$$

$$= (1+\alpha) \mathbf{P}_{t,n}^{ext} - \alpha \cdot \mathbf{P}_{t,n-1}^{ext} + \frac{1}{\Delta t^2 \cdot \beta} \mathbf{M}_{tt} \cdot \tilde{\mathbf{u}}_{t,n} + \frac{\gamma}{\Delta t \cdot \beta} (1+\alpha) \mathbf{C}_{tt} \cdot \tilde{\mathbf{u}}_{t,n}$$

$$- (1+\alpha) \mathbf{C}_{tt} \cdot \tilde{\mathbf{u}}_{t,n} + \alpha \cdot \mathbf{C}_{tt} \cdot \dot{\mathbf{u}}_{n-1} + \alpha \cdot \mathbf{P}_{t,n}^{int}$$
(5.47)

The trial solutions in iteration step k are  $\mathbf{u}_{t,n}^k$ , and  $\mathbf{P}_{t,n}^{int,k}$ , does not necessarily satisfy the equations of motion. Hence, we can write for this particular step:

$$\begin{aligned} \mathbf{P}_{t,n}^{R,k} &= (1+\alpha)\mathbf{P}_{t,n}^{ext} - \alpha \cdot \mathbf{P}_{t,n-1}^{ext} + \overline{\mathbf{M}}_{tt} \left( \tilde{\mathbf{u}}_{t,n} - \mathbf{u}_{t,n}^{k} \right) - (1+\alpha)\mathbf{C}_{tt} \cdot \tilde{\mathbf{u}}_{t,n} + \alpha \cdot \mathbf{C}_{tt} \cdot \dot{\mathbf{u}}_{t,n-1} \\ &- (1+\alpha)\mathbf{P}_{t,n}^{int,k} + \alpha \cdot \mathbf{P}_{t,n-1}^{int} \end{aligned}$$

where,

$$\overline{\mathbf{M}}_{tt} = \frac{\mathbf{M}_{tt} + \Delta t \cdot \gamma (1 + \alpha) \mathbf{C}_{tt}}{\Delta t^2 \cdot \beta}$$

and  $\mathbf{P}_{t,n}^{R,k}$  is the residual force vector. Using the initial stiffness iterative method, we can solve for  $\Delta \mathbf{u}_{t,n}^k$ :

 $\mathbf{P}_{t,n}^{R,k} = \mathbf{K}_{eff} \cdot \Delta \mathbf{u}_{t,n}^{k}$ 

where,  $\mathbf{K}_{eff}$  is the effective stiffness matrix, and  $\Delta \mathbf{u}_{t.n}^k$  is:

$$\Delta \mathbf{u}_{t,n}^k = \mathbf{u}_{t,n} - \mathbf{u}_{t,n}^k$$

In elastic section, we can express  $\mathbf{P}_{t,n}^{int}$  to compute the effective stiffness matrix with initial stiffness matrix  $\mathbf{K}_{tt}$  as:

$$\mathbf{P}_{t,n}^{int} = \mathbf{K}_{tt} \cdot \mathbf{u}_{t,n} \tag{5.49}$$

Substituting Eq. 5.49 into Eq. 5.47, we solve for  $\mathbf{u}_{t,n}$ :

$$\begin{aligned} \mathbf{K}_{eff} \cdot \mathbf{u}_{t,n} &= (1+\alpha) \mathbf{P}_{t,n}^{ext} - \alpha \cdot \mathbf{P}_{t,n-1}^{ext} + \overline{\mathbf{M}}_{tt} \cdot \tilde{\mathbf{u}}_{t,n} \\ &- (1+\alpha) \cdot \mathbf{C}_{tt} \cdot \tilde{\mathbf{u}}_{t,n} + \alpha \cdot \mathbf{C}_{tt} \cdot \dot{\mathbf{u}}_{t,n-1} + \alpha \cdot \mathbf{P}_{t,n-1}^{int} \end{aligned}$$

where.

$$\mathbf{K}_{eff} = \overline{\mathbf{M}}_{tt} + (1+\alpha)\mathbf{K}_t$$

From Eq. 5.48, we solve for  $\delta \mathbf{u}_{t,n}^k$  and the updated displacement vector  $\mathbf{u}_{t,n}^{k+1}$  at the next iteration step k+1:

$$\delta \mathbf{u}_{t,n}^{k} = [\mathbf{K}_{eff}]^{-1} \cdot \mathbf{P}_{t,n}^{R}$$

 $\mathbf{u}_{t,n}^{k+1} = \mathbf{u}_{t,n}^k + \delta \mathbf{u}_{t,n}^k$ Finally, we note that:

- 1.  $\alpha$  introduces a damping that grows with the ratio of time increment to the period of vibration of a node.
- 2. Negative values of  $\alpha$  provide damping
- 3. If  $\alpha = 0$ , we have no artificial damping (energy preseving) and is exactly the constant acceleration (trapezoidal rule) Newmark's  $\beta$  method if  $\beta = 1/4$  and  $\gamma = 1/2$ .
- 4. Maximum value is  $\alpha = -1/3$  which provides the maximum artificial damping. This results in a damping ratio of about 6% when the time increment is 40% of the period of oscillation of the mode being studied and smaller if the oscillation period increases.
- 5. This artificial damping is not very substantial for realistic time increment and low frequencies, but is non-negligible for high frequencies.

6. A default value of -0.05 is recommended.

Fig. 5.5 explains the implementation of transient analysis using the HHT implicit method in structural level. Element state determination is identical to Fig. 5.4.

## 5.3 Free Vibration

| 12 The governing equation for the free (undamped) vibration of a structure is                                                       |        |
|-------------------------------------------------------------------------------------------------------------------------------------|--------|
| $M\ddot{\mathbf{u}} + \mathbf{K}\mathbf{u} = 0$                                                                                     | (5.50) |
| where the motion is referred to being free, since there are no applied loads.                                                       |        |
| 13 By assuming a harmonic motion                                                                                                    |        |
| $\mathbf{u} = \boldsymbol{\phi} \sin \omega t$                                                                                      | (5.51) |
| the natural frequencies $\omega$ and the corresponding mode shapes $\phi$ can be determined from the generalized eigenvalue problem |        |
| $\omega^2 \mathbf{M} \boldsymbol{\phi} = \mathbf{K} \boldsymbol{\phi}$                                                              | (5.52) |
| or                                                                                                                                  |        |
| $(\mathbf{K} - \omega^2 \mathbf{M}) \boldsymbol{\phi} = 0$                                                                          | (5.53) |
| Since $\phi$ is nontrivial                                                                                                          |        |
| $ \mathbf{K} - \omega^2 \mathbf{M}  = 0$                                                                                            | (5.54) |

| HHT(a) Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Initialize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Compose                                                                                                                                                                                                                                                                                                                                                                                     |
| $\mathbf{M}_{u}, \mathbf{C}_{u}, \Delta t, \alpha, \beta = \frac{(1-\alpha)^{2}}{4}, \gamma = \frac{(1-2\alpha)}{2}, a_{1} = \frac{1}{\Delta t^{2} \cdot \beta}, a_{2} = \Delta t \cdot \gamma, a_{3} = \frac{\gamma}{\Delta t \cdot \beta}$ $\mathbf{u}_{t,n=0} = 0, \dot{\mathbf{u}}_{t,n=0} = 0, \ddot{\mathbf{u}}_{t,n=0} = 0, \mathbf{\delta}_{e,n=0} = 0, \mathbf{\delta}_{e,n=0} = 0, \mathbf{\delta}_{e,n=0} = 0$ $\mathbf{\tilde{d}}_{e,n=0} = 0, \mathbf{\tilde{f}}_{e,n=0} = 0, \mathbf{\sigma}_{s,e,n=0} = 0, \mathbf{\varepsilon}_{s,e,n} = 0, \mathbf{P}_{t,n=0}^{evt} = 0, \mathbf{P}_{t,n=0}^{int} = 0$ | $\begin{split} \bar{\mathbf{M}}_{u} &= a_{1} \Big[ \mathbf{M}_{u} + a_{2} (1 + \alpha) \mathbf{C}_{u} \Big] \\ \mathbf{K}_{eff} &= \bar{\mathbf{M}}_{u} + (1 + \alpha) \mathbf{K}_{u}, \text{ Inv} \mathbf{K}_{eff} = \Big[ \mathbf{K}_{eff} \Big]^{-1} \\ \bar{\mathbf{K}}_{e,n=0}^{\text{tan}} &= \bar{\mathbf{K}}_{e}, \mathbf{c}_{s,e,n=0}^{\text{tan}} = \mathbf{c}_{s,e} \end{split}$ |
| Applied external force (n = 1 to # of extern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | al force vector steps)                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                             |
| $\tilde{\mathbf{u}}_{t,n} = \mathbf{u}_{t,n-1} + \Delta t \cdot \dot{\mathbf{u}}_{t,n-1} + \frac{\Delta t}{2} (1 - 2\beta) \ddot{\mathbf{u}}_{t,n-1} \qquad \dot{\mathbf{u}}_{t,n-1} + \Delta t (1 - \gamma) \ddot{\mathbf{u}}_{t,n-1}$                                                                                                                                                                                                                                                                                                                                                                                 | $\mathbf{u}_{t,n}^{k=0} = \mathbf{u}_{t,n-1},  \mathbf{P}_{t,n}^{\text{int},k=0} = \mathbf{P}_{t,n-1}^{\text{int}},  \mathbf{P}_{t,n}^{ext}$                                                                                                                                                                                                                                                |
| $\tilde{\mathbf{k}}_{e,n}^{\tan,k=1,j=0} = \tilde{\mathbf{k}}_{e,n-1}^{\tan} \qquad \qquad \boldsymbol{\delta}_{e,n}^{k=0} = \boldsymbol{\delta}_{e,n-1}, \ \overline{\mathbf{d}}_{e,n}^{k=0} = \overline{\mathbf{d}}_{e,n-1}$                                                                                                                                                                                                                                                                                                                                                                                          | , $\tilde{\mathbf{d}}_{e,n}^{k=0} = \tilde{\mathbf{d}}_{e,n-1}, \tilde{\mathbf{f}}_{e,n}^{k=0} = \tilde{\mathbf{f}}_{e,n-1}$                                                                                                                                                                                                                                                                |
| $\boldsymbol{\sigma}_{s,e,n}^{k=1,j=0} = \boldsymbol{\sigma}_{s,e,n-1}, \ \boldsymbol{\varepsilon}_{s,e,n}^{k=1,j=0} = \boldsymbol{\varepsilon}_{s,e,n-1}, \mathbf{c}_{s,e,n}^{\tan,k=1,}$                                                                                                                                                                                                                                                                                                                                                                                                                              | $^{j=0} = \mathbf{c}_{s,e,n-1}^{\mathrm{tan}}$                                                                                                                                                                                                                                                                                                                                              |
| $\mathbf{P}_{t,n}^{eff} = (1+\alpha)\mathbf{P}_{t,n}^{ext} \cdot \alpha \cdot \mathbf{P}_{t,n-1}^{ext} + \mathbf{\bar{M}}_{tt} \cdot \mathbf{\tilde{u}}_n - (1+\alpha)\mathbf{C}_{tt} \cdot \mathbf{\tilde{u}}$                                                                                                                                                                                                                                                                                                                                                                                                         | $_{n} + \alpha \cdot \mathbf{C}_{tt} \cdot \dot{\mathbf{u}}_{n-1} + \alpha \cdot \mathbf{P}_{t,n-1}^{\text{int}}$                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                             |
| Structural determination<br>(Iteration loop: k = 1 to maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n iteration)                                                                                                                                                                                                                                                                                                                                                                                |
| $\mathbf{P}_{t,n}^{R,k} = (1+\alpha)\mathbf{P}_{t,n}^{ext} - \alpha \cdot \mathbf{P}_{t,n-1}^{ext} + \mathbf{\overline{M}}_{tt} \left(\mathbf{\widetilde{u}}_{n} - \mathbf{u}_{n}^{k-1}\right) - (1+\alpha)\mathbf{C}_{tt} \cdot \mathbf{\widetilde{u}}_{n} + \alpha \cdot \mathbf{U}_{tt}$                                                                                                                                                                                                                                                                                                                             | $\mathbf{C}_{t} \cdot \dot{\mathbf{u}}_{n-1} - (1+\alpha) \mathbf{P}_{t,n}^{\text{int}} + \alpha \cdot \mathbf{P}_{t,n-1}^{\text{int}}$                                                                                                                                                                                                                                                     |
| $\delta \mathbf{u}^{k} = \mathrm{inv} \mathbf{K} - [\mathbf{P}^{R,k}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                             |
| $\mathbf{u}_{t,n}^{k} = \mathbf{u}_{t-1}^{k-1} + \delta \mathbf{u}_{t}^{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                             |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                             |
| Element determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ements)                                                                                                                                                                                                                                                                                                                                                                                     |
| $\mathbf{P}_{t,n}^{\text{int},k} = \sum_{e} \mathcal{A}_{b,e}^{T} \mathbf{F}_{e,n}^{\text{int},k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                             |
| $\mathbf{K}_{u,n}^{\tan,k} = \text{Assemble}(\mathbf{K}_{e,n}^{\tan,k})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                             |
| $\mathbf{K}_{eff,n}^{\text{tan},k} = \mathbf{\overline{M}}_{n} + \mathbf{K}_{n,n}^{\text{tan},k}, \text{ Inv} \mathbf{K}_{eff} = \begin{bmatrix} \mathbf{K}_{eff}^{\text{tan}} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{bmatrix} k \\ n \end{bmatrix}^{-1}$                                                                                                                                                                                                                                                                                                                                                 |
| Ť,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No                                                                                                                                                                                                                                                                                                                                                                                          |
| $\ \delta \mathbf{u}_{t,n}^k\  < Tolerance$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                             |
| Yes<br>Break                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                             |
| $\mathbf{u}_{t,n} = \mathbf{u}_{t,n}^k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                             |
| $\dot{\mathbf{u}}_{t,n} = \dot{\mathbf{u}}_{t,n} + a_3 \left( \mathbf{u}_{t,n} - \tilde{\mathbf{u}}_{t,n} \right)$ $\ddot{\mathbf{u}}_{t,n} = a_1 \left( \mathbf{u}_{t,n} - \tilde{\mathbf{u}}_{t,n} \right)$                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                             |
| -t,n $-t(-t,n$ $-t,n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                             |

Figure 5.5: Flow chart of transient analysis using the HHT implicit method

or with  $\omega^2=\lambda$ 

$$|\mathbf{K} - \lambda \mathbf{M}| = 0 \tag{5.55}$$

which is the *characteristic equation*, and  $\lambda$  is called the *eigenvalue* of the equation, and the structure is said to respond in the *mode* corresponding to a particular frequency.

14 For computational purposes, if we premultiply each side of the preceding equation by  $M^{-1}$ , then

$$(\mathbf{M}^{-1}\mathbf{K} - \lambda \mathbf{I})\boldsymbol{\phi} = 0$$
(5.56)

It should be noted that a zero eigenvalue is obtained for each possible rigid body motion of a structure that is not completely supported.

15 Depending on which mass matrix is adopted, slightly different results are obtained. In general, lumped mass matrices approach the exact value (consistent mass matrix) from below.

16 The mode shapes  $\phi$  are "shapes", and give a relative magnitude of the DOF, not the absolute values (since they are the solution to a set of homogeneous equations).

17 The natural frequencies and mode shapes provide a fundamental description of the vibrating structure.

## Chapter 6

## Notation

| $\mathbf{P}_{S}^{int}$            | : | Internal nodal force vector                                                                                                                              |
|-----------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{P}_{t}^{ext}$            | : | External nodal force vector at free degrees of freedom at structural level                                                                               |
| $\mathbf{P}_{t}^{int}$            | : | Internal nodal force vector at free degrees of freedom at structural level                                                                               |
| $\mathbf{P}^{int}$                | : | Internal nodal force vector at constraint degrees of freedom at structural level                                                                         |
| $\mathbf{P}_{i}^{R}$              | : | Residual nodal force vector at free degrees of freedom at structural level                                                                               |
| $\mathbf{u}_{t}^{\tau}$           | : | Nodal displacement vector at free degrees of freedom at structural level                                                                                 |
| $\mathbf{F}_{e}$                  | : | Element nodal force vector in global reference                                                                                                           |
| $\mathbf{F}_{e}$                  | = | $ N_{X1}, V_{Y1}, M_{Z1}, N_{X2}, V_{Y2}, M_{Z2} ^T$                                                                                                     |
| $\mathbf{F}_{o}^{int}$            | : | Internal element nodal force vector in global reference                                                                                                  |
| $\delta_e$                        | : | Element nodal displacement vector in global reference                                                                                                    |
| $\boldsymbol{\delta}_{e}$         | = | $ u_{X1}, v_{Y1}, \theta_{Z1}, u_{X2}, v_{Y2}, \theta_{Z2} ^T$                                                                                           |
| $\overline{\mathbf{f}}_{e}$       | : | Element nodal force vector in local reference with rigid body modes                                                                                      |
| $\overline{\mathbf{f}}_{e}$       | = | $ \overline{N}_{x1}, \overline{V}_{y1}, \overline{M}_{z1}, \overline{N}_{x2}, \overline{V}_{y2}, \overline{M}_{z2} ^T$                                   |
| $\overline{\mathbf{f}}_{e}^{int}$ | : | Internal element nodal force vector in local reference with rigid body modes                                                                             |
| $\overline{\mathbf{d}}_{e}$       | : | Element nodal displacement vector in local reference with rigid body modes                                                                               |
| $\mathbf{d}_{e}$                  | = | $\lfloor \overline{u}_{x1}, \ \overline{v}_{y1}, \ \overline{\theta}_{z1}, \ \overline{u}_{X2}, \ \overline{v}_{Y2}, \ \overline{\theta}_{Z2} \rfloor^T$ |
| $\tilde{\mathbf{f}}_e$            | : | Element nodal force vector in local reference without rigid body modes                                                                                   |
| $\tilde{\mathbf{f}}_e$            | = | $[\tilde{M}_{z1}, \tilde{M}_{z2}, \tilde{N}_{x2}]^T$                                                                                                     |
| $\tilde{\mathbf{f}}_{e}^{int}$    | : | Internal element nodal force vector in local reference without rigid body modes                                                                          |
| $\tilde{\mathbf{f}}_{e}^{R}$      | : | Residual element nodal force vector in local reference without rigid body modes                                                                          |
| $\tilde{\mathbf{d}}_e$            | : | Element nodal displacement vector in local reference without rigid body modes                                                                            |
| $\tilde{\mathbf{d}}_e$            | = | $ \tilde{	heta}_{z1}, \tilde{	heta}_{z2}, \tilde{	heta}_{z2} ^T$                                                                                         |
| $\tilde{\mathbf{d}}_{-}^{R}$      | : | Residual element nodal displacement vector in local reference without rigid body modes                                                                   |
| $\mathbf{d}_{s}^{e}(x)$           | : | Section displacement vector                                                                                                                              |
| $\mathbf{d}_s(x)$                 | = | $ u(x), v(x) ^T$                                                                                                                                         |
| $\boldsymbol{\sigma}_{s}(x)$      | : | Section force vector                                                                                                                                     |
| к.                                |   | Plastic stress                                                                                                                                           |

| - ()                                    |   | $ \mathcal{M}(\cdot) - \mathcal{M}(\cdot) ^T$                             |
|-----------------------------------------|---|---------------------------------------------------------------------------|
| $\sigma_s(x)$                           | = | [N(x), M(x)]                                                              |
| $\sigma_{s}(x)$                         | : | Internal section force vector                                             |
| $\sigma_{s}^{n}(x)$                     | : | Residual section force vector                                             |
| $\boldsymbol{\varepsilon}_{s}(x)$       | : | Section deformation vector                                                |
| $\boldsymbol{\varepsilon}_{s}(x)$       | = | $\left[\varepsilon_{x}(x), \phi_{z}(x)\right]^{T}$                        |
| $\boldsymbol{\varepsilon}_{s}^{int}(x)$ | : | Residual section deformation vector                                       |
| $\sigma$                                | : | Uniaxial stress                                                           |
| ε                                       | : | Uniaxial strain                                                           |
| $\sigma_r$                              | : | Uniaxial stress of layer/fiber                                            |
| $\varepsilon_r$                         | : | Uniaxial strain of layer/fiber                                            |
| $\mathbf{N}_d(x)$                       | : | Shape function on displacement field                                      |
| $\mathbf{B}_d(x)$                       | : | The matrix derived from the derivatives of $\mathbf{N}_d(x)$              |
| $\mathbf{N}_f(x)$                       | : | Shape function on force field                                             |
| $\mathbf{K}_S$                          | : | Augmented stiffness matrix at structural level                            |
| $\mathbf{K}_{tt}$                       | : | Stiffness matrix associated natural boundary conditions                   |
| $\mathbf{K}_{tu}$                       | : | Stiffness matrix associated natural and essential boundary conditions     |
| $\mathbf{K}_{ut}$                       | : | Stiffness matrix associated essential and natural boundary conditions     |
| $\mathbf{K}_{uu}$                       | : | Stiffness matrix associated essential boundary conditions                 |
| $\frac{\mathbf{K}_{e}}{\mathbf{K}_{e}}$ | : | Element stiffness matrix in global reference                              |
| $\mathbf{k}_{e}$                        | : | Element stiffness matrix in local reference with rigid body modes         |
| $\mathbf{k}_{e}^{\iota a n}$            | : | Element tangent stiffness matrix in local reference with rigid body modes |
| $\tilde{\mathbf{k}}_e$                  | : | Element stiffness matrix in local reference without rigid body modes      |
| $\tilde{\mathbf{c}}_{e}$                | : | Element flexibility matrix in local reference without rigid body modes    |
| $\mathbf{k}_s(x)$                       | : | Section stiffness matrix                                                  |
| $\mathbf{k}_{s}^{tan}(x)$               | : | Section tangent stiffness matrix                                          |
| $\mathbf{c}_{s}(x)$                     | : | Section flexibility matrix                                                |
| E(x)                                    | : | Elastic modulus                                                           |
| A(x)                                    | : | Section area                                                              |
| $I_z(x)$                                | : | Moment of inertia on section area                                         |
| $\delta \overline{\mathbf{d}}_{e}$      | : | Virtual element nodal displacement vector in local reference              |
| $\delta \boldsymbol{\varepsilon}_s(x)$  | : | Virtual section deformation vector                                        |
| $L_e$                                   | : | Element length                                                            |
| $\Gamma_e$                              | : | Transformation matrix between local and global coordinate system          |
| $	ilde{f \Gamma}_e$                     | : | Transformation matrix between rigid body modes and no rigid body modes    |

### Subscript

- tKnown traction :
- uKnown displacement : SStructural level :
- e
- Element level or  $e^{th}$  element at element state determination Layer/fiber level or  $r^{th}$  layer/fiber at layer/fiber state determination Section level or  $s^{th}$  section at section state determination r
- s:
- Displacement field d
- fForce field :
- Current step of External force/displacement vector n

Superscript

- intInternal :
- extExternal : RResidual
- :  $_{k}$
- $k^{th}$  iteration at structural level  $j^{th}$  iteration at element level :
- j:

## NOTATION; Old Matrix Lecture Notes

| a                                              | Vector of coefficcients in assumed displacement field                                                                                                                            |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                                              | Area                                                                                                                                                                             |
| $\mathcal{A}$                                  | Kinematics Matrix                                                                                                                                                                |
| b                                              | Body force vector                                                                                                                                                                |
| B<br>[ <b>P</b> <sup>/</sup> ]                 | Statics Matrix, relating external nodal forces to internal forces<br>Statics Matrix relating nodal load to internal forces $\mathbf{p} = [\mathbf{P}']\mathbf{P}$                |
|                                                | Statics Matrix relating flocal four to internal forces $\mathbf{p} = [\mathbf{D}]\mathbf{r}$ .<br>Matrix relating assumed displacement fields parameters to joint displacements. |
|                                                | Cosine                                                                                                                                                                           |
| [C1 C2]                                        | Matrices derived from the statics matrix                                                                                                                                         |
| {d}                                            | Element flexibility matrix (lc)                                                                                                                                                  |
| $\{d_c\}$                                      | о ( ) ,                                                                                                                                                                          |
| [D]                                            | Structure flexibility matrix (GC)                                                                                                                                                |
| E                                              | Elastic Modulus                                                                                                                                                                  |
| [E]                                            | Matrix of elastic constants (Constitutive Matrix)                                                                                                                                |
| { <b>F</b> }                                   | Unknown element forces and unknown support reactions                                                                                                                             |
| { <b>F</b> 0}                                  | Nonredundant element forces (lc)                                                                                                                                                 |
| { <b>Γ</b> <sub>x</sub> }<br>∫ <b>Γ</b> \      | Element forces (lc)                                                                                                                                                              |
| $\left( \mathbf{F}_{e} \right)$                | Nedel initial forece                                                                                                                                                             |
| $\left\{\frac{\mathbf{r}}{\mathbf{r}}\right\}$ | Nodal more any                                                                                                                               |
| ( <u>r</u> )                                   | Futernally applied nodel fores                                                                                                                                                   |
| { <b>Γ</b> }<br>FEΔ                            | Externally applied flodal forces                                                                                                                                                 |
| G                                              | Shear modulus                                                                                                                                                                    |
| Ĩ                                              | Moment of inertia                                                                                                                                                                |
| $[\mathcal{L}]$                                | Matrix relating the assumed displacement field parameters                                                                                                                        |
|                                                | to joint displacements                                                                                                                                                           |
| $[\mathbf{I}]$                                 | Idendity matrix                                                                                                                                                                  |
| [ID]                                           | Matrix relating nodal dof to structure dof                                                                                                                                       |
| J                                              | St Venant's torsional constant                                                                                                                                                   |
| [K]                                            | Element stiffness matrix (Ic)                                                                                                                                                    |
|                                                | Comparing alament stiffness matrix (lc)                                                                                                                                          |
| [ <b>k</b> <sub>g</sub> ]                      | Botational stiffness matrix ([d] inverse)                                                                                                                                        |
| $[\mathbf{K}]$                                 | Structure stiffness matrix (GC)                                                                                                                                                  |
| $[\mathbf{K}_{q}]$                             | Structure's geometric stiffness matrix (GC)                                                                                                                                      |
| L                                              | Length                                                                                                                                                                           |
| L                                              | Linear differential operator relating displacement to strains                                                                                                                    |
| $l_{ij}$                                       | Direction cosine of rotated axis i with respect to original axis j                                                                                                               |
| $\{LM\}$                                       | structure dot of nodes connected to a given element                                                                                                                              |
| { <b>N</b> }                                   | Shape functions Element nodel forece $- E(le)$                                                                                                                                   |
| { <b>b</b> }                                   | Structure nodal forces $(GC)$                                                                                                                                                    |
| P.V.M.T                                        | Internal forces acting on a beam column (axial, shear, moment, torsion)                                                                                                          |
| $\mathbf{R}$                                   | Structure reactions (GC)                                                                                                                                                         |
| S                                              | Sine                                                                                                                                                                             |
| t                                              | Traction vector                                                                                                                                                                  |
| t                                              | Specified tractions along $\Gamma_t$                                                                                                                                             |
| u<br>~                                         | Displacement vector                                                                                                                                                              |
| $\frac{u}{\widehat{\alpha}(m)}$                | Neighbour function to $u(x)$                                                                                                                                                     |
| $\mathbf{u}(x)$                                | Translational displacements along the x $x$ and z directions                                                                                                                     |
| U                                              | Strain energy                                                                                                                                                                    |
| $U^*$                                          | Complementary strain energy                                                                                                                                                      |
| x, y                                           | loacal coordinate system (lc)                                                                                                                                                    |
| X, Y                                           | Global coordinate system (GC)                                                                                                                                                    |
| W                                              | Work                                                                                                                                                                             |
|                                                | Coefficient of thermal expansion                                                                                                                                                 |
| [1]<br>[8]                                     | Floment nodel displacements (lc)                                                                                                                                                 |
|                                                | Nedel displacements in a continuous system                                                                                                                                       |
| $\{\Delta\}$                                   | Structure nodal displacements (GC)                                                                                                                                               |
| (_)<br>¢                                       | Strain vector                                                                                                                                                                    |
| $\boldsymbol{\varepsilon}_0$                   | Initial strain vector                                                                                                                                                            |
| $\{\Upsilon\}$                                 | Element relative displacement (lc)                                                                                                                                               |
| $\{\mathbf{\Upsilon}_0\}$                      | Nonredundant element relative displacement (lc)                                                                                                                                  |
| $\{\Upsilon_x\}$                               | Redundant element relative displacement (lc)                                                                                                                                     |
| θ                                              | rotational displacement with respect to z direction (for 2D structures)                                                                                                          |
| $\delta M$                                     | Virtual moment                                                                                                                                                                   |
| $\delta P$                                     | Virtual force                                                                                                                                                                    |
| $\delta \theta$                                | Virtual rotation                                                                                                                                                                 |
| $\delta u$                                     | Virtual displacement                                                                                                                                                             |
| $\delta \phi$                                  | Virtual curvature                                                                                                                                                                |
| $\delta U$                                     | Virtual internal strain energy                                                                                                                                                   |
| δW                                             | Virtual external work                                                                                                                                                            |
| 0E<br>8-                                       | Virtual strain vector                                                                                                                                                            |
| σ                                              | virtual stress vector<br>Surface                                                                                                                                                 |
| 1                                              |                                                                                                                                                                                  |

- $\Gamma_t \\ \Gamma_u \\ \boldsymbol{\sigma} \\ \boldsymbol{\sigma}_0 \\ \Omega$ Surface subjected to surface tractions Surface associated with known displacements Stress vector Initial stress vector Volume of body

lc: Local Coordinate system GC: Global Coordinate System