
MERCURY
Optimized Software for Hybrid Simulation;

from Pseudo-Dynamic to Hard Real Time

V. Saouma D.H. Kang G. Haussmann

University of Colorado, Boulder

September 6, 2010

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 1/37

Outline I

1 Introduction
Global Context
Background
NRC/NEES
Mercury Overview

2 Analysis
Constitutive Models
Elements

Library
State Determination

Nonlinear Algorithms

3 Hybrid
Matlab
c++; General
c++; Hybrid Element
c++; Coordinate Transformation

4 Improvements
RTHS on a Shared Memory Computer

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 2/37

Outline II

RTHS on a Computer Cluster; Algorithm
RTHS on a Computer Cluster; Results

5 Scripting
6 Interface

Introduction
Hybrid Pipe
SCRAMNet Pipe
Virtual Spring Pipe
Environmental Variables

7 Xtras
8 Documentation

Technical Manual
User’s manuals
Validation Manual

9 Remarks
Current Development
Graphical Post Processor
Applications

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 3/37

Outline III

Shake Table vs RTHS

10 Summary

11 Credit

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 4/37

Introduction Global Context

Global Context

Numerical simulation remains a major challenge to EQ engineering community.

We can simulate the explosion of a nuclear bomb, but we can not (“exactly”)
simulate seismic response of structures.

Must rely on experiments of structural components, or systems to capture
complex response.

Finite element modeling capabilities are sophisticated, but not yet “perfect”.

Many (hundreds of) laboratories

Are equipped with digitally controlled actuators/load frames (and LabView),
and continue to operate under load/strain/stroke control only.
Could benefit from a full nonlinear finite element code which can be
plugged in LabView/Simulink to drive their tests

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 5/37

Introduction Background

Background

Existing software not ideally suited for single site pseudo dynamic (PsD)
and RTHS.

Software may require support of a “facilitator” (such as OpenFresco or
SIMCOR) to interact with hardware. Essential for distributed hybrid
simulation, a handicap for single site HS.

The literature provides very little evidence of RTHS of structures
(complexity of the numerical substructure, validation with shake table
tests).

Boulder embarked in a project to

Develop an optimized software for single site PsD and RTHS (not meant as
an alternative to OpenSees, Sap2000, Midas, ...)
Perform RTHS of a reinforced concrete frame previously tested on a shake
table, and compare results.

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 6/37

Introduction NRC/NEES

A Research Agenda for the Network for

Earthquake Engineering Simulation (NEES)

Committee to Develop a Long-Term Research

Agenda for the N etwork for Earthquake Engineering Simulation (N EES)

Board on Infrastructure and the Constructed Environment

Division on Engineering and Physical Sciences

Preventing
Earthquake

Disasters
THE GRAND CHALLENGE IN EARTHQUAKE ENGINEERING

National Research Council

One of the primary goals of NEES
is to foster a movement toward
integrated computer simulation and
physical testing.

Holy Grail: replace all testing by
numerical simulation. How can we
achieve it?

1 Increase sophistication of real time
hybrid simulation (RTHS).

2 Gradually replace/eliminate ST tests
by RTHS.

3 Eliminate ST & RTHS

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 7/37

Introduction Mercury Overview

Mercury Overview

Two identical versions

Matlab (used for prototyping, and pedagogical purposes)
c++ for deployment
Students found it much easier to start with the Matlab version, and then run
the c++ version.

Has most of the key features likely to be required in a comprehensive
nonlinear RTHS of steel or reinforced concrete structures.

Runs within LabView, Simulink/xPC, or real time Linux.

Optimized for speed and performance.

“Battle tested”

c++ version with a complex RTHS simulation.
Matlab version in a new course (Nonlinear Structural Analysis)

Extensive documentation, and validation.

Will be supported by Boulder if you decide to adopt it.

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 8/37

Analysis Constitutive Models

Constitutive Models; fiber elements

Steel

Models with isotropic and kinematic
hardening

Bilinear with isotropic hardening

Modified Giuffre-Pinto

tanE

1 1C (,)rev revε σ

1 1
0 0(,)ε σ

2 2
0 0B (,)ε σ

2 2A (,)rev revε σ

E

yε

Strain [mm/mm]

St
re

ss
 [

M
pa

]

-0.04 -0.02 0 0.02 0.04 0.06 0.08

-2000

-1000

0

1000

2000

(a)

(b)

Concrete

Modified Kent and Park

A

B C

1 1D(,)m mε σ

E
F

G

H

2 2I(,)m mε σ

R(,)R Rε σ

1
tε 2

tε
1
RE

2
RE

20.5 RE⋅

20E

10.5 RE⋅

cE

cE

cε

cσ

Anisotropic damage model
(LMT/Cachan)

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

-0.010 -0.008 -0.006 -0.004 -0.002 0.000 0.002

S
tr

es
s

[k
N

/m
m

2
]

Strain [mm/mm]

Strain-Strain Curve

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 9/37

Analysis Constitutive Models

Constitutive Models; Lumped Plasticity

Model of Ibarra, Medina and Krawinkler (2005)

1

0

2

37

4

5

6

8

F

y

!
F

1

!
F

1

"
F

y

"
F

0

!
 1

!

0

"
 1

"

0

"
K

1

"
K

K

1

!
K

0

!
K

Original Envelope Original Envelope

1

0

2

3

7

4
5

6

8

F

y

!
F

,1ref

!
F

y

"
F

0

!
 1

!

0

"
 1

"

K

,1reK

,0ref

!
F

,1ref

"
F

,0ref

"
F

Basic strength deterioration Post capping strength deterioration

1

0

2

3

7

4

5

6

F

y

!
F

y

"
F

K

1K

Original Envelope

K

2K

Interruption

(Disregard stiffness deterioration)

1

0

2

3

7

4

5

6

8

F

y

!
F

y

"
F

0

!

0

"

K

,1reK

Original Envelope

9

,1s

!

,1s

"

Unloading stiffness deterioration Accelerated reloading stiffness deterioration

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 10/37

Analysis Elements

Element Library

2D truss and beam-columns

Stiffness Based

Flexibility Based (with or without
element iterations)

x

y

z

x

, ()e yw x

, ()e xw x
1 1,z zM θ��

2 2,x xN u� �

2 2,z zM θ��

1 1,z zM θ��

, ()e yw x

, ()e xw x
(), ()z zM x xφ

(), ()x zN x xε

eL

Layered (fiber) sections

x

z

y y

z
ifiby

ifibz

Zero length elements and sections

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 11/37

Analysis Elements

State Determination

Analysis

,tnP1

int

, ,

ext

t n t n P P
?

8

a) Structure level; , u P b) Element level; , d f

,tnu

2

Element Nodal

Forces

intint

,, , enenff

Structure Tangent

Stiffness Matrix

tan

SK

Structure Nodal

Forces
int

,tnP 7

c) Section level;

4
Section

Deformations ,,sen
Constitutive Model

! "D# $ $!f % &$

Section

Forces

Section

Forces , ,s e n#

E
lem

en
t N

o
d
al

D
isp

lacem
en

ts
,

e
n

d
E

lem
en

t

N
o
d

al

F
o

rces
,

e
n

f

Element Nodal

Displacements ,e nd
3

int

,,sen

?
5 int

, ,e n e n d d

Element Tangent

Stiffness Matrix

tan tan

, ,,e n e nk k

66

7

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 12/37

Analysis Nonlinear Algorithms

Nonlinear Analysis

Solution Algorithms
Linear static
Eigenvalue analysis
Initial stiffness
Newton-Raphson
Modified Newton-Raphson

Mixed User can specify automatic change of solution algorithm if
convergence fails

Convergence Criteria
Displacement norm
Force norm
Energy norm

Integrators
Static

Load control
Displacement control
Arc length†

Transient
Newmark β

Hilber-Hughes-Taylorα

Shing (IS, NR, or MNR)

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 13/37

Hybrid Matlab

Hybrid Capabilities; Matlab

Supports (non-real time) distributed hybrid
element

Communication through TCP/IP,

“Physical element” can be another version
of Mercury.

Transfers nodal displacements
hybrid2DBeamColumnNumerical

Slave node (if Mercury) can return
restoring forces and nodal displacements
hybrid2DBeamColumnPhysical.

For “debugging” (testing coordinate transformation) and teaching

♦ Defintion of hybrid element in Mercury_Master with IP address2

elements = {{eletag1, Hybrid2DBeamColumnNumerical , in, jn, sectag, IP address1 , port number}};

♦ Definition of physical element in Mercury_Slave with IP address1

hybrid = { Hybrid2DBeamColumnPhysical , IP address2 , port number, eletag2}

H
y

b
ri

d
2

D
B

ea
m

C
o

lu
m

n
N

u
m

er
ic

al
w

it
h

el
et

ag
1

clientdouble.m

clientdouble(IP address2,

port number,

number of retries)

H
y

b
ri

d
2

D
B

ea
m

C
o

lu
m

n
P

h
y

si
ca

l
w

it
h

el
et

ag
2

serverdouble.m

serverdouble(,

port number,

number of retries)

n

ed

TCP/IP Connection

serverdouble.m

serverdouble(,

port number,

number of retries)

clientdouble.m

clientdouble(IP address1,

port number,

number of retries)

m

ef

serverdouble.m

serverdouble(,

port number,

number of retries)

clientdouble.m

clientdouble(IP address1,

port number,

number of retries)

m

ed

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 14/37

Hybrid c++; General

Hybrid Capabilities; c++

Hybrid Element converts numerical values into physical space values

transfer interface shuttles data between Mercury and the hosting application that
controls the physical test.

Hybrid functionality has been exposed to a command-line program, National
Instruments LabView, and Mathworks MATLAB/Simulink.

Transfer interface can be used to embed Mercury within other applications

Environment assigns a platform on which Mercury runs.

Mercury performs timestep/increment iteration internally vs. embedded analysis
(Mercury performs a single step when triggered by the hosting application)

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 15/37

Hybrid c++; Hybrid Element

Hybrid Element

Appears as an element like any other element in the numerical model computes restoring

forces (f
int
e) in terms of nodal displacements (d

n
e).

Uses physical measurements instead of computation to produce element restoring forces.

Measured quantities include all forces produced by the specimen: stiffness, damping, and
inertial forces.

For nonlinear solution user must provide reasonable estimates of initial and tangent
stiffness.

n

e
d n

p

m

e
f

m

e
f

m
pd

e
d

d

e
f

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 16/37

Hybrid c++; Coordinate Transformation

Coordinate Transformation

Element nodal displacements in structural model are converted into actuator
displacements (pn) which are applied to the physical specimen

measured element restoring forces (f
m
e) and element nodal displacements (d

m
e) from the

specimen are then converted into desired element restoring forces (f
d
e) and element nodal

displacements (d
d
e) used in the numerical model

1 1 1X , A , p

BL

nx

ny

nz

nx nxN , u

ny nyV ,v

nz nzM ,

p pxX , u 2 2 2X ,A , p

3 3 3X ,A , p

1

2

p pyY , v

p pz

Z ,

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 17/37

Improvements RTHS on a Shared Memory Computer

RTHS on a Shared Memory Computer

Multithreading based on Intel MKL library

Linear Solver: PARDISO (thread-safe,
high-performance, robust, memory
efficient software for large sparse
symmetric matrices).

Force Recovery: is multi-threaded for
parallel operations.

Test Problem to Assess benefit of
multi-threading analysing a R/C frame of
increasing size.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 200 400 600 800 1000 1200 1400 1600 1800

S
pe

ed
up

 o
ve

r
se

ria
l p

ro
gr

am

DOFs in model

Speedup of multithreaded Mercury vs. serial Mercury

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 18/37

Improvements RTHS on a Computer Cluster; Algorithm

RTHS on a Computer Cluster;Algorithm

K3
-1

u1
1

u2
1

u1
m...u1

2
u2

2
u2

m
... u3

1
u3

2
u3

m
...

K0
-1

1 2 3

a) Initial stiffness; One processor; m=10

u1
1

u2
1

u1
m...u1

2
u2

2
u2

m
... u3

1
u3

2
u3

m
...

K1
-1

1 2 3

Incr.

Incr.

K2
-1

b) Modified Newton-Raphson; m=10 (not feasible, K-1 computationally expensive)

Shared Memory Configuration (Multi-threaded)

1Incr.

SCRAMNet Card

2 3 4 5 6 7 8 9 10 11 12 13 14

K0
-1

K0
-1

K3
-1

K7
-1

K10
-1

Cluster A (Real time)

Cluster B (Non-Real time) K3
-1

Cluster A (Real time)

Cluster A (Real time)

Distributed Memory Configuration (MPI)

c) Saouma-Kang (Variable Initial Stiffness)

K7
-1

Iter.

Iter.

Two clusters: A (real time) dedicated to hybrid simulation (multiple
CPU for force recoveries); B (not real time) dedicated to evaluation of
K−1

t . Swap inverse tangent matrix when completed.

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 19/37

Improvements RTHS on a Computer Cluster; Results

RTHS on a Computer Cluster; Results

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 2 3 4 5 6 7

S
p

ee
d

u
p

Number of processors

Speedup (Parallel program)

with inverse matrix & element state determination)

of elements = 53 # of elements = 109 # of elements = 165 # of elements = 333

of elements = 389 # of elements = 445 # of elements = 501

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 20/37

Scripting

Scripting Interface: LUA

Embedded in code

MATLAB like syntax (cell arrays), and can easily define functions and
variables

can use alphanumeric (as opposed to just numeric) tags

Listing 1: Example
� �

b a r s l i p s e c t i o n f = ’ BSColDFSection ’ ; b a r s l i p s p r i n g f = ’BSColDFSS ’ ;
columnsect ion = ’ ColDSection ; b a r s l i p s p r i n g = ’BSColDSS ’ ;
b a r s l i p s e c t i o n = ’ BSColDSection ’ ; c o l u mn r i g i d s ec t io n = ’ Co lR ig idSec t ion ’ ;
i f (c o l f l o o r ==1) then
node1 = columnnodename(colbay , c o l f l o o r , 1) ;
node2 = columnnodename(colbay , c o l f l o o r , 2) ;
ba rs l ipbo t tom = { s t r i n g . format (’ columnbsb_%d_%d ’ , colbay , c o l f l o o r) ,
’ In ter faceElement2D ’ , node1 , node2 ,
{ { b a r s l i p s p r i n g f , { 1 , 0 , 0 } } } , { { b a r s l i p s e c t i o n f } } , {0 ,1 ,0 } , { −1 ,0 ,0 } }
p las t icco lumn1 = { s t r i n g . format (’ columnpl1_%d_%d ’ , colbay , c o l f l o o r) ,
’ StiffnessBased2DBeamColumn ’ , node2 , node3 , { columnsect ion , n I p _ s t i f } }
f lexco lumn = { s t r i n g . format (’ co lumnf lx_%d_%d ’ , colbay , c o l f l o o r) ,
’ Flexibil ityBased2DBeamColumn ’ , node3 , node4 , { columnsect ion , n I p _ f l e x } ,
f lexparams }
p las t icco lumn2 = { s t r i n g . format (’ columnpl2_%d_%d ’ , colbay , c o l f l o o r) ,
’ StiffnessBased2DBeamColumn ’ , node4 , node5 , { columnsect ion , n I p _ s t i f } }
b a r s l i p t o p = { s t r i n g . format (’ columnbst_%d_%d ’ , colbay , c o l f l o o r) ,
’ In ter faceElement2D ’ , node5 , node6 ,
{ { b a r s l i p s p r i n g , { 1 , 0 , 0 } } } , { { b a r s l i p s e c t i o n } } , {0 ,1 ,0 } , { −1 ,0 ,0 } }
r ig idco lumntop = { s t r i n g . format (’ co lumnrdt_%d_%d ’ , colbay , c o l f l o o r) ,

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 21/37

Interface Introduction

Interface and Coupling to Hosting Application

Embedded in code

MATLAB like syntax

can easily define functions and variables

Embedded version of Mercury which runs within another application (the
hosting application)

C/C++ code connects embedded Mercury to hosting application
(LabView,Simulnk, etc.) which can

Transfer data quantities between embedded Mercury and external
application
Allows the hosting application to ’trigger’ embedded Mercury to perform a
single timestep or increment

Input files used for command-line based Mercury can be used by
embedded Mercury with minimal changes

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 22/37

Interface Hybrid Pipe

Hybrid Pipe

Abstract interface which connects Mercury hybrid element to a physical
specimen

Different hybrid pipes must be used/written depending on specific
laboratory hardware

Example: SCRAMNETpipe is specifically designed to work with MTS
SCRAMNet-based actuators

Laboratory hardware differences are contained in the Hybrid Pipe code,
without affecting other code

Two labs with differing actuator setups could use the same input file by
changing the Hybrid Pipe used

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 23/37

Interface SCRAMNet Pipe

SCRAMNet Pipe

Hybrid Pipe specifically written to work with SCRAMNet-driven MTS
actuators

Displacements and Forces of a hybrid element are written/read from the
proper SCRAMNet memory locations

Timestepping is synchronized from a SCRAMNet interrupt, locking
Mercury’s timestep rate

Useful starting point for writing new Hybrid Pipe classes to handle
different hardware

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 24/37

Interface Virtual Spring Pipe

Virtual Spring Pipe

A Hybrid pipe that simulates a physical specimen

Useful for testing and verifying simulation setup without actually running
actuators

Simple spring response: F = Kd

Can delay the response by N timesteps, to simulate actuator lag for
testing purposes

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 25/37

Interface Virtual Spring Pipe

Transient Recorders

[fragile]

transientrecorder will accumulate
and record displacements and forces for a
list of nodes and write them only after
simulation is completed in order to avoid
interrupting the real-time simulation.

One should specify:

Number of values to record

Number of DOFs in the model

Filename to save the data into

Names/numbers of all the nodes to
record

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 26/37

Interface Environmental Variables

Environmental Variables

Describes which platform Mercury
is running on. There are several
possible values:

1 CommandLine

2 CommandLineTriggered

3 LabView

4 Simulink

For the CommandLine
environment, one should use the
solve method to perform analysis,
specifying the number of timesteps
to use. For any other environment,
the user should set some variables
describing the model, analysis and
loading to use; the environment will
properly trigger Mercury for the
specified number of timesteps.

� �
i f (Environment == "CommandLine ") then

p r i n t (" Er ro r : run mercury wi th the −−e x t e r n a l op t ion ")
t r a n s i e n t a n a l y s i s : so lve (30000)

else
CommandLineTriggeredHook = t r a n s i e n t a n a l y s i s
LabViewHook = t r a n s i e n t a n a l y s i s
SimulinkHook = t r a n s i e n t a n a l y s i s
ModelRef = model
LoadingRef = ear thquakeloading
numsteps = 30001
rampsteps = 1000 −−[[ramp up i n i t i a l va lues]]

end
� �

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 27/37

Xtras

Special Features

Speed

Shared memory: multithreaded with Intel MKL library
Distributed memory: Two groups of processors (MPI)

Hybrid simulation in real time, element force recovery
spread in a cluster of n processors
Continuous update of tangent stiffness matrix in a “parallel”
non real time computer cluster; Initial stiffness matrix is
continuously overwritten

Refinements of Shing’s Method to allow 10n iterations per increment
of 0.01 sec.

Pushover Analysis Allows application of displacement over multiple
dof following application of vertical loads (single analysis).

High performance concrete model (Developed by LMT/Cachan)

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 28/37

Documentation Technical Manual

Technical Manual

Over 250 pages of detailed technical documentation for element formulations, constitutive
models, integration schemes, hybrid elements.

Draft
With the section tangent flexibility matrices at end of the last convergence in structural

level given by
c
tan,k=1,j=0

s,e,n (x) = c
tan
s,e,n−1(x)

the linearization of the section force-deformation relation yields the incremental section defor-
mation vectors.

δεεεk=1,j=1

s,e,n (x) = c
tan,k=1,j=0

s,e,n (x) · δσσσk=1,j=1

s,e,n (x)

The section deformation vectors are updated to the state that corresponds to point B in
Fig. 3.13(b), and the updated section deformation vector will be given by

εεεk=1,j=1

s,e,n (x) = εεεk=1,j=0

s,e,n (x) + δεεεk=1,j=1

s,e,n (x)

For the sake of simplicity we will assume that the section force-deformation relation is explic-
itly known, then the section deformation vectors εεεk=1,j=1

s,e,n (x) will correspond to internal section

force vectors σσσint,k=1,j=1
s,e,n (x) and updated section tangent flexibility matrices c

tan,k=1,j=1
s,e,n (x) in

Fig. 3.13(b) can be defined.
The residual section force vectors are then determined

σσσR,k=1,j=1

s,e,n (x) = σσσk=1,j=1

s,e,n (x)− σσσint,k=1,j=1

s,e,n (x)

and are transformed into residual section deformation vectors εεεR,k=1,j=1
s,e,n (x)

εεεR,k=1,j=1

s,e,n (x) = c
tan,k=1,j=1

s,e,n (x) · σσσR,k=1,j=1

s,e,n (x)

The residual section deformation vectors are thus the linear approximation of the deforma-
tion error made in the linearization of the section force-deformation relation (Fig. 3.13(b)).
While any suitable section flexibility matrix can be used to calculate the residual section defor-
mation vector, the section tangent flexibility matrices offer the fastest convergence rate.

The residual section deformation vectors are integrated along the element using the com-
plimentary principle of virtual work to obtain the residual element nodal displacement vector.

d̃
R,k=1,j=1

e,n =

∫ Le

0

Nf,e(x)
T
· εεεR,k=1,j=1

s,e,n (x)dx

At this stage the first iteration (j = 1) is completed. The final element and section states for

j = 1 correspond to pointB in Fig. 3.13. The residual section deformation vectors εεεR,k=1,j=1
s,e,n (x)

and the residual element nodal displacement vector d̃
R,k=1,j=1
e,n were determined in the first

iteration, but the corresponding element nodal displacement vector have not yet been updated.
Instead, they constitute the starting point of the remaining steps within iteration loop j.

The presence of residual element nodal displacement vector d̃
R,k=1,j=1
e,n will violate com-

patibility, since elements sharing a common node would now have different element nodal dis-
placement vector. In order to restore the inter-element compatibility, corrective force vector

56

Draft
ef
%

A

D

B

C

, 1e n−
f%

0, 0

, 1 ,

k j

e n e n

= =

−
=d d% % 1, 1

,

k j

e n

= =
d%

ed
%

1, 2

,

k j

e n

= =d%1, 3

,

k j

e n

= =
d%

1, 1

,

1, 0 1, 1

,

k j

e n

k j k j

e e n

δ

δ

= =

= = = =
=

f

k d

%

% %

int, 1, 1

,

k j

e n

= =
f%

1, 1

,

k j

e nδ
= =

d% , 1, 1

,

R k j

e n

= =
d%

, 1, 2

,

R k j

e n

= =
d%

, 1, 3

, 0R k j

e n

= =
=d%

tan, 1, 1

,

k j

e n

= =c%

tan, 1, 2

,

k j

e n

= =
c%

36
tan, 1, 3

,

k j

e n

= =
c%

int, 1, 3

,

k j

e n

= =f%

in t, 1, 2

,

k j

e n

= =
f%

1, 2

,

1, 1 , 1, 1

, ,

k j

e n

k j R k j

e n e n

δ
= =

= = = =
=

f

c d

%

%%

3

2

1

25

13

37

15

27

26

27

24

12

38

1, 3

,

1, 2 , 1, 2

, ,

k j

e n

k j R k j

e n e n

δ
= =

= = = =
=

f

c d

%

%%

A

D

B

C

1, 1

, , ()k j

s e n xδ
= =

εεεε

, ()s e xσσσσ

, ()s e xεεεε

0, 0

, , 1 , ,() = ()k j

s e n s e nx x= =

−
ε εε εε εε ε

, , 1()s e n x
−

σσσσ
1, 1

, , ()k j

s e n x= =
εεεε

int, 1, 1

, , ()k j

s e n x= =
σσσσ

, 1, 1

, , ()R k j

s e n x= =
σσσσ

tan, 1, 1

, ()k j

s n x= =
c

, 1, 1

, , ()R k j

s e n x= =
εεεε

1, 2

, , ()k j

s e n x= =
σσσσ

1, 2

, , ()
k j

s e n xδ
= =

εεεε

1, 2

, , ()k j

s e n x= =
εεεε

tan, 1, 2

, , ()k j

s e n x= =
c

, 1, 2

, , ()R k j

s e n x= =
σσσσ

int, 1, 2

, , ()k j

s e n x= =
σσσσ

, 1, 2

, , ()R k j

s e n x= =
εεεε

1, 3

, ,

1, 3

, , ,

()

()

k j

s e n

k j

f e s e n

x

x

δ

δ

= =

= =
= N f%

σσσσ

1, 3

, , ()k j

s e n xδ
= =

εεεε

1, 3

, , ()k j

s e n x= =
εεεε

tan, 1, 3

, , ()k j

s e n x= =
c

, 1, 3

, , () 0R k j

s e n x= =
=σσσσ

, 1, 3

, , () 0R k j

s e n x= =
=εεεε

1, 1

, ,

1, 1

, ,

()

()

k j

s e n

k j

f e e n

x

x

δ

δ

= =

= =
= N f%

σσσσ

1, 3

, ,

int, 1, 3

, ,

()

()

k j

s e n

k j

s e n

x

x

= =

= =
=

σσσσ

σσσσ

1, 1

, , ()k j

s e n x= =
σσσσ

1, 2

, ,

1, 2

, ,

()

()

k j

s e n

k j

f e e n

x

x

δ

δ

= =

= =
= N f%

σσσσ

18

116

7

30

23

35
19

31

4

29 33

5

17

21

9 10

16

22

34

28

8 20

32

(a) Element state determination

(b) Section state determination

3a 5

4

A

B

Fig. 3.13 Element and section state determinations for flexibility-based 2D beam-column ele-

ment with Newton-Raphson iteration loop in element level

54

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 29/37

Documentation User’s manuals

User’s Manuals

One for Matlab version, and one for c++

Draft
- Tol: Convergence criteria on the residuals

Example:
FlexibilityBased2DBeamColumn in Sec. A.4, then we could have: StrMiter = 20; EleMiter
= 50; Convergence = ‘ForceNorm’; ConvergenceEle = ‘EnergyNorm’; Tolerance = 1.0e-8

A.3 Geometry Block

The geometry block defines nodal coordinates and their constraints assuming a right handed
coordinate system.

A.3.1 Nodal coordinates

The nodcoord assigns coordinates of nodes.

nodcoord = { nodtag1, x1, y1 [z1] ;
... ;
nodtagi, xi, yi [zi] ;
... ;
nodtagn, xn, yn [zn] }

for example:

Node = { 1, 0.0, 0.0 ;
2, 1.0, 3.0 ;
3, 2.0, 0.0 }

A.3.2 Boundary condition

The constraint command assigns boundary conditions to the nodes. Each node has to
have as many constraint as d.o.f’s per node.

constraint = { nodtag1, id1
1
, id1

2
[id1

3
, id1

4
, id1

5
, id1

6
] ;

... ;
nodtagi, idi

1
, idi

2
[idi

3
, idi

4
, idi

5
, idi

6
] ;

... ;
nodtagn, idn

1
, idn

2
[idn

3
, idn

4
, idn

5
, idn

6
] }

Where 0 corresponds to a free dof, and 1 to a fixed one. For example:
constraint = { 3, 1, 1 ;

5, 1, 0 }

A.4 Element Block

The elements command defines element type, nodal connectivity, and basic sectional infor-
mation. These may vary with the element type.

252

Chapter 1

MERCURY USER’S MANUAL

FOR C++

This document1 describes the input for C++ version of Mercury. The C++ version uses
the Lua scripting language2 (analogous to TCL in OpenSees).

1.1 nodes

The “nodes” command defines nodal coordinates, and nodal masses if material densities are
not in materials.

nodes = { { nodtag1, x1, y1 [, z1] [, ‘mass’, mx1, my1 [, mz1]] };
{ . . . };
{ nodtagi, xi, yi [, zi] [, ‘mass’, mxi, myi [, mzi]] };
{ . . . };
{ nodtagn, xn, yn [, zn] [, ‘mass’, mxn, myn [, mzn]] } };

• nodtagi: Tag of the ith node

• xi, yi, and zi are node coordinates of node i at each global coordinate.

• mxi, myi, and mzi are mass quantities of node i at each global coordinate.

1.2 elements

The “elements” command defines element type, nodal connectivity, and basic section infor-
mation. These may vary with the element type.

elements = { { Definition of element1 };
{ . . . };
{ Definition of elementi };
{ . . . };
{ Definition of elementn } };

1In this preliminary version of Mercury, no attempt has been made to simplify (generate/automate) data
entry, and there is not (yet) a mesh generator for the program. Those are simple future developments.

2http://www.lua.org/

5

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 30/37

Documentation Validation Manual

Validation Manual

Over 30 examples used for validations. Each problem stored in a separate folder containing: a)
Matlab input file; b)c++ (lua) input file; c) OpenSees (tcl) input file; and d) Excel/visio files for
results

Example Algorithm Element Section Material Analysis 1 Analysis 2

Ex01 Linear Simple truss General Elastic Static Newmark beta

Ex02 Linear Simple truss General Elastic Load control HHT

Ex03 Linear Simple truss General Elastic Load control

Ex04 Linear Simple truss General Elastic Disp control

Ex05 Mixed Simple truss General Elastic and Hardening Static Newmark beta

Ex06 Mixed Simple truss General Elastic and Hardening Load control HHT

Ex07 Mixed Simple truss General Elastic and Hardening Newmark beta

Ex08 Mixed Simple truss General Elastic and Hardening Disp control HHT

Ex09 Mixed Simple truss General Elastic and Bilinear Load control Newmark beta

Ex10 Mixed Simple truss General Elastic and ModGMP Load control HHT

Ex11 Mixed Simple truss General Damage2 Cyclic disp control

Ex12 Mixed Simple truss General ModKP Cyclic disp control

Ex13 Mixed Simple truss General Hardening Cyclic disp control

Ex14 Mixed Simple truss General Hardening Cyclic disp control

Ex15 Mixed Simple truss General Hardening Cyclic disp control

Ex16 Mixed Simple truss General Bilinear Cyclic disp control

Ex17 Mixed Simple truss General Bilinear Cyclic disp control

Ex18 Mixed Simple truss General ModGMP Cyclic disp control

Ex19 Mixed Simple truss General ModGMP Cyclic disp control

Ex20 Mixed SBC Layer Hardening Cyclic disp control HHT

Ex21 Mixed FBC1 Layer Hardening Cyclic disp control Shing

Ex22 Mixed FBC2 Layer Hardening Cyclic disp control

Ex23 Mixed SBC and zero-length General Elastic and Bilinear Load control

Ex24 Mixed SBC and zero-length section General Elastic and Bilinear Load control

Ex25 Mixed SBC Layer Hardening Multiple disp control

Ex26 Mixed FBC1 Layer Hardening Multiple disp control

Ex27 Mixed Ghanoumn single column Layer ModGMP and ModKP HHT

Ex28 Mixed Ghanoumn single column Layer ModGMP and Damage2 HHT

Ex29 Mixed Ghannoum 3 bay 3 floor Layer Mixed materials HHT/Shing

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 31/37

Remarks Current Development

Current Development

Timoshenko beam

Graphical (OpenGL based) post-processor

Geometric nonlinearity

Limit elements

Online tutorials

Mesh generator

Translator from Matlab to Lua

Improved documentation for integration with hybrid simulation

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 32/37

Remarks Graphical Post Processor

Graphical Post Processor

A Graphical Post Processor (written in Matlab) is under current
development. It will support both the Matlab and the C++ versions, and
will provide a GUI through which user could visualize various results.

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 33/37

Remarks Applications

Applications

Mercury has been “battle tested" through two major endeavors:

Research Real time Hybrid Simulation of a reinforced concrete
frame with non-ductile columns, and comparison with
shake table test results.

Education in a new course “Nonlinear Structural Analysis” in which
students first used the Matlab version to gently acquaint
themselves with basic concepts (including modifying the
code), and then with the c++ version for a comprehensive
project on seismic rehabilitation.

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 34/37

Remarks Shake Table vs RTHS

Comparison between Shake Table and RTHS; The Video

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 35/37

st-rths-short-high-quality.wmv
Media File (video/x-ms-wmv)

Summary

Summary

Mercury

Is a full nonlinear structural dynamic finite element code which can be
embedded inside LabView for pseudo-dynamic tests, or real time hybrid
simulation.

Is more than a software for hybrid dynamic nonlinear analysis of civil
engineering structures.

It is a concept of hardware in the loop which can be adapted to other
disciplines such as automotive and aerospace engineering.

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 36/37

Credit

Credit

Prof. Victor Saouma Project Director
Dr. Dae-Hang Kang Development of Mercury Matlab, c++

Dr. Gary Haussmann Development of Mercury c++ &Hybrid capabilities
LMT/Cachan Anisotropic model

State of Colorado Financial support

V. Saouma et al.; Univ. of Colorado Mercury; Optimized Software for Hybrid Simulation 37/37

	Introduction
	Global Context
	Background
	NRC/NEES
	Mercury Overview

	Analysis
	Constitutive Models
	Elements
	Nonlinear Algorithms

	Hybrid
	Matlab
	c++; General
	c++; Hybrid Element
	c++; Coordinate Transformation

	Improvements
	RTHS on a Shared Memory Computer
	RTHS on a Computer Cluster; Algorithm
	RTHS on a Computer Cluster; Results

	Scripting
	Interface
	Introduction
	Hybrid Pipe
	SCRAMNet Pipe
	Virtual Spring Pipe
	Environmental Variables

	Xtras
	Documentation
	Technical Manual
	User's manuals
	Validation Manual

	Remarks
	Current Development
	Graphical Post Processor
	Applications
	Shake Table vs RTHS

	Summary
	Credit

