THE ALKALI-SILICA REACTION: A STUDY OF REACTIVE AGGREGATES AND PRODUCTION OF EXPANSIVE CONCRETE SPECIMENS

By : ROBB SPARKS Thesis directed by : PROF. VICTOR E. SAOUMA

15th April, 2016 University of Colorado, Boulder

INTRODUCTION

MOTIVATIONS

- The alkali-silica reaction was identified by Stanton in 1940
- Observed in dams and bridges worldwide
- Recently discovered in the Seabrook NPP (Saouma & Hariri, 2014)
- Nuclear power plants in US are licensed for an initial 40 years
- Unlimited 20-year license extensions possible (NUREG-980, 2013)
- Effects of ASR on shear strength poorly understood

ROBB SPARKS I5 APRIL 2016	3
---------------------------	---

OBJECTIVES

- Identify a local source of reactive aggregates
- Characterize aggregate ASR reactivity
- Design an aggressively-reactive concrete mix
- Concrete mix must be reasonably representative
- Construct reactive concrete specimens
- Assemble shear test apparatus
- Prescribe curing program

ROBB SPARKS	15 APRIL 2016	4
-------------	---------------	---

ORGANIZATION

- I. Introduction
- 2. Background information
- 3. Shear testing program
- 4. Identification of reactive aggregates
- 5. Concrete testing program
- 6. Concrete mix design
- 7. Conclusions

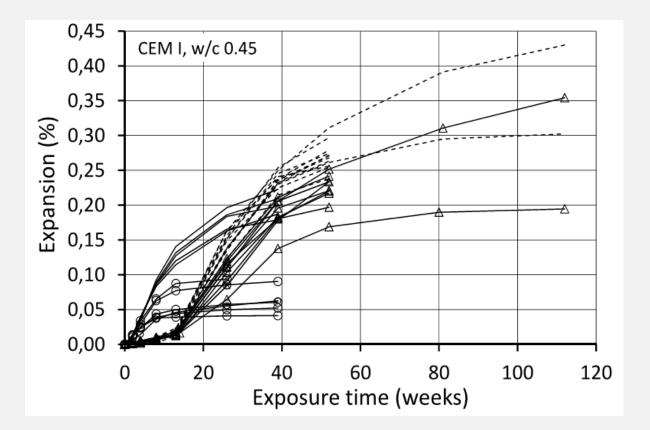
ROBB SPARKS	15 APRIL 2016	5

BACKGROUND INFORMATION

 ASR occurs when alkali in cement reacts with amorphous or disordered silica in aggregate minerals

 $Silica + Alkali \rightarrow Gel$ $xSiO_2 + yNa(K)OH \rightarrow Na(K)_ySi_xO_z$

 Product is hygroscopic silica gel, which expands when hydrated


 $Gel + Water \rightarrow Hydrated gel$ $Na(K)_y Si_x O_z + wH_2 O \rightarrow Na(K)_y Si_x O_z \cdot wH_2 O$

ROBB SPARKS	15 APRIL 2016	7
-------------	---------------	---

- Three necessary components for ASR (Hobbs, 1988)
- I. Reactive minerals in aggregate
- 2. Sufficient alkali in cement
- 3. Sufficient humidity to hydrate resulting gel
- Reaction rate strongly influenced by temperature (Larive 1998)

ROBB SPARKS	15 APRIL 2016	8

- Lindgård (2013) exhaustively tested concrete prisms
- Found drastic variation depending on curing conditions
- 1. Alkali leaching
- 2. Internal moisture
- 3. Temperature
- 4. Initial alkali content
- 5. Diffusion rate (porosity)

Reproduced from Lindgård (2013)

ROBB SPARKS	15 APRIL 2016	9

- Influence of ASR on mechanical properties widely studied (Swamy & El Asali, 1988) (Monette, 1997) (Ahmed et. al, 2003) (Multon, 2004) etc.
- As expansion proceeds, following effects observed
- I. Compressive strength initially climbs then declines
- 2. Tensile strength falls nonlinearly
- 3. Elastic modulus declines almost linearly

(Esposito et. al, 2016)

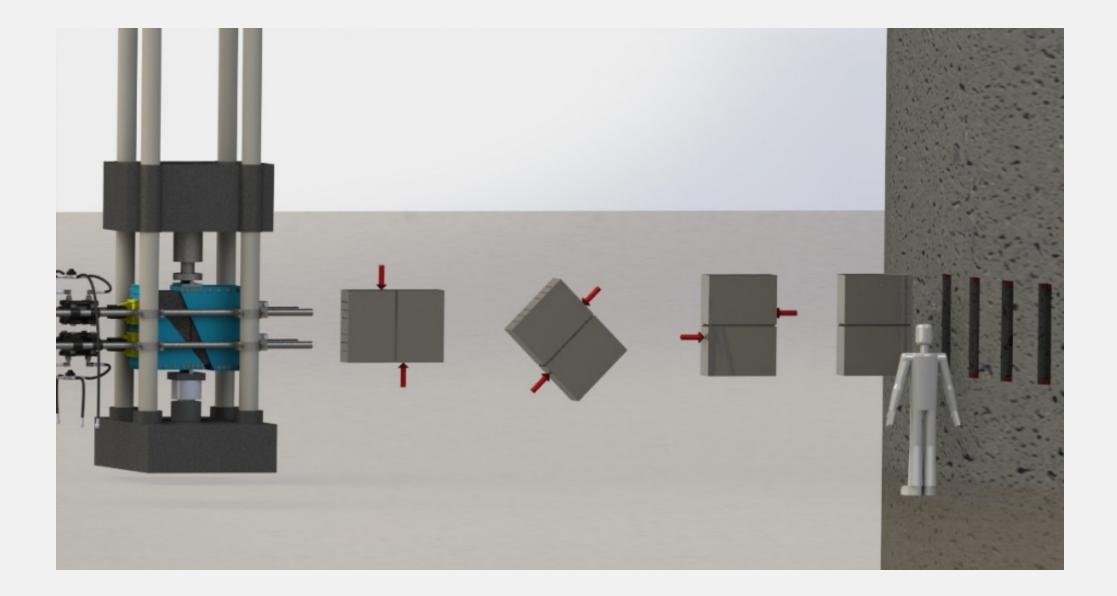
ROBB SPARKS	15 APRIL 2016	10

• Effects of ASR on shear strength not well understood

- No effect? (Bach et. al, 2003)
- Shear strength declines? (den Uijl & Kaptijn, 2003) (Nakamura et. al, 2008)
- Shear strength increases? (Ahemd, Burley, & Rigden, 1998)

ROBB SPARKS	15 APRIL 2016	H

SHEAR TESTING PROGRAM

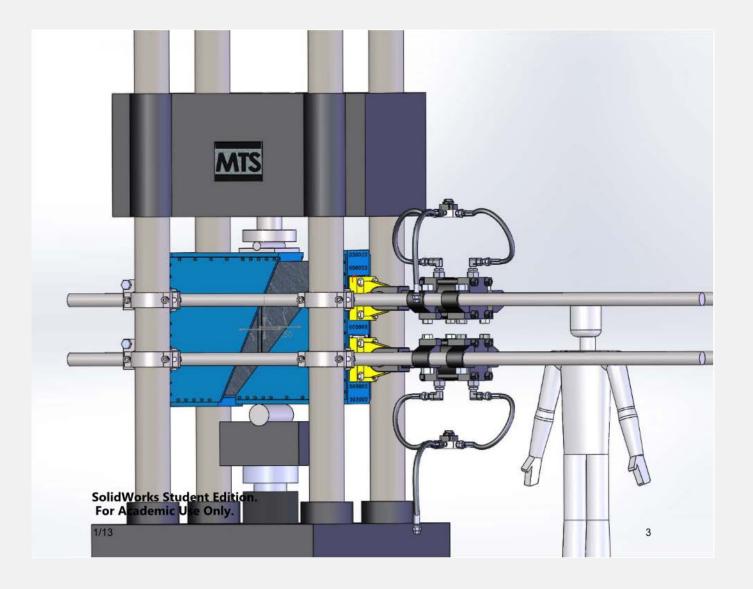

ROBB SPARKS	15 APRIL 2016	13

SHEAR TEST PROGRAM	PROTOTYPE / MODEL
--------------------	-------------------

Prototype Structure	
Inner radius (ft)	63
Wall thickness (ft)	4.5
Wall height (ft)	122
Foundation thickness (ft)	10
Grade level (ft above foundation base)	56

Model Structure	
Scale Factor	0.56
Inner radius (ft)	35
Wall thickness (ft)	2.5
Wall height (ft)	68
Foundation thickness (ft)	5.6
Grade level (ft above foundation)	31

ROBB SPARKS IS APRIL 2016



ROBB SPARKS	15 APRIL 2016	15

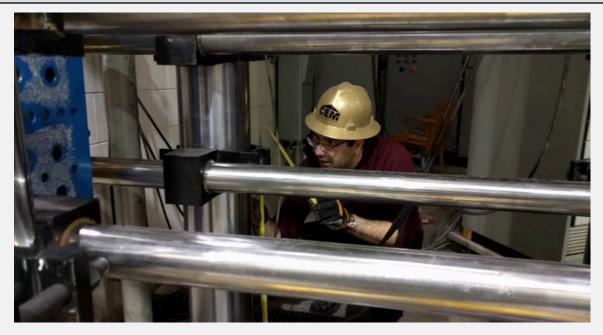
SHEAR TEST APPARATUS

- Apparatus designed for previous study
- Brought out of storage
- Inventoried
- Cleaned
- Painted
- Assembly began January 15th, 2016

ROBB SPARKS	15 APRIL 2016	16
		1

ROBE SPARKS IS APRIL 2016 17	ROBB SPARKS	15 APRIL 2016	17
------------------------------	-------------	---------------	----

APPARATUS ASSEMBLY



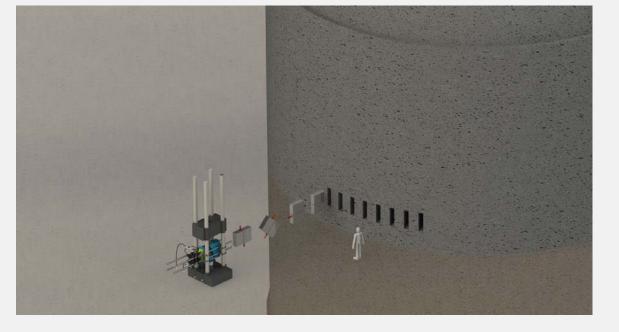
BUSHINGS, CLAMPS AND CLEVIS BRACKETS

INSTALLING REACTION BARS

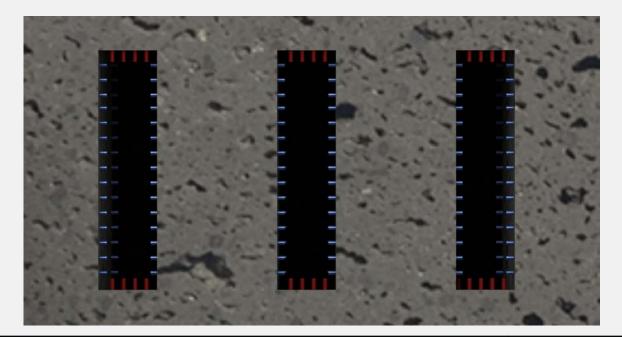
	SPARKS	R
--	--------	---

APPARATUS ASSEMBLY

ALIGNING REACTION BARS WITH TAPE & SPIRIT LEVEL


ALIGNING REACTION BARS WITH TAPE & SPIRIT LEVEL

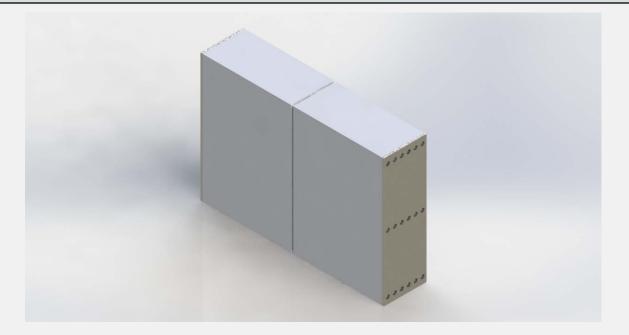
15 APRIL 2016


REINFORCEMENT

- Prototype structure reinforced in both axial and circumferential directions
- Details of prototype reinforcement not known
- No attempt made to model a particular NPP
- Model reinforcement must be:
 - Constructible
 - Representative

Robb Sparks	
ROBB SPARKS	

SHEAR SPECIMEN ORIENTATION IN MODEL


AXIAL AND CIRCUMFERENTIAL REINFORCEMENT IN PROTOTYPE


ROBB SPARKS

REINFORCEMENT

SHEAR SPECIMEN

ROBB SPARKS	15 APRIL 2016	22

SHEAR TEST PROG	SRAM
-----------------	------

REINFORCEMENT

Circumferential reinforcement ratio selection				
Sample Dimensions (in ²)		Lyy	30	Concrete Area, (in²)
Sample Dim	iensions (in ²)	Lxx	42	1260
Bar Number	Steel area per bar A _{bar} (in)	Reinforcement ratio, ρ	Required steel area,A _s (in ²)	Number of bars required per layer
		0.2%	2.52	9
5	0.31	0.5%	6.30	21
		1.0%	12.60	41
		0.2%	2.52	6
6	0.44	0.5%	6.30	15
		1.0%	12.60	29
		0.2%	2.52	5
7	0.6	0.5%	6.30	
		1.0%	12.60	21
		0.2%	2.52	4
8	0.79	0.5%	6.30	8
		1.0%	12.60	16

ROBB SPARKS

15 APRIL 2016

23

SHEAR TEST PROGRAM	REINFORCEMENT
--------------------	---------------

Axial reinforcement ratio selection				
		Lzz	10	Concrete Area (in²)
Sample Din	nensions (in ²)	Lуу	30	300
Bar Number	Steel area per bar, A _{bar} (in)	Reinforcement ratio, ρ	Required steel area,A _s (in ²)	Number of bars required per layer
		0.2%	0.6	3
4	0.2	0.5%	1.5	8
		1.0%	3	15
		0.2%	0.6	2
5	0.31	0.5%	1.5	5
		1.0%	3	10
		0.2%	0.6	2
6	0.44	0.5%	1.5	4
		1.0%	3	7
		0.2%	0.6	I
7	0.6	0.5%	1.5	3
		1.0%	3	5

ROBB SPARKS

15 APRIL 2016

(All dimensions in inches)	Bar Number	Bar Diameter	Bar Length	Number of bars per layer	Bar spacing (center to center)	ρ _{actual}	Total bars required
Circumferential Reinforcement	7	0.875	8	11	2.813	0.52%	242
Axial Reinforcement	6	0.75	42	4	2.083	0.59%	88

ROBB SPARKS	15 APRIL 2016	25
-------------	---------------	----

SHEAR TEST PROGRAM	REINFORCEMENT
--------------------	---------------

- Development Length is a problem
- Standard hooks exceed specimen dimensions
 - #7 Hook length = 10.5"
 - #7 Bend diameter = 7"
- Other anchorage options also too large
- Decision: weld bars to one another and to end plates
 - Permits axial bars to provide aid development for circumferential
 - Disadvantage: weakens rebar by an unknown amount

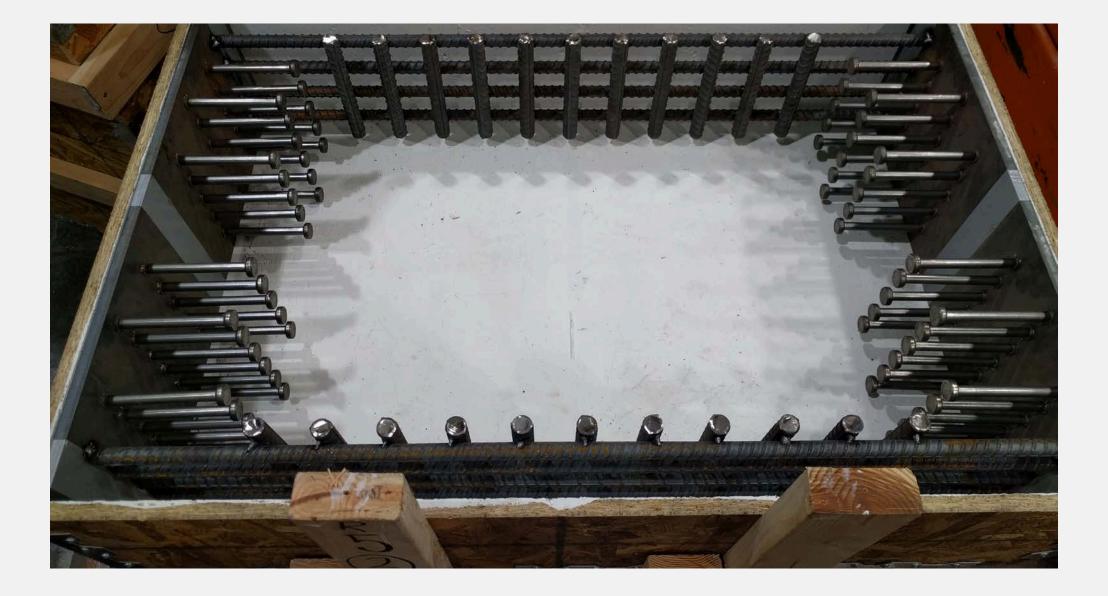
REINFORCEMENT

CONSTRUCTING ALIGNMENT JIG

REBAR SAW-CUT AND GROUND TO FINAL SIZE

ROBB SPARKS

REINFORCEMENT



USING JIG TO ALIGN REBAR

COMPLETED REBAR CAGES

BB SPARKS

ROBB SPARKS	15 APRIL 2016	29
		1

30

FORMWORK

- Small number of reusable forms using more-expensive *Plyform*?
- Larger number of single-use forms using less-expensive OSB?
- Tight casting schedule mandated single-use forms
- Trial run with dummy form suggested considerable water absorption
- Mitigated by painting forms with primer

FORMWORK

FORMWORK DESIGN

PAINTED INTERIOR TO MINIMIZE WATER LOSS TO FORM

CASTING PLAN

- Number and types of specimens
- Large volume of concrete requires 4 castings
- Casting to take place at Fall Line laboratory
- April 25th and 27th
- Specimens permitted to cure 24 hours before transport to CU

ROBB SPARKSI5 APRIL 201632

SHEAR TEST PROGRAM	CASTING PLAN
--------------------	--------------

Reactive Specimens	Number	Volume (yd³)
Shear specimens with rebar	9	2.43
Shear specimens without rebar	3	0.81
Wedge splitting test	3	0.02
Cylinder, 4"x8"	36	0.08
Cylinder, 6"x12"	12	0.09
Blocks without rebar	6	0.35
Blocks with rebar	3	0.18
Prism 4"x4"x12"	6	0.06
Wastage factor	15.0%	
Total	4.5	54

Non-Reactive Specimens	Number	Volume
		(yd³)
Shear specimens with rebar	2	0.54
Shear specimens without rebar	2	0.54
Wedge splitting test	3	0.02
Cylinder, 4"x8"	12	0.03
Cylinder, 6"x12"	4	0.03
Blocks without rebar	3	0.18
Blocks with rebar	3	0.18
Prism 4"x4"x10"	3	0.03
Wastage factor	15.0%	
Total	1.7	73
6.27		

ROBB SPARKS	15 APRIL 2016	33

Grand Total (yd³)

CASTING PLAN

THREE-CUBIC YARD MIXER AT FALL LINE

MOBILE BATCH PLANT

MATERIAL SUPPLY

- Received sufficient aggregates February 1st, 2016
- Aggregates tested and stored at Fall Line
- Aggregates donated by Whitewater Building Materials
- Transportation donated by Brady Trucking
- Cement donated by Holcim of Hagerstown, MD
- Lithium nitrate donated by Grace Concrete Products

ROBB SPARKS	15 APRIL 2016	35

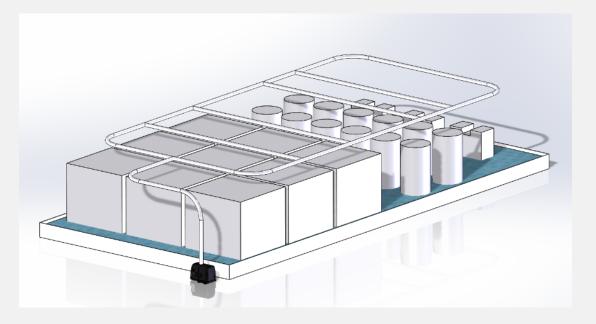
Material	lbs	kg
Portland Cement, Type I, Holcim	4,200	2,500
Fine Aggregate: Manufactured Sand	10,100	6,100
Coarse Aggregate: 3/4" Crushed Rock	8,600	5,300
Admixtures		Unit
NaOH(s) Doping Additive (kg)		12.2
Lithium Nitrate Additive (L)		34.5

AGGREGATE SUPPLY

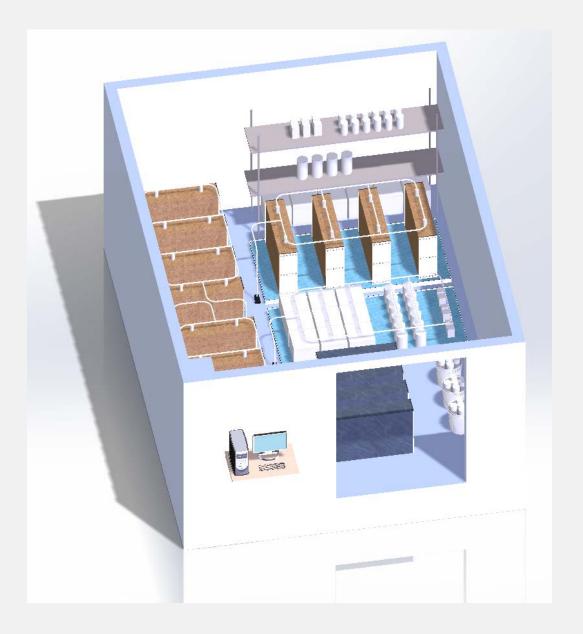
OFFLOADING AGGREGATE

AGGREGATES TESTED, CONDITIONED, MIXED & COVERED UNTIL USE

ROBB SPARKS


ASR DEVELOPMENT CONDITIONS

- 1. Objective is to maximize expansion in limited time available for sample curing (approximately 6 months)
- 2. High temperatures promote rapid expansion
- 3. High alkalinity wash prevents alkali leaching
- 4. High relative humidity prevents loss of alkali wash and shrinkage due to dessication


D/		D	CD		L/C
K	ЭΒ	в	SP/	ЧK	KS

SHEAR TEST PROGRAM

ASR DEVELOPMENT CONDITIONS

TEMPERATURE = 38°C HUMIDITY > 90% ALKALI WASH WITH I.6M NaOH_(aq)

ROBB SPARKS		DD	CDA	DIZ C
	K()	ВΒ	SPA	KKN

IDENTIFICATION OF REACTIVE AGGREGATES

AGGREGATE SUPPLIERS

- Aggregates from two suppliers tested
- Both draw material from quarries along Gunnison River
- Tested manufactured sand, 3/8" gravel, and 3/4" gravel
- Whitewater Building Materials
- Grand Junction Ready-Mix
- Samples obtained January 21st 2015
- Primary test ASTM 1567

AGGREGATE SUPPLIERS

WHITEWATER BUILDING MATERIALS

GRAND JUNCTION READY MIX

ROBB SPARKS

IDENTIFICATION OF REACTIVE AGGREGATES

From left: 3/4" rock, 3/8" rock, and sand from Grand Junction Ready-Mix

From left: 3/4" rock, 3/8" rock, and sand from Whitewater Building Materials

ROBB SPARKS	15 APRIL 2016	43

OVERVIEW OF ASTM 1567

- Widely accepted test for ASR reactivity of aggregates
- Accelerated mortar bar test
- Provides results in 16 days
- Classifies aggregates as 'Reactive' or 'Nonreactive'

ROBB SPARKS	15 APRIL 2016	44

IDENTIFICATION OF REACTIVE AGGREGATES

ASTM 1567 OVERVIEW

COARSE AGGREGATES ARE CRUSHED

MORTAR MIXED FROM PRESCRIBED GRADATION

ROBB SPARKS

ASTM 1567 OVERVIEW

SIEVED FRACTIONS ARE WASHED

DRIED IN OVEN BEFORE WEIGHING

15 APRIL 2016

ASTM 1567 OVERVIEW

MORTAR BARS ARE

COMPONENT WEIGHTS AND MIXING TIMES AS PRESCRIBED

IDENTIFICATION OF REACTIVE AGGREGATES

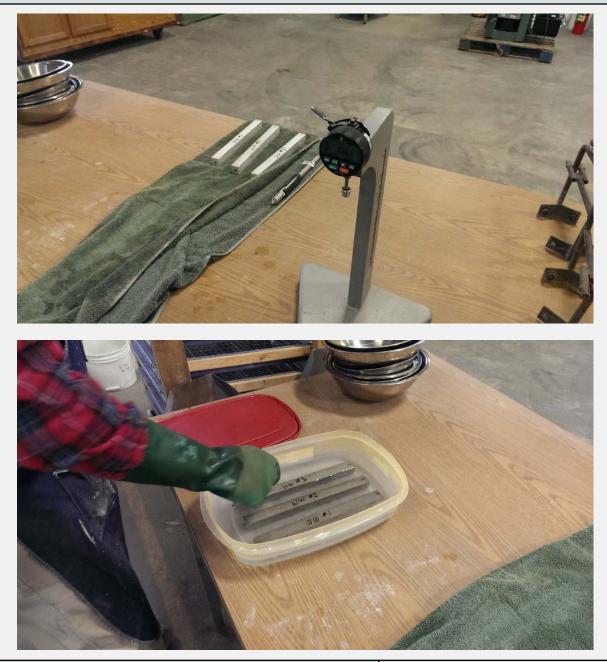
ASTM 1567 OVERVIEW

MORTAR TAMPED INTO MOLDS

INITIAL CURE 24 HOURS, COVERED IN FOG ROOM

ROBB SPARKS

15 APRIL 2016


48

ASTM 1567 OVERVIEW

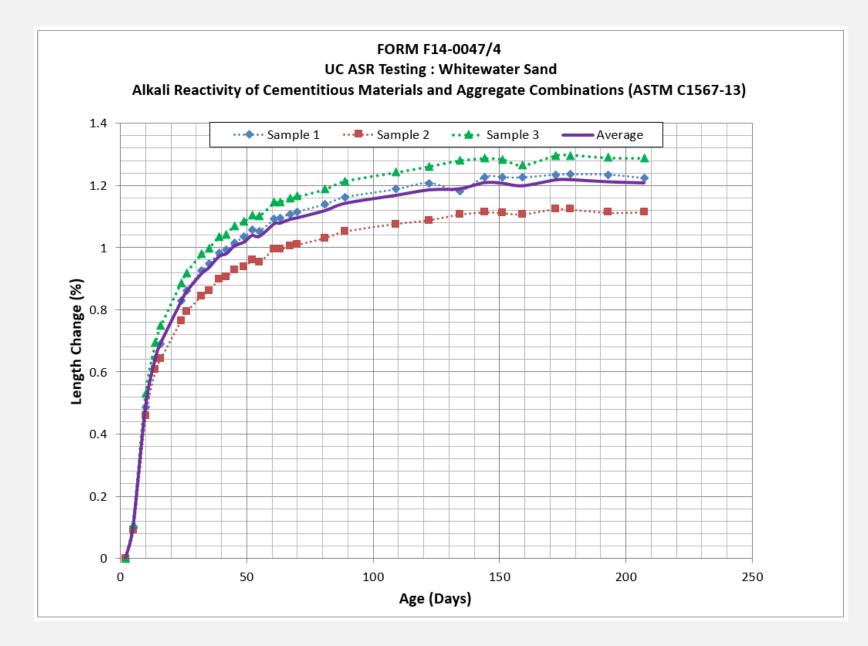
INITIAL READINGS TAKEN WITH LENGTH COMPAROMETER

BARS STORED IN WATER FOR 24 HOURS AT 80°C, THEN ZERO MEASUREMENT TAKEN

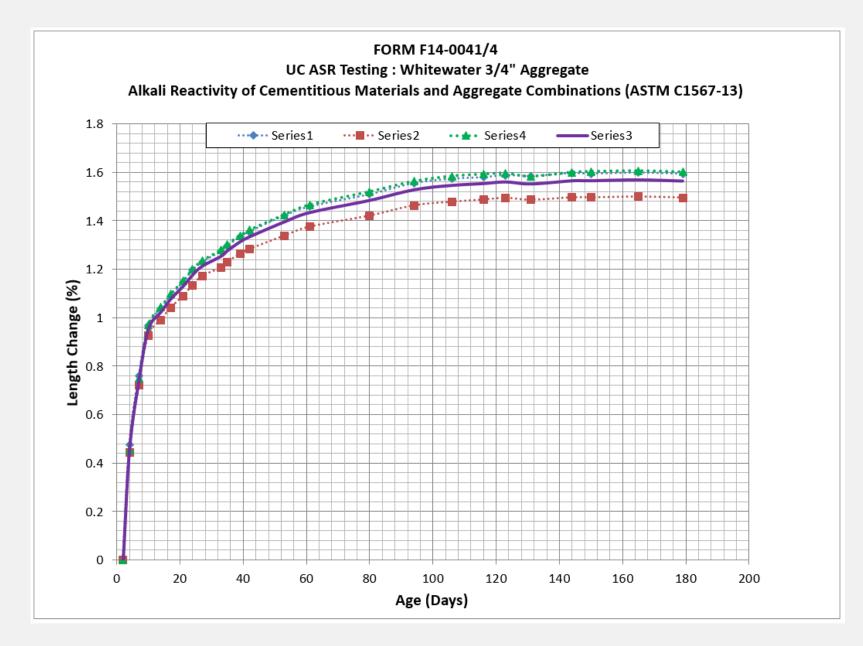

PLACED IN IM NaOH AND RETURNED TO OVEN

TEST RESULTS

- Subsequent measurements taken every 4 days
- Final reading taken 16 days after casting
- All aggregates exceed 0.1% threshold for ASR reactivity


ROBB SPARKS	15 APRIL 2016	50
KOBB SPAKKS	IS AFRIL 2016	50

ROBB SPARKS	15 APRIL 2016	51
	IS AFRIL 2016	51

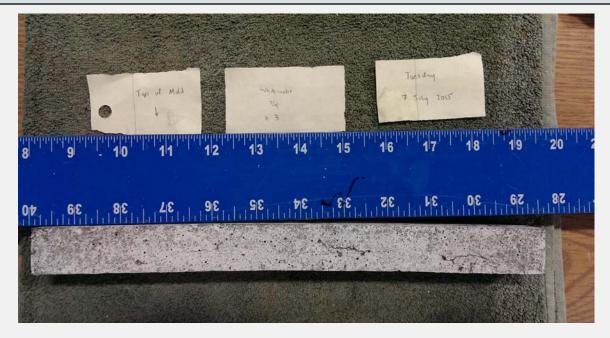

Percent expansion, 16 days after casting				
	Whitewater Building Materials	Grand Junction Ready Mix		
Sand	0.69	0.98		
3/8''	0.68	0.74		
3/4''	1.02	0.77		
Average	0.80	0.83		

ROBB SPARKS	15 APRIL 2016	52

D O		OD A	DI/O
	ВВ		DK
	DD		RKS

53

ROBB SPARKS


15 APRIL 2016

54

ASTM 1567 TEST RESULTS

MORTAR BARS EXTENSIVELY CRACKED & DEFORMED (IMAGE TAKEN 131 DAYS AFTER CASTING, ε=1.4%

CURVATURE ALWAYS CONCAVE UP TOWARD TOP OF MOLD

ROBB SPARKS	RO	BB	SPA	RKS
-------------	----	----	-----	-----

• Whitewater sand and 3/4" gravel selected for further study

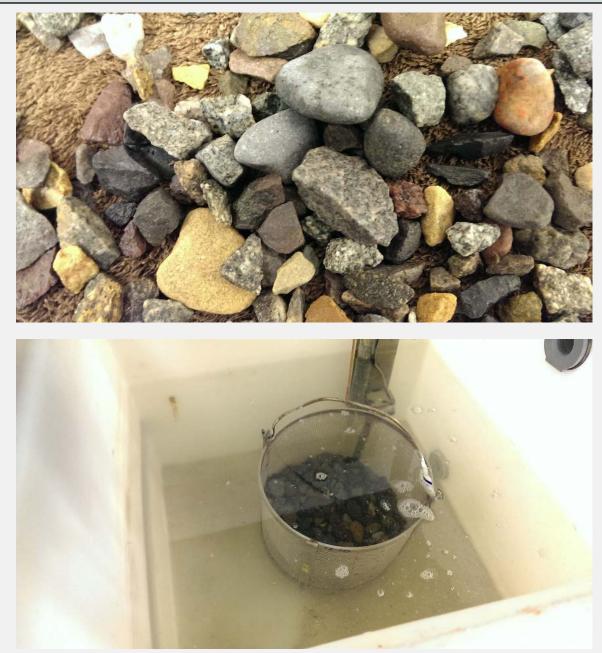
- Highly reactive
- Supplier eager to participate in study

ROBB SPARKS	15 APRIL 2016	56
-------------	---------------	----

AGGREGATE TESTS

- Tests performed on all aggregate samples upon receipt
- Reliance on standardized ASTM test procedures

ROBB SPARKS	15 APRIL 2016	58


Test	Standard
Coarse aggregate relative density	ASTM CI27
Fine aggregate relative density	ASTM CI28
Coarse aggregate bulk density	ASTM C29
Fineness modulus / gradation	ASTM CI36
Moisture content	ASTM C566

ROBB SPARKS	15 APRIL 2016	59

COARSE AGGREGATE RELATIVE DENSITY (ASTM C127)

AFTER SOAKING 24HRS, AGGREGATE DRIED TO SSD WEIGHED AT SSD AND IMMERSED

Whitewater 3/4 Specific Gravity		
Oven Dry Bulk Specific Gravity	2.604	
SSD Bulk Specific Gravity	2.641	
Apparent Bulk Specific Gravity 2.705		
Absorption (%)	1.433	

SAND BROUGHT TO SSD, INDICATED BY CONE MOLD

SAND PLACED IN VOLUMETRIC FLASK AND DE-AIRED; WEIGHED WITH AND WITHOUT SAND

Whitewater Sand Specific Gravity

Oven Dry Bulk Specific Gravity	2.583
SSD Bulk Specific Gravity	2.623
Apparent Bulk Specific Gravity	2.690
Absorption (%)	1.551

ROBB SPARKS

61

COARSE AGGREGATE BULK DENSITY (ASTM C29)

COARSE AGGREGATE LOADED INTO MEASURE IN THREE LIFTS, EACH RODDED 25 TIMES

Whitewater 3/4" Bulk Density		
Bulk Specific Gravity	2.641	
Bulk Density (pcf)	100.9	
Void (%)	39%	

GRADATION / FINENESS MODULUS (ASTM C136)

AGGREGATE IS WASHED AND DECANTED, THEN OVEN-DRIED

AFTER SIEVING, EACH FRACTION IS WEIGHED

ROBB SPARKS

Whitewater Sand Sieve Analysis		
Sieve Size	Percent Retained	Percent Passing
3/8"	0.0	100.0
#4	2.8	97.2
#8	15.3	84.7
#16	31.0	69.0
#30	40.6	59.4
#50	67.8	32.2
#100	91.1	8.9
#200	98.3	١.7
Fineness Modulus 2.5		2.5

Whitewater 3/4 Sieve Analysis		
Sieve Size	Percent Retained	Percent Passing
۱"	0.0	100.0
3/4"	6.0	94.0
1/2"	56.4	43.6
3/8"	77.8	22.2
#4	97.9	2.1

ROBB SPARKS	15 APRIL 2016	64

CONCRETE TESTS

- Tests performed on all concrete test mixes
- Reliance on standardized ASTM test procedures where possible

ROBB SPARKS IS APRIL 2016 65

Test	Standard
Slump	ASTM C173
Unit Weight	ASTM C138
Air Content	ASTM C231
Temperature	ASTM C1064
Compressive Strength	ASTM C39
ASR Expansion	N/A

ROBB SPARKS	15 APRIL 2016	66

SLUMP (ASTM C173)

SLUMP MOLD FILLED IN 3 LAYERS, EACH TAMPED 25 TIMES

MOLD LIFTED IN ONE MOTION; SLUMP MEASURED FROM TOP OF CONE

ROBB SPARKS

UNIT WEIGHT (ASTM C138)

AIR METER BOWL FILLED IN TWO LAYERS, EACH RODDED 25 TIMES

BOWL TAPPED 10-15 TIMES WITH MALLET AND STRUCK OFF

ROBB SPARKS

15 APRIL 2016

AIR CONTENT (ASTM C173)

AFTER WEIGHING BOWL, AIR METER INSTALLED

WATER ADDED TO WEEP HOLE; METER TILTED AND ROLLED TO EXPEL ENTRAPPED AIR INTO GAUGE

4"X8" CYLINDER MOLDS; FILLED IN 2 LIFTS; EACH LIFT RODDED 25 TIMES

CYLINDERS ALLOWED TO REST 30 MINUTES TO CHECK FOR BLEEDING

UNBONDED CAPS USED FOR ALL BUT MIX I, WHICH USED SULFUR

ROBB SPARKS

ASR EXPANSION TEST

- ASTM CI293 provides results after I-2 years
- Test modified as follows
- For each candidate concrete mix, two curing conditions used
 - Accelerated conditions: 80°C, immersed in 1M NaOH
 - Unaccelerated conditions: 21°C, uncovered in fog room at >90% RH
 - 4 total prisms cast: 2 accelerated & 2 unaccelerated

ROBB SPARKS	15 APRIL 2016	71

ASR EXPANSION TEST

4"X4"XI0" STEEL MOLDS FILLED IN 2 LAYERS EACH RODDED 25 TIMES

CURED 24 HOURS, COVERED

ASR EXPANSION TEST

AFTER DEMOLDING, INITIAL READING TAKEN

FOR UNACCELERATED PRISMS, THIS IS THE ZERO READING

ACCELERATED PRISMS IMMERSED IN WATER AND PLACED IN 80° OVEN

ASR EXPANSION TEST

AFTER 24 HOURS IN HOT WATER, ZERO READING OF ACCELERATED PRISMS TAKEN

ACCELERATED PRISMS PLACED IN HOT IM NaOH AND RETURNED TO OVEN

ROBB SPARKS

15 APRIL 2016

CONCRETE MIX DESIGN

OBJECTIVES

- Aggressively reactive
- Sufficient workability for producing shear specimens
- No attempt made to match prototype concrete
- Reasonably representative of a construction material
- No admixtures
 - Except NaOH to boost alkalinity
 - Except LiNO₃ to produce control specimens

ROBB SPARKS	15 APRIL 2016	76
	IS AFRIE 2016	70

CONCRETE MIX DESIGN	OBJECTIVES
---------------------	------------

Compressive Strength	4,500 psi	31.0 MPa
Slump	4.5-6.5 in	11-14 cm
Expansion	0.5%	
Air Content	Less than 3%	

ROBB SPARKS I5 APRIL 2016 77

MIX DESIGN I

- Designed following ACI 211.1, Chapter 6
- No modification to ACI-recommended design
- Test batch produced June 11th, 2015
- Tested (as are all mixes) according to program above

ROBB SPARKS	15 APRIL 2016	78
-------------	---------------	----

Estimate Concrete Mix Using ACI 211.1 Chapter 6			
Step I: Choice of slump	Ref Table 6.3. I		
Step 1. Choice of sharip	Slump =	5	in
	Clear spacing =	1.5	in
Step 2: Choice of maximum aggregate size	Max CA size = 0.75*(Clear spacing)	1.125	in
	Available CA size =	0.75	in
	Ref Table 6.3.3		
Step 3: Estimate water and air	28-Day compressive strength	4000	lbs/in ²
	Water =	350	lbs/yd ³
	air =	١%	
Step 4: Select w/c ratio	Ref Table 6.3.4(a)		
	w/c =	0.57	
Step 5: Calculate cement content	Cement = Water / (w/c)	614	lbs/yd ³

ROBB SPARKS	15 APRIL 2016	79
KORR SLAKK2	IS APRIL 2016	/9

CONCRETE MIX DESIGN	MIX DESIGN I

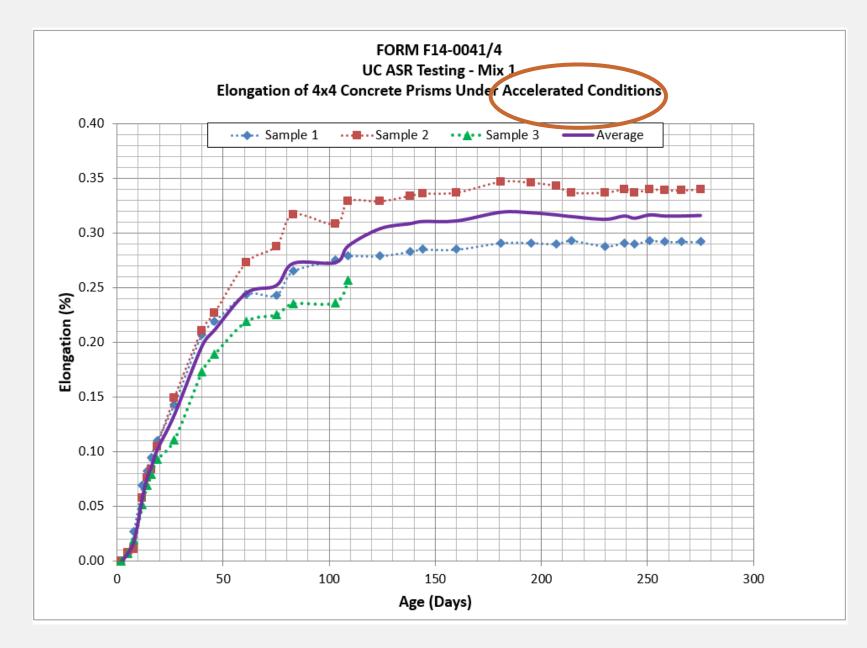
	oven dry-rodded unit wt of CA =	100.9	lbs/ft3
	Fineness modulus of FA =	2.5	ft³
Step 6: Estimate coarse	Ref Table 6.3.6		
aggregate content	Vol CA per unit vol concrete =	0.65	
	Vol CA per yd³ = (Vca/unit)*27	17.6	ft³/yd³
	CA = (Vca/yd³)*(unit wt CA)	1771	lbs/yd ³
	Ref Table 6.3.7.1		
Step 7: Estimate fine aggregate content (6.3.7.1)	Weight of concrete =	3960	lbs/yd ³
	FA =(Weight concrete) - W - C - CA	1225	lbs/yd ³

ROBB SPARKS	15 APRIL 2016	80

	Vwater = W / 62.4	5.61	ft³/yd
	specific gravity of cement =	3.15	
	Vcement = C / (s.g. C * 62.4)	3.12	ft³/yd
	specific gravity of CA =	2.641	
Refine FA by Volume Method (6.3.7.2)	Vca = CA / (s.g. CA * 62.4)	10.7	ft³/yd
	Air (~1%) = .01*27	0.27	ft³/yd
	Vw +Vc +Vca +Vair	19.7	ft³/yd
	Vfa = 27 – (Vw +Vc +Vca +Vair)	7.3	ft³/yd
	Specific gravity of FA =	2.623	
	FA = (Vfa * s.g. FA*62.4)	1187	lbs/yd

ROBB SPARKS	15 APRIL 2016	81

CONCRETE MIX DESIGN	MIX DESIGN I
---------------------	--------------


Material	lbs/yd3	kg/m3
Portland Cement, Type I/II, (0.53% Na ₂ O)	614	365
Fine Aggregate: Manufactured Sand	1187	705
Coarse Aggregate: 3/4" Crushed Rock	1771	1052
Water	350	208
w/c	0.57	0.57

ROBB SPARKS	15 APRIL 2016	82
-------------	---------------	----

CONCRETE MIX DESIGN	MIX DESIGN I
---------------------	--------------

Concrete Test Results : Mix I	
Temperature of freshly-mixed concrete (°F)	77
Ambient temperature (°F)	75
Slump (in)	6.25
Air Content (%)	0.7%
Unit Weight (lbs/ft ³)	147.6
Compressive strength (8 days)	4170
Compressive strength (28 days)	4430

ROBB SPARKS	15 APRIL 2016	83

RO	BB	SPA	RKS

MIX I CONCLUSION

Curing Conditions	Elongation	Age
80°C, IM NaOH	0.247%	65 days

- Mechanical properties acceptable
- ASR expansion fails to meet goal

ROBB SPARKS	15 APRIL 2016	85

MIX DESIGN 2, REACTIVE

- Attempt to increase expansion
- Used higher-alkalinity cement (0.91% as Na₂0)
 - Cement provided by Holcim of Maryland
- Added $NaOH_{(s)}$ to boost alkalinity to 1.25% as Na_2O

ROBB SPARKS	15 APRIL 2016	86
-------------	---------------	----

ALKALI DOPING CALCULATION

$$Alkali_{cement} = \frac{measured \ alkali \ \%}{100} W_{c}$$
$$Alkali_{required} = \frac{desired \ alkali \ \%}{100} W_{c}$$

$$Alkali_{additional} = (Alkali_{cement}) - (Alkali_{required})$$

ROBB SPARKS	15 APRIL 2016	87
-------------	---------------	----

CONCRETE MIX DESIGN MIX DESIGN 2R

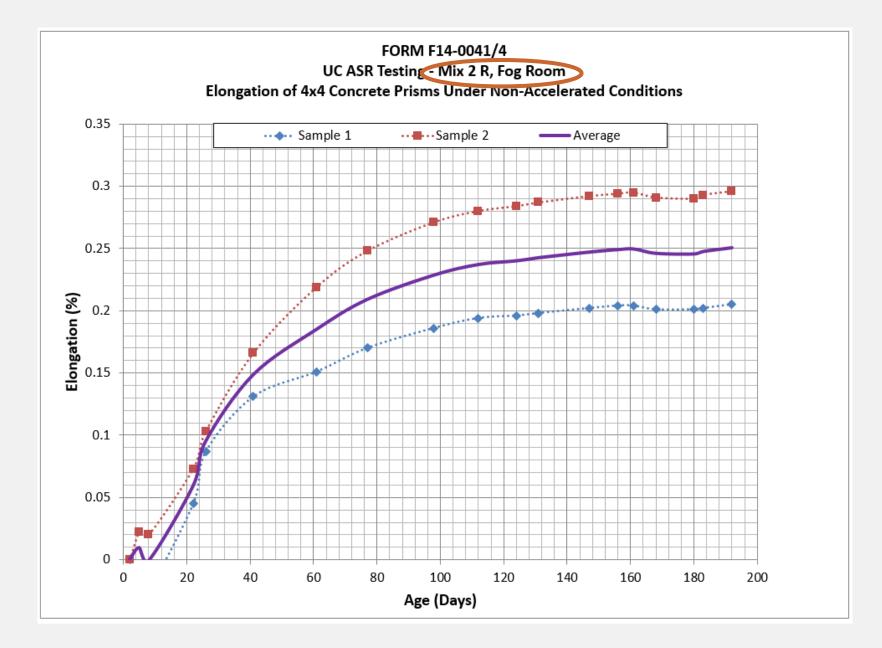
$$Na_2O_{(s)} + H_2O_{(l)} \rightarrow 2NaOH_{(aq)}$$

$$\begin{pmatrix} 2 \mod \text{NaOH} \\ \overline{1 \mod \text{Na}_2 O} \end{pmatrix} \begin{pmatrix} 1 \mod \text{Na}_2 O \\ \overline{61.98 g \operatorname{Na}_2 O} \end{pmatrix} \begin{pmatrix} 39.997 g \operatorname{NaOH} \\ \overline{1 \mod \text{NaOH}} \end{pmatrix}$$
$$= 1.291 \begin{pmatrix} \frac{\text{NaOH}}{g \operatorname{Na}_2 O} \end{pmatrix}$$

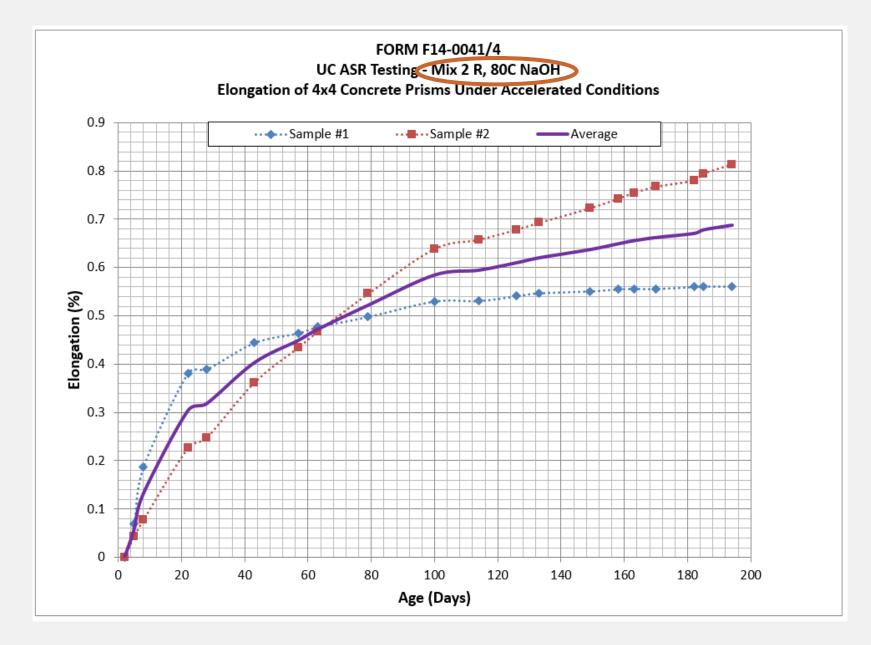
$$NaOH_{additional} = (1.291)Alkali_{additional}$$

ROBB SPARKS	15 APRIL 2016	88
-------------	---------------	----

CONCRETE MIX DESIGN	MIX DESIGN 2R
---------------------	---------------


Material	lbs/yd³	kg/m³
Portland Cement, Type I/II, (0.91% as Na ₂ O)	614	365
Fine Aggregate: Manufactured Sand	1,205	716
Coarse Aggregate: 3/4" Crushed Rock	1,753	1,041
Water	350	208
w/c	0.57	0.57
Admixtures	kg/yd³	kg/m³
NaOH(s) Doping Additive (1.25% as Na ₂ O)	1.22	1.6

ROBB SPARKS	15 APRIL 2016	89


CONCRETE MIX DESIGN	MIX DESIGN 2R
---------------------	---------------

Concrete Test Results : Mix 2R	
Temperature of freshly-mixed concrete (°F)	83.4
Ambient temperature (°F)	78.2
Slump (in)	8.3
Air Content (%)	2.1%
Unit Weight (lbs/ft ³)	145.7
Compressive strength (8 days)	3920
Compressive strength (28 days)	4760

ROBB SPARKS	15 APRIL 2016	90

ROBB SPARK

RC	BB	SPA	NRKS

MIX 2R CONCLUSION

Curing Conditions	Elongation	Age
80°C, IM NaOH	0.478%	65 days
21°C, Fog Room RH > 90%	0.191%	65 days

- Mix 2R rejected on basis of slump
- ASR expansion just fails to meet goal at 65 days
- Ultimate expansion beyond target

 Unaccelerated bars were kept in hot NaOH for days before until 8 days after casting

RO	BB S	PAR	ĸs
	50 5		

MIX DESIGN 2, NONREACTIVE

- Evaluate effectiveness of LiNO₃ at controlling ASR
- Objective is similar mechanical properties to Mix 2R with negligible expansion
- If successful, will use for control concrete

ROBB SPARKS	15 APRIL 2016	94
-------------	---------------	----

LINO₃ DOSING CALCULATION

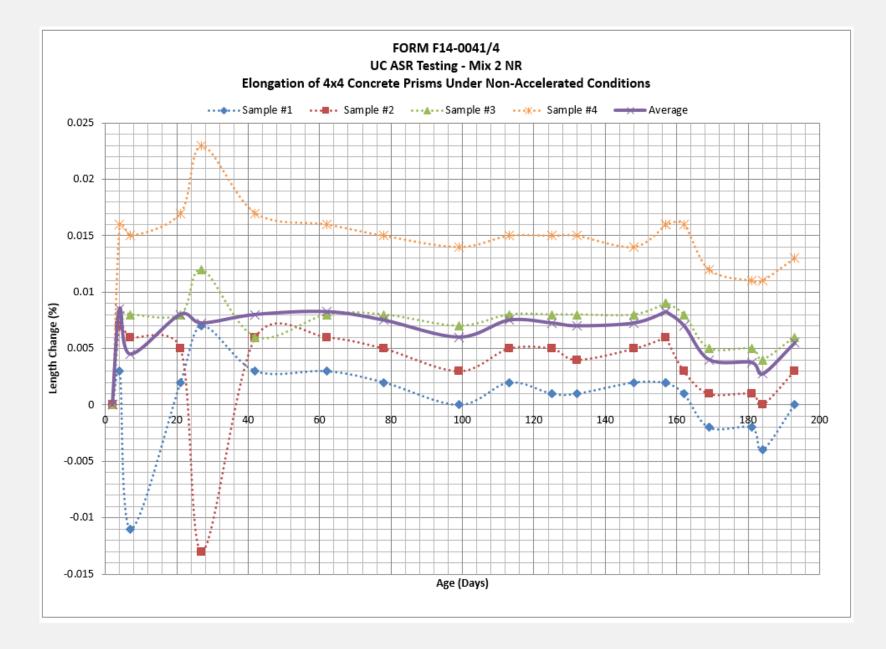
• GCP Rasir (30% LiNO₃) dose calculation

 $multiplier = 4.6 for L/m^3$

$$LiNO_3 dose(L/m^3) = 4.6 W_c \frac{Alkalinity \% of cement}{100}$$

 $W_{w \ reduced} = W_{w} - 0.84(LiNO_{3} \ dose)$

ROBB SPARKS IS APRIL 2016 95


CONCRETE MIX DESIGN	MIX DESIGN 2NR
---------------------	----------------

Material	lbs/yd³	kg/m³
Portland Cement, Type I/II, (0.91% as Na ₂ O)	614	365
Fine Aggregate: Manufactured Sand	1,227	716
Coarse Aggregate: 3/4" Crushed Rock	1,786	1,041
Water	329	208
w/c	0.57	0.57
Admixtures	L/yd³	L/m³
Lithium Nitrate, 30%	11.7	15.3

ROBB SPARKS	15 APRIL 2016	96

Concrete Test Results : Mix 2NR		
Temperature of freshly-mixed concrete (°F)	61.6	
Ambient temperature (°F)	82.1	
Slump (in)	7.0	
Air Content (%)	I.7%	
Unit Weight (lbs/ft ³)	145.4	
Compressive strength (8 days)	4,160	
Compressive strength (28 days)	5,030	

ROBB SPARKS	15 APRIL 2016	97

	RO	BB	SPA	RKS
--	----	----	-----	-----

MIX 2NR CONCLUSION

Curing Conditions	Elongation	Age
21°C, Fog Room RH > 90%	0.006%	65 days

- Expansion of unaccelerated specimens reduced 96.9%
- Expansion of accelerated specimens reduced 98.7%
- 28-day compressive strength increased 5.7%
- Slump reduced 15.7%

Conclusion: LiNO₃ ideal for production of control

ROBB	SPARKS

MIX DESIGN 3

- Attempt to further boost reactivity of Mix 2R by following:
- I. Increase fine aggregate content to 34.5% as volume
 - Fine aggregate exposes greater surface area to alkali attack
 - Mortar bar results indicate that sand particle size large enough to avoid pessimum size effect.
- 2. Increase alkali even further to 1.6% as Na_2O
- 3. Reduce w/c to 0.50 to offset strength reduction of extra sand
- 4. Reduce slump slightly

ROBB SPARKS	15 APRIL 2016	100

CONCRETE MIX DESIGN	MIX DESIGN 3
---------------------	--------------

Material	lbs/yd³	kg/m³
Portland Cement, Type 1/II, (0.91% as Na ₂ O)	614	365
Fine Aggregate: Manufactured Sand	1,525	716
Coarse Aggregate: 3/4" Crushed Rock	1,536	1,041
Water	310	208
w/c	.50	0.57
Admixtures	kg/yd ³	kg/m³
NaOH(s) Doping Additive (1.60% as Na ₂ O)	2.48	3.25

ROBB SPARKS	15 APRIL 2016	101

CONCRETE MIX DESIGN	MIX DESIGN 3
---------------------	--------------

- Calculation error on testing day
- Incorrectly corrected for moisture content of aggregates

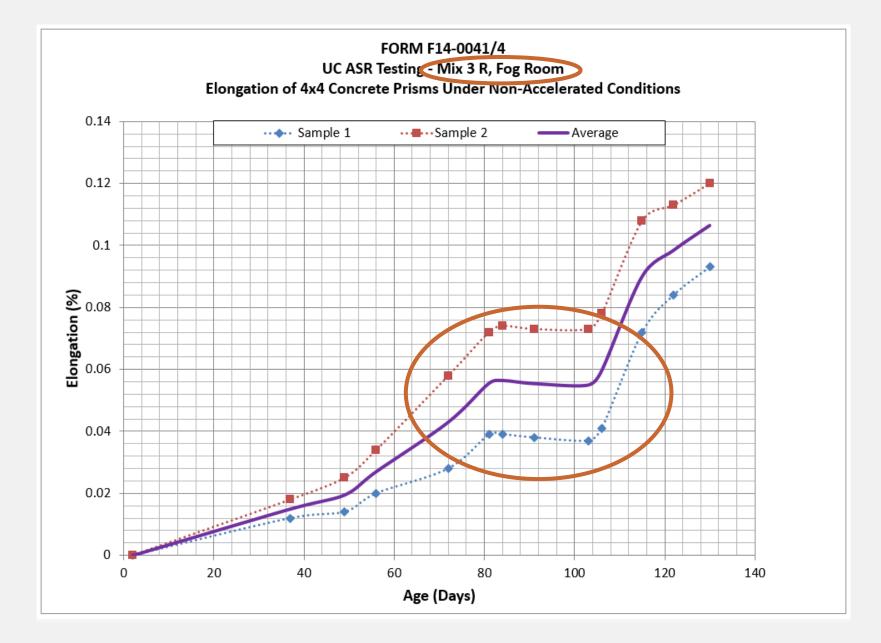
ROBB SPARKS	15 APRIL 2016	102
		4

MOISTURE COMPENSATION

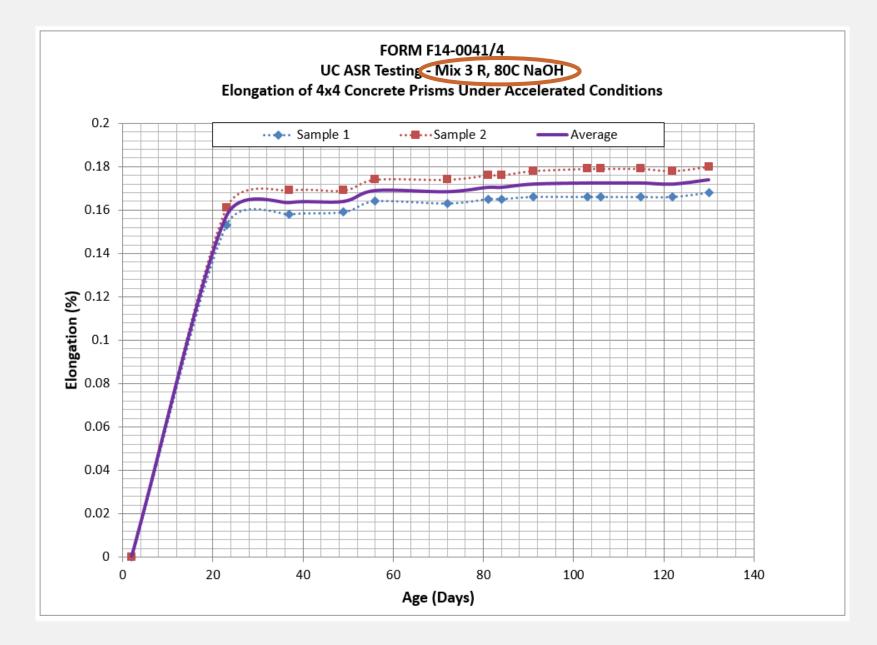
ACI 211.1 6.3.8

(Surface Mositure) = (Moisture Content) – (Absorbance)

$$W_{agg \ adjusted} = W_{agg \ design}(1 + SM)$$

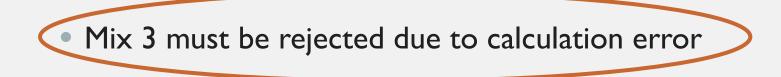

$$W_{W adjusted} = W_{w design} - W_{FA}(SM_{FA}) - W_{CA}(SM_{CA})$$

ROBB SPARKS	15 APRIL 2016	103
-------------	---------------	-----


CONCRETE MIX DESIGN	MIX DESIGN 3
---------------------	--------------

Concrete Test Results : Mix 3			
Temperature of freshly-mixed concrete (°F)	68		
Ambient temperature (°F)	65		
Slump (in)	2.5		
Air Content (%)	2.8%		

ROBB SPARKS	15 APRIL 2016	104
-------------	---------------	-----



ROBB SPARKS

RO	BB	SPA	NRKS

MIX 3 CONCLUSION

- Accelerated prisms behaving unexpectedly:
 - Rapid expansion to 0.17%, then plateau
- Hydrofogger failure at Fall Line results in stalled expansion of unaccelerated prisms

ROBB SPARKS	15 APRIL 2016	107
	1374142 2010	107

MIX DESIGN 4

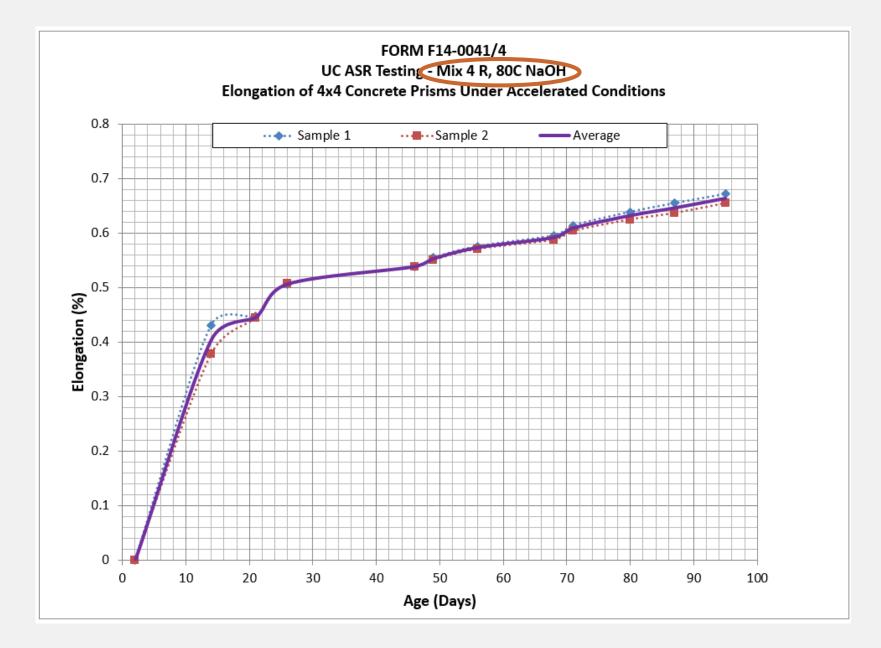
- Correct mistakes with Mix 3
- Increased water content and adjusted w/c to be more in line with Mix 2R

ROBB SPARKS	15 APRIL 2016	108
ROBB SPARKS	15 APRIL 2016	108

CONCRETE MIX DESIGN	MIX DESIGN 4
---------------------	--------------

Material	lbs/yd³	kg/m³
Portland Cement, Type I/II, (0.91% as Na ₂ O)	636	378
Fine Aggregate: Manufactured Sand	I,585	941
Coarse Aggregate: 3/4" Crushed Rock	1,362	809
Water	350	208
w/c	0.55	0.55
Admixtures	kg/yd³	kg/m³
NaOH(s) Doping Additive (1.6% as Na ₂ O)	2.57	3.37

ROBB SPARKS	15 APRIL 2016	109


CONCRETE MIX DESIGN	MIX DESIGN 4
---------------------	--------------

Concrete Test Results : Mix 4		
Temperature of freshly-mixed concrete (°F)	69.8	
Ambient temperature (°F)	64.2	
Slump (in)	4.5	
Air Content (%)	2.7%	
Unit Weight (lbs/ft ³)	144.7	
Compressive strength (8 days)	3500	
Compressive strength (28 days)	3958	

ROBB SPARKS	15 APRIL 2016	110
		1

ROBB SPARKS IS APRIL 2016

ROBB SPARKS

MIX 4 CONCLUSION

Curing Conditions	Elongation	Age
80°C, IM NaOH	0.587%	65 days
21°C, Fog Room RH > 90%	0.030%	65 days

Mix 4 fails strength criterion

- ASR expansion exceeds target at 65 days
- Ultimate expansion well beyond goals.
- Unaccelerated samples exhibit very small expansion; perhaps due to alkali leaching

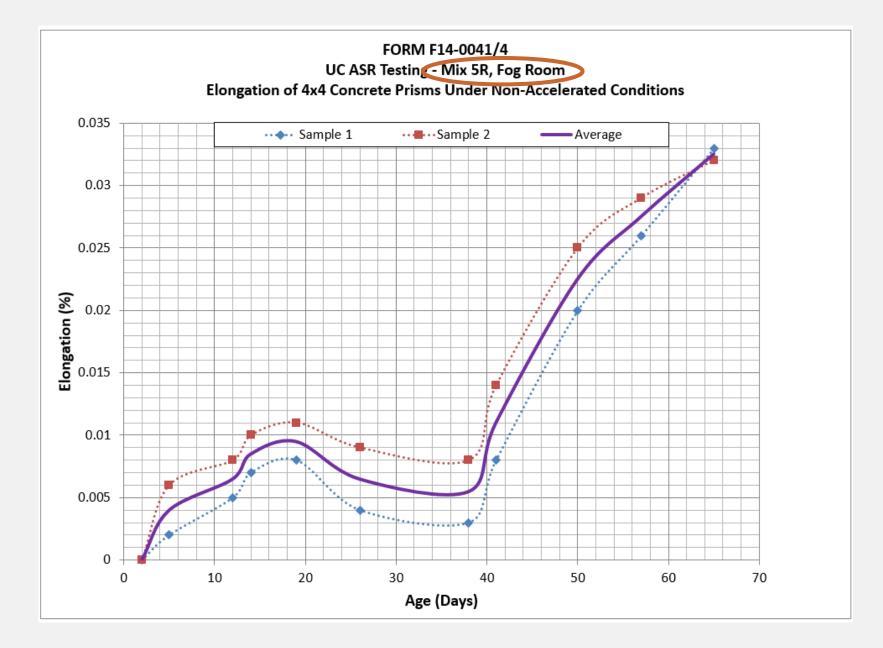
		-
ROBB SPARKS	15 APRIL 2016	113

MIX DESIGN 5

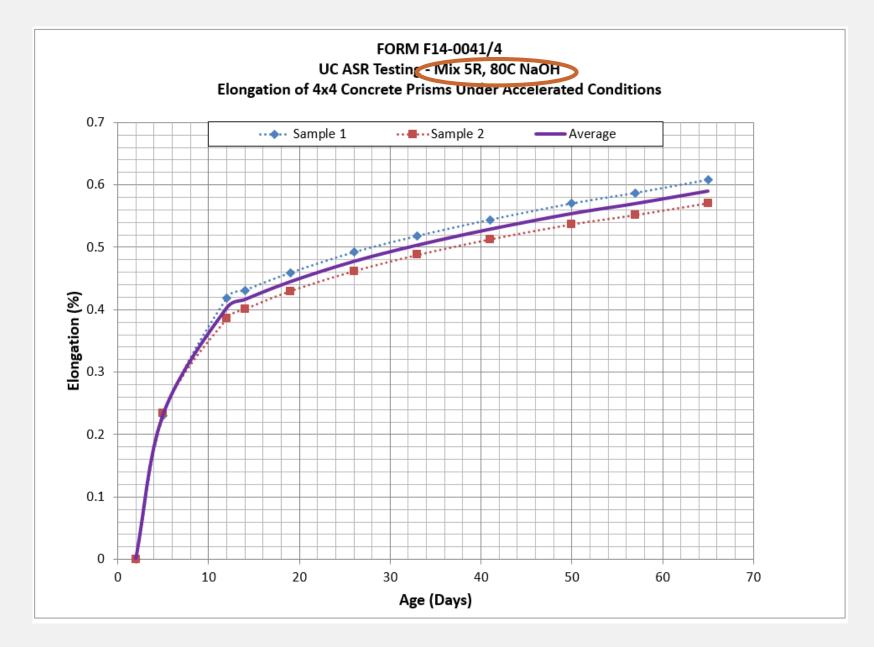
- Correct strength deficit of mix design 4
- All other properties within acceptable bounds
- w/c ratio decreased

ROBB SPARKS	15 APRIL 2016	114
		1

CONCRETE MIX DESIGN	MIX DESIGN 5
---------------------	--------------


Material	lbs/yd³	kg/m³
Portland Cement, Type I/II, (0.91% as Na ₂ O)	666	396
Fine Aggregate: Manufactured Sand	1,552	922
Coarse Aggregate: 3/4" Crushed Rock	1,362	809
Water	353	210
w/c	.53	.53
Admixtures	kg/yd³	kg/m³
NaOH(s) Doping Additive (1.6% as Na ₂ O)	2.69	3.52

ROBB SPARKS	15 APRIL 2016	115
		115


CONCRETE MIX DESIGN	MIX DESIGN 5
---------------------	--------------

Concrete Test Results : Mix 5			
Mechanical Property	Observed	Target	
Temperature of freshly-mixed concrete (°F)	68.7	-	
Ambient temperature (°F)	66.2	-	
Slump (in)	6.5	4.5-6.5	
Air Content (%)	1.7%	<3%	
Unit Weight (lbs/ft ³)	146.4	-	
Compressive strength (8 days)	3700	-	
Compressive strength (28 days)	5100	4500	

ROBB SPARKS	15 APRIL 2016	116

ROBB	SPA	\RKS
------	-----	------

RC	BB	SPA	NRKS

MIX 5 CONCLUSION

Curing Conditions	Elongation	Age
80°C, IM NaOH	0.590%	65 days
21°C, Fog Room RH > 90%	0.033%	65 days

- All mechanical properties acceptable
- ASR expansion of accelerated bars exceeds target expansion after 65 days
- Unaccelerated bars again expand much more slowly

Conclusion: Mix 5 accepted for production of experimental specimens

ROBB SPARKS	15 APRIL 2016	119

PREDICTIONS

- Greatest expansion observed at 80°C
- Not feasible to heat university fog room to that temperature

What is the effect of storage at 38°C?

ROBB SPARKS	15 APRIL 2016	120

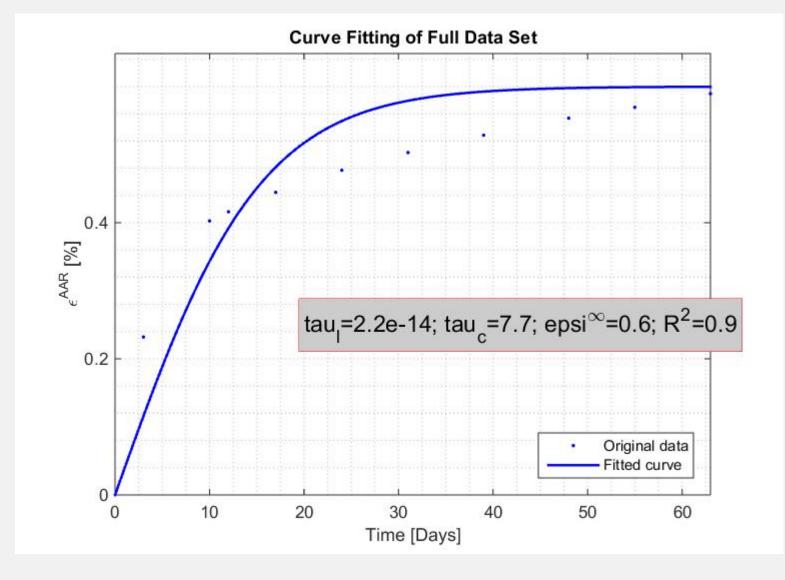
• Temperature effects modelled by Larive equation (Larive, 1998)

$$\varepsilon(t,T) = \frac{1 - e^{\left(\frac{1}{\tau_c(T)}\right)}}{1 + e^{\left(\frac{1 - \tau_L(T)}{\tau_c(T)}\right)}}$$

• τ_L = latency time & τ_c = characteristic time are functions of temperature (Ulmet et al., 2000)

$$\tau_C(T) = \tau_C(T_0) e^{\left(U_c\left(\frac{1}{T} - \frac{1}{T_0}\right)\right)}$$

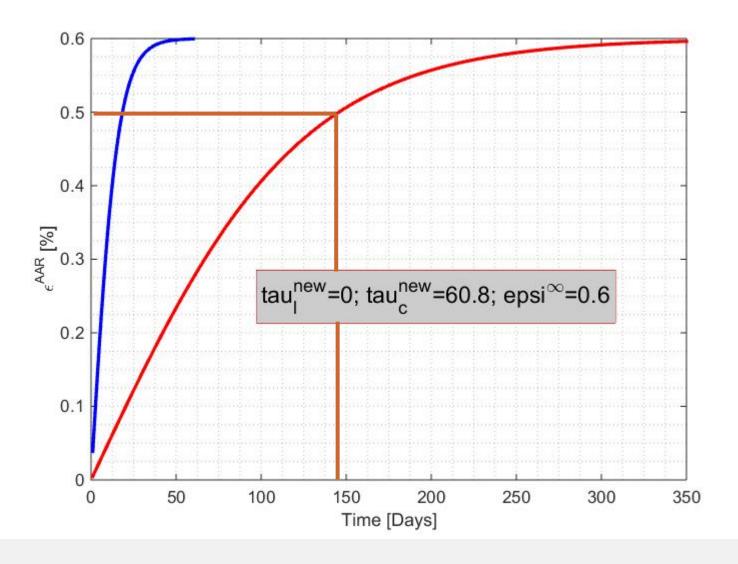
$$\tau_L(T) = \tau_L(T_0) e^{\left(U_L\left(\frac{1}{T} - \frac{1}{T_0}\right)\right)}$$


• $U_L \& U_C$ = activation energies, found by Larive. $U_L = 9400 \pm 500 K$ $U_c = 5400 \pm 500 K$

ROBB SPARKS	15 APRIL 2016	121
-------------	---------------	-----

 Experimental data for Mix 5 (80°C, IM NaOH)

 Curve-fitting yields τ_c(353K) & τ_L(353K)


(Plot provided by Dr. M. Hariri-Ardebili)

ROBB SPARKS IS APRIL 2016 122

- Calculation of characteristic times for 38°C yields $\tau_c(311K) \& \tau_L(311K)$
- Plotting resultant expansion curve permits estimation of expansion.
- Estimate 145 days of cure time to reach 0.5% expansion

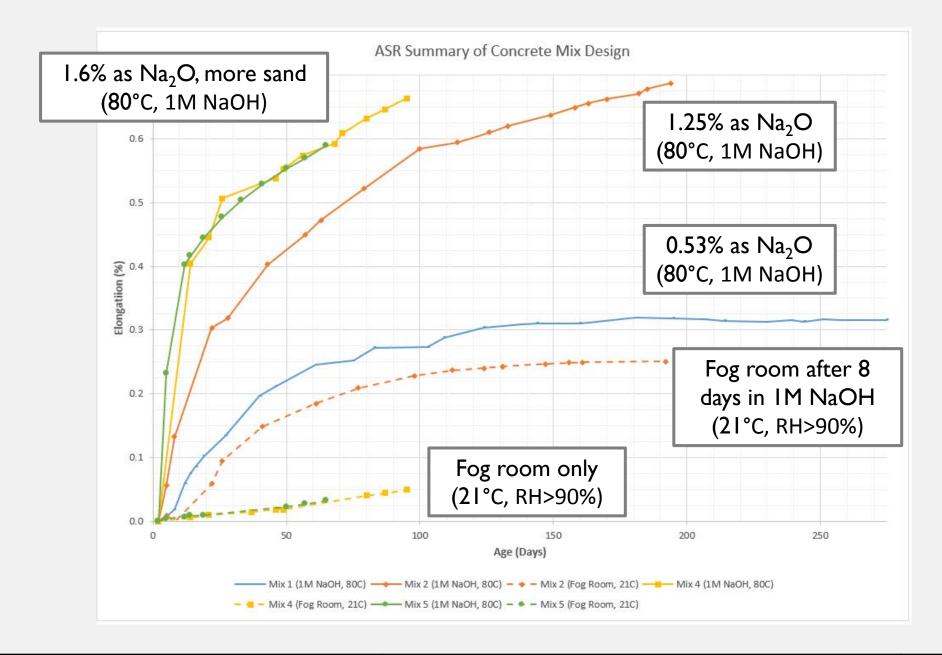
(Plot provided by Dr. M. Hariri-Ardebili)

ROBB SPARKS	15 APRIL 2016	123
-------------	---------------	-----

ALKALI LEACHING PROTECTION

- Exposure to high-humidity fog room conditions exacerbates alkali leaching, reducing expansion
- Sprinkling specimens with aqueous NaOH solution resists alkali leaching by decreasing concentration gradient at surface
- What concentration to use?

- Specimens must be protected from the effects of alkali leaching and shrinkage
- Lindgård (2013) tested prisms wrapped in fabric soaked in caustic solution.
 - For pH 14.2, uptake of alkali by specimen
 - For pH 13.2, specimen lost alkali at approximately same rate as for tap water


```
This observation aligns with results of this study
NaOH + H<sub>2</sub>O → Na<sup>+</sup> + OH<sup>-</sup> + H<sub>2</sub>O
1M NaOH → 1M OH<sup>-</sup>
pOH = -log[OH<sup>-</sup>]
pH = 14 - pOH
[OH<sup>-</sup>] = 10<sup>14.2-14</sup> = 1.58M NaOH
Thus, recommend samples be sprinkled with 1.6M NaOH
```

SPARKS	

CONCLUSIONS & RECOMMENDATIONS FOR FURTHER STUDY

- ASR expansion of concrete prisms highly dependent on environmental conditions
- I. Higher temperatures accelerate expansion.
- 2. High humidity in the absence of surface alkalinity depresses expansion, likely due to alkali leaching
- 3. Increasing initial alkalinity improves expansion, but not enough to overcome leaching effects.
- 4. Increasing aggregate surface area (either by crushing or increasing proportion of reactive sand) increases expansion (to pessimum limit)
- 5. Drying shrinkage can mask ASR expansion.

ROBB SPARKS	15 APRIL 2016	127

_		
ББ	CDA	RKS
BB	SPA	RKN

RECOMMENDATIONS

- Experimental storage conditions:
- Temperature ≈ 38°C
- RH > 90%
- Sprinkler supplying 1.5M NaOH wash
- Expose specimens to alkali wash as soon as practical (24 hours)
- Effects of confining reinforcement not evaluated. Monitor expansion using unconfined prisms.
- May be desirable to measure elastic modulus, as decrease shown to coincide with ASR. (Esposito, 2016)

OBB SPARKS	15 APRIL 2016	130

CONCLUSIONS & FURTHER STUDY

Ahmed, T., Burley, E., & Rigden, S. (1998). The static and fatigue strength of reinforced concrete beams affected by alkali-silica reaction. *ACI Materials Journal*, 95(4), 376-387.

Ahmed, T., Burley, E., Rigden, S., & Abu-Tair, I. (2003). The effect of alkali reactivity on the mechanical properties of concrete. *Construction Building Materials*, 17(2), 123-144.

Bach, F., Thorsen, T. S., & Nielsen, M. P. (1993). Load carrying capacity of structural members subjected to alkali-silica reactions. *Construction Building Materials*, 7(2), 109-115.

Bazant, Z. P., & Steffens, A. (2000). Mathematical model for kinetics of alkali-silica reaction in concrete. *Cement and Concrete Research, 30*, 419-428.

Burrows, R. (1999). The Visible and Invisible Cracking of Concrete. ACI Monograph No. 11. Farmington Hills, Mich.: American Concrete Institute.

Chunxiang, Q., Zhuang, Y., & Huang, H. (2016). Numerical calculation of expansion induced by alkali silia reaction. *Construction and Building Materials*(103), 117-122.

Clark, L.A. (1989). Critical review of the structural implications of the alkali-silica reaction in concrete. Contractor report #169, Transport and Road Research Laboratory, Department of Transport, Crowthorne.

den Uijl, J.A., & Kaptijn, N. (2003). Shear tests on beams cut from ASR-affected bridge decks. *ACI SP-211-6*, (pp. 115-134).

Esposito, R., Caner, A., Hendriks, M.A., & Çopuroğlu, O. (2016). Influence of the alkalisilica reaction on the mechanical degradation of concrete. *Journal of Materials in Civil Engineering*. doi:10.1061/(ASCE)MT.1943-5533.0001486 Gebhardt, R. (1995). Survey of North American portland cements. *Cement and Concrete Aggregates*, *17*(2), 145-189.

Gilks, P., & Curtis, D. (2003). Dealing with the effects of AAR on the water-retaining structures at Mactaquac. *Proceedings of the 21st Congress on Large Dams*, (pp. 681-703). Montreal, Quebec, Canada.

Hobbs, D.W. (1988). Alkali-silica reaction in concrete. American Society of Civil Engineers. doi:ISBN: 0727713175

Jabarooti, M., & Golabtoonchi, I. (2003). Alkali-aggregate reactivity in south-east Iran. Proceedings of hte 21st Congress on Large Dams, (pp. 53-62). Montreal, Quebec, Canada.

Jawed, I., & Skalny, J. (1978). Alkalis in cement: a review. *Cement and Concrete Research*, 8(1), 35-51.

Juenger, M. C., & Jennings, H. M. (2001, May-June). Effects of High Alkalinity on Cement Pastes. *ACI Materials Journal*, 251-255.

Larive, C. (1998). Apports combines de l experimentation et de la modèllisation á la comprehension de l'alcali-rèaction et de ses effets mècaniques. PhD Thesis, École Nationale des Ponts et Chaussèes, Paris.

Léger, P., Côté, P., & Tinawi, R. (1996). "Finite element analysis of concrete swelling due to alkaliaggregate reaction in dams.". *Computers and Structures*, 31(3), 601-611.

Lindgård, J., Andic-Cakir, O., Fernandes, I., Ronning, T., & Thomas, M. (2012). Alkalki-silica reactions: Literature review on parameters influencing laboratory performance testing. *Cement and Concrete Research*(42), 223-243.

ROBB SPARKS IS APRIL 2016 ISI

CONCLUSIONS & FURTHER STUDY	BIBLIOGRAPHY	
 Lindgård, J., Sellevold, E., Thomas, M., Pedersen, B., Justnes, H., & Ronning, T. silica reaction (ASR) - performance testing: Influence of specimen pre-trea conditions and prism size on concrete porosity, moisture state and transpecement and Concrete Research, 53, 145-167. Lindgård, J., Thomas, M., Sellevold, E., Pedersen, B., Ozge, AC., Justnes, H., & (2013). Alkali-silica reaction (ASR) - performance testing: Influence of spectreatment, exposure conditions and prism size on alkali leaching and prism <i>Cement and Concrete Research</i> (53), 68-90. Malla, S., & and Wieland, M. (1999). Analysis of an arch-gravity dam with a h <i>Computers & Structures</i>, 72(1-3), 267-278. Mohamed, O.A., Rens, K. L., & Stalnaker, J. J. (2001). Time effect of alkali-agg on performance of concrete. Journal of Materials in Civil Engineering, 13(2), 11 dynamically loaded reinforced concrete beams. M.S. Thesis, Univ. of Ottawa, O Multon, S. (2004). Evaluation expèrimental et théorique des effets mècaniques sur des structures modéles. Champs sur Marne: Université de Marne-la-Valèe Na, O., Xi, Y., Ou, E., & Saouma, V. (2016). The effects of alkali-silica reaction mechanical properties of concretes with three different types of reactive a Structural Concrete, 17(1), 74-82. doi:10.1002/suco.201400062 Nakamura, E., Watanabe, H., & Koga, H. (2008). Shear resisting mechanism in stirrups fractured due to ASR expansion. Structure Mangement Technology Te Tsukuba, Ibaraki, Japan: Public Works Research Institute 1-6. NUREG-980. (2013). Nuclear Regulatory Legislation. <i>112th Congress</i>, 2D Se Report NUREG-0980. Nuclear Regulatory Commission. 	013). Alkali- nent, exposure t properties.Saouma, V. E., & Hariri-Ardebili, M.A. (2014). A proposed a alkali silica reactions in a nuclear power plant. Nuclear En 264.Ronning, T. nen pre- expansion.Saouma, V. E., Martin, R.A., Hariri-Ardebili, M.A., & Kataya model for the kinetics of the alkali-silica chemical reaction 68, 184-195.rizontal crack.Saouma, V. E., Perotti, L. (2006, May-June). Constitutive mod ACI Materials Journal, 103(3), 194-2002.rizontal crack.Shayan, A., Wark, R., & Moulds, A. (2000). Diagnosis of AAI characterization of the affected concrete and rehabilitation the 11th International Conference on AAR, (pp. 1383-1392).3-151.Stanton, T. (1940). Expansion of concrete through reaction Proc. of ASCE, 66, 1781-1811.awa.Swamy, R., & Al-Asali, M. (1988). Engineering properties or reaction. ACI Materials Journal, 85(5), 367-374.U.S. Energy Information Administration. (2016, February 4 Retrieved April 2, 2016, from http://www.eia.gov/tools/fac gregate.UIm, F. J., Coussy, O., Li, K., & Larive, C. (2000). Thermochar in concrete structures. Journal of Engineering Mechanics, 2: 9399(2000)126:3(233)Wagner, C., & Newell, V. (1995). A review of the history o Proceedings of the Second International Conference on AAR in	gineering and Design(227), 248- ma, T. (2015). A mathematical on. Cement and Concrete Research, odel for alkali-aggregate reactions. R in Canning Dam: on of the structure. Proceedings of Montreal, Quebec, Canada. In between cement and aggregate. f concrete affected by alkali-silica 4). Frequently Asked Questions. qs/faq.cfm?id=228&t=21 emo-mechanics of ASR expansion 33-242. doi:10.1061(ASCE)0733- of AAR at three of the TVA's dams. In Hydroelectric Plants and Dams, manical degradation of reinforced
ROBB SPARKS	15 APRIL 2016	132