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MOTIVATIONS

• The alkali-silica reaction was identified by Stanton in 1940

• Observed in dams and bridges worldwide

• Recently discovered in the Seabrook NPP (Saouma & Hariri, 2014)

• Nuclear power plants in US are licensed for an initial 40 years

• Unlimited 20-year license extensions possible (NUREG-980, 2013)

• Effects of ASR on shear strength poorly understood

INTRODUCTION MOTIVATIONS
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OBJECTIVES

• Identify a local source of reactive aggregates

• Characterize aggregate ASR reactivity

• Design an aggressively-reactive concrete mix

• Concrete mix must be reasonably representative

• Construct reactive concrete specimens

• Assemble shear test apparatus

• Prescribe curing program

INTRODUCTION OBJECTIVES
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ORGANIZATION

1. Introduction

2. Background information

3. Shear testing program

4. Identification of reactive aggregates

5. Concrete testing program

6. Concrete mix design

7. Conclusions

INTRODUCTION ORGANIZATION



BACKGROUND INFORMATION
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• ASR occurs when alkali in cement reacts with amorphous 
or disordered silica in aggregate minerals

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 → 𝐺𝐺𝐺𝐺𝑆𝑆
𝑥𝑥𝑆𝑆𝑆𝑆𝑥𝑥2 + 𝑦𝑦𝑦𝑦𝑆𝑆(𝐾𝐾)𝑥𝑥𝑂𝑂 → 𝑦𝑦𝑆𝑆(𝐾𝐾)𝑦𝑦𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥𝑧𝑧

• Product is hygroscopic silica gel, which expands when 
hydrated

𝐺𝐺𝐺𝐺𝑆𝑆 + 𝑊𝑊𝑆𝑆𝑊𝑊𝐺𝐺𝑊𝑊 → 𝑂𝑂𝑦𝑦𝐻𝐻𝑊𝑊𝑆𝑆𝑊𝑊𝐺𝐺𝐻𝐻 𝑔𝑔𝐺𝐺𝑆𝑆
𝑦𝑦𝑆𝑆(𝐾𝐾)𝑦𝑦𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥𝑧𝑧 + 𝑤𝑤𝑂𝑂2𝑥𝑥 → 𝑦𝑦𝑆𝑆(𝐾𝐾)𝑦𝑦𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥𝑧𝑧 � 𝑤𝑤𝑂𝑂2𝑥𝑥

BACKGROUND INFORMATION ASR MECHANISM
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• Three necessary components for ASR (Hobbs, 1988)

1. Reactive minerals in aggregate

2. Sufficient alkali in cement

3. Sufficient humidity to hydrate resulting gel

• Reaction rate strongly influenced by temperature (Larive 1998)

BACKGROUND INFORMATION FACTORS INFLUENCING ASR



ROBB SPARKS 15 APRIL 2016 9

• Lindgård (2013) exhaustively 
tested concrete prisms 

• Found drastic variation depending 
on curing conditions

1. Alkali leaching

2. Internal moisture

3. Temperature

4. Initial alkali content

5. Diffusion rate (porosity)

BACKGROUND INFORMATION EFFECT OF CURING CONDITIONS

Reproduced from Lindgård (2013)
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• Influence of ASR on mechanical properties widely studied 
(Swamy & El Asali, 1988) (Monette, 1997) (Ahmed et. al, 2003) (Multon, 2004) etc.

• As expansion proceeds, following effects observed

1. Compressive strength initially climbs then declines

2. Tensile strength falls nonlinearly

3. Elastic modulus declines almost linearly

(Esposito et. al, 2016)

BACKGROUND INFORMATION EFFECT OF ASR ON MECHANICAL PROPERTIES
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• Effects of ASR on shear strength not well understood
• No effect? (Bach et. al, 2003)

• Shear strength declines? (den Uijl & Kaptijn, 2003) (Nakamura et. al, 2008)

• Shear strength increases?  (Ahemd, Burley, & Rigden, 1998)

BACKGROUND INFORMATION EFFECT OF ASR ON MECHANICAL PROPERTIES



SHEAR TESTING PROGRAM
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SHEAR TEST PROGRAM PROTOTYPE / MODEL
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SHEAR TEST PROGRAM PROTOTYPE / MODEL

Model Structure

Scale Factor 0.56

Inner radius (ft) 35

Wall thickness (ft) 2.5

Wall height (ft) 68

Foundation thickness (ft) 5.6

Grade level (ft above foundation) 31

Prototype Structure

Inner radius (ft) 63

Wall thickness (ft) 4.5

Wall height (ft) 122

Foundation thickness (ft) 10

Grade level (ft above foundation base) 56
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SHEAR TEST PROGRAM PROTOTYPE / MODEL
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SHEAR TEST APPARATUS

• Apparatus designed for previous study

• Brought out of storage

• Inventoried

• Cleaned

• Painted

• Assembly began January 15th, 2016

SHEAR TEST PROGRAM APPARATUS ASSEMBLY
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SHEAR TEST PROGRAM APPARATUS ASSEMBLY



ROBB SPARKS 15 APRIL 2016 18

BUSHINGS, CLAMPS AND 
CLEVIS BRACKETS

INSTALLING REACTION BARS

SHEAR TEST PROGRAM APPARATUS ASSEMBLY 
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ALIGNING REACTION BARS 
WITH TAPE & SPIRIT LEVEL

ALIGNING REACTION BARS WITH 
TAPE & SPIRIT LEVEL

SHEAR TEST PROGRAM APPARATUS ASSEMBLY
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REINFORCEMENT

• Prototype structure reinforced in both axial and circumferential 
directions

• Details of prototype reinforcement not known

• No attempt made to model a particular NPP

• Model reinforcement must be:
• Constructible

• Representative

SHEAR TEST PROGRAM REINFORCEMENT
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SHEAR SPECIMEN 
ORIENTATION IN MODEL

AXIAL AND CIRCUMFERENTIAL 
REINFORCEMENT IN PROTOTYPE

SHEAR TEST PROGRAM REINFORCEMENT
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SHEAR SPECIMEN

REINFORCEMENT

SHEAR TEST PROGRAM REINFORCEMENT
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SHEAR TEST PROGRAM REINFORCEMENT

Circumferential reinforcement ratio selection

Sample Dimensions (in2)
Lyy 30 Concrete Area, (in2)

Lxx 42 1260

Bar Number Steel area per bar Abar (in) Reinforcement ratio, ρ Required steel area, As (in2) Number of bars required per layer

5 0.31

0.2% 2.52 9

0.5% 6.30 21

1.0% 12.60 41

6 0.44

0.2% 2.52 6

0.5% 6.30 15

1.0% 12.60 29

7 0.6

0.2% 2.52 5

0.5% 6.30 11

1.0% 12.60 21

8 0.79

0.2% 2.52 4

0.5% 6.30 8

1.0% 12.60 16



ROBB SPARKS 15 APRIL 2016 24

Axial reinforcement ratio selection

Sample Dimensions (in2)
Lzz 10 Concrete Area (in2)

Lyy 30 300

Bar Number Steel area per bar, Abar (in) Reinforcement ratio, ρ Required steel area, As (in2) Number of bars required per layer

4 0.2

0.2% 0.6 3

0.5% 1.5 8

1.0% 3 15

5 0.31

0.2% 0.6 2

0.5% 1.5 5

1.0% 3 10

6 0.44

0.2% 0.6 2

0.5% 1.5 4

1.0% 3 7

7 0.6

0.2% 0.6 1

0.5% 1.5 3

1.0% 3 5

SHEAR TEST PROGRAM REINFORCEMENT
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(All dimensions in 

inches)

Bar 

Number
Bar Diameter

Bar 

Length

Number of bars 

per layer

Bar spacing 

(center to 

center)

ρactual

Total bars 

required

Circumferential 

Reinforcement
7 0.875 8 11 2.813 0.52% 242

Axial Reinforcement 6 0.75 42 4 2.083 0.59% 88

SHEAR TEST PROGRAM REINFORCEMENT



ROBB SPARKS 15 APRIL 2016 26

• Development Length is a problem

• Standard hooks exceed specimen dimensions
• #7 Hook length = 10.5”

• #7 Bend diameter = 7”

• Other anchorage options also too large

• Decision:  weld bars to one another and to end plates
• Permits axial bars to provide aid development for circumferential

• Disadvantage:  weakens rebar by an unknown amount

SHEAR TEST PROGRAM REINFORCEMENT
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CONSTRUCTING 
ALIGNMENT J IG

REBAR SAW-CUT AND GROUND 
TO FINAL SIZE

SHEAR TEST PROGRAM REINFORCEMENT
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USING J IG TO ALIGN REBAR

COMPLETED REBAR CAGES

SHEAR TEST PROGRAM REINFORCEMENT
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SHEAR TEST PROGRAM REINFORCEMENT
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FORMWORK

• Small number of reusable forms using more-expensive Plyform?

• Larger number of single-use forms using less-expensive OSB?

• Tight casting schedule mandated single-use forms

• Trial run with dummy form suggested considerable water 
absorption

• Mitigated by painting forms with primer

SHEAR TEST PROGRAM FORMWORK
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FORMWORK DESIGN

PAINTED INTERIOR TO MINIMIZE 
WATER LOSS TO FORM

SHEAR TEST PROGRAM FORMWORK
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CASTING PLAN

• Number and types of specimens

• Large volume of concrete requires 4 castings

• Casting to take place at Fall Line laboratory

• April 25th and 27th

• Specimens permitted to cure 24 hours before transport to CU

SHEAR TEST PROGRAM CASTING PLAN
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SHEAR TEST PROGRAM CASTING PLAN

Reactive Specimens Number
Volume 

(yd3)

Shear specimens with rebar 9 2.43

Shear specimens without rebar 3 0.81

Wedge splitting test 3 0.02

Cylinder, 4”x8” 36 0.08

Cylinder, 6”x12” 12 0.09

Blocks without rebar 6 0.35

Blocks with rebar 3 0.18

Prism 4”x4”x12” 6 0.06

Wastage factor 15.0%

Total 4.54

Non-Reactive Specimens Number
Volume 

(yd3)

Shear specimens with rebar 2 0.54

Shear specimens without rebar 2 0.54

Wedge splitting test 3 0.02

Cylinder, 4”x8” 12 0.03

Cylinder, 6”x12” 4 0.03

Blocks without rebar 3 0.18

Blocks with rebar 3 0.18

Prism 4”x4”x10” 3 0.03

Wastage factor 15.0%

Total 1.73

Grand Total (yd3) 6.27
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THREE-CUBIC YARD MIXER 
AT FALL LINE

MOBILE BATCH PLANT

SHEAR TEST PROGRAM CASTING PLAN
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MATERIAL SUPPLY

• Received sufficient aggregates February 1st, 2016

• Aggregates tested and stored at Fall Line

• Aggregates donated by Whitewater Building Materials

• Transportation donated by Brady Trucking

• Cement donated by Holcim of Hagerstown, MD

• Lithium nitrate donated by Grace Concrete Products

SHEAR TEST PROGRAM MATERIAL SUPPLY
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SHEAR TEST PROGRAM AGGREGATE SUPPLY

Material lbs kg

Portland Cement,Type 1, Holcim 4,200 2,500

Fine Aggregate: Manufactured Sand 10,100 6,100

Coarse Aggregate: 3/4" Crushed Rock 8,600 5,300

Admixtures Unit

NaOH(s) Doping Additive (kg) 12.2

Lithium Nitrate Additive (L) 34.5
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OFFLOADING AGGREGATE

AGGREGATES TESTED, CONDITIONED, 
MIXED & COVERED UNTIL USE

SHEAR TEST PROGRAM AGGREGATE SUPPLY
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ASR DEVELOPMENT CONDITIONS

1. Objective is to maximize expansion in limited time available 
for sample curing (approximately 6 months)

2. High temperatures promote rapid expansion

3. High alkalinity wash prevents alkali leaching

4. High relative humidity prevents loss of alkali wash and 
shrinkage due to dessication

SHEAR TEST PROGRAM ASR DEVELOPMENT CONDITIONS
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TEMPERATURE = 38°C
HUMIDITY > 90%

ALKALI WASH WITH 1.6M NaOH(aq)

SHEAR TEST PROGRAM ASR DEVELOPMENT CONDITIONS



IDENTIFICATION OF REACTIVE 
AGGREGATES
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AGGREGATE SUPPLIERS

• Aggregates from two suppliers tested

• Both draw material from quarries along Gunnison River

• Tested manufactured sand, 3/8” gravel, and 3/4” gravel

• Whitewater Building Materials

• Grand Junction Ready-Mix

• Samples obtained January 21st 2015

• Primary test ASTM 1567

IDENTIFICATION OF REACTIVE AGGREGATES AGGREGATE SUPPLIERS
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WHITEWATER BUILDING 
MATERIALS

GRAND JUNCTION READY MIX

IDENTIFICATION OF REACTIVE AGGREGATES AGGREGATE SUPPLIERS
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IDENTIFICATION OF REACTIVE AGGREGATES

From left: 3/4“ rock, 3/8” rock, and sand from Grand Junction Ready-Mix

From left: 3/4“ rock, 3/8” rock, and sand from Whitewater Building Materials
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OVERVIEW OF ASTM 1567

• Widely accepted test for ASR reactivity of aggregates

• Accelerated mortar bar test

• Provides results in 16 days

• Classifies aggregates as ‘Reactive’ or ‘Nonreactive’

IDENTIFICATION OF REACTIVE AGGREGATES ASTM 1567 OVERVIEW
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COARSE AGGREGATES ARE 
CRUSHED

MORTAR MIXED FROM 
PRESCRIBED GRADATION

IDENTIFICATION OF REACTIVE AGGREGATES ASTM 1567 OVERVIEW
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S IEVED FRACTIONS ARE 
WASHED

DRIED IN OVEN BEFORE 
WEIGHING

IDENTIFICATION OF REACTIVE AGGREGATES ASTM 1567 OVERVIEW
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MORTAR BARS ARE 
1”X1”X10”

COMPONENT WEIGHTS AND 
MIXING TIMES AS PRESCRIBED

IDENTIFICATION OF REACTIVE AGGREGATES ASTM 1567 OVERVIEW
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MORTAR TAMPED INTO 
MOLDS

INITIAL CURE 24 HOURS, 
COVERED IN FOG ROOM

IDENTIFICATION OF REACTIVE AGGREGATES ASTM 1567 OVERVIEW
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INITIAL READINGS TAKEN 
WITH LENGTH 

COMPAROMETER

BARS STORED IN WATER FOR 24 
HOURS AT 80°C, THEN ZERO 

MEASUREMENT TAKEN

IDENTIFICATION OF REACTIVE AGGREGATES ASTM 1567 OVERVIEW

PLACED IN 1M NaOH AND 
RETURNED TO OVEN
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TEST RESULTS

• Subsequent measurements taken every 4 days

• Final reading taken 16 days after casting

• All aggregates exceed 0.1% threshold for ASR reactivity

IDENTIFICATION OF REACTIVE AGGREGATES ASTM 1567 TEST RESULTS
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IDENTIFICATION OF REACTIVE AGGREGATES ASTM 1567 TEST RESULTS

WHITEWATER GJRM

THRESHOLD 
OF ASR

REACTIVITY
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IDENTIFICATION OF REACTIVE AGGREGATES ASTM 1567 TEST RESULTS

Percent expansion, 16 days after casting

Whitewater Building Materials Grand Junction Ready Mix

Sand 0.69 0.98

3/8" 0.68 0.74

3/4" 1.02 0.77

Average 0.80 0.83
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IDENTIFICATION OF REACTIVE AGGREGATES ASTM 1567 TEST RESULTS
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IDENTIFICATION OF REACTIVE AGGREGATES ASTM 1567 TEST RESULTS
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MORTAR BARS EXTENSIVELY 
CRACKED & DEFORMED 
(IMAGE TAKEN 131 DAYS 
AFTER CASTING, ε=1.4%

CURVATURE ALWAYS CONCAVE 
UP TOWARD TOP OF MOLD

IDENTIFICATION OF REACTIVE AGGREGATES ASTM 1567 TEST RESULTS
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CONCLUSION

• Whitewater sand and 3/4” gravel selected for further study

• Highly reactive

• Supplier eager to participate in study

IDENTIFICATION OF REACTIVE AGGREGATES CONCLUSION



CONCRETE TESTING PROGRAM
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AGGREGATE TESTS

• Tests performed on all aggregate samples upon receipt

• Reliance on standardized ASTM test procedures

CONCRETE TESTING PROGRAM AGGREGATE TESTS



ROBB SPARKS 15 APRIL 2016 59

CONCRETE TESTING PROGRAM AGGREGATE TESTS

Test Standard

Coarse aggregate relative density ASTM C127

Fine aggregate relative density ASTM C128

Coarse aggregate bulk density ASTM C29

Fineness modulus / gradation ASTM C136

Moisture content ASTM C566
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AFTER SOAKING 24HRS, 
AGGREGATE DRIED TO SSD

WEIGHED AT SSD AND 
IMMERSED

CONCRETE TESTING PROGRAM COARSE AGGREGATE RELATIVE DENSITY (ASTM C127)

Whitewater 3/4 Specific Gravity

Oven Dry Bulk Specific Gravity 2.604

SSD Bulk Specific Gravity 2.641

Apparent Bulk Specific Gravity 2.705

Absorption (%) 1.433
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SAND BROUGHT TO SSD, 
INDICATED BY CONE MOLD

SAND PLACED IN VOLUMETRIC 
FLASK AND DE-AIRED; WEIGHED 

WITH AND WITHOUT SAND

CONCRETE TESTING PROGRAM FINE AGGREGATE RELATIVE DENSITY (ASTM C128)

Whitewater Sand Specific Gravity

Oven Dry Bulk Specific Gravity 2.583

SSD Bulk Specific Gravity 2.623

Apparent Bulk Specific Gravity 2.690

Absorption (%) 1.551
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COARSE AGGREGATE 
LOADED INTO MEASURE IN 

THREE LIFTS, EACH 
RODDED 25 TIMES

CONCRETE TESTING PROGRAM COARSE AGGREGATE BULK DENSITY (ASTM C29)

Whitewater 3/4” Bulk Density

Bulk Specific Gravity 2.641

Bulk Density (pcf) 100.9

Void (%) 39%
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AGGREGATE IS WASHED 
AND DECANTED, THEN 

OVEN-DRIED

AFTER SIEVING, EACH FRACTION 
IS WEIGHED

CONCRETE TESTING PROGRAM GRADATION / FINENESS MODULUS (ASTM C136)
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CONCRETE TESTING PROGRAM GRADATION / FINENESS MODULUS (ASTM C136)

Whitewater Sand Sieve Analysis

Sieve Size Percent Retained Percent Passing

3/8" 0.0 100.0

#4 2.8 97.2

#8 15.3 84.7

#16 31.0 69.0

#30 40.6 59.4

#50 67.8 32.2

#100 91.1 8.9

#200 98.3 1.7

Fineness Modulus 2.5

Whitewater 3/4 Sieve Analysis

Sieve Size Percent Retained Percent Passing

1" 0.0 100.0

3/4" 6.0 94.0

1/2" 56.4 43.6

3/8" 77.8 22.2

#4 97.9 2.1
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CONCRETE TESTS

• Tests performed on all concrete test mixes

• Reliance on standardized ASTM test procedures where possible

CONCRETE TESTING PROGRAM CONCRETE TESTS
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CONCRETE TESTING PROGRAM CONCRETE TESTS

Test Standard

Slump ASTM C173

Unit Weight ASTM C138

Air Content ASTM C231

Temperature ASTM C1064

Compressive Strength ASTM C39

ASR Expansion N/A
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SLUMP MOLD FILLED IN 3 
LAYERS, EACH TAMPED 25 

TIMES

MOLD LIFTED IN ONE MOTION; 
SLUMP MEASURED FROM TOP OF 

CONE

CONCRETE TESTING PROGRAM SLUMP (ASTM C173)
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AIR METER BOWL FILLED IN 
TWO LAYERS, EACH 
RODDED 25 TIMES

BOWL TAPPED 10-15 TIMES WITH 
MALLET AND STRUCK OFF

CONCRETE TESTING PROGRAM UNIT WEIGHT (ASTM C138)
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AFTER WEIGHING BOWL, 
AIR METER INSTALLED

WATER ADDED TO WEEP HOLE; 
METER TILTED AND ROLLED TO 

EXPEL ENTRAPPED AIR INTO 
GAUGE

CONCRETE TESTING PROGRAM AIR CONTENT (ASTM C173)
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4”X8” CYLINDER MOLDS;
FILLED IN 2 LIFTS;

EACH LIFT RODDED 25 
TIMES

CYLINDERS ALLOWED TO REST 30 
MINUTES TO CHECK FOR 

BLEEDING

CONCRETE TESTING PROGRAM COMPRESSIVE STRENGTH (ASTM C192)

UNBONDED CAPS USED FOR ALL 
BUT MIX 1, WHICH USED SULFUR
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ASR EXPANSION TEST

• ASTM C1293 provides results after 1-2 years

• Test modified as follows

• For each candidate concrete mix, two curing conditions used
• Accelerated conditions:  80°C, immersed in 1M NaOH

• Unaccelerated conditions:  21°C, uncovered in fog room at >90% RH

• 4 total prisms cast:  2 accelerated & 2 unaccelerated

CONCRETE TESTING PROGRAM ASR EXPANSION TEST
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4”X4”X10” STEEL MOLDS
FILLED IN 2 LAYERS

EACH RODDED 25 TIMES

CURED 24 HOURS, COVERED

CONCRETE TESTING PROGRAM ASR EXPANSION TEST
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AFTER DEMOLDING, 
INITIAL READING TAKEN

ACCELERATED PRISMS IMMERSED 
IN WATER AND PLACED IN 80°

OVEN

CONCRETE TESTING PROGRAM ASR EXPANSION TEST

FOR UNACCELERATED
PRISMS, THIS IS THE ZERO 

READING
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AFTER 24 HOURS IN HOT 
WATER, ZERO READING OF 

ACCELERATED PRISMS 
TAKEN

ACCELERATED PRISMS PLACED IN 
HOT 1M NaOH AND RETURNED 

TO OVEN

CONCRETE TESTING PROGRAM ASR EXPANSION TEST



CONCRETE MIX DESIGN
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OBJECTIVES

CONCRETE MIX DESIGN OBJECTIVES

• Aggressively reactive

• Sufficient workability for producing shear specimens

• No attempt made to match prototype concrete

• Reasonably representative of a construction material

• No admixtures
• Except NaOH to boost alkalinity

• Except LiNO3 to produce control specimens
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CONCRETE MIX DESIGN OBJECTIVES

Compressive Strength 4,500 psi 31.0 MPa

Slump 4.5-6.5 in 11-14 cm

Expansion 0.5%

Air Content Less than 3%
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MIX DESIGN 1

• Designed following ACI 211.1, Chapter 6

• No modification to ACI-recommended design

• Test batch produced June 11th, 2015

• Tested (as are all mixes) according to program above

CONCRETE MIX DESIGN MIX DESIGN 1
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CONCRETE MIX DESIGN MIX DESIGN 1

Estimate Concrete Mix Using ACI 211.1 Chapter 6

Step 1: Choice of slump
Ref Table 6.3.1

Slump = 5 in

Step 2: Choice of maximum aggregate 
size

Clear spacing =  1.5 in

Max CA size = 0.75*(Clear spacing) 1.125 in

Available CA size = 0.75 in

Step 3: Estimate water and air

Ref Table 6.3.3

28-Day compressive strength 4000 lbs/in2

Water = 350 lbs/yd3

air = 1%

Step 4: Select w/c ratio
Ref Table 6.3.4(a)

w/c = 0.57

Step 5: Calculate cement content Cement = Water / (w/c) 614 lbs/yd3
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CONCRETE MIX DESIGN MIX DESIGN 1

Step 6: Estimate coarse 
aggregate content

oven dry-rodded unit wt of CA = 100.9 lbs/ft3

Fineness modulus of FA = 2.5 ft3

Ref Table 6.3.6

Vol CA per unit vol concrete = 0.65

Vol CA per yd3 = (Vca/unit)*27 17.6 ft3/yd3

CA = (Vca/yd3)*(unit wt CA) 1771 lbs/yd3

Step 7: Estimate fine 
aggregate content (6.3.7.1)

Ref Table 6.3.7.1

Weight of concrete = 3960 lbs/yd3

FA =(Weight concrete) - W - C - CA 1225 lbs/yd3
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CONCRETE MIX DESIGN MIX DESIGN 1

Refine FA by Volume Method 
(6.3.7.2)

Vwater = W / 62.4 5.61 ft3/yd

specific gravity of cement = 3.15

Vcement = C / (s.g. C * 62.4) 3.12 ft3/yd

specific gravity of CA = 2.641

Vca = CA / (s.g. CA * 62.4) 10.7 ft3/yd

Air (~1%) = .01*27 0.27 ft3/yd

Vw + Vc + Vca + Vair 19.7 ft3/yd

Vfa = 27 – (Vw + Vc + Vca + Vair) 7.3 ft3/yd

Specific gravity of FA = 2.623

FA = (Vfa * s.g. FA*62.4) 1187 lbs/yd
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CONCRETE MIX DESIGN MIX DESIGN 1

Material lbs/yd3 kg/m3

Portland Cement, Type 1/II, (0.53% Na2O) 614 365

Fine Aggregate: Manufactured Sand 1187 705

Coarse Aggregate: 3/4" Crushed Rock 1771 1052

Water 350 208

w/c 0.57 0.57
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CONCRETE MIX DESIGN MIX DESIGN 1

Concrete Test Results : Mix 1

Temperature of freshly-mixed concrete (°F) 77

Ambient temperature (°F) 75

Slump (in) 6.25

Air Content (%) 0.7%

Unit Weight (lbs/ft3) 147.6

Compressive strength (8 days) 4170

Compressive strength (28 days) 4430
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CONCRETE MIX DESIGN MIX DESIGN 1
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• Mechanical properties acceptable

• ASR expansion fails to meet goal

CONCRETE MIX DESIGN MIX DESIGN 1

Curing Conditions Elongation Age

80°C, 1M NaOH 0.247% 65 days

MIX 1 CONCLUSION
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MIX DESIGN 2, REACTIVE

• Attempt to increase expansion

• Used higher-alkalinity cement (0.91% as Na2o)
• Cement provided by Holcim of Maryland

• Added NaOH(s) to boost alkalinity to 1.25% as Na2O

CONCRETE MIX DESIGN MIX DESIGN 2R
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𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑚𝑚𝐺𝐺𝑆𝑆𝑚𝑚𝑚𝑚𝑊𝑊𝐺𝐺𝐻𝐻 𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 %

100
𝑊𝑊𝑐𝑐

𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟 =
𝐻𝐻𝐺𝐺𝑚𝑚𝑆𝑆𝑊𝑊𝐺𝐺𝐻𝐻 𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 %

100
𝑊𝑊𝑐𝑐

𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 = 𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟

CONCRETE MIX DESIGN MIX DESIGN 2R

ALKALI DOPING CALCULATION
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𝑦𝑦𝑆𝑆2𝑥𝑥(𝑠𝑠) + 𝑂𝑂2𝑥𝑥(𝑎𝑎) → 2𝑦𝑦𝑆𝑆𝑥𝑥𝑂𝑂(𝑎𝑎𝑟𝑟)

2 𝑚𝑚𝑚𝑚𝑆𝑆 𝑦𝑦𝑆𝑆𝑥𝑥𝑂𝑂
1 𝑚𝑚𝑚𝑚𝑆𝑆 𝑦𝑦𝑆𝑆2𝑥𝑥

1 𝑚𝑚𝑚𝑚𝑆𝑆 𝑦𝑦𝑆𝑆2𝑥𝑥
61.98 𝑔𝑔 𝑦𝑦𝑆𝑆2𝑥𝑥

39.997 𝑔𝑔 𝑦𝑦𝑆𝑆𝑥𝑥𝑂𝑂
1 𝑚𝑚𝑚𝑚𝑆𝑆 𝑦𝑦𝑆𝑆𝑥𝑥𝑂𝑂

= 1.291
𝑦𝑦𝑆𝑆𝑥𝑥𝑂𝑂
𝑔𝑔 𝑦𝑦𝑆𝑆2𝑥𝑥

𝑦𝑦𝑆𝑆𝑥𝑥𝑂𝑂𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎 = 1.291 𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎

CONCRETE MIX DESIGN MIX DESIGN 2R
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CONCRETE MIX DESIGN MIX DESIGN 2R

Material lbs/yd3 kg/m3

Portland Cement,Type 1/II, (0.91% as Na2O) 614 365

Fine Aggregate: Manufactured Sand 1,205 716

Coarse Aggregate: 3/4" Crushed Rock 1,753 1,041

Water 350 208

w/c 0.57 0.57

Admixtures kg/yd3 kg/m3

NaOH(s) Doping Additive (1.25% as Na2O) 1.22 1.6
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CONCRETE MIX DESIGN MIX DESIGN 2R

Concrete Test Results : Mix 2R

Temperature of freshly-mixed concrete (°F) 83.4

Ambient temperature (°F) 78.2

Slump (in) 8.3

Air Content (%) 2.1%

Unit Weight (lbs/ft3) 145.7

Compressive strength (8 days) 3920

Compressive strength (28 days) 4760
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CONCRETE MIX DESIGN MIX DESIGN 2R
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CONCRETE MIX DESIGN MIX DESIGN 2R
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• Mix 2R rejected on basis of slump

• ASR expansion just fails to meet goal at 65 days

• Ultimate expansion beyond target

• Unaccelerated bars were kept in hot NaOH for days 
before until 8 days after casting

CONCRETE MIX DESIGN MIX DESIGN 2R

MIX 2R CONCLUSION

Curing Conditions Elongation Age

80°C, 1M NaOH 0.478% 65 days

21°C, Fog Room RH > 90% 0.191% 65 days
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MIX DESIGN 2, NONREACTIVE

• Evaluate effectiveness of LiNO3 at controlling ASR

• Objective is similar mechanical properties to Mix 2R with 
negligible expansion

• If successful, will use for control concrete

CONCRETE MIX DESIGN MIX DESIGN 2NR
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• GCP Rasir (30% LiNO3) dose calculation

𝑚𝑚𝑚𝑚𝑆𝑆𝑊𝑊𝑆𝑆𝑚𝑚𝑆𝑆𝑆𝑆𝐺𝐺𝑊𝑊 = 4.6 𝑓𝑓𝑚𝑚𝑊𝑊 𝐿𝐿/𝑚𝑚3

𝐿𝐿𝑆𝑆𝑦𝑦𝑥𝑥3 𝐻𝐻𝑚𝑚𝑚𝑚𝐺𝐺 𝐿𝐿/𝑚𝑚3 = 4.6 𝑊𝑊𝑐𝑐
𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑊𝑊𝑦𝑦 % 𝑚𝑚𝑓𝑓 𝑆𝑆𝐺𝐺𝑚𝑚𝐺𝐺𝐴𝐴𝑊𝑊

100

𝑊𝑊𝑤𝑤 𝑟𝑟𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑟𝑟 = 𝑊𝑊𝑤𝑤 − 0.84(𝐿𝐿𝑆𝑆𝑦𝑦𝑥𝑥3 𝐻𝐻𝑚𝑚𝑚𝑚𝐺𝐺)

CONCRETE MIX DESIGN MIX DESIGN 2NR

LINO3 DOSING CALCULATION
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CONCRETE MIX DESIGN MIX DESIGN 2NR

Material lbs/yd3 kg/m3

Portland Cement,Type 1/II, (0.91% as Na2O) 614 365

Fine Aggregate: Manufactured Sand 1,227 716

Coarse Aggregate: 3/4" Crushed Rock 1,786 1,041

Water 329 208

w/c 0.57 0.57

Admixtures L/yd3 L/m3

Lithium Nitrate, 30% 11.7 15.3
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CONCRETE MIX DESIGN MIX DESIGN 2NR

Concrete Test Results : Mix 2NR

Temperature of freshly-mixed concrete (°F) 61.6

Ambient temperature (°F) 82.1

Slump (in) 7.0

Air Content (%) 1.7%

Unit Weight (lbs/ft3) 145.4

Compressive strength (8 days) 4,160

Compressive strength (28 days) 5,030
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CONCRETE MIX DESIGN MIX DESIGN 2NR
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• Expansion of unaccelerated specimens reduced 96.9%

• Expansion of accelerated specimens reduced 98.7%

• 28-day compressive strength increased 5.7%

• Slump reduced 15.7%

• Conclusion:  LiNO3 ideal for production of control

CONCRETE MIX DESIGN MIX DESIGN 2NR

Curing Conditions Elongation Age

21°C, Fog Room RH > 90% 0.006% 65 days

MIX 2NR CONCLUSION
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MIX DESIGN 3

• Attempt to further boost reactivity of Mix 2R by following:

1. Increase fine aggregate content to 34.5% as volume
• Fine aggregate exposes greater surface area to alkali attack

• Mortar bar results indicate that sand particle size large enough to avoid 
pessimum size effect.

2. Increase alkali even further to 1.6% as Na2O

3. Reduce w/c to 0.50 to offset strength reduction of extra sand

4. Reduce slump slightly

CONCRETE MIX DESIGN MIX DESIGN 3
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CONCRETE MIX DESIGN MIX DESIGN 3

Material lbs/yd3 kg/m3

Portland Cement,Type 1/II, (0.91% as Na2O) 614 365

Fine Aggregate: Manufactured Sand 1,525 716

Coarse Aggregate: 3/4" Crushed Rock 1,536 1,041

Water 310 208

w/c .50 0.57

Admixtures kg/yd3 kg/m3

NaOH(s) Doping Additive (1.60% as Na2O) 2.48 3.25
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• Calculation error on testing day

• Incorrectly corrected for moisture content of aggregates

• Should have added 13 lbs of water, but only added 10 lbs

CONCRETE MIX DESIGN MIX DESIGN 3
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𝑆𝑆𝑚𝑚𝑊𝑊𝑓𝑓𝑆𝑆𝑆𝑆𝐺𝐺 𝑀𝑀𝑚𝑚𝑚𝑚𝑆𝑆𝑊𝑊𝑚𝑚𝑊𝑊𝐺𝐺 = 𝑀𝑀𝑚𝑚𝑆𝑆𝑚𝑚𝑊𝑊𝑚𝑚𝑊𝑊𝐺𝐺 𝐶𝐶𝑚𝑚𝐴𝐴𝑊𝑊𝐺𝐺𝐴𝐴𝑊𝑊 − (𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑊𝑊𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝐺𝐺)

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟 = 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑐𝑐𝑠𝑠𝑟𝑟𝑎𝑎𝑐𝑐 1 + 𝑆𝑆𝑀𝑀

𝑊𝑊𝑊𝑊𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑠𝑠𝑐𝑐𝑐𝑐𝑟𝑟 = 𝑊𝑊𝑤𝑤𝑟𝑟𝑐𝑐𝑠𝑠𝑟𝑟𝑎𝑎𝑐𝑐 −𝑊𝑊𝐹𝐹𝐹𝐹 𝑆𝑆𝑀𝑀𝐹𝐹𝐹𝐹 −𝑊𝑊𝐶𝐶𝐹𝐹(𝑆𝑆𝑀𝑀𝐶𝐶𝐹𝐹)

CONCRETE MIX DESIGN MIX DESIGN 2R

MOISTURE COMPENSATION

ACI 211.1 6.3.8
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CONCRETE MIX DESIGN MIX DESIGN 3

Concrete Test Results : Mix 3

Temperature of freshly-mixed concrete (°F) 68

Ambient temperature (°F) 65

Slump (in) 2.5

Air Content (%) 2.8%
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CONCRETE MIX DESIGN MIX DESIGN 3
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CONCRETE MIX DESIGN MIX DESIGN 3
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• Mix 3 must be rejected due to calculation error

• Accelerated prisms behaving unexpectedly:
• Rapid expansion to 0.17%, then plateau

• Hydrofogger failure at Fall Line results in stalled expansion 
of unaccelerated prisms

CONCRETE MIX DESIGN MIX DESIGN 3

MIX 3 CONCLUSION
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MIX DESIGN 4

• Correct mistakes with Mix 3

• Increased water content and adjusted w/c to be more in line 
with Mix 2R

CONCRETE MIX DESIGN MIX DESIGN 4
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CONCRETE MIX DESIGN MIX DESIGN 4

Material lbs/yd3 kg/m3

Portland Cement,Type 1/II, (0.91% as Na2O) 636 378

Fine Aggregate: Manufactured Sand 1,585 941

Coarse Aggregate: 3/4" Crushed Rock 1,362 809

Water 350 208

w/c 0.55 0.55

Admixtures kg/yd3 kg/m3

NaOH(s) Doping Additive (1.6% as Na2O) 2.57 3.37
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CONCRETE MIX DESIGN MIX DESIGN 4

Concrete Test Results : Mix 4

Temperature of freshly-mixed concrete (°F) 69.8

Ambient temperature (°F) 64.2

Slump (in) 4.5

Air Content (%) 2.7%

Unit Weight (lbs/ft3) 144.7

Compressive strength (8 days) 3500

Compressive strength (28 days) 3958
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CONCRETE MIX DESIGN MIX DESIGN 4
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CONCRETE MIX DESIGN MIX DESIGN 4
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• Mix 4 fails strength criterion

• ASR expansion exceeds target at 65 days

• Ultimate expansion well beyond goals.

• Unaccelerated samples exhibit very small expansion; perhaps due to alkali 
leaching

CONCRETE MIX DESIGN MIX DESIGN 4

Curing Conditions Elongation Age

80°C, 1M NaOH 0.587% 65 days

21°C, Fog Room RH > 90% 0.030% 65 days

MIX 4 CONCLUSION
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MIX DESIGN 5

• Correct strength deficit of mix design 4

• All other properties within acceptable bounds

• w/c ratio decreased 

CONCRETE MIX DESIGN MIX DESIGN 5
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CONCRETE MIX DESIGN MIX DESIGN 5

Material lbs/yd3 kg/m3

Portland Cement,Type 1/II, (0.91% as Na2O) 666 396

Fine Aggregate: Manufactured Sand 1,552 922

Coarse Aggregate: 3/4" Crushed Rock 1,362 809

Water 353 210

w/c .53 .53

Admixtures kg/yd3 kg/m3

NaOH(s) Doping Additive (1.6% as Na2O) 2.69 3.52
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CONCRETE MIX DESIGN MIX DESIGN 5

Concrete Test Results : Mix 5

Mechanical Property Observed Target

Temperature of freshly-mixed concrete (°F) 68.7 -

Ambient temperature (°F) 66.2 -

Slump (in) 6.5 4.5-6.5

Air Content (%) 1.7% <3%

Unit Weight (lbs/ft3) 146.4 -

Compressive strength (8 days) 3700 -

Compressive strength (28 days) 5100 4500
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CONCRETE MIX DESIGN MIX DESIGN 5
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CONCRETE MIX DESIGN MIX DESIGN 5
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• All mechanical properties acceptable

• ASR expansion of accelerated bars exceeds target expansion after 65 days

• Unaccelerated bars again expand much more slowly

• Conclusion:  Mix 5 accepted for production of experimental specimens

CONCRETE MIX DESIGN MIX DESIGN 5

MIX 5 CONCLUSION

Curing Conditions Elongation Age

80°C, 1M NaOH 0.590% 65 days

21°C, Fog Room RH > 90% 0.033% 65 days
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PREDICTIONS

• Greatest expansion observed at 80°C

• Not feasible to heat university fog room to that temperature

• What is the effect of storage at 38°C?

CONCRETE MIX DESIGN PREDICTIONS
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• Temperature effects modelled by Larive equation (Larive,1998)

𝜀𝜀 𝑊𝑊,𝑇𝑇 =
1 − 𝐺𝐺

1
𝜏𝜏𝑐𝑐 𝑇𝑇

1 + 𝐺𝐺
1−𝜏𝜏𝐿𝐿(𝑇𝑇)
𝜏𝜏𝑐𝑐(𝑇𝑇)

• τL= latency time & τc= characteristic time are functions of temperature 
(Ulmet et al., 2000)

𝜏𝜏𝐶𝐶(𝑇𝑇) = 𝜏𝜏𝐶𝐶 𝑇𝑇0 𝐺𝐺
𝑈𝑈𝑐𝑐

1
𝑇𝑇−

1
𝑇𝑇0

𝜏𝜏𝐿𝐿(𝑇𝑇) = 𝜏𝜏𝐿𝐿 𝑇𝑇0 𝐺𝐺
𝑈𝑈𝐿𝐿

1
𝑇𝑇−

1
𝑇𝑇0

• UL & UC = activation energies, found by Larive.
𝑈𝑈𝐿𝐿 = 9400 ± 500 𝐾𝐾
𝑈𝑈𝑐𝑐 = 5400 ± 500 𝐾𝐾

CONCRETE MIX DESIGN PREDICTIONS
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• Experimental data for Mix 5 
(80°C, 1M NaOH)

• Curve-fitting yields τC(353K) 
& τL(353K) 

(Plot provided by Dr. M. Hariri-
Ardebili)

CONCRETE MIX DESIGN PREDICTIONS
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• Calculation of  characteristic 
times for 38°C yields τC(311K) & 
τL(311K) 

• Plotting resultant expansion 
curve permits estimation of 
expansion.

• Estimate 145 days of cure time 
to reach 0.5% expansion 

(Plot provided by Dr. M. Hariri-
Ardebili)

CONCRETE MIX DESIGN PREDICTIONS
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ALKALI LEACHING PROTECTION

• Exposure to high-humidity fog room conditions exacerbates 
alkali leaching, reducing expansion

• Sprinkling specimens with aqueous NaOH solution resists alkali 
leaching by decreasing concentration gradient at surface

• What concentration to use?

CONCRETE MIX DESIGN ALKALI LEACHING PROTECTION
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• Specimens must be protected from the effects of alkali leaching and 
shrinkage

• Lindgård (2013) tested prisms wrapped in fabric soaked in caustic 
solution.
• For pH 14.2, uptake of alkali by specimen

• For pH 13.2, specimen lost alkali at approximately same rate as for tap water

• This observation aligns with results of this study
𝑦𝑦𝑆𝑆𝑥𝑥𝑂𝑂 + 𝑂𝑂2𝑥𝑥 → 𝑦𝑦𝑆𝑆+ + 𝑥𝑥𝑂𝑂− + 𝑂𝑂2𝑥𝑥

1𝑀𝑀 𝑦𝑦𝑆𝑆𝑥𝑥𝑂𝑂 → 1𝑀𝑀 𝑥𝑥𝑂𝑂−

𝑚𝑚𝑥𝑥𝑂𝑂 = − log 𝑥𝑥𝑂𝑂−

𝑚𝑚𝑂𝑂 = 14 − 𝑚𝑚𝑥𝑥𝑂𝑂
𝑥𝑥𝑂𝑂− = 1014.2−14 = 1.58𝑀𝑀 𝑦𝑦𝑆𝑆𝑥𝑥𝑂𝑂

• Thus, recommend samples be sprinkled with 1.6M NaOH

CONCRETE MIX DESIGN LEACHING PROTECTION
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• ASR expansion of concrete prisms highly dependent on 
environmental conditions

1. Higher temperatures accelerate expansion.

2. High humidity in the absence of surface alkalinity 
depresses expansion, likely due to alkali leaching

3. Increasing initial alkalinity improves expansion, but not 
enough to overcome leaching effects.

4. Increasing aggregate surface area (either by crushing or 
increasing proportion of reactive sand) increases 
expansion (to pessimum limit)

5. Drying shrinkage can mask ASR expansion.

CONCLUSIONS & FURTHER STUDY CONCLUSIONS
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CONCLUSIONS & FURTHER STUDY CONCLUSIONS

Fog room only 
(21°C, RH>90%)

Fog room after 8 
days in 1M NaOH
(21°C, RH>90%)

0.53% as Na2O
(80°C, 1M NaOH)

1.25% as Na2O
(80°C, 1M NaOH)

1.6% as Na2O, more sand
(80°C, 1M NaOH)
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RECOMMENDATIONS

• Experimental storage conditions:

• Temperature ≈ 38°C

• RH > 90%

• Sprinkler supplying 1.5M NaOH wash

• Expose specimens to alkali wash as soon as practical (24 hours)

• Effects of confining reinforcement not evaluated.  Monitor 
expansion using unconfined prisms.

• May be desirable to measure elastic modulus, as decrease shown 
to coincide with ASR.  (Esposito, 2016)

CONCLUSIONS & RECOMMENDATIONS RECOMMENDATIONS
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QUESTIONS
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