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Starting from the chain of three chemical reactions which characterize the alkali–silica reaction (ASR), this paper
attempts to develop a mathematical framework throughwhich the reaction kinetics can be better understood. A
petrographic support is given to better understand the physical implications of these equations, and to provide a
reasonable support for the choice of the reaction rates.
First an analytical solution is sought. Though onewas not found, three new conservation lawswere derived. Then
a numerical solution is applied, and important observations are made. First, and foremost, the role of water is
confirmed, and then the outcome of the reaction when different concentrations of alkali and silica are used is
derived. Finally, the temporal evolution of the expansive gel formation is contrasted with both macro-kinetics
model, and diffusion based meta-model for the concrete expansions are compared.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The alkali–silica reaction (ASR) is a major factor contributing to
concrete infrastructure aging (surpassed only by rebar corrosion
induced by depassivation) and as such, is widely studied.

The chemistry of this reaction is complex [1] multi-staged [2]
and is essentially an acid–base one. The acid reactant is silica in the solid
state, the basic reactants are potassium and/or sodium hydroxide and
possibly calcium in the pore solution. The reaction medium is water and
the product of the reaction is a calcium potassium silicate hydrate, or a
calcium sodium silicate hydrate [3], depending on the relative position
to cement paste and the age of ASR gel that forms [4].

Alkalis are present in Portland cement in the form of alkali sulfates,
alkali-aluminate, and in the solid solution of belite. Among these, alkali
sulfates are the dominant and water-soluble phase, which means that
the counter ion of the alkalis in the pore solution at the earliest stage
of cement hydration is sulfate. Accordingly, when subsequent precipita-
tion of ettringite is completed, the counter ion of the alkalis becomes
hydroxide. This in turn will result in an increase of the pH of the pore
solution while both alkali ions (Na+ and K+) and hydroxide ions
(OH−) will concentrate at a sufficiently high level to attack the reactive
silica in the aggregate to form alkali–silica gel.

It should be noted that there is increasing evidence that alkalis can
also be found in some aggregates (such as those extracted from rock
containing feldspar, illite mica or volcanic glass). If the pH is above a
critical value, the alkali-containing silicates will release alkalis through
the interactionwith the alkaline pore solution in concrete and the reac-
tionwill bemore severe than otherwise [5,6] In the followingmodel, no
distinction is made as to the source of the alkali.

Silica, on the other hand, is themain constituent ofmost aggregates in
the form of silicon dioxide (SiO2). Reactive silica such as: 1) early-
expansive (opal, cristobalite, tridymite, and chalcedony) and 2) late-
expansive (cryptocrystalline andmicrocrystalline quartz) types, and3) si-
liceous volcanic glasses (e.g. rhyolitic glass) are all present in siliceous
rocks throughout the entire section of the aggregate [7] (Fig. 4d). From
petrographic examinations, ASR proceeds in the following stages [4]:
(i) formation of reaction rim, exudation (ii) rimming/exudation of sol/
gel on the reacted aggregate partially filling microporosity in cement
paste, (iii) cracking within reacted aggregate accompanied by gel-filling,
(iv) propagation of radial gel-filled expansion cracks from the reacted ag-
gregate into surrounding cement paste, and (v) precipitation of ASR gel
into air voids along cracks distant from the reacted aggregate. Reaction
rim is filled with interstitial ASR gel or its crystalline products (rosettes)
showing a dark appearance in the transmitted light (Fig. 1(a)). Reaction
rimdevelops conspicuouslywith the early-expansive aggregates (opaline
shale, andesite, glassy rhyolite, etc.), whereas this rim is less marked on
the late-expansive aggregates (schist, gneiss, quartzite, limestone, etc.),
although it canbe seenon the fracture surface. It shouldbenoted that pre-
cipitation of ASR gel into air voids distant from the reacted aggregate is
not the cause of expansion but a result of advanced ASR as a diagnostic
feature in petrography.

From an evolutionary perspective, one can discern the following
stages for the reaction: 1) nucleation, 2) development of the reaction,
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Fig. 1. Petrographic interpretation of the reaction.

185V.E. Saouma et al. / Cement and Concrete Research 68 (2015) 184–195
3) acceleration of the reaction and deterioration, and finally 4) severe
deterioration, Fig. 1(a). A proposed petrographic interpretation of the
evolutionary trend of ASR is shown in Fig. 1(b).

It should be noted that the reaction initiates from the periphery
of the aggregate (stage 1) without producing expansion. Expansion
starts inside the aggregate where alkali-rich ASR gel is confined within
micro-textures of the reacted aggregate (stage 2). Concrete deteriora-
tion becomes more noticeable once the cement paste starts cracking,
and deterioration proceeds by increasing the width and density of
cracks (stage 3). Finally, severe damage occurs (stage 4) after active
expansion of concrete, including structural failures (possible rupture
of rebar, distortion, loss of structural integrity).

Larger aggregate tends to retain higher concentrations of OH and
alkali ions inside the aggregate, hence formation of expansive alkali-
rich ASR gel initiates inside coarse aggregate, rather than on the surface
where calcium from the cement paste dominates. This explains the
severe cracking typical in coarse aggregate, and the earlier termination
of the reaction in fine aggregate.

Once ASR gelmigrates from the reacted aggregate and reaches the ce-
ment paste, it takes up calcium and loses alkali thus its composition ap-
proaches the one of CSH gel and thus loses its potential for expansion,
gradually leading to terminationof theASR [8]. This compositional change
of ASR gel (the ratio of replacement of alkalis by calcium), which fills
cracks from the reacted aggregate into cement paste, has also a “sigmoidal
curve” suggestive of a diffusion process ([9] Fig. 5(a)).

Whereas the majority of silicon dioxide is stable, the poorly crystal-
lized silica are prone to react with the cement hydroxyl ions. For the
sake of simplification, many researchers assume the reaction to occur
on the surface of the aggregate and to produce silanols (Si–OH groups).
Initially, each atom of silicon is connected to the lattice by four siloxane
bonds andwill be ruptured byOH− ions. Hence, in thefirst stage there is
a hydrolysis of the reactive silica (siloxane) by OH− ions to form an
alkali–silica gel. In this hydrolysis reaction the high pH pore fluid reacts
with Si–O–Si bonds to form silicic acid (silanol bonds) and alkali silicate
gel. A characteristic of this equation is that the dense and relatively
(compared to the cement paste) impermeable aggregates react
very slowly

− Si
j

j
−O− Si

j

j
−|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Siloxane

þ Rþ þ OH−|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Hydroxyl ions

→ − Si
j

j
−O−R|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Alkali−silicate gelð Þ

þ H−O− Si
j

j
−|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Silicic acid

ð1Þ

where R+ denotes an alkali ion such as Na+ or K+.
The silicic acid is weak, so that it immediately reacts with further

hydroxyl liberating water and negatively charged Si–O–, thus readily
abundant and mobile sodium, potassium and calcium ions will diffuse
in the gel to balance the negatively charged species.

H−O− Si
j

j
−|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
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j
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Water
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1 For convenience, the brackets customarily used to refer to the concentration [X] were
omitted.
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The resultant alkali silicate (alkali silicate gel) is hygroscopic
(expands in the presence of water).

− Si
j

j
−O−R|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
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→ − Si
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ð3Þ

Eqs. (1)–(3) constitute one of many simplified models for the ASR
and follow the notation of Ichikawa and Miura [2] though the first two
can be traced back to the work of Powers and Steinour [10].

Finally, it should be noted that one could add a fourth equation to
describe the termination of ASR in terms of the (very slow) ionic
exchange by mutual diffusion between alkalis in ASR gel and calcium in
cement paste, which results in the conversion of expansive alkali-rich
ASR gel into non-expansive calcium silicate gel (CSH gel). This process
can be enhanced by the percolation of Ca-bearing interstitial water into
pre-existing ASR gel, which occurs during repeated drying and wetting,
and freeze/thaw.
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In the present study, this last equation will be ignored.

2. Problem formulation

Eqs. (1)–(3), which are second-order equations [11], are first
rewritten as

Si−O−Si|fflfflfflfflfflffl{zfflfflfflfflfflffl}
A

þ Rþ þ OH−|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
B

→
k1 Si−O−R|fflfflfflfflfflffl{zfflfflfflfflfflffl}

C

þ H−O−Si|fflfflfflfflfflffl{zfflfflfflfflfflffl}
D

ð5Þ
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D
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B
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k2 Si−O−R|fflfflfflfflfflffl{zfflfflfflfflfflffl}

C

þ H2O|ffl{zffl}
E

ð6Þ

Si−O−R|fflfflfflfflfflffl{zfflfflfflfflfflffl}
C

þ nH2O|fflffl{zfflffl}
E

→
k3 Si−O− þ H2Oð Þn þNaþ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F

ð7Þ

where ki is the reaction rate. The objective of this study is to derive a
single kinetic term which can characterize the reaction:

kASR ¼ f k1; k2; k3ð Þ: ð8Þ

First, the rate of change of concentration for each of the six
constituents is written as [11]

dA
dt

¼ −k1A tð ÞB tð Þ; ð9Þ

dB
dt

¼ −k1A tð ÞB tð Þ−k2D tð ÞB tð Þ; ð10Þ

dC
dt

¼ k1A tð ÞB tð Þ þ k2D tð ÞB tð Þ−k3C tð ÞE tð Þ; ð11Þ

dD
dt

¼ k1A tð ÞB tð Þ−k2D tð ÞB tð Þ; ð12Þ

dE
dt

¼ k2D tð ÞB tð Þ−k3C tð ÞE tð Þ; ð13Þ
dF
dt

¼ k3C tð ÞE tð Þ; ð14Þ

where ki is a positive real constant for i = 1,2,3 and X is the concentra-
tion of substance X (A|B|C|D|E|F) in moles per volume of solution.1 A
solution is sought to this system of six coupled ordinary differential
equations, with particular interest in the temporal evolution of F (the
expanded gel).

Conceptually, the reaction rate k3which governs the formation of gel
should be related to the macro-kinetic equation (Eq. 16), and to the
diffusivities in Eqs. (17) and (18) in the meso-model. Those could only
be linked by a multi-scale/physico-chemical “grand unifying model”
which is precisely one of the greatest challenges confronting our
research community. As a very small step toward such a solution,
attempt is hereby made to simply determine k3.

Given the complexity of the problem, and the absence of directly
related previous studies, the following effects are neglected: 1) Presence
of calcium and alkali–calcium substitution [12]; 2) temperature; and
3) structural confinement [13], and 4) stoichiometry of the chemical
reactions. Finally, it should be emphasized that to the best of the
author's knowledge (and through contacts with various researchers)
the values of ki have not been determined. Finally, the stoichiometry
of the equations will not be accounted for.

3. Analogies with other models

3.1. With macro-scale kinetics

As all chemical reactions, ASR is a function of both time and temper-
ature however, contrarily to most, time scale is measured in years.
Hence, once the reaction has been detected (typically many years
after construction), a critical question is how long before the reaction
(and hence the expansion) stops. In other words, can we quantify the
kinetics of the reaction? Indeed, the kinetics of theASR has, surprisingly,
received very little attention. One noteworthy exception is the work of
Giorla [14] who highlighted the importance of the kinetics in terms of
the microstructure.

Kinetics of ASR has been directly or indirectly explored by
researchers according to the model adopted. At the macro-level (finite
element of a structure) empirical (based on bar expansion) kinetics
models have been developed. One of the earliest model was proposed
by Capra and Bournazel [15]

ε t; θð Þ ¼ 1
A0

1−A0−e−k0e
−Ea=Rθt

� �
ε∞ ð15Þ

where ε∞ is the maximum expansion, and A0 is a constant to be experi-
mentally determined. More recently, many studies have adopted the
kinetic model of Larive [16]

ε t; θð Þ ¼ ξ tð Þε∞ ¼ 1−e−
t

τc θð Þ

1þ e−
t−τl θð Þð Þ
τc θð Þ

ε∞ ð16Þ

where θ is the absolute temperature, andτl and τc are the latency and
characteristic times respectively, Fig. 2.

Analogous equations have been used by Comi et al. [17] in their anal-
ysis of major concrete structures. It should be noted that in these cases,
the kinetic equations are empirical and applicable at a macro-scale
study [18] such as the finite element analysis of a dam.
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Fig. 2. Kinetics of ASR [16].
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3.2. With a meso-model

At the meso-level a single aggregate is (typically) modeled along
with the cement paste. Transport equation is used to model gel,
whose formation is first accommodated by its saturation of the capillary
pores, [19,20,21,22]. Most of these models are based on the early-
expansive ASR (andesite, glass) which develops reaction rim, while
other models are based on the late-expansive ASR without a marked
reaction rim [23,24] reflecting the geology of the local aggregate. In
this context, kinetics (though this term is seldom used in these studies)
Ri

Cion

Initial aggregate Diffusion of a
into the agg

Rcr(

(a) Ion Diffusion Into the Aggreg

Ccr

Ri

Rcr(t)

C

Ri

Rcr(t
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(b ) Gel diffusion into the cement pa

Fig. 3. Analogy with the (simplifi
is directly related to the diffusivity coefficients adopted. At this meso-
level the penetration of alkali ions from the pore solution into the aggre-
gate is numerically modeled.

A representative work is the one of Charpin and Ehrlacher [25] who
assumed that the formation of the reaction rim leads to delamination of
the aggregates. Puatatsananon and Saouma [26] considered a two phase
diffusivity process and assumed the reaction to initiate at the periphery
of the aggregate:

3.2.1. Penetration of alkali ions into the aggregate
Penetration of alkali ions into the aggregate assumed to be governed

by Ficks law:

Bion
∂Cion

∂t ¼ ∇ Dion Cionð Þ∇Cionð Þ ð17Þ

where Cion is the free ion concentration of the pore solution inside
the aggregate, and Bion and Dion are the binding capacity and ion perme-
ability of the aggregate, respectively. ASR occurs only when Cion reaches
a critical concentration Ccr. It should be noted that this is a slow and
continuous process, and the moving front (where Cion = Ccr) varies
with time t as shown in Fig. 3(a). Because this is a rim-forming reaction,
diffusion of alkalis occurs within the reaction rim, even its thickness is
small, following the Fick's law.

3.2.2. Penetration of gel into the pores
The ASR gel permeation through the porous cement paste was

assumed to be characterized by Darcy's law for a viscous flow as

∂Cgel tð Þ
∂t ¼ ∇

Kgel

ηgel
∇Pgel tð Þ

 !
ð18Þ
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where Cgel (t) and ηgel are the concentration and viscosity of the gel,
respectively. Kgel is the gel permeability of the porous cement paste;
Pgel (t) is the interface pressure distribution due to ASR gel (thus
depends on the degree of saturation of the pores).

One must note the analogy between those two transport mecha-
nisms with Eqs. (1) and (3) respectively. In their study, Puatatsananon
and Saouma [26] have shown that amulti-scale analysis of ASR (starting
with ion diffusivity) can lead to a macroscopic kinetic curve, Fig. 4.

This figure shows the superposition of the curve fitted model
of Larive (Eq. (16)) to match the expansion kinetic obtained from a
diffusion based simulation using aggregate size of 2.36 mm. It should
be noted that a small time lag exists between the Larive's sigmoidal
model curve and the simulated curve, i.e. with the simulated model
here the coarser fraction No. 8 of the aggregate starts slightly later than
the sigmoidalmodel. Thismeans that the coarser aggregate develops a re-
action rimor a reaction zone saturatedwith expansive ASR gel, and that it
can start to expand before saturation of ASR sol/gel (rimming/exudation
of ASR sol around the aggregate) in the surrounding cement paste takes
place, although they are broadly similar as a first approximation.

Finally, the kinetics of the ASR can be investigated through the prism
of the chemical reaction itself where complete abstraction is made of
the representative volume, and one focuses only on the reaction (such
as Eqs. (1)–(3)). To the best of the authors knowledge, such a study
has not been reported in the literature, and is precisely the theme of
this paper. Present paper generalizes the kinetics of a wide range of
ASR covering all the processes fromdecomposition of reactive silica, for-
mation of ASR gel, to the swelling of ASR gel. As a first approximation,
starting from the setup resembling the classical surface reaction mech-
anism, equations to predict the expansion force of the aggregate against
cement pastewere derived as a function of time, irrespective ofwhether
expansive gel is formed at the interior of the aggregate, or within the
reaction rim, or at the paste–aggregate interface. As a result, both the
early-expansive ASR and the late-expansive ASR, which had been sepa-
rately treated byprevious researchers, are handled consistently by chang-
ing the parameters, and a Grand-Unifying model was proposed here.

4. Analytic solution

By mere observation of Eqs. (9)–(14) it can be noted that

d
dt

2A tð Þ−B tð Þ þ D tð Þ½ � ¼ 0; ð19Þ

d
dt

A tð Þ þ C tð Þ−E tð Þ½ � ¼ 0; ð20Þ

d
dt

B tð Þ þ C tð Þ þ F tð Þ ¼ 0½ �: ð21Þ
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Fig. 4.Multi-scale analysis from micro-diffusion to macro-kinetic [26].
It thus follows that the functions inside the brackets are conserved
quantities, constant for all time. As a result, new constants M1, M2, and
M3 are introduced, satisfying

M1 ¼ 2A tð Þ−B tð Þ þ D tð Þ; ð22Þ

M2 ¼ A tð Þ þ C tð Þ−E tð Þ; ð23Þ

M3 ¼ B tð Þ þ C tð Þ þ F tð Þ: ð24Þ

Hence, the ordinary differential equations for2 A, B, and D (in
Eqs. (9), (10), and (12)) can be decoupled from the remaining three
ones. Then Eq. (22) leads to

D ¼ M1−2Aþ B

and now Eqs. (9)–(10) are replaced by a second order system

dA
dt

¼ −k1AB; ð25Þ

dB
dt

¼ −k1AB−k2B M1−2Aþ Bð Þ: ð26Þ

This system will depend on the two rate constants k1 and k2, and is
independent of k3.

Solution hinges on first solving for A and B, and then by substitution
D. Then Eq. (11) is reintroduced in order to determine C where the
conservation law in Eq. (23) is used to replace E

dC
dt

¼ k1ABþ k2DB−k3C Aþ C−M2ð Þ: ð27Þ

Note that D can be eliminated from the equation above using
Eq. (22) if desired.

Once A, B, C, and D are known, E and F can be determined from
Eqs. (23)–(24). As a result, solving the sixth order system in
Eqs. (9)–(14) amounts to solving a second order coupled system,
Eqs. (25)–(26), and a single first order equation, Eq. (27). The three
conservation laws Eqs. (22)–(24) determine the remaining three
functions.

It is possible to reduce Eqs. (25)–(26) to a single second order
differential equation in terms of A or B alone. This will yield

A0 0 ¼ A0

A
1þ k2

k1

� �
A0 þ 2k2−k1ð ÞA2−M1k2A

� �
; ð28Þ

or

B0 0 ¼ 1
B

B0� �2− k1 þ k2ð ÞB0B2−k1k2B
3 B−M1ð Þ

h i
; ð29Þ

where the primes denote derivativeswith respect to time. Alternatively,
one can use the conservation laws Eqs. (22)–(24) to write the evolution
equation for F as

F 0 ¼ k3 M3−B−Fð Þ M3−M2 þ A−B−Fð Þ ð30Þ

and B can be expressed in terms of A using Eq. (9)

B ¼ − A0

k1A
:

2 For convenience, the time dependency is dropped from here onward.
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Substituting into Eq. (30) yields an equation to solve for F the
expanded alkali silicate (gel)

F 0 ¼ k3 M3 þ
A0

k1A
−F

� �
M3−M2 þ Aþ A0

k1A
−F

� �

¼ k3
k21A

2 M3−Fð Þk1Aþ A0	 

A−M2ð Þk1Aþ M3−Fð Þk1Aþ A0	 


:

ð31Þ

Unfortunately, attempts to solve Eqs. (28), (29), and (31) analytically
failed. As a result, numerical solutions of Eqs. (9)–(14)will be investigated
instead. Nevertheless, the quest for an analytical solution revealed some
interesting results: the three conservation laws of Eqs. (22)–(24)

2 Siloxane½ �− Hydroxyl ions½ � þ Silicic acid½ � ¼ Cst: ð32Þ

Siloxane½ � þ Alkali−Silicate½ �− Water generatedð Þ½ � ¼ Cst: ð33Þ

Hydroxy ions½ � þ Alkali−Silicate½ � þ Expanded alkali silicate½ � ¼ Cst:

ð34Þ

5. Numerical solution

The numerical solution of the original first order equations
Eqs. (9)–(14) is sought next. More specifically, the behavior of A, B,
and D will be examined first since the evolution equations for these
functions can be decoupled from the equations for C, E, and F. Then
temporal evolution of C and D will be addressed, and finally the most
important product F (expanded gel) will be addressed separately. The
last three concentrations will be determined from the first three and
the derived conservation laws.

5.1. Assumptions

Since molar concentration must be nonnegative, A, B, C, D, E, and F
are considered nonnegative, whereas A(t = 0) and B(t = 0) must be
nonzero for an alkali–silica reaction to occur. It should be noted that
E(t=0), will include both the water generated (Eq. (6)) and the initial
presence of water E0≥ 0. For the sake of simplicity, it is further assumed
that C(t = 0) = D(t = 0) = F(t = 0) = 0. While it is commonly
assumed that the ASR is governed by the finite silica (i.e. B(t =
0) ≥ A(t = 0)), the case where A(t = 0) ≥ B(t = 0) will also be
considered.

A critical aspect of this study is the proper selection of the reaction
rates ki. Those are certainly not published in the literature, and indeed
many researchers consulted indicated that they are unknown.However,
a detailed analysis of these three reactions is hereby proposed:

Reaction 1: (Eq. (5)) depends on the potential reactivity of the type of
mineral (for a given alkalinity) through its internal specific
surface area. For early-expansive ASR such as opal this
reaction may take only 0.1 to 2 years, for cristobalite and
trdymite 2–5 years. For moderately expansive ASR such as
chalcedony and volcanic glass (rhyolitic) 5–10 years;
finally for late-expansive ASR such as cryptocrystalline
quartz 10–20 years and for microcrystalline quartz 20–30
years.

Reaction 2: (Eq. (6)) depends on the alkalinity of pore solutions
available within aggregate, primarily controlled by the
content of soluble alkalis in the cement used, and second-
arily by the porosity and texture of the aggregate which
has an influence on the accessibility of alkalis and OH
ions, as well as on the efficiency of subsequent accumula-
tion of alkali-rich ASR gel within aggregate to generate
expansion. By definition, this may be a fast neutralization
reaction, however this is not yet fully ascertained. Howev-
er, unlike the diffusion of Ca into ASR gel at a later stage of
ASR, both Na and OH at early stage of ASRmaymigrate via
pore solution along the channel within reacted aggregate.
Permeation of water into coarse aggregate can take a few
seconds (porous rocks) or a few hours (very tight rocks).
However, subsequent reaction to form ASR gel by neutral-
ization will take longer due to the diffusion process within
poorly organized reaction products. This could take any-
where between a few weeks, to at most 0.5 to 1 year. Re-
action time may be shorter (order of a few hours to
months) depending on the reactivity of the minerals pre-
viously mentioned for reaction 1 (highly reactive opal
gathers alkalis very quickly at a pessimum proportion,
but less expansive microcrystalline quartz does it very
slowly). Contributions from long term alkali-release
(order of decades) from alkali-bearing minerals in some
rock types of aggregate are not counted here.

Reaction 3: (Eq. (7)) depends on the internal humidity of concrete. The
reaction is nearly instantaneous: 10 s to minutes (when a
dried ASR gel comes in contact with water along open
cracks within a reacted aggregate at the concrete surface),
or hours to weeks (when ASR gel is exposed to a different
relative humidity within near surface of a thin concrete
member), or finally very slow: 0.5–1 years or more (large
concrete section of a mass concrete). In the field, this
reaction can be highly dependent on seasonal humidity var-
iation (drying and wetting). This explains why laboratory
tests at constant humidity tend to react faster than in the
field.

During aging, expansion will continue until expansive alkali-rich
ASR gel turns into a non-expansive calcium-rich silicate gel that
resembles CSH gel (Eq. (4)), or into a non-expansive crystalline
product (rosette), or simply after reactive mineral was totally con-
sumed (e.g. opal). Formation, swelling and degradation of ASR gel
do not occur simultaneously even within each aggregate particle in
the same concrete. However, they overlap for a considerable span
of time.

It is thus evident that there is no simple way to deterministically
assign reaction rates to these equations, yet reasonable assumptions
for the normalized values could be made. Henceforth, based on the
above observations, one can reasonably assume that reactions 1, 2 and
3 (Eqs. (5), (6), (7)) take place over periods of 30, 1 and .5 years respec-
tively, then normalizingwith respect to k1= 1, we deduce that k2= 30,
and k3= 60. For the sake of the numerical simulation these rateswill be
assigned values of k1 = 1, k2 = 50, and k3 = 100.

Furthermore, and as stated earlier, the effect of temperature,
confinement and type of aggregate, though critical, are hereby ignored
for the sake of simplification.

Solution to the temporal ordinary differential equations was based
on the Runge–Kutta algorithm for non-stiff equations [27] in MATLAB
[28] (using the ODE45 function).

5.2. Asymptotic results (t→ ∞)

Asymptotic results as t → ∞ are summarized in Table 1 (where X0

denotes the initial condition X(t = 0) for X = A, B, C, D, E, and F) and
details explained below.

We observe that (as expected) 1) A and B are always decreasing
(with B generally decreasing at a faster rate than A); 2) F is always
increasing; 3) A, B, and D are not affected by E; and 4) the initial condi-
tion E(t = 0) only affects C, E, and F.

5.3. Evolutions of A(t), B(t), and D(t)

Again, note that the initial conditions are C0=D0= F0= 0, while A0
and B0 are positive. E0 can be positive or zero. Additionally, recall that



Table 1
Asymptotic behavior of A, B, C, D, E, and F as t → ∞.

Bo ≥ 2A0 B0 b 2A0

Case 1(a)
E0 ≥ A0

Case 1(b)
E0 b A0

Case 2(a)
E0 ≥ B0/2

Case 2(b)
E0 b B0/2

A → 0 A → 0 A → A0 − B0/2 A → A0 − B0/2
B → B0 − 2A0 B → B0 − 2A0 B → 0 B → 0
C → 0 C → A0 − E0 C → 0 C → B0/2 − E0
D → 0 D → 0 D → 0 D → 0
E → E0 − A0 E → 0 E → E0 − B0/2 E → 0
F → 2A0 F → A0 + E0 F → B0 F → B0/2 + E0
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the conserved quantities in Eqs. (22)–(24) can be determined using the
initial data. In particular, the conserved quantities can be given in terms
of the initial data as

2A0−B0 ¼ M1; ð35Þ

A0−E0 ¼ M2; ð36Þ

B0 ¼ M3: ð37Þ

It follows fromEqs. (9), (10), and (12) that at t=0, A′= B′=−D′=
−k1AB. Once D has slightly increased away from zero, the−k2DB term
in Eqs. (10) and (12) quickly starts to dominate as k2 is larger than k1.
As a result, B starts to decrease faster than A. Simultaneously, D also
starts to decrease, approaching zero faster than either A or B.

When D is sufficiently close to zero, A and B have approximately the
same rate of decrease. The initial conditions A0 and B0 determine the
asymptotic behavior of A and B for large time.

At this juncture, two cases are considered:

Case 1. B0 ≥ 2A0

In this case it follows from Eq. (35) thatM1 ≤ 0. Since D approaches
zero asymptotically, Eq. (22) implies that B(t) ≥ 2A(t) for large time.
With A and B always decreasing, at least one of the functions must
eventually approach zero, forcing the other function to approach a
constant. Since B(t) ≥ 2A(t) for sufficiently large t, it follows that
A→ 0 as t→∞, while B→−M1= B0− 2A0. Fig. 5(a) and (b) illustrates
those results for A0 = 1, B0 = 2.5, C0 = D0 = F0 = 0. Notice that A→ 0
for large time while B → B0 − 2A0 = 0.5. In Fig. 5(a) water is depleted
(the generated mass being much lower than E0), while in Fig. 5(b) it is
produced. As expected, the former results in a quantity of expanded
gel about twice the second. This is explained further in Sections 5.4–5.5.

Case 2. B0 b 2A0

It follows from Eq. (35) thatM1 N 0, thus for large time B(t)≤ 2A(t).
Consequently, for large time, B → 0 and 2A → M1. That is, A→1

2M1 ¼
A0− 1

2B0 . Fig. 6(a) and (b) illustrates those results for A0 = 1, B0 =
1.5, C0 = D0 = F0 = 0. Notice that A→A0− 1

2B0 ¼ 0:25 and B → 0.
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Fig. 5. Temporal variation of reactant
Same observations can be made with respect to water and generation
of expanded gel as in the previous case. Finally, in the case of limited
alkali, and irrespective of the initial water content, less expanded gel
is generated.

5.4. Evolutions of C(t) and D(t)

Next, we return to the evolution equation for C using Eq. (11) or
(27). C increases quickly for short time, until D (and eventually A or B)
becomes sufficiently close to zero.

From Eq. (13), E′=0 initially. As with C, once D becomes nonzero, if
E0 is small enough, then the behavior of E is dominated for a short time
by the growth term k2DB in Eq. (13). However, after D decreases back
to zero, E decreases again. If E0 is relatively large, then the decay term
−k3CE dominates (since k3 N k2), so that E starts to decrease quickly.
In either case, Table 1 summarizes how C and E will approach zero or
a positive constant as t → ∞, depending on the relative values of A0,
B0, and E0. Again, two cases are considered.

Case 1. B0 ≥ 2A0

Recall that A → 0 and B → B0 − 2A0 as t → ∞. Two subcases are
further considered.

(a) E0≥ A0: From Eq. (36),M2 ≤ 0. Since A approaches zero for large
time, Eq. (23) implies that C − E → M2 as t → ∞. It follows that
C(t) ≤ E(t) for large time. Moreover, because E is decreasing for
large time, C must also decrease in order to remain smaller
than E as t → ∞. In particular, C approaches zero, while E →
−M2 = E0 − A0. These results are illustrated by Fig. 5(a), which
depicts the solutions to Eqs. (9)–(14) when A0 = 1, B0 = 2.5,
and E0 = 2. Notice in the figure that C → 0 as t increases, while
E → E0 − A0 = 1.

(b) E0 b A0: From Eq. (36),M2 ≥ 0. As a result, Eq. (23) indicates that
for sufficiently large time, C(t)≥ E(t). E continues to decrease until
it approaches zero. Hence, C → M2 = A0 − E0 as t → ∞.
Fig. 5(b) demonstrates a specific case in which A0 = 1, B0 = 2.5,
and E0=0. In particular, E→0 andC→A0− E0=1 for large time.
Case 2. B0 b 2A0

In this case,A→A0− 1
2B0 and B→ 0 as t→∞. Consequently, for large

time, Eqs. (23) and (36) yield A0− 1
2B0 þ C tð Þ−E tð Þ→M2 ¼ A0−E0.

Simplifying,

C−E→
1
2
B0−E0: ð38Þ

Again, two sub-cases are considered.

(a) E0 ≥ 1
2B0: Eq. (38) leads to C(t) ≤ E(t) for large time. As in the

previous case, E is decreasing as time increases, thus for C to
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s and products; Case 1: B0 ≥ 2A0.
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stay smaller than E as time increases, C must also be decreasing.
In particular, C → 0 as t → ∞, while E→E0− 1

2B0 from Eq. (38).
Fig. 6(a) shows the solutions to Eqs. (9)–(14) with
A0 = 1, B0 = 1.5, and E0 = 2. Notice that in the figure,
C → 0 and E→E0− 1

2B0 ¼ 1:25.
(b) E0 b 1

2B0: In this case, Eq. (38) implies that C(t) N E(t) as time
increases. It follows that E continues to decrease until it
approaches zero, while C approaches the constant 1

2B0−E0 as
t → ∞. This behavior is exhibited in Fig. 6(b), which depicts the
solutions to the ODEs with A0 = 1, B0 = 1.5, and E0 = 0. Notice
that E → 0 and C→ 1

2B0−E0 ¼ 0:75 for large time.

Fig. 7 further depicts the results of Table 1 for the asymptotic
behavior of C and E as t → ∞ (using A0 = 1 and C0 = D0 = F0 = 0). It
should be noted that the top right region of each graph corresponds to
the first column of Table 1 (Case 1(a)), the bottom right region corre-
sponds to the second column (Case 1(b)), the top left region of the
graph corresponds to the third column of Table 1 (Case 2(a)), and the
bottom left region corresponds to the fourth column (Case 2(b)).

Fig. 7(a) is a contour plot of C(t = 10) as a function of the initial
conditions B0 and E0, where C(t = 10) represents the behavior of C for
long times. The following zones are identified:

Case1(a). (upper right)

B0 ≥ 2A0 and E0 ≥ A0: C(10) ≈ 0

Case 2(a). (upper left)

B0 b 2A0 and E0≥ 1
2B0: C(10)≈ 0
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Fig. 7. Contour plots of C(t = 10) and E(t = 1
Case 1(b). (lower right)

B0≥ 2A0 and E0 b A0: C(10) is approximately independent of B0. This
is reasonable because C(10) ≈ A0 − E0: since E0 is on the y-axis, there
are horizontal contour lines in this region. Furthermore, since A0 = 1
was assumed, the value of C(10) on each horizontal contour line is
approximately A0 − E0 = 1 − E0.

Case 2(b). (lower left)

B0 b 2A0 and E0b 1
2B0: the contour lines are linear with slope approx-

imately 1
2. This tells us that C→

1
2B0−E0 as t → ∞, thus it is reasonable

that in Fig. 7(a), contour lines are of the form E0 ≈ 1
2B0−C 10ð Þ.

Similarly, Fig. 7(b) depicts a contour plot of E(t=10) as a function of
the initial conditions B0 and E0. Again, the behavior of E(10) represents
the behavior of E for long times. The distinct behaviors of E in the four
regions of the plot can be clearly identified.

Case 1(b). (lower right)

B0 ≥ 2A0 and E0 b A0: then E(10) ≈ 0.

Case 2(b). (lower left)

B0 b 2A0 and E0b 1
2B0: then E(10)≈ 0.

Case 1(a). (upper right)

B0 ≥ 2A0 and E0 N A0: E(10) is approximately independent of the
initial condition B0. This is expected since E → E0 − A0 in this case
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(indeed, the contour lines are horizontal here, where E(10)≈ E0− 1 on
each line).

Case 2(a). (upper left)

B0 b 2A0 and E0≥ 1
2B0: the contour lines appear to be linear with

slope approximately 1
2 . Again, this is reasonable since E→E0− 1

2B0

in Case 2(a). That is, one expects the contour lines to be of the
form E0≈ 1

2B0 þ E 10ð Þ.

5.5. Evolution of F(t)

Finally, the behavior of the final product in the reactions, F
(expanded gel), is considered. From Eq. (14), F is always increasing.
Since C0 = 0, F′ = 0 initially. Once C starts to increase away from zero,
F starts to grow. However, at least one of the two quantities C and E
will start to approach zero as time increases. Consequently, F′ ∼ 0 as
t → ∞, so that F approaches a positive constant. The four possibilities
for this constant are again summarized in Table 1. As with the other
functions, this behavior is most easily explained using the previously
derived conservation laws Eqs. (22)–(24) and Eqs. (35)–(37).

Case 1. B0 ≥ 2A0

Recall that if B0 ≥ 2A0, then B→ B0 − 2A0. From Eqs. (24) and (37),

B0−2A0 þ C þ F →M3 ¼ B0

after a sufficiently long time. That is

C þ F → 2A0: ð39Þ

Again, two sub-cases are considered:

(a) E0 ≥ A0: In this case, C → 0 as t → ∞, so that F → 2A0. This
behavior is illustrated in Fig. 5(a), where B0 = 2.5, A0 = 1,
E0 = 2, and F→ 2A0 = 2. In other words, all the gel is hydrated.

(b) E0 bA0: Since C→A0− E0 in this case, it follows fromEq. (39) that

A0−E0 þ F → 2A0:

In other words, as t → ∞, F → A0 + E0. This behavior in turn is
illustrated by Fig. 5(b), where B0 = 2.5, A0 = 1, E0 = 0, and F → A0 +
E0 = 1 for large time. In this case less hydrated gel is generated.

Case 2. B0 b 2A0

Recall that B → 0. From Eqs. (24) and (37)

C þ F →M3 ¼ B0: ð40Þ
Fig. 8. F as a function of time fo
(a) E0≥ 1
2 B0: Now C → 0, so that F → B0 as t → ∞. This is shown in

Fig. 6(a), where A0 = 1, B0 = 1.5, E0 = 2, and F → B0 = 1.5 as
time increases.

(b) E0b 1
2 B0: In this case, C→ 1

2B0−E0. Then Eq. (40) yields
1
2B0−E0 þ F→B0; so that F→ 1

2B0 þ E0 as t→∞. This is illustrated
in Fig. 6(b), where A0 = 1, B0 = 1.5, E0 = 0, and F→ 1

2B0 þ E0 ¼
0:75.

Finally, the function F(t) is shown in Fig. 8(a) for the cases consid-
ered in Figs. 5–6 with k1 = 1, k2 = 50, and k3 = 100 and A(0) =
1, C(0) = D(0) = F(0) = 0.

It is worth noting that F is larger when more water is present in
the system and when the initial concentration of the alkali is
larger. That is, F takes on larger values when E0 and B0 are increased.
This is precisely what is well known for ASR, that a minimum relative
humidity of about 80% is needed for the reaction to be quantifiable
[15].

Additionally, Fig. 8(b) depicts the same plot for small times,
which shows that F(t) has a slower growth rate for very small times.
This initial growth rate is even slower for lower values of E

0
since then

the growth term in Eq. (14) is small. Moreover, one should note that
the growth rate can be further slowed for small times by simply
decreasing k1.

The asymptotic behavior of F is best illustrated by Fig. 9 which
depicts a contour plot of F(t=10) as a function of the initial conditions
B0 and E0, A0 = 1 and C0 = D0 = F0 = 0. As with C and E in Fig. 7, the
behavior of F(10) represents the behavior of F for long times and four
distinct regions can be distinguished:

Case 1a. (upper right)

B0 ≥ 2A0 and E0 ≥ A0: F(10) is approximately constant, independent
of both B0 and E0. Indeed, F(10)≈ 2A0 = 2 throughout this region. This
corresponds to the maximum amount of generated hydrated gel and
agrees with the findings in Table 1.

Case 1b. (lower right)

B0≥ 2A0 and E0 b A0: contour lines are almost horizontal since F(10)
is approximately independent of B0 here. This is reasonable because
F → A0 + E0 = 1 + E0 as t → ∞ in Case 1(b). In here the formation of
hydrated gel is hampered by limited supply of water.

Case 2a. (upper left)

B0 b 2A0 and E0≥ 1
2B0: the contour lines are approximately vertical,

indicating that F(10) is nearly independent of the initial condition E0.
Again, this is reasonable because in Case 2(a), F → B0 as t → ∞, which
r various initial conditions.
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Fig. 9. Contour plot of F(t = 10) as a function of B(t = 0) and E(t = 0).
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is evident in Fig. 9. In this zone formation of hydrated gel is hampered by
limited supply of alkali.

Case 2b. (lower left)

B0 b 2A0 and E0b 1
2B0 : the contours are approximately linear

with negative slope. In Case 2(b), one expects that F→ 1
2B0 þ E0 as

time increases, so the contour lines in this region have the form
E0 ≈ F 10ð Þ− 1

2B0. In this case limited supply of initial water and alkali
caused reduced amount of generated hydrated gel.

Note that the numerical results depicted becomemore accurate, and
agree better with the results in Table 1, if the equations are integrated
for longer times. In Figs. 7 and 9, it was assumed that t=10 represented
a sufficiently long time to observe the asymptotic behavior of the func-
tions. One could increase this value of t to improve results.

6. Sensitivity analysis

It was noted at the beginning of Section 5.1 that the process of selecting
values for k1, k2, and k3 is nontrivial. In spite of this difficulty, one can argue
that as long as k2 and k3 are chosen to be sufficiently large relative to k1,
then our results are not sensitive to changes in these rate constants.

Figs. 10 and 11 depict the long time behavior of F(t) as a function of
k2 and k3 (holding k1 constant at k1 = 1) for each of the cases described
in Table 1. It is clear thatwhen k2 and k3 are both larger than 10, then the
long time behavior of F(t) is constant and consistentwith that described
in Table 1. For instance, Fig. 10(a) depicts the behavior of F(t) for
large time when A0 = 1, B0 = 2.5, and E0 = 2, which is an example of
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Fig. 10. Case 1: B0 ≥ 2A0; contour plots of F(t = 10) as a
Case 1(a) (B0 ≥ 2A0 and E0 ≥ A0). In this case, we expect that F(t) ap-
proaches 2A0. Indeed, Fig. 10(a) shows that F → 2A0 when k2 and k3
are both greater than 10. Similar results are observed in Fig. 10(b) for
Case 1(b) and Fig. 11 for Case 2.

Since it is physically reasonable to assume that k2 and k3 are each at
least ten times larger than k1, one can claim that the results of this paper,
as summarized in Table 1, are relatively robust with respect to the
choice of rate constants.

7. Comparison among models

Though the primary focus of this paper is the derivation of a
mathematical model for the kinetics of the chemical reaction governing
ASR, it is important to examine (albeit qualitatively) the resultswith the
kinetics of other physical models.

Whereas Figs. 8(a) and (b) illustrate the evolution of the alkali-silicate
gel, its trend compares well with the expansion of concrete as a result of
ASR. As stated earlier, the generated gel, according to widely accepted
classical models, originally based on the early-expansive ASR which de-
velops a marked reaction rim would have first to fill up the pores within
the aggregates before it can cause an expansion (in Fig. 3(b) it was as-
sumed to fill up the cement paste first), corresponding to stage (ii) rim-
ming/exudation of ASR sol. However, expansion of the aggregate may
start whenever a reaction rim (early-expansive ASR) or an ambiguous re-
action zone (late-expansive ASR) saturatedwith expansive ASR gel, stage
(i), develops even before the cracking of the aggregate (stage (iii)) or the
cracking of cement paste (stage (iv)) takes place.

Similarly the trend compares well with the ASR expansion predicted
by a multiscale model [26] where time is accounted for through the
diffusivity coefficients of alkali ions into the aggregates (Eq. (17)) and
of gel into the cement paste (Eq. (18)).

8. Conclusions

The preceding model is only a first attempt to improve our funda-
mental understanding of the kinetics of the chemical reaction governing
ASR. It is hampered by a lack of data (kinetic rates), inconclusive basic
understanding (the governing chemical reaction), and some simplifying
assumptions (ignoring the effect of temperature and stoichiometry), yet
some interesting results are obtained. More precisely:

1. Three nonintuitive conservation laws (Mi, i = 1, 2, 3) are derived
(Eqs. (32)–(34)).

2. Depending on the initial concentrations of the alkali and silica,
estimates of the residual concentrations of these reactants at the
end of the reaction are provided.
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Fig. 11. Case 2: B0 b 2A0; contour plots of F(t = 10) as a function of k2 and k3, holding k1 constant at k1 = 1.
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3. The importance of the initial concentration of water in gel formation
is confirmed.

4. It is determined that the relative initial concentrations of the alkali,
silica, andwater in the system lead to four possible distinct estimates
of the final concentration of the alkali silicate gel.

5. When alkali are in smaller supply than silica, a smaller amount of
expanded gel is produced.

6. Qualitative similarities (sigmoidal curve) between the concentration
of gel (chemical reaction) and the expansion of concrete under the
ASR (physical macroscopic laboratory observations and diffusion
based meso-models) are observed.

7. The parametric study indicates that results are relatively robust with
respect to the choice of selected reaction rates.

In general, there are two major groups on the micromechanical
model of ASR in concrete. They stemmed from the difference in the
type of the reactive aggregates, i.e. the early-expansive ASR with pro-
nounced reaction rims and the late-expansive ASR without reaction
rims but with localized reactions inside the aggregate. Such a difference
in the reactivity of the aggregates yielded variousmodels for expansion.
However, our study covers both the early- and the late-expansive
ASR, which serves as a “Grand-Unifying” model. It is hoped that
this small effort will stimulate further studies into the kinetics of
the ASR, as it is absolutely critical to be able to ultimately predict
the rate (and exhaustion) of the reaction. Finally, it would be highly
desirable if a “Grand-Unifying” multi-scale/physico-chemical model be
capable of reconciling meso-based diffusion models, macro-based
observed bar expansions, and chemical based kinetics models. The
first two models address the volumetric expansion, and the last model
addresses the rate of gel formation. Such a model would be of great
importance to assess the residual expansion of structures suffering
from ASR.
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