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Many dams worldwide suffer from alkali aggregate reaction (AAR). This nefarious and ir-

reversible phenomenon causes concrete deterioration through expansion resulting in cracking and

deformation. Most, if not all, numerical simulations of dam in the U.S. have relied on simplis-

tic approaches that seek to match dam’s irreversible displacements without explicit recognition of

the kinetics of the reaction. This was achieved by either modifying the elastic properties and/or

including a temperature field. At best, simplified AAR models were used.

In this thesis, a systematic approach is followed. First a detailed thermal analysis including

the effect of solar radiation is performed. Next, a comprehensive finite element model of the dam-

foundation coupled system is developed including material and joint nonlinearities, and the AAR

simulations are conducted using an advanced model which accounts for the kinetics of reaction as

well as material degradation. In the absence of reliable accelerated expansion tests representative of

the dam, a parameter identification framework is developed. The process seeks to determine those

parameters through an optimization procedure that minimizes the error between measurements

and numerical predictions.

Recognizing the uncertainties associated with many of the input parameters, the thesis pur-

sues an uncertainty quantification approach to provide a probabilistic assessment. Finally, dynamic

analysis of the coupled dam-foundation system is performed using a series of innovative intensi-

fying artificial accelerations. Both the AAR-affected dam and its (imaginary) non-AAR-affected

counterpart are evaluated to determine the potential reduction in seismic capacity of the structure.
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Chapter 1

Introduction

Abstract

This introductory chapter will provide contextual reference for this work, along with a brief

outline of individual chapters.

1.1 Motivation

Mutliple dams, worldwide, are known to have been suffering from alkali silica reaction (ASR)

(also known as alkali aggregate reaction, AAR) for many years. Many of them exhibit concerning

cracking, and increased irreversible displacements.

As such, after many years of observations, regulators are increasingly confronted with critical

decisions: a) Shall we wait, and continue to observe? or b) shall we initiate dismateling and possible

replacement plans?

These are not easy questions, and they can be addressed by economic considerations backed

by reliable scientific prediction as to the future damage to the dam.

This thesis presents a comprehensive framework designed for analyzing AAR-affected dams

using state-of-the-art methodologies. An advanced AAR model has been employed to consider the

kinetics of the AAR reaction, while integrating the effect of material degradation. An advanced

finite element model involving different sources of nonlinearities have been developed and calibrated

with the observations from the real dam conditions, using parameter identification processes.
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A complicating factor is that a deterministic analysis is hardly credible. Numerous parameters

affecting the analyses results can only be accurately described through a probability distribution

function. Hence, in this research, deterministic analyses are succeeded by uncertainty quantifica-

tion, offering decision-makers a more comprehensive understanding of the dam’s potential response

The assessment of dams affected by AAR in their static state holds considerable value. How-

ever, delving into the aftermath of an earthquake following years of material degradation and

irreversible displacements due to AAR bears even greater significance. To this end, a series of

intensifying artificial accelerations are employed to assess the dam’s response with reduced compu-

tational effort. Assessment of the dam response subject to dynamic motions will impose additional

complexity to the modeling process to consider the dynamic dam-foundation interaction.

1.2 Ultimate Goal

Ultimately, this thesis could assist decision makers in conducting assessment of the dam’s

condition and its potential response to future possible earthquake events and ultimately performing

the risk assessment of the structure. In such a study, a Probable Failure Mode would have to

be identified, and the resulting uncontrolled release of water quantified, prior to the ultimate

assessment of financial consequences.

As one would expect, there is not, and neither could there be, a clear-cut answer to many of

the questions related to the dam safety. However this study provided as quantitative assessment

as can be using modern analytical tools based on the State of the Art.

1.3 Literature Review; Advancecd AAR Analysis of Dams

Curtis et al. (2005) investigated AAR analysis in a 307-ft high concrete gravity dam using AN-

SYS software, employing a nonlinear stress-dependent concrete model and an enhanced

creep model. A 3D linear elastic analysis was performed on the dam with a simple thermal

expansion. Subsequently, remedial works were recommended including: post-tensioning of

the dam, cutting of expansion joints in the bridge, and cutting of four transverse slots. Few
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years later the time-dependent nonlinear concrete growth analyses were conducted. Figure

1.1 shows the calibration to the Block 14 plumb line data (top-right). The results of com-

parison between the measured and computed spillway closure is shown in the bottom-left

plot. The slot closure measurements at Block 16/17 are also shown in the bottom-right

figure. All of these results demonstrate a good agreement between the numerical model

and the field measurements.

Figure 1.1: FE model and calibration results; Curtis et al. (2005)

Fairbairn et al. (2006) proposed an ASR thermo-chemo-mechanical expansion model with the

main feature of representing the stress-induced anisotropy by means of a classical smeared

cracking model. The model includes the influence of temperature and humidity. The model

was applied to the 3D simulation of a real gravity dam located in the southeast region of

Brazil. Determination of the thermal and humidity fields was based on simplified averaged

assumptions. A constant ambient temperature and a constant reservoir level were assumed.
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Figure 1.2 shows the vertical displacement of a point located at the top of the wall and its

experimental counterpart monitored for the last 25 years which shows a good agreement

between the measurements and simulation results.

Figure 1.2: Results for the ASR simulation: gel pressure for 40 years and the displacements at the
crest of the dam; Fairbairn et al. (2006)

Saouma and Perotti (2006b) proposed a new constitutive model for AAR expansion. This

thermo-chemo-mechanical model was rooted in the chemistry, physics, and mechanics of

concrete. This three-component model is an anisotropic model. A detailed 2D analysis

of an arch gravity dam is presented. First, the seasonal pool elevation variation (for both

thermal and stress analysis) and the stress free temperature (typically either the grouting

temperature or the average yearly temperature) are identified. Next, a transient thermal

analysis is performed for which only the heat transfer by conduction is accounted. Con-

vection and radiation are approximated through an additional temperature. The total

simulation time was 50 years with the selected incremental time of 2 weeks. Following the

thermal analysis, the computed temperature must be transferred to another model (built

for stress analysis) as, in general, we do not have the same finite element mesh (foundations,

joints, and cracks are typically not modeled in the thermal analysis).

For the plane strain analysis, a 2D central section of the arch gravity dam is selected. Re-

sults are compared with the method proposed by Charlwood, Solymar, and Curtis (1992).

To do so, final volumetric expansion was calibrated to yield identical vertical crest dis-

placement after 50 years, Figure 1.3 (left), where the proposed model nonlinearity in the
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crest displacement is caused by the kinetics model and its latency time in particular. De-

spite equal final crest displacements, internal field stresses are drastically different. Those

determined from Charlwood’s model are substantially lower than those predicted by the

proposed model, Figure 1.3 (right). The large discrepancy in stresses is partially caused

by the plane strain (which inhibits redistribution in the third direction) assumption of the

proposed model.

Figure 1.3: Comparison of yearly vertical displacement, and principal stress fields in two models;
Saouma and Perotti (2006b)

Saouma, Perotti, and Shimpo (2007b) proposed a methodology for analysis and system iden-

tification of important AAR parameters which includes: 1) thermal analysis, 2) stress

analysis, and 3) system identification.

• Thermal analysis:

∗ Because of the temperature dependency, and to obtain a temporal map of the

internal temperature, a transient thermal analysis must be performed.

∗ At this stage, there is no need to model the rock base in such analysis.

∗ Required data for this stage are:

– The air temperature variation (including the grouting temperature),
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– The spatial (along the depth) and temporal (at least 12 or 24 increments a

year) variation of the water temperature,

– The pool elevation variation during a typical year,

– And the concrete thermal properties.

• Stress analysis:

∗ The stress analysis is then performed, and an effective Eeff is used to account

for long-term creep (Eeff = Ei
1+ct

, where ct is the specific creep coefficient and Ei

is the initial modulus).

∗ Detailed FE model including the joints, foundation, etc. should be used.

∗ It should be kept in mind that the stress analysis requires the temperature dif-

ference with respect to the stress-free temperature.

∗ A correct pool elevation (upstream and downstream), uplift pressures, and inter-

nal nodal temperatures should be applied for each increment.

• System identification:

∗ AAR problems are prime candidates for system identification.

∗ The field recorded (usually crest) displacements are denoted by u(t), the kinetic

(and possibly other) parameters as x, the finite element operator f(.), and com-

puted results by u(t, x).

∗ Hence, f(x) = u′(t, x) ̸= u(t).

∗ The goal is to minimize the objective function ω(x) = (u − u′)T (u − u′). The

trust region method can be used to solve the problem.

∗ A weight function can be used to assign importance to the last data field which

usually has a major absolute value and, thus, better represents the irreversible

effect of the AAR expansion with respect to the effect of normal loads.

Figure 1.4 (left) shows that the computed crest displacement is well within the seasonal

variations of the numerical final predictions. Figure 1.4 (right) shows the internal AAR

induced maximum principal stresses. The maximum principal stress field inside the dam
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can explain the cracks discovered along the upper gallery of the analyzed dam.

Figure 1.4: Comparison between first guess analysis and final analysis with optimized parameters
(left), Internal AAR-induced maximum principal stresses in MPa (right); Saouma, Perotti, and
Shimpo (2007b)

To the best of the author’s knowledge, this is the most widely adopted model by other

researchers. A non-comprehensive list of implementations includes:

(1) Rodriguez et al. (2011) implemented the model in Abaqus and analyzed an arch dam.

(2) El Mohandes and Vecchio (2013) in the Vector3 program and the analysis of reactive

shear walls.

(3) Mirzabozorg (2013) in Iran for the analysis of Amir-Kabir arch dam in the NSAD-DRI

code.

(4) Pan et al. (2013) from Tsinghua University for the analysis of Kariba dam.

(5) Huang and Spencer (2016) and Huang, Spencer, and Cai (2015) implemented this

AAR model in the fully coupled Grizzly/Moose program.

(6) Ben-Ftima, Sadouki, and Bruhwiler (2016) Polytechnic of Montreal, and Swiss Federal

Institute of Technology, as a model in Abaqus for the analysis of a hydraulic structure.

(7) Thonstad et al. (2021) implemented in LS-Dyna by NIST.

Comi, Fedele, and Perego (2009a) proposed a chemo-thermo-damage model to simulate the

swelling and the deterioration of local stiffness and strength in concrete due to AAR in dams.

AAR affected concrete is conceived as a two-phase heterogeneous material constituted by
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the expanding gel and by the homogenized concrete skeleton. The micro-cracking produced

by the gel expansion is taken into account by means of an isotropic damage model based on

the definition of two scalar damage variables (tension and compression). The finite element

code Abaqus was used to build a 2D plane strain model of two dams, Koyna Dam and

Fontana Dam.

Koyna Dam was analyzed with and without AAR for 16 years under accelerated conditions.

The dam body is assumed to have uniform moisture. Thus, the main factor driving the

AAR is the temperature history. Harmonically varying temperature is assumed for air and

water. Foundation temperature is kept constant. Figure 1.5 illustrates the development of

the AAR and its mechanical consequences within the considered dam including the tensile

damage. At the beginning of the AAR, the swelling is restricted to a thin “stripe” along

the boundary exposed to air where the mean temperatures are higher. As a consequence of

strain compatibility, the internal core of the dam is subjected to tensile stresses, whereas

the external skin is compressed. After about 16 years of AAR activity, a macroscopic

horizontal crack develops also in the lower part of the dam.

Figure 1.5: Reaction extent and damage during AAR development in Koyna Dam; Comi, Fedele,
and Perego (2009a)
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Fontana Dam was also modeled in a similar way to Koyna dam. Figure 1.6 shows the

reaction extent and tensile damage pattern at different times of the analysis. At the third

year, a highly localized damage zone forms at the high-left corner of the drainage gallery,

and it develops quickly reaching the downstream face. Starting about at t = 4 years, this

new crack rapidly extends through the whole dam thickness.

Figure 1.6: Reaction extent and damage during AAR development in Fontana Dam; Comi, Fedele,
and Perego (2009a)

Sellier et al. (2009a) proposed a method including structural monitoring and laboratory tests

for assessment of AAR swelling in gate structure dam. They used an old dam in France.

This method first involved a laboratory test dealing with the silica consumption kinetics

and, second, a numerical finite element inverse analysis of the dam which included the

consumption kinetics measured in the laboratory. A procedure is proposed to assess the

chemical advancement for each aggregate size of the concrete, Figure 1.7:

• Phase 1:

∗ Aggregates of the affected concrete are first extracted by chemical attack and

sifted.

∗ Then, the residual reactive silica content is assessed for each reactive aggregate

size.

∗ Several types of mortar containing only one aggregate size from the dam concrete

are cast.

∗ The aggregates are crushed to obtain the same aggregate size distribution in each

mortar.
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∗ A sufficient amount of alkali is added to the mortar cement paste to be sure

that all the residual reactive silica contained in the crushed aggregates will be

consumed during the tests.

∗ The total swelling measured for each mortar depends only on the residual reactive

silica contained in the reactive aggregate.

• Phase 2:

∗ The constant representing the kinetics of in-place chemical advancement is de-

duced from both the chemical advancements measured for each aggregate size

and the environmental conditions.

Figure 1.7: Principle of chemical advancement assessment; Sellier et al. (2009a)

For the case study, the variation of the lateral displacement of the dam was used to fit the

unknown parameter. Then, the vertical and the horizontal displacement at other points

could be simulated with good accuracy. A good agreement was found between the computed

damage and the crack pattern with the lightest zones corresponding to the observed cracks.

Leroy et al. (2011) studied the abnormal crest displacements due to ASR in a gravity dam for

over 50 years where the polygonal shape of the dam amplifies the effect of concrete expan-
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sion. Both 2D and 3D numerical models were used to evaluate the dam response. Although

the dam was built with different concrete mix-designs (with various cement quantities), the

global behavior was best represented by considering a homogeneous expansion potential.

The 3D mesh is composed of 28,589 quadratic elements, Figure 1.8. Model fitting to the

monitoring data is used to determine the correct values for the three parameters: τl, τc

and ε∞. The temperature and moisture fields in the structure are considered as homoge-

neous. More than 30 parametric analyses are performed for 60 years of ASR expansion,

and the computed crest displacement in blocks 13 and 23 are compared to the upstream-

downstream displacements monitored on the Dam. The rehabilitation project is conducted

on the Dam to reestablish an acceptable level of stress and deformation. Sawing the upper

part of the dam to release stress and decrease the arching effect, which has been amplified

by the Dam’s elbow, is a good option to achieve this goal.

Figure 1.8: Views of the mesh, and Downstream displacement at the crest of the Dam; Leroy et al.
(2011)

Comi, Kirchmayr, and Pignatelli (2012) conducted a similar research to their previous one

where the concrete affected by ASR is represented as a two-phase material made of a

solid skeleton and a wet expanding gel. The AAR mechanical degradation is described

by an isotropic damage model. Again, the FE code Abaqus was used. They used the

right gravity dam of the Beauharnois power plant (Québec, Canada) as case study which

displayed cracks due to ASR. The chemical and mechanical properties of concrete are

assumed homogeneously distributed in the dam. E, fc, and ft were determined from 45
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years of field measurements. It is also assumed that fc does not change over time. Since the

final ASR expansion was unknown, various analyses were performed with variable values

of the asymptotic axial ASR expansion. Figure 1.9 shows the reaction extent and the

damage at three different time steps. At the beginning, the damage appears only on the

external skin of the structure since it is the only area affected by the external humidity

conditions. The first macroscopic crack in the body of the dam and visible on the surface

of the structure appears six years post-construction.

Figure 1.9: Patterns of the reaction extent and damage after (a) 3, (b) 6 and (c) 60 years; Comi,
Kirchmayr, and Pignatelli (2012)

Ferreira, Farage, and Barbosa (2013) applied an AAR-stress model firstly proposed by Farage,

Alves, and Fairbairn (2004) on gravity dams. A 2D nonlinear analysis was performed using

triangular plane strain elements. The dam is fixed at the bottom, and a hydrostatic load

is applied in the upstream face. The adopted AAR curve parameters are: ε∞ = 0.196,

τl = 3.34 and, τc = 8.29 years. Figure 1.10 compares the gel pressure evolution in the

concrete wall evaluated via the uncoupled and the coupled models. The coupled model

accounts for the reducing effect of confinement stresses on the reaction evolution as re-

flected by the lower gel pressure values in the confined regions and, as a consequence, by
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a decrease on the amount of cracked finite elements. Cracking spreads more widely when

the uncoupled model is applied. For the coupled model, cracking is mostly concentrated

around the free surface.

Figure 1.10: Gel pressure evolution in the concrete wall via the uncoupled (above) and the coupled
(below) models; Ferreira, Farage, and Barbosa (2013)

Amberg, Stucchi, and Brizzo (2013) studied the effect of temperature on the development

of the AAR at the Pian Telessio arch gravity dam. Approximately 20 years after its

completion, the dam is showing an upstream drift caused by concrete expansion. In 2008,

rehabilitation works by means of vertical slot cuttings in the upper half of the Dam were

performed in order to reduce the effects of the concrete expansion.

In 2008, in order to evaluate the temperature effect on AAR, long term laboratory tests

(2-3 years of duration) on concrete specimens (prism 7×7×28 cm) were performed. A back

analysis was also performed aimed to identify the required parameters. The analysis focused

on the three parameters (τl, τc, and ε∞) leaving the others unchanged. The calibration is

done on the permanent upstream displacement, recorded by four pendulums distributed

along the Dam. The expansion distribution along the Dam’s thickness is applied to a 3D

model. Figure 1.11 shows the concrete expansion applied to the model as a function of the
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Dam’s elevation for the four reference dates.

Figure 1.11: Volumetric expansion applied to the model; Amberg, Stucchi, and Brizzo (2013)

The nonuniform drift distribution observed for the Dam, which is more relevant at the

crest than in the lower part. It is found that the expansion along the Dam’s thickness is

nonlinear. The highest expansion is observed along the downstream face as well as in the

upper, thin Dam part.

Metalssi et al. (2014) investigated the AAR effect in a concrete dam including the nonlinear-

ity and contact elements. Displacements and stresses at the contact elements zone were

computed and compared with results of the dam computations without contact elements.

The results show that the creation of the slot cutting leads to a decrease of the compres-

sive stresses in the structure, confirming a favorable effect of this stress release technique

to address AAR affected structures. Coulomb friction criterion is considered for shear

response.

A simplified model, which might represent an idealized part of an AAR-affected gravity

dam is used as case study. Displacement and stress at different points along the joint are

shown in Figure 1.12. Results are presented for both before and after sawing. Transverse

displacements are zero for points until 10 years for reasons of symmetry. After sawing (e =

1 cm), the notch closes instantaneously due to the decompression of surrounding concrete,

and cumulated displacements on both sides of this notch reach exactly the value of the
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sawing thickness. The notch remains open only at point P6 (top). For the reference case,

the transverse stress increases with time until its stabilization at a value of 45 MPa (the

theoretical maximum stress). While in the case of the slot cutting, the stresses decrease

instantaneously just after sawing but then increase again with time until stabilization at

values of 30 to 35 MPa (the theoretical values calculated at the end of the swelling).

Figure 1.12: Displacement and stress vs. time before and after sawing; Metalssi et al. (2014)

Cima and Reinicker (2015) studied the ASR in Roanoke Rapids Dam, located in North Car-

olina and completed in 1955. Due to a concern that partial block movement could create

additional damage during anchor installation and loading, grouting of the ASR cracking was

the first step in the remediation design. A finite element model was also developed to bet-

ter understand the behavior of the structure. The FEM model included several important

and key features: (1) transient thermal analysis; (2) temperature-dependent ASR expan-

sion rates; (3) anisotropic stress-dependent ASR expansion rates; (4) visco-elastic creep

behavior with creep function and effective modulus of elasticity; and (5) separation/open-

ing along preexisting cracks. Calibration of the model before and after post-tensioning is

shown in Figure 1.13. It is evident that, since completion of the anchoring project, the trend
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of rapidly increasing downstream movement has been arrested, and only smaller seasonal

temperature variations are observed.

Figure 1.13: Finite element model and calibration; Cima and Reinicker (2015)

Lamea and Mirzabozorg (2015) studied the impact of AAR on static analysis of Dez arch

dam. Concrete was assumed to be linear elastic. Contraction joints were modeled with

node-to-node contact elements using ANSYS finite element code. Results of initial thermal

analysis included the solar radiations effect as reported in Mirzabozorg et al. (2014). The

displacement time history of the crest for different simulations is shown in Figure 1.14. It is

observed that the solar radiation does not significantly affect crest displacements in US/DS

direction. On the other side, joints tend to move the crest downstream. These effects are

mitigated when AAR damages the Dam’s body.

Solar radiation effect is not disregardable in the first half of the history duration pertinent

to AAR-affected cases. In contrast to the horizontal displacements, in all of the AAR-

affected cases, the vertical displacements are not considerably affected by modeling none

of the solar radiation or the contraction joints.

Nik-Azizan et al. (2017) performed AAR damage analysis of Koyna gravity dam using two-

dimensional plane strain simulation. The extent of damage in concrete was computed

using the orthotropic damage index proposed by Ghrib and Tinawi (1995). Total porosity,
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Figure 1.14: Comparison of displacements at crest of the Dam; Lamea and Mirzabozorg (2015)

ϕ, of concrete is considered as a measure to determine the degradation parameter:

ϕ = ϕ0 + ϕc + ϕm (1.1)

where ϕ0 is the initial porosity, ϕc is the chemical porosity resulting from skeleton dissolu-

tion, and ϕm is the apparent mechanical porosity.

Larive curve was used to present the volumetric expansion. Degradation of E and ft was

considered explicitly. They also conducted seismic analyses using the rigid foundation

assumption with empty reservoir. Three numerical simulations were conducted: after com-

pletion, 50 years later, and 100 years later. The contour plots revealed that the major

principal stress at the neck reduced over time, Figure 1.15. These findings are attributed

to the smaller modulus of elasticity in the aged dam and more flexible behavior.
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Figure 1.15: Maximum major principal stresses contour; Nik-Azizan et al. (2017)

Chulliat, Grimal, and Bourdarot (2017) studied AAR in Chambon Dam causing several patholo-

gies, mainly resulting in shear stress zones in the structure and significant structural crack-

ing, likely to affect its integrity under earthquake conditions. The new multi-scales swelling

law for concrete implemented in ASTER computer code was used for numerical simulation.

It provided a very good fitting with the monitored dam behavior, Figure 1.16. The FEM

calculations showed that the benefits of the slot cuts done in the 1990’s still remain in the

upper part of the structure, confirmed by the monitoring of the deformations in the curved

right wing. They, nevertheless, displayed noticeable stresses parallel to the abutments.

Coubard and Sausse (2017) investigated the safety reassessment of arch dams with thrust

blocks subject to swelling phenomena. A methodology of calculation is made up of the

following steps:

• Analysis of the initial design and associated loadings.

• Linear finite element model taking into account the arch and the thrust block. Simu-

lation of concrete swelling by thermal analogy in a primary approach, accounting for

a slight concrete creep due to swelling itself.

• Classical stability analysis of the thrust block with resultant forces determined using

the linear model and conservative parameters (low shear strength, no lateral abut-

ment).

• If a low stability coefficient is obtained, implementation of a nonlinear model with joint
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Figure 1.16: Comparison of measured and computed deformations in 3D modeling; Chulliat, Gri-
mal, and Bourdarot (2017)

elements at the concrete-to-rock interface with a Mohr-Coulomb law. Evaluation of

the irreversible displacements is obtained.

• Comparison of these irreversible displacements with monitoring measures.

• If necessary, monitoring device reinforcement of thrust block.

• If necessary, realization of site investigations in order to estimate the effectiveness of

lateral abutment, shear strength and stress levels.

• If necessary, development of a more sophisticated non-linear model able to describe

the behavior of swelling concrete.

Figure 1.17 shows the swelling response of an arch dam. For arch dams with thrust blocks

submitted to swelling phenomena, the sum of actions highlights an increase in thrust block

loading with time. Nonlinear models demonstrate that millimetric displacements of thrust

blocks are sufficient to reach a new acceptable equilibrium state.

Gunn, Scrivener, and Leemann (2017) proposed a three-phase strategy for the investigation

of AAR in existing dams:
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Figure 1.17: Linear model and nonlinear model with concrete-to-rock joint on a swelling arch dam
with thrust blocks; Stress reorientation and modification on the upstream face; Coubard and Sausse
(2017)

• Phase 1: AAR stage tests, material source(s) (e.g. quarries), visual inspection, and

core sampling should cover all stages of the AAR process in the short, medium, and

long term of the structures service life, including information needed for numerical

modeling.

∗ Classification of AAR tests by: category, location, phase, type, sample type,

classification, reliability, quality of information, and sample preparation.

∗ Influencing Factors: specimen size, quantity of cement, additives, relative humid-

ity, temperature, time, and cost.

∗ Results and Conclusions: Standard limits above which AAR is deemed to be

potentially deleterious.

• Phase 2: AAR monitoring and data analysis. Using statistical, deterministic, and

hybrid data analysis techniques to capture the potential zones of AAR swelling and,

hence, perform analyses to assess the behavior and safety of the dam.

• Phase 3: AAR follow-up tests should be systematically performed every 5 years from

the onset of AAR.
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Blanco et al. (2018) studied an old concrete gravity dam with signs of deterioration due to

expansive reactions. They collected evidences of damages in spillway, bridge, and dikes.

Multiple tests were performed on the samples extracted from the dam, including X-ray

diffraction, scanning electron microscope with energy dispersive spectroscopy mode, and

petrography.

Next, a model based on finite differences was prepared to simulate heat transfer phenomena.

The dam is modeled at a sectional level per length unit. The construction procedure is

defined as casting of consecutive layers. Once cast, the layer is unprotected and exchanges

with atmospheric air may occur, as well as the diffusion with the bottom and lateral layers.

The results of the thermal modeling shows the maximum temperatures reached in the cross

section of the dam. The highest temperature occurs in the center of each of the different

layers.

Finally, they performed crack analysis of the dam in the finite element software ATENA

using nonlinear fracture mechanics with the crack band method and smeared cracking. The

reinforcement is modeled by a bilinear model. Figure 1.18 shows the crack pattern observed

in the diaphragms. It suggests that the cause of the cracks may be a volumetric expansion

in the spillway.

Figure 1.18: Finite element analysis: (a) real crack pattern, (b) stresses in the diaphragm, and (c)
crack pattern of the model; Blanco et al. (2018)

Saouma, Hariri-Ardebili, and Graham-Brady (2020) presented an algorithm to model the

dam inhomogeneity in terms of characteristic length and applied the algorithm to an arch
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gravity dam.The impact of randomness in material properties on displacements, joint open-

ings, and stresses were then investigated. They found that although the mean values of the

responses were not impacted significantly, the standard deviations showed great variations.

Furthermore, the safety assessment through fragility surfaces, and meta-modeling deter-

mined that whereas randomness may affect local results, their impact may be negligible for

globally averaged responses.

1.4 The “Big-Picture”

Based on the provided literature review on the AAR analysis of the concrete dams, the

big-picture of the proposed framework is demonstrated in figure 1.19.

• The first step, as for every finite element analysis, consists of gathering and preparing

different data including:

∗ The geometry of the dam

∗ Meteorological data

∗ Dam site seismic maps

all of which will be used as inputs for the finite element code.

∗ In addition, the long term field monitoring data being collected to validate the results

of the numerical finite element analysis.

Having the required input parameters in hand,

• appropriate constitutive models are then utilized to construct the model in the finite element

code called Merlin which has the key feature to model:

∗ The fluid structure interaction

∗ The soil-structure interaction

∗ Thermal Analysis

∗ Dynamic Analysis

• In the next step in order to calibrate the input data with the field recordings, an iterative

process of system identification based on the trust region methods, is being employed. More
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precisely, input parameters describing the AAR expansion as well as strength and elasticity

degradation are selected such that the resulting displacements match the field recordings.

• Extending the analysis one step further, an uncertainty quantification of the performed

analysis will be conducted assuming various sources of uncertainties including epistemic

uncertainties which is associated with the temporal material uncertainty, heterogeneity of

the concrete material properties as well as the aleatory uncertainties associated with the

ground motion selection will be considered through Latin hypercube sampling method and

propagated into the finite element model.

• Finally, using the cloud analysis procedure a fragility curve will be derived which enables

us to perform the risk assessement of the dam.

It should be noted that the author has on the one hand benefited from a vast body of previous

work, (properly cited) and developed herself new ones. In either case, the author is fully confident

in her understanding of all details.
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(2021c))
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Chapter 2

Alkali Aggregate Reaction

Abstract

The underlying mechanisms causing Alkali Aggregate Reactions (AAR) are by now well

known. This chapter will limit itself to describe AAR in the context of the constitutive model

developed by Saouma and Perotti (2006a) and implemented in the computer program Merlin used

in the analyses.

2.1 Finite element modeling of AAR in dams

Section Adapted from (Saouma and Hariri-Ardebili, 2021a)

Prognosis of hydraulic structures suffering from AAR is notoriously difficult and for some

impossible.

For the most part, current approach relies on one or more investigative tools, Fig. 2.1.

Unfortunately those methodologies tend to be disjointed and difficult to directly relate to others.

For example a petrographer may find the DRI (or other measure microscopically determined) too

elevated, and hence consider the structure unfit. Expansion tests may be performed, but results

are seldom fed into the finite element study. Finite element studies themselves may be conducted

with unvalidated codes.

There are essentially two possible approaches to model AAR, Fig. 2.2. The first is represen-
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Figure 2.1: A clouded approach

tative of the State of the Practice, while the second captures the State of the Art in AAR.
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Figure 2.2: AAR FEA models

A brief summary of the two methods is shown in Table 2.1.

Table 2.1: Side-b-Side Comparison of the State-of-the-Practice and the State-of-the-Arth method-

ologies to analyze dams with AAR
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Methods State of the Practice State of the Art (e.g. Merlin)

# of Ana-

lyses

Multiple, one for each year we are inter-

ested in

Single analysis that starts at time 0

(dam construction) up till desired year

Input data

Parameters Topological distribution of damaged

concrete properties over the dam at the

time of analysis

Characteristics of the concrete expan-

sion to capture its kinetics (3 parame-

ters)

How do

we obtain

them

Subdivide the dam in multiple regions;

Extract sufficient representative cores

from each one of them; perform tests

(E and fc primarily)

(1) Perform expansion and appro-

priate petrographic tests, de-

termine the 3 parameters that

characterize the concrete since

time of construction

(2) Same as above, without petro-

graphic tests, characterization

since date of core extraction

(3) Perform a parameter identifi-

cation based on the historical

record of crest deflections

Analysis
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Advantage Easier to perform the analysis if one

does not have a finite element code that

can track the expansion with time.

Single analysis that capture the en-

tire response (displacements and inter-

nal deterioration of concrete); Requires

only three parameters that capture the

cause of the expansion (as opposed to

multiple tests that reflect the conse-

quences of the reaction); Truly captures

the complex response of a structure sub-

jected to AAR (listed as disadvantage

for Method 1 below).

Dis-

advantage

Approximate as we have to assign ma-

terial properties over large zones, many

input data coming from tests. May not

be representative enough as it does not

capture: 1) interaction of temperature

with expansion; 2) effect of confinement

on the anisotropic expansion;

Some numerical instability may occur in

a nonlinear time history analysis

Analysis Output

Dis-

lacements

stresses

Yes, a snapshot at time t (of analysis),

i.e. one single scalar quantity at time t

Yes, a “movie” that captures the evolu-

tion of the dam response, i.e. a vector

for each response in terms of time

Concrete

deteriora-

tion

No, that was part of the input Yes as computed by the AAR model

Future Prediction
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Possible Will have to be based on the time de-

pendent concrete deterioration

By just letting the analysis go beyond

present date.

Reliability Low would rely on the extrapolation of

concrete damage measured in the labo-

ratory and inputted in the mesh

High, embedded in the analysis are the

expansion characteristics measured in

the lab (or extracted from a parameter

identification based on historical record

of crest displacement)

2.1.1 State of the practice

A simpler approach, which is based on a mapping of the field determined concrete deterio-

ration on the ensuing finite element mesh. The analysis, is then calibrated with some of the field

measurements. Thus, a separate analysis will be conducted for each year of recorded mechanical

properties.

2.1.1.1 AAR Modeling

One would start with testing cores (E, fc and ft, but not necessarily all three of them

all the times) recovered from the dam at time ti. Then, one would, semi-arbitrarily but certainly

approximately, assign a representative region to each one of the cores. Within that region, elements

of the mesh will be assigned the same mechanical properties.This method is explained in details in

Saouma, Hariri-Ardebili, and Graham-Brady (2020) . It is noted that this has not been addresses

in the current work.

Separately, at time ti one would estimate the AAR expansion ε∞(ti), and its spatial distri-

bution εAAR(ti, x, y).

Finally, combining those two, a finite element analysis is performed. However, this is very

unlikely to yield good correlation with recorded field displacements. Hence, correction are made

with some of the recorded data, and verification is made with the others. This is repeated until
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adequate comparison at time ti is achieved. Adjustments are for a given time ti and are very

unlikely to be the same for time tj .

The outcome of such a calibration (for E|ft|fc) is a spatial and temporal partitioning shown

below, Fig. 2.3

[E|ft|fc](h, t) =



a1f1(h) × f2(t) yr1 ≤ t ≤ yr2 & h ≥ h1 ①

a2f2(t) yr1 ≤ t ≤ yr2 & h < h1 ②

a3f1(h) t < yr1 & h ≥ h1 ③

a4f1(h) t > yr2 & h ≥ h1 ④

a5 t < yr1 & h < h1 ⑤

a6 t > yr2 & h < h1 ⑥

f1(h) = b1 + b2h + b3h2

f2(t) = c1 + c2t + c3t2

(2.1)

3 41

5 62

yr1 yr2

h1

f 1(
h)

f 1(
h)f 1(
h)

f2(t)

f2(t)

Figure 2.3: Spatial and temporal partitioning

The major (but not only) concern with this method, is that typically one would have not only

very limited measurements but those are also widely spaced in times. This is further exacerbated

by the seldom performance of tensile strength tests. This handicap is best illustrated by Fig. 2.4.

One can readily note the very gross approximation one has to resort to in such an analysis1 .

Typically, only few cores are drilled and tested during the life of the dam. Hence, mapping

deterioration over the dam is at best approximate. Furthermore, the idiosyncrasies of the AAR
1 Though an idealization, these curves are based on an actual study espousing this method.
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(a) Time t1 (b) Time t2

Figure 2.4: Mapping of recovered core test results (E, fc, ft) measurement into finite element mesh

(Saouma, V.E., 2014) are not captured.

This approach has been primarily used by consulting engineers.

2.1.1.2 Failure Criterion

Typically, the failure criterion is a post-processing of an otherwise linear elastic analysis (with

possible exception for the contact elements). Those would include:

(1) Uniaxial compression failure criterion

(2) Uniaxial tension failure criterion

(3) Triaxial failure criterion

Also, a final ‘concrete cracking analysis may be performed using the so-called smeared crack model.

This will inherently allow for internal stress redistribution and a corresponding increase in com-

pressive stresses.
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(a) Elastic modulus

(b) Tensile strength

Figure 2.5: Spatial and temporal fitting for concrete mechanical properties based on limited cores
and observations (courtesy Y. Gakuhari)

2.1.2 State of the Art

In this second approach, one that is rooted in the State of the Art, one would take into

account apparent (or not so apparent) synergy between investigative tools, Fig. 2.6(a).

It should be noted that the approach about to be presented has been used by some researchers

already, Saouma, Perotti, and Shimpo (2007a), Comi, Fedele, and Perego (2009b), Sellier et al.

(2009b) and Huang and Spencer (2016) to name a few. The most recent, and comprehensive, study

was recently presented by Joshi et al. (2021).

This approach consists of three major stages, each one will be described separately in the

next section.
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Figure 2.6: Assessment paradigms for AAR affected structures

2.1.2.1 AAR Modeling

It should be emphasized that, in this approach, any quantitative assessment will have to rely

on a mathematical model for the concrete expansion. The model usually adopted is based on the

one of Ulm et al. (2000) which is nearly universally accepted.

2.2 AAR model

This section describes the AAR model used in the thesis and is adapted from Saouma and

Perotti (2006a) and Saouma (2013).

2.2.1 Premises

Two different aspects of mathematical modeling of AAR in concrete may be distinguished:

1) the kinetics of the chemical reactions and diffusion processes involved and 2) the mechanics of

fracture that affects volume expansion and causes loss of strength, with possible disintegration of

the material (Bažant, Zi, and Meyer, 2000). The proposed model (Saouma and Perotti, 2006a)

(Saouma, 2013) is driven by the following considerations:

(1) AAR is a volumetric expansion, and as such can not be addressed individually along a
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principal direction without due regard to what may occur along the other two orthogonal

ones.

(2) The kinetics component is taken from the work of Larive (1998) and Ulm et al. (2000).

(3) AAR is sufficiently influenced by temperature to account for its temporal variation in an

analysis.

(4) AAR expansion is constrained by compression and is redirected in other less constrained

principal directions. This will be accomplished by assigning “weights” to each of the three

principal directions.

(5) Relatively high compressive or tensile stresses inhibit AAR expansion due to the formation

of micro or macro cracks which absorb the expanding gel.

(6) High compressive hydrostatic stresses slow down the reaction.

(7) Triaxial compressive state of stress reduces but does not eliminate expansion.

(8) Accompanying AAR expansion is a reduction in tensile strength and elastic modulus.

2.2.2 Kinetics

One of the most extensive and rigorous AAR investigations has been conducted by Larive

(1998), who tested more than 600 specimens, Figure 2.7(a), with various mixes, ambient and

mechanical conditions, and proposed a numerical model that governs concrete expansion. This

thermodynamically-based, semi-analytical model was then calibrated using laboratory results in

order to determine two key parameters: the latency time and characteristic times shown in Figure

2.7(b) for the normalized expansion.

ξ(t, T ) = 1 − e
− t

τc(T )

1 + e
− (t−τl(T ))

τc(T )

(2.2)

or in rate form

ξ̇(t, T ) =
et/τc

(
e

τl
τc + 1

)
τc

(
et/τc + e

τl
τc

)2 (2.3)
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Figure 2.7: ASR expansion curve

where T is the temperature τl and τc are the latency and characteristic times, calibrated at T0.

The first corresponds to the inflection point while the second is defined relative to the intersection

of the tangent at τL with the asymptotic unit value of ξ. Like all chemical reactions, AAR is

subject to Arrhenius Law (Arrhenius, 1889), which relates the dependence of the rate constant,

k, of a chemical reaction on absolute temperature (T expressed in Kelvin, TK = 273 + T oC) and

activation energy, Ea.

k = Ae− Ea
RT (2.4)
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Substituting k with τL and τC , Ulm et al. (2000) has shown that these values at temperature T

can be expressed in terms of the corresponding values at temperature T0 through:

τl(T ) = τl(T0) exp
[
Ul

(
1
T − 1

T0

)]
τc(T ) = τc(T0) exp

[
Uc

(
1
T − 1

T0

)] (2.5)

where Ul and Uc are the activation energies required to trigger the reaction for latency and char-

acteristic times, respectively. Activation energies can be easily determined by rewriting Eq. 2.5 in

its non-exponential form:

ln k = ln
(
Ae− Ea

RT

)
= ln A − Ea

RT
(2.6)

which is the equation of a straight line with slope −Ea/RT We can thus determine the activation

energy from values of k observed at different temperatures by simply plotting k as a function of

1/T .Activation energies for Eq. 2.5 were determined to be:

Ul = 9, 400 ± 500K

Uc = 5, 400 ± 500K

(2.7)

To the best of the authors’ knowledge, the only other tests for these values were performed

by Ben Haha (2006), who obtained values within 20% of Larive’s, while dependency on the types

of aggregates and alkali content of the cement has not been investigated. In the absence of other

tests, these values can thus be reasonably considered as representative.

It should be emphasized that not only are the latency and characteristic times temperature-

dependent, but considerable variability can also be present for the same concrete specimen chosen

from among others. This point is illustrated in Table 2.2 for four specimens (ϕ13H24 kept at 38oC)

tested by Larive (1998).

Role of temperature on expansion is shown in Figure 2.8(b).

Parameters affecting the kinetics of the ASR can be obtained by accelerated expansion tests.

Saouma (2020) has a compilation of numerous such tests, along with other investigative tools for a

thorough diagnosis of ASR.
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Table 2.2: Variation of ϵ(∞), τc and τl for 4 specimens, (Larive, 1998)

specimen 501 475 287 19 Mean NSD (%)
ϵ(∞) % 0.198 0.195 0.168 0.230 0.198 12.8
τc days 19.9 35.3 25.8 22.0 25.7 26.5
τl days 102.1 83.9 94.8 64.8 86.4 18.8
τl/τc - 5.1 2.4 3.7 2.9 3.4 0.7

2.2.3 Volumetric Expansion

The general (uncoupled) equation for the incremental free volumetric AAR strain is given by

ε̇AAR
V (t) = Γt(f ′

t |wc, σI |CODmax)Γc(σ, f ′
c)g(h)ξ̇(t, θ) ε∞|θ=θ0

(2.8)

where COD is the crack opening displacement, ξ(t, θ) is a sigmoid curve expressing the volumetric

expansion in time as a function of temperature and is given by Eq. 2.2, and ε∞ is the laboratory

determined (or predicted) maximum free volumetric expansion at the reference temperature θ0,

Figure 2.7(b).

The retardation effect of the hydrostatic compressive stress manifests itself through τl. Hence,

Eq. 2.5 is expanded as follows

τl(θ, θ0, Iσ, f ′
c) = f(Iσ, f ′

c)τl(θ0) exp
[
Ul

(1
θ

− 1
θ0

)]
(2.9)

where

f(Iσ, f ′
c) =


1 if Iσ ≥ 0

1 + α Iσ
3f ′

c
if Iσ < 0

(2.10)

Iσ is the first invariant of the stress tensor and f ′
c the compressive strength. Based on a careful

analysis of (Multon, 2004), it was determined that α = 4/3.

The stress dependency (through Iσ) of the kinetic parameter τl makes the model a truly

coupled one between the chemical and mechanical phases.

Coupling with the thermal component is a loose one (hence a thermal analysis can be sepa-

rately run); 0 < g(h) ≤ 1 is a reduction function to account for humidity given by

g(h) = hm (2.11)
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where h is the relative humidity Capra and Bournazel, 1998. However, one can reasonably assume

that (contrary to bridges) inside a dam, g(h) = 1 for all temperatures. Figure 2.8(a) highlights the

role of RH.
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Figure 2.8: Environmental factors affecting AAR expansion

Γt(f ′
t |wc, σI |CODmax) accounts for AAR reduction due to tensile cracking (in which case gel

is absorbed by macro-cracks), Figure 2.9.

(a) Chert in CA causing AAR (b) Chert with gel close to crack

Figure 2.9: Stress induced cracks with potential gel absorption

A hyperbolic decay with a non-zero residual value is adopted, Figure 2.10:

Smeared Crack



No Γt =


1 if σI ≤ γtf

′
t

Γr + (1 − Γr)γt
f ′

t
σI

if γtf
′
t < σI

Yes Γt =


1 if CODmax ≤ γtwc

Γr + (1 − Γr)γt
wc

CODmax
if γtwc < CODmax

(2.12)

γt is the fraction of the tensile strength beyond which gel is absorbed by the crack; Γr is a residual

AAR retention factor for AAR under tension. If an elastic model is used, then f ′
t is the the tensile
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Figure 2.10: Graphical representation of Γc and Γt

strength and σI the maximum principal tensile stress. If a smeared crack model is adopted, then

CODmax is the maximum crack opening displacement at the current Gauss point, and wc the

maximum crack opening displacement in the tensile softening curve Whitman et al., 1988.

Concrete pores being seldom interconnected and the gel viscosity relatively high, gel ab-

sorption by the pores is not explicitly accounted for. Furthermore, gel absorption by the pores is

accounted for by the kinetic equation through the latency time which depends on concrete porosity.

The higher the porosity, the larger the latency time.

Γc in turn accounts for the reduction in AAR volumetric expansion under compressive stresses

(in which case gel is absorbed by diffused micro-cracks) Multon, 2004:

Γc =


1 if σ ≤ 0. Tension

1 − eβσ
1+(eβ−1.)σ if σ > 0. Compression

(2.13)

σ = σI + σII + σIII

3f ′
c

(2.14)

This expression will also reduce expansion under uniaxial or biaxial confinement, Figure 2.10;

these conditions are more directly accounted for below through the assignment of weights.

2.2.4 AAR Strain Redistribution

The third major premise of the model is that the volumetric AAR strain must be redistributed

to the three principal directions according to their relative propensity for expansion on the basis of

a weight which is a function of the respective stresses.
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The determination of the weight is relatively straightforward for triaxial AAR expansion un-

der uniaxial confinement (for which some experimental data is available), but it is more problematic

for biaxially or triaxially confined concrete. Given a principal stress vector defined by σk, σl, σm, we

need to assign a weight to each of those three principal directions. These weights will control the

AAR volumetric expansion distribution. For instance, with reference to Figure 2.12, we consider

three scenarios.

Wk= 1/3

Wl=1/3

Wm=1/3

Wk= 0

W l= 1/2

Wm= 1/2

0 < Wk < 1/3.

Wl  = (1-Wk)/2

Wm= (1-Wk)/2

1

Wk=1/2

Wl = 0

Wm= 1/2

Wk= 0

Wl  = 0

Wm= 1

0 < Wk < 1/2

Wl= 0

Wm= 1-Wk

2

σl= σu

Wk = 1

Wl  = 0

Wm= 0

Wk= 1/3

Wl= 1/3

Wm= 1/3

3

σl= σu

σm= σu

Wk= 0

Wl= 1/2

Wm= 1/2

Wk < 1/3

Wl  = (1-Wk)/2

Wm = (1-Wk)/2

0
k

σ ≥ 0
u k

σ σ< <
k u

σ σ≤ 0
k

σ ≥ 0
u k

σ σ< <
k u

σ σ≤

0
k

σ ≥ 0
u k

σ σ< <
k u

σ σ=

1/3 < Wk < 1

Wl  = (1-Wk)/2

Wm= (1-Wk)/2

σk = fc
'

c k u

f σ σ< <

m
l

k

m
l

k

Figure 2.12: Weight of volumetric aar redistribution in selected cases

Uniaxial state of stress, where we distinguish the following three cases:

(1) In the first case, we have uniaxial tension, and hence, the volumetric AAR strain is

equally redistributed in all three directions.

(2) Under a compressive stress greater than the limiting one (σu), the weight in the

corresponding (k) direction should be less than one third. The remaining AAR has

to be equally redistributed in the other two directions.

(3) If the compressive stress is lower than σu, than AAR expansion in the corresponding

direction is prevented (weight equal zero), and thus the other two weights must be

equal to one half.

Biaxial state of stress in which we have a compressive stress equal to σu in one of the three
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principal directions. In this case, the corresponding weight will always be equal to zero.

As to the possible three combinations:

(1) Tension in one direction, equal weights of one half.

(2) Compression greater than σu in one direction, then the corresponding weight must be

less than one half, and the remaining weight is assigned to the third direction.

(3) Compression less than σu, then the corresponding weight is again zero, and a unit

weight is assigned to the third direction.

Triaxial state of stress in which we have σu acting on two of the three principle directions. We

identify the following five cases:

(1) Tension along direction k, then all the expansion is along k.

(2) Compressive stress greater than σu, then we have a triaxial state of compressive stress,

and the corresponding weight will be between one and one third. The remaining

complement of the weight is equally distributed in the other two directions.

(3) Compression equal to σu, hence we have a perfect triaxial state of compressive stress.

In this case we have equal weights of one third. It should be noted that the overall

expansion is reduced through Γc.

(4) Compression less than σu but greater than the compressive strength. In this case, the

weight along k should be less than one third, and the remaining equally distributed

along the other two directions.

(5) Compression equal to the compressive strength. In this case, the corresponding weight

is reduced to zero, and the other two weights are equal to one half each.

Based on the preceding discussion, we generalize this weight allocation scheme along direction

k as follows

(1) Given σk, identify the quadrant encompassing σl and σm, Figure 2.13. Weight will be

determined through a bilinear interpolation for those four neighboring nodes.

(2) Determine the weights of the neighboring nodes from Table 2.3 through proper linear

interpolation of σk.
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Table 2.3: Triaxial weights

Node Weights
No. σl σm σk ≥ 0 σk = σu σk = f ′

c

1 0. 0. 1/3 0. 0.
2 σu 0. 1/2 0. 0.
3 σu σu 1. 1/3 0.
4 0. σu 1/2 0. 0.
5 f ′

c 0. 1/2 0. 0.
6 f ′

c σu 1. 1/2 0.
7 f ′

c f ′
c 1. 1. 1/3

8 σu f ′
c 1. 1/2 0.

9 0. f ′
c 1/2 0. 0.

10 f ′
t f ′

c 1/2 0. 0.
11 f ′

t σu 1/2 0. 0.
12 f ′

t 0. 1/3 0. 0.
13 f ′

t f ′
t 1/3 0. 0.

14 0. f ′
t 1/3 0. 0.

15 σu f ′
t 1/2 0. 0.

16 f ′
c f ′

t 1/2 0. 0.
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(3) Compute the weight from:

Wk(σk, σl, σm) =
∑4

i=1
Ni(σl, σm)Wi(σk) (2.15)

where Ni is the usual two bilinear shape function used in finite element and is given by

N(σl, σm) = 1
ab

⌊ (a − σl)(b − σm) σl(b − σm) σlσm (a − σl)σm ⌋ (2.16)

W(k) = ⌊ W1(σk) W2(σk) W3(σk) W4(σk) ⌋t (2.17)

a = (a1|a2|a3) b = (b1|b2|b3) (2.18)

σl = (σl|f ′
c − σl) σm = (σm|f ′

c − σm) (2.19)

The i − j stress space is decomposed into nine distinct regions, Figure 2.13, where σu is

the upper (signed) compressive stress below which no AAR expansion can occur along

the corresponding direction (except in triaxially loaded cases). Hence, a and b are the

dimensions of the quadrant inside which σi and σj reside.

Weights of the individual nodes are in turn interpolated according to the principal stress

component in the third direction σk, Table 2.3. Those weights are for the most part based on the

work of (Larive, 1998) and (Multon, 2004), but in some cases due to lack of sufficient experimental

data, based on simple “engineering common sense.”

A simple example for weight determination is shown here. Assuming that the principal

stresses are given by ⌊ σl σm σk ⌋ = ⌊ −5.0 −8.0 −5.0 ⌋ MPa, and that fc, f ′
t , and σu are
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equal to -30.0, 2.0, and -10.0 MPa respectively, we seek to determine Wk. The stress tensor

places us inside the quadrant defined by nodes 1-2-3-4 whose respective weights are equal to:

W1 = 1
2

(
1
3

)
= 1

6 , W2 = 1
2

(
1
2

)
= 1

4 , W3 = 1
3 + 1

2

(
1.0 − 1

3

)
= 2

3 , and W4 = 1
2

(
1
2

)
= 1

4 . Also, a and

b are both equal to -10 MPa, and the “shape factors” will be N1 = 1
100 [(−10 + 5)(−10 + 8)] = 1

10 ,

N2 = 1
100 [−5(−10 + 8)] = 1

10 , N3 = 1
100 [(−5)(−8)] = 4

10 , N4 = 1
100 [−8(−10 + 5)] = 4

10 , and finally

Wk = 1
10 × 1

6 + 1
10 × 1

4 + 4
10 × 2

3 + 4
10 × 1

4 = 0.40833.

Based on the earlier work of (Struble and Diamond, 1981) in which it was reported that

no gel expansion can occur at pressures above 11 MPa, σu is taken as -10 MPa. This value was

also confirmed by (Larive, 1998). f ′
t and f ′

c are the concrete tensile and compressive strengths

respectively.

Individual strain is given by

ε̇AAR
i = Wiε̇

AAR
V (2.20)

The proposed model will indeed result in an anisotropic AAR expansion. While not explicitly

expressed in tensorial form, the anisotropy stems from the different weights assigned to each of the

three principal directions.

2.2.5 Degradation

Deterioration being time dependent, the following time dependent non-linear model is con-

sidered, Figure 2.14.

      
Time

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

E
/E

0; f
t/f

t0

E
=

f
=70%

lat lat
+2

car

Figure 2.14: Degradation of E and f ′
t



47

E(t, θ) = E0 [1 − (1 − βE) ξ(t, θ)] (2.21)

f ′
t(t, θ) = f ′

t,0 [1 − (1 − βf ) ξ(t, θ)] (2.22)

where E0 and f ′
t,0 are the original elastic modulus and tensile strength; βE and βf are the corre-

sponding residual fractional values when εAAR tends to ε∞
AAR.

2.2.6 Interaction with Creep

Figure 2.15 shows the inetraction of AAR with creep. As seen in this figure the creep

deformation is obliterated by AAR expansion. However, in the current study the effect of creep

will not be considered as the AAR in the case study dam truely manifested itself about 40 years

after the dam construction.
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Chapter 3

Methodology for Thermal Analysis with Solar Radiation

Abstract

This chapter discusses the fundamentals and formulations of solar radiation. More specifi-

cally, this chapter contains the methodology on how to calculate the amount of solar radiation on

a surface of interest and consequently the amount of temperature increase due to it.

3.1 Preliminaries

3.1.1 Units

Proper attention must be given to the units. In this context, we distinguish between thermal

and stress analyses.

For thermal analyses, units are shown in Table 3.1. The time unit is the so-called Analysis

tTime Unit(ATU) which is equivalent to one month. In such an analysis, there are no applied forces

For stress analysis, the units are defined in Table 3.2. Note that in the incremental stress

analysis, each increment will be one ATU.

3.1.2 Conversions for selected quantities

One has to be particularly attentive to the conversion facotrs for the variables, especially in

the thermal analysis. Here are some key conversions.
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Table 3.1: Thermal Analysis

Quantity Dimensions Units
Technical Base Units Definition Used in this report

Length L L m
Time t t s
Mass M M Kg
Temperature T T K
Mass Density (ρ) M.L−3 M.L−3 Kg.m−3

Force (F ) F M.L.t−2 N Kg.m.s−2

Heat (Q) F.L M.L2.t−2 J Kg.m2.ATU−2

Power J.t−1 M.L2.t−3 W Kg.m2.ATU−3

Specific heat (cp) J.T −1.M−1 L2.t−2.T −1 J.M−1.T −1 J.Kg−1.K−1

Thermal Conductivity (k) W.L−1.T −1 M.L.t−3.T −1 J.t−1.L−1.T −1 J.ATU−1.m−1. K−1

Thermal diffusivity (µ) M2.T−1 L2.t−1 L2.t−1

Thermal Conductivity; SI Converting to month:

[J m−1 K−1 mo−1] = J
sW3, 600 s

h24h
d30.438 d

mo[W m−1 K−1]

= (2, 629, 843)[W m−1 K−1] (3.1)

Thermal Conductivity; Imperial from Engineering Toolbox:

[J m−1 K−1 h−1] = 6, 230[BTU ft−1 h−1 ◦F−1] (3.2)

[J m−1 K−1 mo−1] = 6, 230[BTU ft−1 h−1 ◦F−1]24h
d30.438 d

mo

= 4, 551, 090[BTU ft−1 h−1 ◦F−1] (3.3)

Specific Heat; Imperial From this table:

[BTU lb−1 ◦F−1] = 2.3885−4[J kg−1 K−1] (3.4)

Film Coefficient; SI Converting to month

[W m−2 K−1] = sW
J

h
3600s

d
24h

mo
30.438d[J m−2 K−1 mo−1]

= (3.8025e − 7)[J m−2 K−1 mo−1] (3.5)

https://www.engineeringtoolbox.com/thermal-conductance-conversion-d_1334.html
https://www.engineeringtoolbox.com/unit-converter-d_185.html#Specific_heat_capacity
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Table 3.2: Stress Analysis

Quantity Dimensions Units
Technical Base Units Used in this report

Length L L m
Time t t s
Mass M M Kg
Temperature T t K
Force (F ) F M.L.t−2 MN
Pressure (p) F.L−2 M.L−3.t−2 MPa

Film Coefficient; Imperial From here

[W m−2 K−1] = 0.1761[BTU ft−2 h−1 ◦F−1]24h
d30.438 d

mo

= 128.6432[BTU ft−2 mo−1 ◦F−1] (3.6)

From Equation 3.5 and 3.6 :

[J m−2 K−1 mo−1] = 128.6432
3.8025e − 7[BTU ft−2 mo−1 ◦F−1]

= (3.3831e + 08)[BTU ft−2 mo−1 ◦F−1] (3.7)

3.1.3 Concrete Thermal Properties

Concrete thermal properties are taken from (Hatch, 2015)

Mass density ρ = 155.3 [lb/ft3]

ρ = 155.3lb/ft3

= (155.3)(16.02)

= 2487kg/m3 (3.8)

Specific heat cp = 0.2 [BTU lb−1 ◦F−1]

https://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html


51

Table 3.3: Concrete thermal properties;
* From (Hatch, 2015)
** From (Malm, Hassanzadeh, and Hellgren, 2017)

Quantity Symbol Hatch* Icold** units
Mass Density ρ 2,487 2,300 kg m−3

Specific Heat cp 837 900 J kg−1 K−1

Conductivity k
3.44 2 W m−1 K−1

9,057,000 J m−1 K−1 mo−1

Thermal Diffusivity µ
0.143 ?? m2 d−1

4.35 m2 mo−1

Using equation 3.4 cp is converted to [J kg−1 K−1] units:

cp = 0.2BTU/lb/◦F

= (0.2)
(2.3885e − 4)

= 837J/kg/K (3.9)

Thermal Conductivity k = 1.99 [BTU ft−1 h−1 ◦F−1]

From Equation 3.3.

k = 1.99BTU/ft/h/◦F

= (1.99)(4, 551, 090)

= 9, 056, 669J/m/K/mo (3.10)

Also, from Equation 3.1 we can compute:

k = 9, 056, 669J/m/K/mo

= (9, 056, 669)
(2, 629, 843)

= 3.44W/m/K (3.11)

For the purpose of validating the material properties of the concrete used in this study the

values are compared to those taken from (Malm, Hassanzadeh, and Hellgren, 2017) which are as

follows and they have the same order of magnitude with those used herein.
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3.2 Solar Radiation

Solar Radiation refers to the power (J/m2) received by the sun in the form of electromagnetic

radiation. It is a function of the orientation of the surface with respect to the sun. An exact

mathematical model for solar radiation is quite complex, and an approximation by Kreider and

Rabl (1994) offered the following linear simplification

qs = α I(s, t) (3.12)

where I is total solar radiation or global radiation on a surface s at time t and α is the absorptivity

of the surface which is defined by the fraction of I absorbed by the surface structure. For concrete,

α = 0.65.

The global radiation ,Iglo, is the sum of the diffuse radiation, Idiff (i.e. solar radiation

received its direction has been changed by scattering by the atmosphere), and direct radiation,

Idir (solar radiation intercepted by a surface with negligible direction change and scattering in the

atmosphere). Those radiations are naturally site specifics and can be downloaded from various

Typical Meteorological Years (TMY) sites such as (DOE EnergyPlusTM 9.3.0, 2020).

3.2.1 Preliminary Definitions

3.2.1.1 Solar Time

tsol is the time based on apparent angular motion of the sun across the sky with solar noon

being the time the sun crosses the meridian of the observer. It is given by

tsol = tstd + Lstd − Lloc

15 + ET

60 (3.13)

where

Lstd = longitude of the standard time zone (degrees). For example, in the United States,

the longitudes of the standard time zones are 75oW for Eastern, 90oW for Central, 105oW for

Mountain, and 120oW for Pacific.
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Lloc = site longitude (degrees) Whereas exact, this equation does not account for the ec-

centricity of the Earth’s orbit and the Earth’s axial tilt. Hence, the equation is adjusted by an

approximation empirical term ET defined by the following:

ET = 9.87 sin 2
(

360o × n − 81
364

)
− 7.53 cos

(
360o × n − 81

364

)
−1.5 sin

(
360o × n − 81

364

)
(3.14)

and n is day of the year (i.e. n = 1 for Jan 1).

3.2.1.2 Solar Angles

δ is the angular position of the sun at solar noon (when the sun is in the local meridian) with

respect to the plane of the equator, north positive, and −23.45◦ ≤ δ ≤ 23.45◦, Figure 3.1. It can

be expressed by

sin δ = − sin 23.45o cos 360o × (n + 10)
365.25 (3.15)

where n is defined as mentioned before.
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Figure 3.1: Solar declination

Note that the heat flux, qs, can only be applied during the hours between sunrise and sunset.
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The sunrise (tsr) and sunset times (tss) can be determined from the following:

tsr = 12 − 1
15 cos −1(− tan λ tan δ) (3.16)

tss = 12 + 1
15 cos −1(− tan λ tan δ) (3.17)

in which λ is latitude of the location and δ is solar declination.

3.2.1.3 Zenith Angle

θs is the angle between the zenith and the centre of the Sun’s disc. as shown in Figure 3.2 is

given by

N

S

W
E

n
θs 
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θi 
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α
=9

0o
φs 

Horizon
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λ 

Figure 3.2: Solar characteristic angles

cos θs = cos λ cos δ cos ω + sin λ sin δ (3.18)

where λ is the latitude of the location (north is positive), δ the solar declination, and ω is the

angular displacement of the sun east or west of the local meridian due to rotation of the earth on

its axis at 14◦ per hour; morning negative, afternoon positive; it is given by

ω = tsol − 12
24 × 360o (3.19)

where tsol is the solar time in hours.
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3.2.1.4 Incidence Angle

θi is the angle between the normal of the surface at point P and the line from point P to the

sun, Figure 3.2 given by

cos θi = cos θs cos β + sin θs sin β cos (ϕs − ϕp) (3.20)

In this equation β is the angle between the surface and horizontal direction.

3.2.1.5 Plane azimuth angle

ϕp is the angle, measured on the surface, between the south and the projection of the plane

normal n, Figure 3.2.

3.2.1.6 Sun azimuth angle

ϕs is the angle of the Sun’s position. This horizontal coordinate defines the Sun’s relative

direction along the local horizon whereas the solar zenith angle (or its complementary angle solar

elevation) defines the Sun’s apparent altitude, Figure 3.2. It is defined by

sin ϕs = cos δ sin ω

sin θs
(3.21)

3.2.2 Solar Flux

3.2.2.1 Horizontal Surfaces

The total radiation on the horizontal surface or, in other words, global horizontal radiation

is given by

Iglo,hor = Idir cos θs + Idiff (3.22)

where θs is the zenith angle of the sun.
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Table 3.4: Reflectivity of selected surfaces (Kreider and Rabl, 1994)

Surface Reflectivity ρg

Soils 0.75
Water 0.07
Concrete, new 0.35
Concrete, old 0.25
Earth roads 0.04
Grass, dry 0.20
Grass, green 0.26

3.2.2.2 Inclined Surfaces

Calculation of the total radiation on an inclined surface is far more complex, and is given by

Iglobal = Idir cos θi + Idiff
(1 + cosβ)

2 + Iglo,horρg
(1 − cosβ)

2 (3.23)

where θi is the incidence angle, Figure 3.2.

ρg = Reflectivity of the ground. The values of the reflectivity of some selected surfaces can

be tabulated in Table 3.4

3.2.3 Discussion

3.2.3.1 Incidence angle

The role of the incidence angle in attenuating Idir is further clarified by Figure 3.3 which

shows the results of average monthly solar radiation calculations of a plane facing various directions

in the space (0o < ϕp < 270o). Eq. 3.23 suggests that the solar radiation intensity depends on

cosine of the incidence angle (cos(θi)) and therefore depends on the direction of the sun and also

the surface. Figure 3.3(a) is an illustration of the physical meaning of this equation. Based on

the assumption behind the equation, the surfaces facing South, West, North, and East would have

ϕp = 0o, 90o 180o and 270o respectively.

Figure 3.3(b) shows that in February the azimuth angle of the sun (ϕs) is about −2o.

On the other hand, Figure 3.3(c) shows that cos(θi) is maximum and therefore the direct
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solar radiation is also maximum facing South and minimum facing East. For other directions, the

direct flux would be zero. This is consistent with Figure 3.3(a).

3.2.3.2 Roles of various solar radiation forms

Finally, the preceding equations are best understood through Figure 3.4 associated with

location latitude =42.1558◦, longitude=-106.908◦ (site of a dam suffering from AAR), concrete

reflectivity ρg =0.25, reflectivity α =0.65 in terms of ϕp and time. Solar flux are obtained from

(DOE EnergyPlusTM 9.3.0, 2020).

These plots call for the following observations:

(1) Direct flux is predominant, Figure 3.4(a), it is minimum at ϕp = 270 (East) and maximum

at ϕp = 0 (South) where we have full southern exposure. The cutting (green) plane shows

that in February the amount of direct radiation is dominant for southern exposure and

diffuse radiation has the greatest participation in global radiation for other directions.

(2) Diffuse and global horizontal intensities are both very small compared to the direct (except

for ϕp ∼ 0).

(3) Flux is very sensitive to ϕp.

(4) Global solar radiation in February is shown for different exposures in Figure 3.4(b); as

expected it is maximum for ϕp = 0.

(5) Yearly variation of Iglo is shown in Figure 3.4(c). As the azimuth angle of the sun (ϕs)

varies from ∼ −2o to ∼ 7o (measured from South Figure 3.3(b)), it is expected that surfaces

facing South experience higher direct solar radiation; in addition, based on our comments

regarding Figure 3.4(a), direct radiation has higher participation in the total solar radiation

amount and thus, it is expected that the lower incidence angle θi (higher direct radiation)

results in generally higher global solar radiation intake. Figure 3.4(c) also shows higher

global solar radiation values for South facing plane throughout the year compared to other

directions.

(6) Throughout the year, solar zenith angle is out of phase (90◦) with the incidence angle,
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Figure 3.4(d). Furthermore, the incidence angle (θi) is clearly smallest for South facing

plane which explains why solar radiation is largest for southern exposure for the specified

location.

It is worth mentioning that the amount of direct solar radiation (Idircos(θi)) received by a surface

of interest depends on various factors including the time of the year, the declination and orientation

of the surface and the direction of the sun radiation. To illustrate, figure 3.5(a) shows the variation

of the three important declination, zenith and incidence angles for a vertical surface facing south.

As seen, the zenith angle(θs) trend is the reverse of the declination angle (δ) and reaches its

minimum value in June. On the other hand, as the surface is vertical, the incidence angle(θi) is the

complementary angle of the zenith angle and becomes maximum in July. In other words, The sun

radiates nearly parallel to the vertical surface in July which is expected to result in receiving less

amount of solar radiation in July. However, another important factor is the amount of available

direct solar radiation(Idir) itself obtained for the horizontal surface which is then multiplied by

cos(θi) to account for the surface declination. Figure 3.5(b) shows the amount of Idir and Idircos(θi)

on the left axis versus the amount of θi and cos(θi) on the right axis. It is shown that although

the θi is maximum in June, the final calculated direct solar radiation Idircos(θi), is maximum in

August since Idir is greater at this time.

3.2.4 Algorithms

3.2.4.1 Solar Flux

The algorithm to determine the solar flux on a surfce is shown in Figure 3.6. The following

quantities are site specific, and are assumed to be known: Idiff , Idir, ρg, λ, ϕp, n, tloc, and tstd.

(1) Determine the equation of time (ET ) using Eq. 3.14 and the solar declination angle (δ)

from eq. 3.15

(2) Using Eq. 3.13 calculate the solar time (tsol) and solar hour angle (ω) from Eq. 3.19

(3) Having the latitude of the location(λ) and using (δ) and (ω) from the previous steps, zenith
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angle of the sun (θs) is then determined using eq. 3.18

(4) The azimuth angle of the sun (ϕs) can then be determined using Eq. 3.21

(5) Using values for ϕp, ϕs and θs from steps above, the incidence angle (θi) can then be

calculated using equation Eq. 3.20 which can take values between 0 and 90 degrees.

(6) Finally Eq. 3.23 determines the solar radiation

3.2.4.2 Finite element determination of ϕp

In the thermal (finite element) analysis of a dam, one needs to determine ϕp for each element

in order to determine the solar flux, Figure 3.7. It is assumed that the element is planar, and node

numbering is counterclockwise looking from the outside. The procedure is as follows, Figure 3.8.

(1) Define two (non colinear) vectors along first and last edge: V12 and V14, Figure 3.7

(2) Take the cross product of those two vectors to define the normal

n′ = V12 × V14 (3.24)

(3) Determine the projection of n′ into n on the horizontal plane (n′(x, y, z) → n(x, y) .

(4) Determine ϕp

ϕp = cos−1 S · n
||n|| ||S||

(3.25)

where S is a normalized vector along the south direction.
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(a) Individual radiation in terms of month and ϕp

(b) Global solar radiation in February
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Figure 3.4: Solar fluxes at latitude 42.1558◦ and longitude -106.908◦
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Figure 3.6: Algorithm to determine the solar radiation intensity
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3.2.4.3 Temperature Variation Due to Solar Radiation

After the solar flux is calculated using the above-mentioned equations, the next step is to

determine the amount of temperature increase caused by the solar radiation using equation 3.26.

In this equation q is the solar flux and h is the film coefficient which herein is taken equal to 20

[W m−2 K−1] for air-concrete interface and was obtained from Hatch (2015).

∆T = q

h
(3.26)

Bureau of Reclamation (1981) report provides the temperature increase due to solar radiation at

several locations. The reported data are the mean annual temperature variation for tilted surfaces

with different inclination and orientations.Figure 3.9 shows the data for latitudes between 40o to 45o.

In this study, in order to validate the adopted solar radiation solution, the temperature variation

at latitude of 42o is calculated and compared to figure 3.9. Figure 3.10 shows temperature increase

resulted from our solution and Bureau of Reclamation (ibid.). As seen, they both follow the same

trend as the solar radiation is maximum while the surface angle to the vertical direction increases

and the surface faces south (the angle between surface normal and North direction approaches 180);

On the other side, the minimum value occurs while the surface is facing the North direction and

tilted downward (the angle between the surface and vertical direction is negative). Although the

trend is the same for both figures, the two figures are not showing identical minimum temperature

values which is due to the fact that there are a set of assumptions made for the calculations which

might be different from those from Bureau of Reclamation (ibid.).

Bureau of Reclamation (ibid.) report also provides the average monthly temperature increase

due to solar radiation in figure 3.11 for the upstream face of the dam. In figure 3.12 the temperature

values from figure 3.11 are re-plotted in centigrade degrees and compared to the results from

equation 3.26. The major observations from this figure are that computed temperatures fall within

the observed range and the slopes are nearly identical and the dispersion of the numerical case is

less than the other one.
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Figure 3.9: Mean annual temperature variation due to solar radiation for surfaces with various
orientations and inclinations adopted from Bureau of Reclamation (1981)
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Figure 3.10: Comparison of temperature variation due to solar radiation at latitude 42.1558◦ and
longitude -106.908◦

Figure 3.11: Average monthly temperature increase due to solar radiation for upstream face of the
dam from Bureau of Reclamation (1981)
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Figure 3.12: Comparison of solar radiation and the resulting temperature increase from Bureau of
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3.3 Conclusion

To summarize, this chapter presented a set of preliminary yet highly important studies to

ensure the accuracy of the subsequent complex analysis. In the first section the units and unit

conversions are clarified to make all the units consistent within the analysis. In the second part the

solar radiation concept is explained and the formulations are discussed; in addition, the procedure

of solar radiation calculation was shown in two explaining flowcharts.



Chapter 4

System Identification

A major challenge in the numerical simulation of the temporal concrete expansion (and

deterioration) is the ability to use relaible kinetics coefficients, ε∞, τl and τc introduced in §2.2.2.

Whereas those can be obtained through carefully carried laboratory tests (Saouma, 2020), an

alternative approach is through system identification.

Mathematically speaking, the problem can be simply formulated as follows. The field-

recorded displacements (e.g. crest displacement on a dam) are denoted by u(t), the target pa-

rameters by x (in our case x(1) = τc, x(2) = τl and (x(3) = ε(∞)), the finite element “operator”

by f(.), and computed results by u′(t). We thus have:

f(x) = u′(t) ̸= u(t) (4.1)

and are seeking to minimize (u(t) − u′(t))2, see Figure 9.1.

Such an approach has been often used for dam analysis (Ardito, Maier, and Massalongo,

2008) (Oliveira, Toader, and Vieira, 2012), and is conceptually similar to system identification in

nonlinear dynamic systems (Ghanem and Shinozuka, 1995).

4.1 Theory

The parameter identification process seeks to minimize the square of the error between field

measurements and those obtained from numerical simulation. Hence, this section will address the

underlying theory of least square nonlinear optimization based on trust region algorithm. Opti-

mization algorithms have been widely used to solve various engineering problems. Based on the
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Figure 4.1: Principle of the system identification approach

problem definition, whether the variables are continuous or discrete, constrained or unconstrained.

various optimization algorithms should be utilized. In this study we are dealing with a continuous

unconstrained problem. Many algorithms for nonlinear optimization problems seek only a local

solution, a point at which the objective function is smaller than all other feasible nearby points.

They do not always find the global solution,which is the point with lowest function value among all

feasible points. Global solutions are needed in some applications,but for many problems they are

difficult to recognize and locate. General nonlinear problems, both constrained and unconstrained,

may end up finding the local solutions rather than global solutions.

Taylor’s Theorem

In order to solve the minimization problems in smooth functions, the Taylor theorem is gener-

ally used. Assuming that f : Rn → R is continuously differentiable and that p ∈ Rn then we

have(Nocedal and Wright, 2006):

f(x + p) = f(x) + ∇f(x + tp)T p (4.2)

for some t ∈ (0, 1). Moreover, if f is twice continuously differentiable, we have:

∇f(x + p) = ∇f(x) +
∫ 1

0
∇2f(x + tp)pdt (4.3)
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and that

f(x + p) = f(x) + ∇f(x)T p + 1
2pT ∇2f(x + tp)p (4.4)

for some t ∈ (0, 1). necessary conditions for optimality are derived by assuming that x∗ is a local

minimizer and then proving facts about ∇f(x∗) and ∇2f(x∗).

First-Order Necessary Conditions

If x∗ is a local minimizer and f is continuously differentiable in and open neighbourhood of x∗,

then ∇f(x∗) = 0.

Second-Order Necessary Conditions

If x∗ is a local minimizer of f and ∇2f exists and is continuous in an open neighbohood of x∗, then

∇f(x∗) = 0 and ∇2f(x∗) is positive semidefinite.

Second-Order Sufficient Conditions

Suppose that ∇2f is continuous in an open neighborhood of x∗ and that ∇f(x∗) = 0 and ∇2f(x∗)

is positive definite. Then x∗ is a strict local minimizer of f .

4.1.1 Overview of Algorithms

The optimization algorithms usually follow a typical procedure of starting from a first guess

point and proceed toward next iterates until it is reached to a solution with acceptable accuracy

or there is no further progress. However, the difference of various optimization algorithms is in

the strategy of moving from one iterate to the next. Good algorithms should possess the following

properties(Nocedal and Wright, 2006):

• Robustness: They should perform well on a wide variety of problems in their class, for all

reasonable values of the starting point.

• Efficiency: They should not require excessive computer time or storage.

• Accuracy: They should be able to identify a solution with precision, without being overly

sensitive to errors in the data or to the arithmetic rounding errors that occur when the

algorithm is implemented on a computer.

There are fundamentally two strategy to find the next iterate in optimization algorithms: 1. Line
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Search 2. Trust Region. In line search method basically a direction is determined by the algorithm

and the next point is found in that direction such that the function attains a lower value. The

trust region strategy uses a region around the current point in which we accept the quadratic

approximation of the function. In this study we focus on the later method.

4.1.2 Trust Region

In the trust region strategy, a model function mk is constructued near the current point xk

which approximates the actual function behavior around that point. However, this function might

not be able to approximate the main function at the other points since the search for a minimum

value of mk is restricted to a defined region around xk. The candidate step p is determined through

solving the following equation:

min mk(xk + p) s.t. ∥p∥ ≤ ∆k (4.5)

If the trust region is too large the solution would not result in sufficient reduction of the function

and thus the radius of the region should be reduced and the problem should be solve again. Usually,

the trust region is a sphere defined by ∥p∥2 ≤ ∆, where ∆ ≥ 0 is the trust-region radius. The model

mk is usually defined as:

mk(xk + p) = fk + pT ∇fk + 1
2pT Bkp (4.6)

Where fk and ∇fk are the function and gradient values calculated at the point xk. The matrix

Bk is either the Hessian∇2fk or some approximation to it. if we assume that mk in each iterate is

quadratic based on the taylor series expansion of f we will have:

f(xk + p) = fk + gT
k p + 1

2pT ∇2f(xk + tp)p (4.7)

where fk = f(xk) and gk = ∇f(xk) and t is some scalar in the interval (0,1). Assuming Bk to be

equal to the true Hessian ∇2f(xk),we will have the trust region Newton method in which we are

seeking a solution to subproblem :

min mk(p) = fk + gT
k p + 1

2pT Bkp s.t. ∥p∥ ≤ ∆k (4.8)
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An important step in the trust region method is to determine the trust region radius at each

iteration fro this purpose a ratio is defined as:

ρk = f(xk) − f(xk + pk)
mk(0) − mk(pk) (4.9)

If the new function evaluation is greater than the current value, since the denominator is always

positive in the above equation, ρk is negative, and thus the step did not lead to the increase of the

function rather than decreasing it, the step is not acceptable. if ρk is close to 1, it shows that the

mk in this step is sufficiently close to the f(xk) and therefore the region can be expanded in the

next iteration. However, if it is close to zero or negative the region radius should be reduced at the

next iteration. Figure 4.2 shows 4 iterations of a trust region method with 2 variables, in this figure

the blue and red points are indicative of the current point and next iter estimate, respectively.

As stated the trust region only expands if the next point guess provide sufficient reduction in the

function. For the problem in this study, the corresponding objective function, Jacobian, gradient,
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Figure 4.2: Trust region algorithm
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and Hessian matrices Dennis and Schnabel, 1983 are then given by:

f(x) = (u − u′)T (u − u′) = rT · r =
m∑

i=1
(ui − u′

i)2 (4.10)

J(x) = ∂r(x)
∂xT

= ∂

∂xT

[
(u − u′)

]
= ∂u

∂xT
− ∂u′

∂xT
= − ∂u′

∂xT
= −L (4.11)

∇f(x) = ∂f(x)
∂xT

= ∂

∂xT

[
(u − u′)T (u − u′)

]
= 2JT r (4.12)

H(x) = ∂2f

∂xT ∂x = ∂

∂x (∇f (x)) = ∂

∂x

[
2JT r

]
= 2JT J + 2 ∂2r

∂xT ∂xr (4.13)

Near the minimum, ∂2r
∂xT ∂xr → 0, we have H(x) ≃ 2JT J. Use of the Levenberg-Marquardt

method ibid. allows solving for xk+1 from:

xk+1 = xk − [εkI + H (xk)]−1 ∇f (xk) (4.14)

where εk is such that all eigenvalues of [εkI + H (xk)] are positive definite. A development of the

Levenberg-Marquardt method, known as the trust region method, can ultimately be introduced.

We have indeed sought to minimize the objective function, mk(x), inside a trust region where the

quadratic approximation (as obtained by a Taylor series) is considered reliable:

mk (x, xk) = f (xk) + ∇f (xk)T (x − xk) + 1
2 (x − xk)T H (xk) (x − xk) (4.15)

The trust region is defined as follows:

Ωk = {x : ∥x − xk∥ ≤ ∆k} ; ∆k > 0 (4.16)

The optimization problem becomes:

min
x

{mk (x, xk) : xk ∈ Ωk} (4.17)

The condition needed to update the region is given by:

ρk = f (xk) − f (xk+1)
f (xk) − mk (xk+1) (4.18)

The update of the starting point is the same as that illustrated for the Levenberg-Marquardt

method. With this method, we are also able to define the upper and lower bounds for these

parameters as:

min
x

{mk (x, xk) : xk ∈ Ωk} ; lb ≤ x ≤ ub (4.19)
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The starting point of the parameter identification process may be determined from laboratory

tests (yielding an initial estimate of ε∞|T =T0 , τL(T0) and τC(T0)). Alternatively, curve fitting of

the dam crest displacement:

uAAR
irr (t, θ) = 1 − e

− t
τc(θ)

1 + e
− (t−τl(θ))

τc(θ)

uAAR,∞
irr (4.20)

(where uAAR
irr and uAAR,∞

irr are the irreversible, time and temperature-dependent displacement and

the final displacement due to AAR respectively) provides a conservative estimate for the times but

not for ε∞|T =T0 . The target parameters must be normalized such that all initial values have the

same order of magnitude, i.e.: a) the initial variation must be large enough to produce a variation

in the computed results (large normalized values can lead to an immediate stop of the identification

process); and b) the final variation of parameters must be small enough to allow for a small final

adjustment of the identified parameters without large oscillations around the final solution (an

overly small normalized parameter may result in a large final oscillation).

A weight function can be introduced to assign importance to the last data field, which

typically contains a major absolute value and is thus more representative of the irreversible effect of

AAR expansion with respect to the effect of normal loads. Let’s note that this system identification

does not require a thermal analysis and, from a practical standpoint, entails a simple modification

of three variables included in the stress analysis input file.

4.1.2.1 Algorithm

Given ∆̂ > 0, ∆0 ∈ (0, ∆̂), and η ∈ [0, 1
4) : ((Nocedal and Wright, 2006))

for k = 0, 1, 2, ...

evaluate ρk

if ρk < 1
4

∆k+1 = 1
4∆k

else

if ρk > 3
4 and ∥pk∥ = ∆k
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∆k+1 = min(2∆k, ∆̂)

else

∆k+1 = ∆k;

if ρk > η

xk+1 = xk + pk

else

xk+1 = xk;

end(for)

4.2 Implementation

4.2.1 Matlab® Formulation

The process is coded in Matlab® through the flowchart shown in Fig. 4.3. The code is essen-

tially built around the function lsqnonlin problems which minimizes the square of the Euclidian

norm of f(x)

min||f(x)||22= min
(
f1(x)2 + f2(x)2 + · · · + fn(x)2

)
(4.21)

where

f(x) =


f1(x)

f2(x)
...fn(x)

 (4.22)

||f(x)||2 =
√

f1(x)2 + f2(x)2 · · · fn(x)2 (4.23)

Residual x(t) = xfea(t) − xmeas(t) (4.24)

where xfea(t) is the vector of displacement (at a selected point) computed by the finite element

analysis, and xmeas(t) is the corresponding vector of measured values. Both are in terms of time.

It is a pretty simple operation in Matlab®

[x,resnorm,residual,exitflag,output] = lsqnonlin(fun,x0,lb,ub,options)
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where

fun Function to be minimized

x0 Initial values vector

lb Lower bound vector

ub Upper bound vector

options Strcuture defining the optimization options

resnorm squared 2-norm of the residual at x: ∑(fun(x).2)

residual Value of the objective function at solution, usually (fun(x).

exitflag Reason for stopping of the solver

output Final information about the optimization process (a structure)

Whereas most of the parameters are relatively straightforward, the most critical set are the

options. Those used in this project include

MaxFunEvals Maximum number of function evaluation

MaxIter Maximum number of iterations

TolFun Tolerance for the function

tolx Tolerance for the unknowns

MaxPCGIter Maximum number of preconditioned conjugate gradient iterations

TolPCG Termination tolerance on the PCG iteration

Typicalx Array that specifies typical magnitude of array of parameters x

used for scaling finite differences for gradient estimation.

FiniteDifferenceStepSize A vector step size factor for finite differences; this is defined

manually to make sure that the exploration is working properly.

The finite difference step size had a pivotal role in the progress of our analysis. If not specified,

the default value for this parameter is sqrt(eps) for forward finite differences. However, this default

value in our case study led to having too small finite difference steps to call a change and therefore,
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the program was unable to capture any difference by variating the input variables and eventually

yielded to the initial guess as the optimization response. By defining a vector of finite difference

step sizes (v) the program calculates the finite difference δ for each variable x as:

δ = v · max(abs(x), Typicalx); (4.25)

Defining higher values resulted in more tangible differences in variables and thus ensuring a rea-

sonable exploration for the function within the response variable domain.

4.2.2 Matlab® code

The Matlab® code is described in Fig. 4.3 and is relatively simple to follow.

(1) Field measurements are read and adjusted as described in §9.2.2.

(2) The control input file is read, and partitioned in three parts: a central one containing

the lines to be modified by the code (associated with the AAR properties), and the two

adjacent ones which would remain unchanged. Corresponding separator line numbers are

recorded for subsequent use by the minimization function.

(3) User defined variables (Table 9.1) are read from an external Excel file.

(4) Optimization parameters are set

(5) The lsqnonlin function, §4.2.1, is then called.

4.2.2.1 Function definition

A critical part of the algorithm is the definition of the function to be minimized.

(1) Write a new input file in terms of x (first iteration, use the default values of x = x0. This

is facilitated by the previous partitioning of the control file.

(2) Perform the finite element analysis (using Merlin in this case).

(3) Extract from the output file the computed displacements, xfea(t)

(4) Compute the residual x(t) = xfea(t) − xmeas(t).

(5) Compute the norm e of the residuals.
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END

# dyas/
ATU

Field 
Measur
ements

Smooth 
Measurem

ents

Interpolate

Set 
lsqnonlin  
Options

Read Field 
Data

Set 
Pointers

Read 
inp0.inp AAR Prop Read Input 

File

Active UB LB Default Typical
1 epsi_inf 1 0.09 0.02 0.05 1.00E‐02

2 tc 1 20,000        500 1,000 1000

3 tl 1 10,000        500 250 100

4 Uc 0 54,000

5 Ul 0 9,400

6 gamma_c 0 0.10

7 gamma_t 0 0.50

8 epsi_c 0 ‐30.00

9 epsi_t 0 3.00

10 curve weight 0 0.50

11 Ref Temp 0 18.00

12 sigma_2 0 ‐10.00

13 Beta_E 0 0.80

14 Beta_f 0 0.70

Read 
Control 

Parameter

FE Analysis
(Merlin)

Write New 
Input FIle

Read 
Output File

Compute 
Residual
(XField‐XFEA  
)/XField

Norm e

Plot

Function to minimize

AAR Prop

lsqnonlin

START

Figure 4.3: System identification procedure flow chart

(6) Return the norm new vector of displacements.

Completion of the program is governed by lsqnonlin on the basis of the norm and options pre-

viously selected (§4.2.1). Because there is no direct call to the function to be minimized by the

Matlab® code, extra parameters (such as xmeas(t) are passed through as global variables.

4.2.2.2 Real time visualization

Keeping in mind that the nonlinear finite element simulation of the AAR expansion in a

dam may take upward from 3 hours each, and that in the context of the parameter identificaiton

procedures multiple analyses are needed, this is a very computer intensive process.

Hence, a graphical user interface is used, Figure 4.4. The first quadrant is a plot of the

intermediary displacements (xfea(t)) in comparison with the measured ones (xmeas(t)). The other

three quadrants are plots of selected variables to be identified (ε∞, τl, and τc) in terms of iteration

numbers.
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Figure 4.4: Graphical user interface for AAR parameter identification



Chapter 5

Seismic Analysis

Abstract

This chapter discusses the fundamentals of dam seismic analysis. In other words, this chapter

contains the methodology on modeling the fluid-structure interaction, soil-structure interaction, and

ground motion selection.

5.1 Fluid Structure Interaction; Westergaard’s model

In a landmark paper, Westergaard (1933) developed a model to quantify the hydrodynamic

forces acting on a dam using an added (or lumped in the context of finite element) mass. This

model will be used in the current analysis.

Despite its wide spread adoption, and to the best of the author’s knowledge the model has

never been described fully. Instead, its final equations are presented, and adopted.

5.1.1 Theoretical Model

Whereas one jump to §5.1.2 to compute the added mass to account for hydrodynamic forces,

understanding their derivation is important as it is a most elegant fusion of mathematics, mechanics

and engineering.

Hence, this section will review in great details the landmark papeer by (ibid.).

When the water pressures are known, their influence on the stresses may be computed by the
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methods applying to static loads. The problem that needs particular attention, therefore, is that

of the changes of the water pressures during the earthquake.

Notation

The following notation is adopted:

x, y, z rectangular co-ordinates x and y as shown in Fig. 5.1 ; the axis of x is along

the undisturbed surface of the water, is directed up stream, and is perpendicular

to the plane up-stream face of the dam; the axis of y is vertical downward.

t time.

h depth of reservoir.

g acceleration due to gravity. (Eq. 5.8)

w weight of water per unit of volume, (Eq. 5.8)

k Bulk modulus of water (pressure divided by reduction of volume

per unit of volume). (Eq. 5.8)

ξ and η displacements of a particle of water in the directions of x and y. respectively.

ξ0 value of ξ at up-stream face of the dam.

σ stress in the water due to the dynamie action, positive as tension (to be combined with

the hydrostatic pressure existing beforehand).

α ratio measuring the intensity of the earthquake = maximum horizontal

component of the acceleration of the foundation divided by g.

T period of horizontal vibrations of the foundation.

r, v amplitude and maximum velocity of horizontal vibrations of the foundation.

vn velocity of sound in water.

i length of waves of expansion in the water when the period is T .

cn value defined by Equations , , and ( with n = 1, 3, 5 . . .).

p maximum pressure of the water on the dam at the depth, y, due to the dynamic action.

p0 value of p at the bottom (y = h).
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Q horizontal shear produced in a straight gravity dam at the depth, y, by the pressures, p.

Q0 value of Q at the bottom (y = h).

M bending moment produced in a straight gravity dam at the depth, y. by the pressures, p.

Ms value of M at the bottom (y = h).

o, K coeffieients in approximate formulas (Eq. to 5.38).

b, b′ dimensions shown in Fig. 5.3

Equations on Motion of the Water

Since the motions involved are small, relatively simple equations (sound in liquid) may be used.

These equations may be interpreted in terms of the theory of elasticity of solids as equations

of elasticity without shearing stresses. The forces acting on an element of volume, dxdydz, are

expressed in terms of the stress, σ, which must be superimposed on the hydrostatic pressure existing

before the disturbance.

Using D’Alembert’s principle for the dynamic equilibrium for a Newtonian fluid (ie. incom-

pressible) (Eq. G.1) we have

∂σ

∂x
= w

g

∂2ξ

∂t2 (5.1)

∂σ

∂y
= w

g

∂2η

∂t2 (5.2)

This is the equation of motion in the direction of x and y. We do not consider motion in the z

(vertical) direction since the motion is parallel to the xy-plane. The strain is given by

ε = ∂ξ

∂x
+ ∂η

∂y

For the water

p = 1
2σii = kεii

Hence, the stress can be rewritten as

σ = k

(
∂ξ

∂x
+ ∂η

∂y

)
(5.3)
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The motion is thus governed by Equations 5.1, 5.2 and 5.3. A comparison with the general equations

of hydrodynamics for compressible fluids shows that those equations apply only when ξ and η are

small, and when, in addition, the ratios of the products, ∂ξ
∂t

∂σ
∂x and ∂η

∂t
∂σ
∂y to ∂σ

∂t , are negligible.

In the solutions given in Equations 5.13, 5.14, and 5.18, these ratios will be found to be of

the order of the amplitude of the motions divided by the depth of the reservoir.

Preliminary Study, Assuming Horizontal Motion Only

Though the water acting on the dam may have a vertical displacement, this preliminary study will

ignore this vertical motion. It will nevertheless shed some light on the problem. With η = 0, Eq.

5.1 and 5.3 will give:

k
∂2ξ

∂x2 = w

g

∂2ξ

∂t2 (5.4)

This is the wave equation (Eq. G.2) which general solution is of the form

G(x, t) = f

(
t − x

vs

)
+ g

(
t + x

vs

)
As a simplifying assumption, we consider that during the earthquake the dam moves in a simple

harmonic motion with period, T , and a maximum acceleration, αg, occurring when t = 0, T, 2T ,

etc. The motion will thus be given by

ξ0 = −αgT 2

4π4 cos 2πt

T
(5.5)

With ξx=0 = ξ0, Equation 5.4 will be satisfied by

ξ = −αgT 2

4π2

[
β cos 2π

T

(
t − x

v2

)
+ (1 − β) cos 2π

T

(
t + x

vs

)]
(5.6)

where β is a constant, and,

vs =
√

gk

w
(5.7)

vs, is the wave velocity in the water; that is, the sound velocity (on account of the low frequency,

these waves, of course, would not be audible as sound). Using

k = 300, 000 lbs/in2 = 21, 600ton/ft2

g = 32.2 ft/sec2

w = 0.03125 ton/ftˆ3

(5.8)
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give vs = 4, 718 ft/sec.

The term in Equation 5.6 containing the factor, β, in front of the cosine represents waves

moving away from the dam, while the one containing the factor, 1 − β, represents waves moving

toward the dam.

Equations 5.6 and 5.3 give for x = 0 (that is, at the up-stream face of the dam):

σ = (1 − 2β)αT

2π

√
gkw sin 2πt

T
(5.9)

When β > 1/2, the waves moving away (from the dam) predominate over those moving toward it.

Equation 5.9 shows that the maximum pressure on the dam, that is, (−σ)max occurs at times

t = T
4 , 5T

4 , 9T
4 , . . . . . ., and is equal to,

p = (2β − 1)αT

2π

√
gkw (5.10)

It should be noted that the largest acceleration of the dam, and, consequently, the greatest inertia

forces due to the moving mass of the dam, occur when t = 0, T, 2T, . . . The stresses in the dam due

to the pressures, p, and the inertia forces, therefore, would have to be combined in the manner of

two alternating currents with a difference of phase of one-quarter of the period.

From Equation 5.5, the maximum velocity of the dam is,

v = αgT

2π
(5.11)

Thus, substituting Equation 5.7 5.11into 5.10 we obtain the value of the pressure

p = (2β − 1) v

vs
k (5.12)

With β = 1, that is, when the waves move away from the dam only, Equation 5.10 (or, alternatively

Equation 5.12), with the numerical constants given in Equations 5.8, and with α = 0.1 and T = 4
3

sec., gives p = 3.13 tons/ft2. But since the water can “escape” vertically the pressures are actually

much less, and are not distributed uniformly through the depth of the reservoir. A correct solution

should yield zero pressures in the water at the top.
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Solution Considering Horizontal and Vertical Motions of the Water

If we allow water to also move vertically, we would still have to satisfy Equations 5.1 5.2 and 5.3

but subjected to the following boundary conditions:

(1) σ = 0, at y = 0;

(2) η = 0, at y = h;

(3) ξ = −αgT 2

4π2 cos 2πt
T , at x = 0;

(4) σ converges toward 0 when x becomes large.

From the first condition, for small values of η it makes no appreciable difference whether one

specifies σ = 0 at the undisturbed or the disturbed surface.

A solution that satisfies the three equations and the boundary condition is one based on the

Fourier series

ξ = −αgT 2

π3 cos 2πt

T

n∑
1,3,5,...

1
n

e−qn sin nπy

2h
(5.13)

η = αgT 2

π3 cos 2πt

T

n∑
1,3,5..

1
ncn

e−qn cos nπy

2h
(5.14)

where

cn =
√

1 − 16wh2

n2gkT 2 (5.15)

and

qn = nπcnx

2h
(5.16)

Equation 5.15 gives,
1
cn

− cn = 16wh2

n2cngkT 2 (5.17)

Then Equations 5.3, 5.13, 5.14, and 5.17 will give

σ = −8αwh

π2 cos 2πt

T

n∑
1,3,5,...

1
n2cn

e−qn sin nπy

2h
(5.18)

One can easily verify that Equations 5.13, 5.14, and 5.18 satisfy Equations 5.1 and 5.2 at all

points by differentiating with respect to t, x, and y. Equation 5.3 is satisfied because it was used in

deriving Equation 5.18 from Equations 5.13 and 5.14. Furthermore, inspection of the expressions
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for η and σ readily show that conditions 1, 2, and 4 are satisfied. To verify that condition 3, for

x = 0, is satisfied, one has to compare Equation 5.13 for x = 0 with the expression for π
4 , in terms

of a Fourier series when 0 < u < π,

π

4 = sin u + 1
3 sin 3u + 1

5 sin 5u + . . . (5.19)

In the present application, u = πy
2h .

Thus, all the specified conditions are satisfied. The applicability of the equations depends,

however, on an additional condition: the displacements defined by the solution, as well as their

derivatives with respect to x and y must be small. One must thus consider the possibilities of large

displacements. One possibility is identified with resonance in the water; another will be investigated

by determining the shape of the wave formed by the surface of the water and the vertical motions

along the up-stream face of the dam.

Pressures on the Dam

From Equation 5.18, the maximum water pressure (p = −σ for x = 0), occurs when t = 0, T, 2T, . . . .

Thus,

p = 8αwh

π2

n∑
1,3,5,...

1
n2cn

sin nπy

2h
(5.20)

where, as before, according to Equation 5.18, and with the numerical constants given in Equations

5.8:

cn =
√

1 − 16wh2

n2gkT 2 =

√
1 − 0.71889

n2

(
h sec.

1000 T ft

)2
. (5.21)

The largest value of the pressure, p, occurs at the bottom of the reservoir (y = h), and is,

p0 = 8αwh

π2

n∑
1,3,5,...

(−1) n−1
2

n2cn
(5.22)

Fig. 5.1 shows the pressure p distribution profile. From Equation 5.22, the derivative, dp
dy is infinite

when y = 0, and zero when y = h; that is, the curve for p has a horizontal tangent at the top and

a vertical tangent at the bottom.

Items 1 and 2 of Table 5.1 contain numerical values of the ratio, p0
αh , and of p0, computed

from Equations 5.21 and 5.22. The ratio, p0
αh , varies only slowly with h. For h = 600 ft, T = 4

3 sec.
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y
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b, q

b0, q0

Figure 5.1: Pressures on the dam due to dynamic action of the water (Westergaard, 1933)
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(and for h = 200 ft, T = 4
9 sec.), the pressure at the depth, y = h

2 , was found to be p = 0.814p0.

Shear and Moments

It can be particularly useful to express the horizontal shearing forces and the bending moments

produced by the loads, p, in various horizontal sections of the dam acts as a cantilever (gravity

dam). The shears are stated as force per unit of width of the cantilever, for example, in tons per

foot, and the moments are stated as moment per unit of width, for example, in foot-tons per foot

(or simply in tons). The shears, Q, at the depth, y, and Q0 at the depth, h, and the moments, M ,

at the depth, y, and M0, at depth, h, are obtained from p in Eq. 5.20 by the integration

Q =
∫ y

0
pdy; Q0 =

∫ h

0
pdy; M =

∫ y

0
Qdy; M0 =

∫ h

0
Qdy (5.23)

Defining

q =
n∑

1,3,5,...

1
n2cn

(5.24)

we obtain:

Q = 16αwh

π3

q −
n∑

1,3,5,...

1
n2cn

cos nπy

2h

 (5.25)

Q0 = 16
π3 αvh2q (5.26)

M = αwh3

16q

π2
y

h
− 32

π4

n∑
1,3,5,...

1
n4cn

sin nπy

2h

 (5.27)

M0 = αwh3

16q

π2 − 32
π4

n∑
1,3,5,...

(−1) n−1
3

n4cn

 (5.28)

(5.29)

Numerical values of the ratios, Q0
αh2 and M0

αh3 , and of Q0 and M00 computed from Equations

5.24, 5.26, and 5.28, are also given in Table 5.1 (Items, 3, 4, 5 , and 6 ).

Derivation of Approximate Formulas

Computations can be simplified by replacing the diagram of pressures in Fig. 5.1 by a quadrant

of an ellipse (see Equation 5.41 derived below); the ellipse becomes a circle when drawn to some

particular scale for p. A more satisfactory approximate representation is obtained, however, by
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replacing the curve in Fig. 5.1 by a parabola with vertical axis, as shown in Fig. 5.2, even if this

parabola has a sloping tangent at the bottom. The parabola leads to the following simple formulas,

y

h

p

p0 y

x

Figure 5.2: Approximate distribution of pressures (Westergaard, 1933)

in which, C is a coefficient depending on the ratio of h to T :

p = Cα
√

hy; p0 = Cαh (5.30)

Q = 2
3Cαy

√
hy; Q0 = 2

3Cαh2 (5.31)

M = 4
15Cαy2

√
hy; M0 = 4

15Cαh2 (5.32)

The coefficient, C, might be determined so that p0 will have the value computed from Equa-

tion 5.22, but one obtains a better representation of the diagram of pressures as a whole, by

determining C so that the moment, M0, will have the value computed from Equation 5.28. In

terms of a known M0, one finds then,

C = 15M0
4αh2 (5.33)

Table 5.1 (Item 7) shows some numerical values of C. It is noted that the dimension of C is force

per unit of volume; C multiplied by ah gives the pressure as force per unit of area.

The coefficient, C, varies slowly within the range considered. For quick estimates one may
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very well assume some constant value of C; for example, with T ≥ 4
3 sec:

h < 310 ft C = 0.026 ton
ft3 (5.34)

310 ft < h < 540 ft C = 0.027 ton
ft3 (5.35)

540 ft < h < 680 ft C = 0.028 ton
ft3 (5.36)

Those are discrete values of C. It would be better to have a continuous function to express

C which will apply approximately within the entire range. The main source of variation of C is

the constant, cn, defined by Equation 5.21 with n = 1; c1 appears in the denominator of the first

term of each of the sums in Equations 5.24 and 5.28. It is reasonable, therefore, to try out an

approximate formula of the type, C = K
c1

, in which, K is a constant. The formula would be

C = K√
1 − 0.72

(
h

1000T

)2
(5.37)

The values of K shown in Table 2 (Item 8) were computed from this formula by using the values of

C in Item 7. Inspection of these results shows that one may adopt the value, K = 0.0255 ton-ft−3.

It is concluded that the coefficient, C, in Equations 5.30, 5.31, and 5.32, is satisfactorily given by

the formula

C = 0.0255 ton-ft−3√
1 − 0.72

(
h

1000T
)2

(5.38)

Resulting Approximate formula for the Water Pressures

The following approximate formula for the maximum water pressures, to be added to the hydrostatio

pressures existing before the earthquake, represents the main conclusion from this study; it is

obtained directly from Equations 5.30 and 5.38:

p = Cα
√

hy (5.39)

= 0.0255 ton-ft−3√
1 − 0.72

(
h

1000T

)2
α
√

hy (5.40)

For quick computations, however, Equations 5.30, 5.34, 5.35, and 5.36 may be used. Values of the

coefficients, p0
αh , Q0

αh2 , and M0
αh2 , obtained by use of Equation 5.1.2, are stated as Items 9, 10, and 11
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in Table 2. A comparison with Items 1,3 , and 5, respectively, shows that the approximation is

satisfactory.

Using a quadrant of an ellipse (as suggested above) instead of the parabola to represent the

pressures, one obtains the following approximate formula by a process similar to that leading to

Equation 5.1.2:

p = 0.0204 ton ft−3α
√

y(2h − y)√
1 − 0.72

(
h

1000T

)2
(5.41)

This formula gives exactly the same values of M0 as Equation 5.1.2, but gives too small values of

p0 and of the total force, Q0. Equation 5.1.2 gives slightly too large values of p0 and Q0, and is

preferable.

It is noted that the pressures, p, occur when t = 0, T, 2T , etc., that is, (see Condition (3)),

when the dam (during the vibration) is in the extreme position down stream. The stresses due to

these water pressures, therefore, must be added to the maximum stresses due to the accelerations

of the mass of the dam iself.

When, during the vibration, the dam is in the extreme position up stream, the pressures, p,

are reversed and become tensions. These tensions, like the pressures in the extreme position down

stream, are to be combined with the hydrostatic pressures existing beforehand. Inspection of the

numerical values in Table 2 shows that when the pressure of the atmosphere is included, there is no

prospect of the resultant stress in the water becoming either a tension or a very small compression.

Applicability of formulas to cases other than those assumed

The formulas were derived under the assumption that there is no overflow. In case of overflow over

a spillway it is suggested that Equation 5.1.2 be used with the depths, h and y, measured from the

plane surface of the reservoir at some distance behind the dam. The parabolic diagram of pressures

is then used as before, only the top is cut off.

While the formulas were derived under the assumption that the up-stream face is a vertical

plane, they will furnish an indication of the pressures which may be expected in other cases, for

example, in the ease of arch dams.
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5.1.2 Added Mass

To visualize the dynamic action of the water on the dam, one may think of a certain body

of water as moving with the dam while the remainder of the reservoir remains inactive. For this

purpose the body of water moving with the dam may be imagined as frozen into horizontal layers

of added mass (ice in (Westergaard, 1933)), while the remainder of the reservoir is emptied.

Simply put, we are replacing hydrodynamic forces by inertial forces caused by added mass.

The shape of the body of water or added mass thus considered to move with the dam must be

determined so that the inertia forces become equal to the pressures actually exerted by the water

due to the dynamic action.

The added mass can be applied in either one of two ways

Increase width b as originally formulated by Westergaard (ibid.). Here b is the transverse di-

mension of the added mass in the direction of x at the depth, y. Then, the corresponding

mass per unit of area of the up-stream face of the dam becomes bw
g , and the corresponding

inertia force when the acceleration is αg becomes bw
g × αg = αwb, which must be equal to

p, or

b = p

αw
(5.42)

The shape of this added mass (or ice) is the same as that of the diagram for p when the

pressures are laid off to a proper scale.

It will be sufficient for the present purpose to determine b by one of the approximate

expressions for p; for example (compare Equations 5.30, 5.34, 5.35, and 5.36),

p = 0.02734 ton-ft−3α
√

hy (5.43)

which gives, with w = 0.03125 ton-ft−3,

b = 7
8
√

hy (5.44)

Fig. 5.3 shows the body of water or ice defined by Equation 5.44. Instead of the body of

water, one may prefer to consider an equivalent body of concrete, having the same mass.
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If the concrete weighs 144 lb/ft3, the dimension corresponding to b becomes,

b′ = 0.38
√

hy (5.45)

The dotted curve in Fig. 5.3 indicates this body of concrete.

y

h

0.38h
y

x

7h/8

b’
b

Figure 5.3: Body of water which may be considered to move with dam. (Westergaard, 1933)

Added Mass is a more convenient approach in the context of a finite element analysis. This will

entail adding a mass per unit area of the upstream face of the dam

γlump(y) = p(y)
αg

(5.46)

The hydrodynamic pressure is again given by Equation

p(y) = Cα
√

hy (5.47)

where C was determined in Eq. 5.38, and can be rewritten ( From Eq. 5.21) as

C = K√
1 − 16ρwH2

w
gkT 2

(5.48)

Combining Equations 5.46-5.48 the final relation to determine the lumped mass per unit

area of the upstream dam face due to dynamic action of the water on the dam will be

γlump(y) = K
√

hy

g
√

1 − 16ρwh2

gkT 2

(5.49)
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It should be noted that in his original paper, Westergaard did go through an additional

simplification of the preceding equation (removing the dependency on T ) yielding:

γlump(y) = 7
8ρw

√
hy (5.50)

which is most often referenced in the literature, yet it is less exact than Equation 5.49.

Figure 5.4 shows the differences between the approximate and exact solutions based on the

aforementioned equations for a hypothetical dam model in which the water level, h, is 100

m.

0 1 2 3 4 5 6 7 8 9
.

lump #104

0

10

20

30

40

50

60

70

80

90

100

y

Approximate
Exact

(a) Lumped mass per unit area versus the
height

0 0.5 1 1.5 2 2.5

x 10
5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2  

Added mass, kg

 

P
er

io
d,

 s
ec

Exact solution
Westergaard approx

(b) Added mass versus the vibration period

Figure 5.4: Comparison of the approximate and exact solutions for a hypothetical dam; Adapted
from Saouma and Hariri-Ardebili (2021c)

5.2 Dynamic Soil Structure Interaction

All operating plants in the United States must quantify the margin for beyond design basis

events and take necessary actions to improve the margin if required. This effort is mostly completed

by performing Seismic Probabilistic Risk Assessment (SPRA) requiring Soil-Structure Interaction

(SSI) analysis as part of the overall analysis. Given the site profile data and the structural model

developed as part of the Final Safety Analysis Report (FSAR) are generated many years ago, it is

necessary to evaluate the SSI effects for structures founded on rock sites which were considered as

fixed base condition during the original analysis.
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It is often assumed that dynamic analysis for existing plants that are rock-founded (i.e. with

shear wave velocity > 3500 fps) may be completed without consideration of soil structure interaction

(SSI) effects (Hashemi, 2012).

5.2.1 Lysmer Model

Lysmer and Kuhlemeyer (1969) were the first to investigate this problem. Their solution is

simple, elegant and quite effective. It is based on the premises that one can surround the rock

boundary by viscous boundaries (through energy absorbent dashpots) with

tn = ρVP u̇; ts1 = ρVS v̇; ts2 = ρVSẇ; (5.51)

where tn and ts are the normal and shear tractions respectively; u̇, v̇ and ẇ the normal and two

tangential particle velocities at the boundary; ρ is the mass density; VS and VP are the shear and

pressure waves velocities respectively given by

VS =
√

µ

ρ
and VP = 1

s
VS where s2 = 1 − 2ν

2(1 − ν) (5.52)

where µ and ν are the shear modulus and the Poisson ratio respectively.

Lysmer determined the ratio of the reflected energy to incident energy (of the P waves per

unit time per unit area) as
Er

Ei
= A2 + s

sin β

sin α
B2 (5.53)

where a unit ratio corresponds to a perfect reflection (undesired), while a zero ratio corresponds to

complete absorption (desired). A similar equation was determined for S waves. In both cases, it

was found that a viscous boundary defined by a = b = 1 is: a) 95% effective in absorbing S waves;

and b) absorbs nearly all waves for α > 30o (some reflection occurs at smaller angles), Figure 5.5.

One must thus enforce the so-called Sommerfeld boundary condition (Zienkiewicz, Kelly, and

Bettess, 1979) which is more casually referred to as Lysmer-Kuhlemeyer boundary condition. It is

an exact solution if the P and S waves impinge at a right angle the artificial boundary. However

they are only approximate solutions for inclined body waves where the reflected energy is only a
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Figure 5.5: Elastic waves in an infinite medium

small part of the total energy. In many cases, the farther one chooses the artificial boundary to be

from a source which radiates waves, the more the angle of incidence with respect to the artificial

boundary will approach 90o, and, thus, the better the viscous dampers will perform, (Wolf, 1988).

A major limitation of this approach is that the required damping coefficients are frequency

dependent and consequently they can (strictly speaking) only be used in frequency domain calcu-

lations, though they are also often used in time domain analyses such as in (Zhang et al., 2003).

From a practical point of view, in the context of a finite element simulation, Fig. 5.6 illustrates

the dashpot distribution for a mesh subjected to only lateral excitation. Should there be a vertical

component, then the vertical support at the base of the dashpots should also be removed (which

would raise some problems in the presence of body forces). This model has been implemented in

the SHAKE program for the frequency-domain analysis for shear-wave propagation in layered soils

(Schnabel, Lysmer, and Seed, 1972).

Whereas the viscous boundary model eliminated wave reflections, it did not necessarily ac-

count for the proper boundary conditions. This was addressed by Lysmer and Drake (1972) in an

energy transmitting boundary model. This model assumed a linear variation of shear strain, and

those in turn are transformed into equivalent nodal forces to be applied on the numerical one. This

model was implemented in (frequency domain) program FLUSH, (Lysmer, Udaka, and Seed, 1975).
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Figure 5.6: Lysmer Modeling for Lateral Excitation

Finally,Lysmer boundary conditions can modeled in Merlin using either one of two models,

figure 5.7: lumped or distributed.

(a)
Lumped
viscous
element

(b) Distributed viscous element

Figure 5.7: Viscous elements (dash-pots)

5.2.2 Other SSI Models

A Superimposing boundaries approach was proposed by Smith (1974) who showed that the re-

flection from the boundary of a model can be completely eliminated by simply adding the solutions

of the Dirichlet and Neumann problems (corresponding to free and fixed boundaries respectively).

Hence two separate analyses are performed with different boundary conditions. The first with fixed

in normal and free in the tangential, the second free in normal and fixed in tangential directions.

Furthermore, if n boundary faces are required to be nonreflecting, than 2n solutions will be neces-

sary for a full solution. Cundall et al. (1979) refined this method by summing incrementally the

Dirichlet and Neumann solutions at the boundaries of the finite element (or finite difference). This
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had the advantage of eliminating the reflections as soon as they occur, and thus multiple reflections

(encountered by Smith) are voided and only one solution must be performed. However, the fixed-

free boundary conditions of Smith are replaced by constant velocity, constant stress ones. In a two

dimensional analysis, this corresponds to a) constant velocity in the x and constant stress in the y;

and b) constant stress in the x and constant velocity in the y. Again, rather than performing the

same calculation twice with different boundary conditions (as suggested by Smith), two overlapping

grids are employed (modeling the free field) with each of the two boundary conditions used sepa-

rately for each grid. Boundary being represented by four elements, all variables of the two grids

are added every three or four time-steps. Hence, the Lysmer-Kuhlemeyer model with absorbing

dashpots on the side and bottom is now enriched with a simultaneous free-field calculation that

imposes stress conditions on the side boundaries. This model was implemented in the time-history

program NEESI, (Cundall et al., 1980). Analysis of a dam using analogous boundary conditions

was performed by Lemos (1999) (albeit with a discrete element system) in which one-dimensional

calculations representing the left and right free-field conditions are performed in parallel with the

main model. The free field is represented by a one-dimensional finite-difference mesh.

Bielak and Christiano (1984) introduced an effective seismic input model model in which

the soil-structure interaction problem is transformed into one in which the source is exclusively

inside the computation domain, thus eliminating the need to explicitly transmit seismic excitation

through the boundary (which has to simply absorb the outgoing waves).

These two step approaches are analogous to the one of Bielak et al. (2001) where heterogeneity

and scale are accounted for through a two tier approach. The first at the macro scale represents

the “far-field” in great details and simulates the earthquake source and propagation path effects

with a detailed model. The second models local site effects and presumably includes the structure

of interest. Those two analyses are coupled through continuity of displacements and transfer of

forces from the first subdomain to the other.

A most recent and noteworthy development, which alleviates the restriction placed on the

orientation of the incoming wave, is the Perfectly Matched Layer (PML) (originally developed for
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electromagnetic wave propagation). When this layer is placed adjacent to a truncated model of an

unbounded domain, waves of all frequencies and all angles of incidence are absorbed into without

any reflection from the interface: the PML is thus “perfectly matched” to the truncated domain,

(Basu and Chopra, 2004) and (Basu, 2009).

It should be noted that the implementation of both the effective seismic input and the per-

fectly matched layer require substantial modification of the computer code. This is not the case in

the proposed model.

Despite the numerous innovative models in SSI, even applications continue to use the Lysmer-

Kuhlmeyer model as is the case in Zhang et al. (2003).

5.2.3 Miura-Saouma (MS) Model

5.2.3.1 Disclaimer

The model of Saouma et al. (2011) will be described in great details in this section. The

model is conceptually simple to understand, but complex to implement.

A major contribution of this thesis is the development of a library of matlab codes to automate

the procedure for ssi using any arbitrary finite element program (Saouma, Červenka, and Reich

(2010) in this case). This required a thorough review of the original paper (where a few mistakes

were uncovered), the implementation of the model, its verification and finally its use with an actual

dam (not previously done).

Because of the extensive number of equations, and complex figures, the author acknowledge

to have adapted this section from Saouma and Hariri-Ardebili (2021b) (to rewrite the section in

her own words, and to redraw the figures, would have consumed the better of two-three months of

effort). Instead effort was focused on the numerical tasks.

5.2.3.2 Introduction

In an earlier publication (in Japanese) Miura and Toki (1987) and (Japan Society of Civil

Engineers, 2000) considered both viscous boundary and energy transmitting boundaries. Those are
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divided into a) absorption of scattering wave energy on the sides and the bottom; and b) energy

inflow from outer free fields.

The model was investigate by Saouma through his contract with the Tokyo Electric Power

Service Company (TEPSCO) which required its implementation in Merlin. The model was deemed

to be incomplete, and lacking proper traceable derivations by the first author. More specifically,

there is no derivation of the matrices, how the method is to be actually implemented in a finite

element analysis, and is limited to 2D homogeneous models. A closer examination of the Japanese

version of the model, (Miura and Okinaka, 1989), indicates that the free field is analysed in parallel

with the main body, and the principle of virtual work is invoked in the derivation. Regretfully,

the derivation is again limited to 2D problems, and many critical steps are omitted. Finally, a 2D

implementation of this model is reported to be in (Kenkyusho, 1995).

Hence, the authors have revisited the original model of Miura, systematically rederived all the

equations, extended it to three dimensional non-homogeneous problems and provided the reader

with all necessary analytical expressions for the finite element implementation (Saouma et al.,

2011).

It will be shown that implementation of this method does not require internal modification of

a finite element code, however extensive data transfer between separate analyses would have to be

performed. Lebon, Saouma, and Uchita (2010) reports on the results of a parametric investigation

contrasting Lysmer’s model, Miura’s model, and the lack of absorbing boundary conditions in the

context of transient analysis of a concrete dam.

The model seeks to concurrently account for 1) absorption of the outgoing scattered wave

motion (or radiation damping); and 2) input of the free field ground motion into the numerical

model.

The former will be addressed by the classical Lysmer-Kuhlemeyer model. On the other hand,

the input from the free field will be addressed through separate analysis, and resulting displacements

and velocities will be transferred as discrete forces to the model.

A key advantage of this method, is the simplicity of the model, and the fact that it is purely
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a pre or post processing operation which (contrarily to some prevailing methods) does not require

modification of the source code. All relevant equations (including 3D) are given, thus greatly

facilitating implementation of the model with existing finite element codes. It is worth noting that,

the same concept has been used with a different implementation approach by Løkke and Chopra

(2019).

5.2.3.3 Model Description

The interaction between the free field and the foundation is examined first, Fig. 5.8. We
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Figure 5.8: Conceptual Model

identify four distinct parts: 1) The free field itself (F) without its contact surface Γ−; 2) The contact

surface of the free field Γ−; 3) the contact surface of the model Γ+; and 4) the model Ω without

its contact surface Γ+. Hence, mass, damping, and stiffness matrices can each be decomposed into

four parts as 

FF FΓ− FΓ+ FΩ

Γ−F Γ−Γ− Γ−Γ+ Γ−Ω

Γ+F Γ+Γ− Γ+Γ+ Γ+Ω

ΩF ΩΓ− ΩΓ+ ΩΩ


(5.54)

where each term XY infers the effect of Y on X. This is clearly a tightly coupled problem, however

if we neglect the influence of the model on the free field response, this reduces to
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

FF FΓ− 0 0

Γ−F Γ−Γ− 0 0

0 0 Γ+Γ+ Γ+Ω

0 0 ΩΓ+ ΩΩ


→

 F 0

0 Ω∗

 (5.55)

then Γ−Γ+ becomes zero we now have a loosely coupled system through Γ+Γ−. Hence we

can consider the equation of motion for the free field by itself, and will account for the interaction

in the equation of motion in Ω by adding forces, stemming from Γ+Γ−, on the right hand side. We

next write the first equation of motion for the free field:

MF üF + CF u̇F + KF uF = tF (5.56)

solving this equation, we determine the displacements and velocities along Γ−, and then solve for

the equation of motion in the model:

MΩüΩ + CΩu̇Ω + KΩuΩ = tΩ
bot −

(
CR

lftu̇Γ−
lft + KlftuΓ−

lft

)
︸ ︷︷ ︸
Left Virtual Interface

−
(
CR

rgtu̇Γ−
rgt + KrgtuΓ−

rgt

)
︸ ︷︷ ︸

Right Virtual Interface

(5.57)

where M, C, and K are the usual mass, damping and stiffness matrices respectively; the subscripts

lft, rgt, and bot correspond to left, right, and bottom; the superscript R corresponds to Rayleigh

damping.

So far, we have not accounted for one of the premises of the model, that is absorbtion of the

outgoing scattered wave, this is simply added through the inclusion of the dashpots in accordance

with the Lysmer-Kuhlmeyer model. We note that the viscous forces should be expressed in terms

of the relative displacements between Γ+ and Γ−.

MΩüΩ + CΩu̇Ω + KΩuΩ + Cdp
lft

(
u̇Γ+

lft − u̇Γ−
lft

)
+ Cdp

rgt

(
u̇Γ+

rgt − u̇Γ−
rgt

)
+ Cdp

botu̇Ω
bot

= tΩ
bot −

(
CR

lftu̇Γ−
lft + KlftuΓ−

lft

)
−
(
CR

rgtu̇Γ−
rgt + KrgtuΓ−

rgt

)
(5.58)

This equation can be rewritten by separating known and unknown quantities, and : substitut-

ing the effects of the free field displacements and velocities by their corresponding nodal equivalent
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forces

[
MΩüΩ + CΩu̇Ω + KΩuΩ

]
+
[
Cdp

lft u̇Ω
lft + Cdp

rgtu̇Ω
rgt + Cdp

botu̇Ω
B

]
= tΩ

bot +
[
FC

lft + FK
lft + FR

lft

]
+
[
FC

rgt + FK
rgt + FR

rgt

]
(5.59)

Where FC , FK , and FR are the vectors of nodal equivalent forces caused by the free field velocities,

stiffness and damping respectively. They will be separately derived later. The corresponding three

dimensional equation would be

[
MΩüΩ + CΩu̇Ω + KΩuΩ

]
+
[
Cdp

lft u̇Ω
lft + Cdp

rgtu̇Ω
rgt + Cdp

bcku̇Ω
bck + Cdp

frou̇Ω
fro + Cdp

botu̇Ω
B

]
= tΩ

bot +
[
FC

lft + FK
lft + FR

lft

]
+
[
FC

rgt + FK
rgt + FR

rgt

]
+
[
FC

bck + FK
bck + FR

bck

]
+
[
FC

fro + FK
fro + FR

fro

]
(5.60)

where bck and fro correspond to the back and front sides respectively.

To derive the expressions of the forces in the right hand side of Eq. 5.60 we apply the principle

of virtual work to the system
∫

Ω
δu. [ρü + ηu̇ + F] dΩ =

∫
Γ
δu.

(
tbot + tΓ−) dΓ (5.61)

where ρ is the mass density, η the viscosity parameter, F the internal force, u the displacement

vector, tbot and tΓ− are the surface traction on the boundary Γ (base and free field). It can be

readily shown that the left and right hand sides of Eq. 5.61 corresponds to the integral form of the

left and right hand sides of Eq. 5.60 respectively.

Internal Virtual Work

Discretizing the continuum through shape function, (Zienkiewicz, Taylor, and Zhu, 2005),

it can be readily shown that the left hand side and the first right hand side term of Eq. 5.61

correspond to the classical form of the equation of motion

MΩüΩ + CΩu̇Ω + KuΩ

In the context of the present analysis, this can be generalized to the right hand side of Eq. 5.60.
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External Virtual Work

Focusing on the remaining term of the external virtual force can be expressed as

∫
Γ
δu.tΓ−dΓ =

∫ ty

0

∫ tz

0
[δutn + δvts1 + δwts2] dzdy (5.62)

In the next sections we will separately determine the tractions caused by presence of dashpots or

the free field displacements.

Forces Caused by Velocity

Due to the presence of the dashpots around the bounded model, we substitute Eq. 5.52

into Eq. 5.62. It should be noted that in the model, the velocities will actually correspond to

difference in velocities between the free field and the bounded model: u̇Ω
lft − u̇Γ−

lft as in Eq. 5.58.

The nodal displacements along the surface boundary can be expressed in terms of the known nodal

ones through the shape functions (assuming a linear variation). Considering the x-plane the finite

element discretization yields
u = Nuu; δu = Nuδu; Vpu̇ = VpNuu̇

v = Nvu; δv = Nvδu; Vsv̇ = VsNvu̇

w = Nwu; δw = Nwδu; Vsẇ = VsNwu̇

(5.63)

where the shape functions, for the bilinear element shown in Fig. 5.9, are given by

Figure 5.9: 2D Idealization and Γx Plane
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Nu = 1

tytz
⌊ (ty − y)(tz − z) 0 0 (tz − z)y 0 0 zy 0 0 z(ty − y) 0 0 ⌋T

Nv = 1
tytz

⌊ 0 (ty − y)(tz − z) 0 0 (tz − z)y 0 0 zy 0 0 z(ty − y) 0 ⌋T

Nw = 1
tytz

⌊ 0 0 (ty − y)(tz − z) 0 0 (tz − z)y 0 0 zy 0 0 z(ty − y) ⌋T

(5.64)

and

u = ⌊ u1 v1 w1 u2 v2 w2 u3 v3 w3 u4 v4 w4 ⌋T (5.65)

Substituting1 in Eq. 5.62,

∫
Γ
δu.tdΓ = ρ

∫ tz

0

∫ ty

0
VpNu.NT

u + Vs

(
Nv.NT

v + Nw.NT
w

)
dydz (5.66)

or FC = Cdp
x u̇ where

CL
x = ρtytz

36



4Vp 0 0 2Vp 0 0 Vp 0 0 2Vp 0 0

0 4Vs 0 0 2Vs 0 0 Vs 0 0 2Vs 0

0 0 4Vs 0 0 2Vs 0 0 Vs 0 0 2Vs

2Vp 0 0 4Vp 0 0 2Vp 0 0 Vp 0 0

0 2Vs 0 0 4Vs 0 0 2Vs 0 0 Vs 0

0 0 2Vs 0 0 4Vs 0 0 2Vs 0 0 Vs

Vp 0 0 2Vp 0 0 4Vp 0 0 2Vp 0 0

0 Vs 0 0 2Vs 0 0 4Vs 0 0 2Vs 0

0 0 Vs 0 0 2Vs 0 0 4Vs 0 0 2Vs

2Vp 0 0 Vp 0 0 2Vp 0 0 4Vp 0 0

0 2Vs 0 0 Vs 0 0 2Vs 0 0 4Vs 0

0 0 2Vs 0 0 Vs 0 0 2Vs 0 0 4Vs



(5.67)

The same expression applies on the positive and negative faces.

The two dimensional equivalent matrix is obtained by simply adding rows and columns 1-4,
1 All operations performed by Mathematica.
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3-6, 7-10, 9-12 (while dropping rows and columns 2, 5, 8 and 11) in Eq. 5.67. This reduces to

FC = ρtz

6



2Vp 0 Vp 0

0 2Vs 0 Vs

Vp 0 2Vp 0

0 Vs 0 2Vs





u̇1

v̇1

u̇2

v̇2


(5.68)

It should be noted that both the left and right sides will be subjected to the same CL
x matrix.

Forces Caused by Displacements

The lateral forces exerted on the bounded domain by the free field displacements are deter-

mined next. The free field will be modeled as a shear beam (where ∂u
∂x = 0) and in the most general

case, Fig. 5.9, there will be displacements along the three axis x, y and z. Hence, unsymmetric

and non-homogeneous boundaries could be accounted for. The traction terms to be substituted in

Eq. 5.62 are thus
tn = σxx = λ (εxx + εyy + εzz) + 2µεxx = λ

(
∂v
∂y + ∂w

∂z

)
ts1 = τxy = µγxy = µ∂u

∂y

ts2 = τxz = µγxz = µ∂u
∂z

(5.69)

where λ and µ are the classical Lame’s parameters,

λ = νE

(1 + ν)(1 − 2ν) ; µ = E

2(1 + ν) (5.70)

The internal displacements can be expressed in terms of the known nodal ones through the

shape functions, Eq. 5.64. Substituting into Eq. 5.62, we obtain:

δWext = δu
∫ tz

0

∫ ty

0

[
Nu.

[
λ

(
∂Nv

∂y
+ ∂Nw

∂z

)]
+ Nv.

(
µ

∂Nu

∂y

)
+ Nw.

(
µ

∂Nu

∂z

)]
dydzu (5.71)

Or

FK = K+
x u (5.72)

where

FK = ⌊ F1,u F1,v F1,w F2,u F2,v F2,w F3,u F3,v F3,w F4,u F4,v F4,w ⌋T (5.73)
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and the corresponding stiffness matrix is given by

K+
x = 1

12



0 −2tzλ −2tyλ 0 2tzλ −tyλ 0 tzλ tyλ 0 −tzλ 2tyλ

−2tzµ 0 0 2tzµ 0 0 tzµ 0 0 −tzµ 0 0

−2tyµ 0 0 −tyµ 0 0 tyµ 0 0 2tyµ 0 0

0 −2tzλ −tyλ 0 2tzλ −2tyλ 0 tzλ 2tyλ 0 −tzλ tyλ

−2tzµ 0 0 2tzµ 0 0 tzµ 0 0 −tzµ 0 0

−tyµ 0 0 −2tyµ 0 0 2tyµ 0 0 tyµ 0 0

0 −tzλ −tyλ 0 tzλ −2tyλ 0 2tzλ 2tyλ 0 −2tzλ tyλ

−tzµ 0 0 tzµ 0 0 2tzµ 0 0 −2tzµ 0 0

−tyµ 0 0 −2tyµ 0 0 2tyµ 0 0 tyµ 0 0

0 −tzλ −2tyλ 0 tzλ −tyλ 0 2tzλ tyλ 0 −2tzλ 2tyλ

−tzµ 0 0 tzµ 0 0 2tzµ 0 0 −2tzµ 0 0

−2tyµ 0 0 −tyµ 0 0 tyµ 0 0 2tyµ 0 0


(5.74)

Rayleigh Damping

[
FR
]

= ζ

πf
[K] (5.75)

where ζ is the damping factor at frequency f . We note that this is stiffness proportional only since

we are dealing with a massless element.

Again, the two dimensional equivalent matrix is obtained by simply adding rows and columns

1-4, 3-6, 7-10, 9-12 (while dropping rows and columns 2, 5, 8 and 11). This reduces to If we were

to limit ourselves to the two dimensional case, then on the lateral boundary

δWext = δu.t = t

∫ h

0
[δutn + δwts] dz (5.76)

and 
tn = σxx = λ (εxx + εzz) + 2µεxx = λ∂w

∂z

ts = τxz = µεxz = µ∂u
∂z

(5.77)
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The internal displacements can be expressed in terms of the known nodal ones through the linear

shape functions. Substituting into equation 5.76, we obtain:

δW = tδu
∫ h

0

Nu.λ
∂Nw

∂z︸ ︷︷ ︸
Kn

+ Nw.µ
∂Nu

∂z︸ ︷︷ ︸
Ks

udz (5.78)

or FK = Ku where

FK = ⌊ F1,u F1,v F2,u F2,v ⌋T (5.79)

These equations are similar to the one of Miura in the Super flush manual (Kenkyusho, 1995).

K+
x = 1

2



0 −λ 0 λ

−µ 0 µ 0

0 −λ 0 λ

−µ 0 µ 0


(5.80)

5.2.3.4 Finite Element Formulation

Recognizing that in practice we do not have a rigid support for the foundation but rather a

flexible one, we need to account for this added variability, Figure 5.10.
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Figure 5.10: Foundation boundary conditions for radiating flexible foundation

The methodology adopted here is based on the work of Miura and Toki, 1987. The governing
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equation for a dam foundation system in an infinite flexible medium is given by

[M] {ẍ} + ([C] + [CB] + [CL] + [CR]) {ẋ} + [K] {x}

= {f} + [CL] {ẋL} + [CR] {ẋR} + [GCL] {ẋL}

+ [GCR] {ẋR} + [GL] {xL} + [GR] {xR}

(5.81)

This equation can be rewritten as



MII MIB MIL MIR

MBI MBB MBL MBR

MLI MLB MLL 0

MRI MRB 0 MRR





ẍ

ẍB

ẍL

ẍR


+



CII CIB CIL CIR

CBI CBB CBL CBR

CLI CLB CLL 0

CRI CRB 0 CRR





ẋ

ẋB

ẋL

ẋR



+



KII KIB KIL KIR

KBI KBB KBL KBR

KLI KLB KLL 0

KRI KRB 0 KRR





x

xB

xL

xR


=



f

fB

fL

fR



+



0

0

CLL + GCL

CRR + GCR





ẋI

ẋB

ẋL

ẋR



+



0

0

GL

GR





x

xB

xL

xR



(5.82)

where [M] is the mass matrix, [C] damping matrix, [K] stiffness matrix and subscripts I, B, L, R

refer to interior, bottom, left, and right nodes; {x} , {ẋ} , {ẍ} are the nodal displacements, velocities,

and accelerations.
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[CB] is Lysmer (dashpot) viscous boundary conditions at the bottom (tuned to shear wave

for lateral excitation and to pressure waves for vertical excitation).

[CB] = ρL

2



VH 0 0 0

0 VV 0 0

0 0 VH 0

0 0 0 VV


,


VH = VS cos θ + VP sin θ

VV = VP cos θ + VS sin θ

(5.83)

[CL], [CR] are Lysmer (dashpot) left and right boundary conditions tuned to pressure wave for

lateral excitation and shear waves for vertical excitation. [GL], [GR] are the boundary stiffness

matrices associated with the displacement of the free field.

[G] = 1
2



0 −λ 0 λ

−µ 0 µ 0

0 −λ 0 λ

−µ 0 µ0


(5.84)

where λ and µ are the Lame parameters, λ = νE
(1−2ν)(1+ν) = K − 2

3G and µ = E
2(1+ν) = G. For

a symmetric foundation (xL = −xR) we can ignore this term. [GCL], [GCR] are the boundary

damping matrices associated with the free field. Their effects also cancel out for symmetric cases.

Hence, for symmetric boundary conditions, we can ignore

[GR], [GL], [GCR], [GCL], xR, xL, and the resulting governing partial differential equation to be

solved is reduced to:

[M] {ẍ} + ([C] + [Cb] + [CL] + [CR]) {ẋ} + [K] {x}

= {f} + [CL] {ẋL} + [CR] {ẋR}
(5.85)
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(5.86)

In order to solve this equation, we still need some quantities on the right hand side of the equation,

namely ẋL and ẋR. These can be obtained from two separate (one if we take advantage of symmetry)

analyses of the free field which can be discretized as shown in Figure 5.11. We note the vertical

Figure 5.11: Finite element discretization of the free field

restraint for lateral excitation and the lateral restraint for vertical excitation in order to respect
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the far field boundary conditions. Thus the governing differential equations for these analyses are

[ML]
{

ẍ?
L

}
+ [CL]

{
ẋ?

L

}
+ [KL]

{
x?

L

}
=

{
f

√

L

}
(5.87)

[MR]
{

ẍ?
R

}
+ [CR]

{
ẋ?

R

}
+ [KR]

{
x?

R

}
=

{
f

√

R

}
(5.88)

from which we solve for ẋL and ẋR.

Once the free field velocities have been obtained, they can in turn be used in the full 2D

analysis of the dam/foundation discretization shown in Figure 5.12.

 

Blue dashpot: P wave 
Red Dashpot: S wave 

Seismic Excitation (Lateral and Vertical) 

{ } { },R Rx xɺ  

 
{ } { },L Lx xɺ  

2D (plane Strain) model 
equivalent to 1D model 
(Shear truss) 

Figure 5.12: Discretization of 2D dam foundation with free field velocities
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ẍ?
R


+



CII CIB CIL CIR

CBI CBB CBL CBR

CLI CLB CLL 0

CRI CRB 0 CRR





ẋ?
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5.2.3.5 Finite Element Implementation

All the components of Equation 5.60 having been defined, the analysis could then proceed as

follows (for the 2D case), Figure 5.13:

Free Field Free Field

dp
botC

{ } { }, ,,ff R ff Ru uɺ{ } { }, ,,ff L ff Lu uɺ

F F

Free Field Free Field

dp
botC

{ } { }, ,,ff R ff Ru uɺ{ } { }, ,,ff L ff Lu uɺ

F F

Figure 5.13: 2D Finite Element Modeling

(1) Discretize the free field with an arbitrary mesh which is topologically consistent with the

adjacent one in the bounded domain (that is, to each boundary node of the foundation

mesh corresponds a node in the free field mesh). Place dashpots at the base of the mesh.

(2) Constrain the vertical displacements of all the nodes (thus allowing only shear deformation),

apply an horizontal excitation and analyze.

(3) If the seismic record includes a vertical component, repeat the analysis by constraining

all the horizontal displacements (thus allowing only axial deformation), apply the vertical

component of the excitation and analyze.

(4) Determine the nodal equivalent forces FC , FK , and FR from Eqs. 5.68, 5.72, and 5.75,

respectively.

(5) Apply these as external (time dependent) boundary forces to the bounded domain (as in

Equation 5.59) and analyze.

In 3D, the model becomes more complex, Figure 5.14.
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Figure 5.14: 3D extension; procedure outline
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We would have to perform three analyses (assuming that the earthquake record has x, y,

and z components) of each of the corner blocks then transfer the nodal equivalent forces to the

four side blocks using the procedure outlined above. Those in turn will be analyzed three times

each, and finally nodal equivalent forces would again be transferred to the bounded domain. Thus,

potentially twenty four analyses would have to be performed before the foundation can be analyzed.

It should be noted that each one of those free field analyses is not computationally intensive, the

major difficulty is “book-keeping” to properly determine the nodal forces and transfer them, at

each time increment, to the correct corresponding node.

A major advantage of this method is that there is no need to modify existing finite element

programs (as is the case in (Bielak and Christiano, 1984) and (Basu, 2009)). The entire operation

is the result of clever post- and pre-processing of analysis which can be performed on most existing

finite element codes (only requirement: support dashpot elements).

Figure 5.17 is showing the model created for the case study dam along with the free field

meshes compatible for each side of the dam. Figure 5.16 shows different steps required for a free

Apply acceleration at the base of the dashpots

Part I; dynamic analysis without free field

Main foundation

Dashpot elements

Master/SlaveMaster/Slave

Fixed support

Main foundation

Dashpot elements

Master/Slave

Fixed support

Figure 5.15: Boundary conditions for free field modeling

field analysis. Each free field analysis entails performing 9 different dynamic analysis (i.e. there
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are 4 corner meshes, 4 side meshes and 1 main mesh). As shown in figure 5.16 these analyses has

to be performed in a sequential manner. A matlab code is developed to automate this process.

(1) Storing Initial Information: In order to facilitate the book keeping for free field analysis,

the first step is to store all of the required node and element numbers in an organized

manner in an excel file. In this phase the node numbers for all 9 meshes need to be stored

in the same order as their correspondents from adjacent mesh where the responses will be

transferred. Once the node numbers where stored in the excel file, starting from step 2

and onward a Matlab code will take care of the writing input files, running input files and

reading the outputs.

(2) Level one analyses: In this first set of Matlab codes the node numbers from C meshes (C

stands for corner) are read and responses are recorded.

(3) Level two analyses: In this set of Matlab codes the node numbers from S meshes (S stands

for Side) are read and the responses of the nodes on P4 are recorded.The nodes correspond-

ing to P1 will be used to apply the excitation at the base and responses from C meshes are

transferred to their corresponding nodes from P2 and P3 on the S meshes.

(4) Level three analysis: Finally the node numbers associated with the base of the main mesh

are selected to apply the acceleration while the responses from side P4 patches are trans-

ferred to P2 through P5 patches of main mesh.

Figure 5.18 provides a better representation of the required meshes and required dashpots as bound-

ary conditions (shown as red surfaces) for a set of free field analysis. As seen the free field meshes

need to be compatible with the boundaries of the main mesh. Finally for a single seismic excitation

one would need to perform 9 different seismic analyses in other words, 4 on the corner meshes, 4

on the side meshes and 1 for the main dam mesh.

5.2.4 Validation Problems

To assess the effectiveness of the method in dissipating elastic waves an extensive parametric

study is performed. We consider a soft foundation with E, ρ and ν equal to 1.563 × 103 MN/m2,
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Figure 5.16: Free field analysis flowchart
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Figure 5.18: Free field boundaries and meshes
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2,500 kg/m3 and 0.25 respectively. This corresponds to a shear wave velocity (VS from Eq. 5.52)

of 500 m/sec. Hence by exciting the base with a harmonic excitation with period of 0.4 sec, a

full wave length develops over 200 m which is the height of the model. Length is set to 800 m,

and the 3D model in turn is 200 by 800 by 800 m. Since the base excitation has a magnitude of

1 m/sec.2, ideally we should have a similar (though with a phase lag) response at the top of the

bounded domain. In both cases element size was 25 m (except for a fine 2D mesh with half this

size). Results are assessed by examining the acceleration at the top, distribution of accelerations at

h/8 increments, deformed shapes and velocity or acceleration contour lines. From this investigation

we conclude that:

(1) When the boundaries are left bare (for both 2D and 3D analyses), results are totally

unacceptable, Fig. 5.19.

0 1 2 3 4 5 6 7 8 9 10
−4

−3

−2

−1

0

1

2

3

4

 

 
2D−Nothing

Figure 5.19: Selected results for 2D analyses with free boundaries; Crest accelerations, deformed
shapes with contour lines of VX and VY

(2) 2D Lysmer yields nearly perfect (0.9) acceleration at h, nearly zero accelerations at the

knots (h/4 and 3h/4) barely acceptable displacements for horizontal excitation, and very

bad ones for a vertical excitation. Top accelerations due to vertical excitation were slightly

better than when a horizontal was applied, Fig. 5.20.

(3) 2D Present model gave excellent top acceleration (∼ 1.0), nearly zero ones at the knots

(have as large as those predicted by Lysmer), and a deformation which indeed is consistent

with a shear beam. It should be noted that best results are achieved when both terms

where included (C and K). Similarly, excellent results were obtained for vertical excitation

(the importance of including both terms was more accentuated than for the horizontal
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Figure 5.20: Selected results for 2D Lysmer analyses; Crest accelerations, deformed shapes with
contour lines of VX and VY

acceleration), Fig. 5.21.

(4) The 3D analysis based on Lysmer’s model yields top acceleration slightly higher than 1.0„

a good deformation, and not quite a homogeneous velocity distribution, Fig. 5.22.

(5) the 3D analysis based on the present model yielded a nearly perfect acceleration distribution

from bottom to top, a very smooth deformation, and internal velocity distribution, Fig.

5.23.

In summary, Lysmer’s model performs better in 3D than in 2D, whereas the Miura-Saouma model

yields excellent results in all analyses.
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Figure 5.21: Selected results for 2D Miura-Saouma analyses; Crest accelerations, deformed shapes
with contour lines of VX and VY
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Figure 5.22: Selected results for 3D Lysmer analyses; Crest accelerations, accelerations at h = 0,
h/8, h/4, 3h/8, h/2, 5h/8, 3h/4, 7h/8 and h; deformed shapes with contour lines of VX
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Figure 5.23: Selected results for 3D Miura-Saouma analyses; Crest accelerations, accelerations at
h = 0, h/8, h/4, 3h/8, h/2, 5h/8, 3h/4, 7h/8 and h; deformed shapes with contour lines of VX
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When modeling the wave motion in a spatial domain, it is essential to introduce artificial

boundaries to limit the bounded domain to a reasonable size. The simple Dirichlet boundary

condition, in which displacements are fixed, is unsuitable as substantial reflection (through Snell’s

law) will occur at the boundary and reflected waves will degrade the solution. A solution to this

problem could be to enlarge the numerical mesh, thus delaying the side reflections. Obviously

this solution considerably increases the expense of computation and is not viable unless artificial

damping can be introduced in the material near the far field (Hudson, Idriss, and Beikae, 1994).

Thus, a numerical model (finite element in our case) should absorb the incoming waves just

as they would be absorbed by the free field physically.

5.3 Nonlinear Analysis Methods

In order to investigate the response of the structure and in particular our case study dam,

there is a need to employ a nonlinear analysis methods so to determine the performance of the

structure under certain circumstances. For the current case study we are after finding the per-

formance of the AAR affected dam when subjected to seismic loads. There are several nonlinear

analysis methods such as Incremental dynamic analysis (IDA), Multiple strip analysis (MSA) and

Cloud analysis (CLA) (figure 5.24).

In IDA method a set of ground motions are selected and each individual ground motion is

scaled to multiple IM levels and the structure is analyzed subject to the set of scaled ground motions;

the maximum engineering demand parameter (EDP) from each individual analysis is then recorded.

Connecting all the points on and IM-EDP plot an IDA curve is generated (Vamvatsikos and Cornell,

2004). While IDA has been widely used among researchers for the dynamic analysis of most of the

structures, the relatively large number of required analysis has made this method computationally

expensive besides the fact that the scaling of the ground motion can lead to applying unrealistic

ground motion scenarios to the structure. On the other hand, the MSA method uses a suite of

ground motions at different intensity levels which provide responses as discrete intensity levels.

Due to the above-mentioned limitations associated with IDA and MSA methods, In this thesis the
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cloud analysis is preferred over the others.
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Figure 5.24: Comparison of various analysis methods (Saouma and Hariri-Ardebili, 2021c)

5.3.1 Cloud Analysis (CLA)

CLA procedure consists of selecting a relatively large set of un-scaled ground motions and

analyzing the structure subject to those ground motions. The EDP’s recorded from the ground

motions are ploted versus the IMs forming the cloud response (5.25). It is a well-accepted assump-

tion that the discrete data points resulted from CLA have a linear trend in the logarithmic scale

implying a power form in the arithmetic scale:

ηEDP |IM = a.IM b

where a and b are the regression constants and ηEDP |IM is the median value of EDP given IM.

Also, the logarithmic standard deviation is:

βEDP |IM
∼=

√∑(ln(edpi) − ln(a.IM b))2

n − 2

where n is the number of nonlinear transient analyses.

5.3.2 Endurance Time Analysis (ETA); Fundamentals

ETA is a dynamic pushover procedure used to estimate the seismic performance of structures

when subjected to pre-designed intensifying excitation (Estekanchi, Vafai, and Sadeghazar, 2004).

The purpose of the simulated acceleration functions is to transition the structure through different

levels of excitation in a single time history analysis. This process starts with a low excitation level,
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Figure 5.25: Cloud Based Analysis(Hariri-Ardebili and Saouma (2016))

keeping the structural response within the elastic range. It then progresses to a moderate excitation

level, introducing some nonlinearity in the structure’s response. Finally, it culminates in a high

excitation level that leads to structural failure.

The challenging part of this method is in generating the endurance time acceleration functions

(ETAF). Different versions of ETAFs have been generated by Nozari and Estekanchi (2011) and

further optimized by Mashayekhi and Estekanchi (2013). The major steps for producing ETAFs

are(Hariri-Ardebili et al. (2016)):

• Generate a stationary random acceleration function, Z(t) (using δt = 0.01, Npnt = 211

node, and PGA= 1.0 g). Note that Npnt is optional.

• Transfer this function to the frequency domain, Z (iω) = F (Z(t)), where i is an imaginary

unit and ω is frequency.

• Apply an appropriate filter function in order to resemble real ground motions (Clough,

R.W. and Penzien, J., 1993):

A (iω) =
1 + 2iξ1

ω
ω1

1 −
(

ω
ω1

)2
+ 2iξ1

ω
ω1

(
ω
ω2

)2

1 −
(

ω
ω2

)2
+ 2iξ2

ω
ω2

Z (iω) (5.90)

where the first and second terms are low-pass and high-pass filter functions, respectively;

ω1 and ξ1 are frequency and damping coefficients for the low-pass filter function, and ω2

and ξ2 are frequency and damping coefficients for the high-pass filter function.

• Use several cycles of stepwise modifications on frequency content of the filtered acceleration
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functions, A (iω), in order to make the resulting response spectrum compatible with the

target.

Anew (iω) = Aold (iω) Strg
a (ω)

Sgen
a (ω) (5.91)

where Anew (iω) is the modified frequency content being replaced with the previous content

in each modification cycle. Strg
a (ω) is the target spectrum (code-based spectrum or from a

probabilistic seismic hazard analysis), and Sgen
a (ω) is the generated response spectrum.

• Modify the acceleration time history by a linear profile function, l(t) = t/ttrg, that makes

the resulting one intensifying at various time intervals. Note that ttrg is optional, though

it is usually considered to be 10 seconds.

• Modify both the acceleration and displacement response spectra by applying a linear profile

function. An unconstrained optimization technique in the time domain may be used, such

as:

min
üg

F (üg) =
∫ Tmax

0
∫ tmax

0

{[
Sa(T, t) − t

ttrg
Strg

a (T )
]2

+ χ0

[
Sd(T, t) − t

ttrg

(
T
2π

)2
Strg

a (T )
]2
}

(5.92)

where ag is the ETAF being sought, χ0 a weight parameter, tmax and Tmax are the maximum

time and period in the optimization process, respectively. Figure 5.26(a) shows a sample

ETAF.

In order to retrieve a capacity function in the form of Figure 5.26(c), the “ETA curve” should

first be derived, see Figure 5.26(b). This curve is a diagram, whose vertical axis refers to the

maximum absolute values of EDP during the time interval from 0 to t (see Equation 5.93) and

whose horizontal axis is time.

Ω (EDP(t)) ≡ max {Abs (EDP(τ) : τ ∈ [0, t])} (5.93)

Finally, the “time” parameter is converted to IM (this can be easily performed due to the

direct relation between time and acceleration, Figure 5.26(a)), and the EDP-IM coordinate is

changed to IM-EDP. The resulting stepwise capacity function can be smoothed later, Figure 5.26(c).

Note that although this procedure is applicable only with a single ETAF, in order to reduce the
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uncertainty (due to its random nature) of ETAFs, the mean of three is typically used (Hariri-

Ardebili and Mirzabozorg, 2014) (Hariri-Ardebili and Saouma, 2015).
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Figure 5.26: ETA-based capacity function generation (Hariri-Ardebili and Saouma, 2017)

5.3.3 Intensifying Artificial Accelerations; Advances

The IAA is an artificially designed sequence of acceleration data, where one or more of its

intensity measures (IMs), such as response spectra, follow a predefined time-dependent pattern

(i.e., optimization constraint). In its most general form, an IAA can be represented as follows:

FIAA(üg) =
n∑

i=1

(∫ µmax

µ=1

∫ Tmax

T =0

∫ tmax

t=0
γi [Γi(t, T, µ) − Γ∗

i (t, T, µ)]βi dt dT dµ

)
(5.94)

where üg(t) is the acceleration time series of the IAA, Γi(t, T, µ) is a desired intensity measure

parameter to be used to optimize the IAA, and it can be a function of time, t, period ,T , ductility

ratio µ, or any other variable. γi is the weighting scale factor (i.e., optimization coefficient) that

denotes the contribution of each term in the overall optimization process. βi is the power coefficient

that typically takes values of one or two, depending on the objective function. Finally, n is the

total number of IM parameters to be included in the optimization process.

During a series of computationally intensive non-constraint optimization processes, the IM

parameters, Γi(t, T, µ), are forced to follow the general trend of the target function, Γ∗
i (t, T, µ). The

profile may take a simple linear form, for example, for acceleration response spectrum, or a nonlinear

(i.e., ground motion-dependent format) for some other IMs such as nonlinear displacement, and

the hysteretic energy.
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Several studies have investigated the generation of intensifying acceleration time series. The

pioneering work belongs to Nozari and Estekanchi (2011), who generated IAAs compatible with a

smoothed acceleration and displacement response spectra. Additionally, Mashayekhi et al. (2018)

introduced the hysteretic energy concept, as well as cumulative absolute velocity, in IAA generation.

Furthermore, Zhang et al. (2021) proposed a modification for the IAA by using a time-domain

spectral matching method.

While it is possible to generate new series of IAAs for any type of structural system and seismic

hazard scenario, this process is often time-consuming and requires specific skills in optimizing

time-series data. Additionally, it contradicts the essence of the ETA method, which was originally

developed to be a rapid technique for seismic performance evaluation with minimal complexities in

ground motion selection and generation. Therefore, the focus of this thesis is on publicly available

IAAs for the assessment of the dam under study.

The IAA functions have lengths of equal to 20 seconds and belong to five different generations,

as discussed in (Estekanchi et al., 2020; Saouma and Hariri-Ardebili, 2021c). Figure 5.27 illustrates

the target acceleration response spectra used for each of five IAA generations. As seen, they are

different in shape and magnitude which implies different IAAs in terms of intensity and spectral

acceleration. The major features of these five generations are as follows((Hariri-Ardebili and Sattar,

2023)):
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Figure 5.27: Target acceleration response spectra used in different IAA generations(Adapted from
Hariri-Ardebili and Sattar (2023)).

• First generation was developed based on the theory of random vibration without any
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specific constraint in the response spectrum.

• Second generation was developed using time-domain optimization techniques and a lin-

ear response spectrum assumption in the objective function. Acceleration and displacement

response spectra were used as constraints, . Series “a” and “b” (each with three samples)

are not recommended for nonlinear analysis and are solely useful for optimization bench-

marking. A generic design response spectrum was used in their generation. Series “e” and

“f” (each with three samples) cover longer periods, making them suitable for nonlinear

simulations. Their generation used the average response spectra from seven records given

by FEMA 440 for soil type C (i.e., stiff soil) as the target spectrum. Series “g” and “h”

(each with three samples) are an extended version of “e” and “f”, with a shaking duration

of 40 seconds.

• Third generation was developed by including nonlinear displacement responses in the

optimization process. Series “en” (three samples) is similar to “e” but incorporates nonlin-

ear optimization, resulting in up to 20% improvement in response prediction. Series “in”

(nine samples overall) is similar to “en” but includes three-component functions, making

it suitable for multi-component analysis. Series “jn” (three sample) is based on ASCE-7

design spectrum with a nonlinear optimization objective.

• Fourth generation was developed by incorporating ground motion duration via cumula-

tive absolute velocity (CAV) in the optimization process. Series “lc” (three samples) was

developed based on the average response spectrum of 22 far-field records in FEMA P695.

Acceleration, displacement, and CAV (equivalent to duration) were used in the nonlinear

optimization.

• Fifth generation was developed by incorporating damage (i.e., hysteretic energy compat-

ibility) consistency in the nonlinear optimization process. Series “kd” is based on the same

average response spectrum as series “lc” and includes five samples.

Figure 5.28 compares the time-period-spectral acceleration for all 32 IAAs in five generations.

The color contour illustrates Sa(T, t). As seen, at the same time, t, there are considerable differences
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among the IAA realizations.
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Figure 5.28: Variation of time- and period-dependent acceleration response spectra in IAAs. The
horizontal axis represents time, and the vertical axis represents vibration period. The contour lines
and colorbar represent the Sa(T, t) in g. A 2.5% damping ratio is considered for all cases.(adapted
from Hariri-Ardebili and Sattar (2023))

5.3.4 Generation of Intensifying Artificial Acceleration (IAA); Implementation

In this method an intensifying acceleration is applied to the structure and performance of

the structure is evaluated by recording the time interval that takes until the structure reaches a

certain performance level of interest. This method has numerous advantages over other methods

of analysis in terms of reducing the computational time and effort. While other methods such as

IDA, MSA and cloud analysis require a large number of analysis, the ETA method can provide a
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good estimate of the model performance through a single dynamic analysis.

As mentioned earlier, the key part of the ETA method is the generation of intensifying

accelerations. In this section the process of developing a MATLAB code to generate a basic form of

IAA is described. An optimization process is utilized to generate the intensifying acceleration such

that the corresponding response spectra at each time interval matches the defined target response

spectra. The objective function for the above mentioned optimization can be a function of each

of the acceleration, velocity and/or displacement response spectra or a combination of them. The

optimization procedure initially implemented by Estenkanchi et al. in MATLAB is modified to add

more features by the author. This code uses the MATLAB ”lsqnonlin” function to optimize the

intensifying acceleration.

In this method it is first assumed that the target spectra, defined by the user, corresponds to

a certain time interval at the intensifying acceleration time history. Then using linear interpolation

(equation 5.95) various spectra are generated for the other time intervals figure 5.29.

SaT (T, t) = ( t

tT arget
)SaC(T, t) (5.95)

The current code has been modified to include two input target spectra for each response instead

of one. The added feature to the code allows user to define a combination of the three response

spectra with different factors into the objective function. The objective function in the optimization

process consists of a matrix of squared error of the spectra which may include the displacement

and velocity spectra in addition to the acceleration and different weights can be assigned to each of

the spectra. If acceleration is the only response spectra considered in the objective function then

the matrix will write:



133

0 1 2 3 4

Period (s)

0

2

4

6

8

10

12

14

16

18

20

A
c
c
e
le

ra
ti
o
n

0 1 2 3 4

Period (s)

0

0.2

0.4

0.6

0.8

1

1.2

D
is

p
la

c
e
m

e
n
t

(a) Single input spectra

0 1 2 3 4

Period (s)

0

5

10

15

20

25

30

35

40

A
c
c
e
le

ra
ti
o
n

0 1 2 3 4

Period (s)

0

0.5

1

1.5

2

2.5

D
is

p
la

c
e
m

e
n
t

(b) Double input spectra

Figure 5.29: Generation of target response spectra for different time intervals using linear interpo-
lation



t1 t2 · · · tm

T1 M1,1 M1,2 . . . M1,m

T2 M2,1 M2,2 . . . M2,m

. . . . . . Mi,j . . .

Tn Mn,1 Mn,2 . . . Mn,m


(5.96)

In which the columns correspond to the difference of the target and calculated response spectra at

each time interval ti. It is worth noting that the modified code is capable of selecting the periods

not only by linear steps but also by logarithmic steps more weighted on either short or long periods.

Furthermore, if another response spectra such as the displacement is also used in the optimization

process the 2 matrices are appended as:



t1 t2 · · · tm t1 t2 · · · tm

T1 M1,1 M1,2 . . . M1,m M ′
1,1 M ′

1,2 . . . M ′
1,m

T2 M2,1 M2,2 . . . M2,m M ′
1,1 M ′

1,2 . . . M ′
1,m

. . . . . . Mi,j . . . . . . . . . M ′
i,j . . .

Tn Mn,1 Mn,2 . . . Mn,m M ′
1,1 M ′

1,2 . . . M ′
1,m


(5.97)
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Figure 5.30 is showing the intensifying acceleration generated by the code assuming the single input

response spectra, and optimizing the acceleration and displacement response spectra simultaneously

based on the input acceleration as the initial point of optimization process. Figure 5.31 shows the

target versus calculated response spectra at the start and end of the optimization process. While

the initial spectra does not fit well with the targets the optimization process was able to successfully

match the calculated and target spectra for various times as shown in the figure. It is noteworthy

that only the spectra at 10 different time intervals are demonstrated and compared in this plot for

the sake of space.
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Figure 5.30: Input and output intensifying acceleration acceleration

5.4 Damage Index

Damage index is a term defined to quantify the state of the damage. While one can look into

the local damage indices in an arch dam, such as material local cracking and yielding, there are

multiple global damages that can express the extent of damage to the structure, such as foundation

sliding, leakage and even the crest displacements. The damage indices in an arch dam can be

summarized as:
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Figure 5.31: Calculated vs target response spectra before and after optimization

• Local

∗ Concrete yielding: Mohr-coulomb failure criterion

∗ Cracking: Drucker-Prager failure criterion

∗ Overstressing

• Global

∗ Sliding

∗ Crack opening under the dam

∗ Crest displacements

∗ Leakage

∗ Lose of arch effect

The detailed interpretation of various arch dam failure modes can be found in literature and has

been specifically discussed in Brand and Nuss (2021).

5.4.1 Probability of Exceedance

In order to determine the probability of exceedance from a certain limit state, the 2 methods

have been selected to determine the fitting function using(Baker, 2015):
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• Maximum likelihood Estimation: In this method the parameters are determined such that

a certain distribution is most likely to produce the observed data. In the current study, the

maximum likelihood estimation is used to fit a log-normal cumulative distribution function

to the stress ratios in time (figure 10.17). In other words, the objective is to find the

probability of the principal stresses exceeding the tensile strength at different time steps.

For each specific point on the dam, at each time step tj , a number of analysis out of

total (200 analyses in this study) would result in the stress to exceed the threshold(tensile

strength). Assuming 2 possible event: 1. exceed the threshold and 2. Not to exceed the

threshold, the probability of observing zj exceedance out of nj analyses at each xj can be

determined by the binomial distribution:

P (zjexceedance in nj analyses) ≡

 nj

zj

 p
zj

j (1 − pj)nj−zj (5.98)

where pj is the probability that an analysis at time tj will exceed the threshold. In order

to find the likelihood of the whole data, the probabilities at all time steps are multiplied:

Likelihood ≡
m∏

j=1

 nj

zj

 p
zj

j (1 − pj)nj−zj (5.99)

where m is the number of time steps. substituting the equation for log-normal CDF into

the equation above We then have:

Likelihood ≡
m∏

j=1

 nj

zj

Φ
( ln(xj/θ)

β

)zj
[
1 − Φ

( ln(xj/θ)
β

)]nj−zj

(5.100)

As mentioned above the goal is to find the parameters so that the the distribution has the

highest likelihood of representing the data. Thus the next step is to find the parameters

that maximize the logarithm of the likelihood funtion, since it is easier, therefore we have:

{
θ̂, β̂

}
≡ argmax

θ,β

m∑
j=1

ln

 ni

zj

+ zj ln Φ
( ln(xj/θ)

β

)

+(nj − zj) ln
[
1 − Φ

( ln(xj/θ)
β

)]}
(5.101)



137

All these procedure is followed using the code by (Baker, 2015).
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Figure 5.32: Schematic curve fitting procedure

• Sum of squared errors: This method is based on minimizing the sum of squared errors

(SSE) between the observed data and predicted ones.

{
θ̂, β̂

}
≡ argmin

θ,β

m∑
j=1

[
zj

nj
− Φ

( ln(xj/θ)
β

)]2

(5.102)
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Chapter 6

Physical Properties

Abstract

The complexity of the analysis involving a 3D nonlinear analysis of an arch-gravity dam

subjected to AAR commands great care in proper preparation of all relevant input parameters.

This will be covered in this chapter extracting key and relevant parameters that have been

summarized in Appendix 7.

6.1 Properties

6.1.1 Thermal Analysis

The input data for the thermal analysis of the dam including concrete material properties

and film coefficients are described in this section.

6.1.1.1 Concrete Material Properties

The material properties of the dam concrete used during the thermal analysis is presented in

table 6.1. It is worth mentioning that the units provided in this table are exactly adopted in the

thermal analysis.
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Table 6.1: Concrete material Properties used in thermal analysis
* From (Hatch, 2015)

Quantity Symbol Value* units
Mass Density ρ 2,487 kg m−3

Specific Heat cp 837 J kg−1 K−1

Conductivity k 9,057,000 J m−1 K−1 mo−1

Thermal Diffusivity µ 4.35 m2 mo−1

6.1.1.2 Film Coefficient

In thermal analysis the surrounding fluid temperature are applied through a film to the

structure. For this purpose the film coefficient of water and air are used as shown in table 6.2

which are adopted from Hatch (2015). It is important to note that the film coefficient units should

be converted to be consistent with the analysis time step unit.

6.1.1.3 Air Temperature

The dam is exposed to the air at its downstream, crest and a part of upstream above the

water level. The air temperature data is available from USBR. For the purpose of conducting a

thermal analysis, a sine curve is fitted to the available data to represent the temperature variation

throughout the year figure 6.1. The resulting sinusoidal equation used for the application of air

temperature is presented below. In this equation t denotes the analysis time in days.

T (t)DS,Air = 12.7 + 13.4sin(0.0175t − 1.95) (6.1)

Table 6.2: Air and water film coefficients

Film Coefficient units

Air 20 W m−2 K−1

5.26 ∗ 107 J m−2 K−1 mo−1

Water 60 W m−2 K−1

1.6 ∗ 108 J m−2 K−1 mo−1
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T (t)US,Air = 12.8 + 12.98sin(0.0175t − 1.96) (6.2)
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Figure 6.1: The dam air temperature

6.1.1.4 Solar Radiation

In addition to the surrounding air, the surface temperature of the dam is affected by the

amount of solar energy radiating during the daylight hours which should be taken into account

during the thermal analysis. Because dam upstream is facing the south direction with an angle

of about 3o3′30”, and as a matter of fact, the solar direct radiation is maximum at the south

direction, the dam upstream which is facing south receives the maximum amount of solar radiation

while the downstream is facing back to the sun. Therefore, the effect of solar radiation is applied

at the exposed part of the upstream face of the dam. It is worth mentioning that the temperature

increase due to solar radiation for the dam crest is computed using the solar flux for horizontal

surfaces obtained from (DOE EnergyPlusTM 9.3.0, 2020).

6.1.1.5 Water Temperature

Approximation of the monthly variation of the water temperature at different depths is an

important task in the lack of sufficient field data during thermal analysis. For the case study dam,

the water temperature during various months at 10 different depths from surface down to 100 ft
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is available. However, the equations suggested for the water temperature approximation in dams,

require that at least some data from the bottom of the reservoir be available. In this case the

available reservoir temperatures are used to fit a sin curve to represent the surface temperature and

a constant temperature equal to 4oC is taken as the bottom temperature based on the statement

in Tatin et al. (2018) that the water temperature cannot become less than this value. The Ardito,

Maier, and Massalongo (2008) equation A.5 parameter ϕ is then obtained by fitting the data to

equation A.5 using those two defined top and bottom temperatures. The ϕ value was determined

to be equal to -0.02 for the case study dam.

Tw(yw, t) = Tbot(t).
1 − e−ϕyw

1 − e−ϕH
+ Ttop(t).e

−ϕyw − e−ϕH

1 − e−ϕH
(6.3)

where Tbot is the time sequence of temperature measurements at yw = H (reservoir bottom); Ttop

is the time sequence of temperature measurements at yw = 0 (reservoir top), and most importantly

ϕ is an empirical parameter that must be properly determined for the specific dam. The resulted

equation is presented below. It should be noted that the R-squared goodness of fit is about 0.6.

TBottom = 4

TT op = 10.3 − 5.3sin(2π

12 t − 0.11)

T (t, yw, H)Reservoir = (TBottom).1 − e−(−0.02)yw

1 − e−(−0.02)H + (TT op).e
−(−0.02)yw − e−(−0.02)H

1 − e−(−0.02)H (6.4)

Figure 6.2: Dam reservoir temperature
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6.1.1.6 Water Elevation

As discussed previously, the water elevation does not maintain the similar values for a partic-

ular day within several years. Yet as shown in figure 6.3 here the mean value of the whole available

data of about 63[m] and a variation of 2.2[m] is considered for the water level elevation variation.

T (t, yw, H)Reservoir = 63 + 2.2sin(0.0172t + 220/63) (6.5)
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Figure 6.3: Pool Elevations

6.1.2 AAR Analysis

6.1.2.1 Concrete and AAR Properties

The concrete, and (initial, as some values will be determined later from the parameter iden-

tification process, Chapter 9) AAR properties used for the AAR analysis are summarized in tables

6.3 and 6.4. It should be noted that the modulus of elasticity is considered variable through the

height of the dam considering lower values at the top portion of the dam. Since the AAR model

automatically accounts for the reduction of the concrete elastic modulus and tensile strength as

expansion occurs, the initial values for the elastic modulus was considered according to the reported

values at 1980 which is the starting year of the AAR analysis and based on the later test results

no more than 20% reduction is assumed for that. As for the concrete tensile strength, based on

the available core test results in 2009 and 2013, the initial value in 1980 is considered to be equal

to 1.5 MPa with a reduction factor of 0.33.
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Also, the rock properties are briefly tabulated in 6.5.

Table 6.3: Concrete Material Properties

Concrete

No. Description Symbol Unit (SI) Mean

1 Thickness t m 1
2 Mass density ρ Gg/m3 0.00225
3 Thermal expansion coeffi-

cient
α 1/◦C 9.90E-06

4 Poisson’s ratio ν 0.2

No. Description Symbol Unit (SI) Mean elevation(m) Mean

5 Modulus of elasticity

E1 Mpa 1929.5 16217.3
E2 Mpa 1,912.6 24,515.3
E3 Mpa 1,897.4 30,083.2
E4 Mpa 1,882.2 30,083.2
E5 Mpa 1,870.7 30,083.2

6.1.2.2 Joint Properties

The Properties of the modeled contraction and peripheral joints used in the finite element

analysis is shown in table 6.6. It should be noted that the concrete rock joint specified in this table

only refers to the dam-abutment interface and a full concrete-rock bound is considered below the

dam.

6.2 Analysis Procedures

6.2.1 Procedure for Thermal Analysis

Since AAR is a temperature dependent reaction, a thermal analysis is a prerequisite for

conducting an AAR analysis. The detailed procedure for the input data preparation required for

thermal analysis is summarized in the flowchart of figure 6.4.
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Table 6.4: Initial AAR Properties

Initial AAR Properties (Concrete)

No. Description Symbol Unit (SI) Mean
1 material group ID MatID # 1

Expansion characteristics

1 ATU
2 Maximum volumetric strain at temperature T0test ε∞ 4.80E-02
3 Characteristic time at temperature θtest

0 = 273+T test
0 τc ATU 999.00

4 Latency time at temperature θtest
0 = 273 + T test

0 τl ATU 210.0
Thermodynamic properties

5 Activation energy associated with τc Uc ◦K 5,400
6 Activation energy associated with τl Ul ◦K 9,400
12 Reference temperature (oC) of tests for τl and τc T0 ◦C 18

Strength

10 Tensile strength f
′
t MPa 1.5

9 Compressive strength (must be negative) f
′
c MPa -30.0

Γt

7 Residual reduction factor for Γt Γr 0.1
8 Fraction of ft prior to reduction of AAR expansion

due to macro cracking
γt 0.5

13 Upper compressive stress beyond which there is no
more AAR expansion; must be negative

σU MPa -10

Γc

11 Shape parameter (0. for straight line) β 0.5
Degradation Body

14 Reduction fraction for Young’s Modulus when AAR
reaction ends

βE 0.8

15 Reduction faction for tensile strength when AAR re-
action ends

βf 0.33

Table 6.5: Rock Material Properties

Rock

Weight Density 0.00247 Gg/m3

Elastic Modulus 20,684.3 MPa
Thermal expansion coefficient 0.00 1/◦C
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Table 6.6: Joint Properties

The case study dam

Joint Properties
Joint location

Units
7: Conc-Conc 8:Conc-Rock

Thickness h 1.00 1.00 m
Mass density ρ 0.00 0.00 Gg/m3
Coefficient of thermal expansion α 0.00 0.00
Static Young’s modulus Es 3.2610E+01 3.26E+01 MPa
Tangential stiffness Kts 3.2610E+03 3.26E+03 MPa
Normal stiffness Kns 3.2610E+03 3.26E+03 MPa
Tensile strength fts 1.00 1.00 MPa
Cohesion Cs 0.74 0.74 MPa
Friction angle Ffs 35.00 35.00 degree
Dilatancy angle FDs 10.00 10.00 degree
Fracture energy Mode I GIFs 8.00E-05 8.00E-05 MN/m
Fracture energy Mode II GIIFs 8.00E-04 8.00E-04 MN/m
Relative value of irreversible
deformation

γs 0.30 0.30

Maximal displacement for dila-
tancy

uDmaxs 0.01 0.01 m

Tensile stress at the break-
point

s1s 0.00 0.00 MPa

Crack opening displacement at
the break- point

sw1s 0.00 0.00 m

Cohesion at the break-point c1s 0.00 0.00 MPa
Crack sliding displacement at
the break-point

cw1s 0.00 0.00 m
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As described in this figure, the first step is on the mesh preparation, as well as extraction

and classification of elements to which the thermal loads are being applied. In other words, one

needs to determine the nodes and elements at the upstream and downstream sides at which the

water and air temperature will be applied; in addition the nodes at which the adiabatic boundary

conditions are defined has to be separately specified.

The second step for performing a thermal transient analysis is to gather the data correspond-

ing to the thermal loads:

• Air Temperature: The recordings of air temperature at the location of the dam can help

to have a good estimate of the temporal variation of the air temperature for the considered

analysis time step.

• Solar radiation: The temperature increase due to the effect of solar radiation has to be

determined based on the location of the dam and the orientation and inclination of different

parts of the dam with respect to the sun. This temperature increase will be added to the

air temperature.

• Water temperature: In the absence of sufficient recordings of water temperatures through

the whole depth of the reservoir, one can utilize the empirical relations available in the

literature to estimate the reservoir temperature.

• Water elevation

Furthermore, the concrete material properties needs to be determined along with air and

water film coefficients. Finally, having all the above mentioned information in hand, the thermal

loads can be applied to the finite element model, and a thermal transient analysis can be performed.
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T t, 𝑦𝑤 , 𝐻 𝑅𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 = 4 ∙
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Figure 6.4: Flowchart describing the thermal analysis input data preparation procedure
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6.2.2 Procedure for Uncertainty Quantification and Stress Analysis

The AAR analysis requires calibration of the AAR model parameters such that the resulting

displacements match the recorded ones. To this purpose, a system identification procedure can be

used to determine the parameters associated with the AAR model. When determined, those values

will be used as the mean of those random variables for the uncertainty quantification of the stress

analysis. As shown in figure 10.10 the procedure of performing the uncertainty quantification(UQ)

consists of 2 main parts:

• Thermal Analysis

• Stress Analysis

In a uncertainty quantification procedure there are uncertainties associated with the air and wa-

ter temperature which in turn translates into the concrete internal temperature. As such, each

stress analysis has to be paired with a thermal analysis which determines the concrete internal

temperatures.

As seen in the flowchart of figure 10.10 the very first step for every uncertainty quantification

is to determine the sources of uncertainty in the analysis and define them as the random variables.

It is worth noting that in this study a zero correlation is considered between the variables. Then,

the next step would be to determine a distribution which can best describe each random variable

as well as the correlations between them. Next is to utilize a sampling technique such as the

Latin Hypercube Sampling (LHS) to extract samples from the random variables. Combining these

variables, finite element models can be generated and analyzed.

Starting from the thermal analysis, a number of models has to be created and analyzed. As

seen in the flowchart, the concrete temperatures obtained from thermal analysis are then gathered

and used as the inputs of the AAR analysis in the next stage.

The same sampling procedure as discussed above has to be repeated for the AAR analysis to

incorporate the uncertainty associated with the AAR and other concrete properties. Last but not

least is to gather and interpret the results from all analyses.



150

It should be noted that in order to interpret the results, one has to decide about what has

to be the outcome of the analysis and what are the useful information which need to be recorded

prior to launching the uncertainty quantification(UQ) procedure.
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1. Set variables in
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Figure 6.5: Flowchart of UQ Procedure



Chapter 7

Physical Modeling

Abstract

Whereas the preceding chapter has focused on the physical parameters associated with the

analysis, this one will address modeling issues.

First, the dam will be described (to the extent possible). Then the “crafting” of a reasonable

and representative finite element mesh will be described.

This will be followed by the modeling of stage construction and will highlight its importance.

Then, recognizing that the application of the full hydrostatic load in one load increment may

cause convergence errors, it will be shown that that adoping three increments will suffice to avoide

this error.

Finally, it will be shown that computational time can be substantially cut if a reduced (yet

accurate) foundation model is adopted.

7.1 Physical Model

The dam is a concrete arch dam located on the North Platte River about 31 miles northeast

of Rawlins, Wyoming. The dam was completed in 1939 with a structural height of 90 m (295

ft), a hydraulic height of 63 m (206 ft), a crest length of 161.5 m (530 ft) at el 1938m (6,361 ft),

and a total concrete volume of 210,000 cu yd. The reservoir provides water storage for irrigation,

hydroelectric power generation and recreation.
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The arch dam has a crest width of 6.4m, a maximum base width of 26 m, a 88 m radius for

the vertical upstream face, a variable radius for the sloping downstream face, and 1m high concrete

parapet walls to el 1940.

The dam was constructed in one construction season. Construction started on January 19,

1938, and it was completed on November 28, 1938.

The dam is experiencing concrete expansion, cracking and deterioration due to alkali-silica

reaction (ASR) and freeze-thaw damage.

7.2 Geometry Model

The geometry model of the dam is prepared based on maps provided by USBR. The geom-

etry model includes the joints (not used in thermal analysis), and multiple regions (blocks) which

facilitate implementation of variable temperature.

The geometry of the dam as well as its orientation with respect to the north direction can

be obtained from figure 7.1.
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Figure 7.1: Geometry of the Dam; Redacted dimensions

Regretfully, at the sponsor’s request dimensions had been redacted.

On the other hand, more insight can be found in Fig. 7.2 which is taken from Salamon,



153

Dressel, and Liechty (2021).

Figure 7.2: Additional description of the dam (Salamon, Dressel, and Liechty, 2021)

In order to develop a precise mathematical model (finite element mesh) of the dam, the

geometry of different parts are accurately drawn as shown in figure 7.3 and then using Matlab® a

model is developed, Fig. 7.4. The geometry model of the dam is prepared based on maps provided

by USBR. The geometry model includes the joints (not used in thermal analysis), and multiple

regions (blocks) which facilitate implementation of variable temperature.

Then a Matlab® code is written to display the contour of the dam, Fig. 7.4.

The Matlab® model enabled us to define a “boundary file” of the mesh, which in turn was

processed by T3D Rypl, 2021 to generate meshes.
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Figure 7.3: Mathematical Modeling of the Dam

Figure 7.4: Matlab® based final model

The geometry model includes the joints (not used in thermal analysis), and multiple regions

(blocks), Fig. 7.5, to facilitate implementation of the stage construction.

Three meshes were generated:
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Thermal: where no joints were inserted between the monoliths or under the concrete dams.

Full: mesh with joints inserted between all the monoliths, and another set “wrapped around” the

dam to model the concrete rock-interface. The foundation was extended below the dam.

To adequately simulate stage construction and various distribution of AAR expansion, the

dam body was subdivided into 39 groups, Fig. 7.5.

Reduced: Identical to the previous one, however rock was modeled by a single layer of elements

to reduce computational time while maintaining fidelity.

It should be noted that the lift joints were not modeled.

7.3 Stage Construction

In the stress analysis of an arch dam, it is important to properly simulate the self weight of

the structure and the resulting stresses during the construction. In most cases the construction

stages is simulated through activating the elements in a sequential manner such that it can represent

the construction procedure and capture the induced appropriate stresses by the self-weight of the

structure. As a matter of fact, the sequence of activating elements depends on the real construction

procedure and therefore it might consist of several stages. It has been widely accepted that applying

the self weight of an arch dam with the assumption of being a single monolith results in inaccurately

estimating the stresses in the structure. As presented in Malm, Hassanzadeh, and Hellgren (2017)

the self weight of the structure is applied sequentially as a part of the static and seismic analysis

of an arch dam. This procedure was followed in other studies as well, such as Hariri-Ardebili,

Mirzabozorg, and Kianoush (2013) and Alembagheri (2019). Figure 7.7 further clarifies the effect

of staged construction on the development of stresses and the importance of considering this in the

finite element model. Figure 7.7a, b and c shows the case where a dam is considered to have been

built as a single monolith. In this case the only reaction forces that act against the body weight

of the structure comes from the rock interface, which also varies based on the shape of the valley.

Therefore the wight of the structure will result in development of hanging tensile stresses. On the

other hand, looking at figure 7.7d through h building one layer at a time results in the lower layers
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(a) Full mesh

(b) Joints in stress analysis meshes (c) Material groups

(d) Reduced foundation; Foundation shown in red (e) Thermal analysis

Figure 7.6: Finite element mesh

providing an additional support for the weight of the upper layer and thus preventing the stresses

shown in figure 7.7c.
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Figure 7.7: Development of Stresses through construction stages
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Figure 7.8: Modeling of stage construction

7.3.1 Proposed methodology

Ideally, a computer program should be able to handle so-called “ghost elements” that can be

activated or deactivated to model staged construction or excavation respectively.

When this is not possible in a finite element code, one which allows modification of the elastic

properties within a load increment (as is the case with Merlin), then an alternative approach is

possible.

With reference to Fig. 7.8 A necessary condition is for the used finite element code be

capable of modifying material properties (specific weight in particular) within a load increment.

This feature may not be present in some programs. the approach is as follows:

(1) Break the dam into multiple blocks/layers which best represents the construction stages

(2) Define the real material properties for the layer that was first constructed and specify

reduced properties for Modulus of elasticity(E), Poisson’s ratio (ν) and mass density (ρ)

for all other layers

(3) Apply gravity load only to the first layer

(4) Tag the next group to have its properties updated one property at a time (this is necessary

in Merlin, but not necessarily in other codes)

(5) Apply gravity to the first and second layer

(6) Repeat the previous steps for all layers until all material properties are updated to the real
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values and gravity load is applied to the whole dam body

(7) It is necessary to set the displacements to zero after the staged construction in order to

only account for the dam long term post-construction deformations.

7.3.2 Verification Study

In order to investigate the effect of modeling staged construction in the dam, the finite element

model is analyzed assuming 2 different cases. In the first case, the body force is applied directly to

the whole structure at once and in the second attempt the body force is applied gradually through

5 stages to the whole dam body; as shown in figure 7.5 each construction stages are differentiated

through various colors. In other words, it is assumed that the dam was constructed such that at first

the blocks at the first level in gray are built, then the second level was put on top of that and so on.

Therefore, we have activated the body forces assuming this sequence in our finite element analysis

to account for the effect of the staged construction. The results of the 2 above mentioned cases

are shown and compared in figures 7.11 through 7.10 for upstream, downstream and a vertical cut

at the middle of the dam. It is shown in figure 7.9 that in stage one only a portion of the bottom

of the dam is experiencing stresses due to the body force which is shown in light red color. In

the second stage the light red color climbs up and the stress at the bottom of the dam increases

accordingly. As seen this trend continues until the 5th stage in which again the stress distribution

is an indicative of the gradual application of the body force to the body of the dam.

7.3.3 Verification

In order to better compare the results of staged construction a segment of the dam is isolated,

as shown in figure 7.15, and the vertical stresses integrated at 0, 25, 50 and 75% of the height and

the resultant force is compared with the weight of the concrete “column” above the section using

the simple formula:

W = ρgV (7.1)
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(a) σzz, Stage 1 (b) σzz, Stage 2 (c) σzz, Stage 3

(d) σzz, Stage 4 (e) σzz, Stage 5

Figure 7.9: Effect of modeling staged construction the dam Upstream; different stages

where W is the total weight (kN), V is the concrete volume (m3), ρ the mass density of concrete

(2, 500Kg/m3), g the acceleration of gravity (9.81m/s2). Then the error is computed using staged

construction and without using staged construction. At all four elevations, the error is much smaller

using staged construction as shown in figure 7.16. Interestingly, the error with staged construction

(well within 5% at all elevations) increases with height. This may be reflective of local stress

redistribution/bridging occurring with height.

7.4 Hydrostatic Load

The next step to the stress analysis, is to apply the hydrostatic load behind the dam. In order

to ensure the convergence rather than applying the total amount of water at once, the loading was

started from a very low depth and increased in 3 steps. 7.17 shows the increment steps of hydrostatic

load application. It can be seen through the figure that the principal stresses are increasing as the

reservoir level elevates.
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(a) σzz, Stage 1 (b) σzz, Stage 2 (c) σzz, Stage 3

(d) σzz, Stage 4 (e) σzz, Stage 5

Figure 7.10: Effect of modeling staged construction vertical cut from middle of the dam; different
stages
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(a) σxx, without staged construc-
tion

(b) σyy, without staged construc-
tion

(c) σzz, without staged construc-
tion

(d) σxx, staged construction (e) σyy, staged construction (f) σzz, staged construction

Figure 7.11: Effect of modeling staged construction the dam Downstream

(a) σxx, without staged construc-
tion

(b) σyy, without staged construc-
tion

(c) σzz, without staged construc-
tion

(d) σxx, staged construction (e) σyy, staged construction (f) σzz, staged construction

Figure 7.12: Stress distribution; with vs. without Staged construction
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(a) σ1, without staged construction (b) σ1, without staged construction

(c) σ1, staged construction (d) σ1, staged construction

Figure 7.13: Principal Stresses; With vs. without Staged construction

(a) Section cut (b) σ1

(c) σzz (d) vertical displacement

Figure 7.14: Stresse and displacements near Crest; With vs. without Staged construction
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(a) 0% of Dam height from the bottom (b) 25% of Dam height from the bottom

(c) 50% of Dam height from the bottom (d) 70% of Dam height from the bottom

Figure 7.15: Four sections considered for stress integration and comparison with the self-weight

Figure 7.16: Error comparison between the two self-weight analyses
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Figure 7.17: Gradual application of hydrostatic load in 3 steps
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7.5 Foundation Modeling

The AAR Analysis was conducted based on the calibration of the data on the recorded crest

displacements to the AAR model described in chapter 1. The contour plots of the crest displacement

in z direction are shown in figure 7.18 after 20 and 40 years of AAR analysis. For clarity, we show

only the dam without the foundations. The contour plots for the maximum principal stress is

also shown in figure 7.19 which also features the joint openings and the deformed shape of the dm

after 40 years of AAR analysis. Since each analysis takes about 7 hours to complete, and both

(a) Upstream, time=20 yrs (b) Upstream, time=40 yrs

(c) Downstream, time=20 yrs (d) Downstream, time=40 yrs

Figure 7.18: Z direction Displacement contour plots

the system identification procedure, and especially the probabilistic analysis will require multiple
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(a) Upstream (b) Downstream

Figure 7.19: Maximum principal stresses after 40 years

executions ( 100), we have modified the mesh by reducing the rock foundation to its simplest form

(wrapped around the dam)(figure 7.20). Execution time was cut by about one third.

(a) Old Mesh, 12461 nodes (b) New Mesh, 8682 nodes

Figure 7.20: The old versus New mesh where the foundation is shown in blue

To assess the reliability of the new mesh, identical analyses were performed with the mesh

with full foundation and the one with reduced, following is a comparison of the results. Figure 7.22

shows the difference of the displacements from the 2 meshes.



169

Table 7.1: The comparison of the execution time for the full and reduced mesh

Number of Nodes Execution time [hours:mins:seconds]
Full Foundation 12461 7:44:32
Reduced Foundation 8682 01:16.1

(a) Upstream, Without Foundation (b) Upstream, With Foundation

(c) Downstream, Without Foundation (d) Downstream, With Foundation

Figure 7.21: Z direction Displacement contour plots, comparison of models with full and reduced
foundation



170

1990 1994 1998 2002 2006 2010 2014 2018 2022

Years

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

D
is

p
la

ce
m

en
t 

d
if

fe
re

n
ce

 [
cm

]

Figure 7.22: Difference of the crest displacement for the 2 meshes with full and reduced foundation



Chapter 8

Deterministic Thermal Analysis

Abstract

This chapter will detail the deterministic thermal analysis. First, results will be compared

both with those obtained by Hatch, and the recorded field measurements. Impacts of time steps,

solar radiations, and comparison between convection and conduction studies will be reported.

Finally, the spatial and temporal temperature distribution will be shown.

8.1 Analysis Procedure

The input temperature and elevation data have been presented in chapter 6 and will be

now used to conduct the thermal analysis assuming the analysis time step equal to 15 days per

each increment. Air temperature is applied at the downstream and crest as well as a portion of the

upstream face which is exposed to air. Furthermore, the temperature increase due to solar radiation

is applied at the upstream and crest elements. The reservoir temperature is applied to the elements

beneath the water level taking into account the water level variation in different months.

8.2 Comparison with Hatch (2015)

Using film coefficients for air and water the temperatures are applied at the surface elements

and the thermal analysis results for 3 nodes inside the concrete are compared with the measurements

from DH03-01 instruments recorded at 3 different elevations of 6360 [ft], 6351 [ft] and 6288 [ft]. It
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should be noted that the nodes were chosen to be closest to the location of DH03-01 instruments The

results specially, for the 2 upper nodes, show a good match between the measured and computed

temperatures besides showing stability within the first few years which vouches for the accuracy of

the analysis (figure 8.1). Also, in this figure the results from Hatch, 2015 are presented for each of

the measured elevations. Based on the figures, our results show closer match with the measured

data.
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(e) El 6288 Figure 5-30 
United States Bureau of Reclamation 
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Figure 8.1: Comparison of thermal analysis results with measured values

8.3 Impact of Time Step

Figure 8.2 compares the thermal analysis results for 3 different time steps of approximately

7.5 days (about every week), 15 days (every two weeks) and 30 days(every month). Accordingly, the

15 days time step provides the closest values for temperatures to the measured data. In addition,

decreasing time step to half, 7.5 days, does not have significant effect on the results and therefore

is not worth adding the computational effort.
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(c) Eleveation 6288

Figure 8.2: Comparison of thermal analysis results with measured values assuming 3 different time
steps

8.4 Impact of Solar Radiation

Figure 8.3 is to show the importance of applying temperature difference due to solar radiation.

It is shown that the solar radiation results in higher internal temperatures which would affect the

further analysis results by increasing the stresses caused by higher temperatures.
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(b) Eleveation 6351

Figure 8.3: Comparison of thermal analysis results with measured values with and without solar
radiation

8.5 Comparison of Convection and Conduction

The results presented so far, were obtained through modeling of convection. In other words

the heat transfer was assumed to take place through the movement of the surrounding liquid.

However, for the sake of comparison the thermal analysis is repeated for conduction in which the

heat transfer occurs through direct contact . Figure 8.4 illustrates the difference of the above

mentioned cases . As expected, the heat transfer through conduction results in higher internal

temperatures compared to convection which gives closer results to the real measured data.
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(c) Eleveation 6288

Figure 8.4: Comparison of thermal analysis results with measured values assuming high values for
film coefficients

8.6 Internal Temperatures

The concrete internal temperatures obtained from thermal analysis are shown at 3 different

cuts throughout the dam. First a cantilever cut through the height of the dam located at the middle

of the arch dam (figure 8.5). Second, a horizontal section showing a complete arch of the dam cut

from below the water level (Elevation 6243 [ft]) figure 8.6. Third, is the same as second cut except

that the section is at an elevation above the water level (Elevation 6348 [ft]) in order to show the

temperatures for the portion of the dam which is exposed to the air 8.7. Furthermore, the upstream

face of the dam is shown in figure 8.8 in which the water level can be distinguished through the

sudden temperature change observed at the top of the dam which is due to the exposure of the

area to the solar radiation as well as air temperature. Finally figure 8.9 shows the temperature

contour plots throughout one year at the downstream face. From the figures above it is observed

that starting January the concrete internal temperature starts gradually decreasing until may, then

with the rise of temperature in May through September the concrete internal temperature also

increases and the heat propagates to the whole dam structure. The contour plot in november

shows that there is just a corner at the bottom of the dam at the upstream side that almost always

maintains its low temperature. As shown, the effect of temperature increase inside the dam starts

vanishing as approaching the colder months of the year and the procedure is followed by the first

month of the following year. Furthermore, it is shown that the temperatures are highest during June

through August. Also, The highest temperatures occur at the crest and on upstream face above
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the water level. These observations can be verified with the other cuts in the following figures. Due

to the fact that figure 8.6 is a section from mid height of the dam. The upstream side is showing

the water temperature which is lower than the air temperature observed at the downstream side.

Similar to the observations from previous figures, these figures also show the temperature increase

starts in May and continues through September and subsequently starts disappearing in October

through December followed by the first 3 months of the next year. In figure 8.7, similar to 8.6, the

section is horizontal but at a high elevation close to the crest. This figure is provided to show the

internal temperatures above the water level. This figure also supports our previous observations

throught out the year. Another, key observation drawn from this figure is that the temperature

increase is almost uniform throughout the whole arch from East side to the west.
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(a) January (b) February (c) March (d) April

(e) May (f) June (g) July (h) August

(i) September (j) October (k) November (l) December

Figure 8.5: Temperature contour plots of various months throughout one year at a vertical section
cut from the middle of the arch dam
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(a) January (b) February (c) March

(d) April (e) May (f) June

(g) July (h) August (i) September

(j) October (k) November (l) December

Figure 8.6: Temperature contour plots of various months throughout one year at a horizontal
section cut from below the water level (Elevation 6243 [ft])
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(a) January (b) February (c) March

(d) April (e) May (f) June

(g) July (h) August (i) September

(j) October (k) November (l) December

Figure 8.7: Temperature contour plots of various months throughout one year at a horizontal
section cut from above the water level (Elevation 6348 [ft])
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(a) January (b) February (c) March

(d) April (e) May (f) June

(g) July (h) August (i) September

(j) October (k) November (l) December

Figure 8.8: Temperature contour plots of various months throughout one year at the upstream face
of the dam
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(a) January (b) February (c) March

(d) April (e) May (f) June

(g) July (h) August (i) September

(j) October (k) November (l) December

Figure 8.9: Temperature contour plots of various months throughout one year at the downstream
face of the dam



Chapter 9

Deterministic Stress Analyses Results

Abstract

Parameter identification procedure will now be used to identify the equivalent set of AAR

parameters (ε∞, τL and τC) that would yield the “best” numerical (displacement) prediction in

comparison to the recorded ones. Note that in this study set, only the nonlinearity of the joint is

modeled (so as to maintain reasonable computational time).

Subsequently, the same set of parameters will be used for a full nonlinear analysis of the dam

(including not only joints, but also concrete).

9.1 Parameter Identification Procedure

A major challenge in the numerical simulation of the temporal concrete expansion (and

deterioration) is the ability to use reliable kinetics coefficients, ε∞, τl and τc introduced in §2.2.2.

Whereas those can be obtained through carefully carried laboratory tests (Saouma, 2020), an

alternative approach is through system identification.

Mathematically speaking, the problem can be simply formulated as follows. The field-

recorded displacements (e.g. crest displacement on a dam) are denoted by u(t), the target pa-

rameters by x (in our case x(1) = τc, x(2) = τl and (x(3) = ε(∞)), the finite element “operator”
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by f(.), and computed results by u′(t). We thus have:

f(x) = u′(t) ̸= u(t) (9.1)

and are seeking to minimize (u(t) − u′(t))2, see Figure 9.1.

Field Measurements 
U Initial Parameters X0

FE Analysis
F(X)=U’(X)

||U-U’(X)||<ε 

Final Parameters X

Compute new 
parameter vector X

Figure 9.1: Principle of the system identification approach

Such an approach has been often used for dam analysis (Ardito, Maier, and Massalongo,

2008) (Oliveira, Toader, and Vieira, 2012), and is conceptually similar to system identification in

nonlinear dynamic systems (Ghanem and Shinozuka, 1995).

9.2 Parameter Identification for Linear Concrete Model

Prior to undertaking the process of parameter identification, the user should first identify the

control parameters, and then identify the field measurements which are to be captured through the

parameter identification process.

9.2.1 Control Parameters

Control parameters corresponding to the AAR model of Saouma and Perotti (2006a) must

first be defined.
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This is done through an excel file, Table 9.1, that includes: lower and upper bound values

for each of the active parameters (identified by 1), the initial starting point, and a typical value

which provides the algorithm with an order of magnitude of the variable.

Table 9.1: Data preparation for parameter identification

Actual Values
Active UB LB Default Typical factor Finite Dif

1 ε∞ 1 0.20 0.00 0.060 1.00 0.0010 0.05
2 τC 1 50,000 500 20,000 1.00 1,000 0.10
3 τL 1 100,000 500 40,000 1.00 1,000 0.10
4 UC 0
5 UL 0
6 γc 0
7 γt 0
8 εc 0
9 εt 0
10 W 0
11 Ref Temp 0
12 σ2 0
13 βE 0
14 βf 0

9.2.2 Measured displacements

In the case of this dam, measurements were taken at two locations shown in Fig. 9.2.

As we will need to correlate measured displacements with computed ones, the correspond-

ing nodal coordinates, Fig. 9.2, are given in Table 9.2. As we will need to correlate measured

displacements with computed ones, the corresponding nodal coordinates, are given in Table 9.2.

The measured displacements U are shown in Table 9.3. Prior to their use in the parameter

identification process, a four step pre-processing is needed:

(1) The raw data are first plotted, Fig. 9.3(a) and 9.4(a). We note that when the horizontal

displacements were first recorded, the initial reading was not zero. Furthermore, it was not

until 10 years later that the vertical displacements were recorded.

(2) In the next step, Fig. 9.3(b) and 9.4(b) we “zero” the crest displacements. The horizontal
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Figure 9.2: Instrumentation locations

one is shifted down to zero, and the vertical one is shifted up by an arbitrary amount to

reflect that with respect to the first horizontal recording, a vertical one did occur. Yet, we

do not know its magnitude, at best this can be numerically estimated later.

(3) Focusing on the horizontal displacement, it is evident that there is certain “ruggedness”

which may be caused either by measurement errors, or variable temperature/pool elevation

at the time of measurement. Hence it would be reasonable to “smooth” the data using the

Matlab® function smoothdata with the option loess (Local regression using weighted linear

least squares and a 2nd degree polynomial model.), Fig. 9.3(c)-9.3(d) and 9.4(c)-9.4(d) for

vertical-horizontal readings, T3B and T3A respectively.

(4) The smoothed curve has now as many data points as were recorded. However, we would

need to have Nincrement data points (corresponding to the number of increments in the

finite element analysis). Hence the Matlab® interpolate function is used to determine

those points. Fig. 9.3(e)-9.3(f) and 9.4(e)-9.4(f) for vertical-horizontal dat, T3B and T3A

respectively. Recorded values are shown as black filled circles, and interpolated ones as red

filled circles.

We note that readings (and thus interpolated values) did not start exactly on January 1 at
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Table 9.2: Displacement instrumentation coordinates

Device Coordinates [m] Closest Node Coordinates [m]
X Y Z ID X Y Z

T3A -34.8 77.8 71.9 3651 -34.3 78.4 71.9
T3B 8.8 84.7 71.9 1394 8.8 84.3 71.9
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Figure 9.3: T3B Measurements and adjustments

year zero for the vertical reading (1992), and at nearly January 1 for the horizontal reading (1982).

Nevertheless, we shall use these smoothed data for parameter identification. We also note that

the seasonal temperature is nearly obliterated by the smoothing process. This should not be an
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Table 9.3: T 3B Measurements (Dressel, 2011)

Date Deflection Settlement Date Deflection Settlement
Date (cm) (cm) Date (cm) (cm)
3/17/2020 21.8 -7.5 9/10/2002 14.0 -4.0
9/19/2019 22.3 -7.6 4/12/2002 11.6 -3.4
4/24/2019 23.2 -7.9 10/6/2001 12.2 -3.7
9/27/2018 22.9 -7.6 4/17/2001 12.2 -3.7
3/20/2018 22.6 -7.6 4/4/2000 10.4 -3.0
10/4/2017 23.2 -7.0 9/23/1999 - -3.7
4/5/2017 20.4 - 4/16/1999 10.4 -2.7

3/13/2017 - -7.3 9/9/1998 11.3 -3.4
9/21/2016 22.3 -7.6 4/29/1998 10.1 -3.0
9/24/2015 22.9 - 9/15/1997 11.6 -3.0
9/23/2015 - -7.3 4/25/1997 10.4 -2.7
3/27/2015 21.0 -7.0 9/27/1996 11.0 -2.7
9/15/2014 21.0 -7.0 3/22/1996 9.1 -2.4
3/24/2014 20.6 -6.5 9/26/1995 10.1 -2.4
9/24/2013 20.1 - 4/4/1995 9.4 -1.8
9/17/2013 - -6.4 9/9/1994 10.4 -2.1
3/27/2013 18.3 -6.1 4/1/1994 9.8 -1.5
9/21/2012 20.4 -6.4 10/5/1993 9.8 -1.5
3/29/2012 18.0 -5.8 4/2/1993 - -0.6
9/13/2011 19.8 -6.4 9/22/1992 8.5 -1.2
4/1/2011 18.0 -5.5 3/26/1992 8.2 -0.6

9/28/2010 19.2 -5.8 9/19/1991 8.8 -0.9
3/15/2010 18.6 -5.8 4/23/1991 7.0 -0.3
10/2/2009 18.6 -5.8 9/11/1990 7.6 -0.3
5/4/2009 17.7 - 11/28/1989 - -

4/14/2009 - -5.2 10/19/1989 7.0 -
10/27/2008 18.9 -5.2 4/26/1989 5.8 -
4/23/2008 18.0 -4.9 9/19/1988 7.3 -
9/12/2007 18.3 -5.2 6/1/1988 5.5 -
4/9/2007 16.5 -4.9 9/21/1987 5.2 -

9/18/2006 - -4.9 4/7/1987 3.7 -
4/3/2006 15.5 -4.3 10/30/1986 4.6 -
9/1/2005 16.2 -4.9 4/22/1986 3.7 -
4/1/2005 13.7 -4.3 4/11/1985 1.8 -

9/23/2004 15.5 -4.3 10/30/1984 3.4 -
3/23/2004 14.0 -4.0 4/16/1984 0.9 -
12/4/2003 14.3 -3.4 7/27/1982 0.3 -
4/2/2003 12.8 -4.0 3/26/1982 2.4 -

7/2/1979 1.2 -
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(c) Vertical smoothed
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Figure 9.4: T3A Measurements and adjustments

issue in the context of parameter identification as we attempt globally to approach the target curve

without the distraction of small oscillations.

9.2.3 Results

Figure 9.5 is a plot of the system identification user interface which shows the iterative

procedure in which the variables are altered one at a time until the termination condition is satisfied;

in other words the computed displacement curve becomes as close as possible to the recorded data.
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Figure 9.5: System Identification user interface
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(a) Radial displacements
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(b) Vertical displacements

Figure 9.6: Displacement comparison following system identification for T3B

In figure 9.6 and 9.7 the displacements obtained from the optimal analysis suggested by the

system identification process is plotted with the recorded data. Since the horizontal displacement of

the T3B instrument is the most reliable measurement, the system identification objective function

was set to optimize the corresponding displacement and as seen in figure 9.6 the resulting curve

matches well with the recorded data for the displacement of interest.

As such, the parameters suggested by the system identification will be used as the mean

values for the uncertainty quantification of the stress analysis.

9.3 Deterministic Analysis with Nonlinear Concrete Model

In this section the results of the AAR analysis of the dam considering nonlinear material

properties is demonstrated and discussed. The concrete model is the one of the computer program

ATENA, and described in Cervenka and Papanikolaou (2008). It should be noted that this can

be a particularly challenging problem, as there are two sources of nonlinearities, concrete material,

and joints.

9.3.1 Displacements

The resulting displacements of the nonlinear analysis at the locations corresponding to T3B

and T3A instruments are plotted and compared to that of the linear analysis (Fig. 9.8 and 9.9). As

seen, the nonlinear analysis suggests linearly increasing displacement while the displacements ob-
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(b) Vertical displacements

Figure 9.7: Displacement comparison following system identification for T3A

tained from the linear analysis is gradually reaching a plateau; however, both analyses demonstrate

good match with the measured displacements of interest. Fig. 9.10 shows the dam displacements
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Figure 9.8: Displacement comparison from linear and nonlinear analysis for T3B
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Figure 9.9: Displacement comparison from linear and nonlinear analysis for T3A

in the 3 directions after 50 years of nonlinear analysis. The displacements for the half of the dam
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(a) Upstream

(b) Downstream

Figure 9.10: Displacement plots after 50 years of Nonlinear analysis

over time is shown in figure 9.11. As seen while the radial displacement has increased with time,

the maximum displacement has always occurred at the crest of crown cantilever observing the dams

inclination towards the upstream. Finally, the deformed shape is shown in Fig. 9.12.
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Figure 9.11: Radial displacement and deformations over time(side view)
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Figure 9.12: Dam deformed shape after 50 years of analysis; Nonlinear analysis

9.3.2 Stress Distribution

9.3.2.1 Stress and Strains

Although the dam does not have a complete symmetrical geometry, the results of the dis-

placements as well as the stress and strain distributions seen in Fig. 9.13 are almost symmetric.

(a) Strain (b) Stress

Figure 9.13: Principal Stress and strain distributions after 50 years of Linear analysis

Therefore it can be concluded that the material and other properties have been assigned

symmetrically.
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9.3.2.2 Crack Pattern

After 50 years

The cracking pattern shown in Fig. 9.14 is demonstrating an asymmetric formation of the

cracks mostly on one side. It is noted that even the smallest asymmetry in the geometry of the

dam can result in significant differences between the crack development on the 2 sides of the dam.

Thus formation a weak point on a side results in the cracks initiation and propagation from there.

As seen, the cracks are mostly developed at the bottom and inside the dam which can be

due to the fact that the higher confinement prevents the concrete from expanding in the vertical

direction and thus the expansion is occurred mostly in the 2 horizontal directions as the orientation

of the disks also suggest. The detailed explanation of the AAR strain redistribution is also discussed

in Chapter 2 and demonstrated in Fig. 2.12.

(a) Upstream (b) Downstream

Figure 9.14: Smeared crack profile after 50 years of analysis

9.3.2.3 Simulation Results

The computed downstream stresses are discussed.

In Fig. 9.15 the development of the cracks over the time is shown along with the corresponding

maximum principal stresses.

The results show that the cracking initiated in 1998 after 18 years of analysis and they are
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(a) 1998

(b) 2005

(c) 2020

(d) 2030

Figure 9.15: Smeared crack profile over the time compared to the maximum principal stresses

mostly inside the dam. The primary objective of the investigation was to capture the time history

of the crest displacement at two locations. This was achieved. However the downstream anticipated

crack pattern from a nonlinear model for the concrete failed to fully match the observations.

Regretfully, only one “snapshot” of the crack is available (figure 9.23). This is further dis-
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cussed in §9.3.3.1.

The development of maximum principal stress on the upstream over time, demonstrated in

figure 9.16, is showing a decrease in the stresses at 50 years compared to the 40 years of analysis

which is due to the joint openings and crackings that allow for stress redistribution in the concrete.

Figure 9.16: Development of Maximum principal stresses over time on the upstream

9.3.2.4 Sectional Cuts of Principal Stresses Over Time

In order to better visualize the results a vertical section cut is selected and the maximum

principal stress and strain distributions are plotted in Fig. 9.17.

As seen the majority of the lower portion of the dam and upstream is in compression while

the top of the dam and mostly on the downstream side is in tension which can be indicative of

possible cracking in that portion.

Winter Summer Principal Stresses Over Time

The maximum principal stresses over time for both summer and winter are shown in Fig. 9.18.
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(a) Section cut location

(b) 1998 (c) 2005 (d) 2020 (e) 2030

(f) 1998 (g) 2005 (h) 2020 (i) 2030

Figure 9.17: Maximum principal stresses at a section cut over time
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(a) 1984, winter (b) 1984, summer

(c) 1998, winter (d) 1998, summer

(e) 2005, winter (f) 2005, summer

(g) 2020, winter (h) 2020, summer

(i) 2030, winter (j) 2030, summer

Figure 9.18: Maximum principal stresses over summer and winter

Whereas Fig. 9.19 shows the maximum principal stresses at different vertical sections in

2020.

Evolution of Principal AAR Strains over Time

To show the development of AAR, the maximum principal AAR strain profiles are presented in

Fig. 9.20. It is seen that there is higher AAR at the crest on the upstream side and on the mid
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(a) Section cut locations

(b) Section 1 (c) Section 2 (d) Section 3

Figure 9.19: Maximum principal stresses at different vertical sections in 2020

to lower height on the downstream side of the dam. Figure 9.21 is showing the development of the

AAR volumetric strain over time.
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(a) 1998

(b) 2005

(c) 2020

(d) 2030

Figure 9.20: AAR development over the time
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Figure 9.21: Development of AAR volumetric strain over time on the downstream
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80 Years Analysis

In order to further investigate the development of cracks the analysis was extended for 30 more

years and yet no cracks on the upper portion of the downstream side were detected even after

80 years of AAR. Fig. 9.22 shows the maximum principal stress along with the vertical stress

distributions for the end of the 80-year analysis.

Figure 9.22: Maximum principal stress and vertical stress distribution after 80 years of analysis;
Nonlinear analysis

However, it is note worthy that the analysis time started in 1980 and the considered material

properties were those corresponding to the same time, which means that the assumed concrete

properties at the initial time of the analysis had already experienced some amount of AAR and

probably cracking by then.
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9.3.3 Downstream Observations

In agreement with the sponsor, the primary objective of the study was to compare numerical

results of the finite element simulation with quantifiable measurements on the dam. Since the only

reliable (quantitative) measurements were the crest displacements, the study focused on capturing

those two responses. Indeed, as shown in Fig. 9.6 those were properly captured thanks to the

parameter identification process.

Next is an attempt to compare results of the finite element studies with qualitative observa-

tions made on the downstream face and briefly described in Salamon, Dressel, and Liechty (2021).

From this public document, we identified a set of two such measurements: photogrammetry and

LIDAR (laser imaging, detection, and ranging) which is a method for determining ranges by tar-

geting an object or a surface with a laser and measuring the time for the reflected light to return

to the receiver.

The primary outcome of the former is a crack mapping for the first, Fig. 9.23, and “map” of

surface deformation, Fig. 9.25 for the second.

As stated by the authors:

Both methods required relatively similar amounts of time for data collection and
processing. The error in the photogrammetry processing was approximately 1mm.
The georeferencing error for fitting the photogrammetry to the ground control
was approximately 9.5mm. The published accuracy of the Leica ScanStation P40
LIDAR scanner utilized was 9mm + 10 parts per million, and the registration and
georeferencing error was reported as approximately 8.5mm.
Currently, the accuracy of the photogrammetric and LIDAR may not be satisfac-
tory for deformation measurements of dams affected by ASR; however, with the
continued evolution of the technology, both methods are beneficial for understand-
ing dam behavior over an extended period of time and can be used as an evaluation
tool to compare the measurement data with other surveying techniques.
...
While the UAS photogrammetry is not yet accurate enough to detect short-term
ASR deformations, the accuracy of the method is sufficient to capture the majority
of cracks and determine the overall cracking patterns and changes over time.

“Monitoring of Dams Suffering from ASR at the Bureau of Reclamation”
ibid.

(Author’s highlight)
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It should be noted that only a single image is provided for either technique, and there is no indication

of the age of the dam at that time. Hence, in the absence of a historical record, it is impossible to

make a qualitative (let alone quantitative) correlation with the AAR expansion.

9.3.3.1 Crack Mapping

At prima facie one would be inclined to say that the cracks in Fig. 9.23 are caused by AAR.

However, there is no indication of a field inspection (by climbers) to determine: a) the depth of

the crack, the magnitude of the crack openings; and most importantly c) the cause of the cracks

(which may be caused by shrinkage and solar exposure, lift or cold joints, as opposed to AAR).

Figure 9.23: Downstream crack pattern observation (Salamon, Dressel, and Liechty, 2021)

To examine this hypothesis, we need to examine the deformation of the dam, Fig. 9.24.

What emerges is that the crown arch is indeed: a) restraining the vertical expansion of the

cantilevers, and b) there is less expansion on the abutments that in the center.

The first finding, results in compression on the cantilevers, and will thus “pre-stress” the dam

from tension. The flexural induced tension in this case is minimal.

Related to the second observation, one would assume that there will be more cracks above

the tall cantilevers than on the shorter ones in the side if indeed cracking was caused by AAR.

Evidently, this is not the case in Fig. 9.23.

Hence, one can reasonably assume that the observed crack pattern is not AAR related.
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Figure 9.24: Selected views of the deformed shape

Should one have a time history record of cracking, than indeed we could have modified our

parameter identification procedure to not only capture crest displacements but also tensile stresses

at key locations. This would have been possible with adjustment of our Matlab® function. However,

we are not yet fully convinced that these ar AAR induced.

9.3.3.2 LIDAR observations

The upstream/downstream displacements, the anticipated internal cracking (from a non lin-

ear analysis), and the reported LIDAR image are shown in Fig. 9.25(a), 9.25(b) and 9.25(c)

resectively. Of course, no rational comparison can be made (yet), as: a) we do not what exactly

the LIDAR is supposed to reprsent (damage, displacements,strains?), and b) more importantly we

do not know the time interval which is captured by this image1

Thus we observe that:

(1) The LIDAR image, Fig. 9.25(c), is not compatible with the image of the downstream
1 To construct a LIDAR image one needs an initial iamge at time t0 and a subsequent one at time t1, hence the

LIDAR would capture the evolution of a quatitty during the time interval ∆t = t1 − t0.
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(a) Y (US/DS) displacements (b) Downstream cracking

(c) LIDAR Measurements

Figure 9.25: Comparison of computed results with LIDAR point clouds

cracks, Fig. 9.23.

(2) The image appear to match the determined cracking, Fig. 9.25(b), with a small level of

confidence.

Hence, we conclude that there are encouraging signs for correlation, but certainly not definite.

More LIDAR readings would be needed, and more related information would be necessary for a

more comprehensive correlation with the finite element simulation.



Chapter 10

Uncertainty Quantification

Abstract

In so far, all analyses were deterministic. In this final chapter, we will perform an uncertainty

quantification (a.k.a. “Monte Carlo” simulation) study for both thermal and stress analysis.

In the stress analysis the only source of non-linearity will be the presence of the joints (this

is justified by Fig. 9.8).

Probabilities of exceedance of critical threeshold values will be analytically developed, along

with the importance of the sample sizes (three were used: 50, 100 and 200).

10.1 Thermal Analysis

Since thermal analysis is a prerequisite to the stress analysis, the uncertainty quantification

of thermal parameters is also required prior to conducting any uncertainty assessment of stress

analysis. Therefore, this section is to discuss the effect of parameter uncertainties used in thermal

analysis of the case study dam on the resulting concrete internal temperatures. To this purpose,

among all (figure 10.1), the thermal parameters which were believed to have some extent of uncer-

tainty were taken as random variables. These parameters are as follows:

• Specific heat

• Conductivity

• Air temperature amplitude
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• Water surface temperature amplitude

• Water bottom temperature amplitude

Sources of Uncertainty
“Thermal Analysis”

Concrete Properties Conduction Properties

Mass Density Specific Heat Conductivity Temperatures Film Coefficients

Air Water 
surface

Water 
bottom

Figure 10.1: Sources of uncertainty in thermal analysis

The particular point of interest (POI) for nodal temperature has the recorded values shown

in Fig. 10.2.

Figure 10.2: Monthly temperatures at PoI (Node 944), with mean and standard deviation

It should be noted that other thermal parameters, such as film coefficients were assumed to

be deterministic variables as there are certain values available for them in the literature and there

is no need to treat them as uncertain variables. Also, the mass density of the concrete is believed

to be determined.

Assuming a lognormal distribution for the aforementioned variables and a coefficient of vari-
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ation(COV) equal to 15%, 1000 number of simulations were generated using the Latin hypercube

sampling (LHS) method assuming that these parameters have zero correlation with each other.

The 1000 thermal models were generated based on those simulations for which the temperature of

6 node inside the dam body for 2 months is shown in figure 10.4. As seen in the plot, the maximum

inside dam temperature is occurring around mid October which stems from the thermal inertia

phenomenon which is a description for the delay in the inside dam body temperature to feel the

temperature increase of the surrounding fluid. This fact can also be interpreted from the seasonal

water temperatures demonstrated in table 10.1 taken from the (Hatch, 2015) report.

Table 10.1: Water temperature (Hatch, 2015)

Depth Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec(m)

0.0 3.9 3.9 4.4 - - 12.2 17.2 22.2 20.0 15.6 12.8 8.9
1.6 5.6 6.1 6.7 - - 11.7 16.1 21.7 20.0 15.6 12.2 8.3
4.6 6.7 7.2 7.2 - - 10.0 14.4 18.9 19.4 15.0 11.7 8.3
7.7 6.9 7.5 7.5 - - 9.4 11.7 12.2 13.3 14.4 11.7 8.3
19.8 7.2 7.8 7.8 - - 8.9 10.0 10.6 11.1 10.6 11.1 8.3
35.1 7.2 7.8 7.8 - - 8.9 8.9 8.9 9.4 9.4 9.4 8.3
80.8 7.8 8.3 8.3 - - 8.3 8.3 8.3 8.3 8.3 8.3 8.3

As seen in this table, around depth 7.7 [m], which corresponds to the depth of our point of

interest, the maximum temperature of the whole year is measured in October.

10.1.1 Procedure

The procedure itself is algorithmically implemented through a sequence of Matlab® files, Fig.

10.3. Note that this procedure is tied to the computer program used (Merlin).

10.1.2 Observations

Figure 10.4 explains the most important conclusions from this thermal uncertainty quantifi-

cation:

• First of all this is showing that the results of the sensitivity analysis for the dam cannot
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P1

MatPropExcel:

1. Specify Analysis 
options in control 
sheet

2. Specify variables in 
the 2nd sheet

P1.m

1. Run P1.m

“LogNormal.m” :
To calculate the logN
distribution parameters

P2

1. This folder contains all the 
matlab files required to 
generate the merlin input files

P3

2. Samples generated by P1.m 
stored in UQ.xlsx file

1. Generated input files are stored in P2

2. Bat files to run the input files stored in P2

3. Run Bat files

Start

4. Generated PST files stored in P2

P4

1. Specify Node numbers and ReadKode

3. The, scatter plots and temperatures are plotted, 
and data is stored in a mat file for later use

P4.m

2. Run P4.m

Note**

Note**
Choose the “RandKode” from the list below and specify this number into the control sheet

1. No uncertainty in material properties
2. Uncorrelated RVs using Monte Carlo simulation
3. Partially correlated RVs using Monte Carlo simulation
4. Uncorrelated RVs using Latin Hypercube sampling
5. Partially correlated RVs using Latin Hypercube sampling

Figure 10.3: Uncertainty Quantification Flowchart

be generalized to the whole dam body and throughout the year. In other words, there is a

temporal and spacial variation in the results of thermal analysis.
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• While at the top of the dam, which is exposed to the air, the air temperature is the most

effective variable at the bottom of the dam close to the upstream face the temperature is

more sensitive to the specific heat value.

• Even at the bottom of the dam the temperature is more sensitive to the top water tem-

perature rather than bottom water temperature which is due to the higher variation of top

temperature compared to bottom.

• The temperatures of the nodes below water level are more sensitive to the conductivity at

the upstream face and to air temperature at the downstream side.
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Figure 10.4: Correlation of nodal temperatures and variables at 6 different nodes in January and
July

Figure 10.5 is showing the monthly temperature variation and the resullting temperature mean and
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standard deviation at the 6 nodes. as seen, the maximum temperature moves as the node goes into

the depth.

Figure 10.5: Monthly variation of temperature at 6 nodes throughout a year

Taking another point inside dam body as a point of interest, the scatter plots of each variable

versus the nodal temperature can be presented for every month of the year. Figure C.1 through

C.4 show the correlation plots of each variable versus the resulted nodal temperature at the point

of interest. There are correlations associated with the thermal parameters and thermal results. As

expected the conductivity has negative correlation with the temperature through almost the whole

year.

As seen in figure 10.6 the correlation between the air temperature amplitude and the concrete

internal temperature is positive during the colder months of the year and is negative during the

warmer months. Figure C.3 and C.4, show almost zero correlation between the nodal temperature
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Figure 10.6: Monthly air temperature correlation coefficients at node 944 (PoI)

at the point of interest and water temperature amplitude. While air temperature amplitude has

noticeable correlation with the internal node temperature. This shows that the point of interest is

more under the influence of the air temperature rather than water. It is noted that the temperature

amplitudes are considered as the random variable and thus are constant values for each analysis.

Therefore, the possibility of phase lag is eliminated. Since, our data on the reservoir temperature

was limited, this observation underlines the fact that the lack of data is not affecting the results

significantly as the point of interest is selected to be an internal node below the water level.

The nodal temperature distribution, figure 10.7, resulted from thermal UQ analysis will be

eventually incorporated into the stress uncertainty quantification(UQ) analysis.
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Figure 10.7: Monthly mean and standard deviations histograms for temperatures inside entire mesh
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10.2 Stress Analysis

Determination of the AAR model parameters can introduce uncertainties into our stress

responses. As shown schematically in figure 10.8, considering a distribution for each parameter

every point on these curves will result in a different AAR expansion curve and in turn a unique

response with time for multiple analyses. Therefore, the uncertainty quantification of the stress

analysis through propagation of the uncertainty sources associated with the AAR model parameters

is of great importance.

Figure 10.8: Uncertainty in AAR modeling

The uncertainty quantification of the dam stress analysis is also a function of temperature

variability and depends on the uncertainties associated with the uncertainty in the dam internal

temperatures. Therefore, the uncertainty quantification of the stress analysis requires performing
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a number of thermal analysis as well. As such, 13 variables have been selected as the input random

variables which are as follows:

(1) Specific heat

(2) Conductivity

(3) Air temperature amplitude

(4) Reservoir top temperature amplitude

(5) Reservoir bottom temperature amplitude

(6) Elastic modulus of Concrete (Top)

(7) Elastic modulus of Concrete (middle)

(8) Elastic modulus of Concrete (bottom)

(9) AAR maximum volumetric strain

(10) Characteristic time (τc)

(11) Latency time (τl)

(12) Activation energy associated with τc (Uc)

(13) Activation energy associated with τl (Ul)

As seen, the random variables can be categorized as concrete material properties, Air and water

temperature inputs and the AAR model properties. It should be noted that the modulus of elasticity

of concrete is considered to be variable through the height of the dam and thus, 3 different values

have been considered for that. Figure 10.9 shows a matrix plot for the 13 random variables and

their correlations. As seen the random variables each have a log-normal distribution with almost

zero correlations.

In order to investigate the effect of sample size on the results, 3 samples with 50, 100 and

200 models are selected, analyzed, and the results are compared. Each model is analyzed for 50

years starting from 1980 when the first AAR effects was observed.
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Figure 10.9: Matrix plot of the 13 input variables
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Uncertainty Quantification of Stress Analysis
Step1:Thermal Analysis

P1

• Set variables and number

of samples in “MatPropEx-

cel.xlsx”

• Run “P1.m” to generate the

input files

P2
• Set the number of input files and

batch files in “GenerateThermal-

Bat.m” and run to generate the

batch files

• Run all of the generated batch files

P3

The variables of each file are

saved into “UQ˙Thermal.xlsx”,

“UQ˙Thermal.mat”

P4

• Run P4.m to read the re-

sults and save them into

“NEWTEMP.mat”

• Copy the mat file and paste

into Stress/P3/Mat-Files

Step2:Stress Analysis

P1

• Set variables and number

of samples in “MatPropEx-

cel.xlsx”

• Run “P5.m” to generate the

input files

P2

• Set the number of input files

and batch files in “Gener-

ateStressBat.m” and Run to

generate the batch files

• Run all of the generated

batch files

P3

The variables of each file are

saved into UQ˙Stress.xlsx,

UQ˙Stress.mat

P4

Read the results and plot
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files
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P4
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P3
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MatPropExcel.xlsx
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P2
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line arrows
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references
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Matlab code
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Wait generating 
thermal input files
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Stress input files

Generating 
Batch files 
to run 
thermal
analyses

Generating 
Batch files 
to run 
Stress
analyses

Input the air and water temperature as 
well as pool elevation data

Figure 10.10: Flowchart of UQ Procedure

In order to present the displacements results 18 points at the rock-concrete interface and 2

points at the Crest are selected and to record the stresses in the body of the dam, in total 14 nodes

have been chosen on the upstream and downstream sides which are shown in figure 10.11.
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US2

US3

US4 US5 US6

US7

(d) Upstream, Stresses

Figure 10.11: Location of recorded nodes
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10.2.1 Results

In this section the results of the uncertainty quantification, using 200 analysis sample, are

demonstrated in terms of crest displacements and maximum principal stresses.

10.2.1.1 Displacements

Figure 10.12 shows the variation of the response of the nodes corresponding to the location

of the T3A and T3B instruments in terms of the 2 horizontal and 1 vertical displcements as well as

the mean and mean ± 1 standard deviation. As seen, the mean value of the most reliable recording

(T3B in radial direction) is about 25 cm at the end of the analysis time which is in the December

of 2030.
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Figure 10.12: Crest Displacements (stream and vertical directions); (+ve is toward the upstream
and upward)

10.2.1.2 Stresses

The maximum principal stresses for the 7 points on each side are shown separately in figure

10.13 and 10.14. The results suggest an overall higher stresses on the downstream side compared

to the upstream.

It should be noted that the positive stress values indicates tension and thus at the points with

higher stresses cracking can be expected. However, for the more detailed assessment of cracking a

full nonlinear analysis is required.

To have a more clear interpretation of the results, the normalized maximum principal stresses

with respect to the tensile strength of the concrete is plotted in figures 10.15 and 10.16. The higher
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Figure 10.13: Maximum Principal Stress (+ve indicates tension); Downstream

ratios on the downstream side and the top nodes indicates that the concrete in that section will

experience the cracking and as seen this is happening at earlier times for the top of the downstream

side.
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Figure 10.14: Maximum Principal Stres (+ve indicates tension)s; Upstream
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Figure 10.15: Normalized Maximum Principal Stress with respect to Tensile Strength(+ve indicates
tension); Downstream
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Figure 10.16: Normalized Maximum Principal Stress with respect to Tensile Strength (+ve indicates
tension); Upstream
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10.2.1.3 Probability of Exceedance

In order to determine the probability of exceedance from a certain limit state, the 2 methods

have been selected to determine the fitting function using(Baker, 2015):

• Maximum likelihood Estimation: In this method the parameters are determined such that

a certain distribution is most likely to produce the observed data. In the current study, the

maximum likelihood estimation is used to fit a log-normal cumulative distribution function

to the stress ratios in time (figure 10.17). In other words, the objective is to find the

probability of the principal stresses exceeding the tensile strength at different time steps.

For each specific point on the dam, at each time step tj , a number of analysis out of

total (200 analyses in this study) would result in the stress to exceed the threshold(tensile

strength). Assuming 2 possible event: 1. exceed the threshold and 2. Not to exceed the

threshold, the probability of observing zj exceedance out of nj analyses at each xj can be

determined by the binomial distribution:

P (zjexceedance in nj analyses) ≡

 nj

zj

 p
zj

j (1 − pj)nj−zj (10.1)

where pj is the probability that an analysis at time tj will exceed the threshold. In order

to find the likelihood of the whole data, the probabilities at all time steps are multiplied:

Likelihood ≡
m∏

j=1

 nj

zj

 p
zj

j (1 − pj)nj−zj (10.2)

where m is the number of time steps. substituting the equation for log-normal CDF into

the equation above We then have:

Likelihood ≡
m∏

j=1

 nj

zj

Φ
( ln(xj/θ)

β

)zj
[
1 − Φ

( ln(xj/θ)
β

)]nj−zj

(10.3)

As mentioned above the goal is to find the parameters so that the the distribution has the

highest likelihood of representing the data. Thus the next step is to find the parameters
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that maximize the logarithm of the likelihood funtion, since it is easier, therefore we have:

{
θ̂, β̂

}
≡ argmax

θ,β

m∑
j=1

ln

 ni

zj

+ zj ln Φ
( ln(xj/θ)

β

)

+(nj − zj) ln
[
1 − Φ

( ln(xj/θ)
β

)]}
(10.4)

All these procedure is followed using the code by (Baker, 2015).

t

Threshold

𝑧𝑗

𝑛𝑗

𝑡𝑗

QoI

t𝑡𝑗

P

0.7

1

𝑚

Figure 10.17: Schematic curve fitting procedure

• Sum of squared errors: This method is based on minimizing the sum of squared errors

(SSE) between the observed data and predicted ones.

{
θ̂, β̂

}
≡ argmin

θ,β

m∑
j=1

[
zj

nj
− Φ

( ln(xj/θ)
β

)]2

(10.5)

In the current study the probability of exceedance of maximum principal stresses from the tensile

strength is shown in figures 10.18 and 10.19.
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Figure 10.18: Probability of Exceedance; Downstream
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Figure 10.19: Probability of Exceedance; Upstream
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10.2.1.4 Comparison of 3 sample sizes

As stated in the previous sections the uncertainty quantification was performed for 3 different

samples with 50, 100 and 200 models. The standard error in terms of crest displacement and nodal

stresses is calculated and plotted as a function of time. The standard error is a measure of how

close the mean of each sample is likely to be to the true data mean. When the standard error

increases, it is more likely that the sample mean is not a correct representation of the true data

mean which can be determined using the following equation (James et al., 2013):

SE = σ√
n

(10.6)

Where n is the sample size and σ is the standard deviation.

looking at the standard errors, shown in figure 10.20 of crest displacements and stresses, one

can conclude that the 100 analysis is providing a far better estimation of the real model compared

to the 50 analysis while the 200 analysis is less effective in improving the results of 100 analysis.

Furthermore, the analyses indicate that, as expected, the 3 samplings result in similar mean value

curve while their standard deviations are different.
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Figure 10.20: Standard Error and Standard deviation curves of T3A and T3B US-DS displacements
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Figure 10.21: Standard Deviation; Downstream
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Figure 10.22: Standard Deviation; Upstream



Chapter 11

Seismic Analyses Results

11.1 Intensifying Artificial Acceleration

For the purpose of seismic analysis, three sets of intensifying artificial accelerations (IAAs) are

selected and applied horizontally to the dam in the stream direction which are shown in Figure 11.1

along with the their envelopes demonstrating the peak ground acceleration up to each equivalent

time. Though, the three IAA envelopes are relatively close to each other, as seen in the last plot of

this figure, the selection of three records will allow for the considerations of curve to curve variability

of the IAAs.

To facilitate further understanding of the selected IAAs, the acceleration response spectra

at 4 different times of the analysis for all three IAAs are plotted in figure 11.2. As seen, there

is a corresponding response spectrum to each equivalent time of the analysis for every IAA. As a

matter of fact, as the equivalent time increases the response spectrum shifts to higher Sa values

maintaining the overall shape of the spectrum.

Using the USGS hazard tool, a target response spectrum is determined for each of the three

return periods of 2475, 975 and 475 years which are shown as the red smoothed curves in figure

11.2 and are referred to as ”target” response spectra. While various methods may be used to match

the matching IAA response spectra to the target one, two methods are represented in this study.

One method is to simply match the PGAs (figure 11.3). The other method is to step further to

match the spectral acceleration in the shaded area ranging from 0.2T1 up to 1.5T1, where T1

is fundamental period of the dam as shown in figure 11.4. Based on these two methods, for the
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Figure 11.1: Intensifying Artificial Accelerations
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interpretation purposes, all of the figures in this chapter are presented in terms of both PGA and

Sa(T1).
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Figure 11.3: Matching PGA for different return periods

11.2 Seismic Analyses Results

Different assumptions in considering the effect of soil-structure interaction will result in dras-

tic differences in the results of seismic analysis. Therefore, for the comparison purposes, three

different types of boundaries were considered which are as follows:

• No Boundaries; The acceleration applied at the base of the foundation with no dashpots

at the boundaries

• Absorbing Boundaries; Dashpots are used at the four sides and below the dam foundation

• Free-Field; Dashpots are defined similar to the previous model and in addition to that the

effect of surrounding free field is considered on the sides.

A summary of the performed analysis and the presented results are shown in figure 11.5. Three

IAAs are applied to each of the three SSI assumptions once after 50 years of AAR analysis and

another time prior to the start of AAR. The response of the dam is illustrated in terms of crest

horizontal and vertical displacements, joint opening displacements as well as maximum principal
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stresses at several points on the dam upstream and downstream faces. In the first section the

responses of the AAR- affected dam is compared with it’s sound counterpart model. Then in the

next section, responses are compared for the three SSI models with and without AAR separately,

to compare the effect of SSI modeling assumptions.

11.2.1 Seismic Response of the Dam; Effect of AAR

Since modeling the soil-structure interaction is as essential step to the dynamic analysis of

dams, the most advanced model among the three that are compared in this study is used to compare

the effect of AAR on the seismic response of the case study dam and results are presented in this

section. Figure 11.6 is showing the recorded crest displacements at the center of the crown cantilever

during the dynamic analysis for both with and without AAR cases. As shown in the AAR static

analysis results, in the previous chapters, the dam experiences about 24 cm in horizontal and 20

cm in vertical crest displacements due to AAR expansion and therefore the dynamic displacements

start at an offset on the y axis compared to the without AAR case. It is shown through the envelope

of the displacements that the dam can experience close to 50cm in horizontal displacements at the

analysis equivalent time of 20 seconds. Figure 11.7 can provide a better understanding of the

ground motion intensity that can cause such high amounts of displacements to the dam. In this

figure the horizontal and vertical displacements are plotted against PGA and Sa(T1) suggesting

that in order for the dam to experience the above mentioned maximum displacements a ground

motion with a PGA of 0.8g or Sa(T1) of about 1.4g should hit the structure. It is more realistic

to look at the PGA and Sa(T1) of the dam determined from probabilistic seismic hazard analysis

(PSHA) of the dam site for different return periods (figures 11.3 and 11.4). Based on these figures

the Sa(T1) is considered to be 0.14g, 0.09g and 0.06g and the PGAs to be 0.22g, 0.11g and 0.067g

for the three return periods, respectively. As such considering the PGA as an intensity measure,

the top left plot in figure 11.7 suggests that a ground motion with the return period of 2475 years

will result in about 31cm of horizontal displacements in the AAR-affected dam while this amount

in its sound counterpart (blue curve) is about 7cm. These displacements are translated into drift
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Figure 11.5: Different types of analyses
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ratios of about 0.4% and 0.095% for the two cases, respectively. On the other hand, considering

the Sa(T1) as the intensity measure which provides a more realistic response compared to PGA,

suggests about 26 cm (drift ratio equal to 0.3%) and 6 cm (drift ratio equal to 0.08%) in horizontal

displacements for the AAR affected dam and its sound counterpart, respectively.
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Figure 11.6: Comparison of crest displacement with and without AAR for Free field model with
respect to analysis time

Figure 11.8 is comparing the joint opening below the dam at the dam toe and heel. As shown,

that at the studied intensity levels the joint opening is rather small and the thus uncontrolled release

of water may not be a reason for concern.

Figures 11.9 and 11.10 illustrate the maximum principal stresses in the upstream and down-

stream sides of the dam comparing the with and without AAR cases. In this figure each row

corresponds to a specific height of the dam body, the top one showing the stresses at the crest level.

The two horizontal dashed lines in these figures show the threshold of concrete tensile strength and

two times this value. It can be seen that the tensile stresses in the AAR affected dam has already

passed the two thresholds before the start of the dynamic analysis.
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Figure 11.7: Comparison of Crest Displacements with and without AAR for Free field model with
respect to PGA and Sa(T1)
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Figure 11.8: Comparison of joint opening displacement with and without AAR for Free field model
versus PGA and Sa(T1)
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(a) Upstream

(b) Downstream

Figure 11.9: Comparison of maximum principal with and without AAR for Free field model with
respect to PGA
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(a) Upstream

(b) Downstream

Figure 11.10: Comparison of maximum principal with and without AAR for Free field model with
respect to Sa(T1)
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11.2.2 Comparison of Different SSI Models

In the following section the results from the three different dam-foundation modeling assump-

tions are compared once for sound condition dam and another time for AAR affected dam. It is

worth noting that for the interpretation purposes all of the responses are plotted against the two

discussed intensity measure.

While the crest displacements with respect to the analysis equivalent time is shown in figure

11.11, and 11.16, the plots in figure 11.12 can provide a better understanding of the differences

in terms of PGA and Sa(T1). It is shown that the massless foundation with no consideration of

absorbing boundaries provides highly overestimated responses in terms of displacements compared

to the other two models. While using dashpots to absorb the outgoing waves will also result in

unrealistically lower displacements. Similar observations are made by looking at the displacements

of AAR-affected dam in figure 11.17.

Figure 11.13 and, 11.18 shows that at the dam heel after exceeding a certain intensity level,

the free field model results in higher joint opening displacements than the two other models.

However, the maximum principal stress plots shown in figure 11.14, 11.15 and 11.19, 11.20

show that the free field model stresses especially at the crest level are considerably higher than the

two other cases. This observation underlines the importance of considering the effect of the free

field motion on the dam-foundation system. It is worth noting that all of the above observations

are made specific for the case study dam and may not apply to other dams.

11.2.3 Dam Deformed Shape

Figure 11.21 and 11.22 show the AAR affected dam deformations at various equivalent anal-

ysis times. As seen, at intensity levels of interest which correspond to figure 11.21, there are small

joint openings at the crest in contraction joints, while more openings are observed at the dam-rock

interface joints. However, figure 11.22 shows that at the very high intensity levels (i.e. towards the

end of the analysis equivalent time), the cantilevers may start moving independent of each other
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Figure 11.11: Comparison of crest displacement without AAR for three SSI models with respect to
analysis time
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Figure 11.12: Comparison of Crest Displacements without AAR for three SSI models versus PGA
and Sa(T1)
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Figure 11.13: Comparison of joint opening displacement without AAR for three SSI models versus
PGA and Sa(T1)
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(a) Upstream

(b) Downstream

Figure 11.14: Comparison of maximum principal stresses without AAR for three SSI model with
respect to PGA
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(a) Upstream

(b) Downstream

Figure 11.15: Comparison of maximum principal stresses without AAR for three SSI models with
respect to Sa(T1)
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Figure 11.16: Comparison of crest displacement with AAR for three SSI models with respect to
analysis time
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Figure 11.17: Comparison of Crest Displacements with AAR for three SSI models versus PGA and
Sa(T1)
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Figure 11.18: Comparison of joint opening displacement with AAR for three SSI models versus
PGA and Sa(T1)
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(a) Upstream

(b) Downstream

Figure 11.19: Comparison of maximum principal stresses with AAR for three SSI model with
respect to PGA
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(a) Upstream

(b) Downstream

Figure 11.20: Comparison of maximum principal stresses with AAR for three SSI models with
respect to Sa(T1)
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resulting in the loss of arch effect.
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(a) t=3 second

(b) t=5 second

Figure 11.21: Comparison of Dam deformed shape at 3 and 5 seconds of equivalent time
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(a) t=10 second

(b) t=20 second

Figure 11.22: Comparison of Dam deformed shape at 10 and 20 seconds of equivalent time



Chapter 12

Conclusion and Recommendation for Future Work

Abstract

This final chapter will, very succinctly, summarize the findings of this research and make few

recommendations for future work.

12.1 Conclusion

As discussed in the previous chapters from a deterministic nonlinear AAR analysis it can be

concluded that:

• The cracking is mostly occurred on the lower portion and inside the dam.

• In general there is more AAR at the downstream side of the dam compared to the upstream.

• Downstream side of the dam is more in tension which can be an indicative of potential

cracking.

The findings of the uncertainty quantification can be summarized as follows:

• Stresses : Mean values of the normalized stresses with respect to the tensile strength on

the downstream and upstream sides indicate that there is a possibility of cracking occur:

∗ at the top center and right side of the downstream starting about year 2005

∗ at the top left side of the downstream starting about year 2015

∗ at the mid height right side of the downstream starting about year 2020

∗ at the mid height left side of the downstream starting about year 2020
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while it wouldn’t be a concern at other heights of the center of the dam on the

downstream.

∗ at the top right side of the upstream starting about year 2020

∗ at the top left side of the upstream starting about year 2015

∗ at the top center of the upstream starting about year 2000

while the stresses are lower than our concerning limit in the mid-height and bottom

of the upstream.

• Probability of Exceedance

∗ The probability of exceednace of the maximum principal stress (σ1) from the concrete

tensile strength can be interpreted as a possibility of cracking at a certain point. As

seen the 50% probability of exceedance at the top mid portion of the dam happens

after about 30 years of analysis (year 2010) on the downstream and after 20 years of

analysis (year 2000) on the upstream. Overall, the stress values have higher probability

of exceeding the threshold on the upstream compared to downstream at the top of

the dam. However, the mid-height of the dam is showing a higher probability of

exceedance on the downstream side while on the upstream side the 50 % probability

of exceednace is likely to occur around 70 years of analysis(year 2050)

• Effect of Sample size

∗ The number of analysis chosen for the uncertainty quantification has to be determined

to be a good representative of the true data. To this aim, the uncertainty quantification

has been repeated with 3 different sample sizes of 50, 100 and 150 analyses. The

comparison of the results from the 3 samples indicate that the 100 analyses sample can

provide a relatively better estimation compared to the 50 analyses sample however this

improvement is not as significant when it comes to the comparison of the 200 and 100

analyses samples. As seen in figure 10.20 the T3B and T3A horizontal displacement

have standard error of about 2.5 mm at the end of the analysis time which can be

even more reduced by increasing the number of analyses.
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∗ Comparing standard errors for stress (figures 10.21 and 10.22) shows that the 200

analyses sample is slighlty better than the 100 and thus increasing the number of

analysis will not probably improve the accuracy of the model.

12.2 Recommendation for Future work

• Horizontal joints

• Laboratory Data for AAR compatible with finite element analysis

• Reliable field measurement of water temperature from top to bottom

• Field measurements of in-situ stresses

• Seismic fragility curve

• Complete detailed risk assessment, Fig. 12.1

• Uncertainty quantification with nonlinear analysis (though this may require extensive com-

putational support).

• Add downstream tensile stresses to the list of parameters that have to be reconciled between

analysis and field cracking observations.
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Figure 12.1: Earthquake occurring after substantial AAR expansion
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Appendix A

Thermal Load; Verification

Abstract

It is of great significance to validate the utilized method on a simple model prior to conduct-

ing any thermal analysis on a complicated mesh. This chapter includes three main parts in the

first section a comprehensive study is conducted to determine and regenerate the pool temperature

at different elevations for seven dams that their data was available from Bureau of Reclamation,

1981 report in order to evaluate the ability of the utilized formula for approximation of the pool

temperature.

In the second part, the thermal analysis is conducted on a single column and results are

compared with the numerical solution, also the stability condition is discussed. last but not least,

the calculations of solar radiation is validated on a cantilever and an arch.

A.1 Pool Temperature

ASR expansion being a thermodynamically reaction, expansion is very sensitive to water

temperature in the dam reservoir. Whereas air temperature is usually well recorded, reservoir

temperature is not. At best, we may have air and surface temperature. Hence, this section will

make a best estimate determination of reservoir temperature at the dam based on recorded reservoir
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z

x

T=T0 sin ( ωt)

Figure A.1: Semi infinite plate subjected to surface harmonic temperature

temperature in terms of depths at other dams. The governing equation for thermal diffusion is

∂T

∂t
= k

ρcp︸︷︷︸
µ

∂2u

∂x2 (A.1)

where µ is the thermal diffusivity and describes the rate of temperature spread through a material.

A.1.1 Heat conduction in a semi-infinite plate

Considering a semi-infinite solid, Fig A.1, with its free surface is subjected to a periodic

temperature variation T (x, t)

T (0, t) = Tm + T0 sin(ωt) (A.2)

Solution for T (0, t) = TM is well known, and is given by

T (x, t) = Tmerfc
(

x

2
√

µt

)
(A.3)

Solution for T (0, t) = T0 sin(ωt) is given by (Selvadurai, 2013), Fig. A.1. as

T (z, t) = T0 exp
{

−
(

ω

2µ

) 1
2

z

}
sin
[
ωt −

(
ω

2µ

) 1
2

z

]
(A.4)

To visualize the temperature distribution in 1-D “column”, we consider a top variation with am-

plitude ±10, Fig. A.2(a); a bottom variation of ±2.5, Fig. A.2(c); and the sum of the two Fig.

A.2(e).
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A.1.2 Pool water temperature distribution

A.1.2.1 Empirical Solution

An empirical equation for the temperature distribution was first given by Bofang and Zhanmei

(1990) in term of a mean top and bottom water temperatures and calibrated for a specific dam.

The equation was later extended by Ardito, Maier, and Massalongo (2008).

Tw(yw, t) = Tbot(t).
1 − e−ϕyw

1 − e−ϕH
+ Ttop(t).e

−ϕyw − e−ϕH

1 − e−ϕH
(A.5)

where Tbot is the time sequence of temperature measurements at yw = H (reservoir bottom); Ttop is

the time sequence of temperature measurements at yw = 0 (reservoir top), Figure A.3(a); and most

importantly ϕ is an empirical parameter that must be properly determined for the specific dam.

For illustration, Figure A.3 shows the water temperature for a dam 100 m high, and ϕ = 0.04.

A.1.2.2 Model comparisons

Figure A.2 qualitatively (and not quantitatively) compares the two previously described

models for a 100 m high dam with a mean top and bottom temperatures of 20 and 6 ◦C, and a

harmonic varioton with 10 and 2 ◦C respectively.

Whereas it is indeed expected that the analytical of solution (Selvadurai, 2013) has equal

impact for the top and bottom temperature diffusion (albeit with different weight due to difference

in temperature), this is not the case in the empirical equation of Ardito, Maier, and Massalongo

(2008).

This is most apparent in Figure A.2(d) where the bottom temperature has far greater impact

on the top than the other way around. This can be simply explained by the fact that, contrarily to

the analytical equation, there is inherent in this equation the notion of “bottom” and “top”, and

that heat simply moves upward.

Hence, the bottom reservoir temperature has a much greater impact that the top one, and

should be recorded in as much as possible. In the absence of measurements, it can be argued that

the temperature can not be lower than 4◦C when the maximum water density is reached (except
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(a) Analytical; Top harmonic temperature ±10 (Sel-
vadurai, 2013)

(b) Emperical; Top harmonic temperature ±10
(Ardito, Maier, and Massalongo, 2008)

(c) Analtical; Bottom harmonic temperature ±2.5
(Selvadurai, 2013)

(d) Emperical; Bottom harmonic temperature ±2.5
(Ardito, Maier, and Massalongo, 2008)

(e) Analytical; Net temperature distribution (Sel-
vadurai, 2013)

(f) Emperical; Net temperature distribution (Ardito,
Maier, and Massalongo, 2008)

Figure A.2: Analytical and emperical solution for water temperature distribution

in particular conditions i.e. when the reservoir is covered by ice, or near water intake structures)

(Tatin et al., 2018).
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Figure A.3: Fitted model of Ardito, Maier, and Massalongo (2008)

A.1.2.3 Application

Bureau of Reclamation (1981) reports the temporal and spatial (in terms of depth) water

temperature for seven dams including shown in Figure A.4.

Those plots have been digitized, and are shown in Figure A.5.

In the next step we seek to fit the data reported in Figure A.5 into Eq. A.5. First, all

digitized data are fitted into harmonic equation

T (t, y) = A(y) + B(y) sin(ωt + C(y)) (A.6)

Then two approaches are pursued

Model I Using Tbot and Ttop, determine ϕ from all other curves.

Model II Use the entire set of curves to determine the coefficients for Tbot, Ttop, and ϕ

Results for the fitted surfaces based on Model II are shown in Figure A.6 and table B.1.

The goodness of fit (based on R2) is shown in the last two columns of this table for the two

methods which is clearly better for model II which is the reason for demonstrating only the results
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of model II.

As for the case study dam the same approach is followed herein using the available pool

temperature data within the upper 100 ft and the results shown in figure A.7 indicate the lack of

sufficient data to utilize this method to estimate the parameters of Eq. A.5. Also, the values based

on model II are shown in table B.2. As seen in this table the goodness of fit is not in an acceptable

range.

A.2 Numerical Solution with Merlin; Concrete

A.2.1 Stability Condition

The Courant–Friedrichs–Lewy or CFL condition is a condition for the stability of unstable

numerical methods that model convection or wave phenomena.

It states that the distance that any information travels during the time-step length within

the mesh must be lower than the distance between mesh elements. In other words, information

from a given cell or mesh element must propagate only to its immediate neighbors. This results in

µ∆t

h2 ≤ 1
2 (A.7)

where µ is the diffusivity defined in Equation A.1.

A.2.2 Verification Problems

Before a comprehensive thermal study is undertaken, it is important to validate the ability of

the finite element code (Merlin) to properly conduct linear transient thermal analysis of concrete

subjected to: a) temperature, b) flux; and c) solar radiation. For this purpose a 1[m]×1[m]×100[m]

concrete column is analyzed under various thermal load conditions in which the temperature is

applied at one end of the column. The studied columns are shown in figure A.8. For this study,

material properties of the concrete were taken from Hatch (2015) presented in table 6.1 and the

air-concrete film coefficient was taken to be equal to 20[W m−2 K−1] also obtained from Hatch

(ibid.) . The whole verification procedure presented in this section is summarized in figure A.9
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A.2.2.1 Temperature

At first, the temperature is applied directly to the concrete column considering once a constant

temperature which does not change with time and then a harmonic temperature that is defined

using a sine function such that T = −12.6 sin(2π
12 t) which represents the harmonic term of the air

temperature at the dam location. It is worth mentioning that the air temperature at the dam was

estimated as T = −12.6 sin(2π
12 t)+12.6 based on the available data. Then, the results of the thermal

analysis of this column from Merlin is compared to that of the analytical solution. The analytical

solution for constant and harmonic temperatures are given by equation A.3 and A.4 respectively.

Constant The constant temperature of 12.6 [oC] is applied directly at the end of the column

the value considered for the temperature was obtained from the constant term of the equation

representing the air temperature at the dam location. The results for both Merlin and analytical

solutions are shown in figure A.10 and A.11. figure A.10 shows the temperature variation of the

first 20[m] of the column within 4 years.

Figure A.11 shows that the 2 solutions are in good agreement and they have slight difference

at the beginning of the thermal loading and gradually converging to a constant value in 4 years.
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(a) Fontana (b) Hoover (c) Hiwassee

(d) Grand Coulee (e) Hungry Horse (f) Owyhee

(g) Shasta

Figure A.4: Recorded pool temperatures (Bureau of Reclamation, 1981)
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(a) Fontana (b) Hoover

(c) Hiwassee (d) Grand Coulee

(e) Hungry Horse (f) Owyhee

(g) Shasta

Figure A.5: Digitized data from Figure A.4
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(a) Fontana (b) Hoover

(c) Hiwassee (d) Grand Coulee

(e) Hungry Horse (f) Owyhee

(g) Shasta

Figure A.6: Fitted dam temperatures from (Model II) Figure A.5
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Figure A.7: Fitted dam temperature (from model II) for the case study dam
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Figure A.8: Thermal analysis results of constant temperature applied at the end of the column
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Curved ColumnStraight Column

Column Analysis

Constant 
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Harmonic 
Temperature

With
Flux
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Convergence 
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Calculated 
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Temperature variation 
due to Solar Radiation 
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Figure A.9: Verification procedure

(a) analytical Solution (b) Merlin Solution

Figure A.10: Thermal analysis results of constant temperature applied at the end of the column
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Figure A.11: Comparison of Analytical and Merlin solutions of constant temperature applied at
the end of the column
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Harmonic In order to have a more realistic simulation in this section the previously dis-

cussed constant temperature is replaced with a harmonic temperature (T = −12.6 sin(2π
12 t)), plotted

in figure A.12, varying with a sine function throughout the year. In figure A.13 the oscillation of

temperature within 4 years is shown for Merlin and analytical solutions. It is shown that the

temperature can travel almost about 15 [m] through the length of the column and its intensity is

reduced within this distance. Figure A.14 also, suggests a good match between the analytical

and Merlin solutions for applied harmonic temperature which underlines the accuracy of the finite

element code. Stability Condition evaluation In order to evaluate the effect of CFL condi-

tion in convergence of the thermal analysis, the analysis is conducted considering 2 different time

steps. As shown in table A.1 the time step is once considered to be equal to 0.1[month] in which
µ∆t
h2 = 0.435 which is less than 1

2 and therefore conforms to the CFL condition. Then, The time

step is increased to 1 [month] keeping the mesh size h constant, µ∆t
h2 = 4.35 and becomes greater

than 1
2 which in turn does not conform to the CFL condition. figure A.15 shows the results of these

2 analyses compared to the analytical solution. As seen the difference of the analytical and Merlin

solutions, although decreasing, lasts for CFL non-conforming analysis after 4 years.

Results show that the difference between the analytical and Merlin solutions are greater in

Non-conforming analysis. In other words, failing to conform to the CFL condition had resulted in

a delay in the convergence of the analysis.
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Figure A.12: Applied harmonic temperature
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(b) Merlin Solution

Figure A.13: Thermal analysis results of harmonic temperature applied at the end of the column
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(a) Analytical vs. Merlin Solution
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(b) Difference of 2 solutions

Figure A.14: Comparison of Analytical and Merlin solutions of harmonic temperature applied at
the end of the column
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(a) Difference of 2 solutions, CFL Conforming
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Figure A.15: Comparison of results of CFL condition conforming and non conforming thermal
analysis with harmonic temperature applied at the end of the column



291

Table A.1: CFL conforming and non-conforming conditions

µ [m2mo−1] ∆t[mo] h[m] µ∆t
h2

Case1 4.35 0.1 1 0.435
Case2 4.35 1 1 4.35
Case3 4.35 2 1 8.7

A.2.2.2 Flux

In reality the temperature transfer from surrounding fluid cannot be simulated by applying

the temperature directly to a material. In other words, there is a heat convection between the

fluid and material and should be taken into account. In this study the fluid is considered to be

air and, thus, the air-concrete film coefficient is used to apply the temperature using a flux rather

than direct application. Therefore, the aforementioned constant and harmonic temperatures are

repeated here to assess the effect of heat flux. Constant Results for the heat flux with a

constant temperature of 12.6 [oC] is shown in figure A.16. Harmonic In this section the heat

flux of a harmonic temperature is evaluated. Figure A.14 shows the Merlin solutions for the thermal

analysis of column under harmonic temperature
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Figure A.16: Thermal analysis results of constant water temperature using flux applied at the end
of the column
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Figure A.17: Thermal analysis results of harmonic water temperature using flux applied at the end
of the column

A.3 Solar radiation

In order to investigate the effect of solar radiation, a curved column presented in figure A.18,

is first considered as an arch located at the upstream face of the dam and then once again it is

studied as a cantilever at the same location which is shown in figure A.18.

In this study only the location and the orientation of the dam with respect to the south is

used for solar radiation calculations and therefore the existence of water is omitted for the cantilever

and solar radiation is calculated through the whole height of the column as this might be the case

for other dams.

As previously stated the model is a 1[m] × 1[m] × 100[m] concrete column and there are 100

elements through it’s length. For the solar radiation study, only the elements on the convex side

of the column were assumed to receive the solar radiation as they are facing the South.

Studying the arch and cantilever will let us investigate both the effect of orientation and

inclination of the surface in the received amount of solar radiation. Because the column has a

curvature, the arch elements each have different orientations with respect to the South direction

and cantilever elements each have different inclinations with respect to horizon, therefore, will

receive different amount of solar radiations.

Figure A.19 shows the temperature variation due to solar radiation through the length of

the column within a year for both arch and cantilever. As seen in the figure, in the arch, the

temperature increase is maximum at the center of the arch which is facing the South direction

almost directly. As for the cantilever also the maximum tempertaure increase happens at the top
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of the cantilever as it is inclined upward and in turn receives the maximum direct solar radiation

throughout the whole year.

The temperature increase due to solar radiation is then added to the constant temperature

of 12.6[oC], which is the constant term of the air temperature at the dam location, and thermal

analysis is conducted using Merlin. The temperatures through the central axis of the column is

shown in figure A.20 for about 3 years which is showing good stability even after a year. It should

be noted that the distance between mesh elements that the information is expected to travel is

0.5[m] herein and therefore, in order to conform to the CFL condition, the analysis time step was

set to 0.02[month]. Figure A.21 is showing the procedure to calculate the temperature due to solar

radiation to be applied on the curved column.

Dam Upstream

Studied Arch

Water Level: No Solar radiation at 
this section

Exposed to air: Solar radiation exists

North

EastWest

South
n

(a) Arch

Dam Upstream

Cantilever

North

EastWest

South

Water Level: No Solar 
radiation at this section

Exposed to air: Solar 
radiation exists

n

(b) Cantilever

Figure A.18: Studied arch and cantilever located at dam upstream
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Figure A.20: Thermal analysis result for nodes on the central axis of the curved column considering
solar radiation effect
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Figure A.21: Solar radiation calculation procedure for curved column
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A.4 Conclusion

This chapter presented the smaller scale of the main thermal analysis to be conducted in the

subsequent chapters. As described in this chapter, the thermal analysis of a single straight column

was conducted using constant and harmonic temperatures applied directly to the top of the column

and results compared to the numerical solution. Once the results validated the finit element method

by showing a good match between the finite element and numerical solution, the stability of the

solution was then assessed and thermal analysis was conducted using film coefficients to apply the

temperatures to get closer to the real situation. In the next section, the purpose was to validate

the solar radiation calculation presented in previous chapter, and therefore, two curved cantilever

and arch were studied to determine their temperatuer increase due to solar radiation for which the

results are shown and discussed.



Appendix B

Verification Study for Pool and Concrete Temperatures
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Table B.1: Temperature data fitting

a b c ϕ Method I Method II
Fontana

Top 17.7415 -9.49679 0.70389 0.015827 0.902 0.994Bot 5.612374 1.833289 8.823558
Air 14.08135 9.601167 4.390997

Hoover
Top 20.01634 -7.83074 0.714605 0.022716 0.936 0.984Bot 12.04701 -1.22955 5.073473
Air 23.07812 -12.0916 7.539764

Hiwassee
Top 18.8469879 -11.0046 0.8444 0.02161 0.912 0.953Bot 6.302679 -3.10449 12.13985
Air 14.18313 10.17568 4.402833

Grand Coulee
Top 9.224278 -10.6 0.645757 -0.02681 0.67548 0.78859Bot 8.848105 -5.29629 19.1146
Air 10.43781 -12.3562 1.258763

Hungry Horse
Top 9.465751 -10.1285 0.694353 0.047607 0.933082 0.964424Bot 4.733725 -0.93688 5.089331
Air 6.051459 -11.8553 -5.05113

Owyhee
Top 14.45718 -11.3601 0.977942 0.057675 0.965436 0.969316Bot 4.37022 -0.3687 5.535384
Air 11.16966 -11.0676 1.300982

Shasta
Top 17.07467 -7.7792 0.75023 0.027206 0.910388 0.960983Bot 7.115839 -1.81833 5.165946
Air 17.13336 -9.66453 1.184623

Table B.2: Temperature data fitting for the case study dam

a b c ϕ Method I Method II
The case study dam

Top -10.6406 -30.2534 9.053441 0.237732 -0.024 0.596Bot -0.60584 -12.9162 2.650509
Air 12.58733 -12.6138 0.974763



Appendix C

Complementary Figures

Abstract

In the course of this research, multiple secondary figures were generated. It was deemed

preferable to include them in this report so as not to confuse reading of the report with too many

of them.
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Figure C.1: Monthly specific heat correlation coefficients at node 944 (PoI)
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Figure C.2: Monthly conduction correlation coefficients at node 944 (PoI)
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Figure C.3: Monthly top water temperature correlation coefficients at node 944 (PoI)
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Figure C.4: Monthly bottom water temperature correlation coefficients at node 944 (PoI)



Appendix D

Additional Uncertainty Quantification Results

Abstract

The uncertainty quantification (UQ) study was conducted with 50, 100, and 200 analyses.

We have retained results of the last one in the report, and this chapter will simply report the figures

associated with the 50 and 100 analyses UQ studies.

(a) 50 Analysis (b) 100 Analysis

Figure D.1: Crest Displacements (Stream and vertical directions)
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(a) 50 Analysis (b) 100 Analysis

Figure D.2: Maximum Principal Stress; Downstream
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Figure D.3: Ratio of Maximum Principal Stress to Tensile Strength; Downstream
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(a) 50 Analysis (b) 100 Analysis

Figure D.4: Maximum Principal Stress; Upstream
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Figure D.5: Ratio of Maximum Principal Stress to Tensile Strength; Upstream
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(a) 50 Analysis
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(b) 100 Analysis

Figure D.6: Probability of Exceedance; Downstream
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Figure D.7: Probability of Exceedance; Upstream



Appendix E

Modeling Dam-Foundation

Abstract

Modeling of the foundation proved to be slightly problematic. At first the presence of the

massive shear key was ignored, and given the (typical) deformed shape of the arch dam, this would

have resulted in joint openings in the downstream face.

Reclamation commented that this was not observed, and the massive shear key ensured that

there would be no slip nor rotation at the base. Hence, all the analyses in the report accounted

for this massive shear key (modeled by drastically increasing the joint properties at the base of the

dam).

This appendix, however reports the results previously obtained for academic interest as this

may indeed occur in other arch dams suffering from AAR. So far the illustrated results were based

on the assumption of the full rock-concrete bond below the dam. However, this might not be the

case for other arch dams. Therefore, the analysis results assuming a rock-concrete joint below the

dam are presented in this chapter. the crack opening displacements at the bottom of the dam is

shown in figure E.1 using 6 nodes in a row from upstream to downstream in order to assess the

potential for the uncontrolled release of water. As seen the the crack is closing on the upstream side

while opening on the downstream which denies the likelihood of the release of water from bottom

of the dam.

Figure E.2 also demonstrates the same finding for 7 different time steps and at 6 different
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locations suggesting that the crack opening displacement is close to zero at the upstream and

greater at the downstream and is increasing with time. This observation suggests the deformations

as shown in figure E.3. In other words the dam is tilting towards the upstream resulting in the

opening of the crack on the downstream side. The angles β and α can be a rough indication of the

dam tilt which are also plotted in figure E.4.

The 200 analysis shows that the mean value of the rotation of the dam wall is greater than

the mean of the dam bottom rotation while these 2 values are approaching to each other with time.

At the end of the analysis the mean value of the α and β are about 0.0035 and 0.0015 radians.

In addition to the crack opening on the downstream side of the dam, the abovementioned

figure is also supporting the fact that sliding is occuring at the bottom of the dam as plotted in

figure E.5. Since in the finite element model, the joint elements have finite stiffness to prevent

closure there are negative displacements reported In figure E.1.
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Upstream

Downstream

Figure E.1: Concrete Rock interface crack opening displacements for 6 nodes from upstream to
downstream for all increments
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Figure E.2: Concrete Rock interface crack opening displacements for 6 nodes from upstream to
downstream for 5 different increments
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Figure E.4: angles
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Figure E.5: Sliding; (+ve) Upstream



Appendix F

Fourier Transform

F.1 Basic Equations

Fourrier transforms enables us to transfer a signal from the time domain to the frequency

domain through the following equation:

X(ω) =
∞∫

−∞

x(t)e−2iπωtdt (F.1)

x(t) FFT−→ X(ω) (F.2)

while the inverse FFT takes us back from the frequency domain to the time domain through:

x(t) =
∞∫

−∞

X(ω)e2iπωtdω (F.3)

X(ω) FFT−1
−→ x(t) (F.4)

F.2 Butterworth Filter

Spider has the following filters implemented in its de-convolution feature, figure F.1.

|H(jω)|2=



Low pass 1

1+
(

ω
ωL

)2n

High pass 1
1+( ωU

ω )2n

Band pass 1

1+
(

ω
ωL

)2n
1

1+( ωU
ω )2n

Band stop 1
1+( ωL

ω )2n
1

1+
(

ω
ωU

)2n

(F.5)
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where ω, ωL, ωU and n are the frequency, the lower and upper filter frequencies, and the order of

the filter, respectively.
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(a) Low pass ωL = 25
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(b) High pass ωU = 50
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(c) Band pass (ωL = 25, ωU = 50)
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(d) Band stop (ωL = 25, ωU = 50)

Figure F.1: Comparison of filters

F.3 Transfer Function

In dynamic event, we can define an input record i(t) which is amplified by h(t) resulting in

an output signal o(t), figure F.2. Similarly, the operation can be defined in the frequency domain.

This output to input relationship is of major importance in many disciplines. The transfer function

is the “Laplace” transform of the output divided by the Laplace transform of the input. Hence, in

1D, we can determine the transfer function as follows:

(1) i(t) FFT−→ I(ω)

(2) o(t) FFT−→ O(ω)

(3) Transfer Function is TFI−O = O(ω)
I(ω)
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Time domain ( )i t ( )h t o( )t

( )I  ( )H  O( )Frequency domain

Figure F.2: Transfer function



Appendix G

Wave Equation

Reference will be made to the wave equation in both the derivation of the Lysmer model in

soil structure interaction, as well as in the derivaiton of the hydrodynamic force in Westergaard’s

model.

Considering an infinitesimal element at rest, figure G.2, with elastic modulus E, and mass

density ρ, we seek to determine the governing differential equation under dynamic condition.

xx

xx
xx dx

x

 


2
xu

t
 


dx

Figure G.1: Infinitesimal element subjected to elastic wave

Thinking in terms of equilibrium of forces, it is more appealing to invoke D’Alembert’s

principle of dynamic equilibrium rather than Newton’s second law of motion. This principle is

based on the notion of a fictitious inertia force, equal to the product of mass times acceleration and

acting in a direction opposite to the acceleration. Hence, the element force equilibrium requirements

of a typical differential element are, using D’Alembert’s principle which states that with inertia

forces included, a system is in equilibrium at each time instant.
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∂σxx

∂x
dx − ρ

∂2ux

∂t2 dx = 0 (G.1)

Since σxx = λεxx = λ∂ux
∂x , substituting, we obtain

∂2ux

∂t2 − V 2
p

∂2ux

∂x2 = 0 (G.2)

where Vp =
√

λ
ρ

The solution of this equation, for harmonic wave propagation in the positive x-direction, is

u(t, x) = U

[
sin(ωt − ωx

Vp
) + cos(ωt − ωx

Vp
)
]

(G.3)

where ω is the arbitrary frequency of the harmonic motion. The velocity, ∂u
∂t of a particle at location

x is

u̇(t, x) = Uω

[
cos(ωt − ωx

Vp
) − sin(ωt − ωx

Vp
)
]

(G.4)

and the strain in the x direction is

ε(x, t) = ∂u

∂x
= − u̇(x, t)

Vp
(G.5)

The corresponding stress is now

σ(x, t) = λε(x, t) = −Vpρu̇(x, t) (G.6)

Thus, the compressive stress is equal to the force on a viscous damper with constant damping

coefficient equal to ρVp per unit area of boundary. It can be easily shown that the shear wave

radiation boundary condition parallel to a free boundary, is satisfied if damping value is equal to

ρVs.

When modeling the wave motion in a spatial domain, it is essential to introduce artificial

boundaries to limit the bounded domain to a reasonable size. The simple Dirichlet boundary

condition, in which displacements are fixed, is unsuitable as substantial reflection (through Snell’s

law) will occur at the boundary and reflected waves will degrade the solution. A solution to

this nagging problem could be to enlarge the numerical mesh, thus delaying the side reflections.



318

Obviously this solution considerably increases the expense of computation and is not viable unless

artificial damping can be introduced in the material near the far field, (Hudson, Idriss, and Beikae,

1994). Thus, a numerical model (finite element in our case) should absorb the incoming waves just

as they would be absorbed by the free field physically.

G.1 Deconvolution

Seismic Design/Analysis For 

Nuclear Plants  

1 

2 

3 

4 

Figure G.2: Seismic Attenuation/Amplification (Ake, Pires, and Munson, 2015)

G.1.1 Introduction

Seismic events originate through tectonic slips and elastic (p- and s-) waves traveling through

rock/soil foundation up to the surface. Hence, the seismographs (usually installed at the foot of

the dam) record only the manifestation of the event.

On the other hand, modeling the foundation is essential for proper and comprehensive analysis

of the dam, and as such the seismic excitation will have to be applied at the base of the foundation.
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However, figure G.3, if we were to apply at the base the accelerogram recorded on the surface

I(t), the output signal A(t) at the surface will be different than the one originally recorded (unless

we have rigid foundation). Hence, the accelerogram recorded on the surface must be de-convoluted

into a new one I ′(t), such that when the new signal is applied at the base of the foundation, the

computed signal at the dam base matches the one recorded by the accelerogram.

i(t) ?

a(t) Surface 
recording 

a(t)

?

No

Figure G.3: Deconvolution

G.1.2 Algorithm

G.1.2.1 One-Dimensional

Extending our discussion one step further, we introduce the concept of deconvolution which

addresses the dilemma posed above, and will now require one (or more) finite element analyses.

With reference to figure G.4.

(1) Record the earthquake induced acceleration on the surface a′(t), and apply it as i′(t) at

the base of the foundation.

(2) Perform a transient finite element analysis.

(3) Determine the surface acceleration a(t) (which is obviously different from i(t)).
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(4) Compute the following FFTs:

i′(t) FFT−→ I ′(ω) = A′(ω) (G.7)

a(t) FFT−→ A(ω) (G.8)

(5) Compute transfer function from the base to surface as

TFI′−A = A(ω)/I ′(ω) (G.9)

(6) Compute the inverse transfer function TF −1
I′−A.

(7) Determine the updated excitation record in the frequency domain

I(ω) = TF −1
I′−A × A′(ω) = I ′(ω)

A(ω)A′(ω) (G.10)

(8) Determine the updated excitation in the time domain

I(ω) FFT−1
−→ i(t) (G.11)

i’(t)

a(t)

i(t)

TFI’-A = A(ω)/I’(ω)

I(ω) = TF-1
I’-AA’

I(ω)            i(t)FFT-1

a(t)           A(ω)
FFT

i’(t)         I’(ω)=A’(ω)
FFT

Figure G.4: Deconvolution applied in finite element analysis

G.1.2.2 Three-Dimensional

In 3D applications, the transfer function is a 3 × 3 matrix, each row corresponds to the

response to an excitation in a given direction, and each column corresponds to the response in

a given direction. Hence, three separate analysis must be performed ⌊ I ′
x I ′

y I ′
z

⌋ and for each
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excitation, we must determine the three components of the surface acceleration. Then, we will

compute the 3D transfer function:

[TF ] =


TFxx TFxy TFxz

TFyx TFyy TFyz

TFzx TFzy TFzz


︸ ︷︷ ︸

T FI′−A

=


Axx(ω)
I′

x(ω)
Axy(ω)
I′

x(ω)
Axz(ω)
I′

x(ω)

Ayx(ω)
I′

y(ω)
Ayy(ω)
I′

y(ω)
Ayz(ω)
I′

y(ω)

Azx(ω)
I′

z(ω)
Azy(ω)
I′

z(ω)
Azz(ω)
I′

z(ω)

 (G.12)

Hence, the excitation to be applied in the frequency domain is given by:
Ix(ω)

Iy(ω)

Iz(ω)


= [TFI′−A]−1


A′

x(ω)

A′
y(ω)

A′
z(ω)


(G.13)

while in the time domain it is 
Ix(ω)

Iy(ω)

Iz(ω)


FFT−1
−→


ix(t)

iy(t)

iz(t)


(G.14)

G.1.2.3 Simplification

The preceding 3D generalized procedure can be simplified by ignoring the off-diagonal terms

[TF ] =


TFxx 0 0

0 TFyy 0

0 0 TFzz

 =


Axx(ω)
I′

x(ω) 0 0

0 Ayy(ω)
I′

y(ω) 0

0 0 Azz(ω)
I′

z(ω)

 (G.15)

which will greatly simplify the inversion of the transfer function.
Ix(ω)

Iy(ω)

Iz(ω)


= [TFI′−A]−1


A′

x(ω)

A′
y(ω)

A′
z(ω)


=


I′

x(ω)
Axx(ω) 0 0

0 I′
y(ω)

Ayy(ω) 0

0 0 I′
z(ω)

Azz(ω)




A′

x(ω)

A′
y(ω)

A′
z(ω)


(G.16)

and finally,
Ix(ω)

Iy(ω)

Iz(ω)


=


I′

x(ω)
Axx(ω)A′

x(ω) 0 0

0 I′
y(ω)

Ayy(ω)A′
y(ω) 0

0 0 I′
z(ω)

Azz(ω)A′
z(ω)


FFT−1
−→


Ix(t)

Iy(t)

Iz(t)


(G.17)
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