Lecture Notes in

Structural Analysis

Victor E. Saouma

saouma@colorado.edu
University of Colorado, Boulder
2022

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

Notice

Intentionally, this document can not be printed.
It is best read on a computer to easily follow the multiple hyperlinks and bookmarks.

Structural Analysis Role of Technology

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Spring 2019

- Teaching methods must evolve with time and account for societal changes.
- By now all students have used computers since middle-high schools (if not earlier for games).
- Most computer program no longer have manuals, or steep learning curves. For a software to gain public trust and support it has to be simple, elegant, intuitive, scalable.
- This has affected
- Teaching methods must evolve with time and account for societal changes.
- By now all students have used computers since middle-high schools (if not earlier for games).
- Most computer program no longer have manuals, or steep learning curves. For a software to gain public trust and support it has to be simple, elegant, intuitive, scalable.
- This has affected
- Teaching methods must evolve with time and account for societal changes.
- By now all students have used computers since middle-high schools (if not earlier for games).
- Most computer program no longer have manuals, or steep learning curves. For a software to gain public trust and support it has to be simple, elegant, intuitive, scalable.
- Teaching methods must evolve with time and account for societal changes.
- By now all students have used computers since middle-high schools (if not earlier for games).
- Most computer program no longer have manuals, or steep learning curves. For a software to gain public trust and support it has to be simple, elegant, intuitive, scalable.
- This has affected

- Teaching methods must evolve with time and account for societal changes.
- By now all students have used computers since middle-high schools (if not earlier for games).
- Most computer program no longer have manuals, or steep learning curves. For a software to gain public trust and support it has to be simple, elegant, intuitive, scalable.
- This has affected
- Writing
- Computing
- Drafting
- Structural Analysis
- Learning
- Teaching methods must evolve with time and account for societal changes.
- By now all students have used computers since middle-high schools (if not earlier for games).
- Most computer program no longer have manuals, or steep learning curves. For a software to gain public trust and support it has to be simple, elegant, intuitive, scalable.
- This has affected
- Writing
- Computing
- Drafting
- Structural Analysis
- Learning
- Teaching methods must evolve with time and account for societal changes.
- By now all students have used computers since middle-high schools (if not earlier for games).
- Most computer program no longer have manuals, or steep learning curves. For a software to gain public trust and support it has to be simple, elegant, intuitive, scalable.
- This has affected
- Writing
- Computing
- Drafting
- Structural Analysis
- Learning
- Teaching methods must evolve with time and account for societal changes.
- By now all students have used computers since middle-high schools (if not earlier for games).
- Most computer program no longer have manuals, or steep learning curves. For a software to gain public trust and support it has to be simple, elegant, intuitive, scalable.
- This has affected
- Writing
- Computing
- Drafting
- Structural Analysis
- Learning
- Teaching methods must evolve with time and account for societal changes.
- By now all students have used computers since middle-high schools (if not earlier for games).
- Most computer program no longer have manuals, or steep learning curves. For a software to gain public trust and support it has to be simple, elegant, intuitive, scalable.
- This has affected
- Writing
- Computing
- Drafting
- Structural Analysis
- Learning
- Computers have revolutionized our skills in writing as the use of computers for word processing becomes increasingly prevalent.
- Computers have revolutionized our skills in writing as the use of computers for word processing becomes increasingly prevalent.
- Students no longer
- Acquire penmanship (technique of writing with the hand using a writing instrument).
- Think thoroughly before putting ideas on paper (too easy to copy/delete/paste).
- Instead:
- Computers have revolutionized our skills in writing as the use of computers for word processing becomes increasingly prevalent.
- Students no longer
- Acquire penmanship (technique of writing with the hand using a writing instrument).
> - Think thoroughly before putting ideas on paper (too easy to copy/delete/paste).
- Instead:
- Computers have revolutionized our skills in writing as the use of computers for word processing becomes increasingly prevalent.
- Students no longer
- Acquire penmanship (technique of writing with the hand using a writing instrument).
- Think thoroughly before putting ideas on paper (too easy to copy/delete/paste).
- Computers have revolutionized our skills in writing as the use of computers for word processing becomes increasingly prevalent.
- Students no longer
- Acquire penmanship (technique of writing with the hand using a writing instrument).
- Think thoroughly before putting ideas on paper (too easy to copy/delete/paste).
- Instead:

- Computers have revolutionized our skills in writing as the use of computers for word processing becomes increasingly prevalent.
- Students no longer
- Acquire penmanship (technique of writing with the hand using a writing instrument).
- Think thoroughly before putting ideas on paper (too easy to copy/delete/paste).
- Instead:
- WYSIWYG Word processor (i.e. Word).
- Document Preparation System with plain text markups, LATEX(similar to HTML)
- Computers have revolutionized our skills in writing as the use of computers for word processing becomes increasingly prevalent.
- Students no longer
- Acquire penmanship (technique of writing with the hand using a writing instrument).
- Think thoroughly before putting ideas on paper (too easy to copy/delete/paste).
- Instead:
- WYSIWYG Word processor (i.e. Word).
- Document Preparation System with plain text markups, ${ }^{14 T} \mathrm{E}_{\mathrm{E}} \mathrm{X}$ (similar to HTML)
- Before
- Abaqus
- Slide Rule
- Had an ability to
- Before
- Abaqus
- Slide Rule
- Had an ability to
- Before
- Abaqus
- Slide Rule

- Present

- Before
- Abaqus
- Slide Rule
- Had an ability to

> Perform mental calculation (arithmetical calculations using only the human brain), i.e. 78×3. Get a feel for numbers $3200 \times 400=1,280,000$ Perform simple trigonometric identities, calculus operations $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$ or $\int \frac{1}{x} d x$

- Before
- Abaqus
- Slide Rule
- Had an ability to
- Perform mental calculation (arithmetical calculations using only the human brain), i.e. 78×3.
- Present
- Before
- Abaqus
- Slide Rule
- Had an ability to
- Perform mental calculation (arithmetical calculations using only the human brain), i.e. 78×3.
- Get a feel for numbers $3200 \times 400=1,280,000$
- Perform simple trigonometric identities, calculus operations $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$ or $\int \frac{1}{x} d x$
- Present
- Before
- Abaqus
- Slide Rule
- Had an ability to
- Perform mental calculation (arithmetical calculations using only the human brain), i.e. 78×3.
- Get a feel for numbers $3200 \times 400=1,280,000$
- Perform simple trigonometric identities, calculus operations $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$ or $\int \frac{1}{x} d x$
- Before
- Abaqus
- Slide Rule
- Had an ability to
- Perform mental calculation (arithmetical calculations using only the human brain), i.e. 78×3.
- Get a feel for numbers $3200 \times 400=1,280,000$
- Perform simple trigonometric identities, calculus operations $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$ or $\int \frac{1}{x} d x$
- Present
- Programmable calculators
- Excel
- Matlab
- Mathematica or Mapple
- Mathcad
- Before
- Abaqus
- Slide Rule
- Had an ability to
- Perform mental calculation (arithmetical calculations using only the human brain), i.e. 78×3.
- Get a feel for numbers $3200 \times 400=1,280,000$
- Perform simple trigonometric identities, calculus operations $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$ or $\int \frac{1}{x} d x$
- Present
- Programmable calculators
- Excel
- Matlab
- Mathematica or Mapple
- Mathcad
- Before
- Abaqus
- Slide Rule
- Had an ability to
- Perform mental calculation (arithmetical calculations using only the human brain), i.e. 78×3.
- Get a feel for numbers $3200 \times 400=1,280,000$
- Perform simple trigonometric identities, calculus operations $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$ or $\int \frac{1}{x} d x$
- Present
- Programmable calculators
- Excel
- Matlab
- Mathematica or Mapple
- Mathcad
- Before
- Abaqus
- Slide Rule
- Had an ability to
- Perform mental calculation (arithmetical calculations using only the human brain), i.e. 78×3.
- Get a feel for numbers $3200 \times 400=1,280,000$
- Perform simple trigonometric identities, calculus operations $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$ or $\int \frac{1}{x} d x$
- Present
- Programmable calculators
- Excel
- Matlab
- Mathematica or Mapple
- Before
- Abaqus
- Slide Rule
- Had an ability to
- Perform mental calculation (arithmetical calculations using only the human brain), i.e. 78×3.
- Get a feel for numbers $3200 \times 400=1,280,000$
- Perform simple trigonometric identities, calculus operations $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$ or $\int \frac{1}{x} d x$
- Present
- Programmable calculators
- Excel
- Matlab
- Mathematica or Mapple
- Before
- Abaqus
- Slide Rule
- Had an ability to
- Perform mental calculation (arithmetical calculations using only the human brain), i.e. 78×3.
- Get a feel for numbers $3200 \times 400=1,280,000$
- Perform simple trigonometric identities, calculus operations $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$ or $\int \frac{1}{x} d x$
- Present
- Programmable calculators
- Excel
- Matlab
- Mathematica or Mapple
- Mathcad
- Basic
- Pascal
- Fortran 90
- Fortran 2018
- C
- $\mathrm{C}+$
- Perl
- Python, etc...
- Basic
- Pascal

- Fortran 90

- Fortran 2018

- C++
- Per'
- Python, etc...
- Basic
- Pascal
- Fortran 90

- Fortran 2018

- Perl
- Python, etc...
- Basic
- Pascal
- Fortran 90
- Fortran 2018
- Perl
- Python, etc...
- Basic
- Pascal
- Fortran 90
- Fortran 2018
- C
- C++
- Perl
- Python, etc...
- Basic
- Pascal
- Fortran 90
- Fortran 2018
- C
- C++
- Perl
- Python, etc...
- Basic
- Pascal
- Fortran 90
- Fortran 2018
- C
- C++
- Perl
- Python, etc...
- Basic
- Pascal
- Fortran 90
- Fortran 2018
- C
- C++
- Perl
- Python, etc...
- Hand.
- T-Square, Triangle, "blue-prints".
- Auto-CAD
- Solid-Mork
- BIM (Building Information Modelling), REVIT
- Hand.
- T-Square, Triangle, "blue-prints".
- Auto-CAD
- Solid-Work
- BIM (Building Information Modelling), REVIT
- Hand.
- T-Square, Triangle, "blue-prints".
- Auto-CAD
- Solid-Work
- BIM (Building Information Modelling), REVIT
- Hand.
- T-Square, Triangle, "blue-prints".
- Auto-CAD
- Solid-Work

- BIM (Building Information Modelling), REVIT

- Hand.
- T-Square, Triangle, "blue-prints".
- Auto-CAD
- Solid-Work
- BIM (Building Information Modelling), REVIT
- SAP
- SAP 4
- NonSAP
- Abaqus, Nastran, Ansys
- RISA, BOM
- SAP
- SAP 4
- NonSAP
- Abaqus, Nastran, Ansys
- DISA, BOM
- SAP
- SAP 4
- NonSAP
- Abaqus, Nastran, Ansys
- RISA, BOM
- SAP
- SAP 4
- NonSAP
- Abaqus, Nastran, Ansys

- RISA, BOM

- SAP
- SAP 4
- NonSAP
- Abaqus, Nastran, Ansys
- RISA, BOM

- Medium

- Tablets
- Books
- e-book
- Connect "cloud book"
- Organisation
- Medium
- Tablets
- Books
- e-book
- Connect "cloud book"
- Organisation
- Medium
- Tablets
- Books
- e-book
- Connect "cloud book"
- Organisation
- Medium
- Tablets
- Books
- e-book
- Connect "cloud book" - Organisation
- Medium
- Tablets
- Books
- e-book
- Connect "cloud book"
- Organisation
- Medium
- Tablets
- Books
- e-book
- Connect "cloud book"
- Organisation
- Assignment notebooks - Learning Management System, Canvas
- Medium
- Tablets
- Books
- e-book
- Connect "cloud book"
- Organisation
- Assignment notebooks
- Learning Management System, Canvas
- Medium
- Tablets
- Books
- e-book
- Connect "cloud book"
- Organisation
- Assignment notebooks
- Learning Management System, Canvas
- Course will bring together the most modern technology applicable to it:
- Course will bring together the most modern technology applicable to it:
- Connect
- MathCad
- Canvas
- Course will bring together the most modern technology applicable to it:
- Connect
- MathCad
- Canvas
- Course will bring together the most modern technology applicable to it:
- Connect
- MathCad
- Canvas

Structural Analysis Loads

Victor E. Saouma

saouma@colorado.edu

University of Colorado, Boulder

Spring 2022

Table of Contents I

(1) Introduction

- Introduction; 2

2 Tributary Area

- Example
(3) Vertical Load
- Dead Load
- Live Loads
- Examples
- Snow Load
(4) Inclined Load
(5) Lateral Loads
- ASCE-7
- Wind; Equations
- Wind; Tables
- Example

Table of Contents II

(7) Hydrostatic Load
(8) Bridge Loads

- The main purpose of a structure is to transfer load from one point to another: bridge deck to pier; slab to beam; beam to girder; girder to column; column to foundation; foundation to soil, etc.
- There can also be secondary loads such as thermal (in restrained structures), shrinkage (concrete), differential settlement of foundations, P-Delta effects (additional moment caused by the product of the vertical force and the lateral displacement caused by lateral load in a high rise building), misfit between structural elements. Often those loads are ignored, yet they may potentially cause substantial damage.
- Loads are generally subdivided into two categories: vertical and horizontal loads. In linear elastic analysis, it is common to consider each load type separately.
- Vertical loads are the predominant ones and include dead and live loads.
- Horizontal loads act horizontally on the structure and caused by Wind and earthquakes
- Other loads include, hydrostatic, active/passive soil pressures, and thermal.
- Live loads specified by codes represent the maximum possible loads and the likelihood of all these loads occurring simultaneously is remote. Hence, building codes allow some reduction when certain loads are combined together.
- Only the dead load is static. The live load on the other hand may or may not be applied on a given component of a structure. Hence, the load placement arrangement resulting in the highest internal forces (moment +ve or -ve, shear) at different locations must be considered.

DL

LL1

- For preliminary analysis, the tributary area of a structural component can determine the total applied load. The uniform load per unit area over the shaded area is transferred as a linear load over the adjacent structural element.

Tributary Area

Example

Vertical Load

ACTUAL DISCRETE LOADS ON SUPPORT BEAM

ASSUMED EQUIVALENT UNIFORM LOAD

- Dead loads (DL) consist of the weight of the structure itself, and other permanent fixtures (such as walls, slabs, machinery).
- DL can easily be determined from the structure's dimensions and density

Material	$\mathrm{lb} / \mathrm{ft}^{3}$	$\mathrm{kN} / \mathrm{m}^{3}$
Aluminum	173	27.2
Brick	120	18.9
Concrete	145	33.8
Steel	490	77.0
Wood (pine)	40	6.3

- For design purposes, dead loads must be estimated and verified at the end of the design cycle. This makes the design process iterative.
- Live loads (LL) are movable or moving and may be horizontal.
- In analysis load placement should be such that their effect (shear/moment) are maximized.

Use or Occupancy	$\mathrm{lb} / \mathrm{tt}^{2}$
Assembly areas	50
Cornices, marquees, residential balconies	60
Corridors, stairs	100
Garage,	50
Office buildings	50
Residential	40
Storage	$125-250$

- For small areas (30 to 50 sq ft) the effect of concentrated load should be considered separately.
- Since there is a small probability that large tributary areas are fully loaded, a reduction of the live load L_{0} when the influence area $K_{L L} A_{T}$ is larger than $400 \mathrm{ft}^{2}$, however the reduced load must not exceed 50% of L_{0} for members supporting one floor or a section of a single floor, nor less than 40% of L_{0} for members supporting two or more floors:

$$
\begin{equation*}
L=L_{0}\left(0.25+\frac{15}{\sqrt{K_{L L} A_{T}}}\right) \tag{1}
\end{equation*}
$$

where $K_{L L}$ is equal to 4 for interior columns and exterior columns without cantiliver slab, and 2 for interior beams and edge beams without cantiliver slabs.

- The reduced live load for flat roofs is

$$
\begin{equation*}
L=L_{0} R_{1} R_{2} \tag{2}
\end{equation*}
$$

where $R_{1}=1.2-0.001 A_{T}$ for $200 \mathrm{ft}^{2}<A_{T}<600 \mathrm{ft}^{2}, R_{1}=1.0$ for $A_{T} \leq 200 \mathrm{ft}^{2}$, and $R_{1}=0.6$ for $A_{T} \geq 600 \mathrm{ft}^{2}$. $R_{2}=1.0$ for $F \leq 4, R_{2}=1.2-0.05 F$ for $4<F<12$, and $R_{2}=0.6$ for $F \geq 12$ where F is the number of inches of rise of the roof per foot of span.

- For columns or beams supporting more than one floor, A_{T} is the sum of the tributary area from all the floors.

A four storey office building has interior columns spaced 30 ft apart in the two directions. If the flat roof loading is $50 \mathrm{lb} / \mathrm{ft}^{2}$, determine the reduced live load supported by a typical interior column located on the ground level

$$
\begin{aligned}
L_{0} & =50 \mathrm{psf} \\
A_{T} & =(30)(30)=900 \mathrm{ft}^{2}\left(>400 \mathrm{ft}^{2} \sqrt{ }\right) \\
L_{\text {floor }} & =L_{0}\left(0.25+\frac{15}{\sqrt{K_{L L} A_{T}}}\right)=50\left(0.25+\frac{15}{\sqrt{4(900)}}\right)=25 \mathrm{psf}
\end{aligned}
$$

$$
\begin{aligned}
\% \text { Reduction } & =\frac{25}{50}=50 \%>40 \% \sqrt{ } \\
L_{\text {roof }} & =L_{0} R_{1} R_{2}=(50)(0.6)(1)=30 \mathrm{psf} \\
F_{1} & =[\underbrace{(25 \mathrm{psf})\left(3 \times 900 \mathrm{ft}^{2}\right)}_{1^{\text {st }} 3 \text { columns }}+\underbrace{(30 \mathrm{psf})\left(900 \mathrm{ft}^{2}\right)}_{\text {Roof column }}] \frac{1}{1,000} \\
& =67.5+27.0=94.5 \mathrm{k}
\end{aligned}
$$

Note that without reduction the total load would have been

$$
F_{2}=4(50 \mathrm{psf})\left(900 \mathrm{ft}^{2}\right) \frac{1}{1,000}=180.0 \mathrm{k}
$$

- Must be determined from local codes and depend on geographical locations.

- Snow loads are always given on the projected length or area on a slope.
- The steeper the roof, the lower the snow retention. For snow loads greater than 20 psf and roof pitches α more than 20° the snow load p may be reduced by

$$
R=(\alpha-20)\left(\frac{p}{40}-0.5\right) \quad \text { (psf) }
$$

- Extremely important figure.

Minimum Design Loads and Associated Criterla for Buildings and Other Structures

Wind; Equations

- Let us pull back a step from the textbook, and tie together fluid and structures.
- Bernouilli (1700-1782) Principle: $P+\frac{1}{2} \rho v^{2}=c s t \Rightarrow$ velocity increases, the pressure decreases. This explains airfoil and negative pressures (suction) on roofs.

"Longer Path" or "Equal Transit" Theory

Wind; Equations

- When a steady streamline airflow of velocity V is completely stopped by a rigid body $\left(P+\frac{1}{2} \rho v^{2}=0\right)$, the stagnation pressure (or velocity pressure) q_{s} becomes

$$
\begin{equation*}
q_{s}=\frac{1}{2} \rho V^{2} \tag{3}
\end{equation*}
$$

where ρ is the air mass density of air.

- At sea level and a temperature of $15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)$, the air specific weight γ is 0.0765 $\mathrm{lb} / \mathrm{tt}^{3}$, thus the air mass density will be

$$
\begin{equation*}
\rho=\frac{\gamma}{g}=\frac{0.0765}{32.2} \tag{4}
\end{equation*}
$$

this would yield a pressure of

$$
\begin{align*}
q_{s} & =\frac{1}{2} \frac{(0.0765) \mathrm{lb} / \mathrm{ft}^{3}}{(32.2) \mathrm{ft} / \mathrm{sec}^{2}}\left(\frac{(5280) \mathrm{ft} / \mathrm{mile}}{(3600) \mathrm{sec} / \mathrm{hr}} V\right)^{2} \tag{5}\\
& =0.00256 \mathrm{~V}^{2}
\end{align*}
$$

where V is the maximum wind velocity (in miles per hour) and q_{s} is in psf and can be obtained from wind maps (in the United States $70 \leq V \leq 110$)

- The previous equation can now be generalized through an emperical equation to account for the shape and surroundings of the building. Thus, the design pressure q_{z} (psf) is given by

$$
\begin{equation*}
q_{z}=\underbrace{0.00256 V^{2}}_{q_{s}} K_{z} K_{z t} K_{d} K_{e} \tag{6}
\end{equation*}
$$

Wind; Equations

where
$q_{z} \quad$ Velocity wind pressure at height z above ground.
V Velocity, mph
$K_{z} \quad$ Velocity pressure exposure coefficient accounts for height and exposure $K_{x}=[B|C| D]$, Exposure B is for urban and suburban, or wooded areas with low structures; C for open terrain with scattered obstructions generally less than 30 ft ; D for unobstructed areas exposed to wind.
$K_{z t} \quad$ Topological factor accounts for hills (usually 1.0)
$K_{d} \quad$ Directionality factor reflects the fact that the climatologically and aerodynamically or dynamically most unfavorable wind directions typically do not coincide.
$K_{e} \quad$ Ground elevation factor accounts for variability of air density in terms of elevation above sea-level

- Last step:

$$
\begin{equation*}
p=q_{z} G C_{p} \tag{7}
\end{equation*}
$$

where
G Gust factor $=0.85$
$C_{p} \quad$ External pressure coefficient (usually ± 0.8) fraction of the wind acting on
we need $K_{z}, K_{d}, K_{e}, G, C_{p}$.
K_{z}

K_{Z}			
$z(\mathrm{ft})$	Exposure		
	B	C	D
$0-25$	0.57	0.85	1.03
20	0.62	0.90	1.08
25	0.66	0.94	1.12
30	0.70	0.98	1.16
40	0.76	1.04	1.22
50	0.81	1.09	1.27
100	0.99	1.26	1.43
160	1.13	1.39	1.55

K_{d}

Buildings	
Main Wind Force Resisting System	0.85
Components and Cladding	0.85
Arched roofs	0.85
Chimneys, Tanks. and Similar Structures	
Square	0.90
Hexagonal	0.95
Round	0.95
Open Signs and Lattice Frameworks	0.85
Trussed Towers	
Triangular. square. rectangular	
All other cross sections	0.85

K_{e}

Altitude (ft)	Air Density (pcf)	K_{e} Factor
0	0.0765	1.00
1,000	0.0742	0.96
2,000	0.072	0.93
3,000	0.0699	0.90
4,000	0.0678	0.86
5,000	0.0659	0.83
6,000	0.0639	0.80

C_{p} Wall pressure coefficient

Note: Two values of C_{p} : must design for both

Wind blows on the side of the fully enclosed agricultural building located on open flat terrain in Oklahoma. Determine the external pressure acting on the roof. Use linear interpolation to determine q_{h}.

Example

$$
\begin{aligned}
q_{z} & =0.00256 V^{2} K_{z} K_{z t} K_{d} K_{e} \\
C & =0.85 \text { Exposure: Open Terrain } \\
K_{z}^{0-15} & =0.85 \\
K_{z}^{20} & =0.90 \\
K_{z t} & =1 \text { on level ground } \\
K_{d} & =0.85 \text { Main building } \\
K_{e} & ==1.0 \text { Elevation less than } 1,000 \mathrm{ft} \\
q_{15} & =0.00256(90)^{2}(0.85)(1)(1)(0.85)=14.9 \mathrm{psf} \\
q_{20} & =0.00256(90)^{2}(0.90)(1)(1)(0.85)=15.9 \mathrm{psf} \\
h & =15+\frac{1}{2}\left(25 \mathrm{tan} 10^{\circ}\right)=17.20 \mathrm{ft} \text { Mean elevation } \\
\frac{q_{h}-14.9}{17.20-15} & =\frac{15.9-14.9}{20-15} \\
\Rightarrow q_{h} & =15.34 \mathrm{psf}
\end{aligned}
$$

Example

External pressure on winward side of roof

$$
\begin{aligned}
p & =q_{h} G C_{p} \\
C_{p} & =-0.9 \\
p & =q_{h} G C_{p}=15.34(0.85)(-0.9)=-11.7 \mathrm{psf}
\end{aligned}
$$

External pressure on Leeeward side of roof

$$
\begin{aligned}
p & =q_{h} G C_{p} \\
C_{p} & =-0.5 \\
p & =q_{h} G C_{p}=15.34(0.85)(-0.5) \\
& =-6.5 \mathrm{psf}
\end{aligned}
$$

Earth Load

- Structures below ground must resist lateral earth pressure.

$$
q=K \gamma h
$$

where γ is the soil density, $K=\frac{1-\sin \Phi}{1+\sin \Phi}$ is the pressure coefficient, h is the height.

- For sand and gravel $\gamma=120 \mathrm{lb} / \mathrm{ft}^{3}$, and $\Phi \approx 30^{\circ}$.
- If the structure is partially submerged, it must also resist hydrostatic pressure of water

$$
q=\gamma_{w} h
$$

where $\gamma_{w}=62.4 \mathrm{lbs} / \mathrm{ft}^{3}$.

Hydrostatic Load

Example The basement of a building is 12 ft below grade. Ground water is located 9 ft below grade, what thickness concrete slab is required to exactly balance the hydrostatic uplift?
The hydrostatic pressure must be countered by the pressure caused by the weight of concrete. Since $p=\gamma h$ we equate the two pressures and solve for h the height of the concrete slab

$$
\begin{aligned}
& \underbrace{(62.4) \mathrm{lbs} / \mathrm{ft}^{3} \times(12-9) \mathrm{ft}}_{\text {water }}=\underbrace{(150) \mathrm{lbs} / \mathrm{ft}^{3} \times h}_{\text {concrete }} \\
& \Rightarrow h=\frac{(62.4) \mathrm{lbs} / \mathrm{ft}^{3}}{(150) \mathrm{lbs} / \mathrm{ft}^{3}}(3) \mathrm{ft}(12) \mathrm{in} / \mathrm{ft}=14.976 \mathrm{in} \simeq 15.0 \mathrm{inch}
\end{aligned}
$$

Structural Analysis

Equilibrium \& Reactions

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Spring 2022

Table of Contents I

(1) Introduction
(2) Equilibrium
(3) Equations of Conditions

4 Static Determinancy
(5) Geometric Instability
(6) Free Body Diagrams
(7) Examples

- Simply Supported Beam
- Parabolic Load
- Three Span Beam
- Three Hinged Gable Frame
- Inclined Supports

Newton's Third Law
 To every action there is an equal and opposite reaction.

Equilibrium

- Summation of forces and moments, in a static system must be equal to zero.
- In a 3D cartesian coordinate system there are a total of 6 independent equations of equilibrium:

$$
\begin{aligned}
\Sigma F_{x} & =\Sigma F_{y}=\Sigma F_{z}=0 \\
\Sigma M_{x} & =\Sigma M_{y}=\Sigma M_{z}=0
\end{aligned}
$$

- In a 2D cartesian coordinate system there are a total of 3 independent equations of equilibrium:

$$
\Sigma F_{x}=\Sigma F_{y}=\Sigma M_{z}=0
$$

- For reaction calculations, the externally applied load may be reduced to an equivalent force; For internal forces (shear and moment) we must use the actual load distribution.
- Summation of the moments can be taken with respect to any arbitrary point.
- Whereas forces are represented by a vector, moments are also vectorial quantities and are represented by a curved arrow or a double arrow vector.
- Not all equations are applicable to all structures

Equilibrium

Structure Type	Equations					
Beam, no axial forces		ΣF_{y}			ΣM_{z}	
2D Truss, Frame, Beam	ΣF_{x}	ΣF_{y}	ΣF_{z}	ΣM_{x}	ΣM_{y}	ΣM_{z}
Grid			ΣF_{x}	ΣF_{y}	ΣF_{z}	ΣM_{x}
	ΣM_{y}	ΣM_{z}				
3D Truss, Frame						

Alternate Set			
Beams, no axial Force	ΣM_{z}^{A}	ΣM_{z}^{B}	
2 D Truss, Frame, Beam	ΣF_{x}	ΣM_{z}^{A}	ΣM_{Z}^{B}
	ΣM_{z}^{A}	ΣM_{z}^{B}	ΣM_{z}^{C}

- The three conventional equations of equilibrium in 2D: $\Sigma F_{x}, \Sigma F_{y}$ and ΣM_{z} can be replaced by the independent moment equations $\Sigma M_{z}^{A}, \Sigma M_{z}^{B}, \Sigma M_{z}^{C}$ provided that A, B, and C are not colinear.
- It is always preferable to check calculations by another equation of equilibrium.
- Before you write an equation of equilibrium,
(1) Arbitrarily decide which is the +ve direction
(2) Assume a direction for the unknown quantities
(3) The right hand side of the equation should be zero

If your reaction is negative, then it will be in a direction opposite from the one assumed.

- Summation of all external forces (including reactions) is not necessarily zero: dynamic problem.
- Summation of external forces is equal and opposite to the internal ones. Thus the net force/moment is equal to zero.
- The external forces give rise to the (non-zero) shear and moment diagram.

Equations of Conditions

- If a structure has an internal hinge (which may connect two or more substructures), then this will provide an additional equation ($\Sigma M=0$ at the hinge) which can be exploited to determine the reactions.
- Those equations are often exploited in trusses (where each connection is a hinge) to determine reactions.
- In an inclined roller support with S_{x} and S_{y} horizontal and vertical projection, then the reaction R would have

$$
\frac{R_{x}}{R_{y}}=\frac{S_{y}}{S_{x}}
$$

- In statically determinate structures, reactions depend only on the geometry, boundary conditions and loads.
- If the reactions can not be determined simply from the equations of static equilibrium (and equations of conditions if present), then the reactions of the structure are said to be statically indeterminate.
- the degree of static indeterminacy is equal to the difference between the number of reactions and the number of equations of equilibrium

- Failure of one support in a statically determinate system results in the collapse of the structures. Thus a statically indeterminate structure is safer than a statically determinate one.
- Geometric instability will occur if:
(1) All reactions are parallel and a non-parallel load is applied to the structure.
(2) All reactions are concurrent

(3) The number of reactions is smaller than the number of equations of equilibrium, that is a mechanism is present in the structure.

Free Body Diagrams

- Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces/moments acting upon an object in a given situation. It is not a scaled drawing, it is a diagram
- Free body diagrams consist of:
- A simplified version of the body
- Forces shown as straight arrows pointing in the direction they act on the body, moments are shown as curves with an arrow head or a vector with two arrow heads pointing in the direction they act on the body
- One or more reference coordinate systems
- By convention (though not always followed), reactions to applied forces are shown with hash marks through the stem of the vector
- All forces and moments must balance to zero.
- Free body diagrams do not necessarily represent an entire physical body. Portions of a body can be selected for analysis. This would allows calculation of internal forces, making them appear external, allowing analysis. This can be used multiple times to calculate internal forces at different locations within a physical body.

Determine the reactions of the simply supported beam shown below.

The beam has 3 reactions, we have 3 equations of static equilibrium, hence it is statically determinate.

$$
\begin{array}{rll}
(+\mathrm{rgt}) \Sigma F_{x}=0 ; & \Rightarrow R_{a x}-36 \mathrm{k}=0 \\
(+\uparrow) \Sigma F_{y}=0 ; & \Rightarrow & R_{\mathrm{ay}}+R_{d y}-60 \mathrm{k}-(4) \mathrm{k} / \mathrm{ft}(12) \mathrm{ft}=0 \\
(+\boldsymbol{+}) \Sigma M_{z}^{c}=0 ; & \Rightarrow & 12 R_{\mathrm{ay}}-6 R_{d y}-(60)(6)=0
\end{array}
$$

or

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 12 & -6
\end{array}\right]\left\{\begin{array}{l}
R_{a x} \\
R_{a y} \\
R_{d y}
\end{array}\right\}=\left\{\begin{array}{c}
36 \\
108 \\
360
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
R_{a x} \\
R_{a y} \\
R_{d y}
\end{array}\right\}=\left\{\begin{array}{l}
36 \mathrm{k} \\
56 \mathrm{k} \\
52 \mathrm{k}
\end{array}\right\}
$$

Alternatively we could have used another set of equations:

$$
\begin{array}{llll}
(+\perp) \Sigma M_{z}^{a}=0 ; & (60)(6)+(48)(12)-\left(R_{d y}\right)(18)=0 & \Rightarrow & R_{d y}=52 \mathrm{k} \uparrow \\
(+\downarrow) \Sigma M_{z}^{d}=0 ; & \left(R_{a y}\right)(18)-(60)(12)-(48)(6)=0 & \Rightarrow & R_{a y}=56 \mathrm{k} \uparrow
\end{array}
$$

Check:

$$
(+\uparrow) \Sigma F_{y}=0 ; 56+52-60-48=0 \sqrt{ }
$$

There are two unknowns and two equations of equilibrium (ΣF_{y} and ΣM), we judiciously start with the second one, as it would directly give us the reaction at B Considering an infinitesimal element of length $d x$, weight $d W$, and moment

$$
\begin{aligned}
(+\infty) \Sigma M_{z}^{A}=0 ; \int_{x=0}^{\int_{x=L}^{\underbrace{}_{0}\left(\frac{x}{L}\right)^{2}} d x} \times x-\left(R_{B}\right)(L) & =0 \\
& \underbrace{\underbrace{\underbrace{}_{d W}}_{d W}}_{M} \\
& \Rightarrow R_{B}=\frac{1}{L} w_{0}\left(\frac{L^{4}}{4 L^{2}}\right)
\end{aligned}
$$

With R_{B} determined, we solve for R_{A} from

$$
\begin{aligned}
(+4) \Sigma F_{y}=0 ; \quad R_{A} & +\underbrace{\frac{1}{4} w_{0} L}_{R_{b}}-\int_{x=0}^{x=L} w_{0}\left(\frac{x}{L}\right)^{2} d x
\end{aligned}=0 \quad \begin{aligned}
& \Rightarrow R_{A}=\frac{w_{0}}{L^{2}} \frac{L^{3}}{3}-\frac{1}{4} w_{0} L \quad
\end{aligned}
$$ $d M$:

- 4 unknowns ($R_{a x}, R_{a y}, R_{c y}$ and $R_{e y}$), three equations of equilibrium and one equation of condition ($\Sigma M_{b}=0$), thus structure is statically determinate.
- Though there are many approaches to solve for those four unknowns (all of them correct), some are simpler.
- In this case, it is easiest to break the structure into two substructures, and examine the free body diagram of each one of them separately.
(1) Isolating ab:

$$
\begin{array}{rll}
(+د) \Sigma M_{z}^{b}=0 ; & (9)\left(R_{a y}\right)-(40)(5)=0 & \Rightarrow R_{A y}=22.2 \mathrm{k} \uparrow \\
(+\perp) \Sigma M_{z}^{a}=0 ; & (40)(4)-(S)(9)=0 & \Rightarrow S=17.7 \mathrm{k} \uparrow \\
\Sigma F_{x}=0 ; & & \Rightarrow R_{a x}=30 \mathrm{klft}
\end{array}
$$

(2) Isolating be:

$$
\begin{array}{cc}
(+\supset) \Sigma M_{z}^{e}=0 ; & -(17.7)(18)-(40)(15)-(4)(12)(6)-(30)(2)+R_{c y}(12)=0 \\
\Rightarrow R_{c y}=\frac{1,266.6}{12}=105.6 \mathrm{k} \uparrow \\
(+\supset) \Sigma M_{z}^{c}=0 ; & -(17.7)(6)-(40)(3)+(4)(12)(6)+(30)(10)-R_{e y}(12)=0 \\
\Rightarrow R_{e y}=\frac{361.8}{12}=30.15 \mathrm{k}^{\uparrow}
\end{array}
$$

(3) Check

$$
\Sigma F_{y}=0 ; \uparrow ; 22.2-40-40+105.6-4(12)-30+30.15=-0.050 \simeq 0 . \sqrt{ }
$$

The three-hinged gable frames spaced at 30 ft . on center. Determine the reactions components on the frame due to: 1) Roof dead load, of 20 psf of roof area; 2) Snow load, of 30 psf of horizontal projection; 3) Wind load of 15 psf of vertical projection. Determine the critical design values for the vertical and horizontal reactions.

(1) Due to symmetry, there is no vertical force transmitted by the hinge for snow and dead load, and thus we can consider only the left (or right) side of the frame.
(2) Point equivalent loads:
2.1 Roof dead load per one side of frame is

$$
D L=(20) \operatorname{psf}(30) \mathrm{ft}\left(\sqrt{30^{2}+15^{2}}\right) \mathrm{ft} \frac{1}{1,000} \mathrm{lbs} / \mathrm{k}=20.2 \mathrm{k}
$$

2.2 Snow load per one side of frame is

$$
S L=(30) \operatorname{psf}(30) \mathrm{ft}(30) \mathrm{ft} \frac{1}{1,000} \mathrm{lbs} / \mathrm{k}=27 . \mathrm{k} \downarrow
$$

2.3 Wind load per frame (ignoring the suction) is

$$
W L=(15) \operatorname{psf}(30) \mathrm{ft}(20+15) \mathrm{ft} \frac{1}{1,000} \mathrm{lbs} / \mathrm{k}=15.75 \mathrm{krgt}
$$

(3) There are 4 reactions, 3 equations of equilibrium and one equation of condition \Rightarrow statically determinate.
Alternatively, by symmetry there is no shear at the hinge C, and we would have for the substructure two reactions at the support and one (horizontal) at the hinge.
Relationship between the horizontal and vertical reactions at A due to a centered vertical load, $A_{H V}$ and $A_{V V}$ respectively is determined by taking the moment with respect to the hinge (b):

Substituting for roof dead and snow load we obtain

$$
\begin{aligned}
& A_{V V}^{D L}=C_{V}^{D L}=20.2 \mathrm{k} \uparrow \\
& A_{H V}^{D V}=C_{H V}^{K V}=(.429)(20.2)=8.66 \mathrm{krgt} \\
& A_{V V}^{S L}=C_{V V}^{S L}=27 . \mathrm{k} \uparrow \\
& A_{H V}^{S L}=C_{H V}^{S L}=(.429)(27 .)=11.58 \mathrm{krgt}
\end{aligned}
$$

(4) The reactions due to wind load (blowing from the left), are determined as follows:
4.1 Vertical reaction at A is determined by considering the entire structure and taking the moment with respect to C, (c)

$$
(+\downarrow) \Sigma M_{z}^{C}=0 ; \quad(15.75)\left(\frac{20+15}{2}\right)-60 A_{V H}=0 \Rightarrow A_{V H}=4.60 \mathrm{k} \uparrow
$$

$A_{V H}$ is the Vertical reaction at A due to the Horizontal load (The double subscript notation is extensively used in structural analysis. $X_{y z}$ typically implies quantity X at y due to some action z.) and from equilibrium of forces in the y direction, we have $B_{V H}=-A_{V H}=-4.60^{\dagger}$ (note that wind load does not have any vertical component).
4.2 The horizontal reaction at B is determined by considering the right substructure and taking moment with respect to the internal hinge at B

$$
(+\downarrow) \Sigma M_{z}^{B}=0 ; \quad 35 C_{H H}-(4.6)(30)=0 \quad \Rightarrow C_{H H}=3.95 \mathrm{klft}
$$

4.3 Horizontal reaction at A is taken by considering the entire structure and summing forces in the x direction:

$$
(+\mathrm{rgt}) \Sigma F_{X}=0 ; \quad 15.75-3.95-A_{H H}=0 \Rightarrow A_{H H}=11.80 \mathrm{klft}
$$

and note that A carries most of the horizontal load.
(5) Finally, the supports should be designed for themost critical (plausible) combination of reactions:

$$
\begin{aligned}
& H=8.66 \mathrm{k}+11.58 \mathrm{k}+11.8 \mathrm{k}=32.04 \mathrm{k} \\
& V=20.2 \mathrm{k}+27.0 \mathrm{k}+4.60 \mathrm{k}=51.8 \mathrm{k}
\end{aligned}
$$

A priori we would identify 5 reactions, however we do have 2 equations of conditions (one at each inclined support), thus with three equations of equilibrium, we have a statically determinate system.

$$
\begin{aligned}
(+\downarrow) \Sigma M_{z}^{b}=0 ; & \left(R_{a y}\right)(20)-(40)(12)-(30)(6)+(44.72)(6)-\left(R_{c y}\right)(12)=0 \\
& \Rightarrow 20 R_{a y}=12 R_{c y}+391.68 \\
(+ \text { rgt }) \Sigma F_{X}=0 ; & \frac{3}{4} R_{a y}-22.36-\frac{4}{3} R_{c y}=0 \\
& \Rightarrow R_{c y}=0.5625 R_{a y}-16.77
\end{aligned}
$$

Solving for those two equations:

$$
\left[\begin{array}{cc}
20 & -12 \\
0.5625 & -1
\end{array}\right]\left\{\begin{array}{l}
R_{a y} \\
R_{c y}
\end{array}\right\}=\left\{\begin{array}{c}
391.68 \\
16.77
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
R_{a y} \\
R_{c y}
\end{array}\right\}=\left\{\begin{array}{c}
14.37 \mathrm{k} \\
-8.69 \mathrm{k}
\end{array}\right\}
$$

The horizontal components of the reactions at a and c are

$$
\begin{aligned}
& R_{a x}=\frac{3}{4} 14.37=10.78 \mathrm{krgt} \\
& R_{c x}=\frac{4}{3} 8.69=-11.59 \mathrm{krgt}
\end{aligned}
$$

Finally we solve for $R_{b y}$

$$
\begin{aligned}
(+-) \Sigma M_{z}^{a}=0 ; \quad(40)(8)+(30)(14)- & \left(R_{b y}\right)(20)+(44.72)(26)+(8.69)(32)=0 \\
& \Rightarrow R_{b y}=109.04 \mathrm{k} \uparrow
\end{aligned}
$$

We check our results

$$
\begin{aligned}
(+4) \Sigma F_{y}=0 ; & 14.37-40-30+109.04-44.72-8.69 & =0 \sqrt{ } \\
(+\mathrm{rgt}) \Sigma F_{x}=0 ; & 10.78-22.36+11.59 & =0 \sqrt{ }
\end{aligned}
$$

Structural Analysis
 Trusses

Victor E. Saouma

saouma@colorado.edu

University of Colorado, Boulder

Spring 2022

Table of Contents I

(1) Introduction
(2) Basic Relations
(3) Determinacy and Stability
4. Method of Joints
(5) Examples

- Method of Joints; 2D
- Method of Joints; 3D Truss
(6) Method of Sections
- Method of Sections; Example
- Cables and trusses are 2D or 3D structures composed of an assemblage of simple one dimensional components which transfer only axial forces along their axis.
- Trusses are extensively used for bridges, long span roofs, electric tower, space structures.
- For trusses, it is assumed that
- Bars are pin-connected (equation of conditions)
- Joints are frictionless hinges ${ }^{1}$.
- Loads are applied at the joints only.
- A truss would typically be composed of triangular elements with the bars on the upper chord under compression and those along the lower chord under tension. Depending on the orientation of the diagonals, they can be under either tension or compression.

[^0]Sign Convention: Tension positive, compression negative. On a truss the axial forces are indicated as forces acting on the joints.
Stress-Force: $\sigma=\frac{P}{A}$
Stress-Strain: $\sigma=E \varepsilon$
Force-Displacement: $\varepsilon=\frac{\Delta L}{L}$
Equilibrium: $\Sigma F=0$

Determinacy and Stability

- Trusses are statically determinate when all the bar forces can be determined from the equations of statics alone. Otherwise the truss is statically indeterminate.
- A truss may be externally or internally determinate or indeterminate.
- If we refer to j as the number of joints, R the number of reactions and m the number of members, then we would have a total of $m+R$ unknowns and $2 j$ (or $3 j$) equations of statics (2D or 3D at each joint). If we do not have enough equations of statics then the problem is indeterminate, if we have too many equations then the truss is unstable.

	2D	3D
Static Indeterminacy		
External	$R>3$	$R>6$
Internal	$m+R>2 j$	$m+R>3 j$
Unstable	$m+R<2 j$	$m+R<3 j$

Determinacy and Stability

- If $m<2 j-3$ (in 2D) the truss is unstable, and it will not remain a rigid body when it is detached from its supports. However, when attached to the supports, the truss will be rigid.
- The external equations of equilibrium which can be used to determine the reactions are
- $2 \mathrm{D} \Sigma F_{X}=0, \Sigma F_{Y}=0$ and $\Sigma M_{Z}=0$.
- For 3D trusses the available equations are $\Sigma F_{X}=0, \Sigma F_{Y}=0, \Sigma F_{Z}=0$ and $\Sigma M_{X}=0, \Sigma M_{Y}=0, \Sigma M_{Z}=0$.
- At each joint
- For a 2D truss: $\Sigma F_{X}=0$ and $\Sigma F_{Y}=0$.
- For 3D trusses: $\Sigma F_{X}=0, \Sigma F_{Y}=0$ and $\Sigma F_{Z}=0$.
- 4 reactions, thus it is externally indeterminate.
- 6 joints $(j=6), 4$ reactions $(R=4)$ and 9 members $(m=9)$.
- A total of $m+R=9+4=13$ unknowns and $2 \times j=2 \times 6=12$ equations of equilibrium, thus the truss is internally statically indeterminate.
- There are two methods of analysis for statically determinate trusses
(1) The Method of joints
(2) The Method of sections
- The method of joints can be summarized as follows
- Determine if the structure is statically determinate
- Compute all reactions
- Sketch a free body diagram showing all joint loads (including reactions)
- For each joint, and starting with the loaded ones, apply the appropriate equations of equilibrium (ΣF_{x} and ΣF_{y} in 2D; $\Sigma F_{x}, \Sigma F_{y}$ and ΣF_{z} in 3D).
- Because truss elements can only carry axial forces, the resultant force $\left(\vec{F}=\vec{F}_{x}+\vec{F}_{y}\right)$ must be along the member.

$$
\frac{F}{L}=\frac{F_{x}}{L_{x}}=\frac{F_{y}}{L_{y}}
$$

- Always keep track of the x and y components of a member force $\left(F_{x}, F_{y}\right)$, as those might be needed later on when considering the force equilibrium at another joint to which the member is connected.

Method of Joints

- This method should be used when all member forces must be determined.
- In truss analysis, there is no sign convention. A member is assumed to be under tension (or compression). If after analysis, the force is found to be negative, then this would imply that the wrong assumption was made, and that the member should have been under compression (or tension).
- On a free body diagram, the internal forces are represented by arrow acting on the joints and not as end forces on the element itself. That is for tension, the arrow is pointing away from the joint, and for compression toward the joint.

(1) $R=3, m=13,2 j=16$, and $m+R=2 j \sqrt{ }$
(2) We compute the reactions

$$
\begin{align*}
(+\circlearrowleft) \Sigma M_{z}^{E}=0 ; & \Rightarrow(20+12)(3)(24)+(40+8)(2)(24)+(40)(24) \\
(+\downarrow) \Sigma F_{y}=0 ; & \Rightarrow-R_{A_{y}}(4)(24)=0 \Rightarrow R_{A_{y}}=58 \mathrm{k} \uparrow \\
& \Rightarrow R_{E_{y}}=62 \mathrm{k} \uparrow \tag{1}
\end{align*}
$$

(3) Consider each joint separately:

Node A: Clearly $A H$ is under compression, and $A B$ under tension.

$$
\begin{align*}
(+\uparrow) \Sigma F_{y}=0 ; \Rightarrow & -F_{A H_{y}}+58=0 \\
& F_{A H}=\frac{1}{l_{y}}\left(F_{A H_{y}}\right) \\
& I_{y}=32 ; I=\sqrt{32^{2}+24^{2}}=40 \\
\Rightarrow & F_{A H}=\frac{40}{32}(58)=72.5 \text { k Compression } \\
(+\mathrm{rgt}) \Sigma F_{x}=0 ; \Rightarrow & -F_{A H_{x}}+F_{A B}=0 \\
& F_{A B}=\frac{L_{x}}{L_{y}}\left(F_{A H_{y}}\right)=\frac{24}{32}(58)=43.5 \text { k Tension } \tag{2}
\end{align*}
$$

Node B:

$$
\begin{align*}
(+\mathrm{rgt}) \Sigma F_{x}=0 ; & \Rightarrow F_{B C}=43.5 \text { k Tension } \\
(+\uparrow) \Sigma F_{y}=0 ; & \Rightarrow F_{B H}=20 \text { k Tension } \tag{3}
\end{align*}
$$

Node H:

$$
\begin{align*}
(+\mathrm{rgt}) \Sigma F_{X}=0 ; \Rightarrow & F_{A H_{x}}-F_{H C_{x}}+F_{H G_{x}}=0 \\
& 43.5-\frac{24}{\sqrt{24^{2}+32^{2}}}\left(F_{H C}\right)+\frac{24}{\sqrt{24^{2}+10^{2}}}\left(F_{H G}\right)=0 \\
(+\uparrow) \Sigma F_{y}=0 ; \Rightarrow & F_{A H_{y}}+F_{H C_{y}}-12+F_{H G_{y}}-20=0 \\
& 58+\frac{32^{2}}{\sqrt{24^{2}+32^{2}}}\left(F_{H C}\right)-12+\frac{10}{\sqrt{24^{2}+10^{2}}}\left(F_{H G}\right)-20=0 \tag{4}
\end{align*}
$$

This can be most conveniently written as

$$
\square\left\{\begin{array}{l}
F_{H C} \\
F_{H G}
\end{array}\right\}=\left\{\begin{array}{l}
43.5 \\
26.0
\end{array}\right\}
$$

Solving we obtain $F_{H C}=-7.5$ and $F_{H G}=-52$, thus we made an erroneous assumption in the free body diagram of node H , and the final answer is

$$
\begin{align*}
& F_{H C}=7.5 \mathrm{k} \text { Tension } \tag{5}\\
& F_{H G}=52 \mathrm{k} \text { Compression }
\end{align*}
$$

Node E:

$$
\begin{array}{lll}
\Sigma F_{y}=0 ; \Rightarrow F_{E F_{y}}=62 & \Rightarrow F_{E F}=\frac{\sqrt{24^{2}+32^{2}}}{32}(62) & =77.5 \mathrm{k} \mathrm{C} \\
\Sigma F_{x}=0 ; \Rightarrow F_{E D}=F_{E F_{x}} \Rightarrow F_{E D}=\frac{24}{32}\left(F_{E F_{y}}\right)=\frac{24}{32}(62) & =46.5 \mathrm{k} \mathrm{~T} \tag{6}
\end{array}
$$

The results of this analysis are summarized below

4. We could check our calculations by verifying equilibrium of forces at a node not previously used, such as D

$A(3,-4,0), B(3,2,0), C(-2,2,0)$, and $D(0,0,8)$.
No reactions in the x or y direction (structure is on ice, and there is no lateral load). Steps:
(1) Reactions
(1) $\Sigma M_{A B}=0 \Rightarrow C_{z} \sqrt{ }$
(2) $\Sigma M_{C B}=0 ; \Rightarrow A_{z} \sqrt{ }$
(3) $\Sigma F_{z}=0 ; \Rightarrow B_{z}=40.0 \sqrt{ }$
(4) $\Sigma F_{x}=0 ; \Rightarrow B_{x} \sqrt{ }$
(5) $\Sigma F_{y}=0 ; \Rightarrow A_{y} \sqrt{ } ; C_{y} \sqrt{ }$
(2) Joint B
(1) $L_{B D}$
(2) $\Sigma F_{z}=0 ; \Rightarrow F_{B D} \sqrt{ }$
(3) $F_{B D}^{x}$
(4) $F_{B D}^{y}$
(5) $\Sigma F_{X}=0 ; \Rightarrow F_{B A} \sqrt{ }$
(3) joint A
(1) $\alpha \sqrt{ }$
(2) $L_{A D} \sqrt{ }$
(3) $\Sigma F_{z}=0 ; F_{A D} \sqrt{ }$
(4) $\Sigma F_{X}=0 ; F_{A C} \sqrt{ }$
(4) Joint C
(1) $F_{C D}^{Z} \sqrt{ }$
(2) $\Sigma F_{Z}=0 \Rightarrow F_{C D} \sqrt{ }$

Solution

(1) Considering the free body diagram of the entire truss

$$
\begin{array}{rlrl}
\Sigma M_{A B}=0 ; & C_{z}(5)-600(3)=0 & & \Rightarrow C_{z}=360 \\
\Sigma M_{C B}=0 ; & 600(2)-A_{z}(6)=0 & & \Rightarrow A_{z}=200 \\
\Sigma F_{z}=0 ; & B_{z}+200+360-600=0 & & \Rightarrow B_{z}=40.0 \\
\Sigma F_{x}=0 ; & & B_{x}=0 \\
\Sigma F_{y}=0 ; & A_{y}-C_{y}=0 & & \Rightarrow A_{y}=C_{y}=0
\end{array}
$$

(2) Considering the free body diagram of joint B

$$
\begin{array}{rll}
L_{B D} & =\sqrt{L_{x}^{2}+L_{y}^{2}+L_{z}^{2}} & =\sqrt{2^{2}+3^{2}+8^{2}}=\sqrt{77} \\
\Sigma F_{z}=0 ; & \frac{-8}{\sqrt{77} F_{B D}+40=0 ;} & \Rightarrow F_{B D}=43.87 \operatorname{lbf}(C) \\
\Sigma F_{x}=0 ; & F_{B D}^{x}-F_{B C}=0 & \\
F_{B D}^{x}=\frac{L_{x}}{L} F_{B D} & =\frac{3}{\sqrt{77}}(43.87) & \\
F_{B C} & =15.0 l b f(T) & \\
\Sigma F_{y}=0 ; & F_{B D}^{y}-F_{B A}=0 & \\
F_{B D}^{y} & =\frac{L_{x}}{L} F_{B D}=\frac{2}{\sqrt{77}}(43.87) & \\
F_{B A} & =10.0 / b f(T) &
\end{array}
$$

(3) FBD of joint A

$$
\begin{aligned}
\tan (\alpha) & =\frac{L_{x}}{L_{y}}=\frac{5}{6} \Rightarrow \alpha=39.8 \mathrm{deg} \\
L_{A D} & =\sqrt{L_{x}^{2}+L_{y}^{2}+L_{z}^{2}}=\sqrt{8^{2}+3^{2}+4^{2}}=\sqrt{89} \\
\Sigma F_{z}=0 ; & \frac{-8}{\sqrt{89}} F_{A D}+200=0 \Rightarrow F_{A D}=236 / b f(C) \\
\Sigma F_{X}=0 ; & F_{A D}^{X}-F_{A C}^{X}=0 \Rightarrow \frac{3}{\sqrt{89}}(235.9)-F_{A C} \sin \left(39.8^{\circ}\right)=0 \\
& \Rightarrow F_{A C}=117 \operatorname{lbf}(T)
\end{aligned}
$$

(4) Check

$$
\begin{aligned}
\Sigma F_{y}=0 F_{A C}^{Y}-F_{A D}^{Y}+10 & =0 \\
117.2 \cos \left(39.81^{\circ}\right)-\frac{4}{\sqrt{89}}(235.9)+10.0 & =0 \sqrt{ }
\end{aligned}
$$

(5) Joint C

Method of Sections

- When only forces in selected members (away from loaded joints) is to be determined, this method should be used.
- This method can be summarized as follows
- "Cut" the truss into two substructures by an imaginary line (not necessarily straight) such that it will at least intersect the member for which force is to be determined.
- Consider either one of the two substructures as the free body
- Each substructure must remain in equilibrium. Apply the equations of equilibrium
- Summation of moments about a particular point (usually the intersection of 2 cut members) would permit the determination of other member forces
- Summation of forces is usually used to determine forces in inclined members

Method of Sections; Example

Determine $F_{B C}$ and $F_{H G}$ in the previous example.

- Cutting through members $H G, H C$ and $B C$, we first take the summation of forces with respect to H :

Cut through the members, but in drawing FBD, remove them and just show nodal forces

Method of Sections; Example

$$
\begin{align*}
(+\downarrow) \Sigma M_{z}^{H}=0 \Rightarrow & R_{A_{y}}(24)-F_{B C}(32)=0 \\
& F_{B C}=\frac{24}{32}(58)=43.5 \mathrm{k} \text { Tension } \\
(+\downarrow) \Sigma M_{z}^{C}=0 ; \Rightarrow & (58)(24)(2)-(20+12)(24)-F_{H G_{x}}(32)-F_{H G_{y}}(24)=0 \\
& 2784-768-(32)\left(F_{H G}\right) \frac{24}{\sqrt{24^{2}+10^{2}}}- \\
& (24)\left(F_{H G}\right) \frac{10}{\sqrt{24^{2}+0^{2}}}=0 \\
& 2,000-(29.5) F_{H G}-(9.2) F_{H G}=0 \\
\Rightarrow & F_{H G}=52 \text { k Compression } \tag{7}
\end{align*}
$$

Structural Analysis Internal Forces

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Spring 2022

Table of Contents I

(1) Introduction

- Internal Forces
- From Stresses to Internal Forces
- Internal Forces for Different Structural Elements
- Design Sign Conventions
(2) Load, Shear, Moment Relations
- Differential Form
- Integral Form
- Inclined Members/Loads
- FBD and Directions
(3) Examples
- Beams; Example; 1
- Random Examples; Beams
- Frame; Example 1 (Inclined Element)
- Frame; Example 2 (Hydrostatic Load)
- Frame; Example 3
- Frame; Example 4 Inclined Roof
- 3D Frame

- Ultimately, we are interested in the internal stresses in a three dimensional structure.
- Problem is too complex, we thus take advantage of shape, and categorize structures as shells, plates or beams.
- In those problems, instead of solving for the stress components throughout the body, we solve for certain stress resultants (normal, shear forces, and Moments and torsions) resulting from an integration over the body.
- Alternatively, if a continuum solution is desired, and engineering theories prove to be either too restrictive or inapplicable, we can use numerical techniques (such as Finite Element Method) to solve the problem.

Internal forces are integrals of stresses in a plate/beam.

and the resultants per unit width are given by
Membrane (Axial) Forces $\mathrm{N}=\int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma d z \rightarrow N_{x x}=\int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma_{x x} d z$ etc.
Bending Moments $\mathrm{M}=\int_{-\frac{t}{2}}^{\frac{t^{2}}{2}} \sigma z d z \rightarrow M_{y y}=\int_{-\frac{t}{2}}^{\frac{t^{2}}{2}} \sigma_{x x} z d z$ etc.
Transverse Shear Forces $\mathrm{V}=\int_{-\frac{t}{2}}^{\frac{t^{2}}{2}} \tau d z \rightarrow V_{y y}=\int_{-\frac{t}{2}}^{\frac{t}{2}} \tau_{y z} d z$ etc.

Cartesian						
	Forces			Moments		
	x	y	z	x	y	z
Beam 2D Frame Grid	N_{X}	$\begin{aligned} & V_{y} \\ & V_{y} \end{aligned}$	V_{Z}	T_{X}	M_{y}	$\begin{aligned} & M_{Z} \\ & M_{Z} \end{aligned}$
Polar						
	Forces			Moments		
	r	θ	z	r	θ	z
Arch Curved Grid	V_{r}	N_{θ}	V_{Z}	M_{r}	T_{θ}	M_{Z}
Curved						
	Forces			Moments		
	n	S	w	n	s	w
Curved	N_{n}	V_{S}	V_{W}	T_{n}	M_{S}	M_{W}

Load Positive along the beam's local y axis (assuming a right hand side convention), that is positive upward.
Axial: tension positive.
Flexure A positive moment is one which causes tension in the lower fibers, and compression in the upper ones. Moments are drawn on the compression side (useful to keep in mind for frames).
Shear A positive shear force is one which is "up" on a negative face. Alternatively, a pair of positive shear forces will cause clockwise rotation.

Torsion Counterclockwise positive

- The infinitesimal section must also be in equilibrium.
- There are no axial forces, thus we only have two equations of equilibrium to satisfy $\Sigma F_{y}=0$ and $\Sigma M_{z}=0$.
- Since $d x$ is infinitesimally small, the small variation in load along it can be neglected, therefore we assume $w(x)$ to be constant along $d x$.
- To denote that a small change in shear and moment occurs over the length $d x$ of the element, we add the differential quantities $d V_{x}$ and $d M_{x}$ to V_{x} and M_{x} on the right face.

Considering the first equation of equilibrium
$(+\uparrow) \Sigma F_{y}=0 \Rightarrow V_{x}+w_{x} d x-$ $\left(V_{x}+d V_{x}\right)=0 \Rightarrow \frac{d V}{d x}=w(x)$

The slope of the shear curve at any point along the axis of a member is given by the load curve at that point.

Similarly (+2) $\Sigma M_{O}=0 \Rightarrow M_{x}+$ $V_{x} d x-w_{x} d x \frac{d x}{2}-\left(M_{x}+d M_{x}\right)=0$ Neglecting the $d x^{2}$ term, this simplifies to $\frac{d M}{d x}=V(x)$

The slope of the moment curve at any point along the axis of a member is given by the shear at that point.

$$
\begin{aligned}
V & =\int w(x) d x \\
\Delta V_{21} & =V_{x_{2}}-V_{x_{1}}=\int_{x_{1}}^{x_{2}} w(x) d x
\end{aligned}
$$

The change in shear between 1 and $2, \Delta V_{1-2}$, is equal to the area under the load between x_{1} and x_{2}.

$$
\begin{aligned}
M & =\int V(x) d x \\
\Delta M_{21} & =M_{x 2}-M_{x 1}=\int_{x_{1}}^{x_{2}} V(x) d x
\end{aligned}
$$

The change in moment between 1 and $2, \Delta M_{21}$, is equal to the area under the shear curve between x_{1} and x_{2}.

Note that we still need to have V_{1} and M_{1} in order to obtain V_{2} and M_{2}.

Inclined Members/Loads

Lateral inertial force $x \quad W_{1}^{x}=W_{1}^{x} L ; \quad W^{n}=W_{1}^{x} \frac{L_{y}}{L} ; \quad W^{n}=\frac{W^{n}}{L}=W_{1}^{x} \frac{L_{y}}{L}$
Self weight y
Wind Load
Snow Load

$$
\begin{array}{ll}
W_{2}^{y}=w_{2}^{y} L ; \quad W^{n}=W_{2}^{y} \frac{L_{x}}{L} ; \quad w^{n}=\frac{W^{n}}{L}=w_{2}^{y} \frac{L_{x}}{L} \\
W_{3}^{x}=W_{3}^{x} L_{y} ; \quad W^{n}=W_{3}^{x} \frac{L_{y}}{L} ; \quad w^{n}=\frac{W^{n}}{L}=W_{3}^{X} \frac{L_{V}^{2}}{L^{2}} \\
W_{4}^{y}=w_{4}^{y} L_{x} ; \quad W^{n}=W_{4}^{y} \frac{L_{x}}{L} ; \quad w^{n}=\frac{W^{n}}{L}=w_{4}^{y} \frac{L_{x}^{2}}{L^{2}}
\end{array}
$$

FBD and Directions

- Reactions are determined from the equilibrium equations

$$
\begin{align*}
(+\mathrm{mtt}) \Sigma F_{x}=0 ; & \Rightarrow-A_{x}+6=0 \Rightarrow A_{x}=6 \mathrm{k} \tag{1}\\
(+\supset) \Sigma M_{A}=0 ; & \Rightarrow(11)(4)+(8)(10)+(4)(2)(14+2)-E_{y}(18)=0 \tag{2}\\
\Rightarrow R_{E_{y}} & =14 \mathrm{k} \tag{3}\\
(+\uparrow) \Sigma F_{y}=0 ; & \Rightarrow A_{y}-11-8-(4)(2)+14=0 \Rightarrow A_{y}=13 \mathrm{k} \tag{4}
\end{align*}
$$

- Shear are determined next.
(1) At A the shear is equal to the reaction and is positive.
(2) At B the shear drops (negative load) by 11 k to 2 k .
(3) At C it drops again by 8 k to -6 k .
(4) It stays constant up to D and then it decreases (constant negative slope since the load is uniform and negative) by 2 k per linear foot up to -14 k .
(5) As a check, -14 k is also the reaction previously determined at F.
- Moment is determined last:
(1) The moment at A is zero (hinge support).
(2) The change in moment between A and B is equal to the area under the corresponding shear diagram, or $\Delta M_{B-A}=(13)(4)=52$.
(3) etc...

Reactions

$$
\begin{aligned}
(+\mathrm{ltt}) \Sigma F_{x}=0 ; & \Rightarrow R_{A_{x}}-\underbrace{\frac{4}{5}(3)}_{\text {load }}(15)=0 \Rightarrow R_{A_{x}}=36 \mathrm{k} \\
(+\Omega) \Sigma M_{A}=0 ; & \Rightarrow(3)(30)\left(\frac{30}{2}\right)+\underbrace{\frac{3}{5}(3)(15)\left(30+\frac{9}{2}\right)}_{C D_{Y}}-\underbrace{\frac{4}{5}(3)(15) \frac{12}{2}}_{C D_{x}}-39 R_{D_{y}}=0 \\
& \Rightarrow R_{D_{y}}=52.96 \mathrm{k} \\
(+\uparrow) \Sigma F_{y}=0 ; & \Rightarrow R_{A_{y}}-(3)(30)-\frac{3}{5}(3)(15)+52.96=0 \\
& \Rightarrow R_{A_{y}}=64.06 \mathrm{k}
\end{aligned}
$$

Shear Diagram:

(1) For $A-B$, the shear is constant, equal to the horizontal reaction at A and negative according to our previously defined sign convention, $V_{A}=-36 \mathrm{k}$
(2) For member $B-C$ at B, the shear must be equal to the vertical force which was transmitted along $A-B$, and which is equal to the vertical reaction at A, $V_{B}=64.06$.
(3) Since $B-C$ is subjected to a uniform negative load, the shear along $B-C$ will have a slope equal to -3 and in terms of x (measured from B to C) is equal to

$$
V_{B-C}(x)=64.06-3 x
$$

(9) The shear along $C-D$ is obtained by decomposing the vertical reaction at D into axial and shear components. $V=\frac{3}{5} 52.96=31.78 \mathrm{k}$ and is negative. Slope of the shear must be equal to -3 along $C-D$. Shear at C is such that

$$
V_{c}-\frac{5}{3} 9(3)=-31.78 \text { or } V_{c}=13.22
$$

$$
V=13.22-3 x
$$

(6) We check our calculations by verifying equilibrium of node C

$$
\begin{aligned}
(+ \text { IIt }) \Sigma F_{x}=0 & \Rightarrow \frac{3}{5}(42.37)+\frac{4}{5}(13.22)=25.42+10.58=36 \sqrt{ } \\
(+\uparrow) \Sigma F_{y}=0 & \Rightarrow \frac{4}{5}(42.37)-\frac{3}{5}(13.22)=33.90-7.93=25.97 \sqrt{ }
\end{aligned}
$$

Moment:

(1) Along $A-B$, moment is zero at A, and its slope is equal to the shear, thus at B the moment is equal to $(-36)(12)=-432 \mathrm{k} . \mathrm{ft}$
(2) Along $B-C$, the moment is equal to
$M_{B-C}=M_{B}+\int_{0}^{x} V_{B-C}(x) d x=-432+\int_{0}^{x}(64.06-3 x) d x=-432+64.06 x-3 \frac{x^{2}}{2}$
which is a parabola. Substituting for $x=30$, we obtain at C :
$M_{C}=-432+64.06(30)-3 \frac{30^{2}}{2}=139.8 \mathrm{k} . \mathrm{ft}$
(3) Alternatively: $(+2) \Sigma M_{C}=0 \Rightarrow-432-3 \frac{(30)^{2}}{2}+64.06-M_{c}=0$ Solving gives $M_{c}=139.8$ positive.
(9) For the maximum moment along $B-C$, we know that $\frac{d M_{B-C}}{d x}=0$ at the point where $V_{B-C}=0$, that is $V_{B-C}(x)=64.06-3 x=0 \Rightarrow x=\frac{64.06}{3}=21.35 \mathrm{ft}$. i.e., maximum moment occurs where the shear is zero. Thus
$M_{B-C}^{\max }=-432+64.06(21.35)-3 \frac{(21.35)^{2}}{2}=-432+1,367.7-683.7=-251.98 \mathrm{k} . \mathrm{ft}$
(6) Along $C-D$, the moment varies quadratically (linear shear), the moment first increases (positive shear), and then decreases (negative shear). The moment along $C-D$ is given by
$M_{C-D}=M_{C}+\int_{0}^{x} V_{C-D}(x) d x=139.8+\int_{0}^{x}(13.22-3 x) d x=139.8+13.22 x-3 \frac{x^{2}}{2}$
which is a parabola. Substituting for $x=15$, we obtain at node C $M_{C}=139.8+13.22(15)-3 \frac{15^{2}}{2}=139.8+198.3-337.5=0 \sqrt{ }$

$\cos \alpha=3 / 5=\mathrm{N} / 25.96$
$\mathrm{N}=(25.96)(3) /(5)=15.57$

The frame shown below is the structural support of a flume. Assuming that the frames are spaced 2 ft apart along the length of the flume,
(1) Determine all internal member end actions
(2) Draw the shear and moment diagrams
(3) Locate and compute maximum internal bending moments
(4) If this is a reinforced concrete frame, show the location of the reinforcement.

The hydrostatic pressure causes lateral forces on the vertical members which can be treated as cantilevers fixed at the lower end. The pressure is linear and is given by $p=\gamma h$. Since each frame supports a 2 ft wide slice of the flume, the equation for w (pounds/foot) is

$$
w=(2)(62.4)(h)=124.8 h \mathrm{lbs} / \mathrm{ft}
$$

At the base $w=(124.8)(6)=749 \mathrm{lbs} / \mathrm{ft}=.749 \mathrm{k} / \mathrm{ft}$ Note that this is both the lateral pressure on the end walls as well as the uniform load on the horizontal members.

End Actions
(1) Base force at B is $F_{B x}=(.749) \frac{6}{2}=2.246 \mathrm{k}$
(2) Base moment at B is $M_{B}=(2.246) \frac{6}{3}=4.493 \mathrm{k} . \mathrm{ft}$
(3) End force at B for member $B-E$ are equal and opposite.
4. Reaction at C is $R_{C y}=(.749) \frac{16}{2}=5.99 \mathrm{k}$

Shear forces
(1) Base at B the shear force was determined earlier and was equal to 2.246 k . Based on the orientation of the $x-y$ axis, this is a negative shear.
(2) The vertical shear at B is zero (neglecting the weight of $A-B$)
(3) The shear to the left of C is $V=0+(-.749)(3)=-2.246 \mathrm{k}$.
(4) The shear to the right of C is $V=-2.246+5.99=3.744 \mathrm{k}$

Moment diagrams
(1) At the base: $B M=4.493 \mathrm{k} . \mathrm{ft}$ as determined above.
(2) At the support $C, M_{C}=-4.493+(-.749)(3)\left(\frac{3}{2}\right)=-7.864 \mathrm{k} . \mathrm{ft}$
(3) The maximum moment is equal to

$$
M_{\max }=-7.864+(.749)(5)\left(\frac{5}{2}\right)=1.50 \mathrm{k} . \mathrm{ft}
$$

Design: Reinforcement should be placed along the fibers which are under tension, that is on the side of the negative moment ${ }^{1}$. The figure below schematically illustrates the location of the flexural ${ }^{2}$ reinforcement.

[^1]

(1) The frame has a total of 6 reactions (3 forces and 3 moments) at the support, and we have a total of 6 equations of equilibrium, thus it is statically determinate.
(2) Each member has the following internal forces (defined in terms of the local coordinate system of each member $x^{\prime}-y^{\prime}-z^{\prime}$ such that x is along the member)

Member	Internal Forces					
Member	Axial	Shear		Moment		Torsion
	$N_{x^{\prime}}$	$V_{y^{\prime}}$	$V_{z^{\prime}}$	$M_{y^{\prime}}$	M_{z}	$T_{x^{\prime}}$
$C-D$		$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark	
$B-C$	\checkmark		$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
$A-B$	$\sqrt{ }$	\checkmark		\checkmark	$\sqrt{ }$	$\sqrt{ }$

(3) The numerical calculations for the analysis of this three dimensional frame are quite simple, however the main complexity stems from the difficulty in visualizing the inter-relationships between internal forces of adjacent members.
(4) In this particular problem, rather than starting by determining the reactions, it is easier to determine the internal forces at the end of each member starting with member $C-D$. Note that temporarily we adopt a sign convention which is compatible with the local coordinate systems.

C-D

$$
\begin{array}{rlll}
\Sigma F_{y^{\prime}}=0 & \Rightarrow V_{y^{\prime}}^{C}=(20)(2) & =+40 \mathrm{kN} \\
\Sigma F_{z^{\prime}}=0 \Rightarrow V_{z^{\prime}}^{C} & =+60 \mathrm{kN} & \\
\Sigma M_{y^{\prime}}=0 \Rightarrow M_{y^{\prime}}^{C} & =-(60)(2)=-120 \mathrm{kN} \cdot \mathrm{~m} \\
\Sigma M_{z^{\prime}}=0 \Rightarrow M_{z^{\prime}}^{C} & =(20)(2) \frac{2}{2}=+40 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

B-C

$$
\begin{array}{rlll}
\Sigma F_{x^{\prime}}=0 \Rightarrow & & =-60 \mathrm{kN} \\
\Sigma F_{y^{\prime}}=0 & \Rightarrow & =V_{x z^{\prime}}^{B} & =+40 \mathrm{kN} \\
\Sigma M_{y^{\prime}}=0 & \Rightarrow & =V_{y^{\prime}}^{B} & =-120 \mathrm{kN} . \mathrm{m} \\
\Sigma M_{y^{\prime}} & =0 & =M_{y^{\prime}}^{C} & \\
\Sigma M_{y^{\prime}} & =M_{z^{\prime}}^{B} & =V_{y}^{\prime} C(4)=(40)(4) & \\
\Sigma T_{x^{\prime}}=0 & \Rightarrow & T_{x^{\prime}}^{B} & =-M_{z^{\prime}}^{C}
\end{array}
$$

A-B

$$
\begin{array}{rlll}
\Sigma F_{x^{\prime}}=0 \Rightarrow N_{x}=0 & =V_{y^{\prime}}^{B} & & =+40 \mathrm{kN} \\
\Sigma F_{y^{\prime}}=0 & \Rightarrow V_{y^{\prime}}^{A} & =N_{x^{\prime}}^{B} & \\
\Sigma M_{y^{\prime}}=0 & \Rightarrow M_{y^{\prime}}^{A} & =T_{x^{\prime}}^{B} & \\
\Sigma+40 \mathrm{kN} \\
\Sigma M_{z^{\prime}}=0 \Rightarrow M_{x^{\prime}}^{A} & \Rightarrow & =M_{z^{\prime}}^{B}+N_{x^{\prime}}^{B}(4)=160+(60)(4) & \\
\Sigma T_{x^{\prime}}=0 & \Rightarrow T_{x^{\prime}}^{A^{\prime}} & =M_{y^{\prime}}^{B} & \\
\hline
\end{array}
$$

The interaction between axial forces N and shear V as well as between moments M and torsion T is clearly highlighted by this example.

Structural Analysis

Cables \& Arches

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Spring 2022

Table of Contents I

(1) Cables

- Introduction
- Example; Funicular Cable
- Uniform Load
- Design of Suspension Bridge
(2) †qds; Catenary
(3) Historical Notes
(4) arches
- Introduction
- Three Hinged Arch; Point Loads
- Three Hinged Arch; Uniform Load
(5) Helicoidal Arch
- Theory; Geometry
- Theory; Equilibrium
- Point Load
- A cable is a slender flexible member with zero or negligible flexural stiffness, thus it can only transmit tensile forces.
- The tensile force at any point acts in the direction of the tangent to the cable (as any other component will cause bending).
- Its strength stems from its ability to undergo extensive changes in geometry (slopes at points of load application) to accommodate load distribution.
- Cables resist vertical forces by undergoing sag (h) and thus developing tensile forces. The horizontal component of this force (H) is called thrust.
- The distance between the cable supports is called the chord (span).
- The sag to span ratio is denoted by

$$
r=\frac{h}{l}
$$

- When a set of concentrated loads is applied to a cable of negligible weight, then the cable deflects into a series of linear segments and the resulting shape is called the funicular polygon.
- If a cable supports vertical forces only, then the horizontal component H of the cable tension T remains constant (hence both horizontal reactions are equal and opposite).
- A unique characteristic of cable structures (and of flexible structures for that matter) is that not only are the internal forces unknown, but also the geometry. In other words, since geometry varies with the load (equations of equilibrium are based on the free body diagram of the deformed configuration), it also must be determined. This is also referred to as geometric nonlinearity.
- Analysis of cable structures entails not only reactions and internal forces (axial), but also geometry.

- 8 unknowns ($A_{x}, A_{y}, D_{x}, D_{y}, \theta_{A}, \theta_{B}, \theta_{C}$ and h_{C})
- Can be analyzed by applying 2 equations of equilibrium expressed at each of the four points of interest like a truss. However, simpler to use a better tactical approach.
- Horizontal reactions are equal.
- Solution:
- D_{y}

$$
\begin{equation*}
(+\downarrow) \Sigma M_{z}^{A}=0 ; \Rightarrow 12(30)+6(70)-D_{y}(100)=0 \Rightarrow D_{y}=7.8 \mathrm{k} \tag{1}
\end{equation*}
$$

- A_{y}

$$
\begin{equation*}
(+\uparrow) \Sigma F_{y}=0 ; \Rightarrow A_{y}-12-6+7.8=0 \Rightarrow A_{y}=10.2 \mathrm{k} \tag{2}
\end{equation*}
$$

- Horizontal force by isolating the free body diagram $A B$

$$
\begin{equation*}
(+\boldsymbol{\rightharpoonup}) \Sigma M_{z}^{B}=0 ; \Rightarrow A_{y}(30)-H(6)=0 \Rightarrow H=51 \mathrm{k} \tag{3}
\end{equation*}
$$

- Sag at C by isolating the free body diagram CD

$$
\begin{equation*}
(+\triangleleft) \Sigma M_{z}^{C}=0 \Rightarrow-D_{Y}(30)+H\left(h_{c}\right)=0 \Rightarrow h_{c}=\frac{30 D_{y}}{H}=\frac{30(7.8)}{51}=4.6 \mathrm{ft} \tag{4}
\end{equation*}
$$

- Cable internal forces or tractions

$$
\begin{aligned}
\tan \theta_{A} & =\frac{6}{30}=0.200 \Rightarrow \theta_{A}=11.31 \mathrm{deg} \\
T_{A B} & =\frac{H}{\cos \theta_{A}}=\frac{51}{0.981}=51.98 \mathrm{k} \\
\tan \theta_{B} & =\frac{6-4.6}{40}=0.035 \Rightarrow \theta_{B}=2 \mathrm{deg} \\
T_{B C} & =\frac{H}{\cos \theta_{B}}=\frac{51}{0.999}=51.03 \mathrm{k} \\
\tan \theta_{C} & =\frac{4.6}{30}=0.153 \Rightarrow \theta_{C}=8.7 \mathrm{deg} \\
T_{C D} & =\frac{H}{\cos \theta_{C}}=\frac{51}{0.988}=51.62 \mathrm{k}
\end{aligned}
$$

(1) Governing differential equation for a cable with distributed load $q(x)$ per unit horizontal projection of the cable length.

- In the absence of any horizontal load we have $H=$ constant. Summation of the vertical forces yields

$$
\begin{align*}
(+\downarrow) \Sigma F_{y}=0 \Rightarrow-V+q \mathrm{~d} x+(V+\mathrm{d} V) & =0 \tag{5}\\
d V+q \mathrm{~d} x & =0 \tag{6}
\end{align*}
$$

where V is the vertical component of the cable tension at x.

- Note that if the cable was subjected to its own weight then we would have qds instead of $q d x$.
- Because the cable must be tangent to T, we have

$$
\begin{equation*}
\tan \theta=\frac{V}{H} \tag{7}
\end{equation*}
$$

- Eliminate V and rewrite in terms of H which is constant along the cable by substituting into Eq. 6

$$
\begin{equation*}
\mathrm{d}(H \tan \theta)+q \mathrm{~d} x=0 \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
-\frac{\mathrm{d}}{\mathrm{~d} x}(H \tan \theta)=q \tag{9}
\end{equation*}
$$

Since H is constant (no horizontal load is applied), this last equation can be rewritten as

$$
\begin{equation*}
-H \frac{d}{d x}(\tan \theta)=q \tag{10}
\end{equation*}
$$

- Written in terms of the vertical displacement $y, \tan \theta=\frac{d y}{d x}$ which when substituted in Eq. 10 yields the governing equation for cables

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=-\frac{q}{H} \tag{11}
\end{equation*}
$$

Note analogy with flexure

$$
\begin{equation*}
\frac{d^{2} y}{\mathrm{~d} x^{2}}=\frac{M}{E l} \tag{12}
\end{equation*}
$$

(2) Determination of shape

- Double integration.

$$
\begin{align*}
-H y^{\prime} & =q x+C_{1} \tag{13}\\
-H y & =\frac{q x^{2}}{2}+C_{1} x+C_{2} \tag{14}
\end{align*}
$$

- C_{1} and C_{2} are obtained form the boundary conditions: $y=0$ at $x=0$ and at $x=L \Rightarrow$ $C_{2}=0$ and $C_{1}=-\frac{q L}{2}$. Thus

$$
\begin{equation*}
H y=\frac{q}{2} x(L-x) \tag{15}
\end{equation*}
$$

- This equation gives the shape $y(x)$ in terms of the horizontal force H yet to be determined.
(3) Horizontal force H.
- Rewrite Eq. 15 in terms of the maximum sag h which occurs at midspan, hence at $x=\frac{L}{2}$ we would have. In the current case, the moment is simply Hh .

$$
\begin{equation*}
H h=\frac{q L^{2}}{8} \tag{16}
\end{equation*}
$$

Note the analogy between this equation and the maximum moment in a simply supported uniformly loaded beam $M=\frac{q L^{2}}{8}$

- The constant horizontal force H is thus

$$
\begin{equation*}
H=\frac{q l^{2}}{8 h} \tag{17}
\end{equation*}
$$

- This relation clearly shows that the horizontal force is inversely proportional to the sag h, as $h \searrow H \nearrow$.

4. Final Shape

- Combining Eq. 15 and 16 we obtain

$$
y=\frac{4 h x}{L^{2}}(L-x)
$$

- If we shift the origin to midspan, and reverse y, then

$$
\begin{equation*}
y^{\prime}=\frac{4 h}{L^{2}}\left(\frac{L}{2}+x^{\prime}\right)\left(\frac{L}{2}-x^{\prime}\right) \tag{18}
\end{equation*}
$$

- Cable has a parabolic shape (as the moment diagram of the applied load).
- Contrarily to the funicular arrangement (where geometry changes with load), the shape of the cable does not change with an increase in the magnitude of the uniform load it is supporting.
(5) Maximum Tension
- The maximum tension occurs at the support where the vertical component is equal to $V=\frac{q L}{2}$ (just like in a simply supported beam with a uniform load) and the horizontal one to H, thus

$$
\begin{equation*}
T_{\max }=\sqrt{V^{2}+H^{2}}=\sqrt{\left(\frac{q L}{2}\right)^{2}+H^{2}}=H \sqrt{1+\left(\frac{q L / 2}{H}\right)^{2}} \tag{19}
\end{equation*}
$$

- Recall that $(a+b)^{n}=a^{n}+n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2}+$ or
$(1+b)^{n}=1+n b+\frac{n(n-1) b^{2}}{2!}+\frac{n(n-1)(n-2) b^{3}}{3!}+\cdots$; Thus for $b^{2} \ll 1, \sqrt{1+b}=(1+b)^{\frac{1}{2}} \approx 1+\frac{b}{2}$.
- Eq. 16 can be rewritten as

$$
\begin{equation*}
\frac{q L}{H}=\frac{8 h}{L}=8 r \tag{20}
\end{equation*}
$$

where $r=h / L$

- Combining Eqs. 19 and 20 we obtain

$$
\begin{equation*}
T_{\max }=H \sqrt{1+16 r^{2}} \approx H\left(1+8 r^{2}\right) \tag{21}
\end{equation*}
$$

Design the following 4 lanes suspension bridge by selecting the cable diameters assuming an allowable cable strength $\sigma_{\text {all }}$ of 190 ksi . The bases of the tower are hinged in order to avoid large bending moments.

The total dead load is estimated at 200 psf. Assume a sag to span ratio of $\frac{1}{5}$
(1) The dead load carried by each cable will be one half the total dead load or $p_{1}=\frac{1}{2}(200) \operatorname{psf}(50) \mathrm{ft} \frac{1}{1,000}=5.0 \mathrm{k} / \mathrm{ft}$
(2) Using the HS 20 truck (or its distributed equivalent load of $0.64 \mathrm{k} / \mathrm{ft}$ per lane), the uniform additional load per cable is
$p_{2}=(2)$ lanes $/$ cable(. 64$) \mathrm{k} / \mathrm{ft} /$ lane $=1.28 \mathrm{k} / \mathrm{ft} /$ cable. Thus, the total design load is
$p_{1}+p_{2}=5+1.28=6.28 \mathrm{k} / \mathrm{ft}$
(3) The thrust H is determined from Eq. 16

$$
H=\frac{p l^{2}}{8 h}=\frac{(6.28) \mathrm{k} / \mathrm{ft}(300)^{2} \mathrm{ft}^{2}}{(8)(60) \mathrm{ft}}=1,177 \mathrm{k}
$$

Note that h is given from $r=h / L=1 / 5$.
4 From Eq. 21 the maximum tension is

$$
\begin{aligned}
T_{\max } & =H \sqrt{1+16 r^{2}} \\
& =(1,177) \mathrm{k} \sqrt{1+(16)\left(\frac{1}{5}\right)^{2}} \\
& =1,507 \mathrm{k}
\end{aligned}
$$

(5) Note that if we used the approximate formula in Eq. 21 we would have obtained

$$
\begin{aligned}
T_{\max } & =H\left(1+8 r^{2}\right) \\
& =1,177\left(1+8\left(\frac{1}{5}\right)^{2}\right) \\
& =1,554 \mathrm{k}
\end{aligned}
$$

or 3\% difference!
(6) The required cross sectional area of the cable along the main span should be equal to $A=\frac{T_{\text {max }}}{\sigma_{\text {all }}}=\frac{1,507 \mathrm{~K}}{190 \mathrm{ksi}}=7.93 \mathrm{in}^{2}$ which corresponds to a diameter $d=\sqrt{\frac{4 A}{\pi}}=\sqrt{\frac{(4)(7.93)}{\pi}}=3.18 \mathrm{in}$
(7) blah
(8) We seek next to determine the cable force in $A B$. Since the pylon can not take any horizontal force, we should have the horizontal component of $T_{\max }$ equal and opposite to the horizontal component of $T_{A B}$ or $\frac{T_{A B}}{H}=\frac{\sqrt{(100)^{2}+(120)^{2}}}{100}$ thus

$$
T_{A B}=H \frac{\sqrt{(100)^{2}+(120)^{2}}}{100}=(1,177)(1.562)=1,838 \mathrm{k}
$$

the cable area should be $A=\frac{1,838 \mathrm{~K}}{190 \mathrm{ksi}}=9.68 \mathrm{in}^{2}$ which corresponds to a diameter $d=\sqrt{\frac{(4)(9.68)}{\pi}}=3.51 \mathrm{in}$
(9) To determine the vertical load acting on the pylon, we must add the vertical components of $T_{\max }$ and of $T_{A B}$ ($V_{B C}$ and $V_{A B}$ respectively). We can determine $V_{B C}$ from H and $T_{\max }$, thus

$$
P=\underbrace{\frac{120}{100}(1,177)}_{V_{A B}}+\underbrace{\sqrt{(1,507)^{2}-(1,177)^{2}}}_{V_{B C}}=1,412+941=2,353 \mathrm{k}
$$

Using A36 steel with an allowable stress of 21 ksi, the cross sectional area of the tower should be $A=\frac{2,353}{21}=112 \mathrm{in}^{2}$. Note that buckling of such a high tower might govern the final dimensions.
(10) If the cables were to be anchored to a concrete block, the volume of the block should be at least equal to $V=\frac{(1,412) \mathrm{k}(1,000)}{150 \mathrm{lbs} / \mathrm{ft}^{3}}=9,413 \mathrm{ft}^{3}$ or a cube of approximately 21 ft

- Let us consider now the case where the cable is subjected to its own weight (plus ice and wind if any). We would have to replace $q \mathrm{~d} x$ by $q \mathrm{~d} s$ in Eq. 6

$$
\begin{equation*}
d V+q \mathrm{~d} s=0 \tag{22}
\end{equation*}
$$

- The differential equation for this new case will be derived exactly as before, but we substitute $q \mathrm{~d} x$ by $q \mathrm{~d} s$, thus Eq. 11 becomes

$$
\begin{equation*}
\frac{d^{2} y}{\mathrm{~d} x^{2}}=-\frac{q}{H} \frac{\mathrm{~d} s}{\mathrm{~d} x} \tag{23}
\end{equation*}
$$

- But $\mathrm{d} s^{2}=\mathrm{d} x^{2}+d y^{2}$, hence:

$$
\begin{equation*}
\frac{d^{2} y}{\mathrm{~d} x^{2}}=-\frac{q}{H} \sqrt{1+\left(\frac{d y}{\mathrm{~d} x}\right)^{2}} \tag{24}
\end{equation*}
$$

- solution of this differential equation is considerably more complicated than Eq. 11.
- We let $d y / \mathrm{d} x=p$, then

$$
\begin{equation*}
\frac{d p}{d x}=-\frac{q}{H} \sqrt{1+p^{2}} \tag{25}
\end{equation*}
$$

- Rearranging

$$
\begin{equation*}
\int \frac{d p}{\sqrt{1+p^{2}}}=-\int \frac{q}{H} \mathrm{~d} x \tag{26}
\end{equation*}
$$

- From Mathematica (or handbooks), the left hand side is equal to

$$
\begin{equation*}
\int \frac{d p}{\sqrt{1+p^{2}}}=\log _{e}\left(p+\sqrt{1+p^{2}}\right) \tag{27}
\end{equation*}
$$

- Substituting, we obtain

$$
\begin{align*}
\log _{e}\left(p+\sqrt{1+p^{2}}\right) & =\underbrace{-\frac{q x}{H}+C_{1}}_{A} \tag{28}\\
p+\sqrt{1+p^{2}} & =e^{A} \tag{29}\\
\sqrt{1+p^{2}} & =-p+e^{A} \tag{30}\\
1+p^{2} & =p^{2}-2 p e^{A}+e^{2 A} \tag{31}\\
p & =\frac{e^{2 A}-1}{2 e^{A}}=\frac{e^{A}-e^{-A}}{2}=\sinh A \tag{32}\\
& =\frac{d y}{\mathrm{~d} x}=\sinh \left(-\frac{q x}{H}+C_{1}\right) \tag{33}\\
y & =\int \sinh \left(-\frac{q x}{H}+C_{1}\right) \mathrm{d} x=-\frac{H}{q} \cosh \left(-\frac{q x}{H}+C_{1}\right)+C_{2}(34) \tag{34}
\end{align*}
$$

- To determine the two constants, we set

$$
\begin{align*}
\frac{d y}{\mathrm{~d} x} & =0 \quad \text { at } x=\frac{L}{2} \tag{35}\\
\frac{d y}{\mathrm{~d} x} & =-\frac{q}{H} \frac{H}{q} \sinh \left(-\frac{q x}{H}+C_{1}\right) \tag{36}\\
\Rightarrow 0 & =\sinh \left(-\frac{q}{H} \frac{L}{2}+C_{1}\right) \Rightarrow C_{1}=\frac{q}{H} \frac{L}{2} \tag{37}\\
\Rightarrow y & =-\frac{H}{q} \cosh \left[\frac{q}{H}\left(\frac{L}{2}-x\right)\right]+C_{2} \tag{38}
\end{align*}
$$

- At midspan, the sag is equal to h, thus

$$
\begin{align*}
h & =-\frac{H}{q} \cosh \left[\frac{q}{H}\left(\frac{L}{2}-\frac{L}{2}\right)\right]+C_{2} \tag{39}\\
C_{2} & =h+\frac{H}{q} \tag{40}
\end{align*}
$$

- If we move the origin at the lowest point along the cable at $x^{\prime}=x-L / 2$ and $y^{\prime}=h-y$, we obtain

$$
\begin{equation*}
\frac{q}{H} y=\cosh \left(\frac{q}{H} x\right)-1 \tag{41}
\end{equation*}
$$

- This equation is to be contrasted with 18 , we can rewrite those two equations as:

$$
\begin{array}{r}
\quad \frac{q}{H} y=\frac{1}{2}\left(\frac{q}{H} x\right)^{2} \quad \text { Parabola } \\
\frac{q}{H} y=\cosh \left(\frac{q}{H} x\right)-1 \text { Catenary } \tag{43}
\end{array}
$$

- The hyperbolic cosine of the catenary can be expanded into a Taylor power series as

$$
\begin{equation*}
\frac{q y}{H}=\frac{1}{2}\left(\frac{q x}{H}\right)^{2}+\frac{1}{24}\left(\frac{q x}{H}\right)^{4}+\frac{1}{720}\left(\frac{q x}{H}\right)^{6}+\ldots \tag{44}
\end{equation*}
$$

The first term of this development is identical as the formula for the parabola, and the other terms constitute the difference between the two.

- The difference becomes significant only for large $q x / H$, that is for large sags in comparison with the span.

- Solution of the catenary problem constitued one of the major mathematical/Mechanics challenges of the early 18th century.
- Around 1684, differential and integral calculus took their first effective forms, and those powerful new techniques allowed scientists to tackle complex problems for the first time.
- One of these problems was the solution to the catenary problem as presented by Jakob Bernouilli. Immediately thereafter, Leibniz presented a solution based on infinitesimal calculus, another one was presented by Huygens.
- Finally, the brother of the challenger, Johann Bernoulli did also present a solution.
- Huygens solution was complex and relied on geometrical arguments. The one of Leibniz was elegant and correct $\left(y / a=\left(b^{x / a}+b^{-x / a}\right) / 2\right.$ (we recognize Eq. 41 albeit written in slightly different form

- Finally, Bernoulli presented two correct solution, and in his solution he did for the first time express equations of equilibrium in differential form.

- Due to symmetry, the vertical reaction is simply $V=\frac{w L}{2}$, and there is no shear across the midspan of the arch (nor a moment). Taking moment about the crown,

$$
M=H h-\frac{w L}{2}\left(\frac{L}{2}-\frac{L}{4}\right)=0
$$

Solving for H

$$
\begin{equation*}
H=\frac{w L^{2}}{8 h} \tag{45}
\end{equation*}
$$

- Note analogy with $M=w L^{2} / 8$ for beams and $H=w L^{2} / 8 h$ for cables.
- In general an arch will carry the vertical load across the span through a combination of axial forces and flexural ones. A well dimensioned arch will have a small to negligible moment, and relatively high normal compressive stresses.
- The "perfect" parabolic shape of a simply supported three-hinged arch
- There should not be any shear or moment along any section.
- Moment at $x: M=H y-w x^{2} / 2=H a x^{2}-w x^{2} / 2=0$,
- Solving for $a: a=w /(2 H)$
- Substitute for H and conclude that a must be equal to $4 h / L^{2}$.
- For any span L, there is only one height h which would yield a parabola with zero moment and shear.
- Three-hinged arches are statically determinate structures which shape can accommodate support settlements and thermal expansion without secondary internal stresses. They are also easy to analyze through statics.
- An arch is far more efficient than a beam, and possibly more economical and aesthetic than a truss in carrying loads over long spans.

- Four unknowns, three equations of equilibrium, one equation of condition \Rightarrow statically determinate.

$$
\begin{array}{rlrl}
(+\downarrow) \Sigma M_{z}^{C} & =0 ; & \left(R_{A y}\right)(140)+(80)(3.75)-(30)(80)-(20)(40)+R_{A x}(26.25) & =0 \\
\Rightarrow 140 R_{A y}+26.25 R_{A x} & =2.900 \\
(+\mathrm{rgt}) \Sigma F_{x} & =0 ; & 80-R_{A x}-R_{C x} & =0 \\
(+\uparrow) \Sigma F_{y} & =0 ; & R_{A y}+R_{C y}-30-20 & =0 \\
(+\downarrow) \Sigma M_{z}^{B} & =0 ; & \left(R_{a x}\right)(60)-(80)(30)-(30)(20)+\left(R_{A y}\right)(80) & =0 \\
\left(+80 R_{A y}+60 R_{A x}\right. & =3,000
\end{array}
$$

- Solving those four equations simultaneously we have:

$$
\left[\begin{array}{cccc}
140 & 26.25 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
80 & 60 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
R_{A y} \\
R_{A x} \\
R_{C y} \\
R_{C x}
\end{array}\right\}=\left\{\begin{array}{c}
2,900 \\
80 \\
50 \\
3,000
\end{array}\right\} \Rightarrow\left\{\begin{array}{c}
R_{A y} \\
R_{A x} \\
R_{C y} \\
R_{C x}
\end{array}\right\}=\left\{\begin{array}{c}
15.1 \mathrm{k} \\
29.8 \mathrm{k} \\
34.9 \mathrm{k} \\
50.2 \mathrm{k}
\end{array}\right\}
$$

- We can check our results by considering the summation with respect to B from the right: $X X X$

Determine the reactions of the three hinged statically determined semi-circular arch under its own dead weight w (per unit arc length s, where $d s=r d \theta$).

- The reactions can be determined by integrating the load over the entire structure
- Vertical Reaction

$$
\begin{aligned}
\left(+ \text { 勺) } \Sigma M_{A}\right. & =0 ;\left(C_{y}\right)(2 R)-\int_{\theta=0}^{\theta=\pi} \underbrace{w R d \theta}_{\mathrm{d} P} \underbrace{R(1+\cos \theta)}_{\text {moment arm }}=0 \\
\Rightarrow C_{y} & =\frac{w R}{2} \int_{\theta=0}^{\theta=\pi}(1+\cos \theta) d \theta=\left.\frac{w R}{2}[\theta+\sin \theta]\right|_{\theta=0} ^{\theta=\pi} \\
& =\frac{w R}{2}[(\pi+\sin \pi)-(0+\sin 0)] \\
& =\frac{\pi}{2} w R
\end{aligned}
$$

- Horizontal Reactions

$$
\begin{aligned}
(+\}) \Sigma M_{B}= & 0 ;-\left(C_{x}\right)(R)+\left(C_{y}\right)(R)-\int_{\theta=0}^{\theta=\frac{\pi}{2}} \underbrace{w R d \theta}_{d P} \underbrace{R \cos \theta}_{\text {moment } a r m}=0 \\
\Rightarrow C_{x}= & \frac{\pi}{2} w R-\frac{w R}{2} \int_{\theta=0}^{\theta=\frac{\pi}{2}} \cos \theta d \theta \\
& =\frac{\pi}{2} w R-\left.w R[\sin \theta]\right|_{\theta=0} ^{\theta=\frac{\pi}{2}}=\frac{\pi}{2} w R-w R\left(\frac{\pi}{2}-0\right) \\
= & \left(\frac{\pi}{2}-1\right) w R
\end{aligned}
$$

By symmetry the reactions at A are equal to those at C

- Internal Forces can now be determined

- Shear Forces: Considering the free body diagram of the arch, and summing the forces in the radial direction $\left(\Sigma F_{R}=0\right)$:

$$
\begin{gathered}
-\underbrace{\left(\frac{\pi}{2}-1\right) w R \cos \theta}_{V_{x}}+\underbrace{\frac{\pi}{2} w R \sin \theta}_{V_{y}}-\int_{\alpha=0}^{\theta} w R \mathrm{~d} \alpha \sin \theta+V=0 \\
\Rightarrow V(\theta)=w R\left[\left(\frac{\pi}{2}-1\right) \cos \theta+\left(\theta-\frac{\pi}{2}\right) \sin \theta\right]
\end{gathered}
$$

- Axial Forces: Similarly, if we consider the summation of forces in the axial direction ($\Sigma F_{\theta}=0$):

$$
\begin{gathered}
\underbrace{\left(\frac{\pi}{2}-1\right) w R \sin \theta}_{N_{x}}+\underbrace{\frac{\pi}{2} w R \cos \theta}_{N_{y}}-\int_{\alpha=0}^{\theta} w R \mathrm{~d} \alpha \cos \theta+N=0 \\
\Rightarrow N(\theta)=w R\left[\left(\theta-\frac{\pi}{2}\right) \cos \theta-\left(\frac{\pi}{2}-1\right) \sin \theta\right]
\end{gathered}
$$

- Moment: Now we can consider the third equation of equilibrium $\left(\Sigma M_{z}=0\right)$:

$$
\begin{aligned}
(+\downarrow) \Sigma M & \underbrace{\left(\frac{\pi}{2}-1\right) w R}_{C_{x}} \cdot R \sin \theta-\underbrace{\frac{\pi}{2} w R}_{C_{y}} R(1-\cos \theta) \\
& +\int_{\alpha=0}^{\theta} w R \mathrm{~d} \alpha \cdot R(\cos \alpha-\cos \theta)+M=0 \\
\Rightarrow & M(\theta)=w R^{2}\left[\frac{\pi}{2}(1-\sin \theta)+\left(\theta-\frac{\pi}{2}\right) \cos \theta\right]
\end{aligned}
$$

- Because space structures may have complicated geometry, we must resort to vector analysis ${ }^{1}$ to determine the internal forces.
- In general we have six internal forces (forces and moments) acting at any section.

- In general, the geometry of the structure is most conveniently described by a parametric set of equations

$$
\begin{equation*}
x=f_{1}(\theta) ; \quad y=f_{2}(\theta) ; \quad z=f_{3}(\theta) \tag{46}
\end{equation*}
$$

the global coordinate system is denoted by $X-Y-Z$, and its unit vectors are denoted ${ }^{2}$ $\mathrm{i}, \mathrm{j}, \mathrm{k}$.

- The section on which the internal forces are required is cut and the principal axes are identified as $N-S-W$ which correspond to the normal force, and bending axes with respect to the Strong and Weak axes. The corresponding unit vectors are $\mathrm{n}, \mathrm{s}, \mathrm{w}$.
- The unit normal vector (which is tangent to the curve) at any section is given by

$$
\begin{equation*}
\mathrm{n}=\frac{d x \mathrm{i}+d y \mathrm{j}+d z \mathrm{k}}{d s}=\frac{d x \mathrm{i}+d y \mathrm{j}+d z \mathrm{k}}{\left(d x^{2}+d y^{2}+d z^{2}\right)^{1 / 2}} \tag{47}
\end{equation*}
$$

- The principal bending axes must be defined, that is if the strong bending axis is parallel to the $X Y$ plane, or horizontal (as is generally the case for gravity load), then this axis is normal to both the N and Z axes, and its unit vector is

$$
\begin{equation*}
\mathrm{s}=\mathrm{n} \times \mathrm{k} \tag{48}
\end{equation*}
$$

- The weak bending axis is normal to both N and S, and thus its unit vector is determined from

$$
\begin{equation*}
\mathrm{w}=\mathrm{n} \times \mathrm{s} \tag{49}
\end{equation*}
$$

Note that by now both n and s have been normalized.

[^2]- For the equilibrium equations, we consider the free body diagram.

an applied load P is acting at point A. The resultant force vector F and resultant moment vector M acting on the cut section B are determined from equilibrium

$$
\begin{array}{ccl}
\Sigma F=0 ; & \mathrm{P}+\mathrm{F}=0 ; & \mathrm{F}=-\mathrm{P} \\
\Sigma \mathrm{M}^{B}=0 ; & \mathrm{L} \times \mathrm{P}+\mathrm{M}=0 ; & \mathrm{M}=-\mathrm{L} \times \mathrm{P} \tag{51}
\end{array}
$$

where L is the lever arm vector from B to A.

- The axial and shear forces N, V_{s} and V_{w} are all three components of the force vector F along the N, S, and W axes and can be found by dot product with the appropriate unit vectors:

$$
\begin{align*}
N & =\mathrm{F} \cdot \mathrm{n} \tag{52}\\
V_{s} & =\mathrm{F} \cdot \mathrm{~s} \tag{53}\\
V_{w} & =\mathrm{F} \cdot \mathrm{w} \tag{54}
\end{align*}
$$

- Similarly the torsional and bending moments T, M_{s} and M_{w} are also components of the moment vector M and are determined from

$$
\begin{align*}
T & =\mathrm{M} \cdot \mathrm{n} \tag{55}\\
M_{s} & =\mathrm{M} \cdot \mathrm{~s} \tag{56}\\
M_{w} & =\mathrm{M} \cdot \mathrm{w} \tag{57}
\end{align*}
$$

- Hence, we do have a mean to determine the internal forces. In case of applied loads we sum, and for distributed load we integrate.
- We seek to determine the internal forces N, V_{s}, and V_{w} and the internal moments T, M_{s} and M_{w} along the helicoidal cantilevered girder due to a vertical load P at its free end.

- We first determine the geometry in terms of the angle θ

$$
\begin{equation*}
x=R \cos \theta ; \quad y=R \sin \theta ; \quad z=\frac{H}{\pi} \theta \tag{58}
\end{equation*}
$$

- To determine the unit vector n at any point we need the derivatives:

$$
\begin{equation*}
d x=-R \sin \theta d \theta ; \quad d y=R \cos \theta d \theta ; \quad d z=\frac{H}{\pi} d \theta \tag{59}
\end{equation*}
$$

and then insert into Eq. 47

$$
\begin{align*}
\mathrm{n} & =\frac{-R \sin \theta \mathrm{i}+R \cos \theta \mathrm{j}+H / \pi \mathrm{k}}{\left[R^{2} \sin ^{2} \theta+R^{2} \cos ^{2} \theta+(H / \pi)^{2}\right]^{1 / 2}} \tag{60}\\
& =\underbrace{\frac{1}{\left[1+(H / \pi R)^{2}\right]^{1 / 2}}}_{K}[-\sin \theta \mathrm{i}+\cos \theta \mathrm{j}+(H / \pi R) \mathrm{k}] \tag{61}
\end{align*}
$$

Since the denominator depends only on the geometry, it will be designated by K.

- The strong bending axis lies in a horizontal plane, and its unit vector can thus be determined from Eq. 48:

$$
\begin{align*}
\mathrm{n} \times \mathrm{k} & =\frac{1}{K}\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
-\sin \theta & \cos \theta & \frac{H}{\pi R} \\
0 & 0 & 1
\end{array}\right| \tag{62}\\
& =\frac{1}{K}(\cos \theta \mathrm{i}+\sin \theta \mathrm{j}) \tag{63}
\end{align*}
$$

and the absolute magnitude of this vector $|\mathrm{k} \times \mathrm{n}|=\frac{1}{K}$, and thus

$$
\begin{equation*}
\mathrm{s}=\cos \theta \mathrm{i}+\sin \theta \mathrm{j} \tag{64}
\end{equation*}
$$

- The unit vector along the weak axis is determined from Eq. 49

$$
\begin{align*}
\mathrm{w}=\mathrm{s} \times \mathrm{n} & =\frac{1}{K}\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & \frac{H}{\pi R}
\end{array}\right| \tag{65}\\
& =\frac{1}{K}\left(\frac{H}{\pi R} \sin \theta \mathrm{i}-\frac{H}{\pi R} \cos \theta \mathrm{j}+\mathrm{k}\right) \tag{66}
\end{align*}
$$

- With the geometry definition completed, we now examine the equilibrium equations. Eq. 50 and 51.

$$
\begin{align*}
\Sigma F & =0 ; & \mathrm{F} & =-\mathrm{P} \tag{67}\\
\Sigma M_{b} & =0 ; & \mathrm{M} & =-\mathrm{L} \times \mathrm{P} \tag{68}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{L}=(R-R \cos \theta) \mathrm{i}+(0-R \sin \theta) \mathrm{j}+\left(0-\frac{\theta}{\pi} H\right) \mathrm{k} \tag{69}
\end{equation*}
$$

and

$$
\begin{align*}
\mathrm{M}=\mathrm{L} \times \mathrm{P} & =R\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
(1-\cos \theta) & -\sin \theta & -\frac{\theta}{\pi} \frac{H}{R} \\
0 & 0 & P
\end{array}\right| \tag{70}\\
& =P R[-\sin \theta \mathrm{i}-(1-\cos \theta) \mathrm{j}] \tag{71}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{M}=P R[\sin \theta \mathrm{i}+(1-\cos \theta) \mathrm{j}] \tag{72}
\end{equation*}
$$

- Finally, the components of the force $\mathrm{F}=-\mathrm{Pk}_{\mathrm{k}}$ and the moment M are obtained by appropriate dot products with the unit vectors

$$
\begin{align*}
N & =\mathrm{F} \cdot \mathrm{n}=-\frac{1}{K} P \frac{H}{\pi R} \tag{73}\\
V_{s} & =\mathrm{F} \cdot \mathrm{~s}=0 \tag{74}\\
V_{w} & =\mathrm{F} \cdot \mathrm{w}=-\frac{1}{K} P \tag{75}\\
T & =\mathrm{M} \cdot \mathrm{n}=-\frac{P R}{K}(1-\cos \theta) \tag{76}\\
M_{s} & =\mathrm{M} \cdot \mathrm{~s}=P R \sin \theta \tag{77}\\
M_{w} & =\mathrm{M} \cdot \mathrm{w}=\frac{P H}{\pi K}(1-\cos \theta) \tag{78}
\end{align*}
$$

Structural Analysis

Approximate Analyses

Victor E. Saouma

saouma@colorado.edu

University of Colorado, Boulder

Spring 2019

Table of Contents I

(1) Introduction

- Why?
(2) Curvature Equation
(3) From Deflected Shapes to Inflection Points
- Basic Rules
- Compatible Corner Rotations
- Example: Simple Beam
- Example: Portal Frame, Vertical Load
- Example: Portal Frame; Lateral Load

4. Joint stiffnesses
(5) Approximate Analyses of Buildings

- Introduction
- Vertical Loads; Theory
- Horizontal Loads; Introduction
- Horizontal Loads: Portal Method

6 Numerical Examples

- Numerical Example: Vertical Load
- Numerical Example: Horizontal Loads
- Combined Load

Table of Contents II

(7) Problems

- M diagram necessary for design and deflection calculations.
- Approximate method Essential for back of the envelope verification and preliminary dimensioning
- Developing a basic understanding of how structures behave under applied loads is an important part of structural engineering.
- That is how they displace and deform and how stresses develop and propagate in their members.
- The ability to visualize or having a qualitative understanding of the behavior of a structure contribute to the development of the an insight that shape structural engineering judgment.
- Excellent review of Mechanics and Statics.
- Turn a statically indeterminate structure into a statically determinate one by identifying point of inflection based on a proper sketch of the deflected shape.
- Engineers use computers to draw shear/moment diagrams, value of hand calculations very limited (but essential to understand theory).
- More important to develop a "feel" for structural engineering, and develop the capability of quickly sketching deflected shapes and moment diagrams.
- You are the first class with which I will be experimenting this approach!.

- The slope is denoted by θ, the change in slope per unit length is the curvature ϕ, the radius of curvature is ρ. From the figure we have the following relations

$$
\phi=\frac{1}{\rho}=\frac{\mathrm{d} \theta}{\mathrm{~d} s}
$$

- For small displacements, and as a first order approximation, with $\mathrm{d} s \approx \mathrm{~d} x$ and $\theta=\frac{\mathrm{d} y}{\mathrm{~d} x}$

$$
\phi=\frac{1}{\rho}=\frac{d \theta}{\mathrm{~d} x}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}
$$

- A positive $d \theta$ at a positive y (upper fibers) will cause a shortening of the upper fibers.
- From the figure: $d u=-y d \theta$, Dividing both sides by $d x$, and for linear elastic systems:

$$
\underbrace{\frac{d u}{d x}}_{\varepsilon}=-y \frac{d \theta}{\mathrm{~d} x}=-\frac{M y}{E l}
$$

- Combining this the previous equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{M}{E I}
$$

- Main conclusion for this chapter: zero moment occurs when the inflexion point (where $\frac{\mathrm{d}^{2} y}{\mathrm{~d} \mathrm{x}^{2}}=0$)
- No axial deformation.
- If lateral load, apply a small lateral displacement.
- Compatible corner rotations (90 degree bends stay at 90 degrees; Fixed ends remain fixed).
- Continuous smooth curves (except at internal hinges).
- Careful about inflection points (specially for the moment diagram).

This is only for the corner and not for elements (infinitesimal size)

Self explanatory!

- For very rigid columns. Note the shorter the radius, the larger the moment.

- For very rigid beam: small flexure in beam, large axial in the columns
- For intermediary situation

(1) Draw the deflected shape of the portal frame.
(2) Draw the corresponding moment diagram.
(3) Show tension/compression zones.

- Draw the deflected shapes of the left column keeping in mind:
- Bottom tangent is 90°.
- Tension has to be on the outside (thus concave inside).
- The column is restrained in the top. If the cross beam is
- Infinity rigid: the tangent to the top of the column would be also 90°. (there will be an inflection point)
- Very flexible: there will be no inflection point, and concavity will be entirely inside.
- Finite stiffness: non zero rotation at the top, and an inflection point.

- Column in the right will have identical shape.
- Draw deflected shape of beam. There is no concentrated moment at the corner, so tensions and compressions must be continuous.

- Draw the moment diagram.

Note: Positive moment if compression on "outside"

- Rectangular building frames are highly statically indeterminate.
- Can be analysed by
- computers exact solution, but time consuming.
- approximate solution of any floor on a back of the enveloppe approach to yield quick and decent results.
- Vertical loads are treated separately from the horizontal ones.
- For horizontal loads two methods:
- Portal method for low rise buildings with predominant shear deflections.
- Cantilever for high rise buildings.
- Design sign convention for moments (+ve tension below), and for shear (ccw +ve).
- Assume girders to be numbered from left to right.
- In all free body diagrams assume positive forces/moments, and take algebraic sums.
- Sign convention

+ve Shear

- For a a multi-bay/multi-storey frame, girders are assumed to be continuous beams, and columns are assumed to resist the resulting unbalanced moments from the girders. Assume
(1) Girders at each floor act as continuous beams supporting a uniform load.
(2) Inflection points are assumed to be at
(1) One tenth the span from both ends of each girder.
(2) Mid-height of the columns.
(3) Guess location of inflection points.

(4) Ignore axial effects.
(5) Unbalanced end moments from the girders at each joint is distributed to the columns above and below.
- Then, all beams are statically determinate and have a span, L_{s} equal to 0.8 the original length of the girder, L. This assumes that the inflection point is at $0.1 L$ which is between 0 for simply supported beam, and $0.21 L$ for rigidly connected beams.
- Sequence of calculation (very important)
(1) Girder positive moment
(2) Girder negative moment
(3) Girder shear

4 column axial forces
(5) column moments
(6) Column shears
(7) Girder axial forces

The procedure is outlined below, no need to memorize any equation, just use equations of equilibrium and free body diagrams where all end member shear and moments are assumed to be positive.
(1) Maximum positive moment at center of each beam

$$
M^{+}=\frac{1}{8} w L_{s}^{2}=w \frac{1}{8}(0.8)^{2} L^{2}=0.08 w L^{2}
$$

Note that $w L^{2} / 24=0.041667$.
(2) Maximum negative moment at each end of the girder

$$
M^{\text {left }}=M^{\text {rgt }}=-\frac{w}{2}(0.1 L)^{2}-\frac{w}{2}(0.8 L)(0.1 L)=-0.045 w L^{2}
$$

(3) Girder Shear are obtained from

$$
V^{l f t}=\frac{w L}{2} \quad V^{r g t}=-\frac{w L}{2}
$$

Note thhe sign of the shear forces. Graphically, they will always be shown positive.
(4) Column axial force: summ all the girder shears to the axial force transmitted by the column above it.

$$
P^{d w n}=P^{u p}+V_{i-1}^{\text {rgt }}-V_{i}^{l f t}
$$

(5) Column Moment are obtained from the free body diagram of the joints. From symmetry, left and right moments are equal and opposite, thus

$$
M^{b o t}=-M^{t o p}
$$

(6) Column Shear Points of inflection are at mid-height, with possible exception when the columns on the first floor are hinged at the base

$$
V=\frac{M^{\text {top }}}{\frac{h}{2}}
$$

((Girder axial forces are assumed to be negligible

- Single bay/storey frame, depending on the boundary conditions, we will have different locations for the inflection points.

- For a multi-bays/multi-storeys frame, must differentiate between low and high rise buildings.
- Low rise buidlings height is at least smaller than the horizontal dimension, the deflected shape is characterized by shear deformations. Use Portal Method.
- High rise buildings height is several times greater than its least horizontal dimension, the deflected shape is dominated by overall flexural deformation.
- Low rise buildings under lateral loads predominantly shear deformations is dominant. Assume:
(1) Inflection points at
(1) Mid-height of all columns above the second floor.
(2) Mid-height of floor columns if rigid support, or at the base if hinged.
(3) At the center of each girder.
(2) Total horizontal shear at the mid-height of all columns at any floor level will be distributed among these columns so that each of the two exterior columns carry half as much horizontal shear as each interior columns of the frame.
- Sequence of calculations:
(1) Column shear
(2) Column moments
(3) Girder moments

4 Girder shears
(5) Column axial force
(6) Girder axial force

- Note that it is the reverse order of the vertical load case.
(1) Column Shear is obtained by passing a horizontal section through the mid-height of the columns at each floor and summing the lateral forces above it.

External columns take half the shear force of the interior ones.

$$
V_{e x t}^{c o l}=\frac{\sum^{\text {Nateral }}}{2 \text { No. of bays }} \quad V_{\text {int }}^{\text {col }}=2 V_{e x t}^{c o l}
$$

(2) Column Moments at the end of each column is equal to the shear at the column times half the height of the corresponding column

$$
M_{c o l}^{t o p}=V^{c o l} \frac{h}{2} \quad M^{b o t}=-M^{t o p}
$$

Careful exterior columns, the moments are half the ones of the interior.
(3) Girder Moments is obtained from the free body diagram of the connection

$$
M_{i}^{\text {ltt }}=M_{c o l}^{\text {Top }}-M_{c o l}^{\text {Bot }}+M_{i-1}^{\text {rot }} \quad M_{i}^{\text {rot }}=-M_{i}^{\text {ltt }}
$$

(9) Girder Shears Since there is an inflection point at the center of the girder, the girder shear is obtained by considering the sum of moments about that point

$$
V^{l t t}=-\frac{2 M}{L} \quad V^{r g t}=V^{l f t}
$$

(6) Column Axial Forces are obtained by summing girder shears and the axial force from the column above

(6) blueGirder axial force are assumed to be negligible.

Free body diagram

(1) Top Girder Moments
(2) Bottom Girder Moments
(3) Top Column Moments
(4) Bottom Column Moments

$$
\begin{array}{lll}
M_{1}^{\text {top }}=+M_{5}^{\text {bot }}+M_{9}^{\text {lft }}=4.5-9.0 & =-4.5 \mathrm{k} . \mathrm{ft} \\
M_{1}^{\text {bot }}=-M_{1}^{\text {top }} & = & 4.5 \mathrm{k} . \mathrm{ft} \\
M_{2}^{\text {top }}=+M_{6}^{\text {bot }}-M_{9}^{\text {rot }}+M_{10}^{\text {lft }}=5.6-(-9.0)+(-20.3) & =-5.6 \mathrm{k} . \mathrm{ft} \\
M_{2}^{\text {bot }}=-M_{2}^{\text {top }} & =5.6 \mathrm{k} . \mathrm{ft} \\
M_{3}^{\text {top }}=+M_{7}^{\text {bot }}-M_{10}^{\text {rot }}+M_{11}^{\text {ltt }}=-3.6-(-20.3)+(-13.0) & =3.6 \mathrm{k} . \mathrm{ft} \\
M_{3}^{\text {bot }}=-M_{3}^{\text {top }} & =-3.6 \mathrm{k} . \mathrm{ft} \\
M_{4}^{\text {top }}=+M_{8}^{\text {bot }}-M_{11}^{\text {rot }}=-6.5-(-13.0) & = & 6.5 \mathrm{k} . \mathrm{ft} \\
M_{4}^{\text {bot }}=-M_{4}^{\text {top }} & =-6.5 \mathrm{k} . \mathrm{ft}
\end{array}
$$

(5) Moment Diagrams

(6) Top Girder Shear

$$
\begin{array}{rll}
V_{12}^{l f t} & =\frac{w_{12} L_{12}}{2}=\frac{(0.25)(20)}{2} & = \\
V_{12}^{r g t} & =-2.5 \mathrm{~K} \\
V_{12}^{l f t} & =-2.5 \mathrm{k} \\
V_{13}^{\prime f t} & =\frac{w_{13} L_{13}}{2}=\frac{(0.25)(30)}{2} & =3.75 \mathrm{~K} \\
V_{13}^{r g t} & =-V_{13}^{l f t} \\
V_{14}^{f t t} & =\frac{w_{14} L_{14}}{2}=\frac{(0.25)(24)}{2} & =-3.75 \mathrm{k} \\
V_{14}^{\text {rgt }} & =-V_{14}^{l f t} & =-3.0 \mathrm{~K} \\
& =-3.0 \mathrm{~K}
\end{array}
$$

(7) Bottom Girder Shear
(8) Column Shears

$$
\begin{aligned}
& V_{5}=\frac{M_{5}^{\text {top }}}{\frac{H_{5}}{2}}=\frac{-4.5}{\frac{14}{2}}=-0.64 \mathrm{k} \\
& V_{6}=\frac{M_{6}^{\text {top }}}{\frac{H_{6}}{2}}=\frac{-5.6}{\frac{14}{2}}=-0.80 \mathrm{k} \\
& V_{7}=\frac{M_{7}^{t o p}}{\frac{H_{7}}{2}}=\frac{3.6}{\frac{14}{2}}=0.52 \mathrm{k} \\
& V_{8}=\frac{M_{8}^{\text {top }}}{\frac{H_{8}}{2}}=\frac{6.5}{\frac{14}{2}}=0.93 \mathrm{k} \\
& V_{1}=\frac{M_{1}^{\text {top }}}{\frac{H_{1}}{2}}=\frac{-4.5}{\frac{16}{2}}=-0.56 \mathrm{k} \\
& V_{2}=\frac{M_{2}^{\text {top }}}{\frac{H_{2}}{2}}=\frac{-5.6}{\frac{16}{2}}=-0.70 \mathrm{k} \\
& V_{3}=\frac{M_{3}^{t o p}}{H_{3}}=\frac{3.6}{\frac{16}{2}}=0.46 \mathrm{k} \\
& V_{4}=\frac{M_{4}^{\text {top }}}{\frac{H_{4}}{2}}=\frac{6.5}{\frac{16}{2}}=0.81 \mathrm{k}
\end{aligned}
$$

(9) Top Column Axial Forces

$$
\begin{aligned}
P_{5}=V_{12}^{l f t} & =2.50 \mathrm{k} \\
P_{6}=-V_{12}^{\text {rgt }}+V_{13}^{\prime f t}=-(-2.50)+3.75 & =6.25 \mathrm{k} \\
P_{7}=-V_{13}^{\text {rgt }}+V_{14}^{f l t}=-(-3.75)+3.00 & =6.75 \mathrm{k} \\
P_{8}=-V_{14}^{\text {rgt }} & =3.00 \mathrm{k}
\end{aligned}
$$

(10) Bottom Column Axial Forces

$$
\begin{array}{ll}
P_{1}=P_{5}+V_{9}^{l t t}=2.50+5.0 & =7.5 \mathrm{k} \\
P_{2}=P_{6}-V_{10}^{\text {rot }}+V_{9}^{\text {lft }}=6.25-(-5.00)+7.50 & =18.75 \mathrm{k} \\
P_{3}=P_{7}-V_{11}^{\text {rot }}+V_{10}^{\text {lt }}=6.75-(-7.50)+6.0 & =20.25 \mathrm{k} \\
P_{4}=P_{8}-V_{11}^{\text {rot }}=3.00-(-6.00) & =9.00 \mathrm{k}
\end{array}
$$

VERTICAL LOADS

MOMENTS												
Bay 1					Bay 2				Bay 3			
Col	Beam			Column	Beam			Column	Beam			Col
	Lft	Cnt	Rgt		Lft	Cnr	Rgt		Lft	Cnt	Rgt	
	-4.5	8.0	-4.5		-10.1	18.0	-10.1		-6.5	11.5	-6.5	
-4.5				-5.6				3.6				6.5
4.5				5.6				-3.6				-6.5
	-9.0	16.0	-9.0		-20.3	36.0	-20.3		-13.0	23.0	-13.0	
-4.5				-5.6				3.6				6.5
4.5				5.6				-3.6				-6.5

SHEAR									
Bay 1				Bay 2		Bay 3			Col
Col	Beam		Column	Beam		Column	Beam		
	Lft	Rgt		Lft	Rgt		Lft	Rgt	
	2.50	-2.50		3.75	-3.75		3.00	-3.00	
-0.64			-0.80			0.52			0.93
	5.00	-5.00		7.50	-7.50		6.00	-6.00	
-0.56			-0.70			0.46			0.81

AXIAL FORCE								
	Bay 1	Bay 2	Bay 3					
Col	Beam	Column	Beam	Column	Beam	Col		
	0.00		0.00		0.00			
2.50		6.25		6.75		3.00		
	0.00		0.00		0.00			
7.50		18.75		20.25		9.00		

Free body diagram

© Column Shears

$$
\begin{array}{ll}
V_{5}=\frac{15}{(2)(3)} & =2.5 \mathrm{k} \\
V_{6}=2\left(V_{5}\right)=(2)(2.5) & =5 \mathrm{k} \\
V_{7}=2\left(V_{5}\right)=(2)(2.5) & =5 \mathrm{k} \\
V_{8}=V_{5} & =2.5 \mathrm{k} \\
V_{1}=\frac{15+30}{(2)(3)} & =7.5 \mathrm{k} \\
V_{2}=2\left(V_{1}\right)=(2)(7.5) & =15 \mathrm{k} \\
V_{3}=2\left(V_{1}\right)=(2)(2.5) & =15 \mathrm{k} \\
V_{4}=V_{1} & =7.5 \mathrm{k}
\end{array}
$$

(2) Top Column Moments

$$
\begin{array}{ll}
M_{5}^{\text {top }} & =\frac{V_{1} H_{5}}{2}=\frac{(2.5)(14)}{2} \\
M_{5}^{\text {bot }}=\frac{M_{5}^{\text {top }}}{2} & =-17.5 \mathrm{k} . \mathrm{ft} \\
M_{6}^{\text {top }} & =\frac{V_{6} H_{6}}{2}=\frac{(5)(14)}{2} \\
M_{6}^{\text {bot }}=-35.0 \mathrm{k} . \mathrm{ft} \\
M_{6}^{\text {top }} & =-35.0 \mathrm{k} . \mathrm{ft} \\
M_{7}^{\text {top }}=\frac{V_{7}^{\text {Lo }} H_{7}}{2}=\frac{(5)(14)}{2}=35.0 \mathrm{k} . \mathrm{ft} \\
M_{7}^{\text {bot }}=-M_{7}^{\text {top }} & =-35.0 \mathrm{k} . \mathrm{ft} \\
M_{8}^{\text {top }}=\frac{V_{8}^{\text {to }} H_{8}}{2}=\frac{(2.5)(14)}{2}=17.5 \mathrm{k} . \mathrm{ft} \\
M_{8}^{\text {bot }}=-M_{8}^{\text {top }} & =-17.5 \mathrm{k} . \mathrm{ft}
\end{array}
$$

(3) Bottom Column Moments

$$
\begin{array}{ll}
M_{1}^{\text {top }}=\frac{V_{1}^{d w n} H_{1}}{2}=\frac{(7.5)(16)}{2}=60 \mathrm{k} . \mathrm{ft} \\
M_{1}^{\text {bot }}=\frac{-M_{1}^{\text {top }}}{}=-60 \mathrm{k} . \mathrm{ft} \\
M_{2}^{\text {top }}=\frac{V_{2}^{d w n} H_{2}}{2}=\frac{(15)(16)}{2}=120 \mathrm{k} . \mathrm{ft} \\
M_{2}^{\text {bot }}=\frac{-M_{2}^{\text {top }}}{}=-120 \mathrm{k} . \mathrm{ft} \\
M_{3}^{\text {top }}=\frac{V_{3}^{\text {dun }} H_{3}}{2}=\frac{(15)(16)}{2}=-120 \mathrm{k} . \mathrm{ft} \\
M_{3}^{\text {bot }}=-M_{3}^{\text {top }} & =-120 \mathrm{k} . \mathrm{ft} \\
M_{4}^{\text {top }}=\frac{V_{4}^{\text {dwn }} H_{4}}{2}=\frac{(7.5)(16)}{2}=60 \mathrm{k} . \mathrm{ft} \\
M_{4}^{\text {bot }}=-M_{4}^{\text {top }} & =-60 \mathrm{k} . \mathrm{ft}
\end{array}
$$

(4) Top Girder Moments

$$
\begin{array}{rlll}
M_{12}^{l f t} & =M_{5}^{\text {top }} & & =17.5 \mathrm{k} . \mathrm{ft} \\
M_{12}^{\text {gt }} & =-M_{12}^{l f t} & & =-17.5 \mathrm{k} . \mathrm{ft} \\
M_{13}^{l \mathrm{ft}} & =M_{12}^{\text {rgt }}+M_{6}^{\text {top }}=-17.5+35 & & 17.5 \mathrm{k} . \mathrm{ft} \\
M_{13}^{\text {grt }} & =-M_{13}^{l t t} & & =-17.5 \mathrm{k} . \mathrm{ft} \\
M_{14}^{l f t} & =M_{13}^{\text {rgt }}+M_{7}^{\text {top }}=-17.5+35 & =17.5 \mathrm{k} . \mathrm{ft} \\
M_{14}^{\text {grt }} & =-M_{14}^{l f t} & & =-17.5 \mathrm{k} . \mathrm{ft}
\end{array}
$$

(5) Bottom Girder Moments

$M_{9}^{l f t}$	$=M_{1}^{\text {top }}-M_{5}^{\text {bot }}=60-(-17.5)$		$=77.5 \mathrm{k} . \mathrm{ft}$
$M_{9}^{\text {gt }}$	$=-M_{9}^{l f t}$		$=-77.5 \mathrm{k} . \mathrm{ft}$
$M_{10}^{l f t}$	$=M_{9}^{\text {rgt }}+M_{2}^{\text {top }}-M_{6}^{\text {bot }}=-77.5+120-(-35)$	$=77.5 \mathrm{k} . \mathrm{ft}$	
$M_{19}^{\text {gt }}$	$=-M_{10}^{l t}$	$=-77.5 \mathrm{k} . \mathrm{ft}$	
$M_{11}^{f t t}$	$=M_{10}^{\text {rgt }}+M_{3}^{\text {top }}-M_{7}^{\text {bot }}=-77.5+120-(-35)$	$=77.5 \mathrm{k} . \mathrm{ft}$	
$M_{11}^{\text {grt }}$	$=-M_{11}^{l f t}$	$=-77.5 \mathrm{k} . \mathrm{ft}$	

(6) Top Girder Shear

$$
\begin{aligned}
& V_{12}^{l+t}=-\frac{2 M_{12}^{l t}}{L_{12}}=-\frac{(2)(17.5)}{20}=-1.75 \mathrm{k} \\
& V_{12}^{\text {rgt }}=+V_{12}^{l+t} \quad=-1.75 \mathrm{k} \\
& V_{13}^{l t t}=-\frac{2 M_{13}^{1 t}}{L_{13}}=-\frac{(2)(17.5)}{30}=-1.17 \mathrm{k} \\
& V_{13}^{\text {rgt }}=+V_{13}^{l f t} \quad=-1.17 \mathrm{k} \\
& V_{14}^{l f t}=-\frac{2 M_{14}^{1 / t}}{L_{14}}=-\frac{(2)(17.5)}{24}=-1.46 \mathrm{k} \\
& V_{14}^{\text {rgt }}=+V_{14}^{l t t}=-1.46 \mathrm{k}
\end{aligned}
$$

(7) Bottom Girder Shear

$$
\begin{aligned}
& V_{9}^{\text {lft }}=-\frac{2 M_{12}^{l / t}}{L_{9}}=-\frac{(2)(77.5)}{20}=-7.75 \mathrm{k} \\
& V_{9}^{\text {rgt }}=+V_{9}^{\text {lit }}=-7.75 \mathrm{k} \\
& V_{10}^{l+t}=-\frac{2 M_{10}^{l t}}{L_{10}}=-\frac{(2)(77.5)}{30}=-5.17 \mathrm{k} \\
& V_{10}^{\text {rgt }}=+V_{10}^{l t t} \quad=-5.17 \mathrm{k} \\
& V_{11}^{l f t}=-\frac{2 M_{11}^{\text {ft }}}{L_{11}}=-\frac{(2)(77.5)}{24}=-6.46 \mathrm{k} \\
& V_{11}^{\text {rgt }}=+V_{11}^{l t t}=-6.46 \mathrm{k}
\end{aligned}
$$

(8) Top Column Axial Forces (+ve tension, -ve compression)

$$
\begin{array}{ll}
P_{5}=-V_{12}^{l f t} & =-(-1.75) \mathrm{k} \\
P_{6}=+V_{12}^{\text {rgt }}-V_{13}^{l f t}=-1.75-(-1.17) & =-0.58 \mathrm{k} \\
P_{7}=+V_{13}^{\text {got }}-V_{14}^{\prime l t}=-1.17-(-1.46)=0.29 \mathrm{k} \\
P_{8}=V_{14}^{\text {rgt }}=-1.46 \mathrm{k} &
\end{array}
$$

(9) Bottom Column Axial Forces (+ve tension, -ve compression)

$$
\left.\left.\begin{array}{rl}
P_{1}=P_{5}+V_{9}^{l f t}=1.75-(-7.75) & =9.5 \mathrm{k} \\
P_{2} & =P_{6}+V_{10}^{r g t}+V_{9}^{\prime f t}=-0.58-7.75-(-5.17) \\
P_{3} & =-3.16 \mathrm{k} \\
P_{4} & =V_{11}+V_{1}+V_{11}^{r g t}+V_{10}^{\prime \prime t}=0.29-5.17-(-6.46)
\end{array}\right)=-1.46-6.46\right)=-7.66 \mathrm{k}
$$

Numerical Examples

HORIZONTAL LOAD
\# of Bays $\quad 3$

SHEAR									
C ${ }^{\text {Cray }} 1$				Bay 2		Bay 3			Col
			Column	Beam		Column	Beam		
	Lft	Rgt		Lft	Rgt		Lft	Rgt	
	-1.75	-1.75		-1.17	-1.17		-1.46	-1.46	
2.50			5.00			5.00			2.50
2.50			5.00			5.00			2.50
	-7.75	-7.75		-5.17	-5.17		-6.46	-6.46	
7.50			15.00			15.00			7.50
7.50			15.00			15.00			7.50

AXIAL FORCE								
Bay 1			Bay 2			Bay 3		
Col	Beam	Column	Beam	Column	Beam	Col		
	0.00		0.00		0.00			
1.75		-0.58		0.29		-1.46		
	0.00		0.00		0.00			
9.50		-3.17		1.58		-7.92		

- Design Parameters On the basis of the two approximate analyses, vertical and lateral load, we now seek the design parameters for the frame.
- Columns

COLUMNS				
Mem.		Vert.	Hor.	Design Values
1	Moment Axial Shear	4.50	60.00	64.50
		7.50	9.50	17.00
		0.56	7.50	8.06
2	Moment Axial Shear	5.60	120.00	125.60
		18.75	15.83	34.58
		0.70	15.00	15.70
3	Moment Axial Shear	3.60	120.00	123.60
		20.25	14.25	34.50
		0.45	15.00	15.45
4	Moment Axial Shear	6.50	60.00	66.50
		9.00	7.92	16.92
		0.81	7.50	8.31
5	Moment Axial Shear	4.50	17.50	22.00
		2.50	1.75	4.25
		0.64	2.50	3.14
6	Moment Axial Shear	5.60	35.00	40.60
		6.25	2.92	9.17
		0.80	5.00	5.80
7	Moment Axial Shear	3.60	35.00	38.60
		6.75	2.63	9.38
		0.51	5.00	5.51
8	Moment Axial Shear	6.50	17.50	24.00
		3.00	1.46	4.46
		0.93	2.50	3.43

- Beams

BEAMS				
Mem.		Vert.	Hor.	Design Values
9	-ve Moment +ve Moment Shear	9.00	77.50	86.50
		16.00	0.00	16.00
		5.00	7.75	12.75
10	-ve Moment +ve Moment Shear	20.20	77.50	97.70
		36.00	0.00	36.00
		7.50	5.17	12.67
11	-ve Moment +ve Moment Shear	13.0	77.50	90.50
		23.00	0.00	23.00
		6.00	6.46	12.46
12	-ve Moment +ve Moment Shear	4.50	17.50	22.00
		8.00	0.00	8.00
		2.50	1.75	4.25
13	-ve Moment +ve Moment Shear	10.10	17.50	27.60
		18.00	0.00	18.00
		3.75	1.17	4.92
14	-ve Moment +ve Moment Shear	6.50	17.50	24.00
		17.50	0.00	11.50
		3.00	1.46	4.46

(1) Qualitatively draw deflected shapes, indicate positions of inflection points.
(2) Draw corresponding moment diagram.
(3) Redraw structure with finite member depths, and indicate location of reinforcement.
(4) compute exact moments and compare.

From pg 331 book by Meyer

Structural Analysis
 Deflections; Elastic Curve

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Spring 2019

Table of Contents I

(1) Introduction

(2) Curvature Equation

- Exact Relationship
- Example
(3) Curvature Area Method (Moment Area)
- First Moment Area Theorem
- Second Moment Area Theorem
- Misc.

4. Elastic Weight/Conjugate Beams

- Example
- Example

Introduction

- Deflections of structures must be determined in order to satisfy serviceability requirements i.e. limit deflections under service loads to acceptable values (such as $\frac{\Delta}{L} \leq 360$).
- Later on, we will see that deflection calculations play an important role in the analysis of statically indeterminate structures.
- We shall focus on flexural deformation, however the end of this chapter will review axial and torsional deformations as well.
- Most of this chapter will be a review of subjects covered in Strength of Materials.
- This chapter will examine deflections of structures based on geometric considerations. Later on, we will present a more powerful method based on energy considerations.

- The slope is denoted by θ, the change in slope per unit length is the curvature ϕ, the radius of curvature is ρ. From Strength of Materials we have the following relations

$$
\begin{equation*}
\phi=\frac{1}{\rho}=\frac{\mathrm{d} \theta}{\mathrm{~d} s} \tag{1}
\end{equation*}
$$

- For small displacements, and as a first order approximation, with $\mathrm{d} s \approx \mathrm{~d} x$ and $\theta=\frac{\mathrm{d} y}{\mathrm{~d} x}$ Eq. 1 becomes

$$
\begin{equation*}
\phi=\frac{1}{\rho}=\frac{d \theta}{\mathrm{~d} x}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \tag{2}
\end{equation*}
$$

- A positive $d \theta$ at a positive y (upper fibers) will cause a shortening of the upper fibers $d u=-y d \theta$, Dividing both sides by $d x$,

$$
\underbrace{\frac{d u}{d x}}_{\varepsilon}=-y \frac{d \theta}{d x}
$$

- Combining this with Eq. 2

$$
\frac{1}{\rho}=\phi=-\frac{\varepsilon}{y}
$$

This is the fundamental relationship between curvature (ϕ), elastic curve (i.e. displacement) (y), and linear strain (ε).

- Note that so far we made no assumptions about material properties, i.e. it can be elastic or inelastic.
- For the elastic case:

$$
\left.\begin{array}{rl}
\varepsilon & =\frac{\sigma}{E} \tag{3}\\
\sigma & =-\frac{M y}{l}
\end{array}\right\} \varepsilon=-\frac{M y}{E l}
$$

- Combining this last equation with Eq. 1 yields

$$
\phi=\frac{1}{\rho}=\frac{d \theta}{\mathrm{~d} x}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{M}{E l}
$$

This fundamental differential equation governing for beam. Similar equations will be derived later for cables and beam-columns.

- Combining this equation with the moment-shear-force relations determined in the previous chapter

$$
\left.\begin{array}{l}
\frac{d V}{d x}=w(x) \\
\frac{d M}{d x}=V(x)
\end{array}\right\} \frac{\mathrm{d}^{2} M}{\mathrm{~d} x^{2}}=w(x)
$$

we obtain

$$
\frac{w(x)}{E l}=\frac{d^{4} y}{d x^{4}}
$$

- \dagger Next, we shall (re)derive the exact expression for the curvature.

$$
\begin{equation*}
\tan \theta=\frac{\mathrm{d} y}{\mathrm{~d} x} \tag{4}
\end{equation*}
$$

- Defining t as $t=\frac{\mathrm{d} y}{\mathrm{~d} x}$ and combining with Eq. 4 we obtain $\theta=\tan ^{-1} t$
- Applying the chain rule to $\phi=\frac{d \theta}{d s}$ we have

$$
\begin{equation*}
\phi=\frac{d \theta}{d t} \frac{d t}{d s} \tag{5}
\end{equation*}
$$

ds can be rewritten as

$$
\left.\begin{array}{rl}
d s & =\sqrt{\mathrm{d} x^{2}+\mathrm{d} y^{2}} \tag{6}\\
& =\sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x \\
t & =\frac{\mathrm{d} y}{\mathrm{~d} x}
\end{array}\right\} d s=\sqrt{1+t^{2}} \mathrm{~d} x
$$

- Next combining Eq. 5 and 6 we obtain

$$
\left.\left.\begin{array}{rl}
\phi & =\frac{d \theta}{d t} \frac{d t}{\sqrt{1+t^{2}} \mathrm{~d} x} \tag{7}\\
\theta & =\tan ^{-1} t \\
\frac{d \theta}{d t} & =\frac{1}{1+t^{2}}
\end{array}\right\} \begin{array}{rl}
\phi & =\frac{1}{1+t^{2}} \frac{1}{\sqrt{1+t^{2}}} \frac{d t}{\mathrm{~d} x} \\
\frac{d t}{\mathrm{~d} x} & =\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}
\end{array}\right\} \phi=\frac{\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}}{\left[1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}\right]^{\frac{3}{2}}}
$$

- Thus the slope θ, curvature ϕ, radius of curvature ρ are related to the y displacement at a point x along a flexural member by

$$
\phi=\frac{1}{\rho}=\frac{\frac{d^{2} y}{d x^{2}}}{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}}
$$

- If the displacements are very small, we will have $\frac{\mathrm{d} y}{\mathrm{~d} x} \ll 1$, thus the last equation reduces to $\phi=\frac{d^{2} y}{d x^{2}}=\frac{1}{\rho}$

Example I

- Reactions

$$
\begin{aligned}
& (+勺) \Sigma M_{z}^{B}=0 ; \Rightarrow a R_{1}-b P=0 \Rightarrow R_{1}=\frac{b}{a} P \\
& (+\circlearrowleft) \Sigma M_{z}^{A}=0 ; \Rightarrow a R_{2}-P L=0 \Rightarrow R_{2}=\frac{L}{a} P
\end{aligned}
$$

Example II

- Differential equation

$$
\begin{aligned}
\text { Ely }^{\prime \prime} & =-\frac{b}{a} P x+\frac{L}{a} P<x-a> \\
\text { Ely }^{\prime} & =-\frac{b}{2 a} P x^{2}+\frac{L}{2 a} P<x-a>^{2}+C_{1} \\
\text { Ely } & =-\frac{b}{6 a} P x^{3}+\frac{L}{6 a} P<x-a>^{3}+C_{1} x+C_{2}
\end{aligned}
$$

- Apply the boundary conditions, at $x=0, y=0$ therefore $C_{2}=0$, and at $x=a, y=0$, thus $0=-[b /(6 a)] P a^{3}+a C_{1}$ or $C_{1}=(a b / 6) P$
- Slope under the load (note $x=a+b=L$)

$$
\begin{aligned}
E l y^{\prime} & =-\frac{b}{2 a} P(a+b)^{2}+\frac{a+b}{2 a} P b^{2}+\frac{a b}{6} P \\
& =-\frac{b}{2 a} P\left(a^{2}+2 a b+b^{2}\right)+\frac{a b^{2}+b^{3}}{2 a} P+\frac{a b}{6} P \\
& =\cdots \\
& =-\frac{1}{6} b(2 L+b) P
\end{aligned}
$$

Example III

- Deflection under the load P :

$$
\begin{aligned}
\text { Ely } & =-\frac{b}{6 a} P(a+b)^{3}+\frac{a+b}{6 a} P b^{3}+\frac{a b}{6} P(a+b) \\
& =\cdots \\
& =-\frac{1}{3} L b^{2} P
\end{aligned}
$$

- Maximum deflection between the supports will occur where $y^{\prime}=0$.

$$
E l y^{\prime}=-\frac{b}{2 a} P x^{2}+\frac{L}{2 a}<x-a>^{2}+\frac{a b}{6} P
$$

at $y^{\prime}=0, x-a>$ does not exist, thus $0=-\frac{b}{2 a} P x^{2}+\frac{a b}{6} P$ solving for a, $a=\frac{1}{\sqrt{3}} a$, thus we can write

$$
\begin{aligned}
\text { Ely }_{\max } & =-\frac{b}{6 a} P\left(\frac{1}{\sqrt{3}} a\right)^{3}+\frac{a b}{6} P\left(\frac{1}{\sqrt{3}} a\right) \\
& =\ldots \\
& =\frac{a^{2} b}{9 \sqrt{3}} P
\end{aligned}
$$

Curvature Area Method; First Moment Area Theorem

- From equation 4 we have $\frac{d \theta}{\mathrm{~d} x}=\frac{M}{E I}$ this can be rewritten as (note similarity with $\frac{\mathrm{d} v}{\mathrm{~d} x}=w(x)$).

$$
\begin{equation*}
\theta_{21}=\theta_{2}-\theta_{1}=\int_{x_{1}}^{x_{2}} d \theta=\int_{x_{1}}^{x_{2}} \frac{M}{E l} \mathrm{~d} x \tag{8}
\end{equation*}
$$

First Area Moment Theorem:
The change in slope from point 1 to point 2 on a beam is equal to the area under the $M / E /$ curvature diagram between those two points.

Curvature Area Method; Second Moment Area Theorem I

- We define by t_{21} the distance between point 2 and the tangent at point 1 . For an infinitesimal distance $d s=\rho d \theta$ and for small displacements

$$
\begin{array}{rlr}
\left.\begin{array}{rlr}
\mathrm{d} t & = & \mathrm{d} \theta\left(x_{2}-x_{1}\right) \\
\frac{\mathrm{d} \theta}{\mathrm{~d} x} & = & \frac{M}{E I}
\end{array}\right\} \mathrm{d} t=\frac{M}{E I}\left(x_{2}-x_{1}\right) \mathrm{d} x \\
t_{21} & =\int_{x_{1}}^{x_{2}} d t=\int_{x_{1}}^{x_{2}} \frac{M}{E I}\left(x_{2}-x_{1}\right) \mathrm{d} x
\end{array}
$$

Curvature Area Method; Second Moment Area Theorem II

Second Moment Area Theorem: The tangent distance t_{21} between a point, 2, on the beam and the tangent of another point, 1 , is equal to the moment of the $M / E /$ diagram between points 1 and 2 , with respect to point 2 .

Misc.

Curvature Area Method; Misc.

Elastic Weight/Conjugate Beams I

- There is a strong analogy between the two sets of relationships:
(1) Load (w), shear (V) and moment (M).
(2) Curvature ($1 / \rho=M / E /$), slope (θ) and displacement (y).
those are summarized in the following table

| V and M | θ and y |
| :---: | :---: | :---: |
| $V_{21}=\int_{\substack{x_{1} \\ x_{2}} \mathrm{~d} x} \quad V=\int w \mathrm{~d} x+C_{1}$ | $\theta_{21}=\int_{\substack{x_{1} \\ x_{2}}} \frac{1}{\rho} \mathrm{~d} x \quad \theta=\int \frac{1}{\rho} \mathrm{~d} x+C_{1}$ |
| $M_{21}=\int_{x_{1}}^{x_{2}} V \mathrm{~d} x \quad M=\int V \mathrm{~d} x+C_{2}$ | $t_{21}=\int_{x_{1}}^{x_{2}} \theta \mathrm{~d} x \quad y=\int \theta \mathrm{d} x+C_{2}$ |

- Since we know how to draw the shear and moment diagrams for actual load, we can apply the same methodology to elastic weight and similarly determine slope and deflection.

$$
\begin{align*}
\text { Load } q & \equiv \text { curvature } \frac{1}{\rho}=\phi=\frac{M}{E l} \tag{9}\\
\text { Shear } V & \equiv \text { slope } \theta \tag{10}\\
\text { Moment } M & \equiv \text { deflection } y \tag{11}
\end{align*}
$$

Elastic Weight/Conjugate Beams II

- Since $V \& M$ can be conjugated from statics, by analogy $\theta \& y$ can be thought of as the V \& M of a fictitious beam (or conjugate beam) loaded by $\frac{M}{E l}$ elastic weight.
- Boundary conditions are determined from

Actual Beam			Conjugate Beam		
Hinge	$\theta \neq 0$	$y=0$	$V \neq 0$	$M=0$	"Hinge"
Fixed End	$\theta=0$	$y=0$	$V=0$	$M=0$	Free end
Free End	$\theta \neq 0$	$y \neq 0$	$V \neq 0$	$M \neq 0$	Fixed end
Interior Hinge	$\theta \neq 0$	$y \neq 0$	$V \neq 0$	$M \neq 0$	Interior support
Interior Support	$\theta \neq 0$	$y=0$	$V \neq 0$	$M=0$	Interior hinge

- Whereas the curvature area method has a well defined basis, its direct application can be sometimes confusing.

Elastic Weight/Conjugate Beams III

- Alternatively, the curvature area method was derived from the moment area method, and is a far simpler method to remember and use in practice when simple "back of the envelope" calculations are required.
- Note that we can only have distributed load, and that the load is positive for a positive moment, and negative for a negative moment. "Shear" and "Moment" diagrams should be drawn accordingly.
- Units of the "distributed load" w^{*} are $\frac{F L}{E I}$ (force time length divided by $E I$). Thus the "Shear" would have units of $w^{*} \times L$ or $\frac{F L^{2}}{E I}$ and the "moment" would have units of ($w^{*} \times L$) $\times L$ or $\frac{F L^{3}}{E I}$. Recalling that $E l$ has units of $F L^{-2} L^{4}=F L^{2}$, we observe that indeed the "shear" corresponds to a rotation in radians and the "moment" to a displacement.

Example

Example 1; I

- 3 equations of equilibrium and 1 equation of condition $=4=$ number of reactions. Deflection at $\mathrm{D}=$ Shear at D of the corresponding conjugate beam (Reaction at D) Take AC and ΣM with respect to C

$$
\begin{align*}
(+\downarrow) \Sigma M_{z}^{C}=0 \Rightarrow R_{A}(L)-\left(\frac{4 P L}{5 E l}\right)\left(\frac{L}{2}\right)\left(\frac{L}{3}\right) & =0 \tag{12}\\
& \Rightarrow R_{A} \tag{13}
\end{align*}=\frac{2 P L^{2}}{15 E l} .
$$

which is the slope in real beam at A As computed before!

Example 1; II

- Let us draw the Moment Diagram for the conjugate beam at a point x away from A. From A to C

$$
\begin{align*}
M & =\frac{P}{E I}\left[\frac{2}{15} L^{2} x-\left(\frac{4}{5} x\right)\left(\frac{x}{2}\right)\left(\frac{x}{3}\right)\right] \tag{14}\\
& =\frac{P}{E I}\left(\frac{2}{15} L^{2} x-\frac{2}{15} x^{3}\right) \tag{15}\\
& =\frac{2 P}{15 E I}\left(L^{2} x-x^{3}\right) \tag{16}
\end{align*}
$$

- Point of Maximum Moment ($\Delta_{\max }$) occurs when $\frac{\mathrm{d} M}{\mathrm{~d} x}=0$

$$
\begin{equation*}
\frac{d M}{\mathrm{~d} x}=\frac{2 P}{15 E l}\left(L^{2}-3 x^{2}\right)=0 \Rightarrow 3 x^{2}=L^{2} \Rightarrow x=\frac{L}{\sqrt{3}} \tag{17}
\end{equation*}
$$

Example 1; III

as previously determined

$$
\begin{align*}
x & =\frac{L}{\sqrt{3}} \tag{18}\\
\Rightarrow M & =\frac{2 P}{15 E l}\left(\frac{L^{2} L}{\sqrt{3}}-\frac{L^{3}}{3 \sqrt{3}}\right) \tag{19}\\
& =\frac{4 P L^{3}}{45 \sqrt{3} E l} \tag{20}
\end{align*}
$$

as before.

Example

Example 2; I

- From simple observation, the reactions at A and B are equal to 10 k . The elastic load on the conjugate beam is then shown below.

Example

Example 2; II

- We next seek to determine the internal moment at C^{\prime} in the conjugate beam, it is obtained from equilibrium:

$$
\begin{equation*}
(+\}) \Sigma M_{z}^{B}=-; \frac{1,116}{E I}(18)-\frac{720}{E I}(10)-\frac{360}{E I}(3)-\frac{36}{E I}(2)+M_{C}=0 \Rightarrow M_{C^{\prime}}=-\frac{11,736 \mathrm{k} \cdot \mathrm{ft}^{3}}{E /} \tag{21}
\end{equation*}
$$

Substituting

$$
\begin{equation*}
\Delta_{C}=M_{C^{\prime}}=-\frac{11,736 \mathrm{k} . \mathrm{ft}^{3}\left(12^{3}\right) \mathrm{in}^{3} / \mathrm{ft}^{3}}{\left(29 \times 10^{3}\right) \mathrm{k} / \mathrm{in}^{2}(450) \mathrm{in}^{4}}=-1.555^{\prime \prime} \tag{22}
\end{equation*}
$$

Structural Analysis

Virtual Work

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Spring 2022

Table of Contents I

(1) Introduction

(2) Simplified Derivation of the Principle of Virtual Work

- Derivation
- External Virtual Work $\delta \bar{W}^{*}$
- Internal Virtual Work $\delta \bar{U}^{*}$
(3) Examples
- Beam
- Frame; Deflections
- Frame, Rotation
- Truss; Simple
- Truss
- Truss with initial camber

(4) Maxwell

- Determination of displacements is critical in structural analysis:
- Deflections are need to assess stiffness of a structure (i.e all design codes impose a maximum allowable displacement)
- Must be determined to analyses statically indeterminate structures by the flexibility method.
- Many methods are available to compute deflections. However, we will focus on the most efficient and powerful one based on the Principle of Virtual Force (PVf).
- Strictly speaking (as shall be seen later) this is the Principle of Complementary Virtual Work.
- In the context of this chapter, we will refer to it as Principle of Virtual Work (PVW).
- This is the only unified method that allows us to compute deflections in all types of structures, under a variety of loads (including thermal and initial deformation), and for both linear and nonlinear structures.
- The method will be revisited in more advanced courses (Matrix Structural Analysis or Finite Element Analysis).
- In terms of notation one is confronted with a small dilemma:
- Use the simplified notation of the textbook, however this will ill-prepare you for subsequent courses.
- Use right away the more rigorous notation that is understandable across all courses.
- We will proceed with the second. Virtual quantities will be preceded by a δ and will have an overbar above (such as $\delta \bar{P}$).
- The correspondence between the two notations (as in the textbook by Leet) is as follows

Variable	Textbook	These notes
Dummy Force	Q	$\delta \bar{P}$
Virtual element Bar Force	F_{Q}	$\delta \bar{P}^{(e)}$
Real element Bar Force	F_{P}	$P^{(e)}$
Virtual Moment	M_{Q}	$\delta \bar{M}$
Real Moment	M_{P}	M
Virtual Strain Energy	U_{Q}	$\delta \bar{U}^{*}$
Virtual Work	W_{Q}	$\delta \bar{W}^{*}$

- This chapter will begin with a simplified derivation of the PVW at its most elementary level (in terms of stress and strain internally), and then generalize to truss, beam, frames.

- Consider an arbitrary structure and load. or the sake of simplicity, let us assume (or consider) that this structure develops only internal axial stresses and strains (σ and ε).
- The structure will be subjected to two types of loads:

Virtual load applied at the location A and along the direction (degree of freedom) where we want to compute the displacement (or rotation). It is virtual, and its value is irrelevant, but is often assumed to be unity.
Real corresponding to the actual externally applied load, B.

- We are going to load the structure in two different sequences:
- Apply virtual load only at A (obtain Eq. 1); OR apply real load at B only (obtain Eq. 2).
- Apply virtual load at A AND then apply real load at B (while virtual load is still on).

This will result in:
(1) Application of virtual load at A; external work must be equal to the internal strain energy over the entire volume, then:

- The $1 / 2$ stems from the fact that the load is gradually applied ramping from 0 to it full value linearly. The area under the curve represents the external work (likewise for the internal strain energy).
- Strain energy is the internal work and is integrated over the volume
(2) Application of real load at B. Again, external work must be equal to the internal strain energy over the entire volume, then:

$$
\begin{equation*}
\underbrace{\frac{1}{2} P_{1} \Delta_{1}}_{\text {External real work }}=\underbrace{\frac{1}{2} \iint_{\mathrm{dVol}} \sigma \epsilon \mathrm{dVol}}_{\text {Internal real strain energy }} \tag{2}
\end{equation*}
$$

(3) Now, virtual load is first applied (resulting in $\frac{1}{2} \delta \bar{P} \delta \bar{\Delta}=\frac{1}{2} \int_{\text {dVol }} \delta \bar{\sigma} \delta \bar{\varepsilon} \mathrm{dVol}$) and we then apply the real (actual) load on top of the deformed system (resulting in
$\left.\frac{1}{2} P_{1} \Delta_{1}=\frac{1}{2} \int_{\text {dVol }} \sigma \epsilon \mathrm{dVol}\right)$. However, as we applied the second real load, the $\delta \bar{P}$ remained constant but underwent an additional displacement Δ. So that there is an additional external work equal to $\delta \bar{P} \Delta$ at that location equal to

$$
\begin{equation*}
\delta \bar{P} \Delta=\int_{\mathrm{Vol}} \delta \bar{\sigma} \varepsilon \mathrm{dVol} \tag{3}
\end{equation*}
$$

(note absence of $1 / 2$ term). Hence, the total work done becomes
(4) Summing Eq. 1, 2 and 3 we obtain:

(5) Since the strain energy and work done must be the same whether the loads are applied together or separately, we obtain, from subtracting the sum of Eqs. 2 and 1 from 4 and generalizing, we obtain

$$
\underbrace{\int \delta \bar{\sigma} \varepsilon \mathrm{dVol}}_{\delta \bar{U}^{*}}=\underbrace{\delta \bar{P} \Delta}_{\delta \bar{W}^{*}}
$$

- This last equation is the key to the method of virtual forces. The left hand side is the internal virtual strain energy $\delta \bar{U}^{* 1}$. Similarly the right hand side is the external virtual work.
- A variation of this derivation would lead to the so-called Maxwell-Betti reciprocal theorem which states that If two load sets act on a linearly elastic structure, work done by the first set of loads in acting through the displacements produced by the second set of loads is equal to the work done by the second set of loads in acting through displacements produced by the first set.

$$
P_{1} \delta_{12}=P_{2} \delta_{21}
$$

[^3]$$
\delta \bar{W}^{*}=\sum_{i=1}^{n}\left(\Delta_{i}\right) \delta \bar{P}_{i}+\sum_{i=1}^{n}\left(\theta_{i}\right) \delta \bar{M}_{i}
$$

- Note that there is no such a thing as distributed virtual load.
- Recall that all overbar quantities are virtual and the other ones are the real.
- The general expression for the internal virtual work is

$$
\delta \bar{U}^{*}=\int \delta \bar{\sigma} \varepsilon \mathrm{dVol}
$$

- We skip the general formulation for inelastic systems.
- Should we have a linear elastic material $\sigma=E \varepsilon$.
- One has to be extremely careful in properly handling the units

Axial Members:

$$
\left.\begin{array}{rl}
\delta \bar{U}^{*} & =\int_{d \mathrm{Vol}} \varepsilon(x) \delta \bar{\sigma}(x) d \mathrm{Vol} \\
\delta \bar{\sigma}(x) & =\frac{\delta \bar{P}^{(e)}(x)}{P^{A}} \\
\varepsilon(x) & =\frac{P^{(e)}(x)}{A E} \\
d V & =A d x
\end{array}\right\} \delta \bar{U}^{*}=\int_{0}^{L} \delta \bar{P}^{(e)}(x) \underbrace{\frac{P^{(e)}(x)}{A E}}_{\Delta} d x
$$

Note that for a truss where we have n members, the above expression becomes

$$
\delta \bar{U}^{*}=\Sigma_{1}^{n} \delta \bar{P}^{(i)} \frac{P^{(i)} L_{i}}{A_{i} E_{i}}
$$

Note that P is the axial force caused by the real load and $\delta \bar{P}$ is the axial force caused by the virtual load. Those forces are determined from a truss analysis.

Flexural Members:

$$
\left.\begin{array}{rl}
\delta \bar{U}^{*} & =\int_{\operatorname{Vol}^{\varepsilon}(x)} \underbrace{E \delta \bar{\varepsilon}(x)}_{\delta \bar{\sigma}(x)} d \operatorname{Vol} \\
\delta \bar{\sigma}_{x}(x) & =\frac{\delta \bar{M}_{z}(x) y}{\left.I_{z}\right)} \\
\varepsilon(x) & =\frac{M_{z}(x) y}{E I_{z}} \\
d \operatorname{Vol} & =d x d x \\
I_{z} & =\int_{A} y^{2} d A
\end{array}\right\} \delta \bar{U}^{*}=\int_{0}^{L} \delta \bar{M}(x) \underbrace{\frac{M(x)}{E I_{z}}}_{\Phi(x)} d x
$$

Again, Note that $M(x)$ is the moment diagram caused by the real load and $\delta \bar{M}(x)$ is the moment diagram caused by the virtual load.
Which is why we need to have analytical expressions for the moments.

Determine the deflection at point $C . E=29,000 \mathrm{ksi}, I=100 \mathrm{in}^{4}$.

Units: k \& in.

Applying the principle of virtual work, we obtain

$$
\begin{aligned}
\underbrace{\Delta_{C} \delta \bar{P}}_{\delta \bar{W}^{*}} & =\underbrace{\int_{0}^{L} \delta \bar{M}(x) \frac{M(x)}{E I_{z}} d x}_{\delta \bar{U}^{*}} \\
(1) k\left(\Delta_{C}\right) f t & =\int_{0}^{\int_{0}^{20}(-0.5 x) \frac{\left(15 x-x^{2}\right)}{E l} d x+\int_{0}^{10}(-x) \frac{-x^{2}}{E l} d x} \\
& =\frac{2,500}{E l} \\
(1) k\left(\Delta_{C}\right) \text { in } & =\frac{(2,500) \mathrm{k}^{2}-\mathrm{ft}^{4}(1,728) \mathrm{in}^{3} / \mathrm{ft}^{3}}{(29,000) \mathrm{k} / \mathrm{in}^{2}(100) \mathrm{in}^{4}} \\
& =1.49 \mathrm{in}
\end{aligned}
$$

Determine both the vertical and horizontal deflection at A. $E=200 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}$, $I=200 \times 10^{6} \mathrm{~mm}^{4}$.

- To analyse this frame we must determine analytical expressions for the moments along each member for the real load and the two virtual ones. One virtual load is a unit horizontal load at A, and the other a unit vertical one at A also.

Element	$x=0$	M	$\delta \bar{M}_{v}$	$\delta \bar{M}_{h}$
AB	A	0	$-x$	0
BC	B	$-50 x$	$-2-x$	0
CD	C	100	4	$-x$

- Note that moments are considered positive when they produce compression on the inside of the frame.
- Units: kN \& m

$$
\begin{aligned}
\underbrace{\Delta_{v} \delta \bar{P}}_{\delta \bar{W}^{*}} & =\underbrace{\int_{0}^{L} \delta \bar{M}(x) \frac{M(x)}{E I_{z}} d x}_{\delta \bar{U}^{*}} \\
(1) k N\left(\Delta_{v}\right) m & =\int_{0}^{2}(-x) \frac{(0)}{E l} d x+\int_{0}^{2}(-2-x) \frac{-50 x}{E l} d x+\int_{0}^{5}(4) \frac{100}{E l} d x \\
& =\frac{2,333 \mathrm{kN}^{2} \mathrm{~m}^{4}}{E l} \\
& =\frac{(2,333) \mathrm{kN}^{2} \mathrm{~m}^{4}\left(10^{3}\right)^{4} \mathrm{~mm}^{4} / \mathrm{m}^{4}}{\left(200 \times 10^{6}\right) \mathrm{kN} / \mathrm{m}^{2}\left(200 \times 10^{6}\right) \mathrm{mm}^{4}} \\
& =0.058 \mathrm{~m}=5.8 \mathrm{~cm}
\end{aligned}
$$

- Similarly for the horizontal displacement:

$$
\begin{aligned}
\underbrace{\Delta_{h} \delta \bar{P}}_{\delta \bar{W}^{*}} & =\underbrace{\int_{0}^{L} \delta \bar{M}(x) \frac{M(x)}{E I_{z}} d x}_{\delta \bar{U}^{*}} \\
(1) k N\left(\Delta_{h}\right) m & =\int_{0}^{2}(0) \frac{(0)}{E l} d x+\int_{0}^{2}(0) \frac{-50 x}{E I} d x+\int_{0}^{5}(-x) \frac{100}{E I} d x \\
& =\frac{-1,250 \mathrm{kN}^{2} \mathrm{~m}^{4}}{E I} \\
& =\frac{(-1,250) \mathrm{kN}^{2} \mathrm{~m}^{4}\left(10^{3}\right)^{4} \mathrm{~mm}^{4} / \mathrm{m}^{4}}{\left(200 \times 10^{6}\right) \mathrm{kN} / \mathrm{m}^{2}\left(200 \times 10^{6}\right) \mathrm{mm}^{4}} \\
& =-0.031 \mathrm{~m}=-3.1 \mathrm{~cm}
\end{aligned}
$$

- Note that the horizontal deflection is to the left (opposite to the direction of the virtual force).

Determine the rotation of joint C. $E=29,000 \mathrm{ksi}, I=240 \mathrm{in}^{4}$.

In this problem the virtual force is a unit moment applied at joint $\mathrm{C}, \delta \bar{M}_{e}$. It will cause an internal moment $\delta \bar{M}_{i}$

Element	$x=0$	M	$\delta \bar{M}$
AB	A	0	0
BC	B	$30 x-1.5 x^{2}$	$-0.05 x$
CD	D	0	0

Note that moments are considered positive when they produce compression on the outside of the frame. Substitution yields:

$$
\begin{aligned}
\underbrace{\theta_{C} \delta \bar{M}_{e}}_{\delta \bar{W}^{*}} & =\underbrace{\int_{0}^{L} \delta \bar{M} \frac{M}{E I_{z}} d x}_{\delta \bar{U}^{*}} \\
(1) k-\mathrm{ft}\left(\theta_{C}\right) \mathrm{rad} & =\int_{0}^{20}(-0.05 x) \frac{\left(30 x-1.5 x^{2}\right)}{E l} d x \mathrm{k}^{2} \mathrm{ft}^{3} \\
& =-\frac{(1,000) \mathrm{k}^{2} \mathrm{ft}^{2}(144) \mathrm{in}^{2} / \mathrm{ft}^{2}}{(29,000) \mathrm{k} / \mathrm{in}^{2}(240) \mathrm{in}^{4}} \\
& =-0.021 \text { radians }
\end{aligned}
$$

Determine the deflection at node A for the truss.

Member	$\delta \bar{P}^{(e)}$ kips	$P^{(e)}$, kips	L, ft	A, in^{2}	E, ksi	$\delta \bar{P}^{(e)} \frac{P^{(e)} L}{A E}$
1	+0.25	+37.5	12	5.0	10×10^{3}	$+22.5 \times 10^{-4}$
2	+0.25	+52.5	12	5.0	10×10^{3}	$+31.5 \times 10^{-4}$
3	-0.56	-83.8	13.42	5.0	10×10^{3}	$+125.9 \times 10^{-4}$
4	+0.56	+16.8	13.42	5.0	10×10^{3}	$+25.3 \times 10^{-4}$
5	+0.56	-16.8	13.42	5.0	10×10^{3}	-25.3×10^{-4}
6	-0.56	-117.3	13.42	5.0	10×10^{3}	$+176.6 \times 10^{-4}$
7	-0.50	-45.0	12	5.0	10×10^{3}	$+54.0 \times 10^{-4}$

The deflection is thus given by

$$
\begin{aligned}
(\delta \bar{P}) \mathrm{k}(\Delta) \text { in } & =\sum_{1}^{7} \delta \bar{P}^{(e)} \frac{P L}{A E} \\
(1) \mathrm{k}(\Delta) \text { in } & =\left(410.5 \times 10^{-4}\right) \frac{\mathrm{k}^{2} \mathrm{ft}}{\mathrm{in}^{2} \mathrm{k} / \mathrm{in}^{2}}(12 \mathrm{in} / \mathrm{ft})=0.493 \mathrm{in}
\end{aligned}
$$

Determine the vertical deflection of joint 7. $E=30,000 \mathrm{ksi}$.

- Two analyses are required. One with the real load, and the other using a unit vertical load at joint 7. Results for those analysis are summarized below. Note that advantage was taken of the symmetric load and structure.

Member	$\begin{gathered} A \\ \mathrm{in}^{2} \end{gathered}$	$\begin{aligned} & L \\ & \mathrm{ft} \end{aligned}$	$\begin{gathered} P^{(e)} \\ \mathrm{k} \end{gathered}$	$\begin{gathered} \delta \bar{P}^{(e)} \\ \mathrm{k} \end{gathered}$	$\begin{gathered} \frac{\delta \overline{\bar{P}}^{(e)} P^{(e)} L}{\text { }} \\ \text { k.ft/ } \mathrm{in}^{2} \end{gathered}$	n	$\begin{gathered} \frac{n \delta \bar{P}^{(e)} P^{(e)} L}{A} \\ \mathrm{k} . \mathrm{ft} / \mathrm{in}^{2} \end{gathered}$
1 \& 4	2	25	-50	-0.083	518.75	2	1,037.5
10 \& 13	2	20	40	0.67	268.0	2	536.0
11 \& 12	2	20	40	0.67	268.0	2	536.0
5 \& 9	1	15	20	0	0	2	0
6 \& 8	1	25	16.7	0.83	346.5	2	693.0
2\& 3	2	20	-53.3	-1.33	708.9	2	1,417.8
7	1	15	0	0	0	1	0
Total							4,220.3

- Thus from Eq. 10 we have:

$$
\begin{aligned}
\underbrace{\Delta \delta \bar{P}}_{\delta \bar{W}^{*}} & =\underbrace{\int_{0}^{L} \delta \bar{P} \frac{P}{A E} d x}_{\delta \bar{U}^{*}} \\
& =\Sigma \delta \bar{P}^{(e)} \frac{P^{(e)} L}{A E} \\
(1) \mathrm{k}(\Delta) \mathrm{in} & =\frac{(4,220.3) \mathrm{k}^{2} \mathrm{ft} / \mathrm{in}^{2}(12) \mathrm{in} / \mathrm{ft}}{30,000 \mathrm{ksi}} \\
& =1.69 \mathrm{in}
\end{aligned}
$$

It is desired to provide 3 in . of camber at the center of the truss shown below

by fabricating the endposts and top chord members additionally long. How much should the length of each endpost and each panel of the top chord be increased?

- Assume that each endpost and each section of top chord is increased 0.1 in .

Member	$\delta \bar{P}_{\text {int }}^{(e)}$	ΔL	$\delta \bar{P}_{\text {int }}^{(e)} \Delta L$
1	+0.625	+0.1	+0.0625
2	+0.750	+0.1	+0.0750
3	+1.125	+0.1	+0.1125
			+0.2500

Thus,

$$
\text { (1) } \mathrm{k}(\Delta) \mathrm{in}=(2)(0.250) \mathrm{k} \text { in } \Rightarrow \Delta=0.50 \text { in }
$$

- Since the structure is linear and elastic, the required increase of length for each section will be

$$
\left(\frac{3.0}{0.50}\right)(0.1)=0.60 \mathrm{in}
$$

- If we use the practical value of 0.625 in., the theoretical camber will be

$$
\frac{(6.25)(0.50)}{0.1}=3.125 \mathrm{in}
$$

insert detials of the paper by maxwell (stored in victor-research-pdf-library-truss-design) and maxwell wrote FL which is really FL/AE, and his theorem is nothing but the internal work equal external wok. Prepare a new handout, and address optimization

Structural Analysis

Flexibility Method

Victor E. Saouma

saouma@colorado.edu

University of Colorado, Boulder

Spring 2022

Table of Contents I

(1) Introduction

(2) Preliminary Examples

- Cables
- Beam

(3) The Force/Flexibility Method

- Theory
- $f_{i j}, f_{j i}$ Maxwell-Betti Reciprocal Theorem

4 Examples

- Steel Building Frame Analysis
- Truss, One Redundant Force
- Truss: two Redundant Forces

- A statically indeterminate structure has more unknowns than equations of equilibrium (and equations of conditions if applicable).
- The advantages of a statically indeterminate structures are:
(1) Lower internal forces
(2) Safety in redundancy, i.e. if a support or members fails, the structure can redistribute its internal forces to accommodate the changing B.C. without resulting in a sudden failure.
- Only disadvantage is that it is more complicated to analyze.
- Analysis methods of statically indeterminate structures must satisfy three requirements Equilibrium
Force-displacement (or stress-strain) relations (linear elastic in this course).
Compatibility of displacements (i.e. no discontinuity)
- This can be achieved through two classes of solution

Force or Flexibility method;
Displacement or Stiffness method

(1) Three unknowns, two independent equations of equilibrium \Rightarrow statically indeterminate to the first degree.
(2) Equations of equilibrium

$$
\begin{aligned}
\Sigma M_{z}=0 ; & \Rightarrow \quad P_{A l}^{\text {left }}=P_{A l}^{\text {right }} \\
\Sigma F_{y}=0 ; \quad & \Rightarrow \quad 2 P_{A l}+P_{S t}=P
\end{aligned}
$$

two unknowns and one equation.
(3) Need a third equation. Obtained from compatibility of
displacements $\Delta L_{A I}=\Delta L_{S t}$
(4) Force-Displacement relations: $\Delta L=\frac{P L}{A E}$ or $\underbrace{\frac{P_{A l} L}{E_{A l} A_{A l}}}_{\Delta_{A l}}=\underbrace{\frac{P_{S t} L}{E_{S t} A_{S t}}}_{\Delta_{S t}} \Rightarrow \frac{P_{A l}}{P_{S t}}=\frac{(E A)_{A l}}{(E A)_{S t}}$ or $-(E A)_{S t} P_{A l}+(E A)_{A l} P_{S t}=0$
(5) In matrix form:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 & 1 \\
-(E A)_{S t} & (E A)_{A l}
\end{array}\right]\left\{\begin{array}{l}
P_{A l} \\
P_{S t}
\end{array}\right\}=\left\{\begin{array}{l}
P \\
0
\end{array}\right\} } \\
\Rightarrow & \left\{\begin{array}{c}
P_{A l} \\
P_{S t}
\end{array}\right\}=\left[\begin{array}{cc}
2 & 1 \\
-(E A)_{S t} & (E A)_{A l}
\end{array}\right]^{-1}\left\{\begin{array}{l}
P \\
0
\end{array}\right\} \\
= & \underbrace{\frac{1}{2(E A)_{A l}+(E A)_{S t}}}_{\text {Determinant }}\left[\begin{array}{cc}
(E A)_{A l} & -1 \\
(E A)_{S t} & 2
\end{array}\right]\left\{\begin{array}{l}
P \\
0
\end{array}\right\}
\end{aligned}
$$

(6) We observe that the solution of this problem, contrarily to statically determinate ones, depends on the elastic properties.

Note similarity with the derivation of the virtual force principle.
(1) Remove roller support, and have a primary structure.
(2) Deflection at B due to the applied load P using the virtual force method

$$
\begin{aligned}
1 . \Delta= & \int \delta \bar{M} \frac{M}{E I} \mathrm{~d} x=\int_{0}^{L / 2} 0 \frac{-P x}{E I} \mathrm{~d} x \\
& +\int_{0}^{L / 2}(x) \frac{-\left(\frac{P L}{2}+P x\right)}{E I} \mathrm{~d} x \\
= & -\frac{1}{E I} \int_{0}^{L / 2}\left(\frac{P L}{2} x+P x^{2}\right) \mathrm{d} x \\
= & -\left.\frac{1}{E I}\left[\frac{P L x^{2}}{4}+\frac{P x^{3}}{3}\right]\right|_{0} ^{L / 2}=-\frac{5}{48} \frac{P L^{3}}{E I}
\end{aligned}
$$

(3) Apply a unit load at point B and solve for the displacement at B using the PVF

$$
\begin{aligned}
1 f_{B B} & =\int \delta \bar{M} \frac{M}{E I} \mathrm{~d} x \\
& =\int_{0}^{L / 2}(x) \frac{x}{E I} \mathrm{~d} x=\frac{(1) L^{3}}{24 E I}
\end{aligned}
$$

(4) Displacement at B is zero $\Rightarrow, f_{B B}$ should be multiplied by $R_{B}^{?}$ such that $R_{B}^{?} f_{B B}=\Delta$ to ensure compatibility of displacements, hence

$$
\begin{aligned}
R f_{B B}+\Delta & =0 \\
\Rightarrow R & =-\frac{\Delta}{f_{B B}}=-\frac{-\frac{5}{48} \frac{P L^{3}}{E I}}{\frac{(1) L^{3}}{24 E I}} \\
& =\frac{5}{2} P
\end{aligned}
$$

Note that E/ cancels out.

- A degree of freedom is an independent displacement or rotation of a point.
- Method:
(1) Identify degree of static indeterminacy (exterior and/or interior) n.
(2) Select n redundant unknown forces and/or couples in the loaded structure along with n corresponding releases (angular or translation): primary structure.
(3) Determine the n displacements in the primary structure (with the load applied) corresponding to the releases, Δ_{i}.
4 Apply a unit force at each of the releases j on the primary structure (without the external load) and determine the displacements in all releases i : flexibility coefficients, $f_{i j}$, i.e. displacement at release i due to a unit force at j. Direction is irrelevant; If reaction is positive it will be along the specified direction, if negatie, otherwise.
(5) Write the compatibility of displacement relation

$$
\underbrace{\left[\begin{array}{cccc}
f_{11} & f_{12} & \cdots & f_{1 n} \\
f_{21} & f_{22} & \cdots & f_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
f_{n 1} & f_{n 2} & \cdots & f_{n n}
\end{array}\right]}_{[\mathrm{f}]} \underbrace{\left\{\begin{array}{c}
R_{1} \\
R_{2} \\
\cdots \\
R_{n}
\end{array}\right\}}_{\mathrm{R}}+\underbrace{\left\{\begin{array}{c}
\Delta_{1} \\
\Delta_{2} \\
\cdots \\
\Delta_{n}
\end{array}\right\}}_{\Delta}=\underbrace{\left\{\begin{array}{c}
\Delta_{1}^{0} \\
\Delta_{2}^{0} \\
\cdots \\
\Delta_{n}^{0}
\end{array}\right\}}_{\Delta^{0}}
$$

and

$$
[R]=[f]^{-1}\left\{\Delta+\Delta^{0}\right\}
$$

Δ_{i}^{0} vector of initial displacements, which is usually zero unless we have an initial displacement of the support (such as support settlement).
(6) Reactions are obtained by simply inverting the flexibility matrix.

- Recall that $f_{i j}$, i.e.displacement at release i due to a unit force at j.
- Displacement at dof i due to point load at i :

$$
\begin{aligned}
& \text { 1. } \Delta_{i}=\int \delta \bar{M}_{i} \frac{M_{i} E \mathrm{~d}}{} \mathrm{~d} x \\
& \mathrm{~s}: f_{i j} \\
&=\int \delta \bar{M}_{i} \frac{M_{i}}{E I} \mathrm{~d} x \\
& f_{j i}=\int \delta \bar{M}_{j} \frac{M_{i}}{E I} \mathrm{~d} x \\
& \delta \bar{M}_{i}=M_{i}, \delta \bar{M}_{j}=M_{j}
\end{aligned}
$$

- Displacement at dof i due to a unit force at j is:
- Displacement at dof j due to a unit force at i :
- Both virtual loads and real loads are unit:
- or $f_{i j}=f_{j i}$ Which is Maxwell-Betti's reciprocal theorem, and results in a positive definite symmetric matrix. Positive definite because $f_{i i}$ is always positive.

Structure cross section; spaced at 15^{\prime}

b) Hinged support

Frames, 15 ft apart must support snow load: 30 psf , dead load: 20 psf . Sections: (W 21×62). Cable $A=2$ in. ${ }^{2}$. Consider three designs, analyze and compare.
a) Poor soil conditions foundations may not be able to develop horizontal forces \Rightarrow hinge at one of the bases and a roller at the other;
b) Excellent soil conditions hinges at both points A and D.
c) Intermediate case steel cable between A and D. The foundations would not be expected to provide any horizontal restraint for this latter case.

Solution:

- Design load: $15(30+20)=750 \mathrm{lb} / \mathrm{ft}$.
- Structure a: Statically determinate as there are three unknown reactions and three equations of equilibrium.

- Structure b Statically indeterminate to the first degree (one redundant).
(1) Apply release at A, redundant shear force $R_{1} \cdot \Delta_{1}$:

a) Primary structure

c) Moments produced by real load

d) Moments produced by virtual forces and unit redundant
(2) Solve for Δ_{1} and f_{11} :

$$
\begin{aligned}
& 1(\mathrm{k}) \cdot \Delta_{1}(\mathrm{ft})=\int_{0}^{L}(12) \frac{w}{2} \frac{L X-x^{2}}{E I} d x=\int_{0}^{40}(12) \frac{(1 / 2)(.75)\left(40 x-x^{2}\right)}{E I}=\frac{48,000}{E I} \mathrm{k}^{2} \mathrm{ft}^{\prime} \\
& 1(\mathrm{k}) \cdot \mathrm{f}_{11}(\mathrm{ft})=2\left[\int_{0}^{12} x \frac{x \mathrm{~d} x}{E I}+\int_{0}^{20} 12 \frac{12 \mathrm{~d} x}{E I}\right]=\frac{6,912}{E I} \mathrm{k}^{2} \mathrm{ft}^{3}
\end{aligned}
$$

(3) Solving for R_{1}

$$
\frac{1}{E l}\left[48,000+6,912 R_{1}\right]=0 \Rightarrow R_{1}=-6.93 \mathrm{k} \leftarrow
$$

Structure c Three unknown external forces, but structure is statically indeterminate to the first degree since the tie member provides one degree of internal redundancy.
(1) Release the tie member, with its associated longitudinal displacement and axial force.

d) Real loading for computing f_{11}
e) Moments produced by virtual forces and unit redundants
(2) Compatibility equation: relative displacement of the two sections of the tie at the point of release must be zero, or $\Delta_{1}+f_{11} R_{1}=0$ where
$\Delta_{1}=$ displacement at release 1 in the primary structure
$f_{11}=$ relative displacement at release 1 for a unit axial force in the tie member,
$R_{1}=$ force in the tie member in the original structure.
(3) Δ_{1} is determined from case b :

$$
\Delta_{1}=\frac{(48,000) \mathrm{kft}^{3}(1,728) \mathrm{in}^{3} / \mathrm{ft}^{3}}{\left(30 \cdot 10^{3}\right) \mathrm{ksi}(1,327) \mathrm{in}^{4}}=2.08 \mathrm{in}_{\mathrm{rgt}}
$$

(4) f_{11} is caused by both flexural and axial deformations

$$
\begin{aligned}
1 \cdot f_{11} & =\underbrace{2\left[\int_{0}^{12}(-x) \frac{(-x) \mathrm{d} x}{E I}+\int_{0}^{20}(-12) \frac{(-12) \mathrm{d} x}{E I}\right]}_{\text {Flexure }}+\underbrace{\delta \underbrace{\frac{P L}{E A}}}_{\text {Axial }} \\
& =\frac{6,912}{E I}+\frac{1(1)(40)}{E A} \\
& =\frac{(6,912) \mathrm{kft}^{3}(1,728) \mathrm{in}^{3} / \mathrm{ft}^{3}}{\left(30 \cdot 10^{3}\right) \mathrm{ksi}(1,327) \mathrm{in}^{4}}+\frac{(40) \mathrm{ft}(12) \mathrm{in} / \mathrm{ft}}{\left(30 \cdot 10^{3}\right) \mathrm{ksi}(2)} \\
& =0.300+0.008=0.308
\end{aligned}
$$

thus $f_{11}=0.308 \mathrm{in} . / \mathrm{k}$
(5) Consistent deformation:

$$
\Delta_{1}+f_{11} R_{1}=0 \Rightarrow 2.08+.308 R_{1}=0 \Rightarrow R_{1}=-6.75 \mathrm{k}
$$

(6) The two displacement terms in the equation must carry opposite signs to account for their difference in direction.

Comments

- M diagram in c, very close to M for b . Cable was very stiff. Reducing the area of the cable will increase the moment.
- Frames with tie members are used widely in industrial buildings.
- Maximum moment frames (b) and (c) is about 55% of (a). Continuity causes a decrease in the positive moment and an increase in the negative one. More optimal design.
- Vertical reactions are not affected by the horizontal support conditions.

(1) Check: $2 \times 4=8$ equations, 6 members +3 reactions \Rightarrow one degree of indeterminacy. A longitudinal release in any of the six bars may be chosen.
(2) Release diagonal member $B C$ for release.
(3) Δ_{1} Relative displacement of joint B with respect to joint C.

4) Equation of compatibility along $C D$

$$
\begin{aligned}
\Delta_{1}+f_{11} F_{1} & =0 \\
1 \cdot \Delta_{1} & =\Sigma \delta \bar{P} \frac{P L}{\overline{A E}} \\
f_{11} & =\Sigma \delta \bar{P} \frac{\bar{P} L}{\overline{A E}}
\end{aligned}
$$

(5) Evaluating these summations in tabular form:

Member	P	$\delta \bar{P}$	L	$\delta \bar{P} P L\left(\Delta_{1}\right)$	$\delta \overline{P P} L\left(f_{11}\right)$
$A B$	0	-0.707	3	0	1.5
$B D$	0	-0.707	3	0	1.5
$C D$	+20	-0.707	3	-42.42	1.5
$A C$	+20	-0.707	3	-42.42	1.5
$A D$	-28.28	+1	4.242	-119.96	4.242
$B C$	0	+1	4.242	0	4.242
				-204.8	14.484

(6) Since A is constant for each member

$$
\begin{aligned}
\Delta_{1} & =\Sigma \delta \bar{P} \frac{P L}{A E}=-\frac{-204.8}{A E} \mathrm{~m} \cdot \mathrm{kN}^{2} \\
f_{11} & =\frac{14.484}{A E} \mathrm{~m} \cdot \mathrm{kN}^{2} \\
0 & =\frac{1}{A E}\left[-204.8+14.484 F_{1}\right] \\
F_{1} & =14.14 \mathrm{kN}
\end{aligned}
$$

(7) Final forces are obtained by superimposing forces due to the redundant and the forces due to the real loading.
(8) Redundant force effect: multiply member forces by 14.14(redundant force)

Member	$\delta \bar{P}$	$F_{1} \delta \bar{P}$	P	$P_{\text {total }}$
$A B$	-0.707	-10.0	0.0	-10.0
$B D$	-0.707	-10.0	0.0	-10.0
$C D$	-0.707	-10.0	+20.0	+10.0
$A C$	-0.707	-10.0	+20.0	+10.0
$A D$	+1.0	+14.14	-28.28	-14.14
$B C$	+1.00	+14.14	0	+14.14

Another panel with a second redundant member is added to the truss of the preceding example
(1) Release two diagonals ($D B$ and $B F$).
(2) The member forces and required displacements for the real loading and for

the two redundant forces in members $D B$ and $B F$.
(3) Although the real loading ordinarily stresses all members of the entire truss, we see that the unit forces corresponding to the redundants stress only those members in the panel that contains the redundant; all other bar forces are zero.
4. Recognizing this fact enables us to solve the double diagonal truss problem more rapidly than a frame with multiple redundants.
(5) The virtual work equations for computing the six required displacements (two due to load and four flexibilities) are

$$
\begin{aligned}
1 \cdot \Delta_{1}=\Sigma \delta \bar{P}_{1}\left(\frac{P L}{A E}\right) & 1 \cdot \Delta_{2}=\Sigma \delta \bar{P}_{2}\left(\frac{P L}{A E}\right) \\
1 \cdot f_{11}=\Sigma \delta \bar{P}_{1}\left(\frac{\bar{P}_{1} L}{A E}\right) & 1 \cdot f_{21}=\Sigma \delta \bar{P}_{2}\left(\frac{\bar{P}_{1} L}{A E}\right) \\
f_{12}=f_{21} \text { by the reciprocal theorem } & 1 \cdot f_{22}=\Sigma \delta \bar{P}_{2} \frac{\bar{P}_{2} L}{A E}
\end{aligned}
$$

(6) Assume tensile unit forces (positive).

(7) Tabulate:

					Displacements		Flexibilities		
Member	P	\bar{P}_{1}	\bar{P}_{2}	L	\triangle_{1}	\triangle_{2}	f_{11}	f_{21}	t_{22}
					$\delta \bar{P}_{1} P L$	$\delta \bar{P}_{2} P L$	$\delta \bar{P}_{1} \bar{P}_{1} L$	$\delta \bar{P}_{2} \bar{P}_{1} L$	$\delta \bar{P}_{2} P_{2} L$
$A B$	-9.5	-0.707	0	120	+806	0	60	0	0
$B C$	-9.5	0	-0.707	120	0	+806	0	0	60
CF	-9.5	0	-0.707	120	0	+806	0	0	60
EF	0	0	-0.707	120	0	0	0	0	60
$D E$	+4	-0.707	0	120	-340	0	60	0	0
$A D$	-5.5	-0.707	0	120	+466	0	60	0	0
$A E$	+7.78	+1	0	170	+1,322	0	170	0	0
$B E$	-15.0	-0.707	-0.707	120	+1,272	+1272	60	60	60
CE	+13.43	0	+1	170	0	+2,280	0	0	170
$B D$	0	+1	0	170	0	0	170	0	0
BF	0	0	+1	170	0	0	0	0	170
					+3,528	+5,164	+580	+60	+580

(8) Compatibility equations:

$$
\begin{aligned}
& \Delta_{1}+f_{11} F_{1}+f_{12} F_{2}=0 \\
& \Delta_{2}+f_{21} F_{1}+f_{22} F_{2}=0
\end{aligned}
$$

or

$$
\frac{1}{A E}\left[\begin{array}{rr}
580 & 60 \\
60 & 580
\end{array}\right]\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right]=-\frac{1}{A E}\left[\begin{array}{l}
3,528 \\
5,164
\end{array}\right]
$$

$$
\text { and } F_{1}=-5.20 \mathrm{k} \text { and } F_{2}=-8.38 \mathrm{k}
$$

(9) Final set of forces: add for each member the three separate effects: $F=P+F_{1} \bar{P}_{1}+F_{2} \bar{P}_{2}$

Member	P	\bar{P}_{1}	\bar{P}_{2}	$F_{1} \bar{P}_{1}$	$F_{2} \bar{P}_{2}$	$P_{\text {tot }}$
$A B$	-9.5	-0.707	0.0	3.676	0.0	-5.82
$B C$	-9.5	0.0	-0.707	0	5.925	-3.56
$C F$	-9.5	0.0	-0.707	0	5.925	-3.56
$E F$	0.0	0.0	-0.707	0	5.925	5.94
$D E$	+4	-0.707	0.0	3.676	0.0	7.68
$A D$	-5.5	-0.707	0.0	3.676	0.0	-1.82
$A E$	+7.78	+1	0.0	-5.20	0.0	2.58
$B E$	-15.0	-0.707	-0.707	3.676	5.925	-5.38
$C E$	+13.43	0.0	+1	0.0	-8.38	5.05
$B D$	0.0	+1	0.0	-5.20	0.0	-5.20
$B F$	0.0	0.0	+1	0.0	-8.38	-8.38

Structural Analysis

Introduction to Stiffness Method

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Spring 2022

Table of Contents I

(1) Introduction

- Sign Convention
- Degree of Freedom
- Methods of Analysis
(2) Force(Displacement) Relations
- Axial Deformations
- Flexural
(3) Nodal End Forces for Initial Strains

4 Slope Deflection; Direct Solution

- Procedure
- Algorithm
- Example 1; Cantilevered Beam
- Example 2; Two-Span Beam
- Two-Span Beam, Initial Deflection
- Example: Box Culvert
(5) Gauss Seidel
- Method
- Example

6 Moment Distribution

Table of Contents II

- Introduction
- Procedure
- Algorithm
- Example; Continuous Beam
(7) Slope Deflection vs Moment Distribution
- There are two classes of structural analysis methods

	Flexibility	Stiffness
Primary Variable (d.o.f.)	Forces	Displacements
Indeterminancy	Static	Kinematic
Force-Displacement	Displacement(Force)/Structure	Force(Displacement)/Element
Governing Relations	Compatibility of displacement	Equilibrium

- Flexibility method: 1) release redundant force(s) \Rightarrow structure statically determinate; 2) Apply unit forces determine $f_{i j}$; 3) kinematic constraint equation.
- Stiffness method: 1) Constrain all displacements \Rightarrow kinematically determinate; 2)Release one constraint at a time, apply unit displacement determine $k_{i j}$; 3) Write equilibrium equation.
- In the stiffness method the sign convention adopted is consistent with the local element coordinate system. Hence, we define a positive moment as one which is counter-clockwise.
- Note that this is opposite to the convention in some introductory textbooks!.

Design (US)

Analysis

- A degree of freedom (d.o.f.) is an independent generalized nodal displacement (translation or rotation) at a node.
- The displacements must be linearly independent (of coordinate system) and thus not related to each other.
- An element dof is defined wrt its own local coordinate system. A structural dof is defined wrt a global coordinate system.

Type		Node 1	Node 2	$\left[\mathrm{k}^{(e)}\right]$	$\left[K^{(e)}\right]$
				(Local)	(Global)
1 Dimensional					
Beam	$\begin{aligned} & \{p\} \\ & \{\delta\} \end{aligned}$	$\begin{gathered} F_{y 1}, M_{z 2} \\ v_{1}, \theta_{2} \end{gathered}$	$\begin{gathered} F_{y 3}, M_{z 4} \\ v_{3}, \theta_{4} \end{gathered}$	4×4	4×4
2 Dimensional					
Truss	$\begin{aligned} & \{\mathrm{p}\} \\ & \{\delta\} \end{aligned}$	$\begin{gathered} F_{X 1} \\ u_{1} \\ \hline \end{gathered}$	$\begin{gathered} F_{x 2} \\ u_{2} \end{gathered}$	2×2	4×4
Frame	$\begin{aligned} & \{p\} \\ & \{\delta\} \end{aligned}$	$\begin{gathered} F_{x 1}, F_{y 2}, M_{z 3} \\ u_{1}, v_{2}, \theta_{3} \end{gathered}$	$\begin{gathered} F_{x 4}, F_{y 5}, M_{z 6} \\ u_{4}, v_{5}, \theta_{6} \end{gathered}$	6×6	6×6
Grid	$\begin{aligned} & \{p\} \\ & \{\delta\} \end{aligned}$	$\begin{gathered} T_{x 1}, F_{y 2}, M_{z 3} \\ \theta_{1}, v_{2}, \theta_{3} \end{gathered}$	$\begin{gathered} T_{x 4}, F_{y 5}, M_{z 6} \\ \theta_{4}, v_{5}, \theta_{6} \end{gathered}$	6×6	6×6
3 Dimensional					
Truss	$\begin{aligned} & \{\mathrm{p}\} \\ & \{\delta\} \end{aligned}$	$\begin{gathered} F_{x 1} \\ u_{1} \\ \hline \end{gathered}$	$\begin{gathered} F_{x 2} \\ u_{2} \\ \hline \end{gathered}$	2×2	6×6
Frame	$\begin{aligned} & \{p\} \\ & \{\delta\} \end{aligned}$	$\begin{gathered} F_{x 1}, F_{y 2}, F_{y 3}, \\ T_{x 4} M_{y 5}, M_{z 6} \\ u_{1}, v_{2}, w_{3}, \\ \theta_{4}, \theta_{5} \theta_{6} \\ \hline \end{gathered}$	$\begin{gathered} F_{x 7}, F_{y 8}, F_{y 9}, \\ T_{x 10} M_{y 11}, M_{z 12} \\ u_{7}, v_{8}, w_{9}, \\ \theta_{10}, \theta_{11} \theta_{12} \\ \hline \end{gathered}$	12×12	12×12

Slope Deflection: (Mohr, 1892) n linear equations with n unknowns, where n is the degree of kinematic indeterminancy (i.e. total number of independent displacements/rotation).
Moment Distribution: (Cross, 1930) Iterative method to solve for the n displacements and corresponding internal forces in flexural structures.
Direct Stiffness method: $(\simeq 1960)$ formal statement of the stiffness method and cast in matrix form is by far the most powerful method of structural analysis.
The first two methods lend themselves to hand calculation, and the third to a computer based analysis.

- Flexibility $\Delta(F)$ at the structure level (used virtual work equations).
- Stiffness $F(\Delta)$ at the structure or element level (to be derived next).
- From strength of materials:

$$
\sigma=E \epsilon \Rightarrow \underbrace{A \sigma}_{P}=\frac{A E}{L} \underbrace{\Delta}_{1}
$$

- For a unit displacement, applied force should be equal to $\frac{A E}{L}$.
- From statics, force at other end must be equal and opposite.
- Objective: solve for forces in terms of known displacements in a beam: Four unknowns forces $\left(V_{1}^{?}, V_{2}^{?}, M_{1}^{?}\right.$ and $\left.M_{2}^{?}\right)$ in terms of four known displacements $\left(v_{1}^{\sqrt{ }}, v_{2}^{\sqrt{ }}, \theta_{1}^{\sqrt{ }}\right.$ and $\theta_{2}^{\sqrt{ })}$

$$
\begin{align*}
& V_{1}^{?}=V_{1}^{?}\left(v_{1}^{\sqrt{ }}, \theta_{1}^{\sqrt{ }}, v_{2}^{\sqrt{ }}, \theta_{2}^{\sqrt{ }}\right) \quad M_{1}^{?}=M_{1}^{?}\left(v_{1}^{\sqrt{ }}, \theta_{1}^{\sqrt{ }}, v_{2}^{\sqrt{ }}, \theta_{2}^{\sqrt{ }}\right) \\
& V_{2}^{?}=V_{2}^{?}\left(v_{1}^{\sqrt{ }}, \theta_{1}^{\sqrt{ }}, v_{2}^{\sqrt{ }}, \theta_{2}^{\sqrt{ }}\right) \quad M_{2}^{?}=M_{2}^{?}\left(v_{1}^{\sqrt{ }}, \theta_{1}^{\sqrt{ }}, v_{2}^{\sqrt{ }}, \theta_{2}^{\sqrt{ }}\right) \tag{1}
\end{align*}
$$

- Four unknowns, need four equations. Two provided by the second order linear differential equation governing flexure, and two from the two equations of equilibrium.

- A. Differential equation

$$
\begin{equation*}
M=\underbrace{-E l \frac{d^{2} v}{d x^{2}}}_{\text {Diff Eq. }}=\underbrace{M_{1}^{?}-V_{1}^{?} x+m(x)}_{\text {Statics }} \tag{2}
\end{equation*}
$$

- $m(x)$ moment due to applied load $q(x)$ at section x (for uniformly distributed load: $\left.m(x)=-\frac{1}{2} w x^{2}\right)$
- Integrating twice

$$
\begin{align*}
-E / V^{\prime} & =M_{1}^{?} x-\frac{1}{2} V_{1}^{?} x^{2}+f(x)+C_{1} \tag{3}\\
-E I V & =\frac{1}{2} M_{1}^{?} x^{2}-\frac{1}{6} V_{1}^{?} x^{3}+g(x)+C_{1} x+C_{2} \tag{4}
\end{align*}
$$

where $f(x)=\int m(x) d x$, and $g(x)=\int f(x) d x$.

- Boundary conditions at $x=0$

$$
\left.\begin{array}{rl}
v^{\prime} & =\theta_{1}^{\sqrt{\prime}} \tag{5}\\
v & =v_{1}^{\sqrt{2}}
\end{array}\right\} \Rightarrow\left\{\begin{aligned}
C_{1}=-E / \theta_{1}^{\sqrt{2}} \\
C_{2}=-E / v_{1}^{\sqrt{2}}
\end{aligned}\right.
$$

- Boundary conditions at $x=L$ and combining with C_{1} and C_{2}
- Though we could solve for $M_{1}^{?}$ and $V_{1}^{?}$ in terms of $v_{1}^{\sqrt{ }}, v_{2}^{\sqrt{ }}, \theta_{1}^{\sqrt{ }}$ and $\theta_{2}^{\sqrt{ }}$, we proceed with

Flexural

- B. Equilibrium

$$
\begin{equation*}
V_{1}^{?}+q+V_{2}^{?}=0 \quad M_{1}^{?}-V_{1}^{?} L+m(L)+M_{2}^{?}=0 \tag{7}
\end{equation*}
$$

where $q=\int_{0}^{L} w(x) d x$,

- thus

$$
\begin{equation*}
V_{i}^{?}=\frac{\left(M_{1}^{?}+M_{2}^{?}\right)}{L}+\frac{1}{L} m(L) \quad V_{2}^{?}=-\left(V_{i}^{?}+q\right) \tag{8}
\end{equation*}
$$

- Substituting V_{1} into θ_{2} and v_{2} (Eq. 6)

$$
\left\{\begin{align*}
M_{1}^{?}-M_{2}^{?} & =\frac{2 E I_{z}}{L} \theta_{1}^{\sqrt{ }}+\frac{2 E I_{z}}{L} \theta_{2}^{\sqrt{ }}+m(L)-\frac{2}{L} f(L) \tag{9}\\
2 M_{1}^{?}-M_{2}^{?} & =\frac{6 E I_{z}}{L} \theta_{1}^{\sqrt{ }}-\frac{6 E I_{z}}{L^{2}} v_{1}^{\vee}-\frac{6 E I_{z}}{L^{2}} v_{2}^{\sqrt{2}}+m(L)-\frac{6}{L^{2}} g(L)
\end{align*}\right.
$$

- Solve for the moments
where
- In Eq. 10 and 11 if we let $\Delta=v_{2}-v_{1}$ (relative displacement), $\psi=\Delta / L$ (rotation of the chord of the member), and $K=I / L$ (stiffness factor ${ }^{1}$) then the end equations are:

$$
\begin{align*}
& M_{1}=2 E K\left(2 \theta_{1}+\theta_{2}-3 \psi\right)+F E M_{1} \tag{12}\\
& M_{2}=2 E K\left(\theta_{1}+2 \theta_{2}-3 \psi\right)+F E M_{2} \tag{13}
\end{align*}
$$

- Note that ψ will be positive if counterclockwise, negative otherwise.
- From Eq. 12 and 13, if a node has a displacement Δ, then both moments in the adjacent elements will have the same sign. However, the moments in elements on each side of the node will have different signs.

$$
\begin{align*}
\Psi_{21} & =\frac{v_{2}-v_{1}}{2} \tag{14}\\
K & =\frac{l}{L} \text { Relative stiffness } \tag{15}\\
F E M_{1} & =\frac{2}{L^{2}}[L f(L)-3 g(L)] \tag{16}\\
F E M_{2} & =-\frac{1}{L^{2}}\left[L^{2} m(L)-4 L f(L)+6 g(L)\right] \tag{17}
\end{align*}
$$

Flexural

- $F E M_{1}$ and $F E M_{2}$ are the fixed end moments for $\theta_{1}=\theta_{2}=0$ and $v_{1}=v_{2}=0$.

Load	$F E M_{1}$	$F E M_{2}$
Uniform load w	$\frac{w L^{2}}{12}$	$-\frac{w L^{2}}{12}$
Center Point load	$\frac{P L}{8}$	$-\frac{P L}{8}$

Recall that in our notation, (-ve) moment means clockwise

- In Eq. 10 and 11 we observe that the moments developed at the end of a member are caused by: I) end rotation and displacements; and II) fixed end members.
- We can substitute those expressions in Eq. 8 and solve for the shear forces:

$$
\begin{align*}
& V_{1}=\underbrace{\frac{6 E I_{z}}{L^{2}}(\theta_{1}^{\sqrt{ }}+\theta_{2}^{\sqrt{ })-\frac{12 E I_{z}}{L^{3}}\left(v_{2}^{\sqrt{ }}-v_{1}^{\sqrt{ })}\right.}+\underbrace{V_{1}^{F}}_{I I}}_{I} \tag{19}\\
& V_{2}=\underbrace{-\frac{6 E I_{z}}{L^{2}}(\theta_{1}^{\sqrt{ }}+\theta_{2}^{\sqrt{ })+\frac{12 E I_{z}}{L^{3}}(v_{2}^{\left.\sqrt{ }-v_{1}^{\sqrt{\prime}}\right)}+\underbrace{v_{2}^{F}}_{I I}}}_{1}=\underbrace{\prime} \tag{20}
\end{align*}
$$

where

$$
\begin{align*}
& V_{1}^{F}=\frac{6}{L^{3}}[L f(L)-2 g(L)] \tag{21}\\
& V_{2}^{F}=-\left[\frac{6}{L^{3}}[L f(L)-2 g(L)]+q\right] \tag{22}
\end{align*}
$$

- It is very important to note that the derived equations are based on:
(1) Equilibrium
(2) Stress-strain
(3) Compatibility
- The relationships just derived enable us now to determine the stiffness matrix of a beam element.
where NEL: Nodal Equivalent Load (negative of the fixed end actions)
${ }^{1} K$ will be defined as $K=4 E I / L$ in the moment distribution method, and as a matrix in the direct stiffness method.
- In the presence of thermal load (or initial strains), nodal equivalent forces can be readily determined as follows:
- Trusss

$$
\begin{equation*}
F_{1}^{T}=-A E \alpha \Delta T \quad F_{2}^{T}=A E \alpha \Delta T \tag{24}
\end{equation*}
$$

- Beam
where α is the coefficient of thermal expansion, $T^{\text {avg }}=\frac{\Delta T^{\text {top }}+\Delta T^{\text {bot }}}{2}$.
- For initial forces (such as prestressed members) one needs to simply specify $\alpha \Delta T$ for the initial strain induced by prestressing
- In the load input data file one simply needs to specify $\alpha \Delta T$ for the thermally loaded truss, and $\alpha\left(\Delta T^{\text {top }}-\Delta T^{\text {bot }}\right)$ and h for beams.

- Identify degree of kinematic indeterminacy: three rotations θ_{1}, θ_{2}, and θ_{3} (i.e. three degrees of freedom) at the supports.
- Separating the spans from the support, draw free body diagrams and assume positive moments at the end of the beams.
- Moments can be expressed in terms of the three unknown rotations.
- Using equations 12 and 13 we obtain

$$
\begin{array}{ll}
M_{12}=2 E K_{12}\left(2 \theta_{1}+\theta_{2}\right)+F E M_{12} ; & M_{21}=2 E K_{12}\left(\theta_{1}+2 \theta_{2}\right)+F E M_{21} ; \\
M_{23}=2 E K_{23}\left(2 \theta_{2}+\theta_{3}\right) ; & M_{32}=2 E K_{23}\left(\theta_{2}+2 \theta_{3}\right) ;
\end{array}
$$

- We have 3 unknowns θ_{1}, θ_{2}, and θ_{3} and we need three equations of equilibrium.
- Write one equilibrium equations for each support

$$
\begin{aligned}
M_{12} & =0 \\
M_{21}+M_{23} & =0 \\
M_{32} & =0
\end{aligned}
$$

- Substituting, we obtain:

Where the fixed end moment can be separately determined.

- This is an equation of global equilibrium which satisfies Newton's third law.
- Solve for rotations
- Substitute rotations in Eq. 26 to determine moments at each end of a beam segment.
- Computational requirements far less than for the flexibility method (or method of consistent deformation) because we implicitly accounted for the force displacement relationships. (though we are comparing static and kinematic unknowns).
(1) Sketch deflected shape.
(2) Identify unknown support degrees of freedom (rotations and deflections).
(3) Write the equilibrium equations at all the supports in terms of the end moments.
(4) Express the end moments in terms of the support rotations, deflections and fixed end moments.
(5) Substitute the expressions obtained in the previous step in the equilibrium equations.
(6) Solve equilibrium equations to determine the unknown support rotation and/or deflections.
(7) Use the slope deflection equations to determine end moments.
(8) Draw the moment diagram, careful about the difference in sign convention between the slope deflection moments and the moment diagram.

(1) The beam is kinematically indeterminate to the third degree $\left(\theta_{2}, \Delta_{3}, \theta_{3}\right)$, however by replacing the the overhang by a fixed end moment equal to $+100 \mathrm{kN} . \mathrm{m}$ at support 2 , we reduce the degree of kinematic indeterminacy to one $\left(\theta_{2}\right)$.
(2) The equilibrium relation is $M_{21}+M_{23}=0$ or $M_{21}+100=0$
(3) The members end moments in terms of the rotations are (Eq. 12 and 13)
$M_{21}=2 E K_{12}\left(\theta_{1}+2 \theta_{2}\right)=\frac{4}{10} E / \theta_{2} \quad$ To solve for θ_{2}
$M_{12}=2 E K_{12}\left(2 \theta_{1}+\theta_{2}\right)=\frac{2}{10} E / \theta_{2} \quad$ To solve for the end moment once θ_{2} determined
(4) Substituting into the equilibrium equations, solve for θ_{2}.

$$
\begin{aligned}
\theta_{2} & =\frac{10}{4 E l} M_{21} \\
& =\frac{10}{4 E l}(-100)=-\frac{250}{E I}
\end{aligned}
$$

(clockwise rotation: -ve)
(5) Substitute and solve for M_{12}

$$
M_{12}=\frac{2}{10} E l \theta_{2}=-\frac{2}{10} E l \frac{250}{E l}=-50 \mathrm{kN} . \mathrm{m}
$$

(1) The unknowns are θ_{2}, and θ_{3}
(2) The equilibrium relations are $M_{21}+M_{23}=0$ and $M_{32}=0$
(3) The fixed end moments are

$$
\begin{aligned}
& F E M_{12}=-F E M_{21}=\frac{w L^{2}}{12}=\frac{(2)(20)^{2}}{12}=66.67 \mathrm{k} . \mathrm{ft} \\
& F E M_{23}=-F E M_{32}=-\frac{P L}{8}=\frac{(5)(30)}{8}=18.75 \mathrm{k} . \mathrm{ft}
\end{aligned}
$$

(4) The members end moments in terms of the rotations are (Eq. 12 and 13)

$$
\begin{aligned}
M_{12} & =2 E K_{12}\left(\theta_{2}\right)+F E M_{12}=\frac{2 E I}{L_{1}} \theta_{2}+F E M_{12}=\frac{E l}{10} \theta_{2}+66.67 \text { Not used } \\
M_{21} & =2 E K_{12}\left(2 \theta_{2}\right)+F E M_{21}=\frac{4 E I}{L_{1}} \theta_{2}+F E M_{21}=\frac{E l}{5} \theta_{2}-66.67 \\
M_{23} & =2 E K_{23}\left(2 \theta_{2}+\theta_{3}\right)+F E M_{23}=\frac{2 E I}{L_{2}}\left(2 \theta_{2}+\theta_{3}\right)+F E M_{23} \\
& =\frac{E l}{7.5} \theta_{2}+\frac{E l}{15} \theta_{3}+18.75 \\
M_{32} & =2 E K_{23}\left(\theta_{2}+2 \theta_{3}\right)+F E M_{32}=\frac{2 E I}{L_{2}}\left(\theta_{2}+2 \theta_{3}\right)+F E M_{32} \\
& =\frac{E l}{15} \theta_{2}+\frac{E l}{7.5} \theta_{3}-18.75
\end{aligned}
$$

(5) Substituting into the equilibrium equations

$$
\begin{aligned}
\frac{E l}{5} \theta_{2}-66.67+\frac{E l}{7.5} \theta_{2}+\frac{E l}{15} \theta_{3}+18.75 & =0 \\
\frac{E l}{15} \theta_{2}+\frac{E l}{7.5} \theta_{3}-18.75 & =0
\end{aligned}
$$

or

which will give $E / \theta_{2}=128.48$ and $E / \theta_{3}=76.38$
(6) Substituting back for the moments

$$
\begin{aligned}
& M_{12}=\frac{128.48}{10}+66.67=79.52 \mathrm{k} . \mathrm{ft} \\
& M_{21}=\frac{128.48}{5}-66.67=-40.97 \mathrm{k.ft} \\
& M_{23}=\frac{128.48}{7.5}+\frac{76.38}{15}+18.75=40.97 \mathrm{k.ft} \sqrt{ } \\
& M_{32}=\frac{128.48}{15}+\frac{76.38}{7.5}-18.75=0 \mathrm{k.ft} \sqrt{ }
\end{aligned}
$$

Note the last two equations were written simply to check our calculations.

(7) We note that the midspan moment has to be separately computed from the equations of equilibrium in order to complete the diagram.
(8) The reaction at 3 is obtained from statics

$$
\begin{aligned}
15(5)-30 R_{3}-40.97 & =0 \Rightarrow R_{3}=1.134 \\
V_{2}=5-1.134 & =3.77
\end{aligned}
$$

Can you solve for R_{2} ?

(1) Since we are performing a linear elastic analysis, we can separately analyze the beam for support settlement, and then add then add the moments to those due to the applied loads.
(2) The unknowns are θ_{2}, and θ_{3}
(3) The equilibrium relations are $M_{21}+M_{23}=0$ and $M_{32}=0$
(4) The members end moments in terms of the rotations are (Eq. 12 and 13)

$$
\begin{aligned}
& M_{12}=2 E K_{12}\left(\theta_{2}-3 \frac{\Delta}{L_{12}}\right)=\frac{2 E I}{20}\left(\theta_{2}+3 \frac{0.5}{20}\right)=\frac{E I}{10} \theta_{2}+\frac{3 E I}{400} \\
& M_{21}=2 E K_{12}\left(2 \theta_{2}-3 \frac{\Delta}{L_{12}}\right)=\frac{2 E I}{20}\left(2 \theta_{2}+3 \frac{0.5}{20}\right)=\frac{E I}{5} \theta_{2}+\frac{3 E I}{400} \\
& M_{23}=2 E K_{23}\left(2 \theta_{2}+\theta_{3}-3 \frac{\Delta}{L_{23}}\right)=\frac{2 E I}{30}\left(2 \theta_{2}+\theta_{3}-3 \frac{0.5}{30}\right)=\frac{E I}{7.5} \theta_{2}+\frac{E I}{15} \theta_{3}+\frac{E I}{300} \\
& M_{32}=2 E K_{23}\left(\theta_{2}+2 \theta_{3}-3 \frac{\Delta}{L_{23}}\right)=\frac{2 E I}{30}\left(\theta_{2}+2 \theta_{3}-3 \frac{0.5}{30}\right)=\frac{E I}{15} \theta_{2}+\frac{E I}{7.5} \theta_{3}+\frac{E I}{300}
\end{aligned}
$$

(5) Substituting into the equilibrium equations

$$
\begin{aligned}
\frac{E l}{5} E l \theta_{2}+\frac{3 E l}{400}+\frac{E l}{15} \theta_{3}+\frac{E l}{300} & =0 \\
\frac{E l}{15} \theta_{2}+\frac{E l}{7.5} \theta_{3}+\frac{5 E l}{300} & =0
\end{aligned}
$$

or

which will give $\theta_{2}=-\frac{5.5}{180}=-0.031$ radians and $\theta_{3}=\frac{-1+\frac{5.5}{9}}{40}=-0.0097$ radians
(6) Thus the additional moments due to the settlement are

$$
\begin{aligned}
& M_{12}=\frac{E I}{10}(-0.031)+\frac{3 E I}{400}=0.0044 E I \\
& M_{21}=\frac{E l}{5}(-0.031)+\frac{3 E I}{400}=0.0013 E I \\
& M_{23}=\frac{E I}{7.5}(-0.031)+\frac{E I}{15}(-0.0097)+\frac{E I}{300}=-0.0013 E I \sqrt{ } \\
& M_{32}=\frac{E I}{15} \theta_{2}+\frac{E I}{7.5}(0.0097)+\frac{E I}{300}=0 . \sqrt{ }
\end{aligned}
$$

(1) From symmetry $\theta_{B}=-\theta_{C}$, and at the base $\theta_{A}=\theta_{D}=0$, thus we only have one unknown (no lateral displacement, no relative vertical displacement).
(2) The fixed end moments are given by

$$
\begin{aligned}
& F E M_{B C}=\frac{w L^{2}}{12}=\frac{(0.2)(16)^{2}}{12}=4.267 \mathrm{k} . \mathrm{ft} \\
& F E M_{C B}=-\frac{w L^{2}}{12}=-\frac{(0.2)(16)^{2}}{12}=-4.267 \mathrm{k} . \mathrm{ft} \\
& F E M_{A B}=\frac{w L^{2}}{20}=\frac{(0.8)(18)^{2}}{20}=12.96 \mathrm{k} . \mathrm{ft} \\
& F E M_{B A}=\frac{w L^{2}}{30}=\frac{(0.8)(18)^{2}}{30}=-8.64 \mathrm{k} . \mathrm{ft}
\end{aligned}
$$

(3) The moments are given by

$$
\begin{aligned}
& M_{B C}=\frac{2 E I}{16}(2 \theta_{B}+\underbrace{\left.\theta_{C}\right)}_{-\theta_{B}}+4.267=\frac{E l}{8} \theta_{B}+4.267 \\
& M_{B A}=\frac{2 E I}{18}\left(2 \theta_{B}+0\right)-8.64=\frac{2 E I}{9} \theta_{B}-8.64 \\
& M_{A B}=\frac{2 E I}{18}\left(\theta_{B}\right)+12.96
\end{aligned}
$$

(4) Equilibrium at joint B

$$
\begin{aligned}
M_{B A}+M_{B C} & =0 \\
\frac{2 E I}{9} \theta_{B}-8.64+\frac{E I}{8} \theta_{B}+4.267 & =0 \\
\theta_{B} & =-\frac{12.61}{E I}
\end{aligned}
$$

(5) Substitute θ_{B} to get the moments

$$
\begin{aligned}
M_{B C} & =\frac{E I}{8}\left(\frac{12.61}{E I}\right)+4.266=5.84 \mathrm{k} . \mathrm{ft} \text { 勺 } \\
M_{A B} & =\frac{E I}{9}\left(\frac{12.61}{E I}\right)+12.96=14.36 \mathrm{k} . \mathrm{ft} \text { 勺 } \\
M_{B A} & =\frac{2 E I}{9}\left(\frac{12.61}{E I}\right)-8.64=-5.84 \mathrm{k} . \mathrm{ft} \downarrow
\end{aligned}
$$

(6) Member forces are determined from statics. Careful, the moment diagram is now based on the so-called "design" sign convention.

- Gauss-Seidel is an indirect Method to solve a system of n equations with n unknowns (indirect means that a priori we do not know how many mathematical operations will be needed.
- Consider:

$$
\begin{aligned}
& c_{11} x_{1}+c_{12} x_{2}+c_{13} x_{3}=r_{1} \\
& c_{21} x_{1}+c_{22} x_{2}+c_{23} x_{3}=r_{2} \\
& c_{31} x_{1}+c_{32} x_{2}+c_{33} x_{3}=r_{3}
\end{aligned}
$$

- solve $1^{\text {st }}$ equation for x_{1} using initial "guess" for x_{2}, x_{3}.

$$
x_{1}=\frac{r_{1}-c_{12} x_{2}-c_{13} x_{3}}{c_{11}}
$$

- solve $2^{\text {nd }}$ equation for x_{2} using the computed value of $x_{1} \&$ initial guess of x_{3}

$$
x_{2}=\frac{r_{2}-c_{21} x_{1}-c_{23} x_{3}}{c_{22}}
$$

- so on \& so forth ...
- The iterative process can be considered to have converged if:

$$
\left|\frac{\mathrm{x}^{k}-\mathrm{x}^{k-1}}{\mathrm{x}^{k}}\right| \leq \varepsilon
$$

- Used to solve extremely large n (millions).
- The next method is essentially similar to this one with an initial guess of $x=0$

If you do not have a computer or a calculator, only a slide rule, you would like to have a simple way of solving a systme of equations:

$$
\left\{\begin{array}{rl}
x+y & =3 \\
2 x+y & =
\end{array} \Rightarrow y=-3-x ; \rightarrow y=8-2 x \Rightarrow\left\{\begin{array}{lll}
x & = & 5 \\
y & = & -2
\end{array}\right.\right.
$$

Iteration	x	y	$N=x^{2}+y^{2}$	$\left\|N_{i}-N_{i-1} / N_{i}\right\|$
1	0	3	9	
2	2.5	0.5	6.5	38.00%
3	3.75	-0.75	14.625	55.56%
4	4.375	-1.375	21.03125	30.46%
5	4.6875	-1.6875	24.82031	15.27%
6	4.84375	-1.84375	26.86133	7.60%
7	4.921875	-1.92188	27.91846	3.79%
8	4.960938	-1.96094	28.45618	1.89%
9	4.980469	-1.98047	28.72733	0.94%
10	4.990234	-1.99023	28.86347	0.47%
11	4.995117	-1.99512	28.93169	0.24%
12	4.997559	-1.99756	28.96583	0.12%

- Slope deflection: had to invert the stiffness matrix to solve for rotations and then the moments.
- We will solve for the moments directly but iteratively.
- why? Slope deflection must invert an $n \times n$ matrix; When only slide rules or mechanical calculators were available, need for a simplified analysis method.
- Brief presentation as in modern times, it is of limited practical use, but very helpful to understand load paths in flexural members.
- Applicable to beams and frames only.
- A variation of the slope deflection method. Substitute direct solution of n equations by an iterative one (note analogy between Gauss-Jordan and Gauss-Seidel).
- A partial solution for a modified frame is altered systematically to lead to the correct one. 1
- Lock all the joints \rightarrow unlock each joint in succession \Rightarrow internal moments are "distributed" and balanced until all the joints have rotated to their final (or nearly final) equilibrium position.
- This is a relaxation technique analogous to the one of Southwell (1940).
- In order to better understand the method, some key terms must first be defined.
- Sign convention same as for slope deflection method.
- Fixed end moments same as for slope deflection method.

- From Eq. $10 M_{12}=\frac{4 E I}{L} \theta_{1}+\frac{4 E I}{L} \theta_{1}$
- Define stiffness factor K as moment required to rotate the end of a beam by a unit angle of one radian, while the other end is fixed i.e. $\theta_{2}=v_{1}=v_{2}=0$, and $\theta_{1}=1, \Rightarrow K=\frac{4 E I}{L}$
- Slightly different than slope deflection method (I / L).
- If a moment is applied to a rigid joint where there aren members, \Rightarrow equilibrium:
$M=M_{1}+M_{2}+\cdots+M_{n}$
- Eq. 12, and assuming the other end of the member to be fixed, then $M=K_{1} \theta+K_{2} \theta+\cdots+K_{n} \theta$ or $D F_{i}=\frac{M_{i}}{M}=\frac{K_{i}}{\Sigma K_{i}}$
- Note that $D F=0$ (fixed support) acts as a sink, whereas $D F=1$ acts like a mirror, it "bounces" back the moment.
- Hence if a moment M is applied at a joint, portion of M carried by a member connected to this joint is proportional to the distribution factor, i.e. the stiffer the member (larger I, smaller L), the greater the moment carried.
- Similarly, $D F=0$ for a fixed end, and $D F=1$ for a pin support.
- A rigidly supported beam subjected to a moment M_{1} (and corresponding rotation θ_{1}) at one end, and fixed at the other $\left(\theta_{2}=0\right) \Rightarrow M_{1}=\frac{4 E I}{L} \theta_{1}$ and $M_{2}=\frac{2 E I}{L} \theta_{1}$.
- Carry-over factor as the fraction of M that is "carried over" from the rotating end to the fixed one and $C O=\frac{1}{2}$.
(1) Constrain all the rotations and translations.
(2) Apply the load, and determine the fixed end moments (which may be caused by element loading, or support translation).
(3) At any given joint i equilibrium is not satisfied $M_{\text {left }}^{F} \neq M_{\text {right }}^{F}$, and the net moment is M_{i}
(4) We enforce equilibrium by applying at the node $-M_{i}$, in other words we balance the forces at the node.
(5) How much of M_{i} goes to each of the elements connected to node i depends on the distribution factor.
(6) But by applying a portion of $-M_{i}$ to the end of a beam, while the other is still constrained, from Eq. 12, half of that moment must also be carried over to the other end.
(7) We then lock node i, and move on to node j where these operations are repeated
(1) Sum moments
(2) Balance moments
(3) Distribute moments ($K, D F$)
(4) Carry over moments (CO)
(5) lock node
(8) Repeat the above operations until all nodes are balanced, then sum all moments.
(9) The preceding operations can be easily carried out through a proper tabulation.
- The general procedure of the Moment Distribution method can be described as follows:
- If an end node is hinged, then we can use the reduced stiffness factor and we will not carry over moments to it.
- Analysis of frame with unsymmetric loading, will result in lateral displacements, and a two step analysis must be performed (see below).
(1) Calculate the stiffness factor $(K=4 E I / L)$ for all the members and the distribution factors at all the joints.
(2) If a member $A B$ is pinned at B, then $K^{A B}=3 E I / L$, and $K^{B A}=4 E I / L$. Thus, we must apply the reduced stiffness factor to $K^{A B}$ only and not to $K^{B A}$.
(3) Carry-over factor is $\frac{1}{2}$ for members with constant cross-section.
(4) Compute fixed-end moments for all the members. Note that even if the end of a member is pinned, we must determine the fixed end moments as if it was fixed.
(5) Start out by fixing all the joints, and release them one at a time.

6 If a node is pinned, start by balancing this particular node. If no node is pinned, start from either end of the structure.
(7) Distribute the unbalanced moment at the released joint
(8) Carry over the moments to the far ends of the members (unless it is pinned).
(9) Fix the joint, and release the next one.
(10) Continue releasing joints until distributed moments are insignificant. If the last moments carried over are small and cannot be distributed, it is better to discard them so that the joints remain in equilibrium.
(1) Sum up the moments at each end of the members to obtain the final moments.

Example; Continuous Beam

(1) For this example the fixed-end moments are computed as follows:

$$
\begin{aligned}
& M_{B C}^{F}=\frac{P L}{8}=\frac{(10)(20)}{8}=+25.0 \mathrm{k} . \mathrm{ft} \\
& M_{C B}^{F}=-25.0 \mathrm{k} . \mathrm{ft}
\end{aligned}
$$

(2) Since the relative stiffness is given in each span, the distribution factors are

$$
\begin{aligned}
D F_{A B} & =\frac{K_{A B}}{\Sigma K}=\frac{5}{\infty+5}=0 \\
D F_{B A} & =\frac{K_{B A}}{\Sigma K}=\frac{5}{5+3}=0.625 \\
D F_{B C} & =\frac{K_{B C}}{\Sigma K}=\frac{3}{5+3}=0.375 \\
D F_{C B} & =\frac{K_{C B}}{\Sigma K}=\frac{3}{3}=1
\end{aligned}
$$

(3) The balancing computations are shown below.

Joint	A	B		C	Step	Balance	CO
Member	$A B$	$B A$	$B C$	$C B$			
K	5	5	3	3			
DF	0	0.625	0.375	1			
FEM			+25.0	-25.0	(1)		
			+12.5	+25.0 ${ }^{\text {¢ }}$	(2) (3)	C	BC
	-11.7 ${ }^{\text {+ }}$	-23.4	-14.1	$\rightarrow-7.0$	(4) (5) (6)	B	AB; CB
			+3.5	+ $7.0 \downarrow$	(7) (8)	C	BC
	-1.1	-2.22	-1.37	- 0.6	(9) (1) 1	B	AB; CB
			+0.3	+0.6 ${ }^{\text {r }}$	(2) 3	C	BC
	$-0.1+$	-0.2	-0.1 ${ }^{\text {r }}$		(4)	B	AB
Total	-12.9	-25.8	+25.8	0			

(4) The above solution is that referred to as the ordinary method.
(5) The correctness of the answers may in a sense be checked by verifying that $\Sigma M=0$ at each joint. However, even though the final answers satisfy this equation at every joint, this in no way a check on the initial fixed-end moments. These fixed-end moments, therefore, should be checked with great care before beginning the balancing operation. Moreover, it occasionally happens that compensating errors are made in the balancing, and these errors will not be apparent when checking $\Sigma M=0$ at each joint.
(6) To draw the final shear and moment diagram, we start by drawing the free body diagram of each beam segment with the computed moments, and then solve from statics for the reactions:

$$
\begin{aligned}
12.9+25.8-12 V_{A}=0 & \Rightarrow V_{A}=R_{A}=3.22 \mathrm{k} \downarrow \\
V_{A}+V_{B}^{L}=0 & \Rightarrow V_{B}^{L}=-3.22 \mathrm{k} \uparrow \\
25.8+(10)(10)-20 V_{B}^{R}=0 & \Rightarrow V_{B}^{R}=6.29 \mathrm{k} \uparrow \\
6.29+V_{C}-10=0 & \Rightarrow V_{C}=R_{C} 3.71 \mathrm{k} \uparrow \\
-V_{B}^{L}-V_{B}^{R}+R_{B}=0 & \Rightarrow R_{B}=9.51 \mathrm{k} \uparrow \\
\text { Check: } R_{A}+R_{B}+R_{C}-10 & =-3.22+9.51+3.71-10=0 \sqrt{ } \\
M_{B C}^{+}=(3.71)(10)=37.1 \mathrm{k.ft} &
\end{aligned}
$$

(7) Solving by slope deflection, and solve system of equations by Gauss-Seidel will yield identical intermediary steps.

- We will revisit the previous problem using the slope deflection method.
- The fixed end moments have been previously determined to be 25 .
- The moments are given by

$$
\begin{aligned}
& M_{A B}=\frac{2 E I}{L}\left(2 \theta_{A}+\theta_{B}\right)=2 \frac{E I}{L} \theta_{B}=10 E \theta_{B} \\
& M_{B A}=\frac{2 E I}{L}\left(2 \theta_{B}+\theta_{A}\right)=4 \frac{E I}{L} \theta_{B}=20 E \theta_{B} \\
& M_{B C}=\frac{2 E I}{L}\left(2 \theta_{B}+\theta_{C}\right)+25=4 \frac{E I}{L} \theta_{B}+2 \frac{E I}{L} \theta_{C}+25=12 E \theta_{B}+6 E \theta_{C}+25 \\
& M_{C B}=\frac{2 E I}{L}\left(2 \theta_{C}+\theta_{B}\right)-25=4 \frac{E I}{L} \theta_{C}+2 \frac{E I}{L} \theta_{B}-25=12 E \theta_{C}+6 E \theta_{B}-25
\end{aligned}
$$

- We now write equations of equilibrium at each node

$$
\begin{aligned}
M_{B A}+M_{B C} & =0 \\
M_{C B} & =0
\end{aligned}
$$

- Substitute

$$
\left\{\begin{align*}
6 E \theta_{B}+12 E \theta_{C} & =25 \tag{27}\\
20 E \theta_{B}+12 E \theta_{B}+6 E \theta_{C} & =-25
\end{align*}\right.
$$

- The exact solution is $\theta_{B}=-\frac{75}{58} \frac{1}{E}=-\frac{1.29}{E}$ and $\theta_{C}=475 \frac{1}{174} \frac{2.73}{E}$.
- Substituting (results are now independent of E which cancel out) above we obtain $M_{A B}=-\frac{375}{29}=-12.93, M_{B A}=-\frac{750}{29}=-25.86, M_{B C}=\frac{750}{29}=25.86$, and $M_{C B}=0$. Results areexactly same results as in the moment distribution.
- Eq. 27 can now be written as

$$
\left[\begin{array}{cc}
6 & 12 \tag{28}\\
32 & 6
\end{array}\right]\left\{\begin{array}{l}
\theta_{B} \\
\theta_{C}
\end{array}\right\}=\left\{\begin{array}{c}
25 \\
-25
\end{array}\right\}
$$

- We will now solve this by Gauss-Seidel iterative method with

$$
\begin{aligned}
6 \theta_{B}+12 \theta_{C}=25 & \Rightarrow \theta_{C}=\frac{25}{12}-\frac{1}{2} \theta_{B} \\
32 \theta_{B}+6 \theta_{B}=-25 & \Rightarrow \quad \theta_{B}=-\frac{25}{32}-\frac{6}{32} \theta_{C}
\end{aligned}
$$

Start with $\theta_{C}=\theta_{B}=0$, and then solve for $\theta_{C} \rightarrow \theta_{B} \rightarrow \theta_{C} \cdots$ until convergence and the following table summarizes each of the steps

	$n=0$	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$
$E \theta_{C}$	0.0	2.083	2.670	2.724	2.729	2.730
$E \theta_{B}$	0.0	-1.172	-1.282	-1.292	-1.293	-1.293
$M_{A B}$	0.0	-11.72	-12.82	-12.92	-12.93	-12.93
$M_{B A}$	0.0	-23.44	-25.63	-25.84	-25.86	-25.86
$M_{B C}$	0.0	23.44	25.63	25.84	25.86	25.86
$M_{C B}$	0.0	-7.03	-0.658	-0.062	-0.006	0.000

- We indeed iteratively recover the previously computed moments by iteration five.
- Note that in the moment distribution, we solve directly for the moments whereas in the slope deflection method we first determine the rotations and the moments.
- We finally compare intermediary values of the moment distribution and the slope deflection method:

	Method	$n=1$	$n=2$
$M_{A B}$	MD	-11.7	$-11.7-1.1=-12.8$
	SD	-11.7	-12.82
$M_{B A}$	MD	-23.4	$-23.4-2.2=-25.6$
	SD	-23.44	-25.63
$M_{B C}$	MD	$25+12.5-14.1=23.4$	$23.4+3.5-1.3=25.7$
	SD	23.44	25.63
$M_{C B}$	MD	$-25.0+25.0-7.0=-7.0$	$-7.0+7.0-0.6=-0.6$
	SD	-7.03	-0.658

Clearly, the intermediary steps of the moment distribution correspond to those of the Gauss-Seidel iterative method. Similar conclusion would be drawn had we started by solving for θ_{B}.

Structural Analysis

Direct Stiffness Method

Victor E. Saouma

saouma@colorado.edu

University of Colorado, Boulder

Spring 2022

Table of Contents I

(1) Stiffness Coefficients

- Element Level
(2) Element Stiffness Matrix Revisited
- Force(Displacement) Relations
- Truss Element
- Beam Element
- Euler-Bernoulli
- 2D Beam Columns
- Visualization
(3) From Element to Structure

4) DSM: Orthogonal Structures

- Example: Beam

5 Motivational Interlude
6 DSM: Orthogonal

- Example Frame
- Matlab Code for frame

Table of Contents II

(7) Generalized Direct Stiffness Method

- Unconstrained Degree of Freedom
- Structural Discretization
- Nodes/Topology
- Elements/Connectivity
- Material Properties
(8) Second Interlude
- Mathematical Model
- 2D vs. 3D; Frame vs Truss
- Connections
- Relative Stiffnesses
- X-Sections
- Elastic Supports
- Secondary members; Axial Deformation
- Linear or nonlinear; Large Deformation
- Time dependent; Dynamic

Table of Contents III

- Temperature
(9) Direct Stiffness Method
- A Boundary Value Problem
- Unconstrained vs Constrained DoF
(10) Transformation Matrix
- Why
- Beam-Column
- Derivation
(11) Fundamental Relations
(12) Computer Implementation: Global DOF
- LM: Truss
- LM: Beam
- LM: Frame
- Assembly of the Structure's Stiffness Matrix
- Assembly of the Load Vector
- Direct Stiffness Method; Algorithm

Table of Contents IV

- Example Frame
- Example Truss
- Example Beam

Essence of the stiffness method
(1) Constrain all the degrees of freedom
(2) Apply a unit displacement at each d.o.f.(while restraining all others to be zero)
(3) Determine the reactions associated with all the d.o.f.

$$
\begin{equation*}
\{\mathrm{p}\}=[\mathrm{k}]\{\boldsymbol{\delta}\} \tag{1}
\end{equation*}
$$

$k_{i j}$ will correspond to the reaction at dof i due to a unit deformation (translation or rotation) at dof j.

- We seek to determine forces (reactions) due an externally applied unit displacement.
- All forces are shown in the positive direction.

N: Axial; M: Moment; T: Torsion

Cartesian						
	Forces			Moments		
	x	y	z	x	y	z
Beam		V_{y}				M_{z}
2D Frame	N_{x}	V_{y}				M_{z}
Grid		V_{y}		T_{x}		M_{z}
3D Frame	N_{x}	V_{y}	V_{z}	T_{x}	M_{y}	M_{z}

Element Stiffness Matrix Revisited

Force(Displacement) Relations

- axial

$$
\begin{equation*}
\sigma=E \epsilon \Rightarrow \underbrace{A \sigma}_{P}=\underbrace{\frac{A E}{L}}_{k \text { axial }} \underbrace{\Delta}_{1} \tag{2}
\end{equation*}
$$

- Flexural

$$
\begin{align*}
& M_{1}=\underbrace{\frac{2 E I_{z}}{L}\left(2 \theta_{1}+\theta_{2}\right)-\frac{6 E I_{z}}{L^{2}}\left(v_{2}-v_{1}\right)}_{I}+\underbrace{M_{1}^{F}}_{I \prime} \tag{3}\\
& M_{2}=\underbrace{\frac{2 E I_{z}}{L}\left(\theta_{1}+2 \theta_{2}\right)-\frac{6 E I_{z}}{L^{2}}\left(v_{2}-v_{1}\right)}_{I}+\underbrace{M_{2}^{F}}_{I \prime} \tag{4}\\
& V_{1}=\underbrace{\frac{6 E I_{z}}{L^{2}}\left(\theta_{1}+\theta_{2}\right)-\frac{12 E I_{z}}{L^{3}}\left(v_{2}-v_{1}\right)}_{1}+\underbrace{V_{1}^{F}}_{I \prime} \tag{5}\\
& V_{2}=\underbrace{-\frac{6 E I_{z}}{L^{2}}\left(\theta_{1}+\theta_{2}\right)+\frac{12 E I_{z}}{L^{3}}\left(v_{2}-v_{1}\right)}_{I \prime}+\underbrace{V_{2}^{F}}_{\|} \tag{6}
\end{align*}
$$

The truss element (whether in 2D or 3D) has only one degree of freedom associated with each node. Hence, from Eq. 2, we have

$$
\left[\mathrm{k}^{t}\right]=\frac{A E}{L} \quad \begin{array}{cc}
u_{1} & u_{2} \\
p_{2}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \tag{7}
\end{array}
$$

Using Equations 3, 4, 5 and 6 we can determine the forces associated with each unit displacement by setting all displacements equal to zero except:

$$
\left.\left[\mathrm{k}^{b}\right]=\begin{array}{ccccc}
v_{1} & \theta_{1} & v_{2} & \theta_{2} \\
V_{1}\left[\begin{array}{cc}
\text { Eq. } 5\left(v_{1}=1\right) & \text { Eq. } 5\left(\theta_{1}=1\right) \\
M_{1} \\
V_{2} \\
M_{2} & \text { Eq. } 5\left(v_{2}=1\right)
\end{array}\right. & \text { Eq. } 5\left(\theta_{2}=1\right) \\
\text { Eq. } 3\left(v_{1}=1\right) & \text { Eq. } 3\left(v_{1}=1\right) & \text { Eq. } 6\left(\theta_{1}=1\right) & \text { Eq. } 3\left(v_{2}=1\right) & \text { Eq. } 3\left(\theta_{2}=1\right) \tag{8}\\
\text { Eq. } 6\left(v_{1}=1\right) & \text { Eq. } 4\left(\theta_{1}=1\right) & \text { Eq. } 4\left(v_{2}=1\right) & \text { Eq. } 6\left(\theta_{2}=1\right) \\
\text { Eq. } 4\left(\theta_{2}=1\right)
\end{array}\right]
$$

or

Hence, k_{32} is the shear at the right node due to a unit rotation on the left one. k_{41} is the moment at the left node due to a unit translation of the left one.
$\mathrm{k}^{2 d f r}=\mathrm{k}^{b} \bigcup \mathrm{k}^{t}$, Note no coupling between the axial forces and the shear/moment.

$$
\begin{align*}
& {\left[\mathrm{k}^{2 d f r}\right]=\begin{array}{c}
\\
N_{1 x} \\
V_{1 y} \\
M_{1 z} \\
N_{2 x} \\
V_{2 y} \\
M_{2 z}
\end{array}\left[\begin{array}{cccccc}
k_{1 x}^{t} & v_{1 y} & \theta_{1 z} & u_{2 x} & v_{2 y} & \theta_{2 z} \\
0 & k_{11}^{b} & 0 & k_{12}^{b} & 0 & k_{13}^{b} \\
0 & k_{21}^{b} & k_{22}^{b} & 0 & k_{14}^{b} \\
k_{21}^{t} & 0 & 0 & k_{22}^{t} & k_{24}^{b} \\
0 & k_{31}^{b} & k_{32}^{b} & 0 & k_{33}^{b} & k_{34}^{b} \\
0 & k_{41}^{b} & k_{42}^{b} & 0 & k_{43}^{b} & k_{44}^{b}
\end{array}\right]} \tag{10}\\
& {\left[\mathrm{k}^{2 d f r}\right]=\begin{array}{c}
\\
N_{1 x} \\
V_{1 y} \\
M_{1 z} \\
N_{2 x} \\
V_{2 y} \\
M_{2 z}
\end{array}\left[\begin{array}{cccccc}
u_{1 x} & v_{1 y} & \theta_{1 z} & u_{2 x} & v_{2 y} & \theta_{2 z} \\
0 & 0 & 0 & -\frac{E A}{L} & 0 & 0 \\
-\frac{E A}{L} & \frac{E E I_{z z}}{L^{3}} & \frac{6 E I_{z z}}{L^{2}} & 0 & -\frac{12 E I_{z z}}{L^{3}} & \frac{6 E I_{z z}}{L^{2}} \\
0 & -\frac{4 E I_{z z}}{L} & 0 & -\frac{6 E I_{z z}}{L^{2}} & \frac{2 E I_{z z}}{L} \\
0 & \frac{6 E I_{z z}}{L^{3}} & -\frac{6 E I_{z z}}{L^{2}} & 0 & \frac{E A}{L} & 0 \\
0 \\
L^{2} & \frac{2 E I_{z z}}{L} & 0 & -\frac{12 E I_{z z}}{L^{3}} & -\frac{6 E I}{L^{2}} \\
L^{2} & \frac{4 E I_{z z}}{L}
\end{array}\right]} \tag{11}
\end{align*}
$$

k_{21} is the shear in the left node due to a unit axial displacement at that same node. It is equal to zero because an axial force does not induce a shear force.

Visualization

- Stiffness matrix of individual elements previously derived in local coordinate system, and assigned to it lower case letters k .
- We need to derive the stiffness matrix of a structure in global coordinate system and will use upper cae K.
- The direct stiffness method will be introduced in two steps:
(1) Orthogonal structures (simplified).
(2) Generalized structures. time permitting

DSM: Orthogonal Structures

(1) Determine the degree of kinematic indeterminacy.
(2) Fix all the displacements, the structure is now kinematically determinate (all displacements are known and are equal to zero).
(3) Determine the end nodal forces for each loaded element, sum up, and add to nodal forces.
(4) Apply a unit displacement (rotation or displacement) at each free/unrestrained degree of freedom j at a time, and determine the internal reaction forces at degrees of freedom $i, K_{i j}$.
(5) Assemble the reduced structure stiffness matrix in global coordinate system in terms of the individual element stiffness matrices also transformed in the global coordinate system. This will result in an equation of equilibrium at each node: $K \Delta-P=0$. Where P includes nodal forces and nodal equivalent loads.
(6) Reduced because we are not considering the restrained degrees of freedom.

DSM: Orthogonal Structures

Note: all forces are shown in their correct directions and are thus +ve

		Node B		$\left\lvert\, \begin{gathered} \mathrm{P} / 7 \\ \mid \\ \mid \end{gathered}\right.$ Node C

Note strong similarity with the slope-deflection (or moment distribution) methods.

Example: Beam

(1) Degree of kinematic indeterminacy is 2 .
(2) Using the previously defined sign convention, determine thenodal equivalent load (to the load applied along the member)

$$
\begin{align*}
& \Sigma \mathrm{NEF}_{1}=\underbrace{\frac{P_{1} L}{8}}_{B A}-\underbrace{\frac{P_{2} L}{8}}_{B C}=\frac{2 P L}{8}-\frac{P L}{8}=\frac{P L}{8} \tag{12}\\
& \Sigma \mathrm{NEF}_{2}=\underbrace{\frac{P L}{8}}_{C B} \tag{13}
\end{align*}
$$

(3) If it takes $\frac{4 E I}{L}\left(k_{44}^{B A}\right)$ to rotate $B A$ and $\frac{4 E I}{L}\left(k_{22}^{B C}\right)$ to rotate $B C$, it will take a total force of $\frac{8 E L}{L}$ to simultaneously rotate $B A$ and $B C$.
(4) The sum of the rotational stiffnesses at global d.o.f. 1 is $K_{11}=\frac{8 E I}{L}$; similarly, $K_{21}=\frac{2 E I}{L}\left(K_{42}^{B C}\right)$.
(5) If we now rotate d.o.f. 2 by a unit angle, we will have $K_{22}=\frac{4 E 1}{L}\left(K_{22}^{B C}\right)$ and $K_{12}=\frac{2 E I}{L}\left(k_{42}^{B C}\right)$.
(6) Equation of equilibrium:

$$
\underbrace{\left\{\begin{array}{c}
P L \tag{14}\\
0
\end{array}\right\}}_{P_{e x t}}+\underbrace{\left\{\begin{array}{c}
\frac{P L}{8} \\
\frac{P L}{8}
\end{array}\right\}}_{N E F}-\underbrace{\left[\begin{array}{cc}
\frac{8 E I}{L} & \frac{2 E I}{L} \\
\frac{2 E I}{L} & \frac{4 E I}{L}
\end{array}\right]}_{\mathrm{K}} \underbrace{\left\{\begin{array}{l}
\theta_{?}^{?} \\
\theta_{2}^{?}
\end{array}\right\}}_{P_{\text {int }}}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

(1) Note that we have $P_{\text {ext }}-P_{\text {int }}=0$ and not $P_{\text {ext }}+P_{\text {int }}=0$ because the external forces must be resisted by the internal ones in an equal and opposite direction.

$$
\left\{\begin{array}{c}
P L+\frac{P L}{8} \tag{15}\\
+\frac{P L}{8}
\end{array}\right\}=\left[\begin{array}{cc}
\frac{8 E I}{L} & \frac{2 E I}{L}= \\
\frac{2 E I}{L} & \frac{4-I}{L}
\end{array}\right]\left\{\begin{array}{c}
\theta_{1}^{?} \\
\theta_{2}^{?}
\end{array}\right\}
$$

Note that we will always write the equilibrium relationship as $P_{\text {ext }}-P_{\text {int }}=0$
(8) Invert the two by two matrix

$$
\left\{\begin{array}{l}
\theta_{1} \tag{16}\\
\theta_{2}
\end{array}\right\}=\left[\begin{array}{ll}
\frac{8 E I}{L} & \frac{2 E I}{L} \\
\frac{2 E I}{L} & \frac{4 E I}{L}
\end{array}\right]^{-1}\left\{\begin{array}{c}
P L+\frac{P L}{8} \\
+\frac{P L}{8}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{17}{112} \frac{P L^{2}}{E I} \\
-\frac{5}{112} \frac{P L^{2}}{E I}
\end{array}\right\}
$$

(0) Recall that for each element $\{\mathrm{p}\}=[\mathrm{k}]\{\delta\}$, and in this case $\{\mathrm{p}\}=\{\mathrm{P}\}$ and $\{\delta\}=\{\Delta\}$ for element $A B$. The element stiffness matrix has been previously derived, and in this case the global and local d.o.f. are the same.
(10) Next, we need to compute the element internal forces.
(1) Equilibrium equation for element AB , at the element level, can be written as (note that we must include the nodal equivalent loads to maintain equilibrium):

Example: Beam

Note: This step is called Force recovery, i.e. we determine the internal forces from the nodal displacements. Solving

$$
\left\lfloor\begin{array}{llll}
V_{1} & M_{1} & V_{2} & M_{2} \\
\hline
\end{array}=\left\lfloor\frac{107}{56} P \quad \frac{31}{56} P L \quad \frac{5}{56} P \quad \frac{5}{14} P L\right\rfloor\right.
$$

(12) Similarly, for element $B C$:

or

$$
\left\lfloor\begin{array}{llll}
p_{1} & p_{2} & p_{3} & p_{4}
\end{array}\right\rfloor=\left\lfloor\begin{array}{llll}
\frac{7}{8} P & \frac{9}{14} P L & -\frac{P}{7} & 0
\end{array}\right\rfloor
$$

(13) This simple example calls for the following observations:
(1) Node A has contributions from element $A B$ only, while node B has contributions from both $A B$ and $B C$.
(2) We observe that $p_{3}^{A B} \neq p_{1}^{B C}$ even though they both correspond to a shear force at node B, the difference between them is equal to the reaction at B. Similarly, $p_{4}^{A B} \neq p_{2}^{B C}$ due to the externally applied moment at node B.
(3) Must conclude with free body, shear and moment diagrams.

- We have already applied the direct stiffness method.
- The method can be applied to much more complex structures, and can be (relatively) easily be programmed.
- if we consider a 100 story, 3 bay frame, fixed at the base.
- The degree of static indeterminancy is $3(4)-3=9 \Rightarrow[f]_{9 \times 9}$, i.e. we will have to invert a 9 by 9 matrix.
- The degree of kinematic indeterminacy is $100(4)(3)=1,200 \Rightarrow[K]_{1,200 \times 1,200}$, i.e we will have to invert a 1,200 by 1,200 matrix.
- Because the stiffness method can be programmed, and a computer can easily invert a large matrix, this problem is best solved by the stiffness method.
- The method just presented is actually referred to as the Finite Element Method.
- A structural engineer, well versed in the finite element analysis is thus equipped to handle the analysis of all structures that are discretized (just as our building was discretized into (4)(100) $+3(100)=600$ elements (400 columns and 300 beams).
- Hence, a Civil engineer well versed in structural analysis is not limited do the analysis of buildings, bridges, dams, nuclear reactors.

- but can find employment in automotive, aerospace, manufacturing, biomedical industry.

Motivational Interlude

- Do not limit yourself to civil structures.
- You are better equipped than your fellow classmates from aerospace or mechanical engineering to become a Structural Analyst who go from Statics->Mechanics of Materials \rightarrow Finite Element.
- Civil Engineering students: Statics \rightarrow Mechanics of Materials \rightarrow Structural Analysis, \rightarrow Matrix Analysis \rightarrow Finite Element.
- Within Civil Engineering, Structural Engineering is the specialty that offers the broadest opportunities across various departments (Mechanical, Aerospace, Naval).
- Things get even more exciting if you consider that you must also understand material's response, seismic or dynamic analysis, probabilistic methods, numerical techniques, etc..
- Challenging specialty, an M.S. is a minimum. 8
- Need to grasp those opportunities before you finalize your fields of interest. \because

Analyse the following frame for $P=2 \mathrm{kN}, L=H=6 \mathrm{~m}, M=5 \mathrm{kN} . \mathrm{m}, w=0.5 \mathrm{kN} / \mathrm{m}$, $E=2 \times 10^{8} \mathrm{kPa}, A=0.123 \mathrm{~m}^{2}$, and $I^{b}=I^{c}=0.00125 \mathrm{~m}^{4}$

(1) Assuming axial deformations, we do have three global degrees of freedom, Δ_{1}, Δ_{2}, and θ_{3}.
(2) Constrain all the degrees of freedom, and thus make the structure kinematically determinate.
(3) Determine the nodal equivalent loads for each element in local coordinate system in its own local coordinate system (element 1 is assumed to be defined from A to B, and element 2 from B to C):

Example Frame

$$
\begin{aligned}
& \underbrace{\left\lfloor\begin{array}{lllll}
p_{1}^{A} & p_{2}^{A} & p_{3}^{A} \mid p_{4}^{B} & p_{5}^{B} & p_{6}^{B}
\end{array}\right\rfloor}_{A B}=\begin{array}{llllll}
0 & -\frac{P}{2} & \left.-\frac{P L}{8} \left\lvert\, \begin{array}{llll}
0 & -\frac{P}{2} & \frac{P L}{8}
\end{array}\right.\right\rfloor
\end{array} \\
& =\left\lfloor\left.\begin{array}{lll}
0 & -\frac{2}{2} & -\frac{(2)(6)}{8}
\end{array} \right\rvert\, \begin{array}{llll}
0 & -\frac{2}{2} & \frac{(2)(6)}{8}
\end{array}\right\rfloor \\
& =\left\lfloor\begin{array}{lll}
0 & -1.0 & -1.5 \mid 0
\end{array}-1.01 .5\right\rfloor \\
& \underbrace{\left\lfloor\begin{array}{llllll}
p_{1}^{B} & p_{2}^{B} & p_{3}^{B} & p_{4}^{C} & p_{5}^{C} & p_{6}^{C}
\end{array}\right\rfloor}_{B C}=\left\lfloor\begin{array}{lllll}
0 & -\frac{w H}{2} & \left.-\frac{w H^{2}}{12} \right\rvert\, 0 & -\frac{w H}{2} & \frac{w H^{2}}{12}
\end{array}\right\rfloor \\
& =\left\lfloor\begin{array}{lllll}
0 & -\frac{(0.5)(6)}{2} & \left.-\frac{(0.5)(6)^{2}}{12} \right\rvert\, 0 & -\frac{(0.5)(6)}{2}
\end{array}\right. \\
& =\left\lfloor\left.\begin{array}{lll}
0 & -1.5 & -1.5
\end{array} \right\rvert\, 0 \begin{array}{ll}
0 & -1.5 \\
1.5
\end{array}\right\rfloor
\end{aligned}
$$

and the nodal equivalent forces at node B would have to be summed.
(4) Apply a unit displacement in each of the 3 global degrees of freedom, to determine the structure global stiffness matrix. Each entry $K_{i j}$ of the global stiffness matrix will correspond to the internal force in degree of freedom i, due to a unit displacement in degree of freedom j.
(5) Recalling the force displacement relations derived earlier, we can assemble the global stiffness matrix in terms of contributions from both $A B$ and $B C$:

- Need to complete the following table where columns correspond to imposed displacements on dof j, and rows correspond to the corresponding induced internal forces in each of the elements in dof i. Both are in the global coordinate system.
- $K_{1,2}$ is zero because an imposed displacement along dof 2 (horizontal), while locking all other displacements, does not induce an internal force in any of the two elements.
- K_{31} are the internal forces (moments in here) resulting from an imposed unit displacement in dof 1 (horizontal). This will not "mobilize" AB, but will activate flexure for $B C$. For $B C$ from the following figure (already shown above

		$\begin{aligned} & K_{i 1} \\ & \Delta_{1} \end{aligned}$	$K_{i 2}$	$K_{i 3}$$\theta_{3}$
$\begin{aligned} & \hline K_{1 j} \\ & \left(F_{X}\right) \end{aligned}$	AB	$\frac{E A}{L}$	0	0
	BC	$\frac{12 E^{\text {c }}}{} H^{3}$	0	$\frac{6 E I^{\text {c }}}{H^{2}}$
$\begin{gathered} K_{2 j} \\ \left(F_{Y}\right) \\ \hline \end{gathered}$	AB	0	$\frac{12 E E^{\text {b }}}{}{ }^{3}$	$-\frac{6 E j^{\text {a }}}{L^{2}}$
	BC	0	$\frac{E A}{H}$	0
$\begin{gathered} K_{3 j} \\ \left(M_{7}\right) \end{gathered}$	AB	0	$-\frac{6 E I^{0}}{L^{2}}$	$\frac{4 E l^{\circ}}{L}$
	BC	$\frac{6 E / I^{\text {c }}}{H^{2}}$	0	$\frac{4 E E^{\circ}}{H}$

- Note that all diagonal terms are +ve, and that the table is symmetric.
(6) Summing up, the structure global stiffness matrix $[\mathrm{K}]$ is:

$$
\begin{aligned}
& {[\mathrm{K}]=\begin{array}{ccc}
\Delta_{1} & \Delta_{2} & \theta_{3} \\
P_{1} \\
P_{2} \\
\left.M_{3}\left[\begin{array}{lll}
k_{4}^{A B}+k_{22}^{B C} & k_{45}^{A B}+k_{21}^{B C} & k_{46}^{A B}+k_{23}^{B C} \\
k^{A B}+k^{B C} & k_{55}^{A B}+k_{11}^{B C} & k_{56}^{A B}+k_{13}^{B C} \\
k_{64}^{A B}+k_{32}^{B C} & k_{65}^{A B}+k_{31}^{B C} & k_{66}^{A B}+k_{33}^{B C}
\end{array}\right], ~\right]
\end{array}} \\
& =\begin{array}{ccc}
& \Delta_{1} & \Delta_{2} \\
P_{1} \\
P_{2} \\
M_{3}
\end{array}\left[\begin{array}{cc}
\frac{E A}{L}+\frac{12 E I^{c}}{H^{3}} & 0 \\
0 & \frac{12 E b^{b}}{L^{3}}+\frac{E A}{H} \\
\frac{6 E I^{c}}{H^{2}} & -\frac{6 E I^{b}}{L^{2}} \\
\frac{6 E I^{b}}{L^{2}} \\
L & \frac{4 E I^{c}}{H}
\end{array}\right]
\end{aligned}
$$

Substituting

$$
[\mathrm{K}]=10^{6}\left[\begin{array}{ccc}
4.1139 & 0 & 0.0417 \\
0 & 4.1139 & -0.0417 \\
0.0417 & -0.0417 & 0.3333
\end{array}\right]
$$

Note that the axial stiffness $(E A / L)$ is 4.1×10^{6}, while the flexural one $\left(12 E I / H^{3}\right)$ is 0.0071×10^{6}. Axial stiffness is always much higher than flexural stiffness.
(T) We need to have $P_{\text {ext }}$ in global coordinate system. From Eq. 17 and 18 we had

$$
\underbrace{\left\lfloor\begin{array}{lll}
p_{1}^{A} & p_{2}^{A} & p_{3}^{A} \left\lvert\, \begin{array}{lll}
B & p_{4}^{B} & p_{5}^{B}
\end{array} p_{6}^{B}\right. \tag{19}\\
\hline
\end{array}\right.}_{A B}=\begin{array}{llll|lll}
0 & -\frac{P}{2} & \left.-\frac{P L}{8} \left\lvert\, \begin{array}{llll}
0 & -\frac{P}{2} & \frac{P L}{8}
\end{array}\right.\right\rfloor
\end{array}
$$

$\underbrace{\left\lfloor\begin{array}{llllll}p_{1}^{B} & p_{2}^{B} & p_{3}^{B} & p_{4}^{C} & p_{5}^{C} & p_{6}^{C}\end{array}\right\rfloor}_{B C}=\begin{array}{lllllll}0 & -\frac{w H}{2} & \left.-\frac{w H^{2}}{12} \right\rvert\, 0 & -\frac{w H}{2} & \frac{w H^{2}}{12}(20)\end{array}$
(8) Cast in the global coordinate system, that will be

$$
\begin{align*}
& \underbrace{\left.\begin{array}{llllll}
P_{1}^{A} & P_{2}^{A} & P_{3}^{A} \mid P_{4}^{B} & P_{5}^{B} & P_{6}^{B}
\end{array}\right]}_{A B}=\begin{array}{lllllll}
0 & -\frac{P}{2} & \left.-\frac{P L}{8} \left\lvert\, \begin{array}{llll}
0 & -\frac{P}{2} & \frac{P L}{8}
\end{array}\right.\right\rfloor
\end{array} \tag{21}\\
& \underbrace{\left.\begin{array}{llllll}
P_{1}^{B} & P_{2}^{B} & P_{3}^{B} \mid P_{4}^{C} & P_{5}^{C} & P_{6}^{C}
\end{array}\right\rfloor}_{B C}=\left\lfloor\begin{array}{llllll}
-\frac{w H}{2} & 0 & \left.\left.-\frac{w H^{2}}{12} \left\lvert\, \begin{array}{lll}
-\frac{w H}{2} & 0 & \left.\frac{w H(22)}{12}\right)
\end{array}\right.\right] \begin{array}{lll}
\end{array}\right]
\end{array}\right.
\end{align*}
$$

(3) The global equation of equilibrium can now be written (note that for illustrative purposes, we kept w and and a moment M at node B).

Substituting:

$$
\left\{\begin{array}{c}
-0.5 \\
0 \\
5
\end{array}\right\}+\underbrace{\left\{\begin{array}{c}
-1.5 \\
-0.5 \\
-0.75
\end{array}\right\}}_{N E L}=\underbrace{10^{6}\left[\begin{array}{ccc}
4.1139 & 0 & 0.0417 \\
0 & 4.1139 & -0.0417 \\
0.0417 & -0.0417 & 0.3333
\end{array}\right]}_{[\mathrm{K}]}\left\{\begin{array}{l}
\Delta_{1} \\
\Delta_{2} \\
\theta_{3}
\end{array}\right\}
$$

(1) Solve for the displacements

$$
\left\{\begin{array}{l}
\Delta_{1} \\
\Delta_{2} \\
\theta_{3}
\end{array}\right\}=10^{6}\left[\begin{array}{ccc}
4.1139 & 0 & 0.0417 \\
0 & 4.1139 & -0.0417 \\
0.0417 & -0.0417 & 0.3333
\end{array}\right]^{-1}\left\{\begin{array}{c}
-2 \\
-0.5 \\
4.25
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{l}
\Delta_{1} \\
\Delta_{2} \\
\theta_{3}
\end{array}\right\}=10^{-6}\left\{\begin{array}{c}
-0.61 \mathrm{~m} \\
0.0084 \mathrm{~m} \\
12.82 \text { radian }
\end{array}\right\}
$$

(11) To obtain the element internal forces, multiply each element stiffness matrix by the local displacements. For element AB, the local and global coordinates match, thus

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array}{c}
p_{1}^{?} \\
p_{2}^{?} \\
p_{3}^{?} \\
\hline p_{4}^{?} \\
p_{5}^{?} \\
p_{6}^{?}
\end{array}\right\}=\underbrace{10^{6}\left[\begin{array}{ccc|ccc}
- & - & - & -4.1 \times 10^{6} & 0 & 0 \\
- & - & - & 0 & -13,889 . & 41,667 . \\
- & - & - & 0 & -41,667 . & 83,333 . \\
- & - & - & 4.1 \times 10^{6} & 0 & 0 \\
- & - & - & 0 & 13,889 . & -41,667 \\
- & - & -. & 0 & -41,667 & 166,667 .
\end{array}\right]}_{\mathrm{k} A B} \\
& \underbrace{\left\{\begin{array}{c}
0 \\
0 \\
0 \\
-0.61 \\
0.0084 \\
12.82
\end{array}\right\}}_{\delta A B}-\underbrace{\left\{\begin{array}{c}
0 \\
-0.5 \\
-0.75 \\
0 \\
-0.5 \\
0.75
\end{array}\right\}}_{N E L A B}
\end{aligned}
$$

or

$$
\left\{\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
\hline p_{4} \\
p_{5} \\
p_{6}
\end{array}\right\}=\left\{\begin{array}{c}
N_{1} \\
V_{1} \\
M_{1} \\
\hline N_{2} \\
V_{2} \\
M_{2}
\end{array}\right\}=\left\{\begin{array}{c}
2.52 \mathrm{kN} \\
1.03 \mathrm{kN} \\
1.82 \mathrm{kN} . \mathrm{m} . \\
-2.52 \mathrm{kN} \\
-0.034 \mathrm{kN} \\
1.39 \mathrm{kN} . \mathrm{m}
\end{array}\right\}
$$

(12) For element $B C$, the local and global coordinates do not match, hence we will need to transform the displacements from their global to their local coordinate components. By inspection

Local	x	y	z
Global	$-Y$	$+X$	$+Z$

Note that there are no local or global displacements in dof 1-3, hence

$$
\begin{aligned}
& =\underbrace{10^{6}\left[\begin{array}{ccc|ccc}
4.1 \times 10^{6} & 0 & 0 & - & - & - \\
0 & 13,888.9 & 41,666.7 & - & - & - \\
0 & 41,666.7 & 16,6667 . & - & - & - \\
-4.1 \times 10^{6} & 0 & 0 & - & - & - \\
0 & -13,888.9 & -41,666.7 & - & - & - \\
0 & 41,666.7 & 83,333.3 & - & - & -
\end{array}\right]}_{\mathbf{k}^{B} B C} \\
& \underbrace{\left\{\begin{array}{c}
-0.61 \\
0.0084 \\
12.82 \\
0 \\
0 \\
0
\end{array}\right\}}_{\mathcal{S}^{B C}}-\left\{\begin{array}{c}
0 \\
1.5 \\
-1.5 \\
0 \\
-1.5 \\
1.5
\end{array}\right\}=\left\{\begin{array}{c}
N_{1} \\
V_{1} \\
M_{1} \\
N_{2} \\
V_{2} \\
M_{2}
\end{array}\right\}=\left\{\begin{array}{c}
-0.034 \mathrm{kN} \\
2.026 \mathrm{kN} \\
3.612 \mathrm{kN} . \mathrm{m} \\
0.0344 \mathrm{kN} \\
0.974 \mathrm{kN} \\
-0.456 \mathrm{kN} . \mathrm{m}
\end{array}\right\}
\end{aligned}
$$

DSM: Orthogonal

Matlab Code for frame

```
%% Stiffness Method Frame Example 09/18
% courtesy of Xiao Fu
clear all
clc
%% Elements properties
L_elem = [6; 6]; % m
A_elem = [0.123; 0.123]; % m^2
E_elem = [200E6; 200E6]; % kN/m^2
I_elem = [1250E-6; 1250E-6]; % m^4
%% Loads
P = 1;
M = 5;
w = 0.5;
%% Structure Displacements in GCS
% Assemble global stiffness matrix
K = [A_elem(1)*E_elem(1)/L_elem(1)+12*E_elem(2)*I_elem(2)/L_elem(2)^3, 0,\ldots
6*E_elem(2) *l_elem(2)/L_elem(2) ^2;
0, A_elem(2)*E_elem(2)/L_elem(2)+12*E_elem(1)*I_elem(1)/L_elem(1)^3,\ldots
-6*E_elem(1)*I_elem(1)/L_elem(1)^2;
6*E_elem(2)*I_elem(2)/L_elem(2)^2, -6*E_elem(1)*l_elem(1)/L_elem(1)^2, ...
4*E_elem(1) *I_elem(1)/L_elem(1)+4*E_elem(2) *l_elem (2)/L_elem(2)]
% Determine vector of external forces
NEL = [-w*L_elem(2)/2; -P/2; P*L_elem(1)/8-w*L_elem(2)^2/12]; % Nodal Equivalent Load at DOFs
F=[-P/2; 0 ; M]; % Externally applied forces
F_ext = NEL + F; % Total External Force
% Solve for Displacement
```


DSM: Orthogonal

Matlab Code for frame

```
Disp = K\F_ext
%% Internal Forces
% Element-AB
i = 1;
k_AB = stiff(E_elem(i), I_elem(i), L_elem(i), A_elem(i) ); % Element stiffness matrix in LCS
NEL_elem_AB=[0;-P/2;-P*L_elem(i)/8; 0;-P/2; P*L_elem(i)/8]; % nodal element forces in
        LCS
disp_elem_AB=[0; 0; 0; Disp(1); Disp(2); Disp(3)]; % global nodal displ. of AB in LCS
Force_elem_AB = k_AB*disp_elem_AB - NEL_elem_AB % Internal forces of AB in LCS
% Element-BC
i = 2;
k_BC = stiff(E_elem(2), I_elem(2), L_elem(2), A_elem(2) );
NEL_elem_BC= [0; -w*L_elem(i)/2; -w*L_elem(i)^2/12; 0; -w*L_elem(i)/2; w*L_elem(i)^2/12];
disp_elem_BC = [-Disp (2); Disp (1); Disp (3);0;0;0];
Force_elem_BC = k_BC*disp_elem_BC - NEL_elem_BC
```

```
function [k]=stiff(E,I,L,A)
EA=E*A; El=E*l ;
k=[
```



```
0, -12*EI/L^3, -6*EI/L^2, 0, 12*EI/L^3, -6*EI/L^2;
0, 6*EI/L^2, 2*EI/L, 0, -6*EI/L^2, 4*EI/L];
```


Cover subsequent topic only time permitting

Degree of Freedom

A degree of freedom (d.o.f.) is an independent generalized nodal displacement (translation or rotation) at a node.
The displacements must be linearly independent (of coordinate system) and thus not related to each other.

Element vs Structure

An element dof is defined wrt its own local coordinate system. A structural dof is defined wrt a global coordinate system.

Unconstrained Degree of Freedom

Structural Discretization

Numerical modeling of a structure requires that we can mathematically describe it (geometry, boundary conditions, geometry and properties of elements, and loads).

The node is characterized by its nodal id (node number), coordinates, boundary conditions, and load (this one is often defined separately)

Node No.	Coor.		B. C.		
	X	Y	X	Y	Z
1	$x(1)$	$y(1)$	$I D(1,1)$	$I D(1,2)$	$I D(1,3)$
2	$x(2)$	$y(2)$	$I D(2,1)$	$I D(2,2)$	$I D(2,3)$
3	$x(3)$	$y(3)$	$I D(3,1)$	$I D(3,2)$	$I D(3,3)$
4	$x(4)$	$y(4)$	$I D(4,1)$	$I D(4,2)$	$I D(4,3)$

0 and 1 correspond to free or fixed degree of freedom (alternatively to a 1 corresponds a reaction).
Known displacements can be zero (restrained) or non-zero.

The element is characterized by the nodes which it connects, and its group number,

Element	From	To	Group
No.	Node	Node	Number
1	1	2	1
2	3	2	2
3	3	4	2

Group number will then define both element type, and elastic/geometric properties. The last one is a pointer to a separate array,

Group	Element	Material
No.	Type	Group
1	1	1
2	2	1
3	1	2

In this example element 1 has element id 1 (such as beam element), while element 2 has a id 2 (such as a truss element). Material group 1 would have different elastic/geometric properties than material group 2.

Structural idealization is as much an art as a science.
(1) 2D vs 3D
(2) Frame or truss
(3) Rigid or semi-rigid connections
(4) Effect of Relative Stiffnesses
(5) Cross-Section
(6) Elastic supports
(7) Include or not secondary members
(8) Include or not axial deformation

We shall review most of them separately
(9) Linear or nonlinear analysis (linear analysis can not predict the peak or failure load, and will underestimate the deformations).
(10) Small or large deformations
(1) Time dependent effects
(12) Partial collapse or local yielding
(3) Static or dynamic
(44) Wind load
(15) Thermal load
(6) Secondary stresses

3D or simplified 2D

Is it a truss or a girder?

Hinge $<$ Semi-rigid connections $<$ Rigid

Elastic Supports

Second Interlude

Secondary members; Axial Deformation

May ignore secondary members

- Ratio of axial to flexural stiffness is:
$\alpha=\frac{K_{a}}{K_{f}}=\frac{\frac{E A}{L}}{\frac{12 E I}{L^{3}}}=\frac{A L^{2}}{12 I}$.
- For a $b \times h$ rectangular section, with $b=h / 2$, and $L=10 h$, $\Rightarrow \alpha=100$
- For a W section
$Z \approx \frac{w d}{9}, \frac{Z}{S}=\xi=1.1, S=\frac{1}{\frac{d}{2}}, w=(490) \mathrm{lbs} / \mathrm{ft}^{3} A$, or $I \approx 0.208 A d^{2}$, and $\alpha=\frac{\frac{E A}{L}}{\frac{12 E G}{L^{3}}}=\frac{\frac{E A}{L}}{\frac{12 E(0.28) A d^{2}}{L^{3}}}=0.4\left(\frac{L}{d}\right)^{2}$
- For steel structure, we can assume $L=20 d, \Rightarrow \alpha=160$ Axial stiffness is much higher than flexural stiffness. Note: we may have negligible axial deformations. however axial force is not nealiaible.

Non-Linear stress-strain

Steel

Concrete

Large Deformation

$$
\varepsilon_{x x}=\underbrace{\frac{\partial u}{\partial x}}_{\text {small deformation }}+\underbrace{\frac{1}{2}\left(\frac{\partial u^{2}}{\partial x}+\frac{\partial v^{2}}{\partial x}+\frac{\partial w^{2}}{\partial x}\right)}_{\text {large deformation }}
$$

u and v are the axial and transversal displacements respectively.

Time Dependent

Dynamic When the frequency of the applied load (excitation) of a structure is less than about a third of its lowest natural frequency of vibration, then we can neglect inertia effects and treat the problem as a quasi-static one, otherwise a dynamic analysis must be performed.
For a very flexible structure, even a slowly applied load may necessitate a dynamic analysis.

A Boundary Value Problem

- Analysis of a structure is essentially solving a boundary value problem (governed by a differential equation over the volume Ω, and subjected to space/temporal boundary conditions along the boundary Γ).
- In our case we are discretizing our structure, and the governing differential equation (equilibrium) is embedded in $\mathrm{K} \Delta=\mathrm{P}$.
- $\Gamma=\Gamma_{t} \cup \Gamma_{u}$

Γ	Traction	Displ.	Math.	Struct.	DOF
Γ_{t}	P_{t}^{V}	$\Delta_{t}^{?}$	Neuman	Essential	Free
Γ_{u}	$\mathrm{R}_{u}^{?}$	$\Delta_{u}^{ป}$	Dirichlet	Natural	Fixed/Constrained

A Boundary Value Problem

For the beam and the dam, we need to determine the displacements along Γ_{t} and the forces (reactions) along Γ_{u}.

Direct Stiffness Method

Unconstrained vs Constrained DoF

- We have labeled the global dof associated with the unconstrained dof $\left(\Gamma_{t}\right)$, where we solve for the displacements.
- We will need to label the global dof associated with the constrained dof $\left(\Gamma_{u}\right)$ where we will solve the reactions.
- We will label the dof along Γ_{t} first, and then those along Γ_{u} next.
- We have so far considered the stiffness matrix associated with Γ_{t} only.
- We will need to assemble the augmented stiffness matrix associated with $\Gamma=\Gamma_{t} \cup \Gamma_{u}$

- Assembly of structure stiffness matrix is in global coordinate system, element stiffness matrix is first computed in local coordinate system.
- Need to transform k into K and δ into Δ for arbitrary structures.

$$
\begin{equation*}
\left\{\mathrm{p}^{e}\right\}=\left[\mathrm{k}^{e}\right]\left\{\mathcal{\delta}^{e}\right\} \text { and }\left\{\mathrm{P}^{e}\right\}=\left[\mathrm{K}^{e}\right]\left\{\Delta^{e}\right\} \tag{23}
\end{equation*}
$$

Let us define a vector transformation matrix $\left[\Gamma^{e}\right]$ such that:

$$
\begin{equation*}
\left\{\delta^{e}\right\} \stackrel{\text { def }}{=}\left[\Gamma^{e}\right]\left\{\Delta^{e}\right\} \text { and }\left\{\mathrm{p}^{e}\right\} \stackrel{\text { def }}{=}\left[\Gamma^{e}\right]\left\{P^{e}\right\} \tag{24}
\end{equation*}
$$

Substituting we obtain $\left\{\mathrm{p}^{e}\right\}=\left[\Gamma^{e}\right]\left\{\mathrm{P}^{e}\right\}=\left[\mathrm{k}^{e}\right]\left[\Gamma^{e}\right]\left\{\Delta^{e}\right\}$ premultiplying by $\left[\Gamma^{e}\right]^{-1}$: $\left\{P^{e}\right\}=\left[\Gamma^{e}\right]^{-1}\left[\mathrm{k}^{e}\right]\left[\Gamma^{e}\right]\left\{\Delta^{e}\right\}$ But since the rotation matrix is orthogonal, we have $\left[\Gamma^{e}\right]^{-1}=\left[\Gamma^{e}\right]^{\top}$ (and $\left\{\Delta^{e}\right\}=\left[\Gamma^{e}\right]^{\top}\left\{\delta^{e}\right\}$)

$$
\begin{gather*}
\left\{\mathrm{P}^{e}\right\}=\underbrace{\left[\Gamma^{e}\right]^{T}\left[\mathrm{k}^{e}\right]\left[\Gamma^{e}\right]}_{\left[\mathrm{K}^{e}\right]}\left\{\Delta^{e}\right\} \\
{\left[\mathrm{K}^{e}\right]=\left[\Gamma^{e}\right]^{T}\left[\mathrm{k}^{e}\right]\left[\Gamma^{e}\right]} \tag{25}
\end{gather*}
$$

which is the general relationship between element stiffness matrix in local and global coordinates.

$$
\begin{align*}
& \mathrm{K}^{e}=\Gamma^{T} \mathrm{k}^{e} \Gamma \tag{26}\\
& \mathrm{~K}^{S}=\sum_{e=1}^{e=n e l e m} \mathrm{~K}^{e} \tag{27}\\
& \left\{\begin{array}{c}
\mathrm{P}_{t}^{\vee} \\
\hline \mathrm{R}_{u}^{?}
\end{array}\right\}=\underbrace{\left[\begin{array}{c|c}
\mathrm{K}_{t t} & \mathrm{~K}_{t u} \\
\hline \mathrm{~K}_{u t} & \mathrm{~K}_{u u}
\end{array}\right]}_{\text {Augmented Stiffness Matrix }}\left\{\frac{\Delta_{t}^{?}}{\Delta_{u}^{\vee}}\right\} \tag{28}\\
& \mathrm{K}_{t t} \quad \mathrm{f}^{-1} \text {; Reduced Stiffness Matrix } \tag{29}\\
& \Delta_{t}=\mathrm{K}_{t t}^{-1}\left(\mathrm{P}_{t}-\mathrm{K}_{t u} \Delta_{u}\right) \tag{30}\\
& \mathrm{R}_{u}=\mathrm{K}_{u t} \Delta_{t}+\mathrm{K}_{u u} \Delta_{u} \tag{31}\\
& \mathcal{\delta}^{(e)}=\Gamma^{(e)} \Delta^{(e)} \tag{32}\\
& p_{i n t}^{(e)}=\mathrm{k}^{(e)} \delta^{(e)} \tag{33}
\end{align*}
$$

Computer Implementation: Global DOF

LM: Truss

LM is a mapping of element local to global dof

Computer Implementation: Global DOF

$$
K_{i j}^{(e)} \rightarrow K_{s t}^{(S)} \text { and }\left\{\begin{aligned}
s & =L M(i) \\
t & =L M(j)
\end{aligned} \quad[L M]\right. \text { is a mapping between the element global dof and the structure's (global) dof. }
$$

Computer Implementation: Global DOF

Assembly of the Load Vector

$\Rightarrow P_{t}\left(L M^{(e)}(i)\right)=P_{\text {NEF }}^{(e)}(i)+P_{t}\left(L M^{(e)}(i)\right) ; \forall L M^{(e)}(i) \leq \operatorname{size}\left(K_{t t}\right)$
$\operatorname{size}\left(K_{t t}\right)=3 ;$ Corresponds to number of unconstrainded dof

| $L M(2,1)=1 \leq 3 \Rightarrow$ | $P_{t}(L M(2,1))=P_{E l}^{(2)}(1)+P_{\text {nod }}(L M(2,1)) \Rightarrow$ | $P_{t}(1)=0+P_{\text {nod }}(1)$ | $=0+18.7$ | $=18.7$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $L M(2,2)=2 \leq 3 \Rightarrow$ | $P_{t}(L M(2,2))=P_{E l}^{(2)}(2)+P_{\text {nod }}(L M(2,2)) \Rightarrow$ | $P_{t}(2)=-16+P_{\text {nod }}(2) \quad=-16-46.4=-62.4$ | | |
| $L M(2,3)=3 \leq 3 \Rightarrow$ | $P_{t}(L M(2,3))=P_{E l}^{(2)}(3)+P_{\text {nod }}(L M(2,3)) \Rightarrow$ | $P_{t}(3)=-21.33+P_{\text {nod }}(3)=0-21.33$ | $=-21.33$ | |

(1) Preliminaries
(1) Read the structure mathematical model (type, coordinates, connectivity, cross-sectional and material properties, loads)
(2) Determine the number of nodes (nnode), number of element (nelem), maximum number dof/node (ndofpn), size of $K_{t t}$ (sizet), total number of dof (ndoft), update ID and determine LM matrices
(2) Analysis:
(1) For each element, determine
(1) Vector LM mapping local element to global structure degrees of freedoms.
(2) Element stiffness matrix $\left[\mathrm{k}^{(e)}\right]$
(3) Transformation matrix $\left[\Gamma^{(e)}\right]$
(4) Element stiffness matrix in global coordinates $\left[\mathrm{K}^{(e)}\right]=\left[\Gamma^{(e)}\right]^{T}\left[\mathrm{k}^{(e)}\right]\left[\Gamma^{(e)}\right]$
(2) Assemble the augmented stiffness matrix $\left[\mathrm{K}^{(S)}\right]$ of unconstrained and constrained degree of freedom's.
(3) Extract $\left[\mathrm{K}_{t t}\right]$ from $\left[\mathrm{K}^{(S)}\right]$ and invert (actually decompose).
(4) Load Vector
(1) Compute nodal equivalent forces vectors for each element in local coordinate system $\mathrm{p}_{N E F}^{(e)}$ and in global coordinate system $\mathrm{P}_{N E F}^{(e)}=\Gamma^{(e)^{T}} \mathrm{p}_{N E F}^{(e)}$
(2) Assemble the nodal load vector to include nodal loads and nodal equivalent forces (note P is for the structure).

$$
P_{t}\left(L M^{(e)}(i)\right)=P_{N E F}^{(e)}+P_{t}\left(L M^{(e)}(i)\right) ; \forall L M^{(e)} \leq \operatorname{size}\left(K_{t t}\right)
$$

(3) Backsubstitute and obtain nodal displacements global coordinate system, $\Delta=\mathrm{K}_{t t}^{-1} \mathrm{P}_{t}$
(4) Extract $\mathrm{K}_{u t}$
(5) Solve for the reactions, $\mathrm{R}_{u}=\mathrm{K}_{u t} \Delta_{t}+\mathrm{K}_{u u} \Delta_{u}-\mathrm{P}$ (sizet : ndof)
(6) Internal forces, for each element
(1) Determine the element nodal displacements in global coordinate system from the global nodal displacements
(2) Transform its nodal displacement from global to local coordinates $\delta^{(e)}=\left[\Gamma^{(e)}\right] \Delta^{(e)}$.
(3) Determine the internal forces $\mathrm{p}^{(e)}=\mathrm{k}^{(e)} \boldsymbol{\delta}^{(e)}-p_{N E F}^{(e)}$.

Computer Implementation: Global DOF

Example Frame

```
clear all
clc
```



```
% Program based on the direct stiffness method to analyse 2D frames
% Limitaitons: all section propeties are identical; no initial displacement
% CVEN4525/5525 Univ. of Colorado, Boulder
```



```
%% Input data
% Structural properties units: mm^2, mm^4, and MPa(10^6 N/m}
% Note this could be generalized to assign properties for individual
% element properties
A=6000;II =200*10^6;EE=200000;
% Convert units to meter and kN
A=A/10^6;II=II/10^12;EE=EE*1000;
%coordinates each ow one node
COORD=[0}00
7.416 3;
15.416 3];
% Define ID matrix each ow one node
```



```
0 0 0;
1 1 1];
% Connectivity matrix, each row one element
LNODS=[11 2;
2 3];
% Nodal Load each row corresponds to a node
nodal_load=[[0 0 0;
50*3/8 -50*7.416/8 0;
0 0 0];
% element load (consider uniformly distributed load only)
loaded_elem=[0;-4];
```


Computer Implementation: Global DOF

Example Frame

```
%================ End of user input data =====================================
%% get number of elements, nodes, and degrees of freedom per node
[nelem col]=xxx; %total number of elements
[nnodes ndofpn]=xxx; % total number of nodes and number of dof per node
ndofpe=xxx; % number of degrees of freedom per element
ndoft=xxx; % Size of K augmented
%% update the ID matrix
n=0;
for I=1:xxx
for k=1:xxx
if ID_original(I,k)xxx
xxx
end
end
end
size_t=xxx; % size of the unconstrained dof
for I=1:xxx
for k=1:xxx
xx
end
end
%% Compute the LM vector one row for each element
for elem=1:xxx
for nod=1:xxx
node=xxx
for dof=1:xxx
n=(nod-1) * ndofpn+dof;
LM(elem,n)=xxx
end
end
end
```


Computer Implementation: Global DOF

Example Frame

```
%% for each element compute k, K, and gamma
%% zero the matrices
k=zeros(ndofpe,ndofpe,nelem); K=zeros(ndofpe,ndofpe,nelem); Gamma=zeros (ndofpe,ndofpe,nelem);
for elem=1:nelem
% determine coordinates of each node
nod1=xxx;nod2=xxx;
xy_1=xxx xxx]; xy_2=[xxx xxx];
[k(:,:, elem) ,K(:,:, elem),Gamma(:,:, elem)]= stiff(EE, II ,A, xy_1, xy_2);
end
%% Assemble augmented stiffness matrix
Kaug=zeros (nnodes * ndofpn);
for elem=1:xxx
for I=1:xxx
|r=xxx;
for c=1:xxx
lc=xxx;
Kaug(Ir , lc )=xxx;
end
end
end
%% Handle the load
% Initialize to zero
P=zeros(ndoft,1); %initialize the vecotr of load size=ndoft
% loop on each loaded node
for I=1:nnodes % Loop on each loaded node
for c=1:ndofpn
if ID (I, C)<=xxX
P(ID (I, c) ) = xxx
end
end
end
```


Computer Implementation: Global DOF

Example Frame

```
% loop on each loaded element
for elem=1:nelem
for c=1:xxx % loop on each dof of the element
NEF_local(elem,c)=0; %initialize to zero
end
w=loaded_elem(elem);
if w xxx%only if element is loaded compute non zero NEF
xxx
L=sqrt ((xy_1(1)-xy_2(1))^2+(xy_1(2)-xy_2(2))^2);
NEF_local(elem,:) =[0; xxx; xxx; xxx; xxx; xxx];
end
NEF_global(elem,: ) =xxx
for c=1:ndofpe % add to the P vector terms associated with constrained dof
global_dof=xxx
P(global_dof )=xxx
end
end
%% Solve FO the displacements
% Extract Ptt
Ptt=P(1:xxx);
% Extract the unconstrained structures Stiffness Matrix
Ktt=xxx ;
% Solve for the Displacements inverse of Ktt times load vector
Displacements=Ktt\Ptt
%% Solve for the reactions
% Extract Kut
Kut=xxx;
% Compute the Reactions and do not forget to add fixed end actions
Reactions=xxx;
%% Solve for the internal foces
% Assign the vector of global displacements for the element
```


Computer Implementation: Global DOF

Example Frame

```
for elem=1:nelem
for c=1:ndofpe
global_dof=xxx;
xxx
end
end
% get the element internal foces
for elem=1:nelem
dis_local=xxx;
int_forces=xxx;
end
```

```
function [k,K,Gamma]= stiff(EE,II,A, xy_1,xy_2)
% Determine the length
L=xxx
% Compute the angle theta (careful with vertical members!)
if (xy_2(1)-xy_1(1)) ~=0
alpha=xxx
else
alpha=xxx
end
% form rotation matrix Gamma
Gamma=[
cos(alpha) sin(alpha) 0 0 0 0;
xxx
];
% form element stiffness matrix in local coordinate system
EI=EE* II ; EA=EE*A;
k=[
EA/L, 0, 0, -EA/L, 0;
```

```
xxx];
% Element stiffness matrix in global coordinate system
K=xxx
```

21

This will generate the following results:

Displacements $=$	Reactions	int_forces $=$	int_forces $=$
0.0010	130.4973		
-0.0050	55.6766	141.8530	149.2473
-0.0005	13.3742	2.6758	9.3266
-149.2473	13.3742	-8.0315	
22.6734	-141.8530	-149.2473	
-45.3557	-2.6758	22.6734	
8.0315	-45.3557		

$$
\begin{aligned}
& I D=\left[\begin{array}{ll}
0 & 1 \\
0 & 0 \\
1 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 & 8 \\
2 & 3 \\
9 & 10 \\
4 & 5 \\
6 & 7
\end{array}\right] ; \quad[L M]=\left[\begin{array}{cccc}
1 & 8 & 4 & 5 \\
1 & 8 & 2 & 3 \\
2 & 3 & 4 & 5 \\
4 & 5 & 6 & 7 \\
9 & 10 & 4 & 5 \\
2 & 3 & 6 & 7 \\
2 & 3 & 9 & 10 \\
9 & 10 & 6 & 7
\end{array}\right] \\
& {\left[K^{(e)}\right]=\left[\begin{array}{ll}
c & 0 \\
s & 0 \\
0 & c \\
0 & s
\end{array}\right] \frac{A E}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{llll}
c & s & 0 & 0 \\
0 & 0 & c & s
\end{array}\right]=\frac{E A}{L}\left[\begin{array}{ccc}
c^{2} & c s & -c^{2} \\
c s & -c s \\
-c^{2} & s^{2} & -c s \\
-c s & -s^{2} \\
-c s & -s^{2} & c s \\
c^{2} & c s \\
s^{2}
\end{array}\right]}
\end{aligned}
$$

$c=\cos \alpha=\frac{x_{2}-x_{1}}{L} ; s=\sin \alpha=\frac{Y_{2}-Y_{1}}{L}$
Element 1: $L=20^{\prime}, c=\frac{16-0}{20}=0.8, s=\frac{12-0}{20}=0.6$,
$\frac{E A}{L}=\frac{(30,000 \mathrm{ksi})\left(10 \mathrm{in}^{2}\right)}{20^{\prime}}=15,000 \mathrm{k} / \mathrm{ft}$.

$$
\left[K_{1}\right]=\begin{gathered}
1 \\
8 \\
4 \\
5
\end{gathered}\left[\begin{array}{cccc}
1 & 8 & 4 & 5 \\
9,600 & 7200 & -9,600 & -7,200 \\
7,200 & 5,400 & -7,200 & -5,400 \\
-9,600 & -7,200 & 9,600 & 7,200 \\
-7,200 & -5,400 & 7,200 & 5,400
\end{array}\right]
$$

Element 2: $L=16^{\prime}, c=1, s=0, \frac{E A}{L}=18,750 \mathrm{k} / \mathrm{ft}$.

$$
\left[K_{2}\right]=\begin{gathered}
1 \\
1 \\
8 \\
8 \\
2 \\
3
\end{gathered}\left[\begin{array}{cccl}
18,750 & 0 & -18,750 & 0 \\
0 & 0 & 0 & 0 \\
-18,750 & 0 & 18,750 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Element $3 L=12^{\prime}, c=0, s=1, \frac{E A}{L}=25,000 \mathrm{k} / \mathrm{ft}$

$$
\left[K_{3}\right]=\begin{gathered}
2 \\
2 \\
3 \\
3 \\
4 \\
5
\end{gathered}\left[\begin{array}{cccc}
3 & 4 & 5 \\
0 & 25,000 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -25,000 & 0 & 25,000
\end{array}\right]
$$

Element $8 L=12^{\prime}, c=0, s=1, \frac{E A}{L}=25,000 k / f t$

$$
\left[K_{8}\right]=\begin{gathered}
9 \\
9 \\
10 \\
6 \\
7
\end{gathered}\left[\begin{array}{cccc}
9 & 0 & 6 & 7 \\
0 & 25,000 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -25,000 & 0 & 25,000
\end{array}\right]
$$

Assemble the global stiffness matrix in k / ft Note that we are not assembling the augmented stiffness matrix, but rather its submatrix $\left[\mathrm{K}_{t t}\right]$.

Computer Implementation: Global DOF

Example Truss

Convert to k /in and simplify

Invert stiffness matrix and solve for displacements

$$
\left\{\begin{array}{c}
U_{1} \\
U_{2} \\
V_{3} \\
U_{4} \\
V_{5} \\
U_{6} \\
V_{7}
\end{array}\right\}=\left\{\begin{array}{c}
-0.0223 \mathrm{in} . \\
0.00433 \mathrm{in} . \\
-0.116 \mathrm{in} . \\
-0.0102 \mathrm{in} . \\
-0.0856 \mathrm{in} . \\
-0.00919 \mathrm{in} . \\
-0.0174 \mathrm{in} .
\end{array}\right\}
$$

Computer Implementation: Global DOF

Example Truss

Solve for member internal forces (in this case axial forces) in local coordinate systems

$$
\begin{aligned}
\left\{\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right\} & =\underbrace{\frac{A E}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]}_{\mathbf{k}} \underbrace{\left[\begin{array}{llll}
c & s & 0 & 0 \\
0 & 0 & C & S
\end{array}\right]}_{\Gamma} \underbrace{\left\{\begin{array}{l}
U_{1} \\
V_{1} \\
U_{2} \\
V_{2}
\end{array}\right\}}_{\delta} \\
& =\frac{A E}{L}\left[\begin{array}{rrrr}
c & s & -c & -s \\
-c & -s & c & s
\end{array}\right]\left\{\begin{array}{l}
U_{1} \\
V_{1} \\
U_{2} \\
V_{2}
\end{array}\right\}
\end{aligned}
$$

Element 1:

$$
\begin{aligned}
\left\{\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right\}^{1} & =(15,000 \mathrm{kpf})\left(\frac{1}{12} \frac{\mathrm{ft} .}{\mathrm{in} .}\right)\left[\begin{array}{rrrr}
0.8 & 0.6 & -0.8 & -0.6 \\
-0.8 & -0.6 & 0.8 & 0.6
\end{array}\right]\left\{\begin{array}{c}
-0.0223 \\
0.00 \\
-0.0102 \\
-0.0856
\end{array}\right\} \\
& =\left\{\begin{array}{c}
52.1 \mathrm{kip} \\
-52.1 \mathrm{kip}
\end{array}\right\} \text { Compression }
\end{aligned}
$$

Element 2:

$$
\begin{aligned}
\left\{\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right\}^{2} & =18,750 \mathrm{kpf}\left(\frac{1}{12} \frac{\mathrm{ft}}{\mathrm{in} .}\right)\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
-1 & 0 & 1 & 0
\end{array}\right]\left\{\begin{array}{c}
-0.0233 \\
0.00 \\
0.00433 \\
-0.116
\end{array}\right\} \\
& =\left\{\begin{array}{c}
-43.2 \mathrm{kip} \\
43.2 \mathrm{kip}
\end{array}\right\} \text { Tension }
\end{aligned}
$$

Element 3:

$$
\begin{aligned}
\left\{\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right\}^{3} & =25,000 \mathrm{kpf}\left(\frac{1}{12} \frac{\mathrm{ft} .}{\mathrm{in} .}\right)\left[\begin{array}{rrrr}
0 & 1 & 0 & -1 \\
0 & -1 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
0.00433 \\
-0.116 \\
-0.0102 \\
-0.0856
\end{array}\right\} \\
& =\left\{\begin{array}{c}
-63.3 \mathrm{kip} \\
63.3 \mathrm{kip}
\end{array}\right\} \text { Tension }
\end{aligned}
$$

Element 4:

$$
\begin{aligned}
\left\{\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right\}^{4} & =18,750 \mathrm{kpf}\left(\frac{1}{12} \frac{\mathrm{ft} .}{\mathrm{in} .}\right)\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
-1 & 0 & 1 & 0
\end{array}\right]\left\{\begin{array}{l}
-0.0102 \\
-0.0856 \\
-0.00919 \\
-0.0174
\end{array}\right\} \\
& =\left\{\begin{array}{c}
-1.58 \mathrm{kip} \\
1.58 \mathrm{kip}
\end{array}\right\} \text { Tension }
\end{aligned}
$$

We consider the third case, a cantilevered Beam with initial Displacement and no other load.
(1) The element stiffness matrix is

$$
\mathbf{k}^{(e)}=\begin{gathered}
2 \\
2 \\
3 \\
4 \\
1
\end{gathered}\left[\begin{array}{cccc}
12 E I / L^{3} & 6 E I / L^{2} & 4 & 1 \\
6 E I / L^{2} & 4 E I / L & 6 E I / L^{2} & 6 E I / L^{2} \\
-12 E I / L^{3} & -6 E I / L^{2} & 12 E I / L^{3} & -6 E I / L^{2} \\
6 E I / L^{2} & 2 E I / L & -6 E I / L^{2} & 4 E I / L
\end{array}\right]
$$

Computer Implementation: Global DOF

Example Beam

(2) The augmented structure stiffness matrix is assembled

$$
\mathrm{K}^{(S)}=\begin{gathered}
1 \\
1 \\
2 \\
3 \\
4
\end{gathered}\left[\begin{array}{cccc}
4 E I / L & 6 E I / L^{2} & 3 & 4 \\
6 E I / L & -6 E I / L^{2} \\
6 E I / L^{2} & 12 E I / L^{3} & 6 E I / L^{2} & -12 E I / L^{3} \\
2 E I L & 6 E I / L^{2} & 4 E I / L & -6 E I / L^{2} \\
-6 E I / L^{2} & -12 E I / L^{3} & -6 E I / L^{2} & 12 E I / L^{3}
\end{array}\right]
$$

(3) The global augmented matrix can be decomposed as

$$
\left\{\begin{array}{c}
M_{1}(=0) \sqrt{ } \\
\hline R_{2} ? \\
R_{3} ? \\
R_{4} ?
\end{array}\right\}=\left[\begin{array}{c|ccc}
4 E I / L & 6 E I / L^{2} & 2 E I / L & -6 E I / L^{2} \\
\hline 6 E I / L^{2} & 12 E I / L^{3} & 6 E I / L^{2} & -12 E I / L^{3} \\
2 E I / L & 6 E I / L^{2} & 4 E I / L & -6 E I / L^{2} \\
-6 E I / L^{2} & -12 E I / L^{3} & -6 E I / L^{2} & 12 E I / L^{3}
\end{array}\right]\left\{\begin{array}{c}
\theta_{1} ? \\
\hline \Delta_{2} \sqrt{ } \\
\theta_{3} \sqrt{ } \\
\Delta_{4} \sqrt{ }
\end{array}\right\}
$$

(4) $\mathrm{K}_{t t}$ is inverted (or actually decomposed) and stored in the same global matrix storage location

$$
\left[\begin{array}{c|ccc}
\hline L / 4 E I & 6 E I / L^{2} & 2 E I / L & -6 E I / L^{2} \\
\hline 6 E I / L^{2} & 12 E I / L^{3} & 6 E I / L^{2} & -12 E I / L^{3} \\
2 E I / L & 6 E I / L^{2} & 4 E I / L & -6 E I / L^{2} \\
-6 E I / L^{2} & -12 E I / L^{3} & -6 E I / L^{2} & 12 E I / L^{3}
\end{array}\right]
$$

(5) Next we compute the equivalent load, $\mathrm{P}_{t}^{\prime}=\mathrm{P}_{t}-\mathrm{K}_{t u} \Delta_{u}$, and overwrite P_{t} by P_{t}^{\prime} (Note that we are boxing terms of interest only).

6 Solve for the displacements from $\Delta_{t}=\mathrm{K}_{t t}^{-1}\left(\mathrm{P}_{t}-\mathrm{K}_{t u} \Delta_{u}\right)$ and overwrite P_{t} by Δ_{t}

$$
\begin{aligned}
\left\{\begin{array}{c}
\left.\begin{array}{|c|ccc}
\theta_{1} \\
\hline 0 \\
0 \\
\Delta^{0}
\end{array}\right\}
\end{array}\right\}=\left[\begin{array}{ccc}
\hline L / 4 E I & 6 E I / L^{2} & 2 E I / L \\
\hline 6 E I / L^{2} & 12 E I / L^{3} & 6 E I / L^{2} \\
2 E I / L & -12 E I / L^{3} \\
-6 E I / L^{2} & 4 E I / L & -6 E I / L^{2} \\
-6 E I / L^{2} & -12 E I / L^{3} & -6 E I / L^{2} \\
12 E I / L^{3}
\end{array}\right]\left\{\begin{array}{c}
\left.\begin{array}{|c}
6 E I \Delta^{0} / L^{2} \\
R_{2} ? \\
R_{3} ? \\
R_{4} ?
\end{array}\right\} \\
\end{array}\right\}=\left\{\begin{array}{c}
3 \Delta^{0} / 2 L \\
0 \\
0
\end{array}\right\}
\end{aligned}
$$

Computer Implementation: Global DOF

Example Beam

(7) Finally, we solve for the reactions, $\mathrm{R}_{u}=\mathrm{K}_{u t} \Delta_{t t}+\mathrm{K}_{u u} \Delta_{u}$, and overwrite Δ_{u} by R_{u}

$$
\begin{aligned}
& \left\{\begin{array}{l}
M_{1} \\
\hline R_{2} \\
\hline R_{3} \\
\hline R_{4}
\end{array}\right\}=\left[\begin{array}{c|c|c|}
\hline L / 4 E I & 6 E I / L^{2} & 2 E I / L \\
\hline 6 E I / L^{2} & 12 E I / L^{3} & 6 E I / L^{2} \\
\hline-2 E I / L & -6 E I / L^{2} \\
\hline-6 E I / L^{2} & -12 E I / L^{3} \\
\hline-12 E I / L^{3} & -4 E I / L & -6 E I / L^{2} \\
\hline-6 E I / L^{2} & 12 E I / L^{3}
\end{array}\right] \\
& \left\{\begin{array}{c}
\frac{3 \Delta^{0} / 2 L}{0} \\
0 \\
0 \\
\Delta^{0}
\end{array}\right\} \\
& =\left\{\begin{array}{c}
\frac{-6 E I \Delta^{0} / L^{2}}{\frac{-3 E I \Delta^{0} / L^{3}}{}} \begin{array}{|}
\hline-3 E I \Delta^{0} / L^{2} \\
3 E I \Delta^{0} / L^{3}
\end{array}
\end{array}\right\}
\end{aligned}
$$

Structural Design

Virtual Work

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Spring 2022

Table of Contents I

(1) Introduction

- Large Structures
- Architecture and Engineering
- Whos' Who
(2) Maxwell 1870 Paper
- Maxwell Said
- Proof
- Maxwell and Principle of Virtual Force
(3) Structural Optimization

4 Simple Design Example

- Problem Formulation
- Alternate Design Results
- Results Tabulation à la Maxwell
- Summary
- Michell truss
- Design Examples
(5) Analysis and Design Interaction
(6) Evolutionary Structural Optimization
- Architects design structural envelope; structural engineer, analyzes and dimensions it (no change in form).
- "Large" structures are designed by structural engineers who must obey the Vitruvian virtues (or the Vitruvian Triad)

Firmitas i.e. solid (Strength, Stiffness, Stability in modern parlance).
Utilitas i.e useful (not an issue anymore in modern times).
Venustas i.e beautiful (often forgotten).

- Motivation for this chapter:

Vitruvius: architecture is an imitation of nature, indeed there is nowadays attempts to have bioinspired structural materials (e.g. bones and bamboos).
Sullivan: Form ever follows function

- \Rightarrow shape optimization: standard deviation of the stress distribution should be nearly zero.

This chapter will address how a structural engineer can also be structural designer (Maillart, Gaudi, Nervi, Frei, Calatrava, and many others).

Architecture and Engineering

1 Le temple
(Théâłre
2 Hôtel de ville
Bibliothèque
3 Hôpital
I Sanatorium
4 Le Logis
5) Le Bureau
Atelier
6 Grande Indusirle
(Le pont
7 Le barrage
La route
(Tableau extrait de A. Boll. Habitation moderneet Urbanisme et de F. de Piehrefev et Le Conbusier, La Maison des hommes).

Architecture and Engineering

Proportions and Dimensions (Vitruvian Man and Modulor)

Aristotle Mentioned virtual velocities: heavy bodies located at the end of a lever are equilibrated when, in their possible motion, velocities are in the inverse ratio to the weights.
Newton: If I have seen further, it is by standing on the shoulders of giants.
Maxwell greatest physicist between Newton and Einstein. His fame in physics overshadowed his pioneering work in the theory of structures: analysis of trusses (applying equations of equilibrium at each joint); b) foundation of virtual work; c) flexibility method.
Mohr rediscovered the work of Maxwell and formalized the modern principle of virtual work.
Einstein: (asked if he stood on Newton's shoulders): No, on the shoulders of Maxwell.

- Maxwell wrote:
(1) In any system of points in equilibrium in a plane under the action of repulsions and attractions, the sum of the products of each attraction multiplied by the distance of the points between which it acts, is equal to the sum of products of the repulsions multiplied each by the distance of the points between which it acts.
(2) Multiply each load by the height of the point at which it acts, and each tension by the length of the piece on which it acts, and add all these products together.
(3) Then multiply the vertical pressures on the supports of the frame each by the height at which it acts, and each pressure by the length of the piece on which it acts, and add the products together. This sum will be equal to the former sum.
- Simply put: the sum of a structure's tension load path minus the sum of the compression paths is equal to a value related to the applied external forces:

$$
\Sigma F_{T} L_{T}-\Sigma F_{C} L_{c}=\Sigma \vec{P}_{i} \overrightarrow{\Delta_{i}}
$$

Purely geometrical proof

- A truss with externally forces is in equilibrium.
- Dilate the space from an arbitrary point, tension members do positive work equal to the tensile force times the member change in length. Compression members will do negative work.
- Energy conservation the internal work equals external work (dot product on the right hand side).

Implication for Design

- Load paths must be equal.
- If a tension (or compression) load path is "too long", the truss will be penalized twice: once in tension and once in compression.
- Seek a configuration that minimizes tension load path (compression load path will automatically be minimized).
- Maxwell did not explicitly mention Virtual Force, however many credit him (Mohr) for the laying down the foundations for that theorem.
- A closer look to what he wrote can be rephrased as follows:
(1) Replace attraction by compression and repulsion by tension.
(2) Divide the sum $\sum_{i} P_{i}^{(e)} L_{i}$ by area and Young's modulus.
(3) replace height by displacement Δ.
- This is clearly the principle of virtual force,

$$
\Sigma_{i=1}^{n}\left(\Delta_{i}\right) \delta \bar{P}_{i}=\Sigma_{1}^{n} \delta \bar{P}^{(i)} \frac{P^{(i)} L_{i}}{A_{i} E_{i}}
$$

- Maxwell goes on saying: The importance of this theorem to the engineer arises from the circumstance that the strength of a piece is in general proportional to its section, so that if the strength of each piece is proportional to the stress which it has to bear, its weight will be proportional to the product of the stress multiplied by the length of the piece. Hence these sums of products give an estimate of the total quantity of material which must be used in sustaining tension and pressure respectively.
- Hence, PVW can be used to design a structure with minimum weight.
- Because form should follow function, the structure with minimum weight (yet meeting requirements) would be the most "elegant".
- Hence, design must consider structural topology optimization.

Alternate Design Results

A	B	C	D	E	F	G	H	1	J	
		LengthL/B	Force F/P		FL/BP		A-B	A+B		
		+ve	-ve	A	B	Deflection				
		+ve		-ve	$\Delta /(\sigma \mathrm{B} / \mathrm{E})$					
Two bar Truss										
1	a-b		3.000		3.000		9.0	-9.0	9.0	
2	b-c	3.162	3.162		10.0		10.0	10.0		
	um	6.162			10.0	9.0	1.0	19.0	19.0	
Warren Truss										
1	a-b	1.000		3.000		3.0	-3.0	3.0		
2	b-c	2.000		1.000		2.0	-2.0	2.0		
3	c-d	1.414	1.414		2.0		2.0	2.0		
4	d-e	2.000	2.000		4.0	0.0	4.0	4.0		
5	b-e	1.414	1.414		2.0	0.0	2.0	2.0		
6	b-d	1.414		1.414		2.0	-2.0	2.0		
	um	9.243			8.0	7.0	1.0	15.0	15.0	

A	B	C	D	E	F	G	H	I	J	
		LengthL/B	Force F/P		FL/BP		A-B	A+B	Deflection	
		+ve	-ve	A	B	Deflectior				
		+ve		-ve	$\Delta /(\sigma \mathrm{B} / \mathrm{E})$					
Pratt Truss										
1	a-b		1.000		3.000		3.0	-3.0	3.0	
2	b-c	1.000		2.000		2.0	-2.0	2.0		
3	c-d	1.000		1.000		1.0	-1.0	1.0		
4	d-e	1.414	1.414		2.0		2.0	2.0		
5	e-f	1.000	1.000		1.0		1.0	1.0		
6	f-g	1.000	2.000		2.0		2.0	2.0		
7	b-g	1.414	1.414		2.0		2.0	2.0		
8	c-f	1.414	1.414		2.0		2.0	2.0		
9	b-f	1.000		1.000		1.0	-1.0	1.0		
10	c-e	1.000		1.000		1.0	-1.0	1.0		
Sum		11.243			9.0	8.0	1.0	17.0	17.0	

- Self weight ignored.
- Column I is proportional to the total volume of material (assuming same allowable stress in tension and compression).
- Deflection (J) is proportional to the volume of material I)
- Exercise: Repeat analysis for: a) Howe and K trusses; b) 4:1 cantilevered truss; c) Any other truss.

	Load Paths				Deflection
	Tensile Load				
$A=\frac{\sum F_{T} L_{T}}{P B}$	Compressive Load $B=\frac{\sum F_{C} L_{C}}{}$	$A-B$	$A+B$	$\frac{\Delta}{\sigma_{B}}$	
	10	9	1.	19	19
(1)	$9 \searrow$	$8 \searrow$	$1 . \rightarrow$	$17 \searrow$	$17 \searrow$
(3)	$8 \searrow$	$7 \searrow$	$1 . \rightarrow$	$15 \searrow$	$15 \searrow$
(4)	$7.7 \searrow$	$6.7 \searrow$	$1 . \rightarrow$	$14.47 \searrow$	$14.47 \searrow$
(5)	8.52	7.52	1.	16.04	16.04

Structural optimization using graphic statics, Structural and Multidisciplinary Optimization, 2013,

- The structural engineer usually assumes (based on experience, tables) initial dimensions for members, such as A and $/$ for each truss members or beam element.
- An analysis is performed. Most structures are statically indeterminate. Hence results depend on A and I.
- Following the analysis, we have the truss axial forces, or beam moment diagrams.
- We must then check our design.

$$
\begin{array}{ll}
\text { Truss } & \sigma_{i}=\frac{P_{i}}{A_{i}} \\
\text { Beam } \quad \sigma=\frac{M C}{I}
\end{array}
$$

and compare with allowable stresses $\sigma_{\text {all }}$.

- if $\sigma>\sigma_{\text {all }}$, then we need to re-dimension the element, and re-analyze.

Analysis and Design Interaction

Architect's initial dimensioning $(\mathrm{r} / \mathrm{c})$; or Engineer's based on experience. This is the first initial best estimate.
\mathbf{x} denotes a vector (thus it is bold faced) of structural dimensions. Size of of \mathbf{x} is equal to the number of design parameters (such number of truss elements to be dimensioned).
$A\left(\mathbf{x}^{\prime}\right)$ is an Operator with input \mathbf{x}^{\prime} and output element internal forces \mathbf{F}^{\prime} (such as axial force, shear force, moment). Thus $\mathrm{A}\left(\mathbf{x}^{\prime}\right)$ is analysis. It could be your hand calculations, or a computer program.
Recall that for statically indeterminate structures internal forces depend on relative dimensions/stiffnesses $\left(M_{a}=K_{a} / \Sigma K_{i}\right)$. If you change a dimension, you change K, and the corresponding moment.
$D\left(F^{\prime}\right)$ is another operator with input F^{\prime} and output dimensions \mathbf{x}^{1+1}. Thus $D\left(F^{\prime}\right)$ is design. This can be hand based or computer based. Again, we need the internal force diagrams in order to design (such as A-F/ $\sigma_{\text {all }}$).

This is a check for convergence. If our last set of dimensions is close enough to the previous one (within a certain tolerance), then that is good enough.
Careful, in practice we often have few sections (steel) to use or formworks for concrete elements. This is to simplify the construction, minimize risk of error, and reduce the cost.

- Lattice models have their roots in Physics, and have been extensively used in fracture modeling of cementitious materials.
- Simple concept:
(1) Start with a densely packed mesh. Elements are typically Bernoulli's beam columns or truss elements.
(2) Perform a finite element analysis.
(3) Identify elements whose stress exceed a failure criterion.

4 Remove those elements and reanalyze.

- Similar concept can be used for design.

By slowly removing inefficient material from a structure, the shape of the structure evolves towards an optimum. This is the simple concept of evolutionary structural optimization (ESO). [?]

Click to activate video

Listing: Main

```
clear; close all;clc
%============================================================================
% Generate Nodes
Random=1;MaxSteps=30;
[x,y,z,N] = Node_Generation(Random);
%% Generate members
[r,c,v] = find(hankel(2:N)); \%\# Create unique combinations of indices
index = [v c]. '; l%'\# Reshape the indices
nnodes=N;
nelem=size (index,2);
Inods=index ';
step=0;OK=0;
%======================
% Video for fun
v=VideoWriter('Design_Opti .avi');
v.FrameRate = 1; %set to 25 frames per second
open(v)
%================================
PlotMesh(x,y,z, Inods, nelem, step)
frame=getframe(gcf); writeVideo(v,frame);
%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
while OK==0 \&\& step<MaxSteps
    % Pass the data to analyze with casap and retrieve element(s) to be removed
    % remove one element at a time, and regenerate the mesh
    ElemOut = randi([1 nelem],1,1); % generate a random number for testing
    %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Highlight element
    X=[x(Inods(ElemOut,1)) x(Inods(ElemOut,2))];Xc=mean(X);
    Y=[y(Inods(ElemOut,1)) y(Inods(ElemOut,2))];Yc=mean(Y);
    Z=[z(Inods(ElemOut,1)) z(Inods(ElemOut,2))];Zc=mean(Z);
    plot3(X,Y,Z,'LineWidth ',3, Color',''r');
    frame=getframe (gcf); writeVideo (v,frame);
    hold on
```


Evolutionary Structural Optimization

NodesOut=Inods (ElemOut, 1:2);
\% compact Inods
for $i=E l e m O u t:$ nelem-1
Inods (i, 1:2)=Inods (i+1,1:2);
end
nelem=nelem -1 ; step=step +1 ;
PlotMesh (x,y,z, Inods, nelem, step)
\% check how many other elements are connected to each of the two nodes
\% Minimum acceptable
\# of elements per node min_elem
min_elem $=2$;
Del_Nodes=Check_Lonely (NodesOut, Inods , min_elem , v) ;
frame $=$ getframe (gcf); writeVideo (v, frame);

Listing: Node Generation

```
function [x,y,z,N] = Node_Generation(Random)
if Random == 0
    N = 8; %# Number of points
    x = rand(1,N); %# A set of random x values
    y = rand(1,N); %# A set of random y values
    z = rand(1,N); %# A set of random z values
else
    Rx=20;Ry=20;RZ=60;
    Deltax=20;Deltay=20; Deltaz=30;
    xmin=0.;ymin=0.;zmin=0.;
    nx=round (Rx/Deltax) +1;ny=round (Rx/Deltay) +1;nz=round (Rx/Deltaz ) +1;
    N=0;
    for ix=1:nx
        for iy=1:ny
            for iz=1:nz
                N=N+1;
                x(N)=xmin +(ix-1)* Deltax ;
```


Evolutionary Structural Optimization

```
y(N)=ymin +(iy -1) * Deltay ;
z(N)=zmin +(iz-1)*Deltaz;
end
end
    end
end
end
```


Listing: Plot Mesh

```
function PlotMesh(x,y,z,Inods,nelem, step)
figure
plot3(x,y,z, ' '); % May omit
hold on
N=size (x,2);
for i=1:N
    text(x(i),y(i),z(i),num2str(i),'Color','red ','FontSize',14);
end
hold on
%
for ie=1:nelem
    X=[x(Inods(ie,1)) x(Inods (ie,2))]; Xc=mean(X);
    Y=[y(Inods(ie,1)) y(Inods (ie,2))];Yc=mean(Y);
    Z=[z(Inods(ie ,1)) z(Inods(ie,2))];Zc=mean(Z);
    plot3 (X,Y,Z);
    text(Xc, Yc, Zc, num2str(ie), 'FontSize ',10)
    hold on
end
title ([ Step #: num2str(step)]);
pbaspect([1 1 1]);grid minor;view(-36,24);
%%%%%%%%%%%%%%%%%%%%%%%%%
%========================
%% Save plot
```

```
% ======================
GS = 'c:/Program Files/gs/gs9.10/bin/gswin64.exe';
set (gcf, 'PaperPositionMode ', 'auto');
FileName=[ ./Figs/Mesh-No-' num2str(step) '.eps '];
print (FileName, '-depsc ');
eps2pdf(FileName,GS,0);
end
```


Listing: Delete Nodes?

```
function Del_Nodes= Check_Lonely(NodesOut,Inods,min_elem,v)
% for each of the two nodes connected to the deleted element, find out how
% many remaining elements are still connected to them
Del_Nodes=0;
for i=1:2
    x=sum(Inods (:, :)==NodesOut(i));
    n(i)=x(1)+x(2);
        if n(i)<min_elem
            strg=['Number of elements connected to node num2str(NodesOut(i)) ...
                dropped below minimum (' num2str(min_elem) ') '];
            errordlg(strg, 'END EXECUTION');
                frame=getframe (gcf); writeVideo (v,frame);
                close (v);
            stop
            Del_Nodes=n(i);
        end
end
```


Structural Analysis Influence Lines

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Spring 2022

Table of Contents I

(1) Introduction
(2) Procedure
(3) Example: Simply supported beam

- Influence Lines for Reactions
- Influence Lines for Shear
- Influence Lines for Moment

4. Example: SSB with overhangs
(5) Müller-Breslau Principle

- Maxwell-Betti Reciprocal Theorem

6 Müller-Breslau Principle

- Derivation; Müller-Breslau Principle
- Application: Shear IL
- Application: Moment IL
- So far, load was fix, and we made no distinction between fixed (dead) load, and variable load (live).
- Since a variable/Live load can move, a key question is how would a reaction or an internal force at a given point be affected by the positioning of the live load.
- Hence, we introduce the concept of Influence line

An influence line is a diagram whose ordinates, which is plotted as a function of distance along the span, give the same internal force, a reaction, or a displacement at a particular point in a structure as unit load moves across the structure.

- This will facilitate placement of load to maximize an internal force (shear, or moment).
- Mathematically, an influence line can be described as $I L_{i j}$ where $I L$ is the quantity of interest (again, reaction, shear or moment) at degree of freedom i due to a unit load at degree of freedom j.
- For statically determinate structures, IL will consist of only straight line segments between critical ordinate values.
- IL for a shear force at a given location will contain a translational discontinuity at this location. The summation of the positive and negative shear forces at this location is equal to unity.
- Except at an internal hinge location, the slope to the shear force IL will be the same on each side of the critical section since the bending moment is continuous at the critical section.
- Likewise, IL for a bending moment will contain a unit rotational discontinuity at the point where the bending moment is being evaluated.
- Two methods:

Equilibrium: Write an equation for the function being determined, e.g., the equation for the shear, moment, or axial force induced at a point due to the application of a unit load at any other location on the structure.
Müller Breslau Principle to draw qualitative influence lines, which are directly proportional to the actual influence line.

A downward concentrated load of magnitude 1 unit moves from A to B across the simply supported beam AB as shown below. Draw influence lines for reactions at A and B, and for shear and moment at C.

Equilibrium

$$
\begin{aligned}
\Sigma M_{B} & =0 \\
R_{A} L & =1 \cdot(L-x) \\
\Rightarrow R_{A x} & =1-\frac{x}{L}
\end{aligned}
$$

Linear equation in x for the reaction.
Likewise

$$
\begin{aligned}
\Sigma M_{A} & =0 \\
R_{B} L & =1.0 x \\
\Rightarrow R_{B x} & =\frac{x}{L}
\end{aligned}
$$

Influence Line for Shear at C

Segment $A C$

$$
\begin{aligned}
\otimes \sum M_{B} & =0 \\
\Rightarrow R_{A}(L)-(L-x)(1) & =0 \\
\Rightarrow R_{A} & =1-\frac{x}{L} \\
V \text { at } C \text { due to unit load at } \mathrm{x}(\text { left of } \mathrm{C}) & =V_{C x}^{-} \\
& =R_{A}-1.0 \\
& =\left(1-\frac{x}{L}\right)-1.0 \\
& =-\frac{x}{L}
\end{aligned}
$$

When $x=0, V_{C A}=0$, and when $x=a$ (just before point $C), V_{C C}=-a / L$ Unit load is beyond the segment AC

$$
\begin{aligned}
V_{C x}^{+} & =R_{A} \\
& =1-\frac{x}{L}
\end{aligned}
$$

When $x=a$ (just after point C),

$$
V_{C C}=1-a / L=(L-a) / L=b / L \text { and when } x=L
$$

$$
V_{C B}=1-L / L=0
$$

Influence Lines for Moment

When $x=0, M_{C x}=0$, and when $x=a$ (just just before point C),

$$
\begin{aligned}
M_{C C} & =-a^{2} / L+a \\
& =\left(-a^{2}+a L\right) / L \\
& =a(L-a) / L \\
& =a b / L
\end{aligned}
$$

Unit load is beyond the segment AC

$$
M_{C x}^{+}=a R_{A}=a\left(1-\frac{x}{L}\right)=a-\frac{a x}{L}
$$

When $x=a$ (just after point C),

$$
\begin{aligned}
M_{C C} & =a-a^{2} / L \\
& =\left(a L-a^{2}\right) / L \\
& =a(L-a) / L \\
& =a b / L
\end{aligned}
$$

and when $x=L$,

$$
\begin{aligned}
M_{C B} & =a-a L / L \\
& =a-a \\
& =0
\end{aligned}
$$

Example: SSB with overhangs

- Recall that $f_{i j}$, i.e.displacement at i due to a unit force at $j: 1 . \Delta_{i}=\int \delta \bar{M}_{i} \frac{M_{i}}{E I} \mathrm{~d} x$
- Displacement at dof i due to a unit force at j is:

$$
\begin{aligned}
f_{i j} & =\int \delta \bar{M}_{i} \frac{M_{j}}{E I} \mathrm{~d} x \\
f_{j i} & =\int \delta \bar{M}_{j} \frac{M_{i}}{E I} \mathrm{~d} x \\
f_{i j} & =f_{j i}
\end{aligned}
$$

- Displacement at dof j due to a unit force at i :
- Both virtual loads and real loads are unit:
- Which is Maxwell-Betti's reciprocal theorem for a linear elastic structure subject to two sets of forces P and Q the work done by the set P through the displacements produced by the set Q is equal to the work done by the set Q through the displacements produced by the set P.
- Revisit the MBRT the virtual work done by the forces in System 1 going through the corresponding displacements in System 2 should be equal to the virtual work done by the forces in System 2 going through the corresponding displacements in System 1.
- "Trick" the problem, and consider the following two systems:

where the unit force P_{C} may be "traveling" between A and B (i.e analogous to the moving unit load which will generate the corresponding reaction at A), and apply the MBRT

$$
\underbrace{P_{C}}_{1} \Delta_{C}=R_{A} \underbrace{\Delta_{A}}_{1} \Rightarrow \Delta_{C}=R_{A}
$$

Hence, the displacement at C is equal to the reaction at A . This is the Müller-Breslau theorem: The influence line for any reaction or internal force corresponds to the deflected shape of the structure produced by removing the capacity of the structure to carry that force and then introducing into the modified (or released) structure a unit deformation corresponding to the restrained removed.

- Apply a shear release (but not moment) at C
- From Maxwell-Betti (as before)

$$
\underbrace{\left(P_{D}\right)}_{1} \Delta_{D}=V_{C} \underbrace{\left(\Delta_{C A}+\Delta_{C B}\right)}_{1} \Rightarrow \Delta_{D}=V_{C}
$$

- Thus, the deflected shape in System 2 represents the influence line for shear force V_{C}.

- Apply a moment (but not shear) release at C
- From Maxwell-Betti (as before)

$$
\underbrace{\left(P_{D}\right)}_{1} \Delta_{D}=M_{C} \underbrace{\left(\theta_{C A}+\theta_{C B}\right)}_{1} \Rightarrow \Delta_{D}=M_{C}
$$

- Thus, the deflected shape in System 2 represents the influence line for moment M_{C}.

Structural Analysis Safety and Probability

Victor E. Saouma

saouma@colorado.edu

University of Colorado, Boulder

Spring 2019

Table of Contents I

(2) LRFD

- Key Concepts
- Reliability Index
- C: Capacity; and D Demand.
- In the Allowable Stress Design (ASD) method, we simply impose

$$
D<\frac{C}{S F}
$$

where SF is a safety factor ($\sim 1.5-2$)

- In this approach only capacity is reduced (because of uncertainties), we are implicitly assuming that demand is purely deterministic.
- Both Capacity and Demand in the Load and Resistance Factor Design are considered to be random variables with their own probability distribution functions.
- There is a probability of failure.
- Load will be multiplied by a factor α, (ASCE-7-10) and we shall consider the ultimate resistance (reduced by Φ)
- We will assign α and Φ such that the probability of failure does not exceed a certain value.
- LRFD is generally expressed as

$$
\begin{equation*}
\Phi C_{n} \geq \Sigma \alpha_{i} D_{i} \tag{1}
\end{equation*}
$$

where C_{n} and D are the nominal capacity and demands (or nominal resistance and load).

- Limit state is generally determined from Plastic capacity without a nonlinear analysis.
- LRFD seeks to have a Reliability Index such that $\beta>\sim$ 3.5. The Reliability Index is a "universal" indicator on the adequacy of a structure, and can be used as a metric to 1) assess the health of a structure, and 2) compare different structures targeted for possible remediation.
- Capacity C and demand D are both random variables (usually assumed to be normal, though a log-normal may be prefereable in some instances).

- Note area under each curve is 1. ;
- In the shaded areea, $C<D$.
- Two approaches to determine β depending on how is the safety margin computed.

$$
\begin{aligned}
M & =C-D \\
\mu_{M} & =\mu_{C}-\mu_{D} \\
\sigma_{M} & =\sqrt{\sigma_{C}^{2}+\sigma_{D}^{2}} \\
\beta & =\frac{\mu_{M}}{\sigma_{M}} \\
& =\frac{\mu_{C}-\mu_{D}}{\sqrt{\sigma_{C}^{2}+\sigma_{D}^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
M & =\ln C-\ln D \\
\mu_{M} & =\mu_{C}-\mu_{D} \text { First order } \\
\sigma_{M} & =\sqrt{\frac{\sigma_{C}^{2}}{\mu_{C}^{2}}+\frac{\sigma_{D}^{2}}{\mu_{D}^{2}}}=\sqrt{V_{C}^{2}+V_{D}^{2}} \\
\beta & =\frac{\mu_{M}}{\sigma_{M}}=\frac{\ln \mu_{C}-\ln \mu_{D}}{\sqrt{V_{C}^{2}+V_{D}^{2}}} \\
& =\frac{\ln \mu_{C} / \mu_{D}}{\sqrt{V_{C}^{2}+V_{D}^{2}}}
\end{aligned}
$$

- β is selected to reflect failure consequences

Type of Load/Member	
AISC	
DL + LL; Members	3.0
DL + LL; Connections	4.5
DL + LL + WL; Members	3.5
DL + LL +EL; Members	1.75
ACI	
Ductile Failure	$3-3.5$
Brittle Failures	$3.5-4$

The probability of failure P_{f} is equal to the ratio of the shaded area to the total area under the curve and is given by $\Phi(-\beta)$ where Φ is the standard normal cumulative probability function

$$
\begin{equation*}
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right] \tag{2}
\end{equation*}
$$

Target values for β

Intermediary Structural Analysis

Introduction

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2021

Table of Contents I

(1) Title \& Objectives
(2) Why Matrix Structural Analysis?
(3) Structural Analysis
4) Overview of Structural Analysis
(5) Requirements

6 From Stresses to Forces

- Definitions
- Specific to Structural Component Type

Different titles could be given to the course

- Matrix Structural Analysis.
- Analysis of Framed Structures.
- Finite Element I.
- Intermediary Structural Analysis.

Objectives

- Consolidate basic understanding of structural analysis/behaviour and introduce analysis techniques which will be used professionally.
- Examine interaction between analysis and design.
- Good understanding of the underpinning of the finite element method as applied to framed structures. Brief exposure to dynamic and nonlinear analysis.
- Early constructions, rules of thumbs, Vitruvius, Gothic cathedrals.
- Father of experimental mechanics Galileo.
- Mathematics \rightarrow Mechanics (18th century, mostly French) \rightarrow Structural analysis (19th century, mostly German and American) \rightarrow finite element or computer based analysis (20th century, American).
- Slide rule + Moment distribution led to the design of many structures (skyscrapers in NY).
- Advent of stiffness method in late 60s (coming from aerospace) and rise of the finite element method.
- Not much has changed since then in terms of core method for linear analysis, mostly refinements for nonlinear analysis and parallel computation.
- Great improvements in (Graphical) user interfaces: punched cards \rightarrow separate tools for drawing (AutoCad) and Analysis (Sap) \rightarrow integrated tools for architectural modeling and structural analysis (Revit) with realistic rendering.
- Rather than focusing on how to use these codes, the course will focus on what is inside the core of theses codes.
- Emphasis will be on theory (80%), programming (10%), and modeling (10%)

- There are three phases in computational structural analysis:
(1) Modeling
(2) Number Crunching
(3) Interpretation
- In practice Modeling and interpretation are the most important, yet this course will focus more on the number crunching part (with some lectures on the other two).
- Early on, it was easy to develop a feel for a structural behavior using hand calculation (such as the moment distribution).
- It has been argued that this is no longer possible with computers. This is not correct.

Structural analysis must take into consideration

(1) Load (static or dynamic). When the frequency of the applied load (excitation) of a structure is less than about a third of its lowest natural frequency of vibration, then we can neglect inertia effects and treat the problem as a quasi-static one, otherwise a dynamic analysis must be performed.
(2) Structure model
(1) Global geometry

- small deformation $\left(\epsilon=\frac{\partial u}{\partial x}\right)$
- large deformation:

$$
\text { Material level: } \varepsilon_{X}=\frac{d u}{d x}+\frac{1}{2}\left(\frac{d v}{d x}\right)^{2}+\frac{1}{2}\left(\frac{d w}{d x}\right)^{2}
$$

$$
\text { Structural level P- } \Delta \text { effects }
$$

(2) Structural elements element types:

- 1D framework (truss, beam, columns)
- 2D finite element (plane stress, plane strain, axisymmetric, plate or shell elements)
- 3D finite element (solid elements)
(3) Material Properties: linear (steel), nonlinear (concrete).
(9) Sectional properties: constant v.s. variable
(5) Structural connections: rigid, semi-flexible (linear or nonlinear)
(Structural supports: rigid, semi-rigid/spring.

Structural design must satisfy:
(1) Strength $\left(\sigma<\sigma_{f}\right)$
(2) Stiffness ("small" deformations)
(3) Stability (buckling, cracking)

Structural analysis must satisfy

(1) Statics (equilibrium)
(2) Constitutive relation (stress-strain or force displacement relations)
(3) Kinematics (compatibility of displacement or strains)

Internal Forces (for flexure)

In Structural Mechanics (or Mechanics of Materials), emphasis has been on the stress and strain tensors, it is often more convenient to operate on the resultant forces in structural engineering.

Engineering Theories

Instead of solving for the stress components throughout the body, we solve for certain stress resultants (normal, shear forces, and Moments and torsions) resulting from an integration over the body.

Internal Forces

Resultants per unit width

$$
\begin{align*}
\mathrm{N} & =\int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma d z \tag{1}\\
N_{x x} & =\int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma_{x x} d z ; \quad N_{y y}=\int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma_{y y} d z ; \quad N_{x y}=\int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma_{x y} d z ; \tag{2}\\
\mathrm{M} & =\int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma z d z ; \tag{3}\\
M_{x x} & =\int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma_{x x} z d z ; \quad M_{y y}=\int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma_{y y} z d z ; \quad M_{x y}=\int_{-\frac{t}{2}}^{\frac{t}{2}} \sigma_{x y} z d z \tag{4}\\
\mathrm{~V} & =\int_{-\frac{t}{2}}^{\frac{t}{2}} \tau d z \tag{5}\\
V_{x} & =\int_{-\frac{t}{2}}^{\frac{t}{2}} \tau_{x z} d z ; \quad V_{y}=\int_{-\frac{t}{2}}^{\frac{t}{2}} \tau_{y z} d z \tag{6}
\end{align*}
$$

In plate theory, we ignore membrane forces, those will be accounted for in shells.

2D Frame, $x-y-z$

Cartesian						
	Forces			Moments		
	x	y	z	x	y	z
Beam 2D Frame Grid	N_{x}	$\begin{aligned} & V_{y} \\ & V_{y} \end{aligned}$	V_{z}	T_{x}	M_{y}	$\begin{aligned} & M_{z} \\ & M_{z} \end{aligned}$
3D Frame	N_{x}	V_{y}	V_{z}	T_{x}	M_{y}	M_{z}
Polar						
	Forces			Moments		
	r	θ	z	r	θ	z
Arch Curved Beam	V_{r}	N_{θ}	V_{z}	M_{r}	T_{θ}	M_{z}
Curved						
	Forces			Moments		
	n	s	w	n	s	w
Curved	N_{n}	V_{s}	V_{w}	T_{n}	M_{s}	M_{w}

Intermediary Structural Analysis
 Stiffness and Transformation Matrices

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2021

Table of Contents I

(1) Title \& Objectives

(2) Flexibility Matrix Example

- Flexibility Example
(3) Stiffness Coefficients
- Introduction
- Element Stiffness Coefficients; General
- Big Picture
- Axial
- Flexural
- Torsional
- Shear; Intro
- Shear: Review; ($\tau(y)$)
- Shear Coefficient
- Deflection Cantilevered Beam
- Shear Factor
- Shear Deformation v_{s}
- Shear Deformation; Translation

Table of Contents II

- Shear Deformation; Rotation

4 Putting it All Together, $\left[\mathrm{k}^{(e)}\right]$

- Introduction
- Truss Element
- Euler-Bernoulli
- 2D Frame Element (a.k.a Beam-Column Element)
- Grid Element
- 3D Frame Element
- Timoshenko Beam

(5) Remarks on Element Stiffness Matrices

6 Element Forces; Initial Strains
(7) Element Forces; Flexural Elements

- Uniformly Distributed Loads
- Concentrated Loads
- In structural analysis an influence coefficient $C_{i j}$ is the effect on d.o.f. i of a unit action at d.o.f. j for an individual element or a whole structure.
- It is indeed a tensor of order 2.

	Unit Action	Effect on
Influence Line	Load	Shear
Influence Line	Load	Moment
Influence Line	Load	Deflection
Stress $\sigma_{i j}$	traction t_{j}	face i
Flexibility Coefficient $d_{i j}$	Force j	Displacement i
Stiffness Coefficient $k_{i j}$	Displacement j	Force i

- We seek to determine the flexibility matrix for the following statically determinate beam.
- The flexibility matrix here would be a 2×2, and each term $d_{i j}$ corresponds to the displacement at degree of freedom i due to a unit force at degree of freedom j.
- We have here two DOF corresponding to the rotations at each end.

- The force displacement relationship is now expressed as

$$
\left\{\begin{array}{l}
\theta_{1} \tag{1}\\
\theta_{2}
\end{array}\right\}=\left[\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right]\left\{\begin{array}{l}
M_{1} \\
M_{2}
\end{array}\right\}
$$

where M_{i} correspond to the externally applied moments, $d_{i j}=\theta_{i j}$, and θ_{i} to the corresponding unknown rotations at dof i due to a moment at dof j.

- Using the complementary virtual work, or more specifically, the virtual force method to analyze this problem, :

$$
\begin{equation*}
d_{i j}=\underbrace{\int_{0}^{1} \delta \bar{M}(x)_{i} \frac{M(x)_{j}}{E I_{z}} d x}_{\text {Internal }}=\underbrace{\delta \bar{P}_{i} \Delta_{j}+\delta \bar{M}_{i} \theta_{j}}_{\text {External }} \tag{2}
\end{equation*}
$$

where $\delta \bar{M}(x), \frac{M(x)}{E_{2}}, \delta \bar{P}$ and Δ are the virtual internal force, real internal displacement, virtual external load, and real external displacement respectively.

- Here, both the external virtual force and moment are usually taken as unity.
- Recall of the derivation of the virtual force:

$$
\begin{align*}
& \delta U=\int \delta \bar{\sigma}_{x} \varepsilon_{x} d \mathrm{vol} \\
& \delta \bar{\sigma}_{x}=\delta \frac{\bar{M}_{x y}}{} \\
& \varepsilon_{x}=\frac{\sigma_{x}}{E}=\frac{M_{y}}{E I} \\
& \int y^{2} d \mathrm{~A}=1 \\
& d \mathrm{vol}=d \mathrm{~A} d x \\
& \delta W=\delta \bar{P} \Delta \\
& \delta U=\delta W \tag{3}
\end{align*}
$$

- Hence:

$$
\begin{equation*}
\text { E/ } \underbrace{1}_{\delta \bar{M}} \underbrace{d_{11}}_{\Delta}=\int_{0}^{L} \underbrace{\left(-1+\frac{x}{L}\right)}_{\delta \bar{M}(x)} \underbrace{\left(-1+\frac{x}{L}\right)}_{M(x)} d x=\frac{L}{3} \tag{4}
\end{equation*}
$$

- Similarly, we would obtain:

$$
\begin{align*}
& E l d_{22}=\int_{0}^{L}\left(\frac{x}{L}\right)^{2} d x=\frac{L}{3} \tag{5}\\
& E l d_{12}=\int_{0}^{L}\left(-1+\frac{x}{L}\right) \frac{x}{L} d x=-\frac{L}{6}=E / d_{21} \tag{6}
\end{align*}
$$

- Those results can be summarized in a matrix form as:

$$
[\mathrm{d}]=\frac{L}{6 E I_{z}}\left[\begin{array}{rr}
2 & -1 \tag{7}\\
-1 & 2
\end{array}\right]
$$

and we could then solve for the displacements (rotations) due to the external moments.

- In the flexibility method, we made a structure statically determinate.
- In the stiffness method we make the structure (element or entire structure) kinematically determinate by
(1) Constraining all the degrees of freedom

$$
\begin{equation*}
\{\mathrm{p}\}=[\mathrm{k}]\{\boldsymbol{\delta}\} \tag{8}
\end{equation*}
$$

k_{i} jwill correspond to the reaction at dof i due to a unit deformation (translation or rotation) at dof j.

- Flexibility: displacements in terms of the externally applied forces $(\Delta(F))$. Derived for a structure.
- Stiffness: (internal) forces in terms of the externally imposed displacements $(F(\Delta))$. Derived first for elements, and then those are combined for a structure.
- We seek to determine forces (reactions) due an externally applied unit displacement.
- All forces and displacements are shown in the positive direction.
- Once we determine all the $k_{i j}$ coefficients, we could then easily assemble the element stiffness matrix.

(1) Currently, we are seeking to determine the element stiffness matrix of an individual element in local coordinate syatem k^{e} (x axis aligned with the member).
(2) This element stiffness matrix of an element will be transformed to K^{e} through the transformation matrix $K^{e}=\Gamma^{T} k^{e} \Gamma$ from the local to the global coordinate syatem.
(3) Finally, we will assemble the global stiffness matrix of a structure in the global coordinate system $\mathrm{K}^{S}=\sum_{e=1}^{e=n e l e m} \mathrm{~K}^{e}$

- Note local coordinate system $(x-y)$ and global coordinate system $(X-Y)$.

$$
\begin{equation*}
\sigma=E \epsilon \Rightarrow \underbrace{A \sigma}_{P}=\underbrace{\frac{A E}{L}}_{k \text { axial }} \underbrace{\Delta}_{1} \tag{9}
\end{equation*}
$$

Hence, for a unit displacement, the applied force should be equal to $\frac{A E}{L}$. From statics, the force at the other end must be equal and opposite.

- Objective: solve for forces in terms of known displacements in a beam: Four unknowns forces ($V_{1}^{?}, V_{2}^{?}, M_{1}^{?}$ and $M_{2}^{?}$) in terms of four known displacements $\left(v_{1}^{\vee}, v_{2}^{\vee}, \theta_{1}^{\vee}\right.$ and $\left.\theta_{2}^{\vee}\right)$

$$
\begin{align*}
& V_{1}^{?}=V_{1}^{?}\left(v_{1}^{\vee}, \theta_{1}^{\vee}, v_{2}^{\vee}, \theta_{2}^{\vee}\right) M_{1}^{?}=M_{1}^{?}\left(v_{1}^{\vee}, \theta_{1}^{\vee}, v_{2}^{\vee}, \theta_{2}^{\vee}\right) \\
& V_{2}^{?}=V_{2}^{\vee}\left(v_{1}^{\vee}, \theta_{1}^{\vee}, v_{2}^{\vee}, \theta_{2}^{\vee}\right) M_{2}^{?}=M_{2}^{?}\left(v_{1}^{\vee}, \theta_{1}^{\vee}, v_{2}^{\vee}, \theta_{2}^{\vee}\right) \tag{10}
\end{align*}
$$

- Four unknowns, need four equations. Two provided by the second order linear differential equation governing flexure, and two from the two equations of equilibrium.

- A. Differential equation

$$
\begin{equation*}
M=\underbrace{-E I \frac{d^{2} v}{d x^{2}}}_{\text {Diff Eq. }}=\underbrace{M_{1}^{?}-V_{1}^{?} x+m(x)}_{\text {Statics }} \tag{11}
\end{equation*}
$$

- $m(x)$ moment due to applied load $q(x)$ at section x (for uniformly distributed load: $\left.m(x)=-\frac{1}{2} w x^{2}\right)$
- Integrating twice

$$
\begin{align*}
-E I V^{\prime} & =M_{1}^{?} x-\frac{1}{2} V_{1}^{?} x^{2}+f(x)+C_{1} \tag{12}\\
-E I V & =\frac{1}{2} M_{1}^{?} x^{2}-\frac{1}{6} V_{1}^{?} x^{3}+g(x)+C_{1} x+C_{2} \tag{13}
\end{align*}
$$

where $f(x)=\int m(x) d x$, and $g(x)=\int f(x) d x$.

- Boundary conditions at $x=0$

$$
\left.\begin{array}{rl}
v^{\prime} & =\theta_{1}^{\vee} \tag{14}\\
v & =v_{1}^{\vee}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
C_{1}=-E / \theta_{1}^{\vee} \\
C_{2}=-E / v_{1}^{\vee}
\end{array}\right.
$$

- Boundary conditions at $x=L$ and combining with C_{1} and C_{2}

$$
\left.\begin{array}{rl}
v^{\prime} & =\theta_{2}^{\sqrt{ }} \tag{15}\\
v & =v_{2}^{\sqrt{ }}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
-E / \theta_{2}^{\sqrt{2}}=M_{1}^{?} L-\frac{1}{2} V_{1}^{?} L^{2}+f(L)-E / \theta_{1}^{\sqrt{ }} \\
-E / V_{2}^{\sqrt{2}}=\frac{1}{2} M_{1}^{?} L^{2}-\frac{1}{6} V_{1}^{?} L^{3}+g(L)-E / \theta_{1}^{\sqrt{ } L-E / v_{1}^{\sqrt{ }}} \text {. }
\end{array}\right.
$$

- Though we could solve for $M_{1}^{?}$ and $V_{1}^{?}$ in terms of $v_{1}^{\vee}, v_{2}^{\vee}, \theta_{1}^{\vee}$ and θ_{2}^{\vee}, we proceed with
- B. Equilibrium

$$
\begin{equation*}
V_{1}^{?}+P+V_{2}^{?}=0 \quad M_{1}^{?}-V_{1}^{?} L+m(L)+M_{2}^{?}=0 \tag{16}
\end{equation*}
$$

where $P=\int_{0}^{L} p(x) d x$,

- thus

$$
\begin{equation*}
V_{1}^{?}=\frac{\left(M_{i}^{?}+M_{2}^{?}\right)}{L}+\frac{1}{L} m(L) \quad V_{2}^{?}=-\left(V_{i}^{?}+P\right) \tag{17}
\end{equation*}
$$

- Substituting V_{1} into θ_{2} and v_{2} (Eq. 15)

$$
\left\{\begin{align*}
M_{1}^{?}-M_{2}^{?} & =\frac{2 E I_{2}}{L} \theta_{1}^{V}+\frac{2 E I_{2}}{L_{2}} \theta_{2}^{V}+m(L)-\frac{2}{L} f(L) \tag{18}\\
2 M_{1}^{?}-M_{2}^{?} & =\frac{6 E I_{2}}{L} \theta_{1}^{\vee}-\frac{6 I_{2}}{L^{2}} v_{1}^{V}-\frac{6 E I_{1}}{L^{2}} V_{2}^{V}+m(L)-\frac{6}{L^{2}} g(L)
\end{align*}\right.
$$

- Solve for the moments

$$
\begin{align*}
& M_{1}=\underbrace{\frac{2 E I_{z}}{L}\left(2 \theta_{1}^{\sqrt{ }}+\theta_{2}^{\vee}\right)-\frac{6 E I_{z}}{L^{2}}\left(v_{2}^{\vee}-v_{1}^{\vee}\right)}_{1}+\underbrace{M_{1}^{F}}_{\prime \prime} \tag{19}\\
& M_{2}=\underbrace{\frac{2 E I_{z}}{L}(\theta_{1}^{\sqrt{ }}+2 \theta_{2}^{\sqrt{ })-\frac{6 E I_{z}}{L^{2}}\left(v_{2}^{\vee}-v_{1}^{\vee}\right)}+\underbrace{M_{2}^{F}}_{\prime \prime}}_{I} \tag{20}
\end{align*}
$$

where

$$
\begin{align*}
& M_{1}^{F}=\frac{2}{L^{2}}[L f(L)-3 g(L)] \tag{21}\\
& M_{2}^{F}=-\frac{1}{L^{2}}\left[L^{2} m(L)-4 L f(L)+6 g(L)\right] \tag{22}
\end{align*}
$$

- M_{1}^{F} and M_{2}^{F} are the fixed end moments for $\theta_{1}=\theta_{2}=0$ and $v_{1}=v_{2}=0$.
- In Eq. 19 and 20 we observe that the moments developed at the end of a member are caused by: I) end rotation and displacements; and II) fixed end members.
- We can substitute those expressions in Eq. 17 and solve for the shear forces:

$$
\begin{align*}
& V_{1}=\underbrace{\frac{6 E I_{z}}{L^{2}}\left(\theta_{1}^{\vee}+\theta_{2}^{\vee}\right)-\frac{12 E I_{z}}{L^{3}}\left(v_{2}^{\vee}-v_{1}^{\vee}\right)}_{\prime}+\underbrace{v_{1}^{F}}_{\prime \prime} \tag{23}\\
& V_{2}=\underbrace{-\frac{6 E I_{z}}{L^{2}}\left(\theta_{1}^{\vee}+\theta_{2}^{\vee}\right)+\frac{12 E I_{z}}{L^{3}}\left(v_{2}^{\vee}-v_{1}^{\vee}\right)}_{\prime}+\underbrace{v_{2}^{F}}_{\prime \prime} \tag{24}
\end{align*}
$$

where

$$
\begin{align*}
& V_{1}^{F}=\frac{6}{L^{3}}[L f(L)-2 g(L)] \tag{25}\\
& V_{2}^{F}=-\left[\frac{6}{L^{3}}[L f(L)-2 g(L)]+a\right] \tag{26}
\end{align*}
$$

- The end shear and moments are in terms of $v_{2}-v_{1}$ which is the "drift" sometimes denoted by Ψ.
- It is very important to note that the derived equations are based on:
(1) Equilibrium

(2) Stress-strain
 (3) Compatibility

Torsion causes twisting and warping. Two types of Torsion:

- S^{t} Venant/Constant torsion If the member is allowed to warp freely, then the applied torque is resisted solely by S^{t} Venant shearing stresses: pure or uniform torsion.
- Non-Uniform if the member is restrained from warping freely, the applied torque is resisted by a combination of S^{t} Venant shearing stresses and warping torsion. All cross-sections will warp out of plane except circular ones.

- Determine torque T required to impose a unit rotation Φ
- Assuming a linear elastic material, and a linear strain (and thus stress) distribution along the radius of a circular cross section subjected to torsional load:
- From Equilibrium (Internal torsion must be equal and opposite to external torsion)

$$
\begin{equation*}
T_{\text {ext }}=\underbrace{\int_{T_{\text {int }}}^{\frac{\rho}{A} \tau_{\text {stress }}} \underbrace{d A}_{\text {area }}}_{\text {Shear Force }} \underbrace{\rho}_{\text {arm }}=\frac{\tau_{\max }}{R} \underbrace{\int_{A}^{\rho^{2} d A}}_{J} \Rightarrow \tau_{\max }=\frac{T R}{J} \tag{27}
\end{equation*}
$$

Note analogy with $\sigma=\frac{M c}{l_{z}}$.

- $\int_{A^{A}} \rho^{2} d A$ is the polar moment of inertia J (S^{t} Venant's torsion constant). For circular cross sections

$$
\begin{equation*}
J=\int_{A} \rho^{2} d A=\int_{0}^{R} \rho^{2} \underbrace{2 \pi \rho}_{C} d \rho=\frac{\pi R^{4}}{2}=\frac{\pi D^{4}}{32} \tag{28}
\end{equation*}
$$

where C is the circumference at radius ρ.

- For rectangular sections $b \times d$, and $b<d$, an approximate expression is given by

$$
\begin{align*}
& J \simeq k b^{3} d \tag{29}\\
& k \simeq \frac{0.3}{1+\left(\frac{b}{d}\right)^{2}} \tag{30}
\end{align*}
$$

- Kinematics: We have a relation between torsion and shear stress, we now seek a relation between torsion and torsional rotation. we consider the arc length BD

$$
\left.\left.\begin{array}{rl}
\gamma_{\text {max }} d x=d \Phi R \Rightarrow \frac{d \Phi}{d x} & =\frac{\gamma_{\text {max }}}{Q} \tag{31}\\
\text { Stress-strain } \gamma_{\text {max }} & =\frac{\tau_{\text {max }}^{G}}{G}
\end{array}\right\} \quad \begin{array}{rl}
\frac{d \Phi}{d x} & =\frac{\tau_{\text {max }}}{G R} \\
\tau_{\text {max }} & =\frac{T R}{J}
\end{array}\right\} \frac{d \Phi}{d x}=\frac{T}{G J}
$$

CORRECT BOOK, REPLACE C BY R

- Integrating $\int T d x=\int G J d \Phi$ and obtain:

$$
\begin{equation*}
T=\frac{G J}{L} \Phi \tag{32}
\end{equation*}
$$

Note the similarity between this equation and Equation $9\left(P=\frac{A E}{L} \Delta\right)$

- In general, shear deformations are quite small. However, for beams with low span to depth ratio, those deformations can not be neglected.
- Bernouilli Beam, we do not account for shear deformation, plane section remains plane.
- Timoshenko beam accounts for shear deformation.

Objective: Determine shear deformation (no flexure) and its impact on stiffness coefficients.

(1) Review
(2) Shear coefficient
(3) Example: Deflection cantilevered beam
(4) Shear Factor
(5) Shear deformation

- Translation
- Rotation

- linear elastic material, shear strain (small displacement, i.e. $\tan \gamma \approx \gamma$)

$$
\begin{equation*}
\tan \gamma \approx \gamma=\underbrace{\frac{d v_{s}}{d x}}_{\text {Kinematics }}=\underbrace{\frac{\tau}{G}}_{\text {Stress-strain }} \tag{33}
\end{equation*}
$$

- $\frac{d v_{s}}{d x}$ slope of the beam neutral axis wrt horizontal,vertical sections remain undeformed, G shear modulus, τ shear stress, v_{s} shear induced displacement.
- In general (Equilibrium)

$$
\begin{equation*}
\tau(y)=\frac{V Q(y)}{l b} \tag{34}
\end{equation*}
$$

V shear force, Q first moment (or static moment) about neutral axis of the portion of the cross-sectional area outside of the section where the shear stress is to be determined, I moment of inertia, b width.

- Define shear coefficient α_{s} as the ratio of the shear stress at the neutral axis $\tau(y=0)$ to the average shear stress ($\tau=V / b h$).

$$
\begin{align*}
\tau(y) & =\frac{V Q(y)}{l b} \tag{35}\\
& =\frac{1}{l b} \int_{y}^{h / 2} \underbrace{V \underbrace{b d y^{\prime}}_{d A} y^{\prime}}_{d F}=\frac{V}{2 l}\left(\frac{h^{2}}{4}-y^{2}\right) \\
& =\frac{6 V}{b h^{3}}\left(\frac{h^{2}}{4}-y^{2}\right) \tag{36}
\end{align*}
$$

- Shear stress is zero for $y=h / 2$ and maximum at the neutral axis where ($y=0$ and $\left.\tau_{\text {max }}=1.5 \frac{V}{b h}\right) . \Rightarrow \alpha_{s}=1.5$
- Consider a cantilevered (rectangular bxh) beam subjected to a point load P at its free end.
- From the principle of complementary virtual work (and noting that $\delta M=(1) x$, $M=P x, \delta \tau=1$, and τ is given by Eq. 36):

$$
\begin{align*}
(1) \Delta & =\underbrace{\int_{0}^{L} \delta \bar{M} \frac{M}{E I} d x}_{\text {Flexure }}+\underbrace{\int_{\text {Vol }} \delta \bar{\tau} \frac{\tau}{G} d V o l}_{\text {Shear }} \\
& =\int_{0}^{L} x \frac{P x}{E I} d x+\frac{1}{G} \int_{-h / 2}^{h / 2} \underbrace{(1)}_{\delta \tau} \underbrace{\left\{\frac{P}{2 l}\left[\left(\frac{h}{2}\right)^{2}-y^{2}\right]\right\}}_{\tau} \underbrace{L b d y}_{\text {dVol }} \\
& =\underbrace{\frac{P L^{3}}{3 E I}}_{\Delta \text { flex }}+\underbrace{\frac{6}{5} \frac{P L}{A G}}_{V_{s}} \tag{37}\\
\Delta & =\frac{P L^{3}}{3 E I}\left(1+\frac{3 E}{10 G}\left(\frac{h}{L}\right)^{2}\right) \tag{38}
\end{align*}
$$

- for $E / G=2.5$ (typical value for steel), $\Delta=E I\left(1+0.75\left(\frac{h}{L}\right)^{2}\right) \Delta_{\text {flex }}$
- For $L=h$ total deflection is 1.75 times the one due to flexure only.
- For $L=10 h$ the deflection due to shear is less than 1% of $\Delta_{\text {felx }}$.
- Just as we had $\sigma=P / A$, can we assume $\tau=V / A$? NO
- Normalizing the shear force V by $A(\tau=V / A$, just like $\sigma=P / A)$ is incorrect since the shear stress is not uniformly distributed along the depth, hence we define $\tau \stackrel{\text { def }}{=} V / A_{s}$, where $A_{s} \stackrel{\text { def }}{=} \frac{A}{\lambda_{s}}$ is the effective cross section for shear. We seek to determine λ_{s}, the shear factor
- To determine λ_{s} we are going to equate the average shear strain energy U

$$
\begin{equation*}
U_{\text {aver }}=\int_{0}^{L} \frac{V^{2}}{2 G A_{s}} d x=\lambda_{s}^{?} \int_{0}^{L} \frac{V^{2}}{2 G A} d x \tag{39}
\end{equation*}
$$

to the exact one determined from the actual shear stress distribution

$$
\begin{equation*}
U_{\text {exact }}=\frac{1}{2} \int_{\Omega} \gamma \underbrace{G_{\gamma}}_{\tau} d \Omega=\int_{\Omega} \frac{\tau^{2}}{2 G} d \Omega=\iiint \frac{\tau^{2}}{2 G} d x d y d z \tag{40}
\end{equation*}
$$

Note that in structural mechanics Ω represents a volume, and Γ (or $\delta \Omega$) the corresponding surface.

- Starting with the exact expression of the shear stress

$$
\begin{equation*}
\tau(y)=\frac{V Q(y)}{l b} ; \quad Q(y)=\int_{y}^{h / 2} b y^{\prime} d y^{\prime}=\frac{b}{2}\left(\frac{h^{2}}{4}-y^{2}\right) \tag{41}
\end{equation*}
$$

- Substituting into Eq. 40 to determine the exact strain energy.

$$
\begin{align*}
U_{\text {exact }} & =\int_{0}^{L}\left[\int_{0}^{b} \int_{-h / 2}^{h / 2} \frac{V^{2}}{8 G l^{2}}\left(\frac{h^{2}}{4}-y^{2}\right)^{2} d y d z\right] d x \tag{42}\\
& =\int_{0}^{L} \frac{V^{2} b}{8 G l^{2}}\left[\int_{-h / 2}^{h / 2}\left(\frac{h^{4}}{16}-\frac{h^{2} y^{2}}{2}+y^{4}\right) d y\right] d x \tag{43}\\
& =\int_{0}^{L} \frac{V^{2} b}{8 G l^{2}}\left[\frac{h^{4} y}{16}-\frac{h^{2} y^{3}}{6}+\frac{y^{5}}{5}\right]_{-h / 2}^{h / 2} d x \tag{44}\\
& =\int_{0}^{L} \frac{V^{2} b h^{5}}{240 G l^{2}} d x \tag{45}
\end{align*}
$$

- For a rectangular section $I=b h^{3} / 12$

$$
\begin{equation*}
U_{\text {exact }}=\frac{3}{5} \int_{0}^{L} \frac{V^{2}}{G A} d x=\underbrace{\frac{6}{5}}_{1.2} \int_{0}^{L} \frac{V^{2}}{2 G A} d x \tag{46}
\end{equation*}
$$

- Comparing with Eq. 39, we note that the shear form factor $\lambda_{s}=1.2$. Thus $\tau=V / A_{s}$ and $A_{s}=A / 1.2$
- For shear deformation, we thus adopt $\tau=V / A_{s}$ and from Eq. 33 we obtain

$$
\begin{equation*}
\tan \gamma \simeq \gamma=\frac{d v_{s}}{d x}=\frac{V}{G A_{s}}=\frac{\lambda_{s} V}{A G} \tag{47}
\end{equation*}
$$

- Note analogy with $\varepsilon=\frac{d u}{d x}=\frac{P}{A E}$
- The shear deformation for a beam clamped at one end subjected to a point load at the other (as in th definition of a stiffness coefficient term) will be determined next.
- From above, $\int d v_{s}=\int \frac{V}{G A_{s}} d x$. Assuming V to be constant, integrate Eq. 47

$$
\begin{equation*}
v_{s}=\frac{V}{G A_{s}} x+C_{1} \tag{48}
\end{equation*}
$$

- If the displacement v_{s} is zero at the opposite end of the beam, then $C_{1}=-\frac{V}{G A_{s}}(x-L)$ and

$$
\begin{equation*}
v_{s}=\frac{V}{G A_{s}}(x-L) \tag{49}
\end{equation*}
$$

- At $x=0$

$$
\begin{equation*}
v_{s}=\frac{V}{G A_{s}} L \tag{50}
\end{equation*}
$$

- What is the "parasitic" displacement due to shear deformation when we applied loads meant to induce unit displacements?
- First, arbitrarily define (recall that $r=\sqrt{\frac{1}{A}}$ and $G=\frac{E}{2(1+v)}$)

$$
\begin{equation*}
\Phi \stackrel{\text { def }}{=} \frac{12 E I}{G A_{s} L^{2}}=24(1+v) \frac{A}{A_{s}}\left(\frac{r}{L}\right)^{2} \tag{51}
\end{equation*}
$$

- It will be shown that v_{s} is related to Φ.
- Recall that $A_{s}=A / \lambda_{s}$, then due to a unit vertical translation, the end shear force is obtained from Eq. 23 and setting $v_{1}=1$ and $\theta_{1}=\theta_{2}=v_{2}=0$, or $V=\frac{12 E I_{2}}{L^{3}}$. At $x=0$ we have (Eq. 50)

$$
\left.\begin{array}{rl}
v_{s} & =\frac{V L}{G A_{S}} \tag{52}\\
V & =\frac{12 E I_{z}}{L^{3}}
\end{array}\right\} v_{s}=\underbrace{\frac{12 E I}{G A_{s} L^{2}}}_{\Phi}
$$

- Shear deformation has increased the total translation from 1 to $1+\Phi$.
- Similar arguments apply to the

- Even when a rotation θ_{1} is applied, an internal shear force is induced, and this in turn is going to give rise to shear deformations (translation) which must be accounted for.
- The shear force is obtained from Eq. 23 and setting $\theta_{1}=1$ and $\theta_{2}=v_{1}=v_{2}=0$, or $V=\frac{6 E I_{2}}{L^{2}}$. At $x=0$,

$$
\left.\begin{array}{rl}
v_{s} & =\frac{V L}{A E^{G}} \tag{53}\\
V & =\frac{6 I_{z}}{L_{2}^{2}} \\
\Phi & =\frac{T_{2 E I}^{G A_{s} L^{2}}}{}
\end{array}\right\} v_{s}=0.5 \Phi L
$$

- Shear deformation has moved the end of the beam (which was supposed to have zero translation) down by by $0.5 \Phi \mathrm{~L}$.
- We have now derived all the proper equations relating displacements to forces.
- Next we shall define the stiffness matrices of different types of elements based on the following coordinate system for both 2D and 3D.

	Forces			Moments		
	x	y	z	x	y	z
Beam		V_{y}				M_{z}
2D Frame	N_{x}	V_{y}				M_{z}
Grid		V_{y}		T_{x}		M_{z}
3D Frame	N_{x}	V_{y}	V_{z}	T_{x}	M_{y}	M_{z}

- Recall the definition of the stiffness matrix:

- Identify all the terms that need to be determined

- The truss element (whether in 2D or 3D) has only one degree of freedom associated with each node. Hence, from Eq. 9, we have

$$
\left[\mathrm{k}^{t}\right]=\frac{A E}{L} \quad \begin{array}{cc}
p_{1}\left[\begin{array}{cc}
u_{1} & u_{2} \\
p_{2} & -1 \\
-1 & 1
\end{array}\right] \tag{54}
\end{array}
$$

- Using Equations 19, 20, 23 and 24 we can determine the forces associated with each unit displacement.

$$
\begin{aligned}
& \begin{array}{llll}
v_{1 y} & \theta_{1 z} & v_{2 y} & \theta_{2 z}
\end{array}
\end{aligned}
$$

- Substituting
- Note row i corresponds to the force in dof i, column j corresponds to the unit displacement in dof j, intersection will be $k_{i j}$.
- $\mathrm{k}^{2 d t r}=\mathrm{k}^{b} \cup \mathrm{k}^{t}$, Note no coupling between the axial forces and the shear/moment.

$$
\begin{align*}
& \begin{array}{llllll}
u_{1 x} & v_{1 y} & \theta_{1 z} & u_{2 x} & v_{2 y} & \theta_{2 z}
\end{array} \\
& \left.\left[\mathrm{k}^{2 d i f r}\right]=\begin{array}{ccccccc}
N_{1 \times} \times & k_{11}^{t} & 0 & 0 & k_{12}^{t} & 0 & 0 \\
V_{1 y} & 0 & k_{11}^{b} & k_{12}^{b} & 0 & k_{13}^{b} & k_{14}^{b} \\
M_{12} & 0 & k_{21}^{b} & k_{22}^{b} & 0 & k_{23}^{b} & k_{24}^{b} \\
N_{2 \times} & k_{21}^{t} & 0 & 0 & k_{22}^{t} & 0 & 0 \\
V_{2 y} & 0 & k_{31}^{b} & k_{32}^{b} & 0 & k_{33}^{b} & k_{34}^{b} \\
M_{22} & 0 & k_{41}^{b} & k_{42}^{b} & 0 & k_{43}^{b} & k_{44}^{b}
\end{array}\right] \tag{57}\\
& \begin{array}{llllll}
u_{1 x} & v_{1 y} & \theta_{1 z} & u_{2 x} & v_{2 y} & \theta_{2 z}
\end{array}
\end{align*}
$$

- Stiffness matrix of the grid element is very analogous to the one ofthe 2D frame element, except that the axial component is replaced by the torsional one.

$$
\left.\left[\mathrm{k}^{g}\right]=\begin{array}{cccccc}
& \alpha_{1 x} & v_{1 y} & \beta_{1 z} & \alpha_{2 x} & v_{2 y} \tag{59}\\
T_{1 x} & \beta_{2 z} \\
V_{1 y} \\
M_{12} \\
T_{2 x} & \text { Eq. 32 } & 0 & 0 & - \text { Eq. 32 } & 0 \\
0 & k_{11}^{b} & k_{12}^{b} & 0 & 0 & k_{13}^{b} \\
V_{2 y}^{b} \\
V_{24}^{b} & k_{21}^{b} & k_{22}^{b} & 0 & k_{23}^{b} & k_{24}^{b} \\
M_{22} & 0 & k_{31}^{b} & k_{32}^{b} & \text { Eq. 32 } & 0 \\
0 & k_{41}^{b} & k_{42}^{b} & 0 & k_{33}^{b} & k_{34}^{b} \\
0 & k_{43}^{b} & k_{44}^{b}
\end{array}\right]
$$

- Substituting

For $\left[\mathrm{k}_{11}^{3 D}\right]$ and with we obtain:

- If shear deformations are present, we need to alter the stiffness matrix Eq. 56
(1) Translation: divide (or normalize) coefficients of the first and third columns of the stiffness matrix by $1+\Phi$ so that the net translation at both ends is unity otherwise displacement would be $1+\Phi$ instead of 1 .
(2) Due to rotation and the effect of shear deformation
(1) The forces induced at the ends due to a unit rotation at end 1 (second column) neglecting shear deformations, are

$$
\begin{equation*}
V_{1}=-V_{2}=\frac{6 E I}{L^{2}} ; \quad M_{1}=\frac{4 E I}{L} ; \quad M_{2}=\frac{2 E I}{L} \tag{62}
\end{equation*}
$$

(2) There is a net positive translation of $0.5 \Phi L$ at end 1 when we applied a unit rotation, no additional forces induced.
(3) For a unit rotation, all other displacements should be zero \Rightarrow. Hence, should counteract this parasitic shear deformation by an equal and opposite one \Rightarrow apply an additional Δ vertical displacement $-0.5 \Phi L$ and the additional forces induced at the ends (first column) are given by

$$
\begin{align*}
\Delta V_{1}=-\Delta V_{2} & =\underbrace{\frac{12 E I}{L^{3}}}_{k_{11}^{k_{1}^{b}}} \frac{1}{1+\Phi} \underbrace{(-0.5 \Phi L)}_{V_{s}} \tag{63}\\
\Delta M_{1}=\Delta M_{2} & =\underbrace{\frac{6 E I}{L^{2}}}_{k_{21}^{b}} \frac{1}{1+\Phi} \underbrace{(-0.5 \Phi L)}_{v_{s}} \tag{64}
\end{align*}
$$

Denominators have already been divided by $1+\Phi$ in k^{b}.
(4) Summing up all the forces, we have the forces induced as a result of a unit rotation only when the effects of both bending and shear deformations are included.

$$
\begin{align*}
V_{1}=-V_{2} & =\underbrace{\frac{6 E l}{L^{2}}}_{\text {Due to unit rotation }}+\underbrace{}_{\underbrace{\frac{k_{11}^{t}}{L^{3}}}_{\text {Due to Parasitic Shear }} \frac{1}{1+\Phi} \underbrace{(-0.5 \Phi L)}_{v_{s}}}=-\frac{6 E l}{L^{2}} \frac{1}{1+\Phi} \tag{65}\\
M_{1} & =\underbrace{\frac{4 E l}{L}}_{\text {Due to unit rotation }}+\underbrace{1+\frac{4}{1+\Phi}}_{\underbrace{\frac{6 E l}{L^{2}}}_{\text {Due to parasitic shear }} \frac{1}{1+\Phi} \underbrace{(-0.5 \Phi L)}_{v_{s}}} \\
M_{2} & =\underbrace{\frac{2 E l}{L}}_{\text {Due to unit rotation }}+\underbrace{\frac{6 E l}{L_{2}^{t}}}_{\text {Due to parasitic shear }} \frac{1}{1+\Phi} \underbrace{(-0.5 \Phi L)}_{v_{s}}=\frac{2-\Phi}{1+\Phi} \frac{E l}{L} \tag{67}
\end{align*}
$$

- Element stiffness matrix given in Eq. 56 becomes

(1) Singularity All the derived stiffness matrices are singular, that is there is at least one row and one column which is a linear combination of others. For example in the beam-column element, row $4=-$ row 1 ; and L times row 2 is equal to the sum of row 3 and 6 . This singularity (not present in the flexibility matrix) is caused by the linear relations introduced by the equilibrium equations which are embedded in the formulation.
(2) Symmetry All matrices are symmetric due to Maxwell-Betti's reciprocal theorem, and the stiffness flexibility relation.
More about the stiffness matrix properties later.
- In the presence of thermal load (or initial strains), nodal equivalent forces $\mathrm{P}_{e l}$ can be readily determined as follows:
- Trusss

$$
\begin{equation*}
F_{1}^{T}=-A E \alpha \Delta T \quad F_{2}^{T}=A E \alpha \Delta T \tag{69}
\end{equation*}
$$

- Beam

$$
\begin{array}{ll}
F_{1}^{T} & =-A E \alpha \Delta T^{\text {avg }}
\end{array} F_{2}^{T}=A E \alpha \Delta T^{\text {avg }}, ~=\frac{E l \alpha\left(\Delta T^{\text {top }}-\Delta T^{\text {bot }}\right)}{h} M_{2}^{T}=-\frac{E l \alpha\left(\Delta T^{\text {top }}-\Delta T^{\text {bot }}\right)}{h}
$$

where α is the coefficient of thermal expansion, $\Delta T^{\text {avg }}=\frac{\Delta T^{\text {top }}+\Delta T^{\text {bot }}}{2}$.

- For initial forces (such as prestressed members) one needs to simply specify $\alpha \Delta T$ for the initial strain induced by prestressing
- In the load input data file one simply needs to specify $\alpha \Delta T$ for the thermally loaded truss, and $\alpha\left(\Delta T^{\text {top }}-\Delta T^{\text {bot }}\right)$ and h for beams.
- Nodal equivalent forces $\mathrm{P}_{e l}$ should not be confused with fixed end actions (they are equal but with opposite signs).
- From above

$$
\begin{align*}
m(x) & =\text { moment due to the applied loads at section } x \tag{71}\\
f(x) & =\int m(x) d x ; \quad g(x)=\int f(x) d x ; \quad q(x)=\int p(x) d x \tag{72}
\end{align*}
$$

total load on the span

- and

$$
\begin{align*}
& M_{1}^{F}=\frac{2}{L^{2}}[L f(L)-3 g(L)] \tag{74}\\
& M_{2}^{F}=-\frac{1}{L^{2}}\left[L^{2} m(L)-4 L f(L)+6 g(L)\right] \tag{75}\\
& V_{1}^{F}=\frac{6}{L^{3}}[L f(L)-2 g(L)] \tag{76}\\
& V_{2}^{F}=-\frac{6}{L^{3}}[L f(L)-2 g(L)]-q \tag{77}
\end{align*}
$$

- For a uniformly distributed load w over the entire span,

$$
\begin{equation*}
m(x)=-\frac{1}{2} w x^{2} ; \quad f(x)=-\frac{1}{6} w x^{3} ; \quad g(x)=-\frac{1}{24} w x^{4} ; \quad q=w L \tag{78}
\end{equation*}
$$

- Substituting

$$
\begin{align*}
& M_{1}^{F}=\frac{2}{L^{2}}\left[L\left(-\frac{1}{6} w L^{3}\right)-3\left(-\frac{1}{24} w L^{4}\right)\right]=\frac{w L^{2}}{12} \tag{79}\\
& M_{2}^{F}=-\frac{1}{L^{2}}\left[L^{2}\left(-\frac{1}{2} w L^{2}\right)-4 L\left(-\frac{1}{6} w L^{3}\right)+6\left(-\frac{1}{24} w L^{4}\right)\right]=\frac{w L^{2}}{12}(80) \\
& V_{1}^{F}=\frac{6}{L^{3}}\left[L\left(-\frac{1}{6} w L^{3}\right)-2\left(-\frac{1}{24} w L^{4}\right)\right]=\frac{w L}{2} \tag{81}\\
& V_{2}^{F}=-\frac{6}{L^{3}}\left[L\left(-\frac{1}{6} w L^{3}\right)-2\left(-\frac{1}{24} w L^{4}\right)\right]-w L=\frac{w L}{2} \tag{82}
\end{align*}
$$

- Use the unit step function to find $m(x)$. For a concentrated load P acting at a from the left-hand end with $b=L-a$,

$$
\begin{align*}
m(x) & =-P(x-a) H_{a} & \text { gives } & m(L) & =-P b \\
f(x) & =-\frac{1}{2} P(x-a)^{2} H_{a} & & f(L) & =-\frac{1}{2} P b^{2} \tag{83}\\
g(x) & =-\frac{1}{6} P(x-a)^{3} H_{a} & & g(L) & =-\frac{1}{6} P b^{3}
\end{align*}
$$

- where we define $H_{a}=0$ if $x<a$, and $H_{a}=1$ if $x \geq a$, and

$$
\begin{align*}
q & =P \tag{84}\\
M_{1}^{F} & =\frac{2}{L^{2}}\left[L\left(-\frac{1}{2} P b^{2}\right)-3\left(-\frac{1}{6} P b^{3}\right)\right]==\frac{P b^{2} a}{L^{2}} \tag{85}\\
M_{2}^{F} & =-\frac{1}{L^{2}}\left[L^{2}(-P b)-4 L\left(-\frac{1}{2} P b^{2}\right)+6\left(-\frac{1}{6} P b^{3}\right)\right]=\frac{P b}{1^{2}}\left(L^{2}-2 L b+b^{2}\right) \tag{86}\\
& =\frac{P b a^{2}}{L^{2}} \tag{87}\\
v_{1}^{F} & =\frac{6}{L^{3}}\left[L\left(-\frac{1}{2} P b^{2}\right)-2\left(-\frac{1}{6} P b^{3}\right)\right]=-\frac{P b^{2}}{L^{3}}(3 L-2 b)=\frac{P b^{2}}{L^{3}}(3 a+b) \tag{88}\\
V_{2}^{F} & =-\left(\frac{6}{L^{3}}\left[L\left(-\frac{1}{2} P b^{2}\right)-2\left(-\frac{1}{6} P b^{3}\right)\right]+P\right)=\frac{P a^{2}}{L^{3}}(a+3 b) \tag{89}
\end{align*}
$$

- If the load is applied at midspan ($a=B=L / 2$), then the previous equationreduces to

$$
\begin{align*}
M_{1}^{F} & =-\frac{P L}{8} \tag{90}\\
M_{2}^{F} & =\frac{P L}{8} \tag{91}\\
V_{1}^{F} & =-\frac{P}{2} \tag{92}\\
V_{2}^{F} & =-\frac{P}{2} \tag{93}
\end{align*}
$$

Intermediary Structural Analysis Stiffness Method; I Orthogonal Structures

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2021

Table of Contents

(1) Objectives
(2) discretization

- Sign Convention
- Coordinate System
- Degrees of Kinematic Indeterminacy
(3) Theory
- Essence of the Flexibility Method
- Essence of the Stiffness Method

4. Examples

- Beam
- Frame
- Example Frame
- Matlab Code for frame
- Grid
(5) Epilogue
- A structure is a system composed of individual components (elements).
- Structure must be discretized
- Revisit local and global d.o.f/coordinates.
- Element internal forces.
- Element stiffness matrices.
- We now seek to analyze a structure (system).
- For convenience, we will start with orthogonal 2D structures.
- We will assemble the structure stiffness in terms of unrestrained d.o.f.
- Completely different than in structural analysis/design (where we focused mostly on flexure and defined a positive moment as one causing "tension below". This would be awkward to program!).
- Consistent with the prevailing coordinate system (i.e. a positive moment as one which is counter-clockwise

Two coordinate systems:

(1) Global: to describe the structure nodal coordinates.

- Arbitrarily selected provided it is a Right Hand Side (RHS) one
- Upper case axis labels, X, Y, Z, or 1,2,3 (running indices within a computer program).

(2) Local: system is associated with each element
- Describe the element internal forces.
- lower case axis labels, x, y, z (or $1,2,3$). The x-axis is assumed to be along the member, and the direction.
- Selected such that it points from the 1 st node to the 2 nd node.
- A degree of freedom (d.o.f.) is an independent generalized nodal displacement (translation or rotation) at a node.
- The displacements must be linearly independent (of coordinate system) and thus not related to each other.
- An element dof is defined wrt its own local coordinate system. A structural dof is defined wrt a global coordinate system.

Type		Node 1	Node 2	[$\mathrm{k}^{(e)}$]	$\left[\mathrm{K}^{(e)}\right]$
				(Local)	(Global)
1 Dimensional					
Beam	\{p\}	$F_{y 1}, M_{z 2}$	$F_{y 3}, M_{z 4}$		
	$\{\delta\}$	v_{1}, θ_{2}	v_{3}, θ_{4}	4×4	4×4
2 Dimensional					
Truss	\{p\}	$F_{x 1}$	$F_{x 2}$		
	$\{\delta\}$	u_{1}	u_{2}	2×2	4×4
Frame	\{p\}	$F_{x 1}, F_{y 2}, M_{z 3}$	$F_{x 4}, F_{y 5}, M_{z 6}$		
	$\{\delta\}$	u_{1}, v_{2}, θ_{3}	u_{4}, v_{5}, θ_{6}	6×6	6×6
Grid	\{p\}	$T_{x 1}, F_{y 2}, M_{z 3}$	$T_{x 4}, F_{y 5}, M_{z 6}$		
	$\{\delta\}$	$\theta_{1}, v_{2}, \theta_{3}$	$\theta_{4}, v_{5}, \theta_{6}$	6×6	6×6
3 Dimensional					
Truss	\{p\}	$F_{x 1}$,	$F_{x 2}$		
				2×2	6×6
	\{ 8 \}	u_{1},	u_{2}		
Frame	\{p\}	$\begin{aligned} & F_{x 1}, F_{y 2}, F_{y 3}, \\ & T_{x 4} M_{y 5}, M_{z 6} \end{aligned}$	$\begin{gathered} F_{x 7}, F_{y 8}, F_{y 9}, \\ T_{x 10} M_{y 11}, M_{z 12} \end{gathered}$	12×12	12×12
	\{ δ \}	$\begin{aligned} & u_{1}, v_{2}, w_{3}, \\ & \theta_{4}, \theta_{5} \theta_{6} \\ & \hline \end{aligned}$	$\begin{gathered} u_{7}, v_{8}, w_{9}, \\ \theta_{10}, \theta_{11} \theta_{12} \\ \hline \end{gathered}$		

(1) Determine degree of static indeterminacy, n.
(2) Define a primary structure which statically determinate by removing n arbitrarily reactions to have a statically determinate (and stable) structure.
(3) Analyse the primary structure, subjected to the actual load, and solve for the n displacements corresponding to the n reactions removed, Δ_{j}
(4) Apply a unit load at point at each of the d.o.f. corresponding to the redundant forces, and solve for deflections $f_{i j}$ at node i due to a unit force at node j.
(5) Write the compatibility of displacement equation $f_{i j} R_{j}-\Delta_{i}=0$ For $n=2$, this corresponds to:

$$
\left[\begin{array}{cc}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right]\left\{\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right\}-\left\{\begin{array}{l}
\Delta_{1} \\
\Delta_{2}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

(6) Invert the matrix, and solve for the reactions.

Note that Reactions are the primary unknowns, subsequently from statics one can determine the internal forces, and finally the displacements.
(1) Determine the degree of kinematic indeterminacy.
(2) Fix all displacements, the structure is now kinematically determinate (all displacements are known and are equal to zero).
(3) Determine end nodal forces for each loaded element, sum up.
(4) Apply a unit displacement (rotation or displacement) at each free/unrestrained degree of freedom j at a time, and in each case we shall determine the internal reaction forces at degrees of freedom $j, K_{i j}$.
(5) Assemble the reduced structure stiffness matrix in global coordinate system in terms of the individual element stiffness matrices transformed to the global one. This will result in an equation of equilibrium at each node:

$$
\begin{equation*}
\underbrace{\mathrm{K} \Delta}_{\mathrm{P}_{\text {int }}}-\mathrm{P}_{\text {ext }}=0 . \tag{1}
\end{equation*}
$$

Where $\mathrm{P}_{\text {ext }}$ includes nodal forces and nodal equivalent loads.
(6) Reduced because we are not considering the restrained degrees of freedom.

- Note analogy with moment distribution method.
- Displacements are the primary unknowns, subsequently from the displacement force relations (again element stiffness matrix) we solve for both internal forces and reactions.
- Flexibility: What are the forces (reactions) that will ensure compatibility (of displacements at released dof)?
- Stiffness: What are the displacements that will ensure equilibrium?

(1) Degree of kinematic indeterminacy is 2 .
(2) Using the previously defined sign convention, determine thenodal equivalent load (to the load applied along the member)

$$
\begin{aligned}
\Sigma P_{e l, 1} & =\underbrace{\frac{P_{1} L}{8}}_{B A}-\underbrace{\frac{P_{2} L}{8}}_{B C}=\frac{2 P L}{8}-\frac{P L}{8}=\frac{P L}{8} \\
\Sigma P_{e l, 2} & =\underbrace{\frac{P L}{8}}_{C B}
\end{aligned}
$$

(3) If it takes $\frac{4 E I}{L}\left(k_{44}^{B A}\right)$ to rotate $B A$ and $\frac{4 E 1}{L}\left(k_{22}^{B C}\right)$ to rotate $B C$, it will take a total force of $\frac{8 E L}{L}$ to simultaneously rotate $B A$ and $B C$.
(4) The sum of the rotational stiffnesses at global d.o.f. 1 is $K_{11}=\frac{8 E I}{L}$; similarly, $K_{21}=\frac{2 E I}{L}\left(K_{42}^{B C}\right)$.
(5) If we now rotate d.o.f. 2 by a unit angle, we will have $K_{22}=\frac{4 E I}{L}\left(k_{22}^{B C}\right)$ and $K_{12}=\frac{2 E I}{L}\left(K_{42}^{B C}\right)$.
(6) Equation of equilibrium:

$$
\underbrace{\left\{\begin{array}{c}
P L \\
0
\end{array}\right\}}_{\mathrm{P}_{\text {nodes }}}+\underbrace{\left\{\begin{array}{c}
\frac{P L}{8} \\
\frac{P L}{8}
\end{array}\right\}}_{\mathrm{P}_{e l}}-\underbrace{\left[\begin{array}{cc}
\frac{8 E l}{L} & \frac{2 E I}{L} \\
\frac{2 E I}{L} & \frac{4 E I}{L}
\end{array}\right]}_{\mathrm{K}} \underbrace{\left\{\begin{array}{l}
\theta_{i}^{?} \\
\theta_{2}^{?}
\end{array}\right\}}_{\Delta}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

(7) Note that we have $\mathrm{P}_{\text {ext }}-\mathrm{P}_{\text {int }}=0$ and not $\mathrm{P}_{\text {ext }}+\mathrm{P}_{\text {int }}=0$ because the external forces must be resisted by the internal ones in an equal and opposite direction. By analogy

(8) Simplifying

$$
\left\{\begin{array}{c}
P L+\frac{P L}{8} \\
+\frac{P L}{8}
\end{array}\right\}=\left[\begin{array}{ll}
\frac{8 E I}{L} & \frac{2 E I}{L} \\
\frac{2 E I}{L} & \frac{4 E I}{L}
\end{array}\right]\left\{\begin{array}{l}
\theta_{1}^{?} \\
\theta_{2}^{?}
\end{array}\right\}
$$

Note that we will always write the equilibrium relationship as $\mathrm{P}_{\text {ext }}-\mathrm{P}_{\text {int }}=0$
(9) Invert the two by two matrix

$$
\left\{\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right\}=\left[\begin{array}{cc}
\frac{8 E I}{L} & \frac{2 E I}{L} \\
\frac{2 E I}{L} & \frac{4 E I}{L}
\end{array}\right]^{-1}\left\{\begin{array}{c}
P L+\frac{P L}{8} \\
+\frac{P L}{8}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{17}{112} \frac{P L^{2}}{E I} \\
-\frac{5}{112} \frac{P L^{2}}{E I}
\end{array}\right\}
$$

(10) Recall that for each element $\{\mathrm{p}\}=[\mathrm{k}]\{\mathrm{\delta}\}$, and in this case $\{\mathrm{p}\}=\{\mathrm{P}\}$ and $\{\delta\}=\{\Delta\}$ for element $A B$. The element stiffness matrix has been previously derived, and in this case the global and local d.o.f. are the same.
(1) Next, we need to compute the element internal forces.
(1) Equilibrium equation for element AB , at the element level, can be written as (note that we must include the nodal equivalent loads to maintain equilibrium):

Note: This step is called Force recovery, i.e. we determine the internal forces from the nodal displacements. It is in terms of local forces p and not the global ones P.
Solving
$\left\lfloor\begin{array}{lllllll}V_{1} & M_{1} & V_{2} & M_{2}\end{array}\right\rfloor=\left\lfloor\frac{107}{56} P \quad \frac{31}{56} P L \quad \frac{5}{56} P \quad \frac{5}{14} P L\right\rfloor$
(3) Similarly, for element $B C$:

or

$$
\left\lfloor\begin{array}{llll}
V_{1} & M_{1} & V_{2} & M_{2}
\end{array}\right\rfloor=\left\lfloor\frac{7}{8} P \quad \frac{9}{14} P L \quad-\frac{P}{7} \quad 0\right\rfloor
$$

(14) This simple example calls for the following observations:
(1) Node A has contributions from element $A B$ only, while node B has contributions from both $A B$ and $B C$.
(2) We observe that $p_{3}^{A B} \neq p_{1}^{B C}$ even though they both correspond to a shear force at node B, the difference between them is equal to the reaction at B. Similarly, $p_{4}^{A B} \neq p_{2}^{B C}$ due to the externally applied moment at node B.
(3) Must conclude with free body, shear and moment diagrams.

Analise the following frame for $P=2 \mathrm{kN}, L=H=6 \mathrm{~m}, M=5 \mathrm{kN} . \mathrm{m}, w=0.5 \mathrm{kN} / \mathrm{m}$, $E=2 \times 10^{8} \mathrm{kPa}, A=0.123 \mathrm{~m}^{2}$, and $l^{b}=l^{c}=0.00125 \mathrm{~m}^{4}$

(1) Assuming axial deformations, we do have three global degrees of freedom, Δ_{1}, Δ_{2}, and θ_{3}.
(2) Constrain all the degrees of freedom, and thus make the structure kinematically determinate.
(3) Determine the nodal equivalent loads for each element in local coordinate system in its own local coordinate system (element 1 is assumed to be defined from A to B, and element 2 from B to C):

$$
\begin{align*}
& \underbrace{\begin{array}{lllll}
\left\lfloor p_{1}^{A}\right. & p_{2}^{A} & p_{3}^{A} & \mid p_{4}^{B} & p_{5}^{B}
\end{array} p_{6}^{B}}_{A B}\rfloor\rfloor=\begin{array}{llllll}
0 & -\frac{P}{2} & \left.-\frac{P L}{8} \left\lvert\, \begin{array}{lll}
0 & -\frac{P}{2} & \frac{P L}{8}
\end{array}\right.\right\rfloor
\end{array} \tag{2}\\
& =\left\lfloor\begin{array}{llllll}
0 & -\frac{2}{2} & -\frac{(2)(6)}{8} & 0 & -\frac{2}{2} & \frac{(2)(6)}{8}
\end{array}\right] \\
& =\left\lfloor\begin{array}{lll|lll}
0 & -1.0 & -1.5 & 0 & -1.0 & 1.5
\end{array}\right\rfloor \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& =\left\lfloor\left. 0-\frac{(0.5)(6)}{2}-\frac{(0.5)(6)^{2}}{12} \right\rvert\, 0-\frac{(0.5)(6)}{2} \frac{(0.5)(6)^{2}}{12}\right\rfloor \\
& =\left\lfloor\begin{array}{lll|lll}
0 & -1.5 & -1.5 & 0 & -1.5 & 1.5
\end{array}\right\rfloor
\end{aligned}
$$

and the nodal equivalent forces at node B would have to be summed.
(4) Apply a unit displacement in each of the 3 global degrees of freedom, to determine the structure global stiffness matrix. Each entry $K_{i j}$ of the global stiffness matrix will correspond to the internal force in degree of freedom i, due to a unit displacement in degree of freedom j.
(5) Recalling the force displacement relations derived earlier, we can assemble the global stiffness matrix in terms of contributions from both $A B$ and $B C$:

- Need to complete the following table where columns correspond to imposed displacements on dof j, and rows correspond to the corresponding induced internal forces in each of the elements in dof i. Both are in the global coordinate system.
- $K_{1,2}$ is zero because an imposed displacement along dof 2 (horizontal), while locking all other displacements, does not induce an internal force in any of the two elements.
- K_{31} are the internal forces (moments in here) resulting from an imposed unit displacement in dof 1 (horizontal). This will not "mobilize" AB, but will activate flexure for BC. For BC from the following figure (already shown above

		$K_{i 1}$	$K_{i 2}$	$K_{i 3}$
		Δ_{1}	Δ_{2}	θ_{3}
$K_{1 j}$	AB	$\frac{E A}{L}$	0	0
$\left(F_{X}\right)$	BC	$\frac{12 E I^{c}}{H^{3}}$	0	$\frac{6 E I^{c}}{H^{2}}$
$K_{2 j}$	AB	0	$\frac{12 E I^{b}}{L^{3}}$	$-\frac{6 E I^{b}}{L^{2}}$
$\left(F_{Y}\right)$	BC	0	$\frac{E A}{H}$	0
$K_{3 j}$	AB	0	$-\frac{6 E b^{b}}{L^{2}}$	$\frac{4 E I^{b}}{L}$
$\left(M_{Z}\right)$	BC	$\frac{6 E I^{c}}{H^{2}}$	0	$\frac{4 E I^{c}}{H}$

- Note that all diagonal terms are +ve, and that the table is symmetric.
(6) Summing up, the structure global stiffness matrix $[\mathrm{K}]$ is:

$$
\left.[\mathrm{K}]=\begin{array}{ccc}
& \Delta_{1} & \Delta_{2} \\
P_{1} \\
P_{2} \\
M_{3}\left[\begin{array}{l}
k_{44}^{A B}+k_{22}^{B C}
\end{array} k_{45}^{A B}+k_{21}^{B C}\right. & k_{46}^{A B}+k_{23}^{B C} \\
k^{A B}+k^{B C} & k_{55}^{A B}+k_{11}^{B C} & k_{56}^{A B}+k_{13}^{B C} \\
k_{64}^{A B}+k_{32}^{B C} & k_{65}^{A B}+k_{31}^{B C} & k_{66}^{A B}+k_{33}^{B C}
\end{array}\right]
$$

Substituting

$$
[\mathrm{K}]=10^{6}\left[\begin{array}{ccc}
4.1139 & 0 & 0.0417 \\
0 & 4.1139 & -0.0417 \\
0.0417 & -0.0417 & 0.3333
\end{array}\right]
$$

Note that the axial stiffness $(E A / L)$ is 4.1×10^{6}, while the flexural one $\left(12 E I / H^{3}\right)$ is 0.0071×10^{6}. Axial stiffness is always much higher than flexural stiffness.
(7) We need to have $P_{\text {ext }}$ in global coordinate system. From Eq. 2 and 3 we had

$$
\begin{align*}
& \underbrace{\left\lfloor\begin{array}{llllll}
p_{1}^{A} & p_{2}^{A} & p_{3}^{A} \mid p_{4}^{B} & p_{5}^{B} & p_{6}^{B}
\end{array}\right\rfloor}_{A B}=\begin{array}{llllll}
0 & -\frac{P}{2} & \left.-\frac{P L}{8} \left\lvert\, \begin{array}{lll}
0 & -\frac{P}{2} & \frac{P L}{8}
\end{array}\right.\right\rfloor
\end{array} \tag{4}\\
& \underbrace{\left\lfloor\begin{array}{llllll}
p_{1}^{B} & p_{2}^{B} & p_{3}^{B} \mid p_{4}^{C} & p_{5}^{C} & p_{6}^{C}
\end{array}\right\rfloor}_{B C}=\left\lfloor\begin{array}{lllllll}
0 & -\frac{w H}{2} & \left.-\frac{w H^{2}}{12} \left\lvert\, \begin{array}{llll}
0 & -\frac{w H}{2} & \frac{w H^{2}}{12}
\end{array}\right.\right)
\end{array}\right. \tag{5}
\end{align*}
$$

(8) Cast in the global coordinate system, that will be

$$
\begin{align*}
& \underbrace{\begin{array}{llllll}
P_{1}^{A} & P_{2}^{A} & P_{3}^{A}
\end{array} P_{4}^{B}}_{A B} \begin{array}{lll}
P_{5}^{B} & P_{6}^{B}
\end{array}\rfloor, ~ \begin{array}{lllll}
0 & -\frac{P}{2} & \left.-\frac{P L}{8} \right\rvert\, 0 & -\frac{P}{2} & \frac{P L}{8}
\end{array}\rfloor \tag{6}\\
& \underbrace{\left.\begin{array}{llllll}
P_{1}^{B} & P_{2}^{B} & P_{3}^{B} & P_{4}^{C} & P_{5}^{C} & P_{6}^{C}
\end{array}\right\rfloor}_{B C}=\left\lfloor\begin{array}{lll}
-\frac{w H}{2} & 0 & \left.-\frac{w H^{2}}{12} \left\lvert\, \begin{array}{lll}
-\frac{w H}{2} & 0 & \frac{w H^{2}}{12}(7)
\end{array}\right.\right)\left(\begin{array}{ll}
\end{array}\right]
\end{array}\right.
\end{align*}
$$

(9) The global equation of equilibrium can now be written (note that for illustrative purposes, we kept w and and a moment M at node B).

Substituting:

$$
\left\{\begin{array}{c}
-0.5 \\
0 \\
5
\end{array}\right\}+\underbrace{\left\{\begin{array}{c}
-1.5 \\
-0.5 \\
-0.75
\end{array}\right\}}_{\mathrm{P}_{e l}}=\underbrace{10^{6}\left[\begin{array}{ccc}
4.1139 & 0 & 0.0417 \\
0 & 4.1139 & -0.0417 \\
0.0417 & -0.0417 & 0.3333
\end{array}\right]}_{[\mathrm{K}]}\left\{\begin{array}{l}
\Delta_{1} \\
\Delta_{2} \\
\theta_{3}
\end{array}\right\}
$$

(1) Solve for the displacements

$$
\left\{\begin{array}{c}
\Delta_{1} \\
\Delta_{2} \\
\theta_{3}
\end{array}\right\}=10^{6}\left[\begin{array}{ccc}
4.1139 & 0 & 0.0417 \\
0 & 4.1139 & -0.0417 \\
0.0417 & -0.0417 & 0.3333
\end{array}\right]^{-1}\left\{\begin{array}{c}
-2 \\
-0.5 \\
4.25
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{c}
\Delta_{1} \\
\Delta_{2} \\
\theta_{3}
\end{array}\right\}=10^{-6}\left\{\begin{array}{c}
-0.61 \mathrm{~m} \\
0.0084 \mathrm{~m} \\
12.82 \text { radian }
\end{array}\right\}
$$

(11) To obtain the element internal forces, multiply each element stiffness matrix by the local displacements. For element AB, the local and global coordinates match, thus

$$
\Rightarrow\left\{\begin{array}{c}
p_{\dot{1}}^{?} \\
p_{2}^{?} \\
p_{3}^{?} \\
\hline p_{4}^{?} \\
p_{5}^{?} \\
p_{6}^{?}
\end{array}\right\}=\underbrace{10^{6}\left[\begin{array}{ccc|ccc}
- & - & - & -4.1 \times 10^{6} & 0 & 0 \\
- & - & - & 0 & -13,889 . & 41,667 . \\
- & - & - & 0 & -41,667 . & 83,333 . \\
- & - & - & 4.1 \times 10^{6} & 0 & 0 \\
- & - & - & 0 & 13,889 . & -41,667 \\
- & - & -. & 0 & -41,667 & 166,667 .
\end{array}\right]}_{\mathbf{k} A B}
$$

$$
\underbrace{\left\{\begin{array}{c}
0 \\
0 \\
0 \\
-0.61 \\
0.0084 \\
12.82
\end{array}\right\}}_{\delta A B}-\underbrace{\left\{\begin{array}{c}
0 \\
-0.5 \\
-0.75 \\
0 \\
-0.5 \\
0.75
\end{array}\right\}}_{P_{e l}^{A B}}
$$

or

$$
\left\{\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3} \\
\hline p_{4} \\
p_{5} \\
p_{6}
\end{array}\right\}=\left\{\begin{array}{c}
N_{1} \\
V_{1} \\
M_{1} \\
\hline N_{2} \\
V_{2} \\
M_{2}
\end{array}\right\}=\left\{\begin{array}{c}
2.52 \mathrm{kN} \\
1.03 \mathrm{kN} \\
1.82 \mathrm{kN} . \mathrm{m} . \\
-2.52 \mathrm{kN} \\
-0.034 \mathrm{kN} \\
1.39 \mathrm{kN} . \mathrm{m}
\end{array}\right\}
$$

(12) For element BC , the local and global coordinates do not match, hence we will need to transform the displacements from their global to their local coordinate components. By inspection

Local	x	y	z
Global	$-Y$	$+X$	$+Z$

Note that there are no local or global displacements in dof 1-3, hence

Example Frame

$$
\begin{align*}
\left\{\begin{array}{c}
p_{1}^{?} \\
p_{2}^{?} \\
p_{3}^{?} \\
\hline p_{4}^{?} \\
p_{5}^{?} \\
p_{6}^{?}
\end{array}\right\}= & {\left[\begin{array}{ccc|lll}
4.1 \times 10^{6} & 0 & 0 \\
0 & 13,888.9 & 41,666.7 & - & - & - \\
0 & 41,666.7 & 16,6667 . & - & - & - \\
-4.1 \times 10^{6} & 0 & 0 & - & - & - \\
0 & -13,888.9 & -41,666.7 & - & - & - \\
0 & 41,666.7 & 83,333.3 & - & - & -
\end{array}\right] } \tag{9}\\
& \left\{\begin{array}{c}
-0.0084 \\
-0.61 \\
12.82 \\
12.82 \\
0 \\
0 \\
0
\end{array}\right\}-\left\{\begin{array}{c}
0 \\
-1.5 \\
-1.5 \\
0 \\
-1.5 \\
1.5
\end{array}\right\}=\left\{\begin{array}{c}
N_{1} \\
V_{1} \\
M_{1} \\
N_{2} \\
V_{2} \\
M_{2}
\end{array}\right\}=\left\{\begin{array}{c}
-0.034 \mathrm{kN} \\
2.026 \mathrm{kN} \\
3.612 \mathrm{kN} \cdot \mathrm{~m} \\
0.0344 \mathrm{kN} \\
0.974 \mathrm{kN} \\
-0.456 \mathrm{kN} . \mathrm{m}
\end{array}\right\} \tag{10}
\end{align*}
$$

```
%% Stiffness Method Frame Example 09/18
% courtesy of Xiao Fu
clear all
clc
%% Elements properties
L_elem = [6; 6]; % m
A_elem = [0.123; 0.123]; % m^2
E_elem = [200E6; 200E6]; % kN/m^2
I_elem = [1250E-6; 1250E-6]; % m^4
%% Loads
P = 1;
M = 5;
w = 0.5;
%% Structure Displacements in GCS
% Assemble global stiffness matrix
K = [A_elem(1)*E_elem(1)/L_elem(1)+12*E_elem(2)*I_elem(2)/L_elem(2)^3, 0,\ldots
6*E_elem(2) *I_elem (2)/L_elem(2)^2;
0, A_elem(2) *E_elem(2)/L_elem(2) +12*E_elem(1) *l_elem(1)/L_elem(1)^3,\ldots
-6*E_elem(1) *I_elem(1)/L_elem(1)^2;
6*E_elem(2)*I_elem(2)/L_elem(2)^2, -6*E_elem(1)*I_elem(1)/L_elem(1)^2, ...
4*E_elem(1)*I_elem (1)/L_elem (1) +4*E_elem(2) *I_elem (2)/L_elem(2)]
% Determine vector of external forces
NEL = [-w*L_elem(2)/2; -P/2; P*L_elem(1)/8-w*L_elem(2)^2/12]; % Nodal Equivalent Load at DOFs
F = [-P/2; 0 ; M]; % Externally applied forces
F_ext = NEL + F; % Total External Force
% Solve for Displacement
Disp = K\F_ext
```

```
%% Internal Forces
% Element-AB
i = 1;
k_AB = stiff(E_elem(i), I_elem(i), L_elem(i), A_elem(i) ); % Element stiffness matrix in LCS
NEL_elem_AB=[0; -P/2; -P*L_elem(i)/8; 0;-P/2; P*L_elem(i)/8]; % nodal element forces in LCS
disp_elem_AB = [0; 0; 0; Disp(1); Disp(2); Disp(3)]; % global nodal displ. of AB in LCS
Force_elem_AB = k_AB*disp_elem_AB - NEL_elem_AB % Internal forces of AB in LCS
% Element-BC
i = 2;
k_BC = stiff(E_elem(2), I_elem(2), L_elem(2), A_elem(2) );
NEL_elem_BC= [0; -w*L_elem(i)/2; -w*L_elem(i)^2/12; 0; -w*L_elem(i)/2; w*L_elem(i)^2/12];
disp_elem_BC = [-Disp(2); Disp(1); Disp(3);0;0;0];
Force_elem_BC = k_BC*disp_elem_BC - NEL_elem_BC
```

```
function [k]= stiff(E,I,L,A)
EA=E*A; El=E*I;
k=[
EA/L, 0, 0, -EA/L, 0, 0;
0, 12*EI/L^3, 6*EI/L^2, 0, -12*EI/L^3, 6*EI/L^2;
0, 6*El/L^2, 0, 4*El/L, 0, 0, EA/L, -6*El/L^2, 0, 0, 2* Ll/L; 0;
0, -12*EI/L^3, -6*EI/L^2, 0, 12*EI/L^3, -6*EI/L^2;
0, 6*EI/L^2, 2*EI/L, 0, -6*EI/L^2, 4*EI/L];
```


The two elements have identical flexural and torsional rigidity, El and GJ.
(1) Identify the three degrees of freedom, θ_{1}, Δ_{2}, and θ_{3}.
(2) Restrain all the degrees of freedom, and determine the nodal equivalent loads:

$$
\left\{\begin{array}{l}
T_{1} \\
V_{2} \\
M_{3}
\end{array}\right\}=\underbrace{\left\{\begin{array}{c}
0 \\
-\frac{P}{2} \\
-\frac{P L}{8}
\end{array}\right\}}_{@ \text { node } \mathrm{A}}=\underbrace{\left\{\begin{array}{c}
0 \\
-\frac{P}{2} \\
\frac{P L}{8}
\end{array}\right\}}_{@ \text { node B }}
$$

(3) Apply a unit displacement along each of the three degrees of freedom, and determine the internal forces:
(1) Apply unit rotation along global d.o.f. 1.
(1) AB (Torsion) $K_{11}^{A B}=\frac{G J}{L}, K_{21}^{A B}=0, K_{31}^{A B}=0$
(2) BC (Flexure) $K_{11}^{B C}=\frac{4 E I}{L}, K_{21}^{B C}=\frac{6 E I}{L^{2}}, K_{31}^{B C}=0$
(2) Apply a unit translation along global d.o.f. 2 .
(1) AB (Flexure): $K_{12}^{A B}=0, K_{22}^{A B}=\frac{12 E I}{L^{3}}, K_{32}^{A B}=-\frac{6 E 1}{L^{2}}$
(2) BC (Flexure): $K_{12}^{B C}=\frac{6 E I}{L^{2}}, K_{22}^{B C}=\frac{12 E I}{L^{3}}, K_{32}^{B C}=0$
(3) Apply unit rotation along global d.o.f. 3.
(1) AB (Flexure): $K_{13}^{A B}=0, K_{23}^{A B}=-\frac{6 E I}{L^{2}}, K_{33}^{A B}=\frac{4 E I}{L}$
(2) BC (Torsion): $K_{13}^{B C}=0, K_{23}^{B C}=0, K_{33}^{B C}=\frac{G J}{L}$
(4) The structure stiffness matrix will now be assembled:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
K_{11} & K_{12} & K_{13} \\
K_{21} & K_{22} & K_{23} \\
K_{31} & K_{32} & K_{33}
\end{array}\right]=\left[\begin{array}{lll}
k_{44}^{A B}+k_{33}^{B C} & k_{45}^{A B}+k_{32}^{B C} & k_{46}^{A B}+k_{31}^{B C} \\
K_{54}^{A B}+k_{23}^{B C} & K_{55}^{A B}+K_{22}^{B C} & k_{56}^{A B}+k_{21}^{B C} \\
K_{64}^{A B}+K_{13}^{B C} & K_{55}^{B A}+k_{12}^{B C} & k_{66}^{A B}+k_{11}^{B C}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{E I}{L^{3}}\left[\begin{array}{ccc}
\alpha L^{2} \\
0 & 0 & 0 \\
0 & -6 L & 4 L^{2}
\end{array}\right]+\frac{E I}{L^{3}}\left[\begin{array}{ccc}
4 L^{2} & 6 L & 0 \\
6 L & 12 & 0 \\
0 & 0 & \alpha L^{2}
\end{array}\right] \\
& =\underbrace{\frac{E I}{L^{3}}\left[\begin{array}{ccc}
(4+\alpha) L^{2} & 6 L & 0 \\
6 L & 24 & -6 L \\
0 & -6 L & (4+\alpha) L^{2}
\end{array}\right]}_{\left[K_{\text {Structure }}\right]}
\end{aligned}
$$

where $\alpha=\frac{G J}{E I}$, and in the last equation it is assumed that for element $B C$, node 1 corresponds to C and 2 to B .
(5) The structure equilibrium equation in matrix form:

$$
\underbrace{\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}}_{\mathrm{P}_{\text {ext }}}+\underbrace{\left\{\begin{array}{c}
0 \\
-\frac{P}{2} \\
\frac{P L}{8}
\end{array}\right\}}_{P_{e l}}-\underbrace{\frac{E I}{L^{3}}\left[\begin{array}{ccc}
(4+\alpha) L^{2} & 6 L & 0 \\
6 L & 24 & -6 L \\
0 & -6 L & (4+\alpha) L^{2}
\end{array}\right]}_{[\mathrm{K}]} \underbrace{\left\{\begin{array}{c}
\theta_{i}^{?} \\
\Delta_{2}^{?} \\
\theta_{3}^{?}
\end{array}\right\}}_{\{\Delta\}}=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{l}
\theta_{1} \\
\Delta_{2} \\
\theta_{3}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{P L^{2}}{16 I} \frac{5+2 \alpha}{(1+\alpha)(4+\alpha)} \\
-\frac{P L^{5}}{965 I} \frac{5+2 \alpha}{1+\alpha} \\
-\frac{3 P L^{2} E I}{16 E I}(1+\alpha)(4+\alpha)
\end{array}\right\}
$$

(6) Internal forces: multiply each element stiffness matrix $[\mathrm{k}]$ with the vector of nodal displacement $\{\boldsymbol{\delta}\}$. Note these operations should be accomplished in local coordinate system, and great care should be exercized in writing the nodal displacements in the same local coordinate system as the one used for the derivation of the element stiffness matrix.
(?) The mapping between local and global dof

$$
\mathrm{AB}\left\{\begin{array}{lll}
x & \leftarrow & X \\
y & \leftarrow & Y \\
z & \leftarrow & Z
\end{array} ; \quad \mathrm{BC}\left\{\begin{array}{lll}
x & \leftarrow & -Z \\
y & \leftarrow & Y \\
z & \leftarrow & X
\end{array}\right.\right.
$$

(8) For element $A B$ and $B C$, the vector of nodal displacements are

$$
\left\{\begin{array}{c}
\delta_{1} \\
\delta_{2} \\
\delta_{3} \\
\hline \delta_{4} \\
\delta_{5} \\
\delta_{6}
\end{array}\right\}=\underbrace{\left\{\begin{array}{c}
0 \\
0 \\
0 \\
\hline \theta_{1} \\
\Delta_{2} \\
\theta_{3}
\end{array}\right\}}_{A B}=\underbrace{\left\{\begin{array}{c}
-\theta_{3} \\
\Delta_{2} \\
\theta_{1} \\
\hline 0 \\
0 \\
0
\end{array}\right\}}_{B C}
$$

(9) For element AB we have

(10) For element BC :

- Covered:
- "rotation" of stiffness matrix from k^{e} to K^{e}.
- Displacements vectors from δ to Δ
- Assembly of structural stiffness matrix $\mathrm{K}^{S}=\sum \mathrm{K}^{e}$.
- Next need to generalize the method to
- Rotation matrices Γ for stiffness, displacements and forces.
- Automate assembly process.
- Write Matlab code.
- Address special topics
- Move to "classical" finite element method.

Intermediary Structural Analysis

Transformation Matrices

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2021

Table of Contents

(1) Why Transformation Matrix
(2) Problem Statement
(3) Derivation

4 Direction Cosines
(5) Transformation Matrices

- 2D Frame
- 2D Grid
- 2D/3D Truss
- 3D Frame; Inclined, 2 Rotations
- 3D Frame; Vertical, 2 Rotations
- 3D Frame; Rotation of Principal axes; Inclined, 3 Rotations
- 3D Frame; Vertical, 3 Rotations
- Assembly of structure stiffness matrix is in global coordinate system, element stiffness matrix is first computed in local coordinate system.
- Need to transform k into K and δ into Δ for arbitrary structures.

- Recall

$$
\begin{equation*}
\left\{\mathrm{p}^{(e)}\right\}=\left[\mathrm{k}^{(e)}\right]\left\{\boldsymbol{\delta}^{(e)}\right\} \text { and }\left\{\mathrm{P}^{(e)}\right\}=\left[\mathrm{K}^{(e)}\right]\left\{\Delta^{(e)}\right\} \tag{1}
\end{equation*}
$$

- Let us define a vector transformation matrix $\left[\Gamma^{(e)}\right]$ such that:

$$
\begin{equation*}
\left\{\boldsymbol{\delta}^{(e)}\right\} \stackrel{\text { def }}{=}\left[\Gamma^{(e)}\right]\left\{\Delta^{(e)}\right\} \text { and }\left\{\mathbf{p}^{(e)}\right\} \stackrel{\text { def }}{=}\left[\Gamma^{(e)}\right]\left\{P^{(e)}\right\} \tag{2}
\end{equation*}
$$

- Substituting we obtain $\left\{\mathrm{p}^{e}\right\}=\left[\Gamma^{(e)}\right]\left\{\mathrm{P}^{(e)}\right\}=\left[\mathrm{k}^{(e)}\right]\left[\Gamma^{(e)}\right]\left\{\Delta^{(e)}\right\}$ premultiplying by $\left[\Gamma^{(e)}\right]^{-1}:\left\{\mathrm{P}^{(e)}\right\}=\left[\Gamma^{(e)}\right]^{-1}\left[\mathrm{k}^{(e)}\right]\left[\Gamma^{(e)}\right]\left\{\Delta^{(e)}\right\}$
- But since the rotation matrix is orthogonal, we have $\left[\Gamma^{(e)}\right]^{-1}=\left[\Gamma^{(e)}\right]^{T}$ (and $\left.\left\{\Delta^{(e)}\right\}=\left[\Gamma^{(e)}\right]^{\top}\left\{\boldsymbol{\delta}^{(e)}\right\}\right)$

$$
\begin{gather*}
\left\{\mathrm{P}^{(e)}\right\}=\underbrace{\left[\Gamma^{(e)}\right]^{T}\left[\mathrm{k}^{(e)}\right]\left[\Gamma^{(e)}\right]}_{\left[\mathrm{K}^{(e)}\right]}\left\{\Delta^{(e)}\right\} \\
{\left[\mathrm{K}^{(e)}\right]=\left[\Gamma^{(e)}\right]^{T}\left[\mathbf{k}^{(e)}\right]\left[\Gamma^{(e)}\right]} \tag{3}
\end{gather*}
$$

which is the general relationship between element stiffness matrix in local and global coordinates.

$$
\left\{\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right\}=\underbrace{\left[\begin{array}{lll}
I_{x x} & I_{x Y} & I_{x z} \\
I_{y x} & I_{y Y} & I_{y z} \\
I_{z x} & I_{z Y} & I_{z z}
\end{array}\right]}_{[\gamma]}\left\{\begin{array}{l}
V_{X} \\
V_{Y} \\
V_{Z}
\end{array}\right\}
$$

- $l_{i j}$ is the direction cosine of axis i with respect to axis j.
- $I_{X X}=\cos (\alpha) ; I_{X Y}=\cos (\beta)$;
- Recall that $\cos (-\alpha)=\cos (\alpha)$, hence angle direction is irrelevant.
- The first row is given by (in terms of lower case $x-y-z$)

$$
\begin{equation*}
I_{X X}=C_{X}=\frac{x_{j}-x_{i}}{L} ; \quad I_{X Y}=C_{Y}=\frac{y_{j}-y_{i}}{L} ; \quad I_{X z}=C_{Z}=\frac{z_{j}-z_{i}}{L} \tag{4}
\end{equation*}
$$

where $L=\sqrt{\left(x_{j}-x_{i}\right)^{2}+\left(y_{j}-y_{i}\right)^{2}+\left(z_{j}-z_{i}\right)^{2}}$.

- Determining other rows is best accomplished as follows in the next slides

At first, the local and global coordinate systems are superimposed, we then perform a rotation α with respect to the Z axis.

$$
\begin{align*}
{[\boldsymbol{\gamma}] } & =\left[\begin{array}{ccc}
I_{x X} & I_{X Y} & I_{X z} \\
l_{y X} & I_{y Y} & I_{y Z} \\
I_{z X} & I_{z Y} & 1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \alpha & \cos \left(\frac{\pi}{2}-\alpha\right) & 0 \\
\cos \left(\frac{\pi}{2}+\alpha\right) & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos \alpha & \sin \alpha & 0 \\
-\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right] \tag{5}
\end{align*}
$$

We observe that the angles are defined from the second subscript to the first, and that counterclockwise angles are positive.

$$
\left\{\begin{array}{c}
p_{1} \tag{6}\\
p_{2} \\
\frac{p_{3}}{p_{4}} \\
p_{5} \\
p_{6}
\end{array}\right\}=\underbrace{\left[\begin{array}{ccc|ccc}
\cos \alpha & \sin \alpha & 0 & 0 & 0 & 0 \\
-\sin \alpha & \cos \alpha & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & \cos \alpha & \sin \alpha & 0 \\
0 & 0 & 0 & -\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]}_{[\Gamma]}\left\{\begin{array}{c}
P_{1} \\
P_{2} \\
\frac{P_{3}}{P_{4}} \\
P_{5} \\
P_{6}
\end{array}\right\}
$$

At first, the local and global coordinate systems are superimposed, we then perform a rotation α with respect to the y axis.

Rotation with respect to the Y axis.

$$
[\boldsymbol{\gamma}]=\left[\begin{array}{ccc}
I_{x X} & 0 & I_{x Z} \\
I_{y x} & I_{y Y} & I_{y z} \\
I_{z x} & 0 & I_{z Z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \alpha & 0 & \cos \left(\frac{\pi}{2}-\alpha\right) \\
0 & 1 & 0 \\
\cos \left(\frac{\pi}{2}+\alpha\right) & 0 & \cos \alpha
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right]
$$

$$
\left\{\begin{array}{l}
p_{1} \tag{7}\\
p_{2} \\
p_{3} \\
\hline p_{4} \\
p_{5} \\
p_{6}
\end{array}\right\}=\underbrace{\left[\begin{array}{ccc|ccc}
\cos \alpha & 0 & \sin \alpha & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
-\sin \alpha & 0 & \cos \alpha & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & \cos \alpha & 0 & \sin \alpha \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -\sin \alpha & 0 & \cos \alpha
\end{array}\right]}_{[\Gamma]}\left\{\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3} \\
\hline P_{4} \\
P_{5} \\
P_{6}
\end{array}\right\}
$$

- At first, the local and global coordinate systems are superimposed, we then perform a rotation α with respect to the Z axis.
- Note that in local coordinate system, a truss has only 2 dof, while in the global one it has 2 or 3 (2D or 3D). Hence, γ will have only one row, and 2 or 3 columns.

Rotation with respect to the Z axis.

$$
\begin{aligned}
{[\gamma] } & =\left[\begin{array}{ll}
I_{X X} & I_{X Y}
\end{array}\right]=\left[\begin{array}{lll}
I_{X X} & C y
\end{array}\right] \\
& =\left[\begin{array}{lll}
I_{X X} & I_{X Y} & I_{X Z}
\end{array}\right]=\left[\begin{array}{lll}
\cos \alpha & \sin \alpha
\end{array}\right]
\end{aligned}
$$

for 2D

$$
\left\{\frac{p_{1}}{p_{2}}\right\}=\left[\begin{array}{cc}
{[\gamma]} & 0 \tag{8}\\
0 & {[\gamma]}
\end{array}\right]=\underbrace{\left[\begin{array}{cc|cc}
\cos \alpha & \sin \alpha & 0 & 0 \\
\hline 0 & 0 & \cos \alpha & \sin \alpha
\end{array}\right]}_{[\Gamma]}\left\{\begin{array}{c}
P_{1} \\
\frac{P_{2}}{P_{3}} \\
P_{4}
\end{array}\right\}
$$

- 2D elements are transformed through a single rotation (α).
- 3D elements are transformed through a minimum of 2, possibly 3 rotations through the eulerian angles β, γ and α.
- Start from X_{1}, Y_{1}, Z_{1} and end with $X_{\gamma}, Y_{\gamma}, Z_{\gamma}$ or $X_{\alpha}, Y_{\alpha}, Z_{\alpha}$
- Start with the first row of the transformation matrix which corresponds to the direction cosines of the reference axis ($\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1}$) with respect to X_{2}. This will define the first row of the vector rotation matrix $[\gamma]$:

$$
[\gamma]=\left[\begin{array}{lll}
C_{X} & C_{Y} & C_{Z} \tag{9}\\
l_{21} & l_{22} & l_{23} \\
l_{31} & l_{32} & l_{33}
\end{array}\right]
$$

- Still have to define the second and third rows. This is achieved through through two successive rotations (assuming that (X_{1}, Y_{1}, Z_{1} and $X_{\beta}, Y_{\beta}, Z_{\beta}$ are originally coincident) (assuming that the vertical axis of the member remains vertical)

From	To	With respect to	Angle	
X_{1}, Y_{1}, Z_{1}	$X_{\beta}, Y_{\beta}, Z_{\beta}$	$Y_{1} \equiv Y_{\beta}$	β	
$X_{\beta}, Y_{\beta}, Z_{\beta}$	$X_{\gamma}, Y_{\gamma}, Z_{\gamma}$	$Z_{\beta} \equiv Z_{\gamma}$	γ	
Optional				
$X_{\gamma}, Y_{\gamma}, Z_{\gamma}$	$X_{\alpha}, Y_{\alpha}, Z_{\alpha}$	$X_{\gamma} \equiv X_{\alpha}$	α	

(1) Rotation by β about the Y_{1} axis, $X_{1} \rightarrow X_{\beta}$. This rotation $\left[\mathrm{R}_{\beta}\right]$ is made of the direction cosines of the β axis $\left(X_{\beta}, Y_{\beta}, Z_{\beta}\right)$ with respect to $\left(X_{1}, Y_{1}, Z_{1}\right)$:

$$
\left[R_{\beta}\right]=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right]=\left[\begin{array}{ccc}
\frac{C_{X}}{C_{X Z}} & 0 & \frac{C_{z}}{C_{X Z}} \\
0 & 1 & 0 \\
-\frac{C_{z}}{C_{X Z}} & 0 & \frac{C_{X}}{C_{X Z}}
\end{array}\right]
$$

$\cos \beta=\frac{C_{X}}{C_{X Z}}, \sin \beta=\frac{C_{z}}{C_{X Z}}$, and from Eq. 4:

$$
C_{X}=\frac{x_{j}-x_{i}}{L} ; \quad C_{Y}=\frac{y_{j}-y_{i}}{L} ; \quad C_{Z}=\frac{z_{j}-z_{i}}{L} ; \quad C_{X Z}=\sqrt{C_{X}^{2}+C_{Z}^{2}}
$$

(2) Rotation by γ about the Z axis

$$
\left[\mathrm{R}_{\gamma}\right]=\left[\begin{array}{ccc}
\cos \gamma & \sin \gamma & 0 \\
-\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
C_{X Z} & C_{Y} & 0 \\
-C_{Y} & C_{X Z} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

where $\cos \gamma=C_{X Z}$, and $\sin \gamma=C_{Y}$.

Combining yields:

$$
[\gamma]=\left[\mathrm{R}_{\gamma}\right]\left[\mathrm{R}_{\beta}\right]=\left[\begin{array}{ccc}
C_{X} & C_{Y} & C_{Z} \tag{10}\\
\frac{-C_{X} C_{Y}}{C_{X}} & C_{X Z} & \frac{-C_{Y} C_{Z}}{C_{X Z}} \\
\frac{-C_{Z}}{C_{X Z}} & 0 & \frac{C_{X}}{C_{X Z}}
\end{array}\right]
$$

For vertical member (along global Y) the preceding matrix is no longer valid as $C_{x z}$ is undefined ($X_{i}=X_{j} \Rightarrow C_{X}=0$ and $Z_{i}=Z_{j} \Rightarrow C_{z}=0$). There is no rotation through β. Rotation is with respect to the Z_{1} axis by an angle γ of 90° or 270°.

(1) X_{γ} axis is aligned with Y_{1}
(2) Y_{γ} axis is aligned with $-X_{1}$
(3) Z_{γ} axis is aligned with Z_{1}
or
(1) X_{γ} axis is aligned with $-Y_{1}$
(2) Y_{γ} axis is aligned with $-X_{1}$
(3) Z_{γ} axis is aligned with Z_{1}
hence the rotation matrix with respect to the y axis, is similar to the one previously derived for rotation with respect to the z axis, except for the reordering of terms:

$$
\left[R_{\gamma}\right]=\left[\begin{array}{ccc}
0 & C_{Y} & 0 \tag{11}\\
-C_{Y} & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

which is valid for both cases ($C_{Y}=1$ for $\gamma=90^{\circ}$, and $C_{Y}=-1$ for $\gamma=270^{\circ}$).

If the principal axes are to be rotated, then we need to define an additional rotation to the preceding transformation of an angle α about the X_{γ} axis.

This rotation is defined such that:
(1) X_{α} is aligned with X_{γ} and normal to both Y_{γ} and Z_{γ}
(2) Y_{α} makes an angle α with respect to Y_{γ} and $\beta=\frac{\pi}{2}-\alpha$
(3) Z_{α} makes an angle $0, \frac{\pi}{2}+\alpha$ and α, with respect to X_{γ}, Y_{γ} and Z_{γ} respectively
$\cos \left(\frac{\pi}{2}+\alpha\right)=-\sin \alpha$ and $\cos \beta=\sin \alpha$, the direction cosines of this transformation are given by:

$$
\left[R_{\alpha}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{12}\\
0 & \cos \alpha & \sin \alpha \\
0 & -\sin \alpha & \cos \alpha
\end{array}\right]
$$

causing the $Y_{\gamma}-Z_{\gamma}$ axis to coincide with the principal axes of the cross section. This will yield:

$$
\begin{aligned}
{[\gamma] } & =\left[\mathrm{R}_{\alpha}\right]\left[\mathrm{R}_{\gamma}\right]\left[\mathrm{R}_{\beta}\right] \\
& =\left[\begin{array}{ccc}
C_{X} & C_{Y} & C_{Z} \\
\frac{-C_{X} C_{Y} \cos \alpha-C_{Z} \sin \alpha}{C_{X Z}} & C_{X Z} \cos \alpha & \frac{-C_{Y} C_{Z} \cos \alpha+C_{X} \sin \alpha}{C_{X Z}} \\
\frac{C_{X} C_{Y} \sin \alpha-C_{Z} \cos \alpha}{C_{X Z}} & -C_{X Z} \sin \alpha & \frac{C_{Y} C_{Z} \sin \alpha+C_{X} \cos \alpha}{C_{X Z}}
\end{array}\right]
\end{aligned}
$$

As for the simpler case, the preceding equation is undefined for vertical members, and a counterpart to Eq. 11 must be derived. This will be achieved in two steps:
(1) Rotate the member so that:
(1) X_{γ} axis aligned with Y_{1}
(2) Y_{γ} axis aligned with $-X_{1}$
(3) Z_{γ} axis aligned with Z_{1}
this was previously done and resulted in Eq. 11

$$
\left[R_{\gamma}\right]=\left[\begin{array}{ccc}
0 & C_{Y} & 0 \\
-C_{Y} & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(2) The second step consists in performing a rotation of angle α with respect to the new X_{2} as defined in Eq. 12.
(3) Finally, we multiply the two transformation matrices $\left[R_{\gamma}\right]\left[R_{\alpha}\right]$ given by Eq. 14 to obtain:

$$
[\gamma]=\left[R_{\gamma}\right]\left[R_{\alpha}\right]=\left[\begin{array}{ccc}
0 & C_{Y} & 0 \tag{14}\\
-C_{Y} \cos \alpha & 0 & \sin \alpha \\
C_{Y} \sin \alpha & 0 & \cos \alpha
\end{array}\right]
$$

Note with $\alpha=0$, we recover Eq. 11.

and should distinguish between the vector transformation $[\Gamma]$ and the

 element transformation matrix $[\gamma]$.
Intermediary Structural Analysis Stiffness Method; II

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2021

Table of Contents I

(1) Objectives

- Structural Discretization
- Examples
(2) Mathematical Model
(3) Theory
- Structural Analysis; A Boundary Value Problem
- Unconstrained vs Constrained Degrees of freedom
- Fundamental Relations

4 Computer Implementation

- Global DOF
- Assembly of the Structure's Stiffness Matrix
- Assembly of the Load Vector
- Direct Stiffness Method; Algorithm
- Example Beam
- Example Truss
- We know how to determine an individual element stiffness matrix in its local coordinate system.
- We have explored the stiffness method for orthogonal structures through a manual procedure, and assembled the global stiffness matrix in terms of free degrees of freedom (i.e. unconstrained).
- We have introduced the transformation matrices for various element types, and can determine the element stiffness matrix in system (i.e. global) coordinate system through $\mathrm{K}^{(e)}=\Gamma^{(e) T} \mathrm{k}^{(e)} \Gamma^{(e)}$.
- Next, we will generalize the stiffness method to
(1) address arbitrary structural geometries (i.e. non orthogonal).
(2) Determination of reactions through the use of augmented stiffness matrix.
(3) Describe algorithms to fully automate (i.e. write a computer program) the procedure.
- Numerical modeling of a structure requires that we can mathematically describe it (geometry, boundary conditions, geometry and properties of elements, and loads).

Note: LM Locator Matrix

Structural idealization is as much an art as a science.

(1) 2D vs 3D
(2) Frame or truss
(3) Rigid or semi-rigid connections
(4) Rigid supports or elastic foundations
(5) Include or not secondary members
(6) Include or not axial deformation
(7) Cross sectional properties
(8) Neglect or not haunches
(9) Linear or nonlinear analysis (linear analysis can not predict the peak or failure load, and will underestimate the deformations).
(10) Small or large deformations
(1) Time dependent effects
(12) Partial collapse or local yielding
(3) Static or dynamic
(44) Wind load
(15) Thermal load
(6) Secondary stresses
(17) ...

- Analysis of a structure is essentially solving a boundary value problem (governed by a differential equation over the volume Ω, and subjected to space/temporal boundary conditions along the boundary Γ).
- In our case we are discretizing our structure, and the governing differential equation (equilibrium) is embedded in $\mathrm{K} \Delta=\mathrm{P}$.
- $\Gamma=\Gamma_{t} \cup \Gamma_{u}$

Γ	Traction	Displ.	Math.	Struct.	DOF
Γ_{t}	P_{t}^{V}	$\Delta_{t}^{?}$	Neuman	Essential	Free
Γ_{u}	$\mathrm{R}_{u}^{?}$	$\Delta_{u}^{ป}$	Dirichlet	Natural	Fixed/Constrained

Γ_{t} Known tractions, unknown

Mechanics

For the beam and the dam, we need to determine the displacements along Γ_{t} and the forces (reactions) along Γ_{u}.

- We have labeled the global dof associated with the unconstrained dof $\left(\Gamma_{t}\right)$, where we solve for the displacements.
- We will need to label the global dof associated with the constrained dof $\left(\Gamma_{u}\right)$ where we will solve for the reactions.
- We will label the dof along Γ_{t} first, and then those along Γ_{u} next.
- We have so far considered the reduced stiffness matrix (associated with Γ_{t} only).
- We will need to assemble the augmented stiffness matrix associated with $\Gamma=\Gamma_{t} \cup \Gamma_{u}$

- Global coordinate system

$$
\begin{align*}
\mathrm{K}^{e} & =\Gamma^{\Gamma_{\mathrm{k}}^{e} \Gamma} \tag{1}\\
\mathrm{~K}^{S} & =\sum_{e=1}^{e=n e l e m} \mathrm{~K}^{e} \tag{2}\\
\left\{\frac{\mathrm{P}_{t}^{\vee}}{\mathrm{R}_{u}^{?}}\right\} & =\underbrace{\left[\begin{array}{c|c|c}
\mathrm{K}_{t t} & \mathrm{~K}_{t u} \\
\mathrm{~K}_{u t} \mid \mathrm{K}_{u u}
\end{array}\right]}_{\text {Augmented Stiffness Matrix }}\left\{\frac{\Delta_{t}^{?}}{\Delta_{u}^{\vee}}\right\} \tag{3}\\
\mathrm{K}_{t t} & =\mathrm{f}^{-1} ; \text { Reduced Stiffness Matrix } \tag{4}\\
\Delta_{t} & =\mathrm{K}_{t t}^{-1} \underbrace{\left(\mathrm{P}_{t}-\mathrm{K}_{t u} \Delta_{u}\right)}_{\mathrm{P}_{t}^{\prime}} \tag{5}\\
\mathrm{R}_{u} & =\mathrm{K}_{u t} \Delta_{t}+\mathrm{K}_{u u} \Delta_{u} \tag{6}
\end{align*}
$$

- Local coordinate system

$$
\begin{align*}
& \delta^{(e)}=\Gamma^{(e)} \Delta^{(e)} \tag{7}\\
& p_{\text {int }}^{(e)}=\mathbf{k}^{(e)} \boldsymbol{\delta}^{(e)} \tag{8}
\end{align*}
$$

Note effect of $P_{e l}$ not included for clarity

$K_{i j}^{(e)} \rightarrow K_{s t}^{(S)}$ and $\left\{\begin{aligned} s & =L M(e, i) \\ t & =L M(e, j)\end{aligned} \quad[L M]\right.$ is a mapping between the element global dof and the structure's (global) dof.

$\Rightarrow P_{t}\left(L M^{(e)}(i)\right)=P_{\text {NEF }}^{(e)}(i)+P_{t}\left(L M^{(e)}(i)\right) ; \forall L M^{(e)}(i) \leq \operatorname{size}\left(K_{t t}\right)$
$\operatorname{size}\left(K_{t t}\right)=3$; Corresponds to number of unconstrainded dof

| $L M(2,1)=1 \leq 3 \Rightarrow$ | $P_{t}(L M(2,1))=P_{E l}^{(2)}(1)+P_{\text {nod }}(L M(2,1)) \Rightarrow$ | $P_{t}(1)=0+P_{\text {nod }}(1)$ | $=0+18.7$ | $=18.7$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $L M(2,2)=2 \leq 3 \Rightarrow$ | $P_{t}(L M(2,2))=P_{E l}^{(2)}(2)+P_{\text {nod }}(L M(2,2)) \Rightarrow$ | $P_{t}(2)=-16+P_{\text {nod }}(2) \quad=-16-46.4$ | $=-62.4$ | |
| $L M(2,3)=3 \leq 3 \Rightarrow$ | $P_{t}(L M(2,3))=P_{E l}^{(2)}(3)+P_{\text {nod }}(L M(2,3)) \Rightarrow$ | $P_{t}(3)=-21.33+P_{\text {nod }}(3)=0-21.33$ | $=-21.33$ | |

(1) Preliminaries
(1) Read the structure mathematical model (type, coordinates, connectivity, cross-sectional and material properties, loads)
(2) Determine the number of nodes (nnode), number of element (nelem), maximum number dof/node (ndofpn), size of $K_{t t}$ (sizet), total number of dof (ndoft), update ID and determine LM matrices
(2) Analysis, Global:
(1) For each element, determine
(1) Vector LM mapping local element to global structure degrees of freedoms.
(2) Element stiffness matrix $\left[\mathrm{k}^{(e)}\right]$
(3) Transformation matrix $\left[\Gamma^{(e)}\right]$
(4) Element stiffness matrix in global coordinates $\left[\mathrm{K}^{(e)}\right]=\left[\Gamma^{(e)}\right]^{T}\left[\mathbf{k}^{(e)}\right]\left[\Gamma^{(e)}\right]$
(2) Assemble the augmented stiffness matrix $\left[\mathrm{K}^{(S)}\right]=\sum_{e=1}^{n e l e m} \mathrm{k}^{(e)}$ of unconstrained and constrained degree of freedom's.
(3) Extract $\left[\mathrm{K}_{t t}\right]$ from $\left[\mathrm{K}^{(S)}\right]$ and invert (actually decompose).
(4) Load Vector
(1) Compute nodal equivalent forces vectors for each element in local coordinate system $\mathrm{p}_{E l}^{(e)}$ and in global coordinate system $\mathrm{P}_{E I}^{(e)}=\Gamma^{(e)^{T}} \mathrm{p}_{E I}^{(e)}$
(2) Assemble the nodal load vector to include nodal loads and nodal equivalent forces (note P is for the structure).

$$
\mathrm{P}_{t}=\sum_{e=1}^{\text {nelem }} \mathrm{P}_{E l}^{(e)}+\mathrm{P}_{\text {nodes }}\left(L M^{(e)}(i)\right) ; \forall L M^{(e)} \leq \operatorname{size}\left(K_{t t}\right)
$$

(5) Backsubstitute and obtain nodal displacements global coordinate system, $\Delta=\mathrm{K}_{t t}^{-1} \mathrm{P}_{t}$
(6) Extract $\mathrm{K}_{u t}$
(7) Determine P_{R} that will store

$$
\begin{equation*}
\mathrm{P}_{R}(1 \text { :ndof-sizet })=\sum_{e=1}^{\text {nelem }} \Gamma^{(e)} \mathrm{p}_{e l}^{(e)} ; \forall L M^{(e)}>\operatorname{size}\left(K_{t t}\right) \tag{9}
\end{equation*}
$$

Those are the element load transformed to the global coordinate system for those degrees of freedom that are fixed. Hence they will affect the reaction.
(8) Solve for the reactions, $\mathrm{R}_{u}=\mathrm{K}_{u t} \Delta_{t}+\mathrm{K}_{u u} \Delta_{u}-\mathrm{P}_{R}$
(3) Analysis, Local; Internal forces: for each element
(1) Determine the element nodal displacements in global coordinate system from the global nodal displacements
(2) Transform its nodal displacement from global to local coordinates $\delta^{(e)}=\left[\Gamma^{(e)}\right] \Delta^{(e)}$.
(3) Determine the internal forces $\mathrm{p}^{(e)}=\mathrm{k}^{(e)} \boldsymbol{\delta}^{(e)}-\mathrm{p}_{E l}^{(e)}$.

We consider the third case, a cantilevered Beam with initial Displacement and no other load.
(1) The LM matrix is $L M=\left\lfloor\begin{array}{llll}2 & 3 & 4 & 1\end{array}\right\rfloor$
(2) The element stiffness matrix is

$$
\left.\mathrm{k}^{(e)}=\begin{array}{c}
2 \\
2
\end{array} \begin{array}{cccc}
3 \\
3 \\
4 \\
12 E I / L^{3} & 6 E I / L^{2} & -12 E I / L^{3} & 6 E I / L^{2} \\
6 E I / L^{2} & 4 E I / L & 6 E I / L^{2} & 2 E I / L \\
1-12 E I / L^{3} & -6 E I / L^{2} & 12 E I / L^{3} & -6 E I / L^{2} \\
6 E I / L^{2} & 2 E I / L & -6 E I / L^{2} & 4 E I / L
\end{array}\right]
$$

(3) The augmented structure stiffness matrix is assembled

$$
\mathrm{K}^{(S)}=\begin{gathered}
1 \\
1 \\
2 \\
3 \\
4
\end{gathered}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
4 E I / L & 6 E I / L^{2} & 2 E I / L & -6 E I / L^{2} \\
6 E I / L^{2} & 12 E I / L^{3} & 6 E I / L^{2} & -12 E I / L^{3} \\
2 E I / L & 6 E I / L^{2} & 4 E I / L & 6 E I / L^{2} \\
-6 E I / L^{2} & -12 E I / L^{3} & -6 E I / L^{2} & 12 E I / L^{3}
\end{array}\right]
$$

(4) The global augmented matrix can be decomposed as

$$
\left\{\begin{array}{c}
M_{1}(=0) \sqrt{ } \\
\hline R_{2} ? \\
R_{3} ? \\
R_{4} ?
\end{array}\right\}=\left[\begin{array}{c|ccc}
4 E I / L & 6 E I / L^{2} & 2 E I / L & -6 E I / L^{2} \\
\hline 6 E I / L^{2} & 12 E I / L^{3} & 6 E I / L^{2} & -12 E I / L^{3} \\
2 E I / L & 6 E I / L^{2} & 4 E I / L & 6 E I / L^{2} \\
-6 E I / L^{2} & -12 E I / L^{3} & -6 E I / L^{2} & 12 E I / L^{3}
\end{array}\right]\left\{\begin{array}{c}
\theta_{1} ? \\
\hline \Delta_{2} \sqrt{ } \\
\theta_{3} \sqrt{ } \\
\Delta_{4} \sqrt{ }
\end{array}\right\}
$$

(5) $\mathrm{K}_{t t}$ is inverted (or actually decomposed) and stored in the same global matrix storage location
$\left[\begin{array}{c|ccc}\hline L / 4 E I & 6 E I / L^{2} & 2 E I / L & -6 E I / L^{2} \\ \hline 6 E I / L^{2} & 12 E I / L^{3} & 6 E I / L^{2} & -12 E I / L^{3} \\ 2 E I / L & 6 E I / L^{2} & 4 E I / L & -6 E I / L^{2} \\ -6 E I / L^{2} & -12 E I / L^{3} & -6 E I / L^{2} & 12 E I / L^{3}\end{array}\right]$
(6) Next we compute the equivalent load, $\mathrm{P}_{t}^{\prime}=\mathrm{P}_{t}-\mathrm{K}_{t u} \Delta_{u}$, and overwrite P_{t} by P_{t}^{\prime} (Note that we are boxing terms of interest only).

$$
\begin{aligned}
& \mathrm{P}_{t}-\mathrm{K}_{t u} \Delta_{u}=\left\{\begin{array}{c}
\left.\begin{array}{|c|cc|}
\hline M_{1}=0 \\
\hline R_{2} ? \\
R_{3} ? \\
R_{4} ?
\end{array}\right\}-\left[\begin{array}{ccc}
L / 4 E I & 6 E I / L^{2} & 2 E I / L \\
\hline 6 E I / L^{2} & 12 E I / L^{3} & 6 E I / L^{2} \\
2 E I / L & -6 E I / L^{2} \\
-6 E I / L^{2} & -12 E I / L^{2} & 4 E I / L \\
\hline & -6 E I / L^{3} \\
\hline & -6 E I / L^{2} & 12 E I / L^{3}
\end{array}\right]\left\{\begin{array}{c}
\theta_{1} \\
\hline 0 \\
\hline 0 \\
\hline \Delta_{0}
\end{array}\right\} \\
\end{array}\right\} \\
&\left.=\begin{array}{c}
6 E I \Delta_{0} / L^{2} \\
\hline R_{2} ? \\
R_{3} ? \\
R_{4} ?
\end{array}\right\}
\end{aligned}
$$

(7) Solve for the displacements from $\Delta_{t}=\mathrm{K}_{t t}^{-1}\left(\mathrm{P}_{t}-\mathrm{K}_{t u} \Delta_{u}\right)$ and overwrite P_{t} by Δ_{t}

$$
\begin{aligned}
&\left\{\begin{array}{c}
\left.\begin{array}{|c|ccc}
\theta_{i}^{?} \\
\hline 0 \\
0 \\
\Delta_{0}^{\sqrt{2}}
\end{array}\right\}
\end{array}\right\}=\left[\begin{array}{ccc}
\hline L / 4 E I & 6 E I / L^{2} & 2 E I / L \\
\hline 6 E I / L^{2} & 12 E I / L^{3} & 6 E I / L^{2} \\
2 E I / L & -12 E I / L^{2} \\
-6 E I / L^{2} & -12 E I / L^{2} & 4 E I / L \\
-6 E I / L^{2} & -6 E I / L^{2} \\
\hline-2 E I / L^{3}
\end{array}\right]\left\{\begin{array}{c}
6 E I \Delta_{0} / L^{2} \\
R_{2} ? \\
R_{3} ? \\
R_{4} ?
\end{array}\right\} \\
&=\left\{\begin{array}{c}
3 \Delta_{0} / 2 L \\
0 \\
0 \\
0
\end{array}\right\}
\end{aligned}
$$

(8) Finally, we solve for the reactions, $\mathrm{R}_{u}=\mathrm{K}_{u t} \Delta_{t t}+\mathrm{K}_{u u} \Delta_{u}$, and overwrite Δ_{u} by R_{u}

$$
\left\{\begin{array}{c}
M_{1} \\
\hline R_{2} \\
\hline R_{3} \\
\hline R_{4}
\end{array}\right\}=\left[\begin{array}{c|ccc}
\hline L / 4 E I & 6 E I / L^{2} & 2 E I / L & -6 E I / L^{2} \\
\hline 6 E I / L^{2} & 12 E I / L^{3} & 6 E I / L^{2} & -12 E I / L^{3} \\
\hline 2 E I / L & 6 E I / L^{2} & 4 E I / L & -6 E I / L^{2} \\
\hline-6 E I / L^{2} & -12 E I / L^{3} & -6 E I / L^{2} & 12 E I / L^{3}
\end{array}\right]
$$

(1) Degrees of freedom and LM (connectivity: from lower to higher node number)

$$
I D=\left[\begin{array}{ll}
0 & 1 \\
0 & 0 \\
1 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 & 8 \\
2 & 3 \\
9 & 10 \\
4 & 5 \\
6 & 7
\end{array}\right] ; \quad[L M]=\left[\begin{array}{cccc}
1 & 8 & 4 & 5 \\
1 & 8 & 2 & 3 \\
2 & 3 & 4 & 5 \\
4 & 5 & 6 & 7 \\
9 & 10 & 4 & 5 \\
2 & 3 & 6 & 7 \\
2 & 3 & 9 & 10 \\
9 & 10 & 6 & 7
\end{array}\right]
$$

(2) Element stiffness matrix
$\left[K^{(e)}\right]=\left[\begin{array}{ll}c & 0 \\ s & 0 \\ 0 & c \\ 0 & s\end{array}\right] \frac{A E}{L}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{llll}c & s & 0 & 0 \\ 0 & 0 & c & s\end{array}\right]=\frac{E A}{L}\left[\begin{array}{ccc}c^{2} & c s & -c^{2} \\ c s & s^{2} & -c s \\ -c^{2} & -c s & c^{2} \\ -c s \\ -c s & -s^{2} & c s\end{array}\right]$
$c=\cos \alpha=\frac{x_{2}-X_{1}}{L} ; \quad s=\sin \alpha=\frac{Y_{2}-Y_{1}}{L}$
(3) Substitute

Element 1: $L=20^{\prime}, c=\frac{16-0}{20}=0.8, s=\frac{12-0}{20}=0.6$,
$\frac{E A}{L}=\frac{(30,000 \mathrm{ksi})\left(10 \mathrm{in}^{2}\right)}{20^{\prime}}=15,000 \mathrm{k} / \mathrm{ft}$.

$$
\left[K_{1}\right]=\begin{gathered}
1 \\
1 \\
8 \\
8 \\
4 \\
5
\end{gathered}\left[\begin{array}{cccc}
9,600 & 7200 & -9,600 & -7,200 \\
7,200 & 5,400 & -7,200 & -5,400 \\
-9,600 & -7,200 & 9,600 & 7,200 \\
-7,200 & -5,400 & 7,200 & 5,400
\end{array}\right]
$$

Element 2: $L=16^{\prime}, c=1, s=0, \frac{E A}{L}=18,750 \mathrm{k} / \mathrm{ft}$.

$$
\left[K_{2}\right]=\begin{gathered}
1 \\
1 \\
8 \\
2 \\
3
\end{gathered}\left[\begin{array}{cccc}
18,750 & 0 & -18,750 & 0 \\
0 & 0 & 0 & 0 \\
-18,750 & 0 & 18,750 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Element $3 L=12^{\prime}, c=0, s=1$, $\frac{E A}{L}=25,000 \mathrm{k} / \mathrm{ft}$

Element $8 L=12^{\prime}, c=0, s=1$, $\frac{E A}{L}=25,000 \mathrm{k} / \mathrm{ft}$

$$
\left[K_{8}\right]=\begin{gathered}
9 \\
9 \\
10 \\
6 \\
7
\end{gathered}\left[\begin{array}{cccc}
0 & 0 & 6 & 7 \\
0 & 25,000 & 0 & 0 \\
0 & 0 & -25,000 \\
0 & -25,000 & 0 & 0 \\
25,000
\end{array}\right]
$$

(4) Assemble the global stiffness matrix in k / ft Note that we are not assembling the augmented stiffness matrix, but rather its submatrix $\left[\mathrm{K}_{t t}\right]$.
(5) Convert to K/in and simplify

6 Invert stiffness matrix and solve for displacements

$$
\left\{\begin{array}{l}
U_{1} \\
U_{2} \\
V_{3} \\
U_{4} \\
V_{5} \\
U_{6} \\
V_{7}
\end{array}\right\}=\left\{\begin{array}{c}
-0.0223 \mathrm{in} . \\
0.00433 \mathrm{in} . \\
-0.116 \mathrm{in} . \\
-0.0102 \mathrm{in} . \\
-0.0856 \mathrm{in} . \\
-0.00919 \mathrm{in} . \\
-0.0174 \mathrm{in} .
\end{array}\right\}
$$

(7) Solve for member internal forces (in this case axial forces) in local coordinate systems

$$
\begin{aligned}
\left\{\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right\} & =\underbrace{\frac{A E}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]}_{\mathbf{k}} \underbrace{\left[\begin{array}{llll}
C & s & 0 & 0 \\
0 & 0 & C & s
\end{array}\right]}_{\Gamma} \underbrace{\left\{\begin{array}{l}
U_{1} \\
V_{1} \\
U_{2} \\
V_{2}
\end{array}\right\}}_{\mathcal{\delta}} \\
& =\frac{A E}{L}\left[\begin{array}{rrrr}
c & s & -c & -s \\
-c & -s & c & s
\end{array}\right]\left\{\begin{array}{l}
U_{1} \\
V_{1} \\
U_{2} \\
V_{2}
\end{array}\right\}
\end{aligned}
$$

Element 1:

$$
\begin{aligned}
\left\{\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right\}^{1} & =(15,000 \mathrm{kpf})\left(\frac{1}{12} \frac{\mathrm{ft}}{\mathrm{in} .}\right)\left[\begin{array}{rrrr}
0.8 & 0.6 & -0.8 & -0.6 \\
-0.8 & -0.6 & 0.8 & 0.6
\end{array}\right]\left\{\begin{array}{c}
-0.0223 \\
0.00 \\
-0.0102 \\
-0.0856
\end{array}\right\} \\
& =\left\{\begin{array}{c}
52.1 \mathrm{kip} \\
-52.1 \mathrm{kip}
\end{array}\right\} \text { Compression }
\end{aligned}
$$

Element 2:

$$
\begin{aligned}
\left\{\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right\}^{2} & =18,750 \mathrm{kpt}\left(\frac{1}{12} \frac{\mathrm{ft}}{\mathrm{in} .}\right)\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
-1 & 0 & 1 & 0
\end{array}\right]\left\{\begin{array}{c}
-0.0233 \\
0.00 \\
0.00433 \\
-0.116
\end{array}\right\} \\
& =\left\{\begin{array}{c}
-43.2 \mathrm{kip} \\
43.2 \mathrm{kip}
\end{array}\right\} \text { Tension }
\end{aligned}
$$

Element 3:

$$
\begin{aligned}
\left\{\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right\}^{3} & =25,000 \mathrm{kpf}\left(\frac{1}{12} \frac{\mathrm{ft} .}{\mathrm{in.}}\right)\left[\begin{array}{rrrr}
0 & 1 & 0 & -1 \\
0 & -1 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
0.00433 \\
-0.116 \\
-0.0102 \\
-0.0856
\end{array}\right\} \\
& =\left\{\begin{array}{c}
-63.3 \mathrm{kip} \\
63.3 \mathrm{kip}
\end{array}\right\} \text { Tension }
\end{aligned}
$$

Element 4:

$$
\begin{aligned}
\left\{\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right\}^{4} & =18,750 \mathrm{kpf}\left(\frac{1}{12} \frac{\mathrm{ft}}{\mathrm{in} .}\right)\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
-1 & 0 & 1 & 0
\end{array}\right]\left\{\begin{array}{l}
-0.0102 \\
-0.0856 \\
-0.00919 \\
-0.0174
\end{array}\right\} \\
& =\left\{\begin{array}{c}
-1.58 \mathrm{kip} \\
1.58 \mathrm{kip}
\end{array}\right\} \text { Tension }
\end{aligned}
$$

Intermediary Structural Analysis
 Mathematical Properties of Stiffness Matrix; Computational Issues;

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2019

Table of Contents I

(1) Reduced Stiffness Matrix

- Condition Number
- Eigenvalues
- Eigenvalue Test

- The structure stiffness matrix and its inverse are given by

$$
\begin{aligned}
\mathbf{K} & =\left[\begin{array}{cc}
K_{1}+K_{2} & -K_{2} \\
-K_{2} & K_{2}
\end{array}\right] \\
\mathbf{K}^{-1} & =\frac{1}{\left(K_{1}+K_{2}\right) K_{2}-K_{2}^{2}}\left[\begin{array}{lc}
K_{2} & K_{2} \\
K_{2} & K_{1}+K_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{K_{1}} & \frac{1}{K_{1}} \\
\frac{1}{K_{1}} & \frac{K_{1}+K_{2}}{K_{1} K_{2}}
\end{array}\right]
\end{aligned}
$$

where $\mathbf{K} . \boldsymbol{\Delta}=\mathbf{P}$

- Solution for the displacement vector is

$$
\left\{\begin{array}{c}
\Delta_{1} \\
\Delta_{2}
\end{array}\right\}=\left[\begin{array}{cc}
\frac{1}{K_{1}} & \frac{1}{K_{1}} \\
\frac{1}{K_{1}} & \frac{K_{1}+K_{2}}{K_{1} K_{2}}
\end{array}\right]\left\{\begin{array}{c}
P_{1} \\
P_{2}
\end{array}\right\}
$$

- We rearrange to obtain two equations for $\Delta_{2}=f\left(\Delta_{1}\right)$.

$$
\left.\begin{array}{l}
\Delta_{1}=\frac{P_{1}}{K_{1}}+\frac{P_{2}}{K_{1}} \Rightarrow P_{1}=K_{1} \Delta_{1}-P_{2} \tag{1}\\
\Delta_{2}=\frac{P_{1}}{K_{1}}+\frac{P_{2}\left(K_{1}+K_{2}\right)}{K_{1} K_{2}}
\end{array}\right\} \Delta_{2}=\Delta_{1}+\frac{1}{K_{2}} P_{2}
$$

Likewise

$$
\left.\begin{array}{l}
\Delta_{1}=\frac{P_{1}}{K_{1}}+\frac{P_{2}}{K_{1}} \Rightarrow P_{2}=K_{1} \Delta_{1}-P_{1} \tag{2}\\
\Delta_{2}=\frac{P_{1}}{K_{1}}+\frac{P_{2}\left(K_{1}+K_{2}\right)}{K_{1} K_{2}}
\end{array}\right\} \Delta_{2}=\frac{K_{1}+K_{2}}{K_{2}} \Delta_{1}-\frac{1}{K_{2}} P_{1}
$$

- Δ_{2} can be expressed in terms of Δ_{1}, P_{1} and P_{2}.

$$
\left[\begin{array}{cc}
-1 & 1 \tag{3}\\
\frac{K_{1}+K_{2}}{K_{1} K_{2}} & -1
\end{array}\right]\left\{\begin{array}{l}
\Delta_{1} \\
\Delta_{2}
\end{array}\right\}=\frac{1}{K_{2}}\left\{\begin{array}{l}
P_{2} \\
P_{1}
\end{array}\right\}
$$

- Let us consider two cases:

$$
\left.\begin{array}{ll}
\left\lfloor\begin{array}{ll}
K_{1} & K_{2} \\
\end{array}\right] & \left\lfloor\begin{array}{ll}
1 & 2
\end{array}\right]
\end{array} \Rightarrow\left[\begin{array}{rr}
-1.0000 & 1.0000 \\
1.5000 & -1.0000
\end{array}\right]\right)
$$

- plot the solutions for Δ_{2} in terms of Δ_{1} with $\left\lfloor\begin{array}{ll}P_{1} & P_{2} \\ \hline\end{array}=\left\lfloor\begin{array}{ll}1 & 1\end{array}\right\rfloor\right.$

- Results, including eigenvalues λ_{i} give

	Well Conditioned	III Conditioned
	$K_{1} \quad K_{2}$	$K_{1} \quad K_{2}$
	$1.0 \quad 2.0$	1.0 10,000
$\left(\Delta_{1}, \Delta_{2}\right)$	(4.0000, 5.0000)	$10^{4}(1.999999999999668,2.000099999999668)$
$\left(\lambda_{1}, \lambda_{2}\right)$	(0.2247,-2.2247)	(0.000049998750062, -2.000049998750063)
C	9.8990	$4.0002 \mathrm{e}+04$
Matlab 64 bit eps		$2.2204 \mathrm{e}-16$

- The condition number (C) of a matrix is define as $\lambda_{\max } / \lambda_{\min }$.
- We lose accuracy with very large condition numbers. As rule of thumb a matrix is said to be ill-conditioned when the condition number ($\sim 1 /(\mathrm{eps}$) is larger than the reciprocal of the machine's precision, e.g., 10^{7} for typical single precision (32 bit) arithmetic, and 10^{16} for 64 bit computer.
- Elements with drastically different stiffness values should not be connected together.
- For severely ill-conditioned matrices, use single value decomposition techniques.
- The stiffness matrix $[k]$ (or $[K]$) can be viewed as a mapping of the displacement vector $\{\delta\}$ into a force vector $\{p\}$.
- There is no reason for those vectors to be aligned.

for instance

$$
\underbrace{\frac{A E}{L}\left[\begin{array}{cc}
1 & -1 \tag{4}\\
-1 & 1
\end{array}\right]}_{\mathbf{k}^{\text {truss }}} \underbrace{\left\{\begin{array}{l}
2 \\
3
\end{array}\right\}}_{\mathbf{u}}=\underbrace{\frac{A E}{L}\left\{\begin{array}{c}
-1 \\
1
\end{array}\right\}}_{\mathbf{p}}
$$

- If on the other hand, those two vectors point in the same direction, then they are eigenvectors $\{u\}$ and we have

$$
[k]\{u\}=\lambda\{u\}
$$

In the preceding example, the eigenvector is $\left\lfloor\begin{array}{ll}-0.707 & 0.707\end{array}\right]$

- The internal strain energy stored in an element can be determined from $U=\frac{1}{2}\lfloor\mathbf{u}\rfloor\{\mathbf{p}\}=\frac{1}{2}\lfloor\mathbf{u}\rfloor[\mathbf{k}]\{\mathbf{u}\}$
- Consider a system where the load $\{\mathbf{p}\}$ applied to each node is proportional to the element nodal displacement $\{\mathbf{u}\}$ by a factor λ, we have: $[\mathbf{k}]\{\mathbf{u}\}=\lambda\{\mathbf{u}\}$ or $([\mathbf{k}]-\lambda[\mathbf{I}])\{\mathbf{u}\}=0$
- This is by definition an eigenproblem. There will be as many eigenvalues λ_{i} as there are degrees of freedom (or rows in $[\mathbf{k}]$).
- To each eigenvalue λ_{i} corresponds an eigenvector $\{\mathbf{u}\}_{i}$.
- Eigenvectors are normalized such that: $\lfloor\mathbf{u}\rfloor_{i}\{\mathbf{u}\}_{i}=1$, thus $\lfloor\mathbf{u}\rfloor_{i}[\mathbf{k}]\{\mathbf{u}\}_{i}=\lambda_{i}$
- Thus, the eigenvalue λ_{i} is equal to twice the internal strain energy stored in an element undergoing a (normalized) deformation defined by $\{\mathbf{u}\}_{i}$.
- In a rigid body motion, all nodes displace by the same amount, and there are no internal strains. Hence in a rigid body motion the strain energy U (and thus corresponding λ) must be equal to zero.
- There should be as many zero eigenvalues as there are possible independent rigid body motions (i.e. number of equations of equilibrium).
- For a two dimensional Lagrangian element, there should be three zero eigenvalues, corresponding to two translations and one rotation.
- Too few zero eigenvalues is an indication of an element lacking the capability of rigid body motion without strain.
- Too many zero eigenvalues is an indication of undesirable mechanism (or failure).
- Eigenvalues should not change when the element is rotated.
- Similar modes (such as flexure in two orthogonal directions) will have identical eigenvalues (for isotropic material).
- When comparing the stiffness matrices of two identical elements but based on different formulations, the one with the lowest strain energy $\left(\operatorname{tr}[\mathbf{k}]=\Sigma \lambda_{i}\right)$ is best.
- Hence, the element stiffness matrix will have:

Order: corresponds to the number of degrees of freedom (i.e size of the matrix).
Rank: corresponds to the total number of linearly independent equations which is equal to the order minus the number of rigid body motions.
Rank Deficiency: would be equal to the total number of zero eigenvalues minus the rank.

- The augmented stiffness matrix may be expressed as (this equation will be derived late)

$$
[\mathbf{K}]=\left[\begin{array}{c|c}
{[\mathbf{d}]^{-1}} & {[\mathbf{d}]^{-1}[\mathcal{B}]^{\top}} \\
\hline[\mathcal{B}][\mathbf{d}]^{-1} & {[\mathcal{B}][\mathbf{d}]^{-1}[\mathcal{B}]^{\top}}
\end{array}\right]
$$

where \mathcal{B} is the statics (or equilibrium) matrix, relating external nodal forces to internal forces; \mathbf{d} is a flexibility matrix, and \mathbf{d}^{-1} is its inverse or reduced stiffness matrix.

- The stiffness matrix is obviously singular, since the second "row" is linearly dependent on the first one.
- The reduced stiffness matrix, which is the inverse of a flexibility matrix, is not.
- Hence there will be as many zero eigenvalues as the size of \mathcal{B}.

Add plots of eigenvectors showing rigid body motion

Intermediary Structural Analysis

A Brief Overview of Mechanics

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2017

Table of Contents I

(1) Tensors

- Tensors: Definition
- Tensors: Indicial Notation
- Tensor Operations
- Principal Values and Directions of Symmetric Second Order Tensors
(2) Kinetics
- Force, Traction and Stress Vectors
- Traction on an Arbitrary Plane; Cauchy's Stress Tensor
- Example
- Invariants
- Spherical and Deviatoric Stress Tensors
(3) Kinematic
- Position and Displacement
- Strains
- Compatibility Equation

4 Fundamental Laws of Continuum Mechanics

- Linear Momentum Principle; Equation of Motion

Table of Contents II

- Conservation of Energy; First Principle of Thermodynamics

(5) Constitutive Equations

- Generalize the concept of a vector by introducing the tensor (T).
- A tensor is an operator which operates on tensors to produce other tensors.
- Designate this operation as $\mathbf{T} \cdot \mathrm{v}$ or simply $\mathbf{T v}$.
- A tensor is also a physical quantity, independent of any particular coordinate system yet specified most conveniently by referring to an appropriate system of coordinates.
- A tensor is classified by the rank or order. A Tensor of order zero is specified in any coordinate system by one coordinate and is a scalar (such as temperature). A tensor of order one has three coordinate components in space, hence it is a vector (such as force). In general 3-D space the number of components of a tensor is 3^{n} where n is the order of the tensor.
- A force and a stress are tensors of order 1 and 2 respectively.
- Engineering notation may be the simplest and most intuitive one, it often leads to long and repetitive equations. Alternatively, tensor or the dyadic form will lead to shorter and more compact forms.
- The following rules define indicial notation:
(1) If there is one letter index (free index), that index goes from i to n (range of the tensor). For instance:

$$
a_{i}=a^{i}=\left\lfloor\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right\rfloor=\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\} \quad i=1,3
$$

assuming that $n=3$.
(2) A repeated index or (dummy index) will take on all the values of its range, and the resulting tensors summed. In general no index occurs more than twice in a properly written expression.For instance:

$$
a_{1 i} x_{i}=a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}
$$

(3) Tensor's order:

- First order tensor (such as force) has only one free index:

$$
a_{i}=a^{i}=\left\lfloor\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right\rfloor
$$

other first order tensors $a_{i j} b_{j}=a_{i 1} b_{1}+a_{i 2} b_{2}+a_{i 3} b_{3}, F_{i k k}, \varepsilon_{i j k} u_{j} v_{k}$ (note that there is only one free index).

- Second order tensor (such as stress or strain) will have two free indices.

$$
T_{i j}=\left[\begin{array}{lll}
T_{11} & T_{22} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right]
$$

other examples $A_{i j i p}, \delta_{i j} u_{k} v_{k}$.

- A fourth order tensor (such as Elastic constants) will have four free indices: $\sigma_{i j}=D_{i j k \mid \varepsilon_{k l}}$
(4) Derivatives of tensor with respect to x_{i} is written as, i. For example:

$$
\frac{\partial \phi}{\partial x_{i}}=\phi_{, i} \quad \frac{\partial v_{j}}{\partial x_{i}}=v_{i, i} \quad \frac{\partial v_{i}}{\partial x_{j}}=v_{i, j} \quad \frac{\partial T_{i, j}}{\partial x_{k}}=T_{i, j, k}
$$

- Usefulness of the indicial notation is in presenting systems of equations in compact form. For instance:

$$
x_{i}=c_{i j} z_{j}
$$

this simple compacted equation, when expanded would yield:

$$
\begin{aligned}
& x_{1}=c_{11} z_{1}+c_{12} z_{2}+c_{13} z_{3} \\
& x_{2}=c_{21} z_{1}+c_{22} z_{2}+c_{23} z_{3} \\
& x_{3}=c_{31} z_{1}+c_{32} z_{2}+c_{33} z_{3}
\end{aligned}
$$

Similarly:

$$
A_{i j}=B_{i p} C_{j q} D_{p q}
$$

$$
\begin{aligned}
& A_{11}=B_{11} C_{11} D_{11}+B_{11} C_{12} D_{12}+B_{12} C_{11} D_{21}+B_{12} C_{12} D_{22} \\
& A_{12}=B_{11} C_{21} D_{11}+B_{11} C_{22} D_{12}+B_{12} C_{21} D_{21}+B_{12} C_{22} D_{22} \\
& A_{21}=B_{21} C_{11} D_{11}+B_{21} C_{12} D_{12}+B_{22} C_{11} D_{21}+B_{22} C_{12} D_{22} \\
& A_{22}=B_{21} C_{21} D_{11}+B_{21} C_{22} D_{12}+B_{22} C_{21} D_{21}+B_{22} C_{22} D_{22}
\end{aligned}
$$

- Using indicial notation, we may rewrite the definition of the dot product

$$
\mathbf{a} \cdot \mathbf{b}=a_{i} b_{i}=\left(a_{x} \mathbf{i}+a_{y} \mathbf{j}+a_{z} \mathbf{k}\right) \cdot\left(b_{x} \mathbf{i}+b_{y} \mathbf{j}+b_{z} \mathbf{k}\right)=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
$$

- Note that one can adopt the dyadic instead of the indicial notation for tensors as linear vector operators $u=T \cdot v$ or $u_{i}=T_{i j} v_{j}$
- The sum of two tensors (must be of the same orde)is simply defined as:

$$
\mathbf{S}_{i j}=\mathbf{T}_{i j}+\mathbf{U}_{i j}
$$

- The scalar multiplication of a (second order) tensor is defined by:

$$
\mathbf{S}_{i j}=\lambda \mathbf{T}_{i j}
$$

- The outer product of two tensors is the tensor whose components are formed by multiplying each component of one of the tensors by every component of the other. This produces a tensor with an order equal to the sum of the orders of the factor tensors.

$$
\begin{aligned}
a_{i} b_{j} & =T_{i j} \quad \text { or }\left\}_{n \times 1}\lfloor\quad\rfloor_{1 \times m}=[\quad]_{n \times m}\right. \\
v_{i} F_{j k} & =b_{i j k} \\
D_{i j} T_{k m} & =\phi_{i j k m}
\end{aligned}
$$

- The inner product of two tensors: contraction of one index from each tensor

$$
\left.\begin{array}{rlll}
a_{i} b_{i} & & \\
a_{i} E_{i k} & =f_{k} & \text { or } L & \rfloor_{1 \times m}[
\end{array}\right]_{m \times n}=\lfloor\quad\rfloor_{1 \times n}
$$

- The cross product can be defined

$$
\mathbf{a} \times \mathbf{b}=\varepsilon_{\text {pqr }} a_{q} b_{r} \mathbf{e}_{p}=\left(a_{y} b_{z}-a_{z} b_{y}\right) \mathbf{i}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \mathbf{j}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \mathbf{k}
$$

In the second equation, there is one free index p thus there are three equations, there are two repeated (dummy) indices q and r, thus each equation has nine terms. $\varepsilon_{p a r}$ is called the permutation symbol and is defined as

$$
\varepsilon_{p q r}= \begin{cases}1 & \begin{array}{l}
\text { If the value of } i, j, \text { kare an even permutation of } 1,2,3 \\
\text { (i.e. if they appear as } 12312 \text {) }
\end{array} \\
-1 & \begin{array}{l}
\text { If the value of } i, j, \text { kare an odd permutation of } 1,2,3 \\
\text { (i.e. if they appear as } 32132 \text {) }
\end{array} \\
0 & \begin{array}{l}
\text { If the value of } i, j, \text { kare not permutation of } 1,2,3 \\
\text { (i.e. if two or more indices have the same value) }
\end{array}\end{cases}
$$

- Two fundamental tensors in continuum mechanics are second order and symmetric (stress and strain), we examine some important properties of these tensors.
- For every symmetric tensor $T_{i j}$ defined at some point in space, there is associated with each direction (specified by unit normal n_{j}) at that point, a vector given by the inner product

$$
v_{i}=T_{i j} n_{j}
$$

If the direction is one for which v_{i} is parallel to n_{i}, the inner product is

$$
T_{i j} n_{j}=\lambda n_{i}
$$

and the direction n_{i} is called principal direction of $T_{i j}$. Since $n_{i}=\delta_{i j} n_{j}$, this can be rewritten as

$$
\left(T_{i j}-\lambda \delta_{i j}\right) n_{j}=0
$$

which represents a system of three equations for the four unknowns n_{i} and λ.

$$
\begin{aligned}
& \left(T_{11}-\lambda\right) n_{1}+T_{12} n_{2}+T_{13} n_{3}=0 \\
& T_{21} n_{1}+\left(T_{22}-\lambda\right) n_{2}+T_{23} n_{3}=0 \\
& T_{31} n_{1}+T_{32} n_{2}+\left(T_{33}-\lambda\right) n_{3}=0
\end{aligned}
$$

To have a non-trivial solution $\left(n_{i}=0\right)$ the determinant of the coefficients must be zero,

$$
\left|T_{i j}-\lambda \delta_{i j}\right|=0
$$

- Expansion of this determinant leads to the following characteristic equation

$$
\lambda^{3}-I_{T} \lambda^{2}+I I_{T} \lambda-I I I_{T}=0
$$

the roots are called the principal values of $T_{i j}$ and

$$
\begin{aligned}
I_{T} & =T_{i j}=\operatorname{tr} T_{i j} \\
I_{T} & =\frac{1}{2}\left(T_{i i} T_{j j}-T_{i j} T_{i j}\right) \\
I I_{T} & =\left|T_{i j}\right|=\operatorname{det} T_{i j}
\end{aligned}
$$

are called the first, second and third invariants respectively of $T_{i j}$.

- It is customary to order those roots as $\lambda_{(1)}>\lambda_{(2)}>\lambda_{(3)}$
- For a symmetric tensor with real components, the principal values are also real. If those values are distinct, the three principal directions are mutually orthogonal.
- There are two kinds of forces in continuum mechanics
body forces: act on the elements of volume or mass inside the body, e.g. gravity, electromagnetic fields. $\mathrm{dF}=\mathrm{\rho bd}$ Vol.
Surface forces (or traction) are contact forces acting on the free body at its bounding surface. Those will be defined in terms of force per unit area.

$$
\int_{S} \mathrm{td} S=\mathbf{i} \int_{S} t_{x} \mathrm{~d} S+\mathbf{j} \int_{S} t_{y} \mathrm{~d} S+\mathbf{k} \int_{S} t_{z} \mathrm{~d} S
$$

Boundary displacementsû are prescribed on Γ_{u}

- Usually limit the term traction to an actual bounding surface of a body, and use the term stress vector for an imaginary interior surface.
- The traction vectors on planes perpendicular to the coordinate axes are particularly useful. When the vectors acting at a point on three such mutually perpendicular planes is given, the stress vector at that point on any other arbitrarily inclined plane can be expressed in terms of the first set of tractions.
- A stress is a second order cartesian tensor, $\sigma_{i j}$ where the 1 st subscript (i) refers to the direction of outward facing normal, and the second one (j) to the direction of component force.

$$
\boldsymbol{\sigma}=\sigma_{i j}=\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right]=\left\{\begin{array}{l}
\mathbf{t}_{1} \\
\mathbf{t}_{2} \\
\mathbf{t}_{3}
\end{array}\right\}
$$

- In fact the nine rectangular components $\sigma_{i j}$ of σ turn out to be the three sets of three vector components $\left(\sigma_{11}, \sigma_{12}, \sigma_{13}\right),\left(\sigma_{21}, \sigma_{22}, \sigma_{23}\right),\left(\sigma_{31}, \sigma_{32}, \sigma_{33}\right)$ which correspond to the three tractions $\mathbf{t}_{1}, \mathbf{t}_{2}$ and \mathbf{t}_{3} which are acting on the x_{1}, x_{2} and x_{3} faces.
- Those tractions are not necessarily normal to the faces, and they can be decomposed into a normal and shear traction if need be. In other words, stresses are nothing else than the components of tractions (stress vector).

- The state of stress at a point cannot be specified entirely by a single vector with three components; it requires the second-order tensor with all nine components.
- We seek to determine the traction acting on the surface of an oblique plane (characterized by its normal \mathbf{n}) in terms of the known tractions normal to the three principal axis, $\mathbf{t}_{1}, \mathrm{t}_{2}$ and t_{3}.
- Cauchy's tetrahedron

will be obtained without any assumption of equilibrium and it will apply in fluid dynamics as well as in solid mechanics.
- This equation is a vector equation, and the corresponding algebraic equations for the components of t_{n} are

$$
\begin{aligned}
t_{n_{1}} & =\sigma_{11} n_{1}+\sigma_{21} n_{2}+\sigma_{31} n_{3} \\
t_{n_{2}} & =\sigma_{12} n_{1}+\sigma_{22} n_{2}+\sigma_{32} n_{3} \\
t_{n_{3}} & =\sigma_{13} n_{1}+\sigma_{23} n_{2}+\sigma_{33} n_{3}
\end{aligned}
$$

$$
\text { Indicial notation } t_{n_{i}}=\sigma_{j i} n_{j}
$$

$$
\text { dyadic notation } \quad \mathbf{t}_{n}=\mathbf{n} \cdot \boldsymbol{\sigma}=\boldsymbol{\sigma}^{T} \cdot \mathbf{n}
$$

- We have thus established that the nine components $\sigma_{i j}$ are components of the second order tensor, Cauchy's stress tensor.
- For a stress tensor at point P given by

$$
\boldsymbol{\sigma}=\left[\begin{array}{ccc}
7 & -5 & 0 \\
-5 & 3 & 1 \\
0 & 1 & 2
\end{array}\right]=\left\{\begin{array}{l}
\mathbf{t}_{1} \\
\mathbf{t}_{2} \\
\mathbf{t}_{3}
\end{array}\right\}
$$

We seek to determine the traction (or stress vector) t passing through P and parallel to the plane $A B C$ where $A(4,0,0), B(0,2,0)$ and $C(0,0,6)$.

- The vector normal to the plane can be found by taking the cross products of vectors AB and AC :

$$
\begin{aligned}
\mathbf{N} & =\mathbf{A B} \times \mathbf{A C}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
-4 & 2 & 0 \\
-4 & 0 & 6
\end{array}\right| \\
& =12 \mathbf{e}_{1}+24 \mathbf{e}_{2}+8 \mathbf{e}_{3}
\end{aligned}
$$

- The unit normal of N is given by

$$
\mathbf{n}=\frac{3}{7} \mathbf{e}_{1}+\frac{6}{7} \mathbf{e}_{2}+\frac{2}{7} \mathbf{e}_{3}
$$

Hence the stress vector (traction) will be

$$
\left\lfloor\begin{array}{lll}
\frac{3}{7} & \frac{6}{7} & \frac{2}{7}
\end{array}\right\rfloor\left[\begin{array}{ccc}
7 & -5 & 0 \\
-5 & 3 & 1 \\
0 & 1 & 2
\end{array}\right]=\left\lfloor\begin{array}{ccc}
-\frac{9}{7} & \frac{5}{7} & \frac{10}{7}
\end{array}\right\rfloor
$$

and thus $t=-\frac{9}{7} \mathbf{e}_{1}+\frac{5}{7} \mathbf{e}_{2}+\frac{10}{7} \mathbf{e}_{3}$

- The principal stresses are physical quantities, whose values do not depend on the coordinate system in which the components of the stress were initially given. They are therefore invariants of the stress state.
- When the determinant in the characteristic equation is expanded, the cubic equation takes the form

$$
\lambda^{3}-I_{\sigma} \lambda^{2}-I I_{\sigma} \lambda-I I I_{\sigma}=0
$$

where the symbols I_{σ}, I_{σ} and $I I_{\sigma}$ denote the following scalar expressions in the stress components:

$$
\begin{aligned}
I_{\sigma} & =\sigma_{11}+\sigma_{22}+\sigma_{33}=\sigma_{i i}=\operatorname{tr} \sigma \\
I_{\sigma} & =-\left(\sigma_{11} \sigma_{22}+\sigma_{22} \sigma_{33}+\sigma_{33} \sigma_{11}\right)+\sigma_{23}^{2}+\sigma_{31}^{2}+\sigma_{12}^{2} \\
& =\frac{1}{2}\left(\sigma_{i j} \sigma_{i j}-\sigma_{i i} \sigma_{j j}\right)=\frac{1}{2} \sigma_{i j} \sigma_{i j}-\frac{1}{2} I_{\sigma}^{2} \\
& =\frac{1}{2}\left(\sigma: \sigma-I_{\sigma}^{2}\right) \\
I I I_{\sigma} & =\operatorname{det} \sigma=\frac{1}{6} e_{i j k} e_{p q r} \sigma_{i j} \sigma_{j q} \sigma_{k r}
\end{aligned}
$$

- In terms of the principal stresses, those invariants can be simplified into

$$
\begin{aligned}
I_{\sigma} & =\sigma_{(1)}+\sigma_{(2)}+\sigma_{(3)} \\
I_{\sigma} & =-\left(\sigma_{(1)} \sigma_{(2)}+\sigma_{(2)} \sigma_{(3)}+\sigma_{(3)} \sigma_{(1)}\right) \\
I I I_{\sigma} & =\sigma_{(1)} \sigma_{(2)} \sigma_{(3)}
\end{aligned}
$$

- let σ denote the mean normal stress p

$$
\sigma=-p=\frac{1}{3}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right)=\frac{1}{3} \sigma_{i i}=\frac{1}{3} \operatorname{tr} \sigma
$$

then the stress tensor can be written as the sum of two tensors:
Hydrostatic stress in which each normal stress is equal to $-p$ and the shear stresses are zero. The hydrostatic stress produces volume change without change in shape in an isotropic medium.

$$
\sigma_{\text {hyd }}=-p \mathbf{I}=\left[\begin{array}{lll}
-p & 0 & 0 \\
0 & -p & 0 \\
0 & 0 & -p
\end{array}\right]
$$

Deviatoric Stress: which causes the change in shape.

$$
\sigma_{d e v}=\left[\begin{array}{lll}
\sigma_{11}-\sigma & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22}-\sigma & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}-\sigma
\end{array}\right]
$$

- The undeformed configuration of a material continuum at time $t=0$ together with the deformed configuration at $t=t$.

- In the initial configuration P_{0} has the position vector

$$
\mathbf{x}=X_{1} \mathbf{I}_{1}+X_{2} \mathbf{I}_{2}+X_{3} \mathbf{I}_{3}
$$

which is here expressed in terms of the material coordinates $\left(X_{1}, X_{2}, X_{3}\right)$.

- In the deformed configuration, the particle P_{0} has now moved to the new position P and has the following position vector

$$
\mathbf{x}=x_{1} \mathbf{i}_{1}+x_{2} \mathbf{i}_{2}+x_{3} \mathbf{i}_{3}
$$

which is expressed in terms of the spatial coordinates.

- The displacement vector u connecting P_{0} and P is the displacement vector which can be expressed in both the material or spatial coordinates

$$
\begin{aligned}
\mathbf{U} & =U_{K} \mathbf{I}_{K} \\
\mathbf{u} & =u_{k} \mathbf{i}_{k}
\end{aligned}
$$

- From the preceding figure we can express motion as

$$
\begin{array}{cc}
x_{i}=x_{i}\left(X_{1}, X_{2}, X_{3}, t\right) \quad \text { Lagrangian formulation } \\
X_{i}=X_{i}\left(x_{1}, x_{2}, x_{3}, t\right) \quad \text { Eulerian formulation }
\end{array}
$$

- Ignoring a detailed analysis of large deformation, it is determined that

		Displacement gradient	
Displacement	Small	Large	
		Lagrangian small strain (Cauchy)	Lagrangian large strain (Green-Lagrange)
	Large	Eulerian small strain	Eulerian finite strain (Eulerian-Almansi)

- The Lagrangian finite strain tensor can be written as

$$
\varepsilon_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}+u_{k, i} u_{k, j}\right)
$$

- Alternatively these equations may be expanded as

$$
\begin{aligned}
\varepsilon_{x x} & =\frac{\partial u}{\partial x}+\frac{1}{2}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial x}\right)^{2}\right] \\
\varepsilon_{y y} & =\frac{\partial v}{\partial y}+\frac{1}{2}\left[\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}\right] \\
\varepsilon_{z z} & =\frac{\partial w}{\partial z}+\frac{1}{2}\left[\left(\frac{\partial u}{\partial z}\right)^{2}+\left(\frac{\partial v}{\partial z}\right)^{2}+\left(\frac{\partial w}{\partial z}\right)^{2}\right] \\
\varepsilon_{x y} & =\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial x} \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \frac{\partial v}{\partial y}+\frac{\partial w}{\partial x} \frac{\partial w}{\partial y}\right) \\
\varepsilon_{x z} & =\frac{1}{2}\left(\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}+\frac{\partial u}{\partial x} \frac{\partial u}{\partial z}+\frac{\partial v}{\partial x} \frac{\partial v}{\partial z}+\frac{\partial w}{\partial x} \frac{\partial w}{\partial z}\right) \\
\varepsilon_{y z} & =\frac{1}{2}\left(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}+\frac{\partial u}{\partial y} \frac{\partial u}{\partial z}+\frac{\partial v}{\partial y} \frac{\partial v}{\partial z}+\frac{\partial w}{\partial y} \frac{\partial w}{\partial z}\right)
\end{aligned}
$$

- We define the engineering shear strain as

$$
\gamma_{i j}=2 \varepsilon_{i j} \quad(i \neq j)
$$

- If $\varepsilon_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right)$ then we have six differential equations (in 3D the strain tensor has a total of 9 terms, but due to symmetry, there are 6 independent ones) for determining (upon integration) three unknowns displacements u_{i}. Hence the system is overdetermined, and there must be some linear relations between the strains.
- It can be shown (through appropriate successive differentiation) that the compatibility relation for strain reduces to:

$$
\frac{\partial^{2} \varepsilon_{i k}}{\partial x_{j} \partial x_{j}}+\frac{\partial^{2} \varepsilon_{i j}}{\partial x_{i} \partial x_{k}}-\frac{\partial^{2} \varepsilon_{j k}}{\partial x_{i} \partial x_{j}}-\frac{\partial^{2} \varepsilon_{i j}}{\partial x_{j} \partial x_{k}}=0 .
$$

In 3D, this would yield 9 equations in total, however only six are distinct.

- In 2D, this results in (by setting $i=2, j=1$ and $I=2$):

$$
\frac{\partial^{2} \varepsilon_{11}}{\partial x_{2}^{2}}+\frac{\partial^{2} \varepsilon_{22}}{\partial x_{1}^{2}}=\frac{\partial^{2} \gamma_{12}}{\partial x_{1} \partial x_{2}}
$$

(recall that $2 \varepsilon_{12}=\gamma_{12}$).

- We have thus far studied tensor fields (stress and strain).
- We have also obtained only one differential equation, that was the compatibility equation.
- Next we still derive additional differential equations governing the way stress and deformation vary at a point and with time. They will apply to any continuous medium, and yet we will not have enough equations to determine unknown tensor field. For that we need to wait for constitutive laws relating stress and strain will be introduced.
- The fundamental equations are:
(1) Conservation of mass (continuity equation)
(2) Conservation of momentum (Equation of motion; Equilibrium)
(3) Conservation of Energy.
- A conservation law establishes a balance of a scalar or tensorial quantity in volume V bounded by a surface S (inside a control surface). In its most general form, such a law may be expressed as

- The preceding equation reads: rate of increase of \mathcal{A} inside a control volume plus the rate of outward flux of \mathcal{A} through the surface of the control volume is equal to the rate of increase of \mathbf{A} inside the control volume
- The dimensions of various quantities are given by

$$
\begin{aligned}
\operatorname{dim}(\boldsymbol{\alpha}) & =\operatorname{dim}\left(\mathcal{A L} t^{-1}\right) \\
\operatorname{dim}(\mathbf{A}) & =\operatorname{dim}\left(\mathcal{A} t^{-1}\right)
\end{aligned}
$$

rightfully all expressed in terms of \mathcal{A}.

- the time rate of change of the total momentum of a given set of particles equals the vector sum of all external forces acting on the particles of the set, provided Newton's Third Law applies.
- The continuum form of this principle is a basic postulate of continuum mechanics (postulate: a statement, also known as an axiom, which is taken to be true without proof).
- Starting with

$$
\int_{S} \mathrm{td} S+\int_{V} \rho \mathbf{b d} V=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V} \rho \mathbf{v d} V
$$

- Divergence Theorem

$$
\int_{V} v_{i, i} d V=\int_{S} \underbrace{v_{i} n_{i}}_{\text {flux }} d S
$$

The flux of a vector function through some closed surface equals the integral of the divergence of that function over the volume enclosed by the surface.

- we substitute $t_{i}=T_{i j} n_{j}$ and apply the divergence theorem to obtain

$$
\begin{aligned}
\int_{V}\left(\frac{\partial T_{i j}}{\partial x_{j}}+\rho b_{i}\right) \mathrm{d} V & =\int_{V} \rho \frac{\mathrm{~d} V_{i}}{\mathrm{~d} t} \mathrm{~d} V \\
\int_{V}\left[\frac{\partial T_{i j}}{\partial x_{j}}+\rho b_{i}-\rho \frac{\mathrm{d} v_{i}}{\mathrm{~d} t}\right] \mathrm{d} V & =0
\end{aligned}
$$

or for an arbitrary volume

$$
\frac{\partial T_{i j}}{\partial x_{j}}+\rho b_{i}=\rho \frac{\mathrm{d} v_{i}}{\mathrm{~d} t}
$$

which is Cauchy's (first) equation of motion, or the linear momentum principle, or more simply equilibrium equation.

- When expanded in 3D, this equation yields:

$$
\begin{aligned}
& \frac{\partial T_{11}}{\partial x_{1}}+\frac{\partial T_{12}}{\partial x_{2}}+\frac{\partial T_{13}}{\partial x_{3}}+\rho b_{1}=0 \\
& \frac{\partial T_{21}}{\partial x_{1}}+\frac{\partial T_{22}}{\partial x_{2}}+\frac{\partial T_{23}}{\partial x_{3}}+\rho b_{2}=0 \\
& \frac{\partial T_{31}}{\partial x_{1}}+\frac{\partial T_{32}}{\partial x_{2}}+\frac{\partial T_{33}}{\partial x_{3}}+\rho b_{3}=0
\end{aligned}
$$

- We note that these equations could also have been derived from the free body diagram with the assumption of equilibrium (via Newton's second law) considering an infinitesimal element of dimensions $\mathrm{d} x_{1} \times \mathrm{d} x_{2} \times \mathrm{d} x_{3}$.

- If mechanical quantities only are considered, the principle of conservation of energy for the continuum may be derived directly from the equation of motion by taking the integral over the volume V of the scalar product and the velocity v_{i}.

$$
\int_{V} v_{i} T_{j i, j} \mathrm{~d} V+\int_{V} \rho b_{i} v_{i} \mathrm{~d} V=\int_{V} \rho v_{i} \frac{\mathrm{~d} v_{i}}{\mathrm{~d} t} \mathrm{~d} V
$$

Applying the divergence theorem,

$$
\frac{\mathrm{d} K}{\mathrm{~d} t}+\frac{\mathrm{d} U}{\mathrm{~d} t}=\frac{\mathrm{d} W}{\mathrm{~d} t}+Q
$$

this equation relates the time rate of change of total mechanical energy of the continuum on the left side to the rate of work done by the surface and body forces on the right hand side.

- If both mechanical and non mechanical energies are to be considered, the first principle states that the time rate of change of the kinetic plus the internal energy is equal to the sum of the rate of work plus all other energies supplied to, or removed from the continuum per unit time (heat, chemical, electromagnetic, etc.).
- For a thermomechanical continuum, it is customary to express the time rate of change of internal energy by the integral expression

$$
\frac{\mathrm{d} U}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V} \rho u \mathrm{~d} V
$$

where u is the internal energy per unit mass or specific internal energy.

- The dimension of U is one of energy $\operatorname{dim} U=M L^{2} T^{-2}$, and the SI unit is the Joule, similarly dim $u=L^{2} T^{-2}$ with the SI unit of Joule/Kg.

Hooke
 ceiinosssttuu Hooke, 1676
 Ut tensio sic vis Hooke, 1678

- The Generalized Hooke's Law can be written as:

$$
\sigma_{i j}=D_{i j k \mid} \varepsilon_{k l} \quad i, j, k, I=1,2,3
$$

- The (fourth order) tensor of elastic constants $D_{i j k}$ has $81\left(3^{4}\right)$ components however, due to the symmetry of both σ and ε, there are at most $36\left(\frac{9(9-1)}{2}\right)$ distinct elastic terms.
- In terms of Lame's constants (which naturally are derived from coninuum mechanics consideration, but can not be both experimentally measured), Hooke's Law for an isotropic body is written as

$$
T_{i j}=\lambda \delta_{i j} E_{k \mathrm{k}}+2 \mu E_{i j ;} \quad E_{i j}=\frac{1}{2 \mu}\left(T_{i j}-\frac{\lambda}{3 \lambda+2 \mu} \delta_{i j} T_{k k}\right)
$$

- In terms of engineering constants (which can be measured in the laboratory)

$$
\begin{array}{llr}
\frac{1}{E}=\frac{\lambda+\mu}{\mu(3 \lambda+2 \mu} ; & v=\frac{\lambda}{2(\lambda+\mu)} \\
\lambda= & =\frac{E}{(1+v)(1-2 v)} ; & \mu=G=\frac{E}{2(1+v)}
\end{array}
$$

- Hooke's law for isotropic material in terms of engineering constants becomes

$$
\sigma_{i j}=\frac{E}{1+v}\left(\varepsilon_{i j}+\frac{v}{1-2 v} \delta_{i j} \varepsilon_{k k}\right) ; \quad \varepsilon_{i j}=\frac{1+v}{E} \sigma_{i j}-\frac{v}{E} \delta_{i j} \sigma_{k k}
$$

- When the strain equation is expanded in 3D cartesian coordinates it would yield:

$$
\left\{\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{z z} \\
\gamma_{x y}\left(2 \varepsilon_{x y}\right) \\
\gamma_{y z}\left(2 \varepsilon_{y z}\right) \\
\gamma_{z x}\left(2 \varepsilon_{z x}\right)
\end{array}\right\}=\frac{1}{E}\left[\begin{array}{cccccc}
1 & -v & -v & 0 & 0 & 0 \\
-v & 1 & -v & 0 & 0 & 0 \\
-v & -v & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1+v & 0 & 0 \\
0 & 0 & 0 & 0 & 1+v & 0 \\
0 & 0 & 0 & 0 & 0 & 1+v
\end{array}\right]\left\{\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{z z} \\
\tau_{x y} \\
\tau_{y z} \\
\tau_{z x}
\end{array}\right\}
$$

- Plane Strain

$$
\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{z z} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
(1-v) & v & 0 \\
v & (1-v) & 0 \\
v & v & 0 \\
0 & 0 & \frac{1-2 v}{2}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\gamma_{x y}
\end{array}\right\}
$$

- Axisymmetry

$$
\begin{aligned}
\varepsilon_{r r} & =\frac{\partial u}{\partial r} ; \varepsilon_{\theta \theta} \\
\varepsilon_{z z} & =\frac{u}{r} \\
\frac{\partial z}{r} ; \varepsilon_{r z} & =\frac{\partial u}{\partial z}+\frac{\partial w}{\partial r}
\end{aligned}
$$

The constitutive relation is again analogous to $3 \mathrm{D} /$ plane strain

$$
\left\{\begin{array}{c}
\sigma_{r r} \\
\sigma_{z z} \\
\sigma_{\theta \theta} \\
\tau_{r z}
\end{array}\right\}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{cccc}
1-v & v & v & 0 \\
v & 1-v & v & 0 \\
v & v & 1-v & 0 \\
v & v & 1-v & 0 \\
0 & 0 & 0 & \frac{1-2 v}{2}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{r r} \\
\varepsilon_{z z} \\
\varepsilon_{\theta \theta} \\
\gamma_{r z}
\end{array}\right\}
$$

- Plane Stress

$$
\begin{aligned}
\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\tau_{x y}
\end{array}\right\} & =\frac{1}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\gamma_{x y}
\end{array}\right\} \\
\varepsilon_{z z} & =-\frac{1}{1-v} v\left(\varepsilon_{x x}+\varepsilon_{y y}\right)
\end{aligned}
$$

Intermediary Structural Analysis Special Topics

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2021

Table of Contents I

(1) Equations of Statics and Kinematics

- Statics Matrix \mathcal{B}
- Statics Matrix: Truss Example
- Kinematics Matrix \mathcal{A}
- Kinematics Matrix: Truss Example
- Statics-Kinematics Matrix Relationship
(2) Stiffness-Flexibility Relations
- Objectives
- From Stiffness to Flexibility
- Example From Stiffness to Flexibility
- From Flexibility to Stiffness
- From Flexibility to Stiffness; Example
(3) Congruent Transformation
(4) Constraints
- Axial vs Flexural Stiffness
- Frames
(5) Multiple degrees of freedom system

Table of Contents II

6 Beam with Rigid Offset; Objectives

- Free Body Diagram
- Equilibrium
(7) Semi-Rigid Connections
- Objectives
- Free Body Diagram
- Equilibrium at Nodes
- Observation

8 Members with Haunches

- The statics matrix $[\mathcal{B}]$ relates the vector of all the structure's $\{P\}$ known nodal forces in global coordinates to all the unknown internal forces in their local coordinate system $\{F\}$, through equilibrium relationship:

$$
\begin{equation*}
\{P\} \equiv[\mathcal{B}]\{F\} \tag{1}
\end{equation*}
$$

- $[\mathcal{B}]$ would have as many rows as the total number of independent equations of equilibrium; and as many columns as independent internal forces.

Type	Internal Forces	Equations of Equilibrium
Truss	Axial force at one end	$\Sigma F_{X}=0, \Sigma F_{Y}=0$
Beam 1	Shear and moment at one end	$\Sigma F_{y}^{A}=0, \Sigma M_{z}^{A}=0$
Beam 2	Shear at each end	$\Sigma F_{y}^{A}=0, \Sigma F_{y}^{B}=0$
Beam 3	Moment at each end	$\Sigma M_{z}^{A}=0, \Sigma M_{z}^{B}=0$
2D Frame 1	Axial, Shear, Moment at one end	$\Sigma F_{x}^{A}=0, \Sigma F_{y}^{A}=0, \Sigma M_{z}^{A}=0$

- $[\mathcal{B}]$ square matrix for a statically determinate structure, and rectangular (more columns than rows) otherwise.

8 unknown forces (4 internal member forces and 4 external reactions), and 8 equations of equilibrium (2 at each of the 4 nodes).
Equilibrium equations $\left(\cos \alpha=\frac{L}{\sqrt{L^{2}+H^{2}}}=C\right.$ and $\sin \alpha=\frac{H}{\sqrt{L^{2}+H^{2}}}=S$):

Node	$\Sigma F_{X}=0$	$\Sigma F_{Y}=0$
Node 1	$\underbrace{P_{x 1}}_{0}+F_{3} C-R_{x 1}=0$	$\underbrace{P_{y 1}}_{0}+F_{1}+F_{3} S-R_{y 1}=0$
Node 2	$P_{x 2}+F_{2}=0$	$\underbrace{P_{y 2}-F_{1}=0}_{0}$
Node 3	$\underbrace{P_{x 3}}_{0}-F_{2}-F_{3} C=0$	$\underbrace{P_{y 3}}_{0}-F_{4}-F_{3} S=0$
Node 4	$\underbrace{P_{x 4}}_{0}+R_{x 4}=0$	$\underbrace{P_{y 4}}_{0}+F_{4}-R_{y 4}=0$

$\begin{aligned} & \boldsymbol{\Sigma} F_{X}^{1} \\ & \boldsymbol{\Sigma} F_{y}^{1} \\ & \boldsymbol{\Sigma} F_{x}^{2} \\ & \boldsymbol{\Sigma} F_{y}^{2} \\ & \boldsymbol{\Sigma} F_{x}^{3} \\ & \boldsymbol{\Sigma} F_{y}^{3} \\ & \boldsymbol{\Sigma} F_{x}^{4} \\ & \boldsymbol{\Sigma} F_{y}^{4}\end{aligned} \underbrace{\left\{\begin{array}{c}P_{x 1} \\ P_{y 1} \\ P_{x 2} \\ P_{y 2} \\ P_{x 3} \\ P_{y 3} \\ P_{x 4} \\ P_{y 4}\end{array}\right\}}_{\{\mathrm{P}\}}=\underbrace{\left[\begin{array}{cccc|cccc}0 & 0 & -C & 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & -S & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & C & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & S & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1\end{array}\right]}_{[\mathcal{B}]} \underbrace{\left\{\begin{array}{c}F_{1} \\ F_{2} \\ F_{3} \\ F_{4} \\ R_{x 1} \\ R_{y 1} \\ R_{x 4} \\ R_{y 4}\end{array}\right\}}_{\{F\}}$

$$
\underbrace{\left\{\begin{array}{c}
F_{1} \\
F_{2} \\
F_{3} \\
F_{4} \\
\hline R_{x 1} \\
R_{y 1} \\
R_{x 4} \\
R_{y 4}
\end{array}\right\}}_{\{\mathrm{F}\}}=\underbrace{\left[\begin{array}{cccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{C} & 0 & \frac{1}{C} & 0 & 0 & 0 \\
0 & 0 & -\frac{S}{C} & 0 & -\frac{S}{C} & 1 & 0 & 0 \\
\hline 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & \frac{S}{C} & 1 & \frac{S}{C} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{S}{C} & 0 & -\frac{S}{C} & 1 & 0 & 1
\end{array}\right]}_{[\mathcal{B}]-1} \underbrace{\left\{\begin{array}{c}
0 \\
0 \\
P_{x 2} \\
P_{y 2} \\
0 \\
0 \\
0 \\
0
\end{array}\right\}}_{\{\mathrm{P}\}}=\left\{\begin{array}{c}
P_{y 2} \\
-P_{x 2} \\
\frac{P_{x 2}}{C} \\
-\frac{S}{C} P_{x 2} \\
P_{x 2} \\
\frac{S}{C} P_{x 2}+P_{y 2} \\
0 \\
-\frac{S}{C} P_{x 2}
\end{array}\right\}
$$

$[\mathcal{B}]$ is independent of the external load

The kinematics matrix $[\mathcal{A}]$ relates all the structure's nodal total displacements in global coordinates $\{\Delta\}$ to the element relative displacements in their local coordinate system and the support displacement (which may not be zero if settlement occurs) $\{\Upsilon\}$ and is defined as:

$$
\begin{equation*}
\{\Upsilon\} \equiv[\mathcal{A}]\{\Delta\} \tag{3}
\end{equation*}
$$

$[\mathcal{A}]$ is a rectangular matrix, number of rows is equal to the number of the element internal displacements, and the number of columns is equal to the number of nodal displacements.

Contrarily to the rotation matrix introduced earlier and which transforms the displacements from global to local coordinate for one single element, the kinematics matrix applies to the entire structure. It can be easily shown that for trusses (which corresponds
to shortening or elongation of the member, and small change in angle α):

$$
\Upsilon^{e}=\left(u_{2}-u_{1}\right) \cos \alpha+\left(v_{2}-v_{1}\right) \sin \alpha
$$

Considering again the statically determinate truss of the previous example, the kinematic matrix will be given by:

$$
\Delta_{1}^{e}=v_{2}-v_{1} ; \quad \Delta_{2}^{e}=u_{3}-u_{2} ; \quad \Delta_{3}^{e}=\left(u_{3}-u_{1}\right) C+\left(v_{3}-v_{1}\right) S ; \quad \Delta_{i}^{e}=\cdots
$$

or in matrix form:

$$
\left\{\begin{array}{c}
\Delta_{1}^{e} \\
\Delta_{2}^{e} \\
\Delta_{3}^{e} \\
\Delta_{4}^{e} \\
\\
\hline u_{1} \\
v_{1} \\
u_{4} \\
v_{4}
\end{array}\right\}=\underbrace{\left[\begin{array}{cccccccc}
0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
-C & -S & 0 & 0 & C & S & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]}_{[\mathcal{A}]}\left\{\begin{array}{l}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2} \\
u_{3} \\
v_{3} \\
u_{4} \\
v_{4}
\end{array}\right\}
$$

Applying the constraints: $u_{1}=0 ; v_{1}=0 ; u_{4}=0$; and $v_{4}=0$ we obtain:

$$
\left\{\begin{array}{c}
\Delta_{1}^{e} \\
\Delta_{2}^{e} \\
\Delta_{3}^{e} \\
\Delta_{4}^{e} \\
\hline 0 \\
0 \\
0 \\
0
\end{array}\right\}=\underbrace{\left[\begin{array}{cccccccc}
0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
-C & -S & 0 & 0 & C & S & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]}_{[\mathcal{A}]}\left\{\begin{array}{c}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2} \\
u_{3} \\
v_{3} \\
u_{4} \\
v_{4}
\end{array}\right\}
$$

We should observe that $[\mathcal{A}]$ is the transpose of the $[\mathcal{B}]$ matrix in Eq. 2

Having defined both the statics $[\mathcal{B}]$ and kinematics $[\mathcal{A}]$ matrices, it is intuitive that those two matrices must be related.
The external work being defined as

$$
\left.\begin{array}{l}
W_{\text {ext }}=\frac{1}{2}\lfloor\mathrm{P}\rfloor\{\Delta\} \\
\{P\}=[\mathcal{B}]\{\mathrm{F}\}
\end{array}\right\} W_{\text {ext }}=\frac{1}{2}\lfloor\mathrm{~F}\rfloor[\mathcal{B}]^{T}\{\Delta\}
$$

Alternatively, the internal work is given by:

$$
\left.\begin{array}{rl}
W_{\text {int }} & =\frac{1}{2}\lfloor F\rfloor\{\Upsilon\} \\
\{\Upsilon\} & =[\mathcal{A}]\{\Delta\}
\end{array}\right\} W_{\text {int }}=\frac{1}{2}\lfloor F][\mathcal{A}]\{\Delta\}
$$

Equating the external to the internal work $W_{\text {ext }}=W_{\text {int }}$ we obtain:

$$
\begin{gather*}
\frac{1}{2}\lfloor F\rfloor[\mathcal{B}]^{T}\{\Delta\}=\frac{1}{2}\lfloor F\rfloor[\mathcal{A}]\{\Delta\} \\
{[\mathcal{B}]^{T}=[\mathcal{A}]} \tag{4}
\end{gather*}
$$

The counterparts at the continuum level is

$$
\left\{\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{z z} \\
\varepsilon_{x y} \\
\varepsilon_{x z} \\
\varepsilon_{y z}
\end{array}\right\}=\left[\begin{array}{ccc}
\frac{\partial}{\partial x} & 0 & 0 \\
0 & \frac{\partial}{\partial y} & 0 \\
0 & 0 & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \\
\frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x} \\
0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y}
\end{array}\right]\left\{\begin{array}{l}
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right\}
$$

or $\varepsilon=\mathrm{Lu}$ where L is called a Linear Operator, and

$$
\left[\begin{array}{cccccc}
\frac{\partial}{\partial x} & 0 & 0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} & 0 \\
0 & \frac{\partial}{\partial y} & 0 & \frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial z} \\
0 & 0 & \frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x} & \frac{\partial}{\partial y}
\end{array}\right]\left\{\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{z z} \\
\sigma_{x y} \\
\sigma_{x z} \\
\sigma_{y z}
\end{array}\right\}+\left\{\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right\}=0
$$

or $\mathrm{L}^{\top} \sigma+\mathrm{b}=0$

Having introduced both the stiffness and flexibility methods, we shall rigorously consider the relationship among the two matrices $[\mathrm{K}]$ and [D] at the structure level. Recall:

$$
\left\{\begin{array}{c}
\mathrm{P}_{t} \tag{5}\\
\hline \mathrm{P}_{u}
\end{array}\right\}=\left[\begin{array}{c|c}
\mathrm{K}_{t t} & \mathrm{~K}_{t u} \\
\hline \mathrm{~K}_{u t} & \mathrm{~K}_{u u}
\end{array}\right]\left\{\begin{array}{c}
\Delta_{t} \\
\hline \Delta_{u}
\end{array}\right\}
$$

We seek d , such that $\Delta=\mathrm{dp}$, for a structure supported in a stable and statically determinate way. For the following simple case:

Since $\left\{\Delta_{u}\right\}=\{0\} \Rightarrow\left\{\begin{array}{c}\mathrm{P}_{t} \\ \mathrm{P}_{u}\end{array}\right\}=\left[\begin{array}{c}\mathrm{K}_{t t} \\ \mathrm{~K}_{u t}\end{array}\right]\left\{\Delta_{t}\right\} \Rightarrow\left\{\mathrm{P}_{t}\right\}=\left[\mathrm{K}_{t t}\right]\left\{\Delta_{t}\right\} \Rightarrow[\mathrm{d}]=\left[\mathrm{K}_{t t}\right]^{-1}$

$$
\left.\right|^{Y}
$$

$$
\begin{gathered}
\left\{\begin{array}{l}
M_{1} \\
M_{2}
\end{array}\right\}=\underbrace{\frac{E l}{I}\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right]}_{\left[K_{t t}\right]}\left\{\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right\} \\
{\left[\mathrm{K}_{t t}\right]^{-1}=[\mathrm{d}]=\frac{l}{E l} \frac{1}{12}\left[\begin{array}{rr}
4 & -2 \\
-2 & 4
\end{array}\right]=\frac{l}{6 E l}\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]}
\end{gathered}
$$

(1) $\left[\mathrm{K}_{t t}\right]$: From Eq. $5,[\mathrm{~K}]$ was subdivided into free and supported d.o.f.'s, and we have shown that $\left[\mathrm{K}_{t t}\right]=[\mathrm{d}]^{-1}$, or $\left\{\mathrm{P}_{t}\right\}=\left[\mathrm{K}_{t t}\right]\left\{\Delta_{t}\right\}$ but we still have to determine $\left[\mathrm{K}_{t u}\right]$, $\left[\mathrm{K}_{u t}\right]$, and $\left[\mathrm{K}_{u u}\right]$.
(2) $\left[\mathrm{K}_{u t}\right]$: Since [d] is obtained for a stable statically determinate structure, we have:

$$
\left\{\mathrm{P}_{u}\right\}=[\mathcal{B}]\left\{\mathrm{P}_{t}\right\} ; \quad\left\{\mathrm{P}_{u}\right\}=\underbrace{[\mathcal{B}]\left[\mathrm{K}_{t t}\right]}_{\left[\mathrm{K}_{u t}\right]}\left\{\Delta_{t}\right\} ; \quad\left[\mathrm{K}_{u t}\right]=[\mathcal{B}][\mathrm{d}]^{-1}
$$

(3) $\left.\mathrm{K}_{t u}\right]$: Equating the external to the internal work:
(1) External work: $W_{\text {ext }}=\frac{1}{2}\left\lfloor\Delta_{t}\right\rfloor\left\{\mathrm{P}_{t}\right\}$
(2) Internal work: $W_{\text {int }}=\frac{1}{2}\left\lfloor\mathrm{P}_{u}\right\rfloor\left\{\Delta_{u}\right\}$

Equating $W_{\text {ext }}$ to $W_{\text {int }}$ and combining with

$$
\left\lfloor\mathrm{P}_{u}\right\rfloor=\left\lfloor\Delta_{t}\right\rfloor\left[\mathrm{K}_{u t}\right]^{T}
$$

with $\left\{\Delta_{u}\right\}=\{0\}$ (zero support displacements) we obtain:

$$
\begin{equation*}
\left[\mathrm{K}_{t u}\right]=\left[\mathrm{K}_{u t}\right]^{T}=[\mathrm{d}]^{-1}[\mathcal{B}]^{T} \tag{6}
\end{equation*}
$$

(4) $\left[\mathrm{K}_{u u}\right]$:

$$
\left\{\mathrm{P}_{u}\right\}=[\mathcal{B}]\left\{\mathrm{P}_{t}\right\} ; \quad\left\{\mathrm{P}_{t}\right\}=\left[\mathrm{K}_{t u}\right]\left\{\Delta_{u}\right\} ; \quad\left[\mathrm{K}_{t u}\right][\mathrm{d}]^{-1}[\mathcal{B}]^{T}
$$

or:

$$
\begin{equation*}
\left\{\mathrm{P}_{u}\right\}=\underbrace{[\mathcal{B}][\mathrm{d}]^{-1}[\mathcal{B}]^{T}}_{\left[\mathrm{K}_{u u}\right]}\left\{\Delta_{u}\right\} \tag{7}
\end{equation*}
$$

In summary we have:

$$
[\mathrm{K}]=\left[\begin{array}{c|c}
{[\mathrm{d}]^{-1}} & {[\mathrm{~d}]^{-1}[\mathcal{B}]^{\top}} \tag{8}\\
\hline[\mathcal{B}][\mathrm{d}]^{-1} & {[\mathcal{B}][\mathrm{d}]^{-1}[\mathcal{B}]^{\top}}
\end{array}\right]
$$

Assuming that both M_{1} and M_{2} are positive (ccw):
(9)

The flexibility matrix is given by:

$$
\left\{\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right\}=\underbrace{\frac{1}{6 E I}\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]}_{[\mathrm{d}]}\left\{\begin{array}{l}
M_{1} \\
M_{2}
\end{array}\right\}
$$

(2) The statics matrix $[\mathcal{B}]$ relating external to internal forces is given by:

$$
\left\{\begin{array}{l}
R_{1}=V_{1} \\
R_{2}=V_{2}
\end{array}\right\}=\underbrace{\frac{1}{I}\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right]}_{[\mathcal{B}]}\left\{\begin{array}{l}
M_{1} \\
M_{2}
\end{array}\right\}
$$

(1) $\left[\mathrm{K}_{t t}\right]$: would simply be given by:

$$
\left[\mathrm{K}_{t t}\right]=[\mathrm{d}]^{-1}=\frac{E l}{I}\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right]
$$

The statics matrix $[\mathcal{B}]$ relating external to internal forces is given by:

$$
\left\{\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right\}=\underbrace{\frac{1}{I}\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right]}_{[\mathcal{B}]}\left\{\begin{array}{l}
M_{1} \\
M_{2}
\end{array}\right\}
$$

(2) $\left.\mathrm{K}_{t u}\right]$: The upper off-diagonal

$$
\left[\mathrm{K}_{\text {tu }}\right]=[\mathrm{d}]^{-1}[\mathcal{B}]^{T}=\frac{E I}{I}\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right] \frac{1}{I}\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]=\frac{E l}{I^{2}}\left[\begin{array}{ll}
6 & -6 \\
6 & -6
\end{array}\right]
$$

(3) $\left[\mathrm{K}_{u t}\right]$: Lower off-diagonal term

$$
\left[\mathrm{K}_{u t}\right]=[\mathcal{B}][\mathrm{d}]^{-1}=\frac{1}{l}\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right] \frac{E l}{l}\left[\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right]=\frac{E l}{l^{2}}\left[\begin{array}{rr}
6 & 6 \\
-6 & -6
\end{array}\right]
$$

(4) $\left[\mathrm{K}_{u u}\right]$: Lower diagonal term

$$
\begin{aligned}
{\left[\mathrm{K}_{u u}\right] } & =[\mathcal{B}][\mathrm{d}]^{-1}[\mathcal{B}]^{T}=\left[\mathrm{K}_{u t}\right][\mathcal{B}]^{T} \\
& =\frac{E l}{\beta^{2}} \frac{1}{I}\left[\begin{array}{rr}
6 & 6 \\
-6 & -6
\end{array}\right]\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]=\frac{E l}{\beta^{3}}\left[\begin{array}{rr}
12 & -12 \\
-12 & 12
\end{array}\right]
\end{aligned}
$$

Let us note that we can rewrite:

$$
\left\{\begin{array}{c}
M_{1} \\
M_{2} \\
\hline V_{1} \\
V_{2}
\end{array}\right\}=\frac{E I}{\beta}\left[\begin{array}{rr|rr}
4 I^{2} & 2 I^{2} & 6 I & -6 I \\
2 I^{2} & 4 I^{2} & 6 I & -6 I \\
\hline 6 I & 6 I & 12 & -12 \\
-6 I & -6 I & -12 & 12
\end{array}\right]\left\{\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\hline v_{1} \\
v_{2}
\end{array}\right\}
$$

If we rearrange the stiffness matrix we would get:

$$
\left\{\begin{array}{c}
V_{1} \\
M_{1} \\
\hline V_{2} \\
M_{2}
\end{array}\right\}=\underbrace{\frac{E I}{l}\left[\begin{array}{rr|rr}
\frac{12}{l^{2}} & \frac{6}{T} & \frac{-12}{l^{2}} & \frac{6}{T} \\
\frac{6}{T} & 4 & \frac{-6}{1} & 2 \\
\hline \frac{-12}{I^{2}} & \frac{-6}{T} & \frac{12}{T} & \frac{-6}{T} \\
\frac{6}{T} & 2 & \frac{-6}{T} & 4
\end{array}\right]}_{[\mathrm{K}]}\left\{\begin{array}{c}
v_{1} \\
\theta_{1} \\
\hline v_{2} \\
\theta_{2}
\end{array}\right\}
$$

and is the same stiffness matrix earlier derived.

Insert from old lecture notes in Matrix, may be important.

- Ratio of axial to flexural stiffness is:

$\alpha=\frac{k_{a}}{k_{f}}=\frac{\frac{E A}{L}}{\frac{12 E I}{L^{3}}}=\frac{A L^{2}}{121}$.
- For a $b \times h$ rectangular section, with $b=h / 2$, and $L=10 h$, $\Rightarrow \alpha=100$
- For a W section

$$
\begin{aligned}
& Z \approx \frac{w d}{9}, \frac{Z}{S}=\xi=1.1, S=\frac{1}{d}, w=(490) \mathrm{lbs} / \mathrm{ft}^{3} A \text {, or } \\
& I \approx 0.208 A d^{2}, \text { and } \alpha=\frac{\frac{E A}{2}}{\frac{12 E}{L^{3}}}=\frac{\frac{E A}{L}}{\frac{12 E(0.208) A d^{2}}{L^{3}}}=0.4\left(\frac{L}{d}\right)^{2}
\end{aligned}
$$

- For steel structure, we can assume
$L=20 d, \Rightarrow \alpha=160$ Axial stiffness is much higher than flexural stiffness. Note: we may have negligible axial deformations, however axial force is not negligible.
- This is often exploited in seismic analysis, enabling us to replace a (short) multi-bay building with a single column with lumped masses.

Ignoring axial deformations in the columns.

- If $\alpha>\approx 10$ ignore axial deformation, and reduce number of degrees of freedom. When the frame is subjected to lateral (wind or earthquake) load, shear force in each column is proportional to its stiffness.
- Ignoring axial deformation, greatly facilitates the dynamic analysis of small rise building frames subjected to lateral load (wind, earthquakes).

- Using Newton's second law of motion for each of the three nodes:

$$
\begin{array}{llll}
P_{3}(t) & -m_{33} \ddot{u}_{3} & -c_{3}\left(\dot{u}_{3}-\dot{u}_{2}\right) & -K_{3}\left(u_{3}-u_{2}\right) \\
P_{2}(t) & -m_{22} \ddot{u}_{2} & +c_{3}\left(\dot{u}_{3}-\dot{u}_{2}\right)-c_{2}\left(\dot{u}_{2}-\dot{u}_{1}\right) & +K_{3}\left(u_{3}-u_{2}\right)-K_{2}\left(u_{2}-u_{1}\right) \\
P_{1}(t) & -m_{11} \ddot{u}_{1} & +c_{2}\left(\dot{u}_{2}-\dot{u}_{1}\right)-c_{1} \dot{u}_{1} & +K_{2}\left(u_{2}-u_{1}\right)-K_{1} u_{1}
\end{array}
$$

- We can rewrite these equations as

$$
\begin{array}{lll}
m_{11} \ddot{u}_{1}+\left(c_{1}+c_{2}\right) \dot{u}_{1}-c_{2} \dot{u}_{2} & +\left(k_{1}+k_{2}\right) u_{1}-k_{2} u_{2} & =P_{1}(t) \\
m_{22} \ddot{u}_{2}-c_{2} \dot{u}_{1}+\left(c_{2}+c_{3}\right) \dot{u}_{2}-c_{3} \dot{u}_{3} & -k_{2} u_{1}+\left(k_{2}+k_{3}\right) u_{2}-k_{3} u_{3} & =P_{2}(t) \\
m_{33} \ddot{u}_{3}-c_{3} \dot{u}_{2}+c_{3} \dot{u}_{3} & -K_{3} u_{2}+K_{3} u_{3} & =P_{3}(t)
\end{array}
$$

or

$$
\begin{gathered}
{[M]\{\ddot{u}\}+[C]\{\dot{u}\}+[K]\{u\}=\{f(t)\}} \\
{\left[\begin{array}{ccc}
m_{1} & 0 & 0 \\
0 & m_{2} & 0 \\
0 & 0 & m_{3}
\end{array}\right]\left\{\begin{array}{l}
\ddot{u}_{1} \\
\ddot{u}_{2} \\
\ddot{u}_{3}
\end{array}\right\}+\left[\begin{array}{ccc}
c_{1}+c_{2} & -c_{2} & 0 \\
-c_{2} & c_{2}+c_{3} & -c_{3} \\
0 & -c_{3} & c_{3}
\end{array}\right]\left\{\begin{array}{l}
\dot{u}_{1} \\
\dot{u}_{2} \\
\dot{u}_{3}
\end{array}\right\}} \\
+\left[\begin{array}{ccc}
K_{1}+K_{2} & -K_{2} & 0 \\
-K_{2} & K_{2}+K_{3} & -K_{3} \\
0 & -K_{3} & K_{3}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right\}=\left\{\begin{array}{l}
f_{1}(t) \\
f_{2}(t) \\
f_{3}(t)
\end{array}\right\}
\end{gathered}
$$

So far all members were assumed to be rigidly connected and connecting center lines to center lines. In many instances, either we have a hinge, a semi-rigid connection and we may want to take into account the offset of the member.

$\lfloor\mathrm{p}\rfloor=\left\lfloor\begin{array}{llllll}N_{1} & V_{2} & M_{3} & N_{4} & V_{5} & M_{6} \\ \hline\end{array}\right.$ and $\lfloor\overline{\mathrm{p}}\rfloor=\left\lfloor\begin{array}{llllll}\bar{N}_{1} & \bar{V}_{2} & \bar{M}_{3} & \bar{N}_{4} & \bar{V}_{5} & \bar{M}_{6}\end{array}\right\rfloor$ are the forces acting on the interior and exterior sides of the rigid link respectively. Similarly we denote by $\lfloor\overline{\mathrm{u}}\rfloor=\left\lfloor\begin{array}{llllll}\bar{u}_{1} & \bar{v}_{2} & \bar{\theta}_{3} & \bar{u}_{4} & \bar{v}_{5} & \bar{\theta}_{6}\end{array}\right\rfloor$ the exterior displacements

- We need to express the exterior forces in terms of the interior ones. We consider equilibrium of the free body diagram:

$$
\begin{aligned}
& \bar{N} 1=N_{1} ; \quad \bar{V}_{2}=V_{2} ; \bar{M}_{3}=L_{1} V_{2}+M_{3} \\
& \bar{N} 4=N_{4} ; \quad \bar{V}_{5}=V_{5} ; \quad \bar{M}_{6}=-L_{2} V_{5}+M_{6}
\end{aligned}
$$

or

$$
\begin{equation*}
\overline{\mathrm{p}}=\mathcal{B} \mathrm{p} \tag{10}
\end{equation*}
$$

- \mathcal{B} is a Statics matrix:

$$
\mathcal{B}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & L_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -L_{2} & 1
\end{array}\right]
$$

- Similarly, we can define a kinematics matrix $[\mathcal{A}]$ such that

$$
\begin{equation*}
\mathrm{u}=\mathcal{A} \overline{\mathrm{u}} \tag{11}
\end{equation*}
$$

- It can be shown that $\mathcal{A}=\mathcal{B}^{T}$.
- We seek to determine the stiffness for the beam element with rigid offset in terms of the known

$$
\begin{equation*}
\mathrm{p}+\mathbf{N E F}=\mathrm{ku} \tag{12}
\end{equation*}
$$

- If we multibly both sies by \mathcal{B} and substitute Eq. 10 and 11 into 12 :

$$
\begin{align*}
\mathcal{B} p+\mathcal{B N E F} & =\mathcal{B} \mathrm{k} \mathcal{A} \overline{\mathrm{u}} \tag{13}\\
\mathcal{B} p+\mathcal{B N E F} & =\mathcal{B} \mathrm{k} \mathcal{B}^{T} \overline{\mathrm{u}} \tag{14}\\
\overline{\mathrm{p}}+\overline{\mathbf{N E F}} & =\overline{\mathrm{k}} \overline{\mathrm{u}} \tag{15}
\end{align*}
$$

- where

$$
\overline{\mathrm{k}}=\frac{E l}{L^{3}}\left[\begin{array}{cccccc}
\frac{A L^{2}}{I} & 0 & 0 & -\frac{A L^{2}}{L} & 0 & 0 \\
0 & 12 & \alpha_{1} & 0-12 & \alpha_{2} & \\
0 & \alpha_{1} & \gamma & 0-\alpha_{1} & \beta & \\
-\frac{A L^{2}}{I} & 0 & 0 & \frac{A L^{2}}{1} & 0 & 0 \\
0 & -12 & -\alpha_{1} & 012 & -\alpha_{2} & \\
0 & \alpha_{2} & \beta & 0 & -\alpha_{2} & \gamma
\end{array}\right]
$$

where $\alpha_{i}=6 L+12 L_{i}, \beta=2 L^{2}+6 L L_{1}+6 L L_{2}+12 L_{1} L_{2}$, and $\gamma=4 L^{2}+12 L L_{2}+12 L_{2}^{2}$

- thus

$$
\underbrace{\left\{\begin{array}{c}
\overline{F N_{1}} \\
\overline{F V_{2}} \\
\overline{F M_{3}} \\
\overline{F N_{4}} \\
\overline{F V_{5}} \\
\hline F M_{6}
\end{array}\right\}}_{\overline{N E F}}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & L_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & -L_{2} & 1
\end{array}\right] \underbrace{\left\{\begin{array}{c}
F N_{1} \\
F V_{2} \\
F M_{3} \\
F N_{4} \\
F V_{5} \\
F M_{6}
\end{array}\right\}}_{N E F}
$$

The force displacement relations is given by $\mathrm{p}+\mathbf{N E F}=\mathrm{ku}$.
We seek to determine the stiffness for the beam element with semi rigid connection $\overline{\mathrm{p}}+\overline{\mathbf{N E F}}=\overline{\mathrm{k}} \overline{\mathrm{u}}$ in terms of k , NEF and the two spring stiffnesses k_{1}^{s} and k_{2}^{s} at the left and right end of the member (first and second node).
$\lfloor\mathrm{p}\rfloor=\left\lfloor\begin{array}{llll}V_{1} & M_{2} & V_{3} & M_{4}\end{array}\right\rfloor$ and $\lfloor\overline{\mathrm{p}}\rfloor=\left\lfloor\begin{array}{llll}\bar{V}_{1} & \bar{M}_{2} & \bar{V}_{3} & \bar{M}_{4}\end{array}\right\rfloor$ the forces acting on the interior and exterior sides of the springs respectively. Similarly we denote by $\lfloor\mathrm{u}\rfloor=\left\lfloor\begin{array}{llll}v_{1} & \theta_{2} & v_{3} & \theta_{4}\end{array}\right\rfloor$ and $\lfloor\overline{\mathrm{u}}\rfloor=\left\lfloor\begin{array}{llll}\bar{v}_{1} & \bar{\theta}_{2} & \bar{v}_{3} & \bar{\theta}_{4}\end{array}\right\rfloor$

- Considering the free body diagram of the spring, and assuming that the springs are infinitesimally small, equilibrium requires that $\mathrm{p}=\overline{\mathrm{p}}$, or

$$
\begin{aligned}
v_{1} & =\bar{v}_{1} \\
\alpha_{1} & =\bar{\theta}_{2}-\theta_{2} \Rightarrow \theta_{2}=\bar{\theta}_{2}-\alpha_{1} \\
M_{2} & =K_{1}^{S} \alpha_{1} \Rightarrow \theta_{2}=\bar{\theta}_{2}-\underbrace{\frac{M_{2}}{k_{1}^{s}}}_{\alpha_{1}} \\
v_{3} & =\bar{v}_{3} \\
\alpha_{2} & =\bar{\theta}_{4}-\theta_{4} \Rightarrow \theta_{4}=\bar{\theta}_{4}-\alpha_{2} \\
M_{4} & =K_{2}^{S} \alpha_{2} \Rightarrow \theta_{4}=\bar{\theta}_{4}-\underbrace{\frac{M_{4}}{k_{2}^{s}}}_{\alpha_{1}}
\end{aligned}
$$

where k_{1}^{s} and k_{2}^{s} are the left and right springs respectively.

- Substituting v_{1}, v_{3}, θ_{2} and θ_{4} into

$$
\underbrace{\left\{\begin{array}{c}
V_{1} \\
M_{2} \\
V_{3} \\
M_{4}
\end{array}\right\}}_{\{p\}}+\underbrace{\left\{\begin{array}{c}
F V_{1} \\
F M_{2} \\
F V_{3} \\
F M_{4}
\end{array}\right\}}_{\{N E F\}}=\underbrace{E l}_{[\mathrm{k}]} \frac{E l}{L^{3}}\left[\begin{array}{cccc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right] \quad \underbrace{\left\{\begin{array}{c}
V_{1} \\
\theta_{2} \\
V_{3} \\
\theta_{4}
\end{array}\right\}}_{\{u\}}
$$

we obtain

$$
\begin{align*}
& \bar{V}_{1}+F V_{1}=\frac{E l}{L^{3}}\left[12 \bar{v}_{1}+6 L\left(\bar{\theta}_{2}-\frac{\bar{M}_{2}}{k_{1}^{s}}\right)-12 \bar{v}_{3}+6 L\left(\bar{\theta}_{4}-\frac{\bar{M}_{4}}{k_{2}^{s}}\right)\right] \tag{16}\\
& \bar{M}_{2}+F M_{2}=\frac{E l}{L^{3}}\left[6 L \bar{v}_{1}+4 L^{2}\left(\bar{\theta}_{2}-\frac{\bar{M}_{2}}{k_{1}^{s}}\right)-6 L \bar{v}_{3}+2 L^{2}\left(\bar{\theta}_{4}-\frac{\bar{M}_{4}}{k_{2}^{s}}\right)\right] \tag{17}\\
& \bar{V}_{3}+F V_{3}=\frac{E l}{L^{3}}\left[-12 \bar{v}_{1}-6 L\left(\bar{\theta}_{2}-\frac{\bar{M}_{2}}{k_{1}^{s}}\right)+12 \bar{v}_{3}-6 L\left(\bar{\theta}_{4}-\frac{\bar{M}_{4}}{k_{2}^{s}}\right)\right] \tag{18}\\
& \bar{M}_{4}+F M_{4}=\frac{E l}{L^{3}}\left[6 L \bar{v}_{1}+2 L^{2}\left(\bar{\theta}_{2}-\frac{\bar{M}_{2}}{k_{1}^{s}}\right)-6 L \bar{V}_{3}+4 L^{2}\left(\bar{\theta}_{4}-\frac{\bar{M}_{4}}{k_{2}^{s}}\right)\right] \tag{19}
\end{align*}
$$

- These 4 equations are coupled (\bar{M}_{2} and \bar{M}_{4} are both inside and outside the stiffness matrix), we seek to uncouple them and express the forces exclusively in terms of the displacement.
- First we solve Eq. 17 and 19 simultaneously in terms of \bar{u} :

$$
\begin{aligned}
\bar{M}_{2}= & \frac{E I}{L^{3}} \frac{\phi_{b}}{\Phi}\left[6 L\left(2-\phi_{2}\right) \bar{v}_{1}+4 L^{2}\left(3-2 \phi_{2}\right) \bar{\theta}_{2}-6 L\left(2-\phi_{2}\right) \bar{V}_{3}+2 L^{2} \phi_{2} \bar{\theta}_{4}\right] \\
& +\frac{\phi_{1}}{\Phi}\left[\left(4-3 \phi_{2}\right) F M_{2}-2\left(1-\phi_{2}\right) F M_{4}\right] \\
\bar{M}_{4}= & \frac{E I}{L^{3}} \frac{\phi_{2}}{\Phi}\left[6 L\left(2-\phi_{1}\right) \bar{v}_{1}+2 L^{2} \phi_{1} \bar{\theta}_{2}-6 L\left(2-\phi_{1}\right) \bar{v}_{3}+4 L^{2}\left(3-2 \phi_{1}\right) \bar{\theta}_{4}\right] \\
& +\frac{\phi_{2}}{\Phi}\left[-2\left(1-\phi_{1}\right) F M_{2}+\left(4-3 \phi_{1}\right) F M_{4}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\phi_{1} & =\frac{k_{1}^{s} L}{E I+k_{1}^{s} L} \\
\phi_{2} & =\frac{k_{2}^{s} L}{E I+k_{2}^{s} L} \\
\Phi & =12-8 \phi_{1}-8 \phi_{2}+5 \phi_{1} \phi_{2}
\end{aligned}
$$

- ϕ can be interpreted as a "rigidity factor". For rigid connection $\phi=1$, whereas for hinged ones $\phi=0$.
- Next we substitute these last equation into Eq. 16-18:

$$
\begin{align*}
\bar{V}_{1}= & \frac{E l}{\Phi L^{3}}\left[12\left(\phi_{1}+\phi_{2}-\phi_{b} \phi_{2}\right) \bar{v}_{1}+6 L \phi_{1}\left(2-\phi_{2}\right) \bar{\theta}_{2}-12\left(\phi_{1}+\phi_{2}-\phi_{1} \phi_{2}\right) \bar{v}_{3}+6 L \phi_{2}\left(2-\phi_{1}\right) \bar{\theta}_{4}\right] \\
& +F V_{1}-\frac{6}{\Phi L}\left[\left(1-\phi_{1}\right)\left(2-\phi_{2}\right) F M_{2}+\left(1-\phi_{2}\right)\left(2-\phi_{1}\right) F M_{4}\right] \\
\bar{V}_{3}= & \frac{E l}{\Phi L^{3}}\left[-12\left(\phi_{1}+\phi_{2}-\phi_{b} \phi_{2}\right) \bar{v}_{1}-6 L \phi_{1}\left(2-\phi_{2}\right) \bar{\theta}_{2}+12\left(\phi_{1}+\phi_{2}-\phi_{1} \phi_{2}\right) \bar{v}_{3}-6 L \phi_{2}\left(2-\phi_{1}\right) \bar{\theta}_{4}\right] \\
& +F V_{3}+\frac{6}{\Phi L}\left[\left(1-\phi_{1}\right)\left(2-\phi_{2}\right) F M_{2}+\left(1-\phi_{2}\right)\left(2-\phi_{1}\right) F M_{4}\right]
\end{align*}
$$

- We can express these expressions as

$$
\{\bar{P}\}+\{\overline{N E F}\}=[\bar{k}]\{\bar{u}\}
$$

where

$$
\begin{aligned}
{[\overline{\mathbf{k}}]=} & \frac{E l}{\Phi L^{3}}\left[\begin{array}{cccc}
12\left(\phi_{1}+\phi_{2}-\phi_{1} \phi_{2}\right) & 6 L \phi_{1}\left(2-\phi_{2}\right) & -12\left(\phi_{1}+\phi_{2}-\phi_{1} \phi_{2}\right) & 6 L \phi_{2}\left(2-\phi_{1}\right) \\
6 L \phi_{1}\left(2-\phi_{2}\right) & 4 L^{2} \phi_{1}\left(3-2 \phi_{2}\right) & -6 L \phi_{1}\left(2-\phi_{2}\right) & 2 L^{2} \phi_{1} \phi_{2} \\
-12\left(\phi_{1}+\phi_{2}-\phi_{1} \phi_{2}\right) & -6 L \phi_{1}\left(2-\phi_{2}\right) & 12\left(\phi_{1}+\phi_{2}-\phi_{1} \phi_{2}\right) & -6 L \phi_{2}\left(2-\phi_{b}\right) \\
6 L \phi_{2}\left(2-\phi_{1}\right) & 2 L^{2} \phi_{1} \phi_{2} & -6 L \phi_{2}\left(2-\phi_{1}\right) & 4 L^{2} \phi_{2}\left(3-2 \phi_{1}\right)
\end{array}\right] \\
& \underbrace{\left\{\begin{array}{l}
\overline{F V_{1}} \\
\frac{F M_{2}}{\overline{F V_{3}}}
\end{array}\right\}}_{\overline{N E F}}=\begin{array}{cccc}
1 & -\frac{6}{\Phi L}\left[\left(1-\phi_{1}\right)\left(2-\phi_{2}\right)\right] & 0 & -\frac{6}{\Phi L}\left[\left(1-\phi_{2}\right)\left(2-\phi_{1}\right)\right] \\
0 & \frac{\phi_{1}}{\Phi}\left[\left(4-3 \phi_{2}\right)\right] & 0 & \frac{\phi_{1}}{\Phi}\left[-2\left(1-\phi_{2}\right)\right] \\
0 & \frac{6}{\Phi L}\left[\left(1-\phi_{1}\right)\left(2-\phi_{2}\right)\right] & 1 & \frac{6}{\Phi L}\left[\left(1-\phi_{2}\right)\left(2-\phi_{1}\right)\right] \\
0 & \frac{\phi_{2}}{\Phi}\left[-2\left(1-\phi_{1}\right)\right] & 0 & \frac{\phi_{2}}{\Phi}\left[\left(4-3 \phi_{1}\right)\right]
\end{array}] \underbrace{\left\{\begin{array}{c}
F V_{1} \\
F M_{2} \\
F V_{3} \\
F M_{4}
\end{array}\right\}}_{N E F}
\end{aligned}
$$

- For fully rigid connections, $\phi=1$, we recover the original stiffness matrix of the beam.
- If we set $\phi_{1}=0$ and $\phi_{2}=1$ then we have a hinge on the left, and a rigid connection on the right and the corresponding stiffness matrix is:

$$
[\overline{\mathrm{k}}]=\frac{E l}{L^{3}}\left[\begin{array}{cccc}
3 & 0 & -3 & 3 L \\
0 & 0 & 0 & 0 \\
-3 & 0 & 3 & -3 L \\
3 L & 0 & -3 L & 3 L^{2}
\end{array}\right]
$$

- The stiffness matrix of a beam column with a hinge at its right will then be:

$$
[\overline{\mathrm{k}}]=\left[\begin{array}{cccccc}
A E / L & 0 & 0 & -A E / L & 0 & 0 \\
0 & 3 E I / L^{3} & 3 E I / L^{2} & 0 & -3 E I / L^{3} & 0 \\
0 & 3 E I / L^{2} & 3 E I / L & 0 & -3 E I / L^{2} & 0 \\
-A E / L & 0 & 0 & A E / L & 0 & 0 \\
0 & -3 E I / L^{3} & -3 E I / L^{2} & 0 & 3 E I / L^{3} & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- If the hinge is on the left end

$$
[\overline{\mathrm{k}}]=\left[\begin{array}{cccccc}
A E / L & 0 & 0 & -A E / L & 0 & 0 \\
0 & 3 E I / L^{3} & 0 & 0 & -3 E I / L^{2} & 3 E I / L^{2} \\
0 & 0 & 0 & 0 & 0 & 0 \\
-A E / L & 0 & 0 & A E / L & 0 & 0 \\
0 & -3 E I / L^{3} & 0 & 0 & 3 E I / L^{3} & -3 E I / L^{2} \\
0 & 3 E I / L^{2} & 0 & 0 & -3 E I / L^{2} & 3 E I / L
\end{array}\right]
$$

- Careful: the global dof corresponding to a zero local dof should not be zero, i.e.e another element should "contribute" to the global term.
- if we express the spring stiffness k^{s} as $k^{s}=\alpha E I / L$, then $\phi=\alpha /(1+\alpha)$. The dependance of the \bar{K}_{22} coefficient on α (assuming both springs having the same stiffness).

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado

Intermediary Structural Analysis

Finite Element Formulation

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2014

Table of Contents I

(1) Introduction
(2) Shape Functions

- definition
- C^{0}, Axial/Torsional
- Generalization
- C^{1} Flexural
(3) Finite Element
- Introduction
- Strain Displacement Relations
- Axial Members
- Flexural Members
- Virtual Displacement and Strains
- Element Stiffness Matrix Formulation
- Stress Recovery

4. Application

- Truss Element
- Flexural Element

Introduction

- So far we have considered continuous systems, in this chapter we seek to apply the previously derived relations to discretized systems.
- Primary solutions only at the nodes only (as opposed to a continuous solution inside Ω).
- Application of the Principle of Virtual Displacement requires an assumed displacement field. This displacement field can be approximated by interpolation functions written in terms of:
(1) Unknown polynomial coefficients, most appropriate for continuous systems, and the Rayleigh-Ritz method

$$
v(x)=\underbrace{a_{1}}_{c^{(1)}} \underbrace{x(L-x)}_{\phi^{(1)}}+\underbrace{a_{2}}_{c^{(2)}} \underbrace{x^{2}(L-x)^{2}}_{\phi^{(2)}}+\ldots \text { A major drawback of this }
$$

approach, is that the coefficients have no physical meaning.
(2) Unknown nodal deformations, most appropriate for discrete systems and Potential Energy based formulations $v\left(\bar{\Delta}_{i}\right)=\Delta=N_{1} \bar{\Delta}_{1}+N_{2} \bar{\Delta}_{2}+\ldots+N_{n} \bar{\Delta}_{n}$ where $\bar{\Delta}_{i}$ is the known displacement at dof i.

Shape Functions; Definitions I

Expression for the generalized known displacement (translation or rotation), Δ at any point in terms of all its known nodal ones, $\bar{\Delta}$.

$$
\Delta=\sum_{i=1}^{n} N_{i}(x) \bar{\Delta}_{i}=\lfloor\mathbf{N}(x)\rfloor\{\overline{\boldsymbol{\Delta}}\}
$$

$\bar{\Delta}_{i}$ is the (generalized) nodal displacement corresponding to d.o.f i
(1) N_{i} is an interpolation function, or shape function which has the following characteristics: $N_{i}=1$ at dof i and $N_{i}=0$ at dof j where $i \neq j$.
(2) Summation of N at any point is equal to unity $\Sigma N=1$.
(3) N can be derived on the bases of:
(1) Assumed deformation state defined in terms of polynomial series.
(2) Interpolation function (Lagrangian or Hermitian).
(4) As with the Rayleigh-Ritz method, polynomial functions should
(1) Be continuous, of the type required by the variational principle.
(2) Exhibit rigid body motion (i.e. $v=a_{1}+\ldots$)
(3) Exhibit constant strain.

Shape Functions; Definitions II

- Shape functions should be complete, and meet the same requirements as the coefficients of the Rayleigh Ritz method.
- Shape functions can often be written in non-dimensional coordinates (i.e. $\left.\xi=\frac{x}{I}\right)$. This will be exploited later by the so-called isoparametric elements.

C^{0}, Axial/Torsional Shape Functions

- Let $u(x)=N_{1}(x) \bar{u}_{1}+N_{2}(x) \bar{u}_{2}$ or $\theta_{x}=N_{1} \bar{\theta}_{x 1}+N_{2} \bar{\theta}_{x 2}$
- We have 2 d.o.f's, we will assume a linear deformation state $u(x)=a_{1} x+a_{2}$ where u can be either Δ or θ, and the essential B.C.'s are given by: $u=\bar{u}_{1}$ at $x=0$, and $u=\bar{u}_{2}$ at $x=L$. Thus we have:

$$
\bar{u}_{1}=a_{2} ; \quad \bar{u}_{2}=a_{1} L+a_{2}
$$

- Solving for a_{1} and a_{2} in terms of \bar{u}_{1} and \bar{u}_{2} we obtain:

$$
a_{1}=\frac{\bar{u}_{2}}{L}-\frac{\bar{u}_{1}}{L} ; \quad a_{2}=\bar{u}_{1}
$$

- Substituting and rearranging those expressions we obtain

$$
\begin{aligned}
u(x) & =\left(\frac{\bar{u}_{2}}{L}-\frac{\bar{u}_{1}}{L}\right) x+\bar{u}_{1} \\
& =\underbrace{\left(1-\frac{x}{L}\right)}_{N_{1}(x)} \bar{u}_{1}+\underbrace{\frac{x}{L}}_{N_{2}(x)} \bar{u}_{2}
\end{aligned}
$$

Note that
$N 1(x)+N 2(x)=1 \quad \forall x \in\left[\begin{array}{ll}0 & L\end{array}\right]$

Generalization

- The previous derivation can be generalized by writing:

$$
u(x)=a_{1} x+a_{2}=\underbrace{\left\lfloor\begin{array}{ll}
x & 1 \\
\hline
\end{array}\right.}_{\lfloor\mathbf{p}(x)\rfloor} \underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}}_{\{\mathbf{a}\}}
$$

where $\lfloor\mathbf{p}(x)\rfloor$ corresponds to the polynomial approximation, and $\{\mathbf{a}\}$ is the coefficient vector.

- Apply the boundary conditions:

$$
\underbrace{\left\{\begin{array}{l}
\bar{u}_{1} \\
\bar{u}_{2}
\end{array}\right\}}_{\{\overline{\boldsymbol{\Delta}}\}}=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
L & 1
\end{array}\right]}_{[\mathcal{L}]} \underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}}_{\{\mathbf{a}\}}
$$

- Following inversion of $[\mathcal{L}]$, this leads to

$$
\underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}}_{\{\mathbf{a}\}}=\underbrace{\frac{1}{L}\left[\begin{array}{cc}
-1 & 1 \\
L & 0
\end{array}\right]}_{[\mathcal{L}]^{-1}} \underbrace{\left\{\begin{array}{l}
\bar{u}_{1} \\
\bar{u}_{2}
\end{array}\right\}}_{\left\{\overline{\boldsymbol{\Delta}}_{\}}\right.}
$$

- Substituting this last equation, we obtain:

$$
u(x)=\underbrace{\left\lfloor\left(1-\frac{x}{L}\right)\right.}_{\underbrace{\lfloor\mathbf{p}(x)\rfloor[\mathcal{L}]^{-1}}_{[\mathbf{N}(x)]}} \frac{x}{L}\rfloor\rfloor \underbrace{\left\{\begin{array}{c}
\bar{u}_{1} \\
\bar{u}_{2}
\end{array}\right\}}_{\left\{\overline{\boldsymbol{\Delta}}_{\}}\right.}
$$

- Hence, the shape functions [N] can be directly obtained from

$$
[\mathbf{N}(x)]=\lfloor\mathbf{p}(x)\rfloor[\mathcal{L}]^{-1}
$$

C^{1}, Flexural Shape Functions I

- We have 4 d.o.f.'s, $\{\boldsymbol{\Delta}\}_{4 \times 1}$:and hence will need 4 shape functions, N_{1} to N_{4}, and those will be obtained through 4 boundary conditions.
- With four essential boundary conditions (two on each node), we must assume a polynomial with four coefficients

$$
\begin{aligned}
v(x) & =a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4} \\
\theta(x) & =\frac{d v}{d x}=3 a_{1} x^{2}+2 a_{2} x+a_{3}
\end{aligned}
$$

C^{1}, Flexural Shape Functions II

- Note that v can be rewritten as:

$$
\{v(x)\}=\underbrace{\left\lfloor\begin{array}{llll}
x^{3} & x^{2} & x & 1
\end{array}\right\rfloor}_{\lfloor\mathbf{p}(x)\rfloor} \underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}}_{\{\mathbf{a}\}}
$$

- We now apply the boundary conditions:

$$
\begin{array}{lll}
v=\bar{v}_{1} & \text { at } & x=0 \\
v=\bar{v}_{2} & \text { at } & x=L \\
\theta=\bar{\theta}_{1}=\frac{d v}{d x} & \text { at } & x=0 \\
\theta=\bar{\theta}_{2}=\frac{d v}{d x} & \text { at } & x=L
\end{array}
$$

C^{1}, Flexural Shape Functions III

or:

$$
\underbrace{\left\{\begin{array}{l}
\bar{v}_{1} \\
\bar{\theta}_{1} \\
\bar{v}_{2} \\
\bar{\theta}_{2}
\end{array}\right\}}_{\left\{\overline{\mathbf{\Delta}}_{\}}\right.}=\underbrace{\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
L^{3} & L^{2} & L & 1 \\
3 L^{2} & 2 L & 1 & 0
\end{array}\right]}_{[\mathcal{L}]} \underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}}_{\{\mathbf{a}\}}
$$

- Inverting

$$
\underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}}_{\{\mathbf{a}\}}=\underbrace{\frac{1}{L^{3}}\left[\begin{array}{cccc}
2 & L & -2 & L \\
-3 L & -2 L^{2} & 3 L & -L^{2} \\
0 & L^{3} & 0 & 0 \\
L^{3} & 0 & 0 & 0
\end{array}\right]}_{[\mathcal{L}]^{-1}} \underbrace{\left\{\begin{array}{c}
\bar{v}_{1} \\
\bar{\theta}_{1} \\
\bar{v}_{2} \\
\bar{\theta}_{2}
\end{array}\right\}}_{\left\{\overline{\boldsymbol{\Delta}}_{\}}\right.}
$$

C^{1}, Flexural Shape Functions IV

- Combining, we obtain:

$$
\begin{aligned}
\Delta(x) & =\underbrace{\left\lfloor\begin{array}{llll}
x^{3} & x^{2} & x & 1
\end{array}\right]}_{\lfloor\mathbf{p}(x)\rfloor} \underbrace{\frac{1}{L^{3}}\left[\begin{array}{cccc}
2 & L & -2 & L \\
-3 L & -2 L^{2} & 3 L & -L^{2} \\
0 & L^{3} & 0 & 0 \\
L^{3} & 0 & 0 & 0
\end{array}\right]}_{[\mathcal{L}]^{-1}} \underbrace{\left\{\begin{array}{l}
\bar{v}_{1} \\
\bar{\theta}_{1} \\
\bar{v}_{2} \\
\bar{\theta}_{2}
\end{array}\right\}}_{\left\{\begin{array}{l}
\overline{\boldsymbol{\Delta}}_{\}} \\
\bar{v}_{2}
\end{array}\right\}} \\
& =\underbrace{[\underbrace{\left(1+2 \xi^{3}-3 \xi^{2}\right)}_{[\mathbf{N}]} \underbrace{x(1-\overline{\mathcal{L}})^{-1}}_{N_{2}} \underbrace{\left(3 \xi^{2}-2 \xi^{3}\right)}_{N_{3}} \underbrace{x\left(\xi^{2}-\xi\right)}_{N_{4}}\rfloor}_{N_{1}} \underbrace{\left\{\begin{array}{l}
\bar{v}_{1} \\
\bar{\theta}_{1} \\
\bar{V}_{2} \\
\bar{\theta}_{2}
\end{array}\right\}}_{\left\{\overline{\boldsymbol{\Delta}}_{3}\right.}
\end{aligned}
$$

where $\xi=\frac{x}{L}$.

C^{1}, Flexural Shape Functions V

- Hence, the shape functions for the flexural element are given by:

$$
\begin{aligned}
& N_{1}=\left(1+2 \xi^{3}-3 \xi^{2}\right) \\
& N_{2}=x(1-\xi)^{2} \\
& N_{3}=\left(3 \xi^{2}-2 \xi^{3}\right) \\
& N_{4}=x\left(\xi^{2}-\xi\right)
\end{aligned}
$$

C^{1}, Flexural Shape Functions VI

- Note that Shape function associated with dof 1 is equal to one a $\xi=0$, equal to zero at $\xi=1$, and its slopes at those two points is equal to zero. Similarly, shape function 2 is zero at the two end points, slope equal to 1 at $\xi=0$, and zero at $\xi=1$.
- Summary

Function	$\xi=0$		$\xi=1$	
	N_{i}	$N_{i, x}$	N_{i}	$N_{i, x}$
$N_{1}=\left(1+2 \xi^{3}-3 \xi^{2}\right)$	1	0	0	0
$N_{2}=\xi(1-\xi)^{2}$	0	1	0	0
$N_{3}=\left(3 \xi^{2}-2 \xi^{3}\right)$	0	0	1	0
$N_{4}=\xi\left(\xi^{2}-\xi\right)$	0	0	0	1

- Since the transverse displacements and the rotations are uncoupled, we can write

$$
\left\{\begin{array}{l}
v \\
\theta
\end{array}\right\}=\left[\begin{array}{cccc}
N_{1} & 0 & N_{3} & 0 \\
0 & N_{2} & 0 & N_{4}
\end{array}\right]\left\{\begin{array}{c}
\bar{v}_{1} \\
\bar{\theta}_{1} \\
\bar{v}_{2} \\
\bar{\theta}_{2}
\end{array}\right\}
$$

Finite Element; Introduction

- Earlier in the semester, we derived the stiffness matrices of one dimensional rod elements, the approach used could not be generalized to general finite element. Alternatively, the derivation of this chapter will be applicable to both one dimensional rod (or nearly continuum) elements or contnuum (2D or 3D) elements.
- It is important to note that whereas the previously presented method to derive the stiffness matrix yielded an exact solution, it can not be generalized to continuum (2D/3D elements). On the other hands, the method presented here is an approximate method, which happens to result in an exact stiffness matrix for flexural one dimensional elements. Despite its approximation, this so-called finite element method will yield excellent results if enough elements are used.

Strain Displacement Relations

- The displacement Δ at any point inside an element can be written in terms of the shape functions $\lfloor\mathbf{N}\rfloor$ and the nodal displacements $\{\overline{\boldsymbol{\Delta}}\}$ as $\Delta(x) \stackrel{\text { def }}{=}\lfloor\mathbf{N}(x)\rfloor\{\overline{\boldsymbol{\Delta}}\}$
- The strain is then defined as: $\varepsilon(x) \stackrel{\text { def }}{=}[\mathbf{B}(x)]\{\bar{\Delta}\}$ where $[\mathbf{B}]$ is the matrix which relates nodal displacements to strain field and is clearly expressed in terms of derivatives of \mathbf{N}.

Strain Displacement Relations; Axial

$$
\begin{aligned}
& u(x)=\underbrace{\lfloor\underbrace{\left(1-\frac{x}{L}\right)}_{N_{1}} \underbrace{\frac{x}{L}}_{N_{2}}\rfloor}_{\lfloor\mathbf{N}\rfloor} \underbrace{\left\{\begin{array}{c}
\bar{u}_{1} \\
\bar{u}_{2}
\end{array}\right\}}_{\left\{\overline{\mathbf{\Delta}}_{\}}\right.} \\
& \varepsilon(x)=\underbrace{\varepsilon_{x x}=\frac{\mathrm{d} u}{\mathrm{~d} x}=\underbrace{\underbrace{-\frac{1}{L}}_{\frac{\partial N_{2}}{\partial x}} \underbrace{\frac{1}{L}}_{\{\overline{\boldsymbol{\Delta}}\}}}_{\frac{\partial N_{1}}{\partial x}}\}}_{[\mathbf{B}]}
\end{aligned}
$$

Strain Displacement Relations; Flexural Members

Using the shape functions for flexural elements previously derived in

$$
\begin{aligned}
\varepsilon & =\frac{y}{\rho}=y \frac{d^{2} v}{d x^{2}} \\
& =y \frac{d^{2} v}{d x^{2}} \\
& =y \underbrace{\lfloor\underbrace{\frac{6}{L^{2}}(2 \xi-1)}_{\frac{\partial^{2} N_{1}}{\partial x^{2}}} \underbrace{-\frac{2}{L}(3 \xi-2)}_{\frac{\partial^{2} N_{2}}{\partial x^{2}}} \underbrace{\frac{6}{L^{2}}(-2 \xi+1)}_{\frac{\partial^{2} N_{3}}{\partial x^{2}}} \underbrace{-\frac{2}{L}(3 \xi-1)}_{\frac{\partial^{2} N_{4}}{\partial x^{2}}}}_{[B]} \underbrace{\left\{\begin{array}{c}
\bar{v}_{1} \\
\bar{\theta}_{1} \\
\frac{\bar{D}_{2}}{\bar{\theta}_{2}}
\end{array}\right\}}_{\left\{\overline{\boldsymbol{\Delta}}_{\}}\right.}
\end{aligned}
$$

Virtual Displacement and Strain

In anticipation of the application of the principle of virtual displacement, we define the vectors of virtual displacements and strain in terms of nodal displacements and shape functions:

$$
\begin{align*}
\delta \Delta(x) & =[\mathbf{N}(x)]\{\delta \bar{\Delta}\} \tag{1}\\
\delta \varepsilon(x) & =[\mathbf{B}(x)]\{\delta \bar{\Delta}\} \tag{2}
\end{align*}
$$

Element Stiffness Matrix I

- Recall

$$
\begin{equation*}
\{\boldsymbol{\sigma}\}=[\mathbf{D}]\{\varepsilon\}-[\mathbf{D}]\left\{\varepsilon^{0}\right\} \tag{3}
\end{equation*}
$$

where [D] is the constitutive matrix which relates stress and strain vectors. and $q(x)$ is the load acting on its surface.

- Let us now apply the principle of virtual displacement and restate some known relations (careful with matrices):

$$
\begin{align*}
\delta U & =\delta W \tag{4}\\
\delta U & =\int_{\Omega}\lfloor\delta \varepsilon\rfloor\{\boldsymbol{\sigma}\} \mathrm{d} \Omega \tag{5}\\
\{\boldsymbol{\sigma}\} & =[\mathbf{D}]\{\varepsilon\}-[\mathbf{D}]\left\{\varepsilon^{0}\right\} \tag{6}\\
\{\varepsilon\} & =[\mathbf{B}]\{\overline{\boldsymbol{\Delta}}\} \tag{7}\\
\{\delta \varepsilon\} & =[\mathbf{B}]\{\delta \overline{\boldsymbol{\Delta}}\} \tag{8}\\
\lfloor\delta \varepsilon\rfloor & =\lfloor\delta \overline{\boldsymbol{\Delta}}\rfloor[\mathbf{B}]^{T} \tag{9}
\end{align*}
$$

- Combining Eqns. 4, 5, 6, 9, and 7, the internal virtual strain energy is given by:

$$
\begin{align*}
\delta U & =\int_{\Omega} \underbrace{\lfloor\delta \overline{\boldsymbol{\Delta}}\rfloor[\mathbf{B}]^{T}}_{\lfloor\delta \varepsilon\rfloor} \underbrace{[\mathbf{D}][\mathbf{B}]\{\overline{\boldsymbol{\Delta}}\}}_{\{\boldsymbol{\sigma}\}} \mathrm{d} \Omega-\int_{\Omega} \underbrace{\lfloor\delta \overline{\boldsymbol{\Delta}}\rfloor[\mathbf{B}]^{T}}_{\lfloor\delta \varepsilon\rfloor} \underbrace{[\mathbf{D}]\left\{\varepsilon^{0}\right\}}_{\left\{\boldsymbol{\sigma}^{0}\right\}} \mathrm{d} \Omega \tag{10}\\
& =\lfloor\delta \overline{\boldsymbol{\Delta}}\rfloor \int_{\Omega}[\mathbf{B}]^{T}[\mathbf{D}][\mathbf{B}] \mathrm{d} \Omega\{\overline{\boldsymbol{\Delta}}\}-\lfloor\delta \overline{\boldsymbol{\Delta}}\rfloor \int_{\Omega}[\mathbf{B}]^{T}[\mathbf{D}]\left\{\varepsilon^{0}\right\} \mathrm{d} \Omega
\end{align*}
$$

Element Stiffness Matrix II

- The virtual external work in turn is given by:

$$
\begin{equation*}
\delta W=\underbrace{\lfloor\delta \overline{\boldsymbol{\Delta}}\rfloor}_{\text {Virt. Nodal Displ. Nodal Force }} \underbrace{\{\overline{\mathbf{F}}\}}_{,}+\int_{,}^{\lfloor\delta \Delta\rfloor q(x) \mathrm{d} x} \tag{11}
\end{equation*}
$$

- Combining this equation with $\{\delta \Delta\}=[\mathbf{N}]\{\delta \bar{\Delta}\}$ yields:

$$
\begin{equation*}
\delta W=\lfloor\delta \overline{\boldsymbol{\Delta}}\rfloor\{\overline{\mathbf{F}}\}+\lfloor\delta \overline{\boldsymbol{\Delta}}\rfloor \int_{0}^{l}[\mathbf{N}]^{T} q(x) \mathrm{d} x \tag{12}
\end{equation*}
$$

- Equating the internal strain energy Eqn. 10 with the external work Eqn. 12, we obtain:

Element Stiffness Matrix III

or

$$
\begin{equation*}
[\mathbf{k}]\{\overline{\boldsymbol{\Delta}}\}-\left\{\overline{\mathbf{F}}^{o}\right\}=\{\overline{\mathbf{F}}\}+\left\{\overline{\mathbf{F}}^{e}\right\} \tag{14}
\end{equation*}
$$

which is the counterpart of Eq. 3.

- Canceling out the $\lfloor\delta \bar{\Delta}\rfloor$ term, this is the same equation of equilibrium as the one written earlier on. It relates the (unknown) nodal displacement $\{\overline{\boldsymbol{\Delta}}\}$, the structure stiffness matrix $[\mathbf{k}]$, the external nodal force vector $\{\overline{\mathbf{F}}\}$, the distributed element force $\left\{\overline{\mathbf{F}}^{e}\right\}$, and the vector of initial displacement.
- From this relation we define:

The element stiffness matrix:

$$
\begin{equation*}
[\mathbf{k}]=\int_{\Omega}[B]^{T}[\mathrm{D}][\mathbf{B}] \mathrm{d} \Omega \tag{15}
\end{equation*}
$$

Element initial force vector:

$$
\begin{equation*}
\left\{\overline{\mathbf{F}}^{0}\right\}=\int_{\Omega}[\mathbf{B}]^{T}[\mathbf{D}]\left\{\varepsilon^{0}\right\} \mathrm{d} \Omega \tag{16}
\end{equation*}
$$

Element Stiffness Matrix IV

Element equivalent load vector:

$$
\begin{equation*}
\left\{\overline{\mathbf{F}}^{e}\right\}=\int_{0}^{L}[\mathbf{N}] q(x) \mathrm{d} x \tag{17}
\end{equation*}
$$

- The general equation of equilibrium can be written as:

$$
\begin{equation*}
[\mathbf{k}]\{\overline{\boldsymbol{\Delta}}\}-\left\{\overline{\mathbf{F}}^{0}\right\}=\{\overline{\mathbf{F}}\}+\left\{\overline{\mathbf{F}}^{e}\right\} \tag{18}
\end{equation*}
$$

Stress Recovery I

- Whereas from the preceding section, we derived a general relationship in which the nodal displacements are the primary unknowns, we next seek to determine the internal (generalized) stresses which are most often needed for design.
- Recalling that we have:

$$
\begin{align*}
\{\boldsymbol{\sigma}\} & =[\mathbf{D}]\{\boldsymbol{\varepsilon}\} \tag{19}\\
\{\boldsymbol{\varepsilon}\} & =[\mathbf{B}]\{\overline{\boldsymbol{\Delta}}\} \tag{20}
\end{align*}
$$

- With the vector of nodal displacement $\{\Delta\}$ known, those two equations would yield:

$$
\begin{equation*}
\{\boldsymbol{\sigma}\}=[\mathbf{D}] \cdot[\mathbf{B}]\{\overline{\boldsymbol{\Delta}}\} \tag{21}
\end{equation*}
$$

- We note that the secondary variables (strain and stresses) are derivatives of the primary variables (displacement), and as such may not always be determined with the same accuracy.

Stiffness Matrix of the Truss Element

- The shape functions of the truss element were derived earlier:

$$
\begin{aligned}
& N_{1}=1-\frac{x}{L} \\
& N_{2}=\frac{x}{L}
\end{aligned}
$$

- The corresponding strain displacement relation $[\mathrm{B}]$ is given by:

$$
\begin{aligned}
\varepsilon_{x x} & =\frac{\mathrm{du}}{\mathrm{~d} x} \\
& =\left[\begin{array}{ll}
\frac{d N_{1}}{d x} & \frac{d N_{2}}{\mathrm{dx}}
\end{array}\right] \\
& =\underbrace{\left[\begin{array}{cc}
-\frac{1}{L} & \frac{1}{L}
\end{array}\right]}_{[\mathrm{B}]}
\end{aligned}
$$

- For the truss element, the constitutive matrix [D] reduces to the scalar E; Hence, substituting into Eq. 15, with $\mathrm{d} \Omega=\mathrm{d} A \mathrm{~d} x:[\mathrm{k}]=\int_{\Omega}[\mathbf{B}]^{T}[\mathbf{D}][\mathbf{B}] \mathrm{d} \Omega$
- But $\mathrm{d} \Omega=A \mathrm{~d} x$ and for element with constant cross sectional area we obtain:

$$
\begin{aligned}
& {[\mathbf{k}] }\left.=A \int_{0}^{L}\left\{\begin{array}{c}
-\frac{1}{L} \\
\frac{1}{L}
\end{array}\right\} \cdot E \cdot L \begin{array}{cc}
-\frac{1}{L} & \frac{1}{L}
\end{array}\right] \mathrm{dx} \\
& {[\mathrm{k}]=\frac{A E}{L^{2}} \int_{0}^{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \mathrm{d} x } \\
&=\frac{A E}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

Stiffness Matrix of Beam Element I

- For a beam element, for which we have previously derived the shape functions and the $[B]$ matrix. Substituting in Eq. 15:

$$
[\mathbf{k}]=\int_{0}^{L} \int_{A}[\mathbf{B}]^{T}[\mathbf{D}][\mathbf{B}] y^{2} \mathrm{~d} A \mathrm{~d} x
$$

- Noting that $\int_{A} y^{2} \mathrm{~d} A=I_{z}$ Eq. 15 reduces to

$$
[\mathbf{k}]=\int_{0}^{L}[\mathbf{B}]^{T}[\mathbf{D}][\mathrm{B}] l_{z} \mathrm{~d} x
$$

- For this simple case, we have: $[\mathbf{D}]=E$, thus:

$$
[\mathbf{k}]=E I_{z} \int_{0}^{1}[\mathbf{B}]^{T}[\mathbf{B}] \mathrm{d} x
$$

Stiffness Matrix of Beam Element II

- Using the shape function for the beam element, and noting the change of integration variable from $\mathrm{d} x$ to $\mathrm{d} \xi$, we obtain

$$
[\mathbf{k}]=E I_{z} \int_{0}^{1}\left\{\begin{array}{c}
\frac{6}{L^{2}}(2 \xi-1) \\
\frac{-2}{L}(3 \xi-2) \\
\frac{6}{L^{2}}(-2 \xi+1) \\
-\frac{2}{L}(3 \xi-1)
\end{array}\right\}\left\lfloor\begin{array}{llll}
\frac{6}{L^{2}}(2 \xi-1) & -\frac{2}{L}(3 \xi-2) & \frac{6}{L^{2}}(-2 \xi+1) & -\frac{2}{L}(3 \xi-1)
\end{array}\right] \underbrace{L \mathrm{~d} \xi}_{\mathrm{d} x}
$$

or

Identical to the matrix previously derived earlier in the semester ©

Intermediary Structural Analysis

A Brief Overview of Mechanics

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2021

Table of Contents I

(1) Tensors

- Tensors: Definition
- Tensors: Indicial Notation
- Tensor Operations
- Principal Values of Symmetric Second Order Tensors

(2) Kinetics

- Force, Traction and Stress Vectors
- Traction on an Arbitrary Plane; Cauchy's Stress Tensor
- Example
- Invariants
- Spherical and Deviatoric Stress Tensors
- Stress Transformation
- Polar Coordinates
(3) Kinematic
- Position and Displacement
- Strains
- Compatibility Equation

Table of Contents II

4 Fundamental Laws of Continuum Mechanics

- Linear Momentum Principle; Equation of Motion
- Conservation of Energy; First Principle of Thermodynamics
(5) Constitutive Equations
- Generalize the concept of a vector by introducing the tensor (T).
- A tensor is an operator which operates on tensors to produce other tensors.
- Designate this operation as $\mathrm{T} \cdot \mathrm{v}$ or simply Tv .
- A tensor is also a physical quantity, independent of any particular coordinate system yet specified most conveniently by referring to an appropriate system of coordinates.
- A tensor is classified by the rank or order. A Tensor of order zero is specified in any coordinate system by one coordinate and is a scalar (such as temperature). A tensor of order one has three coordinate components in space, hence it is a vector (such as force). In general 3-D space the number of components of a tensor is 3^{n} where n is the order of the tensor.
- A force and a stress are tensors of order 1 and 2 respectively.
- Engineering notation may be the simplest and most intuitive one, it often leads to long and repetitive equations. Alternatively, tensor or the dyadic form will lead to shorter and more compact forms.
- The following rules define indicial notation:
(1) If there is one letter index (free index), that index goes from i to n (range of the tensor). For instance:

$$
a_{i}=a^{i}=\left\lfloor\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right\rfloor=\left\{\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\} \quad i=1,3
$$

assuming that $n=3$.
(2) A repeated index or (dummy index) will take on all the values of its range, and the resulting tensors summed. In general no index occurs more than twice in a properly written expression.For instance:

$$
a_{1 i} x_{i}=a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}
$$

(3) Tensor's order:

- First order tensor (such as force) has only one free index:

$$
a_{i}=a^{i}=\left\lfloor\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right\rfloor
$$

other first order tensors $a_{i j} b_{j}=a_{i 1} b_{1}+a_{i 2} b_{2}+a_{i 3} b_{3}, F_{i k k}, \varepsilon_{i j k} u_{j} v_{k}$ (note that there is only one free index).

- Second order tensor (such as stress or strain) will have two free indices.

$$
T_{i j}=\left[\begin{array}{lll}
T_{11} & T_{22} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right]
$$

other examples $A_{i j i p}, \delta_{i j} u_{k} v_{k}$.

- A fourth order tensor (such as Elastic constants) will have four free indices: $\sigma_{i j}=D_{i j k l} \varepsilon_{k l}$
(4) Derivatives of tensor with respect to x_{i} is written as, i. For example:

$$
\frac{\partial \phi}{\partial x_{i}}=\phi_{, i} \quad \frac{\partial v_{i}}{\partial x_{i}}=v_{i, i} \quad \frac{\partial v_{i}}{\partial x_{j}}=v_{i, j} \quad \frac{\partial T_{i, j}}{\partial x_{k}}=T_{i, j, k}
$$

- Usefulness of the indicial notation is in presenting systems of equations in compact form. For instance:

$$
x_{i}=c_{i j} z_{j}
$$

this simple compacted equation, when expanded would yield:

$$
\begin{aligned}
& x_{1}=c_{11} z_{1}+c_{12} z_{2}+c_{13} z_{3} \\
& x_{2}=c_{21} z_{1}+c_{22} z_{2}+c_{23} z_{3} \\
& x_{3}=c_{31} z_{1}+c_{32} z_{2}+c_{33} z_{3}
\end{aligned}
$$

Similarly:

$$
\begin{gathered}
A_{i j}=B_{i p} C_{1 q} D_{p q} \\
A_{11}=B_{11} C_{11} D_{11}+B_{11} C_{12} D_{12}+B_{12} C_{11} D_{21}+B_{12} C_{12} D_{22} \\
A_{12}=B_{11} C_{21} D_{11}+B_{11} C_{22} D_{12}+B_{12} C_{21} D_{21}+B_{12} C_{22} D_{22} \\
A_{21}=B_{21} C_{11} D_{11}+B_{21} C_{12} D_{12}+B_{22} C_{11} D_{21}+B_{22} C_{12} D_{22} \\
A_{22}=B_{21} C_{21} D_{11}+B_{21} C_{22} D_{12}+B_{22} C_{21} D_{21}+B_{22} C_{22} D_{22}
\end{gathered}
$$

- Using indicial notation, we may rewrite the definition of the dot product

$$
\mathrm{a} \cdot \mathrm{~b}=a_{i} b_{i}=\left(a_{x} \mathrm{i}+a_{y} \mathrm{j}+a_{z} \mathrm{k}\right) \cdot\left(b_{x} \mathrm{i}+b_{y} \mathrm{j}+b_{z} \mathrm{k}\right)=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
$$

- Note that one can adopt the dyadic instead of the indicial notation for tensors as linear vector operators $u=T \cdot v$ or $u_{i}=T_{i j} v_{j}$
- The sum of two tensors (must be of the same orde)is simply defined as:

$$
\mathrm{S}_{i j}=\mathrm{T}_{i j}+\mathrm{U}_{i j}
$$

- The scalar multiplication of a (second order) tensor is defined by:

$$
S_{i j}=\lambda T_{i j}
$$

- The outer product of two tensors is the tensor whose components are formed by multiplying each component of one of the tensors by every component of the other. This produces a tensor with an order equal to the sum of the orders of the factor tensors.

$$
\begin{aligned}
a_{i} b_{j} & =T_{i j} \quad \text { or }\left\}_{n \times 1}\lfloor\quad\rfloor_{1 \times m}=[\quad]_{n \times m}\right. \\
v_{i} F_{j k} & =b_{i j k} \\
D_{i j} T_{k m} & =\phi_{i j k m}
\end{aligned}
$$

- The inner product of two tensors: contraction of one index from each tensor

$$
\left.\begin{array}{rllll}
a_{i} b_{i} & & \\
a_{i} E_{i k} & =f_{k} & \text { or } L & \rfloor_{1 \times m}[
\end{array}\right]_{m \times n}=\lfloor\quad\rfloor_{1 \times n}
$$

- The cross product can be defined

$$
\mathrm{a} \times \mathrm{b}=\varepsilon_{p q r} a_{q} b_{r} \mathrm{e}_{p}=\left(a_{y} b_{z}-a_{z} b_{y}\right) \mathrm{i}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \mathrm{j}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \mathrm{k}
$$

In the second equation, there is one free index p thus there are three equations, there are two repeated (dummy) indices q and r, thus each equation has nine terms. $\varepsilon_{p a r}$ is called the permutation symbol and is defined as

$$
\varepsilon_{p q r}= \begin{cases}1 & \begin{array}{l}
\text { If the value of } i, j, \text { kare an even permutation of } 1,2,3 \\
\text { (i.e. if they appear as } 12312 \text {) }
\end{array} \\
-1 & \begin{array}{l}
\text { If the value ofi,j,kare an odd permutation of } 1,2,3 \\
\text { (i.e. if they appear as } 3132 \text {) }
\end{array} \\
0 & \begin{array}{l}
\text { If the value of } i, j, \text { kare not permutation of } 1,2,3 \\
\text { (i.e. if two or more indices have the same value) }
\end{array}\end{cases}
$$

- Two fundamental tensors in continuum mechanics are second order and symmetric (stress and strain), we examine some important properties of these tensors.
- For every symmetric tensor $T_{i j}$ defined at some point in space, there is associated with each direction (specified by unit normal n_{j}) at that point, a vector given by the inner product

$$
v_{i}=T_{i j} n_{j}
$$

If the direction is one for which v_{i} is parallel to n_{i}, the inner product is

$$
T_{i j} n_{j}=\lambda n_{i}
$$

and the direction n_{i} is called principal direction of $T_{i j}$. Since $n_{i}=\delta_{i j} n_{j}$, this can be rewritten as

$$
\left(T_{i j}-\lambda \delta_{i j}\right) n_{j}=0
$$

which represents a system of three equations for the four unknowns n_{i} and λ.

$$
\begin{aligned}
& \left(T_{11}-\lambda\right) n_{1}+T_{12} n_{2}+T_{13} n_{3}=0 \\
& T_{21} n_{1}+\left(T_{22}-\lambda\right) n_{2}+T_{23} n_{3}=0 \\
& T_{31} n_{1}+T_{32} n_{2}+\left(T_{33}-\lambda\right) n_{3}=0
\end{aligned}
$$

To have a non-trivial solution $\left(n_{i}=0\right)$ the determinant of the coefficients must be zero,

$$
\left|T_{i j}-\lambda \delta_{i j}\right|=0
$$

- Expansion of this determinant leads to the following characteristic equation

$$
\lambda^{3}-I_{T} \lambda^{2}+I I_{T} \lambda-I I I_{T}=0
$$

the roots are called the principal values of $T_{i j}$ and

$$
\begin{aligned}
I_{T} & =T_{i j}=\operatorname{tr} T_{i i} \\
I_{T} & =\frac{1}{2}\left(T_{i i} T_{i j}-T_{i j} T_{i j}\right) \\
I I_{T} & =\left|T_{i j}\right|=\operatorname{det} T_{i j}
\end{aligned}
$$

are called the first, second and third invariants respectively of $T_{i j}$.

- It is customary to order those roots as $\lambda_{(1)}>\lambda_{(2)}>\lambda_{(3)}$
- For a symmetric tensor with real components, the principal values are also real. If those values are distinct, the three principal directions are mutually orthogonal.
- There are two kinds of forces in continuum mechanics
body forces: act on the elements of volume or mass inside the body, e.g. gravity, electromagnetic fields. $\mathrm{dF}=\mathrm{pbd}$ Vol.
Surface forces (or traction) are contact forces acting on the free body at its bounding surface. Those will be defined in terms of force per unit area.

$$
\int_{S} \mathrm{td} S=\mathrm{i} \int_{S} t_{x} \mathrm{~d} S+\mathrm{j} \int_{S} t_{y} \mathrm{~d} S+\mathrm{k} \int_{S} t_{z} \mathrm{~d} S
$$

- Usually limit the term traction to an actual bounding surface of a body, and use the term stress vector for an imaginary interior surface.
- The traction vectors on planes perpendicular to the coordinate axes are particularly useful. When the vectors acting at a point on three such mutually perpendicular planes is given, the stress vector at that point on any other arbitrarily inclined plane can be expressed in terms of the first set of tractions.
- A stress is a second order cartesian tensor, $\sigma_{i j}$ where the 1 st subscript (i) refers to the direction of outward facing normal, and the second one (j) to the direction of component force.

$$
\sigma=\sigma_{i j}=\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right]=\left\{\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right\}
$$

- In fact the nine rectangular components $\sigma_{i j}$ of σ turn out to be the three sets of three vector components $\left(\sigma_{11}, \sigma_{12}, \sigma_{13}\right),\left(\sigma_{21}, \sigma_{22}, \sigma_{23}\right),\left(\sigma_{31}, \sigma_{32}, \sigma_{33}\right)$ which correspond to the three tractions $\mathrm{t}_{1}, \mathrm{t}_{2}$ and t_{3} which are acting on the x_{1}, x_{2} and x_{3} faces.
- Those tractions are not necessarily normal to the faces, and they can be decomposed into a normal and shear traction if need be. In other words, stresses are nothing else than the components of tractions (stress vector).

- The state of stress at a point cannot be specified entirely by a single vector with three components; it requires the second-order tensor with all nine components.
- We seek to determine the traction acting on the surface of an oblique plane (characterized by its normal n) in terms of the known tractions normal to the three principal axis, $\mathrm{t}_{1}, \mathrm{t}_{2}$ and t_{3}.
- Cauchy's tetrahedron

will be obtained without any assumption of equilibrium and it will apply in fluid dynamics as well as in solid mechanics.
- This equation is a vector equation, and the corresponding algebraic equations for the components of t_{n} are

$$
\begin{aligned}
& t_{n_{1}}=\sigma_{11} n_{1}+\sigma_{21} n_{2}+\sigma_{31} n_{3} \\
& t_{n_{2}}=\sigma_{12} n_{1}+\sigma_{22} n_{2}+\sigma_{32} n_{3} \\
& t_{n_{3}}=\sigma_{13} n_{1}+\sigma_{23} n_{2}+\sigma_{33} n_{3}
\end{aligned}
$$

$$
\text { Indicial notation } t_{n_{i}}=\sigma_{j j} n_{j}
$$

$$
\text { dyadic notation } \mathrm{t}_{n}=\mathrm{n} \cdot \boldsymbol{\sigma}=\sigma^{\top} \cdot \mathrm{n}
$$

- We have thus established that the nine components $\sigma_{i j}$ are components of the second order tensor, Cauchy's stress tensor.
- For a stress tensor at point P given by

$$
\sigma=\left[\begin{array}{ccc}
7 & -5 & 0 \\
-5 & 3 & 1 \\
0 & 1 & 2
\end{array}\right]=\left\{\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right\}
$$

We seek to determine the traction (or stress vector) t passing through P and parallel to the plane $A B C$ where $A(4,0,0), B(0,2,0)$ and $C(0,0,6)$.

- The vector normal to the plane can be found by taking the cross products of vectors $A B$ and $A C$:

$$
\begin{aligned}
\mathrm{N} & =\mathrm{AB} \times \mathrm{AC}=\left|\begin{array}{ccc}
\mathrm{e}_{1} & \mathrm{e}_{2} & \mathrm{e}_{3} \\
-4 & 2 & 0 \\
-4 & 0 & 6
\end{array}\right| \\
& =12 \mathrm{e}_{1}+24 \mathrm{e}_{2}+8 \mathrm{e}_{3}
\end{aligned}
$$

- The unit normal of N is given by

$$
\mathrm{n}=\frac{3}{7} \mathrm{e}_{1}+\frac{6}{7} \mathrm{e}_{2}+\frac{2}{7} \mathrm{e}_{3}
$$

Hence the stress vector (traction) will be

$$
\left\lfloor\begin{array}{lll}
\frac{3}{7} & \frac{6}{7} & \frac{2}{7}
\end{array}\right\rfloor\left[\begin{array}{ccc}
7 & -5 & 0 \\
-5 & 3 & 1 \\
0 & 1 & 2
\end{array}\right]=\left\lfloor\begin{array}{ccc}
-\frac{9}{7} & \frac{5}{7} & \frac{10}{7}
\end{array}\right\rfloor
$$

and thus $t=-\frac{9}{7} e_{1}+\frac{5}{7} \mathrm{e}_{2}+\frac{10}{7} \mathrm{e}_{3}$

- The principal stresses are physical quantities, whose values do not depend on the coordinate system in which the components of the stress were initially given. They are therefore invariants of the stress state.
- When the determinant in the characteristic equation is expanded, the cubic equation takes the form

$$
\lambda^{3}-I_{\sigma} \lambda^{2}-I I_{\sigma} \lambda-I I I_{\sigma}=0
$$

where the symbols $I_{\sigma}, I I_{\sigma}$ and $I I_{\sigma}$ denote the following scalar expressions in the stress components:

$$
\begin{aligned}
I_{\sigma} & =\sigma_{11}+\sigma_{22}+\sigma_{33}=\sigma_{i i}=\operatorname{tr} \sigma \\
I_{\sigma} & =-\left(\sigma_{11} \sigma_{22}+\sigma_{22} \sigma_{33}+\sigma_{33} \sigma_{11}\right)+\sigma_{23}^{2}+\sigma_{31}^{2}+\sigma_{12}^{2} \\
& =\frac{1}{2}\left(\sigma_{i j} \sigma_{i j}-\sigma_{i i} \sigma_{j j}\right)=\frac{1}{2} \sigma_{i j} \sigma_{i j}-\frac{1}{2} I_{\sigma}^{2} \\
& =\frac{1}{2}\left(\sigma: \sigma-I_{\sigma}^{2}\right) \\
I I I_{\sigma} & =\operatorname{det} \sigma=\frac{1}{6} e_{i j k} e_{p q r} \sigma_{i p} \sigma_{j q} \sigma_{k r}
\end{aligned}
$$

- In terms of the principal stresses, those invariants can be simplified into

$$
\begin{aligned}
I_{\sigma} & =\sigma_{(1)}+\sigma_{(2)}+\sigma_{(3)} \\
I I_{\sigma} & =-\left(\sigma_{(1)} \sigma_{(2)}+\sigma_{(2)} \sigma_{(3)}+\sigma_{(3)} \sigma_{(1)}\right) \\
I I I_{\sigma} & =\sigma_{(1)} \sigma_{(2)} \sigma_{(3)}
\end{aligned}
$$

- let σ denote the mean normal stress p

$$
\sigma=-p=\frac{1}{3}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right)=\frac{1}{3} \sigma_{i i}=\frac{1}{3} \operatorname{tr} \sigma
$$

then the stress tensor can be written as the sum of two tensors:
Hydrostatic stress in which each normal stress is equal to $-p$ and the shear stresses are zero. The hydrostatic stress produces volume change without change in shape in an isotropic medium.

$$
\sigma_{\text {hyd }}=-p \mathrm{I}=\left[\begin{array}{lll}
-p & 0 & 0 \\
0 & -p & 0 \\
0 & 0 & -p
\end{array}\right]
$$

Deviatoric Stress: which causes the change in shape.

$$
\sigma_{d e v}=\left[\begin{array}{lll}
\sigma_{11}-\sigma & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22}-\sigma & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}-\sigma
\end{array}\right]
$$

- From Eq. ?? and ??, the stress transformation for the second order stress tensor is given by

$$
\begin{array}{|l}
\hline \bar{\sigma}_{i p}=a_{i}^{j} a_{p}^{q} \sigma_{j q} \text { in Matrix Form }[\bar{\sigma}]=[A]^{T}[\sigma][A] \tag{1}\\
\sigma_{j q}=a_{i}^{j} a_{p}^{q} \bar{\sigma}_{i p} \text { in Matrix Form }[\sigma]=[A][\bar{\sigma}][A]^{T} \\
\hline
\end{array}
$$

- For the 2D plane stress case we rewrite Eq. ??

$$
\left\{\begin{array}{c}
\bar{\sigma}_{x x} \tag{2}\\
\bar{\sigma}_{y y} \\
\bar{\sigma}_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
\cos ^{2} \alpha & \sin ^{2} \alpha & 2 \sin \alpha \cos \alpha \\
\sin ^{2} \alpha & \cos ^{2} \alpha & -2 \sin \alpha \cos \alpha \\
-\sin \alpha \cos \alpha & \cos \alpha \sin \alpha & \cos ^{2} \alpha-\sin ^{2} \alpha
\end{array}\right]\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right\}
$$

It is often necessary to express cartesian stresses in terms of polar stresses and vice versa. This can be done through the following relationships

$$
\begin{aligned}
& \sigma_{x x}=\sigma_{r r} \cos ^{2} \theta+\sigma_{\theta \theta} \sin ^{2} \theta-\sigma_{r \theta} \sin 2 \theta \\
& \sigma_{y y}=\sigma_{r r} \sin ^{2} \theta+\sigma_{\theta \theta} \cos ^{2} \theta+\sigma_{r \theta} \sin 2 \theta \\
& \sigma_{x y}=\left(\sigma_{r r}-\sigma_{\theta \theta}\right) \sin \theta \cos \theta+\sigma_{r \theta}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sigma_{r r}= & \left(\frac{\sigma_{x x}+\sigma_{y y}}{2}\right)\left(1-\frac{a^{2}}{r^{2}}\right)+\left(\frac{\sigma_{x x}-\sigma_{y y}}{2}\right)\left(1+\frac{3 a^{4}}{r^{4}}-\frac{4 a^{2}}{r^{2}}\right) \cos 2 \\
& +\sigma_{x y}\left(1+\frac{3 a^{4}}{r^{4}}-\frac{4 a^{2}}{r^{2}}\right) \sin 2 \theta \\
\sigma_{\theta \theta}= & \left(\frac{\sigma_{x x}+\sigma_{y y}}{2}\right)\left(1+\frac{a^{2}}{r^{2}}\right)-\left(\frac{\sigma_{x x}-\sigma_{y y}}{2}\right)\left(1+\frac{3 a^{4}}{r^{4}}\right) \cos 2 \theta \\
& -\sigma_{x y}\left(1+\frac{3 a^{4}}{r^{4}}\right) \sin 2 \theta
\end{aligned}
$$

$$
\sigma_{r \theta}=-\left(\frac{\sigma_{x x}-\sigma_{y y}}{2}\right)\left(1-\frac{3 a^{4}}{r^{4}}+\frac{2 a^{2}}{r^{2}}\right) \sin 2 \theta+\sigma_{x y}\left(1-\frac{3 a^{4}}{r^{4}}+\frac{2 a^{2}}{r^{2}}\right)
$$

- The undeformed configuration of a material continuum at time $t=0$ together with the deformed configuration at $t=t$.

- In the initial configuration P_{0} has the position vector

$$
\mathrm{X}=X_{1} \mathrm{I}_{1}+X_{2} \mathrm{I}_{2}+X_{3} \mathrm{I}_{3}
$$

which is here expressed in terms of the material coordinates $\left(X_{1}, X_{2}, X_{3}\right)$.

- In the deformed configuration, the particle P_{0} has now moved to the new position P and has the following position vector

$$
\mathrm{x}=x_{1} \mathrm{i}_{1}+x_{2} \mathrm{i}_{2}+x_{3} \mathrm{i}_{3}
$$

which is expressed in terms of the spatial coordinates.

- The displacement vector u connecting P_{0} and P is the displacement vector which can be expressed in both the material or spatial coordinates

$$
\begin{aligned}
\mathrm{U} & =U_{K} \mathrm{I}_{K} \\
\mathrm{u} & =u_{k} \mathrm{i}_{k}
\end{aligned}
$$

- From the preceding figure we can express motion as

$$
\begin{array}{cc}
x_{i}=x_{i}\left(X_{1}, X_{2}, X_{3}, t\right) \quad \text { Lagrangian formulation } \\
X_{i}=X_{i}\left(x_{1}, x_{2}, x_{3}, t\right) \quad \text { Eulerian formulation }
\end{array}
$$

- Ignoring a detailed analysis of large deformation, it is determined that

		Displacement gradient	
Displacement	Small	Large	
		Lagrangian small strain (Cauchy)	Lagrangian large strain (Green-Lagrange)
	Large	Eulerian small strain	Eulerian finite strain (Eulerian-Almansi)

- The Lagrangian finite strain tensor can be written as

$$
\varepsilon_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}+u_{k, i} u_{k, j}\right)
$$

- Alternatively these equations may be expanded as

$$
\begin{aligned}
\varepsilon_{x x} & =\frac{\partial u}{\partial x}+\frac{1}{2}\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial x}\right)^{2}\right] \\
\varepsilon_{y y} & =\frac{\partial v}{\partial y}+\frac{1}{2}\left[\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}\right] \\
\varepsilon_{z z} & =\frac{\partial w}{\partial z}+\frac{1}{2}\left[\left(\frac{\partial u}{\partial z}\right)^{2}+\left(\frac{\partial v}{\partial z}\right)^{2}+\left(\frac{\partial w}{\partial z}\right)^{2}\right] \\
\varepsilon_{x y} & =\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial x} \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \frac{\partial v}{\partial y}+\frac{\partial w}{\partial x} \frac{\partial w}{\partial y}\right) \\
\varepsilon_{x z} & =\frac{1}{2}\left(\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}+\frac{\partial u}{\partial x} \frac{\partial u}{\partial z}+\frac{\partial v}{\partial x} \frac{\partial v}{\partial z}+\frac{\partial w}{\partial x} \frac{\partial w}{\partial z}\right) \\
\varepsilon_{y z} & =\frac{1}{2}\left(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}+\frac{\partial u}{\partial y} \frac{\partial u}{\partial z}+\frac{\partial v}{\partial y} \frac{\partial v}{\partial z}+\frac{\partial w}{\partial y} \frac{\partial w}{\partial z}\right)
\end{aligned}
$$

- We define the engineering shear strain as

$$
\gamma_{i j}=2 \varepsilon_{i j} \quad(i \neq j)
$$

- If $\varepsilon_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right)$ then we have six differential equations (in 3D the strain tensor has a total of 9 terms, but due to symmetry, there are 6 independent ones) for determining (upon integration) three unknowns displacements u_{i}. Hence the system is overdetermined, and there must be some linear relations between the strains.
- It can be shown (through appropriate successive differentiation) that the compatibility relation for strain reduces to:

$$
\frac{\partial^{2} \varepsilon_{i k}}{\partial x_{j} \partial x_{j}}+\frac{\partial^{2} \varepsilon_{i j}}{\partial x_{i} \partial x_{k}}-\frac{\partial^{2} \varepsilon_{j k}}{\partial x_{i} \partial x_{j}}-\frac{\partial^{2} \varepsilon_{i j}}{\partial x_{j} \partial x_{k}}=0 .
$$

In 3D, this would yield 9 equations in total, however only six are distinct.

- In 2D, this results in (by setting $i=2, j=1$ and $I=2$):

$$
\begin{aligned}
\frac{\partial^{2} \varepsilon_{11}}{\partial x_{2}^{2}}+\frac{\partial^{2} \varepsilon_{22}}{\partial x_{1}^{2}} & =2 \frac{\partial^{2} \varepsilon_{12}}{\partial x_{1} \partial x_{2}} \\
& =\frac{\partial^{2} \gamma_{12}}{\partial x_{1} \partial x_{2}}
\end{aligned}
$$

(recall that $2 \varepsilon_{12}=\gamma_{12}$).

- We have thus far studied tensor fields (stress and strain).
- We have also obtained only one differential equation, that was the compatibility equation.
- Next we still derive additional differential equations governing the way stress and deformation vary at a point and with time. They will apply to any continuous medium, and yet we will not have enough equations to determine unknown tensor field. For that we need to wait for constitutive laws relating stress and strain will be introduced.
- The fundamental equations are:
(1) Conservation of mass (continuity equation)
(2) Conservation of momentum (Equation of motion; Equilibrium)
(3) Conservation of Energy.
- A conservation law establishes a balance of a scalar or tensorial quantity in volume V bounded by a surface S (inside a control surface). In its most general form, such a law may be expressed as

- The preceding equation reads: rate of increase of \mathcal{A} inside a control volume plus the rate of outward flux of \mathcal{A} through the surface of the control volume is equal to the rate of increase of A inside the control volume
- The dimensions of various quantities are given by

$$
\begin{aligned}
\operatorname{dim}(\boldsymbol{\alpha}) & =\operatorname{dim}\left(\mathcal{A} L t^{-1}\right) \\
\operatorname{dim}(\mathrm{A}) & =\operatorname{dim}\left(\mathcal{A} t^{-1}\right)
\end{aligned}
$$

rightfully all expressed in terms of \mathcal{A}.

- The time rate of change of the total momentum of a given set of particles equals the vector sum of all external forces acting on the particles of the set, provided Newton's Third Law applies.
- The continuum form of this principle is a basic postulate of continuum mechanics (postulate: a statement, also known as an axiom, which is taken to be true without proof).
- Starting with (Newton's second law)

$$
\begin{equation*}
\underbrace{\int_{S}^{\mathrm{td} S+\int_{V} \rho b d V}=\underbrace{\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V} \rho v \mathrm{~d} V}_{m a}}_{F} \tag{3}
\end{equation*}
$$

- Divergence Theorem

$$
\int_{V} v_{i, i} d V=\int_{S} \underbrace{v_{i} n_{i}}_{\text {flux }} d S
$$

The flux of a vector function through some closed surface equals the integral of the divergence of that function over the volume enclosed by the surface.

- we substitute $t_{i}=T_{i j} n_{j}$ and apply the divergence theorem to obtain

$$
\begin{aligned}
\int_{V}\left(\frac{\partial T_{i j}}{\partial x_{j}}+\rho b_{i}\right) d V & =\int_{V} \rho \frac{\mathrm{~d} V_{i}}{\mathrm{~d} t} \mathrm{~d} V \\
\int_{V}\left[\frac{\partial T_{i j}}{\partial x_{j}}+\rho b_{i}-\rho \frac{\mathrm{d} V_{i}}{\mathrm{~d} t}\right] \mathrm{d} V & =0
\end{aligned}
$$

or for an arbitrary volume

$$
\begin{equation*}
\frac{\partial T_{i j}}{\partial x_{j}}+\rho b_{i}=\rho \frac{\mathrm{d} v_{i}}{\mathrm{~d} t} \tag{4}
\end{equation*}
$$

which is Cauchy's (first) equation of motion, or the linear momentum principle, or more simply equilibrium equation.

- When expanded in 3D, this equation yields:

$$
\begin{aligned}
& \frac{\partial T_{11}}{\partial x_{1}}+\frac{\partial T_{12}}{\partial x_{2}}+\frac{\partial T_{13}}{\partial x_{3}}+\rho b_{1}=0 \\
& \frac{\partial T_{21}}{\partial x_{1}}+\frac{\partial T_{22}}{\partial x_{2}}+\frac{\partial T_{23}}{\partial x_{3}}+\rho b_{2}=0 \\
& \frac{\partial T_{31}}{\partial x_{1}}+\frac{\partial T_{32}}{\partial x_{2}}+\frac{\partial T_{33}}{\partial x_{3}}+\rho b_{3}=0
\end{aligned}
$$

- We note that these equations could also have been derived from the free body diagram with the assumption of equilibrium (via Newton's second law) considering an infinitesimal element of dimensions $\mathrm{d} x_{1} \times \mathrm{d} x_{2} \times \mathrm{d} x_{3}$.

- If mechanical quantities only are considered, the principle of conservation of energy for the continuum may be derived directly from the equation of motion given by Eq. 4. This is accomplished by taking the integral over the volume V of the scalar product between Eq. 4 and the velocity v_{i}.

$$
\begin{equation*}
\int_{V} \rho v_{i} \frac{\mathrm{~d} v_{i}}{\mathrm{~d} t} \mathrm{~d} V=\int_{V} v_{i} T_{j i, j} \mathrm{~d} V+\int_{V} \rho b_{i} v_{i} \mathrm{~d} V \tag{5}
\end{equation*}
$$

- If we consider the left hand side

$$
\begin{equation*}
\int_{V} \rho v_{i} \frac{\mathrm{~d} v_{i}}{\mathrm{~d} t} \mathrm{~d} V=\frac{d}{\mathrm{~d} t} \int_{V} \frac{1}{2} \rho v_{i} v_{i} \mathrm{~d} V=\frac{d}{\mathrm{~d} t} \int_{V} \frac{1}{2} \rho v^{2} \mathrm{~d} V=\frac{\mathrm{d} K}{\mathrm{~d} t} \tag{6}
\end{equation*}
$$

which represents the time rate of change of the kinetic energy K in the continuum.

- If we consider thermal processes, the rate of increase of total heat into the continuum is given by

$$
\begin{equation*}
Q=-\int_{S} q_{i} n_{i} \mathrm{~d} S+\int_{V} \rho r \mathrm{~d} V \tag{7}
\end{equation*}
$$

Q has the dimension ${ }^{1}$ of power, that is $M L^{2} T^{-3}$, and the SI unit is the Watt (W). q is the heat flux per unit area by conduction, its dimension is $M T^{-3}$ and the corresponding SI unit is Wm^{-2}. Finally, r is the radiant heat constant per unit mass, its dimension is $M T^{-3} L^{-4}$ and the corresponding SI unit is $W m^{-6}$.

- We thus have

$$
\begin{equation*}
\frac{\mathrm{d} K}{\mathrm{~d} t}+\int_{V} D_{i j} T_{i j} \mathrm{~d} V=\int_{V}\left(v_{i} T_{j i}\right)_{j, j} \mathrm{~d} V+\int_{V} \rho v_{i} b_{i} \mathrm{~d} V+Q \tag{8}
\end{equation*}
$$

- We next convert the first integral on the right hand side to a surface integral by the divergence theorem ($\int_{V} \nabla \cdot T d V=\int_{S} T$. nd S) and since $t_{i}=T_{i j} n_{j}$ we obtain

$$
\begin{align*}
\frac{\mathrm{d} K}{\mathrm{~d} t}+\int_{V} D_{i j} T_{i j} \mathrm{~d} V & =\int_{S} v_{i} t_{i} \mathrm{~d} S+\int_{V} \rho v_{i} b_{i} \mathrm{~d} V+Q \tag{9}\\
\frac{\mathrm{~d} K}{\mathrm{~d} t}+\frac{\mathrm{d} U}{\mathrm{~d} t} & =\frac{\mathrm{d} \mathcal{W}}{\mathrm{~d} t}+Q \tag{10}
\end{align*}
$$

this equation relates the time rate of change of total mechanical energy of the continuum on the left side to the rate of work done by the surface and body forces on the right hand side.

- If both mechanical and non mechanical energies are to be considered, the first principle states that the time rate of change of the kinetic plus the internal energy is equal to the sum of the rate of work plus all other energies supplied to, or removed from the continuum per unit time (heat, chemical, electromagnetic, etc.).
- For a thermomechanical continuum, it is customary to express the time rate of change of internal energy by the integral expression

$$
\begin{equation*}
\frac{\mathrm{d} U}{\mathrm{~d} t}=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{V} \rho u \mathrm{~d} V \tag{11}
\end{equation*}
$$

where u is the internal energy per unit mass or specific internal energy. We note that U appears only as a differential in the first principle, hence if we really need to evaluate this quantity, we need to have a reference value for which U will be null. The dimension of U is one of energy $\operatorname{dim} U=M L^{2} T^{-2}$, and the SI unit is the Joule, similarly $\operatorname{dim} u=L^{2} T^{-2}$ with the SI unit of Joule/Kg.

[^4]

Hooke ceiinosssttuu
 Hooke, 1676
 Ut tensio sic vis
 Hooke, 1678

- The Generalized Hooke's Law can be written as:

$$
\sigma_{i j}=D_{i j k l} \varepsilon_{k l} \quad i, j, k, I=1,2,3
$$

- The (fourth order) tensor of elastic constants $D_{i j k}$ has $81\left(3^{4}\right)$ components however, due to the symmetry of both σ and ε, there are at most $36\left(\frac{9(9-1)}{2}\right)$ distinct elastic terms.
- In terms of Lame's constants (which naturally are derived from coninuum mechanics consideration, but can not be both experimentally measured), Hooke's Law for an isotropic body is written as

$$
T_{i j}=\lambda \delta_{i j} E_{k k}+2 \mu E_{i j ;} \quad E_{i j}=\frac{1}{2 \mu}\left(T_{i j}-\frac{\lambda}{3 \lambda+2 \mu} \delta_{i j} T_{k k}\right)
$$

- In terms of engineering constants (which can be measured in the laboratory)

$$
\begin{array}{ll}
\frac{1}{E}=\frac{\lambda+\mu}{\mu(3 \lambda+2 \mu)} ; & v=\frac{\lambda}{2(\lambda+\mu)} \\
\lambda= & \quad \mu=G=\frac{E}{(1+v)(1-2 v)} ; \quad \mu=\quad \frac{E}{2(1+v)}
\end{array}
$$

- Hooke's law for isotropic material in terms of engineering constants becomes

$$
\sigma_{i j}=\frac{E}{1+v}\left(\varepsilon_{i j}+\frac{v}{1-2 v} \delta_{i j} \varepsilon_{k k}\right) ; \quad \varepsilon_{i j}=\frac{1+v}{E} \sigma_{i j}-\frac{v}{E} \delta_{i j} \sigma_{k k}
$$

- When the strain equation is expanded in 3D cartesian coordinates it would yield:

$$
\left\{\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{z z} \\
\gamma_{x y}\left(2 \varepsilon_{x y}\right) \\
\gamma_{y z}\left(2 \varepsilon_{y z}\right) \\
\gamma_{z x}\left(2 \varepsilon_{z x}\right)
\end{array}\right\}=\frac{1}{E}\left[\begin{array}{cccccc}
1 & -v & -v & 0 & 0 & 0 \\
-v & 1 & -v & 0 & 0 & 0 \\
-v & -v & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1+v & 0 & 0 \\
0 & 0 & 0 & 0 & 1+v & 0 \\
0 & 0 & 0 & 0 & 0 & 1+v
\end{array}\right]\left\{\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{z z} \\
\tau_{x y} \\
\tau_{y z} \\
\tau_{z x}
\end{array}\right\}
$$

- Plane Strain

$$
\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{z z} \\
\tau_{x y}
\end{array}\right\}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
(1-v) & v & 0 \\
v & (1-v) & 0 \\
v & v & 0 \\
0 & 0 & \frac{1-2 v}{2}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\gamma_{x y}
\end{array}\right\}
$$

- Axisymmetry

$$
\begin{aligned}
& \varepsilon_{r r}=\frac{\partial u}{\partial r} ; \varepsilon_{\theta \theta}=\frac{u}{\partial} \\
& \varepsilon_{z z}=\frac{\partial w}{\partial z} ; \quad \varepsilon_{r z}=\frac{\partial u}{\partial z}+\frac{\partial w}{\partial r}
\end{aligned}
$$

The constitutive relation is again analogous to $3 \mathrm{D} /$ plane strain

$$
\left\{\begin{array}{c}
\sigma_{r r} \\
\sigma_{z z} \\
\sigma_{\theta \theta} \\
\tau_{r z}
\end{array}\right\}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{cccc}
1-v & v & v & 0 \\
v & 1-v & v & 0 \\
v & v & 1-v & 0 \\
v & v & 1-v & 0 \\
0 & 0 & 0 & \frac{1-2 v}{2}
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{r r} \\
\varepsilon_{z z} \\
\varepsilon_{\theta \theta} \\
\gamma_{r z}
\end{array}\right\}
$$

- Plane Stress

$$
\begin{aligned}
\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\tau_{x y}
\end{array}\right\} & =\frac{1}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right]\left\{\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\gamma_{x y}
\end{array}\right\} \\
\varepsilon_{z z} & =-\frac{1}{1-v} v\left(\varepsilon_{x x}+\varepsilon_{y y}\right)
\end{aligned}
$$

Intermediary Structural Analysis
 Variational and Energy Methods

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2021

(1) Table of Contents

(2) Introduction
(3) Variational Calculus; Euler Equation

- Introduction
- Equation vs Principle
- Preliminaries
- Solution: Part I Differential Form of $\delta \Pi$
- Euler Equation
- Euler Equation: Define $\delta \Pi$
- Euler Equation: Observations
- Boundary Conditions
- Example: Extension of a Bar
- Beam Example

4. Definitions

- Internal Energy
- External Work and Virtual Work
- Forces
- Work and Strain Energy
- Total Potential Energy
- First Law of Thermodynamics
(5) Internal Strain Energies
- Virtual Complementary
- Virtual
- Summary of VW and CVW

6 Preliminaries

- Strong/Weak; Natural Essential
- Gauss Theorem
- Approaches
- Structural engineering (and mechanics) can be approached from two different angles:
(1) Newtonian approach, equations of equilibrium.
(2) Lagrangian approach: thermodynamics (balance of energy).
- So far we have pursued the former, from this point onward, we shall focus on the second which will provide the formalism needed to develop the finite element method.
- Some of the concepts will look familiar (first law of thermodynamic, principle of virtual force, minimum potential energy) at first.
- This chapter will
(1) Provide a rigorous framework for variational methods which are the basis of so-called "energy" methods. In so doing, formalize the definition of Natural and Essential boundary conditions.
(2) Bring together the various "energy methods" and show that they are all (essentially) the same.
(3) Develop the principle of virtual displacement as a prelude to the finite element method.
(4) Show the duality between the so-called strong form (differential equation) and the weak form (satisfy a principle in an average sense).
- So far, analyses based on the solution of a specific partial differential equations.
- Alternatively, we can use of direct methods in the calculus of variations, that exploits minimum principles.
- Broadly speaking, previous methods can be labeled as Newtonian, whereas methods based on energy considerations (as will be the case in this chapter) are labelled as Lagrangian.

- Vector or scalar

Newton	Force \vec{F}	Momentum $m \vec{v}$	Vectors	Newtonian	Equation
Leibniz	Work (potential energy)	Kinetic Energy vis viva*	2 scalars	Lagrangian	Principle

* Living force

- Consider a particle at point P_{1} at time t_{1}, and assume that we know the velocity at that time.
- Euler-Lagrange: P_{1}, t_{1}, P_{2} known, t_{2} unknown.
- Assume particle will be at P_{2} after a given time.
- Connect P_{1} and P_{2} by any arbitrary tentative path. In all likelihood, this will be the wrong one.
- Gradually correct the tentative path according to the energy principle: sum of kinetic and potential energies must be kept constant.
- This will impose a definite velocity to any point of the path and thus will determine the motion (which will end at P_{2}.
- For each path we can define action time integral of the vis viva (double the kinetic energy) over the entire motion from P_{1} to P_{2}.
- Once all possible paths have been determined, the one with smallest action is the actual path of motion.
- Hamiltonian: P_{1}, t_{1}, t_{2} known, P_{2} unknown.
- when the work function is a function not only of the particle position but also of time.
- Laws of conservation of energy does not hold, Euler-Lagrange not applicable, but Hamilton principle is.
- Require that tentative motion starts at P_{1} and t_{1} and motion ends at unknown point at time t_{2}.
- Calculus of Variation
- Final results can be established without considering an infinity of solution, but we will achieve a solution infinitesimally near the actual solution (a variation of the actual path).
- Many elementary problems can be solved by vectorial mechanics specially in cartesian coordinates.
- Scalar mechanics far superior for curvilinear coordinates.
- Applications of calculus of variation
- Greatest projectile range that can be achieved (Newton, Euler).
- Optimal shape to minimize water resistance (Newton).
- Shortest time of descent by varying shape of a wire on which beads are sliding (Galileo, Bernouilli, von Leibniz) brachistochrone.

- Differential calculus (DC) involves a function of one or more variable, whereas variational calculus (VC) involves a function of a function, or a functional.
- Fundamental theorem of calculus

$$
\begin{equation*}
F(x)=\int_{a}^{x} f(t) d t \quad \text { and } \quad F^{\prime}(x)=f(x) \tag{1}
\end{equation*}
$$

- Fundamental problem of the calculus of variation is to find a function $u(x)$ such that

$$
\begin{gather*}
\Pi(u)=\int_{a}^{b} F\left(x, u(x), u^{\prime}(x)\right) d x \tag{2}\\
\delta \Pi=0 \tag{3}
\end{gather*}
$$

where δ indicates the variation operator.

- Define $u(x)$ to be a function of x in the interval (a, b), and F to be a known real function (such as the energy density).
- Define the domain of a functional as the collection of admissible functions belonging to a class of functions in function space rather than a region in coordinate space (as is the case for a function).
- \longrightarrow Seek the function $u(x)$ which extremizes Π.
- Let $\tilde{u}(x)$ be a family of neighboring paths of the extremizing function $u(x)$ and assume that at the end points $x=a, b$ they coincide.
- Define $u(x)$ as the sum of the extremizing path and some arbitrary variation.

$$
\begin{equation*}
\tilde{u}(x, \varepsilon)=u(x)+\varepsilon \eta(x)=u(x)+\delta u(x) \tag{4}
\end{equation*}
$$

where ε is a small parameter, and $\delta u(x)$ is the variation of $u(x)$

$$
\begin{align*}
\delta u & =\tilde{u}(x, \varepsilon)-u(x) \tag{5}\\
& =\varepsilon \eta(x) \tag{6}
\end{align*}
$$

and $\eta(x)$ is twice differentiable, has undefined amplitude but is such that $\eta(a)=\eta(b)=0$. Note that \tilde{u} coincides with u if $\varepsilon=0$.

- Note that:
- The necessary condition to extremize a value in DC is that the first derivative be equal to zero, and that the first variation be zero in VC.
- The result of the extremization is a single variable x in DC, and $u(x)$ in VC.
- The variational operator δ is analogous to the δ associated with virtual displacement later.
- It can be shown that the variation and derivation operators are commutative

$$
\left.\begin{array}{rl}
\frac{d}{d x}(\delta u) & =\tilde{u}^{\prime}(x, \varepsilon)-u^{\prime}(x) \\
\delta u^{\prime} & =\tilde{u}^{\prime}(x, \varepsilon)-u^{\prime}(x)
\end{array}\right\} \frac{d}{d x}(\delta u)=\delta\left(\frac{d u}{d x}\right)
$$

- Variational operator δ and the differential calculus operator d can be similarly used, i.e.

$$
\begin{aligned}
\delta\left(u^{\prime}\right)^{2} & =2 u^{\prime} \delta u^{\prime} \\
\delta(u+v) & =\delta u+\delta v \\
\delta\left(\int u d x\right) & =\int(\delta u) d x \\
\delta u & =\frac{\partial u}{\partial x} \delta x+\frac{\partial u}{\partial y} \delta y
\end{aligned}
$$

however, they have clearly different meanings. $d u$ is associated with a neighboring point at a distance $d x$, however δu is a small arbitrary change in the function u for a given x (there is no associated δx).

- For boundaries where u is specified, its variation must be zero, and it is arbitrary elsewhere. The variation δu of u is said to undergo a virtual change.
- Cast the variational formulation $(\delta \Pi=0)$ into a differential one $\frac{d \Phi(\varepsilon)}{d \varepsilon}=0$ and use basic calculus.
- Define $\Phi(\varepsilon)$ as

$$
\begin{equation*}
\Phi(\varepsilon) \stackrel{\text { def }}{=} \Pi(u+\varepsilon \eta(x))=\int_{a}^{b} F\left(x, u(x)+\varepsilon \eta(x), u^{\prime}(x)+\varepsilon \eta^{\prime}(x)\right) d x \tag{7}
\end{equation*}
$$

Note that this will be referred as the weak form ("weak" because it needs derivative of one lesser order)

- Since $\tilde{u}(x) \rightarrow u(x)$ as $\varepsilon \rightarrow 0$, the necessary condition for Π to be an extremum is

$$
\left.\frac{d \Phi(\varepsilon)}{d \varepsilon}\right|_{\varepsilon=0}=0
$$

- From Eq. $4 \tilde{u}=u+\varepsilon \eta$, and $u \tilde{u}(x)^{\prime}=u^{\prime}(x)+\varepsilon \eta^{\prime}(x)$, and applying the chain rule

$$
\frac{d \Phi(\varepsilon)}{d \varepsilon}=\int_{a}^{b}\left(\frac{\partial F}{\partial \tilde{u}} \frac{d \tilde{u}}{d \varepsilon}+\frac{\partial F}{\partial \tilde{u}^{\prime}} \frac{d \tilde{u}^{\prime}}{d \varepsilon}\right) d x=\int_{a}^{b}\left(\eta \frac{\partial F}{\partial \tilde{u}}+\eta^{\prime} \frac{\partial F}{\partial \tilde{u}^{\prime}}\right) d x
$$

for $\varepsilon=0, \tilde{u}=u$, thus

$$
\begin{equation*}
\left.\frac{d \Phi(\varepsilon)}{d \varepsilon}\right|_{\varepsilon=0}=\int_{a}^{b}\left(\eta \frac{\partial F}{\partial u}+\eta^{\prime} \frac{\partial F}{\partial u^{\prime}}\right) d x=0 \tag{8}
\end{equation*}
$$

- Integration by part ($\int f g^{\prime} d x=f g-\int f^{\prime} g d x$) of the second term leads to

$$
\begin{equation*}
\int_{a}^{b}\left(\eta^{\prime} \frac{\partial F}{\partial u^{\prime}}\right) d x=\left.\eta \frac{\partial F}{\partial u^{\prime}}\right|_{a} ^{b}-\int_{a}^{b} \eta(x)\left(\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}\right) d x \tag{9}
\end{equation*}
$$

- Substituting,

$$
\begin{equation*}
\left.\frac{d \Phi(\varepsilon)}{d \varepsilon}\right|_{\varepsilon=0}=\underbrace{\int_{a}^{b} \eta(x)\left[\frac{\partial F}{\partial u}-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}\right]}_{\mathrm{I}(x \in[a, b])}+\underbrace{\left.\eta(x) \frac{\partial F}{\partial u^{\prime}}\right|_{a} ^{b}}_{\|(x=a, b)}=0 \tag{10}
\end{equation*}
$$

- Each term must be zero.
(1) First part will give us the Euler equation.
(2) Second part will enable us to define the boundary conditions.
- Fundamental lemma of the calculus of variation states that for continuous $\Psi(x)$ in $a \leq x \leq b$, and with arbitrary continuous function $\eta(x)$ which vanishes at a and b, then

$$
\begin{equation*}
\int_{a}^{b} \eta(x) \Psi(x) d x=0 \Leftrightarrow \Psi(x)=0 \tag{11}
\end{equation*}
$$

Thus, part I in Eq. 10 yields Strong Form

$$
\begin{equation*}
\frac{\partial F}{\partial u}-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}=0 \text { in } a<x<b \tag{12}
\end{equation*}
$$

- This differential equation is called the Euler-Lagrange equation associated with Π and is a necessary condition for $u(x)$ to extremize Π.
- Note that the weak form is in terms of u^{\prime} (Eq. 7) and the strong form in terms of $u^{\prime \prime}$ Eq. 12.
- Generalizing for a functional Π which depends on two field variables, $u=u(x, y)$ and $v=v(x, y)$

$$
\begin{equation*}
\Pi=\iint F\left(x, y, u, v, u_{, x}, u_{, y}, v_{, x}, v_{, y}, \cdots, v_{, y y}\right) d x d y \tag{13}
\end{equation*}
$$

There would be as many Euler equations as dependent field variables

$$
\left\{\begin{array}{l}
\frac{\partial F}{\partial u}-\frac{\partial}{\partial x} \frac{\partial F}{\partial u, x}-\frac{\partial}{\partial y} \frac{\partial F}{\partial u, y}+\frac{\partial^{2}}{\partial x^{2}} \frac{\partial F}{\partial u, x x}+\frac{\partial^{2}}{\partial x \partial y} \frac{\partial F}{\partial u, x y}+\frac{\partial^{2}}{\partial y^{2}} \frac{\partial F}{\partial u, y y}=0 \tag{14}\\
\frac{\partial F}{\partial v}-\frac{\partial}{\partial x} \frac{\partial F}{\partial v, x}-\frac{\partial}{\partial y} \frac{\partial F}{\partial v, y}+\frac{\partial^{2}}{\partial x^{2}} \frac{\partial F}{\partial v, x x}+\frac{\partial^{2}}{\partial x \partial y} \frac{\partial F}{\partial v, x y}+\frac{\partial^{2}}{\partial y^{2}} \frac{\partial F}{\partial v, y y}=0
\end{array}\right.
$$

- Note that the Functional and the corresponding Euler Equations, Eq. 2 and 12, or Eq. 13 and 14 describe the same problem.
- The Euler equations usually correspond to the governing differential equation and are referred to as the strong form (or classical form).
- The functional is referred to as the weak form (or generalized solution).
- In Mechanics, equilibrium is enforced in an average sense over the body (and the field variable is differentiated m times in the weak form, and $2 m$ times in the strong form) Eq. 7 v.s. Eq. 12.
- It can be shown that in the principle of virtual displacements, the Euler equations are the equilibrium equations, whereas in the principle of virtual forces, they are the compatibility equations.
- Euler equations are differential equations which can not always be solved by exact methods. An alternative method consists in bypassing the Euler equations and go directly to the variational statement of the problem to the solution of the Euler equations.
- Finite Element formulation are based on the weak form, whereas the formulation of Finite Differences are based on the strong form.
- In preceding section we have just shown that $d \Phi(\varepsilon) / d \varepsilon$ leads to the Euler-Lagrange equation (Eq. 10)

$$
\left.\frac{d \Phi(\varepsilon)}{d \varepsilon}\right|_{\varepsilon=0}=\underbrace{\int_{a}^{b} \eta(x)\left[\frac{\partial F}{\partial u}-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}\right]}_{\mathrm{I}(x \in[a, b])}+\underbrace{\left.\eta(x) \frac{\partial F}{\partial u^{\prime}}\right|_{a} ^{b}}_{\mathrm{II}(x=a, b)}=0
$$

We still have to define $\delta \Pi$.

- The first variation of a functional expression is

$$
\left.\begin{array}{rl}
\delta F & =\frac{\partial F}{\partial u} \delta u+\frac{\partial F}{\partial u^{\prime}} \delta u^{\prime} \tag{15}\\
\delta \Pi & =\int_{a}^{b} \delta F d x
\end{array}\right\} \delta \Pi=\int_{a}^{b}\left(\frac{\partial F}{\partial u} \delta u+\frac{\partial F}{\partial u^{\prime}} \delta u^{\prime}\right) d x
$$

Integration by parts of the second term (as in Eq. 8) yields

$$
\begin{equation*}
\delta \Pi=\int_{a}^{b} \delta u\left(\frac{\partial F}{\partial u}-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}\right) d x \tag{16}
\end{equation*}
$$

- Just shown that finding the stationary value of Π by setting $\delta \Pi=0$ is equivalent to finding the extremal value of Π by setting $\left.\frac{d \Phi(\varepsilon)}{d \varepsilon}\right|_{\varepsilon=0}$ equal to zero.
- Similarly, it can be shown that as with second derivatives in calculus, the second variation $\delta^{2} \Pi$ can be used to characterize the extremum as either a minimum or maximum.
- An important observation is that the variational formulation is a scalar one, whereas the Eulerian one is vectorial.
- Revisiting the second part of Eq. 10 ,

$$
\begin{equation*}
\left.\frac{d \Phi(\varepsilon)}{d \varepsilon}\right|_{\varepsilon=0}=\underbrace{\int_{a}^{b} \eta(x)\left[\frac{\partial F}{\partial u}-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}\right]}_{\mathrm{I}(x \in[a, b])}+\underbrace{\left.\eta(x) \frac{\partial F}{\partial u^{\prime}}\right|_{a} ^{b}}_{\mathrm{II}(x=a, b)}=0 \tag{17}
\end{equation*}
$$

enables us to define the boundary conditions

$$
\begin{equation*}
\underbrace{\underbrace{}_{\text {Bardary Cond. }}}_{\text {Ess. }\left.\underbrace{\eta(x)}_{\text {Nat. }} \frac{\partial F}{\frac{\partial u^{\prime}}{\partial u^{\prime}}}\right|_{a} ^{b}}=0 \tag{18}
\end{equation*}
$$

This can be achieved through the following combinations

$$
\begin{array}{rlllll}
\eta(a)=0 & \text { and } & \eta(b) & =0 & \text { Essential } & \Gamma_{u} \\
\eta(a)=0 & \text { and } & \frac{\partial F}{\partial u^{\prime}}(b) & =0 & \text { Mixed } & \Gamma_{u} \cup \Gamma_{t} \tag{19}\\
\frac{\partial F}{\partial u^{\prime}}(a)=0 & \text { and } & \eta(b) & =0 & \text { Mixed } & \Gamma_{u} \cup \Gamma_{t} \\
\frac{\partial F}{\partial u^{\prime}}(a)=0 & \text { and } & \frac{\partial F}{\partial u^{\prime}}(b) & =0 & \text { Natural } & \Gamma_{t}
\end{array}
$$

- Generalizing, for a problem with, one field variable, in which the highest derivative in the governing differential equation is of order $2 m$ (or simply m in the corresponding functional), then we have

Essential (or forced, or geometric) boundary conditions, (because it was essential for the derivation of the Euler equation) if $\mathfrak{\eta}(a)$ or $\eta(b)$ $=0$. Essential boundary conditions, involve derivatives of order zero (the field variable itself) through $\mathrm{m}-1$. Mathematically, this corresponds to Dirichlet boundary-value problems.
Natural (or natural or static) if we left η to be arbitrary, then it would be necessary to use $\frac{\partial F}{\partial u^{\prime}}=0$ at $x=a$ or b. Natural boundary conditions, involve derivatives of order m and up. This B.C. is implied by the satisfaction of the variational statement but not explicitly stated in the functional itself. Mathematically, this corresponds to Neuman boundary-value problems.
Mixed Boundary-Value problems, are those in which both essential and natural boundary conditions are specified on complementary portions of the boundary (such as Γ_{u} and Γ_{t}).

Problem	Axial Member Distributed load	Flexural Member Distributed load
Differential Equation	$A E \frac{d^{2} u}{d x^{2}}-q=0$	$E I \frac{d^{4} w}{d x^{4}}-q=0$
m	1	2
Essential B.C. [0, m-1]	u	w, $\frac{d w}{d x}$
Natural B.C. [m, $2 m-1]$	or $\sigma_{x x}^{\frac{d u}{d x}}=E u_{, x}$	or $M=E \frac{\frac{d^{2} w}{d x^{2}} \text { and } \frac{d^{3} w}{d x^{3}}}{}=E / W_{x x}$ and $V=$

Potential energy Π of an axial member (L, E, A), fixed at left end and subjected to an axial force P at the right one is given by

$$
\begin{equation*}
\Pi=\underbrace{\int_{0}^{L} \frac{E A}{2}\left(\frac{d u}{d x}\right)^{2} d x}_{\text {Strain Energy }} \underbrace{-P u(L)}_{\text {Work }} \tag{20}
\end{equation*}
$$

Determine the Euler Equation by requiring that Π be a minimum.

Solution I

- Follow the procedure used for the derivation of the Euler Equations.
- First variation of Π :

$$
\delta \Pi=\int_{0}^{L} \underbrace{\frac{E A}{2} 2\left(\frac{d u}{d x}\right)}_{a} \underbrace{\delta\left(\frac{d u}{d x}\right)}_{b^{\prime}} d x-P \delta u(L)
$$

- Integrating by parts

$$
\begin{aligned}
\delta \Pi= & +\left.\underbrace{E A \frac{d u}{d x}}_{a} \underbrace{\delta u}_{b}\right|_{0} ^{L}-\int_{0}^{L} \underbrace{\frac{d}{d x}\left(E A \frac{d u}{d x}\right)}_{a^{\prime}} \underbrace{\delta u}_{b} d x-P \delta u(L)=0 \\
= & -\int_{0}^{L} \delta u \underbrace{\frac{d}{d x}\left(E A \frac{d u}{d x}\right)}_{\text {Euler Eq. }} d x+\underbrace{\left[\left.\left(E A \frac{d u}{d x}\right)\right|_{x=L}-P\right]}_{\text {B.C. }} \delta u(L) \\
& -\underbrace{\left.\left(E A \frac{d u}{d x}\right)\right|_{x=0} \underbrace{\delta u(0)}_{0}}_{0}
\end{aligned}
$$

- Recall that δ in an arbitrary operator which can be assigned any value, we set the coefficients of δu between $(0, L)$ and those for δu at $x=L$ equal to zero separately, and obtain
- Euler Equation:

$$
\begin{equation*}
-\frac{d}{d x}\left(E A \frac{d u}{d x}\right)=E A \frac{d^{2} u}{d x^{2}}=0 \quad 0<x<L \tag{21}
\end{equation*}
$$

Note how the functional was in terms of u^{\prime} and the Euler equation in terms of $u^{\prime \prime}$.

- Natural Boundary Condition:

$$
\begin{equation*}
E A \frac{d u}{d x}-P=0 \quad \text { at } x=L \tag{22}
\end{equation*}
$$

Solution II Use results from previous derivation (Eq. 12):

- We have derived:

$$
F\left(x, u, u^{\prime}\right)=\frac{E A}{2}\left(\frac{d u}{d x}\right)^{2}
$$

(note that since P is an applied load at the end of the member, it does not appear as part of $F\left(x, u, u^{\prime}\right)$.

- Euler equation: Substituting into Eq. 12
- To evaluate the Euler Equation from Eq. 12

$$
\begin{aligned}
\frac{\partial F}{\partial u} & =0 \\
\frac{\partial F}{\partial u}-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}} & =0 \\
\Rightarrow-\frac{d}{d x}\left(E A u^{\prime}\right)=-E A \frac{d^{2} u}{d x^{2}} & =0 \text { Euler Equation }
\end{aligned}
$$

- Boundary Condition From Eq. 18:

$$
\begin{aligned}
\left.\underbrace{\underbrace{\eta(x)}_{\text {Nat. }}}_{\text {Ess. }} \frac{\partial F}{\partial u^{\prime}}\right|_{a} ^{b} & =0 \\
\frac{\partial F}{\partial u^{\prime}} & =E A u^{\prime} \\
E A \frac{d u}{d x} & =0
\end{aligned}
$$

The total potential energy of a beam supporting a uniform load p is given by

$$
\begin{equation*}
\Pi=\int_{0}^{L}\left(\frac{1}{2} M_{\kappa}-p w\right) d x=\int_{0}^{L} \underbrace{\left(\frac{1}{2}\left(E / w^{\prime \prime}\right) w^{\prime \prime}-p w\right)}_{F} d x \tag{23}
\end{equation*}
$$

Derive the first variational of Π.
(1) Extending Eq. 15, and integrating by part twice

$$
\begin{aligned}
\delta \Pi & =\int_{0}^{L} \delta F d x=\int_{0}^{L}\left(\frac{\partial F}{\partial w^{\prime \prime}} \delta w^{\prime \prime}+\frac{\partial F}{\partial w} \delta w\right) d x \\
& =\int_{0}^{L}\left(E / w^{\prime \prime} \delta w^{\prime \prime}-p \delta w\right) d x \\
& =\left.\left(E / w^{\prime \prime} \delta w^{\prime}\right)\right|_{0} ^{L}-\int_{0}^{L}\left[\left(E / w^{\prime \prime}\right)^{\prime} \delta w^{\prime}-p \delta w\right] d x \\
& =\underbrace{\left(E / w^{\prime \prime}\right.}_{\text {Nat. }} \underbrace{\left.\delta w^{\prime}\right)\left.\right|_{0} ^{L}}_{\text {Ess. }}-\underbrace{\left[\left(E / w^{\prime \prime}\right)^{\prime}\right.}_{\text {Nat. }} \underbrace{\delta w]\left.\right|_{0} ^{L}}_{\text {Ess. }}+\int_{0}^{L} \underbrace{\left[\left(E / w^{\prime \prime}\right)^{\prime \prime}+p\right]}_{\text {Euler Eq. }} \delta w d x=0
\end{aligned}
$$

(2) Or

$$
\left(E / w^{\prime \prime}\right)^{\prime \prime}=-p \quad \text { for all } \mathrm{x}
$$

which is the governing differential equation of beams and

Essential		Natural
$\delta w^{\prime}=0$	or	$E / w^{\prime \prime}=-M=0$
$\delta w=0$	or	$\left(E / w^{\prime \prime}\right)^{\prime}=-V=0$

at $x=0$ and $x=L$

Strain energy density :

$$
U_{0} \stackrel{\text { def }}{=} \int_{0}^{\varepsilon} \sigma \mathrm{d} \varepsilon
$$

Complementary strain energy density :

$$
U_{0}^{*} \stackrel{\text { def }}{=} \int_{0}^{\boldsymbol{\sigma}} \varepsilon d \boldsymbol{\sigma}
$$

strain and complementary strain energy :

$$
\begin{aligned}
U & \stackrel{\text { def }}{=} \int_{\Omega} U_{0} d \Omega \\
U^{*} & \stackrel{\text { def }}{=} \int_{\Omega} U_{0}^{*} d \Omega
\end{aligned}
$$

Stress Strain Relation :

$$
\boldsymbol{\sigma}=\mathrm{D}\left(\boldsymbol{\epsilon}-\boldsymbol{\epsilon}_{0}\right)+\boldsymbol{\sigma}_{0}
$$

Strain Energy for Linear Systems :

$$
\begin{aligned}
U= & \frac{1}{2} \int_{\Omega} \epsilon^{T} \mathrm{D} \epsilon \mathrm{~d} \Omega-\int_{\Omega} \epsilon^{T} \mathrm{D} \epsilon_{0} \mathrm{~d} \Omega \\
& +\int_{\Omega} \epsilon^{T} \sigma_{0} \mathrm{~d} \Omega
\end{aligned}
$$

Only two types of forces:

- Surface traction \hat{t}

Note: Point force related to traction through Dirac function $\delta(z-d)=0, z \neq d$;
$\int_{\infty}^{\infty} \delta(z-d) d z=1, \int_{0}^{L} \delta(z-d) d z=1 ; \int_{0}^{L} f(z) \delta(z-d) d z=f(d) ;$

- Body force b

External work $W_{e} \stackrel{\text { def }}{=} \int_{\Omega} u^{\top} b d \Omega+\int_{\Gamma_{t}} u^{\top} t d \Gamma$
Point Force/Moment $W_{e}=\int_{0}^{\Delta_{f}} P d \Delta+\int_{0}^{\theta_{t}} M d \theta$
Internal Strain Energy/Virtual Work $\delta \bar{U}=-\delta \bar{W}_{i} \stackrel{\text { def }}{=} \int_{\Omega} \sigma \delta \bar{\varepsilon} d \Omega$
External Virtual Work $\delta \bar{W}_{e} \stackrel{\text { def }}{=} \int_{\Gamma_{t}} \delta \bar{u}^{t} \hat{t} d \Gamma+\int_{\Omega} \delta \bar{u}^{t} b d \Omega$
Complementary Internal Strain Energy-Internal Virtual Work

$$
\begin{equation*}
\delta \bar{U}^{*}=-\delta \bar{W}_{i}^{*} \stackrel{\text { def }}{=} \int_{\Omega} \varepsilon \delta \bar{\sigma} d \Omega \tag{24}
\end{equation*}
$$

Complementary External Virtual Work

$$
\begin{equation*}
\delta \bar{W}_{e}^{*} \stackrel{\text { def }}{=} \int_{\Gamma_{u}} \hat{\mathrm{u}}^{t} \delta \bar{t} d \Gamma \tag{25}
\end{equation*}
$$

Potential of external work W

$$
W_{e} \stackrel{\text { def }}{=} \int_{\Omega} u^{T} b d \Omega+\int_{\Gamma_{t}} u^{\top} \hat{t} d \Gamma+u P
$$

Strictly speaking, we ought to differentiate work from its potential and use two distinct symbols W and \mathcal{W} respectively. For the sake of clarity we will replace \mathcal{W} by W in the notes.
Potential energy

$$
\begin{equation*}
\Pi \stackrel{\text { def }}{=} U-W_{e}=\int_{\Omega} U_{0} d \Omega-\left(\int_{\Omega} \mathrm{ubd} d \Omega+\int_{\Gamma_{t}} \mathrm{ut} d \Gamma+\mathrm{uP}\right) \tag{26}
\end{equation*}
$$

Complementary potential energy

$$
\Pi^{*} \stackrel{\text { def }}{=} U^{*}-W_{e}^{*}=\int_{\Omega} U_{0}^{*} d \Omega-\left(\int_{\Omega} \mathrm{ubd} d \Omega+\int_{\Gamma_{t}} \mathrm{ut} d \Gamma+\mathrm{uP}\right)
$$

- First Law of Thermodynamics: The time-rate of change of the total energy (i.e., sum of the kinetic energy K and the internal energy U) is equal to the sum of the rate of work done by the external forces W_{e} and the change of heat content per unit time H : $\frac{d}{d t}(K+U)=W_{e}+H$
- For an adiabatic system (no heat exchange) and if loads are applied in a quasi static manner (no kinetic energy), the above relation simplifies to: $W_{e}=U$
- The complementary internal virtual strain energy is expressed in terms of stresses or internal forces $(P(x), M(x))$.
- It will lead to a formulation similar to the one seen in introductory courses in structural analysis (virtual force method)

Axial Members

Stresses and forces constitute the virtual quantities identified by
δ.
Elastic System

$$
\left.\begin{array}{rl}
\delta \bar{U}^{*} & =\int_{\Omega} \delta \bar{\sigma} \varepsilon d \Omega \\
d \Omega & =A d x
\end{array}\right\} \delta \bar{U}^{*}=A \int_{0}^{L} \delta \bar{\sigma} \varepsilon d x
$$

Linear Elastic

Flexural Members

Elastic System

$$
\left.\begin{array}{rl}
\delta \bar{U}^{*} & =\int_{\Omega} \delta \bar{\sigma}_{x x} \varepsilon_{x} d \Omega \\
\delta \bar{M}(x) & =\int_{A} \delta \bar{\sigma}_{x} y d A \Rightarrow \frac{\delta \bar{M}(x)}{y}=\int_{A} \delta \bar{\sigma}_{x} d A \\
\phi & =\frac{\varepsilon}{y} \Rightarrow \phi y=\varepsilon_{x} \\
d \Omega & =\int_{0}^{L} \int_{A} d A d x
\end{array}\right\} \delta \bar{U}^{*}=\int_{0}^{L} \delta \bar{M}(x) \phi d x
$$

Linear Elastic

$$
\begin{aligned}
& \delta \bar{U}^{*}=\int_{\Omega} \varepsilon \underbrace{E \delta \bar{\varepsilon}}_{\delta \bar{\sigma}} d \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \int_{A} y^{2} d A=I_{z}
\end{aligned}
$$

- The internal virtual strain energy is expressed in terms of strain or internal displacements.
- It will lead to the formulation at the root of the finite element method.

Axial Members Strains and displacements constitute the virtual quantities

 identified by δ.
Elastic System

$$
\left.\begin{array}{l}
\delta \bar{U}=\int_{\Omega} \sigma_{x} \delta \bar{\varepsilon}_{x} d \Omega \\
d \Omega=A d x
\end{array}\right\} \delta \bar{U}=A \int_{0}^{L} \sigma_{x} \delta \bar{\varepsilon}_{x} d x
$$

Linear Elastic

$$
\left.\begin{array}{rl}
\delta \bar{U} & =\int \sigma_{x} \delta \bar{\varepsilon}_{x} d \Omega \\
\sigma_{x} & =E \varepsilon_{x}=E \frac{d u}{d x} \\
\delta \bar{\varepsilon}_{x} & =\frac{d(\delta \bar{u})}{d x} \\
d \Omega & =A d x
\end{array}\right\} \delta \bar{U}=\int_{0}^{L} \underbrace{E \frac{d u}{d x}}_{\sigma^{\prime \prime}} \underbrace{\frac{d(\delta \bar{u})}{d x}}_{\| \delta \bar{\varepsilon}^{\prime \prime}} \underbrace{A d x}_{d \Omega}
$$

Flexural Members

Elastic System

$$
\left.\begin{array}{rl}
\delta \bar{U} & =\int \sigma_{x} \delta \bar{\varepsilon}_{x} d \Omega \\
M(x) & =\int_{\delta_{x} A} \sigma_{x} y d A \Rightarrow \frac{M(x)}{y}=\int_{A} \sigma_{x} d A \\
\delta \bar{\phi} & =\frac{\delta \varepsilon_{x}}{y} \Rightarrow \delta \bar{\phi} y=\delta \bar{\varepsilon}_{x} \\
d \Omega & =\int_{0}^{L} \int_{A} d A d x
\end{array}\right\} \delta \bar{U}=\int_{0}^{L} M(x) \delta \bar{\phi} d x
$$

Linear Elastic

$$
\left.\begin{array}{rl}
\delta \bar{U} & =\int_{\Omega} \sigma_{x} \delta \bar{\varepsilon}_{x} d \Omega \\
\left.\begin{array}{c}
\sigma_{x}=\frac{M(x) y}{\Omega^{2}} \\
M(x)=\frac{d^{2} v}{d x^{2}} E I_{z}
\end{array}\right\} \sigma_{x} & =\underbrace{\frac{d^{2} v}{d x^{2}}}_{K} E y \\
\delta \bar{\varepsilon}_{x} & =\frac{\delta \sigma_{x}}{E}=\frac{d^{2}(\delta \bar{v})}{d x^{2}} y \\
d \Omega & =A \cdot A x
\end{array}\right\} \delta \bar{U}=\int_{0}^{L} \int_{A} \frac{d^{2} v}{d x^{2}} E y \frac{d^{2}(\delta \bar{v})}{d x^{2}} y d A d x
$$

Since $\int_{A} y^{2} d A=I_{z} \Rightarrow$

$$
\delta \bar{U}=\int_{0}^{L} \underbrace{E I_{z} \frac{d^{2} v}{d x^{2}}}_{\sigma^{\prime \prime}} \underbrace{\frac{d^{2}(\delta \bar{v})}{d x^{2}}}_{\| \delta \bar{\delta}^{\prime \prime}} d x
$$

		Virtual Work: $\delta \bar{U}$		Complementary Virtual Work: $\delta \bar{U}^{*}$	
Continuous System		$\begin{aligned} & -\int_{\Omega} \delta \overline{\mathrm{u}}^{T}\left(\mathrm{~L}^{T} \sigma+\mathrm{b}\right) d \Omega \\ & +\int_{\Gamma_{t}} \delta \overline{\mathrm{u}}^{T}(\mathrm{t}-\hat{\mathrm{t}}) d \Gamma=0 \end{aligned}$		$\begin{gathered} \int_{\Omega}\left(\varepsilon_{i j}-u_{i, j}\right) \delta \bar{\sigma}_{i j} d \Omega \\ -\int_{\Gamma_{u}}\left(u_{i}-\widehat{u}\right) \delta \bar{t}_{i} d \Gamma=0 \end{gathered}$	
	Strain Energy U	Elastic	Linear Elastic	Elastic	Linear Elastic
Axial	$\frac{1}{2} \int_{0}^{L} \frac{P^{2}}{A E} d x$	$A \int_{0}^{L} \sigma \delta \bar{\varepsilon} d x$	$\int_{0}^{L} \underbrace{E \frac{d u}{d x}}_{\sigma} \underbrace{\frac{d(\delta \bar{u})}{d x}}_{\delta \bar{\varepsilon}} \underbrace{A d x}_{d \Omega}$	$A \int_{0}^{L} \delta \bar{\sigma} \varepsilon d x$	$\int_{0}^{L} \underbrace{\delta \bar{P}}_{\delta \bar{\sigma}} \underbrace{\frac{P}{A E}}_{\varepsilon} d x$
Flexure	$\frac{1}{2} \int_{0}^{L} \frac{M^{2}}{E I_{z}} d x$	$\int_{0}^{L} M \delta \bar{\phi} d x$	$\int_{0}^{L} E \underbrace{E I_{z} \frac{d^{2} v}{d x^{2}}}_{\sigma} \underbrace{\frac{d^{2}(\delta \bar{v})}{d x^{2}}}_{\delta \bar{\varepsilon}} d x$	$\int_{0}^{L} \delta \bar{M} \phi d x$	$\int_{0}^{L} \underbrace{\delta \bar{M}}_{\delta \bar{\sigma}} \underbrace{\frac{M}{E I_{z}}}_{\varepsilon} d x$
	Work	Virtual Work: $\delta \mathrm{W}$		Complementary Virtual Work: δ W*	
P	$\Sigma_{i} P_{i} \Delta_{i}$	$\sum_{i}^{n} P_{i} \delta \bar{\Delta}_{i}$		$\sum_{i}^{n} \delta \bar{P}_{i} \Delta_{i}$	
M	$\sum_{i}^{n} M_{i} \theta_{i}$	$\sum_{i}^{n} M_{i} \delta \bar{\delta}_{i}$		$\sum_{i}^{n} \delta \bar{M}_{i} \theta_{i}$	
w	$\int_{0}^{L} w(x) v(x) d x$	$\int_{0}^{L} w(x) \delta \bar{v}(x) d x$		$\int_{0}^{L} \delta \bar{w}(x) v(x) d x$	

Formulation	Potential Energy	Complementary Potential Energy
	Displacement	Force
Axial	$\frac{1}{2} \int_{0}^{L} E\left(\frac{d u}{d x}\right)^{2} d x$	$\frac{1}{2} \int_{0}^{L} \frac{P^{2}}{A E} d x$
Flexural	$\frac{1}{2} \int_{0}^{L} E I_{Z}\left(v^{\prime \prime}\right)^{2} d x-\int_{0}^{L} q(x) v d x$	$\frac{1}{2} \int_{0}^{L} \frac{M^{2}}{E I_{Z}} d x$

Strong/Weak We will refer to a strong form a derivation stemming from a differential equation, and one which is exactly satisfied.
The weak form will be only satisfied in an average sense over a volume Ω.
Boundary Conditions A more detailed coverage of B.C. entails calculus of variation, and derivation of the Euler equation associated with a potential.

Γ	Traction	Displ.	Math.	Structural Mechanics			DOF
Γ_{t}	$\mathrm{t}^{\sqrt{ }}$	$\mathrm{u}^{?}$	Dirichlet	Essential	Primary	Kinematic	Free
Γ_{u}	$\mathrm{t}^{?}$	u^{\vee}	Neuman	Natural	Secondary	Static	Fixed/Constrained

Simply put, the Gauss' integral theorem relates a vector field on the surface to the scalar response inside the corresponding volume.

$$
\int_{\Gamma} \mathrm{v} \cdot \mathrm{n} d \Gamma=\int_{\Omega} \operatorname{divv} d \Omega
$$

or

$$
\int_{\Gamma} v_{i} n_{i} d \Gamma=\int_{\Omega} v_{i, i} d \Omega
$$

Note if we apply Gauss' theorem to an expression such as work ($u_{i} t_{i}$) where the traction t_{i} is related to the stress through $t_{i}=\sigma_{i j} n_{j}$ then

$$
\begin{align*}
\int_{\Gamma} t_{i} u_{i} d \Gamma & =\int_{\Gamma} \sigma_{i j} n_{j} u_{i} d \Gamma=\int_{\Gamma}\left(\sigma_{i j} u_{i}\right) n_{j} d \Gamma \\
& =\int_{\Omega}\left(\sigma_{i j} u_{i}\right)_{, j} d \Omega=\int_{\Omega}\left(\sigma_{i j, j} u_{i}+\sigma_{i j} u_{i, j}\right) d \Omega \tag{27}
\end{align*}
$$

Just in case:

$$
\begin{aligned}
\operatorname{grad} A=\nabla A & =\left(\mathrm{i} \frac{\partial}{\partial x}+\mathrm{j} \frac{\partial}{\partial y}+\mathrm{k} \frac{\partial}{\partial z}\right) A \\
& =\mathrm{i} \frac{\partial A}{\partial x}+\mathrm{j} \frac{\partial A}{\partial y}+\mathrm{k} \frac{\partial A}{\partial z} \\
\operatorname{div} \mathrm{~A}=\nabla \cdot \mathrm{A} & =\left(\mathrm{i} \frac{\partial}{\partial x}+\mathrm{j} \frac{\partial}{\partial y}+\mathrm{k} \frac{\partial}{\partial z}\right) \cdot\left(\mathrm{i} A_{x}+\mathrm{j} A_{y}+\mathrm{k} A_{z}\right) \\
& =\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} \\
\text { Laplacian } \nabla^{2}=\nabla \cdot \nabla & =\frac{\partial^{2} A}{\partial x^{2}}+\frac{\partial^{2} A}{\partial y^{2}}+\frac{\partial^{2} A}{\partial z^{2}}
\end{aligned}
$$

Principle	Virtual			Real		
	Starting with	Satisfying		Seek	Satisfying	
		Strongly	B.C.		Weakly	B.C.
$\begin{aligned} & \text { VW } \delta \bar{U}=\delta \bar{W}_{e} \\ & \text { CVW } \delta \bar{U}^{*}=\delta \bar{W}_{e}^{*} \end{aligned}$	Displ. Forces	Compatibility Equilibrium	Essential Γ_{u} Natural Γ_{t}	Forces Displ.	Equilibrium Compatibility	Natural Γ_{t} Essential Γ_{u}

- The principles of Virtual Work and Complementary Virtual Work relate force systems which satisfy the requirements of equilibrium deformation systems which satisfy the requirement of kinematic.

	Force		Deformation		IVW	Formulation
	External	Internal	External	Internal		
1	$\delta \overline{\mathrm{p}}$	$\delta \overline{\boldsymbol{\sigma}}$	$d \mathrm{u}$	$d \boldsymbol{\varepsilon}$	$\delta \bar{U}^{*}$	CVW/Flexibility
2	$d \mathrm{p}$	$d \boldsymbol{\sigma}$	$\delta \overline{\mathrm{u}}$	$\delta \bar{\varepsilon}$	$\delta \bar{U}$	VW/Stiffness

- The principle of Complementary Virtual Work (of Principle of Virtual Force) is what we have already seen previously (unit force method).
- The Principle of Virtual work is new, and is at the basis of the finite element method.

Intermediary Structural Analysis

Finite Element Formulation

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2019

Table of Contents I

(1) Introduction
(2) Shape Functions

- definition
- C^{0}, Axial/Torsional
- Generalization
- C^{1} Flexural
(3) Finite Element
- Introduction
- Strain Displacement Relations
- Axial Members
- Flexural Members
- Virtual Displacement and Strains
- Element Stiffness Matrix Formulation
- Stress Recovery
(4) Application
- Truss Element
- Flexural Element
- So far we have considered continuous systems, in this chapter we seek to apply the previously derived relations to discretized systems.
- Primary solutions only at the nodes only (as opposed to a continuous solution inside Ω).
- Application of the Principle of Virtual Displacement requires an assumed displacement field. This displacement field can be approximated by interpolation functions written in terms of:
(1) Unknown polynomial coefficients, most appropriate for continuous systems,. For example: and the Rayleigh-Ritz method

$$
v(x)=a_{1} \underbrace{x(L-x)}_{\Phi_{1}}+a_{2} \underbrace{x^{2}(L-x)^{2}}_{\Phi_{2}}+\ldots
$$

A major drawback of this approach, is that the coefficients have no physical meaning.
(2) Unknown nodal deformations, most appropriate for discrete systems and Potential Energy based formulations

$$
v\left(\overline{\mathbf{u}}_{i}\right)=u=N_{1} \overline{\mathbf{u}}_{1}+N_{2} \overline{\mathbf{u}}_{2}+\ldots+N_{n} \overline{\mathbf{u}}_{n}
$$

where $\overline{\mathbf{u}}_{i}$ is the known displacement at dof i.

Expression for the generalized known displacement (translation or rotation), u at any degree of freedom in terms of all its known nodal ones, $\overline{\mathbf{u}}$.

$$
u(x)=\sum_{i=1}^{n} N_{i}(x) \overline{\mathbf{u}}_{i}=\lfloor\mathbf{N}(x)\rfloor\{\overline{\mathbf{u}}\}
$$

$\overline{\mathbf{u}}_{i}$ is the (generalized) nodal displacement corresponding to d.o.f i
(1) N_{i} is an interpolation function, or shape function which has the following characteristics: $N_{i}=1$ at dof i and $N_{i}=0$ at dof j where $i \neq j$.
(2) Summation of N at any point is equal to unity $\Sigma N=1$.
(3) N can be derived on the bases of:
(1) Assumed deformation state defined in terms of polynomial series.
(2) Interpolation function (Lagrangian or Hermitian).
(4) As with the Rayleigh-Ritz method, polynomial functions should
(1) Be continuous, of the type required by the variational principle.
(2) Exhibit rigid body motion (i.e. $v=a_{1}+\ldots$)
(3) Exhibit constant strain.

- Shape functions should be complete, and meet the same requirements as the coefficients of the Rayleigh Ritz method.
- Shape functions can often be written in non-dimensional coordinates (i.e. $\left.\xi=\frac{x}{J}\right)$. This will be exploited later by the so-called isoparametric elements.

$$
\bar{u}_{1}=a_{2} ; \quad \bar{u}_{2}=a_{1} L+a_{2}
$$

- Solving for a_{1} and a_{2} in terms of \bar{u}_{1} and \bar{u}_{2} we obtain:

$$
a_{1}=\frac{\bar{u}_{2}}{L}-\frac{\bar{u}_{1}}{L} ; \quad a_{2}=\bar{u}_{1}
$$

- Substituting and rearranging those expressions we obtain

$$
\begin{aligned}
u(x) & =\left(\frac{\bar{u}_{2}}{L}-\frac{\bar{u}_{1}}{L}\right) x+\bar{u}_{1} \\
& =\underbrace{\left(1-\frac{x}{L}\right)}_{N_{1}(x)} \bar{u}_{1}+\underbrace{\frac{x}{L}}_{N_{2}(x)} \bar{u}_{2}
\end{aligned}
$$

Note that
$N 1(x)+N 2(x)=1 \quad \forall x \in\left[\begin{array}{ll}0 & L\end{array}\right]$

- The previous derivation can be generalized by writing:

$$
u(x)=a_{1} x+a_{2}=\underbrace{\left\lfloor\begin{array}{ll}
x & 1 \\
\hline
\end{array}\right.}_{\lfloor\mathbf{p}(x)\rfloor} \underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}}_{\{\mathbf{a}\}}
$$

where $\lfloor\mathbf{p}(x)\rfloor$ corresponds to the polynomial approximation, and $\{\mathbf{a}\}$ is the coefficient vector.

- Apply the boundary conditions:

$$
\underbrace{\left\{\begin{array}{l}
\bar{u}_{1} \\
\bar{u}_{2}
\end{array}\right\}}_{\{\overline{\mathbf{u}}\}}=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
L & 1
\end{array}\right]}_{[\mathcal{L}]} \underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}}_{\{\mathbf{a}\}}
$$

- Following inversion of $[\mathcal{L}]$, this leads to

$$
\underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}}_{\{\mathbf{a}\}}=\underbrace{\frac{1}{L}\left[\begin{array}{cc}
-1 & 1 \\
L & 0
\end{array}\right]}_{[\mathcal{L}]^{-1}} \underbrace{\left\{\begin{array}{l}
\bar{u}_{1} \\
\bar{u}_{2}
\end{array}\right\}}_{\{\overline{\mathbf{u}}\}}
$$

- Substituting this last equation, we obtain:

$$
u(x)=\underbrace{\left\lfloor\left(1-\frac{x}{L}\right) \quad \frac{x}{L}\right.}_{\underbrace{\lfloor\mathbf{p}(x)\rfloor[\mathcal{L}]^{-1}}_{[\mathbf{N}(x)]}}\rfloor\rfloor \underbrace{\left\{\begin{array}{c}
\bar{u}_{1} \\
\bar{u}_{2}
\end{array}\right\}}_{\{\overline{\mathbf{u}}\}}
$$

- Hence, the shape functions [N$]$ can be directly obtained from

$$
[\mathbf{N}(x)]=\lfloor\mathbf{p}(x)\rfloor[\mathcal{L}]^{-1}
$$

- We have 4 d.o.f.'s, $\{\overline{\mathbf{u}}\}_{4 \times 1}$:and hence will need 4 shape functions, N_{1} to N_{4}, and those will be obtained through 4 boundary conditions.
- With four essential boundary conditions (two on each node), we must assume a polynomial with four coefficients

$$
\begin{aligned}
v(x) & =a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4} \\
\theta(x) & =\frac{d v}{d x}=3 a_{1} x^{2}+2 a_{2} x+a_{3}
\end{aligned}
$$

- Note that v can be rewritten as:

$$
\{v(x)\}=\underbrace{\left\lfloor\begin{array}{llll}
x^{3} & x^{2} & x & 1
\end{array}\right]}_{\lfloor\mathbf{p}(x)\rfloor} \underbrace{\left\{\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}}_{\{\mathbf{a}\}}
$$

- We now apply the boundary conditions:

$$
\begin{array}{lll}
v=\bar{v}_{1} & \text { at } & x=0 \\
v=\bar{v}_{2} & \text { at } & x=L \\
\theta=\bar{\theta}_{1}=\frac{d v}{d x} & \text { at } & x=0 \\
\theta=\bar{\theta}_{2}=\frac{d v}{d x} & \text { at } & x=L
\end{array}
$$

or:

$$
\underbrace{\left\{\begin{array}{c}
\bar{v}_{1} \\
\bar{\theta}_{1} \\
\bar{v}_{2} \\
\bar{\theta}_{2}
\end{array}\right\}}_{\{\overline{\mathbf{u}}\}}=\underbrace{\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
L^{3} & L^{2} & L & 1 \\
3 L^{2} & 2 L & 1 & 0
\end{array}\right]}_{[\mathcal{L}]} \underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}}_{\{\mathbf{a}\}}
$$

- Inverting

$$
\underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}}_{\{\mathbf{a}\}}=\underbrace{\frac{1}{L^{3}}\left[\begin{array}{cccc}
2 & L & -2 & L \\
-3 L & -2 L^{2} & 3 L & -L^{2} \\
0 & L^{3} & 0 & 0 \\
L^{3} & 0 & 0 & 0
\end{array}\right]}_{[\mathcal{L}]^{-1}} \underbrace{\left\{\begin{array}{c}
\bar{v}_{1} \\
\bar{\theta}_{1} \\
\bar{v}_{2} \\
\bar{\theta}_{2}
\end{array}\right\}}_{\{\overline{\mathbf{u}}\}}
$$

- Combining, and substituting $\xi=\frac{x}{L}$

$$
\begin{aligned}
& \mathbf{u}(x)=\underbrace{\left\lfloor\begin{array}{llll}
x^{3} & x^{2} & x & 1
\end{array}\right]}_{\lfloor\mathbf{p}(x)\rfloor} \underbrace{\frac{1}{L^{3}}\left[\begin{array}{cccc}
2 & L & -2 & L \\
-3 L & -2 L^{2} & 3 L & -L^{2} \\
0 & L^{3} & 0 & 0 \\
L^{3} & 0 & 0 & 0
\end{array}\right]}_{[\mathcal{L}]^{-1}} \underbrace{\left\{\begin{array}{l}
\bar{v}_{1} \\
\bar{\theta}_{1} \\
\bar{v}_{2} \\
\bar{\theta}_{2}
\end{array}\right\}}_{\{\overline{\mathbf{u}}\}} \\
&=\underbrace{\lfloor\underbrace{\left(1+2 \xi^{3}-3 \xi^{2}\right)}_{[\mathbf{N}]} \underbrace{x(1-\xi)^{2}}_{N_{2}} \underbrace{\left(3 \xi^{2}-2 \xi^{3}\right)}_{N_{3}}}_{N_{1}} \underbrace{x\left(\xi^{2}-\xi\right)}_{N_{4}}\rfloor \\
& \underbrace{\left\{\begin{array}{c}
\bar{v}_{1} \\
\bar{\theta}_{1} \\
\bar{v}_{2} \\
\bar{\theta}_{2}
\end{array}\right\}}_{\{\overline{\mathbf{u}}\}}
\end{aligned}
$$

- Hence, the shape functions for the flexural element are given by:

$$
\begin{array}{ll}
N_{1}=\left(1+2 \xi^{3}-3 \xi^{2}\right) ; & N_{2}=x(1-\xi)^{2} \\
N_{3}=\left(3 \xi^{2}-2 \xi^{3}\right) ; & N_{4}=x\left(\xi^{2}-\xi\right)
\end{array}
$$

Shape Functions for Flexure
$\left(\mathrm{v}_{1} ; \theta_{1} ; \mathrm{v}_{2} ; \theta_{2}\right)$

- Note that Shape function associated with dof 1 is equal to one a $\xi=0$, equal to zero at $\xi=1$, and its slopes at those two points is equal to zero. Similarly, shape function 2 is zero at the two end points, slope equal to 1 at $\xi=0$, and zero at $\xi=1$.
- Summary

Function	$\xi=0$		$\xi=1$	
	N_{i}	$N_{i, x}$	N_{i}	$N_{i, x}$
$N_{1}=\left(1+2 \xi^{3}-3 \xi^{2}\right)$	1	0	0	0
$N_{2}=\xi(1-\xi)^{2}$	0	1	0	0
$N_{3}=\left(3 \xi^{2}-2 \xi^{3}\right)$	0	0	1	0
$N_{4}=\xi\left(\xi^{2}-\xi\right)$	0	0	0	1

- Since the transverse displacements and the rotations are uncoupled, we can write

$$
\left\{\begin{array}{l}
v \\
\theta
\end{array}\right\}=\left[\begin{array}{cccc}
N_{1} & 0 & N_{3} & 0 \\
0 & N_{2} & 0 & N_{4}
\end{array}\right]\left\{\begin{array}{c}
\bar{v}_{1} \\
\bar{\theta}_{1} \\
\bar{v}_{2} \\
\bar{\theta}_{2}
\end{array}\right\}
$$

- Earlier in the semester, we derived the stiffness matrices of one dimensional rod elements, the approach used could not be generalized to general finite element. Alternatively, the derivation of this chapter will be applicable to both one dimensional rod (or nearly continuum) elements or contnuum (2D or 3D) elements.
- It is important to note that whereas the previously presented method to derive the stiffness matrix yielded an exact solution, it can not be generalized to continuum (2D/3D elements). On the other hands, the method presented here is an approximate method, which happens to result in an exact stiffness matrix for flexural one dimensional elements. Despite its approximation, this so-called finite element method will yield excellent results if enough elements are used.
- The displacement u at any point inside an element can be written in terms of the shape functions $\lfloor\mathbf{N}\rfloor$ and the nodal displacements $\{\overline{\mathbf{u}}\}$ as

$$
\begin{equation*}
\mathbf{u}(x) \stackrel{\text { def }}{=}\lfloor\mathbf{N}(x)\rfloor\{\overline{\mathbf{u}}\} \tag{1}
\end{equation*}
$$

- The strain is then defined as:

$$
\begin{equation*}
\varepsilon(x) \stackrel{\text { def }}{=}[\mathbf{B}(x)]\{\overline{\mathbf{u}}\} \tag{2}
\end{equation*}
$$

where $[\mathrm{B}]$ is the matrix which relates nodal displacements to strain field and is clearly expressed in terms of derivatives of \mathbf{N}.

$$
\begin{aligned}
& u(x)=\underbrace{\lfloor\underbrace{\left(1-\frac{x}{L}\right)}_{N_{1}} \underbrace{\frac{x}{L}}_{N_{2}}\rfloor \underbrace{\left\{\begin{array}{l}
\bar{u}_{1} \\
\bar{U}_{2}
\end{array}\right\}}_{\{\overline{\mathbf{u}}\}}}_{\lfloor\mathbf{N}\rfloor} \begin{array}{l}
\varepsilon(x)=\underbrace{\varepsilon_{x x}=\frac{\mathrm{d} u}{\mathrm{~d} x}=\underbrace{\frac{\partial N_{2}}{\partial x}}_{\frac{\partial N_{1}}{\partial x}}]}_{[\mathbf{B}]} \underbrace{\frac{1}{L}}_{\{\overline{\mathbf{u}}\}}\left\{\begin{array}{l}
\bar{u}_{1} \\
\bar{u}_{2}
\end{array}\right\}
\end{array}
\end{aligned}
$$

Using the shape functions for flexural elements previously derived in

$$
\begin{aligned}
\varepsilon & =\frac{y}{\rho}=y \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}=y \frac{\mathrm{~d}^{2} N}{\mathrm{~d} x^{2}} \overline{\mathbf{v}} \\
& =\underbrace{y\lfloor\underbrace{\frac{6}{L^{2}}(2 \xi-1)}_{\frac{\partial^{2} N_{1}}{\partial x^{2}}} \underbrace{-\frac{2}{L}(3 \xi-2)}_{\frac{\partial^{2} N_{2}}{\partial x^{2}}} \underbrace{\frac{6}{L^{2}}(-2 \xi+1)}_{\frac{\partial^{2} N_{3}}{\partial x^{2}}} \underbrace{-\frac{2}{L}(3 \xi-1)}_{\frac{\partial^{2} N_{4}}{\partial x^{2}}}\rfloor}_{[\mathrm{B}]} \underbrace{\left\{\begin{array}{c}
\bar{v}_{1} \\
\bar{\theta}_{1} \\
\frac{\bar{V}_{2}}{\bar{\theta}_{2}}
\end{array}\right\}}_{\{\bar{u}\}}
\end{aligned}
$$

- In anticipation of the application of the principle of virtual displacement, we define the vectors of virtual displacements and strain in terms of nodal displacements and shape functions:

$$
\begin{align*}
\delta \mathbf{u}(x) & =[\mathbf{N}(x)]\{\delta \overline{\mathbf{u}}\} \tag{3}\\
\delta \varepsilon(x) & =[\mathbf{B}(x)]\{\delta \overline{\mathbf{u}}\} \tag{4}
\end{align*}
$$

- Let us now apply the principle of virtual displacement and restate some known relations (careful with matrices):

$$
\begin{align*}
\delta U & =\delta W \tag{5}\\
\delta U & =\int_{\Omega}\lfloor\delta \varepsilon\rfloor\{\boldsymbol{\sigma}\} \mathrm{d} \Omega \tag{6}\\
\{\boldsymbol{\sigma}\} & =[\mathbf{D}]\{\varepsilon\}-[\mathbf{D}]\left\{\varepsilon^{0}\right\} \tag{7}\\
\{\varepsilon\} & =[\mathbf{B}]\{\overline{\mathbf{u}}\} \tag{8}\\
\{\delta \varepsilon\} & =[\mathbf{B}]\{\delta \overline{\mathbf{u}}\} \tag{9}\\
\lfloor\delta \varepsilon\rfloor & =\lfloor\delta \overline{\mathbf{u}}\rfloor[\mathbf{B}]^{T} \tag{10}
\end{align*}
$$

- Combining Eqns. 5, 6, 7, 10, and 8, the internal virtual strain energy is given by:

$$
\begin{align*}
\delta U & =\int_{\Omega} \underbrace{\lfloor\delta \overline{\mathbf{u}}][\mathbf{B}]^{T}}_{\lfloor\delta \boldsymbol{\varepsilon}\rfloor} \underbrace{[\mathbf{D}][\mathbf{B}]\{\overline{\mathbf{u}}\}}_{\{\boldsymbol{\sigma}\}} \mathrm{d} \Omega-\int_{\Omega} \underbrace{\lfloor\delta \overline{\mathbf{u}}\rfloor[\mathbf{B}]^{T}}_{\lfloor\delta \boldsymbol{\varepsilon}\rfloor} \underbrace{[\mathbf{D}]\left\{\varepsilon^{0}\right\}}_{\left\{\boldsymbol{\sigma}^{0}\right\}} \mathrm{d} \Omega \tag{11}\\
& =\lfloor\delta \overline{\mathbf{u}}\rfloor \int_{\Omega}[\mathbf{B}]^{T}[\mathbf{D}][\mathbf{B}] \mathrm{d} \Omega\{\overline{\mathbf{u}}\}-\lfloor\delta \overline{\mathbf{u}}\rfloor \int_{\Omega}^{[\mathbf{B}]^{T}[\mathbf{D}]\left\{\varepsilon^{0}\right\} \mathrm{d} \Omega}
\end{align*}
$$

- The virtual external work in turn is given by:

$$
\begin{equation*}
\delta W=\underbrace{\lfloor\delta \overline{\mathbf{u}}\rfloor}_{\text {Virt. Nodal Displ. Nodal Force }} \underbrace{\{\overline{\mathbf{F}}\}}_{\text {, }}+\int_{\text {, }}\lfloor\delta \mathbf{u}\rfloor q(x) \mathrm{d} x \tag{12}
\end{equation*}
$$

- Combining this equation with $\{\delta \mathbf{u}\}=[\mathbf{N}]\{\delta \overline{\mathbf{u}}\}$ yields:

$$
\begin{equation*}
\delta W=\lfloor\delta \overline{\mathbf{u}}\rfloor\{\overline{\mathbf{F}}\}+\lfloor\delta \overline{\mathbf{u}}\rfloor \int_{0}^{1}[\mathbf{N}]^{T} q(x) \mathrm{d} x \tag{13}
\end{equation*}
$$

- Equating the internal strain energy Eqn. 11 with the external work Eqn. 13, we obtain:

or

$$
\begin{equation*}
[\mathbf{k}]\{\overline{\mathbf{u}}\}-\left\{\overline{\mathbf{F}}^{\circ}\right\}=\{\overline{\mathbf{F}}\}+\left\{\overline{\mathbf{F}}^{e}\right\} \tag{15}
\end{equation*}
$$

- Canceling out the $\lfloor\delta \overline{\mathbf{u}}\rfloor$ term, this is the same equation of equilibrium as the one written earlier on. It relates the (unknown) nodal displacement $\{\overline{\mathbf{u}}\}$, the structure stiffness matrix $[\mathbf{k}]$, the external nodal force vector $\{\overline{\mathbf{F}}\}$, the distributed element force $\left\{\overline{\mathbf{F}}^{e}\right\}$, and the vector of initial displacement.
- From this relation we define:

The element stiffness matrix:

$$
\begin{equation*}
[\mathrm{k}]=\int_{\Omega}[\mathrm{B}]^{T}[\mathrm{D}][\mathrm{B}] \mathrm{d} \Omega \tag{16}
\end{equation*}
$$

Element initial force vector:

$$
\begin{equation*}
\left\{\overline{\mathbf{F}}^{0}\right\}=\int_{\Omega}[\mathbf{B}]^{T}[\mathbf{D}]\left\{\varepsilon^{0}\right\} \mathrm{d} \Omega \tag{17}
\end{equation*}
$$

Element equivalent load vector:

$$
\begin{equation*}
\left\{\overline{\mathbf{F}}^{e}\right\}=\int_{0}^{L}[\mathbf{N}] q(x) \mathrm{d} x \tag{18}
\end{equation*}
$$

- The general equation of equilibrium can be written as:

$$
\begin{equation*}
\underbrace{[\mathbf{k}]\{\overline{\mathbf{u}}\}-\left\{\overline{\mathbf{F}}^{0}\right\}}_{F_{\text {int }}}-\underbrace{\{\overline{\mathbf{F}}\}+\left\{\overline{\mathbf{F}}^{e}\right\}}_{F_{\text {ext }}}=0 \tag{19}
\end{equation*}
$$

- This is the discretized Euler equation (equilibrium equation) associated with the variational defined by the principle of virtual work.
- Whereas from the preceding section, we derived a general relationship in which the nodal displacements are the primary unknowns, we next seek to determine the internal (generalized) stresses which are most often needed for design.
- Recalling that we have:

$$
\begin{align*}
\{\boldsymbol{\sigma}\} & =[\mathbf{D}]\{\boldsymbol{\varepsilon}\} \tag{20}\\
\{\boldsymbol{\varepsilon}\} & =[\mathbf{B}]\{\overline{\mathbf{u}}\} \tag{21}
\end{align*}
$$

- With the vector of nodal displacement $\{\overline{\mathbf{u}}\}$ known, those two equations would yield:

$$
\begin{equation*}
\{\boldsymbol{\sigma}\}=[\mathbf{D}] \cdot[\mathbf{B}]\{\overline{\mathbf{u}}\} \tag{22}
\end{equation*}
$$

- We note that the secondary variables (strain and stresses) are derivatives of the primary variables (displacement), and as such may not always be determined with the same accuracy.
- The shape functions of the truss element were derived earlier:

$$
\begin{aligned}
& N_{1}=1-\frac{x}{L} \\
& N_{2}=\frac{x}{L}
\end{aligned}
$$

- The corresponding strain displacement relation $[\mathrm{B}]$ is given by:

$$
\left.\begin{array}{rl}
\varepsilon_{x x} & =\frac{d \mathbf{u}}{\mathrm{dx}} \\
& =\left[\begin{array}{ll}
{\left[\frac{d N_{1}}{d x}\right.} & \frac{d N_{2}}{d x}
\end{array}\right] \\
& =\underbrace{\left[-\frac{1}{L}\right.}_{[B]} \frac{1}{L}]
\end{array}\right] .
$$

- For the truss element, the constitutive matrix [D] reduces to the scalar E; Hence, substituting into Eq. 16, with

$$
\mathrm{d} \Omega=\mathrm{d} A \mathrm{~d} x:[\mathrm{k}]=\int_{\Omega}[\mathbf{B}]^{T}[\mathrm{D}][\mathrm{B}] \mathrm{d} \Omega
$$

- But $\mathrm{d} \Omega=A \mathrm{~d} x$ and for element with constant cross sectional area we obtain:

$$
\left.[\mathbf{k}]=A \int_{0}^{L}\left\{\begin{array}{c}
-\frac{1}{L} \\
\frac{1}{L}
\end{array}\right\} \cdot E \cdot L-\frac{1}{L} \quad \frac{1}{L}\right] \mathrm{dx}
$$

$$
\begin{aligned}
& {[\mathbf{k}]=\frac{A E}{L^{2}} \int_{0}^{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \mathrm{dx}} \\
& =\frac{A E}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

- For a beam element, for which we have previously derived the shape functions and the $[B]$ matrix. Substituting in Eq. 16:

$$
[\mathbf{k}]=\int_{0}^{L} \int_{A}[\mathbf{B}]^{T}[\mathbf{D}][\mathbf{B}] y^{2} \mathrm{~d} A \mathrm{~d} x
$$

- Noting that $\int_{A} y^{2} \mathrm{~d} A=I_{z}$ Eq. 16 reduces to

$$
[\mathbf{k}]=\int_{0}^{L}[\mathbf{B}]^{T}[\mathbf{D}][\mathbf{B}] l_{z} \mathrm{~d} x
$$

- For this simple case, we have: $[\mathbf{D}]=E$, thus:

$$
[\mathbf{k}]=E I_{z} \int_{0}^{1}[\mathbf{B}]^{T}[\mathbf{B}] \mathrm{d} x
$$

- Using the shape function for the beam element, and noting the change of integration variable from $\mathrm{d} x$ to $\mathrm{d} \xi$, we obtain

$$
[\mathbf{k}]=E I_{z} \int_{0}^{1}\left\{\begin{array}{c}
\frac{6}{L^{2}}(2 \xi-1) \\
\frac{-2}{L}(3 \xi-2) \\
\frac{6}{L^{2}}(-2 \xi+1) \\
-\frac{2}{L}(3 \xi-1)
\end{array}\right\}[\begin{array}{llll}
\frac{6}{L^{2}}(2 \xi-1) & -\frac{2}{L}(3 \xi-2) & \frac{6}{L^{2}}(-2 \xi+1) & -\frac{2}{L}(3 \xi-1)
\end{array} \underbrace{L \mathrm{~d} \xi}_{\mathrm{d} x}
$$

or

Identical to the matrix previously derived earlier in the semester ()

Intermediary Structural Analysis Isoparameteric Elements

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2021

Table of Contents I

- In the isoparametric formulation, displacements are expressed in terms of natural coordinates.
- Must be differentiated with respect to cartesian coordinates x, y, z. This is accomplished through a transformation matrix (Jacobian) J, and integration can no longer be performed analytically but must be done numerically.
- Natural coordinates range from - 1 to +1

- Nodal displacements at any point inside the element can be written in terms of the nodal known displacements and the shape functions

$$
\begin{align*}
& u=N_{1} \bar{u}_{1}+N_{2} \bar{u}_{2}+\cdots=\mathrm{N}\left\{\begin{array}{c}
\bar{u}_{1} \\
\bar{u}_{2} \\
\vdots
\end{array}\right\}=\mathrm{N}_{\mathrm{u}} \\
& v=N_{1} \bar{v}_{1}+N_{2} \bar{v}_{2}+\cdots=\mathrm{N}\left\{\begin{array}{c}
\bar{v}_{1} \\
\bar{v}_{2} \\
\vdots
\end{array}\right\}=\mathrm{N} \overline{\mathrm{v}}_{e} \tag{1}\\
& w=N_{1} \bar{W}_{1}+N_{2} \bar{W}_{2}+\cdots=\mathrm{N}\left\{\begin{array}{c}
\bar{W}_{1} \\
\bar{W}_{2} \\
\vdots
\end{array}\right\}=\mathrm{N} \overline{\mathrm{w}}_{e}
\end{align*}
$$

or

$$
u=\left\lfloor\begin{array}{lll}
u & v & w
\end{array}\right\rfloor^{T}=[\mathrm{N}] \overline{\mathrm{u}}_{e}
$$

- When elements are also distorted, the coordinates of any point can also be expressed in terms of nodal coordinates

$$
\begin{align*}
& x=\tilde{N}_{1} \bar{x}_{1}+\tilde{N}_{2} \bar{x}_{2}+\cdots=\tilde{\mathrm{N}}\left\{\begin{array}{c}
\bar{x}_{1} \\
\bar{x}_{2} \\
\vdots
\end{array}\right\}=\tilde{\mathrm{N}} \overline{\mathrm{x}} \tag{2}\\
& y=\tilde{N}_{1} \bar{y}_{1}+\tilde{N}_{2} \bar{y}_{2}+\cdots=\tilde{\mathrm{N}}\left\{\begin{array}{c}
\bar{y}_{1} \\
\bar{y}_{2} \\
\vdots
\end{array}\right\}=\tilde{\mathrm{N}} \overline{\mathrm{y}}
\end{align*}
$$

or

$$
c=\left\lfloor\begin{array}{lll}
x & y & z \tag{3}
\end{array}\right\rfloor^{\top}=[\tilde{\mathrm{N}}] \bar{c}
$$

- The simplest introduction to isoparamteric elements is through a straight three noded quadratic elements.
- The shape functions for the element can be obtained from the Lagrangian interpolation function used earlier, and in which we substitute x by ξ. The k th term in a polynomial of order $n-1$ would be

$$
\begin{aligned}
N_{k}^{n} & =\frac{\prod_{i=1, i \neq k}^{n}\left(\xi-\xi_{i}\right)}{\prod_{i=1, i \neq k}^{n}\left(\xi_{k}-\xi_{i}\right)} \\
& =\frac{\left(\xi-\xi_{1}\right)\left(\xi-\xi_{2}\right) \cdots\left(\xi-\xi_{k-1}\right)\left(\xi-\xi_{k+1}\right) \cdots\left(\xi-\xi_{n}\right)}{\left(\xi_{k}-\xi_{1}\right)\left(\xi_{k}-\xi_{2}\right) \cdots\left(\xi_{k}-\xi_{k-1}\right)\left(\xi_{k}-\xi_{k+1}\right) \cdots\left(\xi_{k}-\xi_{n}\right)}(5)
\end{aligned}
$$

- For a three noded quadratic element $\xi_{1}=-1, \xi_{2}=+1$, and $\xi_{3}=0$. Substituting, we obtain the three shape functions

$$
\begin{align*}
& N_{1}(\xi)=\frac{\left(\xi-\xi_{2}\right)\left(\xi-\xi_{3}\right)}{\left(\xi_{1}-\xi_{2}\right)\left(\xi_{1}-\xi_{3}\right)}=\frac{(\xi-1)(\xi-0)}{(-1-1)(-1-0)}=\frac{1}{2}\left(\xi^{2}-\xi\right) \\
& N_{2}(\xi)=\frac{\left(\xi-\xi_{1}\right)\left(\xi-\xi_{3}\right)}{\left(\xi_{2}-\xi_{1}\right)\left(\xi_{2}-\xi_{3}\right)}=\frac{1}{(1+1)(\xi-0)(1-0)}=\frac{1}{2}\left(\xi^{2}+\xi\right) \tag{6}\\
& N_{3}(\xi)=\frac{(\xi)-\xi)}{\left(\xi_{3}-\xi_{1}\right)\left(\xi_{-}\right)\left(\xi_{2}-\xi_{2}\right)}=\frac{(\xi+1)(\xi-1)}{(0+1)(0-1)}=1-\xi^{2}
\end{align*}
$$

Hence,

$$
x(\xi)=\lfloor N\rfloor\left\lfloor\begin{array}{lll}
\bar{x}_{1} & \bar{x}_{2} & \bar{x}_{3}
\end{array}\right\rfloor^{T} \quad \text { and } \quad u(\xi)=\lfloor N\rfloor\left\lfloor\begin{array}{lll}
\bar{u}_{1} & \bar{u}_{2} & \bar{u}_{3} \tag{7}
\end{array}\right\rfloor^{T}
$$

where

$$
\begin{equation*}
\lfloor N\rfloor=\left\lfloor\frac{1}{2}\left(\xi^{2}-\xi\right) \quad \frac{1}{2}\left(\xi^{2}+\xi\right) \quad 1-\xi^{2}\right\rfloor \tag{8}
\end{equation*}
$$

- The strain displacement relation is given by, $\varepsilon=L u=L N \bar{u}_{e}=B \bar{u}_{e}$, and the differential operator L is equal to $\frac{d}{d x}$. For this one dimensional case, this reduces to

$$
\varepsilon_{x}=\frac{\mathrm{du}}{\mathrm{~d} x}=\underbrace{\frac{\mathrm{d}}{\mathrm{~d} x}}_{\mathrm{B}}\lfloor\mathrm{~N}\rfloor\left\{\begin{array}{l}
\bar{u}_{1} \tag{9}\\
\bar{u}_{2} \\
\bar{u}_{3}
\end{array}\right\}
$$

- We invoke the chain rule since the shape functions are expressed in terms of natural coordinates:

$$
\begin{equation*}
\mathrm{B}=\frac{\mathrm{dN}}{\mathrm{~d} x}=\frac{\mathrm{dN}}{\mathrm{~d} \tilde{\xi}} \frac{\mathrm{~d} \xi}{\mathrm{~d} x} \tag{10}
\end{equation*}
$$

The first term may be readily available from the shape functions, Eq. ??, however the second one is not.

- Whereas, $\frac{d \varepsilon}{d x}$ is not available, we may determine its inverse $\frac{d x}{d \xi}$, from Eq. ??, which we shall denote by J or Jacobian.
- The Jacobian operator J is a scale factor which relates cartesian to natural coordinates $\mathrm{d} x=J \mathrm{~d} \xi$.

$$
J(\xi)=\frac{\mathrm{d} x}{\mathrm{~d} \xi}=\frac{\mathrm{d}}{\mathrm{~d} \xi}\lfloor\mathrm{~N}\rfloor\left\{\begin{array}{l}
\bar{x}_{1} \tag{11}\\
\bar{x}_{2} \\
\bar{x}_{3}
\end{array}\right\}=\underbrace{\underbrace{\left\lfloor\frac{1}{2}(2 \xi-1)\right.}_{\frac{d_{x}}{d \xi}} \begin{array}{ll}
\frac{1}{2}(2 \xi+1) & -2 \xi \\
\hline
\end{array}\left\{\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2} \\
\bar{x}_{3}
\end{array}\right\}}_{\frac{d_{N}}{\mathrm{~d}}}
$$

- We can rewrite Eq. ?? as

$$
\begin{equation*}
\mathrm{B}=\frac{\mathrm{dN}}{\mathrm{~d} x}=\underbrace{\frac{\mathrm{d} \xi}{\mathrm{~d} x}}_{J-1} \frac{\mathrm{dN}}{\mathrm{~d} \xi} \tag{12}
\end{equation*}
$$

and the B matrix is thus obtained by substituting into Eq. ??

$$
\begin{equation*}
\lfloor B(\xi)\rfloor=\frac{1}{J} \frac{d}{d \xi}\lfloor N\rfloor=\frac{1}{J}\left\lfloor\frac{1}{2}(2 \xi-1) \quad \frac{1}{2}(2 \xi+1) \quad-2 \xi\right\rfloor \tag{13}
\end{equation*}
$$

- The differential area is

$$
\begin{equation*}
d \Omega=A \mathrm{~d} x=A J d \xi \tag{14}
\end{equation*}
$$

- Substituting, the element stiffness matrix is finally obtained from Eq. ??

$$
\mathrm{K}_{e}(\xi)=\int_{0}^{L} \mathrm{~B}^{\top}(\xi) A E \mathrm{~B}(\xi) \mathrm{d} x=\int_{-1}^{+1} \mathrm{~B}^{\top}(\xi) A E \mathrm{~B}(\xi) J(\xi) d \xi
$$

- We observe that B, in general, contains ξ terms in both the numerator and denominator, and hence the expression can not be analytically inverted. Furthermore, the limits of integration are now from -1 to +1 , and we shall see later on how to numerically integrate it.
- A simple Mathematica code to generate the stiffness matrix of three noded (quadratic) element:
- We have previously derived the stiffness matrix of a rectangular element (aligned with the coordinate axis), this formulation will generalize it to an arbitrary quadrilateral shape.

- For the two-dimensional case

$$
\begin{equation*}
u(\xi, \eta)=\sum N_{i j} \bar{u}_{k}=\sum_{i=1}^{n} \sum_{j=1}^{m} N_{j}(\xi) N_{i}(\eta) \bar{u}_{k} \tag{15}
\end{equation*}
$$

where $k=(i-1) m+j$. For a bilinear element, $n=m=2$, this can be rewritten as

$$
\begin{align*}
u(\xi, \eta) & =\left\lfloor N_{1}(\xi) \quad N_{2}(\xi)\right\rfloor\left[\begin{array}{ll}
\bar{u}_{1} & \bar{u}_{3} \\
\bar{u}_{2} & \bar{u}_{4}
\end{array}\right]\left\{\begin{array}{l}
N_{1}(\eta) \\
N_{2}(\eta)
\end{array}\right\}=N_{\xi}^{T} \bar{u}_{\eta} N_{\eta} \\
& =N_{1}(\xi) N_{1}(\eta) \bar{u}_{1}+N_{2}(\xi) N_{1}(\eta) \bar{u}_{2}+N_{1}(\xi) N_{2}(\eta) \bar{u}_{4}+N_{2}(\xi) N_{2}(\eta) \bar{u}_{3} \\
& =N_{1}(\xi, \eta) \bar{u}_{1}+N_{2}(\xi, \eta) \bar{u}_{2}+N_{3}(\xi, \eta) \bar{u}_{3}+N_{4}(\xi, \eta) \bar{u}_{4} \tag{16}\\
& =\sum_{i=1}^{4} N_{i} \bar{u}_{i} \tag{17}
\end{align*}
$$

- Applying the Lagrangian interpolation equation, Eq. ?? we obtain

$$
\begin{align*}
& N_{1}(\xi)=\frac{\left(\xi-\xi_{2}\right)}{\left(\xi_{1}-\xi_{2}\right)}=\frac{(\xi-1)}{(-1-1)}=\frac{1}{2}(1-\xi) \tag{18}\\
& N_{2}(\xi)=\frac{\left(\xi-\xi_{1}\right)}{\left(\xi_{2}-\xi_{1}\right)}=\frac{(\xi+1)}{(1+1)}=\frac{1}{2}(1+\xi) \tag{19}\\
& N_{1}(\eta)=\frac{\left(\eta-\eta_{2}\right)}{\left(\eta_{1}-\eta_{2}\right)}=\frac{(\eta-1)}{(-1-1)}=\frac{1}{2}(1-\eta) \tag{20}\\
& N_{2}(\eta)=\frac{\left(\eta-\eta_{1}\right)}{\left(\eta_{2}-\eta_{1}\right)}=\frac{(\eta+1)}{(1+1)}=\frac{1}{2}(1+\eta) \tag{21}
\end{align*}
$$

Substituting into Eq. ??

$$
\begin{align*}
& N_{1}(\xi, \eta)=\frac{1}{4}(1-\xi)(1-\eta) ; \quad N_{2}(\xi, \eta)=\frac{1}{4}(1+\xi)(1-\eta) ; \tag{22}\\
& N_{3}(\xi, \eta)=\frac{1}{4}(1+\xi)(1+\eta) ; \quad N_{4}(\xi, \eta)=\frac{1}{4}(1-\xi)(1+\eta) ;
\end{align*}
$$

It should be noted that for this simple case, the shape functions could have been determined by mere inspction.

- Coordinates and displacements are given by

$$
\begin{align*}
& x=\sum N_{i}(\xi, \eta) \bar{x}_{i ;} \quad y=\sum N_{i}(\xi, \eta) \bar{y}_{i}=\sum N_{i}(\xi, \eta) \bar{v}_{i} \\
& u=\sum N_{i}(\xi, \eta) \bar{u}_{i ;} \quad v=1 . \tag{23}
\end{align*}
$$

- The strain displacement relation is given by Eq. ??

$$
\{\varepsilon\}=\left\{\begin{array}{c}
\varepsilon_{x x} \tag{24}\\
\varepsilon_{y y} \\
\gamma_{x y}
\end{array}\right\}=\underbrace{\left[\begin{array}{cc}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{array}\right]}_{\mathrm{L}} \underbrace{\left\{\begin{array}{c}
u \\
v
\end{array}\right\}}_{\mathrm{u}}
$$

However the displacements can be obtained from Eq. ??

$$
\underbrace{\left\{\begin{array}{c}
u \\
v
\end{array}\right\}}_{u}=\underbrace{\left[\begin{array}{cc|cc|cc|cc}
N_{1}(\xi, \eta) & 0 & N_{2}(\xi, \eta) & 0 & N_{3}(\xi, \eta) & 0 & N_{4}(\xi, \eta) & 0 \\
0 & N_{1}(\xi, \eta) & 0 & N_{2}(\xi, \eta) & 0 & N_{3}(\xi, \eta) & 0 & N_{4}(\xi, \eta)
\end{array}\right]}_{\mathrm{N}}\{
$$

- Combining Eq. ?? and ?? yields

$$
\begin{aligned}
\varepsilon & =\mathrm{LN} \overline{\mathrm{u}}=\mathrm{B} \overline{\mathrm{u}} \\
\left\{\begin{array}{l}
\varepsilon_{x x}(\xi, \eta) \\
\varepsilon_{y y}(\xi, \eta) \\
\gamma_{x y}(\xi, \eta)
\end{array}\right\} & =\underbrace{\sum_{i=1}^{4}\left[\begin{array}{cc}
\frac{\partial N_{i}(\xi, \eta)}{\partial x} & 0 \\
0 & \frac{\partial N_{i}(\xi, \eta)}{\partial y} \\
\frac{\partial N_{i}(\xi, \eta)}{\partial y} & \frac{\partial N_{i}(\xi, \eta)}{\partial x}
\end{array}\right]}_{\mathrm{B}=\mathrm{LN}} \underbrace{\left\{\begin{array}{c}
\bar{u}_{i} \\
\bar{v}_{i}
\end{array}\right\}}_{\bar{u}}
\end{aligned}
$$

$$
=\underbrace{\left[\begin{array}{cc|cc|cc|cc}
N_{1, x} & 0 & N_{2, x} & 0 & N_{3, x} & 0 & N_{4, x} & 0 \\
0 & N_{1, y} & 0 & N_{2, y} & 0 & N_{3, y} & 0 & N_{4, y} \\
N_{1, y} & N_{1, x} & N_{2, y} & N_{2, x} & N_{3, y} & N_{3, x} & N_{4, y} & N_{4, x}
\end{array}\right]}_{\mathrm{B}}\{
$$

$$
=\sum_{i=1}^{4}\left[\begin{array}{cc}
\frac{\partial N_{i}(\xi, \eta)}{\partial \xi} & 0 \\
0 & \frac{\partial N_{i}(\xi, \eta)}{\partial \eta} \\
\frac{\partial N_{i}(\xi, \eta)}{\partial \eta} & \frac{\partial N_{i}(\xi, \eta)}{\partial \xi}
\end{array}\right] \underbrace{\left[\begin{array}{cc}
\frac{\partial \xi}{\partial x} & \frac{\partial \eta}{\partial x} \\
\frac{\partial \xi}{\partial x} & \frac{\partial \eta}{\partial y}
\end{array}\right]}_{[\mathrm{J}]^{-1}}
$$

- Considering the local set of coordinates ξ, η and the corresponding global one x, y, the chain rules would give

$$
\begin{align*}
& \left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial \tilde{z}} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\}=\underbrace{\left[\begin{array}{cc}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]}_{\mathrm{J}}\left\{\begin{array}{l}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\} \tag{28}\\
& \left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial x_{i}} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\}=[\mathrm{J}]^{-1}\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial \tilde{K}_{i}} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right\} \tag{29}
\end{align*}
$$

This last equation is the key to get all the components which will go inside the B matrix.

- Expanding the definition of the Jacobian

$$
\begin{aligned}
& \left\{\begin{array}{c}
\frac{\partial N_{i}(\xi, \eta)}{\partial \xi_{i}} \\
\frac{\partial N_{i}(\xi, \eta)}{\partial \eta}
\end{array}\right\}=\underbrace{\left[\begin{array}{cc}
\frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\
\frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}
\end{array}\right]}_{\mathrm{J}}\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial x_{i}} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\}=\sum_{i=1}^{4}\left[\begin{array}{cc}
\frac{\partial N_{i}}{\partial \xi} \bar{X}_{i} & \frac{\partial N_{i}}{\partial \varepsilon_{i}} \bar{y}_{i} \\
\frac{\partial N_{i}}{\partial \eta} \bar{x}_{i} & \frac{\partial N_{i}}{\partial \eta} \bar{y}_{i}
\end{array}\right]\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial x_{k}} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\} \\
& =\left[\begin{array}{llll}
\frac{\partial N_{1}}{\partial \varepsilon} & \frac{\partial N_{2}}{\partial \varepsilon} & \frac{\partial N_{3}}{\partial \varepsilon} & \frac{\partial N_{4}}{\partial \varepsilon} \\
\hline \frac{\partial N_{1}}{\partial \eta} & \frac{\partial N_{2}}{\partial \eta} & \frac{\partial N_{3}}{\partial \eta} & \frac{\partial N_{4}}{\partial \eta}
\end{array}\right]\left[\begin{array}{l|l}
\bar{x}_{1} & \bar{y}_{1} \\
\bar{x}_{2} & \bar{y}_{2} \\
\bar{x}_{3} & \bar{y}_{3} \\
\bar{x}_{4} & \bar{y}_{4}
\end{array}\right]\left\{\begin{array}{c}
\frac{\partial N_{i}}{\partial x} \\
\frac{\partial N_{i}}{\partial y}
\end{array}\right\} \\
& =\underbrace{\frac{1}{4}\left[\begin{array}{cccc}
-(1-\eta) & (1-\eta) & (1+\eta) & -(1+\eta) \\
\hline-(1-\xi) & -(1+\xi) & (1+\xi) & (1-\xi)
\end{array}\right]\left[\begin{array}{c|c}
\bar{x}_{1} & \bar{y}_{1} \\
\bar{x}_{2} & \bar{y}_{2} \\
\bar{x}_{3} & \bar{y}_{3} \\
\bar{x}_{4} & \bar{y}_{4}
\end{array}\right]}_{\mathrm{J}}
\end{aligned}
$$

- Back to the Jacobian

$$
[\mathrm{J}]^{-1} \stackrel{\text { def }}{=}\left[\begin{array}{cc}
\frac{\partial \xi}{\partial x} & \frac{\partial \eta}{\partial x} \tag{33}\\
\frac{\partial \xi}{\partial y} & \frac{\partial \eta}{\partial y}
\end{array}\right]=\frac{1}{\operatorname{det} J}\left[\begin{array}{cc}
\frac{\partial y}{\partial \eta} & -\frac{\partial y}{\partial \xi} \\
-\frac{\partial x}{\partial \eta} & \frac{\partial x}{\partial \xi}
\end{array}\right]=\frac{1}{\operatorname{det} J} \sum_{i=1}^{4}\left[\begin{array}{cc}
\frac{\partial N_{i}}{\partial \xi} \bar{y}_{i} & -\frac{\partial N_{i}}{\partial \eta} \bar{y}_{i} \\
-\frac{\partial N_{i}}{\partial \eta} \bar{x}_{i} & \frac{\partial N_{i}}{\partial \xi} \bar{x}_{i}
\end{array}\right]
$$

- From calculus, if ξ and η are some arbitrary curvilinear coordinates

then

$$
d \mathrm{r}=\left\{\begin{array}{c}
\frac{\partial x}{\partial \xi} \tag{34}\\
\frac{\partial y}{\partial \xi}
\end{array}\right\} d \xi \quad \text { and } \quad d \mathrm{~s}=\left\{\begin{array}{c}
\frac{\partial x}{\partial \eta} \\
\frac{\partial y}{\partial \eta}
\end{array}\right\} d \eta
$$

are vectors directed tangentially to $\xi=$ constant, and $\eta=$ constant respectively.

- From vector algebra, the cross product of two vectors lying in the $x-y$ plane.

is

$$
\begin{align*}
\mathrm{C} & =\mathrm{A} \times \mathrm{B} \tag{35}\\
& =|\mathrm{A}||\mathrm{B}| \sin \theta \mathrm{k} \tag{36}\\
& =\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
A_{x} & A_{y} & 0 \\
B_{x} & B_{y} & 0
\end{array}\right|=\underbrace{\left(A_{x} B_{y}-B_{x} A_{y}\right)}_{\text {Area }} \mathrm{k} \tag{37}\\
|\mathrm{C}| & =|\mathrm{A}||\mathrm{B}| \sin \theta \tag{38}
\end{align*}
$$

hence, the differential area $\mathrm{d} x \mathrm{~d} y$ is then equal to the length of the vector resulting from the cross product of $d r d s$ and is equal to

$$
\mathrm{d}(\text { area })=\mathrm{d} x \mathrm{~d} y=\operatorname{det} \underbrace{\left[\begin{array}{cc}
\frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \tag{39}\\
\frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta}
\end{array}\right]}_{\mathrm{J}} \mathrm{~d} \xi \mathrm{~d} \eta
$$

- Finally determine the element stiffness matrix from

$$
\begin{equation*}
[\mathrm{k}]_{8 \times 8}=\iint[\mathrm{B}]_{8 \times 3}^{T}[\mathrm{D}]_{3 \times 3}[\mathrm{~B}]_{3 \times 8} \mathrm{td} x \mathrm{~d} y=[\mathrm{k}]=\int_{-1}^{1} \int_{-1}^{1}[\mathrm{~B}]^{T}[\mathrm{D}][\mathrm{B}] t|\mathrm{~J}| \mathrm{d} \xi \mathrm{~d} \eta \tag{40}
\end{equation*}
$$

- The evaluation of the element stiffness matrix involves $d A$. If we consider an infinitesimal element, of length $d r$ and $d s$, at the vertex of an element, it has the boundaries of the element as its sides. Then, from Eq. ??

$$
\begin{equation*}
d A=\mathrm{d} x \cdot \mathrm{~d} y \cdot \sin \theta \tag{41}
\end{equation*}
$$

however, from Eq. ?? we have $d A=\operatorname{detJd} \xi . d \eta$, thus

$$
\begin{equation*}
\operatorname{detJ}=\frac{\mathrm{d} x . \mathrm{d} y}{\mathrm{~d} \xi \cdot \mathrm{~d} \eta} \sin \theta \tag{42}
\end{equation*}
$$

Thus we observe that if θ is small or close to 180°, then det J will be very small, if the angle is greater than 180°, the determinant is negative (implying a negative stiffness which will usually trigger an error/stop in a FE analysis).

- In general it is recommended that $30^{\circ}<\theta<150^{\circ}$.
- The inverse of the jacobian exists as long as the element is not much distorted or folds back upon itself.
in those cases there is no unique relation between the coordinates.
- It can be easily shown that for parallelograms, the Jacobian is constant, whereas for nonparallelograms it is not.
- In general J is an indicator of the amount of element distorsion with respect to a 2×2 square one. Some times it is constant, others it varies within the element.

Determine the Jacobian operators J for the following 2 dimensional elements.

The coordinates are given by Eq. Jacobian by Eq. ??. Element 1:

$$
\begin{align*}
x= & \frac{1}{4}(1-\xi)(1-\eta) \bar{x}_{3}+\frac{1}{4}(1+\xi)(1-\eta) \bar{x}_{4} \\
& +\frac{1}{4}(1+\xi)(1+\eta) \bar{x}_{1}+\frac{1}{4}(1-\xi)(1+\eta) \bar{x}_{2} \tag{43}\\
= & \frac{1}{4}(1-\xi)(1-\eta)(-3)+\frac{1}{4}(1+\xi)(1-\eta)(3) \\
& +\frac{1}{4}(1+\xi)(1+\eta)(3)+\frac{1}{4}(1-\xi)(1+\eta)(-3) \tag{44}\\
y= & \frac{1}{4}(1-\xi)(1-\eta) \bar{y}_{3}+\frac{1}{4}(1+\xi)(1-\eta) \bar{y}_{4} \\
& +\frac{1}{4}(1+\xi)(1+\eta) \bar{y}_{1}+\frac{1}{4}(1-\xi)(1+\eta) \bar{y}_{2} \tag{45}\\
= & \frac{1}{4}(1-\xi)(1-\eta)(-2)+\frac{1}{4}(1+\xi)(1-\eta)(-2) \\
& +\frac{1}{4}(1+\xi)(1+\eta)(2)+\frac{1}{4}(1-\xi)(1+\eta)(2) \tag{46}\\
{[\mathrm{J}]=} & {\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right] } \tag{47}
\end{align*}
$$

We note that $A=24=\operatorname{det}[J](2 \times 2)=6 \times 4$ Element 2:

$$
\begin{align*}
x= & \left.\frac{1}{4}(1-\xi)(1-\eta)(-(3+1 /(2 \sqrt{3})))+\frac{1}{4}(1+\xi)(1-\eta)(3-1 / 2 \sqrt{3})\right) \\
& \left.\left.+\frac{1}{4}(1+\xi)(1+\eta)(3+1 / 2 \sqrt{3})\right)+\frac{1}{4}(1-\xi)(1+\eta)(-(3-1 / 2 \sqrt{3}))\right)(48) \\
y= & \frac{1}{4}(1-\xi)(1-\eta)(-2)+\frac{1}{4}(1+\xi)(1-\eta)(-2) \\
& +\frac{1}{4}(1+\xi)(1+\eta)(2)+\frac{1}{4}(1-\xi)(1+\eta)(2) \tag{49}\\
{[J]=} & {\left[\begin{array}{cc}
3 & 0 \\
\frac{1}{2 \sqrt{3}} & \frac{1}{2}
\end{array}\right] } \tag{50}
\end{align*}
$$

Element 3:

$$
\begin{align*}
x= & \frac{1}{4}(1-\xi)(1-\eta)(-1)+\frac{1}{4}(1+\xi)(1) \\
& +\frac{1}{4}(1+\xi)(1+\eta)(1)+\frac{1}{4}(1-\xi)(-1) \tag{51}\\
y= & \frac{1}{4}(1-\xi)(1-\eta)(-3 / 4)+\frac{1}{4}(1+\xi)(1-\eta)(-3 / 4) \\
& +\frac{1}{4}(1+\xi)(1+\eta)(5 / 4)+\frac{1}{4}(1-\xi)(1+\eta)(1 / 4) \tag{52}\\
{[J]=} & \frac{1}{4}\left[\begin{array}{ll}
4 & (1+\eta) \\
0 & (3+\xi)
\end{array}\right] \tag{53}
\end{align*}
$$

- For a quadratic quadrilateral element, there are two possibilities,

- The Pascal triangle, will be later used to justify the choice of terms in the displacement field of isoparameteric elements.
$\left.\begin{array}{lccccccr}\text { Constant term } & & & 1 & & & \\ \text { Linear terms } & & \xi & & \eta & & & \text { Linear elem } \\ \text { Quadratic terms } & & \xi^{2} & & \xi \eta & & \eta^{2} & \\ \text { Cubic terms } & \xi^{3} & & \xi^{2} \eta & & \xi \eta^{2} & & \eta^{3}\end{array}\right]$ Quadratic

Constant term 1

Linear terms $\quad \xi \quad \eta$

Quadratic terms
$\xi^{2} \quad \xi \eta \quad \eta^{2}$
Cubic terms
ξ^{3}

$$
\xi^{2} \eta \quad \xi \eta^{2}
$$

$$
\eta^{3}
$$

Quartic terms

$$
\xi^{3} \eta \quad \xi^{2} \eta^{2} \quad \xi \eta^{3}
$$

Quintic terms

Constant term 1
Linear terms
Quadratic terms
ξ^{3}
Cubic term
η^{2}
η^{3}

Linear elem
Quadrati
ξ^{2}
$\xi \eta$
$\xi^{2} \eta$
$\xi \eta^{2}$
ξ
η

	ξ		η		
ξ^{2}		$\xi \eta$		η^{2}	
			Linear elem		
	$\xi^{2} \eta$		$\xi \eta^{2}$		η^{3}

- Based on Pascal's triangle, the displacement field is given by

$$
\begin{equation*}
u=\underbrace{a_{1}}_{0}+\underbrace{a_{2} x+a_{3} y}_{\boxed{1}}+\underbrace{a_{4} x^{2}+a_{5} x y+a_{6} y^{2}}_{\boxed{2}}+\underbrace{a_{8} x^{2} y+a_{9} x y^{2}}_{\boxed{3}} \tag{54}
\end{equation*}
$$

- In this formulation, the $x^{2} y^{2}$ term is missing and the 8 terms in the assumed polynomial expansion correspond the 8 nodes (4 corner and 4 midside).

- The shape functions may be obtained by mere inspection (i.e. serependitiously),

$$
\begin{array}{ll}
N_{i}=\frac{1}{4}\left(1+\xi \xi_{i}\right)\left(1+\eta \eta_{i}\right)\left(\xi \xi_{i}+\eta \eta_{i}-1\right) & i=1,2,3,4 \\
N_{i}=\frac{1}{2}\left(1-\xi^{2}\right)\left(1+\eta \eta_{i}\right) & i=5,7 \tag{55}\\
N_{i}=\frac{1}{2}\left(1+\xi \xi_{i}\right)\left(1+\eta^{2}\right) & i=6,8
\end{array}
$$

and are tabulated

i	N_{i}	$N_{i, \xi}$	$N_{i, \eta}$
1	$\frac{1}{4}(1-\xi)(1-\eta)(-\xi-\eta-1)$	$\frac{1}{4}(2 \xi+\eta)(1-\eta)$	$\frac{1}{4}(1-\xi)(2 \eta+\xi)$
2	$\frac{1}{4}(1+\xi)(1-\eta)(\xi-\eta-1)$	$\frac{1}{4}(2 \xi-\eta)(1-\eta)$	$\frac{1}{4}(1+\xi)(2 \eta-\xi)$
3	$\frac{1}{4}(1+\xi)(1+\eta)(\xi+\eta-1)$	$\frac{1}{4}(2 \xi+\eta)(1+\eta)$	$\frac{1}{4}(1+\xi)(2 \eta+\xi)$
4	$\frac{1}{4}(1-\xi)(1+\eta)(-\xi-\eta-1)$	$\frac{1}{4}(2 \xi-\eta)(1+\eta)$	$\frac{1}{4}(1-\xi)(2 \eta-\xi)$
5	$\frac{1}{2}\left(1-\xi^{2}\right)(1-\eta)$	$-\xi(1-\eta)$	$-\frac{1}{2}\left(1-\xi^{2}\right)$
6	$\frac{1}{2}(1+\xi)\left(1-\eta^{2}\right)$	$\frac{1}{2}\left(1-\eta^{2}\right)$	$-(1+\xi) \eta$
7	$\frac{1}{2}\left(1-\xi^{2}\right)(1+\eta)$	$-\xi(1+\eta)$	$\frac{1}{2}\left(1-\xi^{2}\right)$
8	$\frac{1}{2}(1-\xi)\left(1-\eta^{2}\right)$	$-\frac{1}{2}\left(1-\eta^{2}\right)$	$-(1-\xi) \eta$

- The shape functions for the corner and midisde nodes are

- If we were to follow a similar procedure to the one adopted to extract the bilinear shape fuctions, we would obtain 9 shape functions, which must in turn correspond to 9 (rather than 8) nodes.
- In this element, the displacement field is given by

$$
\begin{equation*}
u=\underbrace{\underbrace{a_{1}}_{0}+\underbrace{a_{2} x+a_{3} y}_{1}+\underbrace{a_{4} x^{2}+a_{5} x y+a_{6} y^{2}}_{2}+\underbrace{a_{8} x^{2} y+a_{9} x y^{2}}_{3}}_{\text {Serendipity }}+\underbrace{a_{12} x^{2} y^{2}}_{\boxed{4}} \tag{56}
\end{equation*}
$$

- All the quadratic terms are present, hence there are 9 terms in the polynomial expansion, and the 9th node will correspond to an internal node.
- The shape functions in this case can be directly obtained from the Lagrangian interpolation functions, yielding

$$
\begin{array}{ll}
N_{i}=\frac{1}{4}\left(1+\xi \xi_{i}\right)\left(1+\eta \eta_{i}\right)\left(\xi \xi_{i}+\eta \eta_{i}-1\right) & i=1,2,3,4 \\
N_{i}=\frac{1}{2}\left(1-\xi^{2}\right)\left(1+\eta \eta_{i}\right) & i=5,7 \tag{57}\\
N_{i}=\frac{1}{2}\left(1+\xi \xi_{i}\right)\left(1-\eta^{2}\right) & i=6,8 \\
N_{9}=\left(1-\xi^{2}\right)\left(1-\eta^{2}\right) & i=9
\end{array}
$$

- The last shape function is often called bubble function
- Those shape function differ slightly from those of the serendipity element.
- Q9 elements perform much better than the Q8 if edges are not parallel or slightly curved.
- The shape functions for the corner and midisde nodes are

- Based on the above, we can generalize the formulation to one of a quadrilateral element with variable number of nodes.
- This element may have different order of variation along different edges, and is quite useful to facilitate the grading of a finite element mesh.
- In its simplest formulation, it has four nodes, and has a linear variation along all sides, and in the most general case it is a full quadratic element.
- The shape functions may than be obtained from the table. Note that these shape functions are for the hierarchical element in which the corner nodes are numbered first, and midside ones after.

		Only if node i is present				
		$i=5$	$i=6$	$i=7$	$i=8$	$i=9$
N_{1}	$\frac{1}{4}(1-\xi)(1-\eta)$	$-\frac{1}{2} N_{5}$			$-\frac{1}{2} N_{8}$	$\frac{1}{4} N_{9}$
N_{2}	$\frac{1}{4}(1+\xi)(1-\eta)$	$-\frac{1}{2} N_{5}$	$-\frac{1}{2} N_{6}$			$\frac{1}{4} N_{9}$
N_{3}	$\frac{1}{4}(1+\xi)(1+\eta)$		$-\frac{1}{2} N_{6}$	$-\frac{1}{2} N_{7}$		$\frac{1}{4} N_{9}$
N_{4}	$\frac{1}{4}(1-\xi)(1+\eta)$			$-\frac{1}{2} N_{7}$	$-\frac{1}{2} N_{8}$	$\frac{1}{4} N_{9}$
N_{5}	$\frac{1}{2}\left(1-\xi^{2}\right)(1-\eta)$					$-\frac{1}{2} N_{9}$
N_{6}	$\frac{1}{2}(1+\xi)\left(1-\eta^{2}\right)$					$-\frac{1}{2} N_{9}$
N_{7}	$\frac{1}{2}\left(1-\xi^{2}\right)(1+\eta)$					$-\frac{1}{2} N_{9}$
N_{8}	$\frac{1}{2}(1-\xi)\left(1-\eta^{2}\right)$					$-\frac{1}{2} N_{9}$
N_{9}	$\left(1-\xi^{2}\right)\left(1-\eta^{2}\right)$					

- For the six noded triangle, the partial derivatives of a variable ϕ with respect to x and y can be expressed as, [?]

$$
\left\{\begin{array}{c}
\frac{\partial \phi}{\partial x} \tag{58}\\
\frac{\partial \phi}{\partial y}
\end{array}\right\}=\left[\begin{array}{ccc}
\frac{\partial L_{1}}{\partial x} & \frac{\partial L_{2}}{\partial x} & \frac{\partial L_{3}}{\partial x} \\
\frac{\partial L_{1}}{\partial y} & \frac{\partial L_{2}}{\partial y} & \frac{\partial L_{3}}{\partial y}
\end{array}\right]\left\{\begin{array}{c}
\sum_{i=1}^{6} \phi_{i} \frac{\partial N_{i}}{\partial L_{N}} \\
\sum_{i=1}^{6} \phi_{i} \frac{\partial N_{i}}{\partial L_{2}} \\
\sum_{i=1}^{6} \phi_{i} \frac{\partial N_{i}}{\partial L_{3}}
\end{array}\right\}
$$

- Transposing both sides

$$
\left\lfloor\sum_{i=1}^{6} \phi_{i} \frac{\partial N_{i}}{\partial L_{1}} \quad \sum_{i=1}^{6} \phi_{i} \frac{\partial N_{i}}{\partial L_{2}} \quad \sum_{i=1}^{6} \phi_{i} \frac{\partial N_{i}}{\partial L_{3}}\right]\left[\begin{array}{cc}
\frac{\partial L_{1}}{\partial x} & \frac{\partial L_{1}}{\partial y} \tag{59}\\
\frac{\partial L_{2}}{\partial x} & \frac{\partial L_{2}}{\partial y} \\
\frac{\partial L_{3}}{\partial x} & \frac{\partial L_{3}}{\partial y}
\end{array}\right]=\left\lfloor\frac{\partial \phi}{\partial x} \quad \frac{\partial \phi}{\partial y}\right\rfloor
$$

- We now make $\phi \equiv 1, x$, and y :

$$
\left[\begin{array}{ccc}
\sum_{i=1}^{6} \frac{\partial N_{i}}{\partial L_{1}} & \sum_{i=1}^{6} \frac{\partial N_{i}}{\partial L_{2}} & \sum_{i=1}^{6} \frac{\partial N_{i}}{\partial L_{2}} \tag{60}\\
\sum_{i=1}^{6} x_{i} \frac{\partial N_{i}}{\partial L_{1}} & \sum_{i=1}^{6} x_{i} \frac{\partial N_{i}}{\partial L_{2}} & \sum_{i=1}^{6} x_{i} \frac{\partial N_{i}}{\partial L_{3}} \\
\sum_{i=1}^{6} y_{i} \frac{\partial N_{i}}{\partial L_{1}} & \sum_{i=1}^{6} y_{i} \frac{\partial N_{i}}{\partial L_{2}} & \sum_{i=1}^{6} y_{i} \frac{\partial N_{i}}{\partial L_{3}}
\end{array}\right]\left[\begin{array}{cc}
\frac{\partial L_{1}}{\partial x} & \frac{\partial L_{1}}{\partial y} \\
\frac{\partial L_{2}}{\partial x} & \frac{\partial L_{2}}{\partial y} \\
\frac{\partial L_{3}}{\partial x} & \frac{\partial L_{3}}{\partial y}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\partial 1}{\partial x} & \frac{\partial 1}{\partial y} \\
\frac{\partial x}{\partial x} & \frac{\partial x}{\partial y} \\
\frac{\partial y}{\partial x} & \frac{\partial y}{\partial y}
\end{array}\right]
$$

- But $\frac{\partial x}{\partial x}=\frac{\partial y}{\partial y}=1$, and $\frac{\partial 1}{\partial x}=\frac{\partial 1}{\partial y}=\frac{\partial x}{\partial y}=\frac{\partial y}{\partial x}=0$ since x and y are independent coordinates. Furthermore all entries in the first row are equal to a constant (3 for the T6 element), and since the corresponding right hand side, this row can be normalized, yielding the Jacobian matrix for this element
- Substituting

$$
\begin{align*}
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
x_{1}\left(4 L_{1}-1\right)+4 x_{4} L_{2}+4 x_{6} L_{3} & x_{2}\left(4 L_{2}-1\right)+4 x_{5} L_{3}+4 x_{4} L_{1} & x_{3}\left(4 L_{3}-1\right)+4 x_{6} \\
y_{1}\left(4 L_{1}-1\right)+4 y_{4} L_{2}+4 y_{6} L_{3} & y_{2}\left(4 L_{2}-1\right)+4 y_{5} L_{3}+4 y_{4} L_{1} & y_{3}\left(4 L_{3}-1\right)+4 y_{6}
\end{array}\right.} \\
& {\left[\begin{array}{ll}
\frac{\partial L_{1}}{\partial x} & \frac{\partial L_{1}}{\partial y} \\
\frac{\partial L_{2}}{\partial x} & \frac{\partial L_{2}}{\partial y} \\
\frac{\partial L_{3}}{\partial x} & \frac{\partial L_{3}}{\partial y}
\end{array}\right]^{\mathrm{J}}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]} \tag{62}
\end{align*}
$$

- Next we invert the matrix and solve for the six triangular coordinates partials and substitute in Eq. ?? which in turn will enable us to determine the B matrix in Eq. ??

$$
\left\{\begin{array}{l}
\varepsilon_{x x}\left(L_{1}, L_{2}, L_{3}\right) \tag{63}\\
\varepsilon_{y y}\left(L_{1}, L_{2}, L_{3}\right) \\
\gamma_{x y}\left(L_{1}, L_{2}, L_{3}\right)
\end{array}\right\}=\underbrace{\sum_{i=1}^{6}\left[\begin{array}{cc}
\frac{\partial N_{i}\left(L_{1}, L_{2}, L_{3}\right)}{\partial x} & 0 \\
0 & \frac{\partial N_{i}\left(L_{1}, L_{2}, L_{3}\right)}{\partial y} \\
\frac{\partial N_{i}\left(L_{1}, L_{2}, L_{3}\right)}{\partial y} & \frac{\partial N_{i}\left(L_{1}, L_{2}, L_{3}\right)}{\partial x}
\end{array}\right]}_{\mathrm{B}=\mathrm{LN}} \underbrace{\left\{\begin{array}{l}
\bar{u}_{i} \\
\bar{v}_{i}
\end{array}\right\}}_{\overline{\mathrm{u}}}
$$

- Understanding numerical integration is not only essential for a proper integration of the isoparameteric family of elements, but also helpful in understanding the Weighted Residual methods (Chapter ??),
- A crucial aspect of isoparametric element formulation is the numerical integration which can be expressed as

$$
\begin{equation*}
\int F(\xi) \mathrm{d} \xi \text { or } \iint \mathrm{F}(\xi, \eta) \mathrm{d} \xi \mathrm{~d} \eta \tag{64}
\end{equation*}
$$

- In practice we perform the integration numerically using

$$
\begin{equation*}
\int \mathrm{F}(\xi) \mathrm{d} \xi=\sum_{i} \mathrm{~W}_{i} \mathrm{~F}\left(\xi_{i}\right)+\mathrm{R}_{n} \text { or } \iint \mathrm{F}(\xi, \eta) \mathrm{d} \xi \mathrm{~d} \eta=\sum_{i} \sum_{j} \mathrm{~W}_{i j} \mathrm{~F}\left(\xi_{i}, \eta_{j}\right)+\mathrm{R}_{n} \tag{65}
\end{equation*}
$$

where the summations extend over all i and j, and $\mathrm{W}_{i}, \mathrm{~W}_{i j}$ are weighting factors, and $F\left(\xi_{i}\right)$ and $F\left(\xi_{i}, \eta_{j}\right)$ are the matrices evaluated at the points specified in the arguments.

- The matrices R_{n} are error matrices, which are in general not computed.
- As shown above, $\mathrm{F}=\mathrm{B}^{T}$.D.B for finite element stiffness matrix evaluation, and each element is integrated individually.
- The integration of $\int_{a}^{b} F(\xi) d \xi$ is essentially based on passing a polynomial $P(\xi)$ through given values of $F(\xi)$ and then use $\int_{a}^{b} P(\xi) d \xi$, as an approximation.

$$
\begin{equation*}
\int_{a}^{b} F(\xi) d \xi \approx \int_{a}^{b} P(\xi) d \xi \tag{66}
\end{equation*}
$$

- Using $P(\xi)=F(\xi)$ at n points, and recalling the properties of Lagrangian interpolation functions, we obtain

$$
\begin{align*}
P(\xi) & =l_{1}(\xi) F\left(\xi_{1}\right)+l_{2}(\xi) F\left(\xi_{2}\right)+\cdots+I_{n}(\xi) F\left(\xi_{n}\right) \tag{67}\\
& =\sum_{i=1}^{n} l_{i}(\xi) F\left(\xi_{i}\right) \tag{68}
\end{align*}
$$

and note that at $\xi=\xi_{i} l_{i}=1$, while all other $l_{i}=0$.

- In Newton-Cotes integration, it is assumed that the sampling points are equally spaced.

\qquad
thus we define

$$
\begin{equation*}
\int_{a}^{b} P(\xi) \mathrm{d} \xi=\int_{a}^{b} \sum_{i=1}^{n} l_{i}(\xi) F\left(\xi_{i}\right) \mathrm{d} \xi=\sum_{i=1}^{n} \int_{a}^{b} l_{i}(\xi) \mathrm{d} \xi F\left(\xi_{i}\right) \tag{69}
\end{equation*}
$$

or

$$
\begin{align*}
& \text { Approximation } \int_{a}^{b} P(\xi) \mathrm{d} \xi=\sum_{i=1}^{n} W_{i}^{(n)} F\left(\xi_{i}\right) \tag{70}\\
& \text { Weights } \quad W_{i}^{(n)}=\int_{a}^{b} l_{i}(\xi) \mathrm{d} \xi=(b-a) C_{i}^{(n)}
\end{align*}
$$

where $C_{i}^{(n)}$ are the "weights" of the Newton-Cotes quadrature for numerical integration with n equally spaced sampling points.

- Newton-Cotes constants, and corresponding reminder are shown

n	$C_{0}^{(n)}$	$C_{1}^{(n)}$	$C_{2}^{(n)}$	$C_{3}^{(n)}$	$C_{4}^{(n)}$	Error
2	$\frac{1}{2}$	$\frac{1}{2}$				$10^{-1}(b-a)^{3} F^{\prime \prime}(\xi)$
3	$\frac{1}{6}$	$\frac{4}{6}$	$\frac{1}{6}$			$10^{-3}(b-a)^{5} F^{\prime V}(\xi)$
4	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$		$10^{-3}(b-a)^{5} F^{\prime V}(\xi)$
5	$\frac{7}{90}$	$\frac{32}{90}$	$\frac{12}{90}$	$\frac{32}{90}$	$\frac{7}{90}$	$10^{-6}(b-a)^{7} F^{V \prime}(\xi)$

- It can be shown that this method permits exact integration of polynomial of order $n-1$, and that if n is odd, then we can exactly integrate polynomials of order n. Hence we use in general odd values of n,
- For $n=2$ over $[-1,1]$, we select equally spaced points at $\xi_{1}=-1$ and $\xi_{2}=1$ to evaluate $\int_{-1}^{1} P(\xi) \mathrm{d} \xi$

$$
\begin{align*}
P(\xi) & =\sum_{i=1}^{2} l_{i}(\xi) F\left(\xi_{i}\right) \tag{71}\\
l_{1}(\xi) & =\frac{\xi-\xi_{2}}{\xi_{1}-\xi_{2}}=\frac{1}{2}(1-\xi) \tag{72}\\
l_{2}(\xi) & =\frac{\xi-\xi_{1}}{\xi_{2}-\xi_{1}}=\frac{1}{2}(1+\xi) \tag{73}\\
W_{1}^{(2)} & =\int_{-1}^{1} l_{1}(\xi) \mathrm{d} \xi=\frac{1}{2} \int_{-1}^{1}(1-\xi) \mathrm{d} \xi=1 \tag{74}\\
W_{2}^{(2)} & =\int_{-1}^{1} l_{2}(\xi) \mathrm{d} \xi=\frac{1}{2} \int_{-1}^{1}(1+\xi) \mathrm{d} \xi=1 \tag{75}\\
\int_{-1}^{1} F(\xi) \mathrm{d} \xi & \approx \int_{-1}^{1} P(\xi) \mathrm{d} \xi=\sum_{i=1}^{2} W_{i}^{(2)} F\left(\xi_{i}\right)=F(-1)+F(1) \tag{76}
\end{align*}
$$

which is the trapezoidal rule

- For $n=3$ over [$-1,1$], we select equally spaced points at $\xi_{1}=-1 \xi_{2}=0$, and $\xi_{3}=1$, to evaluate $\int_{-1}^{1} P(\xi) \mathrm{d} \xi$,

$$
\begin{align*}
P(\xi) & =\sum_{i=1}^{3} l_{i}(\xi) F\left(\xi_{i}\right) \tag{77}\\
l_{1}(\xi) & =\frac{\left(\xi-\xi_{2}\right)\left(\xi-\xi_{3}\right)}{\left(\xi_{1}-\xi_{2}\right)\left(\xi_{1}-\xi_{3}\right)}=\frac{1}{2} \xi(\xi-1) \tag{78}\\
I_{2}(\xi) & =\frac{\left(\xi-\xi_{1}\right)\left(\xi-\xi_{3}\right)}{\left(\xi_{2}-\xi_{1}\right)\left(\xi_{2}-\xi_{3}\right)}=-(1+\xi)(\xi-1) \tag{79}\\
I_{3}(\xi) & =\frac{\left(\xi-\xi_{1}\right)\left(\xi-\xi_{2}\right)}{\left(\xi_{3}-\xi_{1}\right)\left(\xi_{3}-\xi_{2}\right)}=\frac{1}{2} \xi(1+\xi) \tag{80}\\
W_{1}^{(3)} & =\int_{-1}^{1} l_{1}(\xi) \mathrm{d} \xi=\frac{1}{2} \int_{-1}^{1} \xi(\xi-1) \mathrm{d} \xi=\frac{1}{3} \tag{81}\\
W_{2}^{(3)} & =\int_{-1}^{1} l_{2}(\xi) \mathrm{d} \xi=\int_{-1}^{1}-(1+\xi)(\xi-1) \mathrm{d} \xi=\frac{4}{3} \tag{82}\\
W_{3}^{(3)} & =\int_{-1}^{1} l_{3}(\xi) \mathrm{d} \xi=\frac{1}{2} \int_{-1}^{1} \xi(1+\xi) \mathrm{d} \xi=\frac{1}{3} \tag{83}\\
\int_{-1}^{1} F(\xi) \mathrm{d} \xi & \approx \int_{-1}^{1} P(\xi) \mathrm{d} \xi=\sum_{i-1}^{3} W_{i}^{(3)} F\left(\xi_{i}\right)=\frac{1}{3}[F(-1)+4 F(0)+F(184)
\end{align*}
$$

- In Gauss-Legendre quadrature, the points are not fixed and equally spaced, but are selected to achieve best accuracy.
- Again we start with

$$
\begin{equation*}
\int_{-1}^{1} F(\xi) \mathrm{d} \xi \approx \int_{-1}^{1} P(\xi) \mathrm{d} \xi=\sum_{i=1}^{n} W_{i}^{(n)} F\left(\xi_{i}\right) \tag{85}
\end{equation*}
$$

however in this formulation both $W_{i}^{(n)}$ and ξ_{i} are unknowns to be yet determined. Thus, we have a total of $2 n$ unknowns.

- At the integration points $P\left(\xi_{i}\right)=F\left(\xi_{i}\right)$, however at intermediary points the difference can be expressed as

$$
\begin{equation*}
F(\xi)=P(\xi)+\underbrace{\chi(\xi)\left(\beta_{0}+\beta_{1} \xi+\beta_{2} \xi^{2}+\cdots\right)}_{0 \text { at } \xi=\xi_{i} ; i=1,2, \cdots, n} \tag{86}
\end{equation*}
$$

since we want the left side to be exactly equal to $P(\xi)$ at the integration points, we define

$$
\begin{equation*}
\chi(\xi)=\left(\xi-\xi_{1}\right)\left(\xi-\xi_{2}\right) \ldots\left(\xi-\xi_{n}\right) \tag{87}
\end{equation*}
$$

as a polynomial of order n, to be equal to zero at the integration points ξ_{i}.

- β_{i} should be appropriately selected in orer to eliminate the gap between $F(\xi)$ and $P(\xi)$ at intermediary points.
- Integrating

$$
\begin{equation*}
\int_{-1}^{1} F(\xi) \mathrm{d} \xi=\int_{-1}^{1} P(\xi)+\sum_{j=0}^{\infty} \beta_{j} \int_{-1}^{1} x(\xi) \xi^{j} d \xi \tag{88}
\end{equation*}
$$

We split the last term

$$
\begin{equation*}
\sum_{j=0}^{\infty} \beta_{j} \int_{-1}^{1} \chi(\xi) \xi^{j} \mathbf{d} \xi=\sum_{j=0}^{n-1} \beta_{j} \int_{-1}^{1} \chi(\xi) \xi^{j} \mathbf{d} \xi+\sum_{j=n}^{\infty} \beta_{j} \int_{-1}^{1} \chi(\xi) \xi^{j} \mathbf{d} \xi \tag{89}
\end{equation*}
$$

- Truncating the last terms of the expansion

$$
\begin{equation*}
\int_{-1}^{1} F(\xi) \mathrm{d} \xi \approx \int_{-1}^{1} P(\xi)+\sum_{j=0}^{n-1} \beta_{j} \int_{-1}^{1} \chi(\xi) \xi^{j} d \xi \tag{90}
\end{equation*}
$$

we observe that the first integral on the right-hand side involves a polynomial of order $n-1$, and the second integral a polynomial of order $2 n-1$. Thus we set

$$
\begin{equation*}
\int_{-1}^{1} x(\xi) \xi^{j} \mathrm{~d} \xi=0 \quad j=0,1, \cdots, n-1 \tag{91}
\end{equation*}
$$

which would result in a set of n simultaneous equations of order n in terms of the unknowns $\xi_{i}, i=0,1, \cdots, n-1$.

- Back to Eq. ??

$$
\begin{equation*}
\int_{-1}^{1} F(\xi) \mathrm{d} \xi \approx \int_{-1}^{1} P(\xi)=\sum_{i=1}^{n} F\left(\xi_{i}\right) \int_{-1}^{1} l_{i}(\xi) \mathrm{d} \xi=\sum_{i=1}^{n} W_{i}^{(n)} F\left(\xi_{i}\right) \tag{92}
\end{equation*}
$$

or

| Approximation | $\int_{-1}^{1} F(\xi) \mathrm{d} \xi$ | $\approx \sum_{i=1}^{n} W_{i}^{(n)} F\left(\xi_{i}\right)$ |
| ---: | ---: | :--- | :--- |
| Weights | $W_{i}^{(n)}$ | $=\int_{-1}^{1} l_{i}(\xi) \mathrm{d} \xi$ |
| Gauss Points | $\int_{-1}^{1} \chi(\xi) \xi^{j} \mathrm{~d} \xi$ | $=0 \quad j=0,1, \cdots, n-1$ |

- Integration points ξ_{i} and weight coefficients $W_{i}^{(n)}$ are

n	ξ_{i}	$W_{i}^{(n)}$	Error		
1	0	2	$\frac{1}{3} F^{(2)}(\xi)$		
2	$-1 / \sqrt{3}$	$1 / \sqrt{3}$	1		$\frac{1}{13}{ }^{(4)}(\xi)$
3	$-\sqrt{3 / 5}$	0	$\sqrt{3 / 5}$		
$5 / 9$	$8 / 9$	$5 / 9$	$\frac{1}{15,750} F^{(6)}(\xi)$		

- The solutions (Gauss integration points) are equal to the roots of a Legendre polynomial defined by

$$
\begin{array}{|lll|}
\hline L_{0}(\xi) & =1 & \tag{94}\\
L_{1}(\xi) & =\xi & \\
L_{k}(\xi) & =\frac{2 k-1}{k} \xi L_{k-1}(\xi)-\frac{k-1}{k} \xi L_{k-2}(\xi) & 2 \leq k \leq n \\
\hline
\end{array}
$$

and the n Gauss integration points are determined by solving $L_{n}(\xi)=0$ for its roots $\xi_{i}, i=0,1, \cdots, n-1$.

- The weighting functions are then given by

$$
\begin{equation*}
W_{i}^{(n)}=\frac{2\left(1-\xi_{i}^{2}\right)}{\left[n L_{n-1}\left(\xi_{i}\right)\right]^{2}} \tag{95}
\end{equation*}
$$

- First we seek the integration points for $n=2, \chi(\xi)=\left(\xi-\xi_{1}\right)\left(\xi-\xi_{2}\right)$, and the resulting equations are

$$
\begin{align*}
& \int_{-1}^{1}\left(\xi-\xi_{1}\right)\left(\xi-\xi_{2}\right) \xi^{0} d \xi=0 \tag{96}\\
& \int_{-1}^{1}\left(\xi-\xi_{1}\right)\left(\xi-\xi_{2}\right) \xi^{1} d \xi=0 \tag{97}
\end{align*}
$$

Upon integration, we obtain

$$
\begin{equation*}
\xi_{1} \xi_{2}=-\frac{1}{3} \text { and } \xi_{1}+\xi_{2}=0 \tag{99}
\end{equation*}
$$

hence

$$
\begin{equation*}
\xi_{1}=-\frac{1}{\sqrt{3}} \quad \text { and } \quad \xi_{2}=\frac{1}{\sqrt{3}} \tag{100}
\end{equation*}
$$

The weight coefficients are

$$
\begin{align*}
W_{i}^{(n)} & =\int_{-1}^{1} l_{i}(\xi) \mathrm{d} \xi \tag{101}\\
W_{1}^{(2)} & =\int_{-1}^{1} \frac{\xi-\xi_{2}}{\xi_{1}-\xi_{2}} \mathrm{~d} \xi=\frac{-2 \xi_{2}}{\xi_{1}-\xi_{2}}=1.0 \tag{102}\\
W_{2}^{(2)} & =\int_{-1}^{1} \frac{\xi-\xi_{1}}{\xi_{2}-\xi_{1}} \mathrm{~d} \xi=\frac{-2 \xi_{1}}{\xi_{1}-\xi_{2}}=1.0 \tag{103}
\end{align*}
$$

- Numerical integration of $F(\xi, \eta)$ over a rectangular region $-1 \leq \xi \leq 1$, and $-1 \leq \eta \leq 1$, is accomplished by selecting m and n (not to be confused with the order of the polynomial) integration points in the ξ and η directions

$$
\begin{equation*}
\int_{-1}^{1} \int_{-1}^{1} F(\xi, \eta) \mathrm{d} \xi \mathrm{~d} \eta \approx \int_{-1}^{1} \int_{-1}^{1} P(\xi, \eta) \mathrm{d} \xi \mathrm{~d} \eta=\sum_{i=1}^{n} \sum_{j=1}^{m} W_{i}^{(m)} W_{j}^{(n)} F\left(\xi_{i}, \eta_{j}\right) \tag{104}
\end{equation*}
$$

and the total number of integration points will thus be $m \times n$, Fig. ??.

- For the numerical integration over a triangle, the Gauss points are shown in Fig. ??, and the corresponding triangular coordinates are given by Table ??.

Linear

Quadratic

Cubic

Order	Error	Points	Triang. Coord.	Weights
Linear	$R=O\left(h^{2}\right)$	a	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	1
Quadratic	$R=O\left(h^{3}\right)$	$\begin{aligned} & a \\ & b \\ & c \\ & c \end{aligned}$	$\begin{aligned} & \frac{1}{2}, \frac{1}{2}, 0 \\ & 0, \frac{1}{2}, \frac{1}{2}, \\ & \frac{1}{2}, 0, \frac{1}{2} \end{aligned}$	$\begin{aligned} & 3 \\ & \underline{1} \\ & \hline 1 \end{aligned}$
Cubic	$R=O\left(h^{4}\right)$	$\begin{aligned} & a \\ & b \\ & c \\ & d \end{aligned}$	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$ $0.6,0.2,0.2$ $0.2,0.6,0.2$ $0.2,0.2,0.6$	$\begin{aligned} & -\frac{27}{48} \\ & \frac{25}{48} \\ & \frac{25}{48} \\ & \frac{25}{48} \\ & \hline \end{aligned}$

- Stresses are evaluated from

$$
\begin{equation*}
\sigma=\mathrm{DB} \bar{u} \tag{105}
\end{equation*}
$$

in general, it is desirable to have them evaluated at the elements nodal points. However, it should be kept in mind that stresses computed at a given nodes from different elements need not be the same (since stresses are not required to be continuous in displacement based finite element formulations).

- Hence some sort of stress averaging at nodal points may be desirable.
- In the isoparametric formulation, nodal stresses are very poor, and best results are obtained at the Gauss points.
- To evaluate nodal stresses, two approaches:
(1) Evaluate σ directly at the nodes $(\xi=\eta= \pm 1)$
(2) Evaluate the stresses at the Gauss points and then extrapolate.

The second approach yields far better results.

- Extrapolation from Gauss points will be illustrated through Fig. ?? for the 4 noded isoparametric quadrilateral.

We specify an "internal" element with its own nodes and natural coordinates ξ ' and η^{\prime} which are related to ξ and η through Table ??

Corner Node	ξ	η	ξ^{\prime}	η^{\prime}	Gauss Node	ξ	η	ξ^{\prime}	η^{\prime}
1	-1	-1	$-\sqrt{3}$	$-\sqrt{3}$	1^{\prime}	$-1 / \sqrt{3}$	$-1 / \sqrt{3}$	-1	-1
2	+1	-1	$+\sqrt{3}$	$-\sqrt{3}$	2^{\prime}	$+1 / \sqrt{3}$	$-1 / \sqrt{3}$	+1	-1
3	+1	+1	$+\sqrt{3}$	$+\sqrt{3}$	3^{\prime}	$+1 / \sqrt{3}$	$+1 / \sqrt{3}$	+1	+1
4	-1	+1	$-\sqrt{3}$	$+\sqrt{3}$	4^{\prime}	$-1 / \sqrt{3}$	$+1 / \sqrt{3}$	-1	+1

or

$$
\begin{equation*}
\xi^{\prime}=\sqrt{3} \xi \quad \eta^{\prime}=\sqrt{3} \eta \tag{106}
\end{equation*}
$$

hence any scalar quantity σ (such as $\sigma_{x x}$) whose values σ_{i}^{\prime} is known at the Gauss element corners can be interpolated through the usual bilinear shape functions now expressed in terms of ξ^{\prime} and η^{\prime}

$$
\sigma\left(\xi^{\prime}, \eta^{\prime}\right)=\left\lfloor\begin{array}{llll}
N_{1}^{e^{\prime}} & N_{2}^{e^{\prime}} & N_{3}^{e^{\prime}} & N_{4}^{e^{\prime}}
\end{array}\right\rfloor\left\{\begin{array}{l}
\sigma_{1}^{\prime} \tag{107}\\
\sigma_{2}^{\prime} \\
\sigma_{3}^{\prime} \\
\sigma_{4}^{\prime}
\end{array}\right\}
$$

where

$$
\begin{align*}
& N_{1}^{e^{\prime}}=\frac{1}{4}\left(1-\xi^{\prime}\right)\left(1-\eta^{\prime}\right) \tag{108}\\
& N_{2}^{e^{\prime}}=\frac{1}{4}\left(1+\xi^{\prime}\right)\left(1-\eta^{\prime}\right) \tag{109}\\
& N_{3}^{e^{\prime}}=\frac{1}{4}\left(1+\xi^{\prime}\right)\left(1+\eta^{\prime}\right) \tag{110}\\
& N_{4}^{e^{\prime}}=\frac{1}{4}\left(1-\xi^{\prime}\right)\left(1+\eta^{\prime}\right) \tag{111}
\end{align*}
$$

Similarly, we can extrapolate σ to the corners of the element. For corner 1, for instance, we replace ξ^{\prime} and η^{\prime} in the preceding equations by $-\sqrt{3}$. Doing that for the four corners, we obtain

$$
\left\{\begin{array}{l}
\sigma_{1} \tag{112}\\
\sigma_{2} \\
\sigma_{3} \\
\sigma_{4}
\end{array}\right\}=\left[\begin{array}{cccc}
1+\frac{1}{2} \sqrt{3} & -\frac{1}{2} & 1-\frac{1}{2} \sqrt{3} & -\frac{1}{2} \\
-\frac{1}{2} & 1+\frac{1}{2} \sqrt{3} & -\frac{1}{2} & 1-\frac{1}{2} \sqrt{3} \\
1-\frac{1}{2} \sqrt{3} & -\frac{1}{2} & 1+\frac{1}{2} \sqrt{3} & -\frac{1}{2} \\
-\frac{1}{2} & 1-\frac{1}{2} \sqrt{3} & -\frac{1}{2} & 1+\frac{1}{2} \sqrt{3}
\end{array}\right]\left\{\begin{array}{c}
\sigma_{1}^{\prime} \\
\sigma_{2}^{\prime} \\
\sigma_{3}^{\prime} \\
\sigma_{4}^{\prime}
\end{array}\right\}
$$

As expected, the sum of each row is equal to one, and for stresses we replace σ by $\sigma_{x x}, \sigma_{y y}$, and $\tau_{x y}$

- As we know, different nodal stresses will be obtained from adjacent elements. To obtain a single value we can either take
(1) Unweighted average of all the nodal stresses.
(2) Weighted average of nodal stresses based on the relative sizes of the elements as determined from their area through $\operatorname{det}(J)$.
- In the finite element formulation, all loads must be replaced by an "energy equivalent" nodal load.
- We shall consider the following cases: nodal load, gravity, tractions, and thermal.
- Gravity forces are equivalent to a body force/unit volume acting within the solid in the direction of the gravity axis, Fig. ??,

(which need not be coincident with either of the coordinate axis).

$$
\begin{align*}
d G_{x} & =\rho g d \Omega \sin \theta \tag{113}\\
d G_{y} & =-\rho g d \Omega \cos \theta \tag{114}
\end{align*}
$$

where g is the gravitational acceleration and ρ is the mass density.

- Recalling from Eq. ?? that

$$
\begin{equation*}
\mathrm{f}_{e}=\int_{\Omega_{e}} \mathrm{~N}^{T} \mathrm{bd} \Omega \tag{115}
\end{equation*}
$$

we obtain

$$
\left\{\begin{array}{l}
P_{x i} \tag{116}\\
P_{y i}
\end{array}\right\}=\int_{\Omega_{e}} N_{i} \rho g\left\{\begin{array}{c}
\sin \theta \\
-\cos \theta
\end{array}\right\} d \Omega
$$

or the energy equivalent nodal forces for node i are

$$
\left\{\begin{array}{c}
P_{x i} \tag{117}\\
P_{y i}
\end{array}\right\}=\sum_{j=1}^{\text {ngaus ngaus }} \sum_{k=1}^{\rho g t}\left\{\begin{array}{c}
\sin \theta \\
-\cos \theta
\end{array}\right\} N_{i}\left(\xi_{j} \eta_{k}\right) W_{j} W_{k} \operatorname{detJ}\left(\xi_{j}, \eta_{k}\right)
$$

- The angle θ is to be measured counter-clockwise from the positive y axis.
- Any element edge can have a distributed load per unit length in a normal and tangential direction prescribed.
- The variation of the distributed load is polynomial and its order can not exceed the order of the element.
- For the sake of consistency, loaded nodes are listed also counterclockwise.
- First we determine the components of the distributed loads in the x and y directions by considering the forces acting on an incremental length $d S$ of the loaded edge, Fig. ??:

$$
\begin{align*}
d P_{x} & =\left(p_{t} d S \cos \theta-p_{n} d S \sin \theta\right) \tag{11}\\
d P_{y}=\left(p_{n} d S \cos \theta-p_{t} d S \sin \theta\right) & =\left(p_{t} \mathrm{~d} x-p_{n} \mathrm{~d} y\right) \\
& \left.d x-p_{t} d y\right)
\end{align*}
$$

- But since integration is to be carried on in terms of natural coordinates:

$$
\begin{equation*}
\mathrm{d} x=\frac{\partial x}{\partial \xi} \mathrm{~d} \xi \quad \mathrm{~d} y=\frac{\partial y}{\partial \xi} \mathrm{~d} \xi \tag{119}
\end{equation*}
$$

Substituting

$$
\begin{align*}
& d P_{x}=\left(p_{t} \frac{\partial x}{\partial \xi}-p_{n} \frac{\partial y}{\partial \xi}\right) d \xi \tag{120}\\
& d P_{y}=\left(p_{n} \frac{\partial x}{\partial \xi}+p_{t} \frac{\partial y}{\partial \xi}\right) d \xi \tag{121}
\end{align*}
$$

- From Eq. ?? we have

$$
\begin{equation*}
\mathrm{f}_{e}=\int_{\Gamma_{t}} \mathrm{~N}^{\top} \hat{\mathrm{t}} \mathrm{~d} \Gamma \tag{123}
\end{equation*}
$$

or

$$
\begin{align*}
& P_{x i}=\int_{\Gamma_{t}} N_{i}\left(p_{t} \frac{\partial x}{\partial \xi}-p_{n} \frac{\partial y}{\partial \xi}\right) d \xi \tag{124}\\
& P_{y i}=\int_{\Gamma_{t}} N_{i}\left(p_{n} \frac{\partial x}{\partial \xi}+p_{t} \frac{\partial y}{\partial \xi}\right) d \xi \tag{125}
\end{align*}
$$

The integration is again carried on numerically (along the edge) and the energy equivalent nodal forces for node i are

$$
\begin{array}{|l|l|}
\hline P_{x i}=\sum_{j=1}^{\text {ngaus }} N_{i}\left(p_{t} \frac{\partial x}{\partial \xi}-p_{n} \frac{\partial y}{\partial \xi}\right) W_{j} \tag{126}\\
P_{y i}=\sum_{j=1}^{\text {ngaus }} N_{i}\left(p_{n} \frac{\partial x}{\partial \xi}+p_{t} \frac{\partial y}{\partial \xi}\right) W_{j} \\
\hline
\end{array}
$$

where the integration is carried on numerically along the edge. and note that $\frac{\partial x}{\partial \xi}$ and $\frac{\partial y}{\partial \xi}$ are taken straight out of the Jacobian matrix.

- Note that since integration is to be carried along the edge, we have used ξ.
- For adjacent elements

- We distinguish between two cases:

Plane Stress which is the simplest

$$
\begin{align*}
\varepsilon_{x x}^{0} & =\alpha \Delta T \tag{127}\\
\varepsilon_{y y}^{0} & =\alpha \Delta T \tag{128}\\
\gamma_{x y}^{0} & =0 \tag{129}
\end{align*}
$$

Plane Strain we have

$$
\begin{align*}
\varepsilon_{x x}^{0} & =-\frac{v \sigma_{z z}^{0}}{E}+\alpha \Delta T \tag{130}\\
\varepsilon_{y y}^{0} & =-\frac{v \sigma_{z z}^{0}}{E}+\alpha \Delta T \tag{131}\\
\gamma_{x y}^{0} & =0 \tag{132}\\
\varepsilon_{z z}^{0} & =\frac{\sigma_{z z}^{0}}{E}+\alpha \Delta T=0 \tag{133}
\end{align*}
$$

Using the last expression to eliminate $\sigma_{z z}^{0}$, we obtain

$$
\begin{align*}
\varepsilon_{x x}^{0} & =(1+v) \alpha \Delta T \tag{134}\\
\varepsilon_{y y}^{0} & =(1+v) \alpha \Delta T \tag{135}\\
\gamma_{x y}^{0} & =0 \tag{136}\\
\sigma_{z z}^{0} & =-E \alpha \Delta T \tag{137}
\end{align*}
$$

- Those expressions are then substituted into Eq. ??

$$
\begin{equation*}
\mathrm{f}_{0_{e}}=\int_{\Omega_{e}} \mathrm{~B}^{T} \mathrm{D} \boldsymbol{\epsilon}_{0} \mathrm{~d} \Omega-\int_{\Omega_{t}} \mathrm{~B}^{T} \sigma_{0} \mathrm{~d} \Omega \tag{138}
\end{equation*}
$$

and integrated numerically.

- The computer implementation of a numerically integrated isoparametric element is summarized as follows.
But first, it is assumed that this operation is to be performed in a function called stiff and it takes as input arguments elcod, young, poiss, type, ndime, ndofn, ngaus. In turn it will compute the stiffness matrix KELEM of element ielem.
(1) Retrieve element geometry and material properties for the current element
(2) Zero the stiffness matrix
(3) Call function dmat to set the constitutive matrix D^{e} of the element
(4) Enter (nested) loop covering all integration points
(1) Look up the sampling position of the current point $\left(\xi_{p}, \eta_{q}\right)(s, t)$ and their weights (weigp)
(2) Call shape function routine sfr given ξ_{p}, η_{q} which will return the shape function N_{i}^{e} (sfr) and the derivatives $\frac{\partial N_{i}^{e}}{\partial \xi}$ and $\frac{\partial N_{i}^{e}}{\partial \eta}$ (deriv) at the point ξ_{p}, η_{q}
(3) Call another subroutine (jacob), given $N_{i}^{e}, \frac{\partial N_{i}^{e}}{\partial \xi}$ and $\frac{\partial N_{i}^{e}}{\partial \eta}$ at point ξ_{p}, η_{q} will return cartesian shape function derivatives $\frac{\partial N_{i}^{e}}{\partial x}$ and $\frac{\partial N_{i}^{e}}{\partial y}$ (cartd), the Jacobian matrix $\mathrm{J}^{e}(\mathrm{jacm})$, its inverse J^{e-1} (jaci), its determinant det J^{e} (djac) and the x and y coordinates all at the point ξ_{p}, η_{q}
(4) Call strain matrix (bmatps) routine, given $N_{i}^{e}, \frac{\partial N_{i}^{e}}{\partial x}, \frac{\partial N_{i}^{e}}{\partial y}$, at ξ_{p}, η_{q} will return the strain matrix B_{i}^{e} (bmat)
(5) Call a routine (dbmat) to evaluate $\mathrm{D}^{e} \mathrm{~B}_{i}^{e}$ (dbmat)
(6) Evaluate $\mathrm{B}_{i}^{e T} \mathrm{D}^{e} \mathrm{~B}_{j}^{e} \operatorname{detJ}^{e} \times$ integration weights and assemble them into the element stiffness matrix $\mathrm{K}_{i j}^{e}$
(7) Assemble $\mathrm{D}^{e} \mathrm{~B}^{e}$ (smat into a stress array for later evaluation of stresses from the nodal displacements.
(5) Write Stiffness matrix

Suggested list of variables:

```
    idime, ndime
    idofn,ndofn
    ielem,nelem
    igaus,jgaus,ngaus
    inode, nnode
    kgasp,ngasp
    type
    poiss
    young
    elcod(ndime,nnode)
idime, ndime
idofn, ndofn
ielem,nelem
igaus,jgaus,ngaus
inode, nnode
kgasp,ngasp
type
poiss
young
elcod(ndime,nnode)
```

s
t
gpcod(ndime,ngasp)
posgp(mgaus)
weigp(mgaus)
weigp (mgaus)

Index, Number of dimensions (2 for 2D) Index, Number of degree of freedom per node Index, number of elements Index, Index, Number of Gauss rule adopted Index, number of nodes per element Kounter, number of Gauss points used 1 for plane stress; 2 for plane strain Poisson's ratio Young's modulus
Local array of nodal cartesian coordinates of the element ation $\left[\begin{array}{lll}x\left(\xi_{1}, \eta_{1}\right) & \cdots & x\left(\xi_{8}, \eta_{8}\right) \\ y\left(\xi_{1}, \eta_{1}\right) & \cdots & y\left(\xi_{8}, \eta_{8}\right)\end{array}\right]$
ξ coordinate of sampling point η coordinate of sampling point Local array of cartesian coordinates of the Gauss points fo consideration $\left[\begin{array}{llll}x\left(\xi_{G_{1}}, \eta_{G_{1}}\right. & \cdots & x\left(\xi_{G_{5}}, \eta_{G_{5}}\right) & \cdots \\ y\left(\xi_{G_{1}}, \eta_{G_{1}}\right. & \cdots & y\left(\xi_{G_{5}}, \eta_{G_{5}}\right) & \cdots\end{array}\right]$ ξ coordinates of Gauss point Weight factor for Gauss point
shape (nnode)
deriv(ndime,nnode)
no

Shape function derivative at sampling point $\left(\xi_{p}, \eta\right.$

$$
\left[\begin{array}{ccc}
\frac{\partial N_{1}}{\partial \varepsilon_{1}}\left(\xi_{p}, \eta_{p}\right) & \cdots & \frac{\partial N_{8}}{\partial \xi_{y}}\left(\xi_{p}, \eta_{p}\right) \\
\frac{\partial N_{1}}{\partial \eta}\left(\xi_{p}, \eta_{p}\right) & \cdots & \frac{\partial N_{8}}{\partial \eta}\left(\xi_{p}, \eta_{p}\right)
\end{array}\right]
$$

cartd(ndime, nnode)

djacb
jacm(ndime,ndime)
jaci(ndime,ndime) bmat(nstre,nevab)
dbmat(istre,ievab) stores DB
Shape function associated with each node of curr

$$
\left[\begin{array}{c}
N_{1}\left(\xi_{p}, \eta_{p}\right) \\
\vdots N_{8}\left(\xi_{p}, \eta_{p}\right)
\end{array}\right]
$$

Cartesian shape function derivatives associated the current element sampled at any point $\left(\xi_{p}, \eta\right.$ $\left[\begin{array}{lll}\frac{\partial N_{1}}{\partial X_{1}}\left(\xi_{p}, \eta_{p}\right) & \ldots & \frac{\partial N_{8}}{\partial X_{y}}\left(\xi_{p}, \eta_{p}\right) \\ \frac{\partial N_{1}}{\partial y}\left(\xi_{p}, \eta_{p}\right) & \cdots & \frac{\partial N_{8}}{\partial y}\left(\xi_{p}, \eta_{p}\right)\end{array}\right]$
Determinant of the Jacobian matrix sampled at any point (Jacobian matrix at sampling point Inverse of Jacobian matrix at sampling point
Element strain matrix at any point within the element B where $\mathrm{B}_{i}=\left[\begin{array}{cc}\frac{\partial N_{i}}{\partial x} & 0 \\ 0 & \frac{\partial N_{i}}{\partial y_{i}} \\ \frac{\partial N_{i}}{\partial y} & \frac{\partial N_{i}}{\partial x}\end{array}\right]$

```
function KELEM = stiff(ngaus, posgp,weigp,type, nelem,Inods, coord, nnode)
%
% The purpose of this function is calculate element stiffness matricies for
% bilinear and biquadratic isoparemtric elements using Gaussian integration.
% Functions called by this function are: dmat, sfr,jacob,bmatps
%%----------------------------------------------
%---------------------------------
% nnode
% posgp
% weigp
% ngaus
% type
% Inods
% coord
%
% stifsize
% nrowcount
% elmt
% young
% poiss
% D
% elcod
% row
% kelem
% KELEM
% s
% t
% shape
% deriv
% cartd
Global variable NNODES
Global variable POSGP
Global variable WEIGP
Global variable NGAUS
Global variable TYPE
Global variable LNODS
Global variable COORD
Number of columns in the element stiffness matrix
Position indicator for element stiffness matrix
Current element for formation of stiffness matrix
Modulus of elasticity for current element
Poisson's ration for current element
Constitutive matix
Matrix of element coordinates
Counter
Element stiffness matrix
Element stiffness matricies for all elements returned by function
Current integration position
Current integration position
Shape function at current point
Derivative of shape function at current point
Cartesian shape function derivatives
```

```
% jacm Jacobian matrix
% jaci Jacobian matrix inverse
% djac Determinant of Jacobian matrix
% xy x and y coordinates at the current point in the element
% bmat Strain matrix [B]
% dbmat Strain matrix * constitutive matrix [B]*[D]
%-
fprintf('Calculating ELEMENT STIFFNESS matricies\n')
stifsize = 2*nnode;
nrowcount = stifsize -1;
for ielem = 1:nelem
    %--------------------------------------------
    % Extract material constants from Inods
    %
    elmt = Inods(ielem,1);
    young = Inods(ielem,2);
    poiss = Inods(ielem,3);
    %---------------------------------------------
    % Extract element coordinates
    %
    % elcod = [llllllll
    % [ Y1 Y2 Y3 . . . Yn]
    elcod = zeros(2,nnode);
    for inode = 1: nnode
        row = find (coord (:,1:1)==Inods(ielem,inode +3));
        elcod(:,inode:inode) = coord(row:row,2:3)';
    end
    %-
    % Constitutive matrix
    %------------------------------------------------
```

```
65
    D = dmat(young, poiss,type);
    %------------------------------------------
    % Element stiffness matrix - element ielem
    %----------------------------------------------
    kelem = zeros(stifsize);
    for igaus = 1:ngaus
        for jgaus = 1:ngaus
            s = posgp(igaus);
            t = posgp(jgaus);
            W = weigp(igaus) * weigp(jgaus);
            [shape, deriv] = sfr(s,t,nnode);
            [cartd,jacm,jaci,djac,xy] = jacob(shape,deriv,elcod);
            [bmat,dbmat] = bmatps(shape,cartd,D);
            kelem = kelem + bmat'*dbmat*djac;
        end
    end
```



```
    % Store element stiffness matricies in as a stack in a single matrix :
    % kelem(1)
    % KELEM =
    % kelem(nelem)
    %---------------------------------------------------------------------------
    startrow = stifsize*ielem - nrowcount;
    endrow = ielem*stifsize;
    KELEM(startrow :endrow,:) = kelem;
end
t = toc;
fprintf(1,'Elapsed time for this operation =%3.4fsec\n\n',t)
```

```
lunction D = dmat(young, poiss, type)
```

```
function [shape, deriv] = sfr(s,t,nnode)
%
% This function calculates the shape function and derivative for the current node
%\mp@code{%-----------------------------------------------------}
%
% shape Shape function returned by function
% deriv Derivative of shape function returned by function
% nnode Number of nodes per element
%s Natural coordinate (xi) of sampling point - horizontal
% Natural coordinate (eta) of sampling point - vertical
tic
%fprintf('Calculating shape functions and derivatives \n')
%
% Q9 Element
%----------------------
    nnode == 9
    N9 = (1-s^2)*(1-t^2);
    N8 = .5*(1-s) *(1-t^^2) -.5*N9;
    N7 = .5*(1-s^2) *(1+t) -.5*N9;
    N6 = . 5* (1+s) *(1-t^2) -.5*N9;
    N5 = .5*(1-s^2)*(1-t) -.5*N9;
    N4 = . 25*(1-s)*(1+t) -.5*N7 - .5*N8 - . 25*N9;
    N3 = . 25* (1+s)*(1+t) -.5*N6 - .5*N7 - .25*N9;
    N2 = . 25* (1+s)*(1-t) -.5*N5 - .5*N6 - . 25*N9;
    N1 = .25*(1-s)*(1-t) -.5*N5 - . 5*N8 - .25*N9;
    shape = [N1 N2 N3 N4 N5 N6 N7 N8 N9] ';
    dN9ds = -2*s*(1-t^2);
    dN9dt = -2*t*(1-s^2);
    dN8ds = -.5*(1-t^2) -.5*dN9ds;
    dN8dt = -t*(1-s) -.5*dN9dt;
```

```
dN7ds = -s*(1+t) -.5*dN9ds;
dN7dt = .5*(1-s^2) -.5*dN9dt;
dN6ds = .5*(1-t^2) -.5*dN9ds;
dN6dt = -t*(1+s) -.5*dN9dt;
dN5ds = -s*(1-t) -.5*dN9ds;
dN5dt = -.5*(1-\mp@subsup{s}{}{\wedge}2) -.5*dN9dt;
dN4ds = -.25*(1+t) -.5*dN7ds - .5*dN8ds - .25*dN9ds;
dN4dt = .25*(1-s) -.5*dN7dt - .5*dN8dt - .25*dN9dt;
dN3ds = .25*(1+t) -.5*dN6ds - .5*dN7ds - .25*dN9ds;
dN3dt = .25*(1+s) -.5*dN6dt - .5*dN7dt - .25*dN9dt;
dN2ds = .25*(1-t) -.5*dN5ds - .5*dN6ds - .25*dN9ds;
dN2dt = -.25*(1+s) -.5*dN5dt - .5*dN6dt - .25*dN9dt;
dN1ds = -.25*(1-t) -.5*dN5ds - .5*dN8ds - .25*dN9ds;
dN1dt = -.25*(1-s) -.5*dN5dt - .5*dN8dt - .25*dN9dt;
deriv = [dN1ds dN2ds dN3ds dN4ds dN5ds dN6ds dN7ds dN8ds dN9ds;
                dN1dt dN2dt dN3dt dN4dt dN5dt dN6dt dN7dt dN8dt dN9dt];
%
% Q8 Element
%---------------------
elseif nnode == 8
    N8 = .5*(1-s)*(1-t ^}2)
    N7 = .5*(1-s^2)*(1+t);
    N6 = . 5* (1+s) *(1-t^2);
    N5 = .5*(1-s^2)*(1-t);
    N4 = . 25*(1-s)*(1+t) -.5*N7 - . 5*N8;
    N3 = . 25*(1+s)*(1+t) -. 5*N6 - . 5*N7;
    N2 = . 25* (1+s)*(1-t) -.5*N5 - . 5*N6;
    N1 = .25*(1-s)*(1-t) -.5*N5 - . 5*N8;
    shape = [N1 N2 N3 N4 N5 N6 N7 N8]';
    dN8ds = -.5*(1-t^^2);
    dN8dt = -t*(1-s);
    dN7ds = -s*(1+t);
```

```
65
66
```

dN7dt = .5*(1-s^2);

```
dN7dt = .5*(1-s^2);
dN6ds = .5*(1-t^2);
dN6ds = .5*(1-t^2);
dN6dt = -t*(1+s);
dN6dt = -t*(1+s);
dN5ds = -s*(1-t);
dN5ds = -s*(1-t);
dN5dt = -.5*(1-s^2);
dN5dt = -.5*(1-s^2);
dN4ds = -.25*(1+t) -.5*dN7ds - .5*dN8ds;
dN4ds = -.25*(1+t) -.5*dN7ds - .5*dN8ds;
dN4dt = .25*(1-s) -.5*dN7dt - .5*dN8dt;
dN4dt = .25*(1-s) -.5*dN7dt - .5*dN8dt;
dN3ds = .25*(1+t) -.5*dN6ds - .5*dN7ds;
dN3ds = .25*(1+t) -.5*dN6ds - .5*dN7ds;
dN3dt = .25*(1+s) -.5*dN6dt - .5*dN7dt;
dN3dt = .25*(1+s) -.5*dN6dt - .5*dN7dt;
dN2ds = .25*(1-t) -.5*dN5ds - .5*dN6ds;
dN2ds = .25*(1-t) -.5*dN5ds - .5*dN6ds;
dN2dt = -.25*(1+s) -.5*dN5dt - .5*dN6dt;
dN2dt = -.25*(1+s) -.5*dN5dt - .5*dN6dt;
dN1ds = -.25*(1-t) -.5*dN5ds - .5*dN8ds;
dN1ds = -.25*(1-t) -.5*dN5ds - .5*dN8ds;
dN1dt = -.25*(1-s) -.5*dN5dt - .5*dN8dt;
dN1dt = -.25*(1-s) -.5*dN5dt - .5*dN8dt;
deriv = [dN1ds dN2ds dN3ds dN4ds dN5ds dN6ds dN7ds dN8ds;
                dN1dt dN2dt dN3dt dN4dt dN5dt dN6dt dN7dt dN8dt];
```

```
% Q4 Element
```

% Q4 Element
else
N4 = .25*(1-s)*(1+t);
N3 = . 25*(1+s)*(1+t);
N2 = .25*(1+s)*(1-t);
N1 = .25*(1-s)*(1-t);
shape = [N1 N2 N3 N4]';
dN4ds = -. 25*(1+t);
dN4dt = .25*(1-s);
dN3ds = .25*(1+t);
dN3dt = .25*(1+s);
dN2ds = .25*(1-t);
dN2dt = -.25*(1+s);
dN1ds = -. 25*(1-t);
dN1dt = -.25*(1-s);

```
```

97 deriv = [dN1ds dN2ds dN3ds dN4ds;
98
9 9
t
%f
%fprintf(1,'Elapsed time for this operation =%3.4fsec \n\n',t)

```
```

lunction [cartd,jacm,jaci, djac, xy] = jacob(shape, deriv, elcod)

```
```

33 cartd = jaci*deriv;
xy = elcod*shape;
35
36
t = toc;
%fprintf(1,'Elapsed time for this operation =%3.4fsec \n\n',t)

```
```

function [bmat,dbmat] = bmatps(shape,cartd,D)
%
% This function calculates the strain matrix B
%%--
%
% shape Shape function at current point
% cartd Cartesian shape function derivatives
% bmat Strain matrix returned by function
% dbmat Strain matrix * constitutive matrix D
%-
%fprintf('Calculating strain matrix [B]\n')
numcols = 2*length(cartd);
bmat = zeros(3,numcols);
cartdcol = 0;
for ibmatcol = 1:2: numcols
cartdcol = cartdcol +1;
bmat (:,ibmatcol:ibmatcol +1) = [cartd(1,cartdcol) cartd(2,cartdcol);
cartd(2,cartdcol) cartd(1,cartdcol)];
end
dbmat = D*bmat;
t = toc;
%fprintf(1,'Elapsed time for this operation =%3.4fsec\n\n',t)

```
```

X= -1:1/20:1;
Y=X;
YT=Y';
XT=X';
N9=(1-YT. * YT) *(1 -X * *) ;
N8=0.5*(1 -YT . * YT) *(1 -X) ;
N7=0.5*(1 -XT . * XT) *(1+Y);
N6=0.5*(1 -YT . *YT) * (1+X) ;
N5=0.5*(1-XT * XT) *(1-Y);
N4=0.25*(1-XT) *(1+Y) -0.5*(N7+N8);
N3=0.25*(1+XT) *(1+Y) -0.5*(N6+N7);
N2=0.25*(1+XT) *(1-Y) -0.5*(N5+N6);
N1=0.25*(1-XT) *(1-Y) -0.5*(N8+N5);
meshc(X,Y,N1)
print -deps2 shap8-1.eps
C=contour (X,Y,N1);
clabel(c)
print -deps2 shap8-1-c.eps
meshc(X,Y,N8)
print -deps2 shap8-8.eps
C=contour (X,Y,N8);
clabel(c)
print -deps2 shap8-8-c.eps
N1=N1-0.25*N9;
meshc(X,Y,N1)
print -deps2 shap9-1.eps
C=contour (X,Y,N1);
clabel(c)
print -deps2 shap9-1-c.eps
N8=N8-0.5*N9;
meshc(X,Y,N8)
print -deps2 shap9-8.eps

```
```

33 c=contour (X,Y,N8) ;
34 clabel(c)
35
36
37
38
39

```
print -deps2 shap9-9-c.eps
```

```
print -deps2 shap9-9-c.eps
```


Intermediary Structural Analysis Introduction to Nonlinear Analysis

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2019

Table of Contents I

(1) Introduction

- Loads and Response
- Sources of Nonlinearities
(2) Levels of Structural Analysis
(3) Finite Element Analysis Process

4. Analysis Support
(5) Numerical Methods

6 Introduction; Newton Methods

- Newton Method
- Matlab Listing
- Algorithm
- Examples
(7) Relationship to Structural Mechanics
- Introduction
- Newton-Raphson iterative method
- Initial stiffness iterative method

Table of Contents II

- Modified Newton-Raphson
- Secant Newton Method
- Arc-Length Method
- Convergence criteria
(8) Design Codes: US
- LRFD
- Key Concepts
- Reliability Index
- Limitations of LRFD
- PBEE
- PBE 1
- PBE 2
(9) Capacity and Demand
(10) Capacity Design
(11) Seismic Hazard Analysis
(12) Engineering Seismic Risk Analysis

Table of Contents III

(13) $\mathrm{PSHA}=\mathrm{SHA}+E S R A$

(14) Pushover Analysis
(15) Multiple-Strip Analysis
(16) Incremental Dynamic Analysis
$(17$ Endurance Time Analysis

18 Summary

Deflection

- Constitutive model (non-linear stress strain curve of steel, concrete), $\mathrm{k}=\int_{\Omega} \mathrm{B}^{T} \mathrm{DB} d \Omega$
- large strains:

$$
\begin{aligned}
& \varepsilon_{x x}=\underbrace{u_{, x}}_{\text {First Order }}+\underbrace{\frac{1}{2}\left(u_{, x}^{2}+v_{, x}^{2}+w_{, x}^{2}\right)}_{\text {Second Order }} \\
& \mathbf{k}=\int_{\Omega} \mathbf{B}^{T} \mathbf{D B d} \Omega
\end{aligned}
$$

Displacement

		Constitutive Equations			
		Undeformed Shape		Deformed Shape	
		Elastic (Linear)	Inelastic (Non Linear)	Elastic (Linear)	Inelastic (Non Linear)
Kinematic Eq.	$1^{\text {st }}$ Order	(C:L-K:L)	2 (C:NL-K:L)	Critical Load	
	(Linear)	(C:L-K:L)		3 Elastic	4 Inelastic
	$2^{\text {nd }}$ Order (Non Linear)	5 (C:L-K:NL)	6 (C:NL-K:NL)	-	-

First Order Elastic excludes any nonlinearities. If the equilibrium equation is written in terms of
1 (C:L-K:L); Undeformed Shape This is the most common case, linear elastic. It is usually acceptable for service loads. For time dependent cases, we must consider visco-elastic models.
3 Bifurcation; Deformed shape (or 'zero order") an eigenvalue analysis which would lead to the Elastic Critical Load. Note that we do not have a corresponding load-displacement curve, but rather "buckling modes".
First Order Inelastic Accounts for material non-linearity. In such an analysis, the inelastic region (plastic zone) develops gradually, and it will provide a good estimate of the elasto-plastic response (note that instability is not addressed). We consider

- Non-linear Elasticity: reversible non-linear stress-strain (upon unloading, the strain goes back to zero).
- Plasticity, non reversible non-linear stress-strain.
- Damage

If the equilibrium equation is written in terms of
2 (C:NL-K:L); Undeformed Shape Second most common form of analysis, typically conducted for ultimate/unusual loads.
4 Bifurcation; Deformed shape an eigenvalue analysis which would lead to the Inelastic Critical Load. Note that we do not have a corresponding load-displacement curve, but rather "buckling modes". This inelastic critical load will be smaller than the elastic one.
For time dependent cases, we consider visco-plasticity, or fatigue, or continuous damage models.
5 (C:L-K:NL); Second-order elastic accounts for the effects of finite deformation and displacements, equilibrium equations are written in terms of the geometry of the deformed shape (Eulerian), does not account for material non-linearities, may be able to detect bifurcation and or increased stiffness (when a member is subjected to a tensile axial load). Best for the analysis of cables, nets, catenary structures.

6 (C:NL-K:NL); Second-order inelastic equations of equilibrium written in terms of the geometry of the deformed shape, can account for both geometric and material nonlinearities. Most suitable to determine failure or ultimate loads. By far the most complex form of analysis, used in Metal Forming simulation, fragmentation of structures (missile impact).

- EC8 and PBE require the completion of
- Nonlinear Static Procedure or Nonlinear Pushover (NPO)
- Nonlinear Dynamic Procedure or Nonlinear Time History (NTH)

Two classes of solutions

- Event to Event: No iterations, small increments, easy to implement, no check for convergence. Explicit method

$$
\begin{aligned}
\{\Delta \overline{\mathbf{u}}\}_{i} & =\mathbf{K}_{i}^{-1}\{\Delta \overline{\mathbf{P}}\}_{i} \\
u_{i} & =u_{i-1}+\Delta u_{i}
\end{aligned}
$$

- Newton's Method; Numerical aspects will first be introduced from a conceptual point of view first, connection to structural analysis will be made at the end. Implicit method

- Linear problems: unique solution; Nonlinear problems: can not ensure the existence of a solution, nor ensure the uniqueness of one.
- At best we can say that an approximate numerical solution of the problem is given, or that an approximation does not exist (typically this implies local or global failure).
- Most widely used class of numerical solution: "Newton Methods", or "Quasi Newton". Other methods may include the bisection method (only linearly convergent).
- Essence of the method which seeks to solve $f(x)=0$, is to linearize the equation about the current approximation x_{n} and solve for the resulting linear equation for the next approximation x_{n+1}
- If we set $f(x)=0 \Rightarrow x \simeq \bar{x}-\frac{f(\bar{x})}{f^{\prime}(\bar{x})}$
- This is an approximate solution, at \bar{x}, which presumes that we also have $f^{\prime}(x)$.
- In an iterative procedure, this equation can be rewritten as

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =f^{\prime}\left(x_{n}\right) \\
\Rightarrow \mathrm{d} x & =\frac{\mathrm{d} y}{f^{\prime}\left(x_{n}\right)}=\frac{\overbrace{f\left(x_{n+1}\right)}^{0}-f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
x_{n+1} & \simeq x_{n} \underbrace{\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}}_{\delta x_{n}}
\end{aligned}
$$

- Convergence will be ensured when $\left|\delta x_{n}\right| \leq \varepsilon_{\delta}$ or $\left|f\left(X_{n+1}\right)\right| \leq \varepsilon_{f}$

Solve $f(x)=\operatorname{Tan}(x)-x=0$

```
clear
xn = 4.3;
n = 0;
epsi=1e 4;
maxiter = 20;
disp(" ")
disp(" n xn norm")
xn_m1=0.;
for i = 1:maxiter
    f_x=tan(xn) xn;df_dx=\operatorname{sec}(xn)^2 1;
    xn = xn f_x/df_dx;
    my_norm = abs(xn xn_m1);
    disp(sprintf( "%5i %16.15e %16.15e",i, xn,my_norm))
    if my_norm <epsi
        break
    end
    xn_m1=xn;
end
```

Note that this is a particularly sensitive problem, because $\tan x$ is discontinuous, a small change in the initial guess may yield to divergence of the solution.

- Given an initial \mathbf{x}, a required tolerance $\varepsilon>0$ Repeat
(1) Evaluate $g=f(\mathbf{x})$ and $H=J(\mathbf{x})$
(2) If $\|g\| \leq \varepsilon$, return x
(3) $\mathbf{v}=\mathbf{x}_{n}-\mathbf{x}_{n-1}=\frac{f(\mathbf{x})}{J(\mathbf{x})}$
(4) Solve $H v=-g$
(5) $\mathrm{x}:=\mathrm{x}+\mathrm{v}$
until maximum number of iterations is exceeded
- Each iteration requires the evaluation of (\mathbf{x}) (n scalar functions evaluation in terms of \mathbf{x}) and $J(\mathbf{x})$ (n^{2} derivatives).

$$
\text { Solve } f(\mathrm{x})=\left\{\begin{array}{c}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-9 \\
x_{3}-x_{2} \sin \left(x_{1}\right) \\
3 x_{2}+4 x_{3}
\end{array}\right\} \Rightarrow J(\mathrm{x})=\left[\begin{array}{ccc}
2 x_{1} & 2 x_{2} & 2 x_{3} \\
-x_{2} \cos \left(x_{1}\right) & -\sin \left(x_{1}\right) & 1 \\
0 & 3 & 4
\end{array}\right]
$$

```
f = @(x) [x(1)^2 + x(2)^2 + x(3)^2 9
    x(3) x(2)*sin(x(1))
    3*x(2)+4*x(3)];
```

\% The Jacobian matrix:
$J=@(x)[2 * x(1) \quad 2 * x(2) \quad 2 * x(3)$
$x(2) * \cos (x(1)) \quad \sin (x(1)) \quad 1$
\% initial guess:
$\mathrm{x}=[1 ; 2 ; 1]$;
maxiter $=10$;
tol $=1 \mathrm{e} 12$;
disp(" ")
disp("iteration $x(1) \quad x(2) \quad x(3) \quad$ norm(delta)")
for $\mathrm{n}=1$: maxiter
delta $=J(x) \backslash f(x) ;$
$x=x+d e l t a ;$
disp(sprintf("\%5i \%10.5e \%10.5e \%10.5e \%8.3e", ...
$\mathrm{n}, \mathrm{x}(1), \mathrm{x}(2), \mathrm{x}(3)$, norm(delta, inf)));
if norm(delta, inf) < tol
break
end
end
if $n==$ maxiter
disp("*** Warning: may not have converged tolerance not satisfied")
end
end

- Objective go from n to $n+1$.
- Jacobian corresponds to the tangent stiffness matrix of the structure which in turn depends on the tangent of the constitutive matrix (\mathbf{D}_{T}).
- So far: $\mathrm{f}(x)=0$, in structural analysis $\mathbf{P}_{t, n}^{R}=\mathbf{P}_{t, n}^{\text {ext }}-\mathbf{P}_{t, n}^{\text {int }}=0$, superscript R refers to the residual, and both $\mathbf{P}_{t, n}^{e x t}$ and $\mathbf{P}_{t, n}^{\text {int }}$ are determined from the principle of virtual displacement. Internal nodal force vector $\mathbf{P}_{t, n}^{\text {int }}$ is a function of nodal displacements $\mathbf{u}_{t, n}$, thus we have a nonlinear problem. (Recall $\mathbf{P}^{\text {int }}=\int \mathbf{B}^{T} \sigma d \Omega$ or $\mathbf{K} \boldsymbol{\Delta}$)
- Within each iteration we determine the residual nodal force vector, and this would yield an incremental nodal displacement vector. The iterations continue until the residual nodal force vector or the incremental nodal displacement vector, is sufficiently small.
- Newton's methods hinge on our ability to linearize (through a truncated Taylor series) the problem as follows $\mathbf{P}_{t, n}^{R, k}=\mathbf{P}_{t, n}^{e x t}-\mathbf{P}_{t, n}^{i n t, k} ; \delta \mathbf{u}_{t, n}^{k}=\left[\mathbf{K}_{t t, n}^{k-1}\right]^{-1} \cdot \mathbf{P}_{t, n}^{R, k}$; and
$\mathbf{u}_{t, n}^{k}=\mathbf{u}_{t, n}^{k-1}+\delta \mathbf{u}_{t, n}^{k}$ where, $\mathbf{u}_{t, n}^{k=0}=\mathbf{u}_{t, n-1}$ and $\mathbf{P}_{t, n}^{i n t, k=0}=\mathbf{P}_{t, n-1}^{i n t}$ and subscript n refers to the load increment, and subscript k to the iteration number within a load increment.
- Assume equilibrium to have been reached at increment n, we then apply an increment of external force $\Delta \mathbf{P}^{\text {ext }}$, and we seek to determine the corresponding incremental displacement $\Delta \mathbf{u}_{n+1}$.
- The internal forces and corresponding displacements will then be in (near) equilibrium.
- We distinguish between load increment, and iterations within an increment to reach equilibrium.
- At each iteration, we determine the residual $\mathbf{R}_{i}^{(n+1)}$ which corresponds to $\mathrm{P}_{\text {ext }}-\mathrm{P}_{\text {int }}$, and seek to minimize this residual. At each iteration, we update (in the Newton method) the tangent stiffness matrix which corresponds to the jacobian.
- At the heart of all of them, is the determination of the internal nodal force vector $\mathbf{P}_{t, n}^{\text {int,k}}$, and the tangent stiffness matrix $\mathbf{K}_{t t, n}^{k-1}$.

- Need to solve $\mathbf{f}\left(\mathbf{u}^{*}\right)=\mathbf{P}_{t, n}^{e x t}\left(\mathbf{u}^{*}\right)-\mathbf{P}_{t, n}^{i n t}\left(\mathbf{u}^{*}\right)=0$ and $\mathbf{f}(\cdot)$ is the function of internal state value (\cdot). In the preceding equation it is often, but not exclusively, the vector of nodal displacement \mathbf{u}.
- Assuming that $\mathbf{u}_{t, n}^{k-1}$ is known, then a Taylor series expansion gives $\mathbf{f}\left(\mathbf{u}^{*}\right)=f\left(\mathbf{u}_{t, n}^{k-1}\right)+$ $\left.\frac{\partial \mathbf{f}}{\partial \mathbf{u}}\right|_{\mathbf{u}_{t, n}^{k-1}} \cdot\left(\mathbf{u}^{*}-\mathbf{u}_{t, n}^{k-1}\right)+$ High-order terms Substituting we obtain
$\left.\frac{\partial \mathbf{P}_{t}^{\text {int }}}{\partial \mathbf{u}}\right|_{\mathbf{u}_{t, n}^{k-1}} \cdot\left(\mathbf{u}^{*}-\mathbf{u}_{t, n}^{k-1}\right)+$ High-order terms $=$ $\mathbf{P}_{t, n}^{e x t}-\mathbf{P}_{t, n}^{\text {int }, k-1}=\mathbf{P}_{t, n}^{R, k}$ where we assume that the external nodal forces are displacement-independent.
- Since an incremental analysis is driven by external force steps (or time steps Δt), the initial conditions are given by $\mathbf{K}_{t t, n}^{k=0}=\mathbf{K}_{t t, n-1}, \mathbf{u}_{t, n}^{k=0}=\mathbf{u}_{t, n-1}$, $\mathbf{P}_{t, n}^{\text {int }, k=0}=\mathbf{P}_{t, n-1}^{i n t}$. Again, the iterations continue until an appropriate convergence criteria is satisfied.
- A characteristic of this iterative method is that an updated tangent stiffness matrix must be determined at each iteration, as such this method is often referred to as the full Newton-Raphson iterative method.

- In the Newton-Raphson iterative method most of the computational effort is associated with the factorization of the tangent stiffness matrix. For large systems, it is often more convenient to modify the approach by reducing the number of such factorizations albeit at the cost of increased number of iterations to reach proper convergence.
- Initial stiffness algorithm

$$
\delta \mathbf{u}_{t, n}^{k}=\left[\mathbf{K}_{t t}\right]^{-1} \cdot \mathbf{P}_{t, n}^{R, k}
$$

with the initial conditions defined by

$$
\begin{aligned}
\mathbf{u}_{t, n}^{k=0} & =\mathbf{u}_{t, n-1} \\
\mathbf{P}_{t, n}^{i n t, k=0} & =\mathbf{P}_{t, n-1}^{i n t}
\end{aligned}
$$

In this method, only the initial $\mathbf{K}_{t t=0}^{k=0}$ needs to be factorized, thus avoiding the expense of recalculating and factorizing many times the tangent stiffness matrix. This initial stiffness iterative method corresponds to a linearization of the response about the initial configuration of the finite element system and will converge very slowly and may even diverge.

- Modified Newton-Raphson iterative method is an approach somewhat in between Newton-Raphson iterative method and the initial stiffness iterative method.

$$
\delta \mathbf{u}_{t, n}^{k}=\left[\mathbf{K}_{t t, n-1}\right]^{-1} \cdot \mathbf{P}_{t, n}^{R, k}
$$

with the initial conditions

$$
\begin{aligned}
\mathbf{u}_{t, n}^{k=0} & =\mathbf{u}_{t, n-1} \\
\mathbf{P}_{t, n}^{i n t, k=0} & =\mathbf{P}_{t, n-1}^{i n t}
\end{aligned}
$$

- The modified Newton-Raphson iterative method involves fewer stiffness decompositions than the Newton-Raphson iterative method. The choice of external force steps or time steps when the stiffness matrix should be updated depends on the degree of nonlinearity in the system response; i.e. the more nonlinear the response, the more often the updating should be performed.

we do not explicitly invert the Jacobian (or need to invert \mathbf{K}_{T}), but rather compute \mathbf{K}_{T} through finite difference.

- Displacement control should be used when softening is present; arc length should be used if snap-back is anticipated.
- Arch-length method hinges on our ability to define an arc length in terms of both displacement and force, and then seek a multiplier.
- An appropriate termination criteria of the iteration should be adopted for any incremental solution strategy based on iterative methods. At the end of each iteration, the solution obtained should be checked to see whether it has converged within defined tolerances or whether the iteration may be diverging.
- If the convergence tolerances are too loose, inaccurate results are obtained, and if the tolerances are too tight, much computational effort is spent to obtain needless accuracy.

Some commonly used convergence criteria include:
Displacement criteria $\left\|\delta \mathbf{u}_{n}^{k}\right\|<\epsilon_{D}$ where ϵ_{D} is a displacement convergence tolerance and $\|\cdot\|$ is the Euclidian norm defined as the square root of the sum of the vector components squared.
Force criteria $\mathbf{P}_{t, h}^{R, k}$ and $\left\|\mathbf{P}_{t, h}^{R, k}\right\|<\epsilon_{F}$ where ϵ_{F} is a force convergence tolerance.
Energy criteria A difficulty with the force criterion is that the displacement solution does not introduce the termination criterion. As an illustration, consider an elasto-plastic truss with a very small strain-hardening modulus entering the plastic region. In this case, the residual force vector may be very small while the displacements may still be much in error. Hence, the convergence criteria may have to be used with very small values of ϵ_{D} and ϵ_{F}. Also, the expressions must be modified appropriately when quantities of different units are measured. In order to provide some indication of when both the displacements and the forces are near their equilibrium values, the energy criteria can be used
$\left|\frac{1}{2} \cdot \mathbf{P}_{t, n}^{R, k} \cdot \delta \mathbf{u}_{n}^{k}\right|<\epsilon_{E}$

Congress allocated funding to the National Earthquake Hazard Reduction Program (NEHRP) which is administered by NIST, NEHRP in turns funds FEMA, NSF, USGS NIST for earthquake related research. Transformation of research into code practice is performed by the Applied Technology Council (ATC).
Allowable Stress Design Oldest, simplest approach to introduce concept of safety.
Load Resistance Factor Design introduced in ACI code in 1977, AISC in 1986. Key reference Ellingwood.
Performance Based Engineering 1 Most recent code, FEMA 750-p developed by the Building Seismic Safety Council for FEMA. It builds on previous pre-Standards.

New Design	FEMA 310 (ASCE 1998)	ASCE/SEI 31 (2003)
Existing Buildings	FEMA 356 (ASCE 2000)	ASCE/SEI 41 (2006)

Performance based Engineering 2 Based on ATC 58, FEMA published Next Generation Performance Based Seismic Design Guidelines;program Plan for New and Existing Buildings, itself based on FEMA 283 and FEMA 349.

Development of a Probability Based Load Criterion for American National Standard A58
Buiding Code Requirements fo Misimum Desien Laads
Buibing Coose Requirtenents for M

max Blineweod

Comblationt
Panemicmevins
mersa vecritace

.Alincerat

ssured June 1500

NEHRP Recommended Seismic Provisions
for New Buildings and Other Structures
FEMA P.750 / 2009 Edition
9. FEMA

Next-Generation Performance-Based Seismic Design Guidelines
Program Plan for New and Existing Buildings FEMA-445/Augus 2006 5 FEMA
nehrp

- Load and resistance are not deterministic quantities (as in the allowable stress design, ASD), but are random variables with their own probability distribution functions.
- There is a probability of failure.
- Load will be multiplied by a factor α, (ASCE-7-10) and we shall consider the ultimate resistance (reduced by Φ)
- We will assign α and Φ such that the probability of failure does not exceed a certain value.
- LRFD is generally expressed as

$$
\begin{equation*}
\Phi C_{n} \geq \Sigma \alpha_{i} D_{i} \tag{1}
\end{equation*}
$$

where C_{n} and D are the nominal capacity and demands (or nominal resistance and load).

- Limit state is generally determined from Plastic capacity without a nonlinear analysis.
- LRFD seeks to have a Reliability Index above ~ 3.5. The Reliability Index is a "universal" indicator on the adequacy of a structure, and can be used as a metric to 1) assess the health of a structure, and 2) compare different structures targeted for possible remediation.

- Capacity C and demand D are both random variables.

- We define the reliability index as the distance between mean performance value and the limit state normalized with respect to the standard deviation
- $X=\ln \frac{C}{D}$ Failure would occur for negative values of X
- Reliability Index $\beta=\frac{\ln \frac{\mu_{C}}{\mu_{D}}}{\sqrt{\sigma_{C}^{2}+\sigma_{D}^{2}}}$
- β is selected to reflect failure consequences

Type of Load/Member	β
AISC	
DL + LL; Members	3.0
DL + LL; Connections	4.5
DL + LL + WL; Members	3.5
DL + LL +EL; Members	1.75
ACI	
Ductile Failure	$3-3.5$
Sudden Failures	$3.5-4$

The probability of failure P_{f} is equal to the ratio of the shaded area to the total area under the curve and is given by $\Phi(-\beta)$ where Φ is the standard normal cumulative probability function

$$
\begin{equation*}
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right] \tag{2}
\end{equation*}
$$

Target values for β

(1) Inconsistent: Linear analysis, but plastic design.
(2) Ignores load redistribution near failure (though ACI implicitly accounts for some of it through reduction of negative moments).
(3) Addresses only one level of hazard: failure of one structural component (and not the entire system), but how about quantification of damage due to more frequent events?

- PBE seeks first to identify discrete performance levels for the major structural components which significantly affect the building function and safety.
- ASCE 41 (ASCE 2007) (and other codes) generally provide guidance three performance levels
- Immediate Occupancy where an essentially elastic behavior is sought by limiting structural damage (e.g., yielding of steel, significant cracking of concrete, and nonstructural damage.)
- Life Safety Limit damage of structural and nonstructural components so as to minimize the risk of injury or casualties and to keep essential circulation routes accessible.
- Collapse Prevention Ensure a small risk of partial or complete building collapse by limiting structural deformations and forces to the onset of significant strength and stiffness degradation.
- The engineer decides which performance levels
- Performance Based Engineering 1 Most recent code, FEMA 750-p developed by the Building Seismic Safety Council for FEMA. It builds on previous pre-Standards.

New Design	FEMA 310 (ASCE 1998)	ASCE/SEI 31 (2003)
Existing Buildings	FEMA 356 (ASCE 2000)	ASCE/SEI 41 (2006)

NEHRP Recommended Seismic Provisions
for New Buildings and Other Structures
FEMA P-750 / 2009 Edition

Figure C11.5-1 Expected perform ance as related to occupancy category OC) and levelofground motion.

- First-generation procedures introduced the concept of performance in terms of discretely defined performance levels with names intended to connote the expected level of damage: Collapse, Collapse Prevention, Life Safety, Immediate Occupancy, and Operational Performance.
- They also introduced the concept of performance related to damage of both structural and nonstructural components. Performance Objectives were developed by linking one of these performance levels to a specific level of earthquake hazard.
- It is the state of the practice amongst high end companies. It is well established
- However:
- Limit states are component-based not truly system-wide, (what if one component fails, does it trigger progressive collapse?)
- treats only MCE event ($2 \% / 50 y e a r s$).
- Limited treatment of uncertainty and probability.
- Limited information for designing above code.
- Create new performance measures (e.g. repair costs, casualties, and time of occupancy interruption) that better relate to the decision-making needs of stakeholders.
- Create procedures for estimating probable repair costs, casualties, and time of occupancy interruption, for both new and existing buildings.

- We will need to identify specific engineering demand parameters (EDP) and appropriate acceptance criteria to quantitatively evaluate the performance levels.
- The demand parameters typically include peak (shear) forces and deformations, inter-story drifts, and floor accelerations in structural and nonstructural components.
- Performance is checked by comparing computed demands with acceptance criteria (capacity) for the desired performance level.
- Depending on the structural configuration, the results of nonlinear analyses can be sensitive to assumed input parameters and the types of models used.
- One must have clear expectations about those portions of the structure that are expected to undergo inelastic deformations and then use the analyses to
(1) Confirm the locations of inelastic deformations
(2) Characterize
- Deformation demands of yielding elements
- Force demands in non-yielding elements.
- Capacity design concepts can provide reliable performance.
- Capacity Design is indeed the approach where the engineer decides a priori which elements will yield (and thus need to be ductile) and those which will not yield (and will need to be stiff and with sufficient strength).
- Advantages
- Safeguard against brittle failure of elements which can not be designed as ductile.
- Limiting the location of the structure where expensive ductile detailing is required (they act as fuses).
- Reliable energy dissipation by enforcing deformation modes where inelastic deformations are routed to ductile elements.
- Very similar to the structural design of a car.
- Example: strong column/weak beam.
- In the context of PBEE, one must first conduct a seismic hazard analysis (SHA) which includes location identification (with respect to a fault), geotechnical conditions (shear wave velocity), magnitude of previously recorded earthquakes, size of the rupture area, type of fault, crustal rock damping characteristics, rock properties.
- From the corresponding analysis one can determine annual rate of exceedance λ vs intensity measure (IM) a measure of the ground motion characteristic, typically the (peak or spectral) ground acceleration.

- The annual rate of exceedance of the ground motion amplitude, λ, (inverse of return period T_{R}) for Design Base Level (DBL) and Maximum Design Level (MDL) are determined from a Poisson probability model

$$
\lambda=-\frac{\operatorname{Ln}\left(1-P_{E}\right)}{t}
$$

where P_{E} is the probability of occurrence of at least one event (i.e. an earthquake) during the life time t.

- t is usually taken as 50 years for buildings, and 100 years for dams.
- P_{E} for ground motion is usually assumed to be in the ranges $[20 \% 64 \%]$ for DBL and [10\% 20\%] for MDL.
- Assuming a lifetime of 100 years, the corresponding $T_{r}=1 / \lambda$ is determined for 450 and 1,000 years for DBL and MDL, respectively from.

- Probability Seismic Hazard Analysis or PSHA=SHA+ESRA.
- Engineering Seismic Risk Analysis yielded annual rate of exceedance λ in terms of probability of occurrence of at least one event and life time t.
- Seismic hazard analysis yielded annual rate of exceedance λ vs intensity measure.
- Select λ from the first curve, and PGA from the second.

- with the PGA known, one selects (or generate) a set of n ground motion acceleration time histories to perform multiple analyses.
- From the corresponding analysis one plots

Intensity Measure (IM) a measure of the ground motion characteristic, typically the (peak or spectral) ground acceleration.
Engineering demand parameter (EDP) which corresponds to any outcome of the analysis of relevance to the safety assessment, such as base shear, drift.

- We repeat this process m times for different intensity levels.
- There are four types of analysis that can be performed.

Method		S/D Analysis	m	n
Push Over Analysis	POA	Static	na	na
Multi Strip Analysis	MSA	Dynamic	3	n
Incremental Dynamic Analysis	IDA	Dynamic	Variable	n
Endurance Time Analysis	ETA	Dynamic	1	n

where m be the number of ground motion intensity levels (or strips), and n the number of ground motions for a given m.

- In all cases we plot IM vs EDP (and not the other way around!)

- Applies incrementally load or displacement
- Extensively used in building to capture failure mode in lieu of the more expensive transient nonlinear analysis.
- Assumed to be capable of mobilizing principal nonlinear modes of structural behavior up to collapse.

- Hinges on a deterministic number of ground motion intensity levels m (or strips)
- Typically $m=3$ corresponding to the exceedance probabilities of 10% in 50 -year, 5% in 50 -year, and 2% in 50 -year.
- To each strip correspond n ground motions.
- Two possibilities:
- Selection of n different ground motions scaled at m different levels.
- Selection of n_{i} ground motions for each of the intensity levels with no scaling.
- Following the analysis, and for each m the usual IM versus EDP results are first plotted.
- Then for each IM histograms are generated and the most suitable probability distribution function (normal or log-normal) is selected.

- Considers n ground motions which will all be incrementally scaled m times until failure.
- a priori m is unknown and each ground motion n will result in a corresponding failure at a different intensity level m_{i}.
- Following the analysis, the IDA curve connects the resulting m demand parameters for each of the n ground motions.
- Each one of those curve will be asymptotic to the corresponding failure.
- Capture of the overall response by a single measurable quantity at a given EDP (EDP = $e d p_{i}$) can be determined through the corresponding probability distribution function.
- Similarly probability distribution function for a given $\mathrm{IM}\left(\mathrm{IM}=i m_{i}\right)$ can also be determined.
- Those curves can be used for the determination of the fragility plots, and probability of failure.

- The preceding two methods started with actual recorded ground motion and required up to $m \times n$ analysis, computationally expensive and may force the analysis to make greatly simplified assumption in their model. Such assumptions may lead to erroneous conclusions.
- ETA method starts with a synthetic ground motion and modify it to be characterized with an increasing amplitude.
- Substitute to the m intensity levels previously determined and n endurance time acceleration function (ETAF) are used.
- Outcome of the analysis, is the average of the n analyses in terms of IM versus EDP. The resulting curve is analogous to the one of the POA or 50% fractile of IDA.

Non Linear Structural Analysis

Introduction

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2020

Table of Contents I

(1) Introduction
(2) US Codes
(3) LRFD

- Key Concepts
- Reliability Index
- Limitations of LRFD
- Performance Base Earthquake Engineering
- PBE 2
- Summary
(4) Europe
(5) Analysis Support

6 Course Objectives
(7) Loads and Response
(8) Levels of Structural Analysis

US Codes

Congress allocated funding to the National Earthquake Hazard Reduction Program (NEHRP) which is administered by NIST, NEHRP in turns funds FEMA, NSF, USGS NIST for earthquake related research. Transformation of research into code practice is performed by the Applied Technology Council (ATC).
Allowable Stress Design Oldest, simplest approach to introduce concept of safety.
Load Resistance Factor Design introduced in ACI code in 1977, AISC in 1986. Key reference Ellingwood.

Performance Based Engineering 1 (this is confusing)

- FEMA P-58 developed by the Applied Technology Council (ATC).
- It builds on previous pre-Standards: FEMA 310 (ASCE 1998) is the pre-code to ASCE/SEI 31 (2003) and they are both for existing buildings.
- ASCE 31 controls the evaluation of existing buildings, ASCE 41 covers procedures for retrofit of existing buildings. However, they have both been merged into one document now: ASCE 41-17
- Chapter 16 of ASCE 7-16 is the governance for PBEE of new design.
Performance based Engineering 2 Based on ATC 58, FEMA published Next
Generation Performance Based Seismic Design Guidelines;program Plan for New and Existing Buildings, itself based on FEMA 283 and FEMA 349.

May need correction

US Codes

Development of a Probability Based Load Criterion for American National Standard A58

Buiting Code Pomuirements for Mininuum Dasien Loads

in Buidings and Other Structures

Broxe Blongrood

Cum sean Tution
men
naturitity
ma. Mrome

CAlincorraf

Cinnezallitivemise

1.5 OEPARTMEKT OF CONME ECEE. Pribo M Kutrsick Secertay

maved June 1930

Next-Generation
Performance-Based
Seismic Design Guidelines
Program Plan for New and Existing Buildings
FEMA-445 / Augus 2006
5 FEMA nehrp

NEHRP Recommended Seismic Provisions
for New Buildings and Other Structures FEMAP. $750 / 2009$ Ebitine

- Load and resistance are not deterministic quantities (as in the allowable stress design, ASD), but are random variables with their own probability distribution functions.
- There is a probability of failure.
- Load will be multiplied by a factor α, (ASCE-7-10) and we shall consider the ultimate resistance (reduced by Φ)
- We will assign α and Φ such that the probability of failure does not exceed a certain value.
- LRFD is generally expressed as

$$
\begin{equation*}
\Phi C_{n} \geq \Sigma \alpha_{i} D_{i} \tag{1}
\end{equation*}
$$

where C_{n} and D are the nominal capacity and demands (or nominal resistance and load).

- Limit state is generally determined from Plastic capacity without a nonlinear analysis.
- LRFD seeks to have a Reliability Index such that $\beta>\sim$ 3.5. The Reliability Index is a "universal" indicator on the adequacy of a structure, and can be used as a metric to 1) assess the health of a structure, and 2) compare different structures targeted for possible remediation.
- Capacity C and demand D are both random variables (usually assumed to be normal, though a log-normal may be prefereable in some instances).

- Two approaches to determine β depending on how is the safety margin computed.

$$
\begin{aligned}
M & =C-D \\
\mu_{M} & =\mu_{C}-\mu_{D} \\
\sigma_{M} & =\sqrt{\sigma_{C}^{2}+\sigma_{D}^{2}} \\
\beta & =\frac{\mu_{M}}{\sigma_{M}} \\
& =\frac{\mu_{C}-\mu_{D}}{\sqrt{\sigma_{C}^{2}+\sigma_{D}^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
M & =\ln C-\ln D \\
\mu_{M} & =\mu_{C}-\mu_{D} \text { First order } \\
\sigma_{M} & =\sqrt{\frac{\sigma_{C}^{2}}{\mu_{C}^{2}}+\frac{\sigma_{D}^{2}}{\mu_{D}^{2}}}=\sqrt{V_{C}^{2}+V_{D}^{2}} \\
\beta & =\frac{\mu_{M}}{\sigma_{M}}=\frac{\ln \mu_{C}-\ln \mu_{D}}{\sqrt{V_{C}^{2}+V_{D}^{2}}} \\
& =\frac{\ln \mu_{C} / \mu_{D}}{\sqrt{V_{C}^{2}+V_{D}^{2}}}
\end{aligned}
$$

Reliability Index

- β is selected to reflect failure consequences

Type of Load/Member	
AISC	
DL + LL; Members	3.0
DL + LL; Connections	4.5
DL + LL + WL; Members	3.5
DL + LL +EL; Members	1.75
ACI	
Ductile Failure	$3-3.5$
Brittle Failures	$3.5-4$

The probability of failure P_{f} is equal to the ratio of the shaded area to the total area under the curve and is given by $\Phi(-\beta)$ where Φ is the standard normal cumulative probability function

$$
\begin{equation*}
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t=\frac{1}{2}\left[1+e r f\left(\frac{x}{\sqrt{2}}\right)\right] \tag{2}
\end{equation*}
$$

Target values for β

(1) Inconsistent: Linear analysis, but plastic design.
(2) Ignores load redistribution near failure (though ACI implicitly accounts for some of it through reduction of negative moments).
(3) Addresses only one level of hazard: failure of one structural component (and not the entire system), but how about quantification of damage due to more frequent events?

- Performance-based seismic design explicitly evaluates how a building is likely to perform, given the potential hazard it is likely to experience, considering uncertainties inherent in the quantification of potential hazard and uncertainties in assessment of the actual building response.
- Contrarily to LRFD, it does not limit itself to one level of hazard, but multiple.
- Performance is measured in terms of the probability of incurring casualties, repair and replacement costs, repair time, and unsafe placarding.
- Performance can be assessed for a particular earthquake scenario or intensity, or considering all earthquakes that could occur, and the likelihood of each, over a specified period of time.
- Performance expressed in terms of a series of discrete performance levels identified as Operational, Immediate Occupancy, Life Safety,
 and Collapse Prevention.
- Introduced the concept of performance related to damage of both structural and nonstructural components. Performance Objectives were developed by linking one of these performance levels to a specific level of earthquake hazard.
- It is the state of the practice among high end companies. It is well established
- However:
- Limit states are component-based not truly system-wide, (what if one component fails, does it trigger progressive collapse?)
- treats only MCE event (2\%/50years).
- Limited treatment of uncertainty and probability.
- Limited information for designing above code.
- New performance measures (e.g. repair costs, casualties, and time of occupancy interruption).
- Create procedures for estimating probable repair costs, casualties, and time of occupancy interruption, for both new and existing buildings.

Eurocodes are a series of 10 European Standards, which will supersede national codes and should be enforced throughout Europe.

EN 1990	Eurocode:	Basis of structural design
EN 1991	Eurocode 1:	Actions on structures
EN 1992	Eurocode 2:	Design of concrete structures
EN 1993	Eurocode 3:	Design of steel structures
EN 1994	Eurocode 4:	Design of composite steel and concrete structures
EN 1995	Eurocode 5:	Design of timber structures
EN 1996	Eurocode 6:	Design of masonry structures
EN 1997	Eurocode 7:	Geotechnical design
EN 1998	Eurocode 8:	Design of structures for earthquake resistance
EN 1999	Eurocode 9:	Design of aluminium structures

Each one of them is divided in package, as for Eurocode 8

EN 1998-1:2004	Part 1: General rules, seismic actions and rules for buildings
EN 1998-2:2005	Part 2: Bridges
EN 1998-3:2005	Part 3: Assessment and retrofitting of buildings
EN 1998-4:2006	Part 4: Silos, tanks and pipelines
EN 1998-5:2004	Part 5: Foundations, retaining structures \&geotechnical aspects
EN 1998-6:2005	Part 6: Towers, masts and chimneys

- EC8 and PBE require the completion of
- Nonlinear Static Procedure or Nonlinear Pushover (NPO)
- Nonlinear Dynamic Procedure or Nonlinear Time History (NTH)
- Emphasis will be on
- Basic fundamental understanding of the analysis techniques as opposed to how to use them in the context of meeting code provisions.
- How to perform NPO and NTH rather than going through the details of EC8 or PBEE code requirements (those can be easily studied individually).
- 1D frame elements as opposed to continuum elements
- Nonlinear static and dynamic analysis.
- Methodology presented constitutes the State of the Art as practiced only by a few "high end consulting firms".
- Additional lectures
- Performance Based Engineering
- Examples of nonlinear analysis of structures (dams, nuclear reactors) using continuum elements.
- Guest Lecture(s)
- Computer skills: Matlab
- Grading: 1-2 exams(?), homeworks, term project/report.

Deflection

Levels of Structural Analysis

Displacement

		Constitutive Equations			
		Undeformed Shape		Deformed Shape	
		Elastic (Linear)	Inelastic (Non Linear)	$\begin{aligned} & \hline \text { Elastic } \\ & \text { (Linear) } \end{aligned}$	Inelastic (Non Linear)
Kinematic Eq.	$1^{\text {st }}$ Order	1 (C:L-K:L)	2 (C:NL-K:L)	Critical Load	
	(Linear)			3 Elastic	4 Inelastic
	$2^{\text {nd }}$ Order	Deformed Shape			
	(non Linear)	5 (C:L-K:NL)	6 (C:NL-K:NL)	-	-

Levels of Structural Analysis

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
CM	L	NL	L	NL	L	NL	NL
Analysis	Lin.	Inc	Bif.	Bif.	Inc	Inc	Bif
FBD	US	DS	DS	DS	DS	DS	DS
L. Linear elastic. NL. Nonlinear:							

Lin: Linear; Incr: Nonlinear incremental analysis; Bif: Biffurcation (Eigenvalue) analysis; US: Undeformed state (Lagranfian); DS: Deformed state (Eulerian);

First Order Elastic excludes any nonlinearities. If the equilibrium equation is written in terms of

1 (C:L-K:L); Undeformed Shape This is the most common case, linear elastic. It is usually acceptable for service loads. For time dependent cases, we must consider visco-elastic models.
3 Bifurcation; Deformed shape (or 'zero order") an eigenvalue analysis which would lead to the Elastic Critical Load.
Note that we do not have a corresponding load-displacement curve, but rather "buckling modes".

First Order Inelastic Accounts for material non-linearity. In such an analysis, the inelastic region (plastic zone) develops gradually, and it will provide a good estimate of the elasto-plastic response (note that instability is not addressed). We consider

- Non-linear Elasticity: reversible non-linear stress-strain (upon unloading, the strain goes back to zero).
- Plasticity, non reversible non-linear stress-strain.
- Damage

If the equilibrium equation is written in terms of 2 (C:NL-K:L); Undeformed Shape Second most common form of analysis, typically conducted for ultimate/unusual loads.

Levels of Structural Analysis

4 Bifurcation; Deformed shape an eigenvalue analysis which would lead to the Inelastic Critical Load. Note that we do not have a corresponding load-displacement curve, but rather "buckling modes". This inelastic critical load will be smaller than the elastic one.
For time dependent cases, we consider visco-plasticity, or fatigue, or continuous damage models.
Second Order Need to draw FBD in the deformed shape:
5 (C:L-K:NL); Elastic accounts for the effects of finite deformation and displacements, equilibrium equations are written in terms of the geometry of the deformed shape (Eulerian), does not account for material non-linearities, may be able to detect bifurcation and or increased stiffness (when a member is subjected to a tensile axial load). Analysis of cables, nets, catenary structures.

Levels of Structural Analysis

6 (C:NL-K:NL); Inelastic equations of equilibrium written in terms of the geometry of the deformed shape, can account for both geometric and material nonlinearities. Most suitable to determine failure or ultimate loads. By far the most complex form of analysis, used in Metal Forming simulation, fragmentation of structures (missile impact).

How does it relate to the stiffness matrix
$\mathrm{K}=\int_{\Omega} \mathrm{B}^{T} \mathrm{DB} d \Omega$

- Geometric nonlinearity impacts B
- Material nonlinearity impacts D

Non Linear Structural Analysis
 Matlab; Advanced Features for NSA

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2020

Table of Contents I

(1) Introduction
(2) Functions
(3) Switch Case

4 Data Types
(5) Cell Arrays

6 Structures
(7) Mercury

- Structure Data
- Sample Input File

8 Save data

Motivation I

- Ultimately we rely on computer programs to perform structural analysis.
- Commercial codes are widely available for linear analysis.
- "Modern Non Linear" analysis codes are still in infancy, these include
- OpenSEES developed by PEER/NEES, open source, c++, tcl. Very powerful, yet modification is not simple for most students.
- FEADAS, Prof. Filippou/Berkeley, Matlab, closed source code.
- Mercury, Prof. Saouma's group, primarily for hybrid simulation, however two identical versions are available: Matlab and c++
- Matlab is far "friendlier" than c++ for programming.
- You will be asked to modify the Matlab version as part of homeworks.
- Though you are expected to have had some exposure to Matlab, there are certain features, widely used in modern codes, that you may not have been exposed to.
- Matlab: Interpreter, slow (even the compiled version), expensive.

Motivation II

- Octave is a Matlab-alike free program,
- For new programming language: use Python
- There are many textbooks, and hundred of on-line tutorials.

Functions I

- A script is the simplest kind of program file because there is no input or output arguments. It is an external file that contains a sequence of MATLAB statements. There are no local variables in a script.
- A function which accepts input from and returns output to its caller. Functions operate on variables within their own workspace. This workspace is separate from the base workspace; it allows for local variable which do not interfere with the ones of the calling entity. Ideally, each function is stored in an .m file with the same name.

```
function [out1, out2, ...] = myfun(in1, in2, ...)
```


Listing 1: Function Defintion

Functions

Functions II

1 function [str, ele] = FEAnalysis (str, ele, sec, mat, fos)

Listing 2: Example of Function Definition

```
1[str, ele] = FEAnalysis(str, ele, sec, mat, fos)
```

Listing 3: Example Invocation of function

Switch Case

Switch Case

```
http://blogs.mathworks.com/pick/2008/01/02/matlab-basics-switch-case-vs-if-elseif/
```

```
switch eletype
    case 'Simple2DTruss
            [tmpeleinfo] = Simple2DTrussInfo(eleinfo);
        case Simple3DTruss
            [tmpeleinfo] = Simple3DTrussInfo(eleinfo);
        case 'StiffnessBasedBeam
            [tmpeleinfo] = StiffnessBasedBeamInfo(eleinfo);
        case 'StiffnessBased2DBeamColumn
            [tmpeleinfo] = StiffnessBased2DBeamColumnInfo(eleinfo);
        case 'StiffnessBased3DBeamColumn
            [tmpeleinfo] = StiffnessBased3DBeamColumnInfo(eleinfo);
        case Grid
            [tmpeleinfo] = GridInfo(eleinfo);
    end
```


Data Types

- Numeric Types: Integer and floating-point data
- Characters and Strings: Characters and arrays of characters
- Cell Arrays Data of varying types and sizes stored in cells of array.
- Structures: Data of varying types and sizes stored in fields of a structure

Cell Arrays

Cell Arrays

- String arrays must have all entries with the same length.
c=['steel';' concrete'] is not acceptable (CAT arguments dimensions are not consistent.)
- Cell arrays may contain
- Strings of various length

$$
\mathrm{C}=
$$ \{'Steel';'Concrete';'Struc Analysis'\} creates a 3 -by- 1 cell array that ${ }_{17}^{16}$ requires no padding because each row of the array can have a different length:

C =
'Steel'
'Concrete'

Matlab; Advanced Features for NSA


```
elements = { {1, 'Simple2DTruss', 1, 2, 1};
```

elements = { {1, 'Simple2DTruss', 1, 2, 1};
elements ={ { {1, 'Simple2DTruss', 1, 2, 1};
elements ={ { {1, 'Simple2DTruss', 1, 2, 1};
>> elements {1}
>> elements {1}
ans =
ans =
[1] 'Simple2DTruss ' [1] [2]
[1] 'Simple2DTruss ' [1] [2]
>> elements {1}{2}
>> elements {1}{2}
ans =
ans =
Simple2DTruss
Simple2DTruss
>> elements {1}{3}
>> elements {1}{3}
ans =
ans =
1
1
size (elements)
size (elements)
ans =
ans =
6
6
>> elements
>> elements
elements =
elements =
{1\times5 cell}
{1\times5 cell}
{1\times5 cell }
{1\times5 cell }
{1\times5 cell}
{1\times5 cell}
{1\times5 cell}
{1\times5 cell}
{1x5 cell}
{1x5 cell}
{1x5 cell}
{1x5 cell}
[1]

```
    [1]
```


Cell Arrays

Cell Arrays; Example

- variable length cell array.
- Example of input data for material properties, length of cell array depends on the constitutive model selected.

```
materials = {{1, 'ModKP', 3.57, 0.0026, 1.19, 0.0078,0.3,0.448121077,549.2307692,0};
        {2, 'ModKP', 3.9, 0.00284,3.51,0.00852,0.3,0.46837485,549.4505495,0};
        {3, 'ModGMP' ,27300,80,0.01,15,0.925,0.15,0,0,55,0,55};};
>> materials
materials =
    {1\times10 cell}
    {1x10 cell}
    {1\times13 cell}
>> materials {2}{2}
ans =
ModKP
>> {materials {2}{9}
ans =
549.4505
```

materials $=\operatorname{mattag}_{i}$, mattype $_{i}$, modulus $_{i}$, density $_{i},\left\{\right.$ MatProp $\left._{i}\right\}$; where:

- mattag ${ }_{i}$: Consecutive integer number identifying material at $i^{\text {th }}$ material
- mattype ${ }_{i}$: Material type at $i^{\text {th }}$ material

Structures I

- Structures are like cell arrays, in that they allow one to group collections of dissimilar data into a single variable. However, instead of addressing elements by number, structure elements are addressed by names called fields.
- Cell arrays use curly braces to access data, structures use dot notation.
- Structures are multidimensional arrays with elements accessed by textual field designators. For example, S.name = 'Barack Obama'; S.score $=83$; S.grade $=$ ' $B+$ ' as opposed to a cell array which would look like $S=\{$ 'Barack Obama', '83', 'B+'\} and S(2)='83'.
- In this example we have created a scalar structure with three fields:
$\mathrm{S}=$

```
    name: 'Barack Obama'
    score: 83
    grade: 'B+'
```


Structures II

- Like everything else in the MATLAB environment, structures are arrays, so you can insert additional elements. In this case, each element of the array is a structure with several fields. The fields can be added one at a time, S(2). name = 'Ronald Reagan'; $\mathrm{S}(2)$.score $=91$; $\mathrm{S}(2)$. grade $=$ ' $\mathrm{A}-$ '; or an entire element can be added with a single statement: $\mathrm{S}(3)=$ struct('name', 'George Washington', 'score', 70 , 'grade', 'C')
- Now the structure is large enough that only a summary is printed:

```
S =
1x3 struct array with fields:
    name
    score
    grade
```


Structures III

- There are several ways to reassemble the various fields into other MATLAB arrays. They are mostly based on the notation of a comma-separated list. If you type S.score it is the same as typing $S(1)$. score, $S(2)$.score, $S(3)$.score which is a comma-separated list.

Structures

Mercury Example I

```
function [str, ele] = ElementInfo(str, elements)
%
str.nele = size(elements,1);
for iele = 1:str.nele
    eletag = elements{iele}{1};
    eletype = elements{iele}{2};
    eleinfo = elements{iele};
    ele(eletag).type = eletype;
    switch eletype
        case 'simple2DTruss
            [tmpeleinfo] = Simple2DTrussInfo(eleinfo);
            case 'StiffnessBased2DBeamColumn'
            [tmpeleinfo] = StiffnessBased2DBeamColumnInfo(eleinfo);
    end
    ele(eletag).(eletype) = tmpeleinfo;
end
```

```
% Make LM matrix
for iele = 1:str.nele
    eletype = ele(iele).type;
    str.LM(iele,1) = str.ID(ele(iele).(eletype).snode,1);
    str.elecoord(iele,1) = str.nodcoord(ele(iele).(eletype).snode,1);
end
```


Structures

Mercury Example II

```
for iele = 1:str.nele
    eletype = ele(iele).type;
    switch eletype
        case 'ZeroLength2D
            % Do nothing
            case 'ZeroLength2DSection
            % Do nothing
            otherwise
            xs = str.elecoord(iele,1);
            ys = str.elecoord(iele,2);
            xe = str.elecoord(iele,3);
            ye = str.elecoord(iele,4);
            dx = xe xs;
            dy = ye ys;
            ele(iele).(eletype).L = sqrt( dx*dx + dy*dy );
            ele(iele).(eletype).Cx = dx/ele(iele).(eletype).L;
            ele(iele).(eletype).Cy = dy/ele(iele).(eletype).L;
    end
end
```


Structure Data

Static_Pt

- str.ID(ele (iele). (eletype) .enode, 6) corresponds to xxx;
- str.elecoord(iele,4) = str.nodcoord(ele(iele).(eletype).enode, 2) corresponds to xxx;;

Input File Example I

```
AnalysisType = 2;
%
% Preface
Unit = {'kN', 'mm'};
StrMode ={2, 2};
%
% Control block
Iteration = {'static', 
    };
if (AnalysisType == 2)
        Integration = {'Newmark', 0, 1/4, 1/2, 0, 0};
        eigens ={0.02, 0.02};
end
%
% Geometry block
nodcoord ={1, 0, 0;
    2, 1500, 0;
    3, 3000, 0;
    4, 1500, 2000;
    5, 3000, 2000};
constraint = {3, 1, 1;
    5, 1, 1};
%
% Element block
elements = { {1, 'Simple2DTruss ', 1, 2, 1};
    {2, 'Simple2DTruss', 2, 3, 1};
```


Input File Example II

```
28
    {3, 'Simple2DTruss', 1, 4, 1};
    {4, Simple2DTruss', 2, 4, 1};
    {5, 'Simple2DTruss', 3, 4, 1};
    {6, 'Simple2DTruss', 4, 5, 1} };
%
% Section block
sections = { 1, 'General', {1, 400, 0, 0, 0} };
%
% Material block
materials = { {1, 'Elastic ', 200, 0, 7850*10^ 9} };
%
% Force block
if (AnalysisType == 1)
    forces = { 1, 'Static ', {'NodalForces', {1, 2, 30;
elseif (AnalysisType == 2)
    ga = load('ElCentro_g_0_01_Matlab.txt');
    nga = size(ga, 1);
    for i = 1:nga
        groundacceleration{i,1}=ga(i,1);
        groundacceleration{i,2}=ga(i,2);
            groundacceleration{i,3}=ga(i,3);
    end
    forces = { 1, 'Static', {'NodalForces', {1, 2, 0} };
        2, 'Acceleration', {9810, groundacceleration} };
end
%
```


Input File Example III

Save data

Save Data

- Often times, there is a need to store some or all the data in a binary file.

```
\%
% clear all data
clear
% define an array and perform a dummy operation
x=[1:1:20];
y=2*x;
% save only the x array in a binary file
    my_data
%(which will be assigned the extension .mat)
save('my_data', 'x')
% clear all the data
```

```
clear
```

clear
% convince ourself that x is gone
x
%load the data stored in my_data.mat
load('my_data.mat ')
% verify that we recover x
X

```
- This can be easily accomplished by the save and load commands.
- Try to load the Recorder_6.mat file which was generated by an experiment.

\title{
Non Linear Structural Analysis Strong to Weak Formulations
}

\author{
Victor E. Saouma \\ saouma@colorado.edu \\ University of Colorado, Boulder
}

Fall 2020

\section*{Table of Contents I}
(1) Introduction
(2) Definitions
- First law of Thermodynamics
- Internal Energy
- External Work and Virtual Work
- Internal Virtual Strain Energy
- Axial Members
- Flexural Members
- Total Potential Energy
- Summary
- Strong/Weak; Natural Essential
(3) Principle of Virtual Work and Complementary Virtual Work
- Approaches
- Principle of Virtual Work (Displacement)
- Derivation
- Example
- Summary

\section*{Table of Contents II}
- Tonti Diagrams
(4) Principle of Total and Complementary Potential Energy
- Total Potential Energy
- Derivation
- Example 1
- Example 2
- Total Complementary Potential Energy
(5) Rayleigh-Ritz Method
- Derivation
- Example
- Example
- Summary
- Tonti Diagram

6 Shape Functions
- definition
- Generalization

\section*{Table of Contents III}
- \(C^{1}\) Flexural
(7) Finite Element
- Strain Displacement Relations
- Axial Members
- Flexural Members
- Virtual Displacement and Strains
- Element Stiffness Matrix Formulation
- Stress Recovery
(8) application
- Truss Element
- Flexural Element

\section*{9) FEA Process}
- Computer Simulation

\section*{Motivation I}
- Structural engineering (and mechanics) can be approached from two different angles:
(1) Newtonian approach, equations of equilibrium.
(2) Lagrangian approach: thermodynamics (balance of energy).
- So far we have pursued the former, from this point onward, we shall focus on the second which will provide the formalism needed to develop the finite element method.
- Some of the concepts will look familiar (first law of thermodynamic, principle of virtual force, minimum potential energy) at first.
- This lecturewill
(1) Bring together the various "energy methods" and show that they are all (essentially) the same.
(2) Develop the principle of virtual displacement as a prelude to the finite element method.

Motivation II
(3) Show the duality between the so-called strong form (differential equation) and the weak form (satisfy a principle in an average sense).
(4) Formalize the definition of Natural and Essential boundary conditions.

\section*{First law of Thermodynamics}
- First Law of Thermodynamics: The time-rate of change of the total energy (i.e., sum of the kinetic energy \(K\) and the internal energy \(U\) ) is equal to the sum of the rate of work done by the external forces \(W_{e}\) and the change of heat content per unit time \(H: \frac{\mathrm{d}}{\mathrm{d} t}(K+U)=W_{e}+H\)
- For an adiabatic system (no heat exchange) and if loads are applied in a quasi static manner (no kinetic energy), the above relation simplifies to: \(W_{e}=U\)

\section*{Internal Energy}

\section*{InternalEnergy I}



Strain energy density :
\[
\begin{equation*}
U_{0} \stackrel{\text { def }}{=} \int_{0}^{\varepsilon} \sigma d \varepsilon \tag{1}
\end{equation*}
\]

Complementary strain energy density :
\[
\begin{equation*}
U_{0}^{*} \stackrel{\text { def }}{=} \int_{0}^{\sigma} \varepsilon \mathrm{d} \sigma \tag{2}
\end{equation*}
\]

\section*{InternalEnergy II}
strain and complementary strain energy :
\[
\begin{array}{r}
U \stackrel{\text { def }}{=} \int_{\Omega} U_{0} \mathrm{~d} \Omega \\
U^{*} \stackrel{\text { def }}{=} \int_{\Omega} U_{0}^{*} \mathrm{~d} \Omega \tag{4}
\end{array}
\]

Stress Strain Relation :
\[
\begin{equation*}
\boldsymbol{\sigma}=\mathrm{D}\left(\boldsymbol{\epsilon}-\epsilon_{0}\right)+\sigma_{0} \tag{5}
\end{equation*}
\]

Strain Energy for Linear Systems :
\[
\begin{align*}
U= & \frac{1}{2} \int_{\Omega} \epsilon^{\top} D \epsilon \mathrm{~d} \Omega-\int_{\Omega} \epsilon^{\top} D \epsilon_{0} \mathrm{~d} \Omega \\
& +\int_{\Omega} \epsilon^{T} \sigma_{0} \mathrm{~d} \Omega \tag{6}
\end{align*}
\]

\section*{External Work and Virtual Work}

\section*{External Work and Virtual Work I}

\section*{Forces Only two types of forces:}
- Surface traction \(\hat{\mathrm{t}}\)


\section*{External Work and Virtual Work II}

\section*{- Body force b}

External work \(W_{e} \stackrel{\text { def }}{=} \int_{\Omega} u^{T} b d \Omega+\int_{\Gamma_{t}} u^{T} \hat{\text { t }} \mathrm{d} \Gamma\)
Point Force/Moment \(W_{e}=\int_{0}^{\Delta_{t}} P \mathrm{~d} \Delta+\int_{0}^{\theta_{t}} M \mathrm{~d} \theta\)
Internal Strain Energy/Virtual Work \(\delta \bar{U}=-\delta \bar{W}_{i} \stackrel{\text { def }}{=} \int_{\Omega} \sigma \delta \bar{\varepsilon} \mathrm{d} \Omega\)
External Virtual Work \(\delta \bar{W}_{e} \stackrel{\text { def }}{=} \int_{\Gamma_{t}} \delta \overline{\mathrm{u}}^{t} \hat{\mathrm{t}} \mathrm{d} \Gamma+\int_{\Omega} \delta \overline{\mathrm{u}}^{t} \mathrm{bd} \Omega\)
Complementary Internal Strain Energy-Internal Virtual Work
\[
\delta \bar{U}^{*}=-\delta \bar{W}_{i}^{*} \stackrel{\text { def }}{=} \int_{\Omega} \varepsilon \delta \bar{\sigma} \mathrm{d} \Omega
\]

Complementary External Virtual Work \(\delta \bar{W}_{e}^{*} \stackrel{\text { def }}{=} \int_{\Gamma_{u}} \widehat{\mathrm{u}}^{t} \delta \overline{\mathrm{t}} \mathrm{d} \Gamma\)

\section*{Variables}
- The complementary internal virtual strain energy is expressed in terms of strain or internal displacements \((u(x), v(x))\).
- It will lead to the formulation at the root of the finite element method.

\section*{Axial Members}

Strains and displacements constitute the virtual quantities identified by \(\delta\).
Elastic System
\[
\left.\begin{array}{l}
\delta \bar{U}=\int_{\Omega} \sigma \delta \bar{\varepsilon} \mathrm{d} \Omega  \tag{7}\\
\mathrm{~d} \Omega=A \mathrm{~d} x
\end{array}\right\} \delta \bar{U}=A \int_{0}^{L} \sigma \delta \bar{\varepsilon} \mathrm{~d} x
\]

Linear Elastic
\[
\left.\begin{array}{rl}
\delta \bar{U} & =\int \sigma \delta \bar{\varepsilon} \Omega \Omega \\
\sigma_{x} & =E \varepsilon_{x}=E \frac{\mathrm{~d} u}{\mathrm{~d} x}  \tag{8}\\
\delta \bar{\varepsilon} & =\frac{\mathrm{d}(\delta \overline{\mathrm{~d} x}}{\mathrm{d} x} \\
\mathrm{~d} \Omega & =A \mathrm{~d} x
\end{array}\right\} \delta \bar{U}=\int_{0}^{L} \underbrace{E \frac{\mathrm{~d} u}{\mathrm{~d} x}}_{\text {" }^{\prime \prime}} \underbrace{}_{\text {" } \delta \bar{\varepsilon}^{\frac{\mathrm{d}(\delta \bar{u})}{\mathrm{d} x}} \underbrace{A \mathrm{~d} x}_{\mathrm{d} \Omega}}
\]

\section*{Flexural Members I}

\section*{Elastic System}
\[
\begin{align*}
\delta \bar{U} & =\int_{0} \sigma_{x} \delta \bar{\varepsilon}_{x} \mathrm{~d} \Omega \\
M & =\int_{A A} \sigma_{x x} y \mathrm{~d} A \Rightarrow \frac{M}{y}=\int_{A} \sigma_{x x} \mathrm{~d} A  \tag{9}\\
\delta \bar{\phi} & =\frac{\delta \bar{\varepsilon}}{y} \Rightarrow \delta \bar{\phi} y=\delta \bar{\varepsilon} \\
\mathrm{d} \Omega & =\int_{0}^{L} \int_{A} \mathrm{~d} A \mathrm{~d} x
\end{align*}
\]

Linear Elastic
\[
\left.\begin{array}{rl}
\delta \bar{U} & =\int_{\Omega} \sigma_{x} \delta \bar{\varepsilon}_{x} \mathrm{~d} \Omega \\
\sigma_{x}=\frac{M_{y}}{d^{2}} \\
M=\frac{\mathrm{d}^{2} v}{d x^{2}} E I_{z}
\end{array}\right\} \sigma_{x}=\underbrace{\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}} E y}_{\mathrm{K}} \begin{array}{rl}
\delta \bar{\varepsilon}_{x} & =\frac{\delta \bar{\sigma}_{x}}{E}=\frac{\mathrm{d}^{2}(\delta \overline{)}}{\mathrm{d} x^{2}} y \\
\mathrm{~d} \Omega & =\mathrm{d} A \mathrm{~d} x
\end{array}\} \delta \bar{U}=\int_{0}^{L} \int_{A} \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}} E y \frac{\mathrm{~d}^{2}(\delta \bar{v})}{\mathrm{d} x^{2}} y \mathrm{~d} A \mathrm{~d} x
\]

Flexural Members II

Since \(\int_{A} y^{2} \mathrm{~d} A=I_{z} \Rightarrow\)
\[
\begin{equation*}
\delta \bar{U}=\int_{0}^{L} \underbrace{E I_{z}}_{\sigma^{\prime \prime}} \frac{\mathrm{d}^{2} v}{\frac{\mathrm{a}^{2}}{\mathrm{~d} x^{2}}} \underbrace{\frac{\mathrm{~d}^{2}(\delta \bar{v})}{\mathrm{d} x^{2}}}_{\text {"ठहैं}} \mathrm{d} x \tag{10}
\end{equation*}
\]

\section*{Potential Energy I}

Potential of external work \(W\)
\[
\begin{equation*}
\mathcal{W}_{e} \stackrel{\text { def }}{=} \int_{\Omega} \mathrm{u}^{\top} \mathrm{bd} \Omega+\int_{\Gamma_{t}} \mathrm{u}^{\top} \hat{\mathrm{t}} \mathrm{~d} \Gamma+\mathrm{uP} \tag{11}
\end{equation*}
\]

Potential energy
\[
\begin{equation*}
\Pi \stackrel{\text { def }}{=} U-\mathcal{W}_{e}=\int_{\Omega} U_{0} \mathrm{~d} \Omega-\left(\int_{\Omega} \mathrm{ubd} \Omega+\int_{\Gamma_{t}} \mathrm{utd} \Gamma+\mathrm{uP}\right) \tag{12}
\end{equation*}
\]

Complementary potential energy
\[
\begin{equation*}
\Pi \stackrel{\text { def }}{=} U^{*}-\mathcal{W}_{e}^{*}=\int_{\Omega} U_{0}^{*} \mathrm{~d} \Omega-\left(\int_{\Omega} \mathrm{ubd} \Omega+\int_{\Gamma_{t}} \mathrm{utd} \Gamma+\mathrm{uP}\right) \tag{13}
\end{equation*}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Summary} & \multirow[t]{2}{*}{\(u\)} & \multicolumn{2}{|r|}{\[
\begin{aligned}
& \text { Virtual Displacement } \delta \bar{U} \\
& -\int_{\Omega} \delta \overline{\bar{u}}^{T}\left(\mathrm{~L}^{T} \sigma+\mathrm{b}\right) \mathrm{d} \Omega \\
& +\int_{\Gamma_{t}} \delta \overline{\mathrm{u}}^{T}(\mathrm{t}-\hat{\mathrm{t}}) \mathrm{d} \Gamma=0
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Virtual Force } \delta \bar{U}^{*} \\
\int_{\Omega}\left(\varepsilon_{i j}-u_{i, j}\right) \delta \overline{\sigma_{i j}} \mathrm{~d} \Omega \\
-\int_{\Gamma u}\left(u_{i}-\hat{u}\right) \delta \bar{t}_{\mathrm{j}} \mathrm{\Gamma}=0
\end{gathered}
\]} \\
\hline & & Elastic & El. Linear & Elastic & El. Linear \\
\hline Axial & \(\frac{1}{2} \int_{0}^{L} \frac{P^{2}}{A E} \mathrm{~d} x\) & \(A \int_{0}^{L} \sigma \delta \bar{\varepsilon} \mathrm{~d} x\) & \[
\int_{0}^{L} \underbrace{E \frac{\mathrm{~d} u}{\mathrm{~d} x}}_{\sigma} \underbrace{\frac{\mathrm{d}(\delta \bar{u})}{\mathrm{d} x}}_{\delta \bar{\varepsilon}} \underbrace{A d x}_{\mathrm{d} \Omega}
\] & \(A \int_{0}^{L} \delta \bar{\sigma} \varepsilon \mathrm{~d} x\) & \[
\int_{0}^{L} \underbrace{\delta \bar{P}}_{\delta \bar{\sigma}} \underbrace{\frac{P}{A E}}_{\varepsilon} \mathrm{d} x
\] \\
\hline Flexure & \(\frac{1}{2} \int_{0}^{L} \frac{M^{2}}{E I_{z}} \mathrm{~d} x\) & \(\int_{0}^{L} M \delta \bar{\phi} \mathrm{~d} x\) & \[
\int_{0}^{L} \underbrace{E I_{z}}_{\sigma} \underbrace{\underbrace{\frac{d^{2}(\delta \bar{v})}{d x^{2}}}}_{\delta \overline{d^{2} v} \frac{d^{2} v}{d x^{2}}} d x
\] & \(\int_{0}^{L} \delta \bar{M} \phi d x\) & \[
\int_{0}^{L} \underbrace{\delta \bar{M}}_{\delta \bar{\sigma}} \underbrace{\frac{M}{E I_{z}}}_{\varepsilon} \mathrm{d} x
\] \\
\hline \(P\) & \(\Sigma_{i} \frac{1}{2} P_{i} \Delta_{i}\) & \multicolumn{2}{|r|}{\(\Sigma_{i} P_{i} \delta \bar{\Delta}_{i}\)} & \multicolumn{2}{|r|}{\(\Sigma_{i} \delta \bar{P}_{i} \Delta_{i}\)} \\
\hline M & \(\Sigma_{i} \frac{1}{2} M_{i} \theta_{i}\) & \multicolumn{2}{|r|}{\(\Sigma_{i} M_{i} \delta \bar{\theta}_{i}\)} & \multicolumn{2}{|r|}{\(\Sigma_{i} \delta \bar{M}_{i} \theta_{i}\)} \\
\hline w & \(\int_{0}^{L} w(x) v(x) \mathrm{d} x\) & \multicolumn{2}{|r|}{\(\int_{0}^{L} w(x) \delta \bar{v}(x) \mathrm{d} x\)} & \multicolumn{2}{|r|}{\(\int_{0}^{L} \delta \bar{W}(x) v(x) \mathrm{d} x\)} \\
\hline
\end{tabular}
\begin{tabular}{||c||c||c||}
\hline \hline Formulation & \begin{tabular}{c} 
Potential Energy \\
Displacement
\end{tabular} & \begin{tabular}{c} 
Complementary \\
Force
\end{tabular} \\
\(\frac{1}{2} \int_{0}^{L} E\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}\right)^{2} \mathrm{~d} x\) & \(\frac{1}{2} \int_{0}^{L} \frac{P^{2}}{A E} \mathrm{~d} x\)
\end{tabular}\(|\)\begin{tabular}{c|c||}
\hline\(\frac{1}{2} \int_{0}^{L} E I_{Z}\left(v^{\prime \prime}\right)^{2} \mathrm{~d} x\) & \(\frac{1}{2} \int_{0}^{L} \frac{M^{2}}{E I_{Z}} \mathrm{~d} x\)
\end{tabular}

\section*{Summary II}

Need to derive potential energy in terms of displacements in beamer and book

\section*{Strong/Weak; Natural Essential}

Strong/Weak We will refer to a strong form a derivation stemming from a differential equation, and one which is exactly satisfied.
The weak form will be only satisfied in an average sense over a volume \(\Omega\).
Boundary Conditions A more detailed coverage of B.C. entails calculus of variation, and derivation of the Euler equation associated with a potential.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\Gamma\) & Traction & Displ. & Math. & \multicolumn{3}{|c|}{Structural Mechanics} & DOF \\
\hline \(\Gamma\)
\(\Gamma\)
\(\Gamma_{u}\) & \[
\begin{aligned}
& t^{V} \\
& t^{?}
\end{aligned}
\] & \[
\begin{aligned}
& u^{?} \\
& u^{v}
\end{aligned}
\] & Dirichlet Neuman & \begin{tabular}{l}
Essential \\
Natural
\end{tabular} & Primary Secondary & Kinematic Static & \begin{tabular}{l}
Free \\
Fixed/Constrained
\end{tabular} \\
\hline
\end{tabular}

\section*{Virtual Work}

\section*{Principle of Virtual Work and Complementary Virtual Work}
- The principles of Virtual Work and Complementary Virtual Work relate force systems which satisfy the requirements of equilibrium deformation systems which satisfy the requirement of compatibility.
\begin{tabular}{|c||c|c||c|c||c|c||}
\hline \hline \multicolumn{1}{|c|}{} & \multicolumn{2}{c|}{ Force } & \multicolumn{2}{c|}{ Deformation } & IVW & Formulation \\
\hline & External & Internal & External & Internal & & \\
\hline 1 & \(\delta \overline{\mathrm{p}}\) & \(\delta \overline{\boldsymbol{\sigma}}\) & du & \(d \varepsilon\) & \(\delta \bar{U}^{*}\) & CVW/Flexibility \\
2 & dp & \(\mathrm{d} \boldsymbol{\sigma}\) & \(\delta \overline{\mathrm{u}}\) & \(\delta \bar{\varepsilon}\) & \(\delta \bar{U}\) & VW/Stiffness \\
\hline \hline
\end{tabular}
- The principle of Complementary Virtual Work (of Principle of Virtual Force) is what we have already seen previously (unit force method).
- The Principle of Virtual work is new, and is at the basis of the finite element method.

\section*{Virtual Work}

\section*{Approaches}

\section*{Approaches}
\begin{tabular}{||l||c|c||c|c||c||}
\hline \hline Principle & Real & BC & Virtual & BC & Proves \\
\hline VW & Equilibrium \(\Omega\) & Natural \(\Gamma_{t}\) & Kinematic \(\Omega\) & Essential \(\Gamma_{u}\) & \(\delta \bar{U}=\delta \bar{W}_{e}\) \\
CVW & Kinematic \(\Omega\) & Essential \(\Gamma_{u}\) & Equilibrium \(\Omega\) & Natural \(\Gamma_{t}\) & \(\delta \bar{U}^{*}=\delta \bar{W}_{e}^{*}\) \\
\hline \hline
\end{tabular}
\begin{tabular}{||l||c|c|c|c|c||}
\hline \hline Principle & \begin{tabular}{c} 
Primary Variable \\
Real \& Virtual
\end{tabular} & \begin{tabular}{c} 
Satisfying \\
(Strong)
\end{tabular} & \begin{tabular}{c} 
on \\
BC
\end{tabular} & Apply & \begin{tabular}{c} 
Weak \\
Form of
\end{tabular} \\
\hline VW & Displacements & Kinematic & Essential & \(\delta \bar{U}=\delta \bar{W}_{e}\) & Equilibrium \\
CVW & Forces & Equilibrium & Natural & \(\delta \bar{U}^{*}=\delta \bar{W}_{e}^{*}\) & Kinematic \\
\hline \hline
\end{tabular}


\section*{Principle of Virtual Work; Derivation I}
(1) Derivation of the principle of virtual work starts with the assumption that forces are in equilibrium and satisfaction of the natural (tractions) boundary conditions.
\[
\begin{align*}
& \frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+b_{x}=0  \tag{14}\\
& \frac{\partial \sigma_{y y}}{\partial y}+\frac{\partial \tau_{x y}}{\partial x}+b_{y}=0 \tag{15}
\end{align*}
\]
where b representing the body force.
(2) In matrix form, this can be rewritten as
\[
\left[\begin{array}{ccc}
\frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y}  \tag{16}\\
0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{array}\right]\left\{\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\tau_{x y}
\end{array}\right\}+\left\{\begin{array}{l}
b_{x} \\
b_{y}
\end{array}\right\}=0
\]
or Strong Form
\[
\begin{equation*}
\underbrace{\mathrm{L}^{T} \boldsymbol{\sigma}}_{\nabla \cdot \boldsymbol{\sigma}}+\mathrm{b}=0 \tag{17}
\end{equation*}
\]

\section*{Principle of Virtual Work; Derivation II}
(3) The surface \(\Gamma\) of the solid can be decomposed into two parts \(\Gamma_{t}\) and \(\Gamma_{u}\)
\[
\Gamma=\Gamma_{t} \cup \Gamma_{u}
\]
where tractions and displacements are respectively specified.
(4) Essential B.C.
\[
\begin{equation*}
\mathrm{t}-\hat{\mathrm{t}}=0 \text { on } \Gamma_{t} \text { Essential B.C. } \tag{18}
\end{equation*}
\]
where \(\hat{t}\) are known traction along \(\Gamma_{t}\).
(5) Equations 17 and 18 constitute a statically admissible stress field.
(6) We are going to enforce satisfaction of the local condition of equilibrium Eq. 17 and the static boundary condition Eq. 18 in global (or integral/weak) form. This is accomplished by multiplying both equations by a virtual displacement \(\delta \bar{u}\)

\section*{Principle of Virtual Work; Derivation III}
(7) The Weak Form is thus given by
\[
\begin{equation*}
-\int_{\Omega} \delta \overline{\mathrm{u}}^{T} \underbrace{\left(\mathrm{~L}^{T} \sigma+\mathrm{b}\right)}_{\text {Equil. }} \mathrm{d} \Omega+\int_{\Gamma_{t}} \delta \overline{\mathrm{u}}^{T} \underbrace{(\mathrm{t}-\hat{\mathrm{t})}}_{\text {Essential B.C. }} \mathrm{d} \Gamma=0 \tag{19}
\end{equation*}
\]
(8) An important requirement on the (virtual) displacements, is that they must satisfy the requirement of compatibility (by contrast, in the principle of complementary virtual work, stresses had to be statically admissible). The virtual displacements must satisfy the essential boundary condition:
\[
\begin{equation*}
\mathrm{L} \delta \overline{\mathrm{u}}=\operatorname{div} \delta \overline{\mathrm{u}}=\delta \bar{\varepsilon} \tag{20}
\end{equation*}
\]
(9) Focus on \(\int_{\Gamma_{t}} \delta \bar{u}^{T}\) td \(\Gamma\)
\[
\begin{equation*}
\int_{\Gamma_{t}} \delta \overline{\mathrm{u}}^{T} \mathrm{td} \Gamma=\int_{\Gamma} \delta \overline{\mathrm{u}}^{T} \mathrm{td} \Gamma-\int_{\Gamma_{u}} \delta \overline{\mathrm{u}}^{T} \mathrm{td} \Gamma \tag{21}
\end{equation*}
\]
and we seek to convert into a volume integral through Gauss Theorem.

\section*{Principle of Virtual Work; Derivation IV}
(10) Recall the definition of the traction vector
\[
\begin{equation*}
\mathrm{t}=\sigma . \mathrm{n} \quad \text { or } \quad t_{i}=\sigma_{i j} n_{j} \tag{22}
\end{equation*}
\]
applying Gauss theorem we obtain
\[
\begin{align*}
\int_{\Gamma} \delta \overline{\mathrm{u}}^{T} \mathrm{td} \Gamma & =\int_{\Gamma}\left(\delta \overline{\mathrm{u}}^{T} \sigma\right) \mathrm{nd} \Gamma=\int_{\Omega} \operatorname{div}\left(\delta \overline{\mathrm{u}}^{T} \sigma\right) \mathrm{d} \Omega  \tag{23}\\
& =\int_{\Omega} \operatorname{div} \delta \overline{\mathrm{u}}^{T} \sigma \mathrm{~d} \Omega+\int_{\Omega} \delta \overline{\mathrm{u}}^{T} \operatorname{div} \sigma \mathrm{~d} \Omega \tag{24}
\end{align*}
\]

However, \(\operatorname{div} \sigma=L^{T} \sigma\) thus
\[
\begin{equation*}
\int_{\Gamma} \delta \bar{u}^{T} \mathrm{td} \Gamma=\int_{\Omega} \operatorname{div} \delta \overline{\mathrm{u}}^{T} \sigma \mathrm{~d} \Omega+\int_{\Omega} \delta \overline{\mathrm{u}}^{T} \mathrm{~L}^{T} \sigma \mathrm{~d} \Omega \tag{25}
\end{equation*}
\]

\section*{Principle of Virtual Work; Derivation V}
(11) Following some skipped exciting derivation, the above equation yields the Principle of Virtual Work (Displacements)
\[
\begin{equation*}
\underbrace{\int_{\Omega} \delta \bar{\varepsilon}^{T} \sigma \mathrm{~d} \Omega}_{-\delta \bar{W}_{i}=\delta \bar{U}_{i}} \underbrace{-\int_{\Omega} \delta \overline{\mathrm{u}}^{T} \mathrm{bd} \Omega-\int_{\Gamma_{t}} \delta \overline{\mathrm{u}}^{T} \hat{\mathrm{t} d} \Gamma}_{-\delta \bar{W}_{e}}=0 \Rightarrow \delta \bar{U}_{i}=\delta \bar{W}_{e} \tag{26}
\end{equation*}
\]

A deformable system is in equilibrium (Eq. 17) if the sum of the external virtual work and the internal virtual work is zero for virtual displacements \(\delta \bar{u}\) that satisfy the kinematic equation and kinematic boundary conditions (Eq. 20).
(12) For one dimensional elements, this reduces to
\[
\begin{equation*}
\underbrace{\int \sigma \delta \bar{\varepsilon} \mathrm{d} \Omega}_{\delta \bar{U}}=\underbrace{P \delta \bar{V}}_{\delta \bar{W}} \tag{27}
\end{equation*}
\]

\section*{Example; PVW I}

- In applying the PVW, we need to have an approximation of the actual displacement \(v\) and the virtual one \(\delta \bar{v}\). Those expressions must satisfy the essential boundary conditions (displacement and slope for beams).
- The approximate solutions proposed to this problem are
\[
\begin{align*}
& v=\left(1-\cos \frac{\pi x}{2 L}\right) v_{2}  \tag{28}\\
& v=\left[3\left(\frac{x}{L}\right)^{2}-2\left(\frac{x}{L}\right)^{3}\right] v_{2} \tag{29}
\end{align*}
\]
- They satisfy the essential B.C:
\[
v=v^{\prime}=0 \text { at } x=0 \text {. }
\]
- We consider 3 cases:
\begin{tabular}{||c|c|c||}
\hline \hline Solution & Real & Virtual \\
\hline 1 & Eqn. 50 & Eqn. 51 \\
2 & Eqn. 50 & Eqn.50 \\
3 & Eqn. 51 & Eqn. 51 \\
\hline
\end{tabular}

\section*{Example; PVW II}
- Application of the PVW requires evaluation of the functions second derivatives.
\begin{tabular}{|c|c|c|}
\hline & Trigonometric (Eqn. 50) & Polynomial (Eqn. 51) \\
\hline \(v\) & \(\left(1-\cos \frac{\pi x}{2 L}\right) v_{2}\) & \(\left.3\left(\frac{x}{L}\right)^{2}-2\left(\frac{x}{L}\right)^{3}\right] v_{2}\) \\
\hline \(\delta \bar{v}\) & \(\left(1-\cos \frac{\pi x}{2 L}\right) \delta \bar{V}_{2}\) & \(\left.3\left(\frac{x}{L}\right)^{2}-2\left(\frac{x}{L}\right)^{3}\right] \delta \bar{V}_{2}\) \\
\hline \(v^{\prime \prime}\) & \(\frac{\pi^{2}}{4 L^{2}} \cos \frac{\pi x}{2 L} V_{2}\) & \(\left(\frac{6}{L^{2}}-\frac{12 x}{L^{3}}\right) V_{2}\) \\
\hline \(\delta \bar{v}^{\prime \prime}\) & \(\frac{\pi^{2}}{4 L^{2}} \cos \frac{\pi x}{2 L} \delta \bar{V}_{2}\) & \(\left[\frac{6}{L^{2}}-\frac{12 x}{L^{3}}\right] \delta \bar{V}_{2}\) \\
\hline \multicolumn{3}{|r|}{\(\delta \bar{U}=\int_{0}^{L} E I_{z} \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}} \frac{\mathrm{~d}^{2}(\delta \bar{v})}{\mathrm{d} x^{2}} \mathrm{~d} x ; \quad \delta \bar{W}=P_{2} \delta \bar{V}_{2}\)} \\
\hline
\end{tabular}

\section*{Example; PVW III}

Solution 1:
\[
\begin{aligned}
\delta \bar{U} & =\int_{0}^{L} \underbrace{\frac{\pi^{2}}{4 L^{2}} \cos \left(\frac{\pi x}{2 L}\right) v_{2}}_{V^{\prime \prime}} \underbrace{\left(\frac{6}{L^{2}}-\frac{12 x}{L^{3}}\right) \delta \bar{v}_{2}}_{\delta \bar{v}^{\prime \prime}} \underbrace{E I_{1}\left(1-\frac{x}{2 L}\right)}_{E I} \mathrm{~d} x \\
& =\frac{3 \pi E I_{1}}{2 L^{3}}\left[1-\frac{10}{\pi}+\frac{16}{\pi^{2}}\right] v_{2} \delta \bar{v}_{2} \\
\delta \bar{W} & =P_{2} \delta \bar{v}_{2}
\end{aligned}
\]
which yields:
\[
v_{2}=\frac{P_{2} L^{3}}{2.648 E I_{1}}
\]

\section*{Example; PVW IV}

Solution 2:
\[
\begin{aligned}
\delta \bar{U} & =\int_{0}^{L} \underbrace{\frac{\pi^{4}}{16 L^{4}} \cos ^{2}\left(\frac{\pi x}{2 L}\right) v_{2}} \underbrace{\delta \bar{v}_{2} E l_{1}\left(1-\frac{x}{2 L}\right)} \mathrm{d} x \\
& =\frac{\pi^{4} E l_{1}}{32 L^{3}}\left(\frac{3}{4}+\frac{1}{\pi^{2}}\right) v_{2} \delta \bar{v}_{2} \\
\delta \bar{W} & =P_{2} \delta \bar{v}_{2}
\end{aligned}
\]
which yields:
\[
v_{2}=\frac{P_{2} L^{3}}{2.57 E I_{1}}
\]

\section*{Example; PVW V}

Solution 3:
\[
\begin{aligned}
\delta \bar{U} & =\int_{0}^{L}\left(\frac{6}{L^{2}}-\frac{12 x}{L^{3}}\right)^{2}\left(1-\frac{x}{2 L}\right) E l_{1} \delta \bar{v}_{2} v_{2} \mathrm{~d} x \\
& =\frac{9 E l}{L^{3}} v_{2} \delta \bar{V}_{2} \\
\delta \bar{W} & =P_{2} \delta \bar{v}_{2}
\end{aligned}
\]
which yields:
\[
v_{2}=\frac{P_{2} L^{3}}{9 E I_{1}}
\]

\section*{Virtual Work}

Summary

\section*{Summary}
\begin{tabular}{||l||c|c||c|c||c||}
\hline \hline Principle & Real & BC & Virtual & BC & Proves \\
\hline VW & Equilibrium \(\Omega\) & Natural \(\Gamma_{t}\) & Kinematic \(\Omega\) & Essential \(\Gamma_{u}\) & \(\delta \bar{U}=\delta \bar{W}_{e}\) \\
CVW & Kinematic \(\Omega\) & Essential \(\Gamma_{u}\) & Equilibrium \(\Omega\) & Natural \(\Gamma_{t}\) & \(\delta \bar{U}^{*}=\delta \bar{W}_{e}^{*}\) \\
\hline \hline
\end{tabular}
\begin{tabular}{||l||c|c|c|c|c||}
\hline \hline Principle & \begin{tabular}{c} 
Primary Variable \\
Real \& Virtual
\end{tabular} & \begin{tabular}{c} 
Satisfying \\
(Strong)
\end{tabular} & \begin{tabular}{c} 
on \\
BC
\end{tabular} & Apply & \begin{tabular}{c} 
Weak \\
Form of
\end{tabular} \\
\hline VW & Displacements & Kinematic & Essential & \(\delta \bar{U}=\delta \bar{W}_{e}\) & Equilibrium \\
CVW & Forces & Equilibrium & Natural & \(\delta \bar{U}^{*}=\delta \bar{W}_{e}^{*}\) & Kinematic \\
\hline \hline
\end{tabular}


\section*{Virtual Work}

\section*{Tonti Diagrams}

\section*{Tonti Diagrams}


\section*{Potential Energy}

\section*{Principle of Total and Complementary Potential Energy}
- A completely different but related approach will now be presented.
- Rather than convoluting real and virtual quantities, we will simply seek to minimize the total (or complementary) potential energy.
- Those two principles will be derived from those of the virtual strain energy (and the inverse operation is naturally possible).
- The \(\delta\) operator will assume its full mathematical meaning: differential, whereas before it implied a virtual quantity.

\section*{Total Potential Energy I}
- If \(U_{0}\) is a potential function, we take its differential \(\delta U_{0}=\frac{\partial U_{0}}{\partial \varepsilon_{i j}} \delta \varepsilon_{i j}\) and the fundamental theorem of calculus states that \(\frac{\mathrm{d}}{\mathrm{d} x} \int_{0}^{x} f(u) \mathrm{d} u=f(x)\). Thus
\[
\left.\begin{array}{rl}
\frac{\delta U_{0}}{\delta \varepsilon_{i j}} & =\frac{\partial U_{0}}{\partial \varepsilon_{i j}}  \tag{30}\\
U_{0} & =\int_{0}^{\varepsilon_{i j}} \sigma_{i j} \mathrm{~d} \varepsilon_{i j} \\
\sigma_{i j} \mathrm{~d} \varepsilon_{i j} & =\sigma_{i j}
\end{array}\right\} \frac{\delta U_{0}}{\delta \varepsilon_{i j}}=\sigma_{i j}
\]
- We now define the variation of the strain energy density at a point (Note that the variation of strain energy density is, \(\delta U_{0}=\sigma_{i j} \delta \varepsilon_{i j}\), and the variation of the strain energy itself is \(\delta U=\int_{\Omega} \delta U_{0} \mathrm{~d} \Omega\).) Thus
\[
\begin{equation*}
\delta U_{0}=\sigma_{i j} \delta \varepsilon_{i j} \tag{31}
\end{equation*}
\]

\section*{Total Potential Energy II}
- The principle of virtual work \(\int_{\Omega} \delta \bar{\varepsilon}_{i j} \sigma_{i j} \mathrm{~d} \Omega-\int_{\Omega} \delta \bar{u}_{i} b_{i} \mathrm{~d} \Omega-\int_{\Gamma_{t}} \delta \bar{u}_{i} \hat{t}_{i} \mathrm{~d} \Gamma=0\) can now be rewritten as
\[
\begin{equation*}
\int_{\Omega} \delta U_{0} \mathrm{~d} \Omega-\int_{\Omega} \delta u_{i} b_{i} \mathrm{~d} \Omega-\int_{\Gamma_{t}} \delta u_{i} \hat{t}_{\mathrm{i}} \mathrm{~d} \Gamma=0 \tag{32}
\end{equation*}
\]
- If nor the surface tractions, nor the body forces alter their magnitudes or directions during deformation, the previous equation can be rewritten as

\section*{Total Potential Energy III}
- Comparing this last equation, with \(\Pi \stackrel{\text { def }}{=} U-\mathcal{W}_{e}=\int_{\Omega} U_{0} \mathrm{~d} \Omega-\left(\int_{\Omega} \mathrm{ubd} \Omega+\int_{\Gamma_{t}} \mathrm{utd} \Gamma+\mathrm{uP}\right)\) we show that the variation of the potential energy is zero.
\[
\begin{equation*}
\delta \Pi=0 \tag{34}
\end{equation*}
\]
- The principle of stationary value of the potential energy can now be stated as follows:

Of all kinematically admissible deformations (displacements satisfying the essential boundary conditions), the actual deformations (those which correspond to stresses which satisfy equilibrium) are the ones for which the total potential energy assumes a stationary value.

\section*{Total Potential Energy IV}
- For problems involving multiple degrees of freedom,
\[
\begin{equation*}
\delta \Pi=\frac{\partial \Pi}{\partial \Delta_{1}} \delta \Delta_{1}+\frac{\partial \Pi}{\partial \Delta_{2}} \delta \Delta_{2}+\ldots+\frac{\partial \Pi}{\partial \Delta_{n}} \delta \Delta_{n}=0 \tag{35}
\end{equation*}
\]
or \(n\) equations with \(n\) unknowns.

\section*{Potential Energy}

\section*{Total Potential Energy}

\section*{Example 1}

\section*{\(\mathrm{K}=500 \mathrm{lbf} / \mathrm{in}\) \\ WWMWh}


Obviously, similar result could have been obtained from statics.
\[
u=0.2 \mathrm{in}
\]

\section*{Example 21}

\({ }^{\mathrm{L} / 4} \mathrm{~L}^{\mathrm{L} / 4} \mathrm{~L} / 4_{\mathrm{L} / 4}\)
- Let us assume that
\[
v=a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4}
\]
- This solution must satisfy the essential B.C.: \(v=v^{\prime}=0\) at \(x=0\); Secondly, \(v=v_{\text {max }}\) and \(v^{\prime}=0\) at \(x=\frac{L}{2}\).
- This will be enforced by determining the four parameters in terms of a single unknown quantity (4 equations and 4 B.C.'s):
\[
\begin{array}{lll}
@ x=0 & v=0 & \Rightarrow a_{4}=0 \\
@ x=0 & \frac{\mathrm{~d} v}{\mathrm{~d} x}=0 & \Rightarrow a_{3}=0 \\
@ x=\frac{L}{2} & v=v_{\max } & \Rightarrow v_{\max }=a_{1} \frac{L^{3}}{8}+ \\
@ x=\frac{L}{2} & \frac{\mathrm{~d} v}{\mathrm{~d} x}=0 & \Rightarrow \frac{3}{4} a_{1} L^{2}+a_{2} L=
\end{array}
\]
- upon substitution, we obtain:
\[
\begin{equation*}
v=\left(-\frac{16 x^{3}}{L^{3}}+\frac{12 x^{2}}{L^{2}}\right) v_{\max } \tag{36}
\end{equation*}
\]

\section*{Example 2 II}
- Hence, in this problem the solution is in terms of only one unknown variable \(v_{\text {max }}\).
- In order to apply the principle of Minimum Potential Energy we should evaluate:

Internal Strain Energy \(U\) : for flexural members, expressed in terms of displacements (a must in this method) is given by
\[
\begin{aligned}
& U=2\left[\frac{1}{2} \int_{0}^{L / 2} E\left(\frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}\right)^{2} I_{z} \mathrm{~d} x\right] \text { thus we must evaluate } \frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}: \\
& \frac{\mathrm{d} v}{\mathrm{~d} x}=\left(-\frac{48 x^{2}}{L^{3}}+\frac{24 x}{L^{2}}\right) v_{\max } ; \quad \frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}=-\frac{24}{L^{2}}\left(1-\frac{4 x}{L}\right) v_{\max }
\end{aligned}
\]

Substituting
\[
\frac{U}{2}=\frac{E}{2} \int_{0}^{\frac{L}{4}} \frac{24^{2}}{L^{4}}\left(1-\frac{4 x}{L}\right)^{2} v_{\max }^{2} \frac{I_{z}}{2} \mathrm{~d} x+\frac{E}{2} \int_{\frac{L}{4}}^{\frac{L}{2}} \frac{24^{2}}{L^{4}}\left(1-\frac{4 x}{L}\right)^{2} v_{\max }^{2} I_{z}
\]

Potential of the External Work \(\mathcal{W}_{e}\) : For a point load, \(\mathcal{W}_{e}=P V_{\max }\)

\section*{Example 2 III}
- Finally,
\[
\frac{\partial \Pi}{\partial v_{\max }}=0 ; \quad \frac{\partial U}{\partial v_{\max }}-\frac{\partial \mathcal{W}_{7}}{\partial v_{\max }}=0 \quad \frac{144 E I_{z}}{L^{3}} v_{\max }=P \quad \Rightarrow v_{\max }=\frac{P L^{3}}{144 E I_{2}}
\]

\section*{Total Complementary Potential Energy}

\section*{Mildly relevant, not covered.}

\section*{Rayleigh Ritz; Derivation I}
- In the minimization of the total potential energy, we expressed the potential energy in terms of physical quantities (displacements/rotations) at certain nodes, and then stated that the potential is stationary, i.e.
\[
\begin{equation*}
\delta \Pi=\frac{\partial \Pi}{\partial \Delta_{1}} \delta \Delta_{1}+\frac{\partial \Pi}{\partial \Delta_{2}} \delta \Delta_{2}+\ldots+\frac{\partial \Pi}{\partial \Delta_{n}} \delta \Delta_{n} \tag{37}
\end{equation*}
\]
- A more general (and still approximate) approach is to express the displacements, and thus the potential in terms of unknown coefficients in a function such as:
\[
\begin{equation*}
u_{1} \approx \sum_{i=1}^{n} c_{i}^{1} \phi_{i}^{1}+\phi_{0}^{1} \quad u_{2} \approx \sum_{i=1}^{n} c_{i}^{2} \phi_{i}^{2}+\phi_{0}^{2} \quad u_{3} \approx \sum_{i=1}^{n} c_{i}^{3} \phi_{i}^{3}+\phi_{0}^{3} \tag{38}
\end{equation*}
\]
where \(c_{i}^{j}\) denote undetermined parameters, and \(\phi\) are appropriate functions of positions.

\section*{Rayleigh Ritz; Derivation II}
- In the PTPE, we had a single displacement field in terms of \(n\) variables (unknown displacements), now we have multiple expressions of the displacement field in terms of \(n\) coefficients \(c\).
- \(\phi\) should satisfy three conditions
(1) Be continuous.
(2) Must be admissible, i.e. satisfy the essential boundary conditions (the natural boundary conditions are included already in the variational statement. However, if \(\phi\) also satisfy them, then better results are achieved).
(3) Must be independent and complete (which means that the exact displacement and their derivatives that appear in \(\Pi\) can be arbitrary matched if enough terms are used. Furthermore, lowest order terms must also be included).
- In general \(\phi\) is a polynomial or trigonometric function.

\section*{Rayleigh Ritz; Derivation III}
- We determine the parameters \(c_{i}^{j}\) satisfying the stationarity of \(\Pi\) for arbitrary variations \(\delta c_{j}^{j}\). or
\(\delta \Pi\left(u_{1}, u_{2}, u_{3}\right)=\sum_{i=1}^{n}\left(\frac{\partial \Pi}{\partial c_{i}^{1}} \delta c_{i}^{1}+\frac{\partial \Pi}{\partial c_{i}^{2}} \delta c_{i}^{2}+\frac{\partial \Pi}{\partial c_{i}^{3}} \delta c_{i}^{3}\right)=0\) for arbitrary and independent variations of \(\delta c_{i}^{1}, \delta c_{i}^{2}\), and \(\delta c_{i}^{3}\), thus it follows that
\[
\begin{equation*}
\frac{\partial \Pi}{\partial c_{i}^{j}}=0 \quad i=1,2, \cdots, n ; j=1,2,3 \tag{39}
\end{equation*}
\]
- Thus we obtain a total of \(3 n\) linearly independent simultaneous equations. From these displacements, we can then determine strains and stresses (or internal forces). Hence we have replaced a problem with an infinite number of d.o.f by one with a finite number.

\section*{Example}

\section*{Rayleigh Ritz; Example I}

let us assume a solution given by the following infinite series:
\[
\begin{equation*}
v=a_{1} x(L-x)+a_{2} x^{2}(L-x)^{2}+\ldots \tag{40}
\end{equation*}
\]
for this particular solution, let us retain only the first term:
\[
\begin{equation*}
v=a_{1} x(L-x) \tag{41}
\end{equation*}
\]

We observe that:
(1) Contrarily to the previous example problem the essential (or geometric) B.C. are immediately satisfied at both \(x=0\) and \(x=L\).

\section*{Rayleigh Ritz; Example II}
(2) We can keep \(v\) in terms of \(a_{1}\) and take \(\frac{\partial \Pi}{\partial a_{1}}=0\) (If we had left \(v\) in terms of \(a_{1}\) and \(a_{2}\) we should then have to take both \(\frac{\partial \Pi}{\partial a_{1}}=0\), and \(\frac{\partial \Pi}{\partial a_{2}}=0\) ).
(8) Or we can solve for \(a_{1}\) in terms of \(v_{\max }\) at \(x=\frac{L}{2}\) and take \(\frac{\partial \Pi}{\partial v_{\max }}=0\).
\[
\begin{align*}
\Pi & =U-\mathcal{W}_{7}  \tag{42}\\
& =\int_{0}^{L} \frac{E I_{z}}{2}\left(\frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}}\right)^{2} \mathrm{~d} x-\int_{0}^{L} w v(x) \mathrm{d} x  \tag{43}\\
& =\int_{0}^{L}\left[\frac{E I_{z}}{2}\left(-2 a_{1}\right)^{2}-a_{1} w x(L-x)\right] \mathrm{d} x  \tag{44}\\
& =\frac{E I_{z}}{2} 4 a_{1}^{2} L-a_{1} w \frac{L^{3}}{2}+a_{1} w \frac{L^{3}}{3}  \tag{45}\\
& =2 a_{1}^{2} E I_{z} L-\frac{a_{1} w L^{3}}{6} \tag{46}
\end{align*}
\]

\section*{Rayleigh-Ritz Method}

\section*{Example}

\section*{Rayleigh Ritz; Example III}

If we now take \(\frac{\partial \Pi}{\partial a_{1}}=0\), we would obtain:
\[
\begin{align*}
4 a_{1} E I_{z} L-\frac{w L^{3}}{6} & =0  \tag{47}\\
a_{1} & =\frac{w L^{2}}{24 E I_{z}} \tag{48}
\end{align*}
\]

Having solved the displacement field in terms of \(a_{1}\), we now determine \(v_{\max }\) at \(\frac{L}{2}\) :
\[
\begin{equation*}
v=\underbrace{\frac{w L^{4}}{24 E I_{z}}}_{a_{1}}\left(\frac{x}{L}-\frac{x^{2}}{L^{2}}\right)=\sqrt{\frac{w L^{4}}{96 E I_{z}}} \tag{49}
\end{equation*}
\]

This is to be compared with the exact value of \(v_{\max }^{\text {exact }}=\frac{5}{384} \frac{w L^{4}}{E I_{z}}=\frac{w L^{4}}{76.8 E I_{z}}\) which constitutes \(\approx 17 \%\) error.
Note: If two terms were retained, then we would have obtained: \(a_{1}=\frac{w L^{2}}{24 E I_{z}}\) and \(a_{2}=\frac{w}{24 E I_{z}}\) and \(v_{\max }\) would be equal to \(v_{\max }^{\text {exact }}\). (Why?)

\section*{Rayleigh-Ritz Method}

\section*{Example}

\section*{Example; PVW I}

In applying the PVW, we need to have an approximation of the actual displacement \(v\) and the virtual one \(\delta v\). Those expressions must satisfy the essential boundary conditions (displacement and slope for beams).


The approximate solutions proposed to this problem are
\[
\begin{align*}
& v=\left(1-\cos \frac{\pi x}{2 L}\right) v_{2}  \tag{50}\\
& v=\left[3\left(\frac{x}{L}\right)^{2}-2\left(\frac{x}{L}\right)^{3}\right] v_{2} \tag{51}
\end{align*}
\]

They satisfy the essential B.C: \(v=v^{\prime}=0\) at \(x=0\).
We consider 3 cases:
\begin{tabular}{|c|c|c|}
\hline \hline Solution & Real & Virtual \\
\hline 1 & Eqn. 50 & Eqn. 51 \\
2 & Eqn. 50 & Eqn. 50 \\
3 & Eqn. 51 & Eqn. 51 \\
\hline \hline
\end{tabular}

\section*{Rayleigh-Ritz Method}

\section*{Example}

\section*{Example; PVW II}

Application of the PVW requires evaluation of the functions second derivatives.
\begin{tabular}{||l|c|c||}
\hline \hline & Trigonometric (Eqn. 50) & Polynomial (Eqn. 51) \\
\hline\(v\) & \(\left(1-\cos \frac{\pi x}{2 L}\right) v_{2}\) & {\(\left[3\left(\frac{x}{L}\right)^{2}-2\left(\frac{x}{L}\right)^{3}\right] v_{2}\)} \\
\hline\(\delta v\) & \(\left(1-\cos \frac{\pi x}{2 L}\right) \delta v_{2}\) & \(\left.3\left(\frac{x}{L}\right)^{2}-2\left(\frac{x}{L}\right)^{3}\right] \delta v_{2}\) \\
\hline \hline\(v^{\prime \prime}\) & \(\frac{\pi^{2}}{4 L^{2}} \cos \frac{\pi x}{2 L} v_{2}\) & \(\left(\frac{6}{L^{2}}-\frac{12 x}{L^{3}}\right) v_{2}\) \\
\hline\(\delta v^{\prime \prime}\) & \(\frac{\pi^{2}}{4 L^{2}} \cos \frac{\pi x}{2 L} \delta v_{2}\) & {\(\left[\frac{6}{L^{2}}-\frac{12 x}{L^{3}}\right] \delta v_{2}\)} \\
\hline \hline
\end{tabular}
\[
\delta U=\int_{0}^{L} E I_{z} \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}} \frac{\mathrm{~d}^{2}(\delta v)}{\mathrm{d} x^{2}} \mathrm{~d} x ; \quad \delta W=P_{2} \delta v_{2}
\]

\section*{Solution 1:}
\[
\begin{aligned}
& \delta U=\int_{0}^{L} \underbrace{\frac{\pi^{2}}{4 L^{2}} \cos \left(\frac{\pi x}{2 L}\right) v_{2}}_{v^{\prime \prime}} \underbrace{\left(\frac{6}{L^{2}}-\frac{12 x}{L^{3}}\right) \delta v_{2}}_{\delta v^{\prime \prime}} \underbrace{E I_{1}\left(1-\frac{x}{2 L}\right)}_{E I} \mathrm{~d} x=\frac{3 \pi E I_{1}}{2 L^{3}}\left[1-\frac{10}{\pi}+\frac{16}{\pi^{2}}\right] v_{2} \delta v_{2} \\
& \delta W=P_{2} \delta v_{2}
\end{aligned}
\]

\section*{Rayleigh-Ritz Method}

\section*{Example}

\section*{Example; PVW III}
which yields:
\[
v_{2}=\frac{P_{2} L^{3}}{2.648 E I_{1}}
\]

Solution 2:
\[
\begin{aligned}
\delta U & =\int_{0}^{L} \underbrace{\frac{\pi^{4}}{16 L^{4}} \cos ^{2}\left(\frac{\pi x}{2 L}\right) v_{2}} \underbrace{\delta v_{2} E l_{1}\left(1-\frac{x}{2 L}\right)} \mathrm{d} x=\frac{\pi^{4} E l_{1}}{32 L^{3}}\left(\frac{3}{4}+\frac{1}{\pi^{2}}\right) v_{2} \delta v_{2} \\
\delta W & =P_{2} \delta v_{2}
\end{aligned}
\]
which yields:
\[
v_{2}=\frac{P_{2} L^{3}}{2.57 E I_{1}}
\]

Solution 3:
\[
\begin{aligned}
\delta U & =\int_{0}^{L}\left(\frac{6}{L^{2}}-\frac{12 x}{L^{3}}\right)^{2}\left(1-\frac{x}{2 L}\right) E l_{1} \delta v_{2} v_{2} \mathrm{~d} x=\frac{9 E I}{L^{3}} v_{2} \delta v_{2} \\
\delta W & =P_{2} \delta v_{2}
\end{aligned}
\]
which yields:
\[
v_{2}=\frac{P_{2} L^{3}}{9 E I_{1}}
\]

\section*{Rayleigh-Ritz Method}

\section*{Summary}
\begin{tabular}{||l||c|c|c||c|c|c||c||}
\hline \multirow{2}{*}{ Princ. } & \multicolumn{4}{c|}{ Real/Weak } & \multicolumn{3}{c|}{ Virtual/Strong } \\
\multirow{2}{*}{ Proves } \\
\cline { 2 - 6 } & Var. & Satisfies & BC & Var. & Satisfies & BC & \\
\hline VW & \(\boldsymbol{\sigma}\) & Equil. & \(\Gamma_{t}\) & u & Kinem. & \(\Gamma_{u}\) & \(\delta U=\delta W_{e}\) \\
CVW & u & Kinem. & \(\Gamma_{u}\) & \(\boldsymbol{\sigma}\) & Equil. & \(\Gamma_{t}\) & \(\delta U^{*}=\delta W_{e}^{*}\) \\
\hline \hline
\end{tabular}
\(\Gamma_{t}:\) Natural B.C.; \(\Gamma_{u}\) : Essential B.C.
Note: in VW displacements do not satisfy equilibrium, \(\left(M \neq E I \frac{d^{2} v}{d x^{2}}\right)\); more about this later.

\section*{Rayleigh-Ritz Method}

\section*{Tonti Diagram}

\section*{Tonti Diagram}


\section*{Shape Functions; Definitions I}

Expression for the generalized displacement (translation or rotation), \(\Delta\) at any point in terms of all its known nodal ones, \(\bar{\Delta}\).
\[
\Delta=\sum_{i=1}^{n} N_{i}(x) \bar{\Delta}_{i}=\lfloor\mathrm{N}(x)\rfloor\{\bar{\Delta}\}
\]
\(\bar{\Delta}_{i}\) is the (generalized) nodal displacement corresponding to d.o.f \(i\)
(1) \(N_{i}\) is an interpolation function, or shape function which has the following characteristics: \(N_{i}=1\) at node \(i\) and \(N_{i}=0\) at node \(j\) where \(i \neq j\).
(2) Summation of \(N\) at any point is equal to unity \(\Sigma N=1\).

Shape functions should
(1) Be continuous, of the type required by the variational principle.
(2) Exhibit rigid body motion (i.e.
\[
\left.v=a_{1}+\ldots\right)
\]
(3) Exhibit constant strain.

Shape functions should be complete, and meet the same requirements as the coefficients of the Rayleigh Ritz method. Shape functions can often be written in non-dimensional coordinates (i.e. \(\xi=\frac{x}{\partial}\) ). This will be exploited later by the so-called isoparametric elements.

\section*{Generalization}
\[
u=a_{1} x+a_{2}=\underbrace{\left\lfloor\begin{array}{ll}
x & 1
\end{array}\right\rfloor}_{[\mathrm{p}]} \underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}}_{\{\mathrm{a}\}}
\]
where [ p ] corresponds to the polynomial approximation, and \(\{\mathrm{a}\}\) is the coefficient vector. We next apply the boundary conditions:
\[
\underbrace{\left\{\begin{array}{l}
\bar{u}_{1} \\
\bar{u}_{2}
\end{array}\right\}}_{\{\bar{\Delta}\}}=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
L & 1
\end{array}\right]}_{[\mathcal{L}]} \underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}}_{\{\mathrm{a}\}}
\]

Following inversion of \([\mathcal{L}]\), this leads to
\[
\underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}}_{\{\mathrm{a}\}}=\underbrace{\frac{1}{L}\left[\begin{array}{cc}
-1 & 1 \\
L & 0
\end{array}\right]}_{[\mathcal{L}]^{-1}} \underbrace{\left\{\begin{array}{l}
\bar{u}_{1} \\
\bar{u}_{2}
\end{array}\right\}}_{\left\{\overline{\Delta_{\}}}\right\}}
\]

Substituting this last equation, we obtain:
\[
u=\underbrace{\left\lfloor\left(1-\frac{x}{L}\right)\right.}_{\underbrace{[\mathrm{p}][\mathcal{L}]^{-1}}_{[\mathrm{N}]}} \frac{x}{L}\rfloor] . \underbrace{\left\{\begin{array}{c}
\bar{u}_{1} \\
\bar{u}_{2}
\end{array}\right\}}_{\left\{\overline{\Delta_{\}}}\right\}}
\]

Hence, the shape functions \([\mathrm{N}]\) can be directly obtained from
\[
[\mathrm{N}]=[\mathrm{p}][\mathcal{L}]^{-1}
\]

\section*{Shape Functions}

\section*{\(C^{1}\), Flexural Shape Functions I}


We have 4 d.o.f.'s, \(\{\Delta\}_{4 \times 1}\) : and hence will need 4 shape functions, \(N_{1}\) to \(N_{4}\), and those will be obtained through 4 boundary conditions. Therefore we need to assume a polynomial approximation for displacements of degree 3 .
\[
\begin{aligned}
& v=a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4} \\
& \theta=\frac{d v}{d x}=3 a_{1} x^{2}+2 a_{2} x+a_{3}
\end{aligned}
\]

Note that \(v\) can be rewritten as:
\[
\left\{\begin{array}{c}
v \\
\frac{\mathrm{~d} v}{\mathrm{~d} x}
\end{array}\right\}=\left[\begin{array}{cccc}
x^{3} & x^{2} & x & 1 \\
3 x^{2} & 2 x & 1 & 0
\end{array}\right] \underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}}_{\{\mathrm{a}\}}
\]

\section*{Shape Functions}

\section*{\(C^{1}\) Flexural}

\section*{\(C^{1}\), Flexural Shape Functions II}

We now apply the boundary conditions:
\[
\begin{array}{lll}
v=\bar{v}_{1} & \text { at } & x=0 \\
v=\bar{v}_{2} & \text { at } & x=L \\
\theta=\bar{\theta}_{1}=\frac{d v}{d x} & \text { at } & x=0 \\
\theta=\bar{\theta}_{2}=\frac{d v}{d x} & \text { at } & x=L
\end{array}
\]
or:
\[
\underbrace{\left\{\begin{array}{l}
\bar{v}_{1} \\
\bar{\theta}_{1} \\
\bar{v}_{2} \\
\bar{\theta}_{2}
\end{array}\right\}}_{\left\{\bar{\Delta}^{\prime}\right\}}=\underbrace{\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
L^{3} & L^{2} & L & 1 \\
3 L^{2} & 2 L & 1 & 0
\end{array}\right]}_{[\mathcal{L}]} \underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}}_{\{\mathbf{a}\}}
\]
which when inverted yields:
\[
\underbrace{\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right\}}_{\{\mathbf{a}\}}=\underbrace{\frac{1}{L^{3}}\left[\begin{array}{cccc}
2 & L & -2 & L \\
-3 L & -2 L^{2} & 3 L & -L^{2} \\
0 & L^{3} & 0 & 0 \\
L^{3} & 0 & 0 & 0
\end{array}\right]}_{[\mathcal{L}]-1} \underbrace{\left\{\begin{array}{l}
\bar{v}_{1} \\
\bar{\theta}_{1} \\
\bar{v}_{2} \\
\bar{\theta}_{2}
\end{array}\right\}}_{\{\bar{\Delta}\}}
\]

\section*{Shape Functions}

\section*{\(C^{1}\) Flexural}

\section*{\(C^{1}\), Flexural Shape Functions III}

Combining, we obtain:
\[
\begin{aligned}
& \Delta=\underbrace{\left\lfloor\begin{array}{llll}
x^{3} & x^{2} & x & 1
\end{array}\right]}_{[\mathrm{p}]} \underbrace{\frac{1}{L^{3}}\left[\begin{array}{cccc}
2 & L & -2 & L \\
-3 L & -2 L^{2} & 3 L & -L^{2} \\
0 & L^{3} & 0 & 0 \\
L^{3} & 0 & 0 & 0
\end{array}\right]}_{[\mathcal{L}]-1} \underbrace{\left\{\begin{array}{l}
\bar{v}_{1} \\
\bar{\theta}_{1} \\
\bar{v}_{2} \\
\bar{\theta}_{2}
\end{array}\right\}}_{\{\bar{\Delta}\}}
\end{aligned}
\]
where \(\xi=\frac{X}{L}\). Hence, the shape functions for the flexural element are given by:
\[
\begin{aligned}
& N_{1}=\left(1+2 \xi^{3}-3 \xi^{2}\right) \\
& N_{2}=x(1-\xi)^{2} \\
& N_{3}=\left(3 \xi^{2}-2 \xi^{3}\right) \\
& N_{4}=x\left(\xi^{2}-\xi\right)
\end{aligned}
\]

\section*{Shape Functions}

\section*{\(C^{1}\) Flexural}

\section*{\(C^{1}\), Flexural Shape Functions IV}


\section*{Shape Functions}
\(C^{1}\), Flexural Shape Functions V
\begin{tabular}{||l|c|c|c|c||}
\hline \hline \multirow{2}{*}{ Function } & \multicolumn{2}{|c|}{\(\xi=0\)} & \multicolumn{2}{c|}{\(\xi=1\)} \\
\cline { 2 - 5 } & \(N_{i}\) & \(N_{i, x}\) & \(N_{i}\) & \(N_{i, x}\) \\
\hline\(N_{1}=\left(1+2 \xi^{3}-3 \xi^{2}\right)\) & 1 & 0 & 0 & 0 \\
\(N_{2}=\xi(1-\xi)^{2}\) & 0 & 1 & 0 & 0 \\
\(N_{3}=\left(3 \xi^{2}-2 \xi^{3}\right)\) & 0 & 0 & 1 & 0 \\
\(N_{4}=\xi\left(\xi^{2}-\xi\right)\) & 0 & 0 & 0 & 1 \\
\hline \hline
\end{tabular}

The displacements can now be expressed as
\[
\left\{\begin{array}{l}
u \\
\theta
\end{array}\right\}=\left[\begin{array}{cccc}
N_{1} & 0 & N_{3} & 0 \\
0 & N_{2} & 0 & N_{4}
\end{array}\right]\left\{\begin{array}{c}
\bar{u}_{1} \\
\bar{\theta}_{1} \\
\bar{u}_{2} \\
\bar{\theta}_{2}
\end{array}\right\}
\]

\section*{Strain Displacement Relations}
- The displacement \(\Delta\) at any point inside an element can be written in terms of the shape functions \(\lfloor\mathrm{N}\rfloor\) and the nodal displacements \(\{\bar{\Delta}\}\) as \(\Delta(x) \stackrel{\text { def }}{=}\lfloor N(x)\rfloor\{\bar{\Delta}\}\)
- The strain is then defined as \(\varepsilon(x) \stackrel{\text { def }}{=}[B(x)]\{\bar{\Delta}\}\) where \([\mathrm{B}]\) is the matrix which relates nodal displacements to strain field and is clearly expressed in terms of derivatives of N .

\section*{Strain Displacement Relations; Axial}
\[
\begin{aligned}
& u(x)=\underbrace{\lfloor\underbrace{\left(1-\frac{x}{L}\right)}_{N_{1}} \underbrace{\frac{x}{L}}_{N_{2}}\rfloor}_{\lfloor\mathrm{N}\rfloor} \underbrace{\left\{\begin{array}{c}
\bar{u}_{1} \\
\bar{u}_{2}
\end{array}\right\}}_{\left\{\bar{\Delta}_{\}}\right.} \\
& \varepsilon(x)=\underbrace{\varepsilon_{x x}=\frac{\mathrm{d} u}{\mathrm{~d} x}=\underbrace{\frac{\partial N_{2}}{\partial x}}_{\frac{\partial N_{1}}{\partial x}}\rfloor}_{[\mathrm{B}]} \underbrace{\left\{\frac{1}{L}\right.}_{\left\{\bar{\Delta}_{\}}\right.} \begin{array}{l}
\frac{1}{L} \\
\underbrace{\bar{u}_{2}}_{\bar{u}_{1}}\}
\end{array}
\end{aligned}
\]

\section*{Strain Displacement Relations; Flexural Members}

Using the shape functions for flexural elements previously derived in
\[
\begin{aligned}
\varepsilon & =\frac{y}{\rho}=y \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}} \\
& =y \frac{\mathrm{~d}^{2} v}{\mathrm{~d} x^{2}} \\
& =y \underbrace{\underbrace{}_{\{\bar{\Delta}\}}}_{[\underbrace{\frac{6}{L^{2}}(2 \xi-1)}_{\frac{\partial^{2} N_{1}}{\partial x^{2}}} \underbrace{-\frac{2}{L}(3 \xi-2)}_{\frac{\partial^{2} N_{2}}{\partial x^{2}}} \underbrace{\frac{6}{L^{2}}(-2 \xi+1)}_{\frac{\partial^{2} N_{3}}{\partial x^{2}}} \underbrace{-\frac{2}{L}(3 \xi-1)}_{\frac{\partial^{2} N_{4}}{\partial x^{2}}}\rfloor}
\end{aligned}
\]

\section*{Virtual Displacement and Strain}

In anticipation of the application of the principle of virtual displacement, we define the vectors of virtual displacements and strain in terms of nodal displacements and shape functions:
\[
\begin{align*}
\delta \Delta(x) & =[\mathrm{N}(x)]\{\delta \bar{\Delta}\}  \tag{52}\\
\delta \varepsilon(x) & =[\mathrm{B}(x)]\{\delta \bar{\Delta}\} \tag{53}
\end{align*}
\]

\section*{Element Stiffness Matrix Formulation}

\section*{Element Stiffness Matrix I}
\[
\begin{equation*}
\{\boldsymbol{\sigma}\}=[\mathrm{D}]\{\varepsilon\}-[\mathrm{D}]\left\{\varepsilon^{0}\right\} \tag{54}
\end{equation*}
\]
where [D] is the constitutive matrix which relates stress and strain vectors. and \(q(x)\) is the load acting on its surface. Let us now apply the principle of virtual displacement and restate some known relations:
\[
\begin{align*}
\delta U & =\delta W  \tag{55}\\
\delta U & =\int_{\Omega}\lfloor\delta \varepsilon\rfloor\{\sigma\} \mathrm{d} \Omega  \tag{56}\\
\{\boldsymbol{\sigma}\} & =[\mathrm{D}]\{\varepsilon\}-[\mathrm{D}]\left\{\varepsilon^{0}\right\}  \tag{57}\\
\{\varepsilon\} & =[\mathrm{B}]\{\bar{\Delta}\}  \tag{58}\\
\{\delta \varepsilon\} & =[\mathrm{B}]\{\delta \bar{\Delta}\}  \tag{59}\\
\lfloor\delta \varepsilon\rfloor & =\lfloor\delta \bar{\Delta}\rfloor[\mathrm{B}]^{T} \tag{60}
\end{align*}
\]

Combining Eqns. 55,56,57,60, and 58, the internal virtual strain energy is given by:
\[
\begin{align*}
\delta U & =\int_{\Omega} \underbrace{\lfloor\delta \bar{\Delta}\rfloor[\mathrm{B}]^{T}}_{\lfloor\delta \varepsilon\rfloor} \underbrace{[\mathrm{D}][\mathrm{B}]\{\bar{\Delta}\}}_{\{\boldsymbol{\sigma}\}} \mathrm{d} \Omega-\int_{\Omega} \underbrace{\lfloor\delta \bar{\Delta}\rfloor[\mathrm{B}]^{T}}_{\lfloor\delta \varepsilon\rfloor} \underbrace{[\mathrm{D}]\left\{\varepsilon^{0}\right\}}_{\left\{\boldsymbol{\sigma}^{0}\right\}} \mathrm{d} \Omega  \tag{61}\\
& =\lfloor\delta \bar{\Delta}\rfloor \int_{\Omega}[\mathrm{B}]^{T}[\mathrm{D}][\mathrm{B}] \mathrm{d} \Omega\{\bar{\Delta}\}-\lfloor\delta \bar{\Delta}\rfloor \int_{\left.\Omega^{[B}\right]^{T}[\mathrm{D}]\left\{\varepsilon^{0}\right\} \mathrm{d} \Omega}
\end{align*}
\]

\section*{Element Stiffness Matrix II}

The virtual external work in turn is given by:
\[
\begin{equation*}
\delta W=\underbrace{\lfloor\delta \bar{\Delta}\rfloor}_{\text {Virt. Nodal Displ. Nodal Force }} \underbrace{\{\bar{F}\}}+\int_{,}\lfloor\delta \bar{\Delta}\rfloor q(x) \mathrm{d} x \tag{62}
\end{equation*}
\]
combining this equation with \(\{\delta \Delta\}=[\mathrm{N}]\{\delta \bar{\Delta}\}\) yields:
\[
\begin{equation*}
\delta W=\lfloor\delta \bar{\Delta}\rfloor\{\overline{\mathbf{F}}\}+\lfloor\delta \bar{\Delta}\rfloor \int_{0}^{l}[\mathrm{~N}]^{T} q(x) \mathrm{d} x \tag{63}
\end{equation*}
\]

Equating the internal strain energy Eqn. 61 with the external work Eqn. 63, we obtain:
\[
\begin{align*}
& \underbrace{\lfloor\delta \bar{\Delta}\rfloor \underbrace{\int_{\left.\Omega^{[\mathrm{B}]^{T}[\mathrm{D}][\mathrm{B}] \mathrm{d} \Omega\{\bar{\Delta}\}}\right\}-\lfloor\delta \bar{\Delta}\rfloor \underbrace{\int_{\Omega}[\mathrm{B}]^{T}[\mathrm{D}]\left\{\varepsilon^{0}\right\} \mathrm{d} \Omega}_{\Omega}}^{\underbrace{}_{\left\{\overline{\mathrm{F}}^{0}\right\}}}}_{[\mathrm{k}]}=}_{\delta W} \begin{array}{l}
\lfloor\delta \bar{\Delta}\rfloor\{\overline{\mathrm{F}}\}+\lfloor\delta \bar{\Delta}\rfloor \underbrace{\int_{0}^{1}[\mathrm{~N}]^{T} q(x) \mathrm{d} x}_{\left\{\overline{\mathrm{F}}^{\mathrm{e}}\right\}}
\end{array}
\end{align*}
\]

\section*{Element Stiffness Matrix Formulation}

\section*{Element Stiffness Matrix III}
or
\[
\begin{equation*}
[\mathrm{k}]\{\bar{\Delta}\}-\left\{\overline{\mathrm{F}}^{o}\right\}=\{\overline{\mathrm{F}}\}+\left\{\overline{\mathrm{F}}^{e}\right\} \tag{65}
\end{equation*}
\]
which is the counterpart of Eq. 54.
Canceling out the \(\lfloor\delta \bar{\Delta}\rfloor\) term, this is the same equation of equilibrium as the one written earlier on. It relates the (unknown) nodal displacement \(\{\bar{\Delta}\}\), the structure stiffness matrix \([\mathrm{k}]\), the external nodal force vector \(\{\overline{\mathrm{F}}\}\), the distributed element force \(\left\{\overline{\mathrm{F}}^{e}\right\}\), and the vector of initial displacement.
From this relation we define:
The element stiffness matrix:
\[
\begin{equation*}
[\mathrm{k}]=\int_{\Omega}[\mathrm{B}]^{T}[\mathrm{D}][\mathrm{B}] \mathrm{d} \Omega \tag{66}
\end{equation*}
\]

Element initial force vector:
\[
\begin{equation*}
\left\{\overline{\mathrm{F}}^{0}\right\}=\int_{\Omega}[\mathrm{B}]^{T}[\mathrm{D}]\left\{\varepsilon^{0}\right\} \mathrm{d} \Omega \tag{67}
\end{equation*}
\]

Element equivalent load vector:
\[
\begin{equation*}
\left\{\overline{\mathrm{F}}^{e}\right\}=\int_{0}^{L}[\mathrm{~N}] q(x) \mathrm{d} x \tag{68}
\end{equation*}
\]

\section*{Element Stiffness Matrix IV}
and the general equation of equilibrium can be written as:
\[
\begin{equation*}
[\mathrm{k}]\{\bar{\Delta}\}-\left\{\overline{\mathrm{F}}^{0}\right\}=\{\overline{\mathrm{F}}\}+\left\{\overline{\mathrm{F}}^{e}\right\} \tag{69}
\end{equation*}
\]
or Internal forces equal external forces

\section*{Stress Recovery I}
\[
\begin{align*}
\{\boldsymbol{\sigma}\} & =[\mathrm{D}]\{\varepsilon\}  \tag{70}\\
\{\varepsilon\} & =[\mathrm{B}]\{\bar{\Delta}\} \tag{71}
\end{align*}
\]

With the vector of nodal displacement \(\{\Delta\}\) known, those two equations would yield:
\[
\begin{equation*}
\{\boldsymbol{\sigma}\}=[\mathrm{D}] \cdot[\mathrm{B}]\{\bar{\Delta}\} \tag{72}
\end{equation*}
\]

We note that the secondary variables (strain and stresses) are derivatives of the primary variables (displacement), and as such may not always be determined with the same accuracy.

\section*{Truss Element}

\section*{Stiffness Matrix of the Truss Element}

The shape functions of the truss element were derived earlier:
\[
\begin{aligned}
& N_{1}=1-\frac{x}{L} \\
& N_{2}=\frac{x}{L}
\end{aligned}
\]

The corresponding strain displacement relation [B] is given by:
\[
\begin{aligned}
\varepsilon_{x x} & =\frac{\mathrm{du}}{\mathrm{~d} x} \\
& =\underbrace{\left[\begin{array}{ll}
\frac{d N_{1}}{\mathrm{~d} x} & \frac{d N_{2}}{\mathrm{~d} x}
\end{array}\right]}_{[\mathrm{B}]} \\
& =\underbrace{\frac{1}{L}}_{-\frac{1}{L}}]
\end{aligned}
\]

For the truss element, the constitutive matrix [D] reduces to the scalar E; Hence, substituting into Eq. 66 , with \(\mathrm{d} \Omega=\mathrm{d} A \mathrm{~d} x\) :
\[
[\mathrm{k}]=\int_{\Omega}[\mathrm{B}]^{T}[\mathrm{D}][\mathrm{B}] \mathrm{d} \Omega \text { and with } \mathrm{d} \Omega=A \mathrm{~d} x
\] for element with constant cross sectional area we obtain:
\[
\left.[\mathrm{k}]=A \int_{0}^{L}\left\{\begin{array}{c}
-\frac{1}{L} \\
\frac{1}{L}
\end{array}\right\} \cdot E \cdot L \begin{array}{cc}
-\frac{1}{L} & \frac{1}{L}
\end{array}\right] \mathrm{dx}
\]
\[
\begin{aligned}
& {[\mathrm{k}]=\frac{A E}{L^{2}} \int_{0}^{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \mathrm{d} x} \\
& =\frac{A E}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
\end{aligned}
\]

\section*{Stiffness Matrix of Beam Element}

For a beam element, for which we have previously derived the shape functions and the [B] matrix. Substituting in Eq. 66:
\[
[\mathrm{k}]=\int_{0}^{L} \int_{A}[\mathrm{~B}]^{T}[\mathrm{D}][\mathrm{B}] y^{2} \mathrm{~d} A \mathrm{~d} x
\]
and noting that \(\int_{A} y^{2} \mathrm{~d} A=l_{z}\) Eq. 66 reduces to
\[
[\mathrm{k}]=\int_{0}^{L}[\mathrm{~B}]^{T}[\mathrm{D}][\mathrm{B}] I_{z} \mathrm{~d} x
\]

For this simple case, we have: \([\mathrm{D}]=E\), thus:
\[
[\mathrm{k}]=E I_{z} \int_{0}^{l}[\mathrm{~B}]^{T}[\mathrm{~B}] \mathrm{d} x
\]

Using the shape function for the beam element, and noting the change of integration variable from \(\mathrm{d} x\) to \(\mathrm{d} \xi\), we obtain
\([k]=E I_{z} \int_{0}^{1}\left\{\begin{array}{c}\frac{6}{L^{2}}(2 \xi-1) \\ -\frac{2}{L}(3 \xi-2) \\ \frac{6}{L^{2}}(-2 \xi+1) \\ -\frac{2}{L}(3 \xi-1)\end{array}\right\}\left\lfloor\begin{array}{ll}\frac{6}{L^{2}}(2 \xi-1) & -\frac{2}{L}(3 \xi\end{array}\right.\)
or
\[
[\mathrm{k}]=
\]
\[
\begin{gathered}
V_{1}\left[\begin{array}{cccc}
\bar{V}_{1} & \bar{\theta}_{1} & \bar{V}_{2} & \bar{\theta}_{2} \\
M_{1} \\
V_{2} \\
M_{2} & \frac{12 E I_{z}}{L^{3}} & \frac{6 E I_{z}}{L^{2}} & -\frac{12 E I_{z}}{L^{3}}
\end{array} \frac{\frac{6 E I_{z}}{L^{2}}}{\frac{6 E I_{z}}{L^{2}}}\right. \\
\frac{4 E I_{z}}{L} \\
-\frac{12 E I_{z}}{L^{3}} \\
\frac{6 E I_{z}}{L^{2}}
\end{gathered}
\]

\section*{FEA Process}


\section*{Computer Simulation}

\section*{Computer Simulation}


\title{
Non Linear Structural Analysis \\ Euler Equations; Boundary Conditions
}

\author{
Victor E. Saouma \\ saouma@colorado.edu \\ University of Colorado, Boulder
}

Fall 2020

\section*{Table of Contents I}

\section*{(1) Motivation}

\section*{(2) Objective}
(3) Euler Equation
- Formulation
- Differential Form of \(\delta \Pi\)
- First term: Euler Equation
- Define \(\delta \Pi\)
- Observations
- Second Term: Boundary Conditions
- Example: Bar Extension
- Flexure of a Beam
- Solutions to many physical problems require maximizing or minimizing some parameter \(F\).
- Distance
- Time
- Surface Area
- Parameter \(F\) dependent on function \(u\) (field variable), and variable \(x\)
\[
\begin{equation*}
\Pi(u)=\int_{\Omega} F\left(x, u(x), u^{\prime}(x)\right) d x \tag{1}
\end{equation*}
\]

\section*{Objective}
- A problem may be formulated as a partial differential equation, or as a variational one (maximize/minimize function).
- For example equation of equilibrium and minimization of total potential energy are analogous.
- Question: Can we go back and forth from one formulation to the other? and in so doing what are the boundary conditions?
- Reason: it may be easier to solve a problem one way or another.
- We will resort to calculus of variation that deals with minima or maxima of functionals.
- The origin of CV can be traced to the brachistochrone problem (find the path that will carry a point-like body from one place to another in the least amount of time).
- Differential calculus involves a function of one or more variable, variational calculus involves a function of a function, or a functional
- We seek a function \(u(x)\) such that
\[
\begin{equation*}
\Pi(u)=\int_{a}^{b} F\left(x, u(x), u^{\prime}(x)\right) \mathrm{d} x \tag{2}
\end{equation*}
\]
is stationary. Or, \(\delta \Pi=0\) where \(\delta\) indicates the variation operator.
- \(u(x)\) is a function of \(x\) in the interval \((a, b)\), and \(F\) to be a known real function (such as the energy density).
- The domain of a functional is the collection of admissible functions belonging to a class of functions in function space rather than a region in coordinate space (as is the case for a function).
- We seek the function \(u(x)\) which extremizes \(\Pi\).
- Letting \(\tilde{u}(x)\) to be a family of neighboring paths of the extremizing function \(u(x)\) and we assume that at the end points \(x=a, b\) they coincide.
- We define \(\tilde{u}(x)\) as the sum of the extremizing path and some arbitrary variation.

\[
\begin{equation*}
\tilde{u}(x, \varepsilon)=u(x)+\varepsilon \eta(x)=u(x)+\delta u(x) \tag{3}
\end{equation*}
\]
where \(\varepsilon\) is a small parameter, and \(\delta u(x)\) is the variation of \(u(x)\)
\[
\begin{align*}
\delta u(x) & =\tilde{u}(x, \varepsilon)-u(x)  \tag{4}\\
& =\varepsilon \eta(x) \tag{5}
\end{align*}
\]
and \(\eta(x)\) is twice differentiable, has undefined amplitude but is such that \(\eta(a)=\eta(b)=0\). We note that \(\tilde{u}\) coincides with \(u\) if \(\varepsilon=0\).
- Again, to reinforce the distinction between differential calculus (DC) and variational calculus (VC) it should be noted that:
- The necessary condition to extremize a value in DC is that the first derivative be equal to zero, and that the first variation be zero in VC.
- The result of the extremization is a single variable \(x\) in DC , and \(u(x)\) in VC.
- Variation and derivation operators are commutative
\[
\left.\begin{array}{rl}
\frac{\mathrm{d}}{\mathrm{~d} x}(\delta u) & =\tilde{u}^{\prime}(x, \varepsilon)-u^{\prime}(x)  \tag{6}\\
\delta u^{\prime} & =\tilde{u}^{\prime}(x, \varepsilon)-u^{\prime}(x)
\end{array}\right\} \frac{\mathrm{d}}{\mathrm{~d} x}(\delta u)=\delta\left(\frac{\mathrm{d} u}{\mathrm{~d} x}\right)
\]
- Variational operator \(\delta\) and the differential calculus operator d can be similarly used, i.e.
\[
\begin{align*}
\delta\left(u^{\prime}\right)^{2} & =2 u^{\prime} \delta u^{\prime}  \tag{7}\\
\delta(u+v) & =\delta u+\delta v  \tag{8}\\
\delta\left(\int u \mathrm{~d} x\right) & =\int(\delta u) \mathrm{d} x  \tag{9}\\
\delta u & =\frac{\partial u}{\partial x} \delta x+\frac{\partial u}{\partial y} \delta y \tag{10}
\end{align*}
\]
however, they have clearly different meanings. \(\mathrm{d} u\) is associated with a neighboring point at a distance \(\mathrm{d} x\), however \(\delta u\) is a small arbitrary change in the function \(u\) for a given \(x\) (there is no associated \(\delta x\) ).
- For boundaries where \(u\) is specified, its variation must be zero, and it is arbitrary elsewhere. The variation \(\delta u\) of \(u\) is said to undergo a virtual change.
- Define \(\Phi(\varepsilon)\)
\[
\begin{equation*}
\Phi(\varepsilon) \stackrel{\text { def }}{=} \Pi(u+\varepsilon \eta)=\int_{a}^{b} F\left(x, u+\varepsilon \eta, u^{\prime}+\varepsilon \eta^{\prime}\right) \mathrm{d} x \tag{11}
\end{equation*}
\]
- Using this "trick" we now Cast the variational formulation \((\delta \Pi=0)\) into a differential one \(\frac{\mathrm{d}_{\Phi}(\varepsilon)}{\mathrm{d} \varepsilon}=0\)
- Since \(\tilde{u} \rightarrow u\) as \(\varepsilon \rightarrow 0\), the necessary condition for \(\Pi\) to be an extremum is
\[
\begin{equation*}
\left.\frac{\mathrm{d} \Phi(\varepsilon)}{\mathrm{d} \varepsilon}\right|_{\varepsilon=0}=0 \tag{12}
\end{equation*}
\]
- From Eq. \(3 \tilde{u}=u+\varepsilon \eta\), and \(u \tilde{u}(x)^{\prime}=u^{\prime}(x)+\varepsilon \eta^{\prime}(x)\), and applying the chain rule
\[
\begin{equation*}
\frac{\mathrm{d} \Phi(\varepsilon)}{\mathrm{d} \varepsilon}=\int_{a}^{b}\left(\frac{\partial F}{\partial \tilde{u}} \frac{\mathrm{~d} \tilde{u}}{d \varepsilon}+\frac{\partial F}{\partial \tilde{u}^{\prime}} \frac{\mathrm{d} \tilde{u}^{\prime}}{d \varepsilon}\right) \mathrm{d} x=\int_{a}^{b}\left(\eta \frac{\partial F}{\partial \tilde{u}}+\eta^{\prime} \frac{\partial F}{\partial \tilde{u}^{\prime}}\right) \mathrm{d} x \tag{13}
\end{equation*}
\]
for \(\varepsilon=0, \tilde{u}=u\), thus
\[
\begin{equation*}
\left.\frac{\mathrm{d} \Phi(\varepsilon)}{\mathrm{d} \varepsilon}\right|_{\varepsilon=0}=\int_{a}^{b}\left(\eta \frac{\partial F}{\partial u}+\eta^{\prime} \frac{\partial F}{\partial u^{\prime}}\right) \mathrm{d} x=0 \tag{14}
\end{equation*}
\]
- Integration by part of the second term leads to
\[
\begin{equation*}
\int_{a}^{b}\left(\eta^{\prime} \frac{\partial F}{\partial u^{\prime}}\right) \mathrm{d} x=\left.\eta \frac{\partial F}{\partial u^{\prime}}\right|_{a} ^{b}-\int_{a}^{b} \eta(x)\left(\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\partial F}{\partial u^{\prime}}\right) \mathrm{d} x \tag{15}
\end{equation*}
\]
- Substituting,
\[
\begin{equation*}
\left.\frac{\mathrm{d} \Phi(\varepsilon)}{\mathrm{d} \varepsilon}\right|_{\varepsilon=0}=\underbrace{\int_{a}^{b} \eta(x)\left[\frac{\partial F}{\partial u}-\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\partial F}{\partial u^{\prime}}\right]}_{\mathrm{I}(x \in[a, b])}+\underbrace{\left.\eta(x) \frac{\partial F}{\partial u^{\prime}}\right|_{a} ^{b}}_{\text {II }(x=a, b)}=0 \tag{16}
\end{equation*}
\]

We will force each one of the two terms to be equal to zero.
First term : will give rise to the governing partial differential equation (or Euler equation).
Secon term : will enable us to define the boundary conditions
- The fundamental Lemma of the calculus of variation states that for continuous \(\Psi(x)\) in \(a \leq x \leq b\), and with arbitrary continuous function \(\eta(x)\) which vanishes at \(a\) and \(b\), then
\[
\begin{equation*}
\int_{a}^{b} \eta(x) \Psi(x) \mathrm{d} x=0 \Leftrightarrow \Psi(x)=0 \tag{17}
\end{equation*}
\]

Thus, part I in Eq. 16 yields
\[
\begin{equation*}
\frac{\partial F}{\partial u}-\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\partial F}{\partial u^{\prime}}=0 \text { in } a<x<b \tag{18}
\end{equation*}
\]
- This differential equation is called the Euler-Lagrange equation associated with \(\Pi\) and is a necessary condition for \(u(x)\) to extremize \(\Pi\).
- Generalizing for a functional \(\Pi\) which depends on two field variables, \(u=u(x, y)\) and \(v=v(x, y)\)
\[
\begin{equation*}
\Pi=\iint F\left(x, y, u, v, u_{, x}, u_{, y}, u_{, x x}, v_{, y y}\right) \mathrm{d} x \mathrm{~d} y \tag{19}
\end{equation*}
\]

There would be as many Euler equations as dependent field variables
\[
\left\{\begin{array}{l}
\frac{\partial F}{\partial u}-\frac{\partial}{\partial x} \frac{\partial F}{\partial u, x}-\frac{\partial}{\partial y} \frac{\partial F}{\partial u, y}+\frac{\partial^{2}}{\partial x^{2}} \frac{\partial F}{\partial u, x x}+\frac{\partial^{2}}{\partial x \partial y} \frac{\partial F}{\partial u, x y}+\frac{\partial^{2}}{\partial y^{2}} \frac{\partial F}{\partial u, y y}=0  \tag{20}\\
\frac{\partial F}{\partial v}-\frac{\partial}{\partial x} \frac{\partial F}{\partial v, x}-\frac{\partial}{\partial y} \frac{\partial F}{\partial v, y}+\frac{\partial^{2}}{\partial x^{2}} \frac{\partial F}{\partial v, x x}+\frac{\partial^{2}}{\partial x \partial y} \frac{\partial F}{\partial v, x y}+\frac{\partial^{2}}{\partial y^{2}} \frac{\partial F}{\partial v, y y}=0
\end{array}\right.
\]
- We note that the Functional and the corresponding Euler Equations, Eq. 2 and 18 , or Eq. 19 and 20 describe the same problem.
- The Euler equations usually correspond to the governing differential equation and are referred to as the strong form (or classical form).
- The functional is referred to as the weak form (or generalized solution). This classification stems from the fact that equilibrium is enforced in an average sense over the body.
- The field variable is differentiated \(m\) times in the weak form, and \(2 m\) times in the strong form.
- From above, \(m=1\) ( \(u_{, x x}\) in Eq. 19 and \(u_{, x x x x}\) in Eq. 20.
- It can be shown that in the principle of virtual displacements, the Euler equations are the equilibrium equations, whereas in the principle of virtual forces, they are the compatibility equations.
- Euler equations are differential equations which can not always be solved by exact methods.
- An alternative method consists in bypassing the Euler equations and go directly to the variational statement of the problem to the solution of the Euler equations.
- Finite Element formulation are based on the weak form, whereas the formulation of Finite Differences are based on the strong form.
- In the preceding section we have just shown that \(d \Phi(\varepsilon) / d \varepsilon\) leads to the Euler-Lagrange equation. We still have to define \(\delta \Pi\). The first variation of a functional expression is
\[
\left.\begin{array}{rl}
\delta F & =\frac{\partial F}{\partial u} \delta u+\frac{\partial F}{\partial u^{\prime}} \delta u^{\prime}  \tag{21}\\
\delta \Pi & =\int_{a}^{b} \delta F \mathrm{~d} x
\end{array}\right\} \delta \Pi=\int_{a}^{b}\left(\frac{\partial F}{\partial u} \delta u+\frac{\partial F}{\partial u^{\prime}} \delta u^{\prime}\right) \mathrm{d} x
\]

Integration by parts of the second term (as in Eq. 14) yields
\[
\begin{equation*}
\delta \Pi=\int_{a}^{b} \delta u\left(\frac{\partial F}{\partial u}-\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\partial F}{\partial u^{\prime}}\right) \mathrm{d} x \tag{22}
\end{equation*}
\]
- We have just shown that finding the stationary value of \(\Pi\) by setting \(\delta \Pi=0\) is equivalent to finding the extremal value of \(\Pi\) by setting \(\left.\frac{d_{\Phi(\varepsilon)}}{d_{\varepsilon}}\right|_{\varepsilon=0}\) equal to zero.
- We could have also applied the fundamental Lemma of the calculus of variation to obtain Euler's Equation from Eq. 22 since \(\delta u\) is arbitrary.
- Similarly, it can be shown that as with second derivatives in calculus, the second variation \(\delta^{2} \Pi\) can be used to characterize the extremum as either a minimum or maximum.
- An important observation is that the variational formulation is a scalar one, whereas the Eulerian one is vectorial.
- Revisiting the second part of Eq. 16, we had


This can be achieved through the following combinations
\[
\begin{array}{rlllll}
\eta(a)=0 & \text { and } & \eta(b) & =0 & \text { Essential } & \Gamma_{u} \\
\eta(a)=0 & \text { and } & \frac{\partial F}{\partial u^{\prime}}(b) & =0 & \text { Mixed } & \Gamma_{u} \cup \Gamma_{t} \\
\frac{\partial F}{\partial u^{\prime}}(a)=0 & \text { and } & \eta(b) & =0 & \text { Mixed } & \Gamma_{u} \bigcup \Gamma_{t}  \tag{24}\\
\frac{\partial F}{\partial u^{\prime}}(a)=0 & \text { and } & \frac{\partial F}{\partial u^{\prime}}(b) & =0 & \text { Natural } & \Gamma_{t}
\end{array}
\]

\section*{Second Term: Boundary Conditions}
- For example in the previously investigated column with one end fixed and the other hinged we had:

Essential: \(\left.\quad v\right|_{x=0}=0 ;\left.\quad v\right|_{x=L}=0 ; \quad \underbrace{\left.v_{x x}\right|_{x=L}}_{\left.\theta\right|_{x=L}}=0\);
Natural: \(\underbrace{\left.v_{x x}\right|_{x=0}}_{M_{\mid x=0}}=0\)
- Generalizing, for a problem with, one field variable, in which the highest derivative in the governing differential equation is of order \(2 m\) (or simply \(m\) in the corresponding functional), then we have

Essential (or forced, or geometric) boundary conditions, (because it was essential for the derivation of the Euler equation) if \(\eta(a)\) or \(\eta(b)\) \(=0\). Essential boundary conditions, involve derivatives of order zero (the field variable itself) through m -1. Trial displacement functions are explicitly required to satisfy this B.C.
Mathematically, this corresponds to Dirichlet boundary-value problems.

Natural (or natural or static) if we left \(\eta\) to be arbitrary, then it would be necessary to use \(\frac{\partial F}{\partial u^{\prime}}=0\) at \(x=a\) or \(b\). Natural boundary conditions, involve derivatives of order \(m\) and up. This B.C. is implied by the satisfaction of the variational statement but not explicitly stated in the functional itself. Mathematically, this corresponds to Neuman boundary-value problems.
Mixed Boundary-Value/Robin problems, are those in which both essential and natural boundary conditions are specified on complementary portions of the boundary (such as \(\Gamma_{u}\) and \(\Gamma_{t}\) ).
\begin{tabular}{|c|c|c|}
\hline Problem & Axial Member Distributed load & Flexural Member Distributed load \\
\hline Differential Equation & \(A E \frac{\mathrm{~d}^{2} u}{\mathrm{dx}^{2}}+q=0\) & \(E I \frac{d^{4} w}{d x^{4}}-q=0\) \\
\hline \(m\) & 1 & 2 \\
\hline Essential B.C. [0, m-1] & \(u\) & \(w, \frac{d w}{d x}\) \\
\hline Natural B.C. [m, \(2 m-1]\) & \[
\begin{gathered}
\frac{\mathrm{d} u}{\mathrm{~d} x} \\
\text { or } \sigma_{x x}=E u_{, x}
\end{gathered}
\] & \(\frac{\mathrm{d}^{2} w}{\mathrm{~d} x^{2}}\) and \(\frac{\mathrm{d}^{3} w}{\mathrm{~d} x^{3}}\)
or \(M=E / w_{x x}\) and \(V=E / w_{x x x}\) \\
\hline
\end{tabular}
- The total potential energy \(\Pi\) of an axial member of length \(L\), modulus of elasticity \(E\), cross sectional area \(A\), fixed at left end and subjected to an axial force \(P\) at the right one is given by
\[
\begin{equation*}
\Pi=\int_{0}^{L} \frac{E A}{2}\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}\right)^{2} \mathrm{~d} x-P u(L) \tag{25}
\end{equation*}
\]
where the first term represents the strain energy sotred in the bar, and the second term denotes the work done on the bar by the load \(P\) in displacing the end \(x=L\) through displacement \(u(L)\).
- Determine the Euler Equation by requiring that \(\Pi\) be a minimum.

Solution I The first variation of \(\Pi\) is given by
\[
\begin{equation*}
\delta \Pi=\int_{0}^{L} \frac{E A}{2} 2\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}\right) \delta\left(\frac{\mathrm{d} u}{\mathrm{~d} x}\right) \mathrm{d} x-P \delta u(L) \tag{26}
\end{equation*}
\]

Integrating by parts we obtain
\[
\begin{align*}
\delta \Pi= & \int_{0}^{L}-\frac{\mathrm{d}}{\mathrm{~d} x}\left(E A \frac{\mathrm{~d} u}{\mathrm{~d} x}\right) \delta u \mathrm{~d} x+\left.E A \frac{\mathrm{~d} u}{\mathrm{~d} x} \delta u\right|_{0} ^{L}-P \delta u(L)=0  \tag{27}\\
= & -\int_{0}^{\int_{0}^{L} \delta u \underbrace{\frac{\mathrm{~d}}{\mathrm{~d} x}\left(E A \frac{\mathrm{~d} u}{\mathrm{~d} x}\right)}_{\text {Euler Eq. }} \mathrm{d} x+\underbrace{\left[\left.\left(E A \frac{\mathrm{~d} u}{\mathrm{~d} x}\right)\right|_{x=L}-P\right]}_{\text {B.C. }} \delta u(L)} \\
& -\underbrace{\left.\left(E A \frac{\mathrm{~d} u}{\mathrm{~d} x}\right)\right|_{x=0} \delta u(0)}_{0} \tag{28}
\end{align*}
\]

The last term is zero because of the specified essential boundary condition which implies that \(\delta u(0)=0\). Recalling that \(\delta\) in an arbitrary operator which can be assigned any value, we set the coefficients of
\(\delta u\) between \((0, L)\) and those for \(\delta u\) at \(x=L\) equal to zero separately, and obtain
Euler Equation:
\[
\begin{equation*}
-\frac{\mathrm{d}}{\mathrm{~d} x}\left(E A \frac{\mathrm{~d} u}{\mathrm{~d} x}\right)=0 \quad 0<x<L \tag{29}
\end{equation*}
\]

Natural Boundary Condition:
\[
\begin{equation*}
E A \frac{\mathrm{~d} u}{\mathrm{~d} x}-P=0 \quad \text { at } x=L \tag{30}
\end{equation*}
\]

Solution II We have
\[
\begin{equation*}
F\left(x, u, u^{\prime}\right)=\frac{E A}{2}\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}\right)^{2} \tag{31}
\end{equation*}
\]
(note that since \(P\) is an applied load at the end of the member, it does not appear as part of \(F\left(x, u, u^{\prime}\right)\). To evaluate the Euler Equation from Eq. 18, we evaluate
\[
\begin{equation*}
\frac{\partial F}{\partial u}=0 \& \frac{\partial F}{\partial u^{\prime}}=E A u^{\prime} \tag{32}
\end{equation*}
\]

Thus, substituting into Eq. 18, we obtain
\[
\begin{align*}
\frac{\partial F}{\partial u}-\frac{\mathrm{d}}{\mathrm{~d} x} \frac{\partial F}{\partial u^{\prime}} & =0 \Rightarrow-\frac{\mathrm{d}}{\mathrm{~d} x}\left(E A u^{\prime}\right)=0 \text { Euler Equation }  \tag{33}\\
E A \frac{\mathrm{~d} u}{\mathrm{~d} x} & =0 \text { B.C. } \tag{34}
\end{align*}
\]
- The total potential energy of a beam supporting a uniform load \(p\) is given by
\[
\begin{equation*}
\Pi=\int_{0}^{L}\left(\frac{1}{2} M \kappa-p w\right) \mathrm{d} x=\int_{0}^{L} \underbrace{\left(\frac{1}{2}\left(E / w^{\prime \prime}\right) w^{\prime \prime}-p w\right)}_{F} \mathrm{~d} x \tag{35}
\end{equation*}
\]

Derive the first variational of \(\Pi\).
- Extending Eq. 21, and integrating by part twice
\[
\begin{align*}
\delta \Pi & =\int_{0}^{L} \delta F \mathrm{~d} x=\int_{0}^{L}\left(\frac{\partial F}{\partial w^{\prime \prime}} \delta w^{\prime \prime}+\frac{\partial F}{\partial w} \delta w\right) \mathrm{d} x  \tag{36}\\
& =\int_{0}^{L}\left(E / w^{\prime \prime} \delta w^{\prime \prime}-p \delta w\right) \mathrm{d} x  \tag{37}\\
& =\left.\left(E / w^{\prime \prime} \delta w^{\prime}\right)\right|_{0} ^{L}-\int_{0}^{L}\left[\left(E / w^{\prime \prime}\right)^{\prime} \delta w^{\prime}+p \delta w\right] \mathrm{d} x  \tag{38}\\
& =\underbrace{\left(E / w^{\prime \prime}\right.}_{\text {Nat. }} \underbrace{\left.\delta w^{\prime}\right)\left.\right|_{0} ^{L}-\underbrace{\left[\left(E / w^{\prime \prime}\right)^{\prime}\right.}_{\text {Nat. }} \underbrace{\delta w]\left.\right|_{0} ^{L}}_{\text {Ess. }}+\int_{0}^{L} \underbrace{\left[\left(E / w^{\prime \prime}\right)^{\prime \prime}-p\right]}_{\text {Euler Eq. }} \delta w \mathrm{~d} x=0}_{\text {Ess. }} . \tag{39}
\end{align*}
\]

Or
\[
\left(E / w^{\prime \prime}\right)^{\prime \prime}=p \quad \text { for all } \mathrm{x}
\]
which is the governing differential equation of beams and
\begin{tabular}{lll} 
Essential & & Natural \\
\(\delta w^{\prime}=0\) & or & \(E / w^{\prime \prime}=-M=0\) \\
\(\delta w=0\) & or & \(\left(E / w^{\prime \prime}\right)^{\prime}=-V=0\)
\end{tabular}
at \(x=0\) and \(x=L\)

\title{
Non Linear Structural Analysis Geometric Non-Linearities
}

\author{
Victor E. Saouma \\ saouma@colorado.edu \\ University of Colorado, Boulder
}

Fall 2020

\section*{Table of Contents I}
- There are two sources of nonlinearities: Material and Geometric.
- Geometric nonlinearity, in the context of analysis of skeletal structures, refers to
- Effect if initial member imperfection which could result in instability or buckling.
- \(P-\Delta\) effects, secondary moments equal to vertical loads time the corresponding lateral displacements. It is a structural effect.
- \(P-\delta\) effects is the "stress stiffening" of an element on account of the axial load. It is an member effect.
- We will focus on the former, and in so doing will also address the interaction between axial and flexural stiffnesses (through the geometric stiffness matrix)



- Summing moments wrt \(i\) using the deformed shape:
\[
\underbrace{M-\left(M+\frac{d M}{d x} \Delta x\right)+\underbrace{w \frac{(\Delta x)^{22^{0}}}{2}}+\left(V+\frac{d V}{d x} \Delta x\right)^{0} \Delta x}+\underbrace{P\left(\frac{d v}{d x}\right) \Delta x}=0
\]
- Neglecting the terms in \(\Delta x^{2}\), and then differentiating each term with respect to \(x\)
\[
-\frac{d^{2} M}{d x^{2}}+\frac{d V}{d x}+P \frac{d^{2} v}{d x^{2}}=0
\]
- Equilibrium in the \(y\) direction gives \(\frac{d V}{d x}=-w\), and beam theory \(M=-E I \frac{d^{2} V}{d x^{2}}\).
- Combining
\[
E I \frac{d^{4} v}{d x^{4}}+P \frac{d^{2} v}{d x^{2}}=w
\]
- Let \(k^{2}=\frac{P}{E I} \Rightarrow v=C_{1} \sin k x+C_{2} \cos k x+C_{3} x+C_{4}\)
- For a hinge-hinge column, BC:

- substitution of the two conditions at \(x=0\) leads to \(C_{2}=C_{4}=0\).
- From the remaining conditions, we obtain \(C_{1} \sin k L+C_{3} L=0\) and \(-C_{1} k^{2} \sin k l=0 \Rightarrow k L=n \pi\) for \(n=1,2,3 \cdots\).
- For \(n=1\),
\[
P_{c r}=\frac{\pi^{2} E l}{L^{2}}
\]
- Consider a column with one end fixed (at \(x=L\) ), and one end hinged (at \(x=0\) )

Essential: \(\left.\quad v\right|_{x=0}=0 ;\left.\quad v\right|_{x=L}=0 ; \quad \underbrace{\left.v_{v}\right|_{x=L}}_{\left.\theta\right|_{x=L}}=0 ;\)

\section*{Natural: \(\underbrace{\left.v_{, x x}\right|_{x=0}}_{\left.M\right|_{x=0}}=0\)}
- \(\Rightarrow C_{2}=C_{4}=0\) and \(\sin k L-k L \cos k L=0\) or \(\tan k L=k L\) which is a transcendental algebraic equation and can only be solved numerically.

- Smallest positive root is \(k L=4.4934\), since \(k^{2}=\frac{P}{E I}\), the smallest critical load is \(P_{c r}=\frac{(4.4934)^{2}}{L^{2}} E I=\frac{\pi^{2}}{(0.699 L)^{2}} E I\)
- Note that if we were to solve for \(x\) such that \(v_{, x x}=0\) (i.e. an inflection point), then \(x=0.699 \mathrm{~L}\).
- In order to discretize the problem (through finite element), we need to first obtain the weak form of the governing differential equation.
- We will (as before) apply the principle of virtual strain energy.
- Contrarily to before, the expression of the strain will be enriched by additional higher order terms (initially neglected).
- Axial:
\[
\varepsilon_{x x}=\underbrace{u_{, x}}_{\text {First Order }}+\underbrace{\frac{1}{2}\left(u_{, x}^{2}+v_{, x}^{2}+w_{, x}^{2}\right)}_{\text {Second Order }}
\]
\(u\) and \(v\) are the axial and transversal displacements respectively. Second order term is the "counterpart" of writing the equilibrium equation in the deformed shape in the analytical solution
- Flexural
\[
\left.\begin{array}{l}
\frac{d^{2} v}{d x^{2}}=\frac{M}{E I} \\
\sigma_{x x}=-\frac{M y}{I}
\end{array}\right\} \varepsilon_{x x}=-y \frac{d^{2} v}{d x^{2}}
\]
- Total strain would be
\[
\begin{equation*}
\varepsilon_{x x}(x, y)=\underbrace{\frac{d u}{d x}-\underbrace{y\left(\frac{d^{2} v}{d x^{2}}\right)}_{\text {Flexure }}}_{\text {Axial }}+\underbrace{\frac{1}{2}\left(\frac{d v}{d x}\right)^{2}}_{\text {Large Deformation Deformation }} \tag{1}
\end{equation*}
\]

Note that second term is negative since for positive \(y\) (top) we have compressive stresses, and the first and second terms are the familiar

\section*{Strain}
components of axial and flexural strains respectively, and the third one (which is nonlinear) is obtained from large-deflection strain-displacement.
- The (elastic) virtual Strain energy of the element is given by
\[
\begin{equation*}
\delta U_{i}^{(e)}=\frac{1}{2} \int_{\Omega} \sigma_{x x} \delta \varepsilon_{x x} d \Omega=\frac{1}{2} \int_{\Omega} E \varepsilon_{x x} \delta \varepsilon_{x x} d \Omega \tag{2}
\end{equation*}
\]
- Substituting Eq. ?? into \(U_{i}^{(e)}\) we obtain
\[
\begin{align*}
\delta U_{i}^{(e)}= & \frac{1}{2} \int_{L} \int_{A}\left[\frac{d u}{d x} \frac{d \delta u}{d x}+y^{2} \frac{d^{2} v}{d x^{2}} \frac{d^{2} \delta v}{d x^{2}}+\frac{1}{4}\left(\frac{d v}{d x}\right)^{2}\left(\frac{d \delta v}{d x}\right)^{2}\right.  \tag{3}\\
& \left.-2 y\left(\frac{d u}{d x}\right) \frac{d v}{d x} \frac{d \delta v}{d x}-y\left(\frac{d v}{d x} \frac{d \delta v}{d x}\right)\left(\frac{d v}{d x}\right)^{2}+\left(\frac{d u}{d x}\right)\left(\frac{d v}{d x} \frac{d \delta v}{d x}\right)\right] E d A d x
\end{align*}
\]
- Recalling that \(\int_{A} d A=A\), and \(\int_{A} y d A \stackrel{\text { def }}{=} 0\) and \(\int_{A} y^{2} d A \stackrel{\text { def }}{=} l\),
- Discarding highest order term and under the assumption of an independent prebuckling analysis for axial loading where \(P^{(e)}=E A \frac{d u}{d x} \Rightarrow A_{d x}^{d u}=\frac{P^{(e)}}{E}\)
- We obtain
\[
\begin{align*}
\delta U_{i}^{(e)} & =\delta U_{i}^{(e, a)}+\delta U_{i}^{(e, f)}  \tag{4}\\
\delta U_{i}^{(e, a)} & =\frac{1}{2} \int_{L} E A \frac{d \delta u}{d x} \frac{d u}{d x} d x  \tag{5}\\
\delta U_{i}^{(e, f)} & =\frac{1}{2} \int_{L}\left[E I \frac{d^{2} v}{d x^{2}} \frac{d^{2} \delta v}{d x^{2}}+P^{(e)} \frac{d v}{d x} \frac{d \delta v}{d x}\right] d x \tag{6}
\end{align*}
\]
- Assuming a functional representation of the transverse displacements in terms of the four joint displacements \(v=\mathrm{N} \bar{u}, \frac{d v}{d x}=\mathrm{N}, x \overline{\mathrm{u}}, \frac{d^{2} v}{d x^{2}}=\mathrm{N}, x \overline{\mathrm{u}}\),
- The internal virtual strain energy must be equal to the external virtual work
\[
\left.\left.\begin{array}{rl}
\delta U_{i}^{(e, f)} & =\frac{1}{2} \int_{L}\left[E I \frac{d^{2} v}{d x^{2}} \frac{d^{2} \delta v}{d x^{2}}+P^{(e)} \frac{d v}{d x} \frac{d \delta v}{d x}\right] d x \\
\delta W_{e} & =P^{(e)} \int_{0}^{L}\left[\left(\frac{d \delta u}{d x} \frac{d u}{d x}\right)+\left(\frac{d \delta v}{d x} \frac{d v}{d x}\right)\right] d x \\
{\left[\mathrm{~K}_{e}+\mathrm{K}_{g}\right] \mathrm{u}_{e}} & =P \\
{\left[\mathrm{k}_{e}^{(e)}\right]} & =[\int_{L} E l \underbrace{\left\{N_{, x x}\right\}}_{B^{T}} \underbrace{\left\lfloor\mathrm{~N}_{, x x}\right\rfloor}_{\mathrm{B}} d x] \\
{\left[\mathrm{k}_{g}^{(e)}\right]} & =\left[P^{(e)} \int_{L}\left\{\mathrm{~N}_{, x}\right\}\right.
\end{array} \mathrm{N}_{\mathrm{N}_{x}}\right\rfloor d x\right] \text { Geometric Stiffness Matrix } \text {. }
\]

Note that the geometric stiffness matrix terms solely depend on geometric parameters (length).
- Substituting the shape functions:
\[
\mathrm{k}_{g}^{(e)}=\frac{P}{L}\left[\begin{array}{cccccc}
u_{1} & v_{1} & \theta_{1} & u_{2} & v_{2} & \theta_{2} \\
{\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{6}{5} & \frac{L}{10} & 0 & -\frac{6}{5} & \frac{L}{10} \\
0 & \frac{L}{10} & \frac{2}{15} L^{2} & 0 & -\frac{L}{10} & -\frac{L^{2}}{30} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{6}{5} & -\frac{L}{10} & 0 & \frac{6}{5} & -\frac{L}{10} \\
0 & \frac{L}{10} & -\frac{L^{2}}{30} & 0 & -\frac{L}{10} & \frac{2}{15} L^{2}
\end{array}\right]}
\end{array}\right.
\]
- The equilibrium relation is \(\mathrm{k} \overline{\mathrm{u}}=\overline{\mathrm{P}}\) and \(\mathrm{k}^{(e)}=\mathrm{k}_{e}^{(e)}+\mathrm{k}_{g}^{(e)}\) and in a global formulation, we would have \(\mathrm{K}=\mathrm{K}_{e}+\mathrm{K}_{g}\)
- We note that the structure becomes stiffer for tensile load \(P\) applied through \(\mathrm{K}_{g}\), and weaker in compression.
- We seek to determine the multiplier \(\lambda\) of an initial load vector \(\overline{\mathrm{P}}^{*}\) obtained from a first order linear elastic analysis which will cause buckling, \(\overline{\mathrm{P}}_{\text {cr }}=\lambda \overline{\mathrm{P}}^{*}\)
- Since the geometric stiffness matrix is proportional to the internal forces, \(\mathrm{K}_{g}=\lambda \mathrm{K}_{g}^{*}\) where \(\mathrm{K}_{g}^{*}\) corresponds to the geometric stiffness matrix for the reference load \(\overline{\mathrm{P}}^{*}\) (usually set to unity).
- The elastic stiffness matrix \(\mathrm{K}_{e}\) remains a constant, hence we can write \(\left(\mathrm{K}_{e}+\lambda \mathrm{K}_{g}^{*}\right) \overline{\mathrm{u}}-\underbrace{\lambda \overline{\mathrm{P}}^{*}}_{\overline{\mathrm{P}}_{\text {cr }}}=0\)
- The displacements are in turn given by \(\overline{\mathrm{u}}=\left(\mathrm{K}_{e}+\lambda \mathrm{K}_{g}^{*}\right)^{-1} \lambda \overline{\mathrm{P}}^{*}\) and for the displacements to tend toward infinity (i.e buckling/bifurcation/instability), then \(\left|\mathrm{K}_{e}+\lambda \mathrm{K}_{g}^{*}\right|=0\) which can also be expressed as \(\left|\mathrm{K}_{g}^{*-1} \mathrm{~K}_{e}+\lambda \mathrm{I}\right|=0\) which is an eigenvalue problem from which we can solve the eigenvalues \(\lambda\).
- Since \(\mathrm{K}_{g}^{*}\) has some zero terms along the diagonal, we use an alternate formulation
\[
\left|\mathrm{K}_{e}^{-1} \mathrm{~K}_{g}^{*}+\frac{1}{\lambda} \mathrm{I}\right|=0
\]
however, \(\mathrm{K}_{e}^{-1} \mathrm{~K}_{g}^{*}\) may not be symmetric.
- The lowest value of \(\lambda, \lambda_{\text {crit }}\) will give the buckling load for the structure and the buckling loads will be given by \(\overline{\mathrm{P}}_{\text {crit }}=\lambda_{\text {crit }} \overline{\mathrm{P}}^{*}\)

- The structure's stiffness matrices \(\mathrm{K}_{e}\) and \(\mathrm{K}_{g}\) can now be assembled from the element stiffnesses.
- Eliminating rows and columns 2, 7, 8, 9 corresponding to zero displacements in the column, we obtain
\[
\begin{gathered}
\mathrm{K}_{e}=\frac{E l}{L^{3}}\left[\begin{array}{ccccc}
1 & 4 & 3 & 5 & 6 \\
{\left[\begin{array}{ccccc}
\frac{A L^{2}}{l} & -\frac{A L^{2}}{l} & 0 & 0 & 0 \\
-\frac{A L^{2}}{l} & 2 \frac{A L^{2}}{l} & 0 & 0 & 0 \\
0 & 0 & 4 L^{2} & -6 L & 2 L^{2} \\
0 & 0 & -6 L & 24 & 0 \\
0 & 0 & 2 L^{2} & 0 & 8 L^{2}
\end{array}\right]} \\
1 & 4 & 3 & 5 & 6
\end{array} \mathrm{~K}_{g}=\frac{-P}{L}\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{2}{15} L^{2} & \frac{-L}{10} & \frac{-L^{2}}{30} \\
0 & 0 & \frac{-L}{10} & \frac{12}{5} & 0 \\
0 & 0 & \frac{-L^{2}}{30} & 0 & \frac{4}{15} L^{2}
\end{array}\right]\right.
\end{gathered}
\]

\section*{Elastic Instability; Bifurcation Analysis}

\section*{Example 1}
- Noting that in this case \(\mathrm{K}_{g}^{*}=\mathrm{K}_{g}\) for \(P=1\), the determinant \(\left|\mathrm{K}_{e}+\lambda \mathrm{K}_{g}^{*}\right|=0\) leads to
\begin{tabular}{c|ccccc} 
& 1 & 4 & 3 & 5 & 6 \\
1 & \(\frac{A L^{2}}{I}\) & \(-\frac{A L^{2}}{I}\) & 0 & 0 & 0 \\
4 & \(-\frac{A L^{2}}{I}\) & \(2 \frac{A L^{2}}{I}\) & 0 & 0 & 0 \\
3 & 0 & 0 & \(4 L^{2}-\frac{2}{15} \frac{\lambda L^{4}}{E I}\) & \(-6 L+\frac{1}{10} \frac{\lambda L^{3}}{E I}\) & \(2 L^{2}+\frac{1}{30} \frac{\lambda L^{4}}{E I}\) \\
5 & 0 & 0 & \(-6 L+\frac{1}{10} \frac{\lambda L^{3}}{E I}\) & \(24-\frac{12}{5} \frac{\lambda L^{2}}{E I}\) & 0 \\
6 & 0 & 0 & \(2 L^{2}+\frac{1}{30} \frac{\lambda L^{4}}{E I}\) & 0 & \(8 L^{2}-\frac{4}{15} \frac{\lambda L^{4}}{E I}\)
\end{tabular}\(|=0\)
- At his point we can either solve numerically or algebraically. Let us be brave enoughand go with the second:
- Introducing \(\phi=\frac{A L^{2}}{I}\) and \(\mu=\frac{\lambda L^{2}}{E I}\), the determinant becomes
\begin{tabular}{c|ccccc} 
& 1 & 4 & 3 & 5 & 6 \\
1 & \(\phi\) & \(-\phi\) & 0 & 0 & 0 \\
4 & \(-\phi\) & \(2 \phi\) & 0 & 0 & 0 \\
3 & 0 & 0 & \(2\left(2-\frac{\mu}{15}\right)\) & \(-6 L+\frac{\mu}{10}\) & \(2+\frac{\mu}{30}\) \\
5 & 0 & 0 & \(-6 L+\frac{\mu}{10}\) & \(12\left(2-\frac{\mu}{5}\right)\) & 0 \\
6 & 0 & 0 & \(2+\frac{\mu}{30}\) & 0 & \(4\left(2-\frac{\mu}{15}\right)\)
\end{tabular}

\section*{Example 1}
- Expanding the determinant, we obtain the cubic equation in \(\mu\) \(3 \mu^{3}-220 \mu^{2}+3,840 \mu-14,400=0\) and the lowest root of this equation is \(\mu=5.1772\). Hence the buckling load of the column of length \(2 L\) is \(P_{\text {cr }}=\lambda=\frac{5.1772 E I}{L^{2}}\)
- The exact solution for a column of length \(L\) is
\(P_{\text {cr }}=\frac{(4.4934)^{2}}{L^{2}} E I=\frac{(4.4934)^{2}}{(2 L)^{2}} E I=5.0477 \frac{E I}{L^{2}}\)
- Thus, the numerical value is about 2.6 percent higher than the exact one.

\[
\left(\mathrm{K}_{e}-P \mathrm{~K}_{g}\right) \mathrm{u}=0
\]


The smallest buckling load amplification factor \(\lambda\) is equal to 2,017 kips.
```

(* Initialize constants *)
a1=0 a2=0 a3=0 i1=100 i2=200 i3=50 |1=10 12 l2=15 12 l3=6 12 e1=29000 e2=e1 e3=e1
(* Define elastic stiffness matrices *)
ke[e_, a_, l_, i_]:={

```

```

ke1=ke[e1,a1,I1,i1]; ke2=ke[e2,a2, l2,i2]; ke3=ke[e3,a3, l3,i3]
(* Define geometric stiffness matrices *)
kg[l_,p_]:= p/l {

```

```

kg1=kg[11,1]
kg3=kg[13,1]
(* Assemble structure elastic and geometric stiffness matrices *)
ke={

```

```

{ ke1[[3,2]] , ke1[[3,3]]+\operatorname{ke2[[3,3]],}\operatorname{ke2[[3,6]]],}},
{\operatorname{ke3[[3,2]] , ke2[[6,3]] ,}\operatorname{ke2[[6,6]]+\operatorname{ke3[[3,3]]}}}}}=\mp@code{}}}
kg={
{ kg1[[2, 2]]+ kg3[[2,2]], kg1[[2,3]], kg3[[2,3]] },
{ kg1[[3,2]] , kg1[[3,3]] , 0 },
{ kg3[[3,2]] , 0 , kg3[[3,3]] } }
(* Determine critical loads in terms of p (note p=1) *)
p=1
keigen=Inverse[kg] . ke; pcrit=N[Eigenvalues[keigen]]; modshap=N[Eigensystems[keigen]]

```

\section*{Deformation}

- Using two elements for the beam column, the only degrees of freedom are the deflection and rotation at midspan (we neglect the axial deformation).
- Assembling the stiffness and geometric matrices:
\[
\left\{\begin{array}{l}
v_{1} \\
\theta_{2}
\end{array}\right\}=\underbrace{\left\{\begin{array}{c}
-0.00012123 \\
0
\end{array}\right\}}_{P=-80,000}=\underbrace{\left\{\begin{array}{c}
-0.0001125 \\
0
\end{array}\right\}}_{P=0}=\underbrace{\left\{\begin{array}{c}
-0.000104944 \\
0
\end{array}\right\}}_{P=80,000}
\]
- The member end forces for element 1 are given by
\[
\left\{\begin{array}{l}
P_{l f t} \\
V_{l f t} \\
M_{l f t} \\
P_{r g t} \\
V_{\text {rgt }} \\
M_{r g t}
\end{array}\right\}=\left[\left[\mathrm{k}_{e}^{1}\right]+\left[\mathrm{k}_{g}^{1}\right]\right]\left\{\begin{array}{c}
u_{l f t} \\
v_{l f t} \\
\theta_{\text {lft }} \\
u_{r g t} \\
v_{\text {rgt }} \\
\theta_{\text {rgt }}
\end{array}\right\}=\underbrace{\left(\begin{array}{c}
0 \\
25 . \\
79.8491 \\
0 . \\
-25 . \\
79.8491
\end{array}\right\}}_{P=-80,000}=\underbrace{\left\{\begin{array}{c}
0 \\
25 . \\
75 . \\
0 . \\
-25 . \\
75 .
\end{array}\right\}}_{P=0}=\underbrace{\left\{\begin{array}{c}
0 \\
25 . \\
70.8022 \\
0 . \\
-25 . \\
70.8022
\end{array}\right\}}_{P=80,000}
\]
- Compressive force increased the displacements and the end moments, whereas a tensile one stiffens the structure by reducing them.

\section*{Deformation}

\section*{II Mathematica}
```

(* Initialize constants *)
OpenWrite["mat.out "]; a1=1; a2=1; i1 =1 |^3/12;i2=i1; I1=12; I2=12; e1=200000;e2=e1;e3=e1;
theta1=N[Pi/8];theta2=Pi-theta1; load i1=i i2=i1 I=6 |1=1 I2=6 p=-80000 load={-50,0}
(* Define elastic stiffness matrices *)
ke[e_,a_, I_, i_]:={
{e a/l, 0 , 0 ,e a/l,0
{0 , 12 e i/l^3 , 6 e i/l^2 , 0 , -12 e i/l^3 ,
{0 a/l, 6 e i/l^2, , 4 e i/l, 0, a/l, -6 e i/l^2, 2 e i/l}
{-e a/l , 0
{0, ,-12 e i/l^3, -6 e i/l^^2,0
ke1=N[ke[e,a1,I1,i1]]; ke2=N[ke[e,a2,I2,i2]]
(* Assemble structure elastic stiffness matrices *)
ke=N[{
{ ke1[[5,5]]+ke2[[2,2]], ke1[[5,6]]+ke2[[2,3]]},
{ ke1[[6,5]]+ke2[[3,2]], ke1[[6,6]]+ke2[[3,3]]} }]
WriteString["mat.out",MatrixForm[ke1]]; WriteString["mat.out ",MatrixForm[ke2]];
WriteString ["mat.out ", MatrixForm [ke]]
(* Define geometric stiffness matrices *)
kg[p_, __]:=p/l

```

```

kg1=N[kg[p,|1]]; kg2=N[kg[p,I2]]
(* Assemble structure geometric stiffness matrices *)
kg=N[{
{ kg1[[5,5]]+\operatorname{kg2[[2,2]], kg1[[5,6]]+\operatorname{kg2 [[2,3]]},}}\mathbf{,}\mathrm{ ,}

```

```

(* Determine critical loads and normalize wrt p *)
keigen=Inverse[kg] . ke; pcrit=N[Eigenvalues[keigen] p]
(* Note that this gives lowest pcrit=1.11 10^^, exact value is 1.095 10^6 *)
(* Add elastic to geometric structure stiffness matrices *)
k=ke+kg
(* Invert stiffness matrix and solve for displacements *)
km1=Inverse[k] dis=N[km1 . Ioad]
(* Displacements of element 1*)
dis1={0, 0, 0, 0, dis[[1]], dis[[2]]}
k1=ke1+kg1
(* Member end forces for element 1 with axial forces *)
endfrc1=N[k1 . dis1]
(* Member end forces for element 1 without axial forces *)
knopm1=Inverse[ke]; disnop=N[knopm1 . load]; disnop1={0, 0, 0, 0, disnop[[1]], disnop[[2]]}
(* Displacements of element 1*)
endfrcnop1=N[ke1 . disnop1]

```

- So far, we have focused on bifurcation analysis (type 3), we now seek to perform a second order elastic analysis (type 5).
\[
\left[\mathrm{K}_{e}+\mathrm{K}_{g}\right] \overline{\mathrm{u}}=\overline{\mathrm{P}}
\]
- Since \(k_{g}\) depends on the magnitude of \(P^{(e)}\), which itself may be an unknown in a framework, then we do have a geometrically non-linear problem.
- A simple way to solve this nonlinear equation is to use a step-by-step or incremental procedure. The linearized incremental formulation can be obtained by applying an incremental operator \(\Delta\)


In an incremental analysis, we should:
Apply an incremental load \(\Delta P_{i}\) at each increment \(i\). At the end of each increment:
Update the total displacement \(u_{i}=u_{i-1}+\Delta u_{i}\).
Update the geometry \(\mathrm{x}_{i}=\mathrm{x}_{i-1}+\Delta \mathrm{u}_{i}\), get new lengths.
Update the transformation matrix.
Update the elastic and geometric stiffness matrix
Note that we are not checking for equilibrium at the end of each increment (more about this later), and if we take sufficiently small steps, solution should not diverge too much.
Update of geometry should also take care of \(P-\Delta\) effects.
- Keep in mind that this is an incremental analysis, each analysis is one associated with an increment of the load. At the each of each increment:
\begin{tabular}{rcl} 
Displacements & \(\Delta \mathrm{u}^{i} ;\) & \(\mathrm{u}^{i}=\mathrm{u}^{i-1}+\Delta \mathrm{u}^{i}\) \\
Nodal coordinates & & \(\mathrm{x}^{i}=\mathrm{x}^{i-1}+\Delta \mathrm{u}^{i}\) \\
Internal forces & \(\Delta \mathrm{F}^{i} ;\) & \(\mathrm{F}^{i}=\mathrm{F}^{i-1}+\Delta \mathrm{F}^{i}\) \\
Total Reactions & \(\Delta \mathrm{R}^{i} ;\) & \(\mathrm{R}^{i}=\mathrm{R}^{i-1}+\Delta \mathrm{R}^{i}\)
\end{tabular}
- Recompute at the beginning of each increment:
- Lengths, direction cosines, transformation matrix.
- Element stiffness matrix based on updated nodal coordinates and transformation matrix.
- Geometric stiffness matrix based on updated total axial force (from element internal forces) for each element.
- Use \(k\) and \(k_{g}\) to compute the internal forces.
\(P-\Delta\) a structural effect achieved by updating the geometry Augmented Lagrangian formulation: \(\mathrm{x}_{i}=\mathrm{x}_{i-1}+\Delta \mathrm{u}_{i}\). It does not account for the deformed shape of the member. It accounts for the effect of axial load on equilibrium.
\(P-\delta\) a member effect accounted for through the addition of the geometric stiffness matrix. It accounts for the effect of axial load on internal forces in the deformed configuration.
- If many elements model a column, in the limit one can ignore \(\mathrm{K}_{g}\), and eventually, there will be a large displacement at the corresponding "buckling load". This can be easily verified.

\title{
Non Linear Structural Analysis
} Plasticity I; Material \& Mechanics

\author{
Victor E. Saouma \\ saouma@colorado.edu \\ University of Colorado, Boulder
}

Fall 2020

\section*{Table of Contents I}
(7) Introduction
(2) Mechanics
- Stress Tensor
- Stress Transformation
- Principal Stresses
- Invariants
- Hydrostatic and Deviatoric Stress Tensors
(3) Laboratory Observations
- Metals
- Concrete
(4) Chemical Bonds
- Ductile and Brittle Failures
- Dislocation
(5) Back to Mechanics
- Physical interpretation of Stress Invariants
- Geometric Representation of Stress States

\section*{Table of Contents II}

6 Failure Surfaces
- Plastic Yield Conditions; Formulation
- Hydrostatic Pressure Independent Models
- Hydrostatic Pressure Dependent Models
(7) Fundamentals of Plasticity
- Introduction
- Tangent Elastic Modulus
- Tangent Modulus; Engineering
- Yield Function; Isotropic Hardening Model
- Flow Rule
- Consistency Condition
- Tangent Modulus; Mechanics

\section*{8 Figures}
- Material nonlinearity is the dominant source of nonlinearity in the structural response of most civil engineering structures.
- In the context of this course, plasticity would refer to both steel and concrete.
- Coverage will follow a three tier approach:
- Material (stress-strain) level, uniaxial and multiaxial (though not as relevant in this course).
- Section (Moment-Curvature)
- Structural.


Cauchy stress tensor:
\(\sigma_{i j}=\left\{\begin{array}{l}\mathbf{t}^{(1)} \\ \mathbf{t}^{(2)} \\ \mathbf{t}^{(3)}\end{array}\right\}=\left[\begin{array}{lll}\sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33}\end{array}\right]\)
\[
\boldsymbol{\sigma}=\left[\begin{array}{ccc}
7 & -5 & 0 \\
-5 & 3 & 1 \\
0 & 1 & 2
\end{array}\right]=\left\{\begin{array}{l}
\mathbf{t}_{1} \\
\mathbf{t}_{2} \\
\mathbf{t}_{3}
\end{array}\right\}
\]

We seek to determine the traction (or stress vector) \(\mathbf{t}\) passing through \(P\) and parallel to the plane \(A B C\) where \(A(4,0,0), B(0,2,0)\) and \(C(0,0,6)\).
The vector normal to the plane can be found by taking the cross products of vectors \(A B\) and \(A C\) :
\(\mathbf{N}=A B \times A C=\left|\begin{array}{ccc}\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\ -4 & 2 & 0 \\ -4 & 0 & 6\end{array}\right|=12 \mathbf{e}_{1}+24 \mathbf{e}_{2}+8 \mathbf{e}_{3}\) The unit normal of \(N\) is given by \(\mathbf{n}=\frac{3}{7} \mathbf{e}_{1}+\frac{6}{7} \mathbf{e}_{2}+\frac{2}{7} \mathbf{e}_{3}\) Hence the stress vector (traction) will be
\(\left.\begin{array}{llll} & \frac{3}{7} & \frac{6}{7} & \frac{2}{7}\end{array}\right\rfloor\left[\begin{array}{ccc}7 & -5 & 0 \\ -5 & 3 & 1 \\ 0 & 1 & 2\end{array}\right]=\left\lfloor\begin{array}{llll}-\frac{9}{7} & \frac{5}{7} & \frac{10}{7} & \rfloor\end{array}\right.\)
and thus \(\mathbf{t}=-\frac{9}{7} \mathbf{e}_{1}+\frac{5}{7} \mathbf{e}_{2}+\frac{10}{7} \mathbf{e}_{3}\)

Note that this stress tensor is really defined in the undeformed space (Eulerian), it could be defined in terms of the deformed space (Lagrangian).
- Stress transformation for the second order stress tensor is given by \([\sigma]=[A][\bar{\sigma}][A]^{\top}\) where \([A]\) is the transformation matrix composed of the direction cosines.
- Note analogy with the transformation of the stiffness matrix from local to global coordinate system \(\mathbf{K}=\boldsymbol{\Gamma}^{\top} \mathbf{k} \Gamma\)
- For the 2D plane stress this simplifies to
\[
\left\{\begin{array}{c}
\bar{\sigma}_{x x} \\
\bar{\sigma}_{y y} \\
\bar{\sigma}_{x y}
\end{array}\right\}=\left[\begin{array}{ccc}
\cos ^{2} \alpha & \sin ^{2} \alpha & 2 \sin \alpha \cos \alpha \\
\sin ^{2} \alpha & \cos ^{2} \alpha & -2 \sin \alpha \cos \alpha \\
-\sin \alpha \cos \alpha & \cos \alpha \sin \alpha & \cos ^{2} \alpha-\sin ^{2} \alpha
\end{array}\right]\left\{\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right\}
\]

\section*{Principal Stresses}

- Choose a special set of axis through the point so that the shear stress components vanish when the stress components are referred to this system of axis \(\Rightarrow\) principal axes of the principal stresses.
- \(\mathbf{n}\) unit vector in one of the unknown directions. \(\lambda\) : the principal-stress component on the plane whose normal is \(\mathbf{n}\) (note both \(\mathbf{n}\) and \(\lambda\) are yet unknown). Since there is no shear stress component on the plane perpendicular to \(\mathbf{n}\), the stress vector on this plane must be parallel to \(\mathbf{n}\) and \(\mathbf{t}_{n}=\lambda \mathbf{n} \Rightarrow \mathbf{n} \cdot \boldsymbol{\sigma}=\lambda \mathbf{n}\) or \(\mathbf{n}(\boldsymbol{\sigma}-\lambda \mathbf{I})=0\)
\[
\left|\begin{array}{lll}
\sigma_{11}-\lambda & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22}-\lambda & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}-\lambda
\end{array}\right|=0
\]

The three lambdas correspond to the three principal stresses \(\sigma_{(1)}>\sigma_{(2)}>\sigma_{(3)}\).

Stress tensor \(\boldsymbol{\sigma}=\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right]\), determine the principal stress values and the corresponding directions.
\(\left|\begin{array}{ccc}3-\lambda & 1 & 1 \\ 1 & 0-\lambda & 2 \\ 1 & 2 & 0-\lambda\end{array}\right|=0\) Or upon expansion (and simplification) \((\lambda+2)(\lambda-4)(\lambda-1)=0\), thus the roots are \(\sigma_{(1)}=-2, \sigma_{(2)}=1\) and \(\sigma_{(3)}=4\). We also note that those are the three eigenvalues of the stress tensor. If we let \(\bar{x}_{1}\) axis be the one corresponding to the direction of \(\sigma_{(1)}\) and \(n_{i}^{(1)}\) be the direction cosines of this axis, then
\[
\left\{\begin{aligned}
(3+2) n_{1}^{(1)}+n_{2}^{(1)}+n_{3}^{(1)} & =0 \\
n_{1}^{(1)}-2 n_{2}^{(1)}+2 n_{3}^{(1)} & =0 \\
n_{1}^{(1)}+2 n_{2}^{(1)}-2 n_{3}^{(1)} & =0
\end{aligned}\right.
\]
thus
\[
\begin{array}{ll}
n_{1}^{(1)}=0 & n_{2}^{(1)}=\frac{1}{\sqrt{2}} \quad n_{3}^{(1)}=-\frac{1}{\sqrt{2}} \\
n_{1}^{(2)}=\frac{1}{\sqrt{3}} & n_{2}^{(2)}=-\frac{1}{\sqrt{3}} n_{3}^{(2)}=-\frac{1}{\sqrt{3}} \\
n_{1}^{(3)}=-\frac{2}{\sqrt{6}} n_{2}^{(3)}=-\frac{1}{\sqrt{6}} n_{3}^{(3)}=-\frac{1}{\sqrt{6}}
\end{array}
\]

Finally, we can convince ourselves that the two stress tensors have the same invariants \(I_{1}, I_{2}\) and \(I_{3}\).
- Principal stresses are physical quantities, whose values do not depend on the coordinate system in which the components of the stress were initially given. They are therefore invariants of the stress state.
- When the determinant in the characteristic equation is expanded, the cubic equation is: \(\lambda^{3}-I_{1} \lambda^{2}-I_{2} \lambda-I_{3}=0\) where \(I_{1}, I_{2}\) and \(I_{3}\) (in terms of principal stresses are given by
\[
\begin{aligned}
& I_{1}=\sigma_{(1)}+\sigma_{(2)}+\sigma_{(3)} \\
& I_{2}=-\left(\sigma_{(1)} \sigma_{(2)}+\sigma_{(2)} \sigma_{(3)}+\sigma_{(3)} \sigma_{(1)}\right) \\
& I_{3}=\sigma_{(1)} \sigma_{(2)} \sigma_{(3)}
\end{aligned}
\]
where \(\sigma_{(1)}<\sigma_{(2)}<\sigma_{(3)}\)
- We first define a mean normal stress as \(\sigma=p=\frac{1}{3}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right)=\) \(\frac{1}{3} \sigma_{i i}=\frac{1}{3} \operatorname{tr} \sigma\)
- The stress tensor can be written as the sum of two tensors a hydrostatic one and a deviatoric one:
Hydrostatic stress in which each normal stress is equal to \(-p\) and the shear stresses are zero. The hydrostatic stress produces volume change without change in shape
\[
\sigma_{\text {hyd }}=p \mathbf{I}=\left[\begin{array}{lll}
p & 0 & 0 \\
0 & p & 0 \\
0 & 0 & p
\end{array}\right]
\]
- Deviatoric Stress: which causes the change in shape.
\(\sigma_{d e v}=\mathbf{s}=\boldsymbol{\sigma}-\boldsymbol{\sigma}_{\text {hyd }}=\left[\begin{array}{lll}\sigma_{11}-p & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22}-p & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33}-p\end{array}\right]\)
- The deviatoric stress Invariants are referred as (in terms of principal stresses) \(J_{1}=s_{(1)}+s_{(2)}+s_{(3)}\), \(J_{2}=-\left(s_{(1)} s_{(2)}+s_{(2)} s_{(3)}+s_{(3)} s_{(1)}\right)\), and \(J_{3}=s_{(1)} s_{(2)} s_{(3)}\).
- It can be shown (upon substitution) that in terms of principal stresses, \(J_{2}=\)
\(\frac{2}{3}\left[\left(\frac{\sigma_{(1)}-\sigma_{(2)}}{2}\right)^{2}+\left(\frac{\sigma_{(2)}-\sigma_{(3)}}{2}\right)^{2}+\left(\frac{\sigma_{(3)}-\sigma_{(1)}}{2}\right)^{2}\right]\)
and \(J_{2}=\frac{2}{3}\left(\tau_{(1)}^{2}+\tau_{(2)}^{2}+\tau_{(3)}^{2}\right)\)
- We note that \(J_{2}\) is really associated with shear stresses and distortional deformation.

- Up to A, linearly elastic unloading follows initial loading path. O-A behavior is load path independent.
- At A we reach the elastic limit, material becomes plastic and behaves irreversibly. First yielding (A-D) and then hardening.
- Unloading: permanent strain or plastic strain \(\varepsilon^{p}\). Thus only part of the total strain \(\varepsilon_{B}\) at \(B\) is recovered upon unloading, that is the elastic strain \(\varepsilon_{A}^{e}\).


- Strain hardening in one direction, followed by reversed loading in the other, \(\Rightarrow\) stress-strain curve will be different from the one obtained from pure tension or compression.
- New yield point in compression at B corresponds to stress \(\sigma_{y}^{B}\) smaller than \(\sigma_{y}^{0}\) and much smaller than the previous yield stress at \(A\). This phenomena is called Bauschinger effect, or kinematic hardening (as opposed to isotropic hardening).
- Stress-strain behavior in the plastic range is path dependent, i.e. strain will not depend on the the current stress state, but also on the entire loading history, i.e. stress history and deformation history.
- Concrete contains microcracks due to shrinkage, and is originally isotropic.
- As the stress reaches \(\simeq 0.5 f_{c}^{\prime}\), interface cracks around the aggregates propagate, and tend to align themselves with the compressive stress.
- At peak stress, a mechanism is formed (coalescence of the micro-cracks).
- If a load is applied, sudden failure at peak.
- if displacement is imposed, post-peak softening

- Ionic Bond Atoms held together by electrostatic attraction as electrons are transferred from one atom to a neighbouring one. The atom giving up the electron, becomes positively charged and the atom receiving it becomes negatively charged.
- Covalent Bond: electrons are shared more or less equally between neighboring atoms. Although the electrostatic force of attraction between adjacent atoms is less than it is in ionic bonds, covalent bonds tend to be highly directional, meaning that they resist motion of atoms past one another. Diamond has covalent bonds.
- Metallic Bond: electrons are delocalized or distributed equally through a metallic crystal, bond is not localized between two atoms. Best described as positive ions in a sea of electrons.

ionic solid: each ion is surrounded by oppositely charged ions, \(\Rightarrow\) slipping much more difficult to achieve, and the material responds by breaking in a brittle behavior. When a force of sufficient magnitude displaces atoms from one equilibrium position to another we have a plastic deformation along the slip plane.

Shear stress applied on a metal bond: atoms can slip and slide past one another without regard to electrical charge constraint, and thus it gives rise to a ductile response.


- Theoretical strength of perfect crystals (stress it takes to separate two adjacent atoms) is about \(E / 10\). Never achieved due to presence of random imperfections.
- Edge dislocation: internal flaws in atomic plane. Due to \(\tau\) there is a driving force for breaking atomic bonds between atoms \(A\) and \(C\) until the dislocation passes entirely out of the crystal: dislocation glide.
- When the dislocation leaves the crystal: permanent offset.
- Yield stress: the applied shear stress necessary to provide the dislocations with enough energy to overcome short range forces exerted by the obstacles.
- Work-Hardening: With plastic deformation dislocations multiply and greater stresses are needed to overcome this resistance and strain hardening occurs.
- Bauschinger Effect: With deformations, dislocations accumulate, \(\Rightarrow\) dislocation pile-ups. Since strain hardening is related to increased dislocation density, reducing the number of dislocations (through stress reversal) reduces strength.
- Octahedral plane is one which makes equal angles with respect to each of the principal-stress directions, the normal to this plane is given by
\[
\mathbf{n}=\frac{1}{\sqrt{3}}\left\{\begin{array}{l}
1 \\
1 \\
1
\end{array}\right\}
\]
- The vector of traction on this plane is \(\mathbf{t}_{\text {oct }}=\frac{1}{\sqrt{3}}\left\{\begin{array}{l}\sigma_{1} \\ \sigma_{2} \\ \sigma_{3}\end{array}\right\}\) and the normal
component of the stress on the octahedral plane is given by \(\sigma_{\text {oct }}=\) \(\mathbf{t}_{\text {oct }} \cdot \mathbf{n}=\frac{\sigma_{1}+\sigma_{2}+\sigma_{3}}{3}=\frac{1}{3} \mathbf{I}_{1}=\sigma_{\text {hyd }}\)
- The octahedral shear ștress is obtained from \(\tau_{o c t}^{2}=\left|\mathbf{t}_{o c t}\right|^{2}-\sigma_{o c t}^{2}=\frac{\sigma_{1}^{2}}{3}+\frac{\sigma_{2}^{2}}{3}+\frac{\sigma_{3}^{2}}{3}-\frac{\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right)^{2}}{9}\) Upon algebraic manipulation, it
can be shown that \(\tau_{\text {oct }}=\sqrt{\frac{2}{3} J_{2}}\) and finally, the direction of the octahedral shear stress is given by \(\cos 3 \theta=\sqrt{2} \frac{J_{3}}{\tau_{\text {oct }}^{3}}\)
- The elastic strain energy (total) per unit volume can be decomposed into two parts: \(U=U_{1}+U_{2}\), where
\[
\begin{array}{ll}
U_{1}=\left.\frac{1-2 v}{E}\right|_{1} ^{2} & \text { Dilational energy } \\
U_{2}=\frac{1+v}{E} J_{2} & \text { Distortional energy }
\end{array}
\]
- Using the three principal stresses \(\sigma_{(1)}, \sigma_{2}\), and \(\sigma_{3}\), as the coordinates, a three-dimensional stress space can be constructed. This stress representation is known as the Haigh-Westergaard stress space.
- \(\mathbf{O P}=\mathbf{O N}+\mathbf{N P}\). The former is along the direction of the unit vector ( \(1 \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3}\) ), and \(\mathbf{N P} \perp \mathbf{O N}\).
- NP represents the deviatoric component of the stress state \(\left(s_{1}, s_{2}, s_{3}\right)\) and is perpendicular to the \(\xi\) axis. Any plane perpendicular to the hydrostatic axis is called the deviatoric plane and is expressed as \(\frac{1}{\sqrt{3}}\left(\sigma_{(1)}+\sigma_{(2)}+\sigma_{(3)}\right)=\xi\)
- Plane which passes through the origin is called the \(\pi\) plane and is represented by \(\xi=0\). Any plane containing the hydrostatic axis is called a meridian plane. The vector NP lies in a meridian plane and has \(\rho=\sqrt{s_{1}^{2}+s_{2}^{2}+s_{3}^{2}}=\sqrt{2 J_{2}}\)
- Yielding in a uniaxially loaded structural element can be easily determined from \(\left|\frac{\sigma}{\sigma_{y / d}}\right| \geq 1\). But what about a general three dimensional stress state?
- Yield function \(F\) is a function of all six stress components of the stress tensor and a (or multiple) uniaxial yield stress.
- In biaxial or triaxial state of stresses, the elastic limit is defined mathematically by a certain yield criterion which is a function of the stress state \(\sigma_{i j}\) expressed as \(F\left(\sigma_{i j}\right)=0\)
- F can not be greater than zero.
\[
F=F\left(\sigma_{(1)}, \sigma_{(2)}, \sigma_{(3)}, \sigma_{y}\right)\left\{\begin{array}{ll}
<0 & \text { Elastic } \\
=0 & \text { Plastic } \\
>0 & \text { Impossible }
\end{array} \quad\left|\begin{array}{l}
\left.\frac{d \varepsilon^{P}}{d t} \right\rvert\,=0 \\
\frac{d \varepsilon}{d t}
\end{array}\right| \geq 0\right.
\]
- For isotropic materials, the stress state is usually defined by \(F\left(\sigma_{(1)}, \sigma_{(2)}, \sigma_{(3)}\right)=0\) or \(F\left(\iota_{1}, J_{2}, J_{3}\right)=0\) which define the yield surface.
- We will distinguish between pressure independent and pressure dependent models.


Tresca


Von Mises
- For hydrostatic pressure independent yield surfaces (e.g. steel) shearing stress (and not its direction) is the major cause of yielding \(\Rightarrow\) elastic-plastic behavior in tension and in compression should be equivalent for hydrostatic-pressure independent materials.
- Tresca criterion: yielding occurs when the maximum shear stress reaches a limiting value \(k\), or \(F\left(\max \left(\frac{1}{2}\left|\sigma_{(1)}-\sigma_{(2)}\right|, \frac{1}{2}\left|\sigma_{(2)}-\sigma_{(3)}\right|, \left.\frac{1}{2} \right\rvert\,\right.\right.\) 0 from uniaxial tension test, we determine that \(k=\sigma_{y} / 2\) and from pure shear test \(k=\tau_{y}\). Hence, in Tresca, tensile strength and shear strength are related by \(\sigma_{y}=2 \tau_{y}\)
- von Mises: Material will yield when the second deviatoric stress invariant reaches a critical value \(F\left(J_{2}\right)=J_{2}-k^{2}=\frac{\left(\sigma_{(1)}-\sigma_{(2)}\right)^{2}+\left(\sigma_{(2)}-\sigma_{(3)}\right)^{2}+\left(\sigma_{(1)}-\sigma_{(3)}\right)^{2}}{2}-\sigma_{y}^{2}=0\) or when the maximum distorsional (shear) energy reaches the same critical value as for yield as in uniaxial tension.


Rankine


Mohr-Coulomb


Drucker Prager
- Pressure sensitive frictional materials (such as soil, rock, concrete) need to consider the effects of both the first and second stress invariants.
- The cross-sections of a yield surface are the intersection curves between the yield surface and the deviatoric plane (perpendicular to the hydrostatic axis \(\xi\) ) and with \(\xi=\) constant. Threefold symmetry.
- Rankine criterion postulates that yielding occur when the maximum principal stress reaches the tensile strength; \(\sigma_{(1)}=\sigma_{y} ; \sigma_{(2)}=\sigma_{y} ; \sigma_{(3)}=\sigma_{y}\)
- Mohr-Coulomb: extension of the Tresca criterion. The maximum shear stress is a constant plus a function of the normal stress acting on the same plane; \(|\tau|=c-\sigma \tan \phi\) where \(c\) is the cohesion, and \(\phi\) the angle of internal friction.
- Both \(c\) and \(\phi\) are material properties which can be calibrated from uniaxial tensile and uniaxail compressive tests; \(\sigma_{t}=\frac{2 c \cos \phi}{1+\sin \phi}\) and \(\sigma_{c}=\frac{2 c \cos \phi}{1-\sin \phi}\).
- Drucker-Prager postulates is a simple extension of the von Mises criterion to include the effect of hydrostatic pressure on the yielding of the materials through \(I_{1}: F\left(I_{1}, J_{2}\right)=\alpha l_{1}+J_{2}-k\) The strength parameters \(\alpha\) and \(k\) can be determined from the uni axial tension and compression tests \(\sigma_{t}=\frac{\sqrt{3} k}{1+\sqrt{3} \alpha}\); and \(\sigma_{c}=\frac{\sqrt{3} k}{1-\sqrt{3} \alpha}\)
- There are two major theories for elastoplasticity

Deformation Theory (or Total) of Hencky and Nadai, where the total strain \(\varepsilon_{i j}\) is a function of the current stress. \(\varepsilon=\varepsilon_{e}+\varepsilon_{p}\) leads to a secant-type formulation of plasticity that is based on the additive decomposition of total strain into elastic and plastic components (Hencky).
Rate Theory (or incremental) of Prandtl-Reuss, defined by \(\dot{\varepsilon}=\dot{\varepsilon}_{e}+\dot{\varepsilon}_{p}\)
We will use the rate theory in this course.
- Though most of the formulations in this course will be uniaxial, for the sake of completeness multi-axial failure models will be briefly presented

\section*{Tangent Elastic Modulus}

- We can experimentally determine \(E^{e}\) and \(E^{p}=H\) (elastic and plastic moduli):
\[
\begin{align*}
& \dot{\sigma}^{e}=E^{e} \dot{\varepsilon}^{e}  \tag{1}\\
& \dot{\sigma}^{p}=E^{p} \dot{\varepsilon}^{p} \tag{2}
\end{align*}
\]
i.e. taken separately we know how to compute the incremental stress from the incremental elastic or plastic strains.
- The incremental (total) strain \(\dot{\varepsilon}\), has two components: elastic and plastic ones:
\[
\begin{equation*}
\dot{\varepsilon}=\dot{\varepsilon}^{e}+\dot{\varepsilon}^{p} \tag{3}
\end{equation*}
\]

Hence, the incremental strain has a component characterized by \(E^{e}\) and another by \(E^{p}\)
- We seek to determine the total incremental stress-strain relationship such that
\[
\begin{equation*}
\dot{\sigma}=E^{\tan } \dot{\varepsilon} \tag{4}
\end{equation*}
\]
where \(E^{\text {tan }}\) is the tangent modulus yet to be determined.
- Thus, we can rewrite Eq. 3
\[
\begin{equation*}
\dot{\varepsilon}^{e}=\dot{\varepsilon}-\dot{\varepsilon}^{p} \tag{5}
\end{equation*}
\]
and
\[
\begin{equation*}
\dot{\sigma}=E^{e}\left(\dot{\varepsilon}-\dot{\varepsilon}^{p}\right) \tag{6}
\end{equation*}
\]
- The plastic strain and corresponding plastic stress increment:
\[
\begin{equation*}
\dot{\sigma_{p}}=\dot{q}=H \dot{\varepsilon_{p}} \tag{7}
\end{equation*}
\]
- The total strain \(\left(\dot{\varepsilon}_{i j}\right)\) is usually known because it is incrementally defined, thus we seek to determine the incremental plastic one \(\dot{\varepsilon}_{i j}^{p}\) such that
\[
\begin{equation*}
\dot{\sigma}=E^{\tan } \dot{\varepsilon} \tag{8}
\end{equation*}
\]
- Do not confuse \(H\) and \(E^{\text {tan }}\)
- Two Approaches:
(1) Generalized, 3D, Mechanics; this will require
(1) Yield function
(2) Flow rule
(3) Consistency condition
(2) Engineering 1D

Each will be separately addressed.
- Rate theory (Eq. 3): \(\dot{\varepsilon}=\dot{\varepsilon}^{e}+\dot{\varepsilon}^{p}\)
- if \(\sigma \leq \sigma_{y}\) (elasticity), then \(\dot{\varepsilon}=\dot{\varepsilon}^{e}=\frac{\dot{\sigma}}{E^{e}}\)
- if \(\sigma>\sigma_{y}\) (plasticity), then from Eq. 1, 2, and 4:
\[
\begin{aligned}
\dot{\varepsilon} & =\dot{\varepsilon}^{e}+\dot{\varepsilon}^{p} \\
& =\frac{\dot{\sigma}}{E^{e}}+\frac{\dot{\sigma}}{E^{p}}=\frac{\dot{\sigma}}{E^{\tan }} \\
\Rightarrow E^{\tan } & =\frac{E \cdot E^{p}}{E+E^{p}}
\end{aligned}
\]
- Note
\[
E^{\tan }= \begin{cases}>0, & \text { Hardening } \\ =0, & \text { Perfectly Plastic } \\ <0, & \text { Softening }\end{cases}
\]
and \(E^{\text {tan }}\) is independent of the type of hardening (isotropic or kinematic).
Note: There is a counterpart in nonlinear structural analysis where we seek to determine the Tangent stiffness matrix of an element at a given time step. Procedure is conceptually identical to what was done analytically in the first part.
- Yield function denotes the current level of stress minus the initial yield stress to which one may add a function of \(\alpha\) which describes the type of hardening. In 1D, it can be defined as
\[
\begin{equation*}
h(\sigma, q)=|\sigma|-q \leq 0 \tag{9}
\end{equation*}
\]
- \(h\) determines the motion and deformation of the yield surface (Hardening or Softening).
- if \(h<0\), then the stress is within the elastic domain, and if \(h=0\), the stress has reached its plastic limit.
- First the strain reaches yielding ( \(\sigma_{0}=\sigma_{y}\) ), and then at that point further increase in strain results in an expansion of \(q\) this will in turn expand the elastic domain.
- When the stress is inside the yield surface, it is elastic, Hooke's law is applicable, strains are recoverable, and there is no dissipation of energy
- When the load on the structure pushes the stress tensor to be beyond the yield surface, the stress tensor locks up on the yield surface, and the structure deforms plastically.
- If the material exhibits hardening as opposed to elastic-perfectly plastic response, then the yield surface expands or moves with the stress point still on the yield surface.
- The crucial question is what will be direction of the plastic flow (that is the relative magnitude of the components of \(\varepsilon^{P}\). This question is addressed by the flow rule, or normality rule.

\section*{Fundamentals of Plasticity}


Isotropic Hardening


Kinematic Hardening
- Flow rule assumes that the plastic strain increment and deviatoric stress tensor have the same principal directions and it defines the evolution of plastic strain
\[
\begin{equation*}
\dot{\varepsilon}^{p}:=\lambda \cdot \frac{\partial g\left(\sigma, \varepsilon^{p}, q\right)}{\partial \sigma}=\lambda \cdot h(\sigma, q) \tag{10}
\end{equation*}
\]
where, \(g\left(\sigma, \varepsilon^{p}, q\right)\) is the plastic potential and \(\lambda\) is a plastic multiplier that measures the magnitude of the plastic deformation (as we shall see later, this term will drop and lead to \(E^{\text {tan }}\) (which is what we are ultimately seeking).
- If \(g \equiv h\), we have associated flow rule (usually in metals). If \(g \neq h\) we have non associated flow rule, (concrete and geomaterials exhibiting dilatancy).
- For isotropic hardening models and associated flow rule,
\[
\begin{equation*}
g\left(\sigma, \varepsilon^{p}, q\right)=h(\sigma, q)=|\sigma|-q \Rightarrow \frac{\partial g}{\partial \sigma}=\operatorname{sign}(\sigma) \tag{11}
\end{equation*}
\]
where \(\operatorname{sign}(\sigma)\) is 1 if \(\sigma \geq 0\) or -1 if \(\sigma<0\).
- Then, from Eq. 10
\[
\begin{equation*}
\dot{\varepsilon}^{p}=\lambda \cdot \operatorname{sign}(\sigma) \tag{12}
\end{equation*}
\]
or
\[
\begin{equation*}
\lambda=\left|\dot{\varepsilon}^{p}\right| \geq 0 \tag{13}
\end{equation*}
\]
- For simplicity and under the assumption of elasto-plastic hardening material with bilinear curve,
\[
\begin{equation*}
h(\sigma, q)=-\frac{\partial g}{\partial q}=1 \tag{14}
\end{equation*}
\]
- Therefore, we can express the stress (Eq. 6) as
\[
\begin{equation*}
\dot{\sigma}=E\left(\dot{\varepsilon}-\dot{\varepsilon}^{p}\right) \Rightarrow \dot{\sigma}=E \cdot\left(\dot{\varepsilon}-\lambda \cdot \frac{\partial g}{\partial \sigma}\right)=E \cdot(\dot{\varepsilon}-\lambda \cdot \operatorname{sign}(\sigma)) \tag{15}
\end{equation*}
\]
and from Eq. 7
\[
\begin{equation*}
\dot{q}=H \dot{\varepsilon}_{p} \Rightarrow \dot{q}=H \cdot \lambda \cdot h(\sigma, q)=H \cdot \lambda \tag{16}
\end{equation*}
\]

During plastic loading the stress path is constrained to move along the yield surface, thus this consistency condition precludes us from going beyond the yield surface and is mathematically expressed as \(\dot{f}(\sigma, q)=0\), or
\[
\begin{align*}
\dot{f}(\sigma, q) & =\frac{\partial f}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial t}+\frac{\partial f}{\partial q} \cdot \frac{\partial q}{\partial t} \\
& =\frac{\partial f}{\partial \sigma} \cdot \dot{\sigma}+\frac{\partial f}{\partial q} \cdot \dot{q}=0 \tag{17}
\end{align*}
\]
- Now, we can finally solve Eq. 8
\[
\begin{equation*}
\dot{\sigma}=E^{\tan } \dot{\varepsilon} \tag{18}
\end{equation*}
\]
where the tangent modulus is the slope of the stress-strain curve at any specified stress or strain. Below the proportional limit the tangent modulus is equivalent to Young's modulus
- Not to be confused with \(\dot{\sigma}_{p}=\dot{q}=H \dot{\varepsilon_{p}}\)
- Substituting
\[
\text { Flow Rule Eq. } 15
\]

Eq. 16
\[
\begin{aligned}
& \dot{\sigma}=E \cdot\left(\dot{\varepsilon}-\lambda \cdot \frac{\partial g}{\partial \sigma}\right) \\
& \dot{q}=H \cdot \lambda \cdot h(\sigma, q)
\end{aligned}
\]

Consistency Eq. \(17 \dot{f}(\sigma, q)=\frac{\partial f}{\partial \sigma} \cdot \dot{\sigma}+\frac{\partial f}{\partial q} \cdot \dot{q}=0\)
- we obtain
\[
\frac{\partial f}{\partial \sigma} \cdot E \cdot\left(\dot{\varepsilon}-\lambda \cdot \frac{\partial g}{\partial \sigma}\right)+\frac{\partial f}{\partial q} \cdot H \cdot \lambda \cdot h(\sigma, q)=0
\]
- Therefore, \(\lambda=\frac{\frac{\partial f}{\partial \sigma} \cdot E \cdot \dot{\varepsilon}}{\frac{\partial f}{\partial \sigma} \cdot E \cdot \frac{\partial g}{\partial \sigma}-\frac{\partial f}{\partial q} \cdot H \cdot h(\sigma, q)}\)

\section*{Fundamentals of Plasticity}

\section*{Tangent Modulus; Mechanics}
- Substituting back into \(\dot{\sigma}=E \cdot(\dot{\varepsilon}-\dot{\gamma} \cdot \operatorname{sign}(\sigma))\), we obtain an explicit expression for the incremental stress,
\[
\begin{aligned}
\dot{\sigma} & =E \cdot\left(\dot{\varepsilon}-\lambda \cdot \frac{\partial g}{\partial \sigma}\right) \\
& =\underbrace{\left(E-\frac{\frac{\partial f}{\partial \sigma} \cdot E^{2} \cdot \frac{\partial g}{\partial \sigma}}{\frac{\partial f}{\partial \sigma} \cdot E \cdot \frac{\partial g}{\partial \sigma}-\frac{\partial f}{\partial q} \cdot H \cdot h(\sigma, q)}\right)}_{\text {(by definition) } E^{\tan }} \cdot \dot{\varepsilon}
\end{aligned}
\]
- For elasto-plastic hardening material with bilinear curve in one dimension,
\[
\lambda=\frac{\operatorname{sign}(\sigma) \cdot E \cdot \dot{\varepsilon}}{E+H}
\]
and the tangent modulus reduces to
\[
\begin{aligned}
E^{\tan } & =E-\frac{\operatorname{sign}(\sigma) \cdot E^{2} \cdot \operatorname{sign}(\sigma)}{\operatorname{sign}(\sigma) \cdot E \cdot \operatorname{sign}(\sigma)-(-1) \cdot H \cdot(1)} \\
& =E-\frac{E^{2}}{E+H}=\frac{E \cdot H}{E+H}
\end{aligned}
\]
- Note that if \(H=E / 9\), then \(E^{\text {tan }}=E / 10\)





\title{
Non Linear Structural Analysis Plasticity II; Sections
}

\author{
Victor E. Saouma \\ saouma@colorado.edu \\ University of Colorado, Boulder
}

Fall 2020

\section*{Table of Contents I}
(1) Introduction
- Curvature Equation
- Moment-Curvature; \(M\) - \(\Phi\)
- Matlab Code
(2) Layered; \((\sigma-\varepsilon)\); Steel
- Derive Equivalent \(M-\Phi\)
- Push Over \(P\) - \(\Delta\)
(3) Layered; \((\sigma-\varepsilon)\); Concrete/ACI
- Formulation
- Ultimate Moment \(M_{u}\)
4) Moment Curvature \(M-\Phi\)
- Free Body Diagram
- Procedure
- Algorithm
(5) Interaction Diagram \(M-N\)

6 Lumped Plasticity

There are two types of element formulation for material nonlinearity:
- Lumped plasticity:
- Inelastic behavior of beam-column concentrated at end of members (adequate for horizontal load, not so for vertical ones).
- Use zero-length plastic hinges through nonlinear spring elements.
- Requires stiffness calibration to determine the nonlinear \(M\) - \(\theta\)
- Distributed plasticity
- Sectional \((M-\Phi)\) constitutive behavior of cross-section formulated in terms of moment and axial forces. Does not capture gradual spread of plasticity.
- Layered/Fiber \((\sigma-\varepsilon)\), the cross-section is discretized into section fibers, stress-strain formulation for each fiber, captures gradual spread of plasticity over the cross section.
- Two formulations
- Euler-Bernoulli, linear strain distribution, does not account for shear deformation.
- Timoshenko accounts for shear displacement, non-linear strain distribution.
- Basic Assumptions:
- Forces: Axial, \(N\) and Moment, \(M\)
- Plane section remains plane (Bernouilli)
- For R/C perfect bond between steel and concrete.
- Governing equations:
- Equilibrium of force and moment at cross section
- Compatibility of strain-curvature \(\varepsilon=\Phi . y=\frac{M}{E . I} y\)
- Constitutive Laws
- Moment-Curvature \(M\) - \(\Phi\)
- Stress-Strain \(\sigma-\varepsilon\)
- Curvature: rotation per unit length \(\theta_{A B}=\int_{A}^{B} \Phi d x\)
- Outcome
- Moment-Curvature \(M\) - \(\Phi\)
- Load-Deflection (pushover \(P-\Delta\) )
- Interaction diagram \((M-N)\)
- Note: Often use non-layered approach based on \(M-\Phi\) for steel, and layered for concrete.
- Ductility may be defined as the ability to undergo deformations without a substantial reduction in the flexural capacity of the member.
- The ductility ratio is defined as \(\xi=\frac{\Phi_{u}}{\Phi_{y}}\) where \(\Phi_{u}\) is the curvature at ultimate when the concrete compression strain reaches a specified limiting value, \(\Phi_{y}\) is the curvature when the tension reinforcement first reaches the yield strength. This is very important for seismic design.

\section*{Curvature Equation}

- The slope is denoted by \(\theta\), the change in slope per unit length is the curvature \(\phi\), the radius of curvature is \(\rho\). From Strength of Materials we have the following relations
\[
\begin{equation*}
\phi=\frac{1}{\rho}=\frac{d \theta}{d s} \tag{1}
\end{equation*}
\]
- For small displacements, and as a first order approximation, with \(d s \approx d x\) and \(\theta=\frac{d y}{d x}\) Eq. 1 becomes
\[
\begin{equation*}
\phi=\frac{1}{\rho}=\frac{d \theta}{d x}=\frac{d^{2} y}{d x^{2}} \tag{2}
\end{equation*}
\]
- A positive \(d \theta\) at a positive \(y\) (upper fibers) will cause a shortening of the upper fibers \(d u=-y d \theta\), Dividing both sides by \(d x\),
\[
\underbrace{\frac{d u}{d x}}_{\varepsilon}=-y \frac{d \theta}{d x}
\]
- Combining this with Eq. 2
\[
\begin{equation*}
\frac{1}{\rho}=\phi=-\frac{\varepsilon}{y} \text { or } \varepsilon=-\Phi y \tag{3}
\end{equation*}
\]

This is the fundamental relationship between curvature ( \(\phi\) ), elastic curve (i.e. displacement) ( \(y\) ), and linear strain ( \(\varepsilon\) ).
- Note that so far we made no assumptions about material properties, i.e. it can be elastic or inelastic.
- For the elastic case:
\[
\left.\begin{array}{rl}
\varepsilon & =\frac{\sigma}{E}  \tag{4}\\
\sigma & =-\frac{M y}{I}
\end{array}\right\} \varepsilon=-\frac{M y}{E I}
\]
- Combining this last equation with Eq. 1 yields
\[
\phi=\frac{1}{\rho}=\frac{d \theta}{d x}=\frac{d^{2} y}{d x^{2}}=\frac{M}{E I}
\]

This fundamental differential equation governing for beam. Similar equations will be derived later for cables and beam-columns.

- Yielding occurs at \(x_{y}\) such that \(x_{y}=\frac{M_{y}}{P} \leq L\)
- The curvatures are given by
\(\phi= \begin{cases}\frac{P . x}{E . I} & \text { if } x<x_{y} \\ \frac{M_{y}}{E . I}+\frac{P . x-M_{y}}{\alpha . E . I} & \text { if } x>x_{y}\end{cases}\)
- Using the principle of complementary virtual work (virtual force), where \(\delta \bar{M}=x\) \(\delta \bar{P} \Delta=\int_{0}^{L} \delta \bar{M} \cdot \phi d x=\int_{0}^{L} x \cdot \phi \cdot d x\)
- \(\quad \delta \bar{P} \Delta=\int_{0}^{x_{y}} x \frac{P . x}{E . I} d x+\)
\[
\begin{aligned}
& \int_{x_{y}}^{L} x\left(\frac{M_{y}}{E . I}+\frac{P \cdot x-M_{y}}{\alpha . E . I}\right) \cdot d x \\
& \text { or } \delta \bar{P} \cdot \Delta= \\
& \frac{P \cdot x_{y}^{3}}{3 . E E I}+\frac{3(-1+\alpha) M_{y}\left(L^{2}-x_{y}^{2}\right)+2 \cdot P\left(L^{3}-x_{y}^{3}\right)}{6 E . I . \alpha}
\end{aligned}
\]
- Substituting with \(x_{y}=M_{y} / P\) gives Force-displacement or Pushover
\(\Delta=\frac{2 L^{3} P^{3}-(\alpha-1) M_{y}\left(M_{y}^{2}-3 L^{2} P^{2}\right)}{6 \alpha E I P^{2}}\)
```

clear all
clc
close all
fprintf('===============================
n')
%% Initialization for figures
fs = 28;
scrsz = get(0,'ScreenSize ');
figpos = [2 2 scrsz(3)/2 scrsz(4)/2];
%% units: kips in
E=29000;fy=36;L=6*12;alpha=0.01;
%% Consider W16x100
I=1490; S=175; El=E*I; My=S*fy; Phiy=My/El;
%
%% MOMENT CURVATURE PLOT
M(1) = 0; Phi (1) = 0.;
M(2) = My; Phi (2) = Phiy;
M(3) = 1.2*M(2); Phi (3) = (M(3) My)/(alpha*El)
h = figure('Position', figpos); set(gca,'FontSize',28);
plot (Phi,M/12, 'LineWidth',2)
xlabel('Curvature'); ylabel('Moment [k.ft]'); title('W16x100');
grid minor; set(gcf,'PaperPositionMode ', auto ');
print depsc2 NonLayeredMomentCurvature.eps
% LOAD DISPLACEMENT CURVE
%%
DeltaP = 0.5;% kip increment
P(1) = 0.0; Delta(1) = 0;
for i=2:190
P(i) = P(i 1 1)+DeltaP;
xy = My/P(i);
if }xy>
Delta(i) = P(i)*L^3/(3*E*I);

```

\section*{Matlab Code}
```

 else
 Delta(i) = (2*L^3*P(i)^3 My*(My^2 3*L^2*P(i)^^2)*(1 + alpha))/\ldots
 (6.*El*P(i)}^2*alpha)
 end
 end
%%
h = figure('Position', figpos); set(gca,'FontSize ',28);
plot(Delta,P, 'LineWidth ',2)
xlabel('Displacement [in]'); ylabel('Load [Kip'); title('W16\times100');
grid minor; set(gcf, 'PaperPositionMode ', auto ');
print depsc2 NonLayeredLoadDisplacement.eps

```



- We analyze a rectangular section and account for the nonlinear stress distribution across the section (as will be done later in layered fiber elements).
- Yielding occurs first at the outer fibers at \(x_{y}\) such that (and recalling that \(\phi=\varepsilon / y): P . x_{y}=E . I . \phi_{y}=E . I \frac{\varepsilon_{y}}{h / 2} \Rightarrow x_{y}=\frac{2 . f_{y} . I}{P . h} \leq L\).
- The maximum curvature below which all the stresses are elastic is given by \(\phi_{y}=\frac{2 . f_{y}}{E . h}\)
- If \(h \leq h_{y}\), then we have a linear elastic stress distribution and \(\phi=\frac{M}{E . I}=\frac{P \cdot x}{E . I}\)
- If \(h>h_{y}\), then at a distance \(h_{y}\) from the neutral axis hardening begins. and \(h_{y}=\frac{f_{y}}{E \cdot \phi} \leq \frac{h}{2}\).
- The stresses are given by \(\sigma_{x x}=\left\{\begin{array}{cl}E . \varepsilon & \text { if } h<h_{y} \\ t_{y}+\beta E .\left(\varepsilon-\varepsilon_{y}\right) & \text { if } h_{y}<h\end{array}\right.\)
- Recalling that \(\varepsilon=\phi y\), the internal resisting moment will thus be given by
\(M=\int_{-h / 2}^{h / 2} b \cdot \sigma_{x x} \cdot y \cdot d y\) or
\(M=2 . b \cdot \int_{0}^{h_{y}} E \cdot(\phi \cdot y) \cdot y d y+2 b \int_{h_{y}}^{h_{y} / 2}\left[f_{y}+\beta . E \cdot\left(\phi y-\varepsilon_{y}\right)\right] \cdot y \cdot d y=\)
\(2 E . b \cdot \phi \int_{0}^{h_{y}} y^{2} \cdot d y+2 b \int_{h_{y}}^{h}\left[f_{y} \cdot y+\beta \cdot E \cdot \phi \cdot y^{2}-\beta f_{y} \cdot y\right] d y=\)
\(\frac{-\left(b\left(3 . f_{y}\left(h^{2}-4 . h_{y}{ }^{2}\right)(-1+\beta)+E \phi\left(8 h_{y}{ }^{3}(-1+\beta)-h^{3} \beta\right)\right)\right)}{12}\)
- Substituting (using Mathematica) the value of \(h_{y}\), this reduces to Moment Curvature relation
\[
\begin{equation*}
M=\frac{b\left(4 f_{y}{ }^{3}(-1+\beta)-3 E^{2} f_{y} h^{2} \phi^{2}(-1+\beta)+E^{3} h^{3} \phi^{3} \beta\right)}{12 E^{2} \phi^{2}} \tag{5}
\end{equation*}
\]
which is essentially an expression for the moment in terms of the curvature \(\phi>\phi_{y}\).
- Armed with this relationship, we can repeat the procedure used in the previous example and apply the principle of virtual force to determine the displacement.
- Numerical solution: Increment \(\Phi\)

\section*{Layered; \((\sigma-\varepsilon)\); Steel}
```

clear all
fprintf("=============================
n")
E=29000;fy=36;h=20;h2=h/2;b=10;beta=0.01; l=b*h^3/12;
epsiy=E/fy; phi_y=fy/(E*h2);delta=10^ 5;phi(1) =0.;
M(1) = 0.;hy (1)=h2;k=0;
for i=2:80
phi(i)=phi(i 1)+delta; hy(i)=fy/(E*phi(i));
if hy(i)>h2
M(i)=phi(i)*E*I ; hy (i)=h2;
else
M(i)=(b*(4*fy^ 3*(1 + beta) 3*E^2*fy*h^2*phi(i)^ 2*(1 + beta) ...
+ E^3*h^3*phi(i)^^3*beta))/(12.*E^2*phi(i)^^2);
k=k+1;
nlphi(k)=phi(i); nIM(k)=M(i);
end
fprintf(" i %6.0f hy %10.4e phi %10.4e phi_y %10.4e\n", i,hy(i), phi(i), phi_g);
end
subplot(2,1,1);plot (phi,M);xlabel("phi [rad.]") ; ylabel("M [k in]");grid;
subplot(2,1,2) ; plot (phi,hy);xlabel("phi [rad.]") ; ylabel("h_y [in]");grid;
ylim ([0.,10])
%==========================
% Fit polynomial in nonlinear portion of the curve
figure
for i=2:5
clear p
[p]=polyfit(nIM, nlphi,i); f=polyval(p,nIM);
subplot(2,2,i 1);plot(nIM,nlphi ," r",nlM,f ," .b");
asc=num2str(i);legend("Exact ","Approx",2) ; ylabel("phi [rad.]");
xlabel("M [k in]"); grid;title (["Order= " asc])
end

```

- We captured spread of plasticity (note analogy with effect of residual strains on steel \(\sigma-\varepsilon\) curve), \(\Rightarrow\) nonlinear shape, as contrasted with the bilinear \(M-\Phi\) earlier assumed.
- Since we will need the curvature-moment relationship \((\phi=\phi(M))\), a polynomial is then fitted to the nonlinear portion of the moment curvature,

- Opting for the one of order 5 , the coefficients are:
\[
\begin{aligned}
& \phi=3.6396 \times 10^{-23} M^{5}-5.4368 \times 10^{-18} M^{4}+3.2411 \times 10^{-13} M^{3}-9.6360 \times \\
& 10^{-9} M^{2}+1.4285 \times 10^{-4 M}-8.4445 \times 10^{-1}
\end{aligned}
\]

\section*{Layered; \((\sigma-\varepsilon) ;\) Steel}

\section*{We now apply the principle of virtual force to solve for the displacement of the cantilevered beam. This is solved by Matlab:}
```

%==============================
% Compute the deflection of a beam of length L using virtual force method
%P_y is when x_y is equal to the length (all the element is linear)
L=20*h;P_y=2*fy*I/(h*L);P_max=2*P_y;np=100;delta_P=P_max/np;E.I=E*I; delta_L=0.001*L;
%
P(1) = 0.; delta (1) =0;
for i=2:np
P(i)=P(i 1)+delta_P; x_y(i)=2*fy*I/(h*P(i));
if x_y(i)>L
delta_1=P(i)*L^3/(3*E.I);
% Entire Beam is in the linear range
delta_2 =0.;
else
delta_1=P(i)*x_y(i ^)}3/(3*E.I)
delta_2=0.;
for x=x_y(i):delta_L:L
M=P(i)*x; phi=polyval(p,M); delta_2=delta_2+phi*x*delta_L;
end
end
delta(i)=delta_1+delta_2;
end
%
figure; subplot(2,1,1);
plot(delta,P);grid;xlabel("Displacement [in]"); ylabel("Load [k]");
subplot(2,1,2); plot (delta,P);grid;
xlabel("Displacement [in]"); ylabel("Load [k]");xlim ([0., 50])

```


As an Engineer questioning the validity of the ACI equation for the ultimate flexural capacity of R/C beams, you determined experimentally the following stress strain curve for concrete (Desayi and Krishnan other equations have been proposed by Saenz, Kent-Park and Mander):
\[
\begin{equation*}
\sigma=\frac{2 \frac{f_{c}^{\prime}}{\varepsilon_{\max }} \varepsilon}{1+\left(\frac{\varepsilon}{\varepsilon_{\max }}\right)^{2}} \tag{6}
\end{equation*}
\]
where \(f_{c}^{\prime}\) corresponds to \(\varepsilon_{\max }\).
(1) Determine the exact balanced steel ratio for a R/C beam with \(b=10^{\prime \prime}, d=23^{\prime \prime}\), \(f_{c}^{\prime}=4,000 \mathrm{psi}, f_{y}=60 \mathrm{ksi}, \varepsilon_{\max }=0.003\).
(1) Determine the equation for the exact stress distribution on the section.
(2) Determine the total compressive force \(C\), and its location, in terms of the location of the neutral axis \(c\).
(3) Apply equilibrium
(2) Using the ACI equations, determine the:
(1) Ultimate moment capacity.
(2) Balanced steel ratio.
(3) For the two approaches, compare:
(1) Balanced steel area.
(2) Location of the neutral axis.
(3) Centroid of resultant compressive force.
(9) Ultimate moment capacity.
- Stress-Strain:
\[
\begin{equation*}
\sigma=\frac{2 \frac{4,000}{.003} \varepsilon}{1+\left(\frac{\varepsilon}{.003}\right)^{2}}=\frac{2.667 \times 10^{6} \varepsilon}{1+1.11 \times 10^{5} \varepsilon^{2}} \tag{7}
\end{equation*}
\]
- Compatibility:Assume crushing at failure, hence strain distribution will be given by
\[
\begin{equation*}
\varepsilon=\frac{0.003}{c} y \tag{8}
\end{equation*}
\]
- Combine those two equation:
\[
\begin{equation*}
\sigma=\frac{8,000 \frac{y}{c}}{1+\left(\frac{y}{c}\right)^{2}} \tag{9}
\end{equation*}
\]

\section*{Ultimate Moment \(M_{u}\)}
- The total compressive force is given by
\[
\begin{align*}
F & =\int_{0}^{c} d F=b \int_{0}^{c} \sigma d y=b \int_{0}^{c} \frac{8,000 \frac{y}{c}}{1+\left(\frac{y}{c}\right)^{2}} d y=b \frac{8,000}{c} \int_{0}^{c} \frac{y}{1+\left(\frac{y}{c}\right)^{2}} d y(10) \\
& =8,\left.000 \frac{b}{c} \frac{1}{2\left(\frac{1}{c}\right)^{2}} \ln \left[1+\left(\frac{y}{c}\right)^{2}\right]\right|_{0} ^{c}=8,\left.000 \frac{b}{c} \frac{c^{2}}{2} \ln \left[1+\left(\frac{y}{c}\right)^{2}\right]\right|_{0} ^{c}  \tag{11}\\
& =4,000 b c \ln (2)=2,773 b c \tag{12}
\end{align*}
\]
- Equilibrium requires that \(C=T\)
\[
\begin{equation*}
2,773 b c=A_{s} f_{y} \tag{13}
\end{equation*}
\]

From the strain diagram:
\[
\begin{align*}
\frac{.003}{c} & =\frac{\varepsilon_{y}+.003}{d} \Rightarrow c=\frac{(.003) d}{\varepsilon_{y}+.003}  \tag{14}\\
c & =\frac{(.003)(23)}{60} 29000+.003 \tag{15}
\end{align*} 13.6 \mathrm{in} . \quad \text { 290 }
\]
- Combining Eq. 13 with Eq. 15
\[
\begin{equation*}
A_{s}=\frac{(2,773)(10)(13.6)}{60,000}=6.28 \mathrm{in} .^{2} \tag{16}
\end{equation*}
\]
- To determine the moment, we must first determine the centroid of the compressive force measured from the neutral axis
\[
\begin{align*}
\bar{y} & \stackrel{\text { def }}{=} \frac{\int y d A}{A}=\frac{b \int y \overbrace{\sigma d y}^{d c}}{c}=\frac{b \int_{0}^{c} \frac{8,000 \frac{y^{2}}{c}}{1+(y / c)^{2}}}{2,773 b c} d y=\frac{8,000 b}{2,773 b c^{2}} \int_{0}^{c} \frac{y^{2}}{1+\left(\frac{1}{c}\right)^{2} y^{2}} d y \\
& =\frac{2.885}{c^{2}} \int_{0}^{c} \frac{y^{2}}{1+\left(\frac{1}{c}\right)^{2} y^{2}} d y=\frac{2.885}{(13.61)^{2}}\left[\frac{y}{\left(\frac{1}{c}\right)^{2}}-\frac{1}{\left(\frac{1}{c}\right)^{2}} \int_{0}^{c} \frac{d y}{1+\left(\frac{1}{c}\right)^{2} y^{2}}\right] \\
& =\left..01557\left[y c^{2}-c^{2}\left[\frac{1}{\sqrt{\frac{1}{c^{2}}}} \tan ^{-1} y \sqrt{\frac{1}{c^{2}}}\right]\right]\right|_{0} ^{c} \\
& =.01557\left[c^{3}-c^{3} \tan ^{-1}(1)\right]=(.01557)(13.61)^{3}\left(1-\tan ^{-1}(1)\right)=8.43 \mathrm{in} . \tag{17}
\end{align*}
\]
- Next we solve for the moment
\[
\begin{equation*}
M=A_{s} f_{y}(d-c+\bar{y})=(6.28)(60)(23-13.61-8.43)=6,713 \mathrm{k} . \mathrm{in} \tag{18}
\end{equation*}
\]
- Using the ACI Code
\[
\begin{aligned}
\rho_{b} & =.85 \beta_{1} \frac{f_{c}^{\prime}}{f_{y}} \frac{87}{87+60}=(.85)^{2} \frac{4}{60} \frac{87}{147}=.0285 \\
A_{s} & =\rho_{b} b d=(.0285)(10)(23)=6.55 \mathrm{in}^{2}{ }^{2} \\
a & =\frac{A_{s} f_{y}}{.85 f^{\prime} c b}=\frac{(6.55)(60)}{(.85)(4)(10)}=11.57 \mathrm{in} . \\
M & =A_{s} f_{y}\left(d-\frac{a}{2}\right)=(6.55)(60)\left(23-\frac{11.57}{2}\right)=6,765 \mathrm{k} . \mathrm{in} \\
c & =\frac{a}{\beta_{1}}=\frac{11.57}{.85}=13.61 \mathrm{in} .
\end{aligned}
\]
- We summarize
\begin{tabular}{rccc}
\hline & & Exact & ACI \\
\hline\(A_{s}\) & \(\mathrm{in}^{2}\) & 6.28 & 6.55 \\
\(C\) & Kip & 13.6 & 13.6 \\
\(\bar{y}^{\prime}\) & in. & 5.18 & 5.78 \\
\(M\) & K-in & 6,713 & 6,765 \\
\hline
\end{tabular}

- External axial force \(N_{\text {ext }}\) is applied with an eccentricity \(e^{\prime}\) and is fixed.
- Internal equilibrium of forces requires \(N_{\text {ext }}=N_{\text {int }}\) and \(M_{\text {int }}=N_{\text {int }} \cdot e^{\prime}\)
- We seek to determine the \(M-\Phi\) relation
\[
\begin{align*}
N_{\text {int }} & =\underbrace{\int_{0}^{k . d} \sigma_{c} b_{c} d y}_{C_{c}}+\underbrace{A_{s}^{\prime} f_{s}^{\prime}}_{C_{s}}-\underbrace{\int_{0}^{y_{t}} \sigma_{t} b_{t} d y}_{T_{c}}-\underbrace{A_{s} f_{s}}_{T_{s}}  \tag{19}\\
N_{\text {int }} e^{\prime}+M & =C_{c}\left(d-k^{\prime} d\right)+C_{s}\left(d-d^{\prime}\right)-T_{c}\left(d-k d-\frac{2}{3} y_{t}\right) \tag{20}
\end{align*}
\]

Note: \(\sigma_{c}=\sigma_{c}\left(\varepsilon_{c}\right), b_{c}=b_{c}\left(y_{c}\right), \sigma_{t}=\sigma_{t}\left(\varepsilon_{t}\right), b_{t}=b_{t}\left(y_{t}\right)\).
- For a given (and fixed) \(N_{\text {ext }}\), we gradually increase \(\varepsilon_{c}^{\text {top }}\) (i.e. \(\Phi\) indirectly), and solve for \(k\) and corresponding \(M_{\text {int }}\). This will result in the \(M-\Phi\) diagram.
- The problem is nonlinear as there is only one value of \(k\) which will ensure equilibrium of axial forces.
- Caution: If \(N_{\text {ext }} \neq 0\), then must add the initial strain due to the constant force.
(1) Increment top strain

\(\varepsilon^{\text {top }}\) fixed, iterate on \(k\) to satisfy \(\mathrm{N}_{\text {ext }}=\mathrm{N}_{\text {int }}\)
\[
\varepsilon_{n+1}^{t o p}=\varepsilon_{n}^{t o p}+\Delta \varepsilon^{t o p}<\varepsilon_{u}\left(N_{e x t} \text { fixed }\right)
\]
(2) Assume \(k\), Determine forces
(3) Steel stress from
\[
\begin{aligned}
\Phi & =\frac{\varepsilon_{c}^{t o p}}{k \cdot d}=\frac{\varepsilon_{s}^{\prime}}{k . d-d^{\prime}}=\frac{\varepsilon_{s}}{d-k d} \\
\varepsilon_{s} & =\Phi(d-k . d) \\
f_{s} & =E_{s} \varepsilon_{s}
\end{aligned}
\]

4 Compute \(N_{\text {int }}\) from Eq. 19
(5) If \(\left|N_{\text {ext }}-N_{\text {int }}\right|>\in\) correct \(k\) and iterate, otherwise exit.
- Solve for the corresponding \(M\) from Eq. 20
- Determine corresponding curvature from
\[
\begin{equation*}
\Phi_{i+1}=-\frac{\varepsilon_{i+1}^{\text {top }}}{k_{i+1} d} \tag{21}
\end{equation*}
\]
and stiffness
\[
\begin{equation*}
E l_{i+1}=\frac{d M}{d \Phi} \tag{22}
\end{equation*}
\]
- Once completed, plot \(M-\Phi\), and identify \(\Phi_{c r}\), \(\Phi_{y}\) and \(\Phi_{u}\), ductility ratio \(\xi=\frac{\Phi_{u}}{\Phi_{y}}\)
- if we repeat analysis for different \(N\), we could then generate the beam-column interaction diagram (corresponding to \(M_{u}\) ).

\section*{Algorithm}

Analytical evaluation of \(M\) - Phi was presented; Next a numerical procedure is described. It begins with the discretization of the cross-section into layers.

- Break concrete section into \(n_{c}\) layers (index \(i\) ), and steel into \(n_{s}\) layers (index \(j\) ).
- Later, we will differentiate between confined (inside the steel cage) and unconfined as they have different properties.
- \(A_{c i}\) and \(A_{s j}=A_{s}\) area of each concrete and steel layer
- \(y_{i}\) distance of fiber \(i\) from NA
- For a given (and fixed) \(N_{\text {ext }}\), we will gradually increase \(\Phi\) by \(\Delta \Phi\) (note that in the analytical approach we increased \(\varepsilon_{c}^{\text {top }}\) ), and solve for \(N_{\text {int }}\) (Previously \(k\) ). We seek to determine \(M_{\text {ext }}\) for a given \(\Phi\).
- At any \(\operatorname{section} \varepsilon(y)=\varepsilon_{0}+y \Phi\) where \(\varepsilon_{0}\) is the axial strain caused by \(N_{\text {ext }}\).
- Assume that strain is given, resulting internal force:
\[
\begin{align*}
N_{\text {int }} & =\int E d \varepsilon d A=\int E d A d \varepsilon_{0}+\int E d A y d \Phi  \tag{23}\\
& =\underbrace{\left[\sum_{i=1}^{n_{c}} E_{c i} A_{c i}+\sum_{j=1}^{n_{s}} E_{s j} A_{s j}\right]}_{\text {Initial strain }} \varepsilon_{0}+\underbrace{\left[\sum_{i=1}^{n_{c}} E_{c i} A_{c i} y_{i}+\sum_{j=1}^{n_{s}} E_{s j} A_{s j} y_{i}\right]}_{\text {curvature } \Phi} \Phi \tag{24}
\end{align*}
\]

\section*{Algorithm}
(1) Increment curvature \(\Phi^{n+1}=\Phi^{n}+\Delta \phi\left(N_{\text {ext }}\right.\) fixed \()\).
(2) Assume neutral axis location \((k)\) and update strain profile \(\varepsilon\left(y_{i}\right)=d \varepsilon_{0}+y_{i} d \Phi\) where \(d \varepsilon_{0}=\left(\Delta N-E_{x} \Delta \Phi\right) / E_{a}\).
(3) If \(\varepsilon \geq \varepsilon_{u}\) (usually 0.003 for concrete), exit.
(4) Determine \(N_{\text {int }}\) from Eq. 24
(5) If \(\left|N_{\text {ext }}-N_{\text {int }}\right|>\in\) adjust \(k\) and iterate, otherwise exit.
(6) Compute
\[
M_{\text {int }}=\sum_{i=1}^{n_{c}} \sigma_{c i} A_{c i} y_{i}+\sum_{j=1}^{n_{s}} \sigma_{s j} A_{s j} y_{i}
\]


Repeating previous procedure for various \(N_{\text {ext }}\) we can derive the beam column interaction diagram.
- Single zero length end nonlinear spring, typically linear elements in between.
- Spring must capture effects of
- Bond
- Bond-Slip
- Cracked moment of inertia
- Diagonal tension

\section*{Lumped Plasticity}



Calibration: Solve for spring stiffness \(\mathrm{K}(\theta)\) for the two force displacements to be nearly equal

\section*{Lumped Plasticity}


\title{
Non Linear Structural Analysis Push-Over Analysis
}

\author{
Victor E. Saouma \\ saouma@colorado.edu \\ University of Colorado, Boulder
}

Fall 2020

\section*{Table of Contents I}

\author{
(1) Introduction
}
(2) Demand
(3) Member Capacity
- Example of Demand Curve
- In the context of PBEE, Engineering Demand Parameters (EDP) are essential. They are the results of response prediction (i.e analysis). Those include interstory drift, plastic hinge rotations, and member forces. Analysis procedures in FEMA 356/ASCE 41, and commonly used in Performance based design approach, are:
(1) Linear static
(2) Linear time history (LTH)
(3) Nonlinear static: Pushover analysis (POA).
(4) Nonlinear time history (NTH)
- Why is POA relevant?
- A linear elastic based design would have a much higher reserve strength beyond the elastic, i.e. the ultimate strength is much higher.

- This is due to the structural redundancy and the ability of structural members to deform inelastically without major loss of strength (i.e., ductility).
- In this context, we must differentiate between localized failure and structural failure. The former relates to the failure of one single member, the later to the collapse of the entire structure.
- Before POA is initiated, one must ensure that:
(1) Structure is well "understood",
(2) Identify element properties and strengths.
(3) Concrete: use effective cracked section properties
(4) Prepare \(M-\Phi\) relations, identify nonlinear concrete model.
- Select lateral load pattern distributed along the height based on first mode response. This can be


Inverse triangular where the force is linearly distributed with height.
Rectangular where we approximate the first mode with very soft or post-yield response with weak first story.
First Mode obtained from a modal analysis.

Modal dynamic deformed shape is based on combining modes.
Force or Displacment Typically in a high seismic zone like California and Washington, use displacement-based design because the requirements for ductility and displacement capacity are more rigorous in seismic than in LRFD,
- First the static vertical load is applied, and then the pushover load.
- Though it may be more accurate to imposed displacements, most pushover analysis impose forces instead.
- The objective is to push the structure to the displacement expected under desig earthquake, the target displacement (or drift).
- Target displacement can be determined from the response spectrum
\[
\begin{equation*}
\Delta=g\left(\frac{T}{2 \pi}\right)^{2} C_{s} \tag{1}
\end{equation*}
\]
where \(\Delta\) is the spectral displacement, \(T\) is the period, and \(C_{s}\) the elastic seismic coefficient.
- With the increase in the magnitude of the loading, weak links (plastic joint) and failure modes of the structure are found.
- Loading is monotonic with the effects of the cyclic behavior and load reversals being estimated by using a modified monotonic force-deformation criteria and with damping approximations.
- Careful POA may provide very misleading results for force and overturning moments.
- ATC-40 and FEMA-273 documents have developed modeling procedures, acceptance criteria and analysis procedures for pushover analysis. These documents define force-deformation criteria for hinges used in pushover analysis.
- It seeks to determine the collapse mechanism of a structure through a static analysis with increasing load.

\section*{Demand}
- The method allows tracing the sequence of yielding and failure on the member and the structure levels as well as the progress of the overall capacity curve of the structure.
- This essentially defines the Demand on the structure


\section*{Member Capacity}
- Prior to a pushover analysis, the moment curvature of the sections must be identified.
- Moment curvatures are often nonlinear, and can be idealized as follows

- This is essentially the Capacity of an individual member.

\section*{Example of Demand Curve}

Adapted from Performance-Based Plastic Design: Earthquake-Resistant Steel Structures by Goel and Chao.

\(F_{y}=50 \mathrm{ksi}, E=30,000 \mathrm{ksi}\), axial and shear deformation are neglected.
Elastic-perfectly plastic Moment curvature assumed.

\section*{Example of Demand Curve}
- First an elastic analysis is performed, and all members satisfied \(M_{\text {max }}<M_{p}=F_{y} Z_{x}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Floor & \[
\begin{aligned}
& M_{u, \text { req }} \\
& (\mathrm{k}-\mathrm{ft})
\end{aligned}
\] & Beam Section & \[
\begin{gathered}
M_{p} \\
(\mathrm{k}-\mathrm{ft})
\end{gathered}
\] & \begin{tabular}{l}
\(M_{u, \text { req }}\) \\
( k -ft)
\end{tabular} & Column Section & \[
\begin{gathered}
M_{p} \\
(\mathrm{k}-\mathrm{ft})
\end{gathered}
\] \\
\hline 4 & 301 & W16x40 & 304 & 301 & W16x40 & 304 \\
\hline 3 & 531 & W24x55 & 558 & 294 & W16x40 & 304 \\
\hline 2 & 633 & W24x62 & 638 & 364 & W21x44 & 398 \\
\hline 1 & 611 & W24x62 & 638 & 482 & W21x55 & 525 \\
\hline
\end{tabular}

- Base shear (total lateral force) versus roof drift ratio (roof displacement/height) and the location and sequence of formation of the plastic hinges are shown below.

\section*{Example of Demand Curve}
- The lateral force at the elastic limit when the first plastic hinge forms is 87.6 kips , slightly above the design value of 86.3 kips.
- From that point onward, redistribution of moments occurs with plastic hinges forming sequentially, and the frame reaches its ultimate strength of 117.5 kips at a roof drift ratio of \(2.7 \%\).
- The yield mechanism turned out to be a partial sway mechanism over 3 stories with plastic hinges at the beam ends and the base of the columns and at the top of the second and third stories.
- The ductility ratio \(\left(V_{u l t} / V_{y}\right)\) is 1.36 .

\section*{Example of Demand Curve}



\title{
Non Linear Structural Analysis \\ Plasticity III; Limit Analysis of Structure
}

\author{
Victor E. Saouma \\ saouma@colorado.edu \\ University of Colorado, Boulder
}

Fall 2020

\section*{Table of Contents I}
(1) Introduction
(2) Kinematic; Upper Bound Theorem
- Theory
- Kinematic; Example 1
- Kinematic; Example 2
- Kinematic; Example 3
- Kinematic; Example 4
(3) Statics; Lower Bound
- Theory
- Statics; Example 1
- Statics; Example 2
- Statics; Example 3
- Statics; Example 4

4 Relation with PushOver Analysis
(5) Slabs
- Yield Line Theory

\section*{Table of Contents II}
- Statics Example
- Kinematics
- Kinematics; Example
- Elastic solution fulfills:
(1) Equilibrium
(2) "Elasticity" condition \(\left(|M|<M_{y l d}\right)\)
(3) Compatibility (continuity)
- Plastic solution fulfills:
(1) Equilibrium
(2) Yield condition \(\left(|M|<M_{p l}\right)\)
(3) Mechanism (additional deformations are possible without load increase)
- Frames typically fail after a sufficient number of plastic hinges form, and the structures turns into a mechanism, and thus collapse (partially or totally).
- At times, it is sufficient to capture the failure mechanism (and corresponding load) and not worry about deflections (strength and not stiffness)
- Limit loads can be determine from two approaches:
- [Upper Bound; Kinematic: A load computed on the basis of an assumed mechanism will always be greater than, or at best equal to, the true ultimate load. We do not seek to simulate the order in which hinges formed, we simply assume the simultaneous presence of all possible hinges. Easier. Assumes equilibrium, fulfills plasticity but may violate formation of mechanism.
- Lower Bound; Statics: A load computed on the basis of an assumed moment distribution, which is in equilibrium with the applied loading, and where no moment exceeds \(M_{p}\) is less than, or at best equal to the true ultimate load. We seek to simulate the order in which hinges formed. Assumes mechanism, fulfills equilibrium but may violate plasticity.
\begin{tabular}{lcccc} 
Method & Bound & Assumes & fulfills & Violates \\
\hline Kinematic & Upper & Mechanism & Plasticity & formation mechanism \\
Statics & Lower & Equilibrium & Mechanism & Plasticity
\end{tabular}
- We shall examine each one separately.
- Theorem: Any set of loads in equilibrium with an assumed kinematically admissible field is larger than or at least equal to the set of loads that produces collapse of the structure. The safety factor is the smallest kinematically admissible multiplier.
- Note similarly with principle of Virtual Work (or displacement).
- A kinematically admissible field is one where the external work \(W_{e}\) done by the forces \(\mathbf{F}\) on the deformation \(\Delta_{F}\) and the internal work \(W_{i}\) done by the moments \(\mathrm{M}_{p}\) on the rotations \(\theta\) are positives.
- The collapse of a structure can be determined by equating the external and internal work during a virtual movement. Considering a possible mechanism, i, equilibrium requires that \(U_{i}=\lambda_{i} W_{i}\)
- \(W_{i}\) is the external work of the applied service load \(a, \lambda_{i}\) is a kinematic multiplier, \(U_{i}\) is the total internal energy dissipated by plastic hinges \(U_{i}=\sum_{j=1}^{n} M_{p_{j}} \theta_{i j}, M_{p_{j}}\) : plastic moment, \(\theta_{i j}\) the hinge rotation, and \(n\) the number of potential plastic hinges or critical sections.
- Assumptions:
- Response of a member is elastic perfectly plastic.
- Plasticity is localized at specific points.
- Only the plastic moment capacity \(M_{p}\) of a cross section is governing.
- Number of independent mechanisms \(n\) is related to the number of possible plastic hinge locations \(h\) and number of degree of redundancy \(r\)
\[
\begin{equation*}
n=h-r \tag{1}
\end{equation*}
\]

\section*{Kinematic; Example 1}

- \(n=3-2=1\)
- Internal work done \(M_{\rho} \theta+M_{p} \theta+2 M_{\rho} \theta=4 M_{\rho} \theta\)
- External work done by the point load \(P_{c r} \theta L / 2\)
- Equating the two, we obtain \(P_{\text {cr }}=8 M_{p} / L\).


Equating external work done by the vertical forces to the internal work:
- Span AB: \(3 P_{\text {cr }} L \theta=3 M_{\rho} \theta\) or \(P_{\text {cr }}=\frac{M_{p}}{L}\).
- Span BC: \(2 P_{c r} L \theta=3 M_{p} \theta\) or \(P_{c r}=\frac{3}{2} \frac{M_{p}}{L}\)

\section*{Kinematic; Example 3}

\[
\begin{aligned}
W_{\text {int }} & =W_{e x t} \\
M_{p}(\theta+2 \theta+3 \theta) & =P_{c r} \Delta \\
6 M_{p} \theta & =P_{c r} \theta(20) \Rightarrow P_{c r}=6 \frac{M_{P}}{20} \\
P_{c r} & =0.3 M_{p}
\end{aligned}
\]


\section*{Kinematic; Example 4}
- \(n=5-3=2\) independent modes.
- The total number of possible mechanisms is three (one is dependent on the other two).
- To verify that \(\lambda\) is indeed the lowest bound, we may draw the corresponding moment diagram, and verify that at no section is the moment greater than \(M_{p}\).

Beam Mechanism

Sway Mechanism
Combined Mechanism
\[
\begin{aligned}
M_{p}(\theta+\theta)+2 M_{p}(2 \theta) & =\lambda_{1}(2 P)(0.5 L \theta) & \Rightarrow \lambda_{1}=6 \frac{M_{p}}{P L} \\
M_{p}(\theta+\theta+\theta+\theta) & =\lambda_{2}(P)(0.6 L \theta) & \Rightarrow \lambda_{2}=6.67 \frac{M_{p}}{P L}
\end{aligned}
\]
\[
M_{p}(\theta+\theta+2 \theta)+2 M_{p}(2 \theta)=\lambda_{3}(P(0.6 L \theta)+2 P(0.5 L \theta)) \quad \Rightarrow \lambda_{3}=5 \frac{M_{p}}{P L}
\]

\section*{Theory}
- Assumptions
- The applied loads must be in equilibrium with the internal forces.
- There must be a sufficient number of plastic hinges for the formation of a mechanism.
- load computed on the basis of an assumed moment distribution, which is in equilibrium with the applied loading, and where no moment exceeds \(M_{p}\) is less than, or at best equal to the true ultimate load.
- Note similarly with principle of complementary virtual work.
- The statics method of solution is as follows:
(1) Select redundant moments.
(2) Draw the statically determinate moment diagram.
(3) Superimpose the redundant moments on the determinate moment diagram and determine the peak moments.
4 Set peak moments equal to \(M_{p}\) and check that the number of plastic hinges is sufficient to form a mechanism.
(5) Compute the corresponding ultimate load by statics.

- Perform an incremental analysis.
- Stage 1: We have a statically indeterminate structure subjected to \(P=100\) (magnitude is irrelevant, could have been 1,10 , etc.), following analysis, we obtain;
\[
\begin{aligned}
& M_{C}=\frac{3}{16} P L=225 \Rightarrow \lambda_{1}^{C}=\frac{270}{225}=1.2 \\
& M_{B}=\frac{5}{32} P L=187.5 \Rightarrow \lambda_{1}^{B}=\frac{270}{187.5}=1.44
\end{aligned}
\]

Thus, the first hinge forms at \(C\), and \(P=1.2(100)=120\), \(M_{C}^{\text {total }}=1.2(225)=270\), and \(M_{B}^{\text {total }}=1.2(187.5)=225\)

\section*{Statics; Example 1}
- Stage 2: A hinge has formed at C \(\left(M_{C}=0\right)\), we now have a statically determinate beam with a point middle load of again \(P=100\) and \(M_{B}=P L / 4=300\). The remaining plastic moment capacity at \(B\) is \(270-225=45\), \(\Rightarrow \lambda_{2}=45 / 300=0.15\)
- Adding the two loads (by now \(M_{C}^{\text {total }}=270\), and \(M_{B}^{\text {total }}=225+0.15(300)=270\) ), and the total \(\lambda_{C}=\lambda_{1}+\lambda_{2}=1.2+0.15=1.35\), thus the collapse load is \(1.35(100)=135\)

- Statically indeterminate structure. Rather than performing an analysis to determine where first hinge occurs, we make two assumptions
- First consider the formation of hinges at C and D
\[
\left\{\begin{array}{rl}
M^{D} & =M_{p} \\
M^{C}=86.6 \lambda-\frac{2}{3} M^{D} & =M_{p}
\end{array} \Rightarrow \lambda=\frac{M_{p}}{52}\right.
\]
- The other possibility hinges at \(B\) and \(D\)
\[
\left\{\begin{array}{ll}
M^{D} & =M_{p} \\
M^{B}=73.4 \lambda-\frac{1}{3} M^{D} & =M_{\rho}
\end{array} \Rightarrow \lambda=\frac{M_{p}}{55}\right.
\]
- Hence, the second case governs.

\section*{Statics; Example 3}
MODEL
(1) First we consider the original structure
(1) Apply a load \(F_{0}\)., determine the corresponding moment diagram.
(2) Identify the largest moment \(\left(-4.44 F_{0}\right)\) and set it equal to \(M_{P}\). This is the first point where a plastic hinge will form.
(3) We redraw the moment diagram in terms of \(M_{P}\).
(2) Next we consider the structure with a plastic hinge on the left support.
(1) Apply an incremental load \(\Delta F_{1}\).
(2) Draw the corresponding moment diagram in terms of \(\Delta F_{1}\).
(3) Identify the point of maximum total moment as the point under the load \(5.185 \Delta F_{1}+0.666 M_{P}\) and set it equal to \(M_{P}\).
(9) Solve for \(\Delta F_{1}\), and determine the total externally applied load.
(5) Draw the updated total moment diagram. We now have two plastic hinges, we still need a third one to have a mechanism leading to collapse.
(3) Finally, we analyze the revised structure with the two plastic hinges.
(1) Apply an incremental load \(\Delta F_{2}\).
(2) Draw the corresponding moment diagram in terms of \(\Delta F_{2}\).
(3) Set the total moment node on the right equal to \(M_{P}\).

\section*{Statics; Example 3}
(4) Solve for \(\Delta F_{2}\), and determine the total external load. This load will correspond to the failure load of the structure.


\section*{NEED TO CHECK PROCEDURE CORRECT NUMBERS FOR MP DO NOT}
(1) First plastic hinge will occur at \(C: 6.885 F_{0}=M_{p} \Rightarrow F_{0}=0.145 M_{p}\).
(2) Second hinge at \(D: M_{\max }=M_{p}-0.842 M_{p}=0.158 M_{p}\), and \(\Delta F_{1}=\frac{0.158}{12.633} M_{p}=0.013 M_{p}\)

\section*{Statics; Example 4}
(3) Third hinge at \(E: M_{\max }=M_{p}-(0.714+0.104) M_{p}=0.182 M_{p}\) and \(\Delta F_{2}=\frac{0.182}{20.295} M_{p}=0.009 M_{p}\)
(4) Fourth hinge at \(A M_{\max }=M_{p}-0.344 M_{p}=0.656 M_{p}\) and \(\Delta F_{3}=\frac{0.656}{32} M_{p}=0.021 M_{p}\)
(5) Hence the final collapse load is
\(F_{0}+\Delta F_{1}+\Delta F_{2}+\Delta F_{3}=(0.145+0.013+0.009+0.021) M_{p}=0.188 M_{p}\) or \(F_{\text {max }}=3.76 \frac{M_{p}}{L}\)

\section*{Relation with PushOver Analysis}
- The statics approach to determine the failure mechanism/load bears great similarity with the Push Over analysis that will be covered later.
- Major difference: in the approach followed in the preceding examples, linear elastic analyses are performed, and the procedure is akin of a nonlinear solution using the Secant method.
- Note that in our analysis, we do not need to keep track of the displacements (whereas in a Push Over analysis, those are essential to determine the Capacity Curve.


- ACI code: The design of the slab may be achieved through the combined use of classic solutions based on a linearly elastic continuum, numerical solutions based on discrete elements, or yield-line analyses.
- Yield line theory (YLT) investigates failure mechanisms at the ultimate limit state. It is simple, but demands familiarity with the failure patterns (i.e. knowledge of how slabs may fail).
- When a slab is on the verge of collapse (sufficient number of real or plastic hinges to form a mechanism) axes of rotation will be located along lines of support or over point supports such as columns. The slab segments can be considered to rotate as rigid bodies in space about these axes of rotation.
- Two type of YL: positive (crack below) and negative (crack on top).
- Guidelines for establishing YL patterns:
(1) YL are straight lines (intersections of two planes).
(2) YL are axes of rotation.
(3) Supported edges of a slab will also establish axes of rotation. If fixed: -ve YL; if free: no restraint.
4. Continuous supports repel and simple supports attract positive or sagging YL.
(5) Axis of rotation passes over any column support. Orientation depends on other considerations.
(6) YL form under concentrated loads radiating outward.
(7) YL between two slab segments must pass through the point of intersection of the axes of rotation of the adjacent slab segments.
- The aim of investigating YL patterns is to find the one pattern that gives the least load capacity).
- Slab simply supported along its four

\section*{Yield Line Theory}

sides.
- Rotation of slab segments \(A\) and \(B\) is about \(a b\) and \(c d\).
- YL ef is a straight line passing through \(f\) (point of intersection of the axes of rotation).


\section*{Slabs}

\section*{Yield Line Theory}


\section*{Statics Example}

This method is seldom used for slab analysis.


A square slab is simply supported along four sides and is isotropically reinforced. Given the plastic moment per linear foot \(m_{P}\), determine the uniform \(w_{\text {ult }}\).
Due to symmetry, the YL pattern is as shown. Considering equilibrium of moment of any of the four slab segments about its support:
\[
\begin{aligned}
M_{\text {ext }} & =w \underbrace{\frac{l^{2}}{4}}_{\text {area moment arm }} \underbrace{\frac{L}{6}}_{\text {moment Hor. component }} \\
M_{\text {int }} & =2 \underbrace{\frac{m_{p} l}{\sqrt{2}}}_{\text {mett }} \underbrace{\frac{1}{\sqrt{2}}}_{\frac{24 m_{p}}{R^{2}}} \\
M_{\text {ext }}=M_{\text {int }} & \Rightarrow w_{\text {ult }}
\end{aligned}
\]
- External work: \(W_{\text {ext }}=\sigma\left(N_{i} \delta_{i}\right)\) where \(N\) is the resultant force, \(\delta\) corresponding vertical displacement.
- Internal work: \(W_{\text {int }}=\sum m / \theta\) where \(m\) is the internal moment in the slab per meter run, I is the length of the YL or its projected length onto the axis os the rotation for the corresponding region; \(\theta\) rotation of the region about its axis.

The two way slab is simply supported on all four sides and supports a uniform load \(w\). Determine the required resistance for the slab.

- +ve YL form as shown, dimension \(a\) is unknown.
- From geometry: length of diagonal \(=\sqrt{25+a^{2}}\), and form similar triangles
\[
\begin{align*}
& \frac{b}{5}=\frac{\sqrt{25+a^{2}}}{a} \Rightarrow b=5 \frac{\sqrt{25+a^{2}}}{a}  \tag{2}\\
& \frac{c}{a}=\frac{\sqrt{25+a^{2}}}{5} \Rightarrow c=a \frac{\sqrt{25+a^{2}}}{5} \tag{3}
\end{align*}
\]
- Corresponding to a unit deflection, the rotation of the plastic hinge at the diagonal YL is
\(\theta_{1}=\frac{1}{b}+\frac{1}{c}=\frac{a}{5 \sqrt{25+a^{2}}}+\frac{5}{a \sqrt{25+a^{2}}}=\frac{1}{\sqrt{25+a^{2}}}\left(\frac{a}{5}+\frac{5}{a}\right)\)
- The rotation of the yield line parallel to the long edges of the slab
\[
\theta_{2}=\frac{1}{5}+\frac{1}{5}=0.40
\]
- Assume \(a=6 \mathrm{ft}\), then the length of the diagonal YL is \(\sqrt{25+36}=7.81 \mathrm{ft}\).
- Corresponding rotation of the diagonal YL is: \(\theta_{1}=\frac{1}{7.81}\left(\frac{6}{5}+\frac{5}{6}\right)=0.261\)
- Rotation angle at the central YL: \(\theta_{2}=0.4\).
- \(W_{\text {int }}=4\left(m_{p} \times 7.81 \times 0.261\right)+\left(m_{p} \times(20-6-6) \times 0.4\right)=11.36 m_{p}\)
- \(W_{\text {ext }}=\underbrace{2\left(10 \times 6 \times \frac{1}{2} w \times \frac{1}{3}\right)}_{\mathrm{A}}++\underbrace{4\left(6 \times 5 \times \frac{1}{2} w \times \frac{1}{3}\right)}_{\mathrm{B}}+\underbrace{2\left(8 \times 5 w \times \frac{1}{2}\right)}_{\mathrm{C}}=\) 80w
- Equating \(W_{\text {int }}=W_{\text {ext }}\) gives \(W_{\text {ult }}=\frac{11.36 M_{P}}{80}=0.14 m_{P}\)
- Successive trials
\begin{tabular}{cccl}
\(a\) & \(W_{\text {int }}\) & \(W_{\text {ext }}\) & \(W_{\text {ult }}\) \\
\hline 6.0 & \(11.36 m_{P}\) & 80.0 w & \(0.142 m_{P}\) \\
6.5 & \(11.08 m_{P}\) & 78.4 w & \(0.141 m_{P}\) Controls \\
7.0 & \(10.87 m_{P}\) & 76.6 W & \(0.142 m_{P}\) \\
7.5 & \(10.69 m_{P}\) & 75.0 w & \(0.143 m_{P}\) \\
\hline
\end{tabular}
- Note that if a unit width strip was considered instead, then \(m_{p}=\frac{w_{u t L^{2}}}{8} \Rightarrow w_{u t t}=\frac{8 m_{\rho}}{L^{2}}=\frac{8 m_{\rho}}{10^{2}}=0.08 m_{p}\) instead of \(0.141 m_{p}\).

\title{
Non Linear Structural Analysis
}

\title{
Nonlinear Analysis; Introduction: Numerical Methods
}

\section*{Victor E. Saouma}
saouma@colorado.edu

University of Colorado, Boulder

Fall 2020

\section*{Table of Contents I}
(1) Explicit
(2) Newton Methods
- Taylor Series and Linearization
- Newton Method
- Matlab Listing
- Multi-Dimensional
- Multi-Dimensional; Algorithm
- Convergence and Error Estimate
- Final Remarks
- Examples
- Quasi Newton
(3) Relationship to Structural Mechanics
- Introduction
- Predictor-Corrector
- Newton-Raphson
- Initial stiffness
- Modified Newton-Raphson

\section*{Table of Contents II}
- Secant Newton
- Displacement Control
- Arc-Length Method
- Convergence criteria

- In an explicit integration scheme (also known as "step by step"), load is applied incrementally and at the end of each increment:
(1) Compute the tangent stiffness on the basis of the current displacements, this is the slope of the load displacement curve);
(2) Invert the stiffness matrix and multiply it by the incremental load to get the corresponding incremental displacement;
(3) Add the incremental displacement to the sum of the previous ones to obtain the actual displacement corresponding to the actual load (sum of all previous incremental loads).

\section*{Explicit}
- Major advantage a solution will always be found
- Major disadvantage: at the end of each increment we do not verify that equilibrium between internal and external forces is satisfied. This may result in a diverging solution as the load increases.
- A partial palliative to this problem, is the adoption of very small load increments to minimize errors.
- This method should be used extremely carefully, as a solution will always be obtained no matter how good or bad the model and its parameters are.
- Unfortunately, there are some constitutive models which are very fragile when run within an implicit integration scheme, and as a result they are used (or misused) in an explicit one.

\section*{Newton Methods}
- Linear problems: unique solution; Nonlinear problems: can not ensure the existence of a solution, nor ensure the uniqueness of one.
- At best we can say that an approximate numerical solution of the problem is given, or that an approximation does not exist (typically this implies local or global failure).
- Most widely used class of numerical solution: "Newton Methods", or "Quasi Newton". Other methods may include the bisection method (only linearly convergent).
- Essence of the method which seeks to solve \(f(x)=0\), is to linearize the equation about the current approximation \(x_{n}\) and solve for the resulting linear equation for the next approximation \(x_{n+1}\)
- Traditionally, Newton's method start with Taylor's series where we express a function as an infinite series with respect to point \(\bar{x}\) :
\[
\begin{aligned}
f(x) & =f(\bar{x})+(x-\bar{x}) f^{\prime}(\bar{x})+\frac{(x-\bar{x})^{2}}{2!} f^{\prime \prime}(\bar{x})+\ldots \\
\Rightarrow & =f(\bar{x})+(x-\bar{x}) f^{\prime}(\bar{x})+\mathcal{O}(\underbrace{|x-\bar{x}|^{2} \mid}_{\xi^{2}})
\end{aligned}
\]
- Ignoring the higher order terms, gives a linear function
\[
L(x)=f(\bar{x})+(x-\bar{x}) f^{\prime}(\bar{x})
\]
- If \(f(x)\) is a function of two variables, then \(x \in \mathbb{R}^{2}\) and \(x=\left\lfloor\begin{array}{ll}x_{1} & x_{2}\end{array}\right\rfloor^{\top}\). The Taylor series expansion about the fixed point ( \(\bar{x}_{1}, \bar{x}_{2}\) ) will be
\[
\mathrm{f}\left(x_{1}, x_{2}\right)=f\left(\bar{x}_{1}, \bar{x}_{2}\right)+\frac{\partial f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{\partial x_{1}}\left(x_{1}-\bar{x}_{1}\right)+\frac{\partial f\left(\bar{x}_{1}, \bar{x}_{2}\right)}{\partial x_{2}}\left(x_{2}-\bar{x}_{2}\right)
\]

Ignoring the higher order terms, we have again linearized the equation.
- If we set \(f(x)=0 \Rightarrow x \simeq \bar{x}-\frac{f(\bar{x})}{f^{\prime}(\bar{x})}\)
- This is an approximate solution, at \(\bar{x}\), which presumes that we also have \(f^{\prime}(x)\).
- In an iterative procedure, this equation can be rewritten as
\[
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =f^{\prime}\left(x_{n}\right) \\
\Rightarrow \mathrm{d} x & =\frac{\mathrm{d} y}{f^{\prime}\left(x_{n}\right)}=\frac{\overbrace{f\left(x_{n+1}\right)}^{0}-f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
x_{n+1} & \simeq x_{n} \underbrace{-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}}_{\delta x_{n}}
\end{aligned}
\]

- Convergence will be ensured when \(\left|\delta x_{n}\right| \leq \varepsilon_{\delta}\) or \(\left|f\left(x_{n+1}\right)\right| \leq \varepsilon_{f}\)

\section*{Solve \(f(x)=\operatorname{Tan}(x)-x=0\)}
```

clear
xn = 4.3;
n = 0;
epsi=1e-4;
maxiter = 20;
disp(" ")
disp(" n xn norm")
xn_m1 = 0.;
for i = 1:maxiter
f_x=tan(xn)-xn;df_dx=sec(xn) ^2-1;
xn = xn - f_x/df_dx;
my_norm = abs (xn-xn_m1);
disp(sprintf("%5i %16.15e %16.15e",i, xn,my_norm"))
if my_norm <epsi
break
end
xn_m1=xn;
end

```

Note that this is a particularly sensitive problem, because \(\tan x\) is discontinuous, a small change in the initial guess may yield to divergence of the solution.

\section*{Multi-Dimensional}
- For the single variable
\[
x_{n+1} \simeq x_{n} \underbrace{-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}}_{\delta x_{n}} \Rightarrow f(x)+f^{\prime}(x)\left(x_{2}-x_{1}\right) \simeq 0
\]
- If we want to solve two equations with two unknowns, then we should linearize \(f_{1}(\mathrm{x})\) and \(f_{2}(\mathrm{x})\) and
\[
L(\mathrm{x})=\mathrm{f}(\overline{\mathrm{x}})+J(\overline{\mathrm{x}})(\mathrm{x}-\overline{\mathrm{x}})=0 \Rightarrow
\]
or
\[
L(\mathrm{x})=\left[\begin{array}{c}
f_{1}(\overline{\mathrm{x}})+\frac{\partial f_{1}(\mathrm{x})}{\partial x_{1}}\left(x_{1}-\bar{x}_{1}\right)+\frac{\partial f_{1}(\mathrm{x})}{\partial x_{2}}\left(x_{2}-\bar{x}_{2}\right) \\
f_{2}(\overline{\mathrm{x}})+\frac{\partial f_{2}(\mathrm{x})}{\partial x_{1}}\left(x_{1}-\bar{x}_{1}\right)+\frac{\partial f_{2}(\mathrm{x})}{\partial x_{2}}\left(x_{2}-\bar{x}_{2}\right)
\end{array}\right]=0
\]
where \(J(\bar{x})\) is the Jacobian matrix
\[
J(\bar{x})=\left[\begin{array}{ll}
\frac{\partial f_{1}(x)}{\partial x_{1}} & \frac{\partial f_{1}(x)}{\partial x_{2}} \\
\frac{\partial f_{2}(x)}{\partial x_{1}} & \frac{\partial f_{2}(x)}{\partial x_{2}}
\end{array}\right]
\]
and \(J(\bar{x})(x-\bar{x})\) is a matrix vector product; Note that the \(i^{\text {th }}\) row corresponds to the gradient of the \(i^{\text {th }}\) component function \(f_{i}\left(\nabla f_{i}.\right)\).
- Scalar derivative has been replaced by the \(2 \times 2\) Jacobian matrix of partial derivatives.
- We can further generalize the problem to one of \(m\) nonlinear equations with \(m\) unknowns
\[
\mathrm{x}=\left\{\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right\} \text { and } \mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}
f_{1}(\mathrm{x}) \\
f_{2}(\mathrm{x}) \\
\vdots \\
f_{m}(\mathrm{x})
\end{array}\right\}
\]
- The Jacobian matrix \(J(x)\) for this matrix will be an \(m \times m\) matrix with \((i, j)\) entries corresponding to the partial derivative of the function \(i\) with respect to the variable \(j\) or \(\frac{\partial t_{i}(\mathrm{x})}{\partial x_{j}}\)
- At each step of the Newton method, we have an approximate value of \(x_{n}\) to the exact solution \(x^{*}\) of the nonlinear equations \(f(x)=0\). We thus determine \(x_{n+1}\) by solving the linearized system of equations \(L^{(n)}\left(\mathrm{x}_{n+1}\right)=0\).
\[
\mathrm{f}\left(\mathrm{x}_{n}\right)+J\left(\mathrm{x}_{n}\right)\left(\mathrm{x}_{n+1}-\mathrm{x}_{n}\right)=0 \Rightarrow \mathrm{x}_{n+1}=\mathrm{x}_{n}-J\left(\mathrm{x}_{n}\right)^{-1} \mathrm{f}\left(\mathrm{x}_{n}\right)
\]
- Note the similarity with \(J(x)=f^{\prime}(x)\) for \(m=1\).
- At each step we should evaluate the Jacobian matrix at a new point, and then solve a linear system of equations using this new updated matrix.
- Again convergence will be ensured when
\[
\left\|\delta x_{n}\right\| \leq \varepsilon_{\delta} \text { or }\left\|f\left(x_{n+1}\right)\right\| \leq \varepsilon_{f}
\]
where || \(\mathrm{v} \|\) is the Euclidian norm of v (strictly speaking, it should be written as \(\|v\|_{2}\) ) computed as the square root of the sum of the vector components square,
\[
\|\mathrm{v}\|=\sqrt{\sum_{i=1}^{N} v_{i}^{2}}
\]
in an \(N\) dimensional space.
- Given an initial \(\mathbf{x}\), a required tolerance \(\varepsilon>0\) Repeat
(1) Evaluate \(g=f(x)\) and \(H=J(x)\)
(2) If \(\|g\| \leq \varepsilon\), return x
(3) \(\mathrm{v}=\mathrm{x}_{n}-\mathrm{x}_{n-1}=\frac{f(\mathrm{x})}{J(\mathrm{x})}\)
(4) Solve \(H v=-g\)
(5) \(\mathrm{x}:=\mathrm{x}+\mathrm{v}\)
until maximum number of iterations is exceeded
- Each iteration requires the evaluation of \((x)\) ( \(n\) scalar functions evaluation in terms of x ) and \(J(\mathrm{x})\) ( \(n^{2}\) derivatives).
- Must ensure convergence of the method, and the order of the error
- Given \(g(x)=x-\frac{f(x)}{f^{\prime}(x)}\) define a convergence factor \(\rho^{(n)}\) as the ratio of the error in \(x_{n+1}\) to the error in \(x_{n}\). Near the exact solution \(\left(x^{*}\right.\), where \(\left.g\left(x^{*}\right)=x^{*}\right) \rho^{(n)} \simeq g^{\prime}\left(x^{*}\right)\) and is called the asymptotic convergence factor. Determining \(g^{\prime}(x)\)
\[
g^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{f^{\prime}(x)^{2}}
\]
if \(f^{\prime}\left(x^{*}\right) \neq 0\) and \(f^{\prime \prime}\left(x^{*}\right)\) is finite, then \(g^{\prime}\left(x^{*}\right)=0\) and we conclude that the convergence factor tends to zero when and if \(x_{n} \rightarrow x^{*}\).
- To determine the error \(x^{*}-x_{n}\),
\[
x^{*}-x_{n+1}=x^{*}-x_{n}-\frac{f\left(x^{*}\right)-f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \Rightarrow x^{*}-x_{n+1}=-\frac{1}{2}\left(x^{*}-x_{n}\right)^{2} \frac{f^{\prime \prime}\left(\xi_{n}\right)}{f^{\prime}\left(x_{n}\right)}
\]

Thus if the iteration converges to \(x^{*}\), there follows
\[
\underbrace{x^{*}-x_{n+1}}_{\text {error at } n+1} \simeq-\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)} \underbrace{\left(x^{*}-x_{n}\right)^{2}}_{\text {error at } n} \text { as } n \rightarrow \infty
\]
as long as \(f^{\prime}\left(x^{*}\right)\) and \(f^{\prime \prime}\left(x^{*}\right)\) are both finite and nonzero.
- Hence we note that the error tends to be proportional to the square of the error in \(x_{n}\) as \(n\) tends to infinity.
- Other methods (such as the bisection) have a linear convergence.

The Newton method:
(1) Requires an analytical expression of the derivative
(2) If the initial value is too far from the correct value, convergence may not be ensured (which is why one must place an upper limit on the number of iterations).
(3) Fails if the slope is close to zero (such as around the peak load).

4 Works best with curves with low curvatures.
(5) Convergence is often quadratic.
\[
\begin{equation*}
\left\|x_{n+1}-x^{*}\right\| \leq c\left\|x_{n}-x^{*}\right\|^{2} \tag{1}
\end{equation*}
\]
however, in practice we do not know what \(c\) is
Solve \(f(\mathrm{x})=\left\{\begin{array}{c}x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-9 \\ x_{3}-x_{2} \sin \left(x_{1}\right) \\ 3 x_{2}+4 x_{3}\end{array}\right\} \Rightarrow J(\mathrm{x})=\left[\begin{array}{ccc}2 x_{1} & 2 x_{2} & 2 x_{3} \\ -x_{2} \cos \left(x_{1}\right) & -\sin \left(x_{1}\right) & 1 \\ 0 & 3 & 4\end{array}\right]\)
```

f=@(x) [x(1)^^2+x(2)^2+x(3)^2-9
x(3)-x(2)*sin}(x(1)
3*x(2)+4*x(3)] ;
% The Jacobian mat r i x :
J=@(x) [2*x(1) 2*x(2) 2*x(3)
-x(2)*\operatorname{cos}(x(1)) - sin(x(1)) 1
O 3 4] ;
% i n i t i a l guess:
x = [-1;-2;1] ;
maxiter = 10;
tol = 1e-12;
disp(' ')
disp('iteration x(1) x(2) x(3) norm(delta) ')
for n=1:maxiter
delta = -J (x)\f(x);
x = x + delta ;
disp(sprintf('%5i %10.5e %10.5e %10.5e %8.3e' ,...
n, x(1), x(2) , x(3) ,norm(delta, inf))) ;
if norm(delta, inf) < tol
break
end
end
if n==maxiter
disp("Warning: may not have converged tolerance not satisfied")
end

```
- Quasi-Newton; Secant Method: In many instances, it is nearly impossible to compute \(J(x)\), as \(f(x)\) may not be analytically defined. In such cases, we will numerically determine the Jacobian based on the simple approximation
\[
\mathrm{f}^{\prime}\left(\mathrm{x}_{n+1}\right) \simeq \frac{\mathrm{f}\left(\mathrm{x}_{n}\right)-\mathrm{f}\left(\mathrm{x}_{n-1}\right)}{\mathrm{x}_{n}-\mathrm{x}_{n-1}}
\]

Substituting for \(J\left(x_{n}\right)^{-1}\)
\[
\mathrm{x}_{n+1}=\mathrm{x}_{n}-\underbrace{\frac{\mathrm{x}_{n}-\mathrm{x}_{n-1}}{\mathrm{f}\left(\mathrm{x}_{n}\right)-\mathrm{f}\left(\mathrm{x}_{n-1}\right)}}_{\simeq \mathrm{J}^{-1}\left(\mathrm{x}_{n}\right)} \mathrm{f}\left(\mathrm{x}_{n}\right)
\]
- Modified Newton In some applications, the evaluation of the Jacobian is computationally expensive, and in such case, \(J^{-1}\) is kept constant throughout the analysis (this will be referred to the initial stiffness method) or the load increment (modified Newton).
- Objective go from \(n\) to \(n+1\).
- Jacobian corresponds to the tangent stiffness matrix of the structure which in turn depends on the tangent of the constitutive matrix ( \(\mathrm{D}_{T}\) ).
\[
\left(\mathrm{K}_{T}=\int_{\Omega} \mathrm{B}^{T} \mathrm{D}_{T} \mathrm{~B} d \Omega\right) .
\]
- So far: \(\mathrm{f}(x)=0\), we know how to handle it.
- In structural analysis must satisfy within an increment \(P_{t, n}^{R}=P_{t, n}^{\text {ext }}-P_{t, n}^{\text {int }}=0\), superscript \(R\) refers to the residual.
- Internal nodal force vector \(P_{t, n}^{\text {int }}\) is a function of nodal displacements \(\mathrm{u}_{t, n}\), thus we have a nonlinear problem. (Recall \(\mathrm{P}^{\text {int }}=\int \mathrm{B}^{\top} \sigma d \Omega\) or \(\mathrm{K} \Delta\) )
- Within each iteration we determine the residual nodal force vector, and set it to zero: \(P_{t, n}^{R}=0\)
- It is an iterative procedure that continues until the residual nodal force vector or the incremental nodal displacement vector, is sufficiently small (i.e. convergence is satisfied).
- Newton's methods hinge on our ability to linearize (through a truncated Taylor series) the problem as follows
\(\mathrm{P}_{t, n}^{R, k}=\mathrm{P}_{t, n}^{\text {ext }}-\mathrm{P}_{t, n}^{\text {int,k }} \quad \delta \mathrm{u}_{t, n}^{k}=\left[\mathrm{K}_{t, n}^{k-1}\right]^{-1} \cdot \mathrm{P}_{t, n}^{R, k} ;\)
and
\(\mathrm{u}_{t, n}^{k}=\mathrm{u}_{t, n}^{k-1}+\delta \mathrm{u}_{t, n}^{k}\) where, \(\mathrm{u}_{t, n}^{k=0}=\mathrm{u}_{t, n-1}\) and \(\mathrm{P}_{t, n}^{\text {int,k=0 }}=\mathrm{P}_{t, n-1}^{\text {int }}\) and subscript \(n\) refers to the load increment, and subscript \(k\) to the iteration number within a load increment.
- Assume equilibrium to have been reached at increment \(n\), we then apply an increment of external force \(\Delta \mathrm{P}^{\text {ext }}\), and we seek to determine the corresponding incremental displacement \(\Delta u_{n+1}\).
- The internal forces and corresponding displacements will then be in (near) equilibrium.
- We distinguish between load increment, and iteration number within an increment to reach equilibrium.
- At each iteration, we determine the residual \(\mathrm{R}_{i}^{(n+1)}\) which corresponds to \(P_{\text {ext }}-P_{\text {int }}\), and seek to minimize this residual. At each iteration, we update (in the Newton method) the tangent stiffness matrix which corresponds to the jacobian.
- At the heart of all of them, is the determination of the internal nodal force vector \(P_{t, n}^{\text {int,k}}\), and the tangent stiffness matrix \(\mathrm{K}_{t t, n}^{k-1}\).

- Newton's method can be redescribed in terms of Predictor-Corrector
- I Predictor (associated with an increment of load) Determine incremental displacement
- II Corrector to check equilibrium iteratively.
(1) Compute the corresponding internal forces (not evaluated in the explicit method);
(2) Compute the residual forces
(3) If residual is larger than user specified convergence criteria, update the displacement by multiplying the inverse of the tangent stiffness matrix by the residual force;
(4) Update the total displacement vector.

Hence to each load increment, we would have multiple iterations until equilibrium is satisfied within a numerical tolerance.
- There are different flavors of this so-called Newton technique. Those are associated with the tangent stiffness matrix to be considered
\begin{tabular}{lcccc}
\hline \multirow{3}{*}{ Method } & \multicolumn{3}{c}{ Tangent stiffness matrix computed at } \\
\cline { 2 - 5 } & Predictor \(\left(x\right.\) in \(\left.K_{t x i}^{n}\right)\) & Corrector \(\left(y\right.\) in \(\left.K_{t y i}^{n}\right)\) \\
\cline { 2 - 5 } & Increment & Iteration & Increment & Iteration \\
\hline Newton-Raphson & \(n\) & 1 & \(n\) & \(i\) \\
Modified Newton-Raphson & \(n\) & 1 & \(n\) & 1 \\
Initial Stiffness & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

- Need to solve \(f\left(u^{*}\right)=P_{t, n}^{e x t}\left(u^{*}\right)-P_{t, n}^{\text {int }}\left(u^{*}\right)=0\) and \(f(\cdot)\) is the function of internal state value \((\cdot)\). In the preceding equation it is often, but not exclusively, the vector of nodal displacement \(u\).
- Assuming that \(\mathrm{u}_{t, n}^{k-1}\) is known, then a Taylor series expansion gives \(\mathrm{f}\left(\mathrm{u}^{*}\right)=f\left(\mathrm{u}_{t, n}^{k-1}\right)+\left.\frac{\partial \mathrm{f}}{\partial \mathrm{u}}\right|_{\mathrm{u}_{t, n}^{k-1}} \cdot\left(\mathrm{u}^{*}-\mathrm{u}_{t, n}^{k-1}\right)+\) High-order terms Substituting we obtain \(\left.\frac{\partial \mathrm{P}_{t}^{\text {int }}}{\partial \mathrm{u}}\right|_{\mathrm{u}_{t, n}^{k, 1}} \cdot\left(\mathrm{u}^{*}-\mathrm{u}_{t, n}^{k-1}\right)+\) High-order terms \(=P_{t, n}^{\text {ext }}-\mathrm{P}_{t, n}^{\text {int }, k-1}=\mathrm{P}_{t, n}^{R, k}\) where we assume that the external nodal forces are displacement-independent.
- Since an incremental analysis is driven by external force steps (or time steps \(\Delta t\) ), the initial conditions are given by \(\mathrm{K}_{t t, n}^{k=0}=\mathrm{K}_{t, n-1}, \mathrm{u}_{t, n}^{k=0}=\mathrm{u}_{t, n-1}\), \(\mathrm{P}_{t, n}^{\text {int }, k=0}=\mathrm{P}_{t, n-1}^{\text {int }}\). Again, the iterations continue until an appropriate convergence criteria is satisfied.
- A characteristic of this iterative method is that an updated tangent stiffness matrix must be determined at each iteration, as such this method is often referred to as the full Newton-Raphson iterative method.

\section*{Initial stiffness}

- In the Newton-Raphson iterative method most of the computational effort is associated with the factorization of the tangent stiffness matrix. For large systems, it is often more convenient to modify the approach by reducing the number of such factorizations albeit at the cost of increased number of iterations to reach proper convergence.
- Initial stiffness algorithm
\[
\delta \mathrm{u}_{t, n}^{\mathrm{K}}=\left[\mathrm{K}_{t t}\right]^{-1} \cdot \mathrm{P}_{t, n}^{R, k}
\]
with the initial conditions defined by
\[
\begin{aligned}
\mathrm{u}_{t, n}^{k=0} & =\mathrm{u}_{t, n-1} \\
\mathrm{P}_{t, n}^{i n t, k=0} & =\mathrm{P}_{t, n-1}^{i n t}
\end{aligned}
\]

In this method, only the initial \(K_{t t, n=0}^{k=0}\) needs to be factorized, thus avoiding the expense of recalculating and factorizing many times the tangent stiffness matrix. This initial stiffness iterative method corresponds to a linearization of the response about the initial configuration of the finite element system and will converge very slowly and may even diverge.

- Modified Newton-Raphson iterative method is an approach somewhat in between Newton-Raphson iterative method and the initial stiffness iterative method.
\[
\delta \mathrm{u}_{t, n}^{k}=\left[\mathrm{K}_{t t, n-1}\right]^{-1} \cdot \mathrm{P}_{t, n}^{R, k}
\]
with the initial conditions
\[
\begin{aligned}
\mathrm{u}_{t, n}^{k=0} & =\mathrm{u}_{t, n-1} \\
\mathrm{P}_{t, n}^{i n t, k=0} & =\mathrm{P}_{t, n-1}^{i n t}
\end{aligned}
\]
- The modified Newton-Raphson iterative method involves fewer stiffness decompositions than the Newton-Raphson iterative method. The choice of external force steps or time steps when the stiffness matrix should be updated depends on the degree of nonlinearity in the system response; i.e. the more nonlinear the response, the more often the updating should be performed.

\section*{Secant Newton}

we do not explicitly invert the Jacobian (or need to invert \(\mathrm{K}_{T}\) ), but rather compute \(\mathrm{K}_{T}\) through finite difference.
- In the load control method, we may have oscillation of the solution, or even divergence. This implies that equilibrium was not restored. This is often associated with "failure" at peak load.
- Failure may be structural or just localized in a subregion.
- In most engineering problems, we only seek the peak-load.
- In softening materials (such as concrete), we may be seek to capture the ductility or post-peak response when an imposed displacement is applied (such as thermal or even seismic). However, this is impossible under load control because the determination of the residual is impossible close to a peak.
- Under displacement control (as further explained below), the restoring force can always be determined (unless there is a snap-back).

\section*{Displacement Control}

- For displacement control, we define the vector of residual displacements \(\mathrm{R}_{n}^{k}\) as
\[
\begin{equation*}
\mathrm{R}_{n+1}^{k} \equiv \mathrm{R}_{n}^{k}\left(\overline{\mathrm{f}}_{n+1}\right)=\overline{\mathrm{u}}^{\text {int }}\left(\overline{\mathrm{f}}_{n+1}\right)-\overline{\mathrm{u}}^{\mathrm{ext}}=0 \tag{2}
\end{equation*}
\]
note the difference with Equation 2.
- Hence to capture the post-peak response we need to numerically adopt a displacement control algorithm.
- At the beginning of each step \(n+1\), we start from the forces \(\bar{f}_{n}\) that were computed in the previous step through equilibrium, \(\mathrm{R}_{n}^{k} \approx 0\) or \(\overline{\mathrm{u}}_{n}^{\text {int }} \approx \overline{\mathrm{u}}_{n}^{\text {ext }}\).
- The external displacement are now increased from \(\overline{\mathrm{u}}_{n}^{\text {ext }}\) to \(\overline{\mathrm{u}}_{n+1}^{\text {ext }}=\overline{\mathrm{u}}_{n+1}^{\text {ext }}+\Delta \overline{\mathrm{u}}^{\text {ext }}\), and we seek to determine the corresponding forces \(\overline{\mathrm{f}}_{n+1}\) through equilibrium, \(\mathrm{R}_{n+1}^{k} \approx 0\) or \(\bar{u}_{n+1}^{\text {int }} \approx \overline{\mathrm{u}}_{n+1}^{\text {ext }}\).
- Within the current step (identified through the subscript \(n\) ), we will be iterating (through superscript \(k\) ) in order to achieve equilibrium, Figure ??

\section*{Relationship to Structural Mechanics}

\section*{Displacement Control}

- As an initial guess for \(\bar{f}_{n+1}^{0}\) we take it to be \(\bar{f}_{n}\), and based on the linearization around this initial state, we have
\[
\begin{equation*}
\overline{\mathrm{u}}_{\text {intt }}\left(\overline{\mathrm{u}}_{n+1}^{0}\right)+\mathrm{K}_{T}\left(\overline{\mathrm{f}}_{n+1}^{0}\right) \Delta \overline{\mathrm{f}}_{n+1}^{1}=\overline{\mathrm{u}}_{n+1}^{\text {ext }} \tag{3}
\end{equation*}
\]
where \(\Delta \overline{\mathrm{f}}_{n+1}^{1}\) is the first approximation for the unknown displacement increment, \(\Delta \overline{\mathrm{f}}_{n+1}=\overline{\mathrm{f}}_{n+1}-\overline{\mathrm{f}}_{n}\).
- Alternatively, we begin from a linearization of Equation 2, Figure ??

\section*{Relationship to Structural Mechanics}

\section*{Displacement Control}

\[
\begin{equation*}
\mathrm{R}_{n}^{k}\left(\overline{\mathrm{f}}_{n+1}^{i+1}\right) \approx \mathrm{R}_{n}^{k}\left(\overline{\mathrm{f}}_{n+1}^{i}\right)+\left(\frac{\partial \mathrm{R}_{n}^{k}}{\partial \overline{\mathrm{f}}}\right)_{n+1}^{i} \delta \overline{\mathrm{f}}_{n}^{i}=0 \tag{4}
\end{equation*}
\]
where \(i\) is a counter starting from \(\overline{\mathrm{f}}_{n+1}^{1}=\overline{\mathrm{f}}_{n}\). We observe that
\[
\begin{equation*}
\frac{\partial \mathrm{R}_{n}^{k}}{\partial \overline{\mathrm{f}}}=\frac{\partial \overline{\mathrm{u}}^{i n t}}{\partial \overline{\mathrm{f}}}=\mathrm{K}_{T} \tag{5}
\end{equation*}
\]
- Assuming that \(\overline{\mathrm{u}}^{\text {ext }}\) is constant and \(\mathrm{K}_{T}\) is the tangent stiffness matrix, Equation 4 yields
\[
\begin{equation*}
\mathrm{K}_{T}^{i} \delta \overline{\mathrm{f}}_{n}^{i}=-\mathrm{R}_{n+1}^{i} \tag{6}
\end{equation*}
\]
or
\[
\begin{equation*}
\delta \overline{\mathrm{f}}_{n}^{i}=-\left(\mathrm{K}_{T}^{i}\right)^{-1} \mathrm{R}_{n+1}^{i} \tag{7}
\end{equation*}
\]
- Thus, a series of successive approximations yields
\[
\begin{equation*}
\overline{\mathrm{f}}_{n+1}^{i+1}=\overline{\mathrm{f}}_{n}+\Delta \overline{\mathrm{f}}_{n}^{i}=\overline{\mathrm{f}}_{n+1}^{i}+\delta \overline{\mathrm{f}}_{n}^{i} \tag{8}
\end{equation*}
\]
with
\[
\begin{equation*}
\Delta \overline{\mathrm{f}}_{n}^{i}=\sum_{k \leq i} \delta \overline{\mathrm{f}}_{n}^{k} \tag{9}
\end{equation*}
\]
very rapidly.
- It should be noted that each iteration involves three computationally expensive steps:
(1) Evaluation of internal displacements \(\overline{\mathrm{u}}^{\text {int }}\)
(2) Evaluation of the global tangent stiffness matrix, \(\mathrm{K}_{T}\)
(3) Solution of a system of linear equations

- Displacement control should be used when softening is present; arc length should be used if snap-back is anticipated.
- Arch-length method hinges on our ability to define an arc length in terms of both displacement and force, and then seek a multiplier.
- An appropriate termination criteria of the iteration should be adopted for any incremental solution strategy based on iterative methods. At the end of each iteration, the solution obtained should be checked to see whether it has converged within defined tolerances or whether the iteration may be diverging.
- If the convergence tolerances are too loose, inaccurate results are obtained, and if the tolerances are too tight, much computational effort is spent to obtain needless accuracy.

Some commonly used convergence criteria include:
Displacement criteria \(\left\|\delta \mathrm{u}_{n}^{k}\right\|<\epsilon_{D}\) where \(\epsilon_{D}\) is a displacement convergence tolerance and \(\|\cdot\|\) is the Euclidian norm defined as the square root of the sum of the vector components squared.
Force criteria \(P_{t, n}^{R, k}\) and \(\left\|P_{t, h}^{R, k}\right\|<\epsilon_{F}\) where \(\epsilon_{F}\) is a force convergence tolerance.

\section*{Convergence criteria}

Energy criteria A difficulty with the force criterion is that the displacement solution does not introduce the termination criterion. As an illustration, consider an elasto-plastic truss with a very small strain-hardening modulus entering the plastic region. In this case, the residual force vector may be very small while the displacements may still be much in error. Hence, the convergence criteria may have to be used with very small values of \(\epsilon_{D}\) and \(\epsilon_{F}\). Also, the expressions must be modified appropriately when quantities of different units are measured. In order to provide some indication of when both the displacements and the forces are near their equilibrium values, the energy criteria can be used
\(\left|\frac{1}{2} \cdot P_{t, h}^{R, k} \cdot \delta u_{n}^{k}\right|<\epsilon_{E}\)

\title{
Non Linear Structural Analysis \\ Element Formulation Notation \\ Victor E. Saouma
}

\section*{1 Nodal Quantities}
\begin{tabular}{|c|c|}
\hline \(\mathbf{P}_{S}^{\text {int }}\) & Internal nodal force vector \\
\hline \(\mathbf{P}_{t}^{\text {ext }}\) & External nodal force vector at free degrees of freedom at structural level \\
\hline \(\mathbf{P}_{t}^{\text {int }}\) & Internal nodal force vector at free degrees of freedom at structural level \\
\hline \(\mathbf{P}_{u}^{\text {int }}\) & Internal nodal force vector at constraint degrees of freedom at structural level \\
\hline \(\mathbf{P}_{t}^{R}\) & Residual nodal force vector at free degrees of freedom at structural level \\
\hline \(\mathbf{u}_{t}\) & Nodal displacement vector at free degrees of freedom at structural level \\
\hline \(\mathbf{F}_{e}\) & Element nodal force vector in global reference;
\[
\left\lfloor N_{X 1}, \quad V_{Y 1}, M_{Z 1}, N_{X 2}, V_{Y 2}, M_{Z 2}\right\rfloor^{T}
\] \\
\hline \(\mathbf{F}_{e}^{\text {in }}\) & Internal element nodal force vector in global reference \\
\hline \(\boldsymbol{\delta}_{e}\) & Element nodal displacement vector in global reference; \(\left\lfloor u_{X 1}, v_{Y 1}, \theta_{Z 1}, u_{X 2}, v_{Y 2}, \theta_{Z 2}\right\rfloor^{T}\) \\
\hline \(\overline{\mathbf{f}}_{e}\) & Element nodal force vector in local reference with rigid body modes; \(\left\lfloor\bar{N}_{x 1}, \bar{V}_{y 1}, \bar{M}_{z 1}, \bar{N}_{x 2}, \bar{V}_{y 2}, \bar{M}_{z 2}\right\rfloor^{T}\) \\
\hline \(\underline{\mathbf{f}}_{e}^{\text {int }}\) & Internal element nodal force vector in local reference with rigid body modes \\
\hline \(\overline{\mathbf{d}}_{e}\) & Element nodal displacement vector in local reference with rigid body modes; \(\left\lfloor\bar{u}_{x 1}, \bar{v}_{y 1}, \bar{\theta}_{z 1}, \bar{u}_{X 2}, \bar{v}_{Y 2}, \bar{\theta}_{Z 2}\right\rfloor^{T}\) \\
\hline \(\tilde{\mathbf{f}}_{e}\) & Element nodal force vector in local reference without rigid body modes;
\[
\left\lfloor\tilde{M}_{z 1}, \tilde{M}_{z 2}, \tilde{N}_{x 2}\right\rfloor^{T}
\] \\
\hline \(\tilde{\mathbf{f}}_{e}^{\text {int }}\) & Internal element nodal force vector in local reference without rigid body modes \\
\hline \(\tilde{\mathbf{f}}_{e}^{R}\) & Residual element nodal force vector in local reference without rigid body modes \\
\hline \(\tilde{d}_{e}\) & Element nodal displacement vector in local reference without rigid body modes; \(\left\lfloor\tilde{\theta}_{z 1}, \tilde{\theta}_{z 2}, \tilde{u}_{x 2}\right\rfloor^{T}\) \\
\hline \(\tilde{\mathbf{d}}_{\underline{e}}^{R}\) & Residual element nodal displacement vector in local reference without rigid body modes \\
\hline \(\delta \overline{\mathbf{d}}_{e}\) & Virtual element nodal displacement vector in local reference \\
\hline
\end{tabular}

\section*{2 Section Quantities}
\begin{tabular}{ll}
\(\mathbf{d}_{s}(x)\) & Section displacement vector; \(\lfloor u(x), v(x)\rfloor^{T}\) \\
\(\Phi\) & Curvature \\
\(\boldsymbol{\sigma}_{s}(x)\) & Section force vector; \(\lfloor N(x), M(x)\rfloor^{T}\) \\
\(\boldsymbol{\sigma}_{s}^{\text {int }}(x)\) & Internal section force vector \\
\(\boldsymbol{\sigma}_{s}^{R}(x)\) & Residual section force vector \\
\(\boldsymbol{\varepsilon}_{s}(x)\) & Section deformation vector; \(\left\lfloor\varepsilon_{x}(x), \phi_{z}(x)\right\rfloor^{T}\) \\
\(\boldsymbol{\varepsilon}_{s}^{\text {int }}(x)\) & Residual section deformation vector \\
\(\delta \boldsymbol{\varepsilon}_{s}(x)\) & Virtual section deformation vector \\
\(\kappa\) & Plastic stress
\end{tabular}

\section*{3 Fiber Quantities}
```

\sigma Uniaxial stress
\varepsilon Uniaxial strain
\sigmar}\quad\mathrm{ Uniaxial stress of layer/fiber
\varepsilonr}\quad\mathrm{ Uniaxial strain of layer/fiber

```

\section*{4 Stiffness Matrices}
\begin{tabular}{ll}
\(\mathbf{N}_{d}(x)\) & Shape function on displacement field \\
\(\mathbf{B}_{d}(x)\) & The matrix derived from the derivatives of \(\mathbf{N}_{d}(x)\) \\
\(\mathbf{N}_{f}(x)\) & Shape function on force field \\
\(\mathbf{K}_{S}\) & Augmented stiffness matrix at structural level \\
\(\mathbf{K}_{t t}\) & Stiffness matrix associated natural boundary conditions \\
\(\mathbf{K}_{t u}\) & Stiffness matrix associated natural and essential boundary conditions \\
\(\mathbf{K}_{u t}\) & Stiffness matrix associated essential and natural boundary conditions \\
\(\mathbf{K}_{u u}\) & Stiffness matrix associated essential boundary conditions \\
\(\mathbf{K}_{e}\) & Element stiffness matrix in global reference \\
\(\overline{\mathbf{k}}_{e}\) & Element stiffness matrix in local reference with rigid body modes \\
\(\overline{\mathbf{k}}_{e}^{\text {tan }}\) & Element tangent stiffness matrix in local reference with rigid body modes \\
\(\tilde{\mathbf{k}}_{e}\) & Element stiffness matrix in local reference without rigid body modes \\
\(\tilde{\mathbf{c}}_{e}\) & Element flexibility matrix in local reference without rigid body modes \\
\(\mathbf{k}_{s}(x)\) & Section stiffness matrix \\
\(\mathbf{k}_{s}^{\text {tan }}(x)\) & Section tangent stiffness matrix \\
\(\mathbf{c}_{s}(x)\) & Section flexibility matrix
\end{tabular}

\section*{5 Misc.}
\(E(x) \quad\) Elastic modulus
\(A(x) \quad\) Section area
\(I_{z}(x) \quad\) Moment of inertia on section area
\(L_{e} \quad\) Element length
\(\tilde{\Gamma}_{e} \quad\) Transformation matrix between local and global coordinate system
\(\tilde{\boldsymbol{\Gamma}}_{e} \quad\) Transformation matrix between rigid body modes and no rigid body modes

\section*{6 Subscripts}
\(t\) Known traction
\(u \quad\) Known displacement
\(S \quad\) Structural level
\(e \quad\) Element level or \(e^{t h}\) element at element state determination
\(r\) Layer/fiber level or \(r^{t h}\) layer/fiber at layer/fiber state determination
\(s \quad\) Section level or \(s^{t h}\) section at section state determination
\(d \quad\) Displacement field
\(f \quad\) Force field
\(n \quad\) Current step of External force/displacement vector

\section*{7 Superscripts}
```

int Internal
ext External
R Residual
k k
j \quad jth iteration at element level

```

\title{
Non Linear Structural Analysis
} Element Formulations

\author{
Victor E. Saouma \\ saouma@colorado.edu \\ University of Colorado, Boulder
}

Fall 2020

\section*{Table of Contents I}
(1) Introduction
(2) Truss Element
- Stiffness Matrix
- Coordinate system for 2D truss element
- State determination
(3) Beam-Column; Stiffness; \(M-\Phi\)
- Stiffness Matrix
- Coordinate system
- State Determination
- "Hidden" Error
4) Beam-Column; Stiffness \(\sigma-\varepsilon\) (Fiber)
- Layer/Fiber Sections; Introduction
- Section Stiffness Matrix
- State Determination
(5) Zero-Length Element \((M-\theta)\)
- Introduction

\section*{Table of Contents II}
- Stiffness Matrix
- Coordinate system
- Element state determination

6 Zero-Length Section; Fiber \((\sigma-\varepsilon)\)
- Introduction
- Stiffness Matrix
- Coordinate system
- Element state determination

\section*{(7) Flexibility Based Elements}
- Introduction
- Stiffness Matrix
- Coordinate system
- State determination; Introduction
- State Determination; No Iterations
- State Determination; Iterations; The "Big Picture"
- State Determination; Details
- Element formulations, and constitutive models are at the heart of our nonlinear analysis.
- Element formulation of beam-column is more complex than the one of solid elements (except for plates and shells).
- We will review "standard" (stiffness based) element formulation, but will also review formulation of "modern elements", such as
- Fiber sections
- zero length elements/sections
- Flexibility based elements
- At time coverage of some of those elements is quite complex, brace yourself.
- Careful with the notation.
- In the context of the classical stiffness method, derivation of the truss stiffness matrix is simple. We hereby re-derive it as a mean to "gently" introduce new notation that you should familiarize yourself with.
- As with all finite elements, stiffness matrix derivation hinges on three requirements.
(1) Compatibility
- Displacements generalized relationship between section displacement vector \(\mathbf{d}_{s}(x)\) and element nodal displacement vector \(\overline{\mathbf{d}}_{e}\) is expressed through the displacement interpolation functions (shape functions), \(\mathbf{N}_{d}(x)\) as
\[
\mathbf{d}_{s}(x)=\{u(x)\}=\underbrace{\left[\begin{array}{cc}
-\frac{x}{L}+1 & \frac{x}{L}
\end{array}\right]}_{\mathbf{N}_{d}(x)} \cdot \underbrace{\left\{\begin{array}{c}
\bar{u}_{x 1}  \tag{1}\\
\bar{u}_{x 2}
\end{array}\right\}}_{\overline{\mathbf{d}}_{e}}
\]
- Deformation of displacements: Under the assumption that displacements are small, the section deformation vector \(\varepsilon_{s}(x)\) is related to the element nodal displacement vector by
\[
\varepsilon_{s}(x)=\left\{\varepsilon_{x}(x)\right\}=\underbrace{\left[\begin{array}{cc}
-\frac{1}{L} & \frac{1}{L}
\end{array}\right]}_{\mathbf{B}_{d}(x)} \cdot \overline{\mathbf{d}}_{e}
\]
where \(\mathbf{B}_{d}(x)\) is the matrix which relates displacement to strain through the derivatives of \(\mathbf{N}_{d}(x)\).
(2) Constitutive law is expressed as
\[
\underbrace{\left\{N_{x}(x)\right\}}_{\sigma_{s}(x)}=\mathbf{k}_{s}(x) \cdot \varepsilon_{s}(x)
\]
where \(\sigma_{s}(x)\) is the section \({ }^{1}\) force vector, and \(\mathbf{k}_{s}(x)\) is the section stiffness matrix.
For linear elastic analysis \(\mathbf{k}_{s}(x)\) is simply a scalar equal to
\(\mathbf{k}_{s}(x)=[E(x) \cdot A(x)]\) where, \(E(x)\) and \(A(x)\) are elastic modulus and cross sectional area.
(3) Equilibrium (weak form) through the principle of virtual work (displacement) which is expressed as
\[
\underbrace{\delta \overline{\mathbf{d}}_{e}^{T} \cdot \overline{\mathbf{f}}_{e}}_{\text {External }}=\underbrace{\int_{0}^{L_{e}} \delta \boldsymbol{\varepsilon}_{s}(x)^{T} \cdot \boldsymbol{\sigma}_{s}(x) \mathrm{d} x}_{\text {Internal }}
\]

Substitution leads to
\[
\begin{aligned}
\delta \overline{\mathbf{d}}_{e}^{T} \cdot \overline{\mathbf{f}}_{e} & =\int_{0}^{L_{e}} \delta \overline{\mathbf{d}}_{e}^{T} \cdot \mathbf{B}_{d}(x)^{T} \cdot \mathbf{k}_{s}(x) \cdot \boldsymbol{\varepsilon}_{s}(x) \mathrm{d} x \\
\Rightarrow \overline{\mathbf{f}}_{e} & =\int_{0}^{L_{e}} \mathbf{B}_{d}(x)^{T} \cdot \mathbf{k}_{s}(x) \cdot \boldsymbol{\varepsilon}_{s}(x) \mathrm{d} x=\underbrace{\int_{0}^{L_{e}} \mathbf{B}_{d}(x)^{T} \cdot \mathbf{k}_{s}(x) \cdot \mathbf{B}_{d}(x) \mathrm{d} x \cdot \overline{\mathbf{d}}_{e}}_{\overline{\mathbf{k}}_{e}}
\end{aligned}
\]
or \(\overline{\mathbf{f}}_{e}=\overline{\mathbf{k}}_{e} \cdot \overline{\mathbf{d}}_{e}\) The element stiffness matrix in local reference is thus given by
\[
\overline{\mathbf{k}}_{e}=\int_{0}^{L_{e}} \mathbf{B}_{d}(x)^{T} \cdot \mathbf{k}_{s}(x) \cdot \mathbf{B}_{d}(x) \mathrm{d} x
\]

\footnotetext{
\({ }^{1}\) The notion of section is not essential to understand the formulation of the truss element stiffness matrix. It is nevertheless introduced to be consistent with the subsequent formulation of beam-column
}

- Element nodal forces and displacements are expressed with respect to the global reference \(\mathbf{F}_{e}=\left\lfloor N_{X 1}, V_{Y 1}, N_{X 2}, V_{Y 2}\right\rfloor^{T} ;\) \(\boldsymbol{\delta}_{e}=\left\lfloor u_{X 1}, v_{Y 1}, u_{X 2}, v_{Y 2}\right\rfloor^{\top}\)
- Element nodal forces and displacements can also be expressed with respect to the local reference,
\[
\overline{\mathbf{f}}_{e}=\left\lfloor\bar{N}_{x 1}, \bar{N}_{x 2}\right\rfloor^{\top} ; \quad \overline{\mathbf{d}}_{e}=\left\lfloor\bar{u}_{x 1}, \bar{u}_{x 2}\right\rfloor^{T}
\]
- Rotation matrix which transform global reference to local reference, is given by \(\Gamma_{e}\) such that
\[
\overline{\mathbf{f}}_{e}=\boldsymbol{\Gamma}_{e} \cdot \mathbf{F}_{e} ; \quad \overline{\mathbf{d}}_{e}=\boldsymbol{\Gamma}_{e} \cdot \boldsymbol{\delta}_{e} ; \quad \mathbf{K}_{e}=\boldsymbol{\Gamma}_{e}^{T} \cdot \overline{\mathbf{k}}_{e} \cdot \boldsymbol{\Gamma}_{e}
\]
where, \(\mathbf{K}_{e}\) is the element stiffness matrix in global reference and the rotation matrix is
\[
\Gamma_{e}=\left[\begin{array}{c|cccc} 
& N_{X 1} & V_{Y 1} & N_{X 2} & V_{Y 2} \\
\hline \bar{N}_{x 1} & \cos \alpha & \sin \alpha & 0 & 0 \\
\bar{N}_{x 2} & 0 & 0 & \cos \alpha & \sin \alpha
\end{array}\right]
\]
- In thermodynamic the current state of the material can be uniquely characterized by a suitably selected set of state variables, i.e. what we need to predict future states of the system.
- In the context of structural analysis, state determination is the process of determining for a set of element nodal displacements:
Tangent stiffness matrix to apply Newton's method to solve the nonlinear system (Tangent stiffness matrix corresponding to the Jacobian).
Internal forces to then determine the residual forces which should be nearly equal to zero.
needed to make prediction for state \(n+1\) from state \(n\).
(1) Compatibility of
- Displacement Section displacements are determined from the element nodal displacements through the shape functions.
\[
\mathbf{d}_{s}(x)=\left\{\begin{array}{l}
u(x) \\
v(x)
\end{array}\right\}=\mathbf{N}_{d}(x) \cdot \underbrace{\left\lfloor\bar{u}_{x 1}, \quad \bar{v}_{y 1},\right.}_{\overline{\mathbf{d}}_{e}} \bar{\theta}_{z 1}, \quad \bar{u}_{x 2}, \quad \bar{v}_{y 2}, \quad \bar{\theta}_{z 2}\rfloor^{\top}] ~
\]
where \(\mathbf{N}_{d}(x)\) is the matrix of displacement interpolation functions which can be expressed as
\(\mathbf{N}_{d}(x)=\left[\begin{array}{cccccc}\psi_{1}(x) & 0 & 0 & \psi_{2}(x) & 0 & 0 \\ 0 & \phi_{1}(x) & \phi_{2}(x) & 0 & \phi_{3}(x) & \phi_{4}(x)\end{array}\right]\) where \(\psi_{1}\), \(\psi_{2}, \phi_{1}, \phi_{2}, \phi_{3}\) and \(\phi_{4}\) are the interpolation functions for axial and transverse displacements respectively and are given by
\[
\begin{array}{ll}
\psi_{1}(x)=-\frac{x}{L_{e}}+1 & \psi_{2}(x)=\frac{x}{L_{e}} \\
\phi_{1}(x)=2 \frac{x^{3}}{L_{e}^{3}}-3 \frac{x^{2}}{L_{e}{ }^{2}}+1 & \phi_{2}(x)=\frac{x^{3}}{L_{e}^{2}}-2 \frac{x^{2}}{L_{e}}+x \\
\phi_{3}(x)=-2 \frac{x^{3}}{L_{e}{ }^{3}}+3 \frac{x^{2}}{L_{e}^{2}} & \phi_{4}(x)=\frac{x^{3}}{L_{e}^{2}}-\frac{x^{2}}{L_{e}}
\end{array}
\]

We note the uncoupling between axial and transverse displacements since geometric nonlinearity is ignored.
Again note that \(\mathrm{d}_{s}\) is nonlinear
- Deformation Under the assumptions of small displacements and plane sections remaining plane (Euler Bernouilli as opposed to Timoshenko), the section deformation vector \(\varepsilon_{s}(x)\) (axial strain \(\varepsilon_{x}(x)\) and curvature \(\phi_{z}(x)\) ) is related to the element nodal displacement vector
\[
\varepsilon_{s}(x)=\left\{\begin{array}{l}
\varepsilon_{x}(x)  \tag{2}\\
\phi_{z}(x)
\end{array}\right\}=\mathbf{B}_{d}(x) \cdot \overline{\mathbf{d}}_{e}
\]
where \(\mathbf{B}_{d}(x)\) is the matrix obtained from the appropriate derivatives of the displacement interpolation functions
\[
\begin{aligned}
& \mathbf{B}_{d}(x)=\left[\begin{array}{rclrcl}
\psi_{1}^{\prime}(x) & 0 & 0 & \psi_{2}^{\prime}(x) & 0 & 0 \\
0 & \phi_{1}^{\prime \prime}(x) & \phi_{2}^{\prime \prime}(x) & 0 & \phi_{3}^{\prime \prime}(x) & \phi_{4}^{\prime \prime}(x)
\end{array}\right] \text { with } \\
& \psi_{1}^{\prime}(x)=-\frac{1}{L_{e}} \\
& \phi_{1}^{\prime \prime}(x)=\frac{12 x}{L_{e}{ }^{3}}-\frac{6}{L_{e}{ }^{2}} \\
& \phi_{2}^{\prime \prime}(x)=\frac{6 x}{L_{e}{ }^{2}}-\frac{4}{L_{e}} \\
& \phi_{3}^{\prime \prime}(x)=-\frac{12 x}{L_{e}{ }^{3}}+\frac{6}{L_{e}{ }^{2}} \\
& \phi_{4}^{\prime \prime}(x)=\frac{6 x}{L_{e}{ }^{2}}-\frac{2}{L_{e}}
\end{aligned}
\]
- Note \(\mathbf{B}_{d, e}(x)\) is an approximation since we are approximating the displacement field.
(2) Constitutive law Section constitutive law relates axial strain and curvature to axial force and moment
\[
\underbrace{\left\{\begin{array}{l}
N_{x}(x)  \tag{3}\\
M_{z}(x)
\end{array}\right\}}_{\sigma_{s}(x)}=\mathbf{k}_{s}(x) \varepsilon_{s}(x)
\]
where \(\sigma_{s}(x)\) is the section force vector, and \(\mathbf{k}_{s}(x)\) is the section stiffness matrix. If \(\mathbf{k}_{s}(x)\) is not derived from layer/fiber discretization of the cross section, then we assume a moment-curvature relation
\[
\mathbf{k}_{s,}(x)=\left[\begin{array}{cc}
E(x) \cdot A(x) & 0  \tag{4}\\
0 & E(x) \cdot I_{z}(x)
\end{array}\right]
\]
where, \(E(x), A(x)\), and \(I_{z}(x)\) are elastic modulus at increment \(n\), cross sectional area, and section moment of inertia. Note that \(k_{s}\) is nonlinear as the elastic modulus \(E\) varies in a nonlinear formulation.
(3) Equilibrium will be satisfied only in the weak sense through the principle of virtual displacement expressed as
\[
\underbrace{\delta \overline{\mathbf{d}}_{e}^{T} \cdot \overline{\mathbf{f}}_{e}}_{\text {External }}=\underbrace{\int_{0}^{L_{e}} \delta \boldsymbol{\varepsilon}_{s}(x)^{T} \cdot \boldsymbol{\sigma}_{s}(x) \mathrm{d} x}_{\text {Internal }}
\]

Substituting and since the latter must hold for any arbitrary \(\delta \overline{\mathbf{d}}_{e}\), the principle of virtual work leads to
\[
\begin{aligned}
\delta \overline{\mathbf{d}}_{e}^{T} \cdot \overline{\mathbf{f}}_{e} & =\int_{0}^{L_{e}} \delta \overline{\mathbf{d}}_{e}^{T} \cdot \mathbf{B}_{d}(x)^{T} \cdot \mathbf{k}_{s}(x) \cdot \varepsilon_{s}(x) \mathrm{d} x \\
\Rightarrow \overline{\mathbf{f}}_{e} & =\underbrace{\int_{0}^{L_{e}} \mathbf{B}_{d}(x)^{T} \cdot \mathbf{k}_{s}(x) \cdot \varepsilon_{s}(x) \mathrm{d} x}_{\overline{\mathbf{k}}_{e}} \\
& =\underbrace{\int_{0}^{L_{e}} \mathbf{B}_{d}(x)^{T} \cdot \mathbf{k}_{s}(x) \cdot \mathbf{B}_{d}(x) \mathrm{d} x} \cdot \overline{\mathbf{d}}_{e}
\end{aligned}
\]
or
\[
\begin{equation*}
\overline{\mathbf{f}}_{e}=\overline{\mathbf{k}}_{e} \cdot \overline{\mathbf{d}}_{e} \tag{5}
\end{equation*}
\]

The element stiffness matrix in local reference is thus given by
\[
\begin{equation*}
\overline{\mathbf{k}}_{e}=\int_{0}^{L_{e}} \mathbf{B}_{d}(x)^{T} \cdot \mathbf{k}_{s}(x) \cdot \mathbf{B}_{d}(x) \mathrm{d} x \tag{6}
\end{equation*}
\]

Note analogy with \(\mathbf{k}_{e}=\int \mathbf{B}^{\top} \mathbf{D}(\Omega) \mathbf{B} d \Omega\) where \(\mathrm{D}(\Omega)\) is now replaced by \(\mathbf{K}_{s}(X)\) and \(\Omega\) by \(L_{e}\).


Element nodal forces and displacements are expressed with respect to the global reference
\(\mathbf{F}_{e}=\left\lfloor N_{X 1}, V_{Y 1}, M_{Z 1}, N_{X 2}, V_{Y 2}, M_{Z 2}\right\rfloor^{T}\)
\(\boldsymbol{\delta}_{e}=\left\lfloor u_{X 1}, v_{Y 1}, \theta_{Z 1}, u_{X 2}, v_{Y 2}, \theta_{Z 2}\right\rfloor^{T}\)
- Element nodal forces and displacements of the element can be expressed with respect to the local reference
\[
\overline{\mathbf{f}}_{e}=\left\lfloor\bar{N}_{x 1}, \bar{v}_{y 1}, \bar{M}_{z 1}, \bar{N}_{x 2}, \bar{V}_{y 2}, \bar{M}_{z 2}\right\rfloor^{T} ; \overline{\mathbf{d}}_{e}=\left\lfloor\bar{u}_{x 1}, \bar{v}_{y 1}, \bar{\theta}_{z 1}, \bar{u}_{x 2}, \bar{v}_{y 2}, \bar{\theta}_{z 2}\right\rfloor^{T}
\]
- Rotation matrix which transforms from global reference
\[
\overline{\mathbf{f}}_{e}=\boldsymbol{\Gamma}_{e} \cdot \mathbf{F}_{e} ; \quad \overline{\mathbf{d}}_{e}=\boldsymbol{\Gamma}_{e} \cdot \boldsymbol{\delta}_{e} ; \quad \mathbf{K}_{e}=\boldsymbol{\Gamma}_{e}^{T} \cdot \overline{\mathbf{k}}_{e} \cdot \boldsymbol{\Gamma}_{e}
\]
where, \(\mathbf{K}_{e}\) is the element stiffness matrix in global reference and the rotation matrix is
\[
\Gamma_{e}=\left[\begin{array}{c|cccccc} 
& N_{X 1} & V_{Y 1} & M_{z 1} & N_{X 2} & V_{Y 2} & M_{z 2} \\
\hline \bar{N}_{x 1} & \cos \alpha & \sin \alpha & 0 & 0 & 0 & 0 \\
\bar{V}_{y 1} & -\sin \alpha & \cos \alpha & 0 & 0 & 0 & 0 \\
\bar{M}_{z 1} & 0 & 0 & 1 & 0 & 0 & 0 \\
\bar{N}_{x 2} & 0 & 0 & 0 & \cos \alpha & \sin \alpha & 0 \\
\bar{V}_{y 2} & 0 & 0 & 0 & -\sin \alpha & \cos \alpha & 0 \\
\bar{M}_{z 2} & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\]

\section*{State Determination}
- We operate at three different levels in the structural analysis: a) structure level, b) element level, and c) section level.
- State determination (internal forces and tangent stiffness matrix corresponding to element nodal displacements) for
(1) Section: internal section forces are computed from section deformations which are in turn determined from element nodal displacements and the section stiffness matrix.
(2) Element tangent stiffness matrices and internal element nodal forces of each element are determined from the internal section forces for each element which are in turn computed from section deformations.
(3) Structure: element tangent stiffness matrices and internal element force vector of all the elements are assembled to form the (augmented) tangent stiffness matrix \(\mathbf{K}_{s}^{\text {tan }}\) and internal nodal force vector \(\mathbf{P}_{s}^{i n t}\left(\mathbf{P}_{s}^{i n t}=\mathbf{P}_{t}^{i n t}+\mathbf{P}_{u}^{i n t}\right)\) of the structure. Subscript \(t\) and \(u\) refer to free and constrained degrees of freedom respectively (that is along the natural and essential boundaries).
- Once the structure state determination is complete, the internal nodal force vector \(\left(\mathbf{P}_{t, n}^{\text {int }}\right)\) is compared with the total applied external nodal force vector \(\left(\mathbf{P}_{t, n}^{e x t}\right)\) and the difference \(\left(\mathbf{P}_{t, n}^{R}\right)\), is the residual nodal force vector which is then reapplied to the structure in an iterative solution process until convergence (equilibrium) is satisfied.
\begin{tabular}{|c|c|c|c|}
\hline Level & Internal Force & Tangent Stiffness matrix & "Displacement" \\
\hline Section & \[
\underbrace{\left\{\begin{array}{l}
N_{x}(x) \\
M_{Z}(x)
\end{array}\right\}}_{\sigma_{S}(x)}=\mathbf{k}_{S}(x) \boldsymbol{\varepsilon}_{S}(x)
\] & \(\mathrm{k}_{S}(x)=\left[\begin{array}{cc}E(x) A(x) & 0 \\ 0 & E(x) I_{z}(x)\end{array}\right]\) & \[
\begin{aligned}
\varepsilon_{s}(x) & =\left\{\begin{array}{r}
\varepsilon_{x}(x) \\
\phi_{z}(x)
\end{array}\right. \\
& =\mathbf{B}_{d}(x) \overline{\mathbf{d}}_{e}
\end{aligned}
\] \\
\hline Element Local Element Global & \[
\begin{aligned}
& \bar{f}_{e}^{i n t}= \int_{0}^{L_{e}} \mathbf{B}_{d, e}(x)^{T} \boldsymbol{\sigma}_{s}^{i n t}(x) \mathrm{d} x \\
& \mathbf{F}_{e, n}^{\text {int,k}}=\boldsymbol{\Gamma}_{e}^{T} \overline{\mathrm{f}}_{e, n, k} e, k
\end{aligned}
\] & \[
\begin{gathered}
\overline{\mathrm{k}}_{e}=\int_{0}^{L_{e}} \mathbf{B}_{d}(x)^{T} \mathbf{k}_{s}(x) \mathbf{B}_{d}(x) \mathrm{d} x \\
\mathbf{K}_{e, n}^{\tan , k}=\boldsymbol{\Gamma}_{e}^{T} \overline{\mathrm{k}}_{e, n}^{\tan , k} \boldsymbol{\Gamma}_{e}
\end{gathered}
\] & \[
\begin{aligned}
& \overline{\mathbf{d}}_{e}=\boldsymbol{\Gamma}_{e} \cdot \delta_{e} \\
& \delta_{e}
\end{aligned}
\] \\
\hline Structure & \(\mathbf{P}_{t, n}^{\text {int }, k}=\sum_{e} \mathcal{A}_{b, e}^{T} \mathbf{F}_{e, n}^{i n t, k}\) & \(\mathbf{K}_{S, n}^{\tan , k}=\sum_{e} \mathcal{A}_{b, e}^{T} \mathbf{K}_{e, n}^{\tan , k} \mathcal{A}_{b, e}\) & \(\delta_{e}\) \\
\hline
\end{tabular}

\section*{State Determination}

\(\mathcal{A}_{4, e}\) and \(\mathcal{A}_{b, e}{ }^{T}\) are the displacement extracting operator and the force assembling operator.

Beam-Column; Stiffness; \(M-\Phi\)

\section*{State Determination}

(a) Structure level at force step \(n+1\) with Newton-Raphson iterations
Element nodal force
(b) Element level in local reference

(c) Section level

\(\mathcal{A}, e\) and \(\mathcal{A},{ }^{T}{ }^{T}\) are the displacement extracting operator and the force assembling operator.

- Newton-Raphson iteration method operates in the global coordinate (structural level) system.
- At the \(k^{\text {th }}\) iteration: \(\overline{\mathbf{d}}_{e, n} \rightarrow \mathbf{d}_{s, n}(x)\) (section displacements from element nodal displacements in local reference, Eq. 1) (3).
- For each section: \(\mathrm{d}_{s, n}(x) \rightarrow \varepsilon_{s, e, n}^{k}(x)\) (Section deformation from element displacements Eq, 2) (4), since \(\mathbf{B}_{d, e}(x)\) is exact only in the linear elastic case.
- Assuming that the section constitutive law is explicitly known, \(\varepsilon_{s, e, n}^{k}(x) \rightarrow \mathbf{k}_{s, e, n}^{\tan , k}(x)\) Eq. 4 (tangent stiffness matrix from section deformation); \(\varepsilon_{s, e, n}^{k}(x) \rightarrow \sigma_{s, e, n}^{i n t, k}(x)\) (internal section force vectors from section deformation, Eq. 3 (5).
- Element stiffness matrices \(\overline{\mathbf{k}}_{e, n}^{k}\) in local reference (Eq. 6) and the internal element nodal force vectors in local reference \(\overline{\mathbf{f}}_{e, h}^{i n t, k}\) (Eq. 5 are determined next (6).
- During assembly of the global stiffness matrix, the structure's tangent stiffness matrix and vector of nodal internal forces are determined (7), before the residual is computed (8) for convergence.
- Since \(\mathbf{B}_{d, e}(x)\) is only approximate (i.e. evaluated in terms of the estimate values of the nodal displacements at the structure level), then element stiffness matrices \(\overline{\mathbf{k}}_{e, n}^{k}\) (Eq. 6) and internal element nodal force vectors \(\overline{\mathrm{f}}_{e, n}^{\text {int,k}}\) (Eq. 5) are also approximate.
- The approximation of \(\mathbf{B}_{d, e}(x)\) leads to stiffer solution. Note that the curve labeled "Exact solution" is only exact within the assumptions of the section constitutive law and the kinematic approximations that deformations are small and plane sections remain plane.
- Solutions: a) finer mesh discretization of the structure especially, in frame regions that undergo highly nonlinear behaviors, such as the member ends.; b) use flexibility based elements.
- So far, assumed that a section is characterized by a moment curvature relation, i.e when the moment reaches the plastic/yield moment, the whole section plastifies.
- This is only an approximation, as in reality there is a gradual plastification starting from the outer fibers, and this plastification zone gradually spreads inward until the whole section ultimately becomes plastic.
- Note analogy with what we have previously seen in terms of sectional plasticity (Moment curvature vs stress-strain).
- To capture this gradual spread one can either resort to continuum 2D/3D solid (finite) elements, which is computationally expensive/inefficient, or use layered elements.
- Ultimately, our objective remains the derivation of \(\mathbf{k}_{s, e}^{\tan }(x)\) such that
\(\left\{\begin{array}{c}N(x) \\ M_{z}(x)\end{array}\right\}=\mathbf{k}_{s, e}^{\tan }(x)\left\{\begin{array}{c}\varepsilon(x) \\ \phi_{z}(x)\end{array}\right\}\)
- Ignoring transverse shear deformation (accounted for in the so-called Timoshenko beam), and thus assuming a linear strain distribution (Euler-Bernouilli beam), but a non linear stress-stain behavior, the stress distribution is \(\sigma_{t}(x)=\frac{N_{X}(x)}{A(x)} \pm \frac{M_{z}(x)}{I_{z}(x)} y\)
- At this point, from the nodal displacement, we can determine the section deformations (axial strain, \(\varepsilon(x)\) and curvature, \(\phi(x)\) ) (and thus the linear strain distribution), and since we have a nonlinear material, the exact location of the neutral axis is not yet known, and at each fiber elevation we do have a different \(E_{r}^{\text {tan }}(x) . r\) is the fiber subscript.

- We know \(\varepsilon\) and \(\Phi\), must determine \(N\) and \(M\)
- Primary Terms are those due to pure axial and flexure:
- Pure axial force due to \(\sigma(x)\) is simply determined from
\[
\begin{align*}
N_{x}(x) & =\int_{-y_{1}}^{y_{2}} \sigma(x) d A=\int_{-y_{1}}^{y_{2}} \underbrace{E_{r}^{t a n}(x) \cdot \varepsilon(x)}_{\sigma(x)} d A  \tag{7}\\
& \simeq \sum_{r} E_{r}^{\tan }(x) \cdot A_{r}(x) \cdot \varepsilon(x)
\end{align*}
\]
- Pure moment due to \(\sigma_{M}(x)\) is considered next, and again we seek an expression of \((M(x))\) in terms of the curvature and and \(E_{r}^{\text {tan }}(x)\), and recalling that \(I=\int y^{2} d A\) and \(\sigma_{M}(x)_{@_{r}}=E_{r}^{\text {tan }}(x) \cdot \phi_{z}(x) \cdot y_{r}\)
\[
\begin{align*}
M_{z}(x) & =\int_{-y_{1}}^{y_{2}} \sigma_{M}(x) \cdot y d A=\int_{-y_{1}}^{y_{2}} \underbrace{E_{r}^{\tan }(x) \cdot \underbrace{\phi_{z}(x) \cdot y}_{\varepsilon}}_{\sigma} \cdot y d A  \tag{8}\\
& =\phi_{z}(x) \int_{-y_{1}}^{y_{2}} E_{r}^{\tan }(x) \cdot y^{2} d A \\
& \simeq \sum_{r} E_{r}^{\tan }(x) \cdot A_{r}(x) \cdot y_{r}^{2} \cdot \phi_{z}(x)
\end{align*}
\]

\section*{Section Stiffness Matrix}
- Secondary Terms are due to coupling and will result in non-zero off diagonal terms in the stiffness matrix. Note that this cancels out in linear elastic analysis.
- Second axial force due to curvature as there is no reason why the nonlinear flexural stress distribution will necessarily yield a summation of forces equal to zero.
\[
\begin{aligned}
d N_{x}(x) & =-E_{r}^{\tan }(x) \cdot \varepsilon_{M}(x) d A=-E_{r}^{\tan }(x) \cdot \phi_{z}(x) \cdot y d A \\
N_{x}(x) & =-\int_{-y_{1}}^{y_{2}} E_{r}^{\tan }(x) \cdot \phi_{z}(x) \cdot y d A \\
& \simeq-\sum_{r} E_{r}^{\tan }(x) \cdot A_{r}(x) \cdot y_{r} \cdot \phi_{z}(x)
\end{aligned}
\]
where the strain \(\left(\varepsilon_{M}(x)\right)\) is obtained from the curvature \(\left(\phi_{z}(x)\right)\).
- Secondary moment due to axial strain as there is no reason why the location of the neutral axis is indeed correct resulting in a summation of moment equal to zero.
\[
\begin{aligned}
d M_{z}(x) & =-E_{r}^{\tan }(x) \cdot \varepsilon(x) \cdot y \cdot d A \\
M_{z}(x) & =-\int_{-y_{1}}^{y_{2}} E_{r}^{\tan }(x) \cdot \varepsilon(x) \cdot y d A \\
& \simeq-\sum_{r} E_{r}^{\tan }(x) \cdot A_{r}(x) \cdot y_{r} \cdot \varepsilon(x)
\end{aligned}
\]
- Summing up within a matrix, \(\mathbf{k}_{s, e}^{\mathrm{tan}}(x)\) takes the form:
\[
\underbrace{\left\{\begin{array}{c}
N  \tag{9}\\
M
\end{array}\right\}}_{\sigma_{S}}=\underbrace{\sum_{r}\left[\begin{array}{cc}
E_{r}^{\tan }(x) \cdot A_{r}(x) & -E_{r}^{\tan }(x) \cdot A_{r}(x) \cdot y_{r} \\
-E_{r}^{\tan }(x) \cdot A_{r}(x) \cdot y_{r} & E_{r}^{\tan }(x) \cdot A_{r}(x) \cdot y_{r}^{2}
\end{array}\right]}_{\mathbf{k}_{s}^{\tan , n}}\left\{\begin{array}{c}
\varepsilon(x) \\
\phi_{z}(x)
\end{array}\right\}
\]
- The implementation of this layer or fiber section will require an additional discretization of the cross section into layers or fibers

- Noting that layer/fiber stress-strain relations are typically expressed as explicit functions of strain, state determination is given by

- We note that this cross sectional definition allows us to easily specify longitudinal steel reinforcement. Shear reinforcement, on the other hand, can not be explicitly modeled, however, common practice is to assign modified properties to the confined concrete.
- Neutral Axis is implicitly determined.
(1) In input data, assume the neutral axis to be in the bottom layer (for ease of determining layer elevation \(y_{r}\) ).
(2) At the global level equilibrium will not be satisfied.
(3) Displacements will be adjusted
4. Indirectly strain distribution will be corrected by shifting the N.A.
(5) Faster convergence could be achieved if an intelligent guess is made for the location of the NA, and define all fibers with respect to that location.
(6) Alternatively, the program could immediately (first increment/iteration) determine the elastic neutral axis.

- Zero-length elements are needed for a) lumped plasticity models where plastic hinges form at the end of the element (They are more suitable for lateral loads than for vertical ones) and b) to capture bond slip.
- Element end deformations in the reinforced concrete are composed of two types:
- Flexural deformation that causes inelastic strains
- Element end rotation which may be caused be the slip of longitudinal reinforcement in reinforced concrete or plastic hinges in steel members.


(1) Constitutive law Section constitutive law is expressed as
\[
\underbrace{\left\{\begin{array}{c}
N_{x} \\
v_{y} \\
M_{z}
\end{array}\right\}}_{\boldsymbol{\sigma}_{s}}=\underbrace{\left[\begin{array}{ccc}
{[E A]^{\tan }} & 0 & 0 \\
0 & {[G A]^{\tan }} & 0 \\
0 & 0 & {\left[E I_{z}\right]^{\tan }}
\end{array}\right]}_{\mathbf{k}_{s}^{\text {tan }}} \underbrace{\left\{\begin{array}{l}
\bar{u}_{x 2}-\bar{u}_{x 1} \\
\bar{v}_{y 2}-\bar{v}_{y 1} \\
\bar{\theta}_{z 2}-\bar{\theta}_{z 1}
\end{array}\right\}}_{\varepsilon_{s}}
\]
where, \([E A]^{\tan },[G A]^{\tan }\) and \(\left[E I_{2}\right]^{\tan }\) are tangent stiffnesses associated with axial, shear and moment.
Note that the displaceemnets are the relative displacements between the two adjacent nodes.
(2) Equilibrium Composing equilibrium equations between point A and point B
\[
\bar{N}_{x 1}=[E A]^{\tan } \cdot\left(\bar{u}_{x 1}-\bar{u}_{x 2}\right) ; \bar{V}_{y 1}=[G A]^{\tan } \cdot\left(\bar{v}_{y 1}-\bar{v}_{y 2}\right) ; \bar{M}_{z 1}=\left[E I_{z}\right]^{\tan } \cdot\left(\bar{\theta}_{z 1}-\bar{\theta}_{z 2}\right)
\]

Likewise between point B and point C ,
\(\bar{N}_{x 2}=[E A]^{\tan } \cdot\left(\bar{u}_{x 2}-\bar{u}_{x 1}\right) ; \bar{V}_{y 2}=[G A]^{\tan } \cdot\left(\bar{v}_{y 2}-\bar{v}_{y 1}\right) ; \bar{M}_{z 2}=\left[E I_{z}\right]^{\tan } \cdot\left(\bar{\theta}_{z 2}-\bar{\theta}_{z 1}\right)\)
Rewriting in matrix form, the relationship between element nodal force and displacement vector is given by
\[
\underbrace{\left\{\begin{array}{l}
\bar{N}_{x 1} \\
\bar{V}_{y 1} \\
\bar{M}_{z 1} \\
\bar{N}_{x 2} \\
\bar{V}_{y 2} \\
\bar{M}_{z 2}
\end{array}\right\}}_{\overline{\mathbf{f}}_{e}}=\overline{\mathbf{k}}_{e}^{\tan }\left\{\begin{array}{c}
\bar{u}_{x 1} \\
\bar{v}_{y 1} \\
\bar{\theta}_{z 1} \\
\bar{u}_{x 2} \\
\bar{v}_{y 2} \\
\bar{\theta}_{z 2}
\end{array}\right\}
\]
where, \(\overline{\mathbf{k}}_{e}^{\text {tan }}\) is the element stiffness matrix in local reference.
\[
\overline{\mathbf{k}}_{e}^{\tan }=\left[\begin{array}{cccccc}
{[E A]^{\tan }} & 0 & 0 & -[E A]^{\tan } & 0 & 0 \\
0 & {[G A]^{\tan }} & 0 & 0 & -[G A]^{\tan } & 0 \\
0 & 0 & {\left[E I_{z}\right]^{\tan }} & 0 & 0 & -\left[E I_{z}\right]^{\tan } \\
-[E A]^{\tan } & 0 & 0 & {[E A]^{\tan }} & 0 & 0 \\
0 & -[G A]^{\tan } & 0 & 0 & {[G A]^{\tan }} & 0 \\
0 & 0 & -\left[E I_{z}\right]^{\tan } & 0 & 0 & {\left[E I_{z}\right]^{\tan }}
\end{array}\right]
\]

Note analogy with the simpler spring elements previously seen (Matrix analysis).

\section*{Coordinate system}

Coordinate system in zero-length 2D element is same as the one of the 2D stiffness element.

\[
\Gamma_{e}=\left[\begin{array}{c|cccccc} 
& N_{X 1} & V_{Y 1} & M_{z 1} & N_{X 2} & V_{Y 2} & M_{z 2} \\
\hline \bar{N}_{x 1} & \cos \alpha & \sin \alpha & 0 & 0 & 0 & 0 \\
\bar{V}_{y 1} & -\sin \alpha & \cos \alpha & 0 & 0 & 0 & 0 \\
\bar{M}_{z 1} & 0 & 0 & 1 & 0 & 0 & 0 \\
\bar{N}_{x 2} & 0 & 0 & 0 & \cos \alpha & \sin \alpha & 0 \\
\bar{V}_{y 2} & 0 & 0 & 0 & -\sin \alpha & \cos \alpha & 0 \\
\bar{M}_{z 2} & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\]

(1) Step 1: Determine the section deformation vector, axial deformation, shear deformation and curvature. For each deformation, we extract the associated components from \(\overline{\mathbf{d}}_{e, n}^{k}\).
\[
\begin{aligned}
\overline{\mathbf{d}}_{e, n}^{k} & =\left\lfloor\bar{u}_{x 1, e, n}^{k} \bar{v}_{y 1, e, n}^{k} \bar{\theta}_{z 1, e, n}^{k} \bar{u}_{x 2, e, n}^{k} \bar{v}_{y 2, e, n}^{k} \bar{\theta}_{z 2, e, n}^{k}\right\rfloor^{T} \\
\varepsilon_{s, e, n}^{k} & =\left\lfloor\varepsilon_{x, e, n}^{k} \gamma_{y, e, n}^{k} \phi_{z, e, n}^{k}\right\rfloor^{T} \\
\varepsilon_{x, e, n}^{k} & =\bar{u}_{x 2, e, n}^{k}-\bar{u}_{x 2, e, n}^{k} \\
\gamma_{y, e, n}^{k} & =\bar{v}_{y 2, e, n}^{k}-\bar{v}_{y 2, e, n}^{k} \\
\phi_{z, e, n}^{k} & =\bar{\theta}_{z 2, e, n}^{k}-\bar{\theta}_{z 2, e, n}^{k}
\end{aligned}
\]
which define axial section deformation, shear deformation, and curvature.
(2) Step 2: Determine the section tangent stiffness associated with axial force-deformation, shear force-deformation, and moment-curvature in the section constitutive laws.
If we assume that the section constitutive law is explicitly known, \(\mathbf{k}_{s, e, n}^{\tan , k}\) and \(\boldsymbol{\sigma}_{s, e, n}^{\text {int,k }}\) are determined from \(\varepsilon_{s, e, n}^{k}\).
In elastic section, we need not to compute \(\mathbf{k}_{s, e, n}^{\tan , k}\) again as it is identical to the initial section stiffness matrix \(\mathrm{k}_{s, e}\). For an elastic section,
\[
\begin{aligned}
\mathbf{k}_{s, e, n}^{\tan } & =\mathbf{k}_{s, e} \\
\underbrace{\left\{\begin{array}{c}
N_{x, e, n}^{i n t, k} \\
V_{y, e, n}^{\text {int,k}} \\
M_{z, e, n}^{i n t, k}
\end{array}\right\}}_{\boldsymbol{\sigma}_{s, e, n}^{\text {int,k}}} & =\mathbf{k}_{s, e, n}^{\tan } \underbrace{\left\{\begin{array}{c}
\varepsilon_{x, e, n}^{k} \\
\gamma_{y, e, n}^{k} \\
\phi_{z, e, n}^{k}
\end{array}\right\}}_{\varepsilon_{s, e, n}^{k}}
\end{aligned}
\]
where, \(\mathbf{k}_{s, e, n}^{\tan , k}\) is the section tangent stiffness matrix at \(k^{\text {th }}\) iteration.
(3) Step 3: Determine the internal element nodal force vector and the element tangent stiffness matrix
\[
\begin{aligned}
\overline{\mathbf{f}}_{e, n}^{i n t, k}= & \left\lfloor N_{x, e, n}^{i n t, k}, V_{y, e, n}^{i n t, k}, M_{z, e, n}^{i n t, k},-N_{x, e, n}^{i n t, k}-V_{y, e, n}^{i n t, k}-M_{z, e, n}^{i n t, k}\right\rfloor^{T} \\
\overline{\mathbf{k}}_{e}^{\tan , k}= & {\left[\begin{array}{cccccc}
E A_{e, n}^{\tan , k} & 0 & 0 & -E A_{e, n}^{\tan , k} & 0 & 0 \\
0 & G A_{e, n}^{\tan , k} & 0 & 0 & -G A_{e, n}^{\tan , k} & 0 \\
0 & 0 & E I_{z, e, n}^{\tan , k} & 0 & 0 & -E I_{z, e,(11)}^{\tan , k} \\
-E A_{e, n}^{\tan , k} & 0 & 0 & E A_{e, n}^{\tan , k} & 0 & 0 \\
0 & -G A_{e, n}^{\tan , k} & 0 & 0 & G A_{e, n}^{\tan , k} & 0 \\
0 & 0 & -E I_{z, e, n}^{\tan , k} & 0 & 0 & E I_{z, e, n}^{\tan , k}
\end{array}\right] }
\end{aligned}
\]
where, \(\overline{\mathbf{k}}_{e, n}^{\tan , k}\) is the element tangent stiffness matrix in local reference. In global, we determine \(\mathbf{F}_{e, h}^{i n t, k}\) and \(\mathbf{K}_{e, n}^{\tan , k}\).
\[
\begin{aligned}
\mathbf{F}_{e, n}^{i n t, k} & =\boldsymbol{\Gamma}_{e}^{T} \cdot \overline{\mathbf{f}}_{e, n}^{i n t, k} \\
\mathbf{K}_{e, n}^{t a n, k} & =\boldsymbol{\Gamma}_{e}^{T} \cdot \overline{\mathbf{k}}_{e, n}^{\tan , k} \cdot \boldsymbol{\Gamma}_{e}
\end{aligned}
\]

Zero-length section element is analogous to the zero length element, however, it uses layer/fiber. This element enables us to model the shift in center of section rotation which may occur (in bar-slip for example). The element is formulated on the basis of coupled axial force and moment; No shear forces.


Constitutive law Section constitutive law is expressed as
\[
\underbrace{\left\{\begin{array}{l}
N_{x} \\
M_{z}
\end{array}\right\}}_{\boldsymbol{\sigma}_{s}}=\underbrace{\left[\begin{array}{ll}
\mathrm{k}_{s, 11}^{\tan } & \mathrm{k}_{s, 12}^{\tan } \\
\mathrm{k}_{s, 21}^{\tan } & \mathrm{k}_{s, 22} \mathrm{atn}
\end{array}\right]}_{k_{s}^{\tan }} \cdot \underbrace{\left\{\begin{array}{c}
\bar{u}_{\times 2}-\bar{u}_{x 1} \\
\bar{z}_{z 2}-\bar{\theta}_{z 1}
\end{array}\right\}}_{\varepsilon_{s}}
\]
where, \(N\) and \(M\) are analogous to Eqs. 7, 8, and \(\mathbf{k}_{s}^{\text {tan }}\) is the section tangent stiffness matrix obtained from layer/fiber state determination, analogous to Eq. 9.
Equilibrium Zero-length section element is based on Bernoulli beam theory.
\[
\begin{aligned}
& \overline{\mathrm{M}}_{\mathrm{z2}}, \bar{\theta}_{\mathrm{z} 2}
\end{aligned}
\]

Composing equilibrium equations
\[
\begin{align*}
& \bar{N}_{x 1}=k_{s, 11}^{\tan } \cdot\left(\bar{u}_{x 1}-\bar{u}_{x 2}\right)+k_{s}^{\tan , 12} \cdot\left(\bar{\theta}_{z 1}-\bar{\theta}_{z 2}\right) \\
& \bar{M}_{z 1}=k_{s, 21}^{\tan } \cdot\left(\bar{u}_{x 1}-\bar{u}_{x 2}\right)+k_{s, 22}^{\tan } \cdot\left(\bar{\theta}_{z 1}-\bar{\theta}_{z 2}\right) \tag{12}
\end{align*}
\]

Likewise
\[
\begin{align*}
& \bar{N}_{x 2}=k_{s, 11}^{\tan } \cdot\left(\bar{u}_{x 2}-\bar{u}_{x 1}\right)+k_{s}^{\tan } \cdot\left(\bar{\theta}_{z 2}-\bar{\theta}_{z 1}\right) \\
& \bar{M}_{z 2}=k_{s, 21}^{\tan } \cdot\left(\bar{u}_{x 2}-\bar{u}_{x 1}\right)+k_{s, 22}^{\tan } \cdot\left(\bar{\theta}_{z 2}-\bar{\theta}_{z 1}\right) \tag{13}
\end{align*}
\]

Rewriting Eq. 12 and 13 to matrix form, the relationship between element nodal force and displacement vector is given by
\[
\underbrace{\left\{\begin{array}{c}
\bar{N}_{x 1} \\
0 \\
\bar{M}_{z 1} \\
\bar{N}_{x 2} \\
0 \\
\bar{M}_{z 2}
\end{array}\right\}}_{\bar{f}_{e}}=\overline{\mathbf{k}}_{e}^{\tan }\left\{\begin{array}{c}
\bar{u}_{x 1} \\
0 \\
\bar{\theta}_{z 1} \\
\bar{u}_{x 2} \\
0 \\
\bar{\theta}_{z 2}
\end{array}\right\},
\]
where, \(\overline{\mathbf{k}}_{e}^{\text {tan }}\) is the element stiffness matrix in local reference.
\[
\overline{\mathbf{k}}_{e}^{\tan }=\left[\begin{array}{cccccc}
\mathrm{k}_{s, 11}^{\tan } & 0 & \mathrm{k}_{s, 12}^{\tan } & -\mathrm{k}_{s, 11}^{\tan } & 0 & -\mathrm{k}_{s, 12}^{\tan }  \tag{14}\\
0 & 0 & 0 & 0 & 0 & 0 \\
\mathrm{k}_{s, 21}^{\tan } & 0 & \mathrm{k}_{s, 22}^{\tan } & -\mathrm{k}_{s, 21}^{\tan } & 0 & -\mathrm{k}_{s, 22}^{\tan } \\
-\mathrm{k}_{s, 11}^{\tan } & 0 & -\mathrm{k}_{s, 12}^{\tan } & \mathrm{k}_{s, 11}^{\tan } & 0 & \mathrm{k}_{s, 12}^{\tan } \\
0 & 0 & 0 & 0 & 0 & 0 \\
-\mathrm{k}_{s, 21}^{\tan } & 0 & -\mathrm{k}_{s, 22}^{\tan } & \mathrm{k}_{s, 21}^{\tan } & 0 & \mathrm{k}_{s, 22}^{\tan }
\end{array}\right]
\]

\section*{Coordinate system}

Coordinate system in zero-length 2D element is same as in 2D stiffness element.

\(\boldsymbol{\Gamma}_{e}=\left[\begin{array}{c|cccccc} & N_{X 1} & V_{Y 1} & M_{Z 1} & N_{X 2} & V_{Y 2} & M_{Z 2} \\ \hline \bar{N}_{x 1} & \cos \alpha & \sin \alpha & 0 & 0 & 0 & 0 \\ \bar{V}_{y 1} & -\sin \alpha & \cos \alpha & 0 & 0 & 0 & 0 \\ \bar{M}_{z 1} & 0 & 0 & 1 & 0 & 0 & 0 \\ \bar{N}_{x 2} & 0 & 0 & 0 & \cos \alpha & \sin \alpha & 0 \\ \bar{V}_{y 2} & 0 & 0 & 0 & -\sin \alpha & \cos \alpha & 0 \\ \bar{M}_{z 2} & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\)


Step 1: Determine the section deformation vector, axial deformation and curvature. For each deformation, we extracts the associated components from \(\overline{\mathbf{d}}_{e, n}^{k}\).
\[
\begin{aligned}
\overline{\mathbf{d}}_{e, n}^{k} & =\left\lfloor\bar{u}_{x 1, e, n}^{k} 0 \bar{\theta}_{z 1, e, n}^{k} \bar{u}_{x 2, e, n}^{k} 0 \bar{\theta}_{z 2, e, n}^{k}\right\rfloor^{T} \\
\varepsilon_{s, e, n}^{k} & =\left\lfloor\varepsilon_{x, e, n}^{k} \phi_{z, e, n}^{k}\right\rfloor^{T} \\
\varepsilon_{x, e, n}^{k} & =\bar{u}_{x 2, e, n}^{k}-\bar{u}_{x 2, e, n}^{k} \\
\phi_{z, e, n}^{k} & =\bar{\theta}_{z 2, e, n}^{k}-\bar{\theta}_{z 2, e, n}^{k}
\end{aligned}
\]

Step 2: Determine the section tangent stiffness associated with axial force-deformation and moment-curvature using layer/fiber state determination as in for Layr/fiber. Determine next the internal section force vector. If we assume that the material
constitutive law is explicitly known, \(\mathbf{k}_{s, e, n}^{\tan , k}\) and \(\boldsymbol{\sigma}_{s, e, n}^{i n t, k}\) are determined from \(\varepsilon_{s, e, n}^{k}\). However, in the section with elastic material, we need not to compute \(\mathbf{k}_{s, e, n}^{\tan _{n}, k}\) again as it is identical to the initial section stiffness matrix \(\mathbf{k}_{s, e}\). If we have a section with elastic material, then
\[
\begin{aligned}
\mathbf{k}_{s, e, n}^{\tan } & =\mathbf{k}_{s, e} \\
\underbrace{\left\{\begin{array}{l}
N_{x, e, n}^{i n t, k} \\
M_{z, e, n}^{i n t, k}
\end{array}\right\}}_{\mathbf{\sigma}_{s, e, n}^{i n t}, k} & =\mathbf{k}_{s, e, n}^{\tan } \underbrace{\left\{\begin{array}{c}
\varepsilon_{x, e, n}^{k} \\
\phi_{z, e, n}^{k}
\end{array}\right\}}_{\varepsilon_{s, e, n}^{k}}
\end{aligned}
\]
where, \(\mathbf{k}_{s, e, n}^{\tan , k}\) is the section tangent stiffness matrix at \(k^{\text {th }}\) iteration.

Step 3: Determine the internal element nodal force vector and the element tangent stiffness matrix
\[
\begin{aligned}
& \overline{\mathbf{f}}_{e, n}^{i n t, k}=\left\lfloor N_{x, e, n}^{i n t, k}, 0, M_{z, e, n}^{i n t, k},-N_{x, e, n}^{i n t, k}, 0,-M_{z, e, n}^{i n t, k}\right\rfloor^{T}
\end{aligned}
\]
where, \(\overline{\mathbf{k}}_{e, n}^{\text {tan,k}}\) is the element tangent stiffness matrix in local reference. We determine \(\mathbf{F}_{e, h}^{\text {int,k }}\) and \(\mathbf{K}_{e, h}^{\mathrm{tan}, k}\).
\[
\begin{aligned}
\mathbf{F}_{e, n}^{i n t, k} & =\boldsymbol{\Gamma}_{e}{ }^{\top} \cdot \overline{\mathbf{f}}_{e, n}^{i n t, k} \\
\mathbf{K}_{e, n}^{t a n, k} & =\boldsymbol{\Gamma}_{e}{ }^{\top} \cdot \overline{\mathbf{k}}_{e, n}^{t a n, k} \cdot \boldsymbol{\Gamma}_{e}
\end{aligned}
\]
- Flexibility based elements
- Are nonconformist finite elements since they yield the element flexibility matrix rather than the classical stiffness matrix.
- Are based on the equations of equilibrium rather than on assumed displacement field, while at the global level formulation is displacement based.
- Offer some important advantages over stiffness based elements: fewer elements are needed (albeit at the cost of a more complex formulation); stiffness-based method formulations are approximate and flexibility-based method formulations are exact such as a section varying along the element and elements with material nonlinearity.
- We derive the element flexibility matrix \(\tilde{\mathbf{c}}_{e}\) without rigid body modes and then invert it to obtain the corresponding element stiffness matrix \(\tilde{\mathbf{k}}_{e}\) (again without rigid body modes). The retained degrees of freedom are the axial force at node 2 , and the two end moments.
- There are two distinct formulations: a) with element iterations, and b) without element iterations. We will focus on the former.
- Whereas we have used the principle of virtual work (displacement) for the derivation of the stiffness based element, we shall now use the principle of complementary virtual work (force) through the usual three steps.

(a) Positive section axial force

(b) Positive section moment
- Equilibrium will now be strongly enforced (whereas it was satisfied in the weak sense previously) and we seek to derive the force shape functions:
- For uniformly distributed axial forces, we have \(d N_{x}(x)=w_{x}^{(e)} d x\) or \(\frac{d N_{x}(x)}{d x}=w_{x}^{(e)}(x)\)
- For uniformly distributed transverse forces \(\frac{d V_{y}(x)}{d x}=w_{y}^{(e)}(x)\) ) and
\[
\frac{\mathrm{d}^{2} M}{d x^{2}}=w(x)
\]
- Equilibrium can be expressed as
\[
\underbrace{\mathbf{w}_{e}(x)}_{\text {External }}+\underbrace{\mathcal{L}_{f} \cdot \boldsymbol{\sigma}_{s}(x)}_{\text {Internal }}=\mathbf{0} ;\left\{\begin{array}{l}
w_{x}^{(e)}(x) \\
w_{y}^{(e)}(x)
\end{array}\right\}+\left[\begin{array}{cc}
\frac{\mathrm{d}}{\mathrm{~d} x} & 0 \\
0 & \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}
\end{array}\right]\left\{\begin{array}{l}
N_{x}(x) \\
M_{z}(x)
\end{array}\right\}=\mathbf{0}
\]
\(\mathbf{w}_{e}(x)\) is the external element traction vector, \(\mathcal{L}_{f}\) is the force differential operator which enforces equilibrium. (Note in stiffness formulation, the compatibility was "strongly" enforced).
- We will write equilibrium of sectional stresses in terms of the nodal forces, and assume that there are no external element traction.
- Whereas we previously used displacement interpolation functions, we now need force interpolation functions, \(\mathbf{N}_{f}(x)\) in order to exactly satisfy equilibrium along the element
\[
\left[\begin{array}{cc}
\frac{\mathrm{d}}{\mathrm{~d} x} & 0 \\
0 & \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}
\end{array}\right]\left\{\begin{array}{l}
N_{x}(x) \\
M_{z}(x)
\end{array}\right\}=0
\]
- Integrating these equations, we obtain \(N_{x}(x)=c_{3}\) and \(M_{z}(x)=c_{1} x+c_{2}\).
- We now seek to determine the shape functions that relate section internal forces at any point \(x\) to the nodal forces. We enforce natural boundary condition
\[
\begin{aligned}
N_{x}(L) & =\tilde{N}_{x 2} ; & M_{z}(0) & =-\tilde{M}_{z 1} ; & M_{z}(L) & =\tilde{M}_{z 2} \\
\Rightarrow c_{1} & =\frac{\tilde{M}_{z 1}+\tilde{M}_{z 2}}{L_{e}} ; & c_{2} & =-\tilde{M}_{z 1} ; & c_{3} & =\tilde{N}_{x 2}
\end{aligned}
\]
- Substituting, we have the internal axial force and moment at any point ( \(x\) ) in terms of the nodal forces.
\[
\underbrace{\left\{\begin{array}{l}
N_{x}(x) \\
M_{z}(x)
\end{array}\right\}}_{\sigma_{s}(x)}=\underbrace{\left[\begin{array}{ccc}
0 & 0 & 1 \\
\frac{x}{L_{e}}-1 & \frac{x}{L_{e}} & 0
\end{array}\right]}_{\mathbf{N}_{f}(x)} \underbrace{\left\{\begin{array}{c}
\tilde{M}_{z 1} \\
\tilde{M}_{z 2} \\
\tilde{N}_{x 2}
\end{array}\right\}}_{\tilde{f}_{e}}
\]
where, \(\tilde{f}_{e}\) is the element nodal force vector without rigid body modes.
- It should be noted that these shape functions enforce equilibrium at any section along the element
- Constitutive law: Previously expressed section forces in terms of section deformations, we now need to express section deformations in terms of section forces: \(\varepsilon_{s}(x)=\mathbf{c}_{s}(x) \cdot \sigma_{s}(x)\) where, \(\mathbf{c}_{s}(x)\) is the section flexibility matrix. If \(\mathbf{c}_{s}(x)\) is not derived from fiber section, then for linear elastic analysis \(\mathbf{c}_{\boldsymbol{s}}(x)\) is simply.
\[
\mathbf{c}_{s}(x)=\left[\begin{array}{cc}
\frac{1}{E(x) \cdot A(x)} & 0 \\
0 & \frac{1}{E(x) \cdot I_{z}(x)}
\end{array}\right]
\]
- Compatibility of displacements: enforced only in a weak form through the principle of complementary virtual work (as opposed to the principle of virtual work for the stiffness-based method).
\[
\underbrace{\delta \tilde{\mathbf{f}}_{e}{ }^{\top} \tilde{\mathbf{d}}_{e}}_{\text {External }}=\underbrace{\int_{0}^{L_{e}} \delta \boldsymbol{\sigma}_{s}(x)^{T} \cdot \boldsymbol{\varepsilon}_{s}(x) \mathrm{d} x}_{\text {Internal }}
\]
where \(\tilde{\mathbf{d}}_{e}\) is the element nodal displacement vector without rigid body modes.
- Substituting
\[
\begin{aligned}
\delta \tilde{\mathbf{f}}_{e} \tilde{\mathbf{d}}_{e} & =\int_{0}^{L_{e}} \delta \tilde{\mathbf{f}}_{e}^{T} \cdot \mathbf{N}_{f}(x)^{T} \cdot \mathbf{c}_{s}(x) \cdot \sigma_{s}(x) \mathrm{d} x \\
\tilde{\mathrm{~d}}_{e} & =\int_{0}^{L_{e}} \mathbf{N}_{f}(x)^{T} \cdot \mathbf{c}_{s}(x) \cdot \sigma_{s}(x) \mathrm{d} x=\underbrace{\int_{0}^{L_{e}} \mathbf{N}_{f}(x)^{T} \cdot \mathbf{c}_{s}(x) \cdot \mathbf{N}_{f}(x) \mathrm{d} x}_{\tilde{c}_{e}} \cdot \tilde{f}_{e}
\end{aligned}
\]
or
\[
\tilde{\mathbf{d}}_{e}=\tilde{\mathbf{c}}_{e} \cdot \tilde{\mathbf{f}}_{e}
\]
- The element flexibility matrix without rigid body modes in local reference is thus given by
\[
\tilde{\mathbf{c}}_{e}=\int_{0}^{L_{e}} \mathbf{N}_{f}(x)^{T} \cdot \mathbf{c}_{s}(x) \cdot \mathbf{N}_{f}(x) \mathrm{d} x
\]
- The corresponding element stiffness matrix without rigid body modes in local reference is simply
\[
\tilde{\mathbf{k}}_{e}=\left[\tilde{\mathbf{c}}_{e}\right]^{-1}
\]

Note this is a \(3 \times 3\) matrix, we still have to insert equilibrium relations and transform it into the usual \(6 \times 6\) stiffness matrix

\section*{Coordinate system}

- Contrarily to the reference system of the stiffness-based method, we need to consider forces and displacements in local reference with and without rigid body modes.
- Element nodal force vector without rigid body modes in local reference are (arbitrarily) selected as \(\tilde{\mathrm{f}}_{e}=\left\lfloor\tilde{M}_{z 1}, \tilde{M}_{z 2}, \tilde{N}_{x 2}\right\rfloor^{\top}\), and the corresponding element nodal displacement vector without rigid body modes in local reference are given by \(\tilde{\mathrm{d}}_{e}=\left\lfloor\tilde{\theta}_{z 1}, \tilde{\theta}_{z 2}, \tilde{u}_{x 2}\right\rfloor^{\top}\)
- The relationship between rigid body modes and no rigid body modes is obtained through equilibrium
\[
\underbrace{\left\{\begin{array}{c}
\bar{N}_{x 1} \\
\bar{V}_{y 1} \\
\bar{M}_{z_{1}} \\
\bar{N}_{x 2} \\
\bar{V}_{y 2} \\
\bar{M}_{z 2}
\end{array}\right\}}_{\tilde{\mathbf{f}}_{e}}=\underbrace{\left[\begin{array}{ccc}
0 & 0 & -1 \\
\frac{1}{L_{e}} & \frac{1}{L_{e}} & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
-\frac{1}{L_{e}} & -\frac{1}{L_{e}} & 0 \\
0 & 1 & 0
\end{array}\right]}_{\tilde{\Gamma}_{e}^{T}} \underbrace{\left\{\begin{array}{c}
\tilde{M}_{z 1} \\
\tilde{M}_{z 2} \\
\tilde{N}_{x 2}
\end{array}\right\}}_{\tilde{\mathrm{f}}_{e}}
\]
- Substituting, \(\overline{\mathbf{f}}_{e}=\tilde{\Gamma}_{e}^{T} \cdot \tilde{\mathbf{f}}_{e} ; \overline{\mathbf{d}}_{e}=\tilde{\boldsymbol{\Gamma}}_{e}^{T} \cdot \tilde{\mathbf{d}}_{e} ;\) or
\[
\mathbf{K}_{e}=\tilde{\Gamma}_{e}^{T} \cdot \tilde{\mathbf{k}}_{e} \cdot \tilde{\Gamma}_{e}
\]
- Note that whereas previously \(\Gamma_{e}\) denoted a geometric transformation matrix (for stiffness based elements), it now corresponds to a statics matrix (also denoted as \(\mathcal{B}\) previously).
- Derivation of the stiffness matrix from the flexibility one and the equations of equilibrium parallels the one earlier derived
\[
[\mathbf{K}]=\left[\begin{array}{c|c}
{[\mathbf{d}]^{-1}} & {[\mathbf{d}]^{-1}[\mathcal{B}]^{T}} \\
\hline[\mathcal{B}][\mathbf{d}]^{-1} & {[\mathcal{B}][\mathbf{d}]^{-1}[\mathcal{B}]^{T}}
\end{array}\right]
\]
- The flexibility-based element (derived from the complementary principle of virtual work) does not have shape functions that relate deformation field inside the element with element nodal displacement vector, but shape functions which relate section forces to nodal forces.
- The global formulation is based on the stiffness (displacement) formulation, the element is based on a flexibility (force) formulation; the two will have to be reconciled (in the determination of the internal element force vectors).
- At the element level, the flexibility based element will provide nodal displacements which are not necessarily compatible with the ones coming from adjacent elements just as in the stiffness based formulation, forces were not compatible at the element level.
- We must ensure nodal displacement compatibility (in the same way as we ensured nodal equilibrium in the stiffness based formulation. Accomplished iteratively.
- Note that in the stiffness based method, there was a discontinuity in nodal forces.
- There are two algorithms for the mixed stiffness-based and flexibility-based methods: (a) with Newton-Raphson iteration in the element level to determine element state (Spacone), (b) without iteration in the element level to determine element state (Carol).

\(\mathcal{A}_{4, e}\) and \(\mathcal{A}_{4, e}{ }^{7}\) are the displacement extracting operator and the force assembling operator.

\section*{Flexibility Based Elements}

\section*{Picture"}


\section*{Flexibility Based Elements}


(a) Element state determination (3a) (5)

(b) Section state determination

\section*{Flexibility Based Elements}

\(4, e\) and \(\mathcal{A}_{0,{ }^{T}}\) are the displacement extracting operator and the force assembling operator.

(a) Structure level at force step \(n+1\) with Newton-Raphson iterations

b) Element level in local reference


Compare with Stiffness based formulation
- In the flexibility based element we can not go directly from nodal displacements to section strains (as was the case in the stiffness based element), this is accomplished
(1) Determine the element nodal force vector \(\tilde{f}_{e, h}^{k, j}(\) (6) from the current element nodal displacement vector using the element tangent stiffness matrix \(\tilde{\mathbf{k}}_{e, n}^{\mathrm{tan}, k, j-1}\) (3) of the previous iteration.
(2) Through the force interpolation functions \(\mathbf{N}_{f, e}(x)\) determine the section force vectors \(\boldsymbol{\sigma}_{s, e, n}^{k, j}(x)\) along the element.
(3) Determine the section strains by multiplying the constitutive model times the section forces.
- When we recompute the displacements corresponding to the strains.
- Compatibility of displacements at the structural level will not be satisfied.
- Thus we have an additional loop at the element level to reconcile structure based displacement and element based (through the flexibility matrix) ones, or compatibility of displacement.
- There are two complications in this procedure.
(1) The determination of the section deformation vectors \(\varepsilon_{s, e, n}^{k, j}(x)\) from section force vectors since the nonlinear section force-deformation relation is commonly expressed as an explicit function of section deformation vector (4).
(2) Changes in the section tangent stiffness matrices \(\mathbf{k}_{s, e, n}^{\tan }(x)\) produce a new element tangent stiffness matrix which, in turn, changes the element nodal force vector for the given element nodal displacement vector (6).
- The problem is solved through a nonlinear approach which first determines residual element nodal displacement vector \(\tilde{\mathbf{d}}_{e, n}^{R, k, j}\) at each iteration. Then, compatibility of displacement at the structural level requires that this residual element nodal displacement vector be corrected.
- At the element level by applying corrective element nodal force vector based on the current element tangent stiffness matrix. The corresponding section force vectors are then determined from the force interpolation functions so that equilibrium will always be satisfied along the element. Section force vectors will not change during the section state determination in order to maintain equilibrium along the element.
- Linear approximation of section force-deformation relation about the present state results in residual section deformation vectors \(\sigma_{s, e, h}^{R, k, j}(x)\). These are then integrated along the element to obtain new residual element nodal displacement vector (5) and the whole process is repeated until convergence occurs.
- Compatibility of element nodal displacement vector and equilibrium along the element are always satisfied.

\section*{Flexibility Based Elements}

\section*{State Determination; Details}
- The goal of the Newton-Raphson iteration loop in the element level is to determine the internal element nodal force vector (6) for the current element nodal displacement vector at the \(k^{\text {th }}\) Newton-Raphson iteration, hence \(\tilde{\mathbf{d}}_{e, n}^{k}=\tilde{\mathbf{d}}_{e, n}^{k-1}+\delta \tilde{\mathbf{d}}_{e, n}^{k}\)
(1) The initial state of the element, represented by the point \(\mathbf{A}\), and \(j=0\) and \(k=0\) corresponds to the state at the end of the last convergence in structural level. With the initial element tangent flexibility matrix given by \(\tilde{\mathbf{c}}_{e, n}^{\tan , k=1, j=0}=\tilde{\mathbf{c}}_{e, n-1}^{\tan }\) and the given incremental element nodal displacement vector \(\delta \tilde{\mathbf{d}}_{e, n}^{k=1, j=1}=\delta \tilde{\mathbf{d}}_{e, n}^{k=1}\) hence, the corresponding incremental element nodal force vector is
\(\delta \tilde{f}_{e, n}^{k=1, j=1}=\left[\tilde{\mathbf{c}}_{e, n}^{\tan , k=1, j=0}\right]^{-1} \cdot \delta \tilde{\mathbf{d}}_{e, n}^{k=1, j=1}=\tilde{\mathbf{k}}_{e, n}^{\tan , k=1, j=0} \cdot \delta \tilde{\mathbf{d}}_{e, n}^{k=1, j=1}\)
(2) The incremental section force vectors can now be determined from the force interpolation functions \(\delta \boldsymbol{\sigma}_{s, e, n}^{k=1, j=1}(x)=\mathbf{N}_{f, e}(x) \cdot \delta \tilde{\mathbf{f}}_{e, n}^{k=1, j=1}\) With the section tangent flexibility matrices at end of the last convergence in structural level given by \(\mathbf{c}_{s, e, n}^{\tan , k=1, j=0}(x)=\mathbf{c}_{s, e, n-1}^{\tan }(x)\)
(3) The linearization of the section force-deformation relation yields the incremental section deformation vectors. \(\delta \varepsilon_{s, e, n}^{k=1, j=1}(x)=\mathbf{c}_{s, e, n}^{\tan , k=1, j=0}(x) \cdot \delta \boldsymbol{\sigma}_{s, e, n}^{k=1, j=1}(x)\)
(4) The section deformation vectors are updated to the state that corresponds to point \(\mathbf{B}\) and the updated section deformation vector (4) will be given by \(\varepsilon_{s, e, n}^{k=1, j=1}(x)=\varepsilon_{s, e, n}^{k=1, j=0}(x)+\delta \varepsilon_{s, e, n}^{k=1, j=1}(x)\) For the sake of simplicity we will assume that the section force-deformation relation is explicitly known, then the section deformation vectors \(\varepsilon_{s, e, n}^{k=1, j=1}(x)\) will correspond to internal section force vectors \(\boldsymbol{\sigma}_{s, e, n}^{i n t, k=1, j=1}(x)\) and updated section tangent flexibility matrices \(\mathbf{c}_{s, e, n}^{\tan , k=1, j=1}(x)\) can be defined.
(5) The residual section force vectors are then determined \(\boldsymbol{\sigma}_{s, e, n}^{R, k=1, j=1}(x)=\boldsymbol{\sigma}_{s, e, n}^{k=1, j=1}(x)-\boldsymbol{\sigma}_{s, e, n}^{i n t, k=1, j=1}(x)\) and are transformed into residual section deformation vectors \(\boldsymbol{\varepsilon}_{s, e, n}^{R, k=1, j=1}(x)\)
\[
\varepsilon_{s, e, n}^{R, k=1, j=1}(x)=\mathbf{c}_{s, e, n}^{\tan , k=1, j=1}(x) \cdot \sigma_{s, e, n}^{R, k=1, j=1}(x)
\]

6 The residual section deformation vectors are thus the linear approximation of the deformation error made in the linearization of the section force-deformation relation. While any suitable section flexibility matrix can be used to calculate the residual section deformation vector, the section tangent flexibility matrices offer the fastest convergence rate.
(7) The residual section deformation vectors are integrated along the element using the complimentary principle of virtual work to obtain the residual element nodal displacement vector (5), \(\tilde{\mathbf{d}}_{e, n}^{R, k=1, j=1}=\int_{0}^{L_{e}} \mathbf{N}_{f, e}(x)^{T} \cdot \varepsilon_{s, e, n}^{R, k=1, j=1}(x) \mathrm{d} x\)

\section*{State Determination; Details}
(8) At this stage the first iteration \((j=1)\) is completed. The final element and section states for \(j=1\) correspond to point B. The residual section deformation vectors \(\varepsilon_{s, e, n}^{R, k=1, j=1}(x)\) and the residual element nodal displacement vector \(\tilde{\mathbf{d}}_{e, n}^{R, k=1, j=1}\) were determined in the first iteration, but the corresponding element nodal displacement vector have not yet been updated. Instead, they constitute the starting point of the remaining steps within iteration loop \(j\).
(9) The presence of residual element nodal displacement vector \(\tilde{\mathbf{d}}_{e, n}^{R, k=1, j=1}\) will violate compatibility, since elements sharing a common node would now have different element nodal displacement vector. In order to restore the inter-element compatibility, corrective force vector \(\delta \tilde{\mathbf{f}}_{e, n}^{k=1, j=2}\) must be applied at the ends of the element as follows
\[
\delta \tilde{\mathbf{f}}_{e, n}^{k=1, j=2}=-\left[\tilde{\mathbf{c}}_{e, n}^{k=1, j=1}\right]^{-1} \cdot \tilde{\mathbf{d}}_{e, n}^{R, k=1, j=1} ; \tilde{\mathbf{c}}_{e, n}^{k=1, j=1}=\int_{0}^{L_{e}} \mathbf{N}_{f, e}(x)^{T} \cdot \mathbf{c}_{s, e, n}^{\tan , k=1, j=1}(x) \cdot \mathbf{N}_{f, e}(x) \mathrm{d}
\]
(10) Thus, in the second iteration \((j=2)\), the element nodal force vector (6) is updated as \(\tilde{\mathbf{f}}_{e, n}^{k=1, j=2}=\tilde{\mathbf{f}}_{e, n}^{k=1, j=1}+\delta \tilde{\mathbf{f}}_{e, n}^{k=1, j=2}\) and the section force and deformation vectors are also updated to
\[
\begin{aligned}
\delta \boldsymbol{\sigma}_{s, e, n}^{k=1, j=2}(x) & =\mathbf{N}_{f, e}(x) \cdot \delta \tilde{\mathbf{f}}_{e, n}^{k=1, j=2} \\
\boldsymbol{\sigma}_{s, e, n}^{k=1, j=2}(x) & =\boldsymbol{\sigma}_{s, e, n}^{k=1, j=1}(x)+\delta \boldsymbol{\sigma}_{s, e, n}^{k=1, j=2}(x) \\
\delta \varepsilon_{s=e, n}^{k=1, j=2}(x) & =\boldsymbol{\varepsilon}_{s, e, n}^{R, k=1, j=1}(x)+\mathbf{c}_{s, e, n}^{t a n, n}=1, j=1 \\
\varepsilon_{s, e, n}^{k=1, j=2}(x) \cdot \delta \boldsymbol{\sigma}_{s, e, n}^{k=1, j=2}(x) & =\boldsymbol{\varepsilon}_{s, e, n}^{k=1, j=1}(x)+\delta \varepsilon_{s, e, n}^{k=1, j=2}(x)
\end{aligned}
\]
(11) The state of the element and sections within the element at the end of the second iteration \(j=2\) corresponds to point \(\mathbf{C}\).
- It should be noted that the updated tangent flexibility matrices \(\mathbf{c}_{s, e, n}^{\tan , k=1, j=2}(x)\) and residual section deformation vectors \(\varepsilon_{s, e, n}^{R, k=1, j=2}(x)\) are computed for all sections.
- Residual section deformation vectors are then integrated to obtain the residual element nodal deformation vector \(\tilde{\mathbf{d}}_{e}^{R, n}, n, j=2\) and the new element tangent flexibility matrix \(\tilde{\mathbf{c}}_{e, n}^{k=1, j=2}\) is determined by integration of the section flexibility matrices \(\mathbf{c}_{s, e, n}^{\tan , k=1, j=2}(x)\). This completes the second iteration within loop \(j\).
- When incremental element nodal displacement vector \(\delta \tilde{\mathbf{d}}_{e, n}^{k, j=1}=\delta \tilde{\mathbf{d}}_{e, n}^{k}\) is added to the element nodal displacement vector \(\tilde{\mathbf{d}}_{e, n}^{k-1}\) at the end of the previous Newton-Raphson iteration, it is important to make sure that the element nodal displacement vector \(\tilde{\mathbf{d}}_{e, n}^{k}\) do not change except in the first iteration \(j=1\) during iteration loop \(j\)
- Equilibrium along the element is always strictly satisfied since section force vectors (4) are derived from element nodal force vector by the force interpolation functions.
\[
\boldsymbol{\sigma}_{s, e, n}^{k}(x)=\mathbf{N}_{f, e}(x) \cdot \tilde{\mathbf{f}}_{e, n}^{k} \quad \text { and } \quad \delta \boldsymbol{\sigma}_{s, e, n}^{k}(x)=\mathbf{N}_{f, e}(x) \cdot \delta \tilde{\mathbf{f}}_{e, n}^{k}
\]
- Compatibility is also satisfied, not only at the element ends, but also along the element.
\[
\begin{aligned}
\delta \tilde{\mathbf{f}}_{e, n}^{k, j} & =-\left[\tilde{\mathbf{c}}_{e, n}^{k, j-1}\right]^{-1} \cdot \tilde{\mathbf{d}}_{e, n}^{R, k, j-1} \\
\delta \boldsymbol{\sigma}_{s, e, n}^{k, j}(x) & =\mathbf{N}_{f, e}(x) \cdot \delta \tilde{\mathbf{f}}_{e, n}^{k, j} \\
\delta \varepsilon_{s, e, n}^{k, j}(x) & =\boldsymbol{\varepsilon}_{s, e, n}^{R, k, j-1}(x)+\mathbf{c}_{s, e, n}^{t a n, k, j-1}(x) \cdot \delta \boldsymbol{\sigma}_{s, e, n}^{k, j}(x)
\end{aligned}
\]
- The second term expresses the relation between section deformation vectors and element nodal displacement vector. However, it should be noted that residual section deformation vectors \(\varepsilon_{s, e, n}^{R, k, j-1}(x)\) do not strictly satisfy this compatibility condition. This requirement can only be satisfied by integrating the residual section deformation vectors \(\varepsilon_{s, e, \eta}^{R, k, j-1}(x)\) to obtain \(\tilde{\mathbf{d}}_{e, n}^{R, k, j-1}\). Since this is rather inefficient from a computational standpoint, the small compatibility error in the calculation of residual section deformation vectors \(\varepsilon_{s, e, h}^{R, k, j-1}(x)\) will be neglected.
- While equilibrium and compatibility are satisfied along the element during each iteration of loop \(j\), the section force-deformation relation and the element force-deformation relation is only satisfied within a specified tolerance when convergence is achieved.

\title{
Non Linear Structural Analysis
}

Element Formulations; Condensed Version

\author{
Victor E. Saouma \\ saouma@colorado.edu \\ University of Colorado, Boulder
}

Spring 2019

\section*{Table of Contents I}
(1) Beam-Column; Stiffness Based
- Stiffness Matrix
- Coordinate system
- State Determination
- "Hidden" Error
(2) Layer/Fiber Section
- Layer/Fiber Sections; Introduction
- Section Stiffness Matrix
- State Determination
(3) Zero-Length 2D Element
- Introduction
- Stiffness Matrix
- Coordinate system
- Element state determination
4. Zero-Length Section Element
- Introduction

\section*{Table of Contents II}
- Stiffness Matrix
- Coordinate system
- Element state determination

\section*{(5) Flexibility Based Elements}
- Introduction
- Stiffness Matrix
- Coordinate system
- State determination; Introduction
- State Determination; No Iterations
- State Determination; Iterations; The "Big Picture"
- State Determination; Details
(1) Compatibility of
- Displacement Section displacements:
\[
\mathbf{d}_{s}(x)=\left\{\begin{array}{l}
u(x) \\
v(x)
\end{array}\right\}=\mathbf{N}_{d}(x) \cdot \underbrace{\left\lfloor\bar{u}_{x 1}, \quad \bar{v}_{y 1}, \quad \bar{\theta}_{z 1}, \quad \bar{u}_{x 2}, \quad \bar{v}_{y 2}, \quad \bar{\theta}_{z 2}\right\rfloor^{T}}_{\overline{\mathbf{d}}_{e}}
\]
- Deformation
\[
\varepsilon_{s}(x)=\left\{\begin{array}{l}
\varepsilon_{x}(x) \\
\phi_{z}(x)
\end{array}\right\}=\mathbf{B}_{d}(x) \cdot \overline{\mathbf{d}}_{e}
\]
(2) Constitutive law axial strain and curvature to axial force and moment
\[
\underbrace{\left\{\begin{array}{l}
N_{x}(x) \\
M_{z}(x)
\end{array}\right\}}_{\sigma_{s}(x)}=\mathbf{k}_{s}(x) \varepsilon_{s}(x)
\]
where \(\sigma_{s}(x)\) is the section force vector, and \(\mathbf{k}_{s}(x)\) is the section stiffness matrix. If \(\mathbf{k}_{s}(x)\) is not derived from layer/fiber discretization of the cross section, and for linear elastic case \(\mathrm{k}_{s}(x)\) is simply equal to
\[
\mathbf{k}_{s}(x)=\left[\begin{array}{cc}
E(x) \cdot A(x) & 0 \\
0 & E(x) \cdot I_{z}(x)
\end{array}\right]
\]
where, \(E(x), A(x)\), and \(I_{z}(x)\) are elastic modulus, cross sectional area, and section moment of inertia.
(3) Equilibrium will be satisfied only in the weak sense through the principle of virtual displacement expressed as
\[
\underbrace{\delta \overline{\mathbf{d}}_{e}^{T} \cdot \overline{\mathbf{f}}_{e}}_{\text {External }}=\underbrace{\int_{0}^{L_{e}} \delta \boldsymbol{\varepsilon}_{s}(x)^{T} \cdot \boldsymbol{\sigma}_{s}(x) \mathrm{d} x}_{\text {Internal }}
\]

Substituting:
\[
\overline{\mathbf{k}}_{e}=\int_{0}^{L_{e}} \mathbf{B}_{d}(x)^{T} \cdot \mathbf{k}_{s}(x) \cdot \mathbf{B}_{d}(x) \mathrm{d} x
\]

\section*{Coordinate system}


Element nodal forces and displacements are expressed with respect to the global reference
\[
\begin{aligned}
& \mathbf{F}_{e}=\left\lfloor N_{X 1}, V_{Y 1}, M_{Z 1}, N_{X 2}, V_{Y 2}, M_{Z 2}\right\rfloor^{T} \\
& \boldsymbol{\delta}_{e}=\left\lfloor u_{X 1}, v_{Y 1}, \theta_{Z 1}, u_{X 2}, v_{Y 2}, \theta_{Z 2}\right\rfloor^{T}
\end{aligned}
\]
- Rotation matrix which transforms from global reference
\[
\overline{\mathbf{f}}_{e}=\boldsymbol{\Gamma}_{e} \cdot \mathbf{F}_{e} ; \quad \overline{\mathbf{d}}_{e}=\boldsymbol{\Gamma}_{e} \cdot \boldsymbol{\delta}_{e} ; \quad \mathbf{K}_{e}=\boldsymbol{\Gamma}_{e}^{T} \cdot \overline{\mathbf{k}}_{e} \cdot \boldsymbol{\Gamma}_{e}
\]
- three levels: a) structure, b) element, and c) section.
- State determination (internal forces and tangent stiffness matrix corresponding to element nodal displacements) for
(1) Section where internal section forces, are computed from section deformations which are in turn determined from element nodal displacements and the section stiffness matrix
(2) Element tangent stiffness matrices and internal element nodal forces of each element are determined from the internal section forces for each element which are in turn computed from section deformations.
(3) Structure: element tangent stiffness matrices and internal element force vector of all the elements are assembled to form the (augmented) tangent stiffness matrix \(\mathbf{K}_{s}^{\text {tan }}\) and internal nodal force vector \(\mathbf{P}_{s}^{\text {int }}\left(\mathbf{P}_{s}^{\text {int }}=\mathbf{P}_{t}^{\text {int }}+\mathbf{P}_{\Delta}^{\text {int }}\right)\) of the structure. Subscript \(t\) and \(u\) refer to free and constrained degrees of freedom respectively (that is along the natural and essential boundaries).
- Once the structure state determination is complete, the internal nodal force vector \(\left(\mathbf{P}_{t, n}^{\text {int }}\right)\) is compared with the total applied external nodal force vector \(\left(\mathbf{P}_{t, n}^{e x t}\right)\) and the difference \(\left(\mathbf{P}_{t, n}^{R}\right)\), is the residual nodal force vector which is then reapplied to the structure in an iterative solution process until convergence (equilibrium) is satisfied.
\begin{tabular}{|c|c|c|c|}
\hline Level & Internal Force & Tangent Stiffness matrix & "Displacement" \\
\hline Section & \[
\underbrace{\left\{\begin{array}{l}
N_{x}(x) \\
M_{z}(x)
\end{array}\right\}}_{\sigma_{S}(x)}=\mathbf{k}_{s}(x) \varepsilon_{s}(x)
\] & \(\mathrm{k}_{s}(x)=\left[\begin{array}{cc}E(x) A(x) & 0 \\ 0 & E(x) I_{z}(x)\end{array}\right]\) & \[
\begin{aligned}
\varepsilon_{S}(x) & =\left\{\begin{array}{r}
\varepsilon_{x}(x) \\
\phi_{z}(x)
\end{array}\right. \\
& =\mathbf{B}_{d}(x) \overline{\mathbf{d}}_{e}
\end{aligned}
\] \\
\hline Element Local Element Global & \[
\begin{aligned}
& \bar{f}_{e}^{i n t}= \int_{0}^{L_{e}} \mathbf{B}_{d, e}(x)^{T} \boldsymbol{\sigma}_{s}^{i n t}(x) \mathrm{d} x \\
& \mathbf{F}_{e, n}^{\text {int,k}}=\boldsymbol{\Gamma}_{e}^{T} \overline{\mathrm{f}}_{e, n, k} e, k
\end{aligned}
\] & \[
\begin{gathered}
\overline{\mathrm{k}}_{e}=\int_{0}^{L_{e}} \mathbf{B}_{d}(x)^{T} \mathbf{k}_{s}(x) \mathbf{B}_{d}(x) \mathrm{d} x \\
\mathbf{K}_{e, n}^{\tan , k}=\boldsymbol{\Gamma}_{e}^{T} \overline{\mathrm{k}}_{e, n}^{\tan , k} \boldsymbol{\Gamma}_{e}
\end{gathered}
\] & \[
\begin{gathered}
\overline{\mathbf{d}}_{e}=\boldsymbol{\Gamma}_{e} \cdot \delta_{e} \\
\delta_{e}
\end{gathered}
\] \\
\hline Structure & \(\mathbf{P}_{t, n}^{\text {int, } k}=\sum_{e} \mathcal{A}_{b, e}^{T} \mathbf{F}_{e, n}^{\text {int,k }}\) & \(\mathbf{K}_{S, n}^{\tan , k}=\sum_{e} \mathcal{A}_{b, e}^{T} \mathbf{K}_{e, n}^{\tan , k} \mathcal{A}_{b, e}\) & \(\delta_{e}\) \\
\hline
\end{tabular}

\section*{Beam-Column; Stiffness Based}

\section*{State Determination}


\(\mathcal{A}_{,, e}\) and \(\mathcal{A}_{b, e}{ }^{T}\) are the displacement extracting operator and the force assembling operator.

- Newton-Raphson iteration method operates in the global coordinate (structural level) system.
- At the \(k^{\text {th }}\) iteration, determine the section displacements \(\mathbf{d}_{s, n}(x)\) from the element nodal displacements in local reference \(\overline{\mathbf{d}}_{e, n}{ }^{(3)}\).
- Section deformation vectors \(\varepsilon_{s, e, n}^{k}(x)\) (4)for each section are computed. This is the first approximation of the element state determination, since \(\mathbf{B}_{d, e}(x)\) is exact only in the linear elastic case.
- Assuming that the section constitutive law is explicitly known, the section tangent stiffness matrices \(\mathbf{k}_{s, e, n}^{\tan , k}(x)\) and the internal section force vectors \(\boldsymbol{\sigma}_{s, e, n}^{i n t, k}(x)\) are readily determined from \(\boldsymbol{\varepsilon}_{s, e, n}^{k}(x)\) (5)).
- Element stiffness matrices \(\overline{\mathbf{k}}_{e, n}^{k}\) in local reference and the internal element nodal force vectors in local reference \(\overline{\mathrm{f}}_{e, n}^{i n t, k}\) are determined next (6).
- During assembly of the global stiffness matrix, the structure's tangent stiffness matrix and vector of nodal internal forces are determined (8), before the residual is computed (8) for convergence.
- Since \(\mathbf{B}_{d, e}(x)\) is only approximate (since we are approximating the displacement field), the state variables: a) integrals for the element tangent stiffness matrix in local reference and b)internal element nodal force vector in local reference will also yield approximate results.
- The approximation of \(\mathbf{B}_{d, e}(x)\) leads to stiffer solution. Note that the curve labeled "Exact solution" is only exact within the assumptions of the section constitutive law and the kinematic approximations that deformations are small and plane sections remain plane.
- Solutions: a) finer mesh discretization of the structure, especially, in frame regions that undergo highly nonlinear behaviors, such as the member ends.; b) use flexibility based elements.
- So far, assumed that a section is characterized by a moment curvature relation, i.e when the moment reaches the plastic/yield moment, the whole section pastifies.
- This is only an approximation, as in reality there is a gradual plastification starting from the outer fibers, and this plastification zone gradually spreads inward until the whole section ultimately becomes plastic.
- To capture this gradual spread one can either resort to continuum 2D/3D solid (finite) elements, which is computationally expensive/inefficient, or use layered elements.
- Ultimately, our objective remains the derivation of \(\mathbf{k}_{s, e}^{\tan }(x)\) such that
\[
\left\{\begin{array}{c}
N(x) \\
M_{z}(x)
\end{array}\right\}=\mathbf{k}_{s, e}^{\tan }(x)\left\{\begin{array}{c}
\varepsilon(x) \\
\phi_{z}(x)
\end{array}\right\}
\]
- Ignoring transverse shear deformation (accounted for in the so-called Timoshenko beam), and thus assuming a linear strain distribution (Euler-Bernouilli beam), but a non linear stress-stain behavior, the stress distribution is \(\sigma_{t}(x)=\frac{N_{x}(x)}{A(x)} \pm \frac{M_{z}(x)}{I_{z}(x)} y\)
- At this point, from the nodal displacement, we can determine the section deformations (axial strain, \(\varepsilon(x)\) and curvature, \(\phi(x)\) ) (and thus the linear strain distribution), and since we have a nonlinear material, the exact location of the neutral axis is not yet known, and at each fiber elevation we do have a different \(E_{r}^{\text {tan }}(x) . r\) is the fiber subscript.

- We know \(\varepsilon\) and \(\Phi\), must determine \(N\) and \(M\)
- Primary Terms are those due to pure axial and flexure:
- Pure axial force due to \(\sigma(x)\) is simply determined from
\[
N_{x}(x)=\int_{-y_{1}}^{y_{2}} \sigma(x) d A=\int_{-y_{1}}^{y_{2}} \underbrace{E_{r}^{\tan }(x) \cdot \varepsilon(x)}_{\sigma(x)} d A \simeq \sum_{r} E_{r}^{\tan }(x) \cdot A_{r}(x) \cdot \varepsilon(x)
\]
- Pure moment due to \(\sigma_{M}(x)\) is considered next, and again we week an expression of \((M(x))\) in terms of the curvature and and \(E_{r}^{\text {tan }}(x)\), and recalling that \(I=\int y^{2} d A\) and \(\sigma_{M}(x)_{@ y_{r}}=E_{r}^{\tan }(x) \cdot \phi_{z}(x) \cdot y_{r}\)
\[
\begin{aligned}
M_{z}(x) & =\int_{-y_{1}}^{y_{2}} \sigma_{M}(x) \cdot y d A=\int_{-y_{1}}^{y_{2}} \underbrace{E_{r}^{\tan }(x) \cdot \underbrace{\phi_{z}(x)}_{\varepsilon} \cdot y}_{\sigma} \cdot y d A \\
& =\phi_{z}(x) \int_{-y_{1}}^{y_{2}} E_{r}^{\tan }(x) \cdot y^{2} d A \\
& \simeq \sum_{r} E_{r}^{\tan }(x) \cdot A_{r}(x) \cdot y_{r}^{2} \cdot \phi_{z}(x)
\end{aligned}
\]
- Secondary Terms are due to coupling and will result in non-zero off diagonal terms in the stiffness matrix. Note that this cancels out in linear elastic analysis.
- Second axial force due to curvature as there is no reason why the nonlinear flexural stress distribution will necessarily yield a summation of forces equal to zero.
\[
\begin{aligned}
d N_{x}(x) & =-E_{r}^{\tan }(x) \cdot \varepsilon_{M}(x) d A=-E_{r}^{\tan }(x) \cdot \phi_{z}(x) \cdot y d A \\
N_{x}(x) & =-\int_{-y_{1}}^{y_{2}} E_{r}^{\tan }(x) \cdot \phi_{z}(x) \cdot y d A \\
& \simeq-\sum_{r} E_{r}^{\tan }(x) \cdot A_{r}(x) \cdot y_{r} \cdot \phi_{z}(x)
\end{aligned}
\]
where the strain \(\left(\varepsilon_{M}(x)\right)\) is obtained from the curvature \(\left(\phi_{z}(x)\right)\).
- Secondary moment due to axial strain as there is no reason why the location of the neutral axis is indeed correct resulting in a summation of moment equal to zero.
\[
\begin{aligned}
d M_{z}(x) & =-E_{r}^{\tan }(x) \cdot \varepsilon(x) \cdot y \cdot d A \\
M_{z}(x) & =-\int_{-y_{1}}^{y_{2}} E_{r}^{\tan }(x) \cdot \varepsilon(x) \cdot y d A \\
& \simeq-\sum_{r} E_{r}^{\tan }(x) \cdot A_{r}(x) \cdot y_{r} \cdot \varepsilon(x)
\end{aligned}
\]
- Summing up within a matrix, \(\mathbf{k}_{s, e}^{\mathrm{tan}}(x)\) takes the form:
\[
\underbrace{\left\{\begin{array}{c}
N \\
M
\end{array}\right\}}_{\sigma_{S}}=\underbrace{\sum_{r}\left[\begin{array}{cc}
E_{t}^{\tan }(x) \cdot A_{r}(x) & -E_{t}^{\tan }(x) \cdot A_{r}(x) \cdot y_{r} \\
-E_{r}^{\tan }(x) \cdot A_{r}(x) \cdot y_{r} & E_{r}^{\tan }(x) \cdot A_{r}(x) \cdot y_{r}^{2}
\end{array}\right]}_{k_{s}^{\tan , n}}\left\{\begin{array}{c}
\varepsilon(x) \\
\phi_{z}(x)
\end{array}\right\}
\]
- The implementation of this layer or fiber section will require an additional discretization of the cross section into layers or fibers

- Noting that layer/fiber stress-strain relations are typically expressed as explicit functions of strain, state determination is given by

- We note that this cross sectional definition allows us to easily specify longitudinal steel reinforcement. Shear reinforcement, on the other hand, can not be explicitly modeled, however, common practice is to assign modified properties to the confined concrete.
- Neutral Axis is implicitly determined. In the input data, we can assume the neutral axis to be in the bottom layer (for ease of determining layer elevation \(y_{r}\) ), then at the global level equilibrium will not be satisfied, and then displacements will be adjusted, and indirectly strain distribution will be corrected by shifting the N.A. Faster convergence could be achieved if an intelligent guess is made for the location of the NA, and define all fibers with respect to that location. Alternatively, the program could immediately (first increment/iteration) determine the elastic neutral axis.

- Zero-length elements are needed for lumped plasticity models where plastic hinges form at the end of the element. They are more suitable for lateral loads than for vertical ones.
- Element end deformations in the reinforced concrete are composed of two types:
- flexural deformation that causes inelastic strains
- element end rotation which may be caused be the slip of longitudinal reinforcement in reinforced concrete or plastic hinges in steel members.

\section*{Zero-Length 2D Element}

(1) Constitutive law Section constitutive law is expressed as
\[
\underbrace{\left\{\begin{array}{c}
N_{x} \\
V_{y} \\
M_{z}
\end{array}\right\}}_{\boldsymbol{\sigma}_{s}}=\underbrace{\left[\begin{array}{ccc}
{[E A]^{\tan }} & 0 & 0 \\
0 & {[G A]^{\tan }} & 0 \\
0 & 0 & {\left[E I_{z}\right]^{\tan }}
\end{array}\right]}_{\mathbf{k}_{s}^{\tan }} \underbrace{\left\{\begin{array}{l}
\bar{u}_{x 2}-\bar{u}_{x 1} \\
\bar{v}_{y 2}-\bar{v}_{y 1} \\
\bar{\theta}_{z 2}-\bar{\theta}_{z 1}
\end{array}\right\}}_{\varepsilon_{s}}
\]
where, \([E A]^{\text {tan }},[G A]^{\text {tan }}\) and \(\left[E I_{7}\right]^{\text {tan }}\) are tangent stiffnesses associated with axial, shear and moment.
(2) Equilibrium Composing equilibrium equations between point A and point B
\[
\bar{N}_{x 1}=[E A]^{\tan } \cdot\left(\bar{u}_{x 1}-\bar{u}_{x 2}\right) ; \bar{V}_{y 1}=[G A]^{\tan } \cdot\left(\bar{v}_{y 1}-\bar{v}_{y 2}\right) ; \bar{M}_{z 1}=\left[E I_{z}\right]^{\tan } \cdot\left(\bar{\theta}_{z 1}-\bar{\theta}_{z 2}\right)
\]

Likewise between point B and point C ,
\[
\bar{N}_{x 2}=[E A]^{\tan } \cdot\left(\bar{u}_{x 2}-\bar{u}_{x 1}\right) ; \bar{V}_{y 2}=[G A]^{\tan } \cdot\left(\bar{v}_{y 2}-\bar{v}_{y 1}\right) ; \bar{M}_{z 2}=\left[E I_{z}\right]^{\tan } \cdot\left(\bar{\theta}_{z 2}-\bar{\theta}_{z 1}\right)
\]

Rewriting in matrix form, the relationship between element nodal force and displacement vector is given by
\[
\underbrace{\left\{\begin{array}{c}
\bar{N}_{x 1} \\
\bar{v}_{y 1} \\
\bar{M}_{z 1} \\
\bar{N}_{x 2} \\
\bar{V}_{y 2} \\
\bar{M}_{z 2}
\end{array}\right\}}_{\bar{f}_{e}}=\overline{\mathbf{k}}_{e}^{\tan }\left\{\begin{array}{c}
\bar{u}_{x 1} \\
\bar{v}_{y 1} \\
\bar{\theta}_{z 1} \\
\bar{u}_{x 2} \\
\bar{v}_{y 2} \\
\bar{\theta}_{z 2}
\end{array}\right\},
\]
where, \(\overline{\mathbf{k}}_{e}^{\text {tan }}\) is the element stiffness matrix in local reference.
\[
\overline{\mathbf{k}}_{e}^{\tan }=\left[\begin{array}{cccccc}
{[E A]^{\tan }} & 0 & 0 & -[E A]^{\tan } & 0 & 0 \\
0 & {[G A]^{\tan }} & 0 & 0 & -[G A]^{\tan } & 0 \\
0 & 0 & {\left[E I_{z}\right]^{\tan }} & 0 & 0 & -\left[E I_{z}\right]^{\tan } \\
-[E A]^{\tan } & 0 & 0 & {[E A]^{\tan }} & 0 & 0 \\
0 & -[G A]^{\tan } & 0 & 0 & {[G A]^{\tan }} & 0 \\
0 & 0 & -\left[E I_{z}\right]^{\tan } & 0 & 0 & {\left[E I_{z}\right]^{\tan }}
\end{array}\right]
\]

\section*{Zero-Length 2D Element}

Coordinate system in zero-length 2D element is same as the one of the 2D stiffness element.

\(\Gamma_{e}=\left[\begin{array}{c|cccccc} & N_{X 1} & V_{Y 1} & M_{z 1} & N_{X 2} & V_{Y 2} & M_{z 2} \\ \hline \bar{N}_{x 1} & \cos \alpha & \sin \alpha & 0 & 0 & 0 & 0 \\ \bar{V}_{y 1} & -\sin \alpha & \cos \alpha & 0 & 0 & 0 & 0 \\ \bar{M}_{z 1} & 0 & 0 & 1 & 0 & 0 & 0 \\ \bar{N}_{x 2} & 0 & 0 & 0 & \cos \alpha & \sin \alpha & 0 \\ \bar{V}_{y 2} & 0 & 0 & 0 & -\sin \alpha & \cos \alpha & 0 \\ \bar{M}_{z 2} & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\)


Step 1: Determine the section deformation vector, axial deformation, shear deformation and curvature. For each deformation, we extract the associated components from \(\overline{\mathbf{d}}_{e, n}^{k}\).
\[
\begin{aligned}
\overline{\mathbf{d}}_{e, n}^{k} & =\left\lfloor\bar{u}_{x 1, e, n}^{k} \bar{v}_{y 1, e, n}^{k} \bar{\theta}_{z 1, e, n}^{k} \bar{u}_{x 2, e, n}^{k} \bar{v}_{y 2, e, n}^{k} \bar{\theta}_{z 2, e, n}^{k}\right\rfloor^{T} \\
\varepsilon_{s, e, n}^{k} & =\left\lfloor\varepsilon_{x, e, n}^{k}, \gamma_{y, e, n}^{k}, \phi_{z, e, n}^{k}\right\rfloor^{T} \\
\varepsilon_{x, e, n}^{k} & =\bar{u}_{x 2, e, n}^{k}-\bar{u}_{x 2, e, n}^{k} \\
\gamma_{y, e, n}^{k} & =\bar{v}_{y 2, e, n}^{k}-\bar{v}_{y 2, e, n}^{k} \\
\phi_{z, e, n}^{k} & =\bar{\theta}_{z 2, e, n}^{k}-\bar{\theta}_{z 2, e, n}^{k}
\end{aligned}
\]
which define axial section deformation, shear deformation, and curvature.

Step 2: Determine the section tangent stiffness associated with axial force-deformation, shear force-deformation, and moment-curvature in the section constitutive laws. Section constitutive laws modified with several variables in function of material constitutive law associated with uniaxial stress-strain relationship can be used. The internal section force vector is determined next. If we assume that the section constitutive law is explicitly known, \(\mathbf{k}_{s, e, n}^{\tan , k}\) and \(\boldsymbol{\sigma}_{s, e, n}^{i n t, k}\) are determined from \(\varepsilon_{s, e, n}^{k}\). However, in elastic section, we need not to compute \(\mathbf{k}_{s, e, n}^{\tan , k}\) again as it is identical to the initial section stiffness matrix \(\mathbf{k}_{s, e}\). For an elastic section,
\[
\begin{aligned}
\mathbf{k}_{s, e, n}^{\tan } & =\mathbf{k}_{s, e} \\
\underbrace{\left\{\begin{array}{c}
N_{x, e, n}^{i n t, k} \\
V_{y, e, n}^{\text {int,k}} \\
M_{z, e, n}^{i n t, k}
\end{array}\right\}}_{\boldsymbol{\sigma}_{s, e, n}^{\text {int }, k}} & =\mathbf{k}_{s, e, n}^{\tan } \underbrace{\left\{\begin{array}{c}
\varepsilon_{x, e, n}^{k} \\
\gamma_{y, e, n}^{k} \\
\phi_{z, e, n}^{k}
\end{array}\right\}}_{\varepsilon_{s, e, n}^{k}}
\end{aligned}
\]
where, \(\mathbf{k}_{s, e, n}^{\tan , k}\) is the section tangent stiffness matrix at \(k^{\text {th }}\) iteration.

\section*{Zero-Length 2D Element}

Step 3: Determine the internal element nodal force vector and the element tangent stiffness matrix
\[
\overline{\mathbf{f}}_{e, n}^{i n t, k}=\left\lfloor N_{x, e, n}^{i n t, k}, V_{y, e, n}^{i n t, k}, M_{z, e, n}^{i n t, k}-N_{x, e, n}^{i n t, k},-V_{y, e, n}^{i n t, k},-M_{z, e, n}^{i n t, k}\right\rfloor^{\top}
\]
\[
\overline{\mathbf{k}}_{e}^{\tan , k}=\left[\begin{array}{cccccc}
E A_{e, n}^{\tan , k} & 0 & 0 & -E A_{e, n}^{\tan , k} & 0 & 0 \\
0 & G A_{e, n}^{\tan , k} & 0 & 0 & -G A_{e, n}^{\tan , k} & 0 \\
0 & 0 & E I_{z, e, n}^{\tan , k} & 0 & 0 & -E I_{z, e, n}^{\tan , k} \\
-E A_{e, n}^{\tan , k} & 0 & 0 & E A_{e, n}^{\tan , k} & 0 & 0 \\
0 & -G A_{e, n}^{\tan , k} & 0 & 0 & G A_{e, n}^{\tan , k} & 0 \\
0 & 0 & -E I_{z, e, n}^{\tan , k} & 0 & 0 & E I_{z, e, n}^{\tan , k}
\end{array}\right]
\]
where, \(\overline{\mathbf{k}}_{e, n}^{t a n, k}\) is the element tangent stiffness matrix in local reference.
We determine \(\mathbf{F}_{e, h}^{i n t, k}\) and \(\mathbf{K}_{e, h}^{\mathrm{tan}, \mathrm{k}}\).
\[
\begin{aligned}
\mathbf{F}_{e, n}^{i n t, k} & =\boldsymbol{\Gamma}_{e}^{T} \cdot \overline{\mathbf{f}}_{e, n}^{i n t, k} \\
\mathbf{K}_{e, n}^{t a n, k} & =\boldsymbol{\Gamma}_{e}^{T} \cdot \overline{\mathbf{k}}_{e, n}^{\tan , k} \cdot \boldsymbol{\Gamma}_{e}
\end{aligned}
\]

\section*{Zero-Length Section Element}

Zero-length section element is analogous to the zero length element, however, it uses layer/fiber. This element enables us to model the shift in center of section rotation which may occur (in bar-slip for example). The element is formulated on the basis of coupled axial force and moment.


Constitutive law Section constitutive law is expressed as
\[
\underbrace{\left\{\begin{array}{l}
N_{x} \\
M_{z}
\end{array}\right\}}_{\boldsymbol{\sigma}_{s}}=\underbrace{\left[\begin{array}{ll}
\mathrm{k}_{s, 11}^{\tan } & \mathrm{k}_{s, 12}^{\tan } \\
\mathrm{k}_{s, 21}^{\tan } & \mathrm{k}_{s, 22}^{\tan }
\end{array}\right]}_{\mathbf{k}_{s}^{\tan }} \cdot \underbrace{\left\{\begin{array}{c}
\bar{u}_{x 2}-\bar{u}_{x 1} \\
\bar{\theta}_{z 2}-\bar{\theta}_{z 1}
\end{array}\right\}}_{\boldsymbol{\varepsilon}_{s}}
\]
where, \(\mathbf{k}_{s}^{\tan }\) is the section tangent stiffness matrix obtained from layer/fiber state determination.
Equilibrium Zero-length section element is based on Bernoulli beam theory.


Composing equilibrium equations between point \(A\) and point \(B\).
\[
\begin{align*}
& \bar{N}_{x 1}=k_{s, 11}^{\tan } \cdot\left(\bar{u}_{x 1}-\bar{u}_{x 2}\right)+k_{s, 12}^{\tan } \cdot\left(\bar{\theta}_{z 1}-\bar{\theta}_{z 2}\right) \\
& \bar{M}_{z 1}=k_{s, 21}^{\tan } \cdot\left(\bar{u}_{x 1}-\bar{u}_{x 2}\right)+k_{s, 22}^{\tan } \cdot\left(\bar{\theta}_{z 1}-\bar{\theta}_{z 2}\right) \tag{1}
\end{align*}
\]

Likewise between point \(B\) and point \(C\),
\[
\begin{align*}
& \bar{N}_{x 2}=k_{s, 11}^{\tan } \cdot\left(\bar{u}_{x 2}-\bar{u}_{x 1}\right)+k_{s, 12}^{\tan } \cdot\left(\bar{\theta}_{z 2}-\bar{\theta}_{z 1}\right) \\
& \bar{M}_{z 2}=k_{s, 21}^{\tan } \cdot\left(\bar{u}_{x 2}-\bar{u}_{x 1}\right)+k_{s, 22}^{\tan } \cdot\left(\bar{\theta}_{z 2}-\bar{\theta}_{z 1}\right) \tag{2}
\end{align*}
\]

Rewriting Eq. 1 and 2 to matrix form, the relationship between element nodal force and displacement vector is given by
\[
\underbrace{\left\{\begin{array}{c}
\bar{N}_{x 1} \\
0 \\
\bar{M}_{z 1} \\
\bar{N}_{x 2} \\
0 \\
\bar{M}_{z 2}
\end{array}\right\}}_{\overline{\mathbf{f}}_{e}}=\overline{\mathbf{k}}_{e}^{\tan }\left\{\begin{array}{c}
\bar{u}_{x 1} \\
0 \\
\bar{\theta}_{z 1} \\
\bar{u}_{x 2} \\
0 \\
\bar{\theta}_{z 2}
\end{array}\right\},
\]
where, \(\overline{\mathbf{k}}_{e}^{\text {tan }}\) is the element stiffness matrix in local reference.
\[
\overline{\mathbf{k}}_{e}^{\tan }=\left[\begin{array}{cccccc}
\mathrm{k}_{s, 11}^{\tan } & 0 & \mathrm{k}_{s, 12}^{\tan } & -\mathrm{k}_{s, 11}^{\tan } & 0 & -\mathrm{k}_{s, 12}^{\tan }  \tag{3}\\
0 & 0 & 0 & 0 & 0 & 0 \\
\mathrm{k}_{s, 21}^{\tan } & 0 & \mathrm{k}_{s, 22}^{\tan } & -\mathrm{k}_{s, 21}^{\tan } & 0 & -\mathrm{k}_{s, 22}^{\tan } \\
-\mathrm{k}_{s, 11}^{\tan } & 0 & -\mathrm{k}_{s, 12}^{\tan } & \mathrm{k}_{s, 11}^{\tan } & 0 & \mathrm{k}_{s, 12}^{\tan } \\
0 & 0 & 0 & 0 & 0 & 0 \\
-\mathrm{k}_{s, 21}^{\tan } & 0 & -\mathrm{k}_{s, 22}^{\tan } & \mathrm{k}_{s, 21}^{\tan } & 0 & \mathrm{k}_{s, 22}^{\tan }
\end{array}\right]
\]

Coordinate system in zero-length 2D element is same as in 2D stiffness element.

\(\boldsymbol{\Gamma}_{e}=\left[\begin{array}{c|cccccc} & N_{X 1} & V_{Y 1} & M_{Z 1} & N_{X 2} & V_{Y 2} & M_{Z 2} \\ \hline \bar{N}_{x 1} & \cos \alpha & \sin \alpha & 0 & 0 & 0 & 0 \\ \bar{V}_{y 1} & -\sin \alpha & \cos \alpha & 0 & 0 & 0 & 0 \\ \bar{M}_{z 1} & 0 & 0 & 1 & 0 & 0 & 0 \\ \bar{N}_{x 2} & 0 & 0 & 0 & \cos \alpha & \sin \alpha & 0 \\ \bar{V}_{y 2} & 0 & 0 & 0 & -\sin \alpha & \cos \alpha & 0 \\ \bar{M}_{z 2} & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\)


Step 1: Determine the section deformation vector, axial deformation and curvature. For each deformation, we extracts the associated components from \(\overline{\mathbf{d}}_{e, n}^{k}\).
\[
\begin{aligned}
\overline{\mathbf{d}}_{e, n}^{k} & =\left\lfloor\bar{u}_{x 1, e, n}^{k} 0 \bar{\theta}_{z 1, e, n}^{k} \bar{u}_{x 2, e, n}^{k} 0 \bar{\theta}_{z 2, e, n}^{k}\right\rfloor^{T} \\
\varepsilon_{s, e, n}^{k} & =\left\lfloor\varepsilon_{x, e, n}^{k} \phi_{z, e, n}^{k}\right\rfloor^{T} \\
\varepsilon_{x, e, n}^{k} & =\bar{u}_{x 2, e, n}^{k}-\bar{u}_{x 2, e, n}^{k} \\
\phi_{z, e, n}^{k} & =\bar{\theta}_{z 2, e, n}^{k}-\bar{\theta}_{z 2, e, n}^{k}
\end{aligned}
\]

Step 2: Determine the section tangent stiffness associated with axial force-deformation and moment-curvature using layer/fiber state determination as in for Layr/fiber. Determine next the internal section force vector. If we assume that the material
constitutive law is explicitly known, \(\mathbf{k}_{s, e, n}^{\tan , k}\) and \(\boldsymbol{\sigma}_{s, e, n}^{i n t, k}\) are determined from \(\varepsilon_{s, e, n}^{k}\). However, in the section with elastic material, we need not to compute \(\mathbf{k}_{s, e, n}^{\tan _{n}, k}\) again as it is identical to the initial section stiffness matrix \(\mathbf{k}_{s, e}\). If we have a section with elastic material, then
\[
\begin{aligned}
\mathbf{k}_{s, e, n}^{\tan } & =\mathbf{k}_{s, e} \\
\underbrace{\left\{\begin{array}{l}
N_{x, e, n}^{i n t, k} \\
M_{z, e, n}^{i n t, k}
\end{array}\right\}}_{\mathbf{\sigma}_{s, e, n}^{i n t}, k} & =\mathbf{k}_{s, e, n}^{\tan } \underbrace{\left\{\begin{array}{c}
\varepsilon_{x, e, n}^{k} \\
\phi_{z, e, n}^{k}
\end{array}\right\}}_{\varepsilon_{s, e, n}^{k}}
\end{aligned}
\]
where, \(\mathbf{k}_{s, e, n}^{\tan , k}\) is the section tangent stiffness matrix at \(k^{\text {th }}\) iteration.

Step 3: Determine the internal element nodal force vector and the element tangent stiffness matrix
\[
\begin{aligned}
& \overline{\mathbf{f}}_{e, n}^{i n t, k}=\left\lfloor N_{x, e, n}^{i n t, k}, 0, M_{z, e, n}^{i n t, k},-N_{x, e, n}^{i n t, k}, 0,-M_{z, e, n}^{i n t, k}\right\rfloor^{\top}
\end{aligned}
\]
where, \(\overline{\mathbf{k}}_{e, n}^{\text {tan,k}}\) is the element tangent stiffness matrix in local reference. We determine \(\mathbf{F}_{e, h}^{\text {int,k }}\) and \(\mathbf{K}_{e, h}^{\tan , k}\).
\[
\begin{aligned}
\mathbf{F}_{e, n}^{i n t, k} & =\boldsymbol{\Gamma}_{e}{ }^{\top} \cdot \overline{\mathbf{f}}_{e, n}^{i n t, k} \\
\mathbf{K}_{e, n}^{t a n, k} & =\boldsymbol{\Gamma}_{e}{ }^{\top} \cdot \overline{\mathbf{k}}_{e, n} \tan , k \cdot \boldsymbol{\Gamma}_{e}
\end{aligned}
\]
- Flexibility based elements
- Are nonconformist finite elements since they yield the element flexibility matrix rather than the classical stiffness matrix.
- Are based on the equations of equilibrium rather than on assumed displacement field, while at the global level formulation is displacement based.
- Offer some important advantages over stiffness based elements: fewer elements are needed (albeit at the cost of a more complex formulation); stiffness-based method formulations are approximate and flexibility-based method formulations are exact such as a section varying along the element and elements with material nonlinearity.
- We derive the element flexibility matrix \(\tilde{\mathbf{c}}_{e}\) without rigid body modes and then invert it to obtain the corresponding element stiffness matrix \(\tilde{\mathbf{k}}_{e}\) (again without rigid body modes). The retained degrees of freedom are the axial force at node 2, and the two end moments.
- There are two distinct formulations: a) with element iterations, and b) without element iterations. We will focus on the former.
- Whereas we have used the principle of virtual work (displacement) for the derivation of the stiffness based element, we shall now use the principle of complementary virtual work (force) through the usual three steps.

(a) Positive section axial force

(b) Positive section moment
- Equilibrium will now be strongly enforced (whereas it was satisfied in the weak sense previously) and we seek to derive the force shape functions:
- For uniformly distributed axial forces, we have \(d N_{x}(x)=w_{x}^{(e)} d x\) or \(\frac{d N_{x}(x)}{d x}=w_{x}^{(e)}(x)\)
- For uniformly distributed transverse forces \(\frac{d V_{y}(x)}{d x}=w_{y}^{(e)}(x)\) ) and
\[
\frac{\mathrm{d}^{2} M}{d x^{2}}=w(x)
\]
- Equilibrium can be expressed as
\[
\underbrace{\mathbf{w}_{e}(x)}_{\text {External }}+\underbrace{\mathcal{L}_{f} \cdot \boldsymbol{\sigma}_{s}(x)}_{\text {Internal }}=\mathbf{0} ;\left\{\begin{array}{l}
w_{x}^{(e)}(x) \\
w_{y}^{(e)}(x)
\end{array}\right\}+\left[\begin{array}{cc}
\frac{\mathrm{d}}{\mathrm{~d} x} & 0 \\
0 & \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}
\end{array}\right]\left\{\begin{array}{l}
N_{x}(x) \\
M_{z}(x)
\end{array}\right\}=\mathbf{0}
\]
\(\mathbf{w}_{e}(x)\) is the external element traction vector, \(\mathcal{L}_{f}\) is the force differential operator which enforces equilibrium. (Note in stiffness formulation, the compatibility was "strongly" enforced).
- We will write equilibrium of sectional stresses in terms of the nodal forces, and assume that there are no external element traction.
- Whereas we previously used displacement interpolation functions, we now need force interpolation functions, \(\mathbf{N}_{f}(x)\) in order to exactly satisfy equilibrium along the element
\[
\left[\begin{array}{cc}
\frac{\mathrm{d}}{\mathrm{~d} x} & 0 \\
0 & \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}
\end{array}\right]\left\{\begin{array}{l}
N_{x}(x) \\
M_{z}(x)
\end{array}\right\}=0
\]
- Integrating these equations, we obtain \(N_{x}(x)=c_{3}\) and \(M_{z}(x)=c_{1} x+c_{2}\).
- We now seek to determine the shape functions that relate section internal forces at any point \(x\) to the nodal forces. We enforce natural boundary condition
\[
\begin{aligned}
N_{x}(L) & =\tilde{N}_{x 2} ; & M_{z}(0) & =-\tilde{M}_{z 1} ; & M_{z}(L) & =\tilde{M}_{z 2} \\
\Rightarrow c_{1} & =\frac{\tilde{M}_{z 1}+\tilde{M}_{z 2}}{L_{e}} ; & c_{2} & =-\tilde{M}_{z 1} ; & c_{3} & =\tilde{N}_{x 2}
\end{aligned}
\]
- Substituting, we have the internal axial force and moment at any point ( \(x\) ) in terms of the nodal forces.
\[
\underbrace{\left\{\begin{array}{l}
N_{x}(x) \\
M_{z}(x)
\end{array}\right\}}_{\sigma_{s}(x)}=\underbrace{\left[\begin{array}{ccc}
0 & 0 & 1 \\
\frac{x}{L_{e}}-1 & \frac{x}{L_{e}} & 0
\end{array}\right]}_{\mathbf{N}_{f}(x)} \underbrace{\left\{\begin{array}{l}
\tilde{M}_{z 1} \\
\tilde{M}_{z 2} \\
\tilde{N}_{x 2}
\end{array}\right\}}_{\tilde{f}_{e}}
\]
where, \(\tilde{f}_{e}\) is the element nodal force vector without rigid body modes.
- It should be noted that these shape functions enforce equilibrium at any section along the element
- Constitutive law: Previously expressed section forces in terms of section deformations, we now need to express section deformations in terms of section forces: \(\varepsilon_{s}(x)=\mathbf{c}_{s}(x) \cdot \sigma_{s}(x)\) where, \(\mathbf{c}_{s}(x)\) is the section flexibility matrix. If \(\mathbf{c}_{s}(x)\) is not derived from fiber section, then for linear elastic analysis \(\mathbf{c}_{\boldsymbol{s}}(x)\) is simply.
\[
\mathbf{c}_{s}(x)=\left[\begin{array}{cc}
\frac{1}{E(x) \cdot A(x)} & 0 \\
0 & \frac{1}{E(x) \cdot I_{z}(x)}
\end{array}\right]
\]
- Compatibility of displacements: enforced only in a weak form through the principle of complementary virtual work (as opposed to the principle of virtual work for the stiffness-based method).
\[
\underbrace{\delta \tilde{\mathbf{f}}_{e}{ }^{\top} \tilde{\mathbf{d}}_{e}}_{\text {External }}=\underbrace{\int_{0}^{L_{e}} \delta \boldsymbol{\sigma}_{s}(x)^{T} \cdot \boldsymbol{\varepsilon}_{s}(x) \mathrm{d} x}_{\text {Internal }}
\]
where \(\tilde{\mathbf{d}}_{e}\) is the element nodal displacement vector without rigid body modes.
- Substituting
\[
\begin{aligned}
\delta \tilde{\mathbf{f}}_{e} \tilde{\mathbf{d}}_{e} & =\int_{0}^{L_{e}} \delta \tilde{\mathbf{f}}_{e}^{T} \cdot \mathbf{N}_{f}(x)^{T} \cdot \mathbf{c}_{s}(x) \cdot \boldsymbol{\sigma}_{s}(x) \mathrm{d} x \\
\tilde{\mathrm{~d}}_{e} & =\int_{0}^{L_{e}} \mathbf{N}_{f}(x)^{T} \cdot \mathbf{c}_{s}(x) \cdot \boldsymbol{\sigma}_{s}(x) \mathrm{d} x=\underbrace{\int_{0}^{L_{e}} \mathbf{N}_{f}(x)^{T} \cdot \mathbf{c}_{s}(x) \cdot \mathbf{N}_{f}(x) \mathrm{d} x \cdot \tilde{\mathbf{f}}_{e}}_{\tilde{c}_{e}}
\end{aligned}
\]
or
\[
\tilde{\mathbf{d}}_{e}=\tilde{\mathbf{c}}_{e} \cdot \tilde{\mathbf{f}}_{e}
\]
- The element flexibility matrix without rigid body modes in local reference is thus given by
\[
\tilde{\mathbf{c}}_{e}=\int_{0}^{L_{e}} \mathbf{N}_{f}(x)^{T} \cdot \mathbf{c}_{s}(x) \cdot \mathbf{N}_{f}(x) \mathrm{d} x
\]
- The corresponding element stiffness matrix without rigid body modes in local reference is simply
\[
\tilde{\mathbf{k}}_{e}=\left[\tilde{\mathbf{c}}_{e}\right]^{-1}
\]

Note this is a \(3 \times 3\) matrix, we still have to insert equilibrium relations and transform it into the usual \(6 \times 6\) stiffness matrix

\section*{Coordinate system}

- Contrarily to the reference system of the stiffness-based method, we need to consider forces and displacements in local reference with and without rigid body modes.
- Element nodal force vector without rigid body modes in local reference are (arbitrarily) selected as \(\tilde{\mathrm{f}}_{e}=\left\lfloor\tilde{M}_{z 1}, \tilde{M}_{z 2}, \tilde{N}_{x 2}\right\rfloor^{\top}\), and the corresponding element nodal displacement vector without rigid body modes in local reference are given by \(\tilde{\mathrm{d}}_{e}=\left\lfloor\tilde{\theta}_{z 1}, \tilde{\theta}_{z 2}, \tilde{u}_{x 2}\right\rfloor^{\top}\)
- The relationship between rigid body modes and no rigid body modes is obtained through equilibrium
\[
\underbrace{\left\{\begin{array}{c}
\bar{N}_{x 1} \\
\bar{V}_{y 1} \\
\bar{M}_{21} \\
\bar{N}_{x 2} \\
\bar{V}_{y 2} \\
\bar{M}_{z 2}
\end{array}\right\}}_{\overline{\mathrm{f}}_{e}}=\underbrace{\left[\begin{array}{ccc}
0 & 0 & -1 \\
\frac{1}{L_{e}} & \frac{1}{L_{e}} & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
-\frac{1}{L_{e}} & -\frac{1}{L_{e}} & 0 \\
0 & 1 & 0
\end{array}\right]}_{\tilde{\Gamma}_{e}^{T}} \underbrace{\left\{\begin{array}{c}
\tilde{M}_{z 1} \\
\tilde{M}_{z 2} \\
\tilde{N}_{x 2}
\end{array}\right\}}_{\tilde{\mathrm{F}}_{e}}
\]
- Substituting, \(\overline{\mathbf{f}}_{e}=\tilde{\Gamma}_{e}^{T} \cdot \tilde{\mathbf{f}}_{e} ; \overline{\mathbf{d}}_{e}=\tilde{\boldsymbol{\Gamma}}_{e}^{T} \cdot \tilde{\mathbf{d}}_{e} ;\) or
\[
\mathbf{K}_{e}=\tilde{\Gamma}_{e}^{T} \cdot \tilde{\mathbf{k}}_{e} \cdot \tilde{\Gamma}_{e}
\]
- Note that whereas previously \(\Gamma_{e}\) denoted a geometric transformation matrix (for stiffness based elements), it now corresponds to a statics matrix (also denoted as \(\mathcal{B}\) previously).
- Derivation of the stiffness matrix from the flexibility one and the equations of equilibrium parallels the one earlier derived
\[
[\mathbf{K}]=\left[\begin{array}{c|c}
{[\mathbf{d}]^{-1}} & {[\mathbf{d}]^{-1}[\mathcal{B}]^{T}} \\
\hline[\mathcal{B}][\mathbf{d}]^{-1} & {[\mathcal{B}][\mathbf{d}]^{-1}[\mathcal{B}]^{T}}
\end{array}\right]
\]
- The flexibility-based element (derived from the complementary principle of virtual work) does not have shape functions that relate deformation field inside the element with element nodal displacement vector, but shape functions which relate section forces to nodal forces.
- The global formulation is based on the stiffness (displacement) formulation, the element is based on a flexibility (force) formulation; the two will have to be reconciled (in the determination of the internal element force vectors).
- At the element level, the flexibility based element will provide nodal displacements which are not necessarily compatible with the ones coming from adjacent elements just as in the stiffness based formulation, forces were not compatible at the element level.
- We must ensure nodal displacement compatibility (in the same way as we ensured nodal equilibrium in the stiffness based formulation. Accomplished iteratively.
- Note that in the stiffness based method, there was a discontinuity in nodal forces.
- There are two algorithms for the mixed stiffness-based and flexibility-based methods: (a) with Newton-Raphson iteration in the element level to determine element state (Spacone), (b) without iteration in the element level to determine element state (Carol).

\(\mathcal{A}\), and \(\mathcal{A}_{2,5}{ }^{7}\) are the displacement extracting operator and the force assembling operator.

\section*{Flexibility Based Elements}

\section*{Picture"}


\section*{Flexibility Based Elements}


(a) Element state determination (3a) (5)

(b) Section state determination

\section*{Flexibility Based Elements}


Compare with Stiffness based formulation
- In the flexibility based element we can not go directly from nodal displacements to section strains (as was the case in the stiffness based element), this is accomplished
(1) Determine the element nodal force vector \(\tilde{f}_{e, h}^{k, j}(\) (6) from the current element nodal displacement vector using the element tangent stiffness matrix \(\tilde{\mathbf{k}}_{e, n}^{\mathrm{tan}, k, j-1}\) (3) of the previous iteration.
(2) Through the force interpolation functions \(\mathbf{N}_{f, e}(x)\) determine the section force vectors \(\boldsymbol{\sigma}_{s, e, n}^{k, j}(x)\) along the element.
(3) Determine the section strains by multiplying the constitutive model times the section forces.
- When we recompute the displacements corresponding to the strains.
- Compatibility of displacements at the structural level will not be satisfied.
- Thus we have an additional loop at the element level to reconcile structure based displacement and element based (through the flexibility matrix) ones, or compatibility of displacement.
- There are two complications in this procedure.
(1) The determination of the section deformation vectors \(\varepsilon_{s, e, n}^{k, j}(x)\) from section force vectors since the nonlinear section force-deformation relation is commonly expressed as an explicit function of section deformation vector (4).
(2) Changes in the section tangent stiffness matrices \(\mathbf{k}_{s, e, n}^{\tan }(x)\) produce a new element tangent stiffness matrix which, in turn, changes the element nodal force vector for the given element nodal displacement vector (6).
- The problem is solved through a nonlinear approach which first determines residual element nodal displacement vector \(\tilde{\mathbf{d}}_{e, n}^{R, k, j}\) at each iteration. Then, compatibility of displacement at the structural level requires that this residual element nodal displacement vector be corrected.
- At the element level by applying corrective element nodal force vector based on the current element tangent stiffness matrix. The corresponding section force vectors are then determined from the force interpolation functions so that equilibrium will always be satisfied along the element. Section force vectors will not change during the section state determination in order to maintain equilibrium along the element.
- Linear approximation of section force-deformation relation about the present state results in residual section deformation vectors \(\sigma_{s, e, h}^{R, k, j}(x)\). These are then integrated along the element to obtain new residual element nodal displacement vector (5) and the whole process is repeated until convergence occurs.
- Compatibility of element nodal displacement vector and equilibrium along the element are always satisfied.

\section*{Flexibility Based Elements}

\section*{State Determination; Details}
- The goal of the Newton-Raphson iteration loop in the element level is to determine the internal element nodal force vector (6) for the current element nodal displacement vector at the \(k^{\text {th }}\) Newton-Raphson iteration, hence \(\tilde{\mathbf{d}}_{e, n}^{k}=\tilde{\mathbf{d}}_{e, n}^{k-1}+\delta \tilde{\mathbf{d}}_{e, n}^{k}\)
(1) The initial state of the element, represented by the point \(\mathbf{A}\), and \(j=0\) and \(k=0\) corresponds to the state at the end of the last convergence in structural level. With the initial element tangent flexibility matrix given by \(\tilde{\mathbf{c}}_{e, n}^{\tan , k=1, j=0}=\tilde{\mathbf{c}}_{e, n-1}^{\tan }\) and the given incremental element nodal displacement vector \(\delta \tilde{\mathbf{d}}_{e, n}^{k=1, j=1}=\delta \tilde{\mathbf{d}}_{e, n}^{k=1}\) hence, the corresponding incremental element nodal force vector is
\(\delta \tilde{f}_{e, n}^{k=1, j=1}=\left[\tilde{\mathbf{c}}_{e, n}^{\tan , k=1, j=0}\right]^{-1} \cdot \delta \tilde{\mathbf{d}}_{e, n}^{k=1, j=1}=\tilde{\mathbf{k}}_{e, n}^{\tan , k=1, j=0} \cdot \delta \tilde{\mathbf{d}}_{e, n}^{k=1, j=1}\)
(2) The incremental section force vectors can now be determined from the force interpolation functions \(\delta \boldsymbol{\sigma}_{s, e, n}^{k=1, j=1}(x)=\mathbf{N}_{f, e}(x) \cdot \delta \tilde{\mathbf{f}}_{e, n}^{k=1, j=1}\) With the section tangent flexibility matrices at end of the last convergence in structural level given by \(\mathbf{c}_{s, e, n}^{\tan , k=1, j=0}(x)=\mathbf{c}_{s, e, n-1}^{\tan }(x)\)
(3) The linearization of the section force-deformation relation yields the incremental section deformation vectors. \(\delta \varepsilon_{s, e, n}^{k=1, j=1}(x)=\mathbf{c}_{s, e, n}^{\tan , k=1, j=0}(x) \cdot \delta \boldsymbol{\sigma}_{s, e, n}^{k=1, j=1}(x)\)
(4) The section deformation vectors are updated to the state that corresponds to point \(\mathbf{B}\) and the updated section deformation vector (4) will be given by \(\varepsilon_{s, e, n}^{k=1, j=1}(x)=\varepsilon_{s, e, n}^{k=1, j=0}(x)+\delta \varepsilon_{s, e, n}^{k=1, j=1}(x)\) For the sake of simplicity we will assume that the section force-deformation relation is explicitly known, then the section deformation vectors \(\varepsilon_{s, e, n}^{k=1, j=1}(x)\) will correspond to internal section force vectors \(\boldsymbol{\sigma}_{s, e, n}^{i n t, k=1, j=1}(x)\) and updated section tangent flexibility matrices \(\mathbf{c}_{s, e, n}^{\tan , k=1, j=1}(x)\) can be defined.
(5) The residual section force vectors are then determined \(\boldsymbol{\sigma}_{s, e, n}^{R, k=1, j=1}(x)=\boldsymbol{\sigma}_{s, e, n}^{k=1, j=1}(x)-\boldsymbol{\sigma}_{s, e, n}^{i n t, k=1, j=1}(x)\) and are transformed into residual section deformation vectors \(\boldsymbol{\varepsilon}_{s, e, n}^{R, k=1, j=1}(x)\)
\[
\varepsilon_{s, e, n}^{R, k=1, j=1}(x)=\mathbf{c}_{s, e, n}^{\tan , k=1, j=1}(x) \cdot \sigma_{s, e, n}^{R, k=1, j=1}(x)
\]

6 The residual section deformation vectors are thus the linear approximation of the deformation error made in the linearization of the section force-deformation relation. While any suitable section flexibility matrix can be used to calculate the residual section deformation vector, the section tangent flexibility matrices offer the fastest convergence rate.
(7) The residual section deformation vectors are integrated along the element using the complimentary principle of virtual work to obtain the residual element nodal displacement vector (5), \(\tilde{\mathbf{d}}_{e, n}^{R, k=1, j=1}=\int_{0}^{L_{e}} \mathbf{N}_{f, e}(x)^{T} \cdot \varepsilon_{s, e, n}^{R, k=1, j=1}(x) \mathrm{d} x\)

\section*{State Determination; Details}
(8) At this stage the first iteration \((j=1)\) is completed. The final element and section states for \(j=1\) correspond to point B. The residual section deformation vectors \(\varepsilon_{s, e, n}^{R, k=1, j=1}(x)\) and the residual element nodal displacement vector \(\tilde{\mathbf{d}}_{e, n}^{R, k=1, j=1}\) were determined in the first iteration, but the corresponding element nodal displacement vector have not yet been updated. Instead, they constitute the starting point of the remaining steps within iteration loop \(j\).
(9) The presence of residual element nodal displacement vector \(\tilde{\mathbf{d}}_{e, n}^{R, k=1, j=1}\) will violate compatibility, since elements sharing a common node would now have different element nodal displacement vector. In order to restore the inter-element compatibility, corrective force vector \(\delta \tilde{\mathbf{f}}_{e, n}^{k=1, j=2}\) must be applied at the ends of the element as follows
\[
\delta \tilde{\mathbf{f}}_{e, n}^{k=1, j=2}=-\left[\tilde{\mathbf{c}}_{e, n}^{k=1, j=1}\right]^{-1} \cdot \tilde{\mathbf{d}}_{e, n}^{R, k=1, j=1} ; \tilde{\mathbf{c}}_{e, n}^{k=1, j=1}=\int_{0}^{L_{e}} \mathbf{N}_{f, e}(x)^{T} \cdot \mathbf{c}_{s, e, n}^{\tan , k=1, j=1}(x) \cdot \mathbf{N}_{f, e}(x) \mathrm{d}
\]
(10) Thus, in the second iteration \((j=2)\), the element nodal force vector (6) is updated as \(\tilde{\mathbf{f}}_{e, n}^{k=1, j=2}=\tilde{\mathbf{f}}_{e, n}^{k=1, j=1}+\delta \tilde{\mathbf{f}}_{e, n}^{k=1, j=2}\) and the section force and deformation vectors are also updated to
\[
\begin{aligned}
\delta \boldsymbol{\sigma}_{s, e, n}^{k=1, j=2}(x) & =\mathbf{N}_{f, e}(x) \cdot \delta \tilde{\mathbf{f}}_{e, n}^{k=1, j=2} \\
\boldsymbol{\sigma}_{s, e, n}^{k=1, j=2}(x) & =\boldsymbol{\sigma}_{s, e, n}^{k=1, j=1}(x)+\delta \boldsymbol{\sigma}_{s, e, n}^{k=1, j=2}(x) \\
\delta \varepsilon_{s=e, n}^{k=1, j=2}(x) & =\boldsymbol{\varepsilon}_{s, e, n}^{R, k=1, j=1}(x)+\mathbf{c}_{s, e, n}^{t a n, n}=1, j=1 \\
\varepsilon_{s, e, n}^{k=1, j=2}(x) \cdot \delta \boldsymbol{\sigma}_{s, e, n}^{k=1, j=2}(x) & =\boldsymbol{\varepsilon}_{s, e, n}^{k=1, j=1}(x)+\delta \varepsilon_{s, e, n}^{k=1, j=2}(x)
\end{aligned}
\]
(11) The state of the element and sections within the element at the end of the second iteration \(j=2\) corresponds to point \(\mathbf{C}\).
- It should be noted that the updated tangent flexibility matrices \(\mathbf{c}_{s, e, n}^{\tan , k=1, j=2}(x)\) and residual section deformation vectors \(\varepsilon_{s, e, n}^{R, k=1, j=2}(x)\) are computed for all sections.
- Residual section deformation vectors are then integrated to obtain the residual element nodal deformation vector \(\tilde{\mathbf{d}}_{e}^{R, n}, n, j=2\) and the new element tangent flexibility matrix \(\tilde{\mathbf{c}}_{e, n}^{k=1, j=2}\) is determined by integration of the section flexibility matrices \(\mathbf{c}_{s, e, n}^{\tan , k=1, j=2}(x)\). This completes the second iteration within loop \(j\).
- When incremental element nodal displacement vector \(\delta \tilde{\mathbf{d}}_{e, n}^{k, j=1}=\delta \tilde{\mathbf{d}}_{e, n}^{k}\) is added to the element nodal displacement vector \(\tilde{\mathbf{d}}_{e, n}^{k-1}\) at the end of the previous Newton-Raphson iteration, it is important to make sure that the element nodal displacement vector \(\tilde{\mathbf{d}}_{e, n}^{k}\) do not change except in the first iteration \(j=1\) during iteration loop \(j\)
- Equilibrium along the element is always strictly satisfied since section force vectors (4) are derived from element nodal force vector by the force interpolation functions.
\[
\boldsymbol{\sigma}_{s, e, n}^{k}(x)=\mathbf{N}_{f, e}(x) \cdot \tilde{\mathbf{f}}_{e, n}^{k} \quad \text { and } \quad \delta \boldsymbol{\sigma}_{s, e, n}^{k}(x)=\mathbf{N}_{f, e}(x) \cdot \delta \tilde{\mathbf{f}}_{e, n}^{k}
\]
- Compatibility is also satisfied, not only at the element ends, but also along the element.
\[
\begin{aligned}
\delta \tilde{\mathbf{f}}_{e, n}^{k, j} & =-\left[\tilde{\mathbf{c}}_{e, n}^{k, j-1}\right]^{-1} \cdot \tilde{\mathbf{d}}_{e, n}^{R, k, j-1} \\
\delta \boldsymbol{\sigma}_{s, e, n}^{k, j}(x) & =\mathbf{N}_{f, e}(x) \cdot \delta \tilde{\mathbf{f}}_{e, n}^{k, j} \\
\delta \varepsilon_{s, e, n}^{k, j}(x) & =\boldsymbol{\varepsilon}_{s, e, n}^{R, k, j-1}(x)+\mathbf{c}_{s, e, n}^{t a n, k, j-1}(x) \cdot \delta \boldsymbol{\sigma}_{s, e, n}^{k, j}(x)
\end{aligned}
\]
- The second term expresses the relation between section deformation vectors and element nodal displacement vector. However, it should be noted that residual section deformation vectors \(\varepsilon_{s, e, n}^{R, k, j-1}(x)\) do not strictly satisfy this compatibility condition. This requirement can only be satisfied by integrating the residual section deformation vectors \(\varepsilon_{s, e, \eta}^{R, k, j-1}(x)\) to obtain \(\tilde{\mathbf{d}}_{e, n}^{R, k, j-1}\). Since this is rather inefficient from a computational standpoint, the small compatibility error in the calculation of residual section deformation vectors \(\varepsilon_{s, e, h}^{R, k, j-1}(x)\) will be neglected.
- While equilibrium and compatibility are satisfied along the element during each iteration of loop \(j\), the section force-deformation relation and the element force-deformation relation is only satisfied within a specified tolerance when convergence is achieved.

\title{
Non Linear Structural Analysis Modelling
}

\author{
Victor E. Saouma \\ saouma@colorado.edu \\ University of Colorado, Boulder
}

Fall 2020

\section*{Table of Contents I}
(1) Introduction
(2) Lumped vs Distributed Plasticity
(3) Plastic Hinge

4 Lumped Elements
- Zero lengths
(5) LP: Limit State Element
- Columns
- Beams

6 Layers
- Connection
- So far we have covered:
- Classical plasticity
- Computational Methods
- Elements (including flexibility based, zero length, layers, limit states).
- Constitutive models
- methods of analysis
- Nonlinear (static) Push over analysis
- Nonlinear transient (dynamic) analysis
- Basis for Performance Based Structural Design
- We now can finally talk about modeling
- Modeling is the science and art of putting together a mathematical model, i.e. mesh, material properties, load.
- Modeling in the context of nonlinear frame analysis is not as simple as "meshing" a 2D or 3D solid for stress analysis.
- There is never a single, unique, correct way of putting a mesh.
- Before we start, we should ask ourseleves:
- 2D or 3D?
- Lumped or distributed plasticity?
- Layered section or Sectional forces?
- Bond slip?
- Limit state?
- Pushover or transient analysis?
- Damping: Rayleigh and/or hysteretic?
- How much non-linearity to expect? up to peak?, post-peak?
- Rigorous single analysis or approximate multiple analysis (Monte-Carlo)?
- It is always a compromise between:
- Needs, time constraint
- Our understanding of the problem and of nonlinear analysis,
- Tools available
- Quality of results expected.

\section*{Lumped vs Distributed Plasticity}


\section*{Plastic Hinge}

- \(M\) diagram, Linear
- Curvature \(\phi=\frac{M}{E I}\) diagram depends on the corresponding moment of inertia, whether gross or cracked.
- At crack location, there is an increase in the curvature.
- Moment curvature has two distinct points corresponding to \(\phi_{y}\) and \(\phi_{u}\).
- Considering a cantilevered beam cracking occur at the support, and inelastic rotation ( \(\phi_{y}<\phi<\phi_{u}\) ) will occur at the "plastic hinge" close to the critical section.
- We define an equivalent plastic hinge the length over which the plastic curvature is considered constant.
- Rotation \(\theta\) is given by
\[
\theta_{A B}=\int_{A}^{B} \phi d x= \begin{cases}\theta_{e}=\int_{A}^{B} \frac{M}{E l} d x & \text { Elastic rotation }  \tag{1}\\ \theta_{p}=\left(\phi_{u}-\phi_{y}\right) l_{p} & \text { Inelastic rotation }\end{cases}
\]
- For the cantilevered beam, \(\theta_{A B}\) is the area of the curvature diagram.
\[
\begin{align*}
\theta_{A B} & =\theta_{e}+\theta_{p} \\
& =\phi_{y} \frac{L}{2}+\left(\phi_{u}-\phi_{y}\right) I_{p} \tag{2}
\end{align*}
\]
- The displacement between \(A\) and \(B\) is given by the second Moment curvature theorem
\[
\begin{align*}
\Delta_{A B} & =\int_{A}^{B} x \phi_{A B} d x \text { where } x \text { is the distance of } d x \text { from } A  \tag{3}\\
& =\left(\frac{\phi_{y} L}{2} \frac{2 L}{3}\right)+\left(\phi_{u}-\phi_{y}\right) I_{p}\left(L-\frac{I_{p}}{2}\right) \tag{4}
\end{align*}
\]
- Not addressed her is the importance of using the gross or cracked elastic moduli



\section*{How do we model lateral deformation of column using LS model?}
- Flexibility-based element: Elastic response
- Zero-length elements
- Limit state shear spring with stiff axial and rotational springs
- Shear spring to model column shear plastic response
- Stiffness-based elements; Rigid element connectors

- Shown are the rigid elements for the connection.
- If you anticipate excessive nonlinear deformation in the distributed plasticity model, insert the nonlinear stiffness based element at each end.
- The flexibility based element is almost invariably used with layered elements (it could also be defined in terms of section forces ( \(N_{x}\) and \(\left.M_{z}\right)\) ).
- If bond slip is to be modeled, can place zero-length section element in parallel with the zero-length element.
- In case of mild nonlinearity, one flexibility element should suffice, but at least 3-4 stiffness based elements would be necessary.
- Stiffness based element: 3 IP; Flexibility based element: 5 IP.
- Choice between stiffness or flexibility based element is not obvious.
- Determination of the non-zero length of the plastic hinge, \(L_{p}\) can be "tricky", consult the work of Spacone.

- Usually, we do not include bond slip for beams.
- In the lumped plasticity, the rotational spring can be either nonlinear, or elasto perfectly plastic (EPP)
- Determination of the non-zero length of the plastic hinge, \(L_{p}\) can be "tricky", consult the work of Spacone.

- In 2D analysis, we refer to layers as opposed to fibers (3D).
- The \(z\) position of the layer is irrelevant (and need not be specified).
- Distinguish between
- Unconfined concrete
- Confined concrete
- Reinforcement
- Can place multiple layers at same y elevations.
- Mercury will provide stress and strain for each layer.

- Can not connect zero length elements amongst themselves.
- Adjacent model does not allow independent joint shear and rotational deformation; It is a rigid connection
- For non-rigid connectors, consult work of Lowes

\title{
Non Linear Structural Analysis \\ Constitutive Models
}

\author{
Victor E. Saouma \\ saouma@colorado.edu \\ University of Colorado, Boulder
}

Fall 2020

\section*{Table of Contents I}
(1) Introduction
- Linear Thermo-Elasticity
- Heuristic Models
(2) Dist. Plast.; Steel Models
- Introduction
- Bilinear Model with Isotropic Hardening
- G-F-M Model Modified by Filippou et al.
(3) Dist. Plast.; Concrete Models
- Modified Kent and Park Model
- Modified K \& P Model; Compression
- Modified Kent and Park Model; Tension

4 Lump-Plast.: Moment Rotation
- Lump-Plast.: Limit State Model
- Lump-Plast.: Bond-Slip
- Free Body Diagram
- Simplified Model

\section*{Table of Contents II}
- Zero length section element
- Constitutive models are at the heart of the finite element (material) non-linear analysis.
- In finite element of solids this would require \(\mathrm{D}_{t}\), however in the context we deal exclusively with one dimensional formulation, hence we will be seeking \(E^{\text {tan }}\).
- "classical" (1D) plasticity based models for steel were covered in the first plasticity lecture, all other models are "heuristically" based as they best capture the nonlinear cyclic response we are primarily interested in.
- Two parts:
- Major focus on fiber/layered elements (thus distributed plasticity), where we seek the non-linear stress-strain relationship \({ }^{1}\).
- Lumped plasticity to be characterized by nonlinear moment-curvature relations.

\footnotetext{
\({ }^{1}\) Zero length elements can also be characterized by non-linear stress-strain relations.
}
- This is how it ought to be.
- From continuum mechanics, we select for a convex thermodynamic potential a positive definite quadratic function in the components of the strain tensor
\[
\Psi=\frac{1}{2 \rho} \mathbf{a}: \varepsilon: \varepsilon
\]
and by definition \(\sigma=\rho \frac{\partial \Psi}{\partial \varepsilon}=\mathbf{a}: \varepsilon\) which is Hooke's law.
- Isotropy and linearity require that the potential \(\Psi\) be a quadratic invariant of the strain tensor, i.e. a linear combination of the square of the first invariant \(\varepsilon_{l}^{2}=[\operatorname{tr}(\varepsilon)]^{2}\), and the second invariant \(\varepsilon_{\| l}^{2}=\frac{1}{2} \operatorname{tr}\left(\varepsilon^{2}\right)\)
\[
\Psi=\frac{1}{\rho}\left[\frac{1}{2}\left(\lambda \varepsilon_{l}^{2}+4 \mu \varepsilon_{\|}\right)-(3 \lambda+2 \mu) \alpha \theta \varepsilon_{l}\right]-\frac{C_{\varepsilon}}{2 T_{0}} \theta^{2}
\]
where \(\lambda\) and \(\mu\) are Lame's parameters.
- Differentiating
\[
\begin{aligned}
\sigma & =\rho \frac{\partial \Psi}{\partial \varepsilon}=\lambda \operatorname{tr}(\varepsilon) \mathbf{I}+2 \mu \varepsilon-(3 \lambda+2 \mu) \alpha \theta \mathbf{I} \\
\sigma_{i j} & =\lambda \delta_{i j} \varepsilon_{k k}+2 \mu \varepsilon_{i j}-(3 \lambda+2 \mu) \alpha \theta \delta_{i j}
\end{aligned}
\]
- However too complex to develop a potential that can capture complex cyclic load and accompanying deterioration.
- Ultimately, we seek to capture the complex nonlinear response of steel and reinforced concretes structures subjected to reverse cyclic loading (earthquakes).
- There are very few thermodynamically rooted models which can achieve that (except those based on damage mechanics).
- As an alternative, models can be heuristically developed on the basis of laboratory observations resulting in empirical relations. All the models subsequently presented will fall in that category and are thus phenomenological models.

- Steel model for random cyclic excitations present only minor difficulties.
- Most models are heuristic, analytically defined, and the most successful ones are those with variable parameters.
- Within this group, we distinguish three different formulations:
(1) An explicit algebraic equation of the stress: \(\sigma=f(\varepsilon)\).
(2) An implicit algebraic equation of the stress: \(f(\sigma, \varepsilon)=0\).
(3) A first order differential equation: \(\frac{d \sigma}{d \varepsilon^{p}}=E^{p}=f(\sigma)\)
- A commonly used explicit model is:
\[
\frac{\sigma}{\sigma_{0}}=b \frac{\varepsilon}{\varepsilon_{0}}+\frac{(1-b) \frac{\varepsilon}{\varepsilon_{0}}}{\left[1+\left(\frac{\varepsilon}{\varepsilon_{0}}\right)^{R}\right] 1 / R}
\]
where \(\sigma_{0}, \varepsilon_{0}, b\), and \(R\) are the yield stress and strain, strain hardening parameter, and a coefficient which account for the Baushinger effect and varies depending on the magnitude of the excursion \(\varepsilon_{\max }\) into the inelastic range.


- Recall that

Isotropic Hardening yield surface expands isotropically and keeps growing. Ultimately most of the response is linear.
Kinematic hardening yield surface remains constant, translates with respect to the original position.
- Model originally developed by Filippou (1983).
- Rather than determining \(E^{\text {tan }}\) through \(H\left(E^{\text {tan }}=\frac{E . H}{E+H}\right)\) the simplified bilinear model computes it through a strain-hardening coefficient \(b\) which is the ratio of the post-yield tangent modulus \(E^{\text {tan }}\) and the initial elastic modulus \(E\), and considers only isotropic hardening \(E^{\text {tan }}=b \cdot E\)
- To account for the evolution of elastic domain in isotropic harding, a stress shift \(\sigma_{\Delta}\) is determined:
- If the incremental strain \(\Delta \varepsilon\) changes a positive value into a negative one:
\[
\Delta^{N}=1+a_{1} \cdot\left(\frac{\varepsilon^{\max }-\varepsilon^{\min }}{2 \cdot a_{2} \cdot \varepsilon_{y}}\right)^{0.8} ; \quad \sigma_{\Delta}=\Delta^{N} \cdot \sigma_{y} \cdot(1-b)
\]
- If the incremental strain \(\Delta \varepsilon\) changes a negative value into a positive one:
\[
\Delta^{P}=1+a_{3} \cdot\left(\frac{\varepsilon^{\max }-\varepsilon^{\min }}{2 \cdot a_{4} \cdot \varepsilon_{y}}\right)^{0.8} ; \quad \sigma_{\Delta}=\Delta^{P} \cdot \sigma_{y} \cdot(1-b)
\]
- \(a_{1}\) and \(a_{3}\) are isotropic hardening parameter which reflect an increase of the compression yield envelope through a fraction of the yield strength after a plastic strain \(a_{2} \cdot \frac{\sigma_{y}}{E}\), and tension yield envelope as a fraction of the yield strength after a plastic strain of \(a_{4} \cdot \frac{\sigma_{y}}{E}\).
- \(a_{2}\) and \(a_{4}\) are isotropic hardening parameter with respect to \(a_{1}\) and \(a_{3}\), and \(\varepsilon_{\max }\) and \(\varepsilon_{\text {min }}\) are the strain at the maximum and minimum strain reversal point.
- Limiting factor of this model is that \(a_{1}, a_{2}, a_{3}\) and \(a_{4}\) must be determined through curve fitting of the model with experimental results.
- Default values are \(a_{1}=0, a_{2}=55, a_{3}=0\), and \(a_{4}=55\) in OpenSees.

Requires input data in Mercury:
- mattag: Material tag
- modulus: Young's modulus of a material with mattag
- sigmaY0: Initial yield stress of a material with mattag
- b: Strain-hardening ratio between post-yield tangent and Young's modulus of a material with mattag
- a1: Isotropic hardening coefficient 1 of a material with mattag - increase of compression yield envelope as proportion of initial yield stress after a plastic strain of a2 \(\times\) (SigmaY0/modulus); (optional)
- a2: Isotropic hardening coefficient 2 of a material with mattag
- a3: Isotropic hardening coefficient 3 of a material with mattag - increase of tension yield envelope as proportion of initial yield stress after a plastic strain of a \(4 \times\) (SigmaY0/modulus)
- a4: Isotropic hardening coefficient 4 of a material with mattag (optional)
- density: Density of a material with mattag

- a) Hysteretic Behavior of Model w/o Isotropic Hardening
- b) Hysteretic Behavior of Model with Isotropic Hardening in Compression
- c) Hysteretic Behavior of Model with Isotropic Hardening in Tension
- Model was originally developed by Giuffre, Menegotto and Pinto. It was then modified by Filippou to include strain hardening.
- Main characteristic is the smooth curve which describes a behavior similar to the experimental one.

- a) Hysteretic Behavior of Model w/o Isotropic Hardening
- b) Hysteretic Behavior of Model with Isotropic Hardening in Compression
- c) Hysteretic Behavior of Model with Isotropic Hardening in Tension
- Note that for cyclic load (load/reload)
- Isotropic hardening is not desirable as the yield stress keeps on increasing and at some point we only have an elastic response.
- Kinematic hardening is desirable as it accounts for Bauschinger effect under cyclic load.


- Starts with empirical stress-strain relation
\[
\sigma^{*}=b \cdot \varepsilon^{*}+\frac{(1-b) \cdot \varepsilon^{*}}{\left(1+\varepsilon^{* R}\right)^{1 / R}}
\]
where,
\[
\varepsilon^{*}=\frac{\varepsilon-\varepsilon_{r e v}}{\varepsilon_{0}-\varepsilon_{r e v}} ; \quad \sigma^{*}=\frac{\sigma-\sigma_{r e v}}{\sigma_{0}-\sigma_{r e v}}
\]
- \(\sigma_{0}\) and \(\varepsilon_{0}\) are the stress and strain at the point where the two asymptotes of the branch under consideration meet \((B) ; \sigma_{r e v}\) and \(\varepsilon_{r e v}\) are the stress and strain at the point where the last strain reversal took place (A).
- The tangent modulus \(E^{\tan }\) is obtained by differentiating
\[
E^{\tan }=\frac{\mathrm{d} \sigma}{\mathrm{~d} \varepsilon}=\frac{\sigma_{0}-\sigma_{r e v}}{\varepsilon_{0}-\varepsilon_{r e v}} \cdot \frac{\mathrm{~d} \sigma^{*}}{\mathrm{~d} \varepsilon^{*}} ; \quad \frac{\mathrm{d} \sigma^{*}}{\mathrm{~d} \varepsilon^{*}}=b+\left[\frac{1-b}{\left(1+\varepsilon^{* R}\right)^{1 / R}}\right] \cdot\left[1-\frac{\varepsilon^{* R}}{1+\varepsilon^{* R}}\right]
\]
- There is a curved transition from a straight line asymptote with slope \(E\) (a) to another asymptote with slope \(E^{\text {tan }}\) (b).
- \(\sigma_{\text {rev }}, \varepsilon_{\text {rev }}\) are the stress and strain at the point of strain reversal (point A), which also forms the origin of the asymptote with slope \(E\) (a).
- \(\sigma_{0}\) and \(\varepsilon_{0}\) are the stress and strain at the point of intersection of the two asymptotes (point B).
- \(b\) is the strain hardening ratio between slope \(E^{t a n}\) and \(E\), and \(R\) is a parameter that influences the curvature of the transition curve between the two asymptotes and permits a good representation of the Bauschinger effect.
- \(\sigma_{0}, \varepsilon_{0}, \sigma_{r e v}\) and \(\varepsilon_{\text {rev }}\) are updated after each strain reversal.
- \(R\) depends on the absolute strain difference between the current asymptote intersection point (point B) and the previous maximum or minimum strain reversal point (point C) depending on whether the current strain is increasing or decreasing, respectively.
- There are two reported expression for \(R(\xi)\) :
- Menegotto-Pinto original model \(R(\xi)=R_{0}-\frac{c R_{1} \cdot \xi}{c R_{2}+\xi}\)
- The one reported in OpenSees: \(R(\xi)=R_{0}\left(1-\frac{c R_{1} \cdot \xi}{c R_{2}+\xi}\right)\)
where, \(R_{0}\) is the value of the parameter \(R\) during first loading, and \(c R_{1}\) and \(c R_{2}\) are experimentally determined parameters to be defined together with \(R_{0}\). \(\xi\) can be expressed as
\[
\begin{equation*}
\xi=\left|\frac{\varepsilon^{m}-\varepsilon_{0}}{\varepsilon_{y}}\right| \tag{1}
\end{equation*}
\]
where, \(\varepsilon^{m}\) is the strain at the previous maximum or minimum strain reversal point depending on whether the current strain is increasing or decreasing, respectively. \(\varepsilon_{0}\) is the strain at the current intersection point of the two asymptotes.
- both \(\varepsilon^{m}\) and \(\varepsilon_{0}\) lie along the same asymptote and \(\varepsilon_{y}\) is the initial yield strain.
- So far, model does not account for isotropic hardening in reverse cyclic load. Filippou proposed a shift of \(\sigma_{0}\) and \(\varepsilon_{0}\) in the linearly yield asymptote as follows:
- If the incremental strain \(\Delta \varepsilon\) changes a positive value to a negative value:
\[
\begin{aligned}
\Delta^{N} & =1+a_{1} \cdot\left(\frac{\varepsilon^{\max }-\varepsilon^{\min }}{2 \cdot a_{2} \cdot \varepsilon_{y}}\right)^{0.8} \\
\varepsilon_{0} & =\frac{-\sigma_{y} \cdot \Delta^{N}+E^{\tan } \cdot \varepsilon_{y} \cdot \Delta^{N}-\sigma_{r e v}+E \cdot \varepsilon_{r e v}}{E-E^{\tan }} \\
\sigma_{0} & =-\sigma_{y} \cdot \Delta^{N}+E^{\tan } \cdot\left(\varepsilon_{0}+\varepsilon_{y} \cdot \Delta^{N}\right)
\end{aligned}
\]
- If the incremental strain \(\Delta \varepsilon\) changes a negative value to a positive value,
\[
\begin{aligned}
\Delta^{P} & =1+a_{3} \cdot\left(\frac{\varepsilon^{\max }-\varepsilon^{\min }}{2 \cdot a_{4} \cdot \varepsilon_{y}}\right)^{0.8} \\
\varepsilon_{0} & =\frac{\sigma_{y} \cdot \Delta^{P}-E^{\tan } \cdot \varepsilon_{y} \cdot \Delta^{P}-\sigma_{r e v}+E \cdot \varepsilon_{r e v}}{E-E^{\tan }} \\
\sigma_{0} & =\sigma_{y} \cdot \Delta^{P}+E^{\tan } \cdot\left(\varepsilon_{0}-\varepsilon_{y} \cdot \Delta^{P}\right)
\end{aligned}
\]
where, \(a_{1}\) and \(a_{3}\) are isotropic hardening parameter which reflect an increase of the compression yield envelope through a fraction of the yield strength after a plastic strain \(a_{2} \cdot \frac{\sigma_{y}}{E}\), and tension yield envelope as a fraction of the yield strength after a plastic strain of \(a_{4} \cdot \frac{\sigma_{y}}{E} . a_{2}\) and \(a_{4}\) are isotropic hardening parameter with respect to \(a_{1}\) and \(a_{3}\), and \(\varepsilon_{\text {max }}\) and \(\varepsilon_{\text {min }}\) are the strain at the maximum and minimum strain reversal point.
- The problem is that \(a_{1}, a_{2}, a_{3}\) and \(a_{4}\) must be determined through curve fitting of the model with experimental results. Default values are \(a_{1}=0, a_{2}=55, a_{3}=0\), and \(a_{4}=55\). Note similarity with previous model.

Required Input data in Mercury:
- mattag: Material tag
- modulus: Young's modulus of a material with mattag
- sigmaYO: Initial yield stress of a material with mattag
- b: Strain-hardening ratio between post-yield tangent and Young's modulus of a material with mattag
- RO: Coefficient 0 of a material with mattag to control the transition from elastic to plastic branches - value between 10 and 20 is recommended
- cR1: Coefficient 1 of a material with mattag to control the transition from elastic to plastic branches - 0.925 is recommended
- cR2: Coefficient 1 of a material with mattag to control the transition from elastic to plastic branches -0.15 is recommended
- a1: Isotropic hardening coefficient 1 of a material with mattag - increase of compression yield envelope as proportion of initial yield stress after a plastic strain of a2 \(\times\) (SigmaYo/modulus)
- a2: Isotropic hardening coefficient 2 of a material with mattag
- a3: Isotropic hardening coefficient 3 of a material with mattag - increase of tension yield envelope as proportion of initial yield stress after a plastic strain of a4 \(\times\) (SigmaYo/modulus)
- a4: Isotropic hardening coefficient 4 of a material with mattag
- density: Density of a material with mattag


Determination (1) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{if Foceflag \({ }_{r, n}=0\)} \\
\hline if \(\Delta \mathcal{E}=0\) & else if \(\Delta \varepsilon<0\) & else if \(\Delta \varepsilon>0\) \\
\hline \[
\begin{aligned}
& \varepsilon_{r r v, r, n}=0 \\
& \sigma_{r e v, r, n}=0 \\
& \varepsilon_{0, r, n}=0 \\
& \sigma_{0, r, n}=0 \\
& \varepsilon_{r, n}^{\max }=\sigma_{y, r} / E_{r} \\
& \varepsilon_{r, n}^{\min }=-\sigma_{y, r} / E_{r} \\
& \text { Forceflag }_{r, n}=0 \\
& \sigma_{r, n}=\sigma_{i n i, r} \\
& E_{r, n}^{\tan }=E_{r}
\end{aligned}
\] & \[
\begin{aligned}
& \varepsilon_{r e v, r, n}=0 \\
& \sigma_{r e v, r, n}=0 \\
& \varepsilon_{0, r, n}=\sigma_{y, r} / E_{r} \\
& \sigma_{0, r, n}=\sigma_{y, r} \\
& \varepsilon_{r, n}^{\max }=\sigma_{y, r} / E_{r} \\
& \varepsilon_{r, n}^{\min }=-\sigma_{y, r} / E_{r} \\
& \varepsilon_{r e, n}=\varepsilon_{r, n}^{\min } \\
& \text { Forceflag } \\
& \xi_{r, n}=1 \\
& \xi=\left|\frac{\varepsilon_{p e, n}-\varepsilon_{0, r, n}}{\varepsilon_{y, r}}\right| \\
& R=R_{0}-R_{0}^{\text {nratio }} \cdot \frac{c R_{1} \cdot \xi}{c R_{2}+\xi} \\
& \dot{\varepsilon}=\frac{\varepsilon_{r, n}-\varepsilon_{r e v, r, n}}{\varepsilon_{0, r, n}-\varepsilon_{r e v, r, n}} \\
& \mathrm{c}_{1}=1+|\dot{\varepsilon}|^{R} \\
& \mathrm{c}_{2}=\mathrm{c}_{1}^{u / n} \\
& \sigma_{r, n}=b_{r} \cdot \dot{\varepsilon}+\left(1-b_{r}\right) \cdot \frac{\dot{\varepsilon}}{\mathrm{c}_{2}} \\
& \sigma_{r, n}=\sigma_{r, n} \cdot\left(\sigma_{0, r, n}-\sigma_{r e v, r, n}\right)+\sigma_{r e v, r, n} \\
& E_{r, n}^{\tan }=b_{r}+\frac{\left(1-b_{r}\right)}{\mathrm{c}_{1} \cdot \mathrm{c}_{2}} \\
& E_{r, n}^{\mathrm{tan}}=E_{r, n}^{\tan } \cdot \frac{\sigma_{0, r, n}-\sigma_{r v, r, n}}{\varepsilon_{0, r, n}-\varepsilon_{r e v, r, n}}
\end{aligned}
\] & \begin{tabular}{l}
\[
\begin{aligned}
& \varepsilon_{r e v, r, n}=0 \\
& \sigma_{r e v, r, n}=0 \\
& \varepsilon_{0, r, n}=-\sigma_{y, r} / E_{r} \\
& \sigma_{0, r, n}=-\sigma_{y, r} \\
& \varepsilon_{r, n}^{\operatorname{mix}}=\sigma_{y, r} / E_{r} \\
& \varepsilon_{r, n}^{\min }=-\sigma_{y, r} / E_{r} \\
& \varepsilon_{p e, n}=\varepsilon_{r, n}^{\max }
\end{aligned}
\] \\
Forceflag \(_{r, n}=-1\)
\[
\begin{aligned}
& \xi=\left|\frac{\varepsilon_{p e, n}-\varepsilon_{0, r, n}}{\varepsilon_{y, r}}\right| \\
& R=R_{0}-R_{0}^{n r a t i o n} \cdot \frac{c R_{1} \cdot \xi}{c R_{2}+\xi} \\
& \dot{\varepsilon}=\frac{\varepsilon_{r, n}-\varepsilon_{r v e, r, n}}{\varepsilon_{0, r, n}-\varepsilon_{r e v, r n}} \\
& \mathrm{c}_{1}=1+|\dot{\varepsilon}|^{R} \\
& \mathrm{c}_{2}=\mathrm{c}_{1}^{1 / R} \\
& \sigma_{r, n}=b_{r} \cdot \dot{\varepsilon}+\left(1-b_{r}\right) \cdot \frac{\dot{\varepsilon}}{\mathrm{c}_{2}} \\
& \sigma_{r, n}=\sigma_{r, n} \cdot\left(\sigma_{0, r, n}-\sigma_{r e v, r n}\right)+\sigma_{r e v, r, n} \\
& E_{r, n}^{\mathrm{tan}}=b_{r}+\frac{\left(1-b_{r}\right)}{\mathrm{c}_{1} \cdot \mathrm{c}_{2}} \\
& E_{r, n}^{\mathrm{tan}}=E_{r, n}^{\tan } \cdot \frac{\sigma_{0, r, n}-\sigma_{r v v, r, n}}{\varepsilon_{0, r, n}-\varepsilon_{r e v, r, n}}
\end{aligned}
\]
\end{tabular} \\
\hline
\end{tabular}

Determination (2) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{else if Foceflag \(_{\text {r.n }}=1\)} \\
\hline if \(\Delta \varepsilon<0\) & else if \(\Delta \varepsilon>0\) \\
\hline Forceflag, \({ }_{\text {,A }}=-1\)
\[
\begin{aligned}
& \xi=\left|\frac{\varepsilon_{p e, n}-\varepsilon_{0, r, n}}{\varepsilon_{r, r}}\right| \\
& R=R_{0}-R_{0}^{\text {vimano }} \cdot \frac{c R_{1} \cdot \xi}{c R_{2}+\xi} \\
& \dot{\varepsilon}=\frac{\varepsilon_{r, n}-\varepsilon_{r r, r, n}}{\varepsilon_{0, r, n}-\varepsilon_{m, r, n}} \\
& \mathrm{c}_{1}=1+|\dot{\varepsilon}|^{R} \\
& \mathrm{c}_{2}=\mathrm{c}_{1}^{\mathrm{u} / \pi} \\
& \sigma_{r, n}=b_{r} \cdot \dot{\varepsilon}+\left(1-b_{r}\right) \cdot \frac{\dot{\varepsilon}}{\mathrm{c}_{2}} \\
& \sigma_{r, n}=\sigma_{r, n} \cdot\left(\sigma_{0, r, n}-\sigma_{r v, r, n}\right)+\sigma_{r e v, r, n} \\
& E_{r, n}^{\mathrm{un}}=b_{r}+\frac{\left(1-b_{r}\right)}{\mathrm{c}_{1} \cdot \mathrm{c}_{2}} \\
& E_{r, n}^{\mathrm{tan}}=E_{r, n}^{\mathrm{tan}} \cdot \frac{\sigma_{0, r, n}-\sigma_{r e r, r, n}}{\varepsilon_{0, r, n}-\varepsilon_{r r, s, n}}
\end{aligned}
\] & \begin{tabular}{l}
\[
\begin{aligned}
& \varepsilon_{r r a s, n}, \sigma_{r m, n}, \varepsilon_{0, r, n}, \sigma_{0, s} \\
& \varepsilon_{r, n}^{\max }=\operatorname{Max}\left[\varepsilon_{r, n}^{\max }, \varepsilon_{r, n-1}\right] \\
& \varepsilon_{r, n}^{\min }=\operatorname{Min}\left[\varepsilon_{r, n}^{\min }, \varepsilon_{r, n-1}\right] \\
& \varepsilon_{p r, n}=\varepsilon_{r, n}^{\max }
\end{aligned}
\] \\
Forceflag \(_{, s}=1\)
\end{tabular} \\
\hline
\end{tabular}

Determination (3) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{lie if Focelage. \(=-1\)} \\
\hline if \(\Delta t>0\) & else if \(\Delta \ll 0\) \\
\hline  &  \\
\hline
\end{tabular}

Determination (4) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al.
- Concrete is much more difficult to model than steel.
- We need to address nonlinearity in compression, tension stiffening, and softening following tensile strength.
- Most popular model: Modified Kent and Park.


- A "good" concrete model must account for
- Effect of concrete confinement (by shear reinforcement) on the monotonic envelope curve in compression
- Successive degradation of stiffness of both the unloading and reloading curves, for increasing values of compressive strain
- Effect of tension stiffening: ability of concrete between cracks to resist tensile stress and contribute to the flexural stiffness of the member. As the magnitude of load increases, additional cracks form at closer intervals, hence reducing the tensile stress that can be developed in the concrete. Therefore tension stiffening is gradually reduced as load is increased in the post-cracking stage.
- Hysteretic response under cyclic loading in compression
- In compression stress-strain relation is empirically defined by three regions (compression positive)
\(O A: \varepsilon_{c} \leq \varepsilon_{0} \Rightarrow \sigma_{c}=K \cdot f_{c} \cdot\left[2 \cdot \frac{\varepsilon_{c}}{\varepsilon_{0}}-\left(\frac{\varepsilon_{c}}{\varepsilon_{0}}\right)^{2}\right]\) and \(E^{\text {tan }}=\frac{2 \cdot K \cdot f_{c}}{\varepsilon_{0}} \cdot\left(1-\frac{\varepsilon_{c}}{\varepsilon_{0}}\right)\)
From this equation, we can determine the maximum compressive strength of confined concrete (by simply setting \(\left.\varepsilon_{c}=\varepsilon_{0}\right) f_{c, \text { confined }}=K f_{c}\)
\[
\begin{aligned}
& A B: \varepsilon_{0}<\varepsilon_{c} \leq \varepsilon_{20} \Rightarrow \sigma_{c}=K \cdot f_{c} \cdot\left[1-Z\left(\varepsilon_{c}-\varepsilon_{0}\right)\right] \text { and } E^{\tan }=-Z \cdot K \cdot f_{c} \\
& B C: \varepsilon_{c}>\varepsilon_{20} \Rightarrow \sigma_{c}=0.2 \cdot K \cdot f_{c} \text { and } E^{\tan }=0
\end{aligned}
\]
where

\(\varepsilon_{0}^{\text {unconfined }}\)
\[
\varepsilon_{20}
\]

K
Z
\(f_{c}\)
\(f_{y s}\)
\(\rho_{s}\)
\(h\)
\(s_{h}\)

Concrete strain corresponding maximum stress usually set to 0.003
Concrete strain at 20 percent of maximum stress
factor which accounts for the strength increase due to confinement
Strain softening slope
Concrete compressive cylinder strength in \(\mathrm{MPa}(1 \mathrm{MPa}=145 \mathrm{psi})\) Yield strength of stirrups in MPa
Ratio of the volume of hoop reinforcement to the volume of concrete core measured to outside of stirrups
Width of concrete core measured to outside of stirrups Center to center spacing of stirrups or hoop sets

\section*{Dist. Plast.; Concrete Models}

\section*{Modified Kent and Park Model}
- The cyclic unloading and reloading behavior is represented by a set of straight lines. Hysteretic behavior occurs under, both, tensile and compressive stress.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\varepsilon_{0}\) & \(f_{c}\) & \(f_{t}\) & \(E_{0}\) & \(E_{t}\) & \(f_{c, 20}\) & \(\varepsilon_{20}\) \\
\hline Unconfined & 0.003 & Test & \(7.5 \sqrt{f_{c}^{\text {unc }}}\) & \(2 \frac{f_{c}^{\text {unc }}}{\varepsilon_{0}^{\text {unc }}}\) & \(\frac{E_{0}^{\text {unc }}}{5}\) & \(f_{c}^{\text {unc }} / 3\) & \(3 \varepsilon_{0}^{\text {unc }}\) \\
Confined & \(0.002 K\) & \(K f_{c}^{\text {unc }}\) & \(7.5 \sqrt{f_{c}^{u n c}}\) & \(2 \frac{f_{c}^{\text {conf }}}{\varepsilon_{0}^{\text {conf }}}\) & \(\frac{E_{0}^{\text {conf }}}{5}\) & \(0.2 f_{c}^{\text {conf }}\) & \(\varepsilon_{0}^{\text {conf }}+\frac{K f_{c}^{\text {unc }}-f_{c, 20}^{\text {confined }}}{Z K f_{c}^{\text {unc }}}\) \\
\hline
\end{tabular}
\(f_{c}\) in psi for \(f_{t}\); An alternative to the Kent and Park residual stress/strain is to use \(f_{c, r e s}^{\text {cont }}=0.9 f_{c}\) and \(\varepsilon_{\text {res }}^{\text {cont }}\) is assigned a "large" value to ensure gradual descent. This combination ensures stable analysis (Ghannoum, 2011).

- On the compressive side of the model, there is a successive degradation of stiffness of both the unloading and reloading lines for increasing values of maximum strain.
- The degradation of stiffness is such that the projections of all reloading lines intersect at a common point \(R\)
- R is determined by the intersection of the tangent to the monotonic envelope curve at the origin and the projection of the unloading line from point \(B\) that corresponds to concrete strength of \(0.2 \cdot f_{c}\)

- The tensile behavior of the model takes into account tension stiffening and the degradation of the unloading and reloading stiffness for increasing values of maximum tensile strain after initial cracking. The maximum tensile strength of the concrete (modulus of rupture) is assumed equal to be \(f_{t}=0.6228 \sqrt{f_{c}}\) where \(f_{t}\) and \(f_{c}\) are expressed in MPa.
- Tensile stress-strain relation is defined by three points with coordinates \(\left(\varepsilon_{t}, 0\right)\), ( \(\varepsilon_{t p}, \sigma_{t p}\) ) and ( \(\varepsilon_{u}, 0\) ), as represented by points \(\mathrm{J}, \mathrm{K}\) and M . \(\varepsilon_{t}\) is the strain at the point where the unloading line from the compressive stress region crosses the strain axis. \(\varepsilon_{t}\) changes with maximum compressive strain. \(\varepsilon_{t p}\) and \(\sigma_{t p}\) are the strain and stress at the peak of the tensile stress-strain relation.
- Given these three control points, the tensile stress-strain relation and tangent moduli are defined by the following equations (tension is positive),
\[
\begin{aligned}
& J K: \varepsilon_{t}<\varepsilon_{c} \leq \varepsilon_{t p}, \sigma_{c}=E^{\tan } \cdot\left(\varepsilon_{c}-\varepsilon_{t}\right), E^{\tan }=\frac{\sigma_{t p}}{\varepsilon_{t p}-\varepsilon_{t}} \\
& K M: \varepsilon_{t p}<\varepsilon_{c} \leq \varepsilon_{u}, \sigma_{c}=\sigma_{t p}+E^{\tan } \cdot\left(\varepsilon_{c}-\varepsilon_{t p}\right), E^{\tan }=-E_{t} \\
& M N: \varepsilon_{c}>\varepsilon_{u}, \sigma_{c}=0, E^{\tan }=0
\end{aligned}
\]
- Model can be better understood by following the example load paths.
- As the model unloads from compression, it crosses the strain axis at the point J .
- It then loads in tension until initial cracking occurs at point K.
- Beyond point K softening commences until the strain reversal point L .
- The unloading path follows a straight line from point \(L\) to point \(J\) where the model reloads in compression.
- The second time the model goes into tension is at point J'. The reloading path \(J^{\prime} K^{\prime}\) is exactly the duplication of the previous unloading path LJ that has been shifted a distance JJ ' along the strain axis.
- At point \(\mathrm{K}^{\prime}\) the model rejoins the softening branch which continues until the tensile stress is reduced to zero at point \(\mathrm{M}^{\prime}\). The stress remains zero through the strain reversal point N ' until the model reloads in compression at point J '. Henceforth, the tensile stress capacity of the model is reduced to zero.
- This concrete model is relatively economical in terms of the amount of memory required of the past stress-strain history. The parameters that are used as memory can be listed as follows:
- the stress and strain at the point corresponding to the last model state
- the strain at the last unloading point on the compressive monotonic envelope, \(\varepsilon_{m}\)
- The differential \(\Delta \varepsilon_{t}\) between maximum previous tensile strain and \(\varepsilon_{t}\)

Required Input data in Mercury:
- mattag: Material tag
- \(\sigma_{c}\) : Compressive yield stress of a material with mattag - -ve
- \(\varepsilon_{c}\) : Compressive yield strain of a material with mattag - -ve
- \(\sigma_{c u}\) : Compressive crushing stress of a material with mattag - -ve
- \(\varepsilon_{c u}\) : Compressive crushing strain of a material with mattag - -ve
- \(\lambda\) : Ratio between unloading slope at \(\varepsilon_{c}\) and slope Young's modulus of a material with mattag
- \(\sigma_{t}\) : Tensile yield stress of a material with mattag
- modulus: Tension softening stiffness(absolute value) - slope of the linear tension softening branch of a material with mattag
- density: Density of a material with mattag

\section*{Dist. Plast.; Concrete Models}


Determination (1) for modified Kent and Park model


Determination (2) for modified Kent and Park model


My "Yield" Moment
\(\theta_{y} \quad\) Chord rotation at "Yield"
\(\theta_{\text {cap }}\) Chord rotation (monotonic) at onset of strength loss (capping)
\(K_{S} \quad\) Hardening
\(K_{c} \quad\) Post-capping stiffness
- Parameters obtained through calibration with experimental data.
- Caution with unload (not addressed here)

- Zero-length shear spring in series with beam-column constitutive model
- Upon reaching failure surface, shear spring stiffness degraded to user defined value ( \(K_{\text {deg }}\) )
- Member total lateral response \((\Delta)\) is sum of shear spring displacement \(\left(\Delta_{s}\right)\) and beam-column displacement \(\left(\Delta_{f}\right)\)
- Results in
- Increased deformation/drift
- Shear strength loss
- Flexural yielding
- Loss of axial load carrying capacity leading to collapse

- Slip due to longitudinal reinforcing bar near the column and from the anchorage can be easily determined if we assume a uniform bond stress \(u_{b}\) along the bars within the development length inside the footing or the beam-column joint.
- From equilibrium \(u_{b}\left(\pi d_{b}\right) l_{d}=\frac{\pi d_{b}^{2}}{4} f_{s}\) where \(d_{b}\) is the bar diameter, \(I_{d}\) is the development length over which the slip occurs, solving for \(l_{d}, l_{d}=\frac{d_{b} f_{s}}{4 u_{b}}\)
- Assuming that the maximum strain occurs at the end of the column, and a linear variation of strain along the development length, the integral of the strain curve will give the total bar slip at the footing-column interface or beam-column interface is the slip given by \(S=\frac{\varepsilon_{s} l_{d}}{2}=\frac{f_{s} l_{d}}{2 E_{s}}\)
- Substituting \(S=\frac{\varepsilon_{s} d_{b} f_{s}}{8 u_{b}}\)
- Assuming that the cross section rotates about its neutral axis when slip occurs ( \(\phi_{y}=\varepsilon_{y} /(d-c)\) ), the displacement related to the bar slip at a point at a distance \(L\) from the column base will be \(\Delta_{s l i p}=\frac{\phi_{y} d_{b} f_{y} L}{8 u_{b}}\)

\section*{Simplified Model}
- A simplified bond model for bond stress in terms of the actual steel stress assumes a constant bond stress of \(u_{e}=12 \sqrt{f_{c}^{\prime}}\) prior to steel yielding, and another constant bond stress of \(u_{p}=6 \sqrt{f_{c}^{\prime}}\) past steel yielding
- Based on this assumption, the total bar slip \(S\) at the edge of the anchorage is obtained by integrating the steel strains over the embedded length.
- This model was used to obtain a monotonic relation for bar slip versus bar stress at the column base. Assuming sufficient anchorage:
\[
S_{1}=\frac{\varepsilon_{s} f_{s}}{8 u_{e}} d_{b} ; \quad \varepsilon_{s} \leq \varepsilon_{y} ; \quad S_{2}=\frac{\varepsilon_{y} f_{y}}{8 u_{e}} d_{b}+\frac{\left(\varepsilon_{s}+\varepsilon_{y}\right)\left(f_{s}-f_{y}\right)}{8 u_{p}} d_{b} ; \quad \varepsilon_{s}>\varepsilon_{y}
\]
where \(d_{b}\) is the bar diameter, \(u_{e}\) is the elastic bond stress \(=12 \sqrt{f_{c}^{\prime}}\) (psi), and \(u_{p}\) is the plastic bond stress \(=6 \sqrt{f_{c}^{\prime}}\).

\section*{Lump-Plast.: Moment Rotation}

\section*{Simplified Model}
```

clear
%% Input parameters
d_b=3/8; % bar diameter in inches
f_c=4000; % compressive strength (psi)
E_s=27300000; % psi
b=0.01; %
fy=64000;% original yield stress in psi
f_y=1.25*fy; % yield stress increaed by 25% for rate effect
%f_u=100000; % ksi
%
epsilon_y=f_y/E_s;
%% Bond
u_e=12*sqrt(f_c);
u_p=6*sqrt(f_c);
%
k=0;
epsilon_final=30*epsilon_y;
delta_epsilon=epsilon_final/100;
for epsilon_s=0:delta_epsilon:epsilon_final
k=k+1;
if epsilon_s<=epsilon_y
f_s=epsilon_s*E_s;
slip_y=epsilon_s*f_s*d_b/(8*u_e);
slip (k)=slip_y;
else
f_s=epsilon_y*E_s+b*(epsilon_s epsilon_y)*E_s;
slip_u=epsilon_y*f_y*d_b/(8*u_e)+(epsilon_s+epsilon_y)*(f_s f_y)*d_b/(8*u_p);
slip (k)=slip_u;
end

```

\section*{Simplified Model}
```

 normalized_stress(k)=f_s/f_y;
 end
plot(slip,normalized_stress,'linewidth ', 2); grid; xlim ([0,max(slip)]);
xlabel('Slip [in]','fontsize',14);ylabel('f_s/f_y','fontsize , 14);
print deps 'bond slip curve.pdf

```


\section*{Zero length section element}

\section*{This section is an adaptation from Ghannoum's model}
- Zero length section element should be used only when fiber elements are used if we want to capture the bond slip between concrete and rebar.
- We have a nonlinear post-peak response of bond stress vs bond slip, and we need to linearize it, and then solve for \(u_{p}\) (which will be different than the previously given value of \(6 \sqrt{f_{c}^{\prime}}\) suitable for the nonlinear hardening segment.
- We seek to have the linearized segment intersect the nonlinear one at \(1.25 f_{y}\), hence \(\varepsilon_{u}=\varepsilon_{y}+0.25 \frac{f_{y}}{E_{s} / h}=\frac{f_{y}}{E_{s}}+0.25 h \frac{f_{y}}{E_{s}}=0.26 h \varepsilon_{y}\) where \(h\) is the hardening parameter set to 100. Substituting with \(S_{2}=\frac{\varepsilon_{y} f_{y}}{8 u_{e}} d_{b}+\frac{\left(\varepsilon_{s}+\varepsilon_{y}\right)\left(f_{s}-f_{y}\right)}{8 u_{p}} d_{b}\); we obtain \(S_{u}=S_{y}+\frac{6.75 \varepsilon_{y} f_{y}}{8 u_{p}} d_{b}\)
- We can reasonably assume that \(S_{u}=\frac{\varepsilon_{u}}{\varepsilon_{y}} S_{y}=26 S_{y}\), upon substitution, we get:
\[
u_{p}=3.24 \sqrt{f_{c}^{\prime}}
\]
\(u_{p}\) may be used in so-called limit state elements to assess bond slip induced failure.
- Irrespective of which steel model is used in the beam-column, it is recommended to use the bilinear one for this element. Using a bilinear model, with \(h=100\) will be equivalent to having a bar slip curve such that the second segment intersect the exact one at \(f_{s}=1.25 f_{y}\) with \(u_{p}=3.24 \sqrt{f_{c}^{\prime}}\).
- In the steel bilinear model, Young's modulus should be adjusted to reflect bond slip, by replacing \(E_{s}\) by \(E_{b s} ; E_{b s}=\frac{f_{y}}{s_{y}}\)
- It should be noted that inherent in this assumption is a unit length of the zero length element.
- Finally, to maintain the same material stiffness ratio between bar-slip steel in the zero length section element, and the one in the frame element (longitudinal steel), we multiply the bar slip concrete material strains by \(E_{s} / E_{b s}\).
- The concrete properties for the zero length section element are such that the location of the neutral axis in the beam-column element and the zero length fiber section is the same.

\section*{Zero length section element}


Thus
\[
\left.\begin{array}{rl}
\theta_{s} & =\frac{S_{s}}{c^{\prime}}  \tag{2}\\
\Psi_{c o l} & =\frac{\varepsilon_{s}}{C^{\prime}}
\end{array}\right\} \theta_{s}=\Psi_{c o l} \frac{S_{s}}{\varepsilon_{s}}
\]
- Hence all fiber strains (corresponding to steel and concrete) in the zero length section must be scaled by \(\frac{S_{s}}{\varepsilon_{s}}\)
- This can be easily achieved in altering the material input data such that
(1) All stress values remain unchanged
(2) Strains are scaled by \(\frac{S_{y}}{\varepsilon_{y}}\)

\title{
Non Linear Structural Analysis Engineering Seismic Risk Analysis
}

\author{
Victor E. Saouma \\ saouma@colorado.edu \\ University of Colorado, Boulder
}

Fall 2014

\section*{Table of Contents I}
(1) Introduction
(2) Levels and Acceptance Criteria
(3) Capacity and Demand
(4) Capacity Design
(5) Seismic Hazard Analysis

6 Engineering Seismic Risk Analysis
(7) \(\mathrm{PSHA}=\mathrm{SHA}+E S R A\)
(8) Pushover Analysis
(9) Multiple-Strip Analysis
(10) Incremental Dynamic Analysis
(11) Endurance Time Analysis
(12) Summary

\section*{Introduction}
- By now, we have a good basic understandings of the tools to undertake a nonlinear analysis.
- We still have to review fundamental issues associated with time-history analysis.
- Ultimately, those tools will be used to undertake a modern Performance Based Earthquake Engineering investigation.
- The methodology of PBEE hinges on some basic definitions which must be understood.
- This lecture will present those ingredients necessary (but not yet how to combine them into a meal)

\section*{Performance Levels and Acceptance Criteria I}
- PBE seeks first to identify discrete performance levels for the major structural components which significantly affect the building function and safety.
- ASCE 41 (ASCE 2007) (and other codes) generally provide guidance three performance levels
- Immediate Occupancy where an essentially elastic behavior is sought by limiting structural damage (e.g., yielding of steel, significant cracking of concrete, and nonstructural damage.)
- Life Safety Limit damage of structural and nonstructural components so as to minimize the risk of injury or casualties and to keep essential circulation routes accessible.
- Collapse Prevention Ensure a small risk of partial or complete building collapse by limiting structural deformations and forces to the onset of significant strength and stiffness degradation.
- The engineer decides which performance levels

\section*{Performance Levels and Acceptance Criteria II}
- Performance Based Engineering 1 Most recent code, FEMA 750-p developed by the Building Seismic Safety Council for FEMA. It builds on previous pre-Standards.
\begin{tabular}{|c|c|c|}
\hline New Design & FEMA 310 (ASCE 1998) & ASCE/SEI 31 (2003) \\
Existing Buildings & FEMA 356 (ASCE 2000) & ASCE/SEI 41 (2006) \\
\hline
\end{tabular}

\section*{Performance Levels and Acceptance Criteria III}


\section*{NEHRP Recommended Seismic Provisions}
for New Buildings and Other Structures
FEMA P-750 / 2009 Edition


Figure C11.5-1 Expected perform ance as related to occupancy category OC) and levelofground motion.

\section*{Capacity and Demand}
- We will need to identify specific engineering demand parameters (EDP) and appropriate acceptance criteria to quantitatively evaluate the performance levels.
- The demand parameters typically include peak (shear) forces and deformations, inter-story drifts, and floor accelerations in structural and nonstructural components.
- Performance is checked by comparing computed demands with acceptance criteria (capacity) for the desired performance level.
- Depending on the structural configuration, the results of nonlinear analyses can be sensitive to assumed input parameters and the types of models used.
- One must have clear expectations about those portions of the structure that are expected to undergo inelastic deformations and then use the analyses to
(1) Confirm the locations of inelastic deformations
(2) Characterize
- Deformation demands of yielding elements
- Force demands in non-yielding elements.
- Capacity design concepts can provide reliable performance.

\section*{Capacity Design}
- Capacity Design is indeed the approach where the engineer decides a priori which elements will yield (and thus need to be ductile) and those which will not yield (and will need to be stiff and with sufficient strength).
- Advantages
- Safeguard against brittle failure of elements which can not be designed as ductile.
- Limiting the location of the structure where expensive ductile detailing is required (they act as fuses).
- Reliable energy dissipation by enforcing deformation modes where inelastic deformations are routed to ductile elements.
- Very similar to the structural design of a car.
- Example: strong column/weak beam.

\section*{Seismic Hazard Analysis}
- In the context of PBEE, one must first conduct a seismic hazard analysis (SHA) which includes location identification (with respect to a fault), geotechnical conditions (shear wave velocity), magnitude of previously recorded earthquakes, size of the rupture area, type of fault, crustal rock damping characteristics, rock properties.
- From the corresponding analysis one can determine annual rate of exceedance \(\lambda\) vs intensity measure (IM) a measure of the ground motion characteristic, typically the (peak or spectral) ground acceleration.



\section*{Engineering Seismic Risk Analysis I}
- The annual rate of exceedance of the ground motion amplitude, \(\lambda\), (inverse of return period \(T_{R}\) ) for Design Base Level (DBL) and Maximum Design Level (MDL) are determined from a Poisson probability model
\[
\lambda=-\frac{\operatorname{Ln}\left(1-P_{E}\right)}{t}
\]
where \(P_{E}\) is the probability of occurrence of at least one event (i.e. an earthquake) during the life time \(t\).
- \(t\) is usually taken as 50 years for buildings, and 100 years for dams.
- \(P_{E}\) for ground motion is usually assumed to be in the ranges \([20 \% 64 \%]\) for DBL and [10\% 20\%] for MDL.
- Assuming a lifetime of 100 years, the corresponding \(T_{r}=1 / \lambda\) is determined for 450 and 1,000 years for DBL and MDL, respectively from.

\section*{Engineering Seismic Risk Analysis II}


\section*{PSHA=SHA+ESRA I}
- Probability Seismic Hazard Analysis or PSHA=SHA+ESRA.
- Engineering Seismic Risk Analysis yielded annual rate of exceedance \(\lambda\) in terms of probability of occurrence of at least one event and life time \(t\).
- Seismic hazard analysis yielded annual rate of exceedance \(\lambda\) vs intensity measure.
- Select \(\lambda\) from the first curve, and PGA from the second.

- with the PGA known, one selects (or generate) a set of \(n\) ground motion acceleration time histories to perform multiple analyses.

\section*{PSHA=SHA+ESRA II}
- From the corresponding analysis one plots

Intensity Measure (IM) a measure of the ground motion characteristic, typically the (peak or spectral) ground acceleration.
Engineering demand parameter (EDP) which corresponds to any outcome of the analysis of relevance to the safety assessment, such as base shear, drift.
- We repeat this process \(m\) times for different intensity levels.
- There are four types of analysis that can be performed.
\begin{tabular}{lcccc}
\multicolumn{1}{c}{ Method } & & S/D Analysis & \(m\) & \(n\) \\
\hline Push Over Analysis & POA & Static & na & na \\
Multi Strip Analysis & MSA & Dynamic & 3 & \(n\) \\
Incremental Dynamic Analysis & IDA & Dynamic & Variable & \(n\) \\
Endurance Time Analysis & ETA & Dynamic & 1 & \(n\)
\end{tabular}
where \(m\) be the number of ground motion intensity levels (or strips), and \(n\) the number of ground motions for a given \(m\).
- In all cases we plot IM vs EDP (and not the other way around!)

\section*{PushOver Analysis}

- Applies incrementally load or displacement
- Extensively used in building to capture failure mode in lieu of the more expensive transient nonlinear analysis.
- Assumed to be capable of mobilizing principal nonlinear modes of structural behavior up to collapse.

Multiple-Strip Analysis

- Hinges on a deterministic number of ground motion intensity levels \(m\) (or strips)
- Typically \(m=3\) corresponding to the exceedance probabilities of \(10 \%\) in 50 -year, \(5 \%\) in 50 -year, and \(2 \%\) in 50 -year.
- To each strip correspond \(n\) ground motions.
- Two possibilities:
- Selection of \(n\) different ground motions scaled at \(m\) different levels.
- Selection of \(n_{i}\) ground motions for each of the intensity levels with no scaling.
- Following the analysis, and for each \(m\) the usual IM versus EDP results are first plotted.
- Then for each IM histograms are generated and the most suitable probability distribution function (normal or log-normal) is selected.

Incremental Dynamic Analysis

- Considers \(n\) ground motions which will all be incrementally scaled \(m\) times until failure.
- a priori \(m\) is unknown and each ground motion \(n\) will result in a corresponding failure at a different intensity level \(m_{i}\).
- Following the analysis, the IDA curve connects the resulting \(m\) demand parameters for each of the \(n\) ground motions.
- Each one of those curve will be asymptotic to the corresponding failure.
- Capture of the overall response by a single measurable quantity at a given EDP (EDP = \(e d p_{i}\) ) can be determined through the corresponding probability distribution function.
- Similarly probability distribution function for a given \(\mathrm{IM}\left(\mathrm{IM}=i m_{i}\right)\) can also be determined.
- Those curves can be used for the determination of the fragility plots, and probability of failure.

\section*{Endurance Time Analysis}

- The preceding two methods started with actual recorded ground motion and required up to \(m \times n\) analysis, computationally expensive and may force the analysis to make greatly simplified assumption in their model. Such assumptions may lead to erroneous conclusions.
- ETA method starts with a synthetic ground motion and modify it to be characterized with an increasing amplitude.
- Substitute to the \(m\) intensity levels previously determined and \(n\) endurance time acceleration function (ETAF) are used.
- Outcome of the analysis, is the average of the \(n\) analyses in terms of IM versus EDP. The resulting curve is analogous to the one of the POA or \(50 \%\) fractile of IDA.

\section*{Summary}


\title{
Non Linear Structural Analysis Nonlinear Transient Analysis
}

\author{
Victor E. Saouma \\ saouma@colorado.edu \\ University of Colorado, Boulder
}

Spring 2019

\section*{Table of Contents I}
(9) Introduction
(2) Background
- Variational Formulation
- Mass Representation
- Damping
- Euler Methods
(3) Time Integration Methods
- Newmark's Method; Derivation
- Newmark's Algorithm
- Hilber-Hughes-Taylor Method

4 Fast Fourrier Transform
- Matlab Code
(5) Soil Structure Interactions
- Shaking: Deconvolution
- Soil-Structure Interaction
- When the frequency of the applied load (excitation) of a structure is less than about a third of its lowest natural frequency of vibration, then we can neglect inertia effects and treat the problem as a quasi-static one, otherwise a dynamic analysis must be performed.
- For a very flexible structure, even a slowly applied load may necessitate a dynamic analysis.
- If the structure is subjected to an impact load, than one must be primarily concerned with (stress) wave propagation. In such a problem, we often have high frequencies and the duration of the dynamic analysis is about the time it takes for the wave to travel across the structure.
- If inertia forces are present, then we are confronted with a dynamic problem and can analyse it through any one of the following solution procedures:
(1) Response Spectrum (only linear elastic systems)
(2) Time history analysis through modal analysis (again linear elastic), or direct time integration.
- Prof. Wilson is reported to have said:

Ray Clough and I regret we created the approximate response spectrum method for seismic analysis of structures in 1962.... At that time many members of the profession were using the sum of the absolute values of the modal values to estimate the maximum member forces. Ray suggested we use the SRSS method to combine the modal values. However, I am the one who put the approximate method in many dynamic analysis programs which allowed engineers to produce meaningless positive numbers of little or no value... After working with the RSM for over 50 years, I recommend it not be used for seismic analysis.
- Methods of structural dynamics are essentially independent of finite element analysis as these methods presume that we already have the stiffness, mass, and damping matrices. Those matrices may be obtained from a single degree of freedom system, from an idealization/simplification of a frame structure, or from a very complex finite element mesh. The time history analysis procedure remains the same.
- In a general three-dimensional continuum, the equations of motion of an elementary volume \(\Omega\) without damping is \(\mathrm{L}^{\top} \sigma+\mathrm{b}=\) mü where m is the mass density matrix equal to \(\rho \mathbf{I}\), and \(\mathbf{b}\) is the vector of body forces. The Differential
\[
\text { operator } \mathbf{L} \text { is } \mathbf{L}=\left[\begin{array}{ccc}
\frac{\partial}{\partial x} & 0 & 0 \\
0 & \frac{\partial}{\partial y} & 0 \\
0 & 0 & \frac{\partial}{\partial z} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \\
\frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x} \\
0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y}
\end{array}\right]
\]
- For linear elastic material \(\boldsymbol{\sigma}=\mathbf{D}_{e} \varepsilon\) and for incremental nonlinear analysis, the constitutive equations can be written as \(\dot{\boldsymbol{\sigma}}=\mathbf{D}_{i} \dot{\varepsilon}\) where \(\mathbf{D}_{i}\) is the tangent stiffness matrix.
- \(\mathbf{L}^{T} \boldsymbol{\sigma}+\mathbf{b}=\mathbf{m u}\) describes the body motion in a strong sense, a weak formulation is obtained by the principle of minimum complementary virtual work (or Weighted Residual/Galerkin) \(\int_{\Omega} \delta \mathbf{u}^{T}\left[\mathbf{L}^{T} \boldsymbol{\sigma}+\mathbf{b}-\mathbf{m u ̈}\right] \mathrm{d} \Omega=0\)
- Applying Gauss divergence theorem \(\left(\iint_{A} \phi \operatorname{div} \mathbf{q d} A=\oint_{s} \phi \mathbf{q}^{T}\right.\) nds \(\left.-\iint_{A}(\nabla \phi)^{T} \mathbf{q} d A\right)\) and recalling that \(\mathbf{L u}=\varepsilon\), we obtain \(\int_{\Omega}\left[\delta \mathbf{u}^{\top}(\mathrm{mu}-\mathbf{b})+\delta \varepsilon^{T} \sigma\right] \mathrm{d} \Omega-\int_{\Gamma} \delta \mathbf{u}^{\top} \mathrm{td} \Gamma=0\) so far no assumption has been made with regard to material behavior.
- Next we will seek the spatial discretization of the virtual work equation.
\[
\begin{aligned}
& \mathbf{u}=\mathbf{N} \overline{\mathbf{u}} ; \delta \mathbf{u}^{T}=\delta \overline{\mathbf{u}}^{T} \mathbf{N}^{T} ; \quad \ddot{\mathbf{u}}=\mathbf{N} \ddot{\overline{\mathbf{u}}} \\
& \mathbf{B}=\mathbf{L N} ; \quad \varepsilon=\mathbf{B} \overline{\mathbf{u}} ; \quad \delta \varepsilon^{T}=\delta \overline{\mathbf{u}}^{T} \mathbf{B}^{T} \\
& \dot{\boldsymbol{\varepsilon}}=\mathrm{B} \dot{\overline{\mathbf{u}}}
\end{aligned}
\]
- For linear problems \(\boldsymbol{\sigma}_{t, n}=\mathbf{D}_{e} \mathbf{B} \overline{\mathbf{u}}_{t, n}\), and with proper substitution, this would yield

or \(\mathbf{M} \overline{\bar{u}}_{t, n}+\mathbf{K} \overline{\mathbf{u}}_{t, n}=\mathbf{P}_{t, n}^{\text {ext }}\) Which represents the semi-discrete linear equation of motion in the implicit time integration.
- Note similarity between the mass matrix and the geometric one,
\[
\left[\mathbf{k}_{g}^{(e)}\right]=\left[P^{(e)} \int_{L}\left\{\mathbf{N}_{, x}\right\}\left\lfloor\mathbf{N}_{, x}\right\rfloor d x\right\}
\]
- Note the absence of the damping coefficient (which is a non-rational numerical "trick").
- If we assume viscous damping (and replacing \(\overline{\mathbf{u}}\) by \(\mathbf{u}\) ) we obtain
\[
\mathbf{M}_{t t} \cdot \ddot{\mathbf{u}}_{t}+\mathbf{C}_{t t} \cdot \dot{\mathbf{u}}_{t}+\mathbf{P}_{t}^{i n t}=\mathbf{P}_{t}^{\text {ext }}
\]
where \(\mathbf{M}_{t t}\) and \(\mathbf{C}_{t t}\) are the mass and viscous damping matrices for the idealization of the structure; \(\ddot{\mathbf{u}}_{t}\) is the nodal acceleration vector, \(\dot{\mathbf{u}}_{t}\) is the nodal velocity vector, \(\mathbf{P}_{t}^{\text {int }}\) is the static restoring or internal nodal force vector resulting from the nodal displacement vector \(\mathbf{u}_{t}\), and \(\mathbf{P}_{t}^{\text {ext }}\) is the vector of applied nodal forces due to a seismic loading.
- Numerical methods for solving this differential equation are divided into two major categories; explicit and implicit methods. We will limit coverage to implicit schemes and in particular: 1) Newmark \(\beta\) method, 2) the Hilber-Hughes-Taylor (HHT) method.
- There are two possible representation of the mass matrix: lumped and consistent.
- Lumped mass: it is assumed that all the masses are concentrated at the end nodes. Though not exactly correct, the advantage of this model is that we will have a diagonal matrix which can be easily inverted.
\[
\mathbf{m}_{e}=\rho \cdot \boldsymbol{A} \cdot L_{e}\left[\begin{array}{cccccc}
1 / 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 & 0 & 0 \\
0 & 0 & \alpha_{r} \cdot L_{e}^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & \alpha_{r} \cdot L_{e}^{2}
\end{array}\right]
\]

Note: \(\alpha_{r}\) zero will result in a singular mass matrix which is undesirable if we have to invert the mass matrix. An ad hoc solution to define \(\alpha_{r}\) is to imagine that a uniform slender bar of length \(L_{e} / 2\) and mass \(m / 2\) is attached to each node and rotates with it. The associated mass moment of inertia would be \(I_{z}=(m / 2)\left(L_{e} / 2\right)^{2} / 3\), and consequently \(\alpha_{r}=1 / 24\). It should be noted that
models based on lumped mass can run substantially faster than those based on consistent mass.
- Consistent mass uses a kinematically equivalent mass matrix where inertia forces are associated with all degrees of freedom.
- Given \(\mathbf{m}_{e}=\int_{0}^{L_{e}} \rho \cdot A(x) \cdot \mathbf{N}_{d}(x)^{T} \cdot \mathbf{N}_{d}(x) \mathrm{d} x\) and the shape functions of the beam column, it can be shown that the matrix is
\[
\mathbf{m}_{e}=\frac{\rho \cdot A \cdot L_{e}}{420}\left[\begin{array}{cccccc}
140 & 0 & 0 & 70 & 0 & 0 \\
0 & 156 & 22 \cdot L_{e} & 0 & 54 & -13 \cdot L_{e} \\
0 & 22 \cdot L_{e} & 4 \cdot L_{e}^{2} & 0 & 13 \cdot L_{e} & -3 \cdot L_{e}^{2} \\
70 & 0 & 0 & 140 & 0 & 0 \\
0 & 54 & 13 \cdot L_{e} & 0 & 156 & -22 \cdot L_{e} \\
0 & -13 \cdot L_{e} & -3 \cdot L_{e}^{2} & 0 & -22 \cdot L_{e} & 4 \cdot L_{e}^{2}
\end{array}\right]
\]

The mass matrix is then transformed into the global reference \(\mathrm{M}_{e}=\boldsymbol{\Gamma}_{e}^{T} \cdot \mathbf{m}_{e} \cdot \boldsymbol{\Gamma}_{e}\)
- All structures are damped, (2nd law of thermodynamic) otherwise their oscillations will never stop. Damping can be viewed as a frictional force which dissipates energy, and can take different form.
- Most commonly used form of damping is the so-called viscous or Rayleigh damping which, when inserted in the equation of motion, has the following form
\[
\mathbf{M}_{t t} \cdot \ddot{\mathbf{u}}_{t, n}+\mathbf{C}_{t t} \cdot \dot{\mathbf{u}}_{t, n}+\mathbf{P}_{t, n}^{i n t}=\mathbf{P}_{t, n}^{e x t}
\]
where, \(\ddot{\mathbf{u}}_{t, n}, \dot{\mathbf{u}}_{t, n}\) and \(\mathbf{u}_{t, n}\) are the nodal acceleration, velocity, and displacement vectors at the current time step, respectively; \(\mathbf{P}_{t, n}^{\text {int }}\) is the static restoring or internal nodal force vector at the current time step.
- Damping is supposed to model the dissipation of energy. In a nonlinear analysis, this is accounted for by some constitutive models which include hysterisis damping, such as the Modified Kent and Park model for concrete.


Stiffness proportional damping
- In linear elastic analysis, the most common form of damping is the so-called viscous damping (better known as Rayleigh damping). In this simplification, we assume the presence of a viscous damper (which by definition is sensitive to velocity) between the structure and an external fixed point (mass proportional), and another set of dampers inside the structure connecting all the degrees of freedom (stiffness proportional damper).
- Viscous damping: \(\mathbf{C}_{t t}=a_{m} \cdot \mathbf{M}_{t t}+b_{k} \cdot \mathbf{K}_{t t}\) where, \(a_{m}\) and \(b_{k}\) are coefficients which pre-multiply the mass and stiffness terms respectively.
- Coefficients \(a_{m}\) and \(b_{k}\) are calculated based upon two circular frequencies ( \(\omega_{1}\) and \(\omega_{2}\), radians/sec.) to be damped at \(\xi_{1}\) and \(\xi_{2}\) respectively. Where \(\omega_{m}\) and \(\xi_{m}\) are the circular frequency and the damping ratio of the \(m^{\text {th }}\) mode.
- It can be easily shown that
\[
\frac{1}{2}\left[\begin{array}{cc}
\frac{1}{\omega_{i}} & \omega_{i} \\
\frac{1}{\omega_{j}} & \omega_{j}
\end{array}\right]\left\{\begin{array}{l}
a_{m} \\
b_{k}
\end{array}\right\}=\left\{\begin{array}{l}
\zeta_{i} \\
\zeta_{j}
\end{array}\right\}
\]
- If one assumes the same damping ratio \(\zeta\) for both modes (reasonable practical assumption), then
\[
a_{m}=\zeta \frac{2 \omega_{i} \cdot \omega_{j}}{\omega_{i}+\omega_{j}} ; \quad b_{k}=\zeta \frac{2}{\omega_{i}+\omega_{j}}
\]
- Again, it should be emphasized that different damping coefficients should be used in linear and in nonlinear analysis (specially if the nonlinear constitutive model accounts for hysterisis damping. Furthermore, if Rayleigh damping is used in a nonlinear analysis, then coefficients \(a_{m}\) and \(b_{k}\) may have to be updated at each time increment to reflect the change in the tangential stiffness matrix \(\mathbf{K}_{t}\).
- In practice we can obtain damping coefficients by exciting a structure with shakers albeit for only the elastic range.
- Euler method is a numerical procedure to solve initial values ordinary differential equations (as in structural dynamics). In other words, given a solution at time \(t_{n}\), how do we get the solution at time \(t_{n+1}\).
- Note that we referred to Newton's method for nonlinear analysis, and Euler for dynamic.
- In our case, we discretize space by the finite element, and discretize time by the finite difference.
- As with Newton's method, it all start with the Taylor's series.
- Forward Euler/Explicit
\[
y\left(t_{n}+h\right) \equiv y_{n+1}=y\left(t_{n}\right)+\left.h \frac{d y}{d t}\right|_{t_{n}}+O\left(h^{2}\right) \Rightarrow y_{n+1}^{?} \simeq y_{n}^{\vee}+h f\left(y_{n}^{\vee}, t_{n}\right)
\]
where \(h=\Delta t\), and \(f\left(y_{n}, t_{n}\right)=\left.\frac{d y}{d t}\right|_{t_{n}}\) This is also referred to as explicit since \(y_{n+1}\) is given explicitly in terms of known quantities such as \(y_{n}\) and \(f\left(y_{n}, t_{n}\right)\) and there is no equation to solve.

Explicit methods are easy to implement but are conditionally sable (i.e. \(h\) should be smaller than a critical value). This is similar to the approximate step by step method used earlier for geometric nonlinear problems.
- Backward Euler/Implicit starts with the following backward Taylor series expansion
\(y\left(t_{n}\right) \equiv y_{n}=y\left(t_{n+1}-h\right)=y\left(t_{n+1}\right)-\left.h \frac{d y}{d t}\right|_{t_{n+1}}+O\left(h^{2}\right) \Rightarrow y_{n+1}^{?} \simeq y_{n}^{\sqrt{ }}+h f\left(y_{n+1}^{?}, t_{n+1}\right)\)
It is an implicit method since \(f\left(y_{n+1}, t_{n+1}\right)\) is not known and a (usually) nonlinear equation must be solved at every time step (possibly by the Newton-Raphson method). Evidently, this is more computationally expensive than the explicit method, however the method is unconditionally stable.
- We note that the implicit method (at the cost of a Newton-Raphson solution) always provides an "exact" solution. In the context of structural dynamics, we can say that equilibrium is satisfied. This is not the case in the explicit method.
- Numerical example: Solve the following ordinary linear first order differential equation: \(\frac{d y}{d t}=1+(t-y(t))^{2} ; \quad 2 \leq t \leq 3 ; \quad y(0)=1 ; n=0\).
- Forward Euler with \(h=0.1\)
\[
y_{n+1}=y_{n}+h f\left(y_{n}, t_{n}\right) \Rightarrow y_{1}=1+0.1\left[1+(2 .-1 .)^{2}\right]=1.2
\]
- The Backward Euler will give
\[
\begin{aligned}
y_{n+1} & =y_{n}+h f\left(y_{n+1}, t_{n+1}\right) \\
\Rightarrow y_{1} & =1+0.1\left[1+\left(2.1-y_{1}\right)^{2}\right] \\
\Rightarrow 0 & =0.1 y_{1}^{2}-1.42 y_{1}+1.541 \\
\Rightarrow y_{1} & =1.1839
\end{aligned}
\]

In this case we had a quadratic equation to solve, however in general we may have to use Newton's method to solve for \(y_{n}\).
- In the context of nonlinear structural analysis, this would imply that we are checking equilibrium at \(n=1\), which is not the case in the explicit method.

- Newmark's method is a generalization of Euler's method for second order differential equations (equation of motion)
- Taylor's series (as usual) is our starting point
\[
\begin{aligned}
& \binom{\mathbf{u}}{\dot{\mathbf{u}}}^{n}=\binom{\mathbf{u}}{\dot{\mathbf{u}}}^{n-1}+\Delta t\binom{\dot{\mathbf{u}}}{\ddot{\mathbf{u}}}^{n-1} \\
& \text { Forward Euler } \\
& \binom{\mathbf{u}}{\dot{\mathbf{u}}}^{n}=\binom{\mathbf{u}}{\dot{\mathbf{u}}}^{n-1}+\Delta t\binom{\dot{\mathbf{u}}}{\ddot{\mathbf{u}}}^{n}
\end{aligned} \text { Backward Euler } \quad . ~ \$
\]
- Newmark's method differs from Euler's method by replacing higher order derivatives with simpler expressions (and thus lower accuracy) for the sake of efficiency.
- Again, we first consider the Taylor series expansions of the nodal displacement and velocity vector terms about the values at the previous time \(n-1\).
\[
\begin{aligned}
& \mathbf{u}_{t, n} \approx \mathbf{u}_{t, n-1}+\frac{\partial \mathbf{u}_{t, n-1}}{\partial t} \Delta t+\frac{\partial^{2} \mathbf{u}_{t, n-1}}{\partial t^{2}} \frac{\Delta t^{2}}{2!}+\frac{\partial^{3} \mathbf{u}_{t, n-1}}{\partial t^{3}} \frac{\Delta t^{3}}{3!}+\cdots \\
& \dot{\mathbf{u}}_{t, n} \approx \dot{\mathbf{u}}_{t, n-1}+\frac{\partial^{2} \mathbf{u}_{t, n-1}}{\partial t^{2}} \Delta t+\frac{\partial^{3} \mathbf{u}_{t, n-1}}{\partial t^{3}} \frac{\Delta t^{2}}{2!}+\cdots
\end{aligned}
\]
- Those two equations represent the approximate displacement and velocity vectors ( \(\mathbf{u}_{t, n}\) and \(\dot{\mathbf{u}}_{t, n}\) ) except for high order terms of Taylor series. We represent the last terms of the above two equations as follow:
\[
\begin{aligned}
\frac{\partial^{3} \mathbf{u}_{t, n-1}}{\partial t^{3}} \frac{\Delta t^{3}}{3!} & \approx \frac{\frac{\partial^{2} \mathbf{u}_{t, n}}{\partial \partial^{2} t}-\frac{\partial^{2} \mathbf{u}_{t, n-1}}{\partial^{2} t}}{\Delta t} \frac{\Delta t^{3}}{3!} \approx\left(\ddot{\mathbf{u}}_{t, n}-\ddot{\mathbf{u}}_{t, n-1}\right) \frac{\Delta t^{2}}{3!} \\
& \approx \beta\left(\ddot{\mathbf{u}}_{t, n}-\ddot{\mathbf{u}}_{t, n-1}\right) \Delta t^{2} \\
\frac{\partial^{3} \mathbf{u}_{t, n-1}}{\partial t^{3}} \frac{\Delta t^{2}}{2!} & \approx \frac{\frac{\partial^{2} \mathbf{u}_{t, n}-\frac{\partial^{2} \mathbf{u}_{t, n-1}}{\partial^{2} t}}{\Delta t} \frac{\Delta t^{2}}{2!} \approx\left(\ddot{\mathbf{u}}_{t, n}-\ddot{\mathbf{u}}_{t, n-1}\right) \frac{\Delta t}{2!}}{} \\
& \approx \gamma\left(\ddot{\mathbf{u}}_{t, n}-\ddot{\mathbf{u}}_{t, n-1}\right) \Delta t
\end{aligned}
\]
where \(\beta\) and \(\gamma\) are parameters which depict numerical approximations.
- Substituting
\[
\begin{aligned}
& \mathbf{u}_{t, n}=\mathbf{u}_{t, n-1}+\Delta t \cdot \dot{\mathbf{u}}_{t, n-1}+\frac{\Delta t^{2}}{2} \cdot \ddot{\mathbf{u}}_{t, n-1}+\Delta t^{2} \cdot \beta \cdot\left(\ddot{\mathbf{u}}_{t, n}-\ddot{\mathbf{u}}_{t, n-1}\right) \\
& \dot{\mathbf{u}}_{t, n}=\dot{\mathbf{u}}_{t, n-1}+\Delta t \cdot \ddot{\mathbf{u}}_{t, n-1}+\Delta t \cdot \gamma \cdot\left(\ddot{\mathbf{u}}_{t, n}-\ddot{\mathbf{u}}_{t, n-1}\right)
\end{aligned}
\]
- Hence, we obtain the Newmark \(\beta\) method, which consists of the following equations (forward difference):
\[
\begin{align*}
\mathbf{P}_{t, n}^{e x t} & =\mathbf{M}_{t t} \cdot \ddot{\mathbf{u}}_{t, n}+\mathbf{C}_{t t} \cdot \dot{\mathbf{u}}_{t, n}+\mathbf{P}_{t, n}^{i n t}  \tag{1}\\
\mathbf{u}_{t, n} & =\mathbf{u}_{t, n-1}+\Delta t \cdot \dot{\mathbf{u}}_{t, n-1}+\frac{\Delta t^{2}}{2}\left[(1-2 \beta) \ddot{\mathbf{u}}_{t, n-1}+2 \beta \cdot \ddot{\mathbf{u}}_{t, n}\right]  \tag{2}\\
\dot{\mathbf{u}}_{t, n} & =\dot{\mathbf{u}}_{t, n-1}+\Delta t\left[(1-\gamma) \ddot{\mathbf{u}}_{t, n-1}+\gamma \cdot \ddot{\mathbf{u}}_{t, n}\right] \tag{3}
\end{align*}
\]
where the first equation is the equation of equilibrium expressed at time \(n\), and the other two are finite difference formulas describing the evolution of the approximation solution (Note we have three equations and three unknowns: \(\mathbf{u}_{t, n}\), \(\dot{\mathbf{u}}_{t, n}\) and \(\ddot{\mathbf{u}}_{t, n}\). \(\beta\) and \(\gamma\) are parameters that determine the stability and accuracy characteristics. Stability conditions for the Newmark \(\beta\) method follows:
- unconditionally stable if \(\gamma \geq \frac{1}{2}\) and \(\beta \geq \frac{\gamma}{2}\)
- conditionally stable if \(\gamma \geq \frac{1}{2}\) and \(\beta<\frac{\gamma}{2}\) with the following stability limit: \(\frac{\Delta t}{T} \leq \frac{1}{2 \pi} \frac{1}{\sqrt{\gamma-2 \beta}}=0.551\)
\begin{tabular}{cccccc}
\hline Method & Type & \(\beta\) & \(\gamma\) & Stability condition & Order of accuracy \\
\hline Constant acceleration & Implicit & \(1 / 4\) & \(1 / 2\) & Unconditional & 2 \\
Linear acceleration & implicit & \(1 / 3!=1 / 6\) & \(1 / 2!=1 / 2\) & \(\Delta t \leq 2 \sqrt{3} / \omega\) & 2 \\
Central difference & Explicit & 0 & \(1 / 2\) & \(\Delta t \leq 2 / \omega\) & 2 \\
\hline
\end{tabular}
- Eq. 1, 2 and 3 can be rewritten as:
\[
\begin{align*}
\mathbf{P}_{t, n}^{e x t} & =\mathbf{M}_{t t} \cdot \ddot{\mathbf{u}}_{t, n}+\mathbf{C}_{t t} \cdot \dot{\mathbf{u}}_{t, n}+\mathbf{P}_{t, n}^{\text {int }}  \tag{4}\\
\mathbf{u}_{t, n} & =\tilde{\mathbf{u}}_{t, n}+\Delta t^{2} \cdot \beta \cdot \ddot{\mathbf{u}}_{t, n}  \tag{5}\\
\dot{\mathbf{u}}_{t, n} & =\tilde{\mathbf{u}}_{t, n}+\Delta t \cdot \gamma \cdot \ddot{\mathbf{u}}_{t, n} \tag{6}
\end{align*}
\]
where the known quantities at time step \(n-1\) have a (.) with
\[
\begin{aligned}
\tilde{\mathbf{u}}_{t, n} & =\mathbf{u}_{t, n-1}+\Delta t \cdot \dot{\mathbf{u}}_{t, n-1}+\frac{\Delta t^{2}}{2}(1-2 \beta) \ddot{\mathbf{u}}_{t, n-1} \\
\tilde{\mathbf{u}}_{t, n} & =\dot{\mathbf{u}}_{t, n-1}+\Delta t(1-\gamma) \ddot{\mathbf{u}}_{t, n-1}
\end{aligned}
\]
- Eq. 5 gives \(\ddot{\mathbf{u}}_{t, n}=\frac{\mathbf{u}_{t, n}-\tilde{u}_{t, n}}{\Delta t^{2} \cdot \beta}\);
- Substituting in Eq. 6 we can solve for \(\dot{\mathbf{u}}_{t, n}=\tilde{\mathbf{u}}_{t, n}+\frac{\gamma}{\Delta t \cdot \beta}\left(\mathbf{u}_{t, n}-\tilde{\mathbf{u}}_{t, n}\right)\).
- Finally substituting in Eq. 4 we obtain:
\[
\begin{align*}
& \underbrace{\frac{1}{\Delta t^{2} \cdot \beta} \mathbf{M}_{t t} \cdot \mathbf{u}_{t, n}+\frac{\gamma}{\Delta t \cdot \beta} \mathbf{C}_{t t} \cdot \mathbf{u}_{t, n}+\mathbf{P}_{t, n}^{\text {int }}}_{?} \\
& =\underbrace{\mathbf{P}_{t, n}^{e x t}+\frac{1}{\Delta t^{2} \cdot \beta} \mathbf{M}_{t t} \cdot \tilde{\mathbf{u}}_{t, n}+\frac{\gamma}{\Delta t \cdot \beta} \mathbf{C}_{t t} \cdot \tilde{\mathbf{u}}_{t, n}-\mathbf{C}_{t t} \cdot \tilde{\mathbf{u}}_{t, n}}_{\checkmark} \tag{7}
\end{align*}
\]
- If the trial solutions in given iteration step \(k\) are \(\mathbf{u}_{t, n}^{k}\), and \(\mathbf{P}_{t, n}^{i n t, k}\), then it does not satisfy the equations of motion. Hence, we can write for this particular step with residual force vector \(\mathbf{P}_{t, h}^{R, k}\) :
\[
\mathbf{P}_{t, n}^{R, k}=\mathbf{P}_{t, n}^{e x t}+\overline{\mathbf{M}}_{t t}\left(\tilde{\mathbf{u}}_{t, n}-\mathbf{u}_{t, n}^{k}\right)-\mathbf{C}_{t t} \cdot \tilde{\mathbf{u}}_{t, n}-\mathbf{P}_{t, n}^{i n t, k}
\]
where, \(\overline{\mathbf{M}}_{t t}=\frac{\mathbf{M}_{t t}+\Delta t \cdot \gamma \cdot \mathbf{C}}{\Delta t^{2} \cdot \beta}\)
- Using initial stiffness iterative method, we can solve for \(\Delta \mathbf{u}_{t, n}^{k}\) from \(\mathbf{P}_{t, h}^{R, k}=\mathbf{K}_{\text {eff }} \cdot \Delta \mathbf{u}_{t, n}^{k}\) where, \(\mathbf{K}_{\text {eff }}\) is the effective stiffness matrix, and \(\Delta \mathbf{u}_{t, n}^{k}=\mathbf{u}_{t, n}-\mathbf{u}_{t, n}^{k}\).
- In elastic section, \(\mathbf{P}_{t, n}^{\text {int }}=\mathbf{K}_{t t} \cdot \mathbf{u}_{t, n}\); Substituting we can solve for \(\mathbf{u}_{t, n}\) :
\[
\mathbf{K}_{e f f} \cdot \mathbf{u}_{t, n}=\mathbf{P}_{t, n}^{e x t}+\overline{\mathbf{M}}_{t t} \cdot \tilde{\mathbf{u}}_{t, n}-\mathbf{C}_{t t} \cdot \tilde{\mathbf{u}}_{t, n}
\]
where, \(\mathbf{K}_{\text {eff }}=\overline{\mathbf{M}}_{t t}+\mathbf{K}_{t t}\) (lumped or consistent mass matrix).
- Finally, we solve for \(\delta \mathbf{u}_{t, n}^{k}\) and the updated displacement vector \(\mathbf{u}_{t, n}^{k+1}\) at the next iteration step \(k+1\) :
\[
\delta \mathbf{u}_{t, n}^{k}=\left[\mathbf{K}_{\text {eff }}\right]^{-1} \cdot \mathbf{P}_{t, n}^{R, k} ; \quad \mathbf{u}_{t, n}^{k+1}=\mathbf{u}_{t, n}^{k}+\delta \mathbf{u}_{t, n}^{k}
\]

Note need to invert the mass matrix only for consistent matrix.
- Note analogy with nonlinear analysis where \(\delta \mathbf{u}\) is equal to the tangent stiffness matrix times the residual force.
- A major drawback of Newmark \(\beta\) method is the tendency for high frequency noise to persist in the solution. On the other hand, when linear damping or artificial viscosity is added via the parameter \(\gamma\), the accuracy is markedly degraded. The \(\alpha\) method, improves numerical dissipation for high frequency without degrading the accuracy as much.
- Equation of motion in HHT method is written at current time step \(n\) (forward difference) as:
\[
\underbrace{\mathbf{M}_{t t} \cdot \ddot{\mathbf{u}}_{t, n}}_{\mathbf{P}_{t, n}^{\text {inertia }}}+\mathbf{P}_{t, n}^{\text {int }}=\mathbf{P}_{t, n}^{e x t}
\]

Seeking an approximate solution of this equation by one-step difference, we write,
\[
\mathbf{M}_{t t} \cdot \ddot{\mathbf{u}}_{t, n}+(1+\alpha) \mathbf{P}_{t, n}^{i n t}-\alpha \cdot \mathbf{P}_{t, n-1}^{\text {int }}=(1+\alpha) \mathbf{P}_{t, n}^{e x t}-\alpha \mathbf{P}_{t, n-1}^{e x t}
\]

We note that the HHT method introduces \(\alpha\left(\mathbf{P}_{t, n}^{i n t}-\mathbf{P}_{t, n-1}^{i n t}\right)\) which is akin of stiffness proportional damping (indeed it is commonly said that the \(\alpha\) method provides numerical damping). If the above equation is expanded, effect of damping introduced, and possible material nonlinearity introduced, we obtain:
\[
(1+\alpha) \mathbf{P}_{t, n}^{e x t}-\alpha \mathbf{P}_{t, n-1}^{e x t}=\mathbf{M}_{t t} \cdot \ddot{\mathbf{u}}_{t, n}+(1+\alpha) \mathbf{C}_{t t} \cdot \dot{\mathbf{u}}_{t, n}-\alpha \cdot \mathbf{C}_{t t} \cdot \dot{\mathbf{u}}_{t, n-1}+(1+\alpha) \mathbf{P}_{t, n}^{i n t}-\alpha \cdot \mathbf{P}_{t, n-1}^{i n t}
\]

If \(-1 / 3 \leq \alpha \leq 0, \beta=(1-\alpha)^{2} / 4\), and \(\gamma=(1-2 \alpha) / 2\), then the \(\alpha\) method is unconditionally stable and has a second-order accuracy.
- Assuming that we have obtained the response at the previous time step \(n-1\), i.e. \(\mathbf{u}_{t, n-1}, \dot{\mathbf{u}}_{t, n-1}\) and \(\ddot{\mathbf{u}}_{t, n-1}\) which satisfy the equation of motion, we now seek to determine the solution at the current time step \(n\) by iteration.
- First of all, we need to determine effective external force and effective stiffness.
\[
\begin{align*}
& \underbrace{\frac{1}{\Delta t^{2} \cdot \beta} \mathbf{M}_{t t} \cdot \mathbf{u}_{t, n}+\frac{\gamma}{\Delta t \cdot \beta}(1+\alpha) \mathbf{C}_{t t} \cdot \mathbf{u}_{t, n}+(1+\alpha) \mathbf{P}_{t, n}^{i n t}}_{?} \\
& =\underbrace{(1+\alpha) \mathbf{P}_{t, n}^{e x t}-\alpha \cdot \mathbf{P}_{t, n-1}^{e x t}+\frac{1}{\Delta t^{2} \cdot \beta} \mathbf{M}_{t t} \cdot \tilde{\mathbf{u}}_{t, n}+\frac{\gamma}{\Delta t \cdot \beta}(1+\alpha) \mathbf{C}_{t t} \cdot \tilde{\mathbf{u}}_{t, n}}_{\checkmark}  \tag{8}\\
& \underbrace{-(1+\alpha) \mathbf{C}_{t t} \cdot \tilde{\mathbf{u}}_{t, n}+\alpha \cdot \mathbf{C}_{t t} \cdot \dot{\mathbf{u}}_{n-1}+\alpha \cdot \mathbf{P}_{t, n}^{i n t}}_{\checkmark}
\end{align*}
\]
- The trial solutions in iteration step \(k\) are \(\mathbf{u}_{t, n}^{k}\), and \(\mathbf{P}_{t, n}^{\text {int,k}}\), does not necessarily satisfy the equations of motion. Hence, we can write for this particular step:
\[
\begin{aligned}
\mathbf{P}_{t, n}^{R, k} & =(1+\alpha) \mathbf{P}_{t, n}^{e x t}-\alpha \cdot \mathbf{P}_{t, n-1}^{e x t}+\overline{\mathbf{M}}_{t t}\left(\tilde{\mathbf{u}}_{t, n}-\mathbf{u}_{t, n}^{k}\right)-(1+\alpha) \mathbf{C}_{t t} \cdot \tilde{\mathbf{u}}_{t, n}+\alpha \cdot \mathbf{C}_{t t} \cdot \dot{\mathbf{u}}_{t, 1} \\
& -(1+\alpha) \mathbf{P}_{t, n}^{\text {int,k}}+\alpha \cdot \mathbf{P}_{t, n-1}^{\text {int }}
\end{aligned}
\]
where, \(\overline{\mathbf{M}}_{t t}=\frac{\mathbf{M}_{t}+\Delta t \cdot \gamma(1+\alpha) \mathbf{C}_{t t}}{\Delta t^{2} \cdot \beta}\) and \(\mathbf{P}_{t, h}^{R, k}\) is the residual force vector.
- Using the initial stiffness iterative method, we can solve for \(\Delta \mathbf{u}_{t, n}^{k}\) from \(\mathbf{P}_{t, n}^{R, k}=\mathbf{K}_{\text {eff }} \cdot \Delta \mathbf{u}_{t, n}^{k}\) where, \(\mathbf{K}_{\text {eff }}\) is the effective stiffness matrix, and \(\Delta \mathbf{u}_{t, n}^{k}=\mathbf{u}_{t, n}-\mathbf{u}_{t, n}^{k}\)
- In elastic section, we can express \(\mathbf{P}_{t, n}^{\text {int }}\) to compute the effective stiffness matrix with initial stiffness matrix \(\mathbf{K}_{t t}\) as: \(\mathbf{P}_{t, n}^{i n t}=\mathbf{K}_{t t} \cdot \mathbf{u}_{t, n}\).
- Substituting we solve for \(\mathbf{u}_{t, n}\) :
\(\mathbf{K}_{e f f} \cdot \mathbf{u}_{t, n}=(1+\alpha) \mathbf{P}_{t, n}^{e x t}-\alpha \cdot \mathbf{P}_{t, n-1}^{e x t}+\overline{\mathbf{M}}_{t t} \cdot \tilde{\mathbf{u}}_{t, n}-(1+\alpha) \cdot \mathbf{C}_{t t} \cdot \tilde{\mathbf{u}}_{t, n}+\alpha \cdot \mathbf{C}_{t t} \cdot \dot{\mathbf{u}}_{t, n-1}+\alpha \cdot \mathbf{P}_{t, n-1}^{\text {int }}\) where, \(\mathbf{K}_{\text {eff }}=\overline{\mathbf{M}}_{t t}+(1+\alpha) \mathbf{K}_{t t}\)
- Finally, we solve for \(\delta \mathbf{u}_{t, n}^{k}\) and the updated displacement vector \(\mathbf{u}_{t, n}^{k+1}\) at the next iteration step \(k+1\) :
\[
\delta \mathbf{u}_{t, n}^{k}=\left[\mathbf{K}_{e f f}\right]^{-1} \cdot \mathbf{P}_{t, n}^{R, k} ; \mathbf{u}_{t, n}^{k+1}=\mathbf{u}_{t, n}^{k}+\delta \mathbf{u}_{t, n}^{k}
\]
- Final Remarks:
- \(\alpha\) introduces a damping that grows with the ratio of time increment to the period of vibration of a node.
- Negative values of \(\alpha\) cause damping
- If \(\alpha=0\), we have no artificial damping (energy preseving) and is exactly the constant acceleration (trapezoidal rule) - Newmark's \(\beta\) method if \(\beta=1 / 4\) and \(\gamma=1 / 2\).
- Minimum value is \(\alpha=-1 / 3\) which provides the maximum artificial damping. This results in a damping ratio of about \(6 \%\) when the time increment is \(40 \%\) of the period of oscillation of the mode being studied and smaller if the oscillation period increases.
- This artificial damping is not very substantial for realistic time increment and low frequencies, but is non-negligible for high frequencies.
- A default value of -0.05 is recommended.
- We are accustomed to consider a signal in the time domain, i.e \(f(t)\).
- Fourier series provides an alternate way of representing data: instead of representing the signal amplitude as a function of time, we represent the signal by how much information is contained at different frequencies.
- A Fourier series takes a signal and decomposes it into a sum of sines and cosines of different frequencies, \(f(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \sin (2 \pi n t)+b_{n} \cos (2 \pi n t)\right)\) where \(f(t)\) is the signal in the time domain, \(a_{n}\) and \(b_{n}\) are unknown coefficients, \(n\) is an integer with units of \(\mathrm{Hertz}(\mathrm{Hz})=1 / \mathrm{s}\) and corresponds to the frequency of the wave.
- Just as any function can be replaced by a corresponding Fourrier series, a signal originally expressed in the time domain, can be expressed in the frequency domain through a so-called Fast Fourrier Transform (FFT).
\[
\begin{equation*}
x(t) \xrightarrow{\mathrm{FFT}} X(\omega) \Rightarrow X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi \omega t} \mathrm{~d} t \tag{9}
\end{equation*}
\]
while the inverse FFT takes us back from the frequency domain to the time domain through:
\[
\begin{equation*}
X(\omega) \xrightarrow{\mathrm{FFT}^{-1}} x(t) \Rightarrow x(t)=\int_{-\infty}^{\infty} X(\omega) e^{i 2 \pi \omega t} \mathrm{~d} \omega \tag{10}
\end{equation*}
\]
- Reason we perform this operation:
- Much "hidden" information contained in the signal can be best captured in the frequency domain (for instance, identify natural frequencies of a structural response to an excitation)
- Filter response in the frequency domain, and then go back to the time domain.
- Examples of so-called Butterworth filter:
\[
|H(j \omega)|^{2}= \begin{cases}\text { Low pass } & \frac{1}{1+\left(\frac{\omega}{\omega_{L}}\right)^{2 n}} \\ \text { High pass } & \frac{1}{1+\left(\frac{\omega_{U}}{\omega}\right)^{2 n}} \\ \text { Band pass } & \left.\frac{1}{1+\left(\frac{\omega}{\omega_{L}}\right)^{2 n}} \frac{1}{1+\left(\frac{o m e g a}{}\right.}\right)^{2 n} \\ \text { Band stop } & \frac{1}{1+\left(\frac{\omega_{L}}{\omega}\right)^{2 n}} \frac{1}{1+\left(\frac{o m e g a}{\omega_{U}}\right)^{2 n}}\end{cases}
\]
where \(\omega, \omega_{L}, \omega_{U}\) and \(n\) are the frequency, the lower and upper filter frequency, and the order of the filter respectively. Following figure: Low Pass (25); High Pass (50); Band Pass (25-50); Band Stop (25-50) Filters, \(N=4\)

```

%% First Example
clear; close all; clc
GS = 'c:/Program Files/gs/gs9.23/bin/gswin64. exe ';
scrsz = get (0,'ScreenSize'); % Screen size
fs=14;
x = rand (1,10); % suppose 10 samples of a random signal
y=fft (x); % Fourier transform of the signal
iy= ifft(y); % inverse Fourier transform
x2 = real(iy); % chop off tiny imaginary parts
norm(x x2) % compare original with inverse of transformed
%===
%% Create a signal of 4 seconds at a sampling rate of 0.01:
dt = 1/100; % sampling rate
et = 4; % end of the interval
t = 0:dt:et; % sampling range
y=3*\operatorname{sin}(4*2*pi*t) +5*\operatorname{sin}(2*2*pi*t); % sample the signal
%
hf1 = figure('Position ',[1 scrsz(4)/4.5 scrsz(3)/2.5 scrsz(4)/2.0]);
subplot(3,2,1); % first of two plots
plot(t,y,'LineWidth ',2); grid % plot with grid
axis([0
xlabel('Time (s)'); % time expressed in seconds
ylabel(Amplitude ');% amplitude as function of time
title('Original Signal'); axis ([$$
\begin{array}{llll}{0}&{4}&{7.5}&{7.5}\end{array}
$$]);
%
%% Compute and plot Fourrier transform
Y = fft(y); % compute Fourier transform
n=\operatorname{size}(y,2)/2; % 2nd half are complex conjugates
amp_spec = abs(Y)/n;% absolute value and normalize
%
subplot (3,2,2);

```
```

32 freq = (0:79)/(2*n*dt); % abscissa viewing wind

```
```

plot(freq,amp_spec(1:80), LineWidth ',2); grid % plot amplitude spectrum

```
plot(freq,amp_spec(1:80), LineWidth ',2); grid % plot amplitude spectrum
xlabel('Frequency (Hz)'); % 1 Herz = number of cycles/second
xlabel('Frequency (Hz)'); % 1 Herz = number of cycles/second
ylabel('Amplitude'); % amplitude as function of frequency
ylabel('Amplitude'); % amplitude as function of frequency
title('Original Signal'); axis([[0}808006])
title('Original Signal'); axis([[0}808006])
%===================================================================================
%% Add Noise to signal and compute the amplitude spectrum.
noise = randn(1, size(y,2)); % random noise
ey = y + 2*noise; % samples with noise
eY = fft(ey); % Fourier transform of noisy signal
n = size(ey,2)/2; % use size for scaling
amp_spec = abs(eY)/n; % compute amplitude spectrum
subplot (3,2,3);
plot(t,ey, LineWidth ',2); grid on % plot noisy signal with grid
axis([0 et 8 8]); % scale axes for viewing
xlabel('Time (s)'); % time expressed in seconds
ylabel('Amplitude'); % amplitude as function of time
title ('Noise Added to Signal'); axis ([[0 4 4 7.5 7.5]);
%
freq = (0:79)/(2*n*dt); % abscissa viewing window
eY = fft(ey); % compute Fourier transform
n=\operatorname{size}(y,2)/2; % 2nd half are complex conjugates
e_amp_spec = abs(eY)/n; % absolute value and normalize
subplot (3,2,4);
plot(freq,e_amp_spec(1:80),'LineWidth ',2); grid % plot amplitude spectrum
title ('Noise Added to Slgnal'); axis ([[0 8 0 6 6]);
%=================================================================================
%% fiter noise
fY = fix (eY/500)*500; % set numbers < 500 to zero
ifY = ifft(fY); % inverse Fourier transform of fixed data
cy = real(ifY); % remove imaginary parts
subplot(3,2,5)
```

```
6 4 ~ p l o t ( t , c y , ~ L i n e W i d t h ~ ' , 2 ) ; ~ g r i d ~ o n ~ \% ~ p l o t ~ c o r r e c t e d ~ s i g n a l ~
axis([0 et 8 8]); % adjust scale for viewing
xlabel('Time (s)'); % time expressed in seconds
ylabel('Amplitude '); % amplitude as function of time
title('Noisy Filtered Signal'); axis([[0}404 7.5 7.5])
%
cY=fft(cy); % compute Fourier transform
n = size(cy,2)/2; % 2nd half are complex conjugates
e_amp_spec = abs(cY)/n; % absolute value and normalize
subplot (3,2,6);
plot(freq,e_amp_spec(1:80),'LineWidth ',2) ; grid % plot amplitude spectrum
title('Noisy Filtered Signal'); axis ([[0 8 0 6 6}])\mathrm{ );
set(gcf, 'PaperPositionMode ', 'auto');
FileName= 'fft example.eps ';
print (FileName,' depsc');
eps2pdf(FileName,GS,0);
```


Original Signal

Noise Added to Signal

Noisy Filtered Signal

Original Signal

Noise Added to SIgnal

Noisy Filtered Signal

Non Linear Structural Analysis

Soil Structure Interaction

Victor E. Saouma
saouma@colorado.edu
University of Colorado, Boulder

Fall 2020

Table of Contents I

(1) Fast Fourrier Transform

- Matlab Code
- Transfer Function
(2) Deconvolution
(3) Soil-Structure Interaction
(4) Free Field
- Validation
(5) Rocking

Fast Fourrier Transform

- We are accustomed to consider a signal in the time domain, i.e $f(t)$.
- Fourier series provides an alternate way of representing data: instead of representing the signal amplitude as a function of time, we represent the signal by how much information is contained at different frequencies.
- A Fourier series takes a signal and decomposes it into a sum of sines and cosines of different frequencies, $f(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \sin (2 \pi n t)+b_{n} \cos (2 \pi n t)\right)$ where $f(t)$ is the signal in the time domain, a_{n} and b_{n} are unknown coefficients, n is an integer with units of $\mathrm{Hertz}(\mathrm{Hz})=1 / \mathrm{s}$ and corresponds to the frequency of the wave.
- Just as any function can be replaced by a corresponding Fourrier series, a signal originally expressed in the time domain, can be expressed in the frequency domain through a so-called Fast Fourrier Transform (FFT).

$$
\begin{equation*}
x(t) \xrightarrow{\mathrm{FFT}} X(\omega) \Rightarrow X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-i 2 \pi \omega t} \mathrm{~d} t \tag{1}
\end{equation*}
$$

while the inverse FFT takes us back from the frequency domain to the time domain through:

$$
\begin{equation*}
X(\omega) \xrightarrow{\mathrm{FFT}^{-1}} x(t) \Rightarrow x(t)=\int_{-\infty}^{\infty} X(\omega) e^{i 2 \pi \omega t} \mathrm{~d} \omega \tag{2}
\end{equation*}
$$

- Reason we perform this operation:
- Much "hidden" information contained in the signal can be best captured in the frequency domain (for instance, identify natural frequencies of a structural response to an excitation)
- Filter response in the frequency domain, and then go back to the time domain.
- Examples of so-called Butterworth filter:

$$
|H(j \omega)|^{2}= \begin{cases}\text { Low pass } & \frac{1}{1+\left(\frac{\omega}{\omega_{L}}\right)^{2 n}} \\ \text { High pass } & \frac{1}{1+\left(\frac{\omega_{U}}{\omega}\right)^{2 n}} \\ \text { Band pass } & \frac{1}{1+\left(\frac{\omega}{\omega_{L}}\right)^{2 n}} \frac{1}{1+\left(\frac{o m e g a U}{\omega}\right)^{2 n}} \\ \text { Band stop } & \frac{1}{1+\left(\frac{\omega_{L}}{\omega}\right)^{2 n}} \frac{1}{1+\left(\frac{\text { omega }}{\omega_{U}}\right)^{2 n}}\end{cases}
$$

where $\omega, \omega_{L}, \omega_{U}$ and n are the frequency, the lower and upper filter frequency, and the order of the filter respectively. Following figure: Low Pass (25); High Pass (50); Band Pass (25-50); Band Stop (25-50) Filters, $N=4$

Fast Fourrier Transform

Matlab Code

```
%% First Example
clear; close all; clc
GS = 'c:/Program Files/gs/gs9.23/bin/gswin64.exe ';
scrsz = get(0,'ScreenSize'); % Screen size
fs=14;
x = rand(1,10); % suppose 10 samples of a random signal
y=fft(x); % Fourier transform of the signal
iy=ifft(y); % inverse Fourier transform
x2 = real(iy); % chop off tiny imaginary parts
norm(x-x2) % compare original with inverse of transformed
%=================================================================================
% Create a signal of 4 seconds at a sampling rate of 0.01:
dt = 1/100; % sampling rate
et = 4; % end of the interval
t = 0:dt:et; % sampling range
y=3*\operatorname{sin}(4*2*pi*t) + 5* sin}(2*2*pi*t); % sample the signal
%
hf1 = figure('Position',[1 scrsz(4)/4.5 scrsz(3)/2.5 scrsz(4)/2.0]);
subplot (3,2,1); % first of two plots
plot(t,y,'LineWidth',2); grid % plot with grid
axis([0 et -8 8]); % adjust scaling
xlabel('Time (s)'); % time expressed in seconds
ylabel('Amplitude ') ;% amplitude as function of time
title('Original Signal'); axis ([00 4 4 -7.5 7.5]);
%% Compute and plot Fourrier transform
Y = fft(y); % compute Fourier transform
n=\operatorname{size}(y,2)/2; % 2nd half are complex conjugates
amp_spec = abs(Y)/n;% absolute value and normalize
%
subplot (3,2,2);
```

```
freq = (0:79)/(2*n*dt); % abscissa viewing wind
plot(freq,amp_spec(1:80),'LineWidth ' ,2); grid % plot amplitude spectrum
xlabel('Frequency (Hz)'); % 1 Herz = number of cycles/second
ylabel('Amplitude '); % amplitude as function of frequency
title('Original Signal ); axis ([[\begin{array}{llll}{0}&{8}&{0}&{6}\end{array}]);
%=================================================================================
%% Add Noise to signal and compute the amplitude spectrum.
noise = randn(1, size(y,2)); % random noise
ey = y + 2*noise; % samples with noise
eY = fft(ey); % Fourier transform of noisy signal
n = size(ey,2)/2; % use size for scaling
amp_spec = abs(eY)/n; % compute amplitude spectrum
subplot (3,2,3);
plot(t,ey, LineWidth ',2); grid on % plot noisy signal with grid
axis([0 et -8 8]); % scale axes for viewing
xlabel('Time (s)'); % time expressed in seconds
ylabel('Amplitude'); % amplitude as function of time
title ('Noise Added to Signal'); axis ([[0 4 4 -7.5 7.5]);
freq = (0:79)/(2*n*dt); % abscissa viewing window
eY = fft (ey); % compute Fourier transform
n=\operatorname{size}(y,2)/2; % 2nd half are complex conjugates
e_amp_spec = abs(eY)/n; % absolute value and normalize
subplot (3,2,4);
plot(freq,e_amp_spec(1:80),'LineWidth',2); grid % plot amplitude spectrum
title ('Noise Added to Slgnal'); axis ([\begin{array}{llll}{0}&{8}&{0}&{6}\end{array}]);
%=================================================================================
%% fiter noise
fY = fix (eY/500)*500; % set numbers < 500 to zero
ifY = ifft(fY); % inverse Fourier transform of fixed data
cy = real(ifY); % remove imaginary parts
```


Matlab Code

```
63 subplot (3,2,5)
```

```
plot(t,cy,'LineWidth ',2); grid on % plot corrected signal
```

plot(t,cy,'LineWidth ',2); grid on % plot corrected signal
axis([0 et -8 8]); % adjust scale for viewing
axis([0 et -8 8]); % adjust scale for viewing
xlabel('Time (s)'); % time expressed in seconds
xlabel('Time (s)'); % time expressed in seconds
ylabel('Amplitude '); % amplitude as function of time
ylabel('Amplitude '); % amplitude as function of time
title ('Noisy Filtered Signal'); axis ([[0}404~-7.5 7.5])
title ('Noisy Filtered Signal'); axis ([[0}404~-7.5 7.5])
cY= fft(cy); % compute Fourier transform
cY= fft(cy); % compute Fourier transform
n = size(cy,2)/2; % 2nd half are complex conjugates
n = size(cy,2)/2; % 2nd half are complex conjugates
e_amp_spec = abs(cY)/n; % absolute value and normalize
e_amp_spec = abs(cY)/n; % absolute value and normalize
subplot (3,2,6);
subplot (3,2,6);
plot(freq,e_amp_spec(1:80), LineWidth ',2); grid % plot amplitude spectrum
plot(freq,e_amp_spec(1:80), LineWidth ',2); grid % plot amplitude spectrum
title('Noisy Filtered Signal); axis ([[0}08006])
title('Noisy Filtered Signal); axis ([[0}08006])
set(gcf,'PaperPositionMode ', 'auto');
set(gcf,'PaperPositionMode ', 'auto');
FileName='fft -example.eps ;
FileName='fft -example.eps ;
print (FileName, '-depsc ');
print (FileName, '-depsc ');
eps2pdf(FileName,GS,0);

```
eps2pdf(FileName,GS,0);
```


Fast Fourrier Transform

Original Signal

Noise Added to Signal

Noisy Filtered Signal

Matlab Code

Noisy Filtered Signal

- In dynamic event, we can define an input record $i(t)$ which is amplified by $h(t)$ resulting in an output signal $o(t)$.
- Similarly, the operation can be defined in the frequency domain. This output to input relationship is of major importance in many disciplines.
- The transfer function is the Laplace transform of the output divided by the Laplace transform of the input.
- Hence, in 1D, we can determine the transfer function as follows:
(1) $i(t) \xrightarrow{\mathrm{FFT}} I(\omega)$
(2) $o(t) \xrightarrow{\mathrm{FFT}} O(\omega)$
(3) Transfer Function is $T F_{I-O}=O(\omega) / I(\omega)$

- Seismic events originate through tectonic slips and elastic waves (p and s) traveling through rock/soil foundation up to the surface. Hence, the seismographs (usually installed at the foot of the dam) record only the manifestation of the event.
- On the other hand, modelling the foundation is essential for proper and comprehensive analysis of the dam, and as such the seismic excitation will have to be applied at the base of the foundation.
- If we were to apply at the base the accelerogram recorded on the surface $I(t)$, the output signal $A(t)$ at the surface will be different than the one originally recorded (unless we have rigid foundation).
- Hence, the accelerogram recorded on the surface must be deconvoluted into a new one $I^{\prime}(t)$, such that when the new signal is applied at the base of the foundation, the computed signal at the dam base matches the one recorded by the accelerogram.

(1) We record the earthquake induced acceleration on the surface $a^{\prime}(t)$. and apply it as $i^{\prime}(t)$ at the base of the foundation.
(2) Perform a transient finite element analysis.
(3) Determine the surface acceleration $a(t)$ (which is obviously different from $i(t)$.
(4) Compute: $i^{\prime}(t) \xrightarrow{\mathrm{FFT}} I^{\prime}(\omega)=A^{\prime}(\omega)$ and $a(t) \xrightarrow{\mathrm{FFT}} A(\omega)$
(5) Compute transfer function from base to surface as $T F_{I^{\prime}-A}=A(\omega) / I^{\prime}(\omega)$.
(6) Compute the inverse transfer function $T F_{l^{\prime}-A}^{-1}$.
(7) Determine the updated excitation record in the frequency domain $I(\omega)=T F_{I^{\prime}-A}^{-1} A^{\prime}(\omega)=\frac{I^{\prime}(\omega)}{A(\omega)} A^{\prime}(\omega)$
(8) Determine the updated excitation in the time domain $i(t) \xrightarrow{\mathrm{FFT}^{-1}} I(\omega)$ Process automated in our FE code Merlin.

Deconvolution

Bull Earthquake Eng (2011) 9:1387-1402
DOI 10.1007/s10518-011-9261-7
ORIGINAL RESEARCH PAPER

A simplified 3D model for soil-structure interaction with radiation damping and free field input
V. Saouma • F. Miura • G. Lebon • Y. Yagome

- Base of the Structure excited by a seismic wave that will travel through the model, and eventually hit the boundary.
- As with all waves, it will be reflected by the free surface whereas actually it propagates in the foundation to the free-field.
- Reflected wave may either amplify or decrease seismic excitation, in either case, it must be eliminated.
- Reflection can be eliminated either by a) "infinitely" large large mesh (expensive), b) "infinite" (boundary) element; or through Radiation Damping which will absorb the incident waves (P and S).
- Effect of free field on model must also be accounted for.

We identify four distinct parts:

(1) The free field itself (F) without its contact surface Γ^{-};
(2) The contact surface of the free field Γ^{-};
(3) the contact surface of the model Γ^{+};
(4) the model Ω without its contact surface Γ^{+}.

$$
\begin{aligned}
{\left[\mathrm{M}^{\Omega} \ddot{\mathrm{u}}^{\Omega}+\right.} & \left.\mathrm{C}^{\Omega} \dot{\mathrm{u}}^{\Omega}+\mathrm{K}^{\Omega} \mathrm{u}^{\Omega}\right]+\left[\mathrm{C}_{\mathrm{lt}}^{d p} \dot{\mathrm{u}}_{\mathrm{ltt}}^{\Omega}+\mathrm{C}_{\mathrm{rgt}}^{d p} \dot{u}_{\mathrm{rgt}}^{\Omega}+C_{\mathrm{bot}}^{d p} \dot{\mathrm{u}}_{B}^{\Omega}\right] \\
& =\mathrm{t}_{\mathrm{bot}}^{\Omega}+\left[\mathrm{F}_{\mathrm{ltt}}^{C}+\mathrm{F}_{\mathrm{lt}}^{K}+\mathrm{F}_{\mathrm{ltt}}^{\Omega}\right]+\left[\mathrm{F}_{\mathrm{rgt}}^{C}+\mathrm{F}_{\mathrm{rgt}}^{K}+\mathrm{F}_{\mathrm{rgt}}^{R}\right]
\end{aligned}
$$

Where $\mathrm{F}^{\mathrm{C}}, \mathrm{F}^{K}$, and F^{R} are the vectors of nodal equivalent forces caused by the free field velocities, stiffness and damping respectively.

Free Field

(1) Discretize the free field with an arbitrary mesh. Place dashpots at the base of the mesh.
(2) Constrain the vertical displacements of all the nodes (thus allowing only shear deformation), apply an horizontal excitation and analyze.
(3) If the seismic record includes a vertical component, repeat the analysis by constraining all the horizontal displacements (thus allowing only axial deformation), apply the vertical component of the excitation and analyze.
(4) Determine the nodal equivalent forces $\mathrm{F}^{C}, \mathrm{~F}^{K}$ and F^{R}.
(5) Apply these as external (time dependent) boundary forces to the bounded domain and analyze.

Major advantage of this method, is that there is no need to modify existing finite element programs

Validation

- Excite base with a harmonic excitation with period of 0.4 sec , a full wave length develops over 200 m which is the height of the model.
- Free Boundaries, bad

- 2D Lysmer

Validation

- 2D Miura-Saouma model

- 3D Lysmer

- 3D Miura-Saouma

Validation

Dam Foundation

Foundation Far-Field

- Horizontal foundation modeling requires special attention as fixed supports would also reflect elastic waves resulting in "rocking" and can not be used.
- Foundation must simply be "supported" by vertical dashpots.
- To account for gravity loads, first a static analysis is performed with vertical supports, then supports are removed, and reactions replaced by nodal forces for the dynamic analysis along with dashpots.
- Process automated in Merlin

The Four Books of Structural Analysis

August 9, 2022

Victor E. Saouma

University of Colorado, Boulder 2022

In Preparation;
Expected completion date:
Dec. 2023

This page was intentionally left blank.

NOTICES

1. Intentionally, this book can not be printed. It is best read on a computer to easily follow the multiple hyperlinks and bookmarks.
2. It is particularly important that you start with the Preface, as this is an atypical book.
3. This book is free, feel free to share it.

Dedication

And to all future Structural Engineers.

This page was intentionally left blank.

This page was intentionally left blank.

Preface

Genesis

This book, like so many others, had its genesis in notes of three courses taught over the span of over thirty years. But not only notes, but also a multitude of documents collected over the years in anticipation of this book. This resulted in a big puzzle where all the pieces had to smoothly fit together.
Hence, at the dusk of my academic career, and with a shade of vanity, I thought that I could share my $35+$ years of teaching Structural Analysis with intrepid readers through a magnum opus.

Coverage

Broadly speaking the book is divided into four parts:
Book I is an extensive history of structural analysis. It does not pretend to be exhaustive, but was probably the most intersting part for me to write. Unconstrained, I have selected key events at first, and then when Galileo Galilei came, it had to follow a more disciplined path.

Book II is what one would expect students to be exposed in a first course in structural analysis (following Statics and Mechanics of Deformable Bodies (a.k.a. Materials). I have greatly expanded the coverage of some topics insufficiently covered in most books such as Cables, Arches, 3D structures. This book ends with a chapter containing numerous examples of preliminary design as it is important for the structural analyst to also have a sense of design.

Book III is what many institutions refer to as Matrix Structural Analysis. It is entirely devoted to the finite element method of framework members at first, but then rapidly expand into continuum elements. Along the way extensive coverage is given to variational methods as the foundation of the finite element method.

Book IV is based on a new course I had introduced, and which has only few counterparts in academia. It is devoted to the nonlinear analysis of framed structures, but also addresses plasticity, stability dynamics, and last but not least Performance Based Earthquake Engineering.

Hence, the pertinacious reader will be reward with an encyclopedic knowledge of structural engineering.

Yet another book?

The casual reader would wonder why is there yet another book on Structural Analysis? I have found that most textbooks on structural analysis) are really variation on a theme, all practically identical (and some have had as many of 15 editions and counting).
Many of them provide a rudimentary coverage of the underlying theory, and most importantly limit the examples to simple structures.
Finally, throughout the book I have attempted to correlate the various procedures of structural analysis with the principles of applied mechanics and mathematics on which they are based.

Audience

Students: This book is appropriate for three consecutive courses: Structural Analysis, Intermediate Structural Analysis, and Nonlinear Structural Analysis, combining in a single volume what has traditionally has required in at least two books. It further benefits from consistent notation throughout the coverage and includes illustrative examples prepared intentionally be challenging to the student.

However, only "mature audience' should consult it. By that, I mean those students who do not necessarily look for a simple and verbose coverage of the basics ${ }^{1}$, of students motivated enough to explore sub-topics traditionally not covered, and students who aim to be structural engineers.

This book will also be of great values to those students who would like to see a unified (notation, philosophy) coverage of structural engineering with smooth transitions from fundamentals to intermediary and into advanced.

Engineers: This book is also addressed to structural engineers, wise enough to take a pause from computer programs, and explore the beauty of analytical solutions that can be of much greater value than thought of. Indeed too often many of them run to the computer before any attempt to obtain an exact or approximate analytical solution which could thne be validated by a program.

Historians: The first of the four books exhaustively covers the history of structural analysis. Aside from the great classical books that addressed this them, this is by far the most exhaustive coverage that can be found in a structural analysis book.

Style

A book is characterized by its content and its form. The form (or style) is utterly and blatantly personal, it reflects the teaching style, the focus of interest, ultimately, it reflects the delivery system of the author. As such, I have at times peppered this book with personal comment, and the depth and breadth of the coverage reflect my personal take on the topic.
For over 35 years, I have been a big fan of $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ (and felt pity for those who insisted in writing technical documents in a tool originally meant for lawyers: Word). As such, with a decent command of $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$; countless packages developed by others, and few macros I wrote myself I always tried to make sure that any manuscript I author is not only rigorous, complete, but also "looks nice" ${ }^{2}$
So, I have paid great attention to the layout, have personally drawn all the figures ${ }^{3}$ and wrote the MATLAB ${ }^{\circledR}$ programs found in the appendix.
Oh "my English" is far from perfect, evidently is is not my native language, tried my best, so be kind and try not to be too critical.

[^5]
Why is it free?

On the supply side, there are two main reasons books are written. One is it may provide financial reward to its author, the second it may bring self-satisfaction and then possibly fame. In both cases, there is an anticipation that the publisher will provide text-editing, page layouts, and marketing that is unachievable by the author.
In our disciplines, I would venture to say that very few were awarded sufficient royalties to pay for a transatlantic flight. Fame on the other hand (in theory) should not be of concern to true scholars.
As to the demand side, students/readers have seen the price of books sky-rocket, even though nowadays there are clever marketing strategies whereas a reader may rent a book (or even specific chapters) for a limited time for a fixed fee (akin of renting a movie from Netflix).
As to formatting/marketing!. Any author sufficiently familiar with IATEXcan quasi-professionally format any scientific book. No need to have a professional accomplish this task (unless one is stuck with Word that is). Marketing is also nowadays made so much easier, suffice it to publish a book through Amazon and it will be instantaneously be within reach of millions.
On the other hand if a book is well written (as this one pretends to be), and is free, then it will be naturally disseminated.
Finally, as a University Professor, our responsibility is to acquire and share knowledge. We are semi-decently paid by our institution, and the crumbs given to us by publisher are not worth a Faustian bargain.
Accordingly, this book can be freely downloaded and freely shared.

Books Consulted

In writing my notes and this book, I have consulted numerous books that have lend me some their coverage or examples. The following are the primary (but not only) ones.

- Indeterminate Structural Analysis

Kinney, 1957

- Elementary Structural Analysis

Norris and Wilbur, 1960

- Theory of Matrix Structural Analysis

Przemieniecki, 1968

- Basic Structural Analysis

Gerstle, 1974

- Programming the matrix analysis of skeletal structures Bhatt, 1986
- Mechanics of Structures, Variational and Computational Methods

Pilkey and Wunderlich, 1994

Finally, I have tried in as much as possible to give proper credit within the book. If some were missing, it was certainly not intentional, and apologies are hereby offered.

A major challenge in teaching Structural Analysis is motivation. Hence, one should always keep in mind that structural analysis is not an end by itself, but only an indispensable tool to design or structural safety assessment (or design).

Victor E. Saouma
Boulder, CO 2023

This page was intentionally left blank.

Contents

I History of Structural Analysis 3
1 Introduction 5
2 We Begin with Numbers 9
2.1 Sexagesimal Numbers 9
2.1.1 Numeral 9
2.1.2 Angles 10
2.1.3 Time 11
2.2 Decimal 12
2.3 Irrational; Golden Ratio 12
3 In the Beginning 15
3.1 Eastern 15
3.2 Egyptian's Similitude 15
3.3 Greeks' Lever 16
3.4 Roman Engineers 18
3.5 The First Influencer: Vitruvius 18
4 Cathedrals 21
4.1 Form Follows Function; Flying Buttresses 21
4.2 A Tale of Three Cathedrals 23
4.2.1 Milan' Duomo 24
4.2.2 Rome's St Peter 28
4.2.3 Florence's Santa Maria del Fiore 30
5 Ebullitions in Europe 35
5.1 The Scientific Revolution 35
5.1.1 France: Descarte 39
5.1.2 England: Baccon 39
5.1.3 Italy: The Linceans 39
5.2 Enlightenment 39
5.3 Historical Context 40
5.3.1 Eighty Years' War 40
5.3.2 Thirty Years' War 40
6 Seventeenth Century Who's Who 43
6.1 Galileo (1564-1642) 43
6.1.1 Physics: Tower of Pisa 43
6.1.2 Astronomy: Dialogues 44
6.1.3 Interlude: Inquisition 45
6.1.4 Methodology: Discourses 46
6.2 Huygens (16239-1695) 48
6.2.1 From Telescopes to Pendulums 49
6.2.2 From Pendulum to Light 50
6.3 Hooke (1635-1703) 51
6.4 Newton (1642-1727) 52
6.4.1 The Mathematician 52
6.4.2 The Alchemist 54
6.4.3 The Elastician? 54
6.5 Leibniz 1646-1716 55
6.6 Bernoulli Family 1654-1782 55
6.7 Jakob Bernoulli (1654-1705) 55
6.8 Euler (1707-1783) 57
6.9 Coulomb (1736-1806) 59
6.10 Navier 1789-1836 60
6.10.1 Formative Years 60
6.10.2 Flexure 60
6.10.3 Elasticity 60
6.10.4 The Bridge fiasco 61
7 Starting with Statics 65
7.1 Statics 65
7.1.1 Strength 66
7.1.1.1 Leonardo (1452-1519) 66
7.1.1.1.1 Wires 66
7.1.1.1.2 Beam strength 66
7.1.1.1.3 Beam curvature 67
7.1.1.2 Galileo (1564-1642) 68
7.1.2 Neutral Axis 69
7.1.2.1 Galileo 69
7.1.2.2 Descartes; 1644 71
7.1.2.3 Mariotte; 1686 71
7.1.2.4 Leibniz; 1684 73
7.1.2.5 Parent; 1713 74
7.1.2.6 1807, Young 75
7.1.3 Flexural Stresses 76
7.1.3.1 Jakob Bernoulli Talking to a Craftsman; 1687 76
7.1.3.2 Euler; 1727 77
7.1.3.3 Coulomb; 1773 79
7.1.4 Shear Stresses 80
8 Some Geometry 81
8.1 Molecular vs Potential Models in Elasticity 81
8.2 Evolute/Involute 82
8.3 Curvature 82
8.3.1 Oresme; 1351 83
8.3.2 Huygens; 1658 84
8.3.3 Newton; 1664 85
8.3.4 Johann Bernoulli; 1691 86
8.3.5 Jakob Bernoulli; 1694 88
8.3.6 Kästner; 1764 89
9 Flexure: Grand Challenges 91
9.1 From Geometry to Calculus 91
9.2 Catenary 93
9.2.1 Early Studies 93
9.2.1.1 Galileo 93
9.2.1.2 Stevin; 1634 95
9.2.1.3 Huygens 95
9.2.1.4 Pardies; 1710 96
9.2.2 Interlude: Funicularia, Catenaria, Velaria, Lintearia 97
9.3 Elastica 97
9.3.1 Jakob Bernoulli's Challenge; 1690 99
9.3.2 The Three Solutions 100
9.3.2.1 Huygens; 1690 100
9.3.2.2 Johann Bernoulli; 1691 101
9.3.2.3 Jakob Bernoulli; 1691 102
9.4 Moment and Curvature 105
9.4.1 (??)???? 105
9.4.2 Jakob Bernoulli; 1692 106
9.4.3 Daniel Bernoulli; 1742 111
9.4.4 Euler's analysis; 1744 112
9.4.5 Species 1; Hint of Buckling; 1744 115
9.5 Buckling 117
9.5.1 Early Work 117
9.5.1.1 Leonardo 117
9.5.1.2 van Musschenbroe; 1729 117
9.5.2 Euler Comes Back; 1757 118
9.5.3 Conclusion 120
9.6 Unification of the Catenary and the Elastica 120
9.6.1 Anonymous Challenge; 1724 120
9.6.2 Daniel Bernoulli; 1728 121
9.6.3 Euler; 1771 122
10 Emergence of Structural Engineering 125
10.1 French Revolutions and the Birth of Modern Elasticity 125
10.2 Statically Indeterminate Beams 125
10.2.1 Navier, 1826 125
10.2.2 Moseley, 1843 127
10.2.3 Clapeyron, 1857 130
10.3 Theory of Statically Indeterminate Structures 130
10.4 Dawn of Modern Structural Analysis 130
10.4.1 Analysis of Trusses 130
10.4.1.1 Palladio' Trusses; 1570 130
10.4.2 Clebsch, 1862 131
10.4.3 Manderla1880 131
10.4.3.1 Mohr; 1874 131
10.4.3.2 Maxwell 131
11 Emergence of Elasticity 133
11.1 French Revolutions and the Birth of Modern Elasticity 133
11.2 Lagrange 133
11.3 Coulomb 133
11.4 Cauchy 133
11.5 Poisson 133
11.6 Late 19th century; Transitioning from France to America 133
12 Computational Methods 135
12.1 Finite Difference; 1907 135
12.2 Force Method 135
12.2.1 Maxwell; 1864 135
12.2.2 Mohr?? 136
12.3 Displacement Method 136
12.3.1 Clebsch, 1862 136
12.3.2 Mohr, 1892 137
12.3.3 Slope Deflection 137
12.3.3.1 Mohr 137
12.3.3.2 Maney; 1915 137
12.3.3.3 Goldberg; 1934 138
12.3.4 Hardy Cross, Moment distribution; 1932 139
12.4 Finite Element 141
12.4.1 Genesis 141
12.4.2 Context; Early 1950's 142
12.4.3 Berkeley, Boeing and Delta; 1952-1953 143
12.4.4 Berkeley and the USACE; Dam Cracking 144
12.4.5 Popularization of the FEM, 1960's 145
12.4.6 Flexibility or Stiffness 148
13 Impetus 151
14 Force 155
15 From Abaqus to Computers 157
16 Virtual 159
16.1 Virtual velocity 159
16.2 Virtual Work 159
II Introduction (Fundamentals) 161
17 Introduction 163
17.1 Role 163
17.2 Connection with Architecture 163
17.3 Architectural Design 164
17.4 Structural Analysis 164
17.5 Structural Design 164
17.6 Basic Internal Forces 165
17.7 Structure Types 165
18 Equilibrium of Forces 167
18.1 Forces 167
18.1.1 Loads 168
18.1.1.1 Tributary Area 168
18.1.1.2 Load transfer 169
18.1.1.3 Inclined Members/Loads 169
18.1.2 Reactions 170
18.1.3 Internal Forces 171
18.1.3.1 Engineering approach: from stresses to internal forces 171
18.1.3.2 Internal forces for $2 \mathrm{D} / 3 \mathrm{D}$ straight/curved beams 171
18.1.3.3 Internal v.s. External moments 173
18.2 Equilibrium 173
18.2.1 Equations of Conditions 174
18.2.1.1 Static Determinancy 175
18.2.1.2 Geometric Instability 176
18.2.1.3 Free Body Diagrams 176
18.3 Examples 177
18.3.1 Ex 18.1: Hydro-static load 177
18.3.2 Ex 18.2: Load transfer 177
18.3.3 Ex 18.3: Simply supported beam 178
18.3.4 Ex 18.4: Parabolic Load 179
18.3.5 Ex 18.5: Three Span Beam 179
18.3.6 Ex 18.6: Three Hinged Gable Frame 180
18.3.7 Ex 18.7: Inclined Supports 182
18.3.8 Ex 18.8: †Grid Structure 183
18.3.9 Ex 18.9: Airplane equilibrium 183
18.3.10 Ex 18.10: \dagger Jumbo barge 184
18.3.11 Ex 18.11: Palazetto dello Sport; Nervi 187
19 Trusses 191
19.1 Introduction 191
19.1.1 Assumptions 191
19.1.2 Basic Relations 192
19.1.3 Determinacy and Stability 192
19.1.4 Method of Joints 193
19.1.4.1 Ex 19.1: Truss analysis; Method of joints 194
19.1.4.2 Ex 19.2: 3D Truss 196
19.2 Method of Sections 199
19.2.1 Ex 19.3: \dagger Method of Sections 199
19.3 Matrix Method 199
19.3.1 Ex 19.4: Simple truss; Matrix Method 201
19.3.2 Ex 19.5: Complex truss; Matrix Method 202
19.4 Forth Bridge 204
20 Internal Forces 207
20.1 Introduction 207
20.1.1 Design Sign Conventions 207
20.2 Load, Shear, Moment Relations 208
20.2.1 Differential Form 209
20.2.2 Integral Form 209
20.3 Examples 210
20.3.1 Ex 20.1: Beam with inclined load 211
20.3.2 Ex 20.2: Inclined frame 212
20.3.3 Ex 20.3: Frame with Hydrostatic Load 214
20.3.4 Ex 20.4: Linearly varying load 216
20.3.5 Ex 20.5: Frame; Example Inclined Roof 217
20.3.6 Ex 20.6: 3D Frame 217
21 Deflections; Elastic Curve 221
21.1 Introduction 221
21.1.1 Curvature Equation 221
21.1.1.1 Exact Expression 222
21.1.1.2 Approximate Expression 223
21.1.2 Curvature-strain relation 223
21.1.3 Temperature Curvature Relation 223
21.1.4 Differential equation of the elastic curve 223
21.1.5 Examples 224
21.1.5.1 Ex 21.1: Double Integration 224
21.1.5.2 Ex 21.2: Maximum deflection 225
21.1.5.3 Ex 21.3: Optimal ski shape 226
21.1.5.4 Ex 21.4: \dagger Floating beam 227
21.1.5.5 Ex 21.5: \ddagger Bicycle wheel 229
21.2 Curvature Area Method (Moment Area) 232
21.2.1 First Curvature Area Theorem 232
21.2.2 Second Curvature Area Theorem 232
21.2.3 Sign Convention 233
21.2.4 Maximum Deflection 233
21.2.5 Examples 234
21.2.5.1 Ex 21.6: Curvature area, cantilevered beam 234
21.2.5.2 Ex 21.7: Moment curvature, Simply Supported Beam 234
21.2.5.3 Ex 21.8: Maximum Deflection 235
21.2.5.4 Ex 21.9: Frame Subjected to Temperature Loading 236
21.3 Elastic Weight/Conjugate Beams 239
21.3.1 Ex 21.10: Conjugate beam; point load 240
21.3.2 Ex 21.11: Conjugate beam; variable I 240
22 Complementary Virtual Work 243
22.1 Introduction 243
22.2 Simplified Derivation of the Principle of Complementary Virtual Work 243
22.2.1 Derivation 243
22.2.2 $f_{i j}, f_{j i}$ Maxwell-Betti Reciprocal Theorem 246
22.2.3 External Virtual Work $\delta \bar{W}^{*}$ 247
22.2.4 Internal Virtual Work $\delta \bar{U}^{*}$ 247
22.3 Examples 248
22.3.1 Ex 22.1: Beam 248
22.3.2 Ex 22.2: Frame; Deflections 248
22.3.3 Ex 22.3: Frame, Rotation 250
22.3.4 Ex 22.4: †Flexural Bracket 251
22.3.5 Ex 22.5: Cable-Supported Cantilever Beam 252
22.3.6 Ex 22.6: †Torsional and Flexural Deformation 253
22.3.7 Ex 22.7: \dagger Flexural and Shear Deformations in a Beam 254
22.3.8 Ex 22.8: †Thermal Effects in a Beam 255
22.3.9 Ex 22.9: \ddagger Pipeline 256
22.3.10 Ex 22.10: Truss; Simple 257
22.3.11 Ex 22.11: Truss; Complex 258
22.3.12 Ex 22.12: \dagger Truss with initial camber 259
22.3.13 Ex 22.13: \dagger Truss with secondary stresses 259
22.3.14Ex 22.14: †Circular Ring 261
23 Flexibility Method 265
23.1 Introduction 265
23.2 The Force/Flexibility Method 270
23.3 Examples 271
23.3.1 Ex 23.1: Steel Building Frame Analysis 271
23.3.2 Ex 23.2: Truss, One Redundant Force 275
23.3.3 Ex 23.3: Truss: two Redundant Forces 276
23.3.4 Ex 23.4: Queen Post 279
23.3.4.1 Ex 23.5: \ddagger Flexibility Matrix; Curved Beam 281
24 Prelude to the Stiffness Method; Brief Review of Mechanics of Deformable Bodies 285
24.1 Introduction 285
24.1.1 Sign Convention 286
24.1.2 Methods of Analysis 286
24.2 Forces in terms of Displacement Relations 287
24.2.1 Axial Deformations 287
24.2.2 Flexural 287
24.2.2.1 Differential equation 287
24.2.2.2 Nodal End Forces for Initial Strains 290
24.2.2.3 Nodal Equivalent Forces for Flexural Elements 291
24.2.2.3.1 Uniformly Distributed Loads 291
24.2.2.3.2 Concentrated Loads 291
24.2.2.4 Semi-Rigid Connections 292
24.2.3 Shear Deformation (Transverse) 294
24.2.3.1 Shear, Infinitesimal element 295
24.2.3.1.1 Ex 24.1: Deflection Cantilevered Beam 295
24.2.3.2 Shear Distribution; $\tau(y)$ 295
24.2.3.3 Shear Coefficient 296
24.2.3.4 Shear Factor 296
24.2.3.5 Shear Deformation v_{s}, Timoshenko 298
24.2.4 Torsional Deformations 298
24.2.4.1 S^{t} Venant or Uniform Torsion 299
24.2.4.2 Vlasov or Nonuniform Torsion 300
24.2.4.3 Ex 24.2: Nonuniform torsion of an I section 304
25 Stiffness by Hand 307
25.1 Slope Deflection; Direct Solution 307
25.1.1 Examples 309
25.1.1.1 Ex 25.1: Cantilevered Beam 309
25.1.1.2 Ex 25.2: Continuous beam 309
25.1.1.3 Ex 25.3: Two-Span Beam 310
25.1.1.4 Ex 25.4: Two-Span Beam, Initial Deflection 312
25.1.1.5 Ex 25.5: Frame 313
25.1.1.6 Ex 25.6: Box Culvert 315
25.2 Moment Distribution 316
25.2.1 Introduction 316
25.2.1.1 Ex 25.7: Continuous beam 319
25.3 Slope Deflection; Moment Distribution; Gauss-Seidel 321
25.3.1 Ex 25.8: Slope deflection/Moment distribution/ Gauss-Seidel 321
26 Influence Lines 323
26.1 Introduction 323
26.2 Procedure 323
26.2.1 Ex 26.1: Influence Lines for a simply supported beam 324
26.2.2 Ex 26.2: Simply supported beam with with overhangs 326
26.3 Müller-Breslau Principle 326
26.3.1 Derivation; Müller-Breslau Principle 326
26.3.2 Ex 26.3: Müller-Breslau; Shear Influence Line 327
26.3.3 Ex 26.4: Müller-Breslau; Moment Influence Line 328
27 Column Stability 329
27.1 Introduction; Discrete Rigid Bars 329
27.1.1 Single Bar System 329
27.1.2 Two Bars System 330
27.1.3 Analogy with Free Vibration 333
27.2 Continuous Linear Elastic Systems 334
27.2.1 Essential Boundary Conditions 334
27.2.2 Essential and Natural Boundary Conditions 335
27.2.2.1 Derivation 335
27.2.2.2 Ex 27.1: Buckling of hinged-Hinged Column 336
27.2.2.3 Ex 27.2: Buckling of fixed-fixed column 337
27.2.2.4 Ex 27.3: Buckling of fixed-hinged column 338
27.2.3 Effective Length Factors K 339
28 Cable Structures 343
28.1 Introduction 343
28.2 Concentrated loads 344
28.2.1 Ex 28.1: Funicular Cable 344
28.2.2 Ex 28.2: Funicular Cable 346
28.2.3 Ex 28.3: bi-cable Gondola 348
28.3 Distributed loads; 348
28.3.1 Equilibrium Equation 348
28.3.2 $q d x$; Lateral load; Parabola 349
28.3.2.1 Geometry 349
28.3.2.2 Internal Forces 353
28.3.2.3 †Elastic Stretch 354
28.3.2.4 \dagger Equivalent Axial Stiffness 356
28.3.2.5 Special Case: Horizontal Chord 358
28.3.2.5.1 Ex 28.4: Inclined Cable Geometry 358
28.3.2.5.2 Ex 28.5: Inclined Cable Forces 359
28.3.2.5.3 Ex 28.6: Guyed Tower 360
28.3.2.5.4 Ex 28.7: Suspension bridge 361
28.3.2.5.5 Ex 28.8: Inextensible Cable; Temperature 362
28.3.2.5.6 Ex 28.9: Extensible Cable; Sag 363
28.3.2.5.7 Ex 28.10: Extensible Cable; Thermal 363
28.3.2.5.8 Ex 28.11: Extensible Cable; Prestress 364
28.3.3 $\dagger q \mathrm{~d} s$; Catenary 364
28.3.3.1 Geometry 364
28.3.3.2 Forces 366
28.3.3.2.1 Ex 28.12: Catenary vs Parabola 366
28.3.3.3 Catenary Inclined Chord 367
28.3.4 Comparison between the Parabola and Catenary Based Solutions 369
29 Arches and Curved Beams 371
29.1 Optimal parabolic shape 374
29.1.1 Ex 29.1: Three Hinged Arch; Point Load 374
29.1.2 Ex 29.2: Three Hinged Arch; Uniform Load 376
29.1.3 Ex 29.3: Hingeless Arch 377
29.2 Bow Girder 383
29.2.1 Ex 29.4: Bow Girder 383
29.3 Helicoidal 386
29.3.1 Geometry 386
29.3.2 Equilibrium 388
29.3.3 Ex 29.5: Helicoidal Arch; Point Load 389
29.4 Masonry Arch 390
29.4.1 Context 390
29.4.1.1 Historical Notes 391
29.4.1.2 Terminology 393
29.4.1.3 Anatomy of Gothic Structures 394
29.4.1.4 Literature Review (Partial) 395
29.4.1.4.1 Early Research 395
29.4.1.4.2 Line of Thrust Analysis 398
29.4.1.4.3 Kinematic Analysis 398
29.4.1.4.4 Limit State Analysis with Finite Friction 399
29.4.1.4.5 Photo-elastic Analysis 399
29.4.1.4.6 Finite Element Modeling 399
29.4.1.4.7 Collapse Analysis 400
29.4.1.4.8 Discrete Element Modeling 401
29.4.1.4.9 Analysis of Flying Buttresses 401
29.4.1.4.10 Collapse Analysis of Domes 402
29.4.2 Analysis 403
29.4.3 Equilibrium 403
29.4.3.1 Equations of Equilibrium 403
29.4.3.2 Discritized Equilibrium Equations 406
30 Beams, Plates and Shells 409
30.1 Introduction 409
30.2 Beam 409
30.2.1 Curvature Equation 409
30.2.2 Differential Equation of the Elastic Curve 411
30.3 Plates 411
30.3.1 Fundamental Relations 413
30.3.1.1 Equilibrium 413
30.3.1.2 Kinematic Relations 414
30.3.1.3 Constitutive Relations 416
30.3.2 Plate Theories: Kirchhoff 417
30.3.2.1 Fundamental Relations 417
30.3.2.2 Differential Equation 417
30.3.2.3 Stresses 418
30.3.2.4 Variational Formulation 418
30.3.3 Summary 419
30.4 Thin Shell Theory 419
30.4.1 Definitions and Assumptions 419
30.4.1.1 Definitions 419
30.4.1.2 Assumptions 424
30.4.2 Derivation of Governing Differential Equation 424
30.4.2.1 Equilibrium 424
30.4.2.2 Compatibility 430
30.4.2.3 Stress-Strain 434
30.4.2.4 Final Equations 437
30.4.2.5 Summary 437
30.4.3 Simplifications 437
30.4.4 Shallow Shells 439
30.4.4.1 Assumptions 439
30.4.4.2 Application of Assumptions 439
30.4.4.3 Deep Beam Equation 440
30.4.4.4 Slab Equation 441
30.4.4.5 Equation for Shallow Shells 442
30.4.5 Membrane Theory 442
30.4.5.1 Assumptions 442
30.4.5.2 Theory 442
30.4.6 Classification 443
30.4.7 Conclusion 443
31 Architecture \& Structure 445
31.1 The First Architectural Influencer 445
31.1.1 Vitruvius 445
31.1.1.1 Vitruvius on Education 446
31.1.1.2 Vitruvius the Engineer 447
31.1.1.3 Vitruvius the Architect 448
31.1.1.4 Side Note: Vitruvius opinion on athletes vs scholars 449
31.1.2 Vitruvius "rediscovered" during the Renaissance 450
31.1.2.1 Alberti 451
31.1.2.2 Palladio 451
31.1.2.3 Side Note: Anthropometry \& Architecture 452
31.1.2.4 Side Note: Alberti \& Palladio "Engineers" 453
31.2 Interlude: Architects vs. Engineers; Art \&/Or Science? 455
31.3 The Pioneers 457
31.3.1 Engineers as "Architects" 458
31.3.2 Eiffel (1832-1923) 458
31.3.3 Sullivan (1856-1924) 459
31.3.4 Robert Maillart (1872-1940) 460
31.3.5 Ricardo Morandi (1902-1989) 462
31.3.6 Pier-Luigi Nervi (1891-1979) 462
31.3.6.1 The Engineer 464
31.3.6.2 The material Scientist 466
31.3.7 Eduardo Torroja (1899-1961) 468
31.3.8 Form Finders 469
31.3.8.1 The Catenary 470
31.3.8.1.1 Poleni (1683-1761) 470
31.3.8.1.2 Antoni Gaudí (1852-1926) 470
31.3.8.1.3 Eero Saarinen (1910-1961) 472
31.3.8.2 Shells \& Membranes 473
31.3.8.2.1 Frei Paul Otto (1925-2015) 473
31.3.8.2.2 Heinz Isler (1926-2009) 473
31.3.8.2.3 Sergio Musmeci (1926-1981) 474
31.3.9 Christian Menn (1927-2018) 475
31.3.10 Fazlur Khan (1929-1982) 477
31.4 The Computer Generation 477
31.4.1 Santiago Calatrava 478
31.4.2 Exceptions for Notable Architects 479
31.4.2.1 Felix Candella 479
31.4.2.2 Frank Gehry (1929-) 480
31.4.3 The Five Percenter 480
31.4.3.1 High-Rise Buuildings 482
31.4.3.1.1 Leslie Robertson (1928-2021) 483
31.4.3.1.2 William Baker (1953-) 485
31.4.3.2 Bridges: Michel Virlogeux (1946-) 486
31.5 Vitruvius Revisited 487
31.5.1 Deconstruct Structural Art 488
31.5.2 What is Art? 489
31.5.3 Structural Architecture; Llunji 491
31.6 Summary 491
32 Elements of Structural Design 493
32.1 Analysis and Design; An Iterative process 493
32.2 Safety 493
32.2.1 Allowable Stress Design (ASD) 495
32.2.2 Load and Resistance Factor Design (LRFD) 496
32.2.2.1 Examples of LRFD Based Design Codes 498
32.2.2.2 Application: Plastic Strength of R/C Sections 499
32.2.2.3 LRFD Examples 503
32.2.2.3.1 Ex 32.1: Ultimate Strength; Review 503
32.2.2.3.2 Ex 32.2: Ultimate Strength; Design I 503
32.2.2.3.3 Ex 32.3: Ultimate Strength; Design II 504
32.2.2.3.4 Ex 32.4: Exact Analysis 504
32.2.3 Performance Based Engineering (PBE) 506
32.2.4 Prestressed Concrete 507
32.2.5 Ex 32.5: Case Study: Walnut Lane Bridge 507
32.3 Maxwell, Michell, Baker \& Beghini 510
32.3.1 Maxwell 510
32.3.2 Michell 512
32.3.3 Baker \& Beghini 512
32.3.4 Ex 32.6: Truss Design 513
32.4 Evolutionary Structural Optimization 514
33 Approximate Analyses 517
33.1 Fermi's Solution 517
33.2 Deflected Shapes \& Inflection Points 518
33.3 Beam Moment in terms of support stiffness 520
33.4 Buildings 521
33.4.1 Preliminary Analysis 522
33.4.1.1 Wall Subsystems 522
33.4.1.1.1 Ex 33.1: Concrete Shear Wall 522
33.4.1.1.2 Ex 33.2: Trussed Shear Wall 523
33.4.1.2 Shaft Systems 524
33.4.1.2.1 Ex 33.3: Tube Subsystem 524
33.4.2 Detailed Analysis 525
33.4.2.1 Vertical Loads 525
33.4.2.2 Horizontal Loads 528
33.4.2.2.1 Portal Method 528
33.4.2.2.2 Cantilever Method 531
33.4.2.2.2.1 Ex 33.4: Approximate analysis of a short building 531
33.4.2.2.2.2 Ex 33.5: Matlab Solution 539
33.4.2.2.2.3 Ex 33.6: Cantilever Method; High Rise Building 540
33.5 Lateral Deflections 541
33.5.1 Short Wall 542
33.5.2 Tall Wall 542
33.5.3 Walls and Lintel 543
33.5.4 Frames 543
33.5.4.1 Ex 33.7: Building Approximate Transverse Deflection 545
34 Design of a Statically Indeterminate Arch 549
34.0.1 Ex 34.1: Design of a Statically Indeterminate Arch 549
34.0.2 Ex 34.2: Temperature Changes in an Arch 554
35 Preliminary Designs 559
35.1 Ex 35.1: Dulles Airport 559
35.2 Ex 35.2: Eiffel Tower 565
35.3 Ex 35.3: Magazini Generali 571
35.4 Ex 35.4: George Washington Bridge 575
III Intermediary 581
36 Introduction to the Direct Stiffness Method 585
36.1 Why Matrix Structural Analysis? 585
36.2 Structural idealization 586
36.3 Flexibility v.s. Stiffness 588
36.4 Coordinate Systems 588
36.5 Sign Convention 589
36.6 Degrees of freedom 590
36.7 Structural Analysis/Mechanics; A Boundary value problem 592
37 Element Stiffness Matrices $\mathbf{k}^{(e)}$ 595
37.1 Stiffness term definition 595
37.2 Element stiffness matrices 596
37.2.1 Truss Element 596
37.2.2 Beam: Euler-Bernoulli 596
37.2.3 Beam with rotational springs 597
37.2.4 2D Frame Element (a.k.a Beam-Column Element) 598
37.2.5 Grid Element 599
37.2.6 3D Beam-column Element 599
37.2.7 Timoshenko Beam 600
37.2.7.1 Additional deformation 600
37.2.7.2 Modification of the element stiffness matrix 602
37.2.8 Vlasov Torsion 603
37.3 Element Nodal Equivalent Forces 604
37.3.1 Initial Strains 604
37.3.2 Element Forces; Flexural Elements 605
37.3.2.1 Uniformly Distributed Loads 605
37.3.2.2 Concentrated Loads 606
38 Stiffness Method; I Orthogonal Structures 607
38.1 Introduction 607
38.2 Theory 607
38.2.1 Flexibility revisited 608
38.2.2 Direct Stiffness Method 608
38.2.3 From Element to Structure 609
38.3 Examples 609
38.3.1 Ex 38.1: Orthogonal Beam 609
38.3.2 Ex 38.2: Orthogonal Frame 612
38.3.3 Ex 38.3: Grid 618
38.3.4 Ex 38.4: Hybrid Frame 621
38.3.5 Ex 38.5: Hybrid Grid 623
38.4 Motivational Interlude (for Civil Engineers) 626
39 Transformation Matrices 629
39.1 Introduction 629
39.2 Some Theory 630
39.2.1 $\left[\mathbf{k}^{e}\right]\left[\mathbf{K}^{e}\right]$ Relation 630
39.2.2 Direction Cosines 631
39.3 Transformation Matrices For Framework Elements 633
39.3.1 2 D cases 633
39.3.1.1 2D Frame 633
39.3.1.2 Grid 634
39.3.1.3 Vlasov beam 635
39.3.1.4 2D Truss 635
39.3.2 3D Frame 636
39.3.3 Eulerian Rotations 636
39.3.4 Twist of Element Axis 638
39.3.5 3D Truss 640
40 Direct Stiffness Method 641
40.1 Objectives 641
40.2 Theory 641
40.3 Discretization 643
40.3.1 Unconstrained vs Constrained Degrees of freedom 643
40.3.2 Structural Discretization 644
40.4 Computer Implementation 645
40.4.1 Boundary Conditions, [ID] Matrix 645
40.4.2 LM Vector 646
40.4.3 Assembly of Global Stiffness Matrix 647
40.4.4 Step by Step Procedure 647
40.5 Examples 648
40.5.1 Ex 40.1: Frame 648
40.5.2 Ex 40.2: Beam 649
40.5.3 Ex 40.3: Truss 653
41 Mathematical Properties of Stiffness Matrix; Computational Issues 657
41.1 "Bad" Matrices 657
41.1.1 Eigenvalues 657
41.1.2 Condition Number 660
41.1.3 Ill-Conditioned Stiffness Matrices 660
41.1.3.1 Ex 41.1: Ill-conditioned 661
41.2 Numerical Considerations 663
41.2.1 Inversion vs Decomposition 663
41.2.2 Nodal Numbering 664
42 Special Topics 667
42.1 Equations of Statics and Kinematics 667
42.1.1 Statically Determinate 667
42.1.1.1 Ex 42.1: Statically Determinate Truss Statics Matrix 668
42.1.1.2 Ex 42.2: Beam Statics Matrix 669
42.1.2 Statically Indeterminate 670
42.1.2.1 Ex 42.3: Statically Indeterminate Truss Statics Matrix 671
42.1.3 Identification of Redundant Forces 672
42.1.3.1 Ex 42.4: Selection of Redundant Forces 672
42.1.4 Kinematic Instability 674
42.1.5 Kinematics Matrix \mathcal{A} 675
42.1.5.1 Ex 42.5: Kinematics Matrix: Truss Example 676
42.2 Statics-Kinematics Matrix Relationship 676
42.2.1 Statically Determinate 676
42.2.2 Statically Indeterminate 677
42.3 Stiffness-Flexibility Relations 678
42.3.1 Objectives 678
42.3.2 From Stiffness to Flexibility 678
42.3.2.1 Ex 42.6: Flexibility Matrix 679
42.3.3 From Flexibility to Stiffness 679
42.3.3.1 Ex 42.7: Flexibility to Stiffness 680
42.3.4 Ex 42.8: Stiffness Matrix of a Curved Element 681
42.4 Congruent Transformation Approach to [K] 683
42.4.1 Ex 42.9: Congruent Transformation 684
42.4.2 Ex 42.10: Congruent Transformation of a Frame 685
42.5 Axial vs Flexural Stiffness 687
42.5.1 Frames 688
42.6 Beam with Rigid Offset; Objectives 690
42.7 Semi-Rigid Beams 692
42.7.1 Free Body Diagram 693
42.7.2 Equilibrium 693
42.7.3 Stiffness Matrix 695
42.7.4 Observation 696
42.8 Members with Variable Sections 696
43 Calculus of Variation in Mechanics; Euler-Lagrangian 701
43.1 Introduction 701
43.2 Euler 702
43.2.1 Preliminaries 702
43.2.2 Differential Form of $\delta \Pi$ 703
43.2.3 Euler Equation 704
43.2.4 $\delta \Pi$ 705
43.2.5 Observations 706
43.2.6 Boundary Conditions 706
43.2.6.1 Ex 43.1: Euler: Axial 707
43.2.6.2 Ex 43.2: Euler: Flexure 708
43.3 Hamilton 709
43.3.1 Dynamic; Euler/Lagrange 709
43.3.1.1 Rigid bodies/Particles 709
43.3.1.2 Continuum System 710
43.3.2 Ex 43.3: Hamilton 712
44 Energy Based Methods 717
44.1 Introduction 717
44.1.1 Thermodynamics 717
44.1.2 Basic Relations 718
44.1.3 Definitions 719
44.1.4 Real Terms 719
44.1.5 Virtual Expressions 721
44.1.6 Remarks 721
44.1.6.1 Internal Work versus Strain Energy 721
44.1.6.2 Path Independence of External Work 722
44.1.7 Applications to 1D elements 723
44.1.7.1 Complementary Energy, Linear Elastic U^{*} 723
44.1.7.2 Energy, Linear Elastic U 723
44.1.7.3 Complementary Virtual Strain Energy δU^{*} 724
44.1.7.4 Virtual Strain Energy δU 725
44.1.8 Summary of VW and CVW 726
44.2 Approaches 727
44.3 Virtual Work 728
44.3.1 Principle of Complementary Virtual Work (PCVW) 728
44.3.1.1 Derivation 729
44.3.1.2 Ex 44.1: PCVW, Tapered Cantilevered Beam 731
44.3.2 Ex 44.2: Three Hinged Semi-Circular Arch 731
44.3.3 Principle of Virtual Work (PVW) 733
44.3.3.1 Derivation 733
44.3.3.2 Ex 44.3: PVW, Tapered Cantilevered Beam 734
44.4 Principles of Potential Energy 736
44.4.1 Principle of Total Potential Energy (PTPE) 736
44.4.1.1 Derivation 736
44.4.1.2 Ex 44.4: PTPE, Spring and Mass 738
44.4.1.3 Ex 44.5: PTPE; Clamped Beam with Varialble I 738
44.4.2 Principle of Total Complementary Energy (PTCPE) 739
44.5 Castigliano's Theorems 739
44.5.1 First Theorem 739
44.5.2 Ex 44.6: Nonlinear elastic truss 740
44.5.3 Second Theorem 742
44.5.4 Ex 44.7: Castigliano 2; Cantilevered beam 742
44.5.5 Ex 44.8: Castigliano 2; Deflection of a Uniformly loaded Beam using Castigliano's second Theorem 742
44.5.6 Ex 44.9: Castigliano 2, Nonlinear Truss 743
44.5.7 Ex 44.10: Castigliano 2, Spring Deflection 743
44.6 Rayleigh-Ritz Method 744
44.6.1 Derivation 744
44.6.1.1 Ex 44.11: Rayleigh Ritz Uniformly Loaded Simply Supported Beam 745
44.6.2 Ex 44.12: Variational Methods 745
44.7 Summary 752
44.8 Maxwell 1870 Paper 752
44.8.1 Proof 755
44.8.2 Maxwell and Principle of Virtual Force 755
44.9 Structural Optimization 756
44.10Simple Design Example 756
44.10.1 Problem Formulation 756
44.10.2 Alternate Design Results 757
44.10.3 Results Tabulation à la Maxwell 757
44.10.4 Summary 758
44.10.5 Michell truss 758
44.10.6 Design Examples 758
45 Interpolation Functions; Natural Coordinate Systems 761
45.1 Cartesian Coordinate System 761
45.1.1 C^{0} Discontinuity 762
45.1.1.1 Truss element 762
45.1.1.2 Generalization 763
45.1.1.3 Constant Strain Triangle Element 763
45.1.1.4 Further Generalization: Lagrangian Interpolation Functions 765
45.1.1.5 Rectangular Bilinear Element 765
45.1.1.6 Solid Rectangular Trilinear Element 766
45.1.2 C^{1} Continuity 767
45.1.2.1 Flexural 767
45.1.2.2 C^{1} : Hermitian Interpolation Functions 769
45.1.3 Characteristics of Shape Functions 769
45.2 Natural Coordinate System 770
45.2.1 Linear 770
45.2.2 Triangular Coordinates 771
45.2.2.1 Quadratic Element (T6) 773
45.2.3 Volume Coordinates 775
45.2.4 Interpolation Functions 775
45.3 Pascal's Triangle 776
46 Finite Element Formulation 779
46.1 Introduction 779
46.2 Finite Element 780
46.2.1 Introduction 780
46.2.2 Strain Displacement Relations 780
46.2.2.1 Axial Members 780
46.2.2.2 Flexural Members 781
46.2.3 Virtual Displacement and Strains 781
46.2.4 Element Stiffness Matrix Formulation 781
46.2.5 Stress Recovery 782
46.3 Application 783
46.3.1 Truss Element 783
46.3.2 Flexural Element 783
46.4 General Element Requirements 784
46.5 Discretization Error and Convergence Rate 785
46.6 Lower Bound Character of Minimum Potential Energy Based Solutions 786
46.7 Equilibrium and Compatibiliy in the Solution 787
47 Weighted Residual Methods 789
47.1 Introduction 789
47.2 General Formulation 790
47.2.1 Differential Operators 790
47.2.1.1 Application to 1D Axial Member 790
47.2.2 Residual Formulation 791
47.3 Weighted Residual Methods 792
47.3.1 Point Collocation Method 792
47.3.2 Subdomain Collocation Method 792
47.3.3 Least-Squares Method 793
47.3.4 Galerkin Method 793
47.3.5 Ex 47.1: String Vibration 793
47.4 Applications of the Galerkin Method to 3D Elasticity Problems 795
47.4.1 Derivation of the Weak Form 795
47.4.2 FE Discretization 797
48 Isoparametric Elements 799
48.1 Introduction 799
48.2 Element Formulation 801
48.2.1 Bar Element 801
48.2.2 Quadrilaterals 803
48.2.3 Linear Element (Q4) 803
48.2.4 Quadratic Element 808
48.2.4.1 Serendipity Element (Q8) 808
48.2.4.2 Lagrangian element (Q9) 809
48.2.4.3 Variable (Hierarchical) Element 811
48.2.5 Triangular Elements 811
48.2.6 Ex 48.1: Jacobian Operators 812
48.3 Numerical Integration 814
48.3.1 Newton-Cotes 814
48.3.2 Gauss-Legendre Quadrature 816
48.3.2.1 Legendre Polynomial 818
48.3.2.2 Gauss-Legendre Quadrature for $n=2$ 818
48.3.3 Rectangular and Prism Regions 819
48.3.4 Triangular Regions 819
48.4 Stress Recovery; Nodal Stresses 820
48.5 Nodal Equivalent Loads 822
48.5.1 Gravity Load 822
48.5.2 Traction Load 823
48.5.3 Initial Strains/Stresses; Thermal Load 824
48.5.4 Order of Integration 825
48.5.4.1 Full Integration 825
48.5.4.2 Reduced Integration 825
48.5.4.3 Selective Reduced Integration 827
48.6 Parasitic Shear/Incompatible Elements 827
48.6.1 Q4, The Problem 827
48.6.2 Q6, The Solution 828
48.6.3 QM6, Further Enhancements 828
48.7 Rotational D.O.F. 829
IV Advanced; Nonlinear 831
49 Introduction 833
49.1 Introduction 833
49.2 US Codes 833
49.3 LRFD 833
49.3.1 Key Concepts 833
49.3.2 Reliability Index 834
49.3.3 Limitations of LRFD 836
49.3.4 Performance Based Earthquake Engineering 837
49.3.5 PBE 2 838
49.3.6 Summary 838
49.4 Europe 838
49.5 Analysis Support 838
49.6 Course Objectives 840
49.7 Loads and Response 840
49.8 Levels of Structural Analysis 840
50 Matlab; Advanced Features for NSA 843
50.1 Introduction 843
50.2 Functions 843
50.3 Switch Case 844
50.4 Data Types 844
50.5 Cell Arrays 844
50.6 Structures 845
50.7 Mercury 847
50.7.1 Structure Data 847
50.7.2 Sample Input File 847
50.8 Save data 848
51 Plasticity I; Material \& Mechanics 851
51.1 Introduction 851
51.2 Mechanics 851
51.2.1 Stress Tensor 851
51.2.2 Stress Transformation 852
51.2.3 Principal Stresses 853
51.2.4 Invariants 854
51.2.5 Hydrostatic and Deviatoric Stress Tensors 854
51.3 Laboratory Observations 854
51.3.1 Metals 854
51.3.2 Concrete 856
51.4 Chemical Bonds 856
51.4.1 Ductile and Brittle Failures 857
51.4.2 Dislocation 857
51.5 Back to Mechanics 858
51.5.1 Physical interpretation of Stress Invariants 858
51.5.2 Geometric Representation of Stress States 859
51.6 Failure Surfaces 859
51.6.1 Plastic Yield Conditions; Formulation 859
51.6.2 Hydrostatic Pressure Independent Models 860
51.6.3 Hydrostatic Pressure Dependent Models 861
51.7 Fundamentals of Plasticity 863
51.7.1 Introduction 863
51.7.2 Tangent Elastic Modulus 864
51.7.3 Tangent Modulus; Engineering 864
51.7.4 Yield Function; Isotropic Hardening Model 865
51.7.5 Flow Rule 865
51.7.6 Consistency Condition 866
51.7.7 Tangent Modulus; Mechanics 866
52 Plasticity II; Sections 869
52.1 Introduction 869
52.1.1 Curvature Equation 870
52.1.2 Moment-Curvature; $M-\Phi$ 871
52.1.3 Matlab Code 871
52.2 Layered; $(\sigma-\varepsilon)$; Steel 872
52.2.1 Derive Equivalent $M-\Phi$ 872
52.2.2 Push Over $P-\Delta$ 874
52.3 Layered; $(\sigma-\varepsilon)$; Concrete/ACI 874
52.3.1 Formulation 874
52.3.2 Ultimate Moment M_{u} 877
52.4 Moment Curvature $M-\Phi$ 878
52.4.1 Free Body Diagram 878
52.4.2 Procedure 879
52.4.3 Algorith 880
52.5 Interaction Diagram $M-N$ 882
52.6 Lumped Plasticity 883
53 Plasticity III; Limit Analysis of Structure 885
53.1 Introduction 885
53.2 Kinematic; Upper Bound Theorem 886
53.2.1 Theory 886
53.2.2 Kinematic; Example 1 886
53.2.3 Kinematic; Example 2 886
53.2.4 Kinematic; Example 3 886
53.2.5 Kinematic; Example 4 887
53.3 Statics; Lower Bound 887
53.3.1 Theory 887
53.3.2 Statics; Example 1 888
53.3.3 Statics; Example 2 889
53.3.4 Statics; Example 3 889
53.3.5 Statics; Example 4 890
53.4 Relation with PushOver Analysis 891
53.5 Slabs 891
53.5.1 Yield Line Theory 891
53.5.2 Statics Example 891
53.5.3 Kinematics 894
53.5.4 Kinematics; Example 894
54 Nonlinear Analysis; Introduction: Numerical Methods 899
54.1 Explicit 899
54.2 Newton Methods 899
54.2.1 Taylor Series and Linearization 900
54.2.2 Newton Method 901
54.2.3 Matlab Listing 902
54.2.4 Multi-Dimensional 902
54.2.5 Multi-Dimensional; Algorithm 903
54.2.6 Convergence and Error Estimate 903
54.2.7 Final Remarks 904
54.2.8 Examples 904
54.2.9 Quasi Newton 905
54.3 Relationship to Structural Mechanics 905
54.3.1 Introduction 905
54.3.2 Predictor-Corrector 906
54.3.3 Newton-Raphson 907
54.3.4 Initial stiffness 907
54.3.5 Modified Newton-Raphson 908
54.3.6 Secant Newton 909
54.3.7 Arc-Length Method 909
54.3.8 Convergence criteria 910
55 911
56 Element Formulations 913
56.1 Introduction 913
56.2 Truss Element 913
56.2.1 Stiffness Matrix 913
56.2.2 Coordinate system for 2D truss element 914
56.2.3 State determination 915
56.3 Beam-Column; Stiffness Based 915
56.3.1 Stiffness Matrix 915
56.3.2 Coordinate system 917
56.3.3 State Determination 918
56.3.4 "Hidden" Error 919
56.4 Layer/Fiber Section 920
56.4.1 Layer/Fiber Sections; Introduction 920
56.4.2 Section Stiffness Matrix 922
56.4.3 State Determination 923
56.5 Zero-Length 2D Element 925
56.5.1 Introduction 925
56.5.2 Stiffness Matrix 925
56.5.3 Coordinate system 926
56.5.4 Element state determination 926
56.6 Zero-Length Section Element 927
56.6.1 Introduction 927
56.6.2 Stiffness Matrix 927
56.6.3 Coordinate system 928
56.6.4 Element state determination 929
56.7 Flexibility Based Elements 929
56.7.1 Introduction 929
56.7.2 Stiffness Matrix 930
56.7.3 Coordinate system 932
56.7.4 State determination; Introduction 932
56.7.5 State Determination; No Iterations 933
56.7.6 State Determination; Iterations; The "Big Picture" 933
56.7.7 State Determination; Details 933
56.7.7.1 Nonlinear analysis using flexibility-based method 936
56.7.7.1.1 With element iterations 936
56.7.7.1.2 Without element iterations 939
56.8 Element Force 942
56.9 Summary 943
57 Introduction to Nonlinear Analysis 961
57.1 Introduction 961
57.1.1 Loads and Response 961
57.2 Levels of Structural Analysis 961
57.3 Numerical Methods 963
57.4 Introduction; Newton Methods 963
57.4.1 Taylor Series and Linearization 963
57.4.2 Newton Method 964
57.4.3 Newton Method; Matlab Listing 966
57.4.4 Newton Method; Multi-Dimensional 966
57.4.5 Newton Method; Algorithm 967
57.4.6 Newton Method; Final Remarks 967
57.4.7 Examples 968
57.5 Variations 968
57.5.1 Variations 968
57.6 Relationship to Structural Mechanics 968
57.6.1 Introduction 968
57.6.2 Newton-Raphson iterative method 970
57.6.3 Initial stiffness iterative method 970
57.6.4 Modified Newton-Raphson 971
57.6.5 Secant Newton Method 971
57.6.6 Arc-Length Method 972
57.6.7 Convergence criteria 972
58 Constitutive Models; Distributed Plasticity 975
58.1 Introduction 975
58.1.1 Linear Thermo-Elasticity 975
58.1.2 Heuristic Models 976
58.2 Steel Models 977
58.2.1 Introduction 977
58.2.2 Simplified Bilinear Model with Isotropic Hardening 977
58.2.3 Giuffre-Menegotto-Pinto Model Modified by Filippou et al. 979
58.3 Concrete Models 981
58.3.1 Modified Kent and Park Model 981
58.3.2 Modified Kent and Park Model; Compression 985
58.3.3 Modified Kent and Park Model; Tension 985
58.4 Bond-Slip 987
58.4.1 Free Body Diagram 987
58.4.2 Simplified Model 987
58.4.3 Zero length section element 990
59 Constitutive Models; Lumped Plasticity 993
59.1 Introduction 993
60 Engineering Seismic Risk Analysis 995
60.1 Introduction 995
60.2 Levels and Acceptance Criteria 995
60.3 Capacity and Demand 996
60.4 Capacity Design 997
60.5 Seismic Hazard Analysis 997
60.6 Engineering Seismic Risk Analysis 997
60.7 $\mathrm{PSHA}=\mathrm{SHA}+\mathrm{ESRA}$ 997
60.8 Pushover Analysis 999
60.9 Multiple-Strip Analysis 999
60.10Incremental Dynamic Analysis 1000
60.11Endurance Time Analysis 1000
60.12Summary 1001
61 Nonlinear Transient Analysis 1003
61.1 Introduction 1003
61.2 Background 1004
61.2.1 Variational Formulation 1004
61.2.2 Mass Representation 1005
61.2.3 Damping 1005
61.2.4 Euler Methods 1007
61.3 Time Integration Methods 1008
61.3.1 Newmark's Method; Derivation 1008
61.3.2 Newmark's Algorithm 1009
61.3.3 Hilber-Hughes-Taylor Method 1010
62 Modelling 1013
62.1 Introduction 1013
62.2 Elements 1013
62.3 Columns 1015
62.4 Beams 1016
62.5 Layers 1016
62.6 Connection 1017
63 Mercury 1019
63.1 Introduction 1019
64 Soil Structure Interaction 1021
64.1 Fast Fourrier Transform 1021
64.1.1 Matlab Code 1023
64.1.2 Transfer Function 1023
64.2 Deconvolution 1023
64.3 Soil-Structure Interaction 1025
64.4 Free Field 1026
64.4.1 Validation 1027
64.5 Rocking 1028
A Elastic Arches; Advanced Analyses 1045
A. 1 Introduction 1045
A. 2 Three-Hinged Circular Arch 1046
A.2.1 Analysis Procedure 1046
A.2.2 Point Load 1047
A.2.2.1 Deflection 1051
A.2.3 Self Weight 1052
A.2.3.1 Deflection 1054
A.2.4 Uniformly Distributed Load 1055
A.2.4.1 Deflection 1057
A.2.5 Three-Hinged Circular Arch: Validation 1058
A.2.6 Conclusion 1059
A. 3 Two - Hinged Circular Arch 1060
A.3.1 Analysis Procedure 1060
A.3.2 Point Load 1060
A.3.3 Self weight 1069
A.3.4 Uniformly Distributed Load 1077
A.3.5 Two-Hinged Circular Arch: Validation 1080
A.3.6 Conclusion 1081
A. 4 Hingeless Circular Arch 1082
A.4.1 Analysis Procedure 1082
A.4.2 Point Load 1083
A.4.3 Self weight 1094
A.4.4 Uniformly Distributed Load 1101
A.4.5 Hingeless Circular Arch: Validation 1105
A.4.6 Conclusion 1107
A. 5 Conclusion 1107
B Alamillo's Bridge Data Set 1109
C Review of Linear Algebra 1113
C. 1 On Matrices 1113
C.1.1 Definitions 1113
C.1.2 Elementary Matrix Operations 1115
C.1.3 Determinants 1115
C.1.4 Inversion 1116
C.1.5 Eigenvalues and Eigenvectors 1117
C. 2 Solutions of Linear Equations 1117
C.2.1 Decomposition 1118
C.2.1.1 Gauss Elimination 1118
C.2.1.2 Gauss-Jordan Elimination 1119
C.2.1.3 LU Decomposition 1119
C.2.1.4 Cholesky's Decomposition 1120
C.2.2 Indirect Methods 1120
C.2.2.1 Gauss Seidel 1121
C.2.2.2 Pre Conditioning 1121
C. 3 Examples 1121
C.3.1 Ex C.1: Gauss Elimination 1121
C.3.2 Ex C.2: Gauss-Jordan Elimination 1122
C.3.3 Ex C.3: LU Decomposition 1123
C.3.4 Ex C.4: Cholesky's Decomposition 1124
C.3.5 Ex C.5: Gauss-Seidel 1125
C.3.6 Ex C.6: Gauss-Seidel 1126
D Review of Mechanics of Deformable Bodies 1129
D. 1 Introduction 1129
D.1.1 Notation 1129
D.1.2 Tensors 1131
D.1.2.1 Operations 1132
D.1.2.2 Rotation of Axes 1133
D.1.2.3 Tensor Transformation 1134
D.1.2.4 Principal Values of Symmetric Second Order Tensors 1135
D. 2 Vector Fields; Mechanics of Deformable Bodies 1136
D.2.1 Forces 1136
D.2.2 Cauchy's Stress Tensor 1137
D.2.2.1 Hydrostatic and Deviatoric Stress Tensors 1138
D.2.2.2 Geometric Representation of Stress States 1139
D.2.3 Kinematics 1139
D.2.3.1 Position and Displacement 1139
D.2.3.2 Strains 1140
D. 3 Fundamental Laws of Continuum Mechanics 1142
D.3.1 Conservation Laws 1142
D.3.2 Fluxes 1143
D.3.3 Conservation of Mass; Continuity Equation 1143
D.3.4 Conservation of Momentum; Equation of Motion 1144
D.3.5 Conservation of Energy; First Principle of Thermodynamics 1145
D. 4 Constitutive Equations 1147
D.4.1 General 3D 1147
D.4.2 Transversly Isotropic Case 1149
D.4.3 Special 2D Cases 1149
D. 5 Boundary Conditions 1150
D. 6 Tonti Diagram 1150
E Vector Operators 1153

List of Figures

1.1 Road map to structural engineering 7
2.1 Babylonian mathematics 9
2.2 Hamurabi code (Musée du Louvre) 11
2.3 Euclid's definition of the extreme and mean ratio 12
3.1 Egyptian geometry 15
3.2 Simple machines 17
3.3 Emblematic Roman constructions 18
3.4 Example of Vitruvius proportionality rules 19
3.5 Anthropometric senses of proportions 20
4.1 Illustrations from de l'Orme (Delorme, 1567) 22
4.2 Illustrations from Willis (1910) 22
4.3 Thrust load transfer in arches 23
4.4 From the carnet of De Honnecourt (2006) 25
4.5 Milan's cathedral, floor plan 26
4.6 Proportioning schemes for successive designs 26
4.7 Cracked St. Peter's dome 28
4.8 Polini's hanging chain analogy (Poleni, 1748) 29
4.9 Reinforcement of the dome (Poleni, 1748) 30
4.10 Florence's Santa Maria del Fiore, (Scaglia, 1991) 31
4.11 Spina pesce and Loxodorme 32
4.12 Santa Maria del Fiore dome construction 34
4.13 Bruneleschi's ox-driven hoist (King, 2010) 34
6.1 Dialogues of Galileo Galilei (Galilei, 1632) 45
6.2 Galileo Galilei 46
6.3 Galileo's Scaling of Bones (Galilei, 1638) 47
6.4 Modern examples of scaling 48
6.5 Hooke's springs 52
6.6 Isaac Newton 53
6.7 Bernoulli's family and friends 55
6.8 Navier's illustration of suspension bridges 62
6.9 Navier and Telford (bridges) 63
7.1 16th-18th centuries; From Natural Philosophy to Science 65
7.2 Main protagonists 66
7.3 Tension studies 67
7.4 Leonardo's sketches on the strength of beams 67
7.5 Leonardo's Codex Madrid, (Zammattio, 1980) 68
7.6 Galileo's paths toward the seminal cantilevered beam 69
7.7 Galileo's seminal cantilevered beam 70
7.8 Galileo's explanation for beam strength 71
7.9 Deflection of a rigid "masonry beam" 71
7.10 Mariotte's models (Heyman, 1998b)) 72
7.11 Girard's illustration of Galileo and Mariotte's models 73
7.12 Leibniz model 74
7.13 Parent's model 75
7.14 Young's middle third rule 76
7.15 Euler, Bernoulli and Hooke come together (Euler, 1862) 79
7.16 Coulomb's experiments (Coulomb, 1773) 80
8.1 Elastica; CHECK 81
8.2 Osculating circles of a parabola 83
8.3 Oresme's curvature 84
8.4 Huygens isochronous pendulum (Huygens, 1673) 84
8.5 Newton's derivation of curvature 86
8.6 Johann Bernoulli derivation of curvature 87
8.7 Jacob Bernoulli derivation of curvature 88
8.8 Bernoulli's justification for his formula for curvature 89
9.1 Leibniz taking credit for calculus (and denigrating Newton) (Leibniz, 1858, p. 2-3) 92
9.2 Leonardo's sketches for the catenary from (Truesdell, 1960) 94
9.3 Catenary; Christiann Huygens (Huygens, 1888) 96
9.4 Catenary; Ignace Gaston Pardie, SJ 97
9.5 Elastica; The gentlemen from Basel (Wikipedia) 99
9.6 Jakob Bernoulli's Funicularia challenge (Bernoulli, 1690, p. 219) 100
9.7 Leibniz reply to Huygens, Oct, 1690 (Leibniz, 1923) 101
9.8 Jakob Bernoulli's Additamentum ad Problema Funicularium (Bernoulli, 1691a, p. 288) 103
9.9 June 1691 Acta Erudatis solutions to the catenary challenge of Jakob Bernoulli 103
9.10 Euler's catenary problem WHERE REFERENCED? 105
9.11 J. Bernoulli's model (Timoshenko, 1953) 105
9.12 Bernoulli's posed elastica problem (Bernoulli, 1695, p. CLXX) 106
9.13 Jakob Bernoulli's elastica 107
9.14 Bernoulli's 1694 publication of the elastica. 108
9.15 Huygens's 1694 objection to Bernoulli's solution. 110
9.16 Euler's Methodus inveniendi lineas curvas maximi minimive proprietate gau- dentes (Euler, 1744) 112
9.17 Euler's direct method "free body diagram" 113
9.18 Euler's elastica "species" in terms of the load parameter c^{2} / a^{2} 116
9.19 Compression studies 118
9.20 Euler fixed column buckling (Euler, 1759) 119
9.21 Anonymous note in Acta Eruditorium in 1724, (Anonymous, 1724) 121
9.22 Daniel Bernoulli and Leonhard Euler 1728 publications 121
9.23 Daniel Bernoulli 1728 incomplete figure 122
9.24 Euler's diagram for the general line stress in a rod (Euler, 1771) 123
10.1 Navier's Leçons at the Ponts et Chaussées (Navier, 1826) 126
10.2 Moseley's 1843 The Mechanical Principles of Engineering and Architecture (Mose- ley, 1856) 128
10.3 Navier's Leçons at the Ponts et Chaussées (Navier, 1833) 130
10.4 Palladio's Four Books of Architecture (Palladio, 1570) 131
10.5 Maxwell (Maxwell, 1864) 132
12.1 Pearson's experimental work in dams (Pearson et al., 1907) 136
12.2 Richardson's finite difference analysis of dam (Richardson, 1911) 136
12.3 Goldberg adaptation of the slope deflection for wind load analysis (Goldberg, 1934) 139
12.4 [Seidel's method of succesive approximations (Seidel, 1873) 140
12.5 Hardy Cross 140
12.6 Southwell relaxation method (Southwell, 1935) 141
12.7 Pilars of the finite element method 142
12.8 Commercial aircrafts in the early 50 's 142
12.9 The Delta problem and flexibility based solution 143
12.10First finite element paper in the history of the FEM 144
12.11 The Finite Element Method in Plane Stress Analysis (Clough, 1960) 146
12.12Norfork dam analysis (Clough, 1962) (Clough and Wilson, 1962) 147
12.13First nonlinear finite element analysis (Wilson, 1960) 147
12.14First dynamic finite element analysis (Wilson and Clough, 1962) 148
12.15Comparison of the force and displacement approaches by (Argyris and Kelsey, 1960) (a) and (Przemieniecki, 1968) (b, and c) 149
14.1 Stevin 155
14.2 From Aristotle to Newton 156
18.1 Tributary Area 168
18.2 One way vs. two way slabs 169
18.3 Hierarchical load transfer 169
18.4 Inclined members, loads and their projection 169
18.5 Examples of reactions boundaries 170
18.6 Internal stresses 171
18.7 Internal forces in rectilinear and curved beams 172
18.8 Internal forces 173
18.9 Inclined roller support reactions 175
18.10degree of static indeterminacy 175
18.11reactions are concurrent 176
18.12Free body diagrams of a beam subjected to different loads 177
19.1 Statically indeterminate truss 193
19.2 Relation between forces and lengths 193
19.3 presenting forces with arrows 194
19.4 Matrix method, joint free body diagrams 200
19.5 Complex statically determinate truss 201
19.6 Forth Bridge 205
20.1 Shear and Moment Sign Conventions for Design 208
20.2 Design sign conventions 208
20.3 Free Body Diagram of an Infinitesimal Beam Segment 208
20.4 Variations of load, shear and moments 210
21.1 Curvature and strains 222
21.2 Curvature area methods 232
21.3 Sign convention for the curvature area method for opposite curvatures of the beam 233
21.4 Maximum Deflection Using the Moment Area Method 234
21.5 Conjugate beams 239
22.1 Virtual and real forces in an arbitrary structure 244
22.2 Maxwell-Betti Reciprocal Theorem 246
23.1 Statically Indeterminate 3 Cable Structure 266
23.2 Propped Cantilever Beam 267
23.3 Illustrative problem for the flexibility method 269
23.4 Illustration of the flexibility method with two unknowns 270
24.1 Sign convention for the stiffness method 286
24.2 Flexural problem formulation for stiffness terms 288
24.3 Forces and displacements for a beam with semi-rigid connections 292
24.4 Forces and displacements for a beam with semi-rigid connections 293
24.5 Pure shear deformation 294
24.6 Infinitesimal element subjected to shear stress 295
24.7 Shear stress and coefficient 297
24.8 Torsion Rotation Relations 299
24.9 Nonuniform Torsion (adapted from (McGuire and Winter, 1968)) 301
24.10I Beam subjected to torsion 302
25.1 Illustrative example for the slope deflection method 307
25.2 Key concepts of the moment distribution 317
26.1 Müller-Breslau Principle 327
27.1 Stability of a Rigid Bar 330
27.2 Stability of a Rigid Bar with Initial Imperfection 331
27.3 Stability of a Two Rigid Bars System 331
27.4 Two DOF Dynamic System 333
27.5 Euler Column 334
27.6 Simply Supported Beam Column; Differential Segment; Effect of Axial Force P 335
27.7 Effective lengths for beam and frames 340
27.8 Columns effective lengths in a multi-bay multi-storey frames 340
27.9 Alignment chart for semi-flexible connections 341
28.1 Verification of cable theory 345
28.2 Cable geometry \# 1 349
28.3 Cable geometry \# 2 351
28.4 Geometry of an inclined cable subjected to uniform horizontal transverse load 355
28.5 Cable Stiffness 356
28.6 Catenary alternative reference coordinates 366
28.7 Catenary with inclined chord, (Cella, 1999) 368
28.8 Comparison between catenary and parabolic based solutions 369
29.1 Moment Resisting Forces in an Arch or Suspension System as Compared to a Beam, Lin and Stotesbury, 1981a 372
29.2 Statics of a Three-Hinged Arch, Lin and Stotesbury, 1981a 372
29.3 Two hinged arch, analogy with fixed end beam Lin and Stotesbury, 1981a 373
29.4 Optimal parabolic arch for a uniform load 374
29.5 Symmetric arch subject to distributed load 375
29.6 Spiral Staircase at the Louvre Museum (Paris), and Sagrada Familia cathedral (Barcelona) 387
29.7 Geometry of Curved Structure in Space 387
29.8 Free body diagram of a curved structure in space 388
29.9 Gothic architecture Ching (2011) 391
29.10Chartres Cathedral mappinggothic.org 392
29.11Arch styles from (Ching (2011)) 392
29.12Flying buttresses of Gothic structures Kim (2016) 393
29.13Gothic cathedral cross section Ching (2011) 394
29.14The pinnacle affecting line of thrust Kim (2016) 395
29.15Cross section of the Roman Pantheon 395
29.16Typical arch Ochsendorf (2002) 396
29.17Flying buttress geometry Nikolinakou, Tallon, and Ochsendorf (2005) 396
29.18Minimum and maximum lines of thrust Kim (2016) 397
29.19Active and passive lines of thrust (based on Heyman (1966)) 397
29.20Vault behavior Hassan Fangary (2010) 397
29.21Kinematic assessment of arch structure and failure mechanism Hassan Fangary (2010) 399
29.22Photoelastic analysis method 400
29.23Visual output from DomeSpread program showing critical span increase to cause collapse and the corresponding collapse mechanism for a hemispherical dome, Zessin (2012) 402
29.24Still frames of a dome spreading analysis failure sequence Zessin (2012) 403
29.25Equilibrium of an infinitesimal voussoir 404
30.1 Curvature of a Flexural Element 410
30.2 Finite Element Formulation 412
30.3 Stresses in a Plate 412
30.4 Free Body Diagram of an Infinitesimal Plate Element 413
30.5 Displacements in a Plate 414
30.6 Positive Moments and Rotations 416
30.7 Differential Shell Element, Forces, (Billington, 1965) 421
30.8 Differential Shell Element, Stresses, (Billington, 1965) 422
30.9 Differential Shell Element, Vectors of Stress Resultants, (Billington, 1965) 422
30.10Differential Shell Element, Vectors of Stress Couples, (Billington, 1965) 423
30.11Differential Shell Element, Q_{x} Stress Resultants, (Billington, 1965) 426
30.12Differential Shell Element, Principal Curvatures, (Billington, 1965) 427
30.13Differential Shell Element, Initial and Deformed State, (Billington, 1965) 431
30.14Differential Shell Element, Initial and Deformed State; Shear Strain Caused by Increase in Length of Positive Sides, (Billington, 1965) 432
30.15Differential Shell Element, Initial and Deformed State; Shear Strain Caused by Twist of Surface, (Billington, 1965) 433
30.16Differential Shell Element, Initial and Deformed State; Rotation, (Billington, 1965)43330.17Middle surface of differential element, (Billington, 1965)435
30.18(a) Shell of positive gaussian curvature. (b) Shell of zero gaussian curvature. (c) Shell of negative gaussian curvature, (Billington, 1965) 443
31.1 Vitruvius 447
31.2 Galileo challenges Vitruvius (Galilei, 1632) 448
31.3 Anthropometric senses of proportions 454
31.4 Palladio's Four Books of Architecture (Palladio, 1570) 455
31.5 LeCorbusier Ingénieur-Architecte pictogram (Pierrefeu and Corbusier, 1942) 457
31.6 Gustave Eiffel: The Tower and the Bridge 459
31.7 Robert Maillart 461
31.8 Ricardo Morandi 463
31.9 l'Ingegniere Nervi (Tullia, 2009) 463
31.10Examples of isostatic lines 465
31.11 Nervi and Biometic architecture 466
31.12Nervi structural and material engineer 467
31.13Nervi's iconic structures 467
31.14Torroja, Zarzuela hippodrome 469
31.15Poleni's investigation of St Peter's dome cracking (Poleni, 1748) 471
31.16Gaudi's Sagrada Familia 472
31.17Saarinen Arch 473
31.18Frei Otto 473
31.19Modern examples of scaling 474
31.20Musmeci's bridge over the Basento river 475
31.21Menn's Sunniberg bridge 476
31.22Khan's iconic buildings 478
31.23Calatrava: beauty and monstrosity 479
31.24Felix Candela's hyperbolic-paraboloid shells 480
31.25Frank Gehry's Bilbao and Richard Serra's Band 481
31.26Examples of (complex) structural analyses deprived of any interaction with ar- chitects (Saouma and Hariri-Ardebili, 2021) 482
31.27Yamasaki and Robertson 484
31.28Baker, Burj-Khalifa (Baker, Skidmore, et al., 2013) 486
31.29Virlogeux, Millau Viaduct (Virlogeux et al., 2005) 487
31.30Some more or less acceptable solutions to stiffen a cable-stayed bridge with mul- tiple spans (Virlogeux et al., 2005) (adapted from) 488
31.31Architectural art 489
31.32The Pen and The Bridge 490
31.33True Structural Arts 490
32.1 Architect-Structural Engineer iterative interactions 494
32.2 Demand and Capacity in a beam 494
32.3 Safety 495
32.4 Probability distribution functions of C and D 496
32.5 Probability of Failure in terms of β 498
32.6 Limit state analysis of a cracked reinforced concrete section 499
32.7 Whitney Stress Block 501
32.8 Proof of Maxwell contention regarding truss internal forces 511
32.9 Michell truss 512
32.10Structural topology optimization Beghini et al. (2014) 513
32.11Example of Evolutionary Structural Optimization; 515
32.12Lattice based model for shear failure in concrete (Pan et al., 2018) 516
33.1 Compatible corner rotations 518
33.2 Deflection of a simple beam 518
33.3 Deflection of portal frame with rigid columns under vertical load 519
33.4 Deflection of portal frame under vertical load 519
33.5 Example of portal frame subject to lateral load 520
33.6 Deflected shape and moment diagram; portal frame with lateral load 520
33.7 Beam deflections in terms of support stiffnesses 521
33.8 Frame under vertical load; approximate location of inflection points 526
33.9 Approximate analysis of frames subjected to vertical loads; girder moments 526
33.10Approximate Analysis of Frames Subjected to Vertical Loads; Column Axial Forces 527
33.11Approximate Analysis of Frames Subjected to Vertical Loads 528
33.12Approximate analysis of frames subjected to lateral loads; column shear 529
33.13Approximate Analysis of Frames Subjected to Lateral Loads; Girder Moment 530
33.14Shear Deformation in a Short Building, Lin and Stotesbury, 1981a 542
33.15Flexural Deformation in a Tall Building, (Lin and Stotesbury, 1981a) 542
33.16Deflection in a Building Structure Composed of Two Slender Walls and Lintels, (Lin and Stotesbury, 1981a) 543
33.17Portal Method to Estimate Lateral Deformation in Frames, (Lin and Stotesbury, 1981a) 544
33.18Shear and Flexural Deflection of a Rigid Frame Subsystem, Lin and Stotesbury, 1981a 545
33.19Side-Sway Deflection from Unsymmetrical Vertical Load, (Lin and Stotesbury, 1981a) 545
36.1 Time Dependent strain; Creep and Shrinkage 587
36.2 Building Thermal Loads 587
36.3 Degrees of static and kinematic indeterminacy 589
36.4 Elements internal forces and local dof 589
36.5 Sign Convention, Design and Analysis 590
36.6 Independent displacements 590
36.7 Local and global coordinate system/dof 591
36.8 Boundary Value Problem 593
37.1 Definition of the stiffness term $K_{i j}$ 595
37.2 Stiffness coefficients for various types of elements 596
$37.3 k_{11}$ and k_{22} coefficients for identical left and right rotational springs 598
37.4 3D Beam-column element's degrees of freedom 599
37.5 Individual stiffness terms in a 3D beam-column element 601
37.6 Parasitic shear deformation for an imposed 602
37.7 End forces and displacements of a torsion element with warping restraint 604
38.1 Beam example to compare flexibility and stiffness methods 608
38.2 Example of beam to determine the degree of kinematic indeterminacy 609
38.3 Examples of commercial codes for structural analysis/design/BIM (RISA, ETABS) 627
38.4 Examples of nuclear reactor and concrete dams (Saouma and Hariri-Ardebili, 2021)627
38.5 Examples of automotive, aerospace, manufacturing, biomedical industry used in finite element 628
39.1 Local (\mathbf{k}^{e}) and global ($\left.\mathbf{K}^{e}\right)$ Element stiffness matrices 629
39.2 Transformation matrix for a 2D Beam-Column 630
39.3 Arbitrary 3D Vector Transformation 631
39.4 2D Frame element rotation with respect to Z (or z) 633
39.5 Grid Element Rotation 634
39.6 Transformation matrix for the Vlasov beam 635
39.7 2D Truss Rotation 636
39.8 Reduced 3D Rotation 637
39.9 Special Case of 3D Transformation for Vertical Members 638
39.10Complex 3D Rotation 639
40.1 Unconstrained and constrained dof 643
40.2 Example of structural discretization 644
40.3 Example for [ID] Matrix Determination 645
40.4 Examples of LM assignments 646
40.5 Assembly of global stiffness matrix process 647
41.1 Mapping of displacements into forces 658
41.2 Eigenvalue test problem 659
41.3 Member assemblage resulting in ill-conditioned \mathbf{K} 661
41.4 Ill conditioned matrices in terms of $\left[\begin{array}{ll}K_{1} & K_{2}\end{array}\right]$ 662
41.5 Importance of nodal numbering 664
41.6 Storage requirements for the structural stiffness matrix 665
42.1 Kinematics of a truss element 675
42.2 Stable and Statically Determinate Element 678
42.3 Axial vs flexural stiffnesses 688
42.4 Reduction of unconstrained displacements when axial stiffness is ignored 688
42.5 Modeling of building for seismic load 689
42.6 Stiffness terms in a shear column 690
42.7 Beam with rigid offset 690
42.8 FBD of beam with rigid offset 691
42.9 Flexible, Rigid, and Semi-Rigid Beams 692
42.10Deformations of a Semi-Rigid Beams 693
$42.11 K_{22}$ Coefficient for Semi-Flexible Connections 695
42.12Extracts from the Handbook of frame constants (Portland Cement Association, 1947) 697
42.13Beam with variable section 697
42.14Section with varying depth; Parametric study, $L=I_{z}=w=1$ 699
43.1 Variational and differential operators 702
43.2 Examples of essential and natural boundary conditions 707
44.1 Traction definition 719
44.2 Strain and complementary strain energy densities 719
44.3 Potential energy 721
44.4 Effects of Load Histories on U and W_{i} 722
44.5 Illustrative diagrams of the principles of virtual and complementary virtual works 728
44.6 Minimizations in Quantum and Classical Mechanics 737
44.7 Summary of Variational Methods 753
44.8 Duality of Variational Principles 754
44.9 XXXCaption 755
44.10XXXCaption 756
44.11XXXCaption 757
44.12XXXCaption 757
44.13XXXCaption 758
44.14XXXCaption 758
44.15XXXCaption 759
44.16XXXCaption 759
45.1 Axial Finite Element 762
45.2 Constant Strain Triangle Element 764
45.3 Rectangular Bilinear Element 766
45.4 Solid Trilinear Rectangular Element 767
45.5 Flexural Finite Element 767
45.6 Shape Functions for Flexure of Uniform Beam Element. 769
45.7 Natural Coordinate System Along a Straight Line 770
45.8 Natural Coordinate System for a Triangle 771
45.9 Integration over a Triangle 772
46.1 Completness and Compatibility 785
$46.2 \mathrm{~h}, \mathrm{p}$ and r Convergence 786
46.3 Interelement Continuity of Stress 787
46.4 Interelement Continuity of Strain 788
48.1 Two-Dimensional Mapping of Some Elements 799
48.2 Actual and Parent Elements 800
48.3 Iso, Super, and Sub Parametric Elements 801
48.4 Three-Noded Quadratic Bar Element 801
48.5 Four Noded Isoparametric Element 803
48.6 Differential Element in Curvilinear Coordinate System 806
48.7 Cross Product of Two Vectors 806
48.8 Element with Possible Singular Jacobians 807
48.9 Serendipity and Lagrangian Quadratic Quadrilaterals 808
48.10Pascal Triangles for Quadrilateral and Triangle Elements 808
48.11Serendipity Isoparametric Quadratic Finite Element: Global and Parent Element 809
48.12Shape Functions for 8 Noded Quadrilateral Element 810
48.13Shape Functions for 9 Noded Quadrilateral Element 810
48.14Nodal Numbering for Isoparameteric Elements 811
48.15Newton-Cotes Numerical integration 815
48.16Gauss-Legendre Integration Over a Surface 819
48.17Numerical Integration Over a Triangle 819
48.18Extrapolation from 4-Node Quad Gauss Points (Felippa, 1999) 820
48.19Gravity Loading 822
48.20Traction Load in Isoparametric Elements 823
48.21Traction Load in Contiguous Isoparametric Elements 824
48.22Independent Displacement Modes for a Bilinear Element 826
48.23Hourglas Modes in Under-Integrated Quadratic Element 827
48.24Rectangular Bilinear Element Subjected to Bending; Bilinear Element and Cor- rect Geometry 827
48.25Displacements Associated with Incompatible Modes for the Q6 Element 828
48.26Side Displacements Induced by Drilling d.o.f. 829
49.1 US Seismic Design Codes 834
49.2 Probability Distributions of Demand and Capacity 835
49.3 Definition of Reliability Index 835
49.4 Probability of Failure in terms of β 836
49.5 Performance Levels 837
49.6 PBEE Framework 838
49.7 Comparison of various Design Frameworks 839
49.8 Load-Deflection Curve and Various Response Range 840
49.9 Levels of Structural Analysis 841
50.1 Mercury Data Structure 847
51.1 Stress Tensor 852
51.2 2D Principal Stresses 853
51.3 Metal Stress-Strain Curve 855
51.4 Bauschinger Effect 856
51.5 Concrete Microcracking 856
51.6 Material Chemical Bonds 857
51.7 Ductile vs Brittle Bond Failure 857
51.8 Slide Plane of Metal Bond Subject to Shear Stresses 858
51.9 Dislocation 858
51.10Octahedral plane 859
51.11Haigh-Westergaard stress space 860
51.12Von Mises Failure surface 861
51.13Von Mises vs Tresca Yield Surface 862
51.14Rankine yield Surface 862
51.15Mohr-Coulomb yield surface 863
51.16Drucker Prager yield surface 863
51.17Elasto-Plastic Stress Strain curve 864
51.18Isotropic vs Kinematic Hardening 865
52.1 XXXCaption 870
52.2 XXXCaption 871
52.3 XXXCaption 872
52.4 XXXCaption 873
52.5 XXXCaption 873
52.6 XXXCaption 873
52.7 XXXCaption 875
52.8 XXXCaption 876
52.9 XXXCaption 876
52.10XXXCaption 877
52.11XXXCaption 879
52.12XXXCaption 880
52.13XXXCaption 881
52.14XXXCaption 882
52.15XXXCaption 883
52.16XXXCaption 884
53.1 XXXCaption 886
53.2 XXXCaption 887
53.3 XXXCaption 887
53.4 XXXCaption 888
53.5 XXXCaption 888
53.6 XXXCaption 889
53.7 XXXCaption 890
53.8 XXXCaption 890
53.9 XXXCaption 892
53.10XXXCaption 893
53.11XXXCaption 893
53.12XXXCaption 894
53.13XXXCaption 895
53.14XXXCaption 895
53.15XXXCaption 895
53.16XXXCaption 895
53.17XXXCaption 895
53.18XXXCaption 895
53.19XXXCaption 896
53.20XXXCaption 896
54.1 Explicit Integration Scheme 900
54.2 Newton Method 901
54.3 Newton Method; Predictor-Corrector 906
54.4 Newton Raphson Iterative Method 907
54.5 Initial Stiffness Method 908
54.6 Modified Newton-Raphson Iterative Method 909
54.7 Secant Newton Method 909
54.8 Arc-Length Method 910
56.1 XXXCaption 915
56.2 XXXCaption 917
56.3 XXXCaption 919
56.4 XXXCaption 920
56.5 XXXCaption 921
56.6 XXXCaption 922
56.7 XXXCaption 924
56.8 XXXCaption 924
56.9 XXXCaption 944
56.10XXXCaption 945
56.11XXXCaption 945
56.12XXXCaption 945
56.13XXXCaption 946
56.14XXXCaption 946
56.15XXXCaption 947
56.16XXXCaption 948
56.17XXXCaption 949
56.18XXXCaption 949
56.19XXXCaption 950
56.20XXXCaption 951
56.21XXXCaption 952
56.22XXXCaption 952
56.23XXXCaption 953
56.24XXXCaption 954
56.25XXXCaption 955
56.26XXXCaption 956
56.27XXXCaption 957
56.28XXXCaption 958
56.29XXXCaption 958
56.30XXXCaption 959
56.31XXXCaption 959
57.1 XXXCaption 961
57.2 XXXCaption 962
57.3 XXXCaption 964
57.4 XXXCaption 965
57.5 XXXCaption 969
57.6 XXXCaption 970
57.7 XXXCaption 971
57.8 XXXCaption 972
57.9 XXXCaption 973
57.10XXXCaption 973
58.1 Hysteretic Models 976
58.2 Simplified Bilinear Model with Isotropic Hardening 977
58.3 Hysteretic Behavior of Model with and without Isotropic Hardening in Tension and Compression; Simplified Bilinear Model 978
58.4 Hysteretic Behavior of Model with and without Isotropic Hardening in Tension and Compression; Giuffre-Menegotto-Pinto Model Modified by Filippou et al. 979
58.5 Menegotto Pinto Steel Model 979
58.6 Determination (1) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al. 982
58.7 Determination (2) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al. 982
58.8 Determination (3) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al. 983
58.9 Determination (4) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al. 983
58.10Modified Kent and Park Model 984
58.11Modified Kent and Park Model; Compression 985
58.12Modified Kent and Park Model; Tension 986
58.13Determination (1) for modified Kent and Park model 988
58.14Determination (2) for modified Kent and Park model 989
58.15Slip Model 990
58.16Simplified Bond Model 991
58.17Bond Slip Curve 992
58.18Location of Neutral Axis 992
60.1 FEMA 750 996
60.2 Expected Performance related to occupancy Category OC and level of Ground Motion 996
60.3 Hazard Curve 998
60.4 Annual Rate of Exceedance λ 998
60.5 Probablistic Seismic Hazard Analysis(PSHA) 999
60.6 Pushover Curve 999
60.7 Multiple-Strip Analysis 1000
60.8 Incremental Dynamic Analysis 1000
60.9 Endurance Time Analysis 1001
60.10Summary of Different Types of Analysis 1001
61.1 Mass and Stiffness Proportional Damping 1006
61.2 Euler Forward vs Euler Backward Methods 1008
62.1 XXXCaption 1014
62.2 XXXCaption 1014
62.3 XXXCaption 1015
62.4 XXXCaption 1016
62.5 XXXCaption 1017
62.6 XXXCaption 1018
64.1 Examples of Butterworth filter 1022
64.2 Filter-Band-Stop-25-50 1022
64.3 Fast Fourier Transformation Example 1023
64.4 Transfer Function 1024
64.5 Signal Deconvolution 1024
64.6 Signal Deconvolution Process 1025
64.7 Merlin User Interface for Deconvolution 1025
64.8 A Simplified 3D model Soil Structure Interaction with Radiation Damping and Free Field Input 1026
64.9 Miura Model 1026
64.10Miura Model; 3D Mesh 1027
64.11XXXCaption 1027
64.12XXXCaption 1027
64.13XXXCaption 1028
64.14XXXCaption 1028
64.15XXXCaption 1028
64.16XXXCaption 1028
64.17XXXCaption 1029
64.18XXXCaption 1029
A. 1 Geometry of circular arch 1046
A. 2 Three-hinged circular arch under point load 1047
A. 3 Relation of β with respect to θ 1049
A. 4 FBD of three-hinged, circular arch under point load 1049
A. 5 Plots of internal forces for Three-hinged circular arch under point load 1052
A. 6 Three-hinged circular arch under self weight 1052
A. 7 FBD of Three-hinged circular arch under self weight 1054
A. 8 Plots for Three-hinged circular arch under self-weight 1055
A. 9 Plots for Three-hinged circular arch under uniformly distribute load 1057
A. 10 Three-hinged circular arch under self-weight vs. series of point load 1058
A. 11 Three-hinged circular arch under uniformly distribute load vs.series of point load1 1058
A. 12 SAP 2000 - Moment diagram of Three-hinged circular arch under self-weight 1059
A. 13 SAP 2000 - Axial force diagram of Three-hinged circular arch under self-weight 1059
A. 14 SAP 2000 - Shear force diagram of Three-hinged circular arch under self-weight 1059
A. 15 Three-hinged circular arch under self-weight vs. UDL 1059
A. 16 Three-hinged circular arch under point load at $1 / 2$ and $1 / 4$ span 1060
A. 17 Two-Hinged circular arch under point load 1061
A. 18 Two-Hinged circular arch after removing redundant thrust at abutment' B' 1062
A. 19 Two-Hinged circular arch with applied virtual force 1064
A. 20 FBD of the original Two-hinged circular arch under point load 1066
A. 21 FBD to compute deflection in Two-hinged circular arch 1069
A. 22 Plots for Two-hinged circular arch under point load 1070
A. 23 Two-Hinged circular arch under self weight 1070
A. 24 FBD of Two-Hinged circular arch after removing redundant thrust at abutment' B' 1071
A. 25 FBD of the original Two-hinged circular arch under self-weight 1074
A. 26 Plots for Two-hinged circular arch under self-weight 1076
A. 27 Plots for Two-hinged circular arch under UDL 1080
A. 28 Two-hinged circular arch under self-weight vs. series of point load 1080
A. 29 Two-hinged circular arch under uniformly distribute load vs. series of point load 1081
A. 30 SAP 2000 - Moment diagram of Two-hinged circular arch under self-weight 1081
A. 31 SAP 2000 - Axial force diagram of Two-hinged circular arch under self-weight 1081
A. 32 SAP 2000 - Shear force diagram of Two-hinged circular arch under self-weight 1081
A. 33 Two-hinged circular arch under self-weight vs.UDL 1082
A. 34 Two-hinged circular arch under point load at $1 / 2$ and $1 / 4$ span 1082
A. 35 Hingeless circular arch under point load 1083
A. 36 Hingeless circular arch with virtual moment at 'B' 1086
A. 37 Hingeless circular arch with virtual moment at 'A' 1086
A. 38 FBD of the original Hingeless circular arch under point load 1090
A. 39 Plots for Hingeless circular arch under point load 1094
A. 40 Hingeless circular arch under self weight 1094
A. 41 Internal forces in Hingeless circular arch 1098
A. 42 Plots for Hingeless circular arch under self-weight 1101
A. 43 Plots for the Hingeless circular arch under UDL 1105
A. 44 Hingeless circular arch under self-weight vs. series of point load 1106
A. 45 Hingeless circular arch under uniformly distribute load vs. series of point load 1106
A. 46 SAP 2000 - Moment diagram of Hingeless circular arch under self-weight 1106
A. 47 SAP 2000 - Axial force diagram of Hingeless circular arch under self-weight 1106
A. 48 SAP 2000 - Shear force diagram of Hingeless circular arch under self-weight 1106
A. 49 Hingeless circular arch under self-weight vs.UDL 1107
A. 50 Hingeless circular arch under point load at $1 / 2$ and $1 / 4$ span 1107
D. 1 Vector transformation 1134
D. 2 Principal directions of tensor of order two 1136
D. 3 Surface forces 1137
D. 4 Cauchy: Tetrahedron to stress 1137
D. 5 Geometric representation of stress 1139
D. 6 Position and displacement vectors 1141
D. 7 Flux through area d S 1143
D. 8 Equilibrium of stresses, Cartesian coordinates 1145
D. 9 Plate from Hooke's lecture on springs 1147
D. 10 Components of Tonti's diagram Felippa, 2000 1151
D. 11 Tonti diagram for Mechanics of Deformable Bodies 1151

This page was intentionally left blank.

List of Tables

6.1 Galileo's four days of dialogues and discourses 47
9.1 Differentiation \& integration symbols 93
9.2 Chronological development of the catenary solution (based on (Alassi, 2020) 94
9.3 Euler's elastica classes 116
19.1 Static Determinancy and Stability of Trusses 192
19.2 Applicable equations of equilibrium for trusses 192
21.1 Analogy between two sets of relationships 239
21.2 Conjugate Beam Boundary Conditions 239
24.1 Stiffness vs Flexibility methods 286
24.2 Stiffness vs flexibility analyses 287
24.3 Nodal equivalent forces for simple loads 289
27.1 Essential and Natural Boundary Conditions for Columns 337
29.1 Notable Gothic structures 392
30.1 Comparison of Governing Equations in Elasticity and Plate Bending (Pilkey and Wunderlich, 1994) 420
30.2 Summary of major governing equations in thin shells 438
31.1 Contents of Vitruvius, Alberti and Palladio books 450
31.2 Form Finders 470
31.3 Chronological development of the catenary solution (based on (Alassi, 2020) 471
31.4 Architectural virtues according to Vitruvius, Alberdi \& Palladio 489
31.5 Major Structural Architects 492
32.1 Reliability index target values 497
36.1 Degrees of static and kinematic indeterminacy 589
36.2 Essential and Natural Boundary Conditions 593
39.1 3D Transformations of Linear Elements 637
40.1 Discretization of structures 644
41.1 Impact of ill-conditioned matrices 662
42.1 Internal Element Force Definition for the Statics Matrix 668
42.2 Conditions for Static Determinacy, and Kinematic Instability 675
44.1 Summary of Equations for VW, CVW, PE, CPE 727
44.2 Alternate paths for the principles of virtual work and principle of complementary virtual work 728
44.3 XXXCaption 758
45.1 Characteristics of Beam Element Shape Functions 769
45.2 Shape Functions and Derivatives for T6 Element 774
45.3 Interpretation of Shape Functions in Terms of Polynomial Series (1D \& 2D) 776
45.4 Polynomial Terms in Various Element Formulations (1D \& 2D) 777
48.1 Shape Functions, and Natural Derivatives for Q8 Element 809
48.2 Shape Functions for Variable Node Elements 811
48.3 Weights for Newton-Cotes Quadrature Formulas 815
48.4 Integration Points and Weights for Gauss-Quadrature Formulaes Over the Interval $[-1,1] 818$
48.5 Coordinates and Weights for Numerical Integration over a Triangle 820
48.6 Natural Coordinates of Bilinear Quadrilateral Nodes 821
48.7 Full and Reduced Numerical Integrations for Quadrilateral Elements 826
48.8 Bilinsear and Exact Displacements/Strains 828
49.1 Selected values for Steel and Concrete Structures 836
49.2 Eurocode 839
49.3 Eurocode 8 839
49.4 Tabulation of Levels of Structural Analysis 841
49.5 Inter-correlation of Different Levels of Analysis 841
52.1 XXXCaption 879
53.1 XXXCaption 885
56.1 XXXCaption 918
56.2 XXXCaption 928
57.1 XXXCaption 962
60.1 New And Existing Buildings Design Codes 995
60.2 Different Types of Analysis 999
61.1 Stability Condition for Different Methods 1009
B. 1 Alamillo's Nodal coordinates (Pollalis, 1999) 1110
B. 2 Alamillo's Member properties (Pollalis, 1999) 1111
B. 3 Alamillo's Boundary conditions (Pollalis, 1999) 1111
B. 4 Alamillo's Load combinations (Pollalis, 1999) 1112
C. 1 Solution methods for linear equations 1118
D. 1 Notations 1130
D. 2 Strain representations 1140
D. 3 Examples of boundary conditions in structural analysis 1150

List of Examples

18.1 Hydro-static load 177
18.2 Load transfer 177
18.3 Simply supported beam 178
18.4 Parabolic Load 179
18.5 Three Span Beam 179
18.6 Three Hinged Gable Frame 180
18.7 Inclined Supports 182
$18.8 \dagger$ Grid Structure 183
18.9 Airplane equilibrium 183
18.1GJumbo barge 184
18.11Palazetto dello Sport; Nervi 187
19.1 Truss analysis; Method of joints 194
19.2 3D Truss 196
$19.3 \dagger$ Method of Sections 199
19.4 Simple truss; Matrix Method 201
20.1 Beam with inclined load 211
20.2 Inclined frame 212
20.3 Frame with Hydrostatic Load 214
20.4 Linearly varying load 216
20.5 Frame; Example Inclined Roof 217
21.1 Double Integration 224
21.2 Maximum deflection 225
21.3 Optimal ski shape 226
$21.4 \dagger$ Floating beam 227
$21.5 \ddagger$ Bicycle wheel 229
21.6 Curvature area, cantilevered beam 234
21.7 Moment curvature, Simply Supported Beam 234
21.8 Maximum Deflection 235
21.9 Frame Subjected to Temperature Loading 236
21.10Conjugate beam; point load 240
21.11Conjugate beam; variable I 240
22.1 Beam 248
22.2 Frame; Deflections 248
22.3 Frame, Rotation 250
$22.4 \dagger$ Flexural Bracket 251
22.5 Cable-Supported Cantilever Beam 252
$22.6 \dagger$ Torsional and Flexural Deformation 253
$22.7 \dagger$ Flexural and Shear Deformations in a Beam 254
$22.8 \dagger$ Thermal Effects in a Beam 255
$22.9 \ddagger$ Pipeline 256
22.10Truss; Simple 257
22.1円russ; Complex 258
22.12Truss with initial camber 259
22.13 Truss with secondary stresses 259
22.14 Circular Ring 261
23.1 Steel Building Frame Analysis 271
23.2 Truss, One Redundant Force 275
23.4 Queen Post 279
$23.5 \ddagger$ Flexibility Matrix; Curved Beam 281
24.1 Deflection Cantilevered Beam 295
24.2 Nonuniform torsion of an I section 304
25.1 Cantilevered Beam 309
25.2 Continuous beam 309
25.3 Two-Span Beam 310
25.4 Two-Span Beam, Initial Deflection 312
25.5 Frame 313
25.6 Box Culvert 315
25.7 Continuous beam 319
25.8 Slope deflection/Moment distribution/ Gauss-Seidel 321
26.1 Influence Lines for a simply supported beam 324
26.2 Simply supported beam with with overhangs 326
26.3 Müller-Breslau; Shear Influence Line 327
26.4 Müller-Breslau; Moment Influence Line 328
27.1 Buckling of hinged-Hinged Column 337
27.2 Buckling of fixed-fixed column 337
27.3 Buckling of fixed-hinged column 338
28.1 Funicular Cable 344
28.2 Funicular Cable 347
28.3 bi-cable Gondola 348
28.4 Inclined Cable Geometry 358
28.5 Inclined Cable Forces 359
28.6 Guyed Tower 360
28.7 Suspension bridge 361
28.8 Inextensible Cable; Temperature 362
28.9 Extensible Cable; Sag 363
28.1(Extensible Cable; Thermal 363
28.1 1 Extensible Cable; Prestress 364
28.12Catenary vs Parabola 366
29.1 Three Hinged Arch; Point Load 374
29.2 Three Hinged Arch; Uniform Load 376
29.4 Bow Girder 383
29.5 Helicoidal Arch; Point Load 389
32.1 Ultimate Strength; Review 503
32.3 Ultimate Strength; Design II 504
32.4 Exact Analysis 504
32.5 Case Study: Walnut Lane Bridge 507
32.6 Truss Design 513
33.1 Concrete Shear Wall 522
33.2 Trussed Shear Wall 523
33.3 Tube Subsystem 524
33.4 Approximate analysis of a short building 531
33.5 Matlab Solution 539
33.6 Cantilever Method; High Rise Building 540
33.7 Building Approximate Transverse Deflection 545
34.1 Design of a Statically Indeterminate Arch 549
34.2 Temperature Changes in an Arch 554
35.1 Dulles Airport 559
35.2 Eiffel Tower 565
35.3 Magazini Generali 571
35.4 George Washington Bridge 575
38.2 Orthogonal Frame 612
38.3 Grid 618
38.4 Hybrid Frame 621
38.5 Hybrid Grid 623
40.2 Beam 649
40.3 Truss 653
41.1 Ill-conditioned 662
42.1 Statically Determinate Truss Statics Matrix 668
42.2 Beam Statics Matrix 670
42.3 Statically Indeterminate Truss Statics Matrix 671
42.4 Selection of Redundant Forces 672
42.5 Kinematics Matrix: Truss Example 676
42.6 Flexibility Matrix 679
42.7 Flexibility to Stiffness 680
42.8 Stiffness Matrix of a Curved Element 681
42.9 Congruent Transformation 684
42.10Congruent Transformation of a Frame 685
43.1 Euler: Axial 707
43.2 Euler: Flexure 708
43.3 Hamilton 712
44.1 PCVW, Tapered Cantilevered Beam 731
44.3 PVW, Tapered Cantilevered Beam 735
44.4 PTPE, Spring and Mass 738
44.5 PTPE; Clamped Beam with Varialble I 738
44.6 Nonlinear elastic truss 740
44.7 Castigliano 2; Cantilevered beam 742
44.8 Castigliano 2; Deflection of a Uniformly loaded Beam using Castigliano's second Theorem 742
44.9 Castigliano 2, Nonlinear Truss 743
44.10Castigliano 2, Spring Deflection 743
44.1Rayleigh Ritz Uniformly Loaded Simply Supported Beam 745
44.12Variational Methods 745
47.1 String Vibration 793
C. 2 Gauss-Jordan Elimination 1122
C. 3 LU Decomposition 1124
C. 4 Cholesky's Decomposition . 1124
C. 5 Gauss-Seidel . 1126
C. 6 Gauss-Seidel . 1126

List of Key Points

17.1 Structural Analysis Requirements 164
17.2 Structural Design Requirements 165
18.1 Internal forces in structures 172
18.2 Equilibrium Equations 174
18.3 Free Body Diagram 176
20.1 Shear; Differential 209
20.2 Moment; Differential 209
20.3 Shear; Integral 210
20.4 Moment; Integral 210
21.1 Proposition; First Curvature Area Theorem 232
21.2 Proposition: Second Curvature Area Theorem 233
22.1 First Law of Thermodynamics 244
22.2 Principle of (Complementary) Virtual Work 246
22.3 Maxwell-Betti's Reciprocal Theorem 246
23.1 Flexibility Equations 270
24.1 Force-Displacement relations in a beam 290
24.2 Shear deformation 298
24.3 Uniform and Non Uniform Torsion 302
25.1 Slope Deflection Method 308
25.2 Moment Distribution 318
25.3 Moment distribution, slope deflection and Gauss-Seidel 321
26.1 Influence Line 323
26.2 Müller-Breslau Principle 327
28.1 General Cable 346
36.1 Degree of Freedom 590
36.2 Degrees of freedom corresponding to different elements 591
41.1 Stiffness matrix eigenvalues 658
41.2 Element Stiffness matrix characteristics 658
41.3 Condition Number 660
41.4 Precision and Ill condition 661
42.1 Stiffness Flexibility Relation 678
42.2 Flexibility Stiffness Relation 680
42.3 Congruent Transformation 683
43.1 Hamilton's Principle 710
44.1 First law of thermodynamics states 718
44.2 Principle of Virtual complementary Work 730
44.3 Principle of Virtual Displacement 734
44.4 Principle of Stationary Value of the Potential Energy 737
44.5 Castiglione's First Theorem 740
44.6 Castiglione's second theorem . 742
46.1 Convergence criterion . 784

[^0]: ${ }^{1}$ In practice the bars are riveted, bolted, or welded directly to each other or to gusset plates, thus the bars are not free to rotate and so-called secondary bending moments are developed at the bars. Another source of secondary moments is the dead weight of the element.

[^1]: ${ }^{1}$ That is why in most European countries, the sign convention for design moments is the opposite of the one commonly used in the U.S.A.; Reinforcement should be placed where the moment is "postive".
 ${ }^{2}$ Shear reinforcement is made of a series of vertical stirrups.

[^2]: ${ }^{1}$ To which you have already been exposed at an early stage, yet have very seldom used it so far in mechanics!
 ${ }^{2}$ All vectorial quantities are denoted by a bold faced character.

[^3]: ${ }^{1}$ We use the * to distinguish it from the internal virtual strain energy obtained from the virtual displacement method $\delta \bar{U}$.

[^4]: ${ }^{1}$ Work $=F L=M L^{2} T^{-2}$; Power=Work/time

[^5]: ${ }^{1}$ hence, for most, this book should never be assigned as the primary textbook in a course
 ${ }^{2}$ I have been fortunate to collaborate for nine years with the Tokyo Electric Power Company (TEPCO) on the nonlinear seismic analysis of tall arch dams. After about six years, I thought that we had accomplished all the work. No! no! Prof. Saouma, in Japan, a program has not only to work properly but it must look beautiful. This simple comment, along with my many visits/stays in Switzerland (where a great value is placed on sobriety), and a certain taste for architecture, influenced me.
 ${ }^{3}$ Starting with Xfig on Unix, ending with Visio on Windows

