
Lecture Notes in

Structural Analysis

Victor E. Saouma
saouma@colorado.edu

University of Colorado, Boulder

2022

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 4.0 International” license.

mailto:saouma@colorado.edu
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Notice

Intentionally, this document can not be printed.

It is best read on a computer to easily follow the multiple hyperlinks and bookmarks.



Structural Analysis
Role of Technology

Victor E. Saouma
saouma@colorado.edu

University of Colorado, Boulder

Spring 2019

Victor E. Saouma; Univ. of Colorado Role of Technology 1/9



Introduction

Teaching methods must evolve with time and account for
societal changes.

By now all students have used computers since middle-high
schools (if not earlier for games).

Most computer program no longer have manuals, or steep
learning curves. For a software to gain public trust and
support it has to be simple, elegant, intuitive, scalable.
This has affected

Writing
Computing
Drafting
Structural Analysis
Learning
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Writing

Computers have revolutionized our skills in writing as the
use of computers for word processing becomes increasingly
prevalent.
Students no longer

Acquire penmanship (technique of writing with the hand
using a writing instrument).
Think thoroughly before putting ideas on paper (too
easy to copy/delete/paste).

Instead:

WYSIWYG Word processor (i.e. Word).
Document Preparation System with plain text markups,
LATEX(similar to HTML)
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Computing

Before
Abaqus
Slide Rule
Had an ability to

Perform mental calculation (arithmetical calculations
using only the human brain), i.e. 78 × 3.
Get a feel for numbers 3200 × 400 = 1,280,000
Perform simple trigonometric identities, calculus
operations cos(2θ) = cos2 θ− sin2 θ or

∫ 1
x dx

Present
Programmable calculators
Excel
Matlab
Mathematica or Mapple
Mathcad
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Programming Languages

Basic

Pascal

Fortran 90

Fortran 2018

C

C++

Perl

Python, etc...

Victor E. Saouma; Univ. of Colorado Role of Technology 5/9



Programming Languages

Basic

Pascal

Fortran 90

Fortran 2018

C

C++

Perl

Python, etc...

Victor E. Saouma; Univ. of Colorado Role of Technology 5/9



Programming Languages

Basic

Pascal

Fortran 90

Fortran 2018

C

C++

Perl

Python, etc...

Victor E. Saouma; Univ. of Colorado Role of Technology 5/9



Programming Languages

Basic

Pascal

Fortran 90

Fortran 2018

C

C++

Perl

Python, etc...

Victor E. Saouma; Univ. of Colorado Role of Technology 5/9



Programming Languages

Basic

Pascal

Fortran 90

Fortran 2018

C

C++

Perl

Python, etc...

Victor E. Saouma; Univ. of Colorado Role of Technology 5/9



Programming Languages

Basic

Pascal

Fortran 90

Fortran 2018

C

C++

Perl

Python, etc...

Victor E. Saouma; Univ. of Colorado Role of Technology 5/9



Programming Languages

Basic

Pascal

Fortran 90

Fortran 2018

C

C++

Perl

Python, etc...

Victor E. Saouma; Univ. of Colorado Role of Technology 5/9



Programming Languages

Basic

Pascal

Fortran 90

Fortran 2018

C

C++

Perl

Python, etc...

Victor E. Saouma; Univ. of Colorado Role of Technology 5/9



Drafting

Hand.

T-Square, Triangle, “blue-prints”.

Auto-CAD

Solid-Work

BIM (Building Information Modelling), REVIT
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Structural Analysis

SAP

SAP 4

NonSAP

Abaqus, Nastran, Ansys

RISA, BOM
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Learning

Medium

Tablets
Books
e-book
Connect “cloud book”

Organisation

Assignment notebooks
Learning Management System, Canvas
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Summary

Course will bring together the most modern technology
applicable to it:

Connect
MathCad
Canvas
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Introduction

The main purpose of a structure is to transfer load from one point to another:
bridge deck to pier; slab to beam; beam to girder; girder to column; column to
foundation; foundation to soil, etc.

There can also be secondary loads such as thermal (in restrained structures),
shrinkage (concrete), differential settlement of foundations, P-Delta effects
(additional moment caused by the product of the vertical force and the lateral
displacement caused by lateral load in a high rise building), misfit between
structural elements. Often those loads are ignored, yet they may potentially
cause substantial damage.

Loads are generally subdivided into two categories: vertical and horizontal loads.
In linear elastic analysis, it is common to consider each load type separately.

Vertical loads are the predominant ones and include dead and live loads.

Horizontal loads act horizontally on the structure and caused by Wind and
earthquakes

Other loads include, hydrostatic, active/passive soil pressures, and thermal.
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Introduction Introduction; 2

Live loads specified by codes represent the maximum possible loads and the
likelihood of all these loads occurring simultaneously is remote. Hence, building
codes allow some reduction when certain loads are combined together.

Only the dead load is static. The live load on the other hand may or may not be
applied on a given component of a structure. Hence, the load placement
arrangement resulting in the highest internal forces (moment +ve or -ve, shear)
at different locations must be considered.
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Tributary Area

For preliminary analysis, the tributary area of a structural component can
determine the total applied load. The uniform load per unit area over the shaded
area is transferred as a linear load over the adjacent structural element.
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Tributary Area

For a slab simply supported over four linear supports, we may have a one way or
two way action if the ratio a/b is greater or smaller than two respectively.

b b
a / b > 2 a / b < 2

a

Load transfer in a structure is accomplished through a “hierarchy” of simple
flexural elements which are then connected to the columns

AB C

D

E

F

G

Girder

One Way Slab / Beam Beam / Girder Layout
A

B C

D E F G

H HI IJ J KK

One Way Slab

Beams

Columns

Girder

Note: Beam may have same thickness 
as slab

A

B C

D E F G Girder

Columns

AB C

D

E

F

G

H

I

J

K
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Tributary Area Example
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A B C D

H
G F E

a a a

b

LL=40
lbs/ft 2

b=12’; a=4’; b/a=12/4=3>2 One way slab

(40) lb/ft (4) ft= 160 lb/ft=0.16 k/ft
2

(0.16)(12)/2=0.96 k
0.96 k

12 ft

4 ft 4 ft 4 ft

0.48 k
0.96 k 0.96 k

0.48 k

A B C D

0.48+0.96=1.44 k

1.44 k

b=10’; a=6’; b/a<2 Two way slab

3’

4’

3’

3’ 3’

G

A B

H

3’ 4’ 3’
(0.24)(2+3/2)=0.84k

(2)(40)lb/ft (3)ft=0.24 k/ft
2

0.84 k

B G

0.42k 0.42k
0.84k0.84k (40)lb/ft (3)ft=0.12k/ft

2

3’ 3’ 3’ 3’ 3’ 3’

(0.42)+(0.84)+(0.12)[6/2+3/2]=1.8k

1.8k1.8k

A
B C

D

B G
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Vertical Load

P P P P P P P1 2 3 4 5 6 7

TYPICAL  SYSTEM  OF  JOISTS

SUPPORT  BEAM

REPETITIVE  JOIST  LOADS

ACTUAL  DISCRETE  LOADS  ON  SUPPORT  BEAM 

ASSUMED  EQUIVALENT  UNIFORM  LOAD

w LB/FT = TOTAL  LOAD / SPAN

SPAN
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Vertical Load Dead Load

Dead loads (DL) consist of the weight of the structure itself, and other permanent
fixtures (such as walls, slabs, machinery).

DL can easily be determined from the structure’s dimensions and density

Material lb/ft3 kN/m3

Aluminum 173 27.2
Brick 120 18.9
Concrete 145 33.8
Steel 490 77.0
Wood (pine) 40 6.3

For design purposes, dead loads must be estimated and verified at the end of
the design cycle. This makes the design process iterative.
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Vertical Load Live Loads

Live loads (LL) are movable or moving and may be horizontal.

In analysis load placement should be such that their effect (shear/moment) are
maximized.

Use or Occupancy lb/ft2

Assembly areas 50
Cornices, marquees, residential balconies 60
Corridors, stairs 100
Garage 50
Office buildings 50
Residential 40
Storage 125-250

For small areas (30 to 50 sq ft) the effect of concentrated load should be
considered separately.
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Vertical Load Live Loads

Since there is a small probability that large tributary areas are fully loaded, a
reduction of the live load L0 when the influence area KLLAT is larger than 400 ft2,
however the reduced load must not exceed 50% of L0 for members supporting
one floor or a section of a single floor, nor less than 40% of L0 for members
supporting two or more floors:

L = L0

(
0.25 +

15√
KLLAT

)
(1)

where KLL is equal to 4 for interior columns and exterior columns without
cantiliver slab, and 2 for interior beams and edge beams without cantiliver slabs.

The reduced live load for flat roofs is

L = L0R1R2 (2)

where R1 = 1.2− 0.001AT for 200 ft2 < AT < 600 ft2, R1 = 1.0 for AT ≤ 200 ft2,
and R1 = 0.6 for AT ≥ 600 ft2. R2 = 1.0 for F ≤ 4, R2 = 1.2− 0.05F for
4 < F < 12, and R2 = 0.6 for F ≥ 12 where F is the number of inches of rise of
the roof per foot of span.

For columns or beams supporting more than one floor, AT is the sum of the
tributary area from all the floors.
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Vertical Load Examples

A four storey office building has interior columns spaced 30 ft apart in the two
directions. If the flat roof loading is 50 lb/ft2, determine the reduced live load
supported by a typical interior column located on the ground level

L0 = 50 psf
AT = (30)(30) = 900 ft2(> 400 ft2

√
)

Lfloor = L0

(
0.25 +

15√
KLLAT

)
= 50

(
0.25 +

15√
4(900)

)
= 25 psf

% Reduction =
25
50

= 50% > 40%
√

Lroof = L0R1R2 = (50)(0.6)(1) = 30 psf

F1 =

(25 psf)(3× 900 ft2)︸ ︷︷ ︸
1st 3 columns

+(30 psf)(900 ft2)︸ ︷︷ ︸
Roof column

 1
1, 000

= 67.5 + 27.0 = 94.5 k
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Vertical Load Examples

Note that without reduction the total load would have been

F2 = 4(50 psf)(900 ft2) 1
1, 000

= 180.0 k
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Vertical Load Snow Load

Must be determined from local codes and depend on geographical locations.
            

Snow loads are always given on the projected length or area on a slope.

The steeper the roof, the lower the snow retention. For snow loads greater than
20 psf and roof pitches α more than 20◦ the snow load p may be reduced by

R = (α− 20)
( p

40
− 0.5

)
(psf)
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Inclined Load

Extremely important figure.

W1 Snow load
W2 Wind load
W3 Roof dead load

W2

W3

W2

L1

L2 =  L1 /cosθ 
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Lateral Loads ASCE-7
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Lateral Loads Wind; Equations

Let us pull back a step from the textbook, and tie together fluid and structures.

Bernouilli (1700-1782) Principle: P + 1
2ρv2 = cst ⇒ velocity increases, the

pressure decreases. This explains airfoil and negative pressures (suction) on
roofs.
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Lateral Loads Wind; Equations

When a steady streamline airflow of velocity V is completely stopped by a rigid
body (P + 1

2ρv2 = 0), the stagnation pressure (or velocity pressure) qs becomes

qs =
1
2
ρV 2 (3)

where ρ is the air mass density of air.

At sea level and a temperature of 15oC (59oF), the air specific weight γ is 0.0765
lb/ft3, thus the air mass density will be

ρ =
γ

g
=

0.0765
32.2

(4)

this would yield a pressure of

qs =
1
2
(0.0765)lb/ft3

(32.2)ft/sec2

(
(5280)ft/mile
(3600)sec/hr

V
)2

(5)

= 0.00256V 2

where V is the maximum wind velocity (in miles per hour) and qs is in psf and
can be obtained from wind maps (in the United States 70 ≤ V ≤ 110)
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Lateral Loads Wind; Equations

            

The previous equation can now be generalized through an emperical equation to
account for the shape and surroundings of the building. Thus, the design
pressure qz (psf) is given by

qz = 0.00256V 2︸ ︷︷ ︸
qs

KzKztKd Ke (6)
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Lateral Loads Wind; Equations

where
qz Velocity wind pressure at height z above ground.
V Velocity, mph
Kz Velocity pressure exposure coefficient accounts for height and

exposure Kx = [B|C|D] , Exposure B is for urban and suburban,
or wooded areas with low structures; C for open terrain with scat-
tered obstructions generally less than 30 ft; D for unobstructed
areas exposed to wind.

Kzt Topological factor accounts for hills (usually 1.0)
Kd Directionality factor reflects the fact that the climatologically and

aerodynamically or dynamically most unfavorable wind directions
typically do not coincide.

Ke Ground elevation factor accounts for variability of air density in
terms of elevation above sea-level

Last step:
p = qzGCp (7)

where
G Gust factor = 0.85
Cp External pressure coefficient (usually ± 0.8) fraction of the wind

acting on
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Lateral Loads Wind; Equations
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Lateral Loads Wind; Tables

we need Kz , Kd , Ke, G, Cp.

Kz

Kz

z (ft) Exposure
B C D

0-25 0.57 0.85 1.03
20 0.62 0.90 1.08
25 0.66 0.94 1.12
30 0.70 0.98 1.16
40 0.76 1.04 1.22
50 0.81 1.09 1.27

100 0.99 1.26 1.43
160 1.13 1.39 1.55

Kd

Buildings
Main Wind Force Resisting System 0.85
Components and Cladding 0.85
Arched roofs 0.85

Chimneys, Tanks. and Similar Structures
Square 0.90
Hexagonal 0.95
Round 0.95
Open Signs and Lattice Frameworks 0.85

Trussed Towers
Triangular. square. rectangular 0.85
All other cross sections 0.95
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Lateral Loads Wind; Tables

Ke

Altitude Air Density Ke
(ft) (pcf) Factor
0 0.0765 1.00

1,000 0.0742 0.96
2,000 0.072 0.93
3,000 0.0699 0.90
4,000 0.0678 0.86
5,000 0.0659 0.83
6,000 0.0639 0.80

Cp Wall pressure coefficient
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Lateral Loads Wind; Tables

R
ig

idWind

B
L

q h
G

C
p

qzGCp

qhGCp

q h
G

C
p

qhGCp

q z
G

C
p

Surface L/B Cp Use with
Windward wall All Values 0.8 qz

Leeward wall
0-1 -0.5

qh2 -0.3
≥4 -0.2

Side Walls All values -0.7 qh

Windward Leeward
θ 10 15 20 25 30 35 45 ≥60 10 15 ≥20

Cp -0.9 -0.7 -0.4 -0.3 -0.2 -0.2 0.0 0.01θ -0.5 -0.5 -0.6
0.0 0.2 0.2 0.3 0.4
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Lateral Loads Wind; Tables

Note: Two values of Cp: must design for both
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Lateral Loads Example

Wind blows on the side of the fully enclosed agricultural building
located on open flat terrain in Oklahoma. Determine the external
pressure acting on the roof. Use linear interpolation to determine qh.

50'

100'
10o 15'
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Lateral Loads Example

qz = 0.00256V 2KzKZtKd Ke

C = 0.85 Exposure: Open Terrain

K 0−15
z = 0.85

K 20
z = 0.90

Kzt = 1 on level ground

Kd = 0.85 Main building

Ke = = 1.0 Elevation less than 1,000 ft

q15 = 0.00256(90)2(0.85)(1)(1)(0.85) = 14.9 psf

q20 = 0.00256(90)2(0.90)(1)(1)(0.85) = 15.9 psf

h = 15 +
1
2
(25 tan 10◦) = 17.20 ft Mean elevation

qh − 14.9
17.20− 15

=
15.9− 14.9

20− 15
⇒ qh = 15.34 psf
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Lateral Loads Example

External pressure on winward side of roof

p = qhGCp

Cp = −0.9

p = qhGCp = 15.34(0.85)(−0.9) = −11.7 psf

External pressure on Leeeward side of roof

p = qhGCp

Cp = −0.5

p = qhGCp = 15.34(0.85)(−0.5)

= −6.5 psf
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Earth Load

Structures below ground must resist lateral earth pressure.

q = Kγh

where γ is the soil density, K = 1−sin�

1+sin� is the pressure coefficient, h is the height.

For sand and gravel γ = 120 lb/ ft3, and � ≈ 30◦.
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Hydrostatic Load

If the structure is partially submerged, it must also resist hydrostatic pressure of
water

q = γw h

where γw = 62.4 lbs/ft3.
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Hydrostatic Load

Example The basement of a building is 12 ft below grade. Ground water is located 9
ft below grade, what thickness concrete slab is required to exactly balance the
hydrostatic uplift?
The hydrostatic pressure must be countered by the pressure caused by the weight of
concrete. Since p = γh we equate the two pressures and solve for h the height of the
concrete slab

(62.4) lbs/ft3 × (12− 9) ft︸ ︷︷ ︸
water

= (150) lbs/ft3 × h︸ ︷︷ ︸
concrete

⇒ h =
(62.4) lbs/ft3

(150) lbs/ft3
(3) ft(12) in/ft = 14.976 in ' 15.0 inch
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Bridge Loads

Victor E. Saouma; Univ. of Colorado Loads 33/33



Structural Analysis
Equilibrium & Reactions

Victor E. Saouma
saouma@colorado.edu

University of Colorado, Boulder

Spring 2022

Victor E. Saouma; Univ. of Colorado Reactions 1/23



Table of Contents I

1 Introduction

2 Equilibrium

3 Equations of Conditions

4 Static Determinancy

5 Geometric Instability

6 Free Body Diagrams

7 Examples
Simply Supported Beam
Parabolic Load
Three Span Beam
Three Hinged Gable Frame
Inclined Supports

Victor E. Saouma; Univ. of Colorado Reactions 2/23



Introduction

Newton’s Third Law
To every action there is an equal and opposite reaction.
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Introduction

Reactions Internal Forces Deflections Flexibility Method (SIS)
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Equilibrium

Summation of forces and moments, in a static system must be equal to zero.

In a 3D cartesian coordinate system there are a total of 6 independent equations
of equilibrium:

�Fx = �Fy = �Fz = 0
�Mx = �My = �Mz = 0

In a 2D cartesian coordinate system there are a total of 3 independent equations
of equilibrium:

�Fx = �Fy = �Mz = 0

For reaction calculations, the externally applied load may be reduced to an
equivalent force; For internal forces (shear and moment) we must use the actual
load distribution.

Summation of the moments can be taken with respect to any arbitrary point.

Whereas forces are represented by a vector, moments are also vectorial
quantities and are represented by a curved arrow or a double arrow vector.

Not all equations are applicable to all structures
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Equilibrium

Structure Type Equations
Beam, no axial forces �Fy �Mz

2D Truss, Frame, Beam �Fx �Fy �Mz

Grid �Fz �Mx �My

3D Truss, Frame �Fx �Fy �Fz �Mx �My �Mz

Alternate Set
Beams, no axial Force �MA

z �MB
z

2 D Truss, Frame, Beam �Fx �MA
z �MB

z

�MA
z �MB

z �MC
z

The three conventional equations of equilibrium in 2D: �Fx ,�Fy and �Mz can be
replaced by the independent moment equations �MA

z , �MB
z , �MC

z provided that
A, B, and C are not colinear.

It is always preferable to check calculations by another equation of equilibrium.

Before you write an equation of equilibrium,
1 Arbitrarily decide which is the +ve direction
2 Assume a direction for the unknown quantities
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Equilibrium

3 The right hand side of the equation should be zero

If your reaction is negative, then it will be in a direction opposite from the
one assumed.

Summation of all external forces (including reactions) is not necessarily
zero: dynamic problem.

Summation of external forces is equal and opposite to the internal ones.
Thus the net force/moment is equal to zero.

The external forces give rise to the (non-zero) shear and moment
diagram.
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Equations of Conditions

If a structure has an internal hinge (which may connect two or more
substructures), then this will provide an additional equation (�M = 0 at the
hinge) which can be exploited to determine the reactions.

Those equations are often exploited in trusses (where each connection is a
hinge) to determine reactions.

In an inclined roller support with Sx and Sy

horizontal and vertical projection, then the
reaction R would have

Rx

Ry
=

Sy

Sx
R

xS

yS

yR

xR

x

y

x’
y’

α 

α 

α 
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Static Determinancy

In statically determinate structures, reactions depend only on the geometry,
boundary conditions and loads.

If the reactions can not be determined simply from the equations of static
equilibrium (and equations of conditions if present), then the reactions of the
structure are said to be statically indeterminate.

the degree of static indeterminacy is equal to the difference between the number
of reactions and the number of equations of equilibrium

2 equations 2 unknowns statically determinate

2 equations 3 unknowns indeterminate to the 1st degree

3 equations 3 unknowns determinate but unstable

2 equations 3 unknowns indeterminate

3 equations 3 unknowns determinate 3 equations 3 unknowns determinate

Failure of one support in a statically determinate system results in the collapse
of the structures. Thus a statically indeterminate structure is safer than a
statically determinate one.
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Geometric Instability

Geometric instability will occur if:
1 All reactions are parallel and a non-parallel load is applied to the structure.
2 All reactions are concurrent

3 The number of reactions is smaller than the number of equations of
equilibrium, that is a mechanism is present in the structure.

Victor E. Saouma; Univ. of Colorado Reactions 10/23



Free Body Diagrams

Free-body diagrams are diagrams used to show the relative magnitude and
direction of all forces/moments acting upon an object in a given situation. It is not
a scaled drawing, it is a diagram

Free body diagrams consist of:

A simplified version of the body
Forces shown as straight arrows pointing in the direction they act on the
body, moments are shown as curves with an arrow head or a vector with
two arrow heads pointing in the direction they act on the body
One or more reference coordinate systems
By convention (though not always followed), reactions to applied forces are
shown with hash marks through the stem of the vector

All forces and moments must balance to zero.

Free body diagrams do not necessarily represent an entire physical body.
Portions of a body can be selected for analysis. This would allows calculation of
internal forces, making them appear external, allowing analysis. This can be
used multiple times to calculate internal forces at different locations within a
physical body.
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Free Body Diagrams

Mext

C     <   C
T

C

d

ε 

ε 

σ 

σ 

q

Ra
V

Mint
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Examples Simply Supported Beam

Determine the reactions of the simply supported beam shown below.

a b c d

60 k

4 k/ft

6' 6' 6'

36 k
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Examples Simply Supported Beam

The beam has 3 reactions, we have 3 equations of static equilibrium, hence it is
statically determinate.

(+rgt)�Fx = 0; ⇒ Rax − 36 k = 0(
+ 6

)
�Fy = 0; ⇒ Ray + Rdy − 60 k− (4) k/ft(12) ft = 0(

+
���)�Mc

z = 0; ⇒ 12Ray − 6Rdy − (60)(6) = 0

or  1 0 0
0 1 1
0 12 −6


Rax

Ray

Rdy

 =


36
108
360

⇒


Rax

Ray

Rdy

 =


36 k
56 k
52 k


Alternatively we could have used another set of equations:(

+
���)�Ma

z = 0; (60)(6) + (48)(12)− (Rdy )(18) = 0 ⇒ Rdy = 52 k 6(
+

���)�Md
z = 0; (Ray )(18)− (60)(12)− (48)(6) = 0 ⇒ Ray = 56 k 6

Check: (
+ 6

)
�Fy = 0; 56 + 52− 60− 48 = 0

√
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Examples Parabolic Load

2

0

x
w w

L
 =  
 

L

dx

dW

x

A B

There are two unknowns and
two equations of equilibrium
(�Fy and �M), we judiciously
start with the second one, as
it would directly give us the
reaction at B Considering an
infinitesimal element of length
dx , weight dW , and moment
dM:

(
+

���)�MA
z = 0;

∫ x=L

x=0
w0

( x

L

)2

︸ ︷︷ ︸
w

dx

︸ ︷︷ ︸
dW

×x

︸ ︷︷ ︸
dM︸ ︷︷ ︸

M

−(RB)(L) = 0

⇒ RB = 1
L w0

(
L4

4L2

)
=

1

4
w0L

With RB determined, we solve for RA from

(
+ 6

)
�Fy = 0; RA +

1

4
w0L︸ ︷︷ ︸
Rb

−
∫ x=L

x=0
w0

( x

L

)2
dx = 0

⇒ RA =
w0
L2

L3
3 −

1
4 w0L =

1

12
w0L

Victor E. Saouma; Univ. of Colorado Reactions 15/23



Examples Three Span Beam

a b c d

40 k 50 k 4 k/ft

4' 5' 3' 3' 10' 2'

3
4

30 k

a b

40 k

4' 5' S

F
Rax

30 k

b c
e

40 k

3' 3' 10' 2'

S

F

30 k
(4)k/ft (12)ft=48 k

Ray Rcy Rey6'

e

d

4 unknowns (Rax ,Ray ,Rcy and Rey ), three equations of equilibrium and one
equation of condition (�Mb = 0), thus structure is statically determinate.

Though there are many approaches to solve for those four unknowns (all of them
correct), some are simpler.

In this case, it is easiest to break the structure into two substructures, and
examine the free body diagram of each one of them separately.
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Examples Three Span Beam

1 Isolating ab:(
+

���)�Mb
z = 0; (9)(Ray )− (40)(5) = 0 ⇒ RAy = 22.2 k 6(

+
���)�Ma

z = 0; (40)(4)− (S)(9) = 0 ⇒ S = 17.7 k 6
�Fx = 0; ⇒ Rax = 30 klft

2 Isolating be:(
+

���)�Me
z = 0; −(17.7)(18)− (40)(15)− (4)(12)(6)− (30)(2) + Rcy (12) = 0

⇒ Rcy =
1,266.6

12 = 105.6 k 6(
+

���)�Mc
z = 0; −(17.7)(6)− (40)(3) + (4)(12)(6) + (30)(10)− Rey (12) = 0

⇒ Rey =
361.8

12 = 30.15 k 6

3 Check

�Fy = 0; 6; 22.2− 40− 40 + 105.6− 4(12)− 30 + 30.15 = −0.050 ' 0.
√
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Examples Three Hinged Gable Frame

The three-hinged gable frames spaced at 30 ft. on center. Determine the reactions
components on the frame due to: 1) Roof dead load, of 20 psf of roof area; 2) Snow
load, of 30 psf of horizontal projection; 3) Wind load of 15 psf of vertical projection.
Determine the critical design values for the vertical and horizontal reactions.

30'

20
'

15
'

A

B

C

V

AVV

AHV
15' 15'

17
.5

'
17

.5
'

H

AHH CHH

AVH CVH
30'

a) b) c)
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Examples Three Hinged Gable Frame

HV

VV VV

HV

1 Due to symmetry, there is no vertical force transmitted by the hinge for snow and dead
load, and thus we can consider only the left (or right) side of the frame.

2 Point equivalent loads:

2.1 Roof dead load per one side of frame is

DL = (20) psf(30) ft
(√

302 + 152
)

ft 1
1, 000

lbs/k = 20.2 k ?

2.2 Snow load per one side of frame is

SL = (30) psf(30) ft(30) ft 1
1, 000

lbs/k = 27. k ?
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Examples Three Hinged Gable Frame

2.3 Wind load per frame (ignoring the suction) is

WL = (15) psf(30) ft(20 + 15) ft 1
1, 000

lbs/k = 15.75 krgt

3 There are 4 reactions, 3 equations of equilibrium and one equation of condition⇒
statically determinate.

Alternatively, by symmetry there is no shear at the hinge C, and we would have for the
substructure two reactions at the support and one (horizontal) at the hinge.

Relationship between the horizontal and vertical reactions at A due to a centered vertical
load, AHV and AVV respectively is determined by taking the moment with respect to the
hinge (b):(

+
���)�MB

z = 0 15V − 30AVV + 35AHV = 0(
+ 6

)
�Fy = 0 AVV − V = 0

AHV =
15AVV

35
= .429AVV

Substituting for roof dead and snow load we obtain

ADL
VV = CDL

VV = 20.2 k 6
ADL

HV = CDL
HV = (.429)(20.2) = 8.66 krgt

ASL
VV = CSL

VV = 27. k 6
ASL

HV = CSL
HV = (.429)(27.) = 11.58 krgt
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Examples Three Hinged Gable Frame

4 The reactions due to wind load (blowing from the left), are determined as follows:

4.1 Vertical reaction at A is determined by considering the entire structure and
taking the moment with respect to C, (c)(

+
���)�MC

z = 0; (15.75)( 20+15
2 )− 60AVH = 0 ⇒ AVH = 4.60 k 6

AVH is the Vertical reaction at A due to the Horizontal load (The double subscript

notation is extensively used in structural analysis. Xyz typically implies quantity X at y due to some action z.)

and from equilibrium of forces in the y direction, we have
BVH = −AVH = −4.60 ?(note that wind load does not have any vertical
component).

4.2 The horizontal reaction at B is determined by considering the right
substructure and taking moment with respect to the internal hinge at B(

+
���)�MB

z = 0; 35CHH − (4.6)(30) = 0 ⇒ CHH = 3.95 klft
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Examples Three Hinged Gable Frame

4.3 Horizontal reaction at A is taken by considering the entire structure and
summing forces in the x direction:

(+rgt)�Fx = 0; 15.75− 3.95− AHH = 0 ⇒ AHH = 11.80 klft

and note that A carries most of the horizontal load.

5 Finally, the supports should be designed for themost critical (plausible) combination of
reactions:

H = 8.66 k + 11.58 k+ 11.8 k = 32.04 k
V = 20.2 k + 27.0 k + 4.60 k = 51.8 k
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Examples Inclined Supports

a b c

40 k 50 k

8'

1

230 k

4
3

3

4

6' 6' 6' 6'

A priori we would identify 5 reactions, however we do have 2 equations of conditions (one at each inclined support), thus with
three equations of equilibrium, we have a statically determinate system.

(
+

���)�Mb
z = 0; (Ray )(20)− (40)(12)− (30)(6) + (44.72)(6)− (Rcy )(12) = 0

⇒ 20Ray = 12Rcy + 391.68

(+rgt)�Fx = 0; 3
4 Ray − 22.36− 4

3 Rcy = 0

⇒ Rcy = 0.5625Ray − 16.77

Solving for those two equations:

[
20 −12

0.5625 −1

]{
Ray
Rcy

}
=

{
391.68
16.77

}
⇒
{

Ray
Rcy

}
=

 14.37 k 6
−8.69 k ?



Victor E. Saouma; Univ. of Colorado Reactions 23/23



Examples Inclined Supports

The horizontal components of the reactions at a and c are

Rax = 3
4 14.37 = 10.78 krgt

Rcx = 4
3 8.69 = −11.59 krgt

Finally we solve for Rby

(
+

���)�Ma
z = 0; (40)(8) + (30)(14)− (Rby )(20) + (44.72)(26) + (8.69)(32) = 0

⇒ Rby = 109.04 k 6

We check our results

(
+ 6

)
�Fy = 0; 14.37− 40− 30 + 109.04− 44.72− 8.69 = 0

√

(+rgt)�Fx = 0; 10.78− 22.36 + 11.59 = 0
√
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Introduction

Cables and trusses are 2D or 3D structures composed of an
assemblage of simple one dimensional components which transfer only
axial forces along their axis.

Trusses are extensively used for bridges, long span roofs, electric tower,
space structures.

For trusses, it is assumed that

Bars are pin-connected (equation of conditions)
Joints are frictionless hinges 1.
Loads are applied at the joints only.

A truss would typically be composed of triangular elements with the bars
on the upper chord under compression and those along the lower chord
under tension. Depending on the orientation of the diagonals, they can
be under either tension or compression.

1
In practice the bars are riveted, bolted, or welded directly to each other or to gusset plates, thus the bars are not free to

rotate and so-called secondary bending moments are developed at the bars. Another source of secondary moments is the dead
weight of the element.
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Basic Relations

Sign Convention: Tension positive, compression negative. On a truss
the axial forces are indicated as forces acting on the
joints.

Stress-Force: σ = P
A

Stress-Strain: σ = Eε

Force-Displacement: ε = �L
L

Equilibrium: �F = 0
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Determinacy and Stability

Trusses are statically determinate when all the bar forces can be determined
from the equations of statics alone. Otherwise the truss is statically
indeterminate.

A truss may be externally or internally determinate or indeterminate.

If we refer to j as the number of joints, R the number of reactions and m the
number of members, then we would have a total of m + R unknowns and 2j (or
3j) equations of statics (2D or 3D at each joint). If we do not have enough
equations of statics then the problem is indeterminate, if we have too many
equations then the truss is unstable.

2D 3D
Static Indeterminacy

External R > 3 R > 6
Internal m + R > 2j m + R > 3j
Unstable m + R < 2j m + R < 3j
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Determinacy and Stability

If m < 2j − 3 (in 2D) the truss is unstable, and it will not remain a rigid body
when it is detached from its supports. However, when attached to the supports,
the truss will be rigid.

The external equations of equilibrium which can be used to determine the
reactions are

2D �FX = 0, �FY = 0 and �MZ = 0.
For 3D trusses the available equations are �FX = 0, �FY = 0, �FZ = 0
and �MX = 0, �MY = 0, �MZ = 0.

At each joint

For a 2D truss: �FX = 0 and �FY = 0.
For 3D trusses: �FX = 0, �FY = 0 and �FZ = 0.

4 reactions, thus it is externally indeterminate.

6 joints (j = 6), 4 reactions (R = 4) and 9 members (m = 9).

A total of m + R = 9 + 4 = 13 unknowns and
2× j = 2× 6 = 12 equations of equilibrium, thus the truss is
internally statically indeterminate.

Victor E. Saouma; Univ. of Colorado Reactions 6/29



Determinacy and Stability

There are two methods of analysis for statically determinate trusses

1 The Method of joints
2 The Method of sections
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Method of Joints

The method of joints can be summarized as follows

Determine if the structure is statically determinate
Compute all reactions
Sketch a free body diagram showing all joint loads (including reactions)
For each joint, and starting with the loaded ones, apply the appropriate
equations of equilibrium (�Fx and �Fy in 2D; �Fx , �Fy and �Fz in 3D).
Because truss elements can only carry axial forces, the resultant force
(~F = ~Fx + ~Fy ) must be along the member.

F
L

=
Fx

Lx
=

Fy

Ly

Always keep track of the x and y components of a member force (Fx , Fy ), as
those might be needed later on when considering the force equilibrium at
another joint to which the member is connected.
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Method of Joints

L

Lx

Ly
F

Fy

Fx

This method should be used when all member forces must be determined.

In truss analysis, there is no sign convention. A member is assumed to be under
tension (or compression). If after analysis, the force is found to be negative, then
this would imply that the wrong assumption was made, and that the member
should have been under compression (or tension).

On a free body diagram, the internal forces are represented by arrow acting on
the joints and not as end forces on the element itself. That is for tension, the
arrow is pointing away from the joint, and for compression toward the joint.
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Method of Joints

cc

t

C

A B

-ve

+ve

-ve

A B

C
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Examples Method of Joints; 2D

A
B C D

E

F
G

H

12
8

20 k 40 k 40 k

10'

32'

24' 24' 24' 24'
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Examples Method of Joints; 2D

1 R = 3, m = 13, 2j = 16, and m + R = 2j
√

2 We compute the reactions(
+

���)�ME
z = 0; ⇒ (20 + 12)(3)(24) + (40 + 8)(2)(24) + (40)(24)

−RAy (4)(24) = 0⇒ RAy = 58 k 6(
+ ?

)
�Fy = 0; ⇒ 20 + 12 + 40 + 8 + 40− 58− REy = 0

⇒ REy = 62 k 6

(1)

3 Consider each joint separately:

Node A: Clearly AH is under compression, and AB under tension.

58 k

FAB

FAH

A
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Examples Method of Joints; 2D(
+ 6

)
�Fy = 0; ⇒ −FAHy + 58 = 0

FAH = l
ly
(FAHy )

ly = 32; l =
√

322 + 242 = 40

⇒ FAH = 40
32 (58) = 72.5 k Compression

(+rgt)�Fx = 0; ⇒ −FAHx + FAB = 0

FAB = Lx
Ly
(FAHy ) =

24
32 (58) = 43.5 k Tension

(2)
Node B:

B

20 k

FBH

43.5 k FBC

(+rgt)�Fx = 0; ⇒ FBC = 43.5 k Tension(
+ 6

)
�Fy = 0; ⇒ FBH = 20 k Tension

(3)

Node H:
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Examples Method of Joints; 2D

H

12 k

FHG

FHC
72 k 20 k

FHCx

FHCy
FAHy

FHGx

FHGy
FAHx
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Examples Method of Joints; 2D

(+rgt)�Fx = 0; ⇒ FAHx − FHCx + FHGx = 0
43.5− 24√

242+322
(FHC) +

24√
242+102

(FHG) = 0(
+ 6

)
�Fy = 0; ⇒ FAHy + FHCy − 12 + FHGy − 20 = 0

58 + 32√
242+322

(FHC)− 12 + 10√
242+102

(FHG)− 20 = 0

(4)
This can be most conveniently written as

[]

{
FHC

FHG

}
=

{
43.5
26.0

}
Solving we obtain FHC = −7.5 and FHG = −52, thus we made an
erroneous assumption in the free body diagram of node H, and the final
answer is

FHC = 7.5 k Tension

FHG = 52 k Compression
(5)

Node E:
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Examples Method of Joints; 2D

E

62 k

FED

FEF

�Fy = 0; ⇒ FEFy = 62 ⇒ FEF =

√
242+322

32 (62) = 77.5 k C

�Fx = 0; ⇒ FED = FEFx ⇒ FED = 24
32 (FEFy ) =

24
32 (62) = 46.5 k T

(6)

The results of this analysis are summarized below
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Examples Method of Joints; 2D

43.5 43.5 46.5 46.5

20

32

40

46.5
6258

43.5

52 52

58 62

12 8

20 40 40 

4 We could check our calculations by verifying equilibrium of forces at a node not
previously used, such as D
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Examples Method of Joints; 3D Truss

x

z

y

Bz
Bx

Az

Ay
Cy

C
z

X
Y

Z

Pz=600

B

C

D

A

Pz=600

A(3,−4, 0), B(3, 2, 0), C(−2, 2, 0), and D(0, 0, 8).
No reactions in the x or y direction (structure is on ice, and there is no lateral load).
Steps:
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Examples Method of Joints; 3D Truss

1 Reactions

1 �MAB = 0⇒ Cz
√

2 �MCB = 0;⇒ Az
√

3 �Fz = 0;⇒ Bz = 40.0
√

4 �Fx = 0;⇒ Bx
√

5 �Fy = 0;⇒ Ay
√
;Cy
√

2 Joint B

1 LBD

2 �Fz = 0;⇒ FBD
√

3 F x
BD

4 F y
BD

5 �Fx = 0;⇒ FBA
√

3 joint A

1 α
√

2 LAD
√

3 �Fz = 0;FAD
√

4 �Fx = 0;FAC
√
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Examples Method of Joints; 3D Truss

4 Joint C

1 F Z
CD
√

2 �FZ = 0⇒ FCD
√

Solution

1 Considering the free body diagram of the entire truss

�MAB = 0; Cz(5)− 600(3) = 0 ⇒ Cz = 360
�MCB = 0; 600(2)− Az(6) = 0 ⇒ Az = 200
�Fz = 0; Bz + 200 + 360− 600 = 0 ⇒ Bz = 40.0
�Fx = 0; Bx = 0
�Fy = 0; Ay − Cy = 0

�Mz = 0;Ay (3) + Cy (2) = 0; ⇒ Ay = Cy = 0

2 Considering the free body diagram of joint B
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Examples Method of Joints; 3D Truss

Joint B

x

z

y

8 ft

B

40. 0 lb

z FBD

FBA
FBC

40. 0 lb
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Examples Method of Joints; 3D Truss

LBD =
√

L2
x + L2

y + L2
z =

√
22 + 32 + 82 =

√
77

�Fz = 0; −8√
77

FBD + 40 = 0; ⇒ FBD = 43.87lbf (C)

�Fx = 0; F x
BD − FBC = 0

F x
BD = Lx

L FBD = 3√
77
(43.87)

FBC = 15.0lbf (T )

�Fy = 0; F y
BD − FBA = 0

F y
BD = Lx

L FBD = 2√
77
(43.87)

FBA = 10.0lbf (T )

3 FBD of joint A
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Examples Method of Joints; 3D Truss
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Examples Method of Joints; 3D Truss

tan(α) = Lx
Ly

= 5
6 ⇒ α = 39.8deg

LAD =
√

L2
x + L2

y + L2
z =
√

82 + 32 + 42 =
√

89
�Fz = 0; −8√

89
FAD + 200 = 0⇒ FAD = 236lbf (C)

�Fx = 0; F X
AD − F X

AC = 0⇒ 3√
89
(235.9)− FAC sin(39.8o) = 0

⇒ FAC = 117lbf (T )

4 Check
�Fy = 0F Y

AC − F Y
AD + 10 = 0

117.2 cos(39.81o)− 4√
89
(235.9) + 10.0 = 0

√

5 Joint C
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Examples Method of Joints; 3D Truss

�FZ = 0; F Z
CD + 360 = 0
−8√

72
FCD + 360 = 0

FCD = 382lbf (C)
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Examples Method of Joints; 3D Truss
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Method of Sections

When only forces in selected members (away from loaded joints) is to be
determined, this method should be used.

This method can be summarized as follows

“Cut” the truss into two substructures by an imaginary line (not necessarily
straight) such that it will at least intersect the member for which force is to
be determined.
Consider either one of the two substructures as the free body
Each substructure must remain in equilibrium. Apply the equations of
equilibrium

Summation of moments about a particular point (usually the
intersection of 2 cut members) would permit the determination of
other member forces
Summation of forces is usually used to determine forces in inclined
members
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Method of Sections Method of Sections; Example

Determine FBC and FHG in the previous example.

Cutting through members HG, HC and BC, we first take the summation of forces
with respect to H:

A
B C D

E

F
G

H

12
8

20 k 40 k 40 k

10'

32'

24' 24' 24' 24'

B

H

58 k 20 k

A

FHG

FHC

FHG

FBC

FBC

Cut through the members, but in drawing FBD, remove them and just show nodal forces
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Method of Sections Method of Sections; Example

(
+

���)�MH
z = 0 ⇒ RAy (24)− FBC(32) = 0

FBC = 24
32 (58) = 43.5 k Tension(

+
���)�MC

z = 0; ⇒ (58)(24)(2)− (20 + 12)(24)− FHGx (32)− FHGy (24) = 0
2784− 768− (32)(FHG)

24√
242+102

−

(24)(FHG)
10√

242+102
= 0

2, 000− (29.5)FHG − (9.2)FHG = 0

⇒ FHG = 52 k Compression
(7)
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Introduction Internal Forces

Reactions Internal Forces Deflections Flexibility Method (SIS)

Ultimately, we are interested in the internal stresses in a three dimensional structure.

Problem is too complex, we thus take advantage of shape, and categorize structures as
shells, plates or beams.

In those problems, instead of solving for the stress components throughout the body, we
solve for certain stress resultants (normal, shear forces, and Moments and torsions)
resulting from an integration over the body.

Alternatively, if a continuum solution is desired, and engineering theories prove to be either
too restrictive or inapplicable, we can use numerical techniques (such as Finite Element
Method) to solve the problem.
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Introduction From Stresses to Internal Forces

Internal forces are integrals of stresses in a plate/beam.

τyz τyx
τxy

τxz

σyy

σxx

X

Y

Z

N.A

t/2

t/2

and the resultants per unit width are given by

Membrane (Axial) Forces N =

∫ t
2

− t
2

σdz → Nxx =

∫ t
2

− t
2

σxx dz etc.

Bending Moments M =

∫ t
2

− t
2

σzdz → Myy =

∫ t
2

− t
2

σxx zdz etc.

Transverse Shear Forces V =

∫ t
2

− t
2

τdz → Vyy =

∫ t
2

− t
2

τyzdz etc.
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Introduction Internal Forces for Different Structural Elements

Vy

Mz

2D Frame, x-y-z1D Beam, x-y-z

x

y

z

x

y

z
Mz

Vy

Nx

2D Arch, q-r-z

Mz

r

O

Vr

x

y Nθ 

θ

z

z

2D Curved Grid, q-r-z

Tθ

y

x

O
Mr r

Vz

θ

z

w

n MS

MW VW

Nn VS

S

Tn

3D Curved Member, 
n-S-WVz

My

Vy

M
y

M
z

Tx
Nx

3D Frame, x-y-z2D Grid, x-y-z

Tx

y

z

x

y z

x

V
z

Cartesian
Forces Moments

x y z x y z
Beam Vy Mz
2D Frame Nx Vy Mz
Grid Vz Tx My

Polar
Forces Moments

r θ z r θ z
Arch Vr Nθ Mz
Curved Grid Vz Mr Tθ

Curved
Forces Moments

n s w n s w
Curved Nn Vs Vw Tn Ms Mw
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Introduction Design Sign Conventions

+ve Load + Axial Force
+
-

+ve Shear +ve Moment

x
y

Load Positive along the beam’s local y axis (assuming a right hand
side convention), that is positive upward.

Axial: tension positive.

Flexure A positive moment is one which causes tension in the lower
fibers, and compression in the upper ones. Moments are drawn
on the compression side (useful to keep in mind for frames).

Shear A positive shear force is one which is “up” on a negative face.
Alternatively, a pair of positive shear forces will cause clockwise
rotation.

Torsion Counterclockwise positive
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Load, Shear, Moment Relations

y

x

dx

Vx Vx+dVx

Mx

Mx+dMx

wx

dx

O

The infinitesimal section must also be in equilibrium.

There are no axial forces, thus we only have two equations of equilibrium to
satisfy �Fy = 0 and �Mz = 0.

Since dx is infinitesimally small, the small variation in load along it can be
neglected, therefore we assume w(x) to be constant along dx .

To denote that a small change in shear and moment occurs over the length dx of
the element, we add the differential quantities dVx and dMx to Vx and Mx on the
right face.
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Load, Shear, Moment Relations Differential Form

Considering the first equation of
equilibrium
(+ 6)�Fy = 0 ⇒ Vx + wxdx −
(Vx + dVx) = 0 ⇒ dV

dx = w(x)

The slope of the shear curve at
any point along the axis of a
member is given by the load curve
at that point.

Similarly (+ ���)�MO = 0 ⇒ Mx +

Vxdx − wxdx dx
2 − (Mx + dMx) = 0

Neglecting the dx2 term, this
simplifies to dM

dx = V (x)

The slope of the moment curve at
any point along the axis of a
member is given by the shear at
that point.
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Load, Shear, Moment Relations Integral Form

V =

∫
w(x)dx

�V21 = Vx2 − Vx1 =

∫ x2

x1

w(x)dx

The change in shear between 1
and 2, �V1−2, is equal to the area
under the load between x1 and x2.

M =

∫
V (x)dx

�M21 = Mx2 − Mx1 =

∫ x2

x1

V (x)dx

The change in moment between 1
and 2, �M21, is equal to the area
under the shear curve between x1

and x2.

Note that we still need to have V1

and M1 in order to obtain V2 and
M2.
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Load, Shear, Moment Relations Inclined Members/Loads

Inclined Members/Loads

θ

w1

w2

w4

LY L

Ly

Wn, Lx

Lx

w3
θ

θ

Wy, L

Wx, L

Lx Wn, Ly

Lx

Ly

θ

θ

Lateral inertial force x W x
1 = wx

1 L; W n = W x
1

Ly
L ; wn = W n

L = wx
1

Ly
L

Self weight y W y
2 = wy

2 L; W n = W y
2

Lx
L ; wn = W n

L = wy
2

Lx
L

Wind Load W x
3 = wx

3 Ly ; W n = W x
3

Ly
L ; wn = W n

L = wx
3

L2
y

L2

Snow Load W y
4 = wy

4 Lx ; W n = W y
4

Lx
L ; wn = W n

L = wy
4

L2
x

L2
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Load, Shear, Moment Relations FBD and Directions

1 2 3 4

P M0

w

dx dx dx dx

M
V

V-wdx

w

M-M0

M V

V

M0

2 4

MM V

V

1
M V

V-P

P
M

3

Load
Shear

Shear
Moment

+ve → 

+ve ↗

+ve ↘
-ve → -ve ↗ -ve ↘
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Examples Beams; Example; 1

A

B C D

E

2 k/ft

4ft 4ft 4ft6ft

4
3

11 k 10 k

Reactions are determined from the equilibrium equations

(+lft)�Fx = 0; ⇒ −Ax + 6 = 0 ⇒ Ax = 6 k (1)(
+

���)
�MA = 0; ⇒ (11)(4) + (8)(10) + (4)(2)(14 + 2)− Ey (18) = 0 (2)

⇒ REy = 14 k (3)(
+ 6

)
�Fy = 0; ⇒ Ay − 11 − 8 − (4)(2) + 14 = 0 ⇒ Ay = 13 k (4)

Shear are determined next.
1 At A the shear is equal to the reaction and is positive.
2 At B the shear drops (negative load) by 11 k to 2 k.
3 At C it drops again by 8 k to −6 k.
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Examples Beams; Example; 1

4 It stays constant up to D and then it decreases (constant negative slope since the load
is uniform and negative) by 2 k per linear foot up to −14 k.

5 As a check, −14 k is also the reaction previously determined at F .

Moment is determined last:

1 The moment at A is zero (hinge support).
2 The change in moment between A and B is equal to the area under the corresponding

shear diagram, or �MB−A = (13)(4) = 52.
3 etc...
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Examples Beams; Example; 1

A B C D E

2 k

-6 k

-14 k
Slope= dV/dx=w=-2

0+
52

=
52

52
+

12
=

64

64
-2

4=
40

2 k/ft
11 k

10 k
6 k

8 k
6 k

13 k 14 k
11 k

2 k13 k

8 k

2 k

A

B C

D

E

Momen Diagram

13 k

A=(13)(4)=52 A=(6)(2)=12

A=(-6)(4)=-24 A=-4(6+14)/2=-40

Shear Diagram

Free Body  Diagram

-6 k
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Examples Random Examples; Beams

0.6

7.5'

4' 4' 4'

1.8

2.25

1.0

3.0

0.75

V

M

6'

0.1 1.75

1.0

0.4 0.75

11'

3.5

2.33

2.0

5.35

4.0

1.5
0.9

8

2.1

-

0.2

5.6

3.51.5
510

0.9

+

M

+

-

5.6

7.03

0.6

6

0.3

V

1.2
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Examples Random Examples; Beams

1.
5

6.
4

3

2.
5

3.
6 3

M

-
+

+
-

3M/4

M/4

V=M/L

M/EI=1/R
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Examples Frame; Example 1 (Inclined Element)

36.0 k

52.96 k64.06 k

30' 9'

12
'

4

3

3
4

3

(4/5) 3

(3/5) 3

3k/ft

A

B

4

3
D

C
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Examples Frame; Example 1 (Inclined Element)

Reactions

(+lft)�Fx = 0; ⇒ RAx −
4
5
(3)︸ ︷︷ ︸

load

(15) = 0 ⇒ RAx = 36 k

(
+

���)
�MA = 0; ⇒ (3)(30)(

30
2
) +

3
5
(3)(15)

(
30+

9
2

)
︸ ︷︷ ︸

CDY

−
4
5
(3)(15)

12
2︸ ︷︷ ︸

CDX

−39RDy = 0

⇒ RDy = 52.96 k(
+ 6

)
�Fy = 0; ⇒ RAy − (3)(30)−

3
5
(3)(15) + 52.96 = 0

⇒ RAy = 64.06 k

Shear Diagram:

1 For A − B, the shear is constant, equal to the horizontal reaction at A and
negative according to our previously defined sign convention, VA = −36 k

2 For member B − C at B, the shear must be equal to the vertical force which was
transmitted along A − B, and which is equal to the vertical reaction at A,
VB = 64.06.
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Examples Frame; Example 1 (Inclined Element)

3 Since B − C is subjected to a uniform negative load, the shear along B − C will
have a slope equal to −3 and in terms of x (measured from B to C) is equal to

VB−C(x) = 64.06 − 3x

4 The shear along C − D is obtained by decomposing the vertical reaction at D into
axial and shear components. V = 3

5 52.96 = 31.78 k and is negative. Slope of the
shear must be equal to −3 along C − D. Shear at C is such that
Vc − 5

3 9(3) = −31.78 or Vc = 13.22.

V = 13.22 − 3x

5 We check our calculations by verifying equilibrium of node C

(+lft)�Fx = 0 ⇒ 3
5
(42.37) +

4
5
(13.22) = 25.42 + 10.58 = 36

√

(
+ 6

)
�Fy = 0 ⇒ 4

5
(42.37)− 3

5
(13.22) = 33.90 − 7.93 = 25.97

√

Moment:
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Examples Frame; Example 1 (Inclined Element)

1 Along A − B, moment is zero at A, and its slope is equal to the shear, thus at B
the moment is equal to (−36)(12) = −432 k.ft

2 Along B − C, the moment is equal to

MB−C = MB+

∫ x

0
VB−C(x)dx = −432+

∫ x

0
(64.06−3x)dx = −432+64.06x−3

x2

2

which is a parabola. Substituting for x = 30, we obtain at C:
MC = −432 + 64.06(30)− 3 302

2 = 139.8 k.ft

3 Alternatively:
(
+

���)
�MC = 0 ⇒ −432 − 3 (30)2

2 + 64.06 − Mc = 0 Solving gives
Mc = 139.8 positive.

4 For the maximum moment along B − C, we know that dMB−C
dx = 0 at the point

where VB−C = 0, that is VB−C(x) = 64.06 − 3x = 0 ⇒ x = 64.06
3 = 21.35 ft. i.e.,

maximum moment occurs where the shear is zero. Thus
Mmax

B−C = −432+64.06(21.35)−3 (21.35)2

2 = −432+1, 367.7−683.7 = −251.98 k.ft
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Examples Frame; Example 1 (Inclined Element)

5 Along C − D, the moment varies quadratically (linear shear), the moment first
increases (positive shear), and then decreases (negative shear). The moment
along C − D is given by

MC−D = MC+

∫ x

0
VC−D(x)dx = 139.8+

∫ x

0
(13.22−3x)dx = 139.8+13.22x−3

x2

2

which is a parabola. Substituting for x = 15, we obtain at node C
MC = 139.8 + 13.22(15)− 3 152

2 = 139.8 + 198.3 − 337.5 = 0
√
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Examples Frame; Example 1 (Inclined Element)

A

B

D36

64.06

64.06 (36)(12)=432

36

3k/ft

139.842.37

3(15)-31.78=13.22

52.9664.06

36
42.3

C139.8 25.96
36

13.22 42.37
139.8

C

36

64.06432

36

64.06-3(30)=25.94

432
36B

64.06

432
36

64.06

-432-(3)(30)2/2+64.06(30)=139.8

3/5 (52.96)=31.78
4/5 (52.96)=42.3

36

4

3

25.96
4

3

At node C (easier to skip and jump to D) 

α

α

cos α=3/5=N/25.96
N=(25.96)(3)/(5)=15.57
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Examples Frame; Example 1 (Inclined Element)

36

64.06

25.94

13.22

-

-

-

+
+

Shear Diagram
31.78

+

+
-

- Moment 
Diagram

432 139.8

252

432

139.8
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Examples Frame; Example 2 (Hydrostatic Load)

The frame shown below is the structural support of a flume. Assuming that the frames are spaced
2 ft apart along the length of the flume,

1 Determine all internal member end actions

2 Draw the shear and moment diagrams

3 Locate and compute maximum internal bending moments

4 If this is a reinforced concrete frame, show the location of the reinforcement.

A

B
E

F

6
 f

t.

3 ft. 3 ft.10 ft.

Density of water=62.4 lb/ft3

Spacing of frames=2 ft.

H2O

C D

The hydrostatic pressure causes lateral forces on the
vertical members which can be treated as cantilevers fixed
at the lower end. The pressure is linear and is given by
p = γh. Since each frame supports a 2 ft wide slice of the
flume, the equation for w (pounds/foot) is

w = (2)(62.4)(h) = 124.8h lbs/ft

At the base w = (124.8)(6) = 749 lbs/ft = .749 k/ft Note
that this is both the lateral pressure on the end walls as
well as the uniform load on the horizontal members.
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Examples Frame; Example 2 (Hydrostatic Load)

2.246 k

4.493 k-ft

2 ft

2.246 k

.749 k/ft

2.246 k
5.99 k

.749 k/ft .749 k/ft

2 ft

2.246 k

x

y

2.246 k
4.493 k-ft 4.493 k-ft

4.493 k-ft

5.99 k

2.246 k

x

y

B
-2.246 k

x

Shear

x

S
he

ar

-2.246 k-2.246 k

2.246 k
3.744 k

-3.744 k

C D Em
- -

- -

+ +

x

y

y

x

y

4.493 k-ft 4.493 k-ft

4.
49

3 
k-

ft

4.
49

3 
k-

ft

-7.864 k-ft -7.864 k-ft

1.5 k-ft
B C D E

m- -
+

xx

y

End Actions

1 Base force at B is FBx = (.749) 6
2 = 2.246 k

2 Base moment at B is MB = (2.246) 6
3 = 4.493 k.ft

3 End force at B for member B − E are equal and opposite.
4 Reaction at C is RCy = (.749) 16

2 = 5.99 k

Shear forces

1 Base at B the shear force was determined earlier and was equal to
2.246 k. Based on the orientation of the x − y axis, this is a negative
shear.

2 The vertical shear at B is zero (neglecting the weight of A − B)
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Examples Frame; Example 2 (Hydrostatic Load)

3 The shear to the left of C is V = 0+ (−.749)(3) = −2.246 k.
4 The shear to the right of C is V = −2.246+ 5.99 = 3.744 k

Moment diagrams

1 At the base: B M = 4.493 k.ft as determined above.
2 At the support C, Mc = −4.493+ (−.749)(3)( 3

2 ) = −7.864 k.ft
3 The maximum moment is equal to

Mmax = −7.864+ (.749)(5)( 5
2 ) = 1.50 k.ft

Design: Reinforcement should be placed along the fibers which are under tension, that
is on the side of the negative moment1. The figure below schematically
illustrates the location of the flexural2 reinforcement.

1That is why in most European countries, the sign convention for design moments is the
opposite of the one commonly used in the U.S.A.; Reinforcement should be placed where the
moment is “postive”.

2Shear reinforcement is made of a series of vertical stirrups.
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Examples Frame; Example 3

V
b
a

Vba

-650'k(-52.5)(12)+(-20)

Mbc

12'

A

30k
5k/ft

B H

Mba

8' 10'

D

G

H

V

4k/ft

15'

D

D

A
E

V

5k/ft

5'

30k

A

B C
10k

ba

20k

3.5'
-22.5k

-22.5+(-30)=-52.5

17.5k

17.5k

17.5-(5)(8)

-20'k

30.6'k

Mba

(17.5)(3.5)/2+(-22.5)(8-3.5)/2

(17.5)(3.5)/2

2k/ft

200'k

82.5k

450'k

52.5k 30k

00

650'k

Hbd

Vbd
Mbd

Mba

Vba Vbc

CHECK

0

17.5-5x=0

450'k

(5
0)

(1
5)

-[
(4

)(
5)

/2
][

(2
)(

15
)/

3)
]

45
0'

k

Hbd

Vbd
Mbd

82.5k

20k

4k/ft 50k

50k

20k

(5
0)

-(
4)

(1
5)

/2

Hbc

Mbc Vbc

Vbc
10k

Mbc
-200'k

(10)(10)+(2)(10)(10)/2=-200'k

B C

10k2k/ft

(10)+(2)(10)=30k
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Examples Frame; Example 4 Inclined Roof

(2
0)

(2
0)

-(
60

-2
0)

(2
0)

/2

(60)(20)-(2)(20)(20)/2=800

A

B

C

D

E

20k

20'36'

20'

15'

10'10'
13'

13'
13'

26k
26k

2k/ft

12
5

13
3

5

4

H

V

a

a
V e

x

y

F/Fy=z/x

F/Fx=z/y

Fx/Fy=y/x

F
y

Fx

zF

60k

20k

60k

19.2k

800'k

19.2k 48.8k

48.8k

0k'

20k

60-(2)(20)=20

1 2 3 4 5 6

(19.2)(12)/(13)=17.72

(26.6)(13)/(12)=28.8

26k
26k

17.72k

26.6k

778k'

0k

800k'
11.1k

800+(25.4)(13)

39.1k

28.8k

778k'

0k
0k'

488'k
(39.1)(12.5)

24
k

10k
10k

18.46k

20
-1

0-
10

48
8+

(2
3.

1)
(1

2.
5)

1,130-(.58)(13)

20
k

48.9k

29.3k

8 B-C 11 C-D

1,
12

2-
(2

6.
6)

(1
3)

9 B-C 12 C-D

107

BC CD

(20)(12)/(13)=18.46

(19.2)(5)/(13)=7.38

(26.6)(5)/(12)=11.1

(28.8)(3)/(5)=17.28

(20)(4)/(5)=16

(20)(3)/(5)=12

(39.1)(5)/(4)=48.9

(39.1)(3)/(4)=29.3

(28.8)(4)/(5)=23.1

(26)(12)/(13)=24

(20)(5)/13=7.7

7.38k

20k
28.8k

19.2k

7.69k

+
60

k

800'k

777k'14

13

AB ED

2k
/f

t

AB

BC

C

CD

D

B
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Examples 3D Frame

4m

4m

2m

60 kN

x

z

y

A

B

C

D

20 kN/m
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Examples 3D Frame

1 The frame has a total of 6 reactions (3 forces and 3 moments) at the support, and we have
a total of 6 equations of equilibrium, thus it is statically determinate.

2 Each member has the following internal forces (defined in terms of the local coordinate
system of each member x ′ − y ′ − z ′ such that x is along the member)

Member Internal Forces
Member Axial Shear Moment Torsion

Nx ′ Vy ′ Vz ′ My ′ Mz ′ Tx ′

C − D
√ √ √ √

B − C
√ √ √ √ √

A − B
√ √ √ √ √

3 The numerical calculations for the analysis of this three dimensional frame are quite simple,
however the main complexity stems from the difficulty in visualizing the inter-relationships
between internal forces of adjacent members.

4 In this particular problem, rather than starting by determining the reactions, it is easier to
determine the internal forces at the end of each member starting with member C − D. Note
that temporarily we adopt a sign convention which is compatible with the local coordinate
systems.
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Examples 3D Frame

C-D

�Fy ′ = 0 ⇒ V C
y ′ = (20)(2) = +40kN

�Fz ′ = 0 ⇒ V C
z ′ = +60kN

�My ′ = 0 ⇒ MC
y ′ = −(60)(2) = −120kN.m

�Mz ′ = 0 ⇒ MC
z ′ = (20)(2) 2

2 = +40kN.m

B-C

�Fx ′ = 0 ⇒ NB
x ′ = V C

z ′ = −60kN
�Fy ′ = 0 ⇒ V B

y ′ = V C
y ′ = +40kN

�My ′ = 0 ⇒ MB
y ′ = MC

y ′ = −120kN.m

�Mz ′ = 0 ⇒ MB
z ′ = V ′

y
C(4) = (40)(4) = +160kN.m

�Tx ′ = 0 ⇒ T B
x ′ = −MC

z ′ = −40kN.m

A-B

�Fx ′ = 0 ⇒ NA
x ′ = V B

y ′ = +40kN
�Fy ′ = 0 ⇒ V A

y ′ = NB
x ′ = +60kN

�My ′ = 0 ⇒ MA
y ′ = T B

x ′ = +40kN.m
�Mz ′ = 0 ⇒ MA

z ′ = MB
z ′ + NB

x ′ (4) = 160+ (60)(4) = +400kN.m
�Tx ′ = 0 ⇒ T A

x ′ = MB
y ′ = −120kN.m

Victor E. Saouma; Univ. of Colorado Internal Forces 31/34



Examples 3D Frame

The interaction between axial forces N and shear V as well as between moments M and torsion
T is clearly highlighted by this example.
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Examples 3D Frame

120 kN-m

20 kN/m

120 kN-m

40 kN

40 kN

120 kN-m
40 kN

40 kN120 kN-m

40 kN

C

B

120 kN-m

120 kN-m 40 kN

x'

z'

z' x'

y'120 kN-m

120 kN-m

x'
y'

60 kN
40 kN-m

40 kN-m60 kN

160 kN-m 40 kN-m
60 kN

60 kN60 kN

40 kN-m
60 kN

40 kN-m

40 kN-m

60 kN

40 kN-m
60 kN

160 kN-m

160 kN-m

40 kN-m

60 kN

160 kN-m

400 kN-m

40 kN-m

z'y'

40 kN
40 kN

60 kN 12
0 

kN
-m

40
 k

N
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Examples 3D Frame

x'

D

C

z'

B

C
y' x'

z'

B

C
y' x'

z'16
0120

40

y'

x'

D

C

z'

40
120

y'

A

B

x'

z'y'

x'

A

B

x'

z'y'

16
0

40 40
0

120

A

B

V

M
T

M

V

T

M

V

60

60

40

60
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Cables Introduction

A cable is a slender flexible member with zero or negligible flexural stiffness, thus it can only
transmit tensile forces.

The tensile force at any point acts in the direction of the tangent to the cable (as any other
component will cause bending).

Its strength stems from its ability to undergo extensive changes in geometry (slopes at
points of load application) to accommodate load distribution.

Cables resist vertical forces by undergoing sag (h) and thus developing tensile forces. The
horizontal component of this force (H) is called thrust.

The distance between the cable supports is called the chord (span).

The sag to span ratio is denoted by

r =
h
l

When a set of concentrated loads is applied to a cable of negligible weight, then the cable
deflects into a series of linear segments and the resulting shape is called the funicular
polygon.

If a cable supports vertical forces only, then the horizontal component H of the cable tension
T remains constant (hence both horizontal reactions are equal and opposite).
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Cables Introduction

A unique characteristic of cable structures (and of flexible structures for that matter) is that
not only are the internal forces unknown, but also the geometry. In other words, since
geometry varies with the load (equations of equilibrium are based on the free body diagram
of the deformed configuration), it also must be determined. This is also referred to as
geometric nonlinearity.

Analysis of cable structures entails not only reactions and internal forces (axial), but also
geometry.
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Cables Example; Funicular Cable

AAx

B

C

D
Dx

h = 6'

30' 40' 30'

12 k 6 k not to scale
Ay

Dy

Aθ

Bθ
Cθ

hc

8 unknowns (Ax ,Ay ,Dx ,Dy , θA, θB , θC and hC )

Can be analyzed by applying 2 equations of equilibrium expressed at each of the four points
of interest like a truss. However, simpler to use a better tactical approach.

Horizontal reactions are equal.

Solution:

Dy (
+

���)�MA
z = 0;⇒ 12(30) + 6(70)− Dy (100) = 0 ⇒ Dy = 7.8 k (1)

Ay (
+ 6

)
�Fy = 0;⇒ Ay − 12 − 6 + 7.8 = 0 ⇒ Ay = 10.2 k (2)
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Cables Example; Funicular Cable

Horizontal force by isolating the free body diagram AB(
+

���)�MB
z = 0;⇒ Ay (30)− H(6) = 0 ⇒ H = 51 k (3)

Sag at C by isolating the free body diagram CD(
+

���)�MC
z = 0 ⇒ −DY (30) + H(hc) = 0 ⇒ hc =

30Dy

H
=

30(7.8)
51

= 4.6 ft (4)

Cable internal forces or tractions

tan θA =
6

30
= 0.200 ⇒ θA = 11.31deg

TAB =
H

cos θA
=

51
0.981

= 51.98 k

tan θB =
6 − 4.6

40
= 0.035 ⇒ θB = 2deg

TBC =
H

cos θB
=

51
0.999

= 51.03 k

tan θC =
4.6
30

= 0.153 ⇒ θC = 8.7deg

TCD =
H

cos θC
=

51
0.988

= 51.62 k
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Cables Uniform Load

1 Governing differential equation for a cable with distributed load q(x) per unit horizontal
projection of the cable length.

H

T+dTds

L

x

V

q(x)

y

y(x)

dx

h

y'

x'

x

y L/2

T

H

V

V+dV

H

θ

θ

q(x)

dx

dy

ds
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Cables Uniform Load

In the absence of any horizontal load we have H =constant. Summation of the
vertical forces yields(

+ ?
)
�Fy = 0 ⇒ −V + qdx + (V + dV ) = 0 (5)

dV + qdx = 0 (6)

where V is the vertical component of the cable tension at x .
Note that if the cable was subjected to its own weight then we would have qds instead
of qdx .
Because the cable must be tangent to T , we have

tan θ =
V
H

(7)

Eliminate V and rewrite in terms of H which is constant along the cable by substituting
into Eq. 6

d(H tan θ) + qdx = 0 (8)

or

−
d

dx
(H tan θ) = q (9)

Since H is constant (no horizontal load is applied), this last equation can be rewritten
as

−H
d
dx

(tan θ) = q (10)
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Cables Uniform Load

Written in terms of the vertical displacement y , tan θ = dy
dx

which when substituted in
Eq. 10 yields the governing equation for cables

d2y
dx2

= −
q
H

(11)

Note analogy with flexure
d2y
dx2

=
M
EI

(12)

2 Determination of shape

Double integration.

−Hy ′ = qx + C1 (13)

−Hy =
qx2

2
+ C1x + C2 (14)

C1 and C2 are obtained form the boundary conditions: y = 0 at x = 0 and at x = L ⇒
C2 = 0 and C1 = − qL

2 . Thus

Hy =
q
2

x(L − x) (15)

This equation gives the shape y(x) in terms of the horizontal force H yet to be
determined.

3 Horizontal force H.

Victor E. Saouma; Univ. of Colorado Cables & Arches 9/41



Cables Uniform Load

Rewrite Eq. 15 in terms of the maximum sag h which occurs at midspan, hence at
x = L

2 we would have. In the current case, the moment is simply Hh.

Hh =
qL2

8
(16)

Note the analogy between this equation and the maximum moment in a simply

supported uniformly loaded beam M = qL2

8
The constant horizontal force H is thus

H =
ql2

8h
(17)

This relation clearly shows that the horizontal force is inversely proportional to the sag
h, as h ↘ H ↗.

4 Final Shape

Combining Eq. 15 and 16 we obtain

y =
4hx
L2

(L − x)

If we shift the origin to midspan, and reverse y , then

y ′ =
4h
L2

(
L
2
+ x ′

)(
L
2
− x ′

)
(18)
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Cables Uniform Load

Cable has a parabolic shape (as the moment diagram of the applied load).
Contrarily to the funicular arrangement (where geometry changes with load), the
shape of the cable does not change with an increase in the magnitude of the uniform
load it is supporting.

5 Maximum Tension

The maximum tension occurs at the support where the vertical component is equal to
V = qL

2 (just like in a simply supported beam with a uniform load) and the horizontal
one to H, thus

Tmax =
√

V 2 + H2 =

√(
qL
2

)2
+ H2 = H

√
1 +

(
qL/2

H

)2
(19)

Recall that (a + b)n = an + nan−1b + n(n−1)
2! an−2b2 + · or

(1 + b)n = 1 + nb + n(n−1)b2
2! +

n(n−1)(n−2)b3
3! + · · ·; Thus for b2 << 1,

√
1 + b = (1 + b)

1
2 ≈ 1 + b

2 .
Eq. 16 can be rewritten as

qL
H

=
8h
L

= 8r (20)

where r = h/L
Combining Eqs. 19 and 20 we obtain

Tmax = H
√

1 + 16r2 ≈ H(1 + 8r2) (21)
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Cables Design of Suspension Bridge

Design the following 4 lanes suspension bridge by selecting the cable diameters assuming an
allowable cable strength σall of 190 ksi. The bases of the tower are hinged in order to avoid large
bending moments.

A

B C

DE F

120' 50'

100' 100'300'

A

B

E

TAB TBC

HAB HBC

FBE

The total dead load is estimated at 200 psf. Assume a sag to span ratio of 1
5

1 The dead load carried by each cable will be one half the total dead load or
p1 = 1

2 (200) psf(50) ft 1
1,000 = 5.0 k/ft

2 Using the HS 20 truck (or its distributed equivalent load of 0.64 k/ft per lane), the uniform
additional load per cable is
p2 = (2)lanes/cable(.64)k/ft/lane = 1.28 k/ft/cable. Thus, the total design load is
p1 + p2 = 5 + 1.28 = 6.28 k/ft
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Cables Design of Suspension Bridge

3 The thrust H is determined from Eq. 16

H =
pl2

8h
=

(6.28) k/ft(300)2 ft2

(8) (60) ft
= 1, 177 k

Note that h is given from r = h/L = 1/5.

4 From Eq. 21 the maximum tension is

Tmax = H
√

1 + 16r2

= (1, 177) k

√
1 + (16)

(
1
5

)2

= 1, 507 k

5 Note that if we used the approximate formula in Eq. 21 we would have obtained

Tmax = H(1 + 8r2)

= 1, 177

(
1 + 8

(
1
5

)2
)

= 1, 554 k

or 3% difference!
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Cables Design of Suspension Bridge

6 The required cross sectional area of the cable along the main span should be equal to

A = Tmax
σall

= 1,507 k
190 ksi = 7.93 in2 which corresponds to a diameter

d =
√

4A
π

=
√

(4)(7.93)
π

= 3.18 in

7 blah

8 We seek next to determine the cable force in AB. Since the pylon can not take any
horizontal force, we should have the horizontal component of Tmax equal and opposite to

the horizontal component of TAB or TAB
H =

√
(100)2+(120)2

100 thus

TAB = H

√
(100)2 + (120)2

100
= (1, 177)(1.562) = 1, 838 k

the cable area should be A = 1,838 k
190 ksi = 9.68 in2 which corresponds to a diameter

d =
√

(4)(9.68)
π

= 3.51 in
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Cables Design of Suspension Bridge

9 To determine the vertical load acting on the pylon, we must add the vertical components of
Tmax and of TAB (VBC and VAB respectively). We can determine VBC from H and Tmax , thus

P =
120
100

(1, 177)︸ ︷︷ ︸
VAB

+
√
(1, 507)2 − (1, 177)2︸ ︷︷ ︸

VBC

= 1, 412 + 941 = 2, 353 k

Using A36 steel with an allowable stress of 21 ksi, the cross sectional area of the tower
should be A = 2,353

21 = 112 in2. Note that buckling of such a high tower might govern the
final dimensions.

10 If the cables were to be anchored to a concrete block, the volume of the block should be at

least equal to V =
(1,412) k(1,000)

150 lbs/ft3 = 9, 413 ft3 or a cube of approximately 21 ft
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† qds; Catenary

Let us consider now the case where the cable is subjected to its own weight (plus ice and
wind if any). We would have to replace qdx by qds in Eq. 6

dV + qds = 0 (22)

The differential equation for this new case will be derived exactly as before, but we
substitute qdx by qds, thus Eq. 11 becomes

d2y
dx2

= −
q
H

ds
dx

(23)

But ds2 = dx2 + dy2, hence:

d2y
dx2

= −
q
H

√
1 +

(
dy
dx

)2
(24)

solution of this differential equation is considerably more complicated than Eq. 11.

We let dy/dx = p, then
dp
dx

= −
q
H

√
1 + p2 (25)

Rearranging ∫
dp√

1 + p2
= −

∫
q
H

dx (26)
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† qds; Catenary

From Mathematica (or handbooks), the left hand side is equal to∫
dp√

1 + p2
= loge(p +

√
1 + p2) (27)

Substituting, we obtain

loge(p +
√

1 + p2) = −
qx
H

+ C1︸ ︷︷ ︸
A

(28)

p +
√

1 + p2 = eA (29)√
1 + p2 = −p + eA (30)

1 + p2 = p2 − 2peA + e2A (31)

p =
e2A − 1

2eA
=

eA − e−A

2
= sinhA (32)

=
dy
dx

= sinh
(
−

qx
H

+ C1

)
(33)

y =

∫
sinh

(
−

qx
H

+ C1

)
dx = −

H
q
cosh

(
−

qx
H

+ C1

)
+ C2 (34)
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† qds; Catenary

To determine the two constants, we set

dy
dx

= 0 at x =
L
2

(35)

dy
dx

= −
q
H

H
q
sinh

(
−

qx
H

+ C1

)
(36)

⇒ 0 = sinh

(
−

q
H

L
2
+ C1

)
⇒ C1 =

q
H

L
2

(37)

⇒ y = −
H
q
cosh

[
q
H

(
L
2
− x
)]

+ C2 (38)

At midspan, the sag is equal to h, thus

h = −
H
q
cosh

[
q
H

(
L
2
−

L
2

)]
+ C2 (39)

C2 = h +
H
q

(40)

If we move the origin at the lowest point along the cable at x ′ = x − L/2 and y ′ = h − y ,
we obtain q

H
y = cosh

( q
H

x
)
− 1 (41)
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† qds; Catenary

This equation is to be contrasted with 18, we can rewrite those two equations as:

q
H

y =
1
2

( q
H

x
)2

Parabola (42)

q
H

y = cosh
( q

H
x
)
− 1 Catenary (43)

The hyperbolic cosine of the catenary can be expanded into a Taylor power series as

qy
H

=
1
2

(qx
H

)2
+

1
24

(qx
H

)4
+

1
720

(qx
H

)6
+ ... (44)

The first term of this development is identical as the formula for the parabola, and the other
terms constitute the difference between the two.

The difference becomes significant only for large qx/H, that is for large sags in comparison
with the span.
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† qds; Catenary

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

qx/H

Parabola
Catenary
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Historical Notes

Solution of the catenary problem constitued one of the major mathematical/Mechanics
challenges of the early 18th century.

Around 1684, differential and integral calculus took their first effective forms, and those
powerful new techniques allowed scientists to tackle complex problems for the first time.

One of these problems was the solution to the catenary problem as presented by Jakob
Bernouilli. Immediately thereafter, Leibniz presented a solution based on infinitesimal
calculus, another one was presented by Huygens.

Finally, the brother of the challenger, Johann Bernoulli did also present a solution.

Huygens solution was complex and relied on geometrical arguments. The one of Leibniz
was elegant and correct (y/a = (bx/a + b−x/a)/2 (we recognize Eq. 41 albeit written in
slightly different form
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Historical Notes

Finally, Bernoulli presented two correct solution, and in his solution he did for the first time
express equations of equilibrium in differential form.
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arches Introduction

w

h

V = wL/2

H H

V
L

2 2R= V +H

H

h

2wL
H=

8h

wL
V=

2 L/2

wL

2

H

wx

2

x

y

Y=ax2

M

Due to symmetry, the vertical reaction is simply V = wL
2 , and there is no shear across the

midspan of the arch (nor a moment). Taking moment about the crown,

M = Hh −
wL
2

(
L
2
−

L
4

)
= 0

Solving for H

H =
wL2

8h
(45)

Note analogy with M = wL2/8 for beams and H = wL2/8h for cables.

In general an arch will carry the vertical load across the span through a combination of axial
forces and flexural ones. A well dimensioned arch will have a small to negligible moment,
and relatively high normal compressive stresses.
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arches Introduction

The “perfect” parabolic shape of a simply supported three-hinged arch

There should not be any shear or moment along any section.
Moment at x : M = Hy − wx2/2 = Hax2 − wx2/2 = 0,
Solving for a: a = w/(2H)

Substitute for H and conclude that a must be equal to 4h/L2.
For any span L, there is only one height h which would yield a parabola with zero
moment and shear.

Three-hinged arches are statically determinate structures which shape can accommodate
support settlements and thermal expansion without secondary internal stresses. They are
also easy to analyze through statics.

An arch is far more efficient than a beam, and possibly more economical and aesthetic than
a truss in carrying loads over long spans.
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arches Three Hinged Arch; Point Loads

80' 60'

33.75'

30'

20 k 

B

80 k 

26.25'
A

C

20' 20'

20 k B
30 k 

80 k 

A

C

HA

VA

VC

HC

VB VB

HB HB

30 k

Four unknowns, three equations of equilibrium, one equation of condition ⇒ statically determinate.

(
+

���)
�MC

z = 0; (RAy )(140) + (80)(3.75) − (30)(80) − (20)(40) + RAx (26.25) = 0

⇒ 140RAy + 26.25RAx = 2.900
(+rgt)�Fx = 0; 80 − RAx − RCx = 0(
+ 6

)
�Fy = 0; RAy + RCy − 30 − 20 = 0(

+
���)

�MB
z = 0; (Rax )(60) − (80)(30) − (30)(20) + (RAy )(80) = 0

⇒ 80RAy + 60RAx = 3, 000

Solving those four equations simultaneously we have:
140 26.25 0 0

0 1 0 1
1 0 1 0

80 60 0 0




RAy
RAx
RCy
RCx

 =


2, 900

80
50

3, 000

⇒


RAy
RAx
RCy
RCx

 =


15.1 k
29.8 k
34.9 k
50.2 k
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arches Three Hinged Arch; Point Loads

We can check our results by considering the summation with respect to B from the right:

xxx
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arches Three Hinged Arch; Uniform Load

Determine the reactions of the three hinged statically determined semi-circular arch under its own
dead weight w (per unit arc length s, where ds = rdθ).

R cos θ

R

C

B

C

R

A

B

θ

dP=wRdθ 

θ

rθ

dθ 

The reactions can be determined by integrating the load over the entire structure
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arches Three Hinged Arch; Uniform Load

Vertical Reaction(
+

���)�MA = 0; (Cy )(2R)−
∫ θ=π

θ=0
wRdθ︸ ︷︷ ︸

dP

R(1 + cos θ)︸ ︷︷ ︸
moment arm

= 0

⇒ Cy =
wR
2

∫ θ=π

θ=0
(1 + cos θ)dθ =

wR
2

[θ+ sin θ] |θ=π
θ=0

=
wR
2

[(π+ sinπ)− (0 + sin 0)]

=
π

2
wR

Horizontal Reactions(
+

���)�MB = 0;−(Cx )(R) + (Cy )(R)−
∫ θ=π

2

θ=0
wRdθ︸ ︷︷ ︸

dP

R cos θ︸ ︷︷ ︸
moment arm

= 0

⇒ Cx =
π

2
wR −

wR
2

∫ θ=π
2

θ=0
cos θdθ

=
π

2
wR − wR[sin θ] |θ=

π
2

θ=0 =
π

2
wR − wR(

π

2
− 0)

=
(π

2
− 1
)

wR

By symmetry the reactions at A are equal to those at C
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arches Three Hinged Arch; Uniform Load

Internal Forces can now be determined

Vy

θ

θ

Nx
Vx

dP=wRd

M

θ α

α

V
N

θ r

x

π
C = -1 wR

2
 
 
 

y

π
C = wR

2
Rcosθ

xC

yC

R
(c

os
 

 -
co

s 
)

R(1-cos 

R
si

n 


R cos 

x

π
C = -1 wR

2
 
 
 

Ny
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arches Three Hinged Arch; Uniform Load

Shear Forces: Considering the free body diagram of the arch, and summing the forces in
the radial direction (�FR = 0):

− (
π

2
− 1)wR cos θ︸ ︷︷ ︸

Vx

+
π

2
wR sin θ︸ ︷︷ ︸

Vy

−
∫ θ

α=0
wRdα sin θ+ V = 0

⇒ V (θ) = wR
[
(π2 − 1) cos θ+ (θ− π

2 ) sin θ
]

Axial Forces: Similarly, if we consider the summation of forces in the axial direction
(�Fθ = 0):

(
π

2
− 1)wR sin θ︸ ︷︷ ︸

Nx

+
π

2
wR cos θ︸ ︷︷ ︸

Ny

−
∫ θ

α=0
wRdα cos θ+ N = 0

⇒ N(θ) = wR
[
(θ− π

2 ) cos θ− (π2 − 1) sin θ
]
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arches Three Hinged Arch; Uniform Load

Moment: Now we can consider the third equation of equilibrium (�Mz = 0):(
+

���)�M (
π

2
− 1)wR︸ ︷︷ ︸

Cx

·R sin θ−
π

2
wR︸ ︷︷ ︸
Cy

R(1 − cos θ)

+

∫ θ

α=0
wRdα · R(cosα− cos θ) + M = 0

⇒ M(θ) = wR2 [π
2 (1 − sin θ) + (θ− π

2 ) cos θ
]
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Helicoidal Arch Theory; Geometry

Because space structures may have complicated geometry, we must resort to vector
analysis1 to determine the internal forces.

In general we have six internal forces (forces and moments) acting at any section.

Louvre Museum Entrance

In general, the geometry of the structure is most conveniently described by a parametric set
of equations

x = f1(θ); y = f2(θ); z = f3(θ) (46)
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Helicoidal Arch Theory; Geometry

the global coordinate system is denoted by X − Y − Z , and its unit vectors are denoted2

i, j, k.

The section on which the internal forces are required is cut and the principal axes are
identified as N − S − W which correspond to the normal force, and bending axes with
respect to the Strong and Weak axes. The corresponding unit vectors are n, s,w.

The unit normal vector (which is tangent to the curve) at any section is given by

n =
dx i + dy j + dzk

ds
=

dx i + dy j + dzk
(dx2 + dy2 + dz2)1/2

(47)

Victor E. Saouma; Univ. of Colorado Cables & Arches 33/41



Helicoidal Arch Theory; Geometry

The principal bending axes must be defined, that is if the strong bending axis is parallel to
the XY plane, or horizontal (as is generally the case for gravity load), then this axis is
normal to both the N and Z axes, and its unit vector is

s = n×k (48)

The weak bending axis is normal to both N and S, and thus its unit vector is determined
from

w = n×s (49)

Note that by now both n and s have been normalized.

1To which you have already been exposed at an early stage, yet have very seldom used it so
far in mechanics!

2All vectorial quantities are denoted by a bold faced character.
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Helicoidal Arch Theory; Equilibrium

For the equilibrium equations, we consider the free body diagram.

M=LxPT

n

N

s

F=-P

w
MS

P

VS

MW

VW

X

Z

Y
i

j

k

A

N  = F.n      T  = M.n
Vs = F.s    Ms = M.s
Vw= F.w  Mw = M.w

L=(Lx+Ly+Lz)
1/2

Victor E. Saouma; Univ. of Colorado Cables & Arches 35/41



Helicoidal Arch Theory; Equilibrium

an applied load P is acting at point A. The resultant force vector F and resultant moment
vector M acting on the cut section B are determined from equilibrium

�F = 0; P + F = 0; F = −P (50)

�MB = 0; L×P +M = 0; M = −L×P (51)

where L is the lever arm vector from B to A.

The axial and shear forces N,Vs and Vw are all three components of the force vector F
along the N,S, and W axes and can be found by dot product with the appropriate unit
vectors:

N = F·n (52)

Vs = F·s (53)

Vw = F·w (54)

Similarly the torsional and bending moments T ,Ms and Mw are also components of the
moment vector M and are determined from

T = M·n (55)

Ms = M·s (56)

Mw = M·w (57)

Hence, we do have a mean to determine the internal forces. In case of applied loads we
sum, and for distributed load we integrate.
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Helicoidal Arch Point Load

We seek to determine the internal forces N,Vs , and Vw and the internal moments T ,Ms
and Mw along the helicoidal cantilevered girder due to a vertical load P at its free end.

Rsin
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Helicoidal Arch Point Load

We first determine the geometry in terms of the angle θ

x = R cos θ; y = R sin θ; z =
H
π
θ (58)

To determine the unit vector n at any point we need the derivatives:

dx = −R sin θdθ; dy = R cos θdθ; dz =
H
π

dθ (59)

and then insert into Eq. 47

n =
−R sin θi + R cos θj + H/πk[

R2 sin2 θ+ R2 cos2 θ+ (H/π)2
]1/2

(60)

=
1[

1 + (H/πR)2
]1/2

︸ ︷︷ ︸
K

[− sin θi + cos θj + (H/πR)k] (61)

Since the denominator depends only on the geometry, it will be designated by K .
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Helicoidal Arch Point Load

The strong bending axis lies in a horizontal plane, and its unit vector can thus be
determined from Eq. 48:

n×k =
1
K

∣∣∣∣∣∣
i j k

− sin θ cos θ H
πR

0 0 1

∣∣∣∣∣∣ (62)

=
1
K
(cos θi + sin θj) (63)

and the absolute magnitude of this vector |k×n|= 1
K , and thus

s = cos θi + sin θj (64)

The unit vector along the weak axis is determined from Eq. 49

w = s×n =
1
K

∣∣∣∣∣∣
i j k

cos θ sin θ 0
− sin θ cos θ H

πR

∣∣∣∣∣∣ (65)

=
1
K

(
H
πR

sin θi−
H
πR

cos θj + k

)
(66)
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Helicoidal Arch Point Load

With the geometry definition completed, we now examine the equilibrium equations. Eq. 50
and 51.

�F = 0; F = −P (67)

�Mb = 0; M = −L×P (68)

where

L = (R − R cos θ)i + (0 − R sin θ)j +

(
0 −

θ

π
H
)
k (69)

and

M = L×P = R

∣∣∣∣∣∣
i j k

(1 − cos θ) − sin θ − θ
π

H
R

0 0 P

∣∣∣∣∣∣ (70)

= PR[− sin θi− (1 − cos θ)j] (71)

and
M = PR[sin θi + (1 − cos θ)j] (72)
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Helicoidal Arch Point Load

Finally, the components of the force F = −Pk and the moment M are obtained by
appropriate dot products with the unit vectors

N = F·n = − 1
K P H

πR (73)

Vs = F·s = 0 (74)

Vw = F·w = − 1
K P (75)

T = M·n = −PR
K (1 − cos θ) (76)

Ms = M·s = PR sin θ (77)

Mw = M·w = PH
πK (1 − cos θ) (78)
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Introduction Why?

M diagram necessary for design and deflection calculations.

Approximate method Essential for back of the envelope verification and preliminary
dimensioning

Developing a basic understanding of how structures behave under applied loads is an
important part of structural engineering.

That is how they displace and deform and how stresses develop and propagate in their
members.

The ability to visualize or having a qualitative understanding of the behavior of a structure
contribute to the development of the an insight that shape structural engineering judgment.

Excellent review of Mechanics and Statics.

Turn a statically indeterminate structure into a statically determinate one by identifying point
of inflection based on a proper sketch of the deflected shape.

Engineers use computers to draw shear/moment diagrams, value of hand calculations very
limited (but essential to understand theory).

More important to develop a “feel” for structural engineering, and develop the capability of
quickly sketching deflected shapes and moment diagrams.

You are the first class with which I will be experimenting this approach!.
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Curvature Equation

u

N.A.

ds≈dx

dθ

1

2 dθ=θ2-θ1

θ1

ρ

ρ

θ2

dθ dθ

Linear Strain Distribution

φ
y

ε

ε=φy

θ2

θ1

dx

The slope is denoted by θ, the change in slope per unit length is the curvature φ, the radius
of curvature is ρ. From the figure we have the following relations

φ =
1
ρ
=

dθ
ds

For small displacements, and as a first order approximation, with ds ≈ dx and θ = dy
dx

φ =
1
ρ
=

dθ
dx

=
d2y
dx2
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Curvature Equation

A positive dθ at a positive y (upper fibers) will cause a shortening of the upper fibers.

From the figure: du = −ydθ, Dividing both sides by dx , and for linear elastic systems:

du
dx︸︷︷︸
ε

= −y
dθ
dx

= −
My
EI

Combining this the previous equation

d2y
dx2

=
M
EI

Main conclusion for this chapter: zero moment occurs when the inflexion point (where
d2y
dx2 = 0)
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From Deflected Shapes to Inflection Points Basic Rules

No axial deformation.

If lateral load, apply a small lateral displacement.

Compatible corner rotations (90 degree bends stay at 90 degrees; Fixed ends
remain fixed).

Continuous smooth curves (except at internal hinges).

Careful about inflection points (specially for the moment diagram).
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From Deflected Shapes to Inflection Points Compatible Corner Rotations

" This is only for the corner and not for elements (infinitesimal size)

CLOSING

Tension

Te
n
si
o
n

Compression

C
o
m
p
re
ss
io
n

OPENING

Tension

Te
n
si
o
n

Compression

C
o
m
p
re
ss
io
n

Tension

Te
n
si
o
n

Compression

C
o
m
p
re
ss
io
n
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From Deflected Shapes to Inflection Points Example: Simple Beam

Self explanatory!

Tension

Compression
Tension

CompressionIn
fl
ec
ti
o
n
 p
o
in
t

‐
+

Concave down; 
Non uniform 
curvature

Concave up; Non 
uniform curvature
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From Deflected Shapes to Inflection Points Example: Portal Frame, Vertical Load

For very rigid columns. Note the shorter the radius, the larger the moment.

Compression
Tension

Tension
Compression

α = 0

Tension

Compression

Larger ρ  
smaller M

Smaller ρ 
Larger M

For very rigid beam: small flexure in beam, large axial in the columns

For intermediary situation
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From Deflected Shapes to Inflection Points Example: Portal Frame, Vertical Load

Compression
Tension

Te
n
si
o
n

Compression
Tension

Compression

Tension

Te
n
si
o
n

Te
n
si
o
n

Te
n
si
o
n

C
o
m
p
re
ss
io
n

C
o
m
p
re
ss
io
n

C
o
m
p
re
ss
io
n

C
o
m
p
re
ss
io
n

α 

+

+

‐

+

‐

‐ ‐
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From Deflected Shapes to Inflection Points Example: Portal Frame; Lateral Load

1 Draw the deflected shape of the portal
frame.

2 Draw the corresponding moment
diagram.

3 Show tension/compression zones.

Draw the deflected shapes of the left column keeping in mind:

Bottom tangent is 90 o .
Tension has to be on the outside (thus concave inside).
The column is restrained in the top. If the cross beam is

Infinity rigid: the tangent to the top of the column would be also 90 o . (there will be an
inflection point)
Very flexible: there will be no inflection point, and concavity will be entirely inside.
Finite stiffness: non zero rotation at the top, and an inflection point.
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From Deflected Shapes to Inflection Points Example: Portal Frame; Lateral Load
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α 

Column in the right will have identical shape.

Draw deflected shape of beam. There is no concentrated moment at the corner,
so tensions and compressions must be continuous.
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From Deflected Shapes to Inflection Points Example: Portal Frame; Lateral Load
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Tension
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α 

Draw the moment diagram.
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From Deflected Shapes to Inflection Points Example: Portal Frame; Lateral Load
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Note: Positive moment if compression on “outside”
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Joint stiffnesses

WL2/24

WL2/12

W
L2
/8W
L2
/8

β WL2

α WL2
W
L2
/8

α +β=1/8

K1K1 K2K2 K3K3

M

θ 
K1→0

K2→¶ 

K3
1

1

1

θ1 θ3 θ2 

Spring Stifffnesses Inflection Points Moment Diagrams
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Joint stiffnesses
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Approximate Analyses of Buildings Introduction

Rectangular building frames are highly statically indeterminate.

Can be analysed by
computers exact solution, but time consuming.
approximate solution of any floor on a back of the enveloppe approach to yield quick
and decent results.

.

Vertical loads are treated separately from the horizontal ones.

For horizontal loads two methods:
Portal method for low rise buildings with predominant shear deflections.
Cantilever for high rise buildings.

Design sign convention for moments (+ve tension below), and for shear (ccw +ve).

Assume girders to be numbered from left to right.

In all free body diagrams assume positive forces/moments, and take algebraic sums.

Sign convention

+
-

+ve Shear
+ve Moment

+V+V +M +M
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Approximate Analyses of Buildings Vertical Loads; Theory

For a a multi-bay/multi-storey frame, girders are assumed to be continuous beams, and
columns are assumed to resist the resulting unbalanced moments from the girders. Assume

1 Girders at each floor act as continuous beams supporting a uniform load.
2 Inflection points are assumed to be at

1 One tenth the span from both ends of each girder.
2 Mid-height of the columns.

3 Guess location of inflection points.

0.
5H

0.
5H

0.1 L 0.1 L

4 Ignore axial effects.
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Approximate Analyses of Buildings Vertical Loads; Theory

5 Unbalanced end moments from the girders at each joint is distributed to the columns
above and below.

Then, all beams are statically determinate and have a span, Ls equal to 0.8 the original
length of the girder, L. This assumes that the inflection point is at 0.1L which is between 0
for simply supported beam, and 0.21L for rigidly connected beams.

Sequence of calculation (very important)

1 Girder positive moment
2 Girder negative moment
3 Girder shear
4 column axial forces
5 column moments
6 Column shears
7 Girder axial forces

Victor E. Saouma; Univ. of Colorado Approximate Analyses 20/48



Approximate Analyses of Buildings Vertical Loads; Theory

The procedure is outlined below, no need to memorize any equation, just use
equations of equilibrium and free body diagrams where all end member shear
and moments are assumed to be positive.

1 Maximum positive moment at center of each beam

w

L

0.8L0.1L 0.1L
lft

V rgt

Mlft

V

M
w

w

rgt

M+ =
1
8

wL2
s = w

1
8
(0.8)2L2 = 0.08wL2

Note that wL2/24 = 0.041667.
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Approximate Analyses of Buildings Vertical Loads; Theory

2 Maximum negative moment at each end of the girder

M left = M rgt = −
w
2
(0.1L)2 −

w
2
(0.8L)(0.1L) = −0.045wL2

3 Girder Shear are obtained from

V lft =
wL
2

V rgt = −
wL
2

Note thhe sign of the shear forces. Graphically, they will always be shown positive.

4 Column axial force: summ all the girder shears to the axial force transmitted by the column
above it.

Vrgt
i-1

Pup

Pdwn

Vrgt
i-1

Vlft
i

Vlft
i
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Approximate Analyses of Buildings Vertical Loads; Theory

Pdwn = Pup + V rgt
i−1 − V lft

i

5 Column Moment are obtained from the free body diagram of the joints. From symmetry, left
and right moments are equal and opposite, thus

i-1 LL i

h/2

h/2

Vrgt
i-1

Vlft
i

Mlft
i

Vrgt
iMlft

i-1

Vlft
i-1

Mrgt
i-1

Mtop
col

MBot
col

Mrgt
i

Mbot = −M top
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Approximate Analyses of Buildings Vertical Loads; Theory

6 Column Shear Points of inflection are at mid-height, with possible exception when the
columns on the first floor are hinged at the base

V =
M top

h
2

7 Girder axial forces are assumed to be negligible
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Approximate Analyses of Buildings Horizontal Loads; Introduction

Single bay/storey frame, depending on the boundary conditions, we will have different
locations for the inflection points.

PH/2

P/2

L

H
I

I

P

PH/L

P/2

PH/L

I

P/2

L

H
I

I

P

PH/2L

P/2

PH/2L

I

PH/4 PH/4

PH/4 PH/4

PH/4PH/4

PH/2

For a multi-bays/multi-storeys frame, must differentiate between low and high rise buildings.

Low rise buidlings height is at least smaller than the horizontal dimension, the
deflected shape is characterized by shear deformations. Use Portal Method.
High rise buildings height is several times greater than its least horizontal dimension,
the deflected shape is dominated by overall flexural deformation.
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Approximate Analyses of Buildings Horizontal Loads: Portal Method

Low rise buildings under lateral loads predominantly shear deformations is dominant.
Assume:

1 Inflection points at
1 Mid-height of all columns above the second floor.
2 Mid-height of floor columns if rigid support, or at the base if hinged.
3 At the center of each girder.

2 Total horizontal shear at the mid-height of all columns at any floor level will be
distributed among these columns so that each of the two exterior columns carry half
as much horizontal shear as each interior columns of the frame.

Sequence of calculations:

1 Column shear
2 Column moments
3 Girder moments
4 Girder shears
5 Column axial force
6 Girder axial force

Note that it is the reverse order of the vertical load case.
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Approximate Analyses of Buildings Horizontal Loads: Portal Method

1 Column Shear is obtained by passing a horizontal section through the mid-height
of the columns at each floor and summing the lateral forces above it.

Vi
Col Vi

Col Vi
Col /2Vi

Col /2

Fi+1

Fi+2

h/2

External columns take half the shear force of the interior ones.

V col
ext =

∑
F lateral

2 No. of bays
V col

int = 2V col
ext
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Approximate Analyses of Buildings Horizontal Loads: Portal Method

2 Column Moments at the end of each column is equal to the shear at the column
times half the height of the corresponding column

M top
col = V col h

2
Mbot

= −M top

Careful exterior columns, the moments are half the ones of the interior.
3 Girder Moments is obtained from the free body diagram of the connection

h/2

h/2

h/2

h/2

MBot
col

Mtop
col

Mrgt
i-1 Mlft

i

Vlft
i

Vlft
i-1

Vrgt
i-1

Mlft
i-1

Mrgt
i

Vrgt
i

Li-1/2Li-1/2 Li/2 Li/2
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Approximate Analyses of Buildings Horizontal Loads: Portal Method

M lft
i = MTop

col − MBot
col +M rgt

i−1 M rgt
i = −M lft

i

4 Girder Shears Since there is an inflection point at the center of the girder, the
girder shear is obtained by considering the sum of moments about that point

V lft
= −2M

L
V rgt

= V lft

5 Column Axial Forces are obtained by summing girder shears and the axial force
from the column above

Victor E. Saouma; Univ. of Colorado Approximate Analyses 29/48



Approximate Analyses of Buildings Horizontal Loads: Portal Method

Vrgt
i-1

Pup

Pdwn

Vrgt
i-1

Vlft
i

Vlft
i

P = Pabove − P rgt
+ P lft

6 blueGirder axial force are assumed to be negligible.
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Numerical Examples

20' 30' 24'

16'

14'

20' 30' 24'

16'

15 k

30 k

1 2

8765

43

141312

11109

0.25 k/ft

0.50 k/ft
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Numerical Examples Numerical Example: Vertical Load

Free body diagram

0.56 0.7 0.45 0.81

4.5 5.6 3.6 6.5

4.5 5.6 3.6 6.5

0.64 0.8 0.930.51

4.5 5.6 3.6 3.6

5.64.5 3.6 6.5

9.
0

20
.2

20
.2

13
.09.

0

13
.0

0.64

4.
5

10
.1

6.
5

10
.14.

5

6.
5

7.
5

7.
5 6.
0

6.
0

2.
5

2.
5

3.
75

3.
75

0.8 0.51 0.93

5.
0

5.
0

3.
0

3.
0

0.56 0.7 0.45 0.81

Victor E. Saouma; Univ. of Colorado Approximate Analyses 32/48



Numerical Examples Numerical Example: Vertical Load

1 Top Girder Moments

M lft
12 = −0.045w12L2

12 = −(0.045)(0.25)(20)2 = − 4.5 k.ft
Mcnt

12 = 0.08w12L2
12 = (0.08)(0.25)(20)2 = 8.0 k.ft

M rgt
12 = M lft

12 = − 4.5 k.ft
M lft

13 = −0.045w13L2
13 = −(0.045)(0.25)(30)2 = − 10.1 k.ft

Mcnt
13 = 0.08w13L2

13 = (0.08)(0.25)(30)2 = 18.0 k.ft
M rgt

13 = M lft
13 = − 10.1 k.ft

M lft
14 = −0.045w14L2

14 = −(0.045)(0.25)(24)2 = − 6.5 k.ft
Mcnt

14 = 0.08w14L2
14 = (0.08)(0.25)(24)2 = 11.5 k.ft

M rgt
14 = M lft

14 = − 6.5 k.ft

2 Bottom Girder Moments

M lft
9 = −0.045w9L2

9 = −(0.045)(0.5)(20)2 = − 9.0 k.ft
Mcnt

9 = 0.08w9L2
9 = (0.08)(0.5)(20)2 = 16.0 k.ft

M rgt
9 = M lft

9 = − 9.0 k.ft
M lft

10 = −0.045w10L2
10 = −(0.045)(0.5)(30)2 = − 20.3 k.ft

Mcnt
10 = 0.08w10L2

10 = (0.08)(0.5)(30)2 = 36.0 k.ft
M rgt

10 = M lft
11 = − 20.3 k.ft

M lft
11 = −0.045w12L2

12 = −(0.045)(0.5)(24)2 = − 13.0 k.ft
Mcnt

11 = 0.08w12L2
12 = (0.08)(0.5)(24)2 = 23.0 k.ft

M rgt
11 = M lft

12 = − 13.0 k.ft
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Numerical Examples Numerical Example: Vertical Load

3 Top Column Moments

M top
5 = +M lft

12 = − 4.5 k.ft
Mbot

5 = −M top
5 = 4.5 k.ft

M top
6 = −M rgt

12 + M lft
13 = −(−4.5) + (−10.1) = − 5.6 k.ft

Mbot
6 = −M top

6 = 5.6 k.ft
M top

7 = −M rgt
13 + M lft

14 = −(−10.1) + (−6.5) = − 3.6 k.ft
Mbot

7 = −M top
7 = 3.6 k.ft

M top
8 = −M rgt

14 = −(−6.5) = 6.5 k.ft
Mbot

8 = −M top
8 = − 6.5 k.ft

4 Bottom Column Moments

M top
1 = +Mbot

5 + M lft
9 = 4.5 − 9.0 = − 4.5 k.ft

Mbot
1 = −M top

1 = 4.5 k.ft
M top

2 = +Mbot
6 − M rgt

9 + M lft
10 = 5.6 − (−9.0) + (−20.3) = − 5.6 k.ft

Mbot
2 = −M top

2 = 5.6 k.ft
M top

3 = +Mbot
7 − M rgt

10 + M lft
11 = −3.6 − (−20.3) + (−13.0) = 3.6 k.ft

Mbot
3 = −M top

3 = − 3.6 k.ft
M top

4 = +Mbot
8 − M rgt

11 = −6.5 − (−13.0) = 6.5 k.ft
Mbot

4 = −M top
4 = − 6.5 k.ft

5 Moment Diagrams
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Numerical Examples Numerical Example: Vertical Load

5 14'

20' 30' 24'

16'1 2

8
76

43

141312

11109

0.25 k/ft

0.50 k/ft

-9.0 

-4.5 -10.1 -10.1 

-13.0 -20.2 -20.2 

+8.0 +18.0 +11.5 

+16.0 
+32.0 

+23.0 

-6.5 -6.5 -4.5 

-9.0 -4.5 

-4.5 

+4.5 

+4.5 +5.6 

+5.6 
-5.6 

-5.6 +3.6 

+3.6 

-3.6 

-3.6 

-6.5 

-6.5 
+6.5 

+6.5 

6 Top Girder Shear
V lft

12 =
w12L12

2 = (0.25)(20)
2 = 2.5 k

V rgt
12 = −V lft

12 = − 2.5 k
V lft

13 =
w13L13

2 = (0.25)(30)
2 = 3.75 k

V rgt
13 = −V lft

13 = − 3.75 k
V lft

14 =
w14L14

2 = (0.25)(24)
2 = 3.0 k

V rgt
14 = −V lft

14 = − 3.0 k
7 Bottom Girder Shear

V lft
9 =

w9L9
2 = (0.5)(20)

2 = 5.00 k
V rgt

9 = −V lft
9 = − 5.00 k

V lft
10 =

w10L10
2 = (0.5)(30)

2 = 7.50 k
V rgt

10 = −V lft
10 = − 7.50 k

V lft
11 =

w11L11
2 = (0.5)(24)

2 = 6.00 k
V rgt

11 = −V lft
11 = − 6.00 k
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Numerical Examples Numerical Example: Vertical Load

8 Column Shears

V5 =
Mtop

5
H5
2

= −4.5
14
2

= − 0.64 k

V6 =
Mtop

6
H6
2

= −5.6
14
2

= − 0.80 k

V7 =
Mtop

7
H7
2

= 3.6
14
2

= 0.52 k

V8 =
Mtop

8
H8
2

= 6.5
14
2

= 0.93 k

V1 =
Mtop

1
H1
2

= −4.5
16
2

= − 0.56 k

V2 =
Mtop

2
H2
2

= −5.6
16
2

= − 0.70 k

V3 =
Mtop

3
H3
2

= 3.6
16
2

= 0.46 k

V4 =
Mtop

4
H4
2

= 6.5
16
2

= 0.81 k
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Numerical Examples Numerical Example: Vertical Load

-0
.6

4

-0
.8

0

+0
.5

1

+0
.9

3

-0
.5

6

-0
.7

0

+0
.4

5

+0
.8

1

+2.5
+3.75

-3.75

+3.0

-3.0

+5.0

-5.0

+7.5

-7.5
-6.0

+6.0
-2.5

9 Top Column Axial Forces

P5 = V lft
12 = 2.50 k

P6 = −V rgt
12 + V lft

13 = −(−2.50) + 3.75 = 6.25 k
P7 = −V rgt

13 + V lft
14 = −(−3.75) + 3.00 = 6.75 k

P8 = −V rgt
14 = 3.00 k

10 Bottom Column Axial Forces

P1 = P5 + V lft
9 = 2.50 + 5.0 = 7.5 k

P2 = P6 − V rgt
10 + V lft

9 = 6.25 − (−5.00) + 7.50 = 18.75 k
P3 = P7 − V rgt

11 + V lft
10 = 6.75 − (−7.50) + 6.0 = 20.25 k

P4 = P8 − V rgt
11 = 3.00 − (−6.00) = 9.00 k
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Numerical Examples Numerical Example: Vertical Load

L1 L2 L3
Height Span 20 30 24

14 Load 0.25 0.25 0.25
16 Load 0.5 0.5 0.5

Bay 1 Bay 2 Bay 3
Col Beam Column Column Beam Col

Lft Cnt Rgt     Lft Cnr Rgt Lft Cnt Rgt
-4.5 8.0 -4.5 -10.1 18.0 -10.1 -6.5 11.5 -6.5

-4.5 -5.6 3.6 6.5
4.5 5.6 -3.6 -6.5

-9.0 16.0 -9.0 -20.3 36.0 -20.3 -13.0 23.0 -13.0
-4.5 -5.6 3.6 6.5
4.5 5.6 -3.6 -6.5

Bay 1 Bay 2 Bay 3
Col Beam Column Beam Column Beam Col

Lft Rgt Lft Rgt Lft Rgt
2.50 -2.50 3.75 -3.75 3.00 -3.00

-0.64 -0.80 0.52 0.93
5.00 -5.00 7.50 -7.50 6.00 -6.00

-0.56 -0.70 0.46 0.81

Bay 1 Bay 2 Bay 3
Col Beam Column Beam Column Beam Col

0.00 0.00 0.00
2.50 6.25 6.75 3.00

0.00 0.00 0.00
7.50 18.75 20.25 9.00

MOMENTS

SHEAR

AXIAL  FORCE

Beam

VERTICAL LOADS
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Numerical Examples Numerical Example: Horizontal Loads

Free body diagram

17
.5

17
.5

17.5
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.5

17
.5

77
.5

77
.5
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35 35 17.5

17.5 35 35 17.5

60 120 120 60

60 120
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15
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2.5 5 5 2.5

7.5 15 15 7.5

7.515157.5
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Numerical Examples Numerical Example: Horizontal Loads

1 Column Shears
V5 = 15

(2)(3) = 2.5 k
V6 = 2(V5) = (2)(2.5) = 5 k
V7 = 2(V5) = (2)(2.5) = 5 k
V8 = V5 = 2.5 k
V1 = 15+30

(2)(3) = 7.5 k
V2 = 2(V1) = (2)(7.5) = 15 k
V3 = 2(V1) = (2)(2.5) = 15 k
V4 = V1 = 7.5 k

2 Top Column Moments

M top
5 = V1H5

2 =
(2.5)(14)

2 = 17.5 k.ft
Mbot

5 = −M top
5 = − 17.5 k.ft

M top
6 =

V6H6
2 =

(5)(14)
2 = 35.0 k.ft

Mbot
6 = −M top

6 = − 35.0 k.ft
M top

7 =
V up

7 H7
2 =

(5)(14)
2 = 35.0 k.ft

Mbot
7 = −M top

7 = − 35.0 k.ft

M top
8 =

V up
8 H8

2 =
(2.5)(14)

2 = 17.5 k.ft
Mbot

8 = −M top
8 = − 17.5 k.ft
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Numerical Examples Numerical Example: Horizontal Loads

3 Bottom Column Moments

M top
1 =

V dwn
1 H1

2 =
(7.5)(16)

2 = 60 k.ft
Mbot

1 = −M top
1 = − 60 k.ft

M top
2 =

V dwn
2 H2

2 =
(15)(16)

2 = 120 k.ft
Mbot

2 = −M top
2 = − 120 k.ft

M top
3 =

V dwn
3 H3

2 =
(15)(16)

2 = 120 k.ft
Mbot

3 = −M top
3 = − 120 k.ft

M top
4 =

V dwn
4 H4

2 =
(7.5)(16)

2 = 60 k.ft
Mbot

4 = −M top
4 = − 60 k.ft

4 Top Girder Moments

M lft
12 = M top

5 = 17.5 k.ft
M rgt

12 = −M lft
12 = − 17.5 k.ft

M lft
13 = M rgt

12 + M top
6 = −17.5 + 35 = 17.5 k.ft

M rgt
13 = −M lft

13 = − 17.5 k.ft
M lft

14 = M rgt
13 + M top

7 = −17.5 + 35 = 17.5 k.ft
M rgt

14 = −M lft
14 = − 17.5 k.ft
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Numerical Examples Numerical Example: Horizontal Loads

5 Bottom Girder Moments

M lft
9 = M top

1 − Mbot
5 = 60 − (−17.5) = 77.5 k.ft

M rgt
9 = −M lft

9 = − 77.5 k.ft
M lft

10 = M rgt
9 + M top

2 − Mbot
6 = −77.5 + 120 − (−35) = 77.5 k.ft

M rgt
10 = −M lft

10 = − 77.5 k.ft
M lft

11 = M rgt
10 + M top

3 − Mbot
7 = −77.5 + 120 − (−35) = 77.5 k.ft

M rgt
11 = −M lft

11 = − 77.5 k.ft

14'

20' 30' 24'

16'

14'

20' 30' 24'

16'

-60 ‘k

-17.5 ‘k -35 ‘k -35 ‘k -17.5 ‘k

-60 ‘k-120 ‘k-120 ‘k

60 ‘k120 ‘k120 ‘k
60 ‘k

17.5 ‘k

35 ‘k 35 ‘k 17.5 ‘k

-77.5 ‘k -77.5 ‘k -77.5 ‘k

77.5 ‘k 77.5 ‘k 77.5 ‘k
-17.5 ‘k -17.5 ‘k -17.5 ‘k

17.5 ‘k17.5 ‘k17.5 ‘k
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Numerical Examples Numerical Example: Horizontal Loads

6 Top Girder Shear

V lft
12 = − 2M lft

12
L12

= − (2)(17.5)
20 = −1.75 k

V rgt
12 = +V lft

12 = −1.75 k

V lft
13 = − 2M lft

13
L13

= − (2)(17.5)
30 = −1.17 k

V rgt
13 = +V lft

13 = −1.17 k

V lft
14 = − 2M lft

14
L14

= − (2)(17.5)
24 = −1.46 k

V rgt
14 = +V lft

14 = −1.46 k

7 Bottom Girder Shear

V lft
9 = − 2M lft

12
L9

= − (2)(77.5)
20 = −7.75 k

V rgt
9 = +V lft

9 = −7.75 k

V lft
10 = − 2M lft

10
L10

= − (2)(77.5)
30 = −5.17 k

V rgt
10 = +V lft

10 = −5.17 k

V lft
11 = − 2M lft

11
L11

= − (2)(77.5)
24 = −6.46 k

V rgt
11 = +V lft

11 = −6.46 k
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Numerical Examples Numerical Example: Horizontal Loads

8 Top Column Axial Forces (+ve tension, -ve compression)

P5 = −V lft
12 = −(−1.75) k

P6 = +V rgt
12 − V lft

13 = −1.75 − (−1.17) = −0.58 k
P7 = +V rgt

13 − V lft
14 = −1.17 − (−1.46) = 0.29 k

P8 = V rgt
14 = −1.46 k

9 Bottom Column Axial Forces (+ve tension, -ve compression)

P1 = P5 + V lft
9 = 1.75 − (−7.75) = 9.5 k

P2 = P6 + V rgt
10 + V lft

9 = −0.58 − 7.75 − (−5.17) = −3.16 k
P3 = P7 + V rgt

11 + V lft
10 = 0.29 − 5.17 − (−6.46) = 1.58 k

P4 = P8 + V rgt
11 = −1.46 − 6.46 = −7.66 k
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Numerical Examples Numerical Example: Horizontal Loads

# of Bays 3 L1 L2 L3
20 30 24

# of Storeys 2

Force Shear Col Beam Beam Col
H Lat. Tot Ext Int Lft Rgt Lft Rgt Lft Rgt

H1 14 15 15 2.5 5 17.5 -17.5 17.5 -17.5 17.5 -17.5
H2 16 30 45 7.5 15 17.5 35.0 17.5

-17.5 -35.0 -17.5
77.5 -77.5 77.5 -77.5 77.5 -77.5

60.0 120.0 60.0
-60.0 -120.0 -60.0

Bay 1 Bay 2 Bay 3
Col Beam Col

Lft Rgt Lft Rgt Lft Rgt
-1.75 -1.75 -1.17 -1.17 -1.46 -1.46

2.50 5.00 2.50
2.50 5.00 2.50

-7.75 -7.75 -5.17 -5.17 -6.46 -6.46
7.50 7.50
7.50 7.50

Bay 1 Bay 2 Bay 3
Col Beam Column Beam Column Beam Col

0.00 0.00 0.00
1.75 -1.46

0.00 0.00 0.00
9.50 1.58 -7.92

HORIZONTAL LOAD

Bay 1 Bay 2 Bay 3
MOMENTS

SHEAR

Beam

-35.0

120.0
-120.0

5.00
5.00

Column Column Beam

ColumnBeamColumn

35.0

0.29

15.00
15.00

AXIAL  FORCE

15.00
15.00

-0.58

-3.17
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Numerical Examples Combined Load

Design Parameters On the basis of the two approximate analyses, vertical and
lateral load, we now seek the design parameters for the frame.

Columns

COLUMNS
Mem. Vert. Hor. Design

Values
Moment 4.50 60.00 64.50

1 Axial 7.50 9.50 17.00
Shear 0.56 7.50 8.06
Moment 5.60 120.00 125.60

2 Axial 18.75 15.83 34.58
Shear 0.70 15.00 15.70
Moment 3.60 120.00 123.60

3 Axial 20.25 14.25 34.50
Shear 0.45 15.00 15.45
Moment 6.50 60.00 66.50

4 Axial 9.00 7.92 16.92
Shear 0.81 7.50 8.31
Moment 4.50 17.50 22.00

5 Axial 2.50 1.75 4.25
Shear 0.64 2.50 3.14
Moment 5.60 35.00 40.60

6 Axial 6.25 2.92 9.17
Shear 0.80 5.00 5.80
Moment 3.60 35.00 38.60

7 Axial 6.75 2.63 9.38
Shear 0.51 5.00 5.51
Moment 6.50 17.50 24.00

8 Axial 3.00 1.46 4.46
Shear 0.93 2.50 3.43
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Numerical Examples Combined Load

Beams

BEAMS
Mem. Vert. Hor. Design

Values
-ve Moment 9.00 77.50 86.50

9 +ve Moment 16.00 0.00 16.00
Shear 5.00 7.75 12.75
-ve Moment 20.20 77.50 97.70

10 +ve Moment 36.00 0.00 36.00
Shear 7.50 5.17 12.67
-ve Moment 13.0 77.50 90.50

11 +ve Moment 23.00 0.00 23.00
Shear 6.00 6.46 12.46
-ve Moment 4.50 17.50 22.00

12 +ve Moment 8.00 0.00 8.00
Shear 2.50 1.75 4.25
-ve Moment 10.10 17.50 27.60

13 +ve Moment 18.00 0.00 18.00
Shear 3.75 1.17 4.92
-ve Moment 6.50 17.50 24.00

14 +ve Moment 11.50 0.00 11.50
Shear 3.00 1.46 4.46
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Problems

1 Qualitatively draw deflected shapes, indicate positions of inflection points.

2 Draw corresponding moment diagram.
3 Redraw structure with finite member depths, and indicate location of reinforcement.

4 compute exact moments and compare.

From pg 331 book by Meyer
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Introduction

Introduction

Reactions Internal Forces Deflections Flexibility Method (SIS)

Deflections of structures must be determined in order to satisfy serviceability requirements
i.e. limit deflections under service loads to acceptable values (such as �L ≤ 360).

Later on, we will see that deflection calculations play an important role in the analysis of
statically indeterminate structures.

We shall focus on flexural deformation, however the end of this chapter will review axial and
torsional deformations as well.

Most of this chapter will be a review of subjects covered in Strength of Materials.

This chapter will examine deflections of structures based on geometric considerations.
Later on, we will present a more powerful method based on energy considerations.
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Curvature Equation

u

N.A.

ds≈dx

dθ

1

2 dθ=θ2-θ1

θ1

ρ

ρ

θ2

dθ dθ

Linear Strain Distribution

φ
y

ε

ε=φy

θ2

θ1

dx

The slope is denoted by θ, the change in slope per unit length is the curvature φ, the
radius of curvature is ρ. From Strength of Materials we have the following relations

φ =
1
ρ
=

dθ
ds

(1)
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Curvature Equation

For small displacements, and as a first order approximation, with ds ≈ dx and θ = dy
dx

Eq. 1
becomes

φ =
1
ρ
=

dθ
dx

=
d2y
dx2

(2)

A positive dθ at a positive y (upper fibers) will cause a shortening of the upper fibers
du = −ydθ, Dividing both sides by dx ,

du
dx︸︷︷︸
ε

= −y
dθ
dx

Combining this with Eq. 2
1
ρ
= φ = −

ε

y
This is the fundamental relationship between curvature (φ), elastic curve (i.e.

displacement) (y ), and linear strain (ε).

Note that so far we made no assumptions about material properties, i.e. it can be elastic or
inelastic.

For the elastic case:
ε = σ

E
σ = −My

I

}
ε = −

My
EI

(3)
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Curvature Equation

Combining this last equation with Eq. 1 yields

φ =
1
ρ
=

dθ
dx

=
d2y
dx2

=
M
EI

This fundamental differential equation governing for beam. Similar equations will be
derived later for cables and beam-columns.

Combining this equation with the moment-shear-force relations determined in the previous
chapter

dV
dx

= w(x)
dM
dx

= V (x)

}
d2M
dx2

= w(x)

we obtain
w(x)

EI
=

d4y
dx4
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Curvature Equation Exact Relationship

† Next, we shall (re)derive the exact expression for the curvature.

tan θ =
dy
dx

(4)

Defining t as t = dy
dx

and combining with Eq. 4 we obtain θ = tan−1 t

Applying the chain rule to φ = dθ
ds we have

φ =
dθ
dt

dt
ds

(5)

ds can be rewritten as

ds =
√

dx2 + dy2

=

√
1 +

(
dy
dx

)2
dx

t = dy
dx

 ds =
√

1 + t2dx (6)

Next combining Eq. 5 and 6 we obtain

φ = dθ
dt

dt√
1+t2dx

θ = tan−1 t
dθ
dt = 1

1+t2

 φ = 1
1+t2

1√
1+t2

dt
dx

dt
dx

= d2y
dx2

φ =

d2y
dx2[

1 +
(

dy
dx

)2
] 3

2

(7)
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Curvature Equation Exact Relationship

Thus the slope θ, curvature φ, radius of curvature ρ are related to the y displacement at a
point x along a flexural member by

φ =
1
ρ
=

d2y
dx2[

1 +
(

dy
dx

)2
] 3

2

If the displacements are very small, we will have dy
dx
<< 1, thus the last equation reduces to

φ = d2y
dx2 = 1

ρ
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Curvature Equation Example

Example I

2

1

Reactions (
+

���)�MB
z = 0;⇒ aR1 − bP = 0⇒ R1 =

b
a

P(
+

���)�MA
z = 0;⇒ aR2 − PL = 0⇒ R2 =

L
a

P
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Curvature Equation Example

Example II

Differential equation

EIy
′′

= −
b
a

Px +
L
a

P < x − a >

EIy
′

= −
b
2a

Px2 +
L

2a
P < x − a >2 +C1

EIy = −
b
6a

Px3 +
L

6a
P < x − a >3 +C1x + C2

Apply the boundary conditions, at x = 0, y = 0 therefore C2 = 0, and at x = a, y = 0, thus
0 = −[b/(6a)]Pa3 + aC1 or C1 = (ab/6)P

Slope under the load (note x = a + b = L)

EIy ′ = −
b
2a

P(a + b)2 +
a + b

2a
Pb2 +

ab
6

P

= −
b
2a

P(a2 + 2ab + b2) +
ab2 + b3

2a
P +

ab
6

P

= ...

= −
1
6

b(2L + b)P
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Curvature Equation Example

Example III

Deflection under the load P:

EIy = −
b
6a

P(a + b)3 +
a + b

6a
Pb3 +

ab
6

P(a + b)

= ...

= −
1
3

Lb2P

Maximum deflection between the supports will occur where y ′ = 0.

EIy
′
= −

b
2a

Px2 +
L

2a
< x − a >2 +

ab
6

P

at y ′ = 0, , x − a > does not exist, thus 0 = − b
2a Px2 + ab

6 P solving for a, a = 1√
3

a, thus
we can write

EIymax = −
b
6a

P
(

1
√

3
a
)3

+
ab
6

P
(

1
√

3
a
)

= ...

=
a2b
9
√

3
P

Victor E. Saouma; Univ. of Colorado Deflections; Elastic Curve 11/23



Curvature Area Method (Moment Area) First Moment Area Theorem

Curvature Area Method; First Moment Area Theorem

dθ

θ

dθ
dt ≈ dθ dx

θ+dθ

dx

1

t21

M
EI

2

dx

θ1

θ21

θ2

x1

x2

x

X2-X1

θ2

θ1

From equation 4 we have dθ
dx

= M
EI this can be rewritten as (note similarity with dV

dx
= w(x)).

θ21 = θ2 − θ1 =

∫ x2

x1

dθ =
∫ x2

x1

M
EI

dx (8)

First Area Moment Theorem:
The change in slope from point 1 to point 2 on a beam is equal to the area
under the M/EI curvature diagram between those two points.
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Curvature Area Method (Moment Area) Second Moment Area Theorem

Curvature Area Method; Second Moment Area Theorem I

dθ

θ

dθ
dt ≈ dθ dx

θ+dθ

dx

1

t21

M
EI

2

dx

θ1

θ21

θ2

x1

x2

x

X2-X1

θ2

θ1

We define by t21 the distance between point 2 and the tangent at point 1. For an
infinitesimal distance ds = ρdθ and for small displacements

dt = dθ(x2 − x1)
dθ
dx

= M
EI

}
dt =

M
EI

(x2 − x1)dx

t21 =

∫ x2

x1

dt =
∫ x2

x1

M
EI

(x2 − x1)dx
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Curvature Area Method (Moment Area) Second Moment Area Theorem

Curvature Area Method; Second Moment Area Theorem II

Second Moment Area Theorem: The tangent distance t21 between a point, 2,
on the beam and the tangent of another point, 1, is equal to the moment of the
M/EI diagram between points 1 and 2, with respect to point 2.
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Curvature Area Method (Moment Area) Misc.

Curvature Area Method; Misc.
A

/B θB

θA

AB
θB

θA

A’B’A
’/B

’

xy

xy

xy

xy

2

3

4

xy

xy

xy
2

2
3

3
4

x

x

x

x

x2
3

3

3

4

4
5 5

2

AREA CENTROID

0

1

2

3

de
gr

ee

3x

2x

8

n
xy
n+1

nxy
n+1

x
n+2

(n+1)x
2(n+2)

y

x
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Elastic Weight/Conjugate Beams

Elastic Weight/Conjugate Beams I

There is a strong analogy between the two sets of relationships:

1 Load (w), shear (V ) and moment (M).
2 Curvature (1/ρ = M/EI), slope (θ) and displacement (y ).

those are summarized in the following table

V and M θ and y

V21 =

∫ x2

x1

wdx V =

∫
wdx + C1 θ21 =

∫ x2

x1

1
ρ

dx θ =

∫
1
ρ

dx + C1

M21 =

∫ x2

x1

Vdx M =

∫
Vdx + C2 t21 =

∫ x2

x1

θdx y =
∫
θdx + C2

Since we know how to draw the shear and moment diagrams for actual load, we can apply
the same methodology to elastic weight and similarly determine slope and deflection.

Load q ≡ curvature
1
ρ
= φ =

M
EI

(9)

Shear V ≡ slope θ (10)

Moment M ≡ deflection y (11)
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Elastic Weight/Conjugate Beams

Elastic Weight/Conjugate Beams II

Since V & M can be conjugated from statics, by analogy θ & y can be thought of as the V &
M of a fictitious beam (or conjugate beam) loaded by M

EI elastic weight.

Boundary conditions are determined from

Actual Beam Conjugate Beam
Hinge θ 6= 0 y = 0 V 6= 0 M = 0 “Hinge”
Fixed End θ = 0 y = 0 V = 0 M = 0 Free end
Free End θ 6= 0 y 6= 0 V 6= 0 M 6= 0 Fixed end
Interior Hinge θ 6= 0 y 6= 0 V 6= 0 M 6= 0 Interior support
Interior Support θ 6= 0 y = 0 V 6= 0 M = 0 Interior hinge

A
ct

ua
l

C
on

ju
ga

te

Whereas the curvature area method has a well defined basis, its direct application can be
sometimes confusing.
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Elastic Weight/Conjugate Beams

Elastic Weight/Conjugate Beams III

Alternatively, the curvature area method was derived from the moment area method, and is
a far simpler method to remember and use in practice when simple “back of the envelope”
calculations are required.

Note that we can only have distributed load, and that the load is positive for a positive
moment, and negative for a negative moment. “Shear” and “Moment” diagrams should be
drawn accordingly.

Units of the “distributed load” w∗ are FL
EI (force time length divided by EI). Thus the “Shear”

would have units of w∗ × L or FL2

EI and the “moment” would have units of (w∗ × L)× L or
FL3

EI . Recalling that EI has units of FL−2L4 = FL2, we observe that indeed the “shear”
corresponds to a rotation in radians and the “moment” to a displacement.
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Elastic Weight/Conjugate Beams Example

Example 1; I

P

4L/5
A

C D

L

4PL/5EI

A
C D

3 equations of equilibrium and 1 equation of condition = 4 = number of reactions. Deflection
at D = Shear at D of the corresponding conjugate beam (Reaction at D) Take AC and �M
with respect to C(

+
���)�MC

z = 0⇒ RA(L)−
(

4PL
5EI

)(
L
2

)(
L
3

)
= 0 (12)

⇒ RA =
2PL2

15EI
(13)

which is the slope in real beam at A As computed before!
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Elastic Weight/Conjugate Beams Example

Example 1; II

Let us draw the Moment Diagram for the conjugate beam at a point x away from A. From A
to C

M =
P
EI

[
2

15
L2x −

(
4
5

x
)(x

2

)( x
3

)]
(14)

=
P
EI

(
2

15
L2x −

2
15

x3
)

(15)

=
2P

15EI

(
L2x − x3

)
(16)

Point of Maximum Moment (�max ) occurs when dM
dx

= 0

dM
dx

=
2P

15EI
(L2 − 3x2) = 0⇒ 3x2 = L2 ⇒ x =

L
√

3
(17)
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Elastic Weight/Conjugate Beams Example

Example 1; III

as previously determined

x =
L
√

3
(18)

⇒ M =
2P

15EI

(
L2L
√

3
−

L3

3
√

3

)
(19)

=
4PL3

45
√

3EI
(20)

as before.
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Elastic Weight/Conjugate Beams Example

Example 2; I

(+)

A

6k 6k8k

10k10k

B

D C EADI = I = 450 4in EBI = I = 450 4in

DEI' = 2I = I = 900 4in

12 ft 6 ft 12 ft6 ft

M ( )×k ft

 ( )x ft
12 18 24 36

120
144

From simple observation, the reactions at A and B are equal to 10 k. The elastic load on the
conjugate beam is then shown below.
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Elastic Weight/Conjugate Beams Example

Example 2; II

720

EI

360

EI

CA

36

EI

1116

EI

10 ft

2 ft
3 ft

18 ft C
v

C
M

C

A B

120

EI

60

EI

72

EI
60

EI

120

EI

12 ft 6 ft 12 ft6 ft

C

A B

10 ft8 ft 8 ft10 ft

720

EI

720

EI

72

EI

720

EI

1116

EI

1116

EI

We next seek to determine the internal moment at C’ in the conjugate beam, it is obtained
from equilibrium:(
+

���)�MB
z = −;

1, 116
EI

(18)−
720
EI

(10)−
360
EI

(3)−
36
EI

(2)+MC = 0⇒ MC ′ = −
11, 736k.ft3

EI
(21)

Substituting

�C = MC ′ = −
11, 736k.ft3(123)in3/ft3

(29× 103)k/in2(450)in4 = −1.55" (22)
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Introduction

Reactions Internal Forces Deflections Flexibility Method (SIS)

Determination of displacements is critical in structural analysis:

Deflections are need to assess stiffness of a structure (i.e all design codes impose a
maximum allowable displacement)
Must be determined to analyses statically indeterminate structures by the flexibility
method.

Many methods are available to compute deflections. However, we will focus on the most
efficient and powerful one based on the Principle of Virtual Force (PVf).

Strictly speaking (as shall be seen later) this is the Principle of Complementary Virtual Work.

In the context of this chapter, we will refer to it as Principle of Virtual Work (PVW).

This is the only unified method that allows us to compute deflections in all types of
structures, under a variety of loads (including thermal and initial deformation), and for both
linear and nonlinear structures.

The method will be revisited in more advanced courses (Matrix Structural Analysis or Finite
Element Analysis).

In terms of notation one is confronted with a small dilemma:
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Introduction

Use the simplified notation of the textbook, however this will ill-prepare you for
subsequent courses.
Use right away the more rigorous notation that is understandable across all courses.

We will proceed with the second. Virtual quantities will be preceded by a δ and will have an
overbar above (such as δP).

The correspondence between the two notations (as in the textbook by Leet) is as follows

Variable Textbook These notes
Dummy Force Q δP

Virtual element Bar Force FQ δP
(e)

Real element Bar Force FP P(e)

Virtual Moment MQ δM
Real Moment MP M
Virtual Strain Energy UQ δU

∗

Virtual Work WQ δW
∗

This chapter will begin with a simplified derivation of the PVW at its most elementary level
(in terms of stress and strain internally), and then generalize to truss, beam, frames.
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Simplified Derivation of the Principle of Virtual
Work Derivation

BB

A
AA

1

Virtual Load

ε

Δ

σ

ε

Virtual + Real LoadsReal Load

Δ
1P

Δ1

1P

δΔ

δε

δσ δσ

δΔ+Δ
δP

δP P

B B
A B

δΔ+Δ

δP

δΔ Δ Δ1AA

     dδ Volδ   =ΔP
Ext

Int



1 1
δP Δ  = δ  δ  dVol   

2 2
IntExt

 
1 1

1 1
P Δ  =  dVol   

2 2
IntExt

 1 1

1
δPΔ+

2
1

δ  δ  d
2

δP

dVol
1

 Δ

δ  V

1
Δ

 
2

P
2

 oldVol   



  

Consider an arbitrary structure and load. or the sake of simplicity, let us assume (or
consider) that this structure develops only internal axial stresses and strains (σ and ε).

The structure will be subjected to two types of loads:
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Simplified Derivation of the Principle of Virtual
Work Derivation

Virtual load applied at the location A and along the direction (degree of freedom)
where we want to compute the displacement (or rotation). It is virtual, and
its value is irrelevant, but is often assumed to be unity.

Real corresponding to the actual externally applied load, B.

We are going to load the structure in two different sequences:

Apply virtual load only at A (obtain Eq. 1); OR apply real load at B only (obtain Eq. 2).
Apply virtual load at A AND then apply real load at B (while virtual load is still on).

This will result in:

1 Application of virtual load at A; external work must be equal to the internal strain
energy over the entire volume, then:

1
2
δPδ�︸ ︷︷ ︸

External virtual work

=
1
2

∫
dVol

δσδεdVol︸ ︷︷ ︸
Internal virtual strain energy

(1)

The 1/2 stems from the fact that the load is gradually applied ramping from 0 to it
full value linearly. The area under the curve represents the external work
(likewise for the internal strain energy).
Strain energy is the internal work and is integrated over the volume
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Simplified Derivation of the Principle of Virtual
Work Derivation

2 Application of real load at B. Again, external work must be equal to the internal strain
energy over the entire volume, then:

1
2

P1�1︸ ︷︷ ︸
External real work

=
1
2

∫
dVol

σϵdVol︸ ︷︷ ︸
Internal real strain energy

(2)

3 Now, virtual load is first applied (resulting in 1
2δPδ� = 1

2

∫
dVol

δσδεdVol) and we then

apply the real (actual) load on top of the deformed system (resulting in
1
2 P1�1 =

1
2

∫
dVol

σϵdVol). However, as we applied the second real load, the δP

remained constant but underwent an additional displacement �. So that there is an
additional external work equal to δP� at that location equal to

δP� =

∫
Vol

δσεdVol (3)

(note absence of 1/2 term). Hence, the total work done becomes
4 Summing Eq. 1, 2 and 3 we obtain:

A︷ ︸︸ ︷
1
2
δPδ�+

B︷ ︸︸ ︷
1
2

P1�1︸ ︷︷ ︸
Uncoupled

+

A−B︷ ︸︸ ︷
δP�︸ ︷︷ ︸

Coupled

=

A︷ ︸︸ ︷
1
2

∫
Vol

δσδεdVol+

B︷ ︸︸ ︷
1
2

∫
Vol

σεdVol︸ ︷︷ ︸
Uncoupled

+

A−B︷ ︸︸ ︷∫
Vol

δσεdVol︸ ︷︷ ︸
Coupled

(4)
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Simplified Derivation of the Principle of Virtual
Work Derivation

5 Since the strain energy and work done must be the same whether the loads are
applied together or separately, we obtain, from subtracting the sum of Eqs. 2 and 1
from 4 and generalizing, we obtain∫

δσεdVol︸ ︷︷ ︸
δU∗

= δP�︸ ︷︷ ︸
δW∗

This last equation is the key to the method of virtual forces. The left hand side is the internal
virtual strain energy δU

∗1. Similarly the right hand side is the external virtual work.

A variation of this derivation would lead to the so-called Maxwell-Betti reciprocal theorem
which states that If two load sets act on a linearly elastic structure, work done by the first set
of loads in acting through the displacements produced by the second set of loads is equal to
the work done by the second set of loads in acting through displacements produced by the
first set.

P1δ12 = P2δ21

1We use the * to distinguish it from the internal virtual strain energy obtained from the virtual
displacement method δU.
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Simplified Derivation of the Principle of Virtual
Work External Virtual Work δW

∗

δW
∗
=

∑n

i=1
(�i)δP i +

∑n

i=1
(θi)δM i

Note that there is no such a thing as distributed virtual load.

Recall that all overbar quantities are virtual and the other ones are the real.
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Simplified Derivation of the Principle of Virtual
Work Internal Virtual Work δU

∗

The general expression for the internal virtual work is

δU
∗
=

∫
δσεdVol

We skip the general formulation for inelastic systems.

Should we have a linear elastic material σ = Eε.

One has to be extremely careful in properly handling the units

Axial Members:

δU
∗

=

∫
dVol

ε(x)δσ(x)dVol

δσ(x) =
δP(e)

(x)
A

ε(x) =
P(e)(x)

AE
dV = Adx


δU

∗
=

∫ L

0
δP

(e)
(x)

P(e)(x)
AE︸ ︷︷ ︸
�

dx

Note that for a truss where we have n members, the above expression becomes

δU
∗
= �n

1δP
(i) P(i)Li

Ai Ei

Note that P is the axial force caused by the real load and δP is the axial force
caused by the virtual load. Those forces are determined from a truss analysis.
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Simplified Derivation of the Principle of Virtual
Work Internal Virtual Work δU

∗

Flexural Members:

δU
∗

=

∫
Vol

ε(x)Eδε(x)︸ ︷︷ ︸
δσ(x)

dVol

δσx (x) =
δMz(x)y

Iz
ε(x) =

Mz(x)y
EIz

dVol = dA dx

Iz =

∫
A

y2dA


δU

∗
=

∫ L

0
δM(x)

M(x)
EIz︸ ︷︷ ︸
�(x)

dx

Again, Note that M(x) is the moment diagram caused by the real load and
δM(x) is the moment diagram caused by the virtual load.
Which is why we need to have analytical expressions for the moments.
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Examples Beam

Determine the deflection at point C. E = 29, 000 ksi, I = 100 in4.

2 k/ft

A A B

B
C C

15 k 45 k
0.5 k 1.5 k

1 k

20' 10'

C

-x-0.5x

15x-x2

-x2

Real Moment Virtual Moment

x x

2 k/ft

15 k
x

M=15x -2(x)(x)/2
0.5k

x

M= - 0.5x

Element x = 0 M(x) δM(x)
AB A 15x − x2 −0.5x
BC C −x2 −x
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Examples Beam

Units: k & in.
Applying the principle of virtual work, we obtain

�CδP︸ ︷︷ ︸
δW∗

=

∫ L

0
δM(x)

M(x)
EIz

dx︸ ︷︷ ︸
δU∗

(1)k(�C)ft =

∫ 20

0
(−0.5x)

(15x − x2)

EI
dx +

∫ 10

0
(−x)

−x2

EI
dx

=
2, 500

EI

(1)k(�C) in =
(2, 500) k2 − ft4(1, 728) in3

/ ft3

(29, 000) k/ in2(100) in4

= 1.49 in
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Examples Frame; Deflections

Determine both the vertical and horizontal deflection at A. E = 200 × 106 kN/ m2,
I = 200 × 106 mm4.

1 kN

1 kN4 kN-m
5 kN-m

A B C

D

2 m2 m

5 m

50 kN100 kN-m

50 kN
1 kN

1 kN

x
x

x

To analyse this frame we must determine analytical expressions for the moments along
each member for the real load and the two virtual ones. One virtual load is a unit horizontal
load at A, and the other a unit vertical one at A also.
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Examples Frame; Deflections

+100

-50x
-

+4

-x

x x

x

-

+

-

50 kN
1 kN

1 kN

4 kN-m100 kN-m
5 kN-m

50 kN 1 kN

1 kN

M= - 50x
50kN

x

Element x = 0 M δMv δMh
AB A 0 −x 0
BC B −50x −2 − x 0
CD C 100 4 −x
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Examples Frame; Deflections

Note that moments are considered positive when they produce compression on the inside
of the frame.

Units: kN & m

�vδP︸ ︷︷ ︸
δW∗

=

∫ L

0
δM(x)

M(x)
EIz

dx︸ ︷︷ ︸
δU∗

(1)kN(�v )m =

∫ 2

0
(−x)

(0)
EI

dx +
∫ 2

0
(−2 − x)

−50x
EI

dx +
∫ 5

0
(4)

100
EI

dx

=
2, 333 kN2 m4

EI

=
(2, 333) kN2 m4(103)4 mm4/ m4

(200 × 106) kN/ m2(200 × 106) mm4

= 0.058 m = 5.8 cm
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Examples Frame; Deflections

Similarly for the horizontal displacement:

�hδP︸ ︷︷ ︸
δW∗

=

∫ L

0
δM(x)

M(x)
EIz

dx︸ ︷︷ ︸
δU∗

(1)kN(�h)m =

∫ 2

0
(0)

(0)
EI

dx +
∫ 2

0
(0)

−50x
EI

dx +
∫ 5

0
(−x)

100
EI

dx

=
−1, 250 kN2 m4

EI

=
(−1, 250) kN2 m4(103)4 mm4/ m4

(200 × 106) kN/ m2(200 × 106) mm4

= −0.031 m = −3.1 cm

Note that the horizontal deflection is to the left (opposite to the direction of the virtual force).

Victor E. Saouma; Univ. of Colorado Virtual Work 17/26



Examples Frame, Rotation

Determine the rotation of joint C. E = 29, 000 ksi, I = 240 in4.

A

B C

D
15'

10'

20'30 k

30 k

3 k/ft

θC

0.05 k
0.05 k

1 k-ft

3 k/ft

30 k
x M=30x -3(x)(x)/2 0.05kx

M= - 0.05x
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Examples Frame, Rotation

In this problem the virtual force is a unit moment applied at joint C, δMe. It will cause an internal
moment δM i

Element x = 0 M δM
AB A 0 0
BC B 30x − 1.5x2 −0.05x
CD D 0 0

Note that moments are considered positive when they produce compression on the outside of the
frame. Substitution yields:

θCδMe︸ ︷︷ ︸
δW∗

=

∫ L

0
δM

M
EIz

dx︸ ︷︷ ︸
δU∗

(1)k − ft(θC)rad =

∫ 20

0
(−0.05x)

(30x − 1.5x2)

EI
dx k2 ft3

= −
(1, 000)k2 ft2(144) in2

/ ft2

(29, 000) k/ in2(240) in4

= −0.021 radians
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Examples Truss; Simple

Determine the deflection at node A for the truss.

12'

1
1

3

4

4

7

5

2
3

5

60 k 120 k

6

12' 12'

A=5.0 in2 each; 
E=10x103 ksi

60 120

-117.3-83.8

37.5 52.5

-45.0

75.0 105.0

A

-0.50

-0.56 -0.56

0.25 0.25

0.5 0.51.0

δP
(e)

P(e), L, A, E , δP
(e) P(e)L

AE
Member kips kips ft in

2 ksi
1 +0.25 +37.5 12 5.0 10 × 103 +22.5 × 10−4

2 +0.25 +52.5 12 5.0 10 × 103 +31.5 × 10−4

3 -0.56 -83.8 13.42 5.0 10 × 103 +125.9 × 10−4

4 +0.56 +16.8 13.42 5.0 10 × 103 +25.3 × 10−4

5 +0.56 -16.8 13.42 5.0 10 × 103 −25.3 × 10−4

6 -0.56 -117.3 13.42 5.0 10 × 103 +176.6 × 10−4

7 -0.50 -45.0 12 5.0 10 × 103 +54.0 × 10−4

+410.5 × 10−4
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Examples Truss; Simple

The deflection is thus given by

(δP) k(�) in =
7∑
1

δP
(e) PL

AE

(1) k(�) in = (410.5 × 10−4)
k2 ft

in2 k/ in2 (12 in/ ft) = 0.493 in
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Examples Truss

Determine the vertical deflection of joint 7. E = 30, 000 ksi.

15'

4 @ 20'
20k 20k 20k30k 30k

2 in2
1 

in
2

2 in2 2 in2 2 in2

2 in22 in2

1 
in

2

1 
in

2

1

1

10

5
6 7

2 3

8 9
4

2 3 4

56 7 8

1k

11 12 13

Two analyses are required. One with the real load, and the other using a unit vertical load at
joint 7. Results for those analysis are summarized below. Note that advantage was taken of
the symmetric load and structure.

Member A L P(e) δP
(e) δP(e)P(e)L

A n nδP(e)P(e)L
A

in2 ft k k k.ft/ in2 k.ft/ in2

1 & 4 2 25 -50 -0.083 518.75 2 1,037.5
10 & 13 2 20 40 0.67 268.0 2 536.0
11 & 12 2 20 40 0.67 268.0 2 536.0
5 & 9 1 15 20 0 0 2 0
6 & 8 1 25 16.7 0.83 346.5 2 693.0
2& 3 2 20 -53.3 -1.33 708.9 2 1,417.8

7 1 15 0 0 0 1 0
Total 4,220.3
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Examples Truss

Thus from Eq. 10 we have:

�δP︸ ︷︷ ︸
δW∗

=

∫ L

0
δP

P
AE

dx︸ ︷︷ ︸
δU∗

= �δP
(e) P(e)L

AE

(1) k(�) in =
(4, 220.3) k2 ft/ in2(12) in/ft

30, 000 ksi

= 1.69 in
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Examples Truss with initial camber

It is desired to provide 3 in. of camber at the center of the truss shown below

1

32

6 @ 27'

1 k

36'

by fabricating the endposts and top chord members additionally long. How much should the
length of each endpost and each panel of the top chord be increased?

Assume that each endpost and each section of top chord is increased 0.1 in.

Member δP
(e)
int �L δP

(e)
int �L

1 +0.625 +0.1 +0.0625
2 +0.750 +0.1 +0.0750
3 +1.125 +0.1 +0.1125

+0.2500

Victor E. Saouma; Univ. of Colorado Virtual Work 24/26



Examples Truss with initial camber

Thus,
(1) k(�) in = (2)(0.250) k in ⇒ � = 0.50 in

Since the structure is linear and elastic, the required increase of length for each section will
be (

3.0
0.50

)
(0.1) = 0.60 in

If we use the practical value of 0.625 in., the theoretical camber will be

(6.25)(0.50)
0.1

= 3.125 in
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Maxwell

insert detials of the paper by maxwell (stored in
victor-research-pdf-library-truss-design) and maxwell wrote FL which is really
FL/AE, and his theorem is nothing but the internal work equal external wok.
Prepare a new handout, and address optimization
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Introduction

Reactions Internal Forces Deflections Flexibility Method (SIS)

A statically indeterminate structure has more unknowns than equations of equilibrium (and
equations of conditions if applicable).

The advantages of a statically indeterminate structures are:

1 Lower internal forces
2 Safety in redundancy, i.e. if a support or members fails, the structure can redistribute

its internal forces to accommodate the changing B.C. without resulting in a sudden
failure.

Only disadvantage is that it is more complicated to analyze.

Analysis methods of statically indeterminate structures must satisfy three requirements

Equilibrium
Force-displacement (or stress-strain) relations (linear elastic in this course).

Compatibility of displacements (i.e. no discontinuity)

This can be achieved through two classes of solution

Force or Flexibility method;
Displacement or Stiffness method
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Preliminary Examples Cables

P

AlSteel
h

Al

1 Three unknowns, two independent
equations of equilibrium⇒ statically
indeterminate to the first degree.

2 Equations of equilibrium

�Mz = 0; ⇒ P left
Al = P right

Al

�Fy = 0; ⇒ 2PAl + PSt = P

two unknowns and one equation.

3 Need a third equation. Obtained from
compatibility of
displacements�LAl = �LSt

4 Force-Displacement relations: �L = PL
AE or

PAl L
EAl AAl︸ ︷︷ ︸
�Al

=
PSt L

ESt ASt︸ ︷︷ ︸
�St

⇒ PAl
PSt

=
(EA)Al
(EA)St

or

−(EA)St PAl + (EA)Al PSt = 0
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Preliminary Examples Cables

5 In matrix form: [
2 1

−(EA)St (EA)Al

]{
PAl
PSt

}
=

{
P
0

}
⇒
{

PAl
PSt

}
=

[
2 1

−(EA)St (EA)Al

]−1 { P
0

}
=

1
2(EA)Al + (EA)St︸ ︷︷ ︸

Determinant

[
(EA)Al −1
(EA)St 2

]{
P
0

}

6 We observe that the solution of this problem, contrarily to statically determinate ones,
depends on the elastic properties.
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Preliminary Examples Beam

x x

PB
A

C
L/2 L/2

P

ΔB

-

-P
L

PL/2

Primary Structure Under Actual Load

fBB

1

+
(1

)L
/2

Primary Structure Under Redundant Loading

x xx

-Px

-(PL/2 +Px)
(1)x
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Preliminary Examples Beam

Note similarity with the derivation of the virtual force principle.

1 Remove roller support, and have a primary
structure.

2 Deflection at B due to the applied load P
using the virtual force method

1.� =

∫
δM

M
EI

dx =

∫ L/2

0
0
−Px
EI

dx

+

∫ L/2

0
(x)
−
(

PL
2 + Px

)
EI

dx

= −
1
EI

∫ L/2

0

(
PL
2

x + Px2
)

dx

= −
1
EI

[
PLx2

4
+

Px3

3

]∣∣∣∣∣
L/2

0

= −
5

48
PL3

EI

3 Apply a unit load at point B and solve for
the displacement at B using the PVF

1fBB =

∫
δM

M
EI

dx

=

∫ L/2

0
(x)

x
EI

dx =
(1)L3

24EI

4 Displacement at B is zero⇒, fBB should
be multiplied by R?

B such that R?
B fBB = �

to ensure compatibility of displacements,
hence

RfBB +� = 0

⇒ R = −
�

fBB
= −
− 5

48
PL3

EI
(1)L3

24EI

= 5
2 P

Note that EI cancels out.
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The Force/Flexibility Method Theory

A degree of freedom is an independent displacement or rotation of a point.

Method:

1 Identify degree of static indeterminacy (exterior and/or interior) n.
2 Select n redundant unknown forces and/or couples in the loaded structure along with

n corresponding releases (angular or translation): primary structure.
3 Determine the n displacements in the primary structure (with the load applied)

corresponding to the releases, �i .
4 Apply a unit force at each of the releases j on the primary structure (without the

external load) and determine the displacements in all releases i : flexibility coefficients,
fij , i.e. displacement at release i due to a unit force at j . Direction is irrelevant; If
reaction is positive it will be along the specified direction,if negatie, otherwise.

5 Write the compatibility of displacement relation
f11 f12 · · · f1n
f21 f22 · · · f2n
· · · · · · · · · · · ·
fn1 fn2 · · · fnn


︸ ︷︷ ︸

[f]


R1
R2
· · ·
Rn

︸ ︷︷ ︸
R

+


�1
�2
· · ·
�n

︸ ︷︷ ︸
�

=


�0

1
�0

2
· · ·
�0

n

︸ ︷︷ ︸
�0

and
[R] = [f]−1

{
�+�0

}
Victor E. Saouma; Univ. of Colorado Flexibility Method 8/25



The Force/Flexibility Method Theory

�0
i vector of initial displacements, which is usually zero unless we have an initial

displacement of the support (such as support settlement).
6 Reactions are obtained by simply inverting the flexibility matrix.

dof 1 dof 2

Δ1
Δ2

f11
f21

1
f12

f22

R1 corresponds to vertical reaction at B
R2 corresponds to moment at B

Δ2 1

f11

f21 1

f12

f22

R1 corresponds to Moment at A
R2 corresponds to moment at B

Δ1

dof 1 dof 2

?
11 1 112

?
2 22 221 R

f f

f

R

f

   

 

    
    

1
A B
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The Force/Flexibility Method fij , fji Maxwell-Betti Reciprocal Theorem

Recall that fi j , i.e.displacement at release i due to a unit force at j .

Displacement at dof i due to point load at i : 1.�i =
∫
δM i

Mi
EI dx

Displacement at dof i due to a unit force at j is: fi j =
∫
δM i

Mj
EI dx

Displacement at dof j due to a unit force at i : fj i =
∫
δM j

Mi
EI dx

Both virtual loads and real loads are unit: δM i = Mi , δM j = Mj

or fi j = fj i Which is Maxwell-Betti’s reciprocal theorem, and results in a positive
definite symmetric matrix. Positive definite because fii is always positive.
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Examples Steel Building Frame Analysis

RDv

12'

40'

RDh

RAv
a) Roller support

c) Roller with tie

Structure cross section; spaced at 15'

C B

AD

Tie member; A=2 in2

RDv

RDh

RAv

W21x62

b) Hinged support

RAhRDh

RDv

Frames, 15 ft apart must support snow load: 30 psf, dead load: 20 psf. Sections: (W 21 × 62).
Cable A = 2 in.2. Consider three designs, analyze and compare.

a) Poor soil conditions foundations may not be able to develop horizontal forces⇒ hinge at one
of the bases and a roller at the other;

b) Excellent soil conditions hinges at both points A and D.

c) Intermediate case steel cable between A and D. The foundations would not be expected to
provide any horizontal restraint for this latter case.
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Examples Steel Building Frame Analysis

Solution:

Design load: 15 (30 + 20) = 750 lb/ft.

Structure a: Statically determinate as there are
three unknown reactions and three equations
of equilibrium.

15k
wL/2=15k

150 ft.k

w

x

M=(wL/2) x- (wx) (x/2)=
w/2(Lx-x2)

wL/2

Structure b Statically indeterminate to the first degree (one redundant).

1 Apply release at A, redundant shear force R1. �1:
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Examples Steel Building Frame Analysis

a) Primary structure

1

b) Load for determining f11

f11

M=1.x
M=+1.x

δM=+1.x

d) Moments produced by virtual 
forces and unit redundant

δM=M=+12

δM=1.x

15k

wL/2=15k

150 ft.k

w

M=(wL/2) x- (wx) (x/2)=
w/2(Lx-x2)

wL/2x

c) Moments produced by real 
load 

Victor E. Saouma; Univ. of Colorado Flexibility Method 13/25



Examples Steel Building Frame Analysis

2 Solve for �1 and f11:

1( k) ·�1( ft) =

∫ L

0
(12)

w
2

LX − x2

EI
dx =

∫ 40

0
(12)

(1/2)(.75)(40x − x2)

EI
=

48, 000
EI

k2 ft3

1( k) · f11( ft) = 2

[∫ 12

0
x

xdx
EI

+

∫ 20

0
12

12dx
EI

]
=

6, 912
EI

k2 ft3

3 Solving for R1
1
EI

[48, 000 + 6, 912R1] = 0⇒ R1 = −6.93 k←

15k 15k
6.93k 6.93k

(6.93)(12)=83.3ft.k

(150)-83.3=66.7ft.k
150 ft.k

Structure c Three unknown external forces, but structure is statically indeterminate to the first
degree since the tie member provides one degree of internal redundancy.

1 Release the tie member, with its associated longitudinal displacement and axial force.
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Examples Steel Building Frame Analysis

Release in tie member

Δ1Q
M=-1.x

a) Primary structure c) Virtual forces

b) Actual loading on primary structure

f11

1k

d) Real loading for computing f11

δM=-1.x
M=-1.x

δM=-1.x

e) Moments produced by virtual 
forces and unit redundants

δQ=1

δM=M=-12

2 Compatibility equation: relative displacement of the two sections of the tie at the point of
release must be zero, or �1 + f11R1 = 0 where
�1 = displacement at release 1 in the primary structure
f11 = relative displacement at release 1 for a unit axial force in the tie member,
R1 = force in the tie member in the original structure.

3 �1 is determined from case b:

�1 =
(48, 000) k ft3(1, 728) in3

/ ft3

(30 · 103) ksi(1, 327) in4 = 2.08 inrgt
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Examples Steel Building Frame Analysis

4 f11 is caused by both flexural and axial deformations

1 · f11 = 2

[∫ 12

0
(−x)

(−x)dx
EI

+

∫ 20

0
(−12)

(−12)dx
EI

]
︸ ︷︷ ︸

Flexure

+δP
PL
EA︸ ︷︷ ︸

Axial

=
6, 912

EI
+

1(1)(40)
EA

=
(6, 912) k ft3(1, 728) in3

/ ft3

(30 · 103) ksi(1, 327) in4 +
(40) ft(12) in/ ft
(30 · 103) ksi(2)

= 0.300 + 0.008 = 0.308

thus f11 = 0.308 in./k

5 Consistent deformation:

�1 + f11R1 = 0⇒ 2.08 + .308R1 = 0⇒ R1 = −6.75 k

6 The two displacement terms in the equation must carry opposite signs to account for their
difference in direction.
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Examples Steel Building Frame Analysis

15k 15k
6.75k 6.75k

(6.75)(12)=81.ft.k

(150)-81.0=69.ft.k
150 ft.k

Comments

M diagram in c, very close to M for b. Cable was very stiff. Reducing the area of
the cable will increase the moment.

Frames with tie members are used widely in industrial buildings.

Maximum moment frames (b) and (c) is about 55% of (a). Continuity causes a
decrease in the positive moment and an increase in the negative one. More
optimal design.

Vertical reactions are not affected by the horizontal support conditions.
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Examples Truss, One Redundant Force

0

0
Release

0

Δ1

A
B

DC

3m

3m

20kN

20

20

20
20

20

1 Check: 2× 4 = 8 equations, 6 members + 3 reactions⇒ one degree of indeterminacy. A
longitudinal release in any of the six bars may be chosen.

2 Release diagonal member BC for release.

3 �1 Relative displacement of joint B with respect to joint C.
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Examples Truss, One Redundant Force

4 Equation of compatibility along CD

�1 + f11F1 = 0

1 ·�1 = �δP
PL
AE

f11 = �δP
PL
AE

-0.707

-0
.7

07

+1

1

f11

-0.707
-0

.7
07

-0.707

-0
.7

07

-0.707

-0
.7

07

1
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Examples Truss, One Redundant Force

5 Evaluating these summations in tabular form:

Member P δP L δPPL (�1) δPPL (f11)
AB 0 −0.707 3 0 1.5
BD 0 −0.707 3 0 1.5
CD +20 −0.707 3 −42.42 1.5
AC +20 −0.707 3 −42.42 1.5
AD −28.28 +1 4.242 −119.96 4.242
BC 0 +1 4.242 0 4.242

-204.8 14.484

6 Since A is constant for each member

�1 = �δP
PL
AE

= −
−204.8

AE
m.kN2

f11 =
14.484

AE
m.kN2

0 =
1

AE
[−204.8 + 14.484F1]

F1 = 14.14 kN

.

Victor E. Saouma; Univ. of Colorado Flexibility Method 20/25



Examples Truss, One Redundant Force

7 Final forces are obtained by superimposing forces due to the redundant and the forces due
to the real loading.

8 Redundant force effect: multiply member forces by 14.14(redundant force)

A
B

DC

20kN

0

0

0

Δ1

20

20

20
20

20

= + 14.4 

-0.707

-0
.7
07

-0.707

-0
.7
07

1

=
-10

20

20

20

20

+10

+10

-10

Member δP F1δP P Ptotal

AB −0.707 −10.0 0.0 −10.0
BD −0.707 −10.0 0.0 −10.0
CD −0.707 −10.0 +20.0 +10.0
AC −0.707 −10.0 +20.0 +10.0
AD +1.0 +14.14 −28.28 −14.14
BC +1.00 +14.14 0 +14.14
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Examples Truss: two Redundant Forces

Another panel with a second redundant member is added to the truss of the preceding example

1 Release two diagonals (DB and BF ).

2 The member forces and required displacements for the real loading and for

4k
15k

10'

2@10'

C

D
E

F

BA 15

4

4

9.5

0
5.5

-9.5

-9
.5

-1
5

4

-5
.5

-9.5 Δ2

Δ1

15k

the two redundant forces in members DB and BF .

3 Although the real loading ordinarily stresses all members of the entire truss, we see that the
unit forces corresponding to the redundants stress only those members in the panel that
contains the redundant; all other bar forces are zero.

4 Recognizing this fact enables us to solve the double diagonal truss problem more rapidly
than a frame with multiple redundants.
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Examples Truss: two Redundant Forces

5 The virtual work equations for computing the six required displacements (two due to load
and four flexibilities) are

1 ·�1 = �δP1

(
PL
AE

)
1 ·�2 = �δP2

(
PL
AE

)
1 · f11 = �δP1

(
P1L
AE

)
1 · f21 = �δP2

(
P1L
AE

)

f12 = f21 by the reciprocal theorem 1 · f22 = �δP2
P2L
AE

6 Assume tensile unit forces (positive).

F1=1

1k

-0.707

f11

-f21

F2=1
-0.707

-0.707

-f12

f22
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Examples Truss: two Redundant Forces

7 Tabulate:
Displacements Flexibilities
�1 �2 f11 f21 f22

Member P P1 P2 L δP1PL δP2PL δP1P1L δP2P1L δP2P2L
AB -9.5 -0.707 0 120 +806 0 60 0 0
BC -9.5 0 -0.707 120 0 +806 0 0 60
CF -9.5 0 -0.707 120 0 +806 0 0 60
EF 0 0 -0.707 120 0 0 0 0 60
DE +4 -0.707 0 120 -340 0 60 0 0
AD -5.5 -0.707 0 120 +466 0 60 0 0
AE +7.78 +1 0 170 +1,322 0 170 0 0
BE -15.0 -0.707 -0.707 120 +1,272 +1272 60 60 60
CE +13.43 0 +1 170 0 +2,280 0 0 170
BD 0 +1 0 170 0 0 170 0 0
BF 0 0 +1 170 0 0 0 0 170

+3,528 +5,164 +580 +60 +580

8 Compatibility equations:

�1 + f11F1 + f12F2 = 0

�2 + f21F1 + f22F2 = 0

or
1

AE

[
580 60

60 580

] [
F1
F2

]
= −

1
AE

[
3, 528
5, 164

]
(1)

and F1 = −5.20 k and F2 = −8.38 k

9 Final set of forces: add for each member the three separate effects: F = P + F1P1 + F2P2
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Examples Truss: two Redundant Forces

Member P P1 P2 F1P1 F2P2 Ptot
AB -9.5 -0.707 0.0 3.676 0.0 -5.82
BC -9.5 0.0 -0.707 0 5.925 -3.56
CF -9.5 0.0 -0.707 0 5.925 -3.56
EF 0.0 0.0 -0.707 0 5.925 5.94
DE +4 -0.707 0.0 3.676 0.0 7.68
AD -5.5 -0.707 0.0 3.676 0.0 -1.82
AE +7.78 +1 0.0 -5.20 0.0 2.58
BE -15.0 -0.707 -0.707 3.676 5.925 -5.38
CE +13.43 0.0 +1 0.0 -8.38 5.05
BD 0.0 +1 0.0 -5.20 0.0 -5.20
BF 0.0 0.0 +1 0.0 -8.38 -8.38

4

4

15
-5.82 -3.56

-1
.8

2

-3
.5

6

5.947.68

-5
.3

8
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Introduction

There are two classes of structural analysis methods

Flexibility Stiffness
Primary Variable (d.o.f.) Forces Displacements
Indeterminancy Static Kinematic
Force-Displacement Displacement(Force)/Structure Force(Displacement)/Element
Governing Relations Compatibility of displacement Equilibrium

Flexibility method: 1) release redundant force(s) ⇒ structure statically determinate; 2) Apply
unit forces determine fij ; 3) kinematic constraint equation.

Stiffness method: 1) Constrain all displacements ⇒ kinematically determinate; 2)Release
one constraint at a time, apply unit displacement determine kij ; 3) Write equilibrium
equation.
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Introduction Sign Convention

In the stiffness method the sign convention adopted is consistent with the local element
coordinate system. Hence, we define a positive moment as one which is counter-clockwise.

Note that this is opposite to the convention in some introductory textbooks!.

+-
x

y

z

Design  (US) Analysis
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Introduction Degree of Freedom

A degree of freedom (d.o.f.) is an independent generalized nodal displacement (translation
or rotation) at a node.

The displacements must be linearly independent (of coordinate system) and thus not
related to each other.

An element dof is defined wrt its own local coordinate system. A structural dof is defined wrt
a global coordinate system.

1
2

3

2 3
1

Y

X
2

3 4

1

3 4

2
5

6
7

1
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Introduction Degree of Freedom

Type Node 1 Node 2 [k(e)] [K(e)]
(Local) (Global)

1 Dimensional
{p} Fy1, Mz2 Fy3, Mz4

Beam 4 × 4 4 × 4
{δ} v1, θ2 v3, θ4

2 Dimensional
{p} Fx1 Fx2

Truss 2 × 2 4 × 4
{δ} u1 u2
{p} Fx1, Fy2, Mz3 Fx4, Fy5, Mz6

Frame 6 × 6 6 × 6
{δ} u1, v2, θ3 u4, v5, θ6
{p} Tx1, Fy2, Mz3 Tx4, Fy5, Mz6

Grid 6 × 6 6 × 6
{δ} θ1, v2, θ3 θ4, v5, θ6

3 Dimensional
{p} Fx1, Fx2

Truss 2 × 2 6 × 6
{δ} u1, u2
{p} Fx1, Fy2, Fy3, Fx7, Fy8, Fy9,

Tx4 My5, Mz6 Tx10 My11, Mz12
Frame 12 × 12 12 × 12

{δ} u1, v2, w3, u7, v8, w9,
θ4, θ5 θ6 θ10, θ11 θ12
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Introduction Methods of Analysis

Slope Deflection: (Mohr, 1892) n linear equations with n unknowns, where n is the degree of
kinematic indeterminancy (i.e. total number of independent
displacements/rotation).

Moment Distribution: (Cross, 1930) Iterative method to solve for the n displacements and
corresponding internal forces in flexural structures.

Direct Stiffness method: (≃1960) formal statement of the stiffness method and cast in matrix
form is by far the most powerful method of structural analysis.

The first two methods lend themselves to hand calculation, and the third to a
computer based analysis.
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Force(Displacement) Relations

Flexibility �(F ) at the structure level (used virtual work equations).

Stiffness F (�) at the structure or element level (to be derived next).
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Force(Displacement) Relations Axial Deformations

From strength of materials:

σ = Eϵ⇒ Aσ︸︷︷︸
P

=
AE
L

�︸︷︷︸
1

For a unit displacement, applied force should be equal to AE
L .

From statics, force at other end must be equal and opposite.
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Force(Displacement) Relations Flexural

Objective: solve for forces in terms of known displacements in a beam: Four unknowns
forces (V ?

1 ,V
?
2 , M?

1 and M?
2 ) in terms of four known displacements (v

√

1 , v
√

2 , θ
√

1 and θ
√

2 )

V ?
1 = V ?

1 (v
√

1 , θ
√

1 , v
√

2 , θ
√

2 ) M?
1 = M?

1 (v
√

1 , θ
√

1 , v
√

2 , θ
√

2 )

V ?
2 = V ?

2 (v
√

1 , θ
√

1 , v
√

2 , θ
√

2 ) M?
2 = M?

2 (v
√

1 , θ
√

1 , v
√

2 , θ
√

2 )
(1)

Four unknowns, need four equations. Two provided by the second order linear differential
equation governing flexure, and two from the two equations of equilibrium.
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Force(Displacement) Relations Flexural

p(x)

M1
?

V1
 ?

M2
?

V2
?v2

√
v1

√

θ1
√

θ2
√

1 2
x

M1
?

V1
 ? v1

√

θ1
√

1
x

p(x) M(x)=M1-V1x+m(x)

p(x)

A. Differential equation

M = −EI
d2v
dx2︸ ︷︷ ︸

Diff Eq.

= M?
1 − V ?

1 x + m(x)︸ ︷︷ ︸
Statics

(2)
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Force(Displacement) Relations Flexural

m(x) moment due to applied load q(x) at section x (for uniformly distributed load:
m(x) = − 1

2 wx2)

Integrating twice

−EIv ′ = M?
1 x −

1
2

V ?
1 x2 + f (x) + C1 (3)

−EIv =
1
2

M?
1 x2 −

1
6

V ?
1 x3 + g(x) + C1x + C2 (4)

where f (x) =
∫

m(x)dx , and g(x) =
∫

f (x)dx .

Boundary conditions at x = 0

v ′ = θ
√

1
v = v

√

1

}
⇒

{
C1 = −EIθ

√

1
C2 = −EIv

√

1

(5)

Boundary conditions at x = L and combining with C1 and C2

v ′ = θ
√

2
v = v

√

2

}
⇒

{
−EIθ

√

2 = M?
1 L − 1

2 V ?
1 L2 + f (L)− EIθ

√

1
−EIv

√

2 = 1
2 M?

1 L2 − 1
6 V ?

1 L3 + g(L)− EIθ
√

1 L − EIv
√

1

(6)

Though we could solve for M?
1 and V ?

1 in terms of v
√

1 , v
√

2 , θ
√

1 and θ
√

2 , we proceed with
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Force(Displacement) Relations Flexural

B. Equilibrium

V ?
1 + q + V ?

2 = 0 M?
1 − V ?

1 L + m(L) + M?
2 = 0 (7)

where q =
∫ L

0 w(x)dx ,

thus

V ?
1 =

(M?
1 + M?

2 )

L
+

1
L

m(L) V ?
2 = −(V ?

1 + q) (8)

Substituting V1 into θ2 and v2 (Eq. 6){
M?

1 − M?
2 = 2EIz

L θ
√

1 + 2EIz
L θ

√

2 + m(L)− 2
L f (L)

2M?
1 − M?

2 = 6EIz
L θ

√

1 − 6EIz
L2 v

√

1 − 6EIz
L2 v

√

2 + m(L)− 6
L2 g(L)

(9)

Solve for the moments

M1 =
2EIz

L

(
2θ

√

1 + θ
√

2

)
−

6EIz
L2

(
v
√

2 − v
√

1

)
︸ ︷︷ ︸

I

+ FEM12︸ ︷︷ ︸
II

(10)

M2 =
2EIz

L

(
θ
√

1 + 2θ
√

2

)
−

6EIz
L2

(
v
√

2 − v
√

1

)
︸ ︷︷ ︸

I

+ FEM21︸ ︷︷ ︸
II

(11)

where
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Force(Displacement) Relations Flexural

In Eq. 10 and 11 if we let � = v2 − v1 (relative displacement), ψ = �/L (rotation of the
chord of the member), and K = I/L (stiffness factor1) then the end equations are:

M1 = 2EK (2θ1 + θ2 − 3ψ) + FEM1 (12)

M2 = 2EK (θ1 + 2θ2 − 3ψ) + FEM2 (13)

Note that ψ will be positive if counterclockwise, negative otherwise.

From Eq. 12 and 13, if a node has a displacement �, then both moments in the adjacent
elements will have the same sign. However, the moments in elements on each side of the
node will have different signs.

	21 =
v2 − v1

2
(14)

K =
I
L

Relative stiffness (15)

FEM1 =
2
L2

[Lf (L)− 3g(L)] (16)

FEM2 = −
1
L2

[
L2m(L)− 4Lf (L) + 6g(L)

]
(17)

(18)
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Force(Displacement) Relations Flexural

FEM1 and FEM2 are the fixed end moments for θ1 = θ2 = 0 and v1 = v2 = 0.

Load FEM1 FEM2

Uniform load w wL2

12 −wL2

12

Center Point load PL
8 −PL

8

Recall that in our notation, (-ve) moment means clockwise

In Eq. 10 and 11 we observe that the moments developed at the end of a member are
caused by: I) end rotation and displacements; and II) fixed end members.

We can substitute those expressions in Eq. 8 and solve for the shear forces:

V1 =
6EIz
L2

(
θ
√

1 + θ
√

2

)
−

12EIz
L3

(
v
√

2 − v
√

1

)
︸ ︷︷ ︸

I

+V F
1︸︷︷︸
II

(19)

V2 = −
6EIz
L2

(
θ
√

1 + θ
√

2

)
+

12EIz
L3

(
v
√

2 − v
√

1

)
︸ ︷︷ ︸

I

+V F
2︸︷︷︸
II

(20)
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Force(Displacement) Relations Flexural

where

V F
1 =

6
L3

[Lf (L)− 2g(L)] (21)

V F
2 = −

[
6
L3

[Lf (L)− 2g(L)]+ q
]

(22)

It is very important to note that the derived equations are based on:
1 Equilibrium
2 Stress-strain
3 Compatibility

The relationships just derived enable us now to determine the stiffness matrix of a beam
element.


V1
M1
V2
M2

 =



v1 θ1 v2 θ2

V1
12EIz

L3
6EIz
L2 − 12EIz

L3
6EIz
L2

M1
6EIz
L2

4EIz
L − 6EIz

L2
2EIz

L

V2 − 12EIz
L3 − 6EIz

L2
12EIz

L3 − 6EIz
L2

M2
6EIz
L2

2EIz
L − 6EIz

L2
4EIz

L


︸ ︷︷ ︸

ke


v1
θ1
v2
θ2

︸ ︷︷ ︸
�

+


V F

1
MF

1
V F

2
MF

2

︸ ︷︷ ︸
NEL

(23)

where NEL: Nodal Equivalent Load (negative of the fixed end actions)
1K will be defined as K = 4EI/L in the moment distribution method, and as a matrix in the

direct stiffness method.
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Nodal End Forces for Initial Strains

In the presence of thermal load (or initial strains), nodal equivalent forces can be readily
determined as follows:

Trusss
F T

1 = −AEα�T F T
2 = AEα�T (24)

Beam
F T

1 = −AEα�T avg F T
2 = AEα�T avg

MT
1 =

EIα(�T top−�T bot )
h MT

2 = −EIα(�T top−�T bot )
h

(25)

where α is the coefficient of thermal expansion, T avg = �T top+�T bot

2 .

For initial forces (such as prestressed members) one needs to simply specify α�T for the
initial strain induced by prestressing

In the load input data file one simply needs to specify α�T for the thermally loaded truss,
and α(�T top −�T bot ) and h for beams.
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Slope Deflection; Direct Solution Procedure

L1 L2

1 2 3

a

P
M12 M21 M23

M32

1 2 3

Identify degree of kinematic indeterminacy: three rotations θ1, θ2, and θ3 (i.e. three degrees
of freedom) at the supports.

Separating the spans from the support, draw free body diagrams and assume positive
moments at the end of the beams.

Moments can be expressed in terms of the three unknown rotations.

Using equations 12 and 13 we obtain

M12 = 2EK12(2θ1 + θ2) + FEM12; M21 = 2EK12(θ1 + 2θ2) + FEM21;
M23 = 2EK23(2θ2 + θ3); M32 = 2EK23(θ2 + 2θ3);

(26)
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Slope Deflection; Direct Solution Procedure

We have 3 unknowns θ1, θ2, and θ3 and we need three equations of equilibrium.

Write one equilibrium equations for each support

M12 = 0

M21 + M23 = 0

M32 = 0

Substituting, we obtain: 4K12 2K12 0
2K12 4(K12 + K23) 2K23

0 2K23 4K23


︸ ︷︷ ︸

Stiffness Matrix


θ?1
θ?2
θ?3


︸ ︷︷ ︸

Fint

+


− FEM12

2EK12

− FEM21
2E
0

︸ ︷︷ ︸
Fext

=


0
0
0



Where the fixed end moment can be separately determined.

This is an equation of global equilibrium which satisfies Newton’s third law.

Solve for rotations

Substitute rotations in Eq. 26 to determine moments at each end of a beam segment.

Computational requirements far less than for the flexibility method (or method of consistent
deformation) because we implicitly accounted for the force displacement relationships.
(though we are comparing static and kinematic unknowns).
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Slope Deflection; Direct Solution Algorithm

1 Sketch deflected shape.

2 Identify unknown support degrees of freedom (rotations and deflections).

3 Write the equilibrium equations at all the supports in terms of the end moments.

4 Express the end moments in terms of the support rotations, deflections and fixed end
moments.

5 Substitute the expressions obtained in the previous step in the equilibrium equations.

6 Solve equilibrium equations to determine the unknown support rotation and/or deflections.

7 Use the slope deflection equations to determine end moments.

8 Draw the moment diagram, careful about the difference in sign convention between the
slope deflection moments and the moment diagram.
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Slope Deflection; Direct Solution Example 1; Cantilevered Beam

10 m 5 m

20 kN

1

2

3

1 The beam is kinematically indeterminate to the third degree (θ2, �3, θ3), however by
replacing the the overhang by a fixed end moment equal to +100 kN.m at support 2, we
reduce the degree of kinematic indeterminacy to one (θ2).

2 The equilibrium relation is M21 + M23 = 0 or M21 + 100 = 0

3 The members end moments in terms of the rotations are (Eq. 12 and 13)

M21 = 2EK12 (θ1 + 2θ2) =
4

10
EIθ2 To solve for θ2

M12 = 2EK12 (2θ1 + θ2) =
2

10
EIθ2 To solve for the end moment once θ2 determined
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Slope Deflection; Direct Solution Example 1; Cantilevered Beam

4 Substituting into the equilibrium equations, solve for θ2.

θ2 =
10
4EI

M21

=
10
4EI

(−100) = −
250
EI

(clockwise rotation: -ve)

5 Substitute and solve for M12

M12 =
2

10
EIθ2 = −

2
10

EI
250
EI

= −50 kN.m
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Slope Deflection; Direct Solution Example 2; Two-Span Beam

20' 15' 15'

1

5 kips2 kip/ft

2
3

θ2

θ3

1 The unknowns are θ2, and θ3

2 The equilibrium relations are M21 + M23 = 0 and M32 = 0

3 The fixed end moments are

FEM12 = −FEM21 =
wL2

12
=

(2)(20)2

12
= 66.67 k.ft

FEM23 = −FEM32 = −
PL
8

=
(5)(30)

8
= 18.75 k.ft
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Slope Deflection; Direct Solution Example 2; Two-Span Beam

4 The members end moments in terms of the rotations are (Eq. 12 and 13)

M12 = 2EK12(θ2) + FEM12 =
2EI
L1
θ2 + FEM12 =

EI
10
θ2 + 66.67 Not used

M21 = 2EK12(2θ2) + FEM21 =
4EI
L1
θ2 + FEM21 =

EI
5
θ2 − 66.67

M23 = 2EK23(2θ2 + θ3) + FEM23 =
2EI
L2

(2θ2 + θ3) + FEM23

=
EI
7.5

θ2 +
EI
15
θ3 + 18.75

M32 = 2EK23(θ2 + 2θ3) + FEM32 =
2EI
L2

(θ2 + 2θ3) + FEM32

=
EI
15
θ2 +

EI
7.5

θ3 − 18.75
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Slope Deflection; Direct Solution Example 2; Two-Span Beam

5 Substituting into the equilibrium equations

EI
5
θ2 − 66.67 +

EI
7.5

θ2 +
EI
15
θ3 + 18.75 = 0

EI
15
θ2 +

EI
7.5

θ3 − 18.75 = 0

or

EI
[

5 1
1 2

]
︸ ︷︷ ︸

Stiffness Matrix

{
θ2
θ3

}

︸ ︷︷ ︸
Internal Force

−
{

718.8
281.25

}
︸ ︷︷ ︸

External Force

=

{
0
0

}

which will give EIθ2 = 128.48 and EIθ3 = 76.38

6 Substituting back for the moments

M12 =
128.48

10
+ 66.67 = 79.52 k.ft

M21 =
128.48

5
− 66.67 = −40.97 k.ft

M23 =
128.48

7.5
+

76.38
15

+ 18.75 = 40.97 k.ft
√

M32 =
128.48

15
+

76.38
7.5

− 18.75 = 0 k.ft
√
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Slope Deflection; Direct Solution Example 2; Two-Span Beam

Note the last two equations were written simply to check our calculations.

79.52
40.97

0

7 We note that the midspan moment has to be separately computed from the equations of
equilibrium in order to complete the diagram.

8 The reaction at 3 is obtained from statics

5 k

R3

40.97 k’

15' 15'

V2

15(5)− 30R3 − 40.97 = 0 ⇒ R3 = 1.134

V2 = 5 − 1.134 = 3.77

Can you solve for R2?
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Slope Deflection; Direct Solution Two-Span Beam, Initial Deflection

20' 30'

1 2 3

1 Since we are performing a linear elastic analysis, we can separately analyze the beam for
support settlement, and then add then add the moments to those due to the applied loads.

2 The unknowns are θ2, and θ3

3 The equilibrium relations are M21 + M23 = 0 and M32 = 0

4 The members end moments in terms of the rotations are (Eq. 12 and 13)

M12 = 2EK12

(
θ2 − 3

�

L12

)
=

2EI
20

(
θ2 + 3

0.5
20

)
=

EI
10
θ2 +

3EI
400

M21 = 2EK12

(
2θ2 − 3

�

L12

)
=

2EI
20

(
2θ2 + 3

0.5
20

)
=

EI
5
θ2 +

3EI
400

M23 = 2EK23

(
2θ2 + θ3 − 3

�

L23

)
=

2EI
30

(
2θ2 + θ3 − 3

0.5
30

)
=

EI
7.5

θ2 +
EI
15
θ3 +

EI
300

M32 = 2EK23

(
θ2 + 2θ3 − 3

�

L23

)
=

2EI
30

(
θ2 + 2θ3 − 3

0.5
30

)
=

EI
15
θ2 +

EI
7.5

θ3 +
EI

300
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Slope Deflection; Direct Solution Two-Span Beam, Initial Deflection

5 Substituting into the equilibrium equations

EI
5

EIθ2 +
3EI
400

+
EI
15
θ3 +

EI
300

= 0

EI
15
θ2 +

EI
7.5

θ3 +
5EI
300

= 0

or

EI
[

100 20
20 40

]
︸ ︷︷ ︸
Stiffness Matrix

{
θ2
θ3

}

︸ ︷︷ ︸
Internal Force

− EI
{

− 13
4

−1

}
︸ ︷︷ ︸
External Force

=

{
0
0

}

which will give θ2 = − 5.5
180 = −0.031 radians and θ3 =

−1+ 5.5
9

40 = −0.0097 radians
6 Thus the additional moments due to the settlement are

M12 =
EI
10
(−0.031) +

3EI
400

= 0.0044EI

M21 =
EI
5
(−0.031) +

3EI
400

= 0.0013EI

M23 =
EI
7.5

(−0.031) +
EI
15
(−0.0097) +

EI
300

= −0.0013EI
√

M32 =
EI
15
θ2 +

EI
7.5

(0.0097) +
EI

300
= 0.

√
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Slope Deflection; Direct Solution Example: Box Culvert

16'
1

8
'

A

B C

D

0.2 k/ft

0.8 k/ft 0.8 k/ft

16'

1
8
'

A

B C

D

0.2 k/ft

0.8 k/ft 0.8 k/ft

1 From symmetry θB = −θC , and at the base θA = θD = 0, thus we only have one unknown
(no lateral displacement, no relative vertical displacement).
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Slope Deflection; Direct Solution Example: Box Culvert

2 The fixed end moments are given by

FEMBC =
wL2

12
=

(0.2)(16)2

12
= 4.267 k.ft

FEMCB = −
wL2

12
= −

(0.2)(16)2

12
= −4.267 k.ft

FEMAB =
wL2

20
=

(0.8)(18)2

20
= 12.96 k.ft

FEMBA =
wL2

30
=

(0.8)(18)2

30
= −8.64 k.ft

3 The moments are given by

MBC =
2EI
16

(2θB + θC)︸︷︷︸
−θB

+4.267 =
EI
8
θB + 4.267

MBA =
2EI
18

(2θB + 0)− 8.64 =
2EI
9
θB − 8.64

MAB =
2EI
18

(θB) + 12.96
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Slope Deflection; Direct Solution Example: Box Culvert

4 Equilibrium at joint B

MBA + MBC = 0
2EI
9 θB − 8.64 + EI

8 θB + 4.267 = 0
θB = − 12.61

EI

5 Substitute θB to get the moments

MBC =
EI
8

(
12.61

EI

)
+ 4.266 = 5.84 k.ft ���

MAB =
EI
9

(
12.61

EI

)
+ 12.96 = 14.36 k.ft ���

MBA =
2EI
9

(
12.61

EI

)
− 8.64 = −5.84 k.ft ���

6 Member forces are determined from statics. Careful, the moment diagram is now based on
the so-called “design” sign convention.
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Slope Deflection; Direct Solution Example: Box Culvert

16'

18
'

A

B C

D

0.2 k/ft

0.8 k/ft 0.8 k/ft

5.84

0.2 k/ft

1.61.6

1.931.93

5.845.84

1.6
1.6

5.84

0.56

V

M

1.6

1.6

VAB=5.27

VBA=1.93

14.36

5.84

V

1.93

5.27

9.
3'

5.84

14.36

6.06

M

0.8 Shear
Flexural (Main)
Flexural (Contnity)

Reinforcement
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Gauss Seidel Method

Gauss-Seidel is an indirect Method to solve a system of n equations with n unknowns
(indirect means that a priori we do not know how many mathematical operations will be
needed.

Consider:
c11x1 + c12x2 + c13x3 = r1
c21x1 + c22x2 + c23x3 = r2
c31x1 + c32x2 + c33x3 = r3

solve 1st equation for x1 using initial “guess” for x2, x3.

x1 =
r1 − c12x2 − c13x3

c11

solve 2nd equation for x2 using the computed value of x1 & initial guess of x3

x2 =
r2 − c21x1 − c23x3

c22

so on & so forth · · ·
The iterative process can be considered to have converged if:∣∣∣∣∣xk − xk−1

xk

∣∣∣∣∣ ≤ ε

Used to solve extremely large n (millions).

The next method is essentially similar to this one with an initial guess of x = 0
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Gauss Seidel Example

If you do not have a computer or a calculator, only a slide rule, you would like to have a simple
way of solving a systme of equations:{

x + y = 3
2x + y = 8

⇒ y = −3 − x ;→ y = 8 − 2x ⇒
{

x = 5
y = −2

Iteration x y N = x2 + y2 |Ni − Ni−1/Ni |
1 0 3 9
2 2.5 0.5 6.5 38.00%
3 3.75 -0.75 14.625 55.56%
4 4.375 -1.375 21.03125 30.46%
5 4.6875 -1.6875 24.82031 15.27%
6 4.84375 -1.84375 26.86133 7.60%
7 4.921875 -1.92188 27.91846 3.79%
8 4.960938 -1.96094 28.45618 1.89%
9 4.980469 -1.98047 28.72733 0.94%

10 4.990234 -1.99023 28.86347 0.47%
11 4.995117 -1.99512 28.93169 0.24%
12 4.997559 -1.99756 28.96583 0.12%

Slope deflection: had to invert the stiffness matrix to solve for rotations and then the
moments.

We will solve for the moments directly but iteratively.
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Moment Distribution Introduction

why? Slope deflection must invert an n × n matrix; When only slide rules or mechanical
calculators were available, need for a simplified analysis method.

Brief presentation as in modern times, it is of limited practical use, but very helpful to
understand load paths in flexural members.

Applicable to beams and frames only.

A variation of the slope deflection method. Substitute direct solution of n equations by an
iterative one (note analogy between Gauss-Jordan and Gauss-Seidel).

A partial solution for a modified frame is altered systematically to lead to the correct one. 1

Lock all the joints → unlock each joint in succession ⇒ internal moments are “distributed”
and balanced until all the joints have rotated to their final (or nearly final) equilibrium
position.

This is a relaxation technique analogous to the one of Southwell (1940).

In order to better understand the method, some key terms must first be defined.

Sign convention same as for slope deflection method.

Fixed end moments same as for slope deflection method.
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Moment Distribution Introduction

a) DF

A B

C

M

MA

MC

MB

M

A
A

C

K
M

K K K
M=

A B 
M1 M1/2

b) COF

4EI/L 2EI/L 3EI/L

M1

θ1=1
θA=θb=θC

From Eq. 10 M12 =
4EI
L θ1 +

4EI
L θ1

Define stiffness factor K as moment required to rotate the end of a beam by a unit angle of
one radian, while the other end is fixed i.e. θ2 = v1 = v2 = 0, and θ1 = 1, ⇒ K = 4EI

L

Slightly different than slope deflection method (I/L).

If a moment is applied to a rigid joint where there aren members, ⇒ equilibrium:
M = M1 + M2 + · · ·+ Mn

Eq. 12, and assuming the other end of the member to be fixed, then
M = K1θ+ K2θ+ · · ·+ Knθ or DFi =

Mi
M = Ki

�Ki

Note that DF = 0 (fixed support) acts as a sink, whereas DF = 1 acts like a mirror, it
“bounces” back the moment.
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Moment Distribution Introduction

Hence if a moment M is applied at a joint, portion of M carried by a member connected to
this joint is proportional to the distribution factor, i.e. the stiffer the member (larger I, smaller
L), the greater the moment carried.

Similarly, DF = 0 for a fixed end, and DF = 1 for a pin support.

A rigidly supported beam subjected to a moment M1 (and corresponding rotation θ1) at one
end, and fixed at the other (θ2 = 0) ⇒ M1 =

4EI
L θ1 and M2 =

2EI
L θ1.

Carry-over factor as the fraction of M that is “carried over” from the rotating end to the fixed
one and CO = 1

2 .
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Moment Distribution Procedure

1 Constrain all the rotations and translations.

2 Apply the load, and determine the fixed end moments (which may be caused by element
loading, or support translation).

3 At any given joint i equilibrium is not satisfied MF
left ̸= MF

right , and the net moment is Mi

4 We enforce equilibrium by applying at the node −Mi , in other words we balance the forces
at the node.

5 How much of Mi goes to each of the elements connected to node i depends on the
distribution factor.

6 But by applying a portion of −Mi to the end of a beam, while the other is still constrained,
from Eq. 12, half of that moment must also be carried over to the other end.

7 We then lock node i , and move on to node j where these operations are repeated

1 Sum moments
2 Balance moments
3 Distribute moments (K ,DF )
4 Carry over moments (CO)
5 lock node

8 Repeat the above operations until all nodes are balanced, then sum all moments.

9 The preceding operations can be easily carried out through a proper tabulation.

Victor E. Saouma; Univ. of Colorado Intro to Stiffness Method 39/48



Moment Distribution Procedure

The general procedure of the Moment Distribution method can be described as follows:

If an end node is hinged, then we can use the reduced stiffness factor and we will not carry
over moments to it.

Analysis of frame with unsymmetric loading, will result in lateral displacements, and a two
step analysis must be performed (see below).
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Moment Distribution Algorithm

1 Calculate the stiffness factor (K = 4EI/L) for all the members and the distribution factors at
all the joints.

2 If a member AB is pinned at B, then K AB = 3EI/L, and K BA = 4EI/L. Thus, we must apply
the reduced stiffness factor to K AB only and not to K BA.

3 Carry-over factor is 1
2 for members with constant cross-section.

4 Compute fixed-end moments for all the members. Note that even if the end of a member is
pinned, we must determine the fixed end moments as if it was fixed.

5 Start out by fixing all the joints, and release them one at a time.

6 If a node is pinned, start by balancing this particular node. If no node is pinned, start from
either end of the structure.

7 Distribute the unbalanced moment at the released joint

8 Carry over the moments to the far ends of the members (unless it is pinned).

9 Fix the joint, and release the next one.

10 Continue releasing joints until distributed moments are insignificant. If the last moments
carried over are small and cannot be distributed, it is better to discard them so that the joints
remain in equilibrium.

11 Sum up the moments at each end of the members to obtain the final moments.
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Moment Distribution Example; Continuous Beam

12' 10' 10'

10k
K=5 K=3

A CB

10k

25 25

Fixed end 
moments due 
to the load

Release C, 
balance 
Moment

37.5
0

14.1 0

Sum the 
moments

Release B, 
Distribute 
Moments23.4

12.5

25

25
Carry over 
to B

Carry over from 
B to A and 
from B to C14.1 7.023.411.7

Release C, 
Balance Moment

1.3 02.2

3.5

7.0

7.0
Carry over to B

Carry over from 
B to A and from 
B to C

From previous step

14.1 7.023.411.7

Release C, 
Balance Moments

0.1 00.2

0.3

0.6

0.6
Carry over at B

0.1 0.00.20.1

Carry over from 
B to A and from 
B to C1.3 0.62.21.1

1.3 0.62.21.1

From previous step

MAB=- 11.7 - 1.1 - 0.1= - 12.9

MBA= - 23.4 - 2.2 - 0.2= - 25.8

MBC =  25 + 12.5 - 14.1 + 3.5 - 1.3 + 0.3 - 0.1 = 25.8

MCB = - 25.0 + 25.0 - 7.0 + 7.0 - 0.6 + 0.6 = 0.0

12.9
25.8 25.8

3.22
3.716.293.22

12.9

25.8

37.1

Moment Diagram

Free Body Diagram

Release B, 
Distribute 
Moments

Release B, 
Distribute Moments

D
F

=
0

D
F

=
1
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Moment Distribution Example; Continuous Beam

1 For this example the fixed-end moments are computed as follows:

MF
BC =

PL
8

=
(10)(20)

8
= +25.0 k.ft

MF
CB = −25.0 k.ft

2 Since the relative stiffness is given in each span, the distribution factors are

DFAB = KAB
�K =

5
∞+ 5

= 0,

DFBA = KBA
�K =

5
5 + 3

= 0.625,

DFBC =
KBC
�K =

3
5 + 3

= 0.375,

DFCB =
KCB
�K =

3
3
= 1.

3 The balancing computations are shown below.
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Moment Distribution Example; Continuous Beam

Joint A B C Step Balance CO
Member AB BA BC CB

K 5 5 3 3
DF 0 0.625 0.375 1

FEM +25.0 -25.0
?

①

�
�+

+12.5
?

�
+25.0 ② ③ C BC

-11.7
�

-23.4 -14.1
-

-7.0
?

④ ⑤ ⑥ B AB; CB

�
�+

+3.5
?

�
+7.0 ⑦ ⑧ C BC

-1.1
�

-2.2 -1.3
-

-0.6
?

⑨ ⑩ ❶ B AB; CB

�
�+

+0.3
?

�
+0.6 ❷ ❸ C BC

-0.1
�

-0.2 -0.1 ❹ B AB
Total -12.9 -25.8 +25.8 0

4 The above solution is that referred to as the ordinary method.

5 The correctness of the answers may in a sense be checked by verifying that �M = 0 at
each joint. However, even though the final answers satisfy this equation at every joint, this in
no way a check on the initial fixed-end moments. These fixed-end moments, therefore,
should be checked with great care before beginning the balancing operation. Moreover, it
occasionally happens that compensating errors are made in the balancing, and these errors
will not be apparent when checking �M = 0 at each joint.
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Moment Distribution Example; Continuous Beam

6 To draw the final shear and moment diagram, we start by drawing the free body diagram of
each beam segment with the computed moments, and then solve from statics for the
reactions:

12.9 + 25.8 − 12VA = 0 ⇒ VA = RA = 3.22 k ?

VA + V L
B = 0 ⇒ V L

B = −3.22 k 6
25.8 + (10)(10)− 20V R

B = 0 ⇒ V R
B = 6.29 k 6

6.29 + VC − 10 = 0 ⇒ VC = RC3.71 k 6
−V L

B − V R
B + RB = 0 ⇒ RB = 9.51 k 6

Check: RA + RB + RC − 10 = −3.22 + 9.51 + 3.71 − 10 = 0
√

M+
BC = (3.71)(10) = 37.1 k.ft

7 Solving by slope deflection, and solve system of equations by Gauss-Seidel will yield
identical intermediary steps.
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Slope Deflection vs Moment Distribution

We will revisit the previous problem using the slope deflection method.

The fixed end moments have been previously determined to be 25.

The moments are given by

MAB =
2EI
L
(2θA + θB) = 2

EI
L
θB = 10EθB

MBA =
2EI
L
(2θB + θA) = 4

EI
L
θB = 20EθB

MBC =
2EI
L
(2θB + θC) + 25 = 4

EI
L
θB + 2

EI
L
θC + 25 = 12EθB + 6EθC + 25

MCB =
2EI
L
(2θC + θB)− 25 = 4

EI
L
θC + 2

EI
L
θB − 25 = 12EθC + 6EθB − 25

We now write equations of equilibrium at each node

MBA + MBC = 0

MCB = 0

Substitute {
6EθB + 12EθC = 25

20EθB + 12EθB + 6EθC = −25
(27)

The exact solution is θB = − 75
58

1
E = − 1.29

E and θC = 475
174

1
E = 2.73

E .
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Slope Deflection vs Moment Distribution

Substituting (results are now independent of E which cancel out) above we obtain
MAB = − 375

29 = −12.93, MBA = − 750
29 = −25.86, MBC = 750

29 = 25.86, and MCB = 0.
Results areexactly same results as in the moment distribution.

Eq. 27 can now be written as[
6 12
32 6

]{
θB
θC

}
=

{
25
−25

}
(28)

We will now solve this by Gauss-Seidel iterative method with

6θB + 12θC = 25 ⇒ θC =
25
12

−
1
2
θB

32θB + 6θB = −25 ⇒ θB = −
25
32

−
6
32
θC

Start with θC = θB = 0, and then solve for θC → θB → θC · · · until convergence and the
following table summarizes each of the steps

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
EθC 0.0 2.083 2.670 2.724 2.729 2.730
EθB 0.0 -1.172 -1.282 -1.292 -1.293 -1.293
MAB 0.0 -11.72 -12.82 -12.92 -12.93 -12.93
MBA 0.0 -23.44 -25.63 -25.84 -25.86 -25.86
MBC 0.0 23.44 25.63 25.84 25.86 25.86
MCB 0.0 -7.03 -0.658 -0.062 -0.006 0.000
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Slope Deflection vs Moment Distribution

We indeed iteratively recover the previously computed moments by iteration five.

Note that in the moment distribution, we solve directly for the moments whereas in the slope
deflection method we first determine the rotations and the moments.

We finally compare intermediary values of the moment distribution and the slope deflection
method:

Method n = 1 n = 2

MAB
MD -11.7 -11.7-1.1=-12.8
SD -11.7 -12.82

MBA
MD -23.4 -23.4-2.2=-25.6
SD -23.44 -25.63

MBC
MD 25+12.5-14.1=23.4 23.4+3.5-1.3=25.7
SD 23.44 25.63

MCB
MD -25.0+25.0-7.0=-7.0 -7.0+7.0-0.6=-0.6
SD -7.03 -0.658

Clearly, the intermediary steps of the moment distribution correspond to those of the
Gauss-Seidel iterative method. Similar conclusion would be drawn had we started by
solving for θB .
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Stiffness Coefficients Element Level

Essence of the stiffness method

1 Constrain all the degrees of freedom

2 Apply a unit displacement at each d.o.f.(while restraining all others to be
zero)

3 Determine the reactions associated with all the d.o.f.

{p} = [k]{δ} (1)

ki j will correspond to the reaction at dof i due to a unit deformation
(translation or rotation) at dof j .
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Element Stiffness Matrix Revisited

We seek to determine forces (reactions) due an externally applied unit
displacement.

All forces are shown in the positive direction.

X(N)

Frame Element

X (T)

Grid Element

Y (V)

Beam Element
Z (M)

Y (V) Y (V)

Z (M) Z (M)

N: Axial; M: Moment; T: Torsion

Cartesian
Forces Moments

x y z x y z
Beam Vy Mz

2D Frame Nx Vy Mz

Grid Vy Tx Mz

3D Frame Nx Vy Vz Tx My Mz

Victor E. Saouma; Univ. of Colorado Direct Stiffness Method 7/92



Element Stiffness Matrix Revisited

2D Frame, x-y-z

x
y

z Mz

Vy

Nx

1
2

3
4

56

2D Truss 
x

x
y

Nx

1 2

k25 k55

k35

k26

k36

k x5

k45

k65

k15

k64k14

k x4

k24
k34 k54

k44

k x6

k16

k56

k46
k66

k22

k32

k42
k62

k23

k43
k63k33

k x2 k x3

k12

k52

k13

k53

k11 k41

k21

k31

k51

k61

k x1

Truss

k11
k21 k22k12

1 1k x1
k x2

k13 k33

k43k23

1

k14

k24

k34

k44

k x3 k x4

1

k11

k21

k31

k41

1

1

k12 k32

k42k22

k x1 k x2

Vy

Mz

1D Beam, x-y-z

x
y

z 1

2

34
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Element Stiffness Matrix Revisited Force(Displacement) Relations

axial
σ = Eϵ ⇒ Aσ︸︷︷︸

P

=
AE
L︸︷︷︸

kaxial

�︸︷︷︸
1

(2)

Flexural

M1 =
2EIz

L
(2θ1 + θ2)−

6EIz
L2

(v2 − v1)︸ ︷︷ ︸
I

+ MF
1︸︷︷︸

II

(3)

M2 =
2EIz

L
(θ1 + 2θ2)−

6EIz
L2

(v2 − v1)︸ ︷︷ ︸
I

+ MF
2︸︷︷︸

II

(4)

V1 =
6EIz
L2

(θ1 + θ2)−
12EIz

L3
(v2 − v1)︸ ︷︷ ︸

I

+ V F
1︸︷︷︸
II

(5)

V2 = −
6EIz
L2

(θ1 + θ2)+
12EIz

L3
(v2 − v1)︸ ︷︷ ︸

I

+ V F
2︸︷︷︸
II

(6)
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Element Stiffness Matrix Revisited Truss Element

The truss element (whether in 2D or 3D) has only one degree of
freedom associated with each node. Hence, from Eq. 2, we have

[kt ] =
AE
L

[ u1 u2

p1 1 −1
p2 −1 1

]
(7)
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Element Stiffness Matrix Revisited Beam Element

Using Equations 3, 4, 5 and 6 we can determine the forces associated with each unit
displacement by setting all displacements equal to zero except:

[kb] =


v1 θ1 v2 θ2

V1 Eq. 5(v1 = 1) Eq. 5(θ1 = 1) Eq. 5(v2 = 1) Eq. 5(θ2 = 1)
M1 Eq. 3(v1 = 1) Eq. 3(θ1 = 1) Eq. 3(v2 = 1) Eq. 3(θ2 = 1)
V2 Eq. 6(v1 = 1) Eq. 6(θ1 = 1) Eq. 6(v2 = 1) Eq. 6(θ2 = 1)
M2 Eq. 4(v1 = 1) Eq. 4(θ1 = 1) Eq. 4(v2 = 1) Eq. 4(θ2 = 1)

 (8)

or

[kb] =


v1 θ1 v2 θ2

V1
12EIzz

L3
6EIzz

L2 − 12EIzz
L3

6EIzz
L2

M1
6EIzz

L2
4EIzz

L − 6EIzz
L2

2EIzz
L

V2 − 12EIzz
L3 − 6EIzz

L2
12EIzz

L3 − 6EIzz
L2

M2
6EIzz

L2
2EIzz

L − 6EIzz
L2

4EIzz
L

 (9)

Hence, k32 is the shear at the right node due to a unit rotation on the left one. k41 is
the moment at the left node due to a unit translation of the left one.
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Element Stiffness Matrix Revisited 2D Beam Columns

k2dfr = kb ⋃
kt , Note no coupling between the axial forces and the shear/moment.

[k
2dfr

] =



u1x v1y θ1z u2x v2y θ2z

N1x k t
11 0 0 k t

12 0 0

V1y 0 kb
11 kb

12 0 kb
13 kb

14
M1z 0 kb

21 kb
22 0 kb

23 kb
24

N2x k t
21 0 0 k t

22 0 0

V2y 0 kb
31 kb

32 0 kb
33 kb

34
M2z 0 kb

41 kb
42 0 kb

43 kb
44


(10)

[k
2dfr

] =



u1x v1y θ1z u2x v2y θ2z

N1x
EA
L 0 0 − EA

L 0 0

V1y 0 12EIzz
L3

6EIzz
L2 0 − 12EIzz

L3
6EIzz

L2

M1z 0 6EIzz
L2

4EIzz
L 0 − 6EIzz

L2
2EIzz

L

N2x − EA
L 0 0 EA

L 0 0

V2y 0 − 12EIzz
L3 − 6EIzz

L2 0 12EIzz
L3 − 6EI

L2

M2z 0 6EIzz
L2

2EIzz
L 0 − 6EIzz

L2
4EIzz

L


(11)

k21 is the shear in the left node due to a unit axial displacement at that same node. It is equal to zero because an axial force
does not induce a shear force.

Victor E. Saouma; Univ. of Colorado Direct Stiffness Method 12/92



Element Stiffness Matrix Revisited Visualization

Truss1 1

1

1

Grid

1

k21
k x2

Beam

1 1

GJ
L

GJ
L


GJ
L



GJ
L

EA
L

EA
L

EA
L

 EA
L



2

6EI
L

3

12EI
L 3

12EI
L



2

6EI
L

2

6EI
L

4EI
L

3

12EI
L


2

6EI
L



2EI
L

2

6EI
L



3

12EI
L

2

6EI
L

 2EI
L

2

6EI
L


2

6EI
L

4EI
L

Victor E. Saouma; Univ. of Colorado Direct Stiffness Method 13/92



From Element to Structure

Stiffness matrix of individual elements previously derived in local
coordinate system, and assigned to it lower case letters k.

We need to derive the stiffness matrix of a structure in global coordinate
system and will use upper cae K.

The direct stiffness method will be introduced in two steps:
1 Orthogonal structures (simplified).
2 Generalized structures. time permitting
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DSM: Orthogonal Structures

1 Determine the degree of kinematic indeterminacy.

2 Fix all the displacements, the structure is now kinematically determinate (all
displacements are known and are equal to zero).

3 Determine the end nodal forces for each loaded element, sum up, and add to
nodal forces.

4 Apply a unit displacement (rotation or displacement) at each free/unrestrained
degree of freedom j at a time, and determine the internal reaction forces at
degrees of freedom i , Ki j .

5 Assemble the reduced structure stiffness matrix in global coordinate system in
terms of the individual element stiffness matrices also transformed in the global
coordinate system. This will result in an equation of equilibrium at each node:
K�− P = 0. Where P includes nodal forces and nodal equivalent loads.

6 Reduced because we are not considering the restrained degrees of freedom.
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DSM: Orthogonal Structures

P1

P1/2P1/2

P1L/8

P2L/8

P1L/8

Nodal Equivalent Forces

ΣNEF2

A B

P2/2P2/2

P2

P2L/8

B C

ΣNEF1

A
B

C

Elem. BCNode BElem. ABNode A

7P/85P/56 7P/85P/56
107P/56

V

M
PL P/7

31
P

L
/5

6

31
P

L
/5

6

5P
L

/1
4

5P
L

/1
4

9P
L

/1
4

9P
L

/1
4

P/7107P/56

Kinematically Determinate

θ2

θ1

A
B C

L/2 L/2 L/2 L/2

P2
P1

1

K12
K22

K21

K11 1

Applied Displacements Node C

Note: all forces are 
shown in their 
correct directions 
and are thus +ve

Note strong similarity with the slope-deflection (or moment distribution) methods.
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DSM: Orthogonal Structures Example: Beam

Kinematically Determinate

θ2
θ1

A
B C

L/2 L/2 L/2 L/2

P2
P1

1

K12
K22

K21

K11 1

Applied Displacments

M

1

2

6EI

L

4EI

L

2

6EI

L


2EI

L

P1

P1/2P1/2

P1L/8

P2L/8

P1L/8

Nodal Equivalent Forces

ΣNEF2

A B

P2/2P2/2

P2

P2L/8

B C

ΣNEF1

A
B

C

Note: all forces are 
shown in their 
correct directions 
and are thus +ve

P1 = 2P, M = PL, and P2 = P. Solve for the displacements.

1 Degree of kinematic indeterminacy is 2.
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DSM: Orthogonal Structures Example: Beam

2 Using the previously defined sign convention, determine thenodal equivalent
load (to the load applied along the member)

�NEF1 =
P1L
8︸︷︷︸
BA

− P2L
8︸︷︷︸

BC

=
2PL

8
− PL

8
=

PL
8

(12)

�NEF2 =
PL
8︸︷︷︸

CB

(13)

3 If it takes 4EI
L

(
kBA

44
)

to rotate BA and 4EI
L

(
kBC

22

)
to rotate BC, it will take a total

force of 8EI
L to simultaneously rotate BA and BC.

4 The sum of the rotational stiffnesses at global d.o.f. 1 is K11 =
8EI
L ; similarly,

K21 =
2EI
L

(
kBC

42

)
.

5 If we now rotate d.o.f. 2 by a unit angle, we will have K22 =
4EI
L

(
kBC

22

)
and

K12 =
2EI
L

(
kBC

42

)
.
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DSM: Orthogonal Structures Example: Beam

6 Equation of equilibrium:{
PL
0

}
︸ ︷︷ ︸

p

+

{ PL
8

PL
8

}
︸ ︷︷ ︸

NEF︸ ︷︷ ︸
Pext

−
[ 8EI

L
2EI
L

2EI
L

4EI
L

]
︸ ︷︷ ︸

K

{
θ?1
θ?2

}
︸ ︷︷ ︸

�︸ ︷︷ ︸
Pint

=

{
0
0

}
(14)

7 Note that we have Pext − Pint = 0 and not Pext + Pint = 0 because the external
forces must be resisted by the internal ones in an equal and opposite direction.{

PL + PL
8

+PL
8

}
=

[ 8EI
L

2EI
L

2EI
L

4EI
L

]{
θ?1
θ?2

}
(15)

Note that we will always write the equilibrium relationship as Pext − Pint = 0

8 Invert the two by two matrix{
θ1

θ2

}
=

[ 8EI
L

2EI
L

2EI
L

4EI
L

]−1 {
PL + PL

8
+PL

8

}
=

{
17

112
PL2

EI

− 5
112

PL2

EI

}
(16)
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DSM: Orthogonal Structures Example: Beam

9 Recall that for each element {p} = [k]{δ}, and in this case {p} = {P} and
{δ} = {�} for element AB. The element stiffness matrix has been previously
derived, and in this case the global and local d.o.f. are the same.

10 Next, we need to compute the element internal forces.

11 Equilibrium equation for element AB, at the element level, can be written as
(note that we must include the nodal equivalent loads to maintain equilibrium):

-2P/2 -2P/2

-2PL/8 2PL/8 ML

M1
?

M2
?V1

?

V2
?

2P

Internal Forces {Pint}=[kAB]{δAB} 

{Pint}-{Pext}={0} 

A+ B-

Unknown end forces p

External Forces Pext =
Nodal equivalent forces +
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DSM: Orthogonal Structures Example: Beam


V?

1
M?

1
V?

2
M?

2

︸ ︷︷ ︸
{p}

+


− 2P

2
− 2PL

8
− 2P

2
2PL

8

︸ ︷︷ ︸
NEF︸ ︷︷ ︸

pext

−


12EI
L3

6EI
L2 − 12EI

L3
6EI
L2

6EI
L2

4EI
L − 6EI

L2
2EI
L

− 12EI
L3 − 6EI

L2
12EI
L3 − 6EI

L2
6EI
L2

2EI
L − 6EI

L2
4EI
L


︸ ︷︷ ︸

[kAB ]


0
0
0

17
112

PL2
EI

︸ ︷︷ ︸{
δAB

}
︸ ︷︷ ︸

pint

=


0
0
0
0



Note: This step is called Force recovery, i.e. we determine the internal forces
from the nodal displacements. Solving

⌊ V1 M1 V2 M2 ⌋ = ⌊ 107
56 P 31

56 PL 5
56 P 5

14 PL ⌋

12 Similarly, for element BC:

-P/2 -P/2

-PL/8 PL/8

M1
?

M2
?V1

?

V2
?

PML

Unknown end forces p

External Forces Pext =
Nodal equivalent forces +

{Pint}-{Pext}={0} 

B+ C-

Internal Forces {Pint}=[kBC]{δBC} 
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DSM: Orthogonal Structures Example: Beam


V?

1
M?

1
V?

2
M?

2

︸ ︷︷ ︸
{p}

+


− P

2
− PL

8
− P

2
PL
8

︸ ︷︷ ︸
NEF︸ ︷︷ ︸

Pext

−


12EI
L3

6EI
L2 − 12EI

L3
6EI
L2

6EI
L2

4EI
L − 6EI

L2
2EI
L

− 12EI
L3 − 6EI

L2
12EI
L3 − 6EI

L2
6EI
L2

2EI
L − 6EI

L2
4EI
L


︸ ︷︷ ︸

[kBC ]


0

17
112

PL2
EI

0

− 5
112

PL2
EI

︸ ︷︷ ︸{
δBC

}
︸ ︷︷ ︸

Pint

=


0
0
0
0



or
⌊ p1 p2 p3 p4 ⌋ = ⌊ 7

8 P 9
14 PL −P

7 0 ⌋

13 This simple example calls for the following observations:

1 Node A has contributions from element AB only, while node B has
contributions from both AB and BC.

2 We observe that pAB
3 ̸= pBC

1 even though they both correspond to a shear
force at node B, the difference between them is equal to the reaction at B.
Similarly, pAB

4 ̸= pBC
2 due to the externally applied moment at node B.

3 Must conclude with free body, shear and moment diagrams.
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DSM: Orthogonal Structures Example: Beam

Elem. BCElem. AB

A

7P/8
5P/56 7P/85P/56

107P/56
V

M PL

P/7

31
P

L
/5

6

31
P

L
/5

6

5P
L

/1
4

5P
L

/1
4

9P
L

/1
4

9P
L

/1
4

P/7
107P/56

B C

54P/56
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Motivational Interlude

We have already applied the direct stiffness
method.

The method can be applied to much more
complex structures, and can be (relatively)
easily be programmed.

if we consider a 100 story, 3 bay frame, fixed
at the base.

The degree of static indeterminancy is
3(4)− 3 = 9 ⇒ [f]9×9, i.e. we will have to
invert a 9 by 9 matrix.

The degree of kinematic indeterminacy is
100(4)(3) = 1, 200 ⇒ [K]1,200×1,200, i.e we will
have to invert a 1,200 by 1,200 matrix.

Because the stiffness method can be
programmed, and a computer can easily
invert a large matrix, this problem is best
solved by the stiffness method.
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Motivational Interlude

The method just presented is actually referred to as the Finite Element
Method.

A structural engineer, well versed in the finite element analysis is thus
equipped to handle the analysis of all structures that are discretized (just
as our building was discretized into (4)(100)+3(100)=600 elements (400
columns and 300 beams).

Hence, a Civil engineer well versed in structural analysis is not limited do
the analysis of buildings, bridges, dams, nuclear reactors.
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Motivational Interlude
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Motivational Interlude

but can find employment in automotive, aerospace, manufacturing,
biomedical industry.
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Motivational Interlude

Do not limit yourself to civil structures.

You are better equipped than your fellow classmates from aerospace or
mechanical engineering to become a Structural Analyst who go from
Statics->Mechanics of Materials →Finite Element.

Civil Engineering students: Statics → Mechanics of Materials →
Structural Analysis, → Matrix Analysis → Finite Element.

Within Civil Engineering, Structural Engineering is the specialty that
offers the broadest opportunities across various departments
(Mechanical, Aerospace, Naval).

Victor E. Saouma; Univ. of Colorado Direct Stiffness Method 28/92



Motivational Interlude

Things get even more exciting if you consider that you must also
understand material’s response, seismic or dynamic analysis,

probabilistic methods, numerical techniques, etc..

Challenging specialty, an M.S. is a minimum.

Need to grasp those opportunities before you finalize your fields of

interest.

Victor E. Saouma; Univ. of Colorado Direct Stiffness Method 29/92



DSM: Orthogonal Example Frame

Analyse the following frame for P = 2 kN, L = H = 6 m, M = 5 kN.m, w = 0.5 kN/m,
E = 2 × 108 kPa, A = 0.123 m2, and Ib = Ic = 0.00125 m4

A
B

C

3m3m

6 m

0.5 kN
/m

x

y

x

y

w

P

Assign global coordinate system: 
X-Y-Z

Assign local coordinate systems: 
x-y-z

Determine magnitude and sign of 
nodal end forces

X

Y

Z

EAB=EBC=200 Gpa
AAB=ABC=0.123 m2

IAB=IBC=1,250x106 mm4

P/2
P

5 kN.m

Note: all forces are 
shown in their 
correct directions 
and are thus +ve

Victor E. Saouma; Univ. of Colorado Direct Stiffness Method 30/92



DSM: Orthogonal Example Frame

y

x

P M

P/2

H

L/2 L/2

C C

B

A
A

EI

P

C

A
BB

w

A
B

C

1 K11

K31
K21

1

C

B
A

K12

K32
K22

A
B

C

1 rad.
K33

K23

K13

x

y Δ2 θ3

Δ1

Y

Z X

Restrain all DOFGlobal CS and Displacements

Fix all DOF, unit 
displacement in DOF 1 Ki1

Fix all DOF, unit 
displacement in DOF 2 Ki2

Fix all DOF, unit 
displacement in DOF 3 Ki3
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DSM: Orthogonal Example Frame

1 Assuming axial deformations, we do have three global degrees of freedom, �1,
�2, and θ3.

2 Constrain all the degrees of freedom, and thus make the structure kinematically
determinate.

3 Determine the nodal equivalent loads for each element in local coordinate
system in its own local coordinate system (element 1 is assumed to be defined
from A to B, and element 2 from B to C):
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DSM: Orthogonal Example Frame

P
y

x
P/2

P/2

PL/8

PL/8

w

x

y

wh/2

wh/2

wh2/12

wh2/12
X

Y

 pAB= ⎣0  -P/2  -PL/8  0  -P/2  PL/8⎦ T

 PAB= ⎣0  -P/2  -PL/8  0  -P/2  PL/8⎦ T

 pBC= ⎣0  -wh/2  -wh2/12  0  -wh/2  wh2/12⎦ T

 PBC= ⎣-wh/2  0 -wh2/12  -wh/2 0  wh2/12⎦ T

A
B

B

C
L

h

 x  y  z
 X Y Z

 x    y    z
 -Y  X  Z
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DSM: Orthogonal Example Frame

⌊ pA
1 pA

2 pA
3 pB

4 pB
5 pB

6 ⌋︸ ︷︷ ︸
AB

= ⌊ 0 −P
2 −PL

8 0 −P
2

PL
8 ⌋ (17)

= ⌊ 0 − 2
2 − (2)(6)

8 0 − 2
2

(2)(6)
8 ⌋

= ⌊ 0 −1.0 −1.5 0 −1.0 1.5 ⌋

⌊ pB
1 pB

2 pB
3 pC

4 pC
5 pC

6 ⌋︸ ︷︷ ︸
BC

= ⌊ 0 −wH
2 −wH2

12 0 −wH
2

wH2

12
⌋ (18)

= ⌊ 0 − (0.5)(6)
2 − (0.5)(6)2

12 0 − (0.5)(6)
2

(0.5)(6)2

12
⌋

= ⌊ 0 −1.5 −1.5 0 −1.5 1.5 ⌋

and the nodal equivalent forces at node B would have to be summed.

4 Apply a unit displacement in each of the 3 global degrees of freedom, to
determine the structure global stiffness matrix. Each entry Kij of the global
stiffness matrix will correspond to the internal force in degree of freedom i , due
to a unit displacement in degree of freedom j .

5 Recalling the force displacement relations derived earlier, we can assemble the
global stiffness matrix in terms of contributions from both AB and BC:
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DSM: Orthogonal Example Frame

Need to complete the following table where columns correspond to
imposed displacements on dof j , and rows correspond to the
corresponding induced internal forces in each of the elements in dof i . Both
are in the global coordinate system.
K1,2 is zero because an imposed displacement along dof 2 (horizontal),
while locking all other displacements, does not induce an internal force in
any of the two elements.
K31 are the internal forces (moments in here) resulting from an imposed
unit displacement in dof 1 (horizontal). This will not “mobilize” AB, but will
activate flexure for BC. For BC from the following figure (already shown
above
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DSM: Orthogonal Example Frame

y

x

P M

P/2

H

L/2 L/2

C C

B

A
A

EI

P

C

A
BB

w

A
B

C

1 K11

K31
K21

1

C

B
A

K12

K32
K22

A
B

C

1 rad.
K33

K23

K13

x

y Δ2 θ3

Δ1

Y

Z X

Restrain all DOFGlobal CS and Displacements

Fix all DOF, unit 
displacement in DOF 1 Ki1

Fix all DOF, unit 
displacement in DOF 2 Ki2

Fix all DOF, unit 
displacement in DOF 3 Ki3

1

3

12
E

I

L

2

6E
I

L

3

12
E

I

L

2

6E
I

L

x

y

1

3

12EI

L


2

6EI

L


3

12EI

L

2

6EI

L


x

y

Y

X

Blue, local coordinate system. We rotate and 
arrows then shown in their correct directions 
and all coefficients are +ve

Note that we need coefficients in the global 
coordinate system X-Y

Ki1 Ki2 Ki3

�1 �2 θ3

K1j AB EA
L 0 0

(FX ) BC 12EIc

H3 0 6EIc

H2

K2j AB 0 12EIb

L3 − 6EIb

L2

(FY ) BC 0 EA
H 0

K3j AB 0 − 6EIb

L2
4EIb

L

(MZ ) BC 6EIc

H2 0 4EIc
H
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DSM: Orthogonal Example Frame

Note that all diagonal terms are +ve, and that the table is symmetric.

6 Summing up, the structure global stiffness matrix [K] is:

[K] =


�1 �2 θ3

P1 kAB
44 + kBC

22 kAB
45 + kBC

21 kAB
46 + kBC

23

P2 kAB + kBC kAB
55 + kBC

11 kAB
56 + kBC

13

M3 kAB
64 + kBC

32 kAB
65 + kBC

31 kAB
66 + kBC

33



=


�1 �2 θ3

P1
EA
L + 12EIc

H3 0 6EIc

H2

P2 0 12EIb

L3 + EA
H − 6EIb

L2

M3
6EIc

H2 − 6EIb

L2
4EIb

L + 4EIc
H


Substituting

[K] = 106

 4.1139 0 0.0417
0 4.1139 −0.0417

0.0417 −0.0417 0.3333


Note that the axial stiffness (EA/L) is 4.1 × 106, while the flexural one (12EI/H3)
is 0.0071 × 106. Axial stiffness is always much higher than flexural stiffness.
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DSM: Orthogonal Example Frame

7 We need to have Pext in global coordinate system. From Eq. 17 and 18 we had

⌊ pA
1 pA

2 pA
3 pB

4 pB
5 pB

6 ⌋︸ ︷︷ ︸
AB

= ⌊ 0 −P
2 −PL

8 0 −P
2

PL
8 ⌋ (19)

⌊ pB
1 pB

2 pB
3 pC

4 pC
5 pC

6 ⌋︸ ︷︷ ︸
BC

= ⌊ 0 −wH
2 −wH2

12 0 −wH
2

wH2

12
⌋(20)

8 Cast in the global coordinate system, that will be

⌊ PA
1 PA

2 PA
3 PB

4 PB
5 PB

6 ⌋︸ ︷︷ ︸
AB

= ⌊ 0 −P
2 −PL

8 0 −P
2

PL
8 ⌋ (21)

⌊ PB
1 PB

2 PB
3 PC

4 PC
5 PC

6 ⌋︸ ︷︷ ︸
BC

= ⌊ −wH
2 0 −wH2

12 −wH
2 0 wH2

12
⌋(22)

Victor E. Saouma; Univ. of Colorado Direct Stiffness Method 38/92



DSM: Orthogonal Example Frame

9 The global equation of equilibrium can now be written (note that for illustrative
purposes, we kept w and and a moment M at node B).

−P
2

0
M

+


−wH

2
−P

2
PL
8 − wH2

12

︸ ︷︷ ︸
NEL︸ ︷︷ ︸

Pext

−


EA
L + 12EIc

H3 0 6EIc

H2

0 12EIb

L3 + EA
H − 6EIb

L2

6EIc

H2 − 6EIb

L2
4EIb

L + 4EIc
H


︸ ︷︷ ︸

[K]


�1

�2

θ3


︸ ︷︷ ︸

Pint

=


0
0
0



Substituting:
−0.5

0
5

+


−1.5
−0.5
−0.75

︸ ︷︷ ︸
NEL

= 106

 4.1139 0 0.0417
0 4.1139 −0.0417

0.0417 −0.0417 0.3333


︸ ︷︷ ︸

[K]


�1

�2

θ3
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DSM: Orthogonal Example Frame

10 Solve for the displacements
 �1

�2
θ3

 = 106

 4.1139 0 0.0417
0 4.1139 −0.0417

0.0417 −0.0417 0.3333

−1  −2
−0.5
4.25


or  �1

�2
θ3

 = 10−6

 −0.61 m
0.0084 m

12.82 radian


11 To obtain the element internal forces, multiply each element stiffness matrix by the local displacements. For element AB,

the local and global coordinates match, thus

-1.0 -1.0

-1.5 1.5 5.0

M1
?

M2
?V1

?

V2
?

P

Internal Forces {Pint}=[kAB]{δAB} 

{Pint}-{Pext}={0} 

A+ B-

Unknown end forces p

External Forces Pext =
Nodal equivalent forces +
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DSM: Orthogonal Example Frame



p?1
p?2
p?3
p?4
p?5
p?6


+



0
− P

2
− PL

8
0

− P
2

PL
8

︸ ︷︷ ︸
Pext

−



EA
L 0 0 − EA

L 0 0

0
12EIy

L3
6EIy
L2 0 − 12EIy

L3
6EIy
L2

0
6EIy
L2

4EIy
L 0 − 6EIy

L2
2EIy

L
− EA

L 0 0 EA
L 0 0

0 − 12EIy
L3 − 6EIy

L2 0
12EIy

L3 − 6EI
L2

0
6EIy
L2

2EIy
L 0 − 6EIy

L2
4EIy

L





0
0
0
δ1
δ2
θ3


︸ ︷︷ ︸

Pint

=



0
0
0
0
0
0



⇒



p?1
p?2
p?3
p?4
p?5
p?6


= 106


− − − −4.1 × 106 0 0
− − − 0 −13, 889. 41, 667.
− − − 0 −41, 667. 83, 333.
− − − 4.1 × 106 0 0
− − − 0 13, 889. −41, 667
− − −. 0 −41, 667 166, 667.


︸ ︷︷ ︸

kAB

0
0
0

−0.61
0.0084
12.82

︸ ︷︷ ︸
δAB

−



0
−0.5
−0.75

0
−0.5
0.75

︸ ︷︷ ︸
NELAB
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DSM: Orthogonal Example Frame

or 

p1
p2
p3
p4
p5
p6


=



N1
V1
M1
N2
V2
M2


=



2.52 kN
1.03 kN

1.82 kN.m.
−2.52 kN
−0.034 kN
1.39 kN.m


12 For element BC, the local and global coordinates do not match, hence we will need to transform the displacements from

their global to their local coordinate components. By inspection

Local x y z
Global −Y +X +Z

Note that there are no local or global displacements in dof 1-3, hence
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DSM: Orthogonal Example Frame

1.5

-1.5

-1.5

-1.5

5.0

M1
?

M2
?

V1
?

V2
?

In
te

rn
al

 F
or

ce
s 

{P
in

t}=
[k

A
B
]{
δ A

B
} 

C
+

B
-

{P
in

t}-
{P

ex
t}=

{0
} 

1.0

x

y

U
nk

no
w

n 
en

d 
fo

rc
es

 p

E
xt

er
na

l F
or

ce
s 

P
ex

t =
N

od
al

 e
qu

iv
al

en
t 

fo
rc

es
 +

0.
5



p?1
p?2
p?3
p?4
p?5
p?6


=



EA
L 0 0 − EA

L 0 0

0
12EIy

L3
6EIy
L2 0 − 12EIy

L3
6EIy
L2

0
6EIy
L2

4EIy
L 0 − 6EIy

L2
2EIy

L
− EA

L 0 0 EA
L 0 0

0 − 12EIy
L3 − 6EIy

L2 0
12EIy

L3 − 6EI
L2

0
6EIy
L2

2EIy
L 0 − 6EIy

L2
4EIy

L





δ4
δ5
θ6
0
0
0



= 106


4.1 × 106 0 0 − − −

0 13, 888.9 41, 666.7 − − −
0 41, 666.7 16, 6667. − − −

−4.1 × 106 0 0 − − −
0 −13, 888.9 −41, 666.7 − − −
0 41, 666.7 83, 333.3 − − −


︸ ︷︷ ︸

kBC

−0.61
0.0084
12.82

0
0
0

︸ ︷︷ ︸
δBC

−



0
1.5
−1.5

0
−1.5
1.5


=



N1
V1
M1
N2
V2
M2


=



−0.034 kN
2.026 kN

3.612 kN.m
0.0344 kN
0.974 kN

−0.456 kN.m
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DSM: Orthogonal Matlab Code for frame

1 %% S t i f f n e s s Method Frame Example 09/18
2 % cour tesy o f Xiao Fu
3 c lea r a l l
4 c l c
5
6 %% Elements p r o p e r t i e s
7 L_elem = [ 6 ; 6 ] ; % m
8 A_elem = [ 0 . 1 2 3 ; 0 . 1 2 3 ] ; % m^2
9 E_elem = [200E6 ; 200E6 ] ; % kN /m^2

10 I_elem = [1250E−6; 1250E− 6 ] ; % m^4
11
12 %% Loads
13 P = 1;
14 M = 5;
15 w = 0 . 5 ;
16
17 %% St ruc tu re Displacements i n GCS
18 % Assemble g loba l s t i f f n e s s mat r i x
19 K = [ A_elem ( 1 ) *E_elem ( 1 ) / L_elem ( 1 ) +12*E_elem ( 2 ) * I_elem ( 2 ) / L_elem ( 2 ) ^3 , 0 , . . .
20 6*E_elem ( 2 ) * I_elem ( 2 ) / L_elem ( 2 ) ^2 ;
21 0 , A_elem ( 2 ) *E_elem ( 2 ) / L_elem ( 2 ) +12*E_elem ( 1 ) * I_elem ( 1 ) / L_elem ( 1 ) ^ 3 , . . .
22 −6*E_elem ( 1 ) * I_elem ( 1 ) / L_elem ( 1 ) ^2 ;
23 6*E_elem ( 2 ) * I_elem ( 2 ) / L_elem ( 2 ) ^2 , −6*E_elem ( 1 ) * I_elem ( 1 ) / L_elem ( 1 ) ^2 , . . .
24 4*E_elem ( 1 ) * I_elem ( 1 ) / L_elem ( 1 ) +4*E_elem ( 2 ) * I_elem ( 2 ) / L_elem ( 2 ) ]
25
26 % Determine vec to r o f ex te rna l fo rces
27 NEL = [ −w* L_elem ( 2 ) / 2 ; −P / 2 ; P* L_elem ( 1 ) /8 −w* L_elem ( 2 ) ^ 2 / 1 2 ] ; % Nodal Equ iva len t Load at DOFs
28 F = [ −P / 2 ; 0 ; M] ; % E x t e r n a l l y app l ied fo rces
29 F_ext = NEL + F ; % Tota l Ex te rna l Force
30
31 % Solve f o r Displacement
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DSM: Orthogonal Matlab Code for frame

32 Disp = K\ F_ext
33
34 %% I n t e r n a l Forces
35
36 % Element−AB
37 i = 1 ;
38 k_AB = s t i f f ( E_elem ( i ) , I_elem ( i ) , L_elem ( i ) , A_elem ( i ) ) ; % Element s t i f f n e s s mat r i x i n LCS
39 NEL_elem_AB = [ 0 ; −P / 2 ; −P* L_elem ( i ) / 8 ; 0 ; −P / 2 ; P* L_elem ( i ) / 8 ] ; % nodal element fo rces i n

LCS
40 disp_elem_AB = [ 0 ; 0 ; 0 ; Disp ( 1 ) ; Disp ( 2 ) ; Disp ( 3 ) ] ; % g loba l nodal d i s p l . o f AB i n LCS
41 Force_elem_AB = k_AB* disp_elem_AB − NEL_elem_AB % I n t e r n a l fo rces o f AB i n LCS
42
43 % Element−BC
44 i = 2 ;
45 k_BC = s t i f f ( E_elem ( 2 ) , I_elem ( 2 ) , L_elem ( 2 ) , A_elem ( 2 ) ) ;
46 NEL_elem_BC = [ 0 ; −w* L_elem ( i ) / 2 ; −w* L_elem ( i ) ^2 /12 ; 0 ; −w* L_elem ( i ) / 2 ; w* L_elem ( i ) ^ 2 / 1 2 ] ;
47 disp_elem_BC = [ − Disp ( 2 ) ; Disp ( 1 ) ; Disp ( 3 ) ; 0 ; 0 ; 0 ] ;
48 Force_elem_BC = k_BC* disp_elem_BC − NEL_elem_BC

1 f u n c t i o n [ k ]= s t i f f (E , I , L ,A)
2 EA=E*A; EI=E* I ;
3 k =[
4 EA/ L , 0 , 0 , −EA/ L , 0 , 0 ;
5 0 , 12* EI / L^3 , 6* EI / L^2 , 0 , −12*EI / L^3 , 6* EI / L ^2 ;
6 0 , 6* EI / L^2 , 4* EI / L , 0 , −6* EI / L^2 , 2* EI / L ;
7 −EA/ L , 0 , 0 , EA/ L , 0 , 0 ;
8 0 , −12*EI / L^3 , −6* EI / L^2 , 0 , 12* EI / L^3 , −6* EI / L ^2 ;
9 0 , 6* EI / L^2 , 2* EI / L , 0 , −6* EI / L^2 , 4* EI / L ] ;
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DSM: Orthogonal Matlab Code for frame

Cover subsequent topic only time permitting
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Generalized Direct Stiffness Method Unconstrained Degree of Freedom

Degree of Freedom
A degree of freedom (d.o.f.) is an independent generalized nodal displacement
(translation or rotation) at a node.
The displacements must be linearly independent (of coordinate system) and thus not
related to each other.

Element vs Structure
An element dof is defined wrt its own local coordinate system. A
structural dof is defined wrt a global coordinate system.

Victor E. Saouma; Univ. of Colorado Direct Stiffness Method 47/92



Generalized Direct Stiffness Method Unconstrained Degree of Freedom
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Generalized Direct Stiffness Method Structural Discretization

Structural Discretization
Numerical modeling of a structure requires that we can mathematically
describe it (geometry, boundary conditions, geometry and properties
of elements, and loads).
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Generalized Direct Stiffness Method Nodes/Topology

The node is characterized by its nodal id (node number), coordinates,
boundary conditions, and load (this one is often defined separately)

Node No. Coor. B. C.
X Y X Y Z

1 x(1) y(1) ID(1,1) ID(1,2) ID(1,3)
2 x(2) y(2) ID(2,1) ID(2,2) ID(2,3)
3 x(3) y(3) ID(3,1) ID(3,2) ID(3,3)
4 x(4) y(4) ID(4,1) ID(4,2) ID(4,3)

0 and 1 correspond to free or fixed degree of freedom (alternatively to
a 1 corresponds a reaction).
Known displacements can be zero (restrained) or non-zero.
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Generalized Direct Stiffness Method Elements/Connectivity

The element is characterized by the nodes which it connects, and its
group number,

Element From To Group
No. Node Node Number
1 1 2 1
2 3 2 2
3 3 4 2
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Generalized Direct Stiffness Method Material Properties

Group number will then define both element type, and
elastic/geometric properties. The last one is a pointer to a separate
array,

Group Element Material
No. Type Group
1 1 1
2 2 1
3 1 2

In this example element 1 has element id 1 (such as beam element),
while element 2 has a id 2 (such as a truss element). Material group 1
would have different elastic/geometric properties than material group 2.
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Second Interlude Mathematical Model

Structural idealization is as much an art as a science.

1 2D vs 3D

2 Frame or truss

3 Rigid or semi-rigid connections

4 Effect of Relative Stiffnesses

5 Cross-Section

6 Elastic supports

7 Include or not secondary
members

8 Include or not axial deformation

9 Linear or nonlinear analysis
(linear analysis can not predict
the peak or failure load, and will
underestimate the deformations).

10 Small or large deformations

11 Time dependent effects

12 Partial collapse or local yielding

13 Static or dynamic

14 Wind load

15 Thermal load

16 Secondary stresses
We shall review most of them separately
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Second Interlude 2D vs. 3D; Frame vs Truss

3D or simplified 2D

Is it a truss or a girder?
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Second Interlude Connections

Hinge < Semi-rigid connections < Rigid
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Second Interlude Relative Stiffnesses

WL2/24

WL2/12

W
L2
/8W
L2
/8

β WL2

α WL2
W
L2
/8

α +β=1/8

K1K1 K2K2 K3K3

M

θ 
K1→0

K2→¶ 

K3
1

1

1

θ1 θ3 θ2 

Spring Stifffnesses Inflection Points Moment Diagrams
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Second Interlude X-Sections
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Second Interlude Elastic Supports

P



k

Millenium tower (or Pisa Tower) settlement, use elastic support!Victor E. Saouma; Univ. of Colorado Direct Stiffness Method 58/92



Second Interlude Secondary members; Axial Deformation

May ignore
secondary
members

3

12EI

L

1

EA

L

Ratio of axial to flexural stiffness is:
α = ka

kf
=

EA
L

12EI
L3

= AL2

12I .

For a b × h rectangular section, with b = h/2, and L = 10h,
⇒ α = 100

For a W section
Z ≈ wd

9 , Z
S = ξ = 1.1, S = I

d
2

, w = (490) lbs/ft3A, or

I ≈ 0.208Ad2, and α =
EA
L

12EI
L3

=
EA
L

12E(0.208)Ad2

L3

= 0.4
(

L
d

)2

For steel structure, we can assume
L = 20d , ⇒ α = 160 Axial stiffness is much higher than
flexural stiffness. Note: we may have negligible axial
deformations, however axial force is not negligible.
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Second Interlude Linear or nonlinear; Large Deformation

Non-Linear stress-strain

σy

O

A

C

E

ε

σu

σ

D
B

εe
A
εp

B εe
A

fc

fc

E  , E  ,   
1 2

ν12

1

2

31

1

2

3

4

5

6

1

2

3

4

5

6

σ

ε~0.003

~0.5

Isotropic

νE,  

Orthotropic

1

Steel Concrete

Large Deformation

εxx =
∂u
∂x︸︷︷︸

small deformation

+
1
2

(
∂u
∂x

2

+
∂v
∂x

2

+
∂w
∂x

2)
︸ ︷︷ ︸

large deformation

u and v are the axial and transversal displacements respectively.
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Second Interlude Time dependent; Dynamic

Time Dependent

εsh(t)

Load free 
specimen

εσ(t)

Loaded 
(creep) 

specimen

ε(t) Recovery

Unloaded 
specimen

t

εsh

εsh(t)= Drying Shrinkage

t0 (start of drying )

tt1

σ Loading

t

Initial elastic strain
t0 (start of drying )

εsh Creep
Elastic recovery

Creep recovery

εσ =ε-εsh

Figure 1: Curves of shrinkage, creep and recovery after unloading, (?)

Figure 2: Compliance function shown by unit creep curves for different ages of loading, (?)

2

Dynamic When the frequency of the
applied load (excitation) of a structure is
less than about a third of its lowest natural
frequency of vibration, then we can neglect
inertia effects and treat the problem as a
quasi-static one, otherwise a dynamic
analysis must be performed.
For a very flexible structure, even a slowly
applied load may necessitate a dynamic
analysis.
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Second Interlude Temperature

Incident solar 
radiation

Reflection

Absorption

Convection

Radiation

ΔT 

Differential temperature 
may be problematic
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Direct Stiffness Method A Boundary Value Problem

Analysis of a structure is essentially solving a boundary value problem
(governed by a differential equation over the volume 
, and subjected to
space/temporal boundary conditions along the boundary �).

In our case we are discretizing our structure, and the governing
differential equation (equilibrium) is embedded in K� = P.

� = �t
⋃
�u

� Traction Displ. Math. Struct. DOF
�t P

√

t �?
t Neuman Essential Free

�u R?
u �

√

u Dirichlet Natural Fixed/Constrained
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Direct Stiffness Method A Boundary Value Problem

Γu  Known displacements
Unknown  forces

 Δ P?

Γt  Known tractions, unknown 
displacements

P Δ?

Mechanics Structural Analysis

Governed by 
Differential Equation 

inside Volume Ω

Boundary Γ= Γt+Γu

For the beam and the dam, we need to determine the displacements along �t and the

forces (reactions) along �u .

Victor E. Saouma; Univ. of Colorado Direct Stiffness Method 64/92



Direct Stiffness Method Unconstrained vs Constrained DoF

We have labeled the global dof associated with the unconstrained dof (�t ), where we solve for the displacements.

We will need to label the global dof associated with the constrained dof (�u ) where we will solve the reactions.

We will label the dof along �t first, and then those along �u next.

We have so far considered the stiffness matrix associated with �t only.

We will need to assemble the augmented stiffness matrix associated with � = �t
⋃
�u

Y

X
2

3 4

1

3 4
2

5

6
7

1
8

9

10

11 121
2

3

2 3
14

5 6

3
42

1
2 3 4

5

6 7

1 5
6

7

8 109 11

X
Y

12
13

14

t=[1-3]; u=[4-6] t=[1-11]; u=[12-14] t=[1-7]; u=[8-12]
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Transformation Matrix Why

Assembly of structure stiffness matrix is in global coordinate system,
element stiffness matrix is first computed in local coordinate system.

Need to transform k into K and δ into � for arbitrary structures.

θ3

Δ1

Δ2

A B

C
X

Y

1
K12

K32

K22

X

Y

k22

x

y

1
k12

k32

?

θ
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Transformation Matrix Beam-Column

p 2

p 1

p 5

δ 3

p 3

δ 4

δ 5

δ 6

x

y

X

Y

p 2

p 1

δ 2

δ 3

δ 1

p 3

y

X

Y

∆1

∆2

∆3

P1

P2

P3

x

α

11

3

2 2

3

cos sin 0

sin cos 0

0 0

F

1

f

f

F

Ff

α α
α α

 
 = − 
 

 
 
 
 
   

 
 
 
 
 

γ

���������

F
1 sin α

F2co
s α

f2

F 2

sin
 α

F 1

co
s α f 1

δ 2

δ 1

F 2

sin
 α

F2co
s α

F2 α

F
1 sin α

α
F1

F 1

co
s α

p 4

p 6
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Transformation Matrix Derivation

{pe} = [ke]{δe} and {Pe} = [Ke]{�e} (23)

Let us define a vector transformation matrix [�e] such that:

{δe} def
= [�e]{�e} and {pe} def

= [�e]{Pe} (24)

Substituting we obtain {pe} = [�e]{Pe} = [ke][�e]{�e} premultiplying by [�e]−1:
{Pe} = [�e]−1[ke][�e]{�e} But since the rotation matrix is orthogonal, we have
[�e]−1 = [�e]T (and {�e} = [�e]T{δe})

{Pe} = [�e]T [ke][�e]︸ ︷︷ ︸
[Ke]

{�e}

[Ke] = [�e]T [ke][�e] (25)

which is the general relationship between element stiffness matrix in local and global

coordinates.
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Fundamental Relations

Ke = �Tke� (26)

KS =
e=nelem∑

e=1

Ke (27){
P

√

t

R?
u

}
=

[
Ktt Ktu

Kut Kuu

]
︸ ︷︷ ︸

Augmented Stiffness Matrix

{
�?

t

�
√

u

}
(28)

Ktt f−1; Reduced Stiffness Matrix (29)

�t = K−1
tt (Pt −Ktu�u) (30)

Ru = Kut�t +Kuu�u (31)

δ(e) = �(e)�(e) (32)

p(e)int = k(e)δ(e) (33)
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Computer Implementation: Global DOF LM: Truss

LM is a mapping of element local to global dof

 

0 0 1 2
0 0 3 4
0 0 5 6
0 7
0 0 8 9

1 1 12 13
DOF     1  

1 14

  2
Node 1
Node 2
Node 3
Node 4
Node 5
Node 6

0 0 1 Node 70 11

ID

 
 
 


 
 
 
 
   
 
 
 



 
 
 
 
 
   

3

42

1

2 3 4

5

6 7

1 5

6

7

8 109 11

X

Y

12

13
14

2

87
6

5

431

9

10

11

 

1 2
1 2 3 4
3 4 5 6
5 6 7

8 9
1 2 8 9
3 4 8 9
3 4 10 11

10 11 5 6
8 9 10 11

10 11 7

12 13

14
12 13

1

Element global dof
                     1      2     3     4

Element 1
Element 2
Element 3
Element 4
Eleme

     

4

LM

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


nt 5

Element 6
Element 7
Element 8
Element 9
Element 10
Element 11

 

         Nodes   i    j
1 2 Element 1
2 3 Element 2
3 4 Element 3
4 5 Element 4
1 6 Element 5
2 6 Element 6
3 6 Element 7
3 7 Element 8
7 4 Element 9
6 7 Element 10
7 5 Element 11

LNODS

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

LM is a mapping between element 
and structure global dof

[ ]  User defined
[ ] Computed by program
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Computer Implementation: Global DOF LM: Beam

4

  0

Global DOF
 1    2

Node 
           

1 1 4 5
1 6 1
0 0 2 3

1
Node 2
Node 3

ID

 
   


 
 
 
   

 

Element global dof
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1
1 2 3

3    4
Element 1
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4 5 6
6 2
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3

2
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15 6
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     Node    i     j
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Computer Implementation: Global DOF LM: Frame
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Computer Implementation: Global DOF Assembly of the Structure’s Stiffness Matrix
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3

4
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9

K (e)
i j → K (S)

st and
{

s = LM(i)
t = LM(j) [LM] is a mapping between the element global dof and the structure’s (global) dof.
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Computer Implementation: Global DOF Assembly of the Load Vector

3
50 18.7

8
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2 3
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Computer Implementation: Global DOF Direct Stiffness Method; Algorithm

1 Preliminaries

1 Read the structure mathematical model (type, coordinates, connectivity,
cross-sectional and material properties, loads)

2 Determine the number of nodes (nnode), number of element (nelem),
maximum number dof/node (ndofpn), size of Ktt (sizet), total number of
dof (ndoft), update ID and determine LM matrices

2 Analysis:
1 For each element, determine

1 Vector LM mapping local element to global structure degrees of freedoms.
2 Element stiffness matrix [k(e)]
3 Transformation matrix [�(e)]
4 Element stiffness matrix in global coordinates [K(e)] = [�(e)]T [k(e)][�(e)]

2 Assemble the augmented stiffness matrix [K(S)] of unconstrained and
constrained degree of freedom’s.

3 Extract [Ktt ] from [K(S)] and invert (actually decompose).
4 Load Vector

1 Compute nodal equivalent forces vectors for each element in local coordinate
system p

(e)
NEF and in global coordinate system P

(e)
NEF = �(e)

T
p
(e)
NEF
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Computer Implementation: Global DOF Direct Stiffness Method; Algorithm

2 Assemble the nodal load vector to include nodal loads and nodal equivalent
forces (note P is for the structure).
Pt (LM(e)(i)) = P(e)

NEF + Pt (LM(e)(i));∀LM(e) ≤ size(Ktt )

3 Backsubstitute and obtain nodal displacements global coordinate
system, � = K−1

tt Pt

4 Extract Kut

5 Solve for the reactions, Ru = Kut�t +Kuu�u − P(sizet : ndof)

6 Internal forces, for each element

1 Determine the element nodal displacements in global coordinate system
from the global nodal displacements

2 Transform its nodal displacement from global to local coordinates
δ(e) = [�(e)]�(e).

3 Determine the internal forces p(e) = k(e)δ(e) − p(e)NEF .
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Computer Implementation: Global DOF Example Frame

1 c lea r a l l
2 c l c
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % Program based on the d i r e c t s t i f f n e s s method to analyse 2D frames
5 % L i m i t a i t o n s : a l l sec t i on p rope t ies are i d e n t i c a l ; no i n i t i a l d isplacement
6 % CVEN4525/5525 Univ . o f Colorado , Boulder
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 %% Inpu t data
9 % S t r u c t u r a l p r o p e r t i e s u n i t s : mm^2 , mm^4 , and MPa(10^6 N/m)

10 % Note t h i s could be genera l i zed to assign p r o p e r t i e s f o r i n d i v i d u a l
11 % element p r o p e r t i e s
12 A=6000; I I =200*10^6;EE=200000;
13 % Convert u n i t s to meter and kN
14 A=A/10^6 ; I I = I I /10^12;EE=EE*1000;
15 %coord ina tes each ow one node
16 COORD=[0 0 ;
17 7.416 3;
18 15.416 3 ] ;
19 % Define ID mat r i x each ow one node
20 I D _ o r i g i n a l =[1 1 1 ;
21 0 0 0;
22 1 1 1 ] ;
23 % Connec t i v i t y matr ix , each row one element
24 LNODS=[1 2 ;
25 2 3 ] ;
26 % Nodal Load each row corresponds to a node
27 nodal_load =[0 0 0;
28 50*3/8 −50*7.416/8 0 ;
29 0 0 0 ] ;
30 % element load ( cons ider un i f o rm ly d i s t r i b u t e d load only )
31 loaded_elem = [ 0 ; − 4 ] ;
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Computer Implementation: Global DOF Example Frame

32 %=============== End of user i npu t data ================================
33 %% get number o f elements , nodes , and degrees o f freedom per node
34 [ nelem co l ]= xxx ; %t o t a l number o f elements
35 [ nnodes ndofpn ]= xxx ; % t o t a l number o f nodes and number o f dof per node
36 ndofpe=xxx ; % number o f degrees o f freedom per element
37 ndo f t=xxx ; % Size o f K augmented
38 %% update the ID mat r i x
39 n=0;
40 f o r l =1: xxx
41 f o r k =1: xxx
42 i f I D _ o r i g i n a l ( l , k ) xxx
43 xxx
44 end
45 end
46 end
47 s i z e _ t =xxx ; % s ize o f the unconstra ined dof
48 f o r l =1: xxx
49 f o r k =1: xxx
50 xx
51 end
52 end
53 %% Compute the LM vec to r one row f o r each element
54 f o r elem =1: xxx
55 f o r nod=1: xxx
56 node=xxx
57 f o r dof =1: xxx
58 n=(nod−1) * ndofpn+dof ;
59 LM( elem , n ) =xxx
60 end
61 end
62 end
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Computer Implementation: Global DOF Example Frame

63 %% f o r each element compute k , K, and gamma
64 %% zero the matr ices
65 k=zeros ( ndofpe , ndofpe , nelem ) ; K=zeros ( ndofpe , ndofpe , nelem ) ; Gamma=zeros ( ndofpe , ndofpe , nelem ) ;
66 f o r elem =1: nelem
67 % determine coord ina tes o f each node
68 nod1=xxx ; nod2=xxx ;
69 xy_1=xxx xxx ] ; xy_2 =[ xxx xxx ] ;
70 [ k ( : , : , elem ) ,K ( : , : , elem ) ,Gamma( : , : , elem ) ]= s t i f f (EE, I I ,A , xy_1 , xy_2 ) ;
71 end
72 %% Assemble augmented s t i f f n e s s mat r i x
73 Kaug=zeros ( nnodes * ndofpn ) ;
74 f o r elem =1: xxx
75 f o r l =1: xxx
76 l r =xxx ;
77 f o r c =1: xxx
78 l c =xxx ;
79 Kaug ( l r , l c ) =xxx ;
80 end
81 end
82 end
83 %% Handle the load
84 % I n i t i a l i z e to zero
85 P=zeros ( ndof t , 1 ) ; %i n i t i a l i z e the veco t r o f load s ize=ndo f t
86 % loop on each loaded node
87 f o r l =1: nnodes % Loop on each loaded node
88 f o r c =1: ndofpn
89 i f ID ( l , c ) <=xxx
90 P( ID ( l , c ) ) =xxx
91 end
92 end
93 end
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Computer Implementation: Global DOF Example Frame

94 % loop on each loaded element
95 f o r elem =1: nelem
96 f o r c =1: xxx % loop on each dof o f the element
97 NEF_local ( elem , c ) =0; %i n i t i a l i z e to zero
98 end
99 w=loaded_elem ( elem ) ;

100 i f w xxx%only i f element i s loaded compute non zero NEF
101 xxx
102 L= s q r t ( ( xy_1 ( 1 ) −xy_2 ( 1 ) ) ^2+( xy_1 ( 2 ) −xy_2 ( 2 ) ) ^2) ;
103 NEF_local ( elem , : ) = [ 0 ; xxx ; xxx ; xxx ; xxx ; xxx ] ;
104 end
105 NEF_global ( elem , : ) =xxx
106 f o r c =1: ndofpe % add to the P vec to r terms assoc iated wi th const ra ined dof
107 g loba l_do f=xxx
108 P( g loba l_do f ) =xxx
109 end
110 end
111 %% Solve FO the displacements
112 % Ex t rac t P t t
113 P t t =P( 1 : xxx ) ;
114 % Ex t rac t the unconstra ined s t r u c t u r e s S t i f f n e s s Mat r i x
115 K t t =xxx ;
116 % Solve f o r the Displacements inverse o f K t t t imes load vec to r
117 Displacements= K t t \ P t t
118 %% Solve f o r the reac t i ons
119 % Ex t rac t Kut
120 Kut=xxx ;
121 % Compute the React ions and do not f o r g e t to add f i x e d end ac t ions
122 React ions=xxx ;
123 %% Solve f o r the i n t e r n a l foces
124 % Assign the vec to r o f g loba l displacements f o r the element
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Computer Implementation: Global DOF Example Frame

125 f o r elem =1: nelem
126 f o r c =1: ndofpe
127 g loba l_do f=xxx ;
128 xxx
129 end
130 end
131 % get the element i n t e r n a l foces
132 f o r elem =1: nelem
133 d i s _ l o c a l =xxx ;
134 i n t _ f o r c e s =xxx ;
135 end

1 f u n c t i o n [ k ,K,Gamma]= s t i f f (EE, I I ,A , xy_1 , xy_2 )
2 % Determine the leng th
3 L=xxx
4 % Compute the angle the ta ( c a r e f u l w i th v e r t i c a l members ! )
5 i f ( xy_2 ( 1 ) −xy_1 ( 1 ) ) ~=0
6 alpha=xxx
7 else
8 alpha=xxx
9 end

10 % form r o t a t i o n mat r i x Gamma
11 Gamma=[
12 cos ( alpha ) s in ( alpha ) 0 0 0 0;
13 xxx
14 ] ;
15 % form element s t i f f n e s s mat r i x i n l o c a l coord ina te system
16 EI=EE* I I ; EA=EE*A;
17 k =[
18 EA/ L , 0 , 0 , −EA/ L , 0 , 0 ;
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Computer Implementation: Global DOF Example Frame

19 xxx ] ;
20 % Element s t i f f n e s s mat r i x i n g loba l coord ina te system
21 K=xxx

This will generate the following results:

Displacements = Reactions int_forces = int_forces =

0.0010 130.4973

-0.0050 55.6766 141.8530 149.2473

-0.0005 13.3742 2.6758 9.3266

-149.2473 13.3742 -8.0315

22.6734 -141.8530 -149.2473

-45.3557 -2.6758 22.6734

8.0315 -45.3557
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Computer Implementation: Global DOF Example Truss
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12'

16'16'

ID =


0 1
0 0
1 1
0 0
0 0

 =


1 8
2 3
9 10
4 5
6 7

 ; [LM] =



1 8 4 5
1 8 2 3
2 3 4 5
4 5 6 7
9 10 4 5
2 3 6 7
2 3 9 10
9 10 6 7



[K (e)
] =


c 0
s 0
0 c
0 s

 AE

L

[
1 −1
−1 1

] [
c s 0 0
0 0 c s

]
=

EA

L


c2 cs −c2 −cs
cs s2 −cs −s2

−c2 −cs c2 cs
−cs −s2 cs s2
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Computer Implementation: Global DOF Example Truss

c = cosα = x2−x1
L ; s = sinα = Y2−Y1

L

Element 1: L = 20
′
, c = 16−0

20 = 0.8, s = 12−0
20 = 0.6,

EA
L = (30,000ksi)(10in2)

20 ′ = 15, 000 k/ft .

[K1] =


1 8 4 5

1 9, 600 7200 −9, 600 −7, 200
8 7, 200 5, 400 −7, 200 −5, 400
4 −9, 600 −7, 200 9, 600 7, 200
5 −7, 200 −5, 400 7, 200 5, 400


Element 2: L = 16

′
, c = 1 , s = 0 , EA

L = 18, 750 k/ft.

[K2] =


1 8 2 3

1 18, 750 0 −18, 750 0
8 0 0 0 0
2 −18, 750 0 18, 750 0
3 0 0 0 0


Element 3 L = 12

′
, c = 0 , s = 1 , EA

L = 25, 000 k/ft
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Computer Implementation: Global DOF Example Truss

[K3] =


2 3 4 5

2 0 0 0 0
3 0 25, 000 0 −25, 000
4 0 0 0 0
5 0 −25, 000 0 25, 000


Element 8 L = 12

′
, c = 0 , s = 1 , EA

L = 25, 000 k/ft

[K8] =


9 10 6 7

9 0 0 0 0
10 0 25, 000 0 −25, 000
6 0 0 0 0
7 0 −25, 000 0 25, 000


Assemble the global stiffness matrix in k/ft Note that we are not assembling the
augmented stiffness matrix, but rather its submatrix [Ktt ].
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Computer Implementation: Global DOF Example Truss

Convert to k/in and simplify


0
0

−100
0
0
50
0

︸ ︷︷ ︸
Pt

=



2, 362.5 −1, 562.5 0.00 −800 −600 0 0
3, 925.0 600 0 0 −800 −600

2, 533.33 0.00 −2, 083.33 −600 −450
3, 162.5 0 −1, 562.5 0

SYMMETRIC 2, 983.33 0 0
2, 362.5 600

2, 533.33


︸ ︷︷ ︸

Ktt



U1
U2
V3
U4
V5
U6
V7

︸ ︷︷ ︸
ut

Invert stiffness matrix and solve for displacements



U1
U2
V3
U4
V5
U6
V7


=



−0.0223 in.
0.00433 in.
−0.116 in.
−0.0102 in.
−0.0856 in.
−0.00919 in.
−0.0174 in.
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Computer Implementation: Global DOF Example Truss

Solve for member internal forces (in this case axial forces) in local coordinate systems

{
p1
p2

}
=

AE

L

[
1 −1
−1 1

]
︸ ︷︷ ︸

k

[
C S 0 0
0 0 C S

]
︸ ︷︷ ︸

�


U1
V1
U2
V2

︸ ︷︷ ︸
�︸ ︷︷ ︸

δ

=
AE

L

[
c s −c −s

−c −s c s

]
U1
V1
U2
V2


Element 1:

{
p1
p2

}1
= (15, 000 kpf)

( 1

12

ft.

in.

)[
0.8 0.6 −0.8 −0.6

−0.8 −0.6 0.8 0.6

]
−0.0223

0.00
−0.0102
−0.0856


=

{
52.1 kip
−52.1 kip

}
Compression

Element 2:
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Computer Implementation: Global DOF Example Truss

{
p1
p2

}2
= 18, 750 kpf

( 1

12

ft

in.

)[
1 0 −1 0

−1 0 1 0

]
−0.0233

0.00
0.00433
−0.116


=

{
−43.2 kip
43.2 kip

}
Tension

Element 3:

{
p1
p2

}3
= 25, 000 kpf

( 1

12

ft.

in.

)[
0 1 0 −1
0 −1 0 1

]
0.00433
−0.116
−0.0102
−0.0856


=

{
−63.3 kip
63.3 kip

}
Tension

Element 4:

{
p1
p2

}4
= 18, 750 kpf

( 1

12

ft.

in.

)[
1 0 −1 0

−1 0 1 0

]
−0.0102
−0.0856
−0.00919
−0.0174


=

{
−1.58 kip
1.58 kip

}
Tension
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Computer Implementation: Global DOF Example Beam

21 41 243

Case I Case II

14
2 3

Δ0

Case III

3

3 421

We consider the third case, a cantilevered Beam with initial Displacement and no
other load.

1 The element stiffness matrix is

k
(e)

=


2 3 4 1

2 12EI/L3 6EI/L2 −12EI/L3 6EI/L2

3 6EI/L2 4EI/L 6EI/L2 2EI/L
4 −12EI/L3 −6EI/L2 12EI/L3 −6EI/L2

1 6EI/L2 2EI/L −6EI/L2 4EI/L
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Computer Implementation: Global DOF Example Beam

2 The augmented structure stiffness matrix is assembled

K
(S)

=


1 2 3 4

1 4EI/L 6EI/L2 2EI/L −6EI/L2

2 6EI/L2 12EI/L3 6EI/L2 −12EI/L3

3 2EI/L 6EI/L2 4EI/L −6EI/L2

4 −6EI/L2 −12EI/L3 −6EI/L2 12EI/L3



3 The global augmented matrix can be decomposed as


M1(= 0)

√

R2?
R3?
R4?

 =


4EI/L 6EI/L2 2EI/L −6EI/L2

6EI/L2 12EI/L3 6EI/L2 −12EI/L3

2EI/L 6EI/L2 4EI/L −6EI/L2

−6EI/L2 −12EI/L3 −6EI/L2 12EI/L3




θ1?
�2

√

θ3
√

�4
√


4 Ktt is inverted (or actually decomposed) and stored in the same global matrix storage location


L/4EI 6EI/L2 2EI/L −6EI/L2

6EI/L2 12EI/L3 6EI/L2 −12EI/L3

2EI/L 6EI/L2 4EI/L −6EI/L2

−6EI/L2 −12EI/L3 −6EI/L2 12EI/L3
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Computer Implementation: Global DOF Example Beam

5 Next we compute the equivalent load, P ′
t = Pt − Ktu�u , and overwrite Pt by P ′

t (Note that we are boxing terms of
interest only).

Pt − Ktu�u =


M1 = 0

R2?
R3?
R4?

 −


L/4EI 6EI/L2 2EI/L −6EI/L2

6EI/L2 12EI/L3 6EI/L2 −12EI/L3

2EI/L 6EI/L2 4EI/L −6EI/L2

−6EI/L2 −12EI/L3 −6EI/L2 12EI/L3




θ1

0

0

�0



=


6EI�0/L2

R2?
R3?
R4?


6 Solve for the displacements from �t = K−1

tt (Pt − Ktu�u) and overwrite Pt by �t


θ1

0
0
�0

 =


L/4EI 6EI/L2 2EI/L −6EI/L2

6EI/L2 12EI/L3 6EI/L2 −12EI/L3

2EI/L 6EI/L2 4EI/L −6EI/L2

−6EI/L2 −12EI/L3 −6EI/L2 12EI/L3




6EI�0/L2

R2?
R3?
R4?



=


3�0/2L

0
0
0
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Computer Implementation: Global DOF Example Beam

7 Finally, we solve for the reactions, Ru = Kut�tt + Kuu�u , and overwrite �u by Ru



M1

R2

R3

R4


=



L/4EI 6EI/L2 2EI/L −6EI/L2

6EI/L2 12EI/L3 6EI/L2 −12EI/L3

2EI/L 6EI/L2 4EI/L −6EI/L2

−6EI/L2 −12EI/L3 −6EI/L2 12EI/L3




3�0/2L

0

0

�0



=



−6EI�0/L2

−3EI�0/L3

−3EI�0/L2

3EI�0/L3
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Introduction Large Structures

Architects design structural envelope; structural engineer, analyzes and dimensions it (no
change in form).

“Large” structures are designed by structural engineers who must obey the Vitruvian virtues
(or the Vitruvian Triad)

Firmitas i.e. solid (Strength, Stiffness, Stability in modern parlance).
Utilitas i.e useful (not an issue anymore in modern times).

Venustas i.e beautiful (often forgotten).

Motivation for this chapter:

Vitruvius: architecture is an imitation of nature, indeed there is nowadays attempts to
have bioinspired structural materials (e.g. bones and bamboos).

Sullivan: Form ever follows function

⇒ shape optimization: standard deviation of the stress distribution should be nearly zero.

NATURE MATERIALS | VOL 14 | JANUARY 2015 | www.nature.com/naturematerials 27

for the increased strength of the collagen. This makes possible a large 
regime of dissipative deformation once plastic yielding has begun. 
As in most materials, plasticity and the resultant ductility provide a 
major contribution to the intrinsic toughness by dissipating energy 
and forming plastic zones surrounding incipient cracks, which fur-
ther serves to blunt crack tips, thereby reducing the driving force for 
cracking.

However, an even larger contribution to the fracture resistance 
of bone arises from mechanisms of extrinsic toughening at coarser 
length scales, in the range of ~10–100 μm. Specifically, once the crack 
begins to grow, mechanisms within the microstructure are activated 
to inhibit further cracking; indeed, the primary drivers for this are 
the nature of the crack path and its interaction with the bone-matrix 
structure. Two salient toughening mechanisms can be identified22,23: 
crack bridging and crack deflection/twist (Fig. 3). Crack bridging 
occurs as microcracks form ahead of the crack tip, primarily along 
the hypermineralized interfaces at the boundary of the osteons, and 
producing the so-called uncracked-ligament bridges, which act as 
intact regions spanning the crack wake to inhibit its progress. Crack 
deflection is particularly potent in the transverse orientation, where 
cracks are aligned perpendicular to the osteons. As the crack begins 
to grow, structural features such as osteocyte lacunae and porosity 
can deflect the crack path. However, the largest features, specifically 
secondary osteons and in particular their brittle interfaces (cement 
lines), are most effective at crack deflection. Such crack deflection 

toughens normal bone by diverting the crack path from the plane of 
maximum tensile stress; as such, crack-tip stress intensity decreases 
(typically by a factor of two or more), and a larger applied force 
is required to propagate the crack further. Indeed, it is because of 
this that the fracture toughness of bone, which in the longitudinal 
direction is typically 1–5 MPa m½, can be many times higher in the 
transverse direction, where cracks deflect at the cement lines. It is 
such extrinsic toughening (vertical arrows in Fig. 1b), resulting in 
increased resistance to both initiated and growing cracks, that is so 
effectively used in natural materials.

It should be noted that the small-scale intrinsic and larger-scale 
extrinsic processes are coupled. When the intrinsic toughness, gen-
erated at small length scales through fibrillar sliding, is degraded by 
biological factors (such as altered collagen crosslinking due to age-
ing and disease), the bone alternatively dissipates energy at higher 
length scales by microcracking. This is a form of plasticity that pro-
motes extrinsic toughening at the microscale through the formation 
of deflected and bridged crack paths. Of course, a major charac-
teristic of bone is its ability to remodel itself to repair damage — a 
trait that is difficult to replicate in synthetic materials. Indeed, there 
may be a coupling between bone inelasticity due to microcracking 
and the signalling that promotes such repair, as the microcracks are 
thought to severe the canaliculi, which are the means by which the 
osteocytes (osteoblasts that have become trapped within the bone 
matrix) remain in contact with other cells in bone.

2.
86

 n
m

67
 n

m

c axis Collagen
fibrilCollagen

molecule

HA
nanocrystal

Osteons
100 µm

Tropocollagen
triple helix

30
0 

nm

50 nm ×
25nm × 
3 nm1.5 nm Compact

boneOsteons and
Haversian

 canals

5 mm

100 µm

20 µm300 nm3 nm

Bamboo’s graded structureCellulose Microfibril Fibril matrix
Cell-wall

layers

Spongy bone

a

b

Figure 2 | Hierarchical structure of bone and bamboo. a, In bone, macroscale arrangements involve both compact/cortical bone at the surface and 
spongy/trabecular bone (foam-like material with ~100-μm-thick struts) in the interior. Compact bone is composed of osteons and Haversian canals, 
which surround blood vessels. Osteons have a lamellar structure, with individual lamella consisting of fibres arranged in geometrical patterns. The fibres 
comprise several mineralized collagen fibrils, composed of collagen protein molecules (tropocollagen) formed from three chains of amino acids and 
nanocrystals of hydroxyapatite (HA), and linked by an organic phase to form fibril arrays. b, Bamboo is composed of cellulose fibres imbedded in a lignin–
hemicellulose matrix shaped into hollow prismatic cells of varying wall thickness. In bamboo and palm, which have a more complex structure than wood, a 
radial density gradient of parallel fibres in a matrix of honeycomb-like cells increases each material’s flexural rigidity. Bamboo increases its flexural rigidity 
even further by combining a radial density gradient with a hollow-tube cross-sectional shape. Panel a adapted with permission from: right-most bone 
image, ref. 123, © 1995 by The Journal of Bone and Joint Surgery, Inc.; rest of panel, ref. 124, Nature Publishing Group.

REVIEW ARTICLENATURE MATERIALS DOI: 10.1038/NMAT4089

© 2014 Macmillan Publishers Limited. All rights reserved

This chapter will address how a
structural engineer can also be
structural designer (Maillart,
Gaudi, Nervi, Frei, Calatrava, and
many others).
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Introduction Architecture and Engineering
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Introduction Architecture and Engineering

Proportions and Dimensions (Vitruvian Man and Modulor)
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Introduction Whos’ Who

Aristotle Mentioned virtual velocities: heavy bodies located at the end of
a lever are equilibrated when, in their possible motion, velocities
are in the inverse ratio to the weights.

Newton: If I have seen further, it is by standing on the shoulders of
giants.

Maxwell greatest physicist between Newton and Einstein. His fame in
physics overshadowed his pioneering work in the theory of
structures: analysis of trusses (applying equations of
equilibrium at each joint); b) foundation of virtual work; c)
flexibility method.

Mohr rediscovered the work of Maxwell and formalized the modern
principle of virtual work.

Einstein: (asked if he stood on Newton’s shoulders): No, on the
shoulders of Maxwell.
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Maxwell 1870 Paper Maxwell Said

Maxwell wrote:
1 In any system of points in equilibrium in a plane under the action of repulsions and

attractions, the sum of the products of each attraction multiplied by the distance of the
points between which it acts, is equal to the sum of products of the repulsions
multiplied each by the distance of the points between which it acts.

2 Multiply each load by the height of the point at which it acts, and each tension by the
length of the piece on which it acts, and add all these products together.

3 Then multiply the vertical pressures on the supports of the frame each by the height at
which it acts, and each pressure by the length of the piece on which it acts, and add
the products together. This sum will be equal to the former sum.

Simply put: the sum of a structure’s tension load path minus the sum of the
compression paths is equal to a value related to the applied external forces:

�FT LT − �FCLc = �P⃗i�⃗i
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Maxwell 1870 Paper Proof

Purely geometrical proof
A truss with externally forces is in
equilibrium.

Dilate the space from an arbitrary point,
tension members do positive work equal to
the tensile force times the member change
in length. Compression members will do
negative work.

Energy conservation the internal work
equals external work (dot product on the
right hand side).

Implication for Design
Load paths must be equal.

If a tension (or compression) load path is “too long”, the truss will be penalized twice: once
in tension and once in compression.

Seek a configuration that minimizes tension load path (compression load path will
automatically be minimized).
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Maxwell 1870 Paper Maxwell and Principle of Virtual Force

Maxwell did not explicitly mention Virtual Force, however many credit him (Mohr)
for the laying down the foundations for that theorem.

A closer look to what he wrote can be rephrased as follows:
1 Replace attraction by compression and repulsion by tension.
2 Divide the sum

∑
P(e)

i Li by area and Young’s modulus.
3 replace height by displacement �.

This is clearly the principle of virtual force,

�n
i=1(�i)δP i = �n

1δP
(i) P(i)Li

AiEi
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Structural Optimization

Maxwell goes on saying: The importance of this theorem to the engineer arises
from the circumstance that the strength of a piece is in general proportional to its
section, so that if the strength of each piece is proportional to the stress which it
has to bear, its weight will be proportional to the product of the stress multiplied
by the length of the piece. Hence these sums of products give an estimate of the
total quantity of material which must be used in sustaining tension and pressure
respectively.

Hence, PVW can be used to design a structure with minimum weight.

Because form should follow function, the structure with minimum weight (yet
meeting requirements) would be the most “elegant”.

Hence, design must consider structural topology optimization.
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Simple Design Example Problem Formulation

3B P

B 2 B

0

??

4
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√10 B

1
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B

2

BB

Pratt Truss
B B B

B

B B
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B
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b

a
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d
e
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e
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a
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Simple Design Example Alternate Design Results

3B P

B

P

3P

3P

‐3P

+ √10 P
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Shape Optimization
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Simple Design Example Results Tabulation à la Maxwell

A B C D E F G H I J A B C D E F G H I J

A B A B
+ve -ve Δ/(σB/E) +ve -ve Δ/(σB/E)

1 a-b 3.000 3.000 9.0 -9.0 9.0 1 a-b 1.000 3.000 3.0 -3.0 3.0
2 b-c 3.162 3.162 10.0 10.0 10.0 2 b-c 1.000 2.000 2.0 -2.0 2.0

6.162 10.0 9.0 1.0 19.0 19.0 3 c-d 1.000 1.000 1.0 -1.0 1.0
4 d-e 1.414 1.414 2.0 2.0 2.0

1 a-b 1.000 3.000 3.0 -3.0 3.0 5 e-f 1.000 1.000 1.0 1.0 1.0
2 b-c 2.000 1.000 2.0 -2.0 2.0 6 f-g 1.000 2.000 2.0 2.0 2.0
3 c-d 1.414 1.414 2.0 2.0 2.0 7 b-g 1.414 1.414 2.0 2.0 2.0
4 d-e 2.000 2.000 4.0 0.0 4.0 4.0 8 c-f 1.414 1.414 2.0 2.0 2.0
5 b-e 1.414 1.414 2.0 0.0 2.0 2.0 9 b-f 1.000 1.000 1.0 -1.0 1.0
6 b-d 1.414 1.414 2.0 -2.0 2.0 10 c-e 1.000 1.000 1.0 -1.0 1.0

9.243 8.0 7.0 1.0 15.0 15.0 11.243 9.0 8.0 1.0 17.0 17.0

A+BA-B

Two bar Truss Pratt Truss

Warren Truss

Length
 L/B

Force F/P FL/BP

Deflection
+ve -ve

Length
 L/B

Force F/P FL/BP Deflection
+ve -ve

A+BA-B

Sum

Sum

Sum

Self weight ignored.

Column I is proportional to the total volume of material (assuming same allowable stress in tension and
compression).

Deflection (J) is proportional to the volume of material I)

Exercise: Repeat analysis for: a) Howe and K trusses; b) 4:1 cantilevered truss; c) Any other truss.
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Simple Design Example Summary

Load Paths Deflection
Tensile Load Compressive Load

A − B A+ B �
σB
EA =

∑
FT LT
PB B =

∑
FCLC
PB

① 10 9 1. 19 19
② 9➘ 8➘ 1. ➙ 17➘ 17➘

③ 8➘ 7➘ 1. ➙ 15➘ 15➘

④ 7.7➘ 6.7➘ 1. ➙ 14.47➘ 14.47➘

⑤ 8.52 7.52 1. 16.04 16.04
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Simple Design Example Michell truss

876 C. Graczykowski, T. Lewiński

Fig. 4 Case of κ = 5, θ2 = 0.420534 rad

and the equation for v(P) is similar; the functions u∗, v∗,
u•, u•, v•, v• are defined as explained above.

4 Selected benchmarks

The aim of this section is to provide the basic characteristics
of the optimal cantilevers corresponding to the following
values of κ : 1, 2, 3, 5, 7, 9 and to position of the verti-
cal force P at the grid points: x ′′

p = n a
4 , y′′

p = ±m a
4 ,

n = 0, 1, 2, . . . , 13; m = 0, 1, 2.
Position of nodes A, B, C, D, H, G, J depends on κ , see

Fig. 3a–f. The coordinates (x ′′, y′′) of these points are set
up in Table 1.

For fixed κ and for the subsequent positions of point P,
determined by (n, m), we fix the domain in which this point
lies, see Tables 2, 3, 4, 5, 6, 7, where the values of x ′′

p, y′′
p are

set up in the first two columns and the third column provides
the name of the domain. In the last column the volumes of
the optimal cantilevers are set up. The two-bar solutions are
neglected.

The results set up in Tables 2–7 include the selected
results published in Graczykowski and Lewiński (2006c,
2007b).

5 Exemplary result

Consider κ = 5, x ′′
p = 2.75a, y′′

p = −0.25a. The division of
the feasible domain is shown in Fig. 3d. The coordinates of
nodes of this division are given in Table 1. Point P belongs to
domain DHJG, αp = 1.315713099 and βp = 1.408664644,

see Table 5. The layout of the bars is shown in Fig. 4. The
volume of this cantilever equals V = 34.66641774V0.

6 Final remarks

The results presented are new; they complement the
selected results discussed in the previous papers of the
present authors. Let us note that the results published in
Srithongchai and Dewhurst (2003) and Gilbert et al. (2005)
concern the problem with the feasible domain being a half
plane and not a half strip, hence cannot be compared. Nev-
ertheless we have checked that all these results are correct.
The authors express their hope that the benchmarks deliv-
ered will serve for tests of the currently developed software
of the topology optimization problems.

Acknowledgement The paper was prepared within the Research
Grant no N506 071338, financed by the Polish Ministry of Science
and Higher Education, entitled: Topology Optimization of Engineer-
ing Structures. Simultaneous shaping and local material properties
determination.

Corrigendum to the paper

Graczykowski and Lewiński (2006b) Michell cantilevers
constructed within trapezoidal domains—Part II: Virtual
displacement fields, Structural and Multidisciplinary Opti-
mization, 32 (2006), No 6, 463–471

The second term of the r.h.s. of (6.9) should read:

2κ
3
2 F2(ξ, η)

3B

B

3P P

P3P
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Structural optimization using graphic statics

Table 2 Optimization of the roof truss

loads or the supports can change as the optimal solution is
determined.

The authors are currently exploring other applications
where the design variables are in the force domain.

Author's personal copy
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L. L. Beghini et al.

Fig. 11 Rendering of the roof truss for a convention center

the geometry of case (b) was deemed impractical but it does
provide a benchmark for the problem. It was then decided
that the top chord should have a constant curvature, which
mathematically can be described with a parabola. The bot-
tom chord of the left side cantilever was also constrained
to be a parabola, with the additional consideration that it
should have a horizontal tangent at the left support, i.e.,
to be continuous with the horizontal bottom chord at the
center span and right side cantilever. Case (c) shows the
results of the optimization under these constraints. The total
normalized volume for this case is 0.629, which is approxi-
mately 14 % higher than the unconstrained case (b). Based
on further coordination with the project architects and other
disciplines involved, it was determined that the truss depth
should be set to 10.7 m. The result of this optimization cor-
responds to case (d) and (e) in the Table. The optimal truss
layout was initially calculated in case (d) with the additional
depth constraint assuming straight web members between
the top and bottom chord and the resulting normalized vol-
ume was 0.852. Next, the location of the work point at the
intersection of the web members was optimized as shown
in case (e). The total normalized volume for this case was
0.669, which is only 6 % higher than case (c), where the
height of the parabola was unconstrained. Therefore, by
simply adjusting the work point at the intersection of the
web members there was a 21 % improvement on the struc-
tural efficiency (as compared to case (d)). Figure 11 shows
the architectural rendering of the final scheme adopted,
based on case (e) in Table 2. Although conventional stiff-
ness methods could have been used for this design problem,
the use of graphic statics and force diagrams provided valu-
able insight in the force distribution in the structure and the
relative importance of the various members. It also helps
the designer develop insights into the relationships between
form and forces. Such information guided the design engi-
neers in the process of maximizing the efficiency of the

structure while satisfying all the functional and architectural
constraints.

The design example described in this section was opti-
mized considering a uniform load applied to the top chord.
However, as described in details in Beghini et al. (2013),
after the preliminary analysis based on the dominant load
case in the conceptual phase of the design, the design engi-
neer needs to consider all the possible load combinations
that the structure might be subjected to, including pat-
tern (asymmetric) loads. Such additional load combinations
will require upsizing some of the members which were
relatively small. Additional members may also be required
to ensure proper redundancy in the structural load paths.
Consequently, the overall volume will increase from the
baseline minimum. However, if there is a predominant load
case, such increase is generally small, indicating that once
the overall geometry of the structure has been optimized for
the governing load case, the other load cases do not have a
major impact on the structural efficiency, both in terms of
material volume and deflections.

5 Summary, conclusions and future work

Graphic Statics provides another tool in determining dis-
crete minimal load path structures. The method optimizes
structure by using design variables in the force domain
rather than manipulating the geometry of the structure,
as is done in other methods. It has great advantages in
the optimization of potentially “unstable” discrete trusses
because the solutions are constrained to be in equilibrium
by the fact that the force diagrams have closed polygons.
The method often reduces the number of design variables
because of the restrictions of equilibrium and reciprocity
with the form diagram. The method can also find minimum
load path structures where the point of application of the

Author's personal copy

Structural optimization using graphic statics, Structural and Multidisciplinary Optimization, 2013,
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Additionally, by using continuation, the penalization parameter, p,
is increased over the range of 1–4 in increments of 0.5 until conver-
gence at each value is achieved. This technique further penalizes the
intermediate densities throughout the process.

3.2. Work flow

While this topology optimization framework is based on engi-
neering theory, it has advantages for both engineers and architects.
From the engineering standpoint, a finite element analysis of the
structure is performed during each iteration to ensure the design
is structurally sound. On the other hand, it also includes the
rendering capabilities of final results for architects to use in gener-
ating ideas for potential designs. The optimization is done by the
engineers in Matlab�; the result is interpreted and transferred to
CAD or rendering software through input/output (text) files.

Though topology optimization results are guided by engineer-
ing judgment, several options can be changed in the structural con-
text to explore different outcomes. For example, a different design
space or various combinations of loads and boundary conditions
can be explored. Then, this message is conveyed to the architect
via an interpretation or rendering of the topology optimization re-
sults by the structural engineer into a frame representing the grav-
ity and/or lateral system of the structure. These variations can be
used to give architects several logical options, from which they
can choose the most aesthetically pleasing or applicable design.
The architects can then integrate the structural components with
other building components (mechanical, electrical, façade, plumb-
ing, glass work, cladding, elevators, etc.).

In some cases the structural system of a project is evident and
expressed, in others the structural system is covered with the faç-
ade. In the first case, the structure is the architecture, such as the
cases of a bridge, viaduct, long span road structure or some high-
rise buildings (John Hancock Center, London’s Broadgate Exchange
House). These structures emphasize pure engineering to satisfy
structural principles, while the second category uses the architec-
ture or external features of the building to cover the engineering
components rather than incorporating them into the design.

The intent of topology optimization is to enable architects and
engineers to work together to express the structure together with
the architecture. For example, in the design of a building, the criteria
of the structural engineer may focus on the tip deflection limits, the
lateral load resisting systems (braced frames or concrete core), the
sizing and placement of the structural members (i.e. beam and col-
umns) and the ability to simplify the design by using symmetry and
patterns, among others. On the other hand, the architect may consider
a different range of criteria regarding the aesthetics of the building,
such as the value of views, cladding (e.g. glass facade), incorporation
of landscaping (green areas), symmetrical appearance and patterns.
An example of an integrated design is shown in Fig. 2, where topology
optimization was explored as a means to incorporate the structural
criteria. Incorporation of the architectural criteria might be further
implemented through a variety of approaches ([74]).

4. Case studies

In this section, key concepts and case studies are presented to
provide the reader with several examples of the advantages and
limitations of the proposed framework for design projects. The case
studies employ the aforementioned concepts and integrate them
within an interdisciplinary framework.

4.1. Design and parametric modeling

Parametric modeling is a key concept in modern design, as it is
very commonly used to provide architects and engineers with a

common ground to communicate and exchange ideas. Variations
on the parameters produce variations on the design, which in turn
has architectural and structural implications.

4.1.1. World Trade Center Tower One spire
As an example, in the design of the World Trade Center Tower

One, the spire containing broadcasting equipment was designed
in a process using a flexible parametric model, as shown in
Fig. 3. The design was the result of a close collaboration between
engineers and architects. The parametric model allowed the
designers to explore and analyze variations considering size (spire
diameter at different elevations and overall height), proportion (ra-
tio between the height and maximum diameter), number of panels,
perforation patterns and structural soundness. In addition to the
spire, the structural diagrid system of an earlier proposal for the
tower itself was designed according to the parametric model illus-
trated in Fig. 4.

4.1.2. Bridges connecting building towers
A parametric approach similar to that used for the World

Trade Center was adapted to our framework for the design of
the Zendai competition (China). The aim was to create a unique
and innovative design for the upper ‘‘bridge’’ structure spanning
between several towers ([75]). This space was approximated as a
beam, discretized with several four node quadrilateral (Q4) ele-
ments. The gravity load on the mesh was applied as a series of
equal point loads at nodal locations. The mesh was constrained
with pin supports at the nodes corresponding to the locations
where the towers would support the ‘‘bridge’’. At the first stage
in the design process, a parametric study was performed to pres-
ent the architects with several feasible options for the design,
using different combinations of layout constraints (variations
on symmetry, patterns, minimum member size, etc.). As an
example, for the design shown in Fig. 5, each section of the de-
sign space between supports of the beam was constrained to
have a similar pattern, a technique known as pattern gradation.

Fig. 2. Optimized building illustrating the concept of integrated design.

720 L.L. Beghini et al. / Engineering Structures 59 (2014) 716–726
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Analysis and Design Interaction

The structural engineer usually assumes (based on experience, tables) initial dimensions
for members, such as A and I for each truss members or beam element.

An analysis is performed. Most structures are statically indeterminate. Hence results
depend on A and I.

Following the analysis, we have the truss axial forces, or beam moment diagrams.

We must then check our design.

Truss σi =
Pi
Ai

Beam σ = Mc
I

and compare with allowable stresses σall .

if σ > σall , then we need to re-dimension the element, and re-analyze.

Victor E. Saouma; Univ. of Colorado DRAFT Structural Design 19/29



Analysis and Design Interaction

|xi+1‐xi|<ε 

Initial design x

Fi=A(xi)

xi+1=D(Fi)

End

YES

No

Architect’s initial dimensioning (r/c); or Engineer’s based on experience. This is the first 
initial best estimate.
x denotes a vector (thus it is bold faced) of structural dimensions. Size of of x is equal 
to the number of design parameters (such number of truss elements to be 
dimensioned).

A(xi) is an Operator with input  xi  and output element internal forces Fi (such as axial 
force, shear force, moment). Thus A(xi) is analysis. It could be your hand calculations, 
or a computer program.
Recall that for statically indeterminate structures internal forces depend on relative 
dimensions/stiffnesses (Ma=Ka/Σ Ki). If you change a dimension, you change K, and the 
corresponding moment.

D(Fi) is another operator with input Fi  and output dimensions xi+1 . Thus D(Fi) is design. 
This can be hand based or computer based. Again, we need the internal force diagrams 
in order to design (such as A‐F/σall). 

This is a check for convergence. If our last set of dimensions is close enough to the 
previous one (within a certain tolerance), then that is good enough.
Careful, in practice we often have few sections (steel) to use or formworks for concrete 
elements. This is to simplify the construction, minimize risk of error, and reduce the 
cost.
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Evolutionary Structural Optimization

Lattice models have their roots in Physics, and have been extensively used in fracture
modeling of cementitious materials.

Simple concept:

1 Start with a densely packed mesh. Elements are typically Bernoulli’s beam columns or
truss elements.

2 Perform a finite element analysis.
3 Identify elements whose stress exceed a failure criterion.
4 Remove those elements and reanalyze.

Similar concept can be used for design.
By slowly removing inefficient material from a structure, the shape of the structure
evolves towards an optimum. This is the simple concept of evolutionary structural opti-
mization (ESO). [?]
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Listing: Main

1 c lea r ; c lose a l l ; c l c
2 %======================================================================
3 % Generate Nodes
4 Random=1;MaxSteps=30;
5 [ x , y , z ,N] = Node_Generation (Random) ;
6 %% Generate members
7 [ r , c , v ] = f i n d ( hankel ( 2 :N) ) ; \%\# Create unique combinat ions o f i nd i ces
8 index = [ v c ] . ’ ; \% ’ \ # Reshape the ind i ces
9 nnodes=N;

10 nelem=s ize ( index , 2 ) ;
11 lnods=index ’ ;
12 step =0;OK=0;
13 %======================
14 % Video f o r fun
15 v=VideoWr i ter ( ’ Design_Opti . av i ’ ) ;
16 v . FrameRate = 1; %set to 25 frames per second
17 open ( v )
18 %===============================
19 PlotMesh ( x , y , z , lnods , nelem , step )
20 frame=getframe ( gcf ) ; wr i teV ideo ( v , frame ) ;
21 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22 whi le OK==0 \&\& step <MaxSteps
23 % Pass the data to analyze wi th casap and r e t r i e v e element ( s ) to be removed
24 % remove one element a t a time , and regenerate the mesh
25 ElemOut = rand i ( [ 1 nelem ] , 1 , 1 ) ; % generate a random number f o r t e s t i n g
26 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27 % H i g h l i g h t element
28 X=[ x ( lnods ( ElemOut , 1 ) ) x ( lnods ( ElemOut , 2 ) ) ] ; Xc=mean(X) ;
29 Y=[ y ( lnods ( ElemOut , 1 ) ) y ( lnods ( ElemOut , 2 ) ) ] ; Yc=mean(Y) ;
30 Z=[ z ( lnods ( ElemOut , 1 ) ) z ( lnods ( ElemOut , 2 ) ) ] ; Zc=mean(Z) ;
31 p lo t3 (X,Y, Z , ’ LineWidth ’ ,3 , ’ Color ’ , ’ r ’ ) ;
32 frame=getframe ( gcf ) ; wr i teV ideo ( v , frame ) ;
33 hold on
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34 NodesOut=lnods ( ElemOut , 1 : 2 ) ;
35 % compact lnods
36 f o r i =ElemOut : nelem−1
37 lnods ( i , 1 : 2 ) = lnods ( i +1 ,1 :2) ;
38 end
39 nelem=nelem −1; step=step +1;
40 PlotMesh ( x , y , z , lnods , nelem , step )
41 % check how many other elements are connected to each of the two nodes
42 % Minimum acceptable \# o f elements per node min_elem
43 min_elem =2;
44 Del_Nodes=Check_Lonely ( NodesOut , lnods , min_elem , v ) ;
45 frame=getframe ( gcf ) ; wr i teV ideo ( v , frame ) ;
46 end

Listing: Node Generation

1 f u n c t i o n [ x , y , z ,N] = Node_Generation (Random)
2 i f Random == 0
3 N = 8; %# Number o f po in t s
4 x = rand (1 ,N) ; %# A set o f random x values
5 y = rand (1 ,N) ; %# A set o f random y values
6 z = rand (1 ,N) ; %# A set o f random z values
7 else
8 Rx=20;Ry=20;RZ=60;
9 Del tax =20; Del tay =20; Del taz =30;

10 xmin = 0 . ; ymin = 0 . ; zmin = 0 . ;
11 nx=round (Rx / Del tax ) +1; ny=round (Rx / Del tay ) +1; nz=round (Rx / Del taz ) +1;
12 N=0;
13 f o r i x =1: nx
14 f o r i y =1: ny
15 f o r i z =1: nz
16 N=N+1;
17 x (N) =xmin +( ix −1) * Del tax ;
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18 y (N) =ymin +( iy −1) * Del tay ;
19 z (N) =zmin +( iz −1) * Del taz ;
20 end
21 end
22 end
23 end
24 end

Listing: Plot Mesh

1 f u n c t i o n PlotMesh ( x , y , z , lnods , nelem , step )
2 f i g u r e
3 p lo t3 ( x , y , z , ’ * ’ ) ; % May omit
4 hold on
5 N=s ize ( x , 2 ) ;
6 f o r i =1:N
7 t e x t ( x ( i ) , y ( i ) , z ( i ) , num2str ( i ) , ’ Color ’ , ’ red ’ , ’ FontSize ’ ,14) ;
8 end
9 hold on

10 %
11 f o r i e =1: nelem
12 X=[ x ( lnods ( ie , 1 ) ) x ( lnods ( ie , 2 ) ) ] ; Xc=mean(X) ;
13 Y=[ y ( lnods ( ie , 1 ) ) y ( lnods ( ie , 2 ) ) ] ; Yc=mean(Y) ;
14 Z=[ z ( lnods ( ie , 1 ) ) z ( lnods ( ie , 2 ) ) ] ; Zc=mean(Z) ;
15 p lo t3 (X,Y, Z ) ;
16 t e x t ( Xc , Yc , Zc , num2str ( i e ) , ’ FontSize ’ ,10)
17 hold on
18 end
19 t i t l e ( [ ’ Step # : ’ num2str ( step ) ] ) ;
20 pbaspect ( [ 1 1 1 ] ) ; g r i d minor ; view ( −36 ,24) ;
21 %%%%%%%%%%%%%%%%%%%%%%%
22 %========================
23 %% Save p l o t
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24 % =====================
25 GS = ’ c : / Program F i l e s / gs / gs9 . 1 0 / b in / gswin64 . exe ’ ;
26 set ( gcf , ’ PaperPositionMode ’ , ’ auto ’ ) ;
27 FileName =[ ’ . / F igs / Mesh−No− ’ num2str ( step ) ’ . eps ’ ] ;
28 p r i n t ( FileName , ’−depsc ’ ) ;
29 eps2pdf ( FileName ,GS, 0 ) ;
30 end

Listing: Delete Nodes?

1 f u n c t i o n Del_Nodes= Check_Lonely ( NodesOut , lnods , min_elem , v )
2 % f o r each of the two nodes connected to the dele ted element , f i n d out how
3 % many remaining elements are s t i l l connected to them
4 Del_Nodes =0;
5 f o r i =1:2
6 x=sum( lnods ( : , : ) ==NodesOut ( i ) ) ;
7 n ( i ) =x ( 1 ) +x ( 2 ) ;
8 i f n ( i ) <min_elem
9 s t r g =[ ’Number o f elements connected to node ’ num2str ( NodesOut ( i ) ) . . .

10 ’ dropped below minimum ( ’ num2str ( min_elem ) ’ ) ’ ] ;
11 e r r o r d l g ( s t rg , ’END EXECUTION ’ ) ;
12 % frame=getframe ( gcf ) ; wr i teV ideo ( v , frame ) ;
13 % close ( v ) ;
14 stop
15 Del_Nodes=n ( i ) ;
16 end
17 end
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Introduction

So far, load was fix, and we made no distinction between fixed (dead) load, and variable
load (live).

Since a variable/Live load can move, a key question is how would a reaction or an internal
force at a given point be affected by the positioning of the live load.

Hence, we introduce the concept of Influence line
An influence line is a diagram whose ordinates, which is plotted as a function of dis-
tance along the span, give the same internal force, a reaction, or a displacement at a
particular point in a structure as unit load moves across the structure.

This will facilitate placement of load to maximize an internal force (shear, or moment).

Mathematically, an influence line can be described as ILij where IL is the quantity of interest
(again, reaction, shear or moment) at degree of freedom i due to a unit load at degree of
freedom j .
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Procedure

For statically determinate structures, IL will consist of only straight line segments between
critical ordinate values.

IL for a shear force at a given location will contain a translational discontinuity at this
location. The summation of the positive and negative shear forces at this location is equal to
unity.

Except at an internal hinge location, the slope to the shear force IL will be the same on each
side of the critical section since the bending moment is continuous at the critical section.

Likewise, IL for a bending moment will contain a unit rotational discontinuity at the point
where the bending moment is being evaluated.

Two methods:

Equilibrium: Write an equation for the function being determined, e.g., the equation for
the shear, moment, or axial force induced at a point due to the application
of a unit load at any other location on the structure.

Müller Breslau Principle to draw qualitative influence lines, which are directly proportional
to the actual influence line.

Victor E. Saouma; Univ. of Colorado Influence Lines 4/12



Example: Simply supported beam Influence Lines for Reactions

A downward concentrated load of magnitude 1 unit moves from A to B across the simply
supported beam AB as shown below. Draw influence lines for reactions at A and B, and for shear
and moment at C.

x

A B

RA RB

1.0

1.0

1.0

Equilibrium

�MB = 0

RAL = 1.(L − x)

⇒ RAx = 1 −
x
L

Linear equation in x for the reaction.
Likewise

�MA = 0

RBL = 1.0x

⇒ RBx =
x
L

Victor E. Saouma; Univ. of Colorado Influence Lines 5/12



Example: Simply supported beam Influence Lines for Shear

x

A C

RA

1.0

VC

A B

RA RB

1.0

b

VC

C

b/L

a/L

Influence Line for Shear at C
Segment AC ���∑

MB = 0

⇒ RA(L)− (L − x)(1) = 0

⇒ RA = 1 −
x
L

V at C due to unit load at x (left of C) = V−
Cx

= RA − 1.0

=
(

1 −
x
L

)
− 1.0

= −
x
L

When x = 0, VCA = 0, and when x = a (just before point
C), VCC = −a/L Unit load is beyond the segment AC

V+Cx = RA

= 1 −
x
L

When x = a (just after point C),
VCC = 1 − a/L = (L − a)/L = b/L and when x = L,
VCB = 1 − L/L = 0
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Example: Simply supported beam Influence Lines for Moment

x

A

C

RA

1.0

MC

A B

RA RB

1.0

b

MC

C

ab/L

segment AC

M−
Cx = aRA − 1.0(a − x)

= a
(

1 −
x
L

)
− (a − x)

= a −
ax
L

− a+ x = −
ax
L
+ x

When x = 0, MCx = 0, and when x = a (just
just before point C),

MCC = −a2/L+ a

= (−a2 + aL)/L

= a(L − a)/L

= ab/L

Unit load is beyond the segment AC

M+Cx = aRA = a(1 −
x
L
) = a −

ax
L

When x = a (just after point C),

MCC = a − a2/L

= (aL − a2)/L

= a(L − a)/L

= ab/L

and when x = L,

MCB = a − aL/L

= a − a

= 0
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Example: SSB with overhangs

RA RBb

C

L

ab/L

-a/L

b/L

D EBA

1.0

1.0

1.0

IL for MC

IL for VC

IL for RB

IL for RA
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Müller-Breslau Principle Maxwell-Betti Reciprocal Theorem

f11
f21 f12

f22

1 2 1 2

Q=1 P=1

System 1 System 2

Recall that fi j , i.e.displacement at i due to a unit force at j : 1.�i =
∫
δM i

Mi
EI dx

Displacement at dof i due to a unit force at j is: fi j =
∫
δM i

Mj
EI dx

Displacement at dof j due to a unit force at i : fj i =
∫
δM j

Mi
EI dx

Both virtual loads and real loads are unit: fi j = fj i

Which is Maxwell-Betti’s reciprocal theorem for a linear elastic structure subject to two sets
of forces P and Q the work done by the set P through the displacements produced by the
set Q is equal to the work done by the set Q through the displacements produced by the set
P.
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Müller-Breslau Principle Derivation; Müller-Breslau Principle

Revisit the MBRT the virtual work done by the forces in System 1 going through the
corresponding displacements in System 2 should be equal to the virtual work done by the
forces in System 2 going through the corresponding displacements in System 1.

“Trick” the problem, and consider the following two systems:

ΔA =1PC=1

A B

Δ C

A BRA

CC

System 1 System 2

where the unit force PC may be “traveling” between A and B (i.e analogous to the moving
unit load which will generate the corresponding reaction at A), and apply the MBRT

PC︸︷︷︸
1

�C = RA �A︸︷︷︸
1

⇒ �C = RA

Hence, the displacement at C is equal to the reaction at A. This is the Müller-Breslau
theorem: The influence line for any reaction or internal force corresponds to the deflected
shape of the structure produced by removing the capacity of the structure to carry that force
and then introducing into the modified (or released) structure a unit deformation
corresponding to the restrained removed.
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Müller-Breslau Principle Application: Shear IL

Δ
C
APD=1

A B

Δ D
A BRA

C

C

System 1 System 2

D

Δ
 C

A
MC D

Δ
C
B

Δ
 C

B

Δ CA

Δ CB

MC

Apply a shear release (but not moment) at C

From Maxwell-Betti (as before)

(PD)︸ ︷︷ ︸
1

�D = VC (�CA +�CB)︸ ︷︷ ︸
1

⇒ �D = VC

Thus, the deflected shape in System 2 represents the influence line for shear force VC .
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Müller-Breslau Principle Application: Moment IL

PD=1

A B

Δ D

A BRA

CC

System 1 System 2

D

VC θCB

D

θCBθCA

θCA +θCB =1 
θCA

Apply a moment (but not shear) release at C

From Maxwell-Betti (as before)

(PD)︸ ︷︷ ︸
1

�D = MC (θCA + θCB)︸ ︷︷ ︸
1

⇒ �D = MC

Thus, the deflected shape in System 2 represents the influence line for moment MC .
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ASD

C: Capacity; and D Demand.

In the Allowable Stress Design (ASD) method, we simply impose

D <
C

SF

where SF is a safety factor (∼ 1.5− 2)

In this approach only capacity is reduced (because of uncertainties), we are
implicitly assuming that demand is purely deterministic.

Victor E. Saouma; Univ. of Colorado Introduction 3/10



LRFD Key Concepts

Both Capacity and Demand in the Load and Resistance Factor Design are
considered to be random variables with their own probability distribution
functions.

There is a probability of failure.

Load will be multiplied by a factor α, (ASCE-7-10) and we shall consider the
ultimate resistance (reduced by �)

We will assign α and � such that the probability of failure does not exceed a
certain value.

LRFD is generally expressed as

�Cn ≥ �αiDi (1)

where Cn and D are the nominal capacity and demands (or nominal resistance
and load).

Limit state is generally determined from Plastic capacity without a nonlinear
analysis.
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LRFD Key Concepts

LRFD seeks to have a Reliability Index such that β >∼ 3.5. The Reliability Index
is a “universal” indicator on the adequacy of a structure, and can be used as a
metric to 1) assess the health of a structure, and 2) compare different structures
targeted for possible remediation.
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LRFD Reliability Index

Capacity C and demand D are both random variables (usually assumed to be
normal, though a log-normal may be prefereable in some instances).

0 100 200 300 400 500
Tensile stress [psi]

0

0.002

0.004

0.006

0.008
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0.012
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Capacity;  = 300;  = 50
Demand;  = 150;  = 30

Probability of failure=0.0585 or 1/17

Note area under each curve is 1.;

In the shaded areea, C < D.
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LRFD Reliability Index

Two approaches to determine β depending on how is the safety margin
computed.

M = C − D

µM = µC − µD

σM =
√
σ2

C + σ2
D

β =
µM

σM

=
µC − µD√
σ2

C + σ2
D

M = lnC − lnD

µM = µC − µD First order

σM =

√
σ2

C

µ2
C

+
σ2

D

µ2
D
=
√

V 2
C + V 2

D

β =
µM

σM
=

lnµC − lnµD√
V 2

C + V 2
D

=
lnµC/µD√

V 2
C + V 2

D
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LRFD Reliability Index
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μ

ln(C/D)

Failure
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LRFD Reliability Index

β is selected to reflect failure consequences

Type of Load/Member β

AISC
DL + LL; Members 3.0
DL + LL; Connections 4.5
DL + LL + WL; Members 3.5
DL + LL +EL; Members 1.75

ACI
Ductile Failure 3-3.5
Brittle Failures 3.5-4

The probability of failure Pf is equal to the ratio of the shaded area to the total area
under the curve and is given by �(−β) where � is the standard normal cumulative
probability function

�(x) =
1√
2π

∫ x

−∞
e−t2/2dt =

1
2

[
1 + erf

(
x√
2

)]
(2)

Target values for β
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LRFD Reliability Index
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Title & Objectives

Different titles could be given to the course

Matrix Structural Analysis.

Analysis of Framed Structures.

Finite Element I.

Intermediary Structural Analysis.

Objectives

Consolidate basic understanding of structural analysis/behaviour and introduce
analysis techniques which will be used professionally.

Examine interaction between analysis and design.

Good understanding of the underpinning of the finite element method as applied
to framed structures. Brief exposure to dynamic and nonlinear analysis.
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Why Matrix Structural Analysis?

Early constructions, rules of thumbs, Vitruvius, Gothic cathedrals.

Father of experimental mechanics Galileo.

Mathematics → Mechanics (18th century, mostly French) → Structural analysis
(19th century, mostly German and American) → finite element or computer
based analysis (20th century, American).

Slide rule + Moment distribution led to the design of many structures
(skyscrapers in NY).

Advent of stiffness method in late 60s (coming from aerospace) and rise of the
finite element method.

Not much has changed since then in terms of core method for linear analysis,
mostly refinements for nonlinear analysis and parallel computation.

Great improvements in (Graphical) user interfaces: punched cards → separate
tools for drawing (AutoCad) and Analysis (Sap) → integrated tools for
architectural modeling and structural analysis (Revit) with realistic rendering.

Rather than focusing on how to use these codes, the course will focus on what is
inside the core of theses codes.

Emphasis will be on theory (80%), programming (10%), and modeling (10%)
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Structural Analysis

Physical 
Problem
Definition

Data Gathering

Compromise, 
Refine Model

Project 
Assignment

Conceptual 
Model

Preliminary
Report

No Feasible

Software SelectionPreliminary 
Analyses

1st 
Assessment

Data Mining
Final
Report

2nd 
Assessment

Good

Fine Grained

NG

FEA

Problem Definition

Final Evaluation

Mathematical  
Model

NG

Correct Errors

YES

Analyses

OK

Mathematical 
Model

There are three phases in computational structural analysis:

1 Modeling
2 Number Crunching
3 Interpretation
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Overview of Structural Analysis

In practice Modeling and interpretation are the most important, yet this
course will focus more on the number crunching part (with some lectures
on the other two).

Early on, it was easy to develop a feel for a structural behavior using
hand calculation (such as the moment distribution).

It has been argued that this is no longer possible with computers. This is
not correct.
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Overview of Structural Analysis

Structural analysis must take into consideration

1 Load (static or dynamic). When the frequency of the applied load
(excitation) of a structure is less than about a third of its lowest natural
frequency of vibration, then we can neglect inertia effects and treat the
problem as a quasi-static one, otherwise a dynamic analysis must be
performed.

2 Structure model
1 Global geometry

small deformation (ε = ∂u
∂x

)
large deformation:

Material level: εx =
du
dx +

1
2

(
dv
dx

)2
+ 1

2

(
dw
dx

)2

Structural level P-� effects
2 Structural elements element types:

1D framework (truss, beam, columns)
2D finite element (plane stress, plane strain, axisymmetric, plate or shell
elements)
3D finite element (solid elements)

3 Material Properties: linear (steel), nonlinear (concrete).
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Overview of Structural Analysis

4 Sectional properties: constant v.s. variable
5 Structural connections: rigid, semi-flexible (linear or nonlinear)
6 Structural supports: rigid, semi-rigid/spring.
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Requirements

Structural design must satisfy:

1 Strength (σ < σf )

2 Stiffness (“small” deformations)

3 Stability (buckling, cracking)

Structural analysis must satisfy

1 Statics (equilibrium)

2 Constitutive relation (stress-strain or force displacement relations)

3 Kinematics (compatibility of displacement or strains)

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Introduction 7/12



From Stresses to Forces

Internal Forces (for flexure)
In Structural Mechanics (or Mechanics of Materials), emphasis has
been on the stress and strain tensors, it is often more convenient to
operate on the resultant forces in structural engineering.

Engineering Theories

Instead of solving for the stress components throughout the body, we
solve for certain stress resultants (normal, shear forces, and Moments
and torsions) resulting from an integration over the body.
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From Stresses to Forces Definitions

Internal Forces
Resultants per unit width

τyz τyx
τxy

τxz

σyy

σxx

X

Y

Z

N.A

t/2

t/2
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From Stresses to Forces Definitions

N =

∫ t
2

− t
2

σdz (1)

Nxx =

∫ t
2

− t
2

σxx dz; Nyy =

∫ t
2

− t
2

σyy dz; Nxy =

∫ t
2

− t
2

σxy dz; (2)

M =

∫ t
2

− t
2

σzdz; (3)

Mxx =

∫ t
2

− t
2

σxx zdz; Myy =

∫ t
2

− t
2

σyy zdz; Mxy =

∫ t
2

− t
2

σxy zdz (4)

V =

∫ t
2

− t
2

τdz (5)

Vx =

∫ t
2

− t
2

τxzdz; Vy =

∫ t
2

− t
2

τyzdz (6)

In plate theory, we ignore membrane forces, those will be accounted
for in shells.
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From Stresses to Forces Specific to Structural Component Type

w

n MS

MW VW

N VS

S

T
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y

x

O
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Vz

z

θ 

Tθ 

Vy
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Nx
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z Mz

Vy
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Tx

2D Grid, x-y-z
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From Stresses to Forces Specific to Structural Component Type

Cartesian
Forces Moments

x y z x y z
Beam Vy Mz

2D Frame Nx Vy Mz

Grid Vz Tx My

3D Frame Nx Vy Vz Tx My Mz

Polar
Forces Moments

r θ z r θ z
Arch Vr Nθ Mz

Curved Beam Vz Mr Tθ
Curved
Forces Moments

n s w n s w
Curved Nn Vs Vw Tn Ms Mw
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Title & Objectives

In structural analysis an influence coefficient Cij is the effect on d.o.f. i of a unit
action at d.o.f. j for an individual element or a whole structure.

It is indeed a tensor of order 2.

Unit Action Effect on
Influence Line Load Shear
Influence Line Load Moment
Influence Line Load Deflection
Stress σij traction tj face i
Flexibility Coefficient dij Force j Displacement i
Stiffness Coefficient kij Displacement j Force i

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Element Stiffness Matrix 4/55



Flexibility Matrix Example Flexibility Example

We seek to determine the flexibility matrix for the following statically determinate
beam.

The flexibility matrix here would be a 2 × 2, and each term dij corresponds to the
displacement at degree of freedom i due to a unit force at degree of freedom j .

We have here two DOF corresponding to the rotations at each end.

θ11

1 2

L X

M(x) | δM(x)

θ211

θ22

θ12 1M1

M2 -1+x/L

x/L

θij rotation at dof i, due to moment at dof j 
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Flexibility Matrix Example Flexibility Example

The force displacement relationship is now expressed as{
θ1

θ2

}
=

[
d11 d12

d21 d22

]{
M1

M2

}
(1)

where Mi correspond to the externally applied moments, di j = θi j , and θi to the
corresponding unknown rotations at dof i due to a moment at dof j .

Using the complementary virtual work, or more specifically, the virtual force
method to analyze this problem, :

di j =

∫ l

0
δM(x)i

M(x)j

EIz
dx︸ ︷︷ ︸

Internal

= δP i �j + δM i θj︸ ︷︷ ︸
External

(2)

where δM(x), M(x)
EIz

, δP and � are the virtual internal force, real internal
displacement, virtual external load, and real external displacement respectively.

Here, both the external virtual force and moment are usually taken as unity.
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Flexibility Matrix Example Flexibility Example

Recall of the derivation of the virtual force:

δU =

∫
δσx εx dvol

δσx = δMx y
I

εx = σx
E = My

EI∫
y2dA = I

dvol = dAdx


δU =

∫ L

0
δM

M
EI

dx

δW = δP�
δU = δW



∫ L

0
δM

M
EI

dx = δP�

(3)

Hence:

EI 1︸︷︷︸
δM

d11︸︷︷︸
�

=

∫ L

0

(
−1 +

x
L

)
︸ ︷︷ ︸

δM(x)

(
−1 +

x
L

)
︸ ︷︷ ︸

M(x)

dx =
L
3

(4)
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Flexibility Matrix Example Flexibility Example

Similarly, we would obtain:

EId22 =

∫ L

0

(x
L

)2
dx =

L
3

(5)

EId12 =

∫ L

0

(
−1 +

x
L

) x
L

dx = −L
6

= EId21 (6)

Those results can be summarized in a matrix form as:

[d] =
L

6EIz

[
2 −1

−1 2

]
(7)

and we could then solve for the displacements (rotations) due to the external
moments.
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Stiffness Coefficients Introduction

In the flexibility method, we made a structure statically determinate.

In the stiffness method we make the structure (element or entire
structure) kinematically determinate by

1 Constraining all the degrees of freedom

{p} = [k]{δ} (8)

ki jwill correspond to the reaction at dof i due to a unit deformation
(translation or rotation) at dof j .

Flexibility: displacements in terms of the externally applied forces
(�(F)). Derived for a structure.

Stiffness: (internal) forces in terms of the externally imposed
displacements (F(�)). Derived first for elements, and then those are
combined for a structure.
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Stiffness Coefficients Element Stiffness Coefficients; General

We seek to determine forces (reactions) due an externally applied unit
displacement.

All forces and displacements are shown in the positive direction.

Once we determine all the kij coefficients, we could then easily
assemble the element stiffness matrix.
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Stiffness Coefficients Element Stiffness Coefficients; General

2D Frame, x-y-z

x
y

z Mz

Vy

Nx

1
2

3
4

56

2D Truss 
x

x
y

Nx

1 2

k25 k55

k35

k26

k36

k x5

k45

k65

k15

k64k14

k x4

k24
k34 k54

k44

k x6

k16

k56

k46
k66

k22

k32

k42
k62

k23

k43
k63k33

k x2 k x3

k12

k52

k13

k53

k11 k41

k21

k31

k51

k61

k x1

Truss

k11
k21 k22k12

1 1k x1
k x2

k13 k33

k43k23

1

k14

k24

k34

k44

k x3 k x4

1

k11

k21

k31

k41

1

1

k12 k32

k42k22

k x1 k x2

Vy

Mz

1D Beam, x-y-z

x
y

z 1

2

34
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Stiffness Coefficients Big Picture

1 Currently, we are seeking to determine the element stiffness matrix of an
individual element in local coordinate syatem ke (x axis aligned with the
member).

2 This element stiffness matrix of an element will be transformed to Ke through the
transformation matrix Ke = �Tke� from the local to the global coordinate syatem.

3 Finally, we will assemble the global stiffness matrix of a structure in the global
coordinate system KS =

∑e=nelem
e=1 Ke

θ3

Δ1

Δ2

A B

C
X

Y

1
K12

K32

K22

X

Y

k22

x

y

1
k12

k32

?

θ

Note local coordinate system (x − y ) and global coordinate system (X − Y ).
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Stiffness Coefficients Axial

σ = Eϵ ⇒ Aσ︸︷︷︸
P

=
AE
L︸︷︷︸

kaxial

�︸︷︷︸
1

(9)

Hence, for a unit displacement, the applied force should be equal to AE
L . From statics,

the force at the other end must be equal and opposite.
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Stiffness Coefficients Flexural

1 2
v1

√

θ1
√

θ2
√v2

√
M1

? V1
 ?

M2
?

V2
?

1 2

Objective: solve for forces in terms of known displacements in a beam: Four
unknowns forces (V ?

1 ,V
?
2 , M?

1 and M?
2 ) in terms of four known displacements

(v
√

1 , v
√

2 , θ
√

1 and θ
√

2 )

V ?
1 = V ?

1 (v
√

1 , θ
√

1 , v
√

2 , θ
√

2 ) M?
1 = M?

1 (v
√

1 , θ
√

1 , v
√

2 , θ
√

2 )

V ?
2 = V ?

2 (v
√

1 , θ
√

1 , v
√

2 , θ
√

2 ) M?
2 = M?

2 (v
√

1 , θ
√

1 , v
√

2 , θ
√

2 )
(10)

Four unknowns, need four equations. Two provided by the second order linear
differential equation governing flexure, and two from the two equations of
equilibrium.
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Stiffness Coefficients Flexural

p(x)

M1
?

V1
 ?

M2
?

V2
?v2

√
v1

√

θ1
√

θ2
√

1 2
x

M1
?

V1
 ? v1

√

θ1
√

1
x

p(x) M(x)=M1-V1x+m(x)

p(x)

A. Differential equation

M = −EI
d2v
dx2︸ ︷︷ ︸

Diff Eq.

= M?
1 − V ?

1 x + m(x)︸ ︷︷ ︸
Statics

(11)
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Stiffness Coefficients Flexural

m(x) moment due to applied load q(x) at section x (for uniformly distributed
load: m(x) = − 1

2 wx2)

Integrating twice

−EIv ′ = M?
1 x − 1

2
V ?

1 x2 + f (x) + C1 (12)

−EIv =
1
2

M?
1 x2 − 1

6
V ?

1 x3 + g(x) + C1x + C2 (13)

where f (x) =
∫

m(x)dx , and g(x) =
∫

f (x)dx .

Boundary conditions at x = 0

v ′ = θ
√

1

v = v
√

1

}
⇒

{
C1 = −EIθ

√

1

C2 = −EIv
√

1

(14)

Boundary conditions at x = L and combining with C1 and C2

v ′ = θ
√

2

v = v
√

2

}
⇒

{
−EIθ

√

2 = M?
1 L − 1

2 V ?
1 L2 + f (L)− EIθ

√

1

−EIv
√

2 = 1
2 M?

1 L2 − 1
6 V ?

1 L3 + g(L)− EIθ
√

1 L − EIv
√

1

(15)
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Stiffness Coefficients Flexural

Though we could solve for M?
1 and V ?

1 in terms of v
√

1 , v
√

2 , θ
√

1 and θ
√

2 , we
proceed with

B. Equilibrium

V ?
1 + P + V ?

2 = 0 M?
1 − V ?

1 L + m(L) + M?
2 = 0 (16)

where P =
∫ L

0 p(x)dx ,

thus

V ?
1 =

(M?
1 + M?

2 )

L
+

1
L

m(L) V ?
2 = −(V ?

1 + P) (17)

Substituting V1 into θ2 and v2 (Eq. 15){
M?

1 − M?
2 = 2EIz

L θ
√

1 + 2EIz
L θ

√

2 + m(L)− 2
L f (L)

2M?
1 − M?

2 = 6EIz
L θ

√

1 − 6EIz
L2 v

√

1 − 6EIz
L2 v

√

2 + m(L)− 6
L2 g(L)

(18)
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Stiffness Coefficients Flexural

Solve for the moments

M1 =
2EIz

L

(
2θ

√

1 + θ
√

2

)
− 6EIz

L2

(
v
√

2 − v
√

1

)
︸ ︷︷ ︸

I

+ MF
1︸︷︷︸

II

(19)

M2 =
2EIz

L

(
θ
√

1 + 2θ
√

2

)
− 6EIz

L2

(
v
√

2 − v
√

1

)
︸ ︷︷ ︸

I

+ MF
2︸︷︷︸

II

(20)

where

MF
1 =

2
L2 [Lf (L)− 3g(L)] (21)

MF
2 = − 1

L2

[
L2m(L)− 4Lf (L) + 6g(L)

]
(22)

MF
1 and MF

2 are the fixed end moments for θ1 = θ2 = 0 and v1 = v2 = 0.

In Eq. 19 and 20 we observe that the moments developed at the end of a
member are caused by: I) end rotation and displacements; and II) fixed end
members.
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Stiffness Coefficients Flexural

We can substitute those expressions in Eq. 17 and solve for the shear forces:

V1 =
6EIz
L2

(
θ
√

1 + θ
√

2

)
− 12EIz

L3

(
v
√

2 − v
√

1

)
︸ ︷︷ ︸

I

+ V F
1︸︷︷︸

II

(23)

V2 = −6EIz
L2

(
θ
√

1 + θ
√

2

)
+

12EIz
L3

(
v
√

2 − v
√

1

)
︸ ︷︷ ︸

I

+ V F
2︸︷︷︸

II

(24)

where

V F
1 =

6
L3 [Lf (L)− 2g(L)] (25)

V F
2 = −

[
6
L3 [Lf (L)− 2g(L)]+ q

]
(26)

The end shear and moments are in terms of v2 − v1 which is the “drift”
sometimes denoted by 	.

It is very important to note that the derived equations are based on:

1 Equilibrium
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Stiffness Coefficients Flexural

2 Stress-strain
3 Compatibility

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Element Stiffness Matrix 20/55



Stiffness Coefficients Torsional

Torsion causes twisting and warping. Two types of Torsion:

St Venant/Constant torsion If the member is allowed to warp freely, then the
applied torque is resisted solely by St Venant shearing stresses: pure or uniform
torsion.

Non-Uniform if the member is restrained from warping freely, the applied torque
is resisted by a combination of St Venant shearing stresses and warping torsion.
All cross-sections will warp out of plane except circular ones.

R

dx T

A

B

D
O

d

max

max

ρ R

Equilibrium Kinematic

Fixed end
Clockwise rotation, D 

rotates to B

Determine torque T required to impose a unit rotation �
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Stiffness Coefficients Torsional

Assuming a linear elastic material, and a linear strain (and thus stress)
distribution along the radius of a circular cross section subjected to torsional
load:

From Equilibrium (Internal torsion must be equal and opposite to external
torsion)

Text =

∫
A

ρ

R
τmax︸ ︷︷ ︸

stress

dA︸︷︷︸
area︸ ︷︷ ︸

Shear Force

ρ︸︷︷︸
arm

︸ ︷︷ ︸
Tint

=
τmax

R

∫
A
ρ2dA︸ ︷︷ ︸
J

⇒ τmax =
TR
J

(27)

Note analogy with σ = Mc
Iz

.
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Stiffness Coefficients Torsional∫
A
ρ2dA is the polar moment of inertia J (St Venant’s torsion constant). For

circular cross sections

J =

∫
A
ρ2dA =

∫ R

0
ρ2 2πρ︸︷︷︸

C

dρ =
πR4

2
=

πD4

32
(28)

where C is the circumference at radius ρ.

For rectangular sections b×d , and b < d , an approximate expression is given by

J ≃ kb3d (29)

k ≃ 0.3

1 +
( b

d

)2 (30)

Kinematics: We have a relation between torsion and shear stress, we now seek
a relation between torsion and torsional rotation. we consider the arc length BD

γmax dx = d�R ⇒ d�
dx = γmax

R
Stress-strain γmax = τmax

G

}
d�
dx = τmax

GR
τmax = TR

J

 d�
dx

=
T

GJ
(31)

CORRECT BOOK, REPLACE C BY R
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Stiffness Coefficients Torsional

Integrating
∫

Tdx =

∫
GJd� and obtain:

T =
GJ
L
� (32)

Note the similarity between this equation and Equation 9 (P = AE
L �)
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Stiffness Coefficients Shear; Intro

In general, shear deformations are quite small. However, for beams with low
span to depth ratio, those deformations can not be neglected.

Bernouilli Beam, we do not account for shear deformation, plane section
remains plane.
Timoshenko beam accounts for shear deformation.

Objective: Determine shear deformation
(no flexure) and its impact on stiffness
coefficients.

vs

Pure shear deformation (no flexure)

Coverage

1 Review

2 Shear coefficient

3 Example: Deflection cantilevered
beam

4 Shear Factor

5 Shear deformation

Translation
Rotation
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Stiffness Coefficients Shear: Review; (τ(y ))

dvs

τ

τ
γ

τ

y

xdx

dy

γ

τ

linear elastic material, shear strain (small
displacement, i.e. tanγ ≈ γ)

tanγ ≈ γ =
dvs

dx︸︷︷︸
Kinematics

=
τ

G︸︷︷︸
Stress-strain

(33)

dvs
dx slope of the beam neutral axis wrt
horizontal,vertical sections remain
undeformed, G shear modulus, τ shear
stress, vs shear induced displacement.

In general (Equilibrium)

τ(y) =
VQ(y)

Ib
(34)

V shear force, Q first moment (or static moment) about neutral axis of the
portion of the cross-sectional area outside of the section where the shear stress
is to be determined, I moment of inertia, b width.
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Stiffness Coefficients Shear Coefficient

yy'

b

h/2
dy'

NA

V/bh

1.
5 

V
/b

h

Define shear coefficient αs as the ratio of the
shear stress at the neutral axis τ(y = 0) to
the average shear stress (τ = V/bh).

τ(y) =
VQ(y)

Ib
(35)

=
1
Ib

∫ h/2

y
V bdy ′︸ ︷︷ ︸

dA︸ ︷︷ ︸
dF

y ′

︸ ︷︷ ︸
dM

=
V
2I

(
h2

4
− y2

)

=
6V
bh3

(
h2

4
− y2

)
(36)

Shear stress is zero for y = h/2 and maximum at the neutral axis where (y = 0
and τmax = 1.5 V

bh ). ⇒ αs = 1.5
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Stiffness Coefficients Deflection Cantilevered Beam

Consider a cantilevered (rectangular bxh) beam subjected to a point load P at its
free end.

From the principle of complementary virtual work (and noting that δM = (1)x ,
M = Px , δτ = 1, and τ is given by Eq. 36):

(1)� =

∫ L

0
δM

M
EI

dx︸ ︷︷ ︸
Flexure

+

∫
Vol

δτ
τ

G
dVol︸ ︷︷ ︸

Shear

=

∫ L

0
x

Px
EI

dx +
1
G

∫ h/2

−h/2
(1)︸︷︷︸
δτ

{
P
2I

[(
h
2

)2

− y2

]}
︸ ︷︷ ︸

τ

Lbdy︸ ︷︷ ︸
dVol

=
PL3

3EI︸︷︷︸
�flex

+
6
5

PL
AG︸ ︷︷ ︸
vs

(37)

� =
PL3

3EI

(
1 +

3E
10G

(
h
L

)2
)

(38)
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Stiffness Coefficients Deflection Cantilevered Beam

for E/G = 2.5 (typical value for steel), � = EI
(

1 + 0.75
( h

L

)2
)
�flex

For L = h total deflection is 1.75 times the one due to flexure only.

For L = 10h the deflection due to shear is less than 1% of �felx .
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Stiffness Coefficients Shear Factor

Just as we had σ = P/A, can we assume τ = V/A? NO

Normalizing the shear force V by A (τ = V/A, just like σ = P/A) is incorrect
since the shear stress is not uniformly distributed along the depth, hence we
define τ

def
= V/As, where As

def
= A

λs
is the effective cross section for shear. We

seek to determine λs, the shear factor

To determine λs we are going to equate the average shear strain energy U

Uaver =

∫ L

0

V 2

2GAs
dx = λ?s

∫ L

0

V 2

2GA
dx (39)

to the exact one determined from the actual shear stress distribution

Uexact =
1
2

∫



γ Gγ︸︷︷︸
τ

d
 =

∫



τ2

2G
d
 =

∫ ∫ ∫
τ2

2G
dxdydz (40)

Note that in structural mechanics 
 represents a volume, and � (or δ
) the
corresponding surface.
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Stiffness Coefficients Shear Factor

Starting with the exact expression of the shear stress

τ(y) =
VQ(y)

Ib
; Q(y) =

∫ h/2

y
by ′dy ′ =

b
2

(
h2

4
− y2

)
(41)

Substituting into Eq. 40 to determine the exact strain energy.

Uexact =

∫ L

0

[∫ b

0

∫ h/2

−h/2

V 2

8GI2

(
h2

4
− y2

)2

dydz

]
dx (42)

=

∫ L

0

V 2b
8GI2

[∫ h/2

−h/2

(
h4

16
− h2y2

2
+ y4

)
dy

]
dx (43)

=

∫ L

0

V 2b
8GI2

[
h4y
16

− h2y3

6
+

y5

5

]h/2

−h/2
dx (44)

=

∫ L

0

V 2bh5

240GI2 dx (45)
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Stiffness Coefficients Shear Factor

For a rectangular section I = bh3/12

Uexact =
3
5

∫ L

0

V 2

GA
dx =

6
5︸︷︷︸

1.2

∫ L

0

V 2

2GA
dx (46)

Comparing with Eq. 39, we note that the shear form factor λs = 1.2. Thus
τ = V/As and As = A/1.2

For shear deformation, we thus adopt τ = V/As and from Eq. 33 we obtain

tanγ ≃ γ =
dvs

dx
=

V
GAs

=
λsV
AG

(47)

Note analogy with ε = du
dx = P

AE
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Stiffness Coefficients Shear Deformation vs

The shear deformation for a beam clamped at one end subjected to a point load
at the other (as in th definition of a stiffness coefficient term) will be determined
next.

From above,
∫

dvs =

∫
V

GAs
dx . Assuming V to be constant, integrate Eq. 47

vs =
V

GAs
x + C1 (48)

If the displacement vs is zero at the opposite end of the beam, then
C1 = − V

GAs
(x − L) and

vs =
V

GAs
(x − L) (49)

At x = 0
vs =

V
GAs

L (50)
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Stiffness Coefficients Shear Deformation; Translation

What is the “parasitic” displacement due to shear deformation when we applied
loads meant to induce unit displacements?

First, arbitrarily define (recall that r =
√

I
A and G = E

2(1+ν)
)

�
def
=

12EI
GAsL2 = 24(1 + ν)

A
As

( r
L

)2
(51)

It will be shown that vs is related to �.

Recall that As = A/λs, then due to a unit vertical translation, the end shear force
is obtained from Eq. 23 and setting v1 = 1 and θ1 = θ2 = v2 = 0, or V = 12EIz

L3 .
At x = 0 we have (Eq. 50)

1 2

6EI

L

2

6EI

L

3

12EI

L

vs

3
12EI
L

vs = VL
GAs

V = 12EIz
L3

}
vs =

12EI
GAsL2︸ ︷︷ ︸

�

(52)

Shear deformation has increased the
total translation from 1 to 1 +�.

Similar arguments apply to the
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Stiffness Coefficients Shear Deformation; Rotation

0.5L

2L
2EI

L

2

6EI

L

4EI

L

6EI Even when a rotation θ1 is applied,
an internal shear force is induced,
and this in turn is going to give rise to
shear deformations (translation)
which must be accounted for.

The shear force is obtained from Eq. 23 and setting θ1 = 1 and
θ2 = v1 = v2 = 0, or V = 6EIz

L2 . At x = 0,

vs = VL
AsG

V = 6EIz
L2

� = 12EI
GAsL2

 vs = 0.5�L (53)

Shear deformation has moved the end of the beam (which was supposed to
have zero translation) down by by 0.5�L.
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Putting it All Together, [k(e)] Introduction

We have now derived all the proper equations relating displacements to forces.

Next we shall define the stiffness matrices of different types of elements based
on the following coordinate system for both 2D and 3D.

Forces Moments
x y z x y z

Beam Vy Mz

2D Frame Nx Vy Mz

Grid Vy Tx Mz

3D Frame Nx Vy Vz Tx My Mz

Recall the definition of the stiffness matrix:
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Putting it All Together, [k(e)] Introduction

kij (row i, column j) is 
the force (or moment) 
in degree of freedom i 
due to a unit 
displacement(or 
translation) in degree 
of freedom j

Fo
rc
es

Displacements

kij 

Identify all the terms that need to be determined
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Putting it All Together, [k(e)] Introduction

Truss
k11

k21 k22k12

1 1k x1
k x2

Vy

Mz

1D Beam, x-y-z

x
y

z 1

2

34

Grid , x-y-z2D Frame, x-y-z

x
y

z Mz

Vy

Nx

1
2

3
4

562D Truss x

x
y

Mz Nx

1 2

k11

k21

k31

k41

1

1

k12 k32

k42k22

k x1 k x2 k13 k33

k43k23

1

k14

k24

k34

k44

k x3 k x4

1

k25

k55

k35 k26
k36

k x5
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k x6
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k56
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k x4 k54
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k63
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k x3

k13

k53

k11 k41

k x1k21
k31 k51k61

k22
k32

k42

k62
k x2

k12

k52

k25 k55

k35

k26

k36

k x5

k45

k65

k15

k64k14

k x4
k24

k34 k54

k44

k x6

k16

k56

k46
k66

k22
k32

k42
k62

k23

k43
k63k33

k x2 k x3

k12

k52

k13

k53

k11 k41

k21

k31
k51

k61

k x1

Vy

Mz

Tx

x
y

z

Δ2 θ1 

θ3 

Δ5  θ4 

θ6 
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Putting it All Together, [k(e)] Truss Element

The truss element (whether in 2D or 3D) has only one degree of
freedom associated with each node. Hence, from Eq. 9, we have

[kt ] =
AE
L

[ u1 u2

p1 1 −1
p2 −1 1

]
(54)
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Putting it All Together, [k(e)] Euler-Bernoulli

Using Equations 19, 20, 23 and 24 we can determine the forces associated with
each unit displacement.

[kb] =


v1y θ1z v2y θ2z

V1y Eq. 23(v1 = 1) Eq. 23(θ1 = 1) Eq. 23(v2 = 1) Eq. 23(θ2 = 1)
M1z Eq. 19(v1 = 1) Eq. 19(θ1 = 1) Eq. 19(v2 = 1) Eq. 19(θ2 = 1)
V2y Eq. 24(v1 = 1) Eq. 24(θ1 = 1) Eq. 24(v2 = 1) Eq. 24(θ2 = 1)
M2z Eq. 20(v1 = 1) Eq. 20(θ1 = 1) Eq. 20(v2 = 1) Eq. 20(θ2 = 1)


(55)

Substituting

[kb] =


v1y θ1z v2y θ2z

V1y
12EIz

L3
6EIz
L2 − 12EIz

L3
6EIz
L2

M1z
6EIz
L2

4EIz
L − 6EIz

L2
2EIz

L

V2y − 12EIz
L3 − 6EIz

L2
12EIz

L3 − 6EIz
L2

M2z
6EIz
L2

2EIz
L − 6EIz

L2
4EIz

L

 (56)

Note row i corresponds to the force in dof i , column j corresponds to the unit
displacement in dof j , intersection will be kij .
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Putting it All Together, [k(e)] 2D Frame Element (a.k.a Beam-Column Element)

k2dfr = kb⋃ kt , Note no coupling between the axial forces and the
shear/moment.

[k2dfr ] =



u1x v1y θ1z u2x v2y θ2z

N1x k t
11 0 0 k t

12 0 0
V1y 0 kb

11 kb
12 0 kb

13 kb
14

M1z 0 kb
21 kb

22 0 kb
23 kb

24

N2x k t
21 0 0 k t

22 0 0
V2y 0 kb

31 kb
32 0 kb

33 kb
34

M2z 0 kb
41 kb

42 0 kb
43 kb

44

 (57)

[k2dfr ] =



u1x v1y θ1z u2x v2y θ2z

N1x
EA
L 0 0 − EA

L 0 0
V1y 0 12EIz

L3
6EIz
L2 0 − 12EIz

L3
6EIz
L2

M1z 0 6EIz
L2

4EIz
L 0 − 6EIz

L2
2EIz

L

N2x −EA
L 0 0 EA

L 0 0
V2y 0 − 12EIz

L3 − 6EIz
L2 0 12EIz

L3 − 6EI
L2

M2z 0 6EIz
L2

2EIz
L 0 − 6EIz

L2
4EIz

L


(58)
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Putting it All Together, [k(e)] Grid Element

Stiffness matrix of the grid element is very analogous to the one ofthe 2D frame
element, except that the axial component is replaced by the torsional one.

[kg ] =



α1x v1y β1z α2x v2y β2z

T1x Eq. 32 0 0 −Eq. 32 0 0
V1y 0 kb

11 kb
12 0 kb

13 kb
14

M1z 0 kb
21 kb

22 0 kb
23 kb

24

T2x −Eq. 32 0 0 Eq. 32 0 0
V2y 0 kb

31 kb
32 0 kb

33 kb
34

M2z 0 kb
41 kb

42 0 kb
43 kb

44

 (59)

Substituting

[kg ] =



α1x v1y β1z α2x v2y β2z

T1x
GIx
L 0 0 −GIx

L 0 0
V1y 0 12EIz

L3
6EIz
L2 0 − 12EIz

L3
6EIz
L2

M1z 0 6EIz
L2

4EIz
L 0 − 6EIz

L2
2EIz

L

T2x −GIx
L 0 0 GIx

L 0 0
V2y 0 − 12EIz

L3 − 6EIz
L2 0 12EIz

L3 − 6EIz
L2

M2z 0 6EIz
L2

2EIz
L 0 − 6EIz

L2
4EIz

L


(60)
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Putting it All Together, [k(e)] 3D Frame Element

y

z

Nx

Tx

V
y M
y

Vz

Mz

1

2

3

4
5

6

7
9

8 11

12

10

x
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Putting it All Together, [k(e)] 3D Frame Element

x

y

z

x

y

z

x

y

z EA

L

x

y

z

x

y

z
x

y

z
x

y

z

x

y

z
x

y

z

x

y

z

x

y

z
x

y

z

u1x v1y w1z

u2x v2y w2z

θ1x θ1y θ1z

θ2x θ2y θ2z

2

6EI

L

y2

6EIy

L


1 EA

L


1

1

1

1

1

1

4EIy

L1

1

1

1

1

2

6EIz

L

2

12EIz

L


2

6EIz

L

2

12EIz

L

2

12EIy

L


2

12EIy

L

2

6EIy

L


2

6EIy

L


GIx

L

GI

L

x


2EIy

L

4EIz

L

2EIz

L

2

6EIz

L

2

6EIz

L


EA

L

EA

L


2

12EIz

L


2

6EIz

L


2

12EIz

L

2

6EIz

L


2

12EIy

L


2

12EIy

L

2

6EIy

L2

6EIy

L

GIx

L

GI

L

x


2

6EI

L

y
2

6EIy

L


4EIy

L2EIy

L

4EIz

L
2EIz

L

2

6EIz

L 2

6EIz

L


x

y

z

x
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Putting it All Together, [k(e)] 3D Frame Element

For [k3D
11 ] and with we obtain:

k3dfr =



u1x v1y w1z θ1x θ1y θ1z u2x v2y w2z θ2x θ2y θ2z

Nx1
EA
l 0 0 0 0 0 −EA

L 0 0 0 0 0
Vy1 0 12EIz

L3 0 0 0 6EIz
L2 0 − 12EIz

L3 0 0 0 6EIz
L2

Vz1 0 0 12EIy
L3 0 − 6EIy

L2 0 0 0 − 12EIy
L3 0 −6 EIy

L2 0
Tx1 0 0 0 GIx

L 0 0 0 0 0 −GIx
L 0 0

My1 0 0 − 6EIy
L2 0 4EIy

L 0 0 0 6EIy
L2 0 2EIy

L 0
Mz1 0 6EIz

L2 0 0 0 4EIz
L 0 − 6EIz

L2 0 0 0 2EIz
L

Nx2 −EA
L 0 0 0 0 0 EA

L 0 0 0 0 0
Vy2 0 − 12EIz

L3 0 0 0 − 6EIz
L2 0 12EIz

L3 0 0 0 − 6EIz
L2

Vz2 0 0 − 12EIy
L3 0 6EIy

L2 0 0 0 12EIy
L3 0 6EIy

L2 0
Tx2 0 0 0 −GIx

L 0 0 0 0 0 GIx
L 0 0

My2 0 0 − 6EIy
L2 0 2EIy

L 0 0 0 6EIy
L2 0 4EIy

L 0
Mz2 0 6EIz

L2 0 0 0 2EIz
L 0 − 6EIz

L2 0 0 0 4EIz
L


(61)
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Putting it All Together, [k(e)] Timoshenko Beam

If shear deformations are present, we need to alter the stiffness matrix Eq. 56

1 Translation: divide (or normalize) coefficients of the first and third columns
of the stiffness matrix by 1 +� so that the net translation at both ends is
unity otherwise displacement would be 1 +� instead of 1.

2 Due to rotation and the effect of shear deformation

1 The forces induced at the ends due to a unit rotation at end 1 (second
column) neglecting shear deformations, are

V1 = −V2 =
6EI
L2 ; M1 =

4EI
L

; M2 =
2EI
L

(62)

2 There is a net positive translation of 0.5�L at end 1 when we applied
a unit rotation, no additional forces induced.
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Putting it All Together, [k(e)] Timoshenko Beam

3 For a unit rotation, all other displacements should be zero ⇒. Hence,
should counteract this parasitic shear deformation by an equal and
opposite one ⇒ apply an additional � vertical displacement −0.5�L
and the additional forces induced at the ends (first column) are given
by

�V1 = −�V2 =
12EI

L3︸ ︷︷ ︸
kb

11

1
1 +�

(−0.5�L)︸ ︷︷ ︸
vs

(63)

�M1 = �M2 =
6EI
L2︸︷︷︸
kb

21

1
1 +�

(−0.5�L)︸ ︷︷ ︸
vs

(64)

Denominators have already been divided by 1 +� in kb.
4 Summing up all the forces, we have the forces induced as a result of

a unit rotation only when the effects of both bending and shear
deformations are included.
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Putting it All Together, [k(e)] Timoshenko Beam

V1 = −V2 =
6EI
L2︸︷︷︸

Due to unit rotation

+
12EI

L3︸ ︷︷ ︸
k t

11

1
1 +�

(−0.5�L)︸ ︷︷ ︸
vs︸ ︷︷ ︸

Due to Parasitic Shear

= −6EI
L2

1
1 +�

(65)

M1 =
4EI
L︸︷︷︸

Due to unit rotation

+
6EI
L2︸︷︷︸
k t

21

1
1 +�

(−0.5�L)︸ ︷︷ ︸
vs︸ ︷︷ ︸

Due to parasitic shear

=
4 +�

1 +�

EI
L

(66)

M2 =
2EI
L︸︷︷︸

Due to unit rotation

+
6EI
L2︸︷︷︸
k t

21

1
1 +�

(−0.5�L)︸ ︷︷ ︸
vs︸ ︷︷ ︸

Due to parasitic shear

=
2 − �

1 +�

EI
L

(67)
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Putting it All Together, [k(e)] Timoshenko Beam

Element stiffness matrix given in Eq. 56 becomes

[kbV ] =



v1y θ1z v2y θ2z

V1y
12EIz

L3(1+�y )
6EIz

L2(1+�y )
− 12EIz

L3(1+�y )
6EIz

L2(1+�y )

M1z
6EIz

L2(1+�y )

(4+�y )EIz
(1+�y )L

− 6EIz
L2(1+�y )

(2−�y )EIz
L(1+�y )

V2y − 12EIz
L3(1+�y )

− 6EIz
L2(1+�y )

12EIz
L3(1+�y )

− 6EIz
L2(1+�y )

M2z
6EIz

L2(1+�y )

(2−�y )EIz
L(1+�y )

− 6EIz
L2(1+�y )

(4+�y )EIz
L(1+�y )

 (68)
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Remarks on Element Stiffness Matrices

Truss1 1

1

1

Grid

1

k21
k x2

Beam

1 1

GJ
L

GJ
L


GJ
L



GJ
L

EA
L

EA
L

EA
L

 EA
L



2

6EI
L

3

12EI
L 3

12EI
L



2

6EI
L

2

6EI
L

4EI
L

3

12EI
L


2

6EI
L



2EI
L

2

6EI
L



3

12EI
L

2

6EI
L

 2EI
L

2

6EI
L


2

6EI
L

4EI
L

1 Singularity All the derived stiffness matrices are singular, that is there is at least
one row and one column which is a linear combination of others. For example in
the beam-column element, row 4 = −row 1; and L times row 2 is equal to the
sum of row 3 and 6. This singularity (not present in the flexibility matrix) is
caused by the linear relations introduced by the equilibrium equations which are
embedded in the formulation.

2 Symmetry All matrices are symmetric due to Maxwell-Betti’s reciprocal theorem,
and the stiffness flexibility relation.

More about the stiffness matrix properties later.
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Element Forces; Initial Strains

In the presence of thermal load (or initial strains), nodal equivalent forces Pel can
be readily determined as follows:

Trusss
F T

1 = −AEα�T F T
2 = AEα�T (69)

Beam
F T

1 = −AEα�T avg F T
2 = AEα�T avg

MT
1 = EIα(�T top−�T bot )

h MT
2 = −EIα(�T top−�T bot )

h

(70)

where α is the coefficient of thermal expansion, �T avg = �T top+�T bot

2 .

For initial forces (such as prestressed members) one needs to simply specify
α�T for the initial strain induced by prestressing

In the load input data file one simply needs to specify α�T for the thermally
loaded truss, and α(�T top −�T bot) and h for beams.
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Element Forces; Flexural Elements

Nodal equivalent forces Pel should not be confused with fixed end actions (they
are equal but with opposite signs).

From above

m(x) = moment due to the applied loads at section x (71)

f (x) =

∫
m(x)dx ; g(x) =

∫
f (x)dx ; q(x) =

∫
p(x)dx (72)

total load on the span (73)

and

MF
1 =

2
L2 [Lf (L)− 3g(L)] (74)

MF
2 = − 1

L2

[
L2m(L)− 4Lf (L) + 6g(L)

]
(75)

V F
1 =

6
L3 [Lf (L)− 2g(L)] (76)

V F
2 = − 6

L3 [Lf (L)− 2g(L)]− q (77)
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Element Forces; Flexural Elements Uniformly Distributed Loads

For a uniformly distributed load w over the entire span,

m(x) = −1
2

wx2; f (x) = −1
6

wx3; g(x) = − 1
24

wx4; q = wL (78)

Substituting

MF
1 =

2
L2

[
L
(
−1

6
wL3

)
− 3

(
− 1

24
wL4

)]
=

wL2

12
(79)

MF
2 = − 1

L2

[
L2
(
−1

2
wL2

)
− 4L

(
−1

6
wL3

)
+ 6

(
− 1

24
wL4

)]
=

wL2

12
(80)

V F
1 =

6
L3

[
L
(
−1

6
wL3

)
− 2

(
− 1

24
wL4

)]
=

wL
2

(81)

V F
2 = − 6

L3

[
L
(
−1

6
wL3

)
− 2

(
− 1

24
wL4

)]
− wL =

wL
2

(82)
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Element Forces; Flexural Elements Concentrated Loads

Use the unit step function to find m(x). For a concentrated load P acting at a
from the left-hand end with b = L − a,

m(x) = −P(x − a)Ha gives m(L) = −Pb
f (x) = − 1

2 P(x − a)2Ha f (L) = − 1
2 Pb2

g(x) = − 1
6 P(x − a)3Ha g(L) = − 1

6 Pb3
(83)

where we define Ha = 0 if x < a, and Ha = 1 if x ≥ a, and

q = P (84)

MF
1 =

2

L2

[
L
(
−

1

2
Pb2

)
− 3

(
−

1

6
Pb3

)]
==

Pb2a

L2
(85)

MF
2 = −

1

L2

[
L2

(−Pb) − 4L
(
−

1

2
Pb2

)
+ 6

(
−

1

6
Pb3

)]
=

Pb

12

(
L2 − 2Lb + b2

)
(86)

=
Pba2

L2
(87)

V F
1 =

6

L3

[
L
(
−

1

2
Pb2

)
− 2

(
−

1

6
Pb3

)]
= −

Pb2

L3
(3L − 2b) =

Pb2

L3
(3a + b) (88)

V F
2 = −

( 6

L3

[
L
(
−

1

2
Pb2

)
− 2

(
−

1

6
Pb3

)]
+ P

)
=

Pa2

L3
(a + 3b) (89)
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Element Forces; Flexural Elements Concentrated Loads

If the load is applied at midspan (a = B = L/2), then the previous
equationreduces to

MF
1 = −PL

8
(90)

MF
2 =

PL
8

(91)

V F
1 = −P

2
(92)

V F
2 = −P

2
(93)
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Objectives

A structure is a system composed of individual components (elements).

Structure must be discretized

Revisit local and global d.o.f/coordinates.
Element internal forces.
Element stiffness matrices.

We now seek to analyze a structure (system).

For convenience, we will start with orthogonal 2D structures.

We will assemble the structure stiffness in terms of unrestrained d.o.f.
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discretization Sign Convention

Completely different than in structural analysis/design (where we focused mostly
on flexure and defined a positive moment as one causing “tension below”. This
would be awkward to program!).

Consistent with the prevailing coordinate system (i.e. a positive moment as one
which is counter-clockwise
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discretization Sign Convention

Iy , L

V1
V3 M4

M2

A, Iz , L

V2

M3

T1 T4

Ix , Iz , L A, L A, Ix , Iy , Iz , L

N1

E A, L EBeam 2D Truss 2D Frame E

M6

T4
M5

M6

E, G EGrid 3D Truss 3D Frame

M3

N1
N2

N2

V5

N1 N4

V2 V5

M6

N1

V2

V3

N7

V8

V9

T10

M11

M12

E, G
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discretization Coordinate System

Two coordinate systems:

1 Global: to describe the structure nodal coordinates.

Arbitrarily selected provided it is a Right Hand Side (RHS) one
Upper case axis labels, X ,Y ,Z , or 1,2,3 (running indices within a computer
program).

X X

Y

BEAM
2D TRUSS

FRAME

X

Y

3D TRUSS
GRID & FRAME

Z

x, 1

BEAM, TRUSS

x, 1

y, 2

z, 3
GRID, FRAME

2 Local: system is associated with each element

Describe the element internal forces.
lower case axis labels, x , y , z (or 1,2,3). The x-axis is assumed to be along
the member, and the direction.
Selected such that it points from the 1st node to the 2nd node.
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discretization Degrees of Kinematic Indeterminacy

A degree of freedom (d.o.f.) is an independent generalized nodal displacement (translation or rotation) at a node.

The displacements must be linearly independent (of coordinate system) and thus not related to each other.

An element dof is defined wrt its own local coordinate system. A structural dof is defined wrt a global coordinate system.

Type Node 1 Node 2 [k(e)] [K(e)]
(Local) (Global)

1 Dimensional
{p} Fy1, Mz2 Fy3, Mz4

Beam 4 × 4 4 × 4
{δ} v1, θ2 v3, θ4

2 Dimensional
{p} Fx1 Fx2

Truss 2 × 2 4 × 4
{δ} u1 u2
{p} Fx1, Fy2, Mz3 Fx4, Fy5, Mz6

Frame 6 × 6 6 × 6
{δ} u1, v2, θ3 u4, v5, θ6
{p} Tx1, Fy2, Mz3 Tx4, Fy5, Mz6

Grid 6 × 6 6 × 6
{δ} θ1, v2, θ3 θ4, v5, θ6

3 Dimensional
{p} Fx1, Fx2

Truss 2 × 2 6 × 6
{δ} u1, u2
{p} Fx1, Fy2, Fy3, Fx7, Fy8, Fy9,

Tx4 My5, Mz6 Tx10 My11 , Mz12
Frame 12 × 12 12 × 12

{δ} u1, v2, w3, u7, v8, w9,
θ4, θ5 θ6 θ10, θ11 θ12
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discretization Degrees of Kinematic Indeterminacy

Z

Y

X1

2

3

4

1

2

6

7

7 6

5
4

3

2
1

Z

Y

X
1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

2

1
3

1 2

34

4

5

67

8

Z

Y

X

1 2 3

2 3
1

Y

X
2

3 4

1

3 4

2
5

6
7

1

3

42

1
2 3 4

5

6 7

1 5
6

7

8 10

9 11

X

Y

3
4

5
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Theory Essence of the Flexibility Method

1 Determine degree of static indeterminacy, n.

2 Define a primary structure which statically determinate by removing n arbitrarily
reactions to have a statically determinate (and stable) structure.

3 Analyse the primary structure, subjected to the actual load, and solve for the n
displacements corresponding to the n reactions removed, �j

4 Apply a unit load at point at each of the d.o.f. corresponding to the redundant
forces, and solve for deflections fij at node i due to a unit force at node j .

5 Write the compatibility of displacement equation fijRj −�i = 0 For n = 2, this
corresponds to: [

f11 f12

f21 f22

]{
R1

R2

}
−

{
�1

�2

}
=

{
0
0

}
6 Invert the matrix, and solve for the reactions.

Note that Reactions are the primary unknowns, subsequently from
statics one can determine the internal forces, and finally the
displacements.
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Theory Essence of the Stiffness Method

1 Determine the degree of kinematic indeterminacy.

2 Fix all displacements, the structure is now kinematically determinate (all
displacements are known and are equal to zero).

3 Determine end nodal forces for each loaded element, sum up.

4 Apply a unit displacement (rotation or displacement) at each free/unrestrained
degree of freedom j at a time, and in each case we shall determine the internal
reaction forces at degrees of freedom j , Ki j .

5 Assemble the reduced structure stiffness matrix in global coordinate system in
terms of the individual element stiffness matrices transformed to the global one.
This will result in an equation of equilibrium at each node:

K�︸︷︷︸
Pint

−Pext = 0. (1)

Where Pext includes nodal forces and nodal equivalent loads.

6 Reduced because we are not considering the restrained degrees of freedom.

Note analogy with moment distribution method.
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Theory Essence of the Stiffness Method

Displacements are the primary unknowns, subsequently from the displacement
force relations (again element stiffness matrix) we solve for both internal forces
and reactions.

Flexibility: What are the forces (reactions) that will ensure compatibility (of
displacements at released dof)?

Stiffness: What are the displacements that will ensure equilibrium?
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Examples Beam

Kinematically Determinate

θ2
θ1

A
B C

L/2 L/2 L/2 L/2

P2
P1

1

K12
K22

K21

K11 1

Applied Displacments

M

1

2

6EI

L

4EI

L

2

6EI

L


2EI

L

P1

P1/2P1/2

P1L/8

P2L/8

P1L/8

Nodal Equivalent Forces

ΣNEF2

A B

P2/2P2/2

P2

P2L/8

B C

ΣNEF1

A
B

C

Note: all forces are 
shown in their 
correct directions 
and are thus +ve

P1 = 2P, M = PL, and P2 = P. Solve for the displacements.

1 Degree of kinematic indeterminacy is 2.
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Examples Beam

2 Using the previously defined sign convention, determine thenodal equivalent
load (to the load applied along the member)

�Pel,1 =
P1L
8︸︷︷︸
BA

− P2L
8︸︷︷︸

BC

=
2PL

8
− PL

8
=

PL
8

�Pel,2 =
PL
8︸︷︷︸

CB

3 If it takes 4EI
L

(
kBA

44
)

to rotate BA and 4EI
L

(
kBC

22

)
to rotate BC, it will take a total

force of 8EI
L to simultaneously rotate BA and BC.

4 The sum of the rotational stiffnesses at global d.o.f. 1 is K11 =
8EI
L ; similarly,

K21 =
2EI
L

(
kBC

42

)
.

5 If we now rotate d.o.f. 2 by a unit angle, we will have K22 =
4EI
L

(
kBC

22

)
and

K12 =
2EI
L

(
kBC

42

)
.

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Stiffness Method I; Orthogonal Structures 13/43



Examples Beam

6 Equation of equilibrium:{
PL
0

}
︸ ︷︷ ︸

pnodes

+

{ PL
8

PL
8

}
︸ ︷︷ ︸

Pel︸ ︷︷ ︸
Pext

−
[ 8EI

L
2EI
L

2EI
L

4EI
L

]
︸ ︷︷ ︸

K

{
θ?1
θ?2

}
︸ ︷︷ ︸

�︸ ︷︷ ︸
Pint

=

{
0
0

}

7 Note that we have Pext − Pint = 0 and not Pext + Pint = 0 because the external
forces must be resisted by the internal ones in an equal and opposite direction.
By analogy

Mext

Mext‐Mint=0
Mint=Asfy (d‐a/2)

T=Asfy

0.85f’c

a
c

d

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Stiffness Method I; Orthogonal Structures 14/43



Examples Beam

8 Simplifying {
PL + PL

8
+PL

8

}
=

[ 8EI
L

2EI
L

2EI
L

4EI
L

]{
θ?1
θ?2

}
Note that we will always write the equilibrium relationship as Pext − Pint = 0

9 Invert the two by two matrix{
θ1

θ2

}
=

[ 8EI
L

2EI
L

2EI
L

4EI
L

]−1 {
PL + PL

8
+PL

8

}
=

{
17

112
PL2

EI

− 5
112

PL2

EI

}

10 Recall that for each element {p} = [k]{δ}, and in this case {p} = {P} and
{δ} = {�} for element AB. The element stiffness matrix has been previously
derived, and in this case the global and local d.o.f. are the same.

11 Next, we need to compute the element internal forces.

12 Equilibrium equation for element AB, at the element level, can be written as
(note that we must include the nodal equivalent loads to maintain equilibrium):
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Examples Beam

-2P/2 -2P/2

-2PL/8 2PL/8 ML

M1
?

M2
?V1

?

V2
?

2P

Internal Forces {Pint}=[kAB]{δAB} 

{Pint}-{Pext}={0} 

A+ B-

Unknown end forces p

External Forces Pext =
Nodal equivalent forces +


V?

1
M?

1
V?

2
M?

2

︸ ︷︷ ︸{
pAB

int−for

}
+


− 2P

2
− 2PL

8
− 2P

2
2PL

8

︸ ︷︷ ︸
pAB

el︸ ︷︷ ︸
pAB

ext

−


12EI
L3

6EI
L2 − 12EI

L3
6EI
L2

6EI
L2

4EI
L − 6EI

L2
2EI
L

− 12EI
L3 − 6EI

L2
12EI
L3 − 6EI

L2
6EI
L2

2EI
L − 6EI

L2
4EI
L


︸ ︷︷ ︸

[kAB ]


0
0
0

17
112

PL2
EI

︸ ︷︷ ︸{
δAB

}
︸ ︷︷ ︸

pAB
int

=


0
0
0
0



Note: This step is called Force recovery, i.e. we determine the internal forces
from the nodal displacements. It is in terms of local forces p and not the global
ones P.

Solving

⌊ V1 M1 V2 M2 ⌋ = ⌊ 107
56 P 31

56 PL 5
56 P 5

14 PL ⌋
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Examples Beam

13 Similarly, for element BC:

-P/2 -P/2

-PL/8 PL/8

M1
?

M2
?V1

?

V2
?

PML

Unknown end forces p

External Forces Pext =
Nodal equivalent forces +

{Pint}-{Pext}={0} 

B+ C-

Internal Forces {Pint}=[kBC]{δBC} 


V?

1
M?

1
V?

2
M?

2

︸ ︷︷ ︸{
pBC

int−for

}
+


− P

2
− PL

8
− P

2
PL
8

︸ ︷︷ ︸
pBC

el︸ ︷︷ ︸
pBC

ext

−


12EI
L3

6EI
L2 − 12EI

L3
6EI
L2

6EI
L2

4EI
L − 6EI

L2
2EI
L

− 12EI
L3 − 6EI

L2
12EI
L3 − 6EI

L2
6EI
L2

2EI
L − 6EI

L2
4EI
L


︸ ︷︷ ︸

[kBC ]


0

17
112

PL2
EI

0

− 5
112

PL2
EI

︸ ︷︷ ︸{
δBC

}
︸ ︷︷ ︸

pBC
int

=


0
0
0
0



or
⌊ V1 M1 V2 M2 ⌋ = ⌊ 7

8 P 9
14 PL −P

7 0 ⌋

14 This simple example calls for the following observations:
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Examples Beam

1 Node A has contributions from element AB only, while node B has
contributions from both AB and BC.

2 We observe that pAB
3 ̸= pBC

1 even though they both correspond to a shear
force at node B, the difference between them is equal to the reaction at B.
Similarly, pAB

4 ̸= pBC
2 due to the externally applied moment at node B.

3 Must conclude with free body, shear and moment diagrams.

Elem. BCElem. AB

A

7P/8
5P/56 7P/85P/56

107P/56
V

M PL

P/7

31
P

L
/5

6

31
P

L
/5

6

5P
L

/1
4

5P
L

/1
4

9P
L

/1
4

9P
L

/1
4

P/7
107P/56

B C

54P/56
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Examples Example Frame

Analise the following frame for P = 2 kN, L = H = 6 m, M = 5 kN.m, w = 0.5 kN/m,
E = 2× 108 kPa, A = 0.123 m2, and Ib = Ic = 0.00125 m4

A
B

C

3m3m

6 m

0.5 kN
/m

x

y

x

y

w

P

Assign global coordinate system: 
X-Y-Z

Assign local coordinate systems: 
x-y-z

Determine magnitude and sign of 
nodal end forces

X

Y

Z

EAB=EBC=200 Gpa
AAB=ABC=0.123 m2

IAB=IBC=1,250x106 mm4

P/2
P

5 kN.m

Note: all forces are 
shown in their 
correct directions 
and are thus +ve
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Examples Example Frame

y

x

P M

P/2

H

L/2 L/2

C C

B

A
A

EI

P

C

A
BB

w

A
B

C

1 K11

K31
K21

1

C

B
A

K12

K32
K22

A
B

C

1 rad.
K33

K23

K13

x

y Δ2 θ3

Δ1

Y

Z X

Restrain all DOFGlobal CS and Displacements

Fix all DOF, unit 
displacement in DOF 1 Ki1

Fix all DOF, unit 
displacement in DOF 2 Ki2

Fix all DOF, unit 
displacement in DOF 3 Ki3
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Examples Example Frame

1 Assuming axial deformations, we do have three global degrees of freedom, �1,
�2, and θ3.

2 Constrain all the degrees of freedom, and thus make the structure kinematically
determinate.

3 Determine the nodal equivalent loads for each element in local coordinate
system in its own local coordinate system (element 1 is assumed to be defined
from A to B, and element 2 from B to C):
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Examples Example Frame

P
y

x
P/2

P/2

PL/8

PL/8

w

x

y

wh/2

wh/2

wh2/12

wh2/12
X

Y

 pAB= ⎣0  -P/2  -PL/8  0  -P/2  PL/8⎦ T

 PAB= ⎣0  -P/2  -PL/8  0  -P/2  PL/8⎦ T

 pBC= ⎣0  -wh/2  -wh2/12  0  -wh/2  wh2/12⎦ T

 PBC= ⎣-wh/2  0 -wh2/12  -wh/2 0  wh2/12⎦ T

A
B

B

C
L

h

 x  y  z
 X Y Z

 x    y    z
 -Y  X  Z
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Examples Example Frame

⌊ pA
1 pA

2 pA
3 pB

4 pB
5 pB

6 ⌋︸ ︷︷ ︸
AB

= ⌊ 0 −P
2 −PL

8 0 −P
2

PL
8 ⌋ (2)

= ⌊ 0 − 2
2 − (2)(6)

8 0 − 2
2

(2)(6)
8 ⌋

= ⌊ 0 −1.0 −1.5 0 −1.0 1.5 ⌋

⌊ pB
1 pB

2 pB
3 pC

4 pC
5 pC

6 ⌋︸ ︷︷ ︸
BC

= ⌊ 0 −wH
2 −wH2

12 0 −wH
2

wH2

12
⌋ (3)

= ⌊0 − (0.5)(6)
2 − (0.5)(6)2

12 0 − (0.5)(6)
2

(0.5)(6)2

12
⌋

= ⌊ 0 −1.5 −1.5 0 −1.5 1.5 ⌋

and the nodal equivalent forces at node B would have to be summed.

4 Apply a unit displacement in each of the 3 global degrees of freedom, to
determine the structure global stiffness matrix. Each entry Kij of the global
stiffness matrix will correspond to the internal force in degree of freedom i , due
to a unit displacement in degree of freedom j .

5 Recalling the force displacement relations derived earlier, we can assemble the
global stiffness matrix in terms of contributions from both AB and BC:
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Examples Example Frame

Need to complete the following table where columns correspond to
imposed displacements on dof j , and rows correspond to the
corresponding induced internal forces in each of the elements in dof i . Both
are in the global coordinate system.
K1,2 is zero because an imposed displacement along dof 2 (horizontal),
while locking all other displacements, does not induce an internal force in
any of the two elements.
K31 are the internal forces (moments in here) resulting from an imposed
unit displacement in dof 1 (horizontal). This will not “mobilize” AB, but will
activate flexure for BC. For BC from the following figure (already shown
above

1

3

12
E

I

L

2

6E
I

L

3

12
E

I

L

2

6E
I

L

x

y

1

3

12EI

L


2

6EI

L


3

12EI

L

2

6EI

L


x

y

Y

X

Blue, local coordinate system. We rotate and 
arrows then shown in their correct directions 
and all coefficients are +ve

Note that we need coefficients in the global 
coordinate system X-Y

Ki1 Ki2 Ki3
�1 �2 θ3

K1j AB EA
L 0 0

(FX ) BC 12EIc

H3 0 6EIc

H2

K2j AB 0 12EIb

L3 − 6EIb

L2
(FY ) BC 0 EA

H 0

K3j AB 0 − 6EIb

L2
4EIb

L

(MZ ) BC 6EIc

H2 0 4EIc
H
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Examples Example Frame

Note that all diagonal terms are +ve, and that the table is symmetric.

6 Summing up, the structure global stiffness matrix [K] is:

[K] =


�1 �2 θ3

P1 kAB
44 + kBC

22 kAB
45 + kBC

21 kAB
46 + kBC

23

P2 kAB + kBC kAB
55 + kBC

11 kAB
56 + kBC

13

M3 kAB
64 + kBC

32 kAB
65 + kBC

31 kAB
66 + kBC

33



=


�1 �2 θ3

P1
EA
L + 12EIc

H3 0 6EIc

H2

P2 0 12EIb

L3 + EA
H − 6EIb

L2

M3
6EIc

H2 − 6EIb

L2
4EIb

L + 4EIc
H


Substituting

[K] = 106

 4.1139 0 0.0417
0 4.1139 −0.0417

0.0417 −0.0417 0.3333


Note that the axial stiffness (EA/L) is 4.1× 106, while the flexural one (12EI/H3)
is 0.0071× 106. Axial stiffness is always much higher than flexural stiffness.
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Examples Example Frame

7 We need to have Pext in global coordinate system. From Eq. 2 and 3 we had

⌊ pA
1 pA

2 pA
3 pB

4 pB
5 pB

6 ⌋︸ ︷︷ ︸
AB

= ⌊ 0 −P
2 −PL

8 0 −P
2

PL
8 ⌋ (4)

⌊ pB
1 pB

2 pB
3 pC

4 pC
5 pC

6 ⌋︸ ︷︷ ︸
BC

= ⌊ 0 −wH
2 −wH2

12 0 −wH
2

wH2

12
⌋(5)

8 Cast in the global coordinate system, that will be

⌊ PA
1 PA

2 PA
3 PB

4 PB
5 PB

6 ⌋︸ ︷︷ ︸
AB

= ⌊ 0 −P
2 −PL

8 0 −P
2

PL
8 ⌋ (6)

⌊ PB
1 PB

2 PB
3 PC

4 PC
5 PC

6 ⌋︸ ︷︷ ︸
BC

= ⌊ −wH
2 0 −wH2

12 −wH
2 0 wH2

12
⌋(7)

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Stiffness Method I; Orthogonal Structures 26/43



Examples Example Frame

9 The global equation of equilibrium can now be written (note that for illustrative
purposes, we kept w and and a moment M at node B).

 − P
2

0
M

︸ ︷︷ ︸
Pnodes

+


− wH

2
− P

2
PL
8 − wH2

12

︸ ︷︷ ︸
Pel︸ ︷︷ ︸

Pext

−


EA
L + 12EIc

H3 0 6EIc

H2

0 12EIb

L3 + EA
H − 6EIb

L2
6EIc

H2 − 6EIb

L2
4EIb

L + 4EIc
H


︸ ︷︷ ︸

[K]

 �1
�2
θ3



︸ ︷︷ ︸
Pint

=

 0
0
0



Substituting:
−0.5

0
5

+


−1.5
−0.5
−0.75

︸ ︷︷ ︸
Pel

= 106

 4.1139 0 0.0417
0 4.1139 −0.0417

0.0417 −0.0417 0.3333


︸ ︷︷ ︸

[K]


�1

�2

θ3
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Examples Example Frame

10 Solve for the displacements
�1

�2

θ3

 = 106

 4.1139 0 0.0417
0 4.1139 −0.0417

0.0417 −0.0417 0.3333

−1 
−2
−0.5
4.25


or 

�1

�2

θ3

 = 10−6


−0.61 m
0.0084 m

12.82 radian


11 To obtain the element internal forces, multiply each element stiffness matrix by

the local displacements. For element AB, the local and global coordinates
match, thus

-1.0 -1.0

-1.5 1.5 5.0

M1
?

M2
?V1

?

V2
?

P

Internal Forces {Pint}=[kAB]{δAB} 

{Pint}-{Pext}={0} 

A+ B-

Unknown end forces p

External Forces Pext =
Nodal equivalent forces +
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Examples Example Frame



p?1
p?2
p?3
p?4
p?5
p?6

︸ ︷︷ ︸
pAB

int−for

+



0
− P

2
− PL

8
0

− P
2

PL
8

︸ ︷︷ ︸
pAB

el︸ ︷︷ ︸
pAB

ext

−



EA
L 0 0 − EA

L 0 0

0
12EIy

L3
6EIy
L2 0 − 12EIy

L3
6EIy
L2

0
6EIy
L2

4EIy
L 0 − 6EIy

L2
2EIy

L
− EA

L 0 0 EA
L 0 0

0 − 12EIy
L3 − 6EIy

L2 0
12EIy

L3 − 6EI
L2

0
6EIy
L2

2EIy
L 0 − 6EIy

L2
4EIy

L





0
0
0
δ1
δ2
θ3


︸ ︷︷ ︸

pAB
int

=



0
0
0
0
0
0



⇒



p?1
p?2
p?3
p?4
p?5
p?6


= 106


− − − −4.1 × 106 0 0
− − − 0 −13, 889. 41, 667.
− − − 0 −41, 667. 83, 333.
− − − 4.1 × 106 0 0
− − − 0 13, 889. −41, 667
− − −. 0 −41, 667 166, 667.


︸ ︷︷ ︸

kAB

0
0
0

−0.61
0.0084
12.82

︸ ︷︷ ︸
δAB

−



0
−0.5
−0.75

0
−0.5
0.75

︸ ︷︷ ︸
PAB

el
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Examples Example Frame

or 

p1

p2

p3

p4

p5

p6


=



N1

V1

M1

N2

V2

M2


=



2.52 kN
1.03 kN

1.82 kN.m.
−2.52 kN
−0.034 kN
1.39 kN.m


12 For element BC, the local and global coordinates do not match, hence we will

need to transform the displacements from their global to their local coordinate
components. By inspection

Local x y z
Global −Y +X +Z

Note that there are no local or global displacements in dof 1-3, hence
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Examples Example Frame



p?1
p?2
p?3
p?4
p?5
p?6

︸ ︷︷ ︸
pBC

int−for

+



0
−1.5
−1.5

0
−1.5
1.5

︸ ︷︷ ︸
pBC

el︸ ︷︷ ︸
pBC

ext

=



EA
L 0 0 − EA

L 0 0

0
12EIy

L3
6EIy
L2 0 − 12EIy

L3
6EIy
L2

0
6EIy
L2

4EIy
L 0 − 6EIy

L2
2EIy

L
− EA

L 0 0 EA
L 0 0

0 − 12EIy
L3 − 6EIy

L2 0
12EIy

L3 − 6EI
L2

0
6EIy
L2

2EIy
L 0 − 6EIy

L2
4EIy

L





δ4
δ5
θ6
0
0
0


︸ ︷︷ ︸

pBC
int

(8)

1.5

-1.5

-1.5

-1.5

5.0

M1
?

M2
?

V1
?

V2
?

In
te

rn
al

 F
or

ce
s 

{P
in

t}=
[k

A
B
]{
δ A

B
} 

C
+

B
-

{P
in

t}-
{P

ex
t}=

{0
} 

1.0

x

y

U
nk

no
w

n 
en

d 
fo

rc
es

 p

E
xt

er
na

l F
or

ce
s 

P
ex

t =
N

od
al

 e
qu

iv
al

en
t 

fo
rc

es
 +

0.
5



p?1
p?2
p?3
p?4
p?5
p?6


= 106


4.1 × 106 0 0 − − −

0 13, 888.9 41, 666.7 − − −
0 41, 666.7 16, 6667. − − −

−4.1 × 106 0 0 − − −
0 −13, 888.9 −41, 666.7 − − −
0 41, 666.7 83, 333.3 − − −

 (9)



−0.0084
−0.61
12.82
12.82

0
0
0


−



0
−1.5
−1.5

0
−1.5
1.5


=



N1
V1
M1
N2
V2
M2


=



−0.034 kN
2.026 kN

3.612 kN.m
0.0344 kN
0.974 kN

−0.456 kN.m


(10)
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Examples Matlab Code for frame

1 %% S t i f f n e s s Method Frame Example 09/18
2 % cour tesy o f Xiao Fu
3 c lea r a l l
4 c l c
5
6 %% Elements p r o p e r t i e s
7 L_elem = [ 6 ; 6 ] ; % m
8 A_elem = [ 0 . 1 2 3 ; 0 . 1 2 3 ] ; % m^2
9 E_elem = [200E6 ; 200E6 ] ; % kN /m^2

10 I_elem = [1250E−6; 1250E− 6 ] ; % m^4
11
12 %% Loads
13 P = 1;
14 M = 5;
15 w = 0 . 5 ;
16
17 %% St ruc tu re Displacements i n GCS
18 % Assemble g loba l s t i f f n e s s mat r i x
19 K = [ A_elem ( 1 ) *E_elem ( 1 ) / L_elem ( 1 ) +12*E_elem ( 2 ) * I_elem ( 2 ) / L_elem ( 2 ) ^3 , 0 , . . .
20 6*E_elem ( 2 ) * I_elem ( 2 ) / L_elem ( 2 ) ^2 ;
21 0 , A_elem ( 2 ) *E_elem ( 2 ) / L_elem ( 2 ) +12*E_elem ( 1 ) * I_elem ( 1 ) / L_elem ( 1 ) ^ 3 , . . .
22 −6*E_elem ( 1 ) * I_elem ( 1 ) / L_elem ( 1 ) ^2 ;
23 6*E_elem ( 2 ) * I_elem ( 2 ) / L_elem ( 2 ) ^2 , −6*E_elem ( 1 ) * I_elem ( 1 ) / L_elem ( 1 ) ^2 , . . .
24 4*E_elem ( 1 ) * I_elem ( 1 ) / L_elem ( 1 ) +4*E_elem ( 2 ) * I_elem ( 2 ) / L_elem ( 2 ) ]
25
26 % Determine vec to r o f ex te rna l fo rces
27 NEL = [ −w* L_elem ( 2 ) / 2 ; −P / 2 ; P* L_elem ( 1 ) /8 −w* L_elem ( 2 ) ^ 2 / 1 2 ] ; % Nodal Equ iva len t Load at DOFs
28 F = [ −P / 2 ; 0 ; M] ; % E x t e r n a l l y app l ied fo rces
29 F_ext = NEL + F ; % Tota l Ex te rna l Force
30
31 % Solve f o r Displacement
32 Disp = K\ F_ext
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Examples Matlab Code for frame

33
34 %% I n t e r n a l Forces
35
36 % Element−AB
37 i = 1 ;
38 k_AB = s t i f f ( E_elem ( i ) , I_elem ( i ) , L_elem ( i ) , A_elem ( i ) ) ; % Element s t i f f n e s s mat r i x i n LCS
39 NEL_elem_AB = [ 0 ; −P / 2 ; −P* L_elem ( i ) / 8 ; 0 ; −P / 2 ; P* L_elem ( i ) / 8 ] ; % nodal element fo rces i n LCS
40 disp_elem_AB = [ 0 ; 0 ; 0 ; Disp ( 1 ) ; Disp ( 2 ) ; Disp ( 3 ) ] ; % g loba l nodal d i s p l . o f AB i n LCS
41 Force_elem_AB = k_AB* disp_elem_AB − NEL_elem_AB % I n t e r n a l fo rces o f AB i n LCS
42
43 % Element−BC
44 i = 2 ;
45 k_BC = s t i f f ( E_elem ( 2 ) , I_elem ( 2 ) , L_elem ( 2 ) , A_elem ( 2 ) ) ;
46 NEL_elem_BC = [ 0 ; −w* L_elem ( i ) / 2 ; −w* L_elem ( i ) ^2 /12 ; 0 ; −w* L_elem ( i ) / 2 ; w* L_elem ( i ) ^ 2 / 1 2 ] ;
47 disp_elem_BC = [ − Disp ( 2 ) ; Disp ( 1 ) ; Disp ( 3 ) ; 0 ; 0 ; 0 ] ;
48 Force_elem_BC = k_BC* disp_elem_BC − NEL_elem_BC

1 f u n c t i o n [ k ]= s t i f f (E , I , L ,A)
2 EA=E*A; EI=E* I ;
3 k =[
4 EA/ L , 0 , 0 , −EA/ L , 0 , 0 ;
5 0 , 12* EI / L^3 , 6* EI / L^2 , 0 , −12*EI / L^3 , 6* EI / L ^2 ;
6 0 , 6* EI / L^2 , 4* EI / L , 0 , −6* EI / L^2 , 2* EI / L ;
7 −EA/ L , 0 , 0 , EA/ L , 0 , 0 ;
8 0 , −12*EI / L^3 , −6* EI / L^2 , 0 , 12* EI / L^3 , −6* EI / L ^2 ;
9 0 , 6* EI / L^2 , 2* EI / L , 0 , −6* EI / L^2 , 4* EI / L ] ;
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Examples Grid

xBC

yBC

zBCxAB

yAB

zAB

L/2 L/2

B

C

A

P

X

Y

Z

L

θ1
θ3

Δ2

1

1
Imposed 

displacements

The two elements have identical flexural and torsional rigidity, EI and GJ.
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Examples Grid

1 Identify the three degrees of freedom, θ1, �2, and θ3.

2 Restrain all the degrees of freedom, and determine the nodal equivalent loads:
T1

V2

M3

 =


0
−P

2
−PL

8

︸ ︷︷ ︸
@node A

=


0
−P

2
PL
8

︸ ︷︷ ︸
@node B

3 Apply a unit displacement along each of the three degrees of freedom, and
determine the internal forces:

1 Apply unit rotation along global d.o.f. 1.
1 AB (Torsion) K AB

11 = GJ
L , K AB

21 = 0, K AB
31 = 0

2 BC (Flexure) K BC
11 = 4EI

L , K BC
21 = 6EI

L2 , K BC
31 = 0
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Examples Grid

2 Apply a unit translation along global d.o.f. 2.
1 AB (Flexure): K AB

12 = 0, K AB
22 =

12EI
L3 , K AB

32 = − 6EI
L2

2 BC (Flexure): K BC
12 =

6EI
L2 , K BC

22 =

12EI
L3 , K BC

32 = 0

3 Apply unit rotation along global d.o.f. 3.
1 AB (Flexure): K AB

13 = 0, K AB
23 = − 6EI

L2 , K AB
33 =

4EI
L

2 BC (Torsion): K BC
13 = 0, K BC

23 = 0, K BC
33 =

GJ
L
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Examples Grid

4 The structure stiffness matrix will now be assembled: K11 K12 K13

K21 K22 K23

K31 K32 K33

 =

 kAB
44 + kBC

33 kAB
45 + kBC

32 kAB
46 + kBC

31

kAB
54 + kBC

23 kAB
55 + kBC

22 kAB
56 + kBC

21

kAB
64 + kBC

13 kAB
55 + kBC

12 kAB
66 + kBC

11


=

 GJ
L 0 0
0 12EI

L3 − 6EI
L2

0 − 6EI
L2

4EI
L


︸ ︷︷ ︸

[KAB ]

+

 4EI
L

6EI
L2 0

6EI
L2

12EI
L3 0

0 0 GJ
L


︸ ︷︷ ︸

[KBC ]

= EI
L3

 αL2 0 0
0 12 −6L
0 −6L 4L2

+ EI
L3

 4L2 6L 0
6L 12 0
0 0 αL2


=

EI
L3

 (4 + α)L2 6L 0
6L 24 −6L
0 −6L (4 + α)L2


︸ ︷︷ ︸

[KStructure]

where α = GJ
EI , and in the last equation it is assumed that for element BC, node 1

corresponds to C and 2 to B.
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Examples Grid

5 The structure equilibrium equation in matrix form:
0
0
0

︸ ︷︷ ︸
{Pnodes}

+


0
−P

2
PL
8

︸ ︷︷ ︸
PB

el︸ ︷︷ ︸
Pext

− EI
L3

 (4 + α)L2 6L 0
6L 24 −6L
0 −6L (4 + α)L2


︸ ︷︷ ︸

[K]


θ?1
�?

2

θ?3

︸ ︷︷ ︸
{�}︸ ︷︷ ︸

Pint

=


0
0
0



or 
θ1

�2

θ3

 =


PL2

16EI
5+2α

(1+α)(4+α)

− PL3

96EI
5+2α
1+α

− 3PL2

16EI
1

(1+α)(4+α)


6 Internal forces: multiply each element stiffness matrix [k] with the vector of nodal

displacement {δ}. Note these operations should be accomplished in local
coordinate system, and great care should be exercized in writing the nodal
displacements in the same local coordinate system as the one used for the
derivation of the element stiffness matrix.

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Stiffness Method I; Orthogonal Structures 38/43



Examples Grid

7 The mapping between local and global dof

AB


x ← X
y ← Y
z ← Z

; BC


x ← −Z
y ← Y
z ← X

8 For element AB and BC, the vector of nodal displacements are

δ1

δ2

δ3

δ4

δ5

δ6


=



0
0
0
θ1

�2

θ3

︸ ︷︷ ︸
AB

=



−θ3

�2

θ1

0
0
0

︸ ︷︷ ︸
BC

9 For element AB we have
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Examples Grid

-P/2
-PL/8

P

Internal Forces {Pint}=[kAB]{δAB} 

{Pint}-{Pext}={0} 

A+
B-

Unknown end forces p

External Forces Pext =
Nodal equivalent forces +

0

M1
?

V1
?

T1
?

-P/2
PL/8

0

M2
?

V2
?

T2
?

x

y

z



p?1
p?2
p?3
p?4
p?5
p?6

︸ ︷︷ ︸
pAB

int−for

+



0
−P/2
−PL/8

0
−P/2
PL/8

︸ ︷︷ ︸
pBC

el︸ ︷︷ ︸
pAB

ext

−



α1x v1y β1z α2x v2y β2z
GIxx

L 0 0 − GIxx
L 0 0

0 12EIzz
L3

6EIzz
L2 0 − 12EIzz

L3
6EIzz

L2

0 6EIzz
L2

4EIzz
L 0 − 6EIzz

L2
2EIzz

L

− GIxx
L 0 0 GIxx

L 0 0

0 − 12EIzz
L3 − 6EIzz

L2 0 12EIzz
L3 − 6EIzz

L2

0 6EIzz
L2

2EIzz
L 0 − 6EIzz

L2
4EIzz

L





0
0
0
θ1
�2
θ3


︸ ︷︷ ︸

pAB
int

=



0
0
0
0
0
0
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Examples Grid

10 For element BC:

{Pint}-{Pext}={0} 
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Examples Grid



p?1
p?2
p?3
p?4
p?5
p?6

︸ ︷︷ ︸
pBC

int−for

+



0
0
0
0
0
0

︸ ︷︷ ︸
pBC

el︸ ︷︷ ︸
pBC

ext

−



α1x v1y β1z α2x v2y β2z
GIxx

L 0 0 − GIxx
L 0 0

0 12EIzz
L3

6EIzz
L2 0 − 12EIzz

L3
6EIzz

L2

0 6EIzz
L2

4EIzz
L 0 − 6EIzz

L2
2EIzz

L

− GIxx
L 0 0 GIxx

L 0 0

0 − 12EIzz
L3 − 6EIzz

L2 0 12EIzz
L3 − 6EIzz

L2

0 6EIzz
L2

2EIzz
L 0 − 6EIzz

L2
4EIzz

L





−θ3
�2
θ1
0
0
0


︸ ︷︷ ︸

pBC
int

=



0
0
0
0
0
0
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Epilogue

Covered:

“rotation” of stiffness matrix from ke to Ke.
Displacements vectors from δ to �

Assembly of structural stiffness matrix KS =
∑

Ke.

Next need to generalize the method to

Rotation matrices � for stiffness, displacements and forces.
Automate assembly process.
Write Matlab code.

Address special topics

Move to “classical” finite element method.
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Why Transformation Matrix

Assembly of structure stiffness matrix is in global coordinate system,
element stiffness matrix is first computed in local coordinate system.

Need to transform k into K and δ into � for arbitrary structures.

θ3

Δ1

Δ2

A B

C
X

Y

1
K12

K32

K22

X

Y

k22

x

y

1
k12

k32

?

θ
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Problem Statement

p 2

p 1

p 5

δ 3

p 3

δ 4

δ 5

δ 6

x

y

X

Y

p 2

p 1

δ 2

δ 3

δ 1

p 3

y

X

Y

∆1

∆2

∆3

P1

P2

P3

x

α

11

3

2 2

3

cos sin 0

sin cos 0

0 0

F

1

f

f

F

Ff

α α
α α

 
 = − 
 

 
 
 
 
   

 
 
 
 
 

γ

���������

F
1 sin α

F2co
s α

f2

F 2

sin
 α

F 1

co
s α f 1

δ 2

δ 1

F 2

sin
 α

F2co
s α

F2 α

F
1 sin α

α
F1

F 1

co
s α

p 4

p 6
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Derivation

Recall
{p(e)} = [k(e)]{δ(e)} and {P(e)} = [K(e)]{�(e)} (1)

Let us define a vector transformation matrix [�(e)] such that:

{δ(e)} def
= [�(e)]{�(e)} and {p(e)} def

= [�(e)]{P(e)} (2)

Substituting we obtain {pe} = [�(e)]{P(e)} = [k(e)][�(e)]{�(e)} premultiplying by
[�(e)]−1: {P(e)} = [�(e)]−1[k(e)][�(e)]{�(e)}

But since the rotation matrix is orthogonal, we have [�(e)]−1 = [�(e)]T (and
{�(e)} = [�(e)]T{δ(e)})

{P(e)} = [�(e)]T [k(e)][�(e)]︸ ︷︷ ︸
[K(e)]

{�(e)}

[K(e)] = [�(e)]T [k(e)][�(e)] (3)

which is the general relationship between element stiffness matrix in local and
global coordinates.
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Direction Cosines


vx

vy

vz

 =

 lxX lxY lxZ

lyX lyY lyZ

lzX lzY lzZ


︸ ︷︷ ︸

[γ]


VX

VY

VZ

 vy
vx

X

Y

Z

x

y

z

VZ

VY

VX

vz

α

β

γ

li j is the direction cosine of axis i with respect to axis j .

lxX = cos(α); lxY = cos(β);

Recall that cos(−α) = cos(α), hence angle direction is irrelevant.

The first row is given by (in terms of lower case x − y − z)

lxX = CX =
xj − xi

L
; lxY = CY =

yj − yi

L
; lxZ = CZ =

zj − zi

L
(4)

where L =
√
(xj − xi)2 + (yj − yi)2 + (zj − zi)2.
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Direction Cosines

Determining other rows is best accomplished as follows in the next slides
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Transformation Matrices 2D Frame

At first, the local and global coordinate systems are superimposed, we then perform a
rotation α with respect to the Z axis.

α
X

x

β

Y

y

6 45

1
32

X
x

Y
y

[γ] =

 lxX lxY lxZ
lyX lyY lyZ
lzX lzY 1

 =

 cosα cos(π
2 − α) 0

cos(π
2 + α) cosα 0
0 0 1


=

 cosα sinα 0
− sinα cosα 0

0 0 1

 (5)

We observe that the angles are defined from the second subscript to the first, and that
counterclockwise angles are positive.

p1

p2

p3

p4

p5

p6


=



cosα sinα 0 0 0 0
− sinα cosα 0 0 0 0

0 0 1 0 0 0
0 0 0 cosα sinα 0
0 0 0 − sinα cosα 0
0 0 0 0 0 1


︸ ︷︷ ︸

[�]



P1

P2

P3

P4

P5

P6


(6)
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Transformation Matrices 2D Grid

At first, the local and global coordinate systems are superimposed, we then perform a
rotation α with respect to the y axis.

X
α

yY

z

Z

α x

X

yY

z
Z

x

Rotation with respect to the Y axis.

[γ] =

 lxX 0 lxZ
lyX lyY lyZ
lzX 0 lzZ

 =

 cosα 0 cos(π
2 − α)

0 1 0
cos(π

2 + α) 0 cosα



=

 cosα 0 sinα
0 1 0

− sinα 0 cosα





p1

p2

p3

p4

p5

p6


=



cosα 0 sinα 0 0 0
0 1 0 0 0 0

− sinα 0 cosα 0 0 0
0 0 0 cosα 0 sinα

0 0 0 0 1 0
0 0 0 − sinα 0 cosα


︸ ︷︷ ︸

[�]



P1

P2

P3

P4

P5

P6


(7)
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Transformation Matrices 2D/3D Truss

X

Y

1

2

α

β

x

X

Y

x

y

At first, the local and global coordinate
systems are superimposed, we then perform
a rotation α with respect to the Z axis.

Note that in local coordinate system, a truss
has only 2 dof, while in the global one it has 2
or 3 (2D or 3D). Hence, γ will have only one
row, and 2 or 3 columns.

Rotation with respect to the Z axis.

[γ] =
[

lxX lxY
]

=
[

Cx Cy
]

=
[
cosα sinα

]
2D

=
[

lxX lxY lxZ
]

=
[

Cx Cy Cz
]

=
[
cosα sinα 1

]
3D

for 2D

{
p1

p2

}
=

[
[γ] 0

0 [γ]

]
=

[
cosα sinα 0 0

0 0 cosα sinα

]
︸ ︷︷ ︸

[�]


P1

P2

P3

P4

 (8)
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Transformation Matrices 3D Frame; Inclined, 2 Rotations

2D elements are transformed through a single rotation (α).

3D elements are transformed through a minimum of 2, possibly 3 rotations
through the eulerian angles β, γ and α.

Start from X1,Y1,Z1 and end with Xγ,Yγ,Zγ or Xα,Yα,Zα

Start with the first row of the transformation matrix which corresponds to the
direction cosines of the reference axis (X1,Y1,Z1) with respect to X2. This will
define the first row of the vector rotation matrix [γ]:

[γ] =

 CX CY CZ

l21 l22 l23

l31 l32 l33

 (9)

Still have to define the second and third rows. This is achieved through through
two successive rotations (assuming that (X1,Y1,Z1 and Xβ,Yβ,Zβ are originally
coincident) (assuming that the vertical axis of the member remains vertical)
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Transformation Matrices 3D Frame; Inclined, 2 Rotations

X1

Z1

β
βγ

γ
j

Xβ

Yγ

i=+

Zβ

Xβ

X1

Zβ

β
β

β

Xγ

Yβ

Zγ

Yγ

γ

γ

γZ1
X
β

Y
1 

Y
β

LCX

L
C

y

Yβ
Y1

From To With respect to Angle
X1,Y1,Z1 Xβ,Yβ,Zβ Y1≡ Yβ β

Xβ,Yβ,Zβ Xγ,Yγ,Zγ Zβ≡ Zγ γ

Optional
Xγ,Yγ,Zγ Xα,Yα,Zα Xγ≡ Xα α
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Transformation Matrices 3D Frame; Inclined, 2 Rotations

1 Rotation by β about the Y1 axis, X1 → Xβ. This rotation [Rβ] is made of
the direction cosines of the β axis (Xβ,Yβ,Zβ) with respect to
(X1,Y1,Z1):

[Rβ] =

 cosβ 0 sinβ

0 1 0
− sinβ 0 cosβ

 =


CX
CXZ

0 CZ
CXZ

0 1 0
− CZ

CXZ
0 CX

CXZ


cosβ = CX

CXZ
, sinβ = CZ

CXZ
, and from Eq. 4:

CX =
xj − xi

L
; CY =

yj − yi

L
; CZ =

zj − zi

L
; CXZ =

√
C2

X + C2
Z

2 Rotation by γ about the Z axis

[Rγ] =

 cosγ sinγ 0
− sinγ cosγ 0

0 0 1

 =

 CXZ CY 0
−CY CXZ 0

0 0 1


where cosγ = CXZ , and sinγ = CY .
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Transformation Matrices 3D Frame; Inclined, 2 Rotations

Combining yields:

[γ] = [Rγ][Rβ] =

 CX CY CZ
−CX CY

CXZ
CXZ

−CY CZ
CXZ

−CZ
CXZ

0 CX
CXZ

 (10)
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Transformation Matrices 3D Frame; Vertical, 2 Rotations

For vertical member (along global Y ) the preceding matrix is no longer valid as CXZ is
undefined (Xi = Xj ⇒ CX = 0 and Zi = Zj ⇒ CZ = 0). There is no rotation through β.
Rotation is with respect to the Z1 axis by an angle γ of 90o or 270o.

Zγ

Y1

Yγ

Z1

X1

γ=90o

i

j

i

γ=270o

j

Xγ

Zγ
Z1

Y1

X1

Xγ

Yγ

1 Xγ axis is aligned with Y1
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Transformation Matrices 3D Frame; Vertical, 2 Rotations

2 Yγ axis is aligned with -X1

3 Zγ axis is aligned with Z1

or

1 Xγ axis is aligned with -Y1

2 Yγ axis is aligned with -X1

3 Zγ axis is aligned with Z1

hence the rotation matrix with respect to the y axis, is similar to the one previously
derived for rotation with respect to the z axis, except for the reordering of terms:

[Rγ] =

 0 CY 0
−CY 0 0

0 0 1

 (11)

which is valid for both cases (CY = 1 for γ = 90o, and CY = −1 for γ = 270o).
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Transformation Matrices 3D Frame; Rotation of Principal axes; Inclined, 3 Rotations

If the principal axes are to be rotated, then we need to define an
additional rotation to the preceding transformation of an angle α about
the Xγ axis.

+

Zβ

Xβ

X1

Zβ

β

β

β

Xγ

Yβ

Zγ

Yγ

γ

γ

γ
Z1

Xβ

Y
1

Y
β

Zβ
Zγ

X1

Y1

Z1

β

β
γ

γ
j

Xβ

X γ

Yγ

i

Xα

Yα α

Zα

α

Yβ

Xα

Xγ

Z2

Y2

Zγ

Yγ

Zα

α

Yα

Zβ

α

α

α

α

Yβ

Yγ

γ

Zγ Xβ

+

LCZ

LCX

L
C

y

L
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Transformation Matrices 3D Frame; Rotation of Principal axes; Inclined, 3 Rotations

This rotation is defined such that:

1 Xα is aligned with Xγ and normal to both Yγ and Zγ

2 Yα makes an angle α with respect to Yγ and β = π
2 − α

3 Zα makes an angle 0, π
2 + α and α, with respect to Xγ, Yγ and Zγ

respectively

cos(π2 + α) = − sinα and cosβ = sinα, the direction cosines of this
transformation are given by:

[Rα] =

 1 0 0
0 cosα sinα

0 − sinα cosα

 (12)
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Transformation Matrices 3D Frame; Rotation of Principal axes; Inclined, 3 Rotations

causing the Yγ − Zγ axis to coincide with the principal axes of the
cross section. This will yield:

[γ] = [Rα][Rγ][Rβ]

=

 CX CY CZ
−CX CY cosα−CZ sinα

CXZ
CXZ cosα −CY CZ cosα+CX sinα

CXZ
CX CY sinα−CZ cosα

CXZ
−CXZ sinα CY CZ sinα+CX cosα

CXZ

(13)
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Transformation Matrices 3D Frame; Vertical, 3 Rotations

As for the simpler case, the preceding equation is undefined for vertical members, and
a counterpart to Eq. 11 must be derived. This will be achieved in two steps:

1 Rotate the member so that:

1 Xγ axis aligned with Y1

2 Yγ axis aligned with -X1

3 Zγ axis aligned with Z1

this was previously done and resulted in Eq. 11

[Rγ] =

 0 CY 0
−CY 0 0

0 0 1


2 The second step consists in performing a rotation of angle α with

respect to the new X2 as defined in Eq. 12.

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Transformation Matrices 20/22



Transformation Matrices 3D Frame; Vertical, 3 Rotations

3 Finally, we multiply the two transformation matrices [Rγ][Rα] given by
Eq. 14 to obtain:

[γ] = [Rγ][Rα] =

 0 CY 0
−CY cosα 0 sinα

CY sinα 0 cosα

 (14)

Note with α = 0, we recover Eq. 11.

Fx1

Fy1

Fz1

Mx1

My1

Mz1

Fx2

Fy2

Fz2

Mx2

My2

Mz2



=



[γ]

[γ]

[γ]

[γ]


︸ ︷︷ ︸

[�]



FX1

FY 1

FZ1

MX1

MY 1

MZ1

FX2

FY 2

FZ2

MX2

MY 2

MZ2



(15)
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Transformation Matrices 3D Frame; Vertical, 3 Rotations

and should distinguish between the vector transformation [�] and the
element transformation matrix [γ].
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Objectives

We know how to determine an individual element stiffness matrix in its local
coordinate system.

We have explored the stiffness method for orthogonal structures through a
manual procedure, and assembled the global stiffness matrix in terms of free
degrees of freedom (i.e. unconstrained).

We have introduced the transformation matrices for various element types, and
can determine the element stiffness matrix in system (i.e. global) coordinate
system through K(e) = �(e)Tk(e)�(e).

Next, we will generalize the stiffness method to

1 address arbitrary structural geometries (i.e. non orthogonal).
2 Determination of reactions through the use of augmented stiffness matrix.
3 Describe algorithms to fully automate (i.e. write a computer program) the

procedure.
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Objectives Structural Discretization

Numerical modeling of a structure requires that we can mathematically
describe it (geometry, boundary conditions, geometry and properties of
elements, and loads).
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Objectives Examples

P

2 3

1
1

2
3

4
5
6

7
8
9w

x

y
x

y

2 X Y ZP P P

Nodal Load GCS

2 yw

1 29000 500 12
Group E I A

Group Data

( ,1) ( ,2)
4 5 6

7 8

( ,3)
1
2 1 2 3
3 9

Node ID i ID i ID i
Node Computed ID

2

Nodal Data GCS

1 0. 0.
2 7.42 3. 0 0 0

1

3

1 1

15.42 3 1 1. 1

Node X Y X Y Z

1 4 5 6 1 2 3
2 7 8 9 1 2 3

Elem LM
1

Element Data

1 1 2 1
2 3 2 1

Elem i j Group

Element Load LCS

Note: LM Locator Matrix
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Objectives Examples

P

1

2

3
3

4
5

8
9
2

6
1
7w

x

y
x

y

2 X Y ZP P P

Nodal Load GCS

Element Data

1 2 3 2
2 3 1 1

Elem i j Group

( ,1) ( ,2) ( ,3)
1 1
2 2
3 3 4

6

5

7
8 9

Node IDi IDi IDi
Node Computed ID

1

2

Nodal Data GCS

1 11 15.42 3.
2 0. 0. 1 1

0
0

3 7.42 3. 0 0 0

Node X Y X Y Z

Element Load LCS
2 yw

Group Data

1 29000 500 12
2 29000 750 24

Group E I A

1 8 9 2 3 4 5
2 3 4 5 6 1 7

Elem LM
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Mathematical Model

Structural idealization is as much an art as a science.

1 2D vs 3D

2 Frame or truss

3 Rigid or semi-rigid connections

4 Rigid supports or elastic
foundations

5 Include or not secondary
members

6 Include or not axial deformation

7 Cross sectional properties

8 Neglect or not haunches

9 Linear or nonlinear analysis
(linear analysis can not predict
the peak or failure load, and will
underestimate the deformations).

10 Small or large deformations

11 Time dependent effects

12 Partial collapse or local yielding

13 Static or dynamic

14 Wind load

15 Thermal load

16 Secondary stresses

17 ...
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Theory Structural Analysis; A Boundary Value Problem

Analysis of a structure is essentially solving a boundary value problem
(governed by a differential equation over the volume 
, and subjected to
space/temporal boundary conditions along the boundary �).

In our case we are discretizing our structure, and the governing
differential equation (equilibrium) is embedded in K� = P.

� = �t
⋃
�u

� Traction Displ. Math. Struct. DOF
�t P

√

t �?
t Neuman Essential Free

�u R?
u �

√

u Dirichlet Natural Fixed/Constrained
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Theory Structural Analysis; A Boundary Value Problem

Γu  Known displacements
Unknown  forces

 Δ P?

Γt  Known tractions, unknown 
displacements

P Δ?

Mechanics Structural Analysis

Governed by 
Differential Equation 

inside Volume Ω

Boundary Γ= Γt+Γu

For the beam and the dam, we need to determine the displacements along �t and the

forces (reactions) along �u .
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Theory Unconstrained vs Constrained Degrees of freedom

We have labeled the global dof associated with the unconstrained dof (�t ),
where we solve for the displacements.

We will need to label the global dof associated with the constrained dof (�u)
where we will solve for the reactions.

We will label the dof along �t first, and then those along �u next.

We have so far considered the reduced stiffness matrix (associated with �t only).

We will need to assemble the augmented stiffness matrix associated with
� = �t

⋃
�u

Y

X
2

3 4

1

3 4
2

5

6
7

1
8

9

10

11 121
2

3

2 3
14

5 6

3
42

1
2 3 4

5

6 7

1 5
6

7

8 109 11

X
Y

12
13

14

t=[1-3]; u=[4-6] t=[1-11]; u=[12-14] t=[1-7]; u=[8-12]
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Theory Fundamental Relations

Global coordinate system

Ke = �Tke� (1)

KS =
e=nelem∑

e=1

Ke (2){
P

√

t

R?
u

}
=

[
Ktt Ktu

Kut Kuu

]
︸ ︷︷ ︸

Augmented Stiffness Matrix

{
�?

t

�
√

u

}
(3)

Ktt = f−1; Reduced Stiffness Matrix (4)

�t = K−1
tt (Pt −Ktu�u)︸ ︷︷ ︸

P ′
t

(5)

Ru = Kut�t +Kuu�u (6)

Local coordinate system

δ(e) = �(e)�(e) (7)

p(e)int = k(e)δ(e) (8)

Note effect of Pel not included for clarity

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Stiffness Method II; 11/29



Computer Implementation Global DOF

 

0 0 1 2
0 0 3 4
0 0 5 6
0 7
0 0 8 9

1 1 12 13
DOF     1  

1 14

  2
Node 1
Node 2
Node 3
Node 4
Node 5
Node 6

0 0 1 Node 70 11

ID

 
 
 


 
 
 
 
   
 
 
 



 
 
 
 
 
   

3

42

1

2 3 4

5

6 7

1 5

6

7

8 109 11

X

Y

12

13
14

2

87
6

5

431

9

10

11

 

1 2
1 2 3 4
3 4 5 6
5 6 7

8 9
1 2 8 9
3 4 8 9
3 4 10 11

10 11 5 6
8 9 10 11

10 11 7

12 13

14
12 13

1

Element global dof
                     1      2     3     4

Element 1
Element 2
Element 3
Element 4
Eleme

     

4

LM

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


nt 5

Element 6
Element 7
Element 8
Element 9

Element 10
Element 11

 

         Nodes   i    j
1 2 Element 1
2 3 Element 2
3 4 Element 3
4 5 Element 4
1 6 Element 5
2 6 Element 6
3 6 Element 7
3 7 Element 8
7 4 Element 9
6 7 Element 10
7 5 Element 11

LNODS

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

LM is a mapping between element 
and structure global dof

[ ]  User defined
[ ] Computed by program
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Computer Implementation Global DOF

4

  0

Global DOF
 1    2

Node 
           

1 1 4 5
1 6 1
0 0 2 3

1
Node 2
Node 3

ID

 
   


 
 
 
   

 

Element global dof
                  1    2   

1
1 2 3

3    4
Element 1

   
Element 

4 5 6
6 2

LM
 
 
 



1
2

3

2
3

15 6

21

 

     Node    i     j
1 2 Element 1
2 3 Elemen

  

t 2

  

LNODS
 

  
 

 

1 1 8 9
1 1 1

0 1

0 0 0 2 3 4
0

  Global DOF  
             1   2    3

Node 1
Node 2
Node 3
Node 

10

0 0 5

11 1

6 4

2

7

ID

 
 
  

 
 
 
 
 
 

 
 
 

Y

X
2

3 4

1

3 4
2

5

6
7

1
8

9

10

11 12

1

2

3

 

Element Global DOF
                   1    2    3    4      5     6

8 9

10 11 12

Element 1
   Element 2

Elem

1 2 3 4
2 3 4 5 6 7

e5 6 7 nt 3
LM

 
 
 
  



 

            Node i     j
1 3 Element 1
3 4 Element 2
4 2 Element 3

LNODS

 
   
  

LM (Locatoror Matrix)is a mapping of element local to global dof
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Computer Implementation Assembly of the Structure’s Stiffness Matrix

 
1 1 1 4 5 6
0 0 0 1 2 3
1 1 1 7 8 9

ID

   
       
      

  4 5 6 1 2 3
1 2 3 7 8 9

LM
 

  
 

  1 2
2 3

LNODS
 

  
 

44 45 46 41 42 43

54 55 56 5

11 12 13 14 15 16

21 22 23

31 32 33

1 5

64 65 66

                  1               2                3          4       5        6      7      8        9

1
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3
4
5
6
7
8
9

BA A A A A A

A A A A A

A A
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B B B

B B BA

  
  
  

K

2 53
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24 25 26

34 35 36
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3
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A
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A A A A A A
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B B B

B B B

B B B B B B

B B B B B B

B B B B B B

A A

 
 
 
 
 
 
 
 
 
 
 
 
 
  

11 12 13 14 15 16
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(2

36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

)

1       2       3       7       8       9 
1
2
3
7
8
9

B B B B B B

B B B B B B

B B B B B B

B B B B B B

B B B B B B
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K

11 12 13 14 15 16

21 22 23 24 25 26
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(1

66

)

4  5   6      1    2 3
4
5
6
1
2
3

A A A A A A

A A A A A A

A A A A A A

A A A A A A

A A A A A A

A A A A A A

 
 
 
 
 
 
 
 
  

K

7.416 m 8 m

3 m

4 kN/m50kN

1

2 3

1

2

1

2

3

4

5
6

7

8
9

K (e)
i j → K (S)

st and
{

s = LM(e, i)
t = LM(e, j) [LM] is a mapping between the element global dof and the structure’s (global) dof.

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Stiffness Method II; 14/29



Computer Implementation Assembly of the Load Vector

3
50 18.7

8


4 kN/m

2 3

wL (4)(8)
=- =-16

2 2


2 2wL (4)(8)
=- =-21.33

12 12
 2 2wL (4)(8)

= =21.33
12 12

wL (4)(8)
=- =-16

2 2


18.7

-4
6.

4

-1
6

-21.33

   (2) (2)

0. 0.Cos α Sin α 0 0 0 0
16.0 16.0-Sin α Cos α 0 0 0
21.33 21.330 0 1 0 0 0;
0.0 0.00 0 0 Cos α Sin α 0
16.0 16.00 0 0 -Sin α Cos α 0

21.33 210 0 0 0 0 1

(2)

El Elp P

  
  
  
      
  
  
  
     

 
  

 




(2)

0.
16.0
21.33
0.0
16.0

.33 21.33

p
El

   
   
   
      
   
   
   
   
      








4 5 6 1 2 3
1 2 3 7 8 9

LM
 

    
 



( ) ( ) ( ) ( )( ( )) ( ) ( ( ));    ( ) ( )

( ) 3; Corresponds to number of unconstrainded dof

e e e e
t t ttNEF

tt

P LM P P LM Li M size K

s

i i

K

i

ize

    


7.
42

50
46

,4
8





4 kN/m

2

7

8
9

7.416 m 8 m

3 m

50kN

1

3

4

5
6

1

2
3

1: 1->2
2:2->3

x

y

(2)

(2)

(2, ) 3     ( (2, )) ( ) ( (2, ))    ( ) 0 ( )         0 18.7       18.7

(2, ) 3    ( (2, )) ( ) ( (2, ))  

3

  ( ) 16  

1 1 1 1

2 2 ( )   16 46.4  62.4

(2,

2 2

1 1 1

2

3)

2 2
t tEl nod nod

t tEl nod nod

LM P LM P P LM P P

LM P LM P P LM P P

LM

          

           

 (2)3    ( (2, )) ( ) ( (2, ))    ( ) 21.33 ( ) 0 21.33 33 3 3     21.3 3 3t tEl nod nodP LM P P LM P P          
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Computer Implementation Direct Stiffness Method; Algorithm

1 Preliminaries

1 Read the structure mathematical model (type, coordinates, connectivity,
cross-sectional and material properties, loads)

2 Determine the number of nodes (nnode), number of element (nelem),
maximum number dof/node (ndofpn), size of Ktt (sizet), total number of
dof (ndoft), update ID and determine LM matrices

2 Analysis, Global:
1 For each element, determine

1 Vector LM mapping local element to global structure degrees of freedoms.
2 Element stiffness matrix [k(e)]
3 Transformation matrix [�(e)]
4 Element stiffness matrix in global coordinates [K(e)] = [�(e)]T [k(e)][�(e)]

2 Assemble the augmented stiffness matrix [K(S)] =
∑nelem

e=1 k(e) of
unconstrained and constrained degree of freedom’s.

3 Extract [Ktt ] from [K(S)] and invert (actually decompose).
4 Load Vector

1 Compute nodal equivalent forces vectors for each element in local coordinate
system p

(e)
El and in global coordinate system P

(e)
El = �(e)

T
p
(e)
El
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Computer Implementation Direct Stiffness Method; Algorithm

2 Assemble the nodal load vector to include nodal loads and nodal equivalent
forces (note P is for the structure).
Pt =

∑nelem
e=1 P

(e)
El + Pnodes(LM(e)(i));∀LM(e) ≤ size(Ktt )

5 Backsubstitute and obtain nodal displacements global coordinate system,
� = K−1

tt Pt

6 Extract Kut

7 Determine PR that will store

PR(1:ndof-sizet) =
nelem∑
e=1

�(e)p
(e)
el ;∀LM(e) > size(Ktt) (9)

Those are the element load transformed to the global coordinate system for
those degrees of freedom that are fixed. Hence they will affect the reaction.

8 Solve for the reactions, Ru = Kut�t +Kuu�u − PR

3 Analysis, Local; Internal forces: for each element

1 Determine the element nodal displacements in global coordinate system
from the global nodal displacements

2 Transform its nodal displacement from global to local coordinates
δ(e) = [�(e)]�(e).
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Computer Implementation Direct Stiffness Method; Algorithm

3 Determine the internal forces p(e) = k(e)δ(e) − p
(e)
El .
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Computer Implementation Example Beam

21 41 243

Case I Case II

14
2 3

Δ0

Case III

3

3 421

We consider the third case, a cantilevered Beam with initial Displacement and no
other load.

1 The LM matrix is LM = ⌊ 2 3 4 1 ⌋

2 The element stiffness matrix is

k(e) =


2 3 4 1

2 12EI/L3 6EI/L2 −12EI/L3 6EI/L2

3 6EI/L2 4EI/L 6EI/L2 2EI/L
4 −12EI/L3 −6EI/L2 12EI/L3 −6EI/L2

1 6EI/L2 2EI/L −6EI/L2 4EI/L
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Computer Implementation Example Beam

3 The augmented structure stiffness matrix is assembled

K(S) =


1 2 3 4

1 4EI/L 6EI/L2 2EI/L −6EI/L2

2 6EI/L2 12EI/L3 6EI/L2 −12EI/L3

3 2EI/L 6EI/L2 4EI/L 6EI/L2

4 −6EI/L2 −12EI/L3 −6EI/L2 12EI/L3


4 The global augmented matrix can be decomposed as

M1(= 0)
√

R2?

R3?

R4?

 =


4EI/L 6EI/L2 2EI/L −6EI/L2

6EI/L2 12EI/L3 6EI/L2 −12EI/L3

2EI/L 6EI/L2 4EI/L 6EI/L2

−6EI/L2 −12EI/L3 −6EI/L2 12EI/L3




θ1?

�2
√

θ3
√

�4
√
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Computer Implementation Example Beam

5 Ktt is inverted (or actually decomposed) and stored in the same global matrix
storage location

L/4EI 6EI/L2 2EI/L −6EI/L2

6EI/L2 12EI/L3 6EI/L2 −12EI/L3

2EI/L 6EI/L2 4EI/L −6EI/L2

−6EI/L2 −12EI/L3 −6EI/L2 12EI/L3


6 Next we compute the equivalent load, P ′

t = Pt −Ktu�u , and overwrite Pt by P ′
t

(Note that we are boxing terms of interest only).

Pt − Ktu�u =


M1 = 0

R2?
R3?
R4?

 −


L/4EI 6EI/L2 2EI/L −6EI/L2

6EI/L2 12EI/L3 6EI/L2 −12EI/L3

2EI/L 6EI/L2 4EI/L −6EI/L2

−6EI/L2 −12EI/L3 −6EI/L2 12EI/L3




θ1

0

0

�0



=


6EI�0/L2

R2?
R3?
R4?
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Computer Implementation Example Beam

7 Solve for the displacements from �t = K−1
tt (Pt −Ktu�u) and overwrite Pt by �t


θ?1

0
0

�
√

0

 =


L/4EI 6EI/L2 2EI/L −6EI/L2

6EI/L2 12EI/L3 6EI/L2 −12EI/L3

2EI/L 6EI/L2 4EI/L −6EI/L2

−6EI/L2 −12EI/L3 −6EI/L2 12EI/L3




6EI�0/L2

R2?
R3?
R4?



=


3�0/2L

0
0
0
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Computer Implementation Example Beam

8 Finally, we solve for the reactions, Ru = Kut�tt +Kuu�u , and overwrite �u by Ru
M1

R2

R3

R4

 =


L/4EI 6EI/L2 2EI/L −6EI/L2

6EI/L2 12EI/L3 6EI/L2 −12EI/L3

2EI/L 6EI/L2 4EI/L −6EI/L2

−6EI/L2 −12EI/L3 −6EI/L2 12EI/L3




3�0/2L

0
0
�0



=



−6EI�0/L2

−3EI�0/L3

−3EI�0/L2

3EI�0/L3
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Computer Implementation Example Truss

8

7

6
5

4

3

2

1

54

321

100k

50k

12'

16'16'

1 Degrees of freedom and LM (connectivity: from lower to higher node number)

ID =


0 1
0 0
1 1
0 0
0 0

 =


1 8
2 3
9 10
4 5
6 7

 ; [LM] =



1 8 4 5
1 8 2 3
2 3 4 5
4 5 6 7
9 10 4 5
2 3 6 7
2 3 9 10
9 10 6 7
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Computer Implementation Example Truss

2 Element stiffness matrix

[K (e)
] =


c 0
s 0
0 c
0 s

 AE

L

[
1 −1
−1 1

] [
c s 0 0
0 0 c s

]
=

EA

L


c2 cs −c2 −cs
cs s2 −cs −s2

−c2 −cs c2 cs
−cs −s2 cs s2



c = cosα = x2−x1
L ; s = sinα = Y2−Y1

L

3 Substitute
Element 1: L = 20

′
, c = 16−0

20 = 0.8, s = 12−0
20 = 0.6,

EA
L = (30,000ksi)(10in2)

20 ′ = 15, 000 k/ft .

[K1] =


1 8 4 5

1 9, 600 7200 −9, 600 −7, 200
8 7, 200 5, 400 −7, 200 −5, 400
4 −9, 600 −7, 200 9, 600 7, 200
5 −7, 200 −5, 400 7, 200 5, 400


Element 2: L = 16

′
, c = 1 , s = 0 , EA

L = 18, 750 k/ft.
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Computer Implementation Example Truss

[K2] =


1 8 2 3

1 18, 750 0 −18, 750 0
8 0 0 0 0
2 −18, 750 0 18, 750 0
3 0 0 0 0


Element 3 L = 12

′
, c = 0 , s = 1 , EA

L = 25, 000 k/ft

[K3] =


2 3 4 5

2 0 0 0 0
3 0 25, 000 0 −25, 000
4 0 0 0 0
5 0 −25, 000 0 25, 000


Element 8 L = 12

′
, c = 0 , s = 1 , EA

L = 25, 000 k/ft

[K8] =


9 10 6 7

9 0 0 0 0
10 0 25, 000 0 −25, 000
6 0 0 0 0
7 0 −25, 000 0 25, 000


Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Stiffness Method II; 26/29



Computer Implementation Example Truss

4 Assemble the global stiffness matrix in k/ft Note that we are not assembling the
augmented stiffness matrix, but rather its submatrix [Ktt ].

5 Convert to k/in and simplify


0
0

−100
0
0

50
0

︸ ︷︷ ︸
Pt

=



2, 362.5 −1, 562.5 0.00 −800 −600 0 0
3, 925.0 600 0 0 −800 −600

2, 533.33 0.00 −2, 083.33 −600 −450
3, 162.5 0 −1, 562.5 0

SYMMETRIC 2, 983.33 0 0
2, 362.5 600

2, 533.33


︸ ︷︷ ︸

Ktt



U1
U2
V3
U4
V5
U6
V7

︸ ︷︷ ︸
ut

6 Invert stiffness matrix and solve for displacements



U1
U2
V3
U4
V5
U6
V7


=



−0.0223 in.
0.00433 in.
−0.116 in.
−0.0102 in.
−0.0856 in.
−0.00919 in.
−0.0174 in.
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Computer Implementation Example Truss

7 Solve for member internal forces (in this case axial forces) in local coordinate systems

{
p1
p2

}
=

AE

L

[
1 −1
−1 1

]
︸ ︷︷ ︸

k

[
C S 0 0
0 0 C S

]
︸ ︷︷ ︸

�


U1
V1
U2
V2

︸ ︷︷ ︸
�︸ ︷︷ ︸

δ

=
AE

L

[
c s −c −s

−c −s c s

]
U1
V1
U2
V2


Element 1:

{
p1
p2

}1
= (15, 000 kpf)

( 1

12

ft.

in.

)[
0.8 0.6 −0.8 −0.6

−0.8 −0.6 0.8 0.6

]
−0.0223

0.00
−0.0102
−0.0856


=

{
52.1 kip
−52.1 kip

}
Compression

Element 2:
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Computer Implementation Example Truss

{
p1
p2

}2
= 18, 750 kpf

( 1

12

ft

in.

)[
1 0 −1 0

−1 0 1 0

]
−0.0233

0.00
0.00433
−0.116


=

{
−43.2 kip
43.2 kip

}
Tension

Element 3:

{
p1
p2

}3
= 25, 000 kpf

( 1

12

ft.

in.

)[
0 1 0 −1
0 −1 0 1

]
0.00433
−0.116
−0.0102
−0.0856


=

{
−63.3 kip
63.3 kip

}
Tension

Element 4:

{
p1
p2

}4
= 18, 750 kpf

( 1

12

ft.

in.

)[
1 0 −1 0

−1 0 1 0

]
−0.0102
−0.0856
−0.00919
−0.0174


=

{
−1.58 kip
1.58 kip

}
Tension
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Reduced Stiffness Matrix Condition Number

1 2 3

K1 K2
(1) (2)

( )

1 1
1 1 1

1 2 2
2

1 1
1 ;   2 ;

2

1

s k k k

k k

K k K k

K

   
       





 





 
 

1 2

P1 P2

The structure stiffness matrix and its inverse are given by

K =

[
K1 + K2 −K2
−K2 K2

]
K−1 =

1
(K1 + K2)K2 − K 2

2

[
K2 K2
K2 K1 + K2

]

=

[ 1
K1

1
K1

1
K1

K1+K2
K1K2

]

where K.∆ = P
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Reduced Stiffness Matrix Condition Number

Solution for the displacement vector is

{
�1
�2

}
=

[ 1
K1

1
K1

1
K1

K1+K2
K1K2

]{
P1
P2

}

We rearrange to obtain two equations for �2 = f (�1).

�1 = P1
K1

+ P2
K1
⇒ P1 = K1�1 − P2

�2 = P1
K1

+
P2(K1+K2)

K1K2

}
�2 = �1 +

1
K2

P2 (1)

Likewise

�1 = P1
K1

+ P2
K1
⇒ P2 = K1�1 − P1

�2 = P1
K1

+
P2(K1+K2)

K1K2

}
�2 =

K1 + K2

K2
�1 −

1
K2

P1 (2)

�2 can be expressed in terms of �1, P1 and P2.[
−1 1

K1+K2
K1K2

−1

]{
�1
�2

}
=

1
K2

{
P2
P1

}
(3)
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Reduced Stiffness Matrix Condition Number

Let us consider two cases:

b K1 K2 c = b 1 2 c ⇒
[
−1.0000 1.0000

1.5000 −1.0000

]
b K1 K2 c = b 1 10, 000 c ⇒

[
−1.0000 1.0000

1.0001 1.0000

]

plot the solutions for �2 in terms of �1 with b P1 P2 c = b 1 1 c

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1

1.5

2

2.5

3

3.5

4

Δ
1

Δ 2

 

 

Line 1
Line 2

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

Δ
1

Δ 2

 

 

Line 1
Line 2

Results, including eigenvalues λi give
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Reduced Stiffness Matrix Condition Number

Well Conditioned Ill Conditioned
K1 K2 K1 K2
1.0 2.0 1.0 10,000

(�1, �2) (4.0000, 5.0000) 104(1.999999999999668, 2.000099999999668)
(λ1, λ2) (0.2247,-2.2247) (0.000049998750062, -2.000049998750063)
C 9.8990 4.0002e+04

Matlab 64 bit eps 2.2204e-16

The condition number (C) of a matrix is define as λmax/λmin.

We lose accuracy with very large condition numbers. As rule of thumb a matrix is said to
be ill-conditioned when the condition number (∼ 1/(eps) is larger than the reciprocal of the
machine’s precision, e.g., 107 for typical single precision (32 bit) arithmetic, and 1016 for 64
bit computer.

Elements with drastically different stiffness values should not be connected together.

For severely ill-conditioned matrices, use single value decomposition techniques.
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Reduced Stiffness Matrix Eigenvalues

The stiffness matrix [k ] (or [K ]) can be viewed as a mapping of the displacement vector
{δ} into a force vector {p}.

There is no reason for those vectors to be aligned.

K
δ, u  p

Ku=λ uKu≠ λ u

for instance
AE
L

[
1 −1
−1 1

]
︸ ︷︷ ︸

ktruss

{
2
3

}
︸ ︷︷ ︸

u

=
AE
L

{
−1
1

}
︸ ︷︷ ︸

p

(4)
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Reduced Stiffness Matrix Eigenvalues

If on the other hand, those two vectors point in the same direction, then they are
eigenvectors {u} and we have

[k ] {u} = λ {u}

In the preceding example, the eigenvector is b −0.707 0.707 c

The internal strain energy stored in an element can be determined from
U = 1

2 buc {p} =
1
2 buc[k] {u}

Consider a system where the load {p} applied to each node is proportional to the element
nodal displacement {u} by a factor λ, we have: [k] {u} = λ {u} or ([k]− λ[I]) {u} = 0

This is by definition an eigenproblem. There will be as many eigenvalues λi as there are
degrees of freedom (or rows in [k]).

To each eigenvalue λi corresponds an eigenvector {u}i .

Eigenvectors are normalized such that: buci {u}i = 1, thus buci [k] {u}i = λi

Thus, the eigenvalue λi is equal to twice the internal strain energy stored in an element
undergoing a (normalized) deformation defined by {u}i .

In a rigid body motion, all nodes displace by the same amount, and there are no internal
strains. Hence in a rigid body motion the strain energy U (and thus corresponding λ) must
be equal to zero.
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Reduced Stiffness Matrix Eigenvalues

There should be as many zero eigenvalues as there are possible independent rigid body
motions (i.e. number of equations of equilibrium).

For a two dimensional Lagrangian element, there should be three zero eigenvalues,
corresponding to two translations and one rotation.

Too few zero eigenvalues is an indication of an element lacking the capability of rigid body
motion without strain.

Too many zero eigenvalues is an indication of undesirable mechanism (or failure).

Eigenvalues should not change when the element is rotated.

Similar modes (such as flexure in two orthogonal directions) will have identical eigenvalues
(for isotropic material).

When comparing the stiffness matrices of two identical elements but based on different
formulations, the one with the lowest strain energy (tr[k] = �λi ) is best.

Hence, the element stiffness matrix will have:

Order: corresponds to the number of degrees of freedom (i.e size of the matrix).
Rank: corresponds to the total number of linearly independent equations which

is equal to the order minus the number of rigid body motions.
Rank Deficiency: would be equal to the total number of zero eigenvalues minus the rank.
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Reduced Stiffness Matrix Eigenvalue Test

The augmented stiffness matrix may be expressed as (this equation will be
derived late)

[K] =

[
[d]−1 [d]−1[B]T

[B][d]−1 [B][d]−1[B]T

]
where B is the statics (or equilibrium) matrix, relating external nodal forces to
internal forces; d is a flexibility matrix, and d−1 is its inverse or reduced stiffness
matrix.

The stiffness matrix is obviously singular, since the second “row” is linearly
dependent on the first one.

The reduced stiffness matrix, which is the inverse of a flexibility matrix, is not.

Hence there will be as many zero eigenvalues as the size of B.
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Reduced Stiffness Matrix Eigenvalue Test

2

7

8
9

8 m

3 m

1

3

4

5
6

1

2
3

λKaug = 105b 0.0000 0.0000 0.0000 0.0059 0.1274 0.2201 0.4821 1.6109 4.3911 c

λKtt = 105b 0.1275 0.3999 2.8913 c

λk = 105b 0.0000 0.0000 0.0000 0.1000 0.3188 3.0001 c

λK 1 = 105b 0.0000 0.0000 0.0000 0.1000 0.3188 3.0001 c

λK 2 = 105b 0.0000 0.0000 0.0000 0.1000 0.3187 3.0000 c

Add plots of eigenvectors showing rigid body motion
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Tensors Tensors: Definition

Generalize the concept of a vector by introducing the tensor (T).

A tensor is an operator which operates on tensors to produce other tensors.

Designate this operation as T·v or simply Tv.

A tensor is also a physical quantity, independent of any particular coordinate
system yet specified most conveniently by referring to an appropriate system of
coordinates.

A tensor is classified by the rank or order. A Tensor of order zero is specified in
any coordinate system by one coordinate and is a scalar (such as temperature).
A tensor of order one has three coordinate components in space, hence it is a
vector (such as force). In general 3-D space the number of components of a
tensor is 3n where n is the order of the tensor.

A force and a stress are tensors of order 1 and 2 respectively.
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Tensors Tensors: Indicial Notation

Engineering notation may be the simplest and most intuitive one, it often leads to
long and repetitive equations. Alternatively, tensor or the dyadic form will lead to
shorter and more compact forms.

The following rules define indicial notation:

1 If there is one letter index (free index), that index goes from i to n (range of
the tensor). For instance:

ai = ai = b a1 a2 a3 c =


a1

a2

a3

 i = 1, 3

assuming that n = 3.
2 A repeated index or (dummy index) will take on all the values of its range,

and the resulting tensors summed. In general no index occurs more than
twice in a properly written expression.For instance:

a1ixi = a11x1 + a12x2 + a13x3

3 Tensor’s order:
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Tensors Tensors: Indicial Notation

First order tensor (such as force) has only one free index:

ai = ai = b a1 a2 a3 c

other first order tensors aijbj = ai1b1 + ai2b2 + ai3b3, Fikk , εijk ujvk

(note that there is only one free index).
Second order tensor (such as stress or strain) will have two free
indices.

Tij =

 T11 T22 T13

T21 T22 T23

T31 T32 T33


other examples Aijip, δijuk vk .
A fourth order tensor (such as Elastic constants) will have four free
indices: σij = Dijklεkl

4 Derivatives of tensor with respect to xi is written as , i . For example:

∂φ
∂xi

= φ,i
∂vi
∂xi

= vi,i
∂vi
∂xj

= vi,j
∂Ti,j
∂xk

= Ti,j,k
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Tensors Tensors: Indicial Notation

Usefulness of the indicial notation is in presenting systems of equations in
compact form. For instance:

xi = cijzj

this simple compacted equation, when expanded would yield:

x1 = c11z1 + c12z2 + c13z3

x2 = c21z1 + c22z2 + c23z3

x3 = c31z1 + c32z2 + c33z3

Similarly:
Aij = BipCjqDpq

A11 = B11C11D11 + B11C12D12 + B12C11D21 + B12C12D22

A12 = B11C21D11 + B11C22D12 + B12C21D21 + B12C22D22

A21 = B21C11D11 + B21C12D12 + B22C11D21 + B22C12D22

A22 = B21C21D11 + B21C22D12 + B22C21D21 + B22C22D22

Using indicial notation, we may rewrite the definition of the dot product

a·b = aibi = (ax i+ ay j+ azk)·(bx i+ by j+ bzk) = ax bx + ay by + azbz
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Tensors Tensors: Indicial Notation

Note that one can adopt the dyadic instead of the indicial notation for tensors as
linear vector operators u = T·v or ui = Tijvj

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado A Brief Overview of Mechanics 8/39



Tensors Tensor Operations

The sum of two tensors (must be of the same orde)is simply defined as:

Sij = Tij +Uij

The scalar multiplication of a (second order) tensor is defined by:

Sij = λTij

The outer product of two tensors is the tensor whose components are formed by
multiplying each component of one of the tensors by every component of the
other. This produces a tensor with an order equal to the sum of the orders of the
factor tensors.

aibj = Tij or
{ }

nx1

b c1xm =

[ ]
nxm

viFjk = bijk

DijTkm = φijkm
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Tensors Tensor Operations

The inner product of two tensors: contraction of one index from each tensor

aibi

aiEik = fk orb c1xm

[ ]
mxn

= b c1xn

Ei jFjm = Gim or
[ ]

nxp

[ ]
pxm

=

[ ]
nxm

The cross product can be defined

a×b = εpqr aqbrep = (ay bz − azby )i+ (azbx − ax bz)j+ (ax by − ay bx)k

In the second equation, there is one free index p thus there are three equations,
there are two repeated (dummy) indices q and r , thus each equation has nine
terms. εpqr is called the permutation symbol and is defined as

εpqr =



1 If the value ofi , j , kare an even permutation of 1,2,3
(i.e. if they appear as 1 2 3 1 2)

−1 If the value ofi , j , kare an odd permutation of 1,2,3
(i.e. if they appear as 3 2 1 3 2)

0 If the value ofi , j , kare not permutation of 1,2,3
(i.e. if two or more indices have the same value)
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Tensors
Principal Values and Directions of Symmetric Second Order

Tensors

Two fundamental tensors in continuum mechanics are second order and
symmetric (stress and strain), we examine some important properties of these
tensors.

For every symmetric tensor Tij defined at some point in space, there is
associated with each direction (specified by unit normal nj ) at that point, a vector
given by the inner product

vi = Tijnj

If the direction is one for which vi is parallel to ni , the inner product is

Tijnj = λni

and the direction ni is called principal direction of Tij . Since ni = δijnj , this can be
rewritten as

(Tij − λδij)nj = 0

which represents a system of three equations for the four unknowns ni and λ.

(T11 − λ)n1 + T12n2 + T13n3 = 0

T21n1 + (T22 − λ)n2 + T23n3 = 0

T31n1 + T32n2 + (T33 − λ)n3 = 0
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Tensors
Principal Values and Directions of Symmetric Second Order

Tensors

To have a non-trivial solution (ni = 0) the determinant of the coefficients must be
zero,

|Tij − λδij | = 0

Expansion of this determinant leads to the following characteristic equation

λ3 − ITλ2 + IITλ− IIIT = 0

the roots are called the principal values of Tij and

IT = Tij = tr Tij

IIT =
1
2
(TiiTjj − TijTij)

IIIT = |Tij |= det Tij

are called the first, second and third invariants respectively of Tij .

It is customary to order those roots as λ(1) > λ(2) > λ(3)

For a symmetric tensor with real components, the principal values are also real.
If those values are distinct, the three principal directions are mutually orthogonal.

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado A Brief Overview of Mechanics 12/39



Kinetics Force, Traction and Stress Vectors

There are two kinds of forces in continuum mechanics

body forces: act on the elements of volume or mass inside the body, e.g.
gravity, electromagnetic fields. dF = ρbdVol .

Surface forces (or traction) are contact forces acting on the free body at its
bounding surface. Those will be defined in terms of force per unit
area. ∫

S
tdS = i

∫
S
tx dS + j

∫
S
ty dS + k

∫
S
tzdS
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Kinetics Force, Traction and Stress Vectors

t̂

+ t

u

û = 0

t n

Unit exterior 
normal

n̂t t̂t

t̂

n̂t t̂t

t̂
Boundary tractions   

are prescribed on 
t̂

tBoundary displacements   

are prescribed on

û

u
xx

yy xy

xy

Usually limit the term traction to an actual bounding surface of a body, and use
the term stress vector for an imaginary interior surface.
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Kinetics Force, Traction and Stress Vectors

The traction vectors on planes perpendicular to the coordinate axes are
particularly useful. When the vectors acting at a point on three such mutually
perpendicular planes is given, the stress vector at that point on any other
arbitrarily inclined plane can be expressed in terms of the first set of tractions.

A stress is a second order cartesian tensor, σij where the 1st subscript (i) refers
to the direction of outward facing normal, and the second one (j) to the direction
of component force.

2XΔ

X

3X

1

2

X

3

σ

σ

11σ

σ
13 21

σ
23

σ
22

σ
31

σ
32

σ
33

12
Δ X 1

Δ X
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Kinetics Force, Traction and Stress Vectors

σ = σij =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =


t1

t2

t3


In fact the nine rectangular components σij of σ turn out to be the three sets of
three vector components (σ11, σ12, σ13), (σ21, σ22, σ23), (σ31, σ32, σ33) which
correspond to the three tractions t1, t2 and t3 which are acting on the x1, x2 and
x3 faces.

Those tractions are not necessarily normal to the faces, and they can be
decomposed into a normal and shear traction if need be. In other words,
stresses are nothing else than the components of tractions (stress vector).
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Kinetics Force, Traction and Stress Vectors

13 σ
21

σ
23

σ
22

σ
31

1

σ
33

σ
32

X 2

X1

V1

X3

X 2

(Components of a vector are scalars)

V

V

V2

X

3

(Components of a tensor of order 2 are vectors)

X3

11σ

σ
12

σ

Stresses as components of a traction vector

t

t

t 1

2

3

The state of stress at a point cannot be specified entirely by a single vector with
three components; it requires the second-order tensor with all nine components.
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Kinetics Traction on an Arbitrary Plane; Cauchy’s Stress Tensor

We seek to determine the traction acting on the surface of an oblique plane
(characterized by its normal n) in terms of the known tractions normal to the
three principal axis, t1, t2 and t3.

Cauchy’s tetrahedron

b* Δ V

-t Δ S
*

1
1

*

ρ

S

X

X

X

3

1

2

O
h

n

B

n

C

AN

-t
*

2 Δ
S

2

*
-t
*

3
Δ S 3

t Δ

will be obtained without any assumption of equilibrium and it will apply in fluid
dynamics as well as in solid mechanics.
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Kinetics Traction on an Arbitrary Plane; Cauchy’s Stress Tensor

This equation is a vector equation, and the corresponding algebraic equations
for the components of tn are

tn1 = σ11n1 + σ21n2 + σ31n3

tn2 = σ12n1 + σ22n2 + σ32n3

tn3 = σ13n1 + σ23n2 + σ33n3

or
Indicial notation tni = σjinj

dyadic notation tn = n·σ = σT ·n

We have thus established that the nine components σij are components of the
second order tensor, Cauchy’s stress tensor.
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Kinetics Traction on an Arbitrary Plane; Cauchy’s Stress Tensor

For a stress tensor at point P given by

σ =

 7 −5 0
−5 3 1
0 1 2

 =


t1

t2

t3


We seek to determine the traction (or stress vector) t passing through P and
parallel to the plane ABC where A(4, 0, 0), B(0, 2, 0) and C(0, 0, 6).

The vector normal to the plane can be found by taking the cross products of
vectors AB and AC:

N = AB×AC =

∣∣∣∣∣∣
e1 e2 e3

−4 2 0
−4 0 6

∣∣∣∣∣∣
= 12e1 + 24e2 + 8e3
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Kinetics Traction on an Arbitrary Plane; Cauchy’s Stress Tensor

The unit normal of N is given by

n =
3
7
e1 +

6
7
e2 +

2
7
e3

Hence the stress vector (traction) will be

b 3
7

6
7

2
7 c

 7 −5 0
−5 3 1
0 1 2

 = b − 9
7

5
7

10
7 c

and thus t = − 9
7e1 +

5
7e2 +

10
7 e3
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Kinetics Invariants

The principal stresses are physical quantities, whose values do not depend on
the coordinate system in which the components of the stress were initially given.
They are therefore invariants of the stress state.

When the determinant in the characteristic equation is expanded, the cubic
equation takes the form

λ3 − Iσλ2 − IIσλ− IIIσ = 0

where the symbols Iσ, IIσ and IIIσ denote the following scalar expressions in the
stress components:

Iσ = σ11 + σ22 + σ33 = σii = tr σ

IIσ = −(σ11σ22 + σ22σ33 + σ33σ11) + σ
2
23 + σ

2
31 + σ

2
12

=
1
2
(σijσij − σiiσjj) =

1
2
σijσij −

1
2

I2
σ

=
1
2
(σ : σ− I2

σ)

IIIσ = detσ =
1
6

eijk epqrσipσjqσkr
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Kinetics Invariants

In terms of the principal stresses, those invariants can be simplified into

Iσ = σ(1) + σ(2) + σ(3)

IIσ = −(σ(1)σ(2) + σ(2)σ(3) + σ(3)σ(1))
IIIσ = σ(1)σ(2)σ(3)
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Kinetics Spherical and Deviatoric Stress Tensors

let σ denote the mean normal stress p

σ = −p =
1
3
(σ11 + σ22 + σ33) =

1
3
σii =

1
3

tr σ

then the stress tensor can be written as the sum of two tensors:

Hydrostatic stress in which each normal stress is equal to −p and the shear
stresses are zero. The hydrostatic stress produces volume
change without change in shape in an isotropic medium.

σhyd = −pI =

 −p 0 0
0 −p 0
0 0 −p


Deviatoric Stress: which causes the change in shape.

σdev =

 σ11 − σ σ12 σ13

σ21 σ22 − σ σ23

σ31 σ32 σ33 − σ
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Kinematic Position and Displacement

The undeformed configuration of a material continuum at time t = 0 together
with the deformed configuration at t = t .

I

I
i

i
i

u

b

X

X

X

x

x

x

P

P

1

2

3

1

3
1

1

2

2

3

3

0

t=0

t=t

X

x

O

o

U

Material

Spatial

I
2

In the initial configuration P0 has the position vector

X = X1I1 + X2I2 + X3I3

which is here expressed in terms of the material coordinates (X1,X2,X3).
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Kinematic Position and Displacement

In the deformed configuration, the particle P0 has now moved to the new position
P and has the following position vector

x = x1i1 + x2i2 + x3i3

which is expressed in terms of the spatial coordinates.

The displacement vector u connecting P0 and P is the displacement vector
which can be expressed in both the material or spatial coordinates

U = UK IK

u = uk ik

From the preceding figure we can express motion as

xi = xi(X1,X2,X3, t) Lagrangian formulation
Xi = Xi(x1, x2, x3, t) Eulerian formulation

Ignoring a detailed analysis of large deformation, it is determined that

Displacement gradient
Small Large

Displacement Small Lagrangian small strain (Cauchy) Lagrangian large strain (Green-Lagrange)
Large Eulerian small strain Eulerian finite strain (Eulerian-Almansi)
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Kinematic Strains

The Lagrangian finite strain tensor can be written as

εij =
1
2
(ui,j + uj,i + uk,iuk,j)

Alternatively these equations may be expanded as

εxx =
∂u

∂x
+

1

2

[(
∂u

∂x

)2
+

(
∂v

∂x

)2
+

(
∂w

∂x

)2
]

εyy =
∂v

∂y
+

1

2

[(
∂u

∂y

)2
+

(
∂v

∂y

)2
+

(
∂w

∂y

)2
]

εzz =
∂w

∂z
+

1

2

[(
∂u

∂z

)2
+

(
∂v

∂z

)2
+

(
∂w

∂z

)2
]

εxy =
1

2

(
∂v

∂x
+
∂u

∂y
+
∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y
+
∂w

∂x

∂w

∂y

)

εxz =
1

2

(
∂w

∂x
+
∂u

∂z
+
∂u

∂x

∂u

∂z
+
∂v

∂x

∂v

∂z
+
∂w

∂x

∂w

∂z

)
εyz =

1

2

(
∂w

∂y
+
∂v

∂z
+
∂u

∂y

∂u

∂z
+
∂v

∂y

∂v

∂z
+
∂w

∂y

∂w

∂z

)

We define the engineering shear strain as

γij = 2εij (i 6= j)
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Kinematic Compatibility Equation

If εij =
1
2 (ui,j + uj,i) then we have six differential equations (in 3D the strain

tensor has a total of 9 terms, but due to symmetry, there are 6 independent
ones) for determining (upon integration) three unknowns displacements ui .
Hence the system is overdetermined, and there must be some linear relations
between the strains.

It can be shown (through appropriate successive differentiation) that the
compatibility relation for strain reduces to:

∂2εik

∂xj∂xj
+

∂2εjj

∂xi∂xk
− ∂2εjk

∂xi∂xj
− ∂2εij

∂xj∂xk
= 0.

In 3D, this would yield 9 equations in total, however only six are distinct.

In 2D, this results in (by setting i = 2, j = 1 and l = 2):

∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

=
∂2γ12

∂x1∂x2

(recall that 2ε12 = γ12).
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Fundamental Laws of Continuum Mechanics

We have thus far studied tensor fields (stress and strain).

We have also obtained only one differential equation, that was the compatibility
equation.

Next we still derive additional differential equations governing the way stress and
deformation vary at a point and with time. They will apply to any continuous
medium, and yet we will not have enough equations to determine unknown
tensor field. For that we need to wait for constitutive laws relating stress and
strain will be introduced.

The fundamental equations are:

1 Conservation of mass (continuity equation)
2 Conservation of momentum (Equation of motion; Equilibrium)
3 Conservation of Energy.
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Fundamental Laws of Continuum Mechanics

A conservation law establishes a balance of a scalar or tensorial quantity in
volume V bounded by a surface S (inside a control surface). In its most general
form, such a law may be expressed as

d
dt

∫
V
AdV︸ ︷︷ ︸

Rate of variation

−
∫

S
αdS︸ ︷︷ ︸

Exchange by Diffusion

=

∫
V
AdV︸ ︷︷ ︸

Source

The preceding equation reads: rate of increase of A inside a control volume plus
the rate of outward flux of A through the surface of the control volume is equal to
the rate of increase of A inside the control volume

The dimensions of various quantities are given by

dim(α) = dim(ALt−1)

dim(A) = dim(At−1)

rightfully all expressed in terms of A.
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Fundamental Laws of Continuum Mechanics Linear Momentum Principle; Equation of Motion

the time rate of change of the total momentum of a given set of particles equals
the vector sum of all external forces acting on the particles of the set, provided
Newton’s Third Law applies.

The continuum form of this principle is a basic postulate of continuum mechanics
(postulate: a statement, also known as an axiom, which is taken to be true
without proof).

Starting with ∫
S
tdS +

∫
V
ρbdV =

d
dt

∫
V
ρvdV

Divergence Theorem ∫
V

vi,idV =

∫
S

vini︸︷︷︸
flux

dS

The flux of a vector function through some closed surface equals the integral of
the divergence of that function over the volume enclosed by the surface.
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Fundamental Laws of Continuum Mechanics Linear Momentum Principle; Equation of Motion

we substitute ti = Tijnj and apply the divergence theorem to obtain∫
V

(
∂Tij

∂xj
+ ρbi

)
dV =

∫
V
ρ

dVi

dt
dV∫

V

[
∂Tij

∂xj
+ ρbi − ρ

dvi

dt

]
dV = 0

or for an arbitrary volume
∂Tij

∂xj
+ ρbi = ρ

dvi

dt

which is Cauchy’s (first) equation of motion, or the linear momentum principle,
or more simply equilibrium equation.

When expanded in 3D, this equation yields:

∂T11

∂x1
+
∂T12

∂x2
+
∂T13

∂x3
+ ρb1 = 0

∂T21

∂x1
+
∂T22

∂x2
+
∂T23

∂x3
+ ρb2 = 0

∂T31

∂x1
+
∂T32

∂x2
+
∂T33

∂x3
+ ρb3 = 0
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Fundamental Laws of Continuum Mechanics Linear Momentum Principle; Equation of Motion

We note that these equations could also have been derived from the free body
diagram with the assumption of equilibrium (via Newton’s second law)
considering an infinitesimal element of dimensions dx1 × dx2 × dx3.

σ +
δyy
δσyy

y
dy

τ xy

σ
σ

σ

+
δxx

dy

yy

xx

σδ xx

x
dx

τ +
δxy

τδ xy d

τ yx

τ +
δ

τδ
y

dy
yx

yx

x
x

dx
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Fundamental Laws of Continuum Mechanics Conservation of Energy; First Principle of Thermodynamics

If mechanical quantities only are considered, the principle of conservation of
energy for the continuum may be derived directly from the equation of motion by
taking the integral over the volume V of the scalar product and the velocity vi .∫

V
viTji,jdV +

∫
V
ρbividV =

∫
V
ρvi

dvi

dt
dV

Applying the divergence theorem,

dK
dt

+
dU
dt

=
dW
dt

+ Q

this equation relates the time rate of change of total mechanical energy of the
continuum on the left side to the rate of work done by the surface and body
forces on the right hand side.

If both mechanical and non mechanical energies are to be considered, the first
principle states that the time rate of change of the kinetic plus the internal energy
is equal to the sum of the rate of work plus all other energies supplied to, or
removed from the continuum per unit time (heat, chemical, electromagnetic,
etc.).
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Fundamental Laws of Continuum Mechanics Conservation of Energy; First Principle of Thermodynamics

For a thermomechanical continuum, it is customary to express the time rate of
change of internal energy by the integral expression

dU
dt

=
d
dt

∫
V
ρudV

where u is the internal energy per unit mass or specific internal energy.

The dimension of U is one of energy dim U = ML2T−2, and the SI unit is the
Joule, similarly dim u = L2T−2 with the SI unit of Joule/Kg.
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Constitutive Equations

Hooke
ceiinosssttuu

Hooke, 1676
Ut tensio sic vis

Hooke, 1678

The Generalized Hooke’s Law can be written as:

σij = Dijklεkl i , j , k , l = 1, 2, 3

The (fourth order) tensor of elastic constants Dijkl has 81 (34) components
however, due to the symmetry of both σ and ε,there are at most 36

(
9(9−1)

2

)
distinct elastic terms.
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Constitutive Equations

In terms of Lame’s constants (which naturally are derived from coninuum
mechanics consideration, but can not be both experimentally measured),
Hooke’s Law for an isotropic body is written as

Tij = λδijEkk + 2µEij ; Eij =
1

2µ

(
Tij −

λ

3λ+ 2µ
δijTkk

)
In terms of engineering constants (which can be measured in the laboratory)

1
E = λ+µ

µ(3λ+2µ) ; ν = λ
2(λ+µ)

λ = νE
(1+ν)(1−2ν) ; µ = G = E

2(1+ν)

Hooke’s law for isotropic material in terms of engineering constants becomes

σij =
E

1 + ν

(
εij +

ν

1− 2ν
δijεkk

)
; εij =

1 + ν

E
σij −

ν

E
δijσkk
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Constitutive Equations

When the strain equation is expanded in 3D cartesian coordinates it would yield:

εxx

εyy

εzz

γxy (2εxy )

γyz(2εyz)

γzx(2εzx)


=

1
E



1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1 + ν 0 0
0 0 0 0 1 + ν 0
0 0 0 0 0 1 + ν





σxx

σyy

σzz

τxy

τyz

τzx


Plane Strain

σxx

σyy

σzz

τxy

 =
E

(1 + ν)(1− 2ν)


(1− ν) ν 0
ν (1− ν) 0
ν ν 0
0 0 1−2ν

2




εxx

εyy

γxy
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Constitutive Equations

Axisymmetry
εrr = ∂u

∂r ; εθθ = u
r

εzz = ∂w
∂z ; εrz = ∂u

∂z + ∂w
∂r

The constitutive relation is again analogous to 3D/plane strain


σrr

σzz

σθθ
τrz

 =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0
ν 1− ν ν 0
ν ν 1− ν 0
ν ν 1− ν 0
0 0 0 1−2ν

2




εrr

εzz

εθθ
γrz


Plane Stress 

σxx

σyy

τxy

 =
1

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2


εxx

εyy

γxy


εzz = − 1

1− νν(εxx + εyy )
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Equations of Statics and Kinematics Statics Matrix B

The statics matrix [B] relates the vector of all the structure’s {P} known nodal
forces in global coordinates to all the unknown internal forces in their local
coordinate system {F}, through equilibrium relationship:

{P} ≡ [B] {F} (1)

[B] would have as many rows as the total number of independent equations of
equilibrium; and as many columns as independent internal forces.

Type Internal Forces Equations of Equilibrium
Truss Axial force at one end �FX = 0, �FY = 0
Beam 1 Shear and moment at one end �FA

y = 0, �MA
z = 0

Beam 2 Shear at each end �FA
y = 0, �FB

y = 0
Beam 3 Moment at each end �MA

z = 0, �MB
z = 0

2D Frame 1 Axial, Shear, Moment at one end �FA
x = 0, �FA

y = 0, �MA
z = 0

[B] square matrix for a statically determinate structure, and rectangular (more
columns than rows) otherwise.
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Equations of Statics and Kinematics Statics Matrix: Truss Example

Px2

Px3

3

Py2

Px2Py2

1

f4

Ry1

Rx1

f1
f3

Py1

4
Rx4

Ry4

Px4

f4

Py3

f2

Py4

Px1

f3

2

1 4

43

2

1

X

H

3

L

Y

f2

f1

2

8 unknown forces (4 internal member forces and 4 external reactions), and 8 equations of equilibrium (2 at each of the 4 nodes).
Equilibrium equations (cosα = L√

L2+H2
= C and sinα = H√

L2+H2
= S):

Node �FX = 0 �FY = 0
Node 1 Px1︸︷︷︸

0

+F3C − Rx1 = 0 Py1︸︷︷︸
0

+F1 + F3S − Ry1=0

Node 2 Px2 + F2 = 0 Py2 − F1 = 0
Node 3 Px3︸︷︷︸

0

−F2 − F3C = 0 Py3︸︷︷︸
0

−F4 − F3S = 0

Node 4 Px4︸︷︷︸
0

+Rx4 = 0 Py4︸︷︷︸
0

+F4 − Ry4 = 0
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Equations of Statics and Kinematics Statics Matrix: Truss Example

�F1
x

�F1
y

�F2
x

�F2
y

�F3
x

�F3
y

�F4
x

�F4
y



Px1
Py1
Px2
Py2
Px3
Py3
Px4
Py4

︸ ︷︷ ︸
{P}

=



0 0 −C 0 1 0 0 0
−1 0 −S 0 0 1 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 C 0 0 0 0 0
0 0 S 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 −1 0 0 0 1


︸ ︷︷ ︸

[B]



F1
F2
F3
F4

Rx1
Ry1
Rx4
Ry4

︸ ︷︷ ︸
{F}

(2)



F1
F2
F3
F4

Rx1
Ry1
Rx4
Ry4

︸ ︷︷ ︸
{F}

=



0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 1

C 0 1
C 0 0 0

0 0 − S
C 0 − S

C 1 0 0
1 0 1 0 1 0 0 0
0 1 S

C 1 S
C 0 0 0

0 0 0 0 0 0 1 0
0 0 − S

C 0 − S
C 1 0 1


︸ ︷︷ ︸

[B]−1



0
0

Px2
Py2

0
0
0
0

︸ ︷︷ ︸
{P}

=



Py2
−Px2

Px2
C

− S
C Px2
Px2

S
C Px2 + Py2

0
− S

C Px2



[B] is independent of the external load
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Equations of Statics and Kinematics Kinematics Matrix A

The kinematics matrix [A] relates all the structure’s nodal total displacements in global coordinates {�} to the element relative
displacements in their local coordinate system and the support displacement (which may not be zero if settlement occurs) {�}
and is defined as:

{�} ≡ [A] {�} (3)

[A] is a rectangular matrix, number of rows is equal to the number of the element internal displacements, and the number of
columns is equal to the number of nodal displacements.

u1

v 1

v 2
u2

α

Small angle 
changes

Contrarily to the rotation matrix introduced earlier
and which transforms the displacements from global to local coordinate
for one single element, the kinematics matrix applies to the entire structure.
It can be easily shown that for trusses (which corresponds
to shortening or elongation of the member, and small change in angle α):

�
e
= (u2 − u1) cosα + (v2 − v1) sinα
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Equations of Statics and Kinematics Kinematics Matrix A

Considering again the statically determinate truss of the previous example, the kinematic matrix will be given by:

�
e
1 = v2 − v1; �

e
2 = u3 − u2; �

e
3 = (u3 − u1)C + (v3 − v1)S; �

e
i = · · ·

or in matrix form: 

�e
1

�e
2

�e
3

�e
4

u1
v1
u4
v4


=



0 −1 0 1 0 0 0 0
0 0 −1 0 1 0 0 0

−C −S 0 0 C S 0 0
0 0 0 0 0 1 0 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


︸ ︷︷ ︸

[A]



u1
v1
u2
v2
u3
v3
u4
v4



Applying the constraints: u1 = 0; v1 = 0; u4 = 0; and v4 = 0 we obtain:



�e
1

�e
2

�e
3

�e
4

0
0
0
0


=



0 −1 0 1 0 0 0 0
0 0 −1 0 1 0 0 0

−C −S 0 0 C S 0 0
0 0 0 0 0 1 0 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


︸ ︷︷ ︸

[A]



u1
v1
u2
v2
u3
v3
u4
v4



We should observe that [A] is the transpose of the [B] matrix in Eq. 2
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Equations of Statics and Kinematics Statics-Kinematics Matrix Relationship

Having defined both the statics [B] and kinematics [A] matrices, it is intuitive that
those two matrices must be related.
The external work being defined as

Wext = 1
2⌊P⌋ {�}

{P} = [B] {F}

}
Wext =

1
2
⌊F⌋[B]T {�}

Alternatively, the internal work is given by:

Wint = 1
2⌊F⌋ {�}

{�} = [A] {�}

}
Wint =

1
2
⌊F⌋[A] {�}

Equating the external to the internal work Wext = Wint we obtain:

1
2
⌊F⌋[B]T {�} = 1

2
⌊F⌋[A] {�}

[B]T = [A] (4)
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Equations of Statics and Kinematics Statics-Kinematics Matrix Relationship

The counterparts at the continuum level is

εxx

εyy

εzz

εxy

εxz

εyz


=



∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x
0 ∂

∂z
∂
∂y




ux

uy

uz



or ε = Lu where L is called a Linear Operator, and


∂
∂x 0 0 ∂

∂y
∂
∂z 0

0 ∂
∂y 0 ∂

∂x 0 ∂
∂z

0 0 ∂
∂z 0 ∂

∂x
∂
∂y




σxx

σyy

σzz

σxy

σxz

σyz


+


bx

by

bz

 = 0

or LTσ+ b = 0
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Stiffness-Flexibility Relations Objectives

Having introduced both the stiffness and flexibility methods, we shall
rigorously consider the relationship among the two matrices [K] and
[D] at the structure level.
Recall: {

Pt

Pu

}
=

[
Ktt Ktu

Kut Kuu

]{
�t

�u

}
(5)
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Stiffness-Flexibility Relations From Stiffness to Flexibility

We seek d, such that � = dp, for a structure supported in a stable and statically determinate way. For the following simple case:

1 2

Y

X

{�t} =

{
θ1
θ2

}
; {�u} =

{
v1
v2

}
; {Pt} =

{
M1
M2

}
; {Pu} =

{
V1
V2

}

Since {�u} = {0} ⇒
{

Pt
Pu

}
=

[
Ktt
Kut

]
{�t} ⇒ {Pt} = [Ktt ] {�t} ⇒ [d] = [Ktt ]

−1
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Stiffness-Flexibility Relations Example From Stiffness to Flexibility

1 2

Y

X

{
M1

M2

}
=

EI
l

[
4 2
2 4

]
︸ ︷︷ ︸

[Ktt ]

{
θ1

θ2

}

[Ktt ]
−1 = [d] =

l
EI

1
12

[
4 −2

−2 4

]
=

l
6EI

[
2 −1

−1 2

]
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Stiffness-Flexibility Relations From Flexibility to Stiffness

1 [Ktt ]: From Eq. 5, [K] was subdivided into free and supported d.o.f.’s,
and we have shown that [Ktt ] = [d]

−1, or {Pt} = [Ktt ] {�t} but we still
have to determine [Ktu], [Kut ], and [Kuu].

2 [Kut ]: Since [d] is obtained for a stable statically determinate structure,
we have:

{Pu} = [B] {Pt}; {Pu} = [B] [Ktt ]︸ ︷︷ ︸
[Kut ]

{�t}; [Kut ] = [B] [d]−1

3 [Ktu]: Equating the external to the internal work:

1 External work: Wext =
1
2⌊�t⌋{Pt}

2 Internal work: Wint =
1
2⌊Pu⌋{�u}
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Stiffness-Flexibility Relations From Flexibility to Stiffness

Equating Wext to Wint and combining with

⌊Pu⌋ = ⌊�t⌋ [Kut ]
T

with {�u} = {0} (zero support displacements) we obtain:

[Ktu] = [Kut ]
T
= [d]

−1
[B]T (6)

4 [Kuu]:

{Pu} = [B] {Pt}; {Pt} = [Ktu] {�u}; [Ktu] [d]
−1

[B]T

or:
{Pu} = [B][d]−1[B]T︸ ︷︷ ︸

[Kuu ]

{�u} (7)

In summary we have:

[K] =

[
[d]−1 [d]−1[B]T

[B][d]−1 [B][d]−1[B]T
]

(8)
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Stiffness-Flexibility Relations From Flexibility to Stiffness

1 2

Y

X

Assuming that both M1 and M2 are positive (ccw):

1 The flexibility matrix is given by: {
θ1
θ2

}
=

l

6EI

[
2 −1

−1 2

]
︸ ︷︷ ︸

[d]

{
M1
M2

}

2 The statics matrix [B] relating external to internal forces is given by:

{
R1 = V1
R2 = V2

}
=

1

l

[
1 1

−1 −1

]
︸ ︷︷ ︸

[B]

{
M1
M2

}
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Stiffness-Flexibility Relations From Flexibility to Stiffness

1 [Ktt ]: would simply be given by:

[Ktt ] = [d]
−1

=
EI
l

[
4 2
2 4

]

The statics matrix [B] relating external to internal forces is given by:{
V1

V2

}
=

1
l

[
1 1

−1 −1

]
︸ ︷︷ ︸

[B]

{
M1

M2

}

2 [Ktu]: The upper off-diagonal

[Ktu] = [d]
−1

[B]T =
EI
l

[
4 2
2 4

]
1
l

[
1 −1
1 −1

]
=

EI
l2

[
6 −6
6 −6

]
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Stiffness-Flexibility Relations From Flexibility to Stiffness

3 [Kut ]: Lower off-diagonal term

[Kut ] = [B][d]−1 =
1
l

[
1 1

−1 −1

]
EI
l

[
4 2
2 4

]
=

EI
l2

[
6 6

−6 −6

]
4 [Kuu]: Lower diagonal term

[Kuu] = [B] [d]−1
[B]T = [Kut ] [B]T

=
EI
l2

1
l

[
6 6

−6 −6

] [
1 −1
1 −1

]
=

EI
l3

[
12 −12

−12 12

]
Let us note that we can rewrite:

M1
M2
V1
V2

 =
EI

l3


4l2 2l2 6l −6l
2l2 4l2 6l −6l
6l 6l 12 −12

−6l −6l −12 12




θ1
θ2
v1
v2


If we rearrange the stiffness matrix we would get:


V1
M1
V2
M2

 =
EI

l


12
l2

6
l

−12
l2

6
l

6
l 4 −6

l 2
−12

l2
−6

l
12
l

−6
l

6
l 2 −6

l 4


︸ ︷︷ ︸

[K]


v1
θ1
v2
θ2
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Stiffness-Flexibility Relations From Flexibility to Stiffness

and is the same stiffness matrix earlier derived.
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Congruent Transformation

Insert from old lecture notes in Matrix, may be important.
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Constraints Axial vs Flexural Stiffness

3

12EI

L

1

EA

L

Ratio of axial to flexural stiffness is:
α = ka

kf
=

EA
L

12EI
L3

= AL2

12I .

For a b × h rectangular section, with b = h/2, and L = 10h,
⇒ α = 100

For a W section
Z ≈ wd

9 , Z
S = ξ = 1.1, S = I

d
2

, w = (490) lbs/ft3A, or

I ≈ 0.208Ad2, and α =
EA
L

12EI
L3

=
EA
L

12E(0.208)Ad2

L3

= 0.4
(

L
d

)2

For steel structure, we can assume
L = 20d , ⇒ α = 160 Axial stiffness is much higher than flexural stiffness. Note: we may
have negligible axial deformations, however axial force is not negligible.

This is often exploited in seismic analysis, enabling us to replace a (short) multi-bay
building with a single column with lumped masses.
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Constraints Frames

θ2 θ4
θ2

θ3

IncompressibleCompressible

∆3∆1 ∆1 ∆1

u1
u6 u11

θ2 θ3 θ4 θ5

θ7 θ8 θ9 θ10

θ12 θ13 θ14 θ15

2

1

765

432

1211109

8

13

14 1615

1 1 17 18 1

1 1 19 20 2

1 1 21 22 3

1 1 23 24

-1 0 2

-1 0 3

-1 0 4

-1 0 5
ID=

-2 0 7

-2 0 8

-2 0 9

-2 0 1

1

1

1

1

6

6

6

6

11

11

0

-3 0 12

-3 0 13

-3 0 14

-3 0 1

1

5

1

11

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 





 


4

5

6

7

8

9

10

11

12

13

14

15

16

15 unrestrained dof 
instead of 36

1 1 1 1

6 6 6 6

11 11 11 11

Ignoring axial deformations in the columns.

If α >≈ 10 ignore axial deformation, and reduce number of degrees of freedom. When the frame is subjected to lateral
(wind or earthquake) load, shear force in each column is proportional to its stiffness.

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Special Topics; 22/42



Multiple degrees of freedom system

Ignoring axial deformation, greatly facilitates the dynamic analysis of small rise
building frames subjected to lateral load (wind, earthquakes).

f2=K2Δ2=K2(u2 ‐u1)

f3=K3Δ3=K3(u3 ‐u2)

f1=K1Δ1=K1u1 

P1(t)

P2(t)

P3(t)

Δ1 
u1 

u2 

Δ2 

Δ3 
u3 

Rigid 
beams

Weightless frame, 
weightless dampers

Attached lumped 
massesOriginal frame = +

m11

m33

m22

Interfloor 
damping   
stiffness

C1          K1

C2          K2

C3          K3

m33u3
..

m22u2
..

m11u1
..

f2=c2(u2 ‐u1)
. .

f1=c1u1)
. .

f3=c3(u3 ‐u2)
. .

A)
B) C)

K=Σ 12EI/h3
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Multiple degrees of freedom system

V=
12

 E
I/
L3
 Δ
 

M
=6

 E
I/
L2
 Δ
 

L

Δ
 

M
=6

 E
I/
L2
 Δ
 

V=
12

 E
I/
L3
 Δ
 

Using Newton’s second law of motion for each of the three nodes:

P3(t) −m33�u3 −c3( _u3 − _u2) −K3(u3 − u2) = 0
P2(t) −m22�u2 +c3( _u3 − _u2)− c2( _u2 − _u1) +K3(u3 − u2)− K2(u2 − u1) = 0
P1(t) −m11�u1 +c2( _u2 − _u1)− c1 _u1 +K2(u2 − u1)− K1u1 = 0
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Multiple degrees of freedom system

We can rewrite these equations as

m11�u1 +(c1 + c2) _u1 − c2 _u2 +(k1 + k2)u1 − k2u2 = P1(t)
m22�u2 −c2 _u1 + (c2 + c3) _u2 − c3 _u3 −k2u1 + (k2 + k3)u2 − k3u3 = P2(t)
m33�u3 −c3 _u2 + c3 _u3 −K3u2 + K3u3 = P3(t)

or
[M]{�u}+ [C]{ _u}+ [K ]{u} = {f (t)} (9)

 m1 0 0
0 m2 0
0 0 m3


�u1

�u2

�u3

+

 c1 + c2 −c2 0
−c2 c2 + c3 −c3

0 −c3 c3


_u1

_u2

_u3


+

 K1 + K2 −K2 0
−K2 K2 + K3 −K3

0 −K3 K3


u1

u2

u3

 =


f1(t)
f2(t)
f3(t)
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Beam with Rigid Offset; Objectives

So far all members were assumed to be rigidly connected and connecting center lines
to center lines. In many instances, either we have a hinge, a semi-rigid connection
and we may want to take into account the offset of the member.

Centerlines Rigid 
Connections

L
L1 L2
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Beam with Rigid Offset; Objectives Free Body Diagram

⌊p⌋ = ⌊ N1 V2 M3 N4 V5 M6 ⌋ and ⌊p⌋ = ⌊ N1 V 2 M3 N4 V 5 M6 ⌋
are the forces acting on the interior and exterior sides of the rigid link respectively.
Similarly we denote by ⌊u⌋ = ⌊ u1 v2 θ3 u4 v5 θ6 ⌋ the exterior
displacements

L
L1 L2

1N

2V3M V2

N1

M3

1 1N ,u

2 2V ,v3 3M ,θ

6 6M ,θ
4 4N ,u

5 5V ,v

4N

5V

6M
N1

M3V2 V5
M6

N4N4

M6

V5

L2L1
L
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Beam with Rigid Offset; Objectives Equilibrium

We need to express the exterior forces in terms of the interior ones. We consider
equilibrium of the free body diagram:

N1 = N1; V 2 = V2; M3 = L1V2 + M3

N4 = N4; V 5 = V5; M6 = −L2V5 + M6

or
p = Bp (10)

B is a Statics matrix:

B =



1 0 0 0 0 0
0 1 0 0 0 0
0 L1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 −L2 1


Similarly, we can define a kinematics matrix [A] such that

u = Au (11)
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Beam with Rigid Offset; Objectives Equilibrium

It can be shown that A = BT .

We seek to determine the stiffness for the beam element with rigid offset in
terms of the known

p + NEF = ku (12)

If we multibly both sies by B and substitute Eq. 10 and 11 into 12:

Bp + BNEF = BkAu (13)

Bp + BNEF = BkBTu (14)

p + NEF = ku (15)

where

k =
EI
L3



AL2

I 0 0 −AL2

I 0 0
0 12 α1 0 − 12 α2

0 α1 γ 0 − α1 β

−AL2

I 0 0 AL2

I 0 0
0 −12 −α1 012 −α2

0 α2 β 0 −α2 γ


where αi = 6L + 12Li , β = 2L2 + 6LL1 + 6LL2 + 12L1L2, and
γ = 4L2 + 12LL2 + 12L2

2
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Beam with Rigid Offset; Objectives Equilibrium

thus 

FN1

FV2

FM3

FN4

FV5

FM6

︸ ︷︷ ︸
NEF

=



1 0 0 0 0 0
0 1 0 0 0 0
0 L1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 −L2 1





FN1

FV2

FM3

FN4

FV5

FM6

︸ ︷︷ ︸
NEF
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Semi-Rigid Connections Objectives

Hinge

Rigid

Semi-Rigid

The force displacement relations is given by p + NEF = ku.
We seek to determine the stiffness for the beam element with semi
rigid connection p + NEF = ku in terms of k, NEF and the two spring
stiffnesses ks

1 and ks
2 at the left and right end of the member (first and

second node).
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Semi-Rigid Connections Free Body Diagram

⌊p⌋ = ⌊ V1 M2 V3 M4 ⌋ and ⌊p⌋ = ⌊ V 1 M2 V 3 M4 ⌋ the forces acting on
the interior and exterior sides of the springs respectively. Similarly we denote by
⌊u⌋ = ⌊ v1 θ2 v3 θ4 ⌋ and ⌊u⌋ = ⌊ v1 θ2 v3 θ4 ⌋

α1
α2

p=kuM2

V1

M4
V3v3v1

θ2

θ4

θ2 θ4

α1

1
1v
=

 v

3
3v
=

 v

α2

p = ku

V3

V1
M2

M4

M2

V1

V3

M4
4

2

p=ku
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Semi-Rigid Connections Equilibrium at Nodes

Considering the free body diagram of the spring, and assuming that the springs
are infinitesimally small, equilibrium requires that p = p, or

v1 = v1

α1 = θ2 − θ2 ⇒ θ2 = θ2 − α1

M2 = K S
1 α1 ⇒ θ2 = θ2 −

M2

k s
1︸︷︷︸

α1

v3 = v3

α2 = θ4 − θ4 ⇒ θ4 = θ4 − α2

M4 = K S
2 α2 ⇒ θ4 = θ4 −

M4

k s
2︸︷︷︸

α1

where k s
1 and k s

2 are the left and right springs respectively.
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Semi-Rigid Connections Equilibrium at Nodes

Substituting v1, v3, θ2 and θ4 into
V1

M2

V3

M4

︸ ︷︷ ︸
{p}

+


FV1

FM2

FV3

FM4

︸ ︷︷ ︸
{NEF}

=
EI
L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2


︸ ︷︷ ︸

[k]


v1

θ2

v3

θ4

︸ ︷︷ ︸
{u}

we obtain

V 1 + FV1 =
EI
L3

[
12v1 + 6L

(
θ2 −

M2

k s
1

)
− 12v3 + 6L

(
θ4 −

M4

k s
2

)]
(16)

M2 + FM2 =
EI
L3

[
6Lv1 + 4L2

(
θ2 −

M2

k s
1

)
− 6Lv3 + 2L2

(
θ4 −

M4

k s
2

)]
(17)

V 3 + FV3 =
EI
L3

[
−12v1 − 6L

(
θ2 −

M2

k s
1

)
+ 12v3 − 6L

(
θ4 −

M4

k s
2

)]
(18)

M4 + FM4 =
EI
L3

[
6Lv1 + 2L2

(
θ2 −

M2

k s
1

)
− 6Lv3 + 4L2

(
θ4 −

M4

k s
2

)]
(19)
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Semi-Rigid Connections Equilibrium at Nodes

These 4 equations are coupled (M2 and M4 are both inside and outside the
stiffness matrix), we seek to uncouple them and express the forces exclusively in
terms of the displacement.

First we solve Eq. 17 and 19 simultaneously in terms of u:

M2 =
EI
L3

ϕb

�

[
6L(2 − ϕ2)v1 + 4L2(3 − 2ϕ2)θ2 − 6L(2 − ϕ2)v3 + 2L2ϕ2θ4

]
+
ϕ1

�
[(4 − 3ϕ2)FM2 − 2(1 − ϕ2)FM4]

M4 =
EI
L3

ϕ2

�

[
6L(2 − ϕ1)v1 + 2L2ϕ1θ2 − 6L(2 − ϕ1)v3 + 4L2(3 − 2ϕ1)θ4

]
+
ϕ2

�
[−2(1 − ϕ1)FM2 + (4 − 3ϕ1)FM4]

where

ϕ1 =
k s

1 L
EI + k s

1 L

ϕ2 =
k s

2 L
EI + k s

2 L
� = 12 − 8ϕ1 − 8ϕ2 + 5ϕ1ϕ2
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Semi-Rigid Connections Equilibrium at Nodes

ϕ can be interpreted as a “rigidity factor”. For rigid connection ϕ = 1, whereas
for hinged ones ϕ = 0.

Next we substitute these last equation into Eq. 16-18:

V 1 =
EI

�L3

[
12(ϕ1 + ϕ2 − ϕbϕ2)v1 + 6Lϕ1(2 − ϕ2)θ2 − 12(ϕ1 + ϕ2 − ϕ1ϕ2)v3 + 6Lϕ2(2 − ϕ1)θ4

]
+FV1 −

6

�L
[(1 − ϕ1)(2 − ϕ2)FM2 + (1 − ϕ2)(2 − ϕ1)FM4] (20)

V 3 =
EI

�L3

[
−12(ϕ1 + ϕ2 − ϕbϕ2)v1 − 6Lϕ1(2 − ϕ2)θ2 + 12(ϕ1 + ϕ2 − ϕ1ϕ2)v3 − 6Lϕ2(2 − ϕ1)θ4

]
+FV3 +

6

�L
[(1 − ϕ1)(2 − ϕ2)FM2 + (1 − ϕ2)(2 − ϕ1)FM4]
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Semi-Rigid Connections Equilibrium at Nodes

We can express these expressions as {
P
}
+

{
NEF

}
= [k] {u}

where

[k] =
EI

�L3


12(ϕ1 + ϕ2 − ϕ1ϕ2) 6Lϕ1(2 − ϕ2) −12(ϕ1 + ϕ2 − ϕ1ϕ2) 6Lϕ2(2 − ϕ1)

6Lϕ1(2 − ϕ2) 4L2ϕ1(3 − 2ϕ2) −6Lϕ1(2 − ϕ2) 2L2ϕ1ϕ2
−12(ϕ1 + ϕ2 − ϕ1ϕ2) −6Lϕ1(2 − ϕ2) 12(ϕ1 + ϕ2 − ϕ1ϕ2) −6Lϕ2(2 − ϕb)

6Lϕ2(2 − ϕ1) 2L2ϕ1ϕ2 −6Lϕ2(2 − ϕ1) 4L2ϕ2(3 − 2ϕ1)




FV1
FM2
FV3
FM4

︸ ︷︷ ︸
NEF

=


1 − 6

�L [(1 − ϕ1)(2 − ϕ2)] 0 − 6
�L [(1 − ϕ2)(2 − ϕ1)]

0
ϕ1
�

[(4 − 3ϕ2)] 0
ϕ1
�

[−2(1 − ϕ2)]

0 6
�L [(1 − ϕ1)(2 − ϕ2)] 1 6

�L [(1 − ϕ2)(2 − ϕ1)]

0
ϕ2
�

[−2(1 − ϕ1)] 0
ϕ2
�

[(4 − 3ϕ1)]




FV1
FM2
FV3
FM4

︸ ︷︷ ︸
NEF
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Semi-Rigid Connections Observation

For fully rigid connections, ϕ = 1, we recover the original stiffness matrix of the
beam.

If we set ϕ1 = 0 and ϕ2 = 1 then we have a hinge on the left, and a rigid
connection on the right and the corresponding stiffness matrix is:

[k] =
EI
L3


3 0 −3 3L
0 0 0 0
−3 0 3 −3L
3L 0 −3L 3L2


The stiffness matrix of a beam column with a hinge at its right will then be:

[k] =



AE/L 0 0 −AE/L 0 0
0 3EI/L3 3EI/L2 0 −3EI/L3 0
0 3EI/L2 3EI/L 0 −3EI/L2 0

−AE/L 0 0 AE/L 0 0
0 −3EI/L3 −3EI/L2 0 3EI/L3 0
0 0 0 0 0 0
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Semi-Rigid Connections Observation

If the hinge is on the left end

[k] =



AE/L 0 0 −AE/L 0 0
0 3EI/L3 0 0 −3EI/L2 3EI/L2

0 0 0 0 0 0
−AE/L 0 0 AE/L 0 0

0 −3EI/L3 0 0 3EI/L3 −3EI/L2

0 3EI/L2 0 0 −3EI/L2 3EI/L


Careful: the global dof corresponding to a zero local dof should not be zero, i.e.e
another element should “contribute” to the global term.

if we express the spring stiffness k s as k s = αEI/L, then ϕ = α/(1 + α). The
dependance of the K 22 coefficient on α (assuming both springs having the same
stiffness).
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Semi-Rigid Connections Observation
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Introduction

Introduction

So far we have considered continuous systems, in this chapter we seek to apply
the previously derived relations to discretized systems.

Primary solutions only at the nodes only (as opposed to a continuous solution
inside 
).

Application of the Principle of Virtual Displacement requires an assumed
displacement field. This displacement field can be approximated by interpolation
functions written in terms of:

1 Unknown polynomial coefficients, most appropriate for continuous
systems, and the Rayleigh-Ritz method
v(x) = a1︸︷︷︸

c(1)

x(L− x)︸ ︷︷ ︸
φ(1)

+ a2︸︷︷︸
c(2)

x2(L− x)2︸ ︷︷ ︸
φ(2)

+ . . . A major drawback of this

approach, is that the coefficients have no physical meaning.
2 Unknown nodal deformations, most appropriate for discrete systems and

Potential Energy based formulations
v(�i) = � = N1�1 + N2�2 + . . .+ Nn�n where �i is the known
displacement at dof i .
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Shape Functions definition

Shape Functions; Definitions I

Expression for the generalized known
displacement (translation or rotation), � at
any point in terms of all its known nodal
ones, ∆.

� =
n∑

i=1

Ni(x)�i = bN(x)c{∆}

�i is the (generalized) nodal displacement
corresponding to d.o.f i

1 Ni is an interpolation function, or
shape function which has the
following characteristics: Ni = 1 at
dof i and Ni = 0 at dof j where i 6= j .

2 Summation of N at any point is equal
to unity �N = 1.

3 N can be derived on the bases
of:

1 Assumed deformation state
defined in terms of polynomial
series.

2 Interpolation function
(Lagrangian or Hermitian).

4 As with the Rayleigh-Ritz method,
polynomial functions should

1 Be continuous, of the type
required by the variational
principle.

2 Exhibit rigid body motion (i.e.
v = a1 + . . .)

3 Exhibit constant strain.
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Shape Functions definition

Shape Functions; Definitions II

Shape functions should be complete, and meet the same requirements as the
coefficients of the Rayleigh Ritz method.

Shape functions can often be written in non-dimensional coordinates (i.e.
ξ = x

l ). This will be exploited later by the so-called isoparametric elements.
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Shape Functions C0, Axial/Torsional

C0, Axial/Torsional Shape Functions

1 2

x

N1 N2

L

u2u1

Let u(x) = N1(x)u1 + N2(x)u2 or
θx = N1θx1 + N2θx2

We have 2 d.o.f’s, we will assume a
linear deformation state
u(x) = a1x + a2 where u can be
either � or θ, and the essential B.C.’s
are given by: u = u1 at x = 0, and
u = u2 at x = L. Thus we have:

u1 = a2; u2 = a1L + a2

Solving for a1 and a2 in terms of u1

and u2 we obtain:

a1 =
u2

L
− u1

L
; a2 = u1

Substituting and rearranging those
expressions we obtain

u(x) = (
u2

L
− u1

L
)x + u1

= (1− x
L
)︸ ︷︷ ︸

N1(x)

u1 +
x
L︸︷︷︸

N2(x)

u2

Note that
N1(x) + N2(x) = 1 ∀x ∈ [0 L]
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Shape Functions C0, Axial/Torsional

Generalization

The previous derivation can be
generalized by writing:

u(x) = a1x + a2 = b x 1 c︸ ︷︷ ︸
bp(x)c

{
a1
a2

}
︸ ︷︷ ︸
{a}

where bp(x)c corresponds to the
polynomial approximation, and {a} is the
coefficient vector.

Apply the boundary conditions:{
u1
u2

}
︸ ︷︷ ︸
{∆}

=

[
0 1
L 1

]
︸ ︷︷ ︸

[L]

{
a1
a2

}
︸ ︷︷ ︸
{a}

Following inversion of [L], this leads to{
a1
a2

}
︸ ︷︷ ︸
{a}

=
1
L

[
−1 1
L 0

]
︸ ︷︷ ︸

[L]−1

{
u1
u2

}
︸ ︷︷ ︸
{∆}

Substituting this last equation, we obtain:

u(x) = b (1− x
L )

x
L c︸ ︷︷ ︸

bp(x)c[L]−1︸ ︷︷ ︸
[N(x)]

{
u1
u2

}
︸ ︷︷ ︸
{∆}

Hence, the shape functions [N] can be
directly obtained from

[N(x)] = bp(x)c[L]−1
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Shape Functions C1 Flexural

C1, Flexural Shape Functions I

v2

x

y,v1

z, θ1

1 2
L z, θ2

We have 4 d.o.f.’s, {∆}4×1:and hence will need 4 shape functions, N1 to N4, and those will
be obtained through 4 boundary conditions.

With four essential boundary conditions (two on each node), we must assume a
polynomial with four coefficients

v(x) = a1x3 + a2x2 + a3x + a4

θ(x) =
dv
dx

= 3a1x2 + 2a2x + a3
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Shape Functions C1 Flexural

C1, Flexural Shape Functions II

Note that v can be rewritten as:

{
v(x)

}
= b x3 x2 x 1 c︸ ︷︷ ︸

bp(x)c


a1
a2
a3
a4

︸ ︷︷ ︸
{a}

We now apply the boundary conditions:

v = v1 at x = 0
v = v2 at x = L
θ = θ1 = dv

dx at x = 0
θ = θ2 = dv

dx at x = L
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Shape Functions C1 Flexural

C1, Flexural Shape Functions III

or: 
v1
θ1
v2
θ2

︸ ︷︷ ︸
{∆}

=


0 0 0 1
0 0 1 0
L3 L2 L 1

3L2 2L 1 0


︸ ︷︷ ︸

[L]


a1
a2
a3
a4

︸ ︷︷ ︸
{a}

Inverting 
a1
a2
a3
a4

︸ ︷︷ ︸
{a}

=
1
L3


2 L −2 L
−3L −2L2 3L −L2

0 L3 0 0
L3 0 0 0


︸ ︷︷ ︸

[L]−1


v1
θ1
v2
θ2

︸ ︷︷ ︸
{∆}
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Shape Functions C1 Flexural

C1, Flexural Shape Functions IV

Combining, we obtain:

�(x) = b x3 x2 x 1 c︸ ︷︷ ︸
bp(x)c

1
L3


2 L −2 L
−3L −2L2 3L −L2

0 L3 0 0
L3 0 0 0


︸ ︷︷ ︸

[L]−1


v1
θ1
v2
θ2

︸ ︷︷ ︸
{∆}

= b
(1 + 2ξ3 − 3ξ2)︸ ︷︷ ︸

N1

x(1− ξ)2︸ ︷︷ ︸
N2

(3ξ2 − 2ξ3)︸ ︷︷ ︸
N3

x(ξ2 − ξ)︸ ︷︷ ︸
N4

c︸ ︷︷ ︸
[p][L]−1︸ ︷︷ ︸

[N]


v1
θ1
v2
θ2

︸ ︷︷ ︸
{∆}

where ξ = x
L .
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Shape Functions C1 Flexural

C1, Flexural Shape Functions V

Hence, the shape functions for the flexural element are given by:

N1 = (1 + 2ξ3 − 3ξ2)

N2 = x(1− ξ)2

N3 = (3ξ2 − 2ξ3)

N4 = x(ξ2 − ξ)

0.0 0.2 0.4 0.6 0.8 1.0
ξ(x/L)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

N

Shape Functions for Flexure
(v1; θ1; v2; θ2)

N1

N3

N2

N4
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Shape Functions C1 Flexural

C1, Flexural Shape Functions VI

Note that Shape function associated with dof 1 is equal to one a ξ = 0, equal to zero at
ξ = 1, and its slopes at those two points is equal to zero. Similarly, shape function 2 is zero
at the two end points, slope equal to 1 at ξ = 0, and zero at ξ = 1.

Summary

ξ = 0 ξ = 1
Function Ni Ni,x Ni Ni,x

N1 = (1 + 2ξ3 − 3ξ2) 1 0 0 0
N2 = ξ(1− ξ)2 0 1 0 0
N3 = (3ξ2 − 2ξ3) 0 0 1 0
N4 = ξ(ξ2 − ξ) 0 0 0 1

Since the transverse displacements and the rotations are uncoupled, we can write

{
v
θ

}
=

[
N1 0 N3 0
0 N2 0 N4

]
v1
θ1
v2
θ2
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Finite Element Introduction

Finite Element; Introduction

Earlier in the semester, we derived the stiffness matrices of one dimensional rod
elements, the approach used could not be generalized to general finite element.
Alternatively, the derivation of this chapter will be applicable to both one
dimensional rod (or nearly continuum) elements or contnuum (2D or 3D)
elements.

It is important to note that whereas the previously presented method to derive
the stiffness matrix yielded an exact solution, it can not be generalized to
continuum (2D/3D elements). On the other hands, the method presented here is
an approximate method, which happens to result in an exact stiffness matrix for
flexural one dimensional elements. Despite its approximation, this so-called finite
element method will yield excellent results if enough elements are used.
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Finite Element Strain Displacement Relations

Strain Displacement Relations

The displacement � at any point inside an element can be written in terms of the
shape functions bNc and the nodal displacements {∆} as �(x) def

= bN(x)c{∆}

The strain is then defined as: ε(x) def
= [B(x)]{∆} where [B] is the matrix which

relates nodal displacements to strain field and is clearly expressed in terms of
derivatives of N.
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Finite Element Strain Displacement Relations

Strain Displacement Relations; Axial

u(x) = b
(1− x

L
)︸ ︷︷ ︸

N1

x
L︸︷︷︸
N2

c

︸ ︷︷ ︸
bNc

{
u1

u2

}
︸ ︷︷ ︸
{∆}

ε(x) = εxx =
du
dx

=

 −1
L︸︷︷︸

∂N1
∂x

1
L︸︷︷︸
∂N2
∂x


︸ ︷︷ ︸

[B]

{
u1

u2

}
︸ ︷︷ ︸
{∆}
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Finite Element Flexural Members

Strain Displacement Relations; Flexural Members

Using the shape functions for flexural elements previously derived in

ε =
y
ρ
= y

d2v
dx2

= y
d2v
dx2

= y


6
L2 (2ξ− 1)︸ ︷︷ ︸

∂2N1
∂x2

−2
L
(3ξ− 2)︸ ︷︷ ︸
∂2N2
∂x2

6
L2 (−2ξ+ 1)︸ ︷︷ ︸

∂2N3
∂x2

−2
L
(3ξ− 1)︸ ︷︷ ︸
∂2N4
∂x2


︸ ︷︷ ︸

[B]


v1

θ1

v2

θ2

︸ ︷︷ ︸
{∆}
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Finite Element Virtual Displacement and Strains

Virtual Displacement and Strain

In anticipation of the application of the principle of virtual displacement, we define the
vectors of virtual displacements and strain in terms of nodal displacements and shape
functions:

δ�(x) = [N(x)]{δ∆} (1)

δε(x) = [B(x)]{δ∆} (2)
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Finite Element Element Stiffness Matrix Formulation

Element Stiffness Matrix I

Recall
{σ} = [D]{ε} − [D]{ε0} (3)

where [D] is the constitutive matrix which relates stress and strain vectors. and q(x) is the load acting on its surface.

Let us now apply the principle of virtual displacement and restate some known relations (careful with matrices):

δU = δW (4)

δU =

∫


bδεc{σ}d
 (5)

{σ} = [D]{ε} − [D]{ε0} (6)

{ε} = [B]{∆} (7)

{δε} = [B]{δ∆} (8)

bδεc = bδ∆c[B]
T (9)

Combining Eqns. 4, 5, 6, 9, and 7, the internal virtual strain energy is given by:

δU =

∫


bδ∆c[B]

T︸ ︷︷ ︸
bδεc

[D][B]{∆}︸ ︷︷ ︸
{σ}

d
−
∫



bδ∆c[B]

T︸ ︷︷ ︸
bδεc

[D]{ε0}︸ ︷︷ ︸{
σ0

}
d


= bδ∆c
∫



[B]

T
[D][B] d
{∆} − bδ∆c

∫


[B]

T
[D]{ε0}d


(10)
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Finite Element Element Stiffness Matrix Formulation

Element Stiffness Matrix II

The virtual external work in turn is given by:

δW = bδ∆c︸ ︷︷ ︸
Virt. Nodal Displ.

{F}︸︷︷︸
Nodal Force

+

∫
l
bδ�cq(x)dx (11)

Combining this equation with {δ�} = [N]{δ∆} yields:

δW = bδ∆c{F} + bδ∆c
∫ l

0
[N]

T q(x) dx (12)

Equating the internal strain energy Eqn. 10 with the external work Eqn. 12, we obtain:

bδ∆c
∫



[B]

T
[D][B] d
︸ ︷︷ ︸
[k]

{∆} − bδ∆c
∫



[B]

T
[D]{ε0}d
︸ ︷︷ ︸
{F0}︸ ︷︷ ︸

δU

=

bδ∆c{F} + bδ∆c
∫ l

0
[N]

T q(x) dx︸ ︷︷ ︸
{Fe}︸ ︷︷ ︸

δW

(13)
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Finite Element Element Stiffness Matrix Formulation

Element Stiffness Matrix III

or

[k]{∆} − {Fo} = {F} + {Fe} (14)

which is the counterpart of Eq. 3.

Canceling out the bδ∆c term, this is the same equation of equilibrium as the one written earlier on. It relates the

(unknown) nodal displacement
{
∆

}
, the structure stiffness matrix [k], the external nodal force vector

{
F
}

, the

distributed element force
{
F

e
}

, and the vector of initial displacement.

From this relation we define:

The element stiffness matrix:

[k] =

∫


[B]

T
[D][B]d
 (15)

Element initial force vector:

{F0} =
∫



[B]

T
[D]{ε0}d
 (16)
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Finite Element Element Stiffness Matrix Formulation

Element Stiffness Matrix IV

Element equivalent load vector:

{Fe} =
∫ L

0
[N] q(x) dx (17)

The general equation of equilibrium can be written as:

[k]{∆} − {F0} = {F} + {Fe} (18)
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Finite Element Stress Recovery

Stress Recovery I

Whereas from the preceding section, we derived a general relationship in which
the nodal displacements are the primary unknowns, we next seek to determine
the internal (generalized) stresses which are most often needed for design.

Recalling that we have:

{σ} = [D]{ε} (19)

{ε} = [B]{∆} (20)

With the vector of nodal displacement {∆} known, those two equations would
yield:

{σ} = [D] · [B]{∆} (21)

We note that the secondary variables (strain and stresses) are derivatives of the
primary variables (displacement), and as such may not always be determined
with the same accuracy.
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Application Truss Element

Stiffness Matrix of the Truss Element

The shape functions of the truss
element were derived earlier:

N1 = 1− x
L

N2 =
x
L

The corresponding strain
displacement relation [B] is given by:

εxx =
du

dx
= [

dN1
dx

dN2
dx

]

= [ − 1
L

1
L ]︸ ︷︷ ︸

[B]

For the truss element, the constitutive
matrix [D] reduces to the scalar E;
Hence, substituting into Eq. 15, with

d
 = dAdx : [k] =
∫




[B]T [D][B]d


But d
 = Adx and for element with
constant cross sectional area we
obtain:

[k] = A
∫ L

0

{
− 1

L
1
L

}
·E ·b − 1

L
1
L cdx

[k] =
AE
L2

∫ L

0

[
1 −1
−1 1

]
dx

= AE
L

[
1 −1
−1 1

]
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Application Flexural Element

Stiffness Matrix of Beam Element I

For a beam element, for which we have previously derived the shape functions
and the [B] matrix. Substituting in Eq. 15:

[k] =

∫ L

0

∫
A
[B]T [D][B] y2 dA dx

Noting that
∫

A
y2 dA = Iz Eq. 15 reduces to

[k] =

∫ L

0
[B]T [D][B]Iz dx

For this simple case, we have: [D] = E , thus:

[k] = EIz
∫ l

0
[B]T [B] dx
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Application Flexural Element

Stiffness Matrix of Beam Element II

Using the shape function for the beam element, and noting the change of
integration variable from dx to dξ, we obtain

[k] = EIz
∫ 1

0


6

L2 (2ξ− 1)

− 2
L (3ξ− 2)

6
L2 (−2ξ + 1)

− 2
L (3ξ− 1)


⌊

6
L2 (2ξ− 1) − 2

L (3ξ− 2) 6
L2 (−2ξ + 1) − 2

L (3ξ− 1)
⌋

Ldξ︸︷︷︸
dx

or

[k] =



v1 θ1 v2 θ2

V1
12EIz

L3
6EIz
L2 − 12EIz

L3
6EIz
L2

M1
6EIz
L2

4EIz
L − 6EIz

L2
2EIz

L
V2 − 12EIz

L3 − 6EIz
L2

12EIz
L3 − 6EIz

L2

M2
6EIz
L2

2EIz
L − 6EIz

L2
4EIz

L


Identical to the matrix previously derived earlier in the semester ,
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Tensors Tensors: Definition

Generalize the concept of a vector by introducing the tensor (T).

A tensor is an operator which operates on tensors to produce other tensors.

Designate this operation as T·v or simply Tv.

A tensor is also a physical quantity, independent of any particular coordinate
system yet specified most conveniently by referring to an appropriate system of
coordinates.

A tensor is classified by the rank or order. A Tensor of order zero is specified in
any coordinate system by one coordinate and is a scalar (such as temperature).
A tensor of order one has three coordinate components in space, hence it is a
vector (such as force). In general 3-D space the number of components of a
tensor is 3n where n is the order of the tensor.

A force and a stress are tensors of order 1 and 2 respectively.
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Tensors Tensors: Indicial Notation

Engineering notation may be the simplest and most intuitive one, it often leads to
long and repetitive equations. Alternatively, tensor or the dyadic form will lead to
shorter and more compact forms.

The following rules define indicial notation:

1 If there is one letter index (free index), that index goes from i to n (range of
the tensor). For instance:

ai = ai = ⌊ a1 a2 a3 ⌋ =


a1

a2

a3

 i = 1, 3

assuming that n = 3.
2 A repeated index or (dummy index) will take on all the values of its range,

and the resulting tensors summed. In general no index occurs more than
twice in a properly written expression.For instance:

a1ixi = a11x1 + a12x2 + a13x3

3 Tensor’s order:

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado A Brief Overview of Mechanics 5/41



Tensors Tensors: Indicial Notation

First order tensor (such as force) has only one free index:

ai = ai = ⌊ a1 a2 a3 ⌋

other first order tensors aijbj = ai1b1 + ai2b2 + ai3b3, Fikk , εijk ujvk

(note that there is only one free index).
Second order tensor (such as stress or strain) will have two free
indices.

Tij =

 T11 T22 T13

T21 T22 T23

T31 T32 T33


other examples Aijip, δijuk vk .
A fourth order tensor (such as Elastic constants) will have four free
indices: σij = Dijklεkl

4 Derivatives of tensor with respect to xi is written as , i . For example:

∂ϕ
∂xi

= ϕ,i
∂vi
∂xi

= vi,i
∂vi
∂xj

= vi,j
∂Ti,j
∂xk

= Ti,j,k
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Tensors Tensors: Indicial Notation

Usefulness of the indicial notation is in presenting systems of equations in
compact form. For instance:

xi = cijzj

this simple compacted equation, when expanded would yield:

x1 = c11z1 + c12z2 + c13z3

x2 = c21z1 + c22z2 + c23z3

x3 = c31z1 + c32z2 + c33z3

Similarly:
Aij = BipCjqDpq

A11 = B11C11D11 + B11C12D12 + B12C11D21 + B12C12D22

A12 = B11C21D11 + B11C22D12 + B12C21D21 + B12C22D22

A21 = B21C11D11 + B21C12D12 + B22C11D21 + B22C12D22

A22 = B21C21D11 + B21C22D12 + B22C21D21 + B22C22D22
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Tensors Tensors: Indicial Notation

Using indicial notation, we may rewrite the definition of the dot product

a·b = aibi = (ax i + ay j + azk)·(bx i + by j + bzk) = ax bx + ay by + azbz

Note that one can adopt the dyadic instead of the indicial notation for tensors as
linear vector operators u = T·v or ui = Tijvj
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Tensors Tensor Operations

The sum of two tensors (must be of the same orde)is simply defined as:

Sij = Tij +Uij

The scalar multiplication of a (second order) tensor is defined by:

Sij = λTij

The outer product of two tensors is the tensor whose components are formed by
multiplying each component of one of the tensors by every component of the
other. This produces a tensor with an order equal to the sum of the orders of the
factor tensors.

aibj = Tij or
{ }

nx1

⌊ ⌋1xm =

[ ]
nxm

viFjk = bijk

DijTkm = ϕijkm
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Tensors Tensor Operations

The inner product of two tensors: contraction of one index from each tensor

aibi

aiEik = fk or⌊ ⌋1xm

[ ]
mxn

= ⌊ ⌋1xn

Ei jFjm = Gim or
[ ]

nxp

[ ]
pxm

=

[ ]
nxm

The cross product can be defined

a×b = εpqr aqbrep = (ay bz − azby )i + (azbx − ax bz)j + (ax by − ay bx)k

In the second equation, there is one free index p thus there are three equations,
there are two repeated (dummy) indices q and r , thus each equation has nine
terms. εpqr is called the permutation symbol and is defined as

εpqr =



1 If the value ofi , j , kare an even permutation of 1,2,3
(i.e. if they appear as 1 2 3 1 2)

−1 If the value ofi , j , kare an odd permutation of 1,2,3
(i.e. if they appear as 3 2 1 3 2)

0 If the value ofi , j , kare not permutation of 1,2,3
(i.e. if two or more indices have the same value)
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Tensors Principal Values of Symmetric Second Order Tensors

Two fundamental tensors in continuum mechanics are second order and
symmetric (stress and strain), we examine some important properties of these
tensors.

For every symmetric tensor Tij defined at some point in space, there is
associated with each direction (specified by unit normal nj ) at that point, a vector
given by the inner product

vi = Tijnj

If the direction is one for which vi is parallel to ni , the inner product is

Tijnj = λni

and the direction ni is called principal direction of Tij . Since ni = δijnj , this can be
rewritten as

(Tij − λδij)nj = 0

which represents a system of three equations for the four unknowns ni and λ.

(T11 − λ)n1 + T12n2 + T13n3 = 0

T21n1 + (T22 − λ)n2 + T23n3 = 0

T31n1 + T32n2 + (T33 − λ)n3 = 0
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Tensors Principal Values of Symmetric Second Order Tensors

To have a non-trivial solution (ni = 0) the determinant of the coefficients must be
zero,

|Tij − λδij | = 0

Expansion of this determinant leads to the following characteristic equation

λ3 − ITλ2 + IITλ− IIIT = 0

the roots are called the principal values of Tij and

IT = Tii = tr Tii

IIT =
1
2
(TiiTjj − TijTij)

IIIT = |Tij |= detTij

are called the first, second and third invariants respectively of Tij .

It is customary to order those roots as λ(1) > λ(2) > λ(3)

For a symmetric tensor with real components, the principal values are also real.
If those values are distinct, the three principal directions are mutually orthogonal.
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Kinetics Force, Traction and Stress Vectors

There are two kinds of forces in continuum mechanics

body forces: act on the elements of volume or mass inside the body, e.g.
gravity, electromagnetic fields. dF = ρbdVol .

Surface forces (or traction) are contact forces acting on the free body at its
bounding surface. Those will be defined in terms of force per unit
area. ∫

S
tdS = i

∫
S
tx dS + j

∫
S
ty dS + k

∫
S
tzdS
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Kinetics Force, Traction and Stress Vectors

t̂

+ t

u

û = 0

t n

Unit exterior 
normal

n̂t t̂t

t̂

n̂t t̂t

t̂
Boundary tractions   

are prescribed on 
t̂

tBoundary displacements   

are prescribed on

û

u
xx

yy xy

xy

Usually limit the term traction to an actual bounding surface of a body, and use
the term stress vector for an imaginary interior surface.
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Kinetics Force, Traction and Stress Vectors

The traction vectors on planes perpendicular to the coordinate axes are
particularly useful. When the vectors acting at a point on three such mutually
perpendicular planes is given, the stress vector at that point on any other
arbitrarily inclined plane can be expressed in terms of the first set of tractions.

A stress is a second order cartesian tensor, σij where the 1st subscript (i) refers
to the direction of outward facing normal, and the second one (j) to the direction
of component force.

2XΔ

X

3X

1

2

X

3

σ

σ

11σ

σ
13 21

σ
23

σ
22

σ
31

σ
32

σ
33

12
Δ X 1

Δ X
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Kinetics Force, Traction and Stress Vectors

σ = σij =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =


t1

t2

t3


In fact the nine rectangular components σij of σ turn out to be the three sets of
three vector components (σ11, σ12, σ13), (σ21, σ22, σ23), (σ31, σ32, σ33) which
correspond to the three tractions t1, t2 and t3 which are acting on the x1, x2 and
x3 faces.

Those tractions are not necessarily normal to the faces, and they can be
decomposed into a normal and shear traction if need be. In other words,
stresses are nothing else than the components of tractions (stress vector).
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Kinetics Force, Traction and Stress Vectors

13 σ
21

σ
23

σ
22

σ
31

1

σ
33

σ
32

X 2

X1

V1

X3

X 2

(Components of a vector are scalars)

V

V

V2

X

3

(Components of a tensor of order 2 are vectors)

X3

11σ

σ
12

σ

Stresses as components of a traction vector

t

t

t 1

2

3

The state of stress at a point cannot be specified entirely by a single vector with
three components; it requires the second-order tensor with all nine components.
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Kinetics Traction on an Arbitrary Plane; Cauchy’s Stress Tensor

We seek to determine the traction acting on the surface of an oblique plane
(characterized by its normal n) in terms of the known tractions normal to the
three principal axis, t1, t2 and t3.

Cauchy’s tetrahedron

O

B

C

AN

‐t
2 * Δ

S
2

X1

X2

X3
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Kinetics Traction on an Arbitrary Plane; Cauchy’s Stress Tensor

will be obtained without any assumption of equilibrium and it will apply in fluid
dynamics as well as in solid mechanics.

This equation is a vector equation, and the corresponding algebraic equations
for the components of tn are

tn1 = σ11n1 + σ21n2 + σ31n3

tn2 = σ12n1 + σ22n2 + σ32n3

tn3 = σ13n1 + σ23n2 + σ33n3

or
Indicial notation tni = σjinj

dyadic notation tn = n·σ = σT ·n

We have thus established that the nine components σij are components of the
second order tensor, Cauchy’s stress tensor.
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Kinetics Traction on an Arbitrary Plane; Cauchy’s Stress Tensor

For a stress tensor at point P given by

σ =

 7 −5 0
−5 3 1
0 1 2

 =


t1

t2

t3


We seek to determine the traction (or stress vector) t passing through P and
parallel to the plane ABC where A(4, 0, 0), B(0, 2, 0) and C(0, 0, 6).

The vector normal to the plane can be found by taking the cross products of
vectors AB and AC:

N = AB×AC =

∣∣∣∣∣∣
e1 e2 e3

−4 2 0
−4 0 6

∣∣∣∣∣∣
= 12e1 + 24e2 + 8e3

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado A Brief Overview of Mechanics 20/41



Kinetics Traction on an Arbitrary Plane; Cauchy’s Stress Tensor

The unit normal of N is given by

n =
3
7
e1 +

6
7
e2 +

2
7
e3

Hence the stress vector (traction) will be

⌊ 3
7

6
7

2
7 ⌋

 7 −5 0
−5 3 1
0 1 2

 = ⌊ − 9
7

5
7

10
7 ⌋

and thus t = − 9
7e1 +

5
7e2 +

10
7 e3
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Kinetics Invariants

The principal stresses are physical quantities, whose values do not depend on
the coordinate system in which the components of the stress were initially given.
They are therefore invariants of the stress state.

When the determinant in the characteristic equation is expanded, the cubic
equation takes the form

λ3 − Iσλ2 − IIσλ− IIIσ = 0

where the symbols Iσ, IIσ and IIIσ denote the following scalar expressions in the
stress components:

Iσ = σ11 + σ22 + σ33 = σii = tr σ

IIσ = −(σ11σ22 + σ22σ33 + σ33σ11) + σ2
23 + σ2

31 + σ2
12

=
1
2
(σijσij − σiiσjj) =

1
2
σijσij −

1
2

I2
σ

=
1
2
(σ : σ− I2

σ)

IIIσ = detσ =
1
6

eijk epqrσipσjqσkr
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Kinetics Invariants

In terms of the principal stresses, those invariants can be simplified into

Iσ = σ(1) + σ(2) + σ(3)

IIσ = −(σ(1)σ(2) + σ(2)σ(3) + σ(3)σ(1))

IIIσ = σ(1)σ(2)σ(3)
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Kinetics Spherical and Deviatoric Stress Tensors

let σ denote the mean normal stress p

σ = −p =
1
3
(σ11 + σ22 + σ33) =

1
3
σii =

1
3

tr σ

then the stress tensor can be written as the sum of two tensors:

Hydrostatic stress in which each normal stress is equal to −p and the shear
stresses are zero. The hydrostatic stress produces volume
change without change in shape in an isotropic medium.

σhyd = −pI =

 −p 0 0
0 −p 0
0 0 −p


Deviatoric Stress: which causes the change in shape.

σdev =

 σ11 − σ σ12 σ13

σ21 σ22 − σ σ23

σ31 σ32 σ33 − σ
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Kinetics Polar Coordinates

From Eq. ?? and ??, the stress transformation for the second order
stress tensor is given by

σip = aj
ia

q
pσjq in Matrix Form [σ] = [A]T [σ][A]

σjq = aj
ia

q
pσip in Matrix Form [σ] = [A][σ][A]T

(1)

For the 2D plane stress case we rewrite Eq. ??
σxx

σyy

σxy

 =

 cos2 α sin2 α 2 sinα cosα

sin2 α cos2 α −2 sinα cosα

− sinα cosα cosα sinα cos2 α− sin2 α




σxx

σyy

σxy


(2)

It is often necessary to express cartesian stresses in terms of polar
stresses and vice versa. This can be done through the following
relationships

σxx = σrr cos
2 θ+ σθθ sin

2 θ− σrθ sin2θ

σyy = σrr sin
2 θ+ σθθ cos

2 θ+ σrθ sin2θ

σxy = (σrr − σθθ) sinθ cos θ+ σrθ(cos
2 θ− sin2 θ)
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Kinematic Position and Displacement

and

σrr =

(
σxx + σyy

2

)(
1 − a2

r2

)
+

(
σxx − σyy

2

)(
1 +

3a4

r4 − 4a2

r2

)
cos2θ

+σxy

(
1 +

3a4

r4 − 4a2

r2

)
sin2θ

σθθ =

(
σxx + σyy

2

)(
1 +

a2

r2

)
−
(
σxx − σyy

2

)(
1 +

3a4

r4

)
cos2θ

−σxy

(
1 +

3a4

r4

)
sin2θ

σrθ = −
(
σxx − σyy

2

)(
1 − 3a4

r4 +
2a2

r2

)
sin2θ+ σxy

(
1 − 3a4

r4 +
2a2

r2

)
cos2θ
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Kinematic Position and Displacement

The undeformed configuration of a material continuum at time t = 0 together
with the deformed configuration at t = t .

I

I
i

i
i

u

b

X

X

X

x

x

x

P

P

1

2

3

1

3
1

1

2

2

3

3

0

t=0

t=t

X

x

O

o

U

Material

Spatial

I
2

In the initial configuration P0 has the position vector

X = X1I1 + X2I2 + X3I3

which is here expressed in terms of the material coordinates (X1,X2,X3).
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Kinematic Position and Displacement

In the deformed configuration, the particle P0 has now moved to the new position
P and has the following position vector

x = x1i1 + x2i2 + x3i3

which is expressed in terms of the spatial coordinates.

The displacement vector u connecting P0 and P is the displacement vector
which can be expressed in both the material or spatial coordinates

U = UK IK

u = uk ik

From the preceding figure we can express motion as

xi = xi(X1,X2,X3, t) Lagrangian formulation
Xi = Xi(x1, x2, x3, t) Eulerian formulation

Ignoring a detailed analysis of large deformation, it is determined that

Displacement gradient
Small Large

Displacement Small Lagrangian small strain (Cauchy) Lagrangian large strain (Green-Lagrange)
Large Eulerian small strain Eulerian finite strain (Eulerian-Almansi)
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Kinematic Strains

The Lagrangian finite strain tensor can be written as

εij =
1
2
(ui,j + uj,i + uk,iuk,j)

Alternatively these equations may be expanded as

εxx =
∂u

∂x
+

1

2

[(
∂u

∂x

)2
+

(
∂v

∂x

)2
+

(
∂w

∂x

)2
]

εyy =
∂v

∂y
+

1

2

[(
∂u

∂y

)2
+

(
∂v

∂y

)2
+

(
∂w

∂y

)2
]

εzz =
∂w

∂z
+

1

2

[(
∂u

∂z

)2
+

(
∂v

∂z

)2
+

(
∂w

∂z

)2
]

εxy =
1

2

(
∂v

∂x
+

∂u

∂y
+

∂u

∂x

∂u

∂y
+

∂v

∂x

∂v

∂y
+

∂w

∂x

∂w

∂y

)

εxz =
1

2

(
∂w

∂x
+

∂u

∂z
+

∂u

∂x

∂u

∂z
+

∂v

∂x

∂v

∂z
+

∂w

∂x

∂w

∂z

)
εyz =

1

2

(
∂w

∂y
+

∂v

∂z
+

∂u

∂y

∂u

∂z
+

∂v

∂y

∂v

∂z
+

∂w

∂y

∂w

∂z

)

We define the engineering shear strain as

γij = 2εij (i ̸= j)
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Kinematic Compatibility Equation

If εij =
1
2 (ui,j + uj,i) then we have six differential equations (in 3D the strain

tensor has a total of 9 terms, but due to symmetry, there are 6 independent
ones) for determining (upon integration) three unknowns displacements ui .
Hence the system is overdetermined, and there must be some linear relations
between the strains.

It can be shown (through appropriate successive differentiation) that the
compatibility relation for strain reduces to:

∂2εik

∂xj∂xj
+

∂2εjj

∂xi∂xk
− ∂2εjk

∂xi∂xj
− ∂2εij

∂xj∂xk
= 0.

In 3D, this would yield 9 equations in total, however only six are distinct.

In 2D, this results in (by setting i = 2, j = 1 and l = 2):

∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

= 2
∂2ε12

∂x1∂x2

=
∂2γ12

∂x1∂x2

(recall that 2ε12 = γ12).
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Fundamental Laws of Continuum Mechanics

We have thus far studied tensor fields (stress and strain).

We have also obtained only one differential equation, that was the compatibility
equation.

Next we still derive additional differential equations governing the way stress and
deformation vary at a point and with time. They will apply to any continuous
medium, and yet we will not have enough equations to determine unknown
tensor field. For that we need to wait for constitutive laws relating stress and
strain will be introduced.

The fundamental equations are:

1 Conservation of mass (continuity equation)
2 Conservation of momentum (Equation of motion; Equilibrium)
3 Conservation of Energy.
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Fundamental Laws of Continuum Mechanics

A conservation law establishes a balance of a scalar or tensorial quantity in
volume V bounded by a surface S (inside a control surface). In its most general
form, such a law may be expressed as

d
dt

∫
V
AdV︸ ︷︷ ︸

Rate of variation

−
∫

S
αdS︸ ︷︷ ︸

Exchange by Diffusion

=

∫
V
AdV︸ ︷︷ ︸

Source

The preceding equation reads: rate of increase of A inside a control volume plus
the rate of outward flux of A through the surface of the control volume is equal to
the rate of increase of A inside the control volume

The dimensions of various quantities are given by

dim(α) = dim(ALt−1)

dim(A) = dim(At−1)

rightfully all expressed in terms of A.
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Fundamental Laws of Continuum Mechanics Linear Momentum Principle; Equation of Motion

The time rate of change of the total momentum of a given set of particles equals
the vector sum of all external forces acting on the particles of the set, provided
Newton’s Third Law applies.

The continuum form of this principle is a basic postulate of continuum mechanics
(postulate: a statement, also known as an axiom, which is taken to be true
without proof).

Starting with (Newton’s second law)∫
S
tdS +

∫
V
ρbdV︸ ︷︷ ︸

F

=
d
dt

∫
V
ρvdV︸ ︷︷ ︸

ma

(3)

Divergence Theorem ∫
V

vi,idV =

∫
S

vini︸︷︷︸
flux

dS

The flux of a vector function through some closed surface equals the integral of
the divergence of that function over the volume enclosed by the surface.
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Fundamental Laws of Continuum Mechanics Linear Momentum Principle; Equation of Motion

we substitute ti = Tijnj and apply the divergence theorem to obtain∫
V

(
∂Tij

∂xj
+ ρbi

)
dV =

∫
V
ρ

dVi

dt
dV∫

V

[
∂Tij

∂xj
+ ρbi − ρ

dvi

dt

]
dV = 0

or for an arbitrary volume
∂Tij

∂xj
+ ρbi = ρ

dvi

dt
(4)

which is Cauchy’s (first) equation of motion, or the linear momentum principle,
or more simply equilibrium equation.

When expanded in 3D, this equation yields:

∂T11

∂x1
+

∂T12

∂x2
+

∂T13

∂x3
+ ρb1 = 0

∂T21

∂x1
+

∂T22

∂x2
+

∂T23

∂x3
+ ρb2 = 0

∂T31

∂x1
+

∂T32

∂x2
+

∂T33

∂x3
+ ρb3 = 0
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Fundamental Laws of Continuum Mechanics Linear Momentum Principle; Equation of Motion

We note that these equations could also have been derived from the free body
diagram with the assumption of equilibrium (via Newton’s second law)
considering an infinitesimal element of dimensions dx1 × dx2 × dx3.

σ +
δyy
δσyy

y
dy

τ xy

σ
σ

σ

+
δxx

dy

yy

xx

σδ xx

x
dx

τ +
δxy

τδ xy d

τ yx

τ +
δ

τδ
y

dy
yx

yx

x
x

dx
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Fundamental Laws of Continuum Mechanics Conservation of Energy; First Principle of Thermodynamics

If mechanical quantities only are considered, the principle of conservation of
energy for the continuum may be derived directly from the equation of motion
given by Eq. 4. This is accomplished by taking the integral over the volume V of
the scalar product between Eq. 4 and the velocity vi .∫

V
ρvi

dvi

dt
dV =

∫
V

viTji,jdV +

∫
V
ρbividV (5)

If we consider the left hand side∫
V
ρvi

dvi

dt
dV =

d
dt

∫
V

1
2
ρvividV =

d
dt

∫
V

1
2
ρv2dV =

dK
dt

(6)

which represents the time rate of change of the kinetic energy K in the
continuum.
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Fundamental Laws of Continuum Mechanics Conservation of Energy; First Principle of Thermodynamics

If we consider thermal processes, the rate of increase of total heat into the
continuum is given by

Q = −
∫

S
qinidS +

∫
V
ρrdV (7)

Q has the dimension1 of power, that is ML2T−3, and the SI unit is the Watt (W).
q is the heat flux per unit area by conduction, its dimension is MT−3 and the
corresponding SI unit is Wm−2. Finally, r is the radiant heat constant per unit
mass, its dimension is MT−3L−4 and the corresponding SI unit is Wm−6.

We thus have

dK
dt

+

∫
V

DijTijdV =

∫
V
(viTji),jdV +

∫
V
ρvibidV + Q (8)
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Fundamental Laws of Continuum Mechanics Conservation of Energy; First Principle of Thermodynamics

We next convert the first integral on the right hand side to a surface integral by
the divergence theorem (

∫
V ∇·TdV =

∫
S T.ndS) and since ti = Tijnj we obtain

dK
dt

+

∫
V

DijTijdV =

∫
S
vi tidS +

∫
V
ρvibidV + Q (9)

dK
dt

+
dU
dt

=
dW
dt

+ Q (10)

this equation relates the time rate of change of total mechanical energy of the
continuum on the left side to the rate of work done by the surface and body
forces on the right hand side.

If both mechanical and non mechanical energies are to be considered, the first
principle states that the time rate of change of the kinetic plus the internal energy
is equal to the sum of the rate of work plus all other energies supplied to, or
removed from the continuum per unit time (heat, chemical, electromagnetic,
etc.).
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Fundamental Laws of Continuum Mechanics Conservation of Energy; First Principle of Thermodynamics

For a thermomechanical continuum, it is customary to express the time rate of
change of internal energy by the integral expression

dU
dt

=
d
dt

∫
V
ρudV (11)

where u is the internal energy per unit mass or specific internal energy. We note
that U appears only as a differential in the first principle, hence if we really need
to evaluate this quantity, we need to have a reference value for which U will be
null. The dimension of U is one of energy dim U = ML2T−2, and the SI unit is
the Joule, similarly dim u = L2T−2 with the SI unit of Joule/Kg.

1Work=FL = ML2T−2; Power=Work/time
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Constitutive Equations

Hooke
ceiinosssttuu

Hooke, 1676
Ut tensio sic vis

Hooke, 1678

The Generalized Hooke’s Law can be written as:

σij = Dijklεkl i , j , k , l = 1, 2, 3

The (fourth order) tensor of elastic constants Dijkl has
81 (34) components however, due to the symmetry of
both σ and ε,there are at most 36

(
9(9−1)

2

)
distinct

elastic terms.
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Constitutive Equations

In terms of Lame’s constants (which naturally are derived from coninuum
mechanics consideration, but can not be both experimentally measured),
Hooke’s Law for an isotropic body is written as

Tij = λδijEkk + 2µEij ; Eij =
1

2µ

(
Tij −

λ

3λ+ 2µ
δijTkk

)
In terms of engineering constants (which can be measured in the laboratory)

1
E = λ+µ

µ(3λ+2µ) ; ν = λ
2(λ+µ)

λ = νE
(1+ν)(1−2ν) ; µ = G = E

2(1+ν)

Hooke’s law for isotropic material in terms of engineering constants becomes

σij =
E

1 + ν

(
εij +

ν

1 − 2ν
δijεkk

)
; εij =

1 + ν

E
σij −

ν

E
δijσkk
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Constitutive Equations

When the strain equation is expanded in 3D cartesian coordinates it would yield:

εxx

εyy

εzz

γxy (2εxy )

γyz(2εyz)

γzx(2εzx)


=

1
E



1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1 + ν 0 0
0 0 0 0 1 + ν 0
0 0 0 0 0 1 + ν





σxx

σyy

σzz

τxy

τyz

τzx


Plane Strain

σxx

σyy

σzz

τxy

 =
E

(1 + ν)(1 − 2ν)


(1 − ν) ν 0

ν (1 − ν) 0
ν ν 0
0 0 1−2ν

2




εxx

εyy

γxy
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Constitutive Equations

Axisymmetry
εrr = ∂u

∂r ; εθθ = u
r

εzz = ∂w
∂z ; εrz = ∂u

∂z + ∂w
∂r

The constitutive relation is again analogous to 3D/plane strain


σrr

σzz

σθθ

τrz

 =
E

(1 + ν)(1 − 2ν)


1 − ν ν ν 0
ν 1 − ν ν 0
ν ν 1 − ν 0
ν ν 1 − ν 0
0 0 0 1−2ν

2




εrr

εzz

εθθ
γrz


Plane Stress 

σxx

σyy

τxy

 =
1

1 − ν2

 1 ν 0
ν 1 0
0 0 1−ν

2


εxx

εyy

γxy


εzz = − 1

1 − ν
ν(εxx + εyy )
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Introduction

Structural engineering (and mechanics) can be approached from two different
angles:

1 Newtonian approach, equations of equilibrium.
2 Lagrangian approach: thermodynamics (balance of energy).

So far we have pursued the former, from this point onward, we shall focus on the
second which will provide the formalism needed to develop the finite element
method.

Some of the concepts will look familiar (first law of thermodynamic, principle of
virtual force, minimum potential energy) at first.

This chapter will

1 Provide a rigorous framework for variational methods which are the basis
of so-called “energy” methods. In so doing, formalize the definition of
Natural and Essential boundary conditions.

2 Bring together the various "energy methods" and show that they are all
(essentially) the same.

3 Develop the principle of virtual displacement as a prelude to the finite
element method.
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Introduction

4 Show the duality between the so-called strong form (differential equation)
and the weak form (satisfy a principle in an average sense).
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Variational Calculus; Euler Equation Introduction

So far, analyses based on the solution of a specific partial differential equations.

Alternatively, we can use of direct methods in the calculus of variations, that
exploits minimum principles.

Broadly speaking, previous methods can be labeled as Newtonian, whereas
methods based on energy considerations (as will be the case in this chapter) are
labelled as Lagrangian.

Calculus of Variation

Euler Eq. BC (Essential, 
Natural)

Virtual Force Virtual 
Displacement

Flexibility Stiffness
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Variational Calculus; Euler Equation Equation vs Principle

Vector or scalar

Newton Force F⃗ Momentum mv⃗ Vectors Newtonian Equation

Leibniz
Work Kinetic Energy

2 scalars Lagrangian Principle
(potential energy) vis viva*

* Living force

Consider a particle at point P1 at time t1, and assume that we know the velocity
at that time.

Euler-Lagrange: P1, t1, P2 known, t2 unknown.

Assume particle will be at P2 after a given time.
Connect P1 and P2 by any arbitrary tentative path. In all likelihood, this will
be the wrong one.
Gradually correct the tentative path according to the energy principle: sum
of kinetic and potential energies must be kept constant.
This will impose a definite velocity to any point of the path and thus will
determine the motion (which will end at P2.
For each path we can define action time integral of the vis viva (double the
kinetic energy) over the entire motion from P1 to P2.
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Variational Calculus; Euler Equation Equation vs Principle

Once all possible paths have been determined, the one with smallest
action is the actual path of motion.

Hamiltonian: P1, t1, t2 known, P2 unknown.

when the work function is a function not only of the particle position but
also of time.
Laws of conservation of energy does not hold, Euler-Lagrange not
applicable, but Hamilton principle is.
Require that tentative motion starts at P1 and t1 and motion ends at
unknown point at time t2.

Calculus of Variation

Final results can be established without considering an infinity of solution,
but we will achieve a solution infinitesimally near the actual solution (a
variation of the actual path).
Many elementary problems can be solved by vectorial mechanics specially
in cartesian coordinates.
Scalar mechanics far superior for curvilinear coordinates.

Applications of calculus of variation
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Variational Calculus; Euler Equation Equation vs Principle

Greatest projectile range that can be achieved (Newton, Euler).
Optimal shape to minimize water resistance (Newton).
Shortest time of descent by varying shape of a wire on which beads are
sliding (Galileo, Bernouilli, von Leibniz) brachistochrone.
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Variational Calculus; Euler Equation Preliminaries

Differential calculus (DC) involves a function of one or more variable, whereas
variational calculus (VC) involves a function of a function, or a functional.

Fundamental theorem of calculus

F (x) =
∫ x

a
f (t)dt and F ′(x) = f (x) (1)

Fundamental problem of the calculus of variation is to find a function u(x) such
that

�(u) =
∫ b

a
F (x , u(x), u ′(x))dx (2)

δ� = 0 (3)

where δ indicates the variation operator.

Define u(x) to be a function of x in the interval (a, b), and F to be a known real
function (such as the energy density).

Define the domain of a functional as the collection of admissible functions
belonging to a class of functions in function space rather than a region in
coordinate space (as is the case for a function).
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Variational Calculus; Euler Equation Preliminaries

−→ Seek the function u(x) which extremizes �.

Let ~u(x) be a family of neighboring paths of the extremizing function u(x) and
assume that at the end points x = a, b they coincide.

Define ~u(x) as the sum of the extremizing path and some arbitrary variation.

x

A

B

dx

du

u(x)

u(x)~

x=a x=c x=b

uδ

Solutions satisfying BC
Solution satisfying BC and δ П =0

η(
x)

=
0

η(
x)

=
0

η(x)≠0 

u, u~ ~u(x , ε) = u(x)+εη(x) = u(x)+δu(x) (4)

where ε is a small parameter, and δu(x) is
the variation of u(x)

δu = ~u(x , ε)− u(x) (5)

= εη(x) (6)
and η(x) is twice differentiable, has undefined amplitude but is such that
η(a) = η(b) = 0. Note that ~u coincides with u if ε = 0.

Note that:
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Variational Calculus; Euler Equation Preliminaries

The necessary condition to extremize a value in DC is that the first derivative be
equal to zero, and that the first variation be zero in VC.
The result of the extremization is a single variable x in DC, and u(x) in VC.
The variational operator δ is analogous to the δ associated with virtual displacement
later.
It can be shown that the variation and derivation operators are commutative

d
dx (δu) = ~u ′(x , ε)− u ′(x)

δu ′ = ~u ′(x , ε)− u ′(x)

}
d
dx

(δu) = δ

(
du
dx

)
Variational operator δ and the differential calculus operator d can be similarly used,
i.e.

δ(u ′)2 = 2u ′δu ′

δ(u + v) = δu + δv

δ

(∫
udx

)
=

∫
(δu)dx

δu =
∂u
∂x

δx +
∂u
∂y

δy

however, they have clearly different meanings. du is associated with a neighboring
point at a distance dx , however δu is a small arbitrary change in the function u for a
given x (there is no associated δx).
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Variational Calculus; Euler Equation Preliminaries

For boundaries where u is specified, its variation must be zero, and it is arbitrary
elsewhere. The variation δu of u is said to undergo a virtual change.
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Variational Calculus; Euler Equation Solution: Part I Differential Form of δ�

Cast the variational formulation (δ� = 0) into a differential one d�(ε)
dε = 0 and

use basic calculus.

Define �(ε) as

�(ε)
def
= �(u + εη(x)) =

∫ b

a
F (x , u(x) + εη(x), u ′(x) + εη ′(x))dx (7)

Note that this will be referred as the weak form (“weak” because it needs
derivative of one lesser order)

Since ~u(x) → u(x) as ε → 0, the necessary condition for � to be an extremum is

d�(ε)
dε

∣∣∣∣
ε=0

= 0
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Variational Calculus; Euler Equation Solution: Part I Differential Form of δ�

From Eq. 4 ~u = u + εη, and ~u(x)
′
= u ′(x) + εη ′(x), and applying the chain rule

d�(ε)
dε

=

∫ b

a

(
∂F
∂~u

d~u
dε

+
∂F
∂~u ′

d~u ′

dε

)
dx =

∫ b

a

(
η
∂F
∂~u

+ η ′ ∂F
∂~u ′

)
dx

for ε = 0, ~u = u, thus

d�(ε)
dε

∣∣∣∣
ε=0

=

∫ b

a

(
η
∂F
∂u

+ η ′ ∂F
∂u ′

)
dx = 0 (8)

Integration by part (
∫

fg ′dx = fg −
∫

f ′gdx) of the second term leads to

∫ b

a

(
η ′ ∂F

∂u ′

)
dx = η

∂F
∂u ′

∣∣∣∣b
a
−

∫ b

a
η(x)

(
d
dx

∂F
∂u ′

)
dx (9)

Substituting,

d�(ε)
dε

∣∣∣∣
ε=0

=

∫ b

a
η(x)

[
∂F
∂u

− d
dx

∂F
∂u ′

]
︸ ︷︷ ︸

I (x ∈ [a, b])

+ η(x)
∂F
∂u ′

∣∣∣∣b
a︸ ︷︷ ︸

II (x = a, b)

= 0 (10)
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Variational Calculus; Euler Equation Solution: Part I Differential Form of δ�

Each term must be zero.

1 First part will give us the Euler equation.
2 Second part will enable us to define the boundary conditions.
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Variational Calculus; Euler Equation Euler Equation

Fundamental lemma of the calculus of variation states that for continuous 	(x)
in a ≤ x ≤ b, and with arbitrary continuous function η(x) which vanishes at a
and b, then ∫ b

a
η(x)	(x)dx = 0 ⇔ 	(x) = 0 (11)

Thus, part I in Eq. 10 yields Strong Form

∂F
∂u

− d
dx

∂F
∂u ′ = 0 in a < x < b (12)

This differential equation is called the Euler-Lagrange equation associated with
� and is a necessary condition for u(x) to extremize �.

Note that the weak form is in terms of u ′ (Eq. 7) and the strong form in terms of
u

′′
Eq. 12.
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Variational Calculus; Euler Equation Euler Equation

Generalizing for a functional � which depends on two field variables, u = u(x , y)
and v = v(x , y)

� =

∫ ∫
F (x , y , u, v , u,x , u,y , v,x , v,y , · · · , v,yy )dxdy (13)

There would be as many Euler equations as dependent field variables{
∂F
∂u − ∂

∂x
∂F
∂u,x

− ∂
∂y

∂F
∂u,y

+ ∂2

∂x2
∂F

∂u,xx
+ ∂2

∂x∂y
∂F

∂u,xy
+ ∂2

∂y2
∂F

∂u,yy
= 0

∂F
∂v − ∂

∂x
∂F
∂v,x

− ∂
∂y

∂F
∂v,y

+ ∂2

∂x2
∂F

∂v,xx
+ ∂2

∂x∂y
∂F

∂v,xy
+ ∂2

∂y2
∂F

∂v,yy
= 0

(14)

Note that the Functional and the corresponding Euler Equations, Eq. 2 and 12,
or Eq. 13 and 14 describe the same problem.

The Euler equations usually correspond to the governing differential equation
and are referred to as the strong form (or classical form).

The functional is referred to as the weak form (or generalized solution).

In Mechanics, equilibrium is enforced in an average sense over the body (and
the field variable is differentiated m times in the weak form, and 2m times in the
strong form) Eq. 7 v.s. Eq. 12.
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Variational Calculus; Euler Equation Euler Equation

It can be shown that in the principle of virtual displacements, the Euler equations
are the equilibrium equations, whereas in the principle of virtual forces, they are
the compatibility equations.

Euler equations are differential equations which can not always be solved by
exact methods. An alternative method consists in bypassing the Euler equations
and go directly to the variational statement of the problem to the solution of the
Euler equations.

Finite Element formulation are based on the weak form, whereas the formulation
of Finite Differences are based on the strong form.
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Variational Calculus; Euler Equation Euler Equation: Define δ�

In preceding section we have just shown that d�(ε)/dε leads to the
Euler-Lagrange equation (Eq. 10)

d�(ε)
dε

∣∣∣∣
ε=0

=

∫ b

a
η(x)

[
∂F
∂u

− d
dx

∂F
∂u ′

]
︸ ︷︷ ︸

I (x ∈ [a, b])

+ η(x)
∂F
∂u ′

∣∣∣∣b
a︸ ︷︷ ︸

II (x = a, b)

= 0

We still have to define δ�.

The first variation of a functional expression is

δF = ∂F
∂u δu + ∂F

∂u ′ δu ′

δ� =

∫ b

a
δFdx

 δ� =

∫ b

a

(
∂F
∂u

δu +
∂F
∂u ′ δu ′

)
dx (15)

Integration by parts of the second term (as in Eq. 8) yields

δ� =

∫ b

a
δu

(
∂F
∂u

− d
dx

∂F
∂u ′

)
dx (16)
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Variational Calculus; Euler Equation Euler Equation: Observations

Just shown that finding the stationary value of � by setting δ� = 0 is equivalent
to finding the extremal value of � by setting d�(ε)

dε

∣∣∣
ε=0

equal to zero.

Similarly, it can be shown that as with second derivatives in calculus, the second
variation δ2� can be used to characterize the extremum as either a minimum or
maximum.

An important observation is that the variational formulation is a scalar one,
whereas the Eulerian one is vectorial.
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Variational Calculus; Euler Equation Boundary Conditions

Revisiting the second part of Eq. 10,

d�(ε)
dε

∣∣∣∣
ε=0

=

∫ b

a
η(x)

[
∂F
∂u

− d
dx

∂F
∂u ′

]
︸ ︷︷ ︸

I (x ∈ [a, b])

+ η(x)
∂F
∂u ′

∣∣∣∣b
a︸ ︷︷ ︸

II (x = a, b)

= 0 (17)

enables us to define the boundary conditions

x

A

B

dx

du

u(x)

u(x)~

x=a x=c x=b

uδ

Solutions satisfying BC
Solution satisfying BC and δ П =0

η(
x)

=
0

η(
x)

=
0

η(x)≠0 

u, u~

η(x)︸︷︷︸
Ess.

∂F
∂u ′

∣∣∣∣b
a︸ ︷︷ ︸

Nat.︸ ︷︷ ︸
Boundary Cond.

= 0 (18)

This can be achieved through the following combinations

η(a) = 0 and η(b) = 0 Essential �u

η(a) = 0 and ∂F
∂u ′ (b) = 0 Mixed �u

⋃
�t

∂F
∂u ′ (a) = 0 and η(b) = 0 Mixed �u

⋃
�t

∂F
∂u ′ (a) = 0 and ∂F

∂u ′ (b) = 0 Natural �t

(19)
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Variational Calculus; Euler Equation Boundary Conditions

Generalizing, for a problem with, one field variable, in which the highest
derivative in the governing differential equation is of order 2m (or simply m in the
corresponding functional), then we have

Essential (or forced, or geometric) boundary conditions, (because it was
essential for the derivation of the Euler equation) if η(a) or η(b)
=0. Essential boundary conditions, involve derivatives of order
zero (the field variable itself) through m-1. Mathematically, this
corresponds to Dirichlet boundary-value problems.

Natural (or natural or static) if we left η to be arbitrary, then it would be
necessary to use ∂F

∂u ′ = 0 at x = a or b. Natural boundary
conditions, involve derivatives of order m and up. This B.C. is
implied by the satisfaction of the variational statement but not
explicitly stated in the functional itself. Mathematically, this
corresponds to Neuman boundary-value problems.

Mixed Boundary-Value problems, are those in which both essential and natural
boundary conditions are specified on complementary portions of
the boundary (such as �u and �t ).
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Variational Calculus; Euler Equation Boundary Conditions

Problem Axial Member Flexural Member
Distributed load Distributed load

Differential Equation AE d2u
dx2 − q = 0 EI d4w

dx4 − q = 0
m 1 2
Essential B.C. [0,m − 1] u w , dw

dx

Natural B.C. [m, 2m − 1] du
dx

d2w
dx2 and d3w

dx3

or σxx = Eu,x or M = EIw,xx and V = EIw,xxx
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Variational Calculus; Euler Equation Boundary Conditions

dw/dx=θ 

w

d2w/dx2= M 

d3w/dx3= V 

d2w/dx2= M  w
d3w/dx3= V 

dw/dx=θ 

Essential BC
Natural BC
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Variational Calculus; Euler Equation Example: Extension of a Bar

Potential energy � of an axial member (L, E , A), fixed at left end and subjected to an
axial force P at the right one is given by

� =

∫ L

0

EA
2

(
du
dx

)2

dx︸ ︷︷ ︸
Strain Energy

−Pu(L)︸ ︷︷ ︸
Work

(20)

Determine the Euler Equation by requiring that � be a minimum.

Solution I

Follow the procedure used for the derivation of the Euler Equations.
First variation of �:

δ� =

∫ L

0

EA
2

2
(

du
dx

)
︸ ︷︷ ︸

a

δ

(
du
dx

)
︸ ︷︷ ︸

b ′

dx − Pδu(L)
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Variational Calculus; Euler Equation Example: Extension of a Bar

Integrating by parts

δ� = + EA
du
dx︸ ︷︷ ︸

a

δu︸︷︷︸
b

∣∣∣∣∣∣∣∣
L

0

−
∫ L

0

d
dx

(
EA

du
dx

)
︸ ︷︷ ︸

a ′

δu︸︷︷︸
b

dx − Pδu(L) = 0

= −
∫ L

0
δu

d
dx

(
EA

du
dx

)
︸ ︷︷ ︸

Euler Eq.

dx +

[(
EA

du
dx

)∣∣∣∣
x=L

− P
]

︸ ︷︷ ︸
B.C.

δu(L)

−
(

EA
du
dx

)∣∣∣∣
x=0

δu(0)︸ ︷︷ ︸
0︸ ︷︷ ︸

0

Recall that δ in an arbitrary operator which can be assigned any value, we set
the coefficients of δu between (0, L) and those for δu at x = L equal to zero
separately, and obtain
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Variational Calculus; Euler Equation Example: Extension of a Bar

Euler Equation:

− d
dx

(
EA

du
dx

)
= EA

d2u
dx2 = 0 0 < x < L (21)

Note how the functional was in terms of u ′ and the Euler equation in
terms of u

′′
.

Natural Boundary Condition:

EA
du
dx

− P = 0 at x = L (22)

Solution II Use results from previous derivation (Eq. 12):

We have derived:

F (x ,u,u ′) =
EA
2

(
du
dx

)2

(note that since P is an applied load at the end of the member, it does
not appear as part of F (x ,u,u ′).
Euler equation: Substituting into Eq. 12
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Variational Calculus; Euler Equation Example: Extension of a Bar

To evaluate the Euler Equation from Eq. 12

∂F
∂u

= 0

∂F
∂u

− d
dx

∂F
∂u ′ = 0

⇒ − d
dx

(EAu ′) = −EA
d2u
dx2 = 0 Euler Equation

Boundary Condition From Eq. 18:

η(x)︸︷︷︸
Ess.

∂F
∂u ′

∣∣∣∣b
a︸ ︷︷ ︸

Nat.

= 0

∂F
∂u ′ = EAu ′

EA
du
dx

= 0
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Variational Calculus; Euler Equation Beam Example

The total potential energy of a beam supporting a uniform load p is given by

� =

∫ L

0

(
1
2

Mκ− pw
)

dx =

∫ L

0

(
1
2
(EIw ′′)w ′′ − pw

)
︸ ︷︷ ︸

F

dx (23)

Derive the first variational of �.

1 Extending Eq. 15, and integrating by part twice

δ� =

∫ L

0
δFdx =

∫ L

0

(
∂F
∂w ′′ δw ′′ +

∂F
∂w

δw
)

dx

=

∫ L

0
(EIw ′′δw ′′ − pδw)dx

= (EIw ′′δw ′)
∣∣L
0 −

∫ L

0

[
(EIw ′′) ′δw ′ − pδw

]
dx

= (EIw ′′︸ ︷︷ ︸
Nat.

δw ′)
∣∣L
0︸ ︷︷ ︸

Ess.

− [(EIw ′′) ′︸ ︷︷ ︸
Nat.

δw ]|L0︸ ︷︷ ︸
Ess.︸ ︷︷ ︸

BC

+

∫ L

0

[
(EIw ′′) ′′ + p

]︸ ︷︷ ︸
Euler Eq.

δwdx = 0
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Variational Calculus; Euler Equation Beam Example

2 Or
(EIw ′′) ′′ = −p for all x

which is the governing differential equation of beams and

Essential Natural
δw ′ = 0 or EIw ′′ = −M = 0
δw = 0 or (EIw ′′) ′ = −V = 0

at x = 0 and x = L
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Definitions Internal Energy

U0 U0

U0
*

σ σ

ε
ε

Nonlinear Linear 

U0
*

dσ 

dε dε 

dσ 

Strain energy density :

U0
def
=

∫ ε

0
σdε

Complementary strain energy density :

U∗
0
def
=

∫ σ

0
εdσ
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Definitions Internal Energy

strain and complementary strain energy :

U def
=

∫



U0d


U∗ def
=

∫



U∗
0 d


Stress Strain Relation :
σ = D(ϵ − ϵ0) + σ0

Strain Energy for Linear Systems :

U =
1
2

∫



ϵTDϵd
−
∫




ϵTDϵ0d


+

∫



ϵTσ0d
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Definitions Forces

Only two types of forces:

Surface traction t̂

t̂

+ t

u

û = 0

t n

Unit exterior 
normal

n̂t t̂t

t̂

n̂t t̂t

t̂
Boundary tractions   

are prescribed on 
t̂

tBoundary displacements   

are prescribed on

û

u
xx

yy xy

xy

Note: Point force related to traction through Dirac function δ(z − d) = 0, z ̸= d ;∫ ∞

∞
δ(z − d)dz = 1,

∫ L

0
δ(z − d)dz = 1;

∫ L

0
f (z)δ(z − d)dz = f (d);

Body force b
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Definitions Work and Strain Energy

External work We
def
=

∫



uTbd
+

∫
�t

uT t̂d�

Point Force/Moment We =

∫ �f

0
Pd�+

∫ θf

0
Mdθ

Internal Strain Energy/Virtual Work δU = −δW i
def
=

∫



σδεd


External Virtual Work δW e
def
=

∫
�t

δut t̂d� +
∫




δutbd


Complementary Internal Strain Energy-Internal Virtual Work

δU
∗
= −δW

∗
i
def
=

∫



εδσd
 (24)

Complementary External Virtual Work

δW
∗
e
def
=

∫
�u

ûtδtd� (25)
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Definitions Total Potential Energy

Potential of external work W

We
def
=

∫



uTbd
+

∫
�t

uT t̂d� + uP

Strictly speaking, we ought to differentiate work from its potential and
use two distinct symbols W and W respectively. For the sake of clarity
we will replace W by W in the notes.

Potential energy

�
def
= U − We =

∫



U0d
−
(∫




ubd
+

∫
�t

ut̂d� + uP

)
(26)

Complementary potential energy

�∗ def
= U∗ − W ∗

e =

∫



U∗
0 d
−

(∫



ubd
+

∫
�t

ut̂d� + uP

)
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Definitions First Law of Thermodynamics

First Law of Thermodynamics: The time-rate of change of the total energy (i.e.,
sum of the kinetic energy K and the internal energy U) is equal to the sum of the
rate of work done by the external forces We and the change of heat content per
unit time H: d

dt (K + U) = We + H

For an adiabatic system (no heat exchange) and if loads are applied in a quasi
static manner (no kinetic energy), the above relation simplifies to: We = U
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Internal Strain Energies Virtual Complementary

The complementary internal virtual strain energy is expressed in terms
of stresses or internal forces (P(x), M(x)).

It will lead to a formulation similar to the one seen in introductory
courses in structural analysis (virtual force method)
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Internal Strain Energies Virtual Complementary

Axial Members
Stresses and forces constitute the virtual quantities identified by
δ.
Elastic System

δU
∗

=

∫



δσεd


d
 = Adx

 δU
∗
= A

∫ L

0
δσεdx

Linear Elastic

δU
∗

=

∫



εδσd


δσ = δP
A

ε = P
AE

d
 = Adx

 δU
∗
=

∫ L

0
δP︸︷︷︸

‘‘δσ ′′

P
AE︸︷︷︸
‘‘ε ′′

dx
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Internal Strain Energies Virtual Complementary

Flexural Members

τmax

h/2

h/2

y

z

M+dM

y1

dx

b

h

dA

y

τ

O

σx

Elastic System

δU
∗

=

∫



δσxxεx d


δM(x) =

∫
A
δσx ydA ⇒ δM(x)

y
=

∫
A
δσx dA

ϕ = ε
y ⇒ ϕy = εx

d
 =

∫ L

0

∫
A
dAdx


δU

∗
=

∫ L

0
δM(x)ϕdx
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Internal Strain Energies Virtual Complementary

Linear Elastic

δU
∗

=

∫



ε Eδε︸︷︷︸
δσ

d


σx = Mz y
Iz

εx = Mz y
EIz

d
 = dAdx∫
A
y2dA = Iz


δU

∗
=

∫ L

0
δM(x)︸ ︷︷ ︸
‘‘δσ ′′

M(x)
EIz︸ ︷︷ ︸
‘‘ε ′′

dx
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Internal Strain Energies Virtual

The internal virtual strain energy is expressed in terms of strain or internal
displacements.

It will lead to the formulation at the root of the finite element method.
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Internal Strain Energies Virtual

Axial Members Strains and displacements constitute the virtual quantities
identified by δ.

Elastic System

δU =

∫



σxδεx d


d
 = Adx

 δU = A
∫ L

0
σxδεx dx

Linear Elastic

δU =

∫
σxδεx d


σx = Eεx = E du
dx

δεx = d(δu)
dx

d
 = Adx

 δU =

∫ L

0
E

du
dx︸ ︷︷ ︸
"σ"

d(δu)
dx︸ ︷︷ ︸
"δε"

Adx︸︷︷︸
d
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Internal Strain Energies Virtual

Flexural Members
Elastic System

δU =

∫
σxδεx d


M(x) =

∫
A
σx ydA ⇒ M(x)

y
=

∫
A
σx dA

δϕ = δεx
y ⇒ δϕy = δεx

d
 =

∫ L

0

∫
A
dAdx


δU =

∫ L

0
M(x)δϕdx

Linear Elastic

δU =

∫



σxδεx d


σx = M(x)y
Iz

M(x) = d2v
dx2 EIz

}
σx =

d2v
dx2︸︷︷︸
κ

Ey

δεx = δσx
E = d2(δv)

dx2 y
d
 = A. dx


δU =

∫ L

0

∫
A

d2v
dx2 Ey

d2(δv)
dx2 ydAdx
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Internal Strain Energies Virtual

Since
∫

A
y2dA = Iz ⇒

δU =

∫ L

0
EIz

d2v
dx2︸ ︷︷ ︸

"σ"

d2(δv)
dx2︸ ︷︷ ︸
"δε"

dx
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Internal Strain Energies Summary of VW and CVW

Virtual Work: δU Complementary Virtual Work: δU∗

Continuous −
∫



δu
T
(
L

T
σ + b

)
d


∫



(
εij − ui,j

)
δσij d


System +

∫
�t

δu
T
(t− t̂)d� = 0 −

∫
�u

(ui − û) δt i d� = 0

Strain Energy U Elastic Linear Elastic Elastic Linear Elastic

Axial 1
2

∫ L

0

P2

AE
dx A

∫ L

0
σδεdx

∫ L

0
E

du

dx︸ ︷︷ ︸
σ

d(δu)

dx︸ ︷︷ ︸
δε

Adx︸︷︷︸
d


A
∫ L

0
δσεdx

∫ L

0
δP︸︷︷︸
δσ

P

AE︸︷︷︸
ε

dx

Flexure 1
2

∫ L

0

M2

EIz
dx

∫ L

0
Mδϕdx

∫ L

0
EIz

d2v

dx2︸ ︷︷ ︸
σ

d2(δv)

dx2︸ ︷︷ ︸
δε

dx
∫ L

0
δMϕdx

∫ L

0
δM︸︷︷︸
δσ

M

EIz︸︷︷︸
ε

dx

Work Virtual Work: δW Complementary Virtual Work: δW∗
P �i Pi�i

∑n
i Piδ�i

∑n
i δP i�i

M
∑n

i Miθi
∑n

i Miδθi
∑n

i δM iθi

w
∫ L

0
w(x)v(x)dx

∫ L

0
w(x)δv(x)dx

∫ L

0
δw(x)v(x)dx

Formulation Potential Energy Complementary Potential Energy
Displacement Force

Axial 1
2

∫ L

0
E
( du

dx

)2
dx 1

2

∫ L

0

P2

AE
dx

Flexural 1
2

∫ L

0
EIz(v

′′
)

2dx −
∫ L

0
q(x)vdx 1

2

∫ L

0

M2

EIz
dx
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Preliminaries Strong/Weak; Natural Essential

Strong/Weak We will refer to a strong form a derivation stemming from a differential
equation, and one which is exactly satisfied.
The weak form will be only satisfied in an average sense over a
volume 
.

Boundary Conditions A more detailed coverage of B.C. entails calculus of variation,
and derivation of the Euler equation associated with a potential.

� Traction Displ. Math. Structural Mechanics DOF
�t t

√
u? Dirichlet Essential Primary Kinematic Free

�u t? u
√

Neuman Natural Secondary Static Fixed/Constrained
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Preliminaries Gauss Theorem

Simply put, the Gauss’ integral theorem relates a vector field on the surface to the
scalar response inside the corresponding volume.∫

�

v.nd� =

∫



divvd


or ∫
�

vinid� =

∫



vi,id


Note if we apply Gauss’ theorem to an expression such as work (ui ti ) where the
traction ti is related to the stress through ti = σijnj then∫

�

tiuid� =

∫
�

σijnjuid� =

∫
�

(σijui)njd�

=

∫



(σijui),jd
 =

∫



(σij,jui + σijui,j)d
 (27)
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Preliminaries Gauss Theorem

Just in case:

grad A = ∇A =

(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
A

= i
∂A
∂x

+ j
∂A
∂y

+ k
∂A
∂z

div A = ∇·A =

(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
·(iAx + jAy + kAz)

=
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

Laplacian ∇2 = ∇·∇ =
∂2A
∂x2 +

∂2A
∂y2 +

∂2A
∂z2
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Preliminaries Approaches

Prescribed
displacements

û

Displacement
(State variable)

u

Strains
(Intermediary 

variable)
ε

Body forces

b

Stresses

σ
Prescribed 
tractions t̂

ˆ

uon 
u = u

in 
ε = Lu

in 

σ = Dε

ε = Cσ

T

in 
L σ + b = 0

ˆT

ton 
σ n = t

Displacement
 BCs

Kinematics

Constitutive

Equilibrium
(aka Balance)

Force BCs

Principle
Virtual Real

Starting Satisfying Seek Satisfying
with Strongly B.C. Weakly B.C.

VW δU = δW e Displ. Compatibility Essential �u Forces Equilibrium Natural �t
CVW δU∗

= δW∗
e Forces Equilibrium Natural �t Displ. Compatibility Essential �u
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Preliminaries Approaches

Galerkin
Weak

∫(Compatibility δF) dΩ  ‐∫Essential δF) 
dΓ =0

Gauss
Strong: Equilibrium

 on Natural

PCVW

Virtual

Primary Variable
δ Forces

Corresponding B.C.
Natural

Strong Equation
Equilibrium

REAL
Weak Equation 
Compatibility

Corresponding B.C.
Essential

Variable
Displacement

Galerkin
Weak

∫(Equilibrium δ Disp.) dΩ  ‐∫(Natural  δ Disp.) dΓ =0

Gauss
Strong: Compatibility

On Essential

PVW

Virtual

Primary Variable
δ Displacements

Corresponding B.C.
Essential

Strong Equation
Compatibility

REAL
Weak Equation
Equilibrium

Variable
Forces

Corresponding B.C.
Natural
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Preliminaries Approaches

Principle of Complementary Virtual Work
δU*=δWe

*

Principle of Stationary Complementary 
Potential Energy

δΠ*=0 

Virtual 
forces

Real displacements

Principle of Virtual Work
δU=δWe

Principle of Stationary Potential Energy
δΠ=0 

Statically admissible forces satisfying 
 Equilibrium (static) Equation 
 Natural (static) boundary conditions on Γt

Kinematically admissible displacements satisfying 
 Compatibility (kinematic) Equations
 Essential  (kinematic) boundary conditions on Γu

Satisfying

Virtual 
displacements

Real forces Satisfying

SatisfyingSatisfying

Start

End

End

Start

Seek

Seek

VW

CVW
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Preliminaries Approaches

The principles of Virtual Work and Complementary Virtual Work relate

force systems which satisfy the requirements of equilibrium
deformation systems which satisfy the requirement of kinematic.

Force Deformation IVW Formulation
External Internal External Internal

1 δp δσ du dε δU
∗

CVW/Flexibility
2 dp dσ δu δε δU VW/Stiffness

The principle of Complementary Virtual Work (of Principle of Virtual Force) is
what we have already seen previously (unit force method).

The Principle of Virtual work is new, and is at the basis of the finite element
method.
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Introduction

So far we have considered continuous systems, in this chapter we seek to apply
the previously derived relations to discretized systems.

Primary solutions only at the nodes only (as opposed to a continuous solution
inside 
).

Application of the Principle of Virtual Displacement requires an assumed
displacement field. This displacement field can be approximated by interpolation
functions written in terms of:

1 Unknown polynomial coefficients, most appropriate for continuous
systems,. For example: and the Rayleigh-Ritz method

v(x) = a1 x(L− x)︸ ︷︷ ︸
�1

+a2 x2(L− x)2︸ ︷︷ ︸
�2

+ . . .

A major drawback of this approach, is that the coefficients have no physical
meaning.

2 Unknown nodal deformations, most appropriate for discrete systems and
Potential Energy based formulations

v(ui) = u = N1u1 + N2u2 + . . .+ Nnun

where ui is the known displacement at dof i .
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Shape Functions definition

Expression for the generalized known
displacement (translation or rotation), u at
any degree of freedom in terms of all its
known nodal ones, u.

u(x) =
n∑

i=1

Ni(x)ui = bN(x)c{u}

ui is the (generalized) nodal displacement
corresponding to d.o.f i

1 Ni is an interpolation function, or
shape function which has the
following characteristics: Ni = 1 at
dof i and Ni = 0 at dof j where i 6= j .

2 Summation of N at any point is equal
to unity �N = 1.

3 N can be derived on the bases
of:

1 Assumed deformation state
defined in terms of polynomial
series.

2 Interpolation function
(Lagrangian or Hermitian).

4 As with the Rayleigh-Ritz method,
polynomial functions should

1 Be continuous, of the type
required by the variational
principle.

2 Exhibit rigid body motion (i.e.
v = a1 + . . .)

3 Exhibit constant strain.
Shape functions should be complete, and meet the same requirements as the
coefficients of the Rayleigh Ritz method.
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Shape Functions definition

Shape functions can often be written in non-dimensional coordinates (i.e.
ξ = x

l ). This will be exploited later by the so-called isoparametric elements.
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Shape Functions C0, Axial/Torsional

1 2

x

N1 N2

L

u2u1

Let u(x) = N1(x)u1 + N2(x)u2 or
θx = N1θx1 + N2θx2

We have 2 d.o.f’s, we will assume a
linear deformation state
u(x) = a1x + a2 where u can be
either u or θ, and the essential B.C.’s
are given by: u = u1 at x = 0, and
u = u2 at x = L. Thus we have:

u1 = a2; u2 = a1L + a2

Solving for a1 and a2 in terms of u1

and u2 we obtain:

a1 =
u2

L
− u1

L
; a2 = u1

Substituting and rearranging those
expressions we obtain

u(x) = (
u2

L
− u1

L
)x + u1

= (1− x
L
)︸ ︷︷ ︸

N1(x)

u1 +
x
L︸︷︷︸

N2(x)

u2

Note that
N1(x) + N2(x) = 1 ∀x ∈ [0 L]
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Shape Functions C0, Axial/Torsional

The previous derivation can be
generalized by writing:

u(x) = a1x + a2 = b x 1 c︸ ︷︷ ︸
bp(x)c

{
a1
a2

}
︸ ︷︷ ︸
{a}

where bp(x)c corresponds to the
polynomial approximation, and {a} is the
coefficient vector.

Apply the boundary conditions:{
u1
u2

}
︸ ︷︷ ︸
{u}

=

[
0 1
L 1

]
︸ ︷︷ ︸

[L]

{
a1
a2

}
︸ ︷︷ ︸
{a}

Following inversion of [L], this leads to{
a1
a2

}
︸ ︷︷ ︸
{a}

=
1
L

[
−1 1
L 0

]
︸ ︷︷ ︸

[L]−1

{
u1
u2

}
︸ ︷︷ ︸
{u}

Substituting this last equation, we obtain:

u(x) = b (1− x
L )

x
L c︸ ︷︷ ︸

bp(x)c[L]−1︸ ︷︷ ︸
[N(x)]

{
u1
u2

}
︸ ︷︷ ︸
{u}

Hence, the shape functions [N] can be
directly obtained from

[N(x)] = bp(x)c[L]−1
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Shape Functions C1 Flexural

v2

x

y,v1

z, θ1

1 2
L z, θ2

We have 4 d.o.f.’s, {u}4×1:and hence will need 4 shape functions, N1 to N4, and those will
be obtained through 4 boundary conditions.

With four essential boundary conditions (two on each node), we must assume a
polynomial with four coefficients

v(x) = a1x3 + a2x2 + a3x + a4

θ(x) =
dv
dx

= 3a1x2 + 2a2x + a3
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Shape Functions C1 Flexural

Note that v can be rewritten as:

{
v(x)

}
= b x3 x2 x 1 c︸ ︷︷ ︸

bp(x)c


a1
a2
a3
a4

︸ ︷︷ ︸
{a}

We now apply the boundary conditions:

v = v1 at x = 0
v = v2 at x = L
θ = θ1 = dv

dx at x = 0
θ = θ2 = dv

dx at x = L

or: 
v1
θ1
v2
θ2

︸ ︷︷ ︸
{u}

=


0 0 0 1
0 0 1 0
L3 L2 L 1

3L2 2L 1 0


︸ ︷︷ ︸

[L]


a1
a2
a3
a4

︸ ︷︷ ︸
{a}
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Shape Functions C1 Flexural

Inverting 
a1
a2
a3
a4

︸ ︷︷ ︸
{a}

=
1
L3


2 L −2 L
−3L −2L2 3L −L2

0 L3 0 0
L3 0 0 0


︸ ︷︷ ︸

[L]−1


v1
θ1
v2
θ2

︸ ︷︷ ︸
{u}

Combining, and substituting ξ = x
L

u(x) = b x3 x2 x 1 c︸ ︷︷ ︸
bp(x)c

1
L3


2 L −2 L
−3L −2L2 3L −L2

0 L3 0 0
L3 0 0 0


︸ ︷︷ ︸

[L]−1


v1
θ1
v2
θ2

︸ ︷︷ ︸
{u}

= b
(1 + 2ξ3 − 3ξ2)︸ ︷︷ ︸

N1

x(1− ξ)2︸ ︷︷ ︸
N2

(3ξ2 − 2ξ3)︸ ︷︷ ︸
N3

x(ξ2 − ξ)︸ ︷︷ ︸
N4

c︸ ︷︷ ︸
[p][L]−1︸ ︷︷ ︸

[N]


v1
θ1
v2
θ2

︸ ︷︷ ︸
{u}
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Shape Functions C1 Flexural

Hence, the shape functions for the flexural element are given by:

N1 = (1 + 2ξ3 − 3ξ2); N2 = x(1− ξ)2

N3 = (3ξ2 − 2ξ3); N4 = x(ξ2 − ξ)

0.0 0.2 0.4 0.6 0.8 1.0
ξ(x/L)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
N

Shape Functions for Flexure
(v1; θ1; v2; θ2)

N1

N3

N2

N4
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Shape Functions C1 Flexural

Note that Shape function associated with dof 1 is equal to one a ξ = 0, equal to zero at
ξ = 1, and its slopes at those two points is equal to zero. Similarly, shape function 2 is zero
at the two end points, slope equal to 1 at ξ = 0, and zero at ξ = 1.

Summary

ξ = 0 ξ = 1
Function Ni Ni,x Ni Ni,x

N1 = (1 + 2ξ3 − 3ξ2) 1 0 0 0
N2 = ξ(1− ξ)2 0 1 0 0
N3 = (3ξ2 − 2ξ3) 0 0 1 0
N4 = ξ(ξ2 − ξ) 0 0 0 1

Since the transverse displacements and the rotations are uncoupled, we can write

{
v
θ

}
=

[
N1 0 N3 0
0 N2 0 N4

]
v1
θ1
v2
θ2
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Finite Element Introduction

Earlier in the semester, we derived the stiffness matrices of one dimensional rod
elements, the approach used could not be generalized to general finite element.
Alternatively, the derivation of this chapter will be applicable to both one
dimensional rod (or nearly continuum) elements or contnuum (2D or 3D)
elements.

It is important to note that whereas the previously presented method to derive
the stiffness matrix yielded an exact solution, it can not be generalized to
continuum (2D/3D elements). On the other hands, the method presented here is
an approximate method, which happens to result in an exact stiffness matrix for
flexural one dimensional elements. Despite its approximation, this so-called finite
element method will yield excellent results if enough elements are used.
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Finite Element Strain Displacement Relations

The displacement u at any point inside an element can be written in terms of the
shape functions bNc and the nodal displacements {u} as

u(x) def
= bN(x)c{u} (1)

The strain is then defined as:

ε(x) def
= [B(x)]{u} (2)

where [B] is the matrix which relates nodal displacements to strain field and is
clearly expressed in terms of derivatives of N.
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Finite Element Strain Displacement Relations

u(x) = b
(1− x

L
)︸ ︷︷ ︸

N1

x
L︸︷︷︸
N2

c

︸ ︷︷ ︸
bNc

{
u1

u2

}
︸ ︷︷ ︸
{u}

ε(x) = εxx =
du
dx

=

 −1
L︸︷︷︸

∂N1
∂x

1
L︸︷︷︸

∂N2
∂x


︸ ︷︷ ︸

[B]

{
u1

u2

}
︸ ︷︷ ︸
{u}
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Finite Element Flexural Members

Using the shape functions for flexural elements previously derived in

ε =
y
ρ
= y

d2v
dx2 = y

d2N
dx2 v

= y


6
L2 (2ξ− 1)︸ ︷︷ ︸

∂2N1
∂x2

−2
L
(3ξ− 2)︸ ︷︷ ︸
∂2N2
∂x2

6
L2 (−2ξ+ 1)︸ ︷︷ ︸

∂2N3
∂x2

−2
L
(3ξ− 1)︸ ︷︷ ︸
∂2N4
∂x2


︸ ︷︷ ︸

[B]


v1

θ1

v2

θ2

︸ ︷︷ ︸
{u}
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Finite Element Virtual Displacement and Strains

In anticipation of the application of the principle of virtual displacement, we
define the vectors of virtual displacements and strain in terms of nodal
displacements and shape functions:

δu(x) = [N(x)]{δu} (3)

δε(x) = [B(x)]{δu} (4)
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Finite Element Element Stiffness Matrix Formulation

Let us now apply the principle of virtual displacement and restate some known
relations (careful with matrices):

δU = δW (5)

δU =

∫



bδεc{σ}d
 (6)

{σ} = [D]{ε} − [D]{ε0} (7)

{ε} = [B]{u} (8)

{δε} = [B]{δu} (9)

bδεc = bδuc[B]T (10)

Combining Eqns. 5, 6, 7, 10, and 8, the internal virtual strain energy is given
by:

δU =

∫



bδuc[B]T︸ ︷︷ ︸
bδεc

[D][B]{u}︸ ︷︷ ︸
{σ}

d
−
∫




bδuc[B]T︸ ︷︷ ︸
bδεc

[D]{ε0}︸ ︷︷ ︸
{σ0}

d


= bδuc
∫




[B]T [D][B] d
{u} − bδuc
∫




[B]T [D]{ε0}d


(11)
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Finite Element Element Stiffness Matrix Formulation

The virtual external work in turn is given by:

δW = bδuc︸ ︷︷ ︸
Virt. Nodal Displ.

{F}︸︷︷︸
Nodal Force

+

∫
l
bδucq(x)dx (12)

Combining this equation with {δu} = [N]{δu} yields:

δW = bδuc{F}+ bδuc
∫ l

0
[N]T q(x) dx (13)

Equating the internal strain energy Eqn. 11 with the external work Eqn. 13, we
obtain:

bδuc
∫




[B]T [D][B] d
︸ ︷︷ ︸
[k]

{u} − bδuc
∫




[B]T [D]{ε0}d
︸ ︷︷ ︸
{F0}︸ ︷︷ ︸

δU

=

bδuc{F}+ bδuc
∫ l

0
[N]T q(x) dx︸ ︷︷ ︸
{Fe}︸ ︷︷ ︸

δW

(14)

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Finite Element Formulation 19/25



Finite Element Element Stiffness Matrix Formulation

or

[k]{u} − {Fo} = {F}+ {Fe} (15)

Canceling out the bδuc term, this is the same equation of equilibrium as the one
written earlier on. It relates the (unknown) nodal displacement {u}, the structure
stiffness matrix [k], the external nodal force vector

{
F
}

, the distributed element

force
{
F

e
}

, and the vector of initial displacement.

From this relation we define:

The element stiffness matrix:

[k] =

∫



[B]T [D][B]d
 (16)

Element initial force vector:

{F0} =
∫




[B]T [D]{ε0}d
 (17)
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Finite Element Element Stiffness Matrix Formulation

Element equivalent load vector:

{Fe} =
∫ L

0
[N] q(x) dx (18)

The general equation of equilibrium can be written as:

[k]{u} − {F0}︸ ︷︷ ︸
Fint

−{F}+ {Fe}︸ ︷︷ ︸
Fext

= 0 (19)

This is the discretized Euler equation (equilibrium equation) associated with the
variational defined by the principle of virtual work.
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Finite Element Stress Recovery

Whereas from the preceding section, we derived a general relationship in which
the nodal displacements are the primary unknowns, we next seek to determine
the internal (generalized) stresses which are most often needed for design.

Recalling that we have:

{σ} = [D]{ε} (20)

{ε} = [B]{u} (21)

With the vector of nodal displacement {u} known, those two equations would
yield:

{σ} = [D] · [B]{u} (22)

We note that the secondary variables (strain and stresses) are derivatives of the
primary variables (displacement), and as such may not always be determined
with the same accuracy.
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Application Truss Element

The shape functions of the truss
element were derived earlier:

N1 = 1− x
L

N2 =
x
L

The corresponding strain
displacement relation [B] is given by:

εxx =
du
dx

= [
dN1
dx

dN2
dx

]

= [ − 1
L

1
L ]︸ ︷︷ ︸

[B]

For the truss element, the constitutive
matrix [D] reduces to the scalar E;
Hence, substituting into Eq. 16, with

d
 = dAdx : [k] =
∫




[B]T [D][B]d


But d
 = Adx and for element with
constant cross sectional area we
obtain:

[k] = A
∫ L

0

{
− 1

L
1
L

}
·E ·b − 1

L
1
L cdx

[k] =
AE
L2

∫ L

0

[
1 −1
−1 1

]
dx

= AE
L

[
1 −1
−1 1

]
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Application Flexural Element

For a beam element, for which we have previously derived the shape functions
and the [B] matrix. Substituting in Eq. 16:

[k] =

∫ L

0

∫
A
[B]T [D][B] y2 dA dx

Noting that
∫

A
y2 dA = Iz Eq. 16 reduces to

[k] =

∫ L

0
[B]T [D][B]Iz dx

For this simple case, we have: [D] = E , thus:

[k] = EIz
∫ l

0
[B]T [B] dx
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Application Flexural Element

Using the shape function for the beam element, and noting the change of
integration variable from dx to dξ, we obtain

[k] = EIz
∫ 1

0


6

L2 (2ξ− 1)

− 2
L (3ξ− 2)

6
L2 (−2ξ + 1)

− 2
L (3ξ− 1)


⌊

6
L2 (2ξ− 1) − 2

L (3ξ− 2) 6
L2 (−2ξ + 1) − 2

L (3ξ− 1)
⌋

Ldξ︸︷︷︸
dx

or

[k] =


v1 θ1 v2 θ2

V1
12EIz

L3
6EIz
L2 − 12EIz

L3
6EIz
L2

M1
6EIz
L2

4EIz
L − 6EIz

L2
2EIz

L
V2 − 12EIz

L3 − 6EIz
L2

12EIz
L3 − 6EIz

L2

M2
6EIz
L2

2EIz
L − 6EIz

L2
4EIz

L


Identical to the matrix previously derived earlier in the semester ,
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Introduction

L   =0
1

(-1,-1) (1,-1)

(1,1)(-1,1)

1 2

3

L   =0

L   =0
2

3

ξ

η
ξ

η
In the isoparametric formulation,
displacements are expressed in
terms of natural coordinates.

Must be differentiated with
respect to cartesian coordinates
x , y , z. This is accomplished
through a transformation matrix
(Jacobian) J, and integration can
no longer be performed
analytically but must be done
numerically.

Natural coordinates range from -1 to +1

x,u

y,v

(-1,-1)

(-1,1) (1,1)

(1,-1)

ξ

η

Parent ElementActual Element

Mapping
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Introduction

Nodal displacements at any point inside the element can be written in terms of
the nodal known displacements and the shape functions

u = N1u1 + N2u2 + · · · = N


u1

u2
...

 = Nue

v = N1v1 + N2v2 + · · · = N


v1

v2
...

 = Nve

w = N1w1 + N2w2 + · · · = N


w1

w2
...

 = Nwe

(1)

or
u = ⌊ u v w ⌋T = [N]ue
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Introduction

When elements are also distorted, the coordinates of any point can also be
expressed in terms of nodal coordinates

x = ~N1x1 + ~N2x2 + · · · = ~N


x1

x2
...

 = ~Nx

y = ~N1y1 +
~N2y2 + · · · = ~N


y1
y2
...

 = ~Ny

(2)

or
c = ⌊ x y z ⌋T = [~N]c (3)
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Element Formulation Bar Element

x,u

ξ= −1 ξ= 0 ξ= +1

L

1 23

The simplest introduction to
isoparamteric elements is
through a straight three noded
quadratic elements.

The shape functions for the
element can be obtained from
the Lagrangian interpolation
function used earlier, and in
which we substitute x by ξ. The
k th term in a polynomial of order
n − 1 would be

Nn
k =

∏n
i=1,i ̸=k (ξ− ξi)∏n

i=1,i ̸=k (ξk − ξi)
(4)

=
(ξ− ξ1)(ξ− ξ2) · · · (ξ− ξk−1)(ξ− ξk+1) · · · (ξ− ξn)

(ξk − ξ1)(ξk − ξ2) · · · (ξk − ξk−1)(ξk − ξk+1) · · · (ξk − ξn)
(5)
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Element Formulation Bar Element

For a three noded quadratic element ξ1 = −1, ξ2 = +1, and ξ3 = 0.
Substituting, we obtain the three shape functions

N1(ξ) = (ξ−ξ2)(ξ−ξ3)
(ξ1−ξ2)(ξ1−ξ3)

= (ξ−1)(ξ−0)
(−1−1)(−1−0) = 1

2 (ξ
2 − ξ)

N2(ξ) = (ξ−ξ1)(ξ−ξ3)
(ξ2−ξ1)(ξ2−ξ3)

= (ξ+1)(ξ−0)
(1+1)(1−0) = 1

2 (ξ
2 + ξ)

N3(ξ) = (ξ−ξ1)(ξ−ξ2)
(ξ3−ξ1)(ξ3−ξ2)

= (ξ+1)(ξ−1)
(0+1)(0−1) = 1 − ξ2

(6)

Hence,

x(ξ) = ⌊N⌋⌊ x1 x2 x3 ⌋T and u(ξ) = ⌊N⌋⌊ u1 u2 u3 ⌋T (7)

where
⌊N⌋ = ⌊ 1

2 (ξ
2 − ξ) 1

2 (ξ
2 + ξ) 1 − ξ2 ⌋ (8)

The strain displacement relation is given by, ε = Lu = LNue = Bue, and the
differential operator L is equal to d

dx
. For this one dimensional case, this reduces

to

εx =
du
dx

=
d

dx︸︷︷︸
L

⌊N⌋

︸ ︷︷ ︸
B


u1

u2

u3

 (9)
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Element Formulation Bar Element

We invoke the chain rule since the shape functions are expressed in terms of
natural coordinates:

B =
dN
dx

=
dN
dξ

dξ
dx

(10)

The first term may be readily available from the shape functions, Eq. ??,
however the second one is not.

Whereas, dξ

dx
is not available, we may determine its inverse dx

dξ
, from Eq. ??,

which we shall denote by J or Jacobian.

The Jacobian operator J is a scale factor which relates cartesian to natural
coordinates dx = Jdξ.

J(ξ) =
dx
dξ

=
d
dξ

⌊N⌋


x1

x2

x3

 = ⌊ 1
2 (2ξ− 1) 1

2 (2ξ+ 1) −2ξ ⌋︸ ︷︷ ︸
dN
dξ


x1

x2

x3


︸ ︷︷ ︸

dx
dξ

(11)
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Element Formulation Bar Element

We can rewrite Eq. ?? as

B =
dN
dx

=
dξ
dx︸︷︷︸
J−1

dN
dξ

(12)

and the B matrix is thus obtained by substituting into Eq. ??

⌊B(ξ)⌋ = 1
J

d
dξ

⌊N⌋ = 1
J
⌊ 1

2 (2ξ− 1) 1
2 (2ξ+ 1) −2ξ ⌋ (13)

The differential area is
d
 = Adx = AJdξ (14)

Substituting, the element stiffness matrix is finally obtained from Eq. ??

Ke(ξ) =

∫ L

0
BT (ξ)AEB(ξ)dx =

∫ +1

−1
BT (ξ)AEB(ξ)J(ξ)dξ

We observe that B, in general, contains ξ terms in both the numerator and
denominator, and hence the expression can not be analytically inverted.
Furthermore, the limits of integration are now from -1 to +1, and we shall see
later on how to numerically integrate it.
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Element Formulation Bar Element

A simple Mathematica code to generate the stiffness matrix of three noded
(quadratic) element:
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Element Formulation Quadrilaterals; Q4

We have previously derived the stiffness matrix of a rectangular element (aligned
with the coordinate axis), this formulation will generalize it to an arbitrary
quadrilateral shape.

ξ= 1

η= 13

ξ

ξ= −1
ξ= −1/2

ξ= 1/2

ξ

η

η= 1/2

η= −1/2

η

η= −11
2

3

4

y,v

x,u

1

1 2

3
4

1

1

1

For the two-dimensional case

u(ξ, η) =
∑

Nijuk =
n∑

i=1

m∑
j=1

Nj(ξ)Ni(η)uk (15)
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Element Formulation Quadrilaterals; Q4

where k = (i − 1)m + j . For a bilinear element, n = m = 2, this can be rewritten
as

u(ξ, η) = ⌊ N1(ξ) N2(ξ) ⌋
[

u1 u3

u2 u4

]{
N1(η)

N2(η)

}
= NT

ξuNη

= N1(ξ)N1(η)u1 + N2(ξ)N1(η)u2 + N1(ξ)N2(η)u4 + N2(ξ)N2(η)u3

= N1(ξ, η)u1 + N2(ξ, η)u2 + N3(ξ, η)u3 + N4(ξ, η)u4 (16)

=
4∑

i=1

Niu i (17)

Applying the Lagrangian interpolation equation, Eq. ?? we obtain

N1(ξ) =
(ξ− ξ2)

(ξ1 − ξ2)
=

(ξ− 1)
(−1 − 1)

=
1
2
(1 − ξ) (18)

N2(ξ) =
(ξ− ξ1)

(ξ2 − ξ1)
=

(ξ+ 1)
(1 + 1)

=
1
2
(1 + ξ) (19)

N1(η) =
(η− η2)

(η1 − η2)
=

(η− 1)
(−1 − 1)

=
1
2
(1 − η) (20)

N2(η) =
(η− η1)

(η2 − η1)
=

(η+ 1)
(1 + 1)

=
1
2
(1 + η) (21)

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Isoparameteric Elements 12/1



Element Formulation Quadrilaterals; Q4

Substituting into Eq. ??

N1(ξ, η) = 1
4 (1 − ξ)(1 − η); N2(ξ, η) = 1

4 (1 + ξ)(1 − η);

N3(ξ, η) = 1
4 (1 + ξ)(1 + η); N4(ξ, η) = 1

4 (1 − ξ)(1 + η);
(22)

It should be noted that for this simple case, the shape functions could have been
determined by mere inspction.

Coordinates and displacements are given by

x =
∑

Ni(ξ, η)x i ; y =
∑

Ni(ξ, η)y i
u =

∑
Ni(ξ, η)u i ; v =

∑
Ni(ξ, η)v i

(23)
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Element Formulation Quadrilaterals; Q4

The strain displacement relation is given by Eq. ??

{ε} =


εxx

εyy

γxy

 =


∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x


︸ ︷︷ ︸

L

{
u
v

}
︸ ︷︷ ︸

u

(24)

However the displacements can be obtained from Eq. ??

{
u
v

}
︸ ︷︷ ︸

u

=

[
N1(ξ, η) 0 N2(ξ, η) 0 N3(ξ, η) 0 N4(ξ, η) 0

0 N1(ξ, η) 0 N2(ξ, η) 0 N3(ξ, η) 0 N4(ξ, η)

]
︸ ︷︷ ︸

N



u1
v1
u2
v2
u3
v3
u4
v4

︸ ︷︷ ︸
u

(25)
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Element Formulation Quadrilaterals; Q4

Combining Eq. ?? and ?? yields

ε = LNu = Bu
εxx(ξ, η)

εyy (ξ, η)

γxy (ξ, η)

 =
4∑

i=1


∂Ni (ξ,η)

∂x 0
0 ∂Ni (ξ,η)

∂y
∂Ni (ξ,η)

∂y
∂Ni (ξ,η)

∂x


︸ ︷︷ ︸

B=LN

{
u i

v i

}
︸ ︷︷ ︸

u

(26)

=

 N1,x 0 N2,x 0 N3,x 0 N4,x 0
0 N1,y 0 N2,y 0 N3,y 0 N4,y

N1,y N1,x N2,y N2,x N3,y N3,x N4,y N4,x


︸ ︷︷ ︸

B



u1

v1

u2

v2

u3

v3

u4

v4


=

4∑
i=1


∂Ni (ξ,η)

∂ξ
0

0 ∂Ni (ξ,η)
∂η

∂Ni (ξ,η)
∂η

∂Ni (ξ,η)
∂ξ

[ ∂ξ
∂x

∂η
∂x

∂ξ
∂x

∂η
∂y

]
︸ ︷︷ ︸

[J]−1

(27)
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Element Formulation Quadrilaterals; Q4

Considering the local set of coordinates ξ, η and the corresponding global one
x , y , the chain rules would give{

∂Ni
∂ξ
∂Ni
∂η

}
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
︸ ︷︷ ︸

J

{
∂Ni
∂x
∂Ni
∂y

}
(28)

{
∂Ni
∂x
∂Ni
∂y

}
= [J]−1

{
∂Ni
∂ξ
∂Ni
∂η

}
(29)

This last equation is the key to get all the components which will go inside the B

matrix.
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Element Formulation Quadrilaterals; Q4

Expanding the definition of the Jacobian{
∂Ni (ξ,η)

∂ξ
∂Ni (ξ,η)

∂η

}
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
︸ ︷︷ ︸

J

{
∂Ni
∂x
∂Ni
∂y

}
=

4∑
i=1

[
∂Ni
∂ξ

x i
∂Ni
∂ξ

y i
∂Ni
∂η

x i
∂Ni
∂η

y i

]{
∂Ni
∂x
∂Ni
∂y

}
(30)

=

[
∂N1
∂ξ

∂N2
∂ξ

∂N3
∂ξ

∂N4
∂ξ

∂N1
∂η

∂N2
∂η

∂N3
∂η

∂N4
∂η

]
x1 y1
x2 y2
x3 y3
x4 y4


{

∂Ni
∂x
∂Ni
∂y

}
(31)

=
1
4

[
−(1 − η) (1 − η) (1 + η) −(1 + η)

−(1 − ξ) −(1 + ξ) (1 + ξ) (1 − ξ)

]
x1 y1
x2 y2
x3 y3
x4 y4


{

∂Ni
∂x
∂Ni
∂y

}
︸ ︷︷ ︸

J

(32)
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Element Formulation Quadrilaterals; Q4

Back to the Jacobian

[J]−1 def
=

[ ∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

]
=

1
detJ

[
∂y
∂η

− ∂y
∂ξ

− ∂x
∂η

∂x
∂ξ

]
=

1
detJ

4∑
i=1

[
∂Ni
∂ξ

y i −∂Ni
∂η

y i

−∂Ni
∂η

x i
∂Ni
∂ξ

x i

]
(33)

From calculus, if ξ and η are some arbitrary curvilinear coordinates
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Element Formulation Quadrilaterals; Q4

�
�
�
�
�
�
�
�
�
���

40.0060.001100.0075.002 40.0060.00352.00108.004 40.0060.00588.0072.006 40.0060.00752.00108.008 100.0075.009112.00123.0010

�������������:

52.00107.0011112.00122.0012

ξ

η

O

A

B

C

d
e

-

6
y

x

100.0072.0013100.0057.0014 95.0075.001536.0075.0016 49.00107.001736.00107.0018 52.00100.001952.0057.0020

∂x
∂η

dη ∂x
∂ξ

dξ

∂y
∂ξ

dξ

∂y
∂η

dη

dr

ds

then

dr =
{ ∂x

∂ξ
∂y
∂ξ

}
dξ and ds =

{
∂x
∂η
∂y
∂η

}
dη (34)

are vectors directed tangentially to ξ = constant, and η = constant respectively.
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Element Formulation Quadrilaterals; Q4

From vector algebra, the cross product of two vectors lying in the x-y plane.

A

B

θ

C=A x B

|B| sinθ

is

C = A× B (35)

= |A||B|sin θk (36)

=

∣∣∣∣∣∣
i j k

Ax Ay 0
Bx By 0

∣∣∣∣∣∣ = (Ax By − Bx Ay )︸ ︷︷ ︸
Area

k (37)

|C| = |A||B|sin θ (38)
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Element Formulation Quadrilaterals; Q4

hence, the differential area dxdy is then equal to the length of the vector
resulting from the cross product of drds and is equal to

d(area) = dxdy = det

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
︸ ︷︷ ︸

J

dξdη (39)

Finally determine the element stiffness matrix from

[k]8×8 =

∫ ∫
[B]T8×3[D]3x3[B]3×8tdxdy = [k] =

∫ 1

−1

∫ 1

−1
[B]T [D][B]t |J|dξdη

(40)
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Element Formulation Quadrilaterals; Q4

The evaluation of the element stiffness matrix involves dA. If we consider an
infinitesimal element, of length dr and ds, at the vertex of an element, it has the
boundaries of the element as its sides. Then, from Eq. ??

dA = dx .dy . sin θ (41)

however, from Eq. ?? we have dA = detJdξ.dη, thus

detJ =
dx .dy
dξ.dη

sin θ (42)

Thus we observe that if θ is small or close to 180o, then det J will be very small,
if the angle is greater than 180 o, the determinant is negative (implying a
negative stiffness which will usually trigger an error/stop in a FE analysis).

In general it is recommended that 30o < θ < 150o.

The inverse of the jacobian exists as long as the element is not much distorted
or folds back upon itself.

in those cases there is no unique relation between the coordinates.
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Element Formulation Quadrilaterals; Q4

It can be easily shown that for parallelograms, the Jacobian is constant, whereas
for nonparallelograms it is not.

In general J is an indicator of the amount of element distorsion with respect to a
2x2 square one. Some times it is constant, others it varies within the element.
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Example: Jacobian Operators

Determine the Jacobian operators J for the following 2 dimensional elements.

1

1

1

x

x

y

y

y

2

2

1

1

6

6

1

2

4

2

3

3

60

3
4

4

4
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Example: Jacobian OperatorsThe coordinates are given by Eq. ??, the shape functions by Eq. ??, and the
Jacobian by Eq. ??.
Element 1:

x =
1
4
(1 − ξ)(1 − η)x3 +

1
4
(1 + ξ)(1 − η)x4

+
1
4
(1 + ξ)(1 + η)x1 +

1
4
(1 − ξ)(1 + η)x2 (43)

=
1
4
(1 − ξ)(1 − η)(−3) +

1
4
(1 + ξ)(1 − η)(3)

+
1
4
(1 + ξ)(1 + η)(3) +

1
4
(1 − ξ)(1 + η)(−3) (44)

y =
1
4
(1 − ξ)(1 − η)y3 +

1
4
(1 + ξ)(1 − η)y4

+
1
4
(1 + ξ)(1 + η)y1 +

1
4
(1 − ξ)(1 + η)y2 (45)

=
1
4
(1 − ξ)(1 − η)(−2) +

1
4
(1 + ξ)(1 − η)(−2)

+
1
4
(1 + ξ)(1 + η)(2) +

1
4
(1 − ξ)(1 + η)(2) (46)

[J] =

[
3 0
0 2

]
(47)
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Example: Jacobian Operators

We note that A = 24 = det[J](2 × 2) = 6 × 4
Element 2:

x =
1
4
(1 − ξ)(1 − η)(−(3 + 1/(2

√
3))) +

1
4
(1 + ξ)(1 − η)(3 − 1/2

√
3))

+
1
4
(1 + ξ)(1 + η)(3 + 1/2

√
3)) +

1
4
(1 − ξ)(1 + η)(−(3 − 1/2

√
3))) (48)

y =
1
4
(1 − ξ)(1 − η)(−2) +

1
4
(1 + ξ)(1 − η)(−2)

+
1
4
(1 + ξ)(1 + η)(2) +

1
4
(1 − ξ)(1 + η)(2) (49)

[J] =

[
3 0
1

2
√

3
1
2

]
(50)
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Example: Jacobian Operators

Element 3:

x =
1
4
(1 − ξ)(1 − η)(−1) +

1
4
(1 + ξ)(1)

+
1
4
(1 + ξ)(1 + η)(1) +

1
4
(1 − ξ)(−1) (51)

y =
1
4
(1 − ξ)(1 − η)(−3/4) +

1
4
(1 + ξ)(1 − η)(−3/4)

+
1
4
(1 + ξ)(1 + η)(5/4) +

1
4
(1 − ξ)(1 + η)(1/4) (52)

[J] =
1
4

[
4 (1 + η)

0 (3 + ξ)

]
(53)

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Isoparameteric Elements 27/1



Example: Jacobian Operators

For a quadratic quadrilateral element, there are two possibilities,

1 1

2 2

4 4

5 5

7 7

6 6

3 3

8 8 9

η η

ξ ξ
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Example: Jacobian Operators

The Pascal triangle, will be later used to justify the choice of terms in the
displacement field of isoparameteric elements.

1

ξ η

ξ2 η2ξη

ξ3 ξ2η ξη2 η3

ξ3η ξη3

Constant term

Linear terms

Quadratic terms

Cubic terms

Quartic terms

Linear element

Quadratic element

Cubic element

80.0095.00195.00110.002 95.00110.003115.00110.004 80.0095.00565.00110.006 55.00100.00770.0085.008 95.0085.009110.00100.0010 110.00100.0011120.00100.0012 45.0090.001360.0075.0014 60.0075.001580.0095.0016 80.0095.0017100.0075.0018 100.0075.0019115.0090.0020 115.0090.0021125.0090.0022 95.0085.002393.0083.0024
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Example: Jacobian Operators

1

ξ η

ξ2 η2ξη

ξ3 ξ2η ξη2 η3

ξ3η ξ2η2 ξη3

ξ3η2 ξ2η3

ξ3η3

Constant term

Linear terms

Quadratic terms

Cubic terms

Quartic terms

Quintic terms

Sixtic terms

65.00110.00180.0095.002 80.0095.00395.00110.004 95.00110.005115.00110.006 55.00100.00780.0075.008 80.0075.009105.00100.0010 105.00100.0011120.00100.0012 45.0090.001380.0055.0014 80.0055.0015115.0090.0016 115.0090.0017125.0090.0018

Linear element

Quadratic element

Cubic element

Lagrangian Quadrilateral Elements
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Example: Jacobian Operators

1

ξ η

ξ2 η2ξη

ξ3 ξ2η ξη2 η3

Constant term

Linear terms

Quadratic terms

Cubic term

Linear elements

Quadratic element

Cubic element

65.00105.001110.00105.002 55.0095.003115.0095.004 45.0085.005120.0085.006

Triangle Elements
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Serendipity Element (Q8)

Based on Pascal’s triangle, the displacement field is given by

u = a1︸︷︷︸
0

+ a2x + a3y︸ ︷︷ ︸
1

+ a4x2 + a5xy + a6y2︸ ︷︷ ︸
2

+ a8x2y + a9xy2︸ ︷︷ ︸
3

(54)

In this formulation, the x2y2 term is missing and the 8 terms in the assumed
polynomial expansion correspond the 8 nodes (4 corner and 4 midside).

1 2

3
4

5

6

7

8

1 2

34

5

6

7

8

x,u

y,v

ξ

η

1

1

1 1
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Serendipity Element (Q8)

The shape functions may be obtained by mere inspection (i.e.
serependitiously),

Ni = 1
4 (1 + ξξi) (1 + ηηi) (ξξi + ηηi − 1) i = 1, 2, 3, 4

Ni = 1
2

(
1 − ξ2) (1 + ηηi) i = 5, 7

Ni = 1
2 (1 + ξξi)

(
1 + η2) i = 6, 8

(55)

and are tabulated

i Ni Ni,ξ Ni,η

1 1
4 (1 − ξ)(1 − η)(−ξ− η− 1) 1

4 (2ξ+ η)(1 − η) 1
4 (1 − ξ)(2η+ ξ)

2 1
4 (1 + ξ)(1 − η)(ξ− η− 1) 1

4 (2ξ− η)(1 − η) 1
4 (1 + ξ)(2η− ξ)

3 1
4 (1 + ξ)(1 + η)(ξ+ η− 1) 1

4 (2ξ+ η)(1 + η) 1
4 (1 + ξ)(2η+ ξ)

4 1
4 (1 − ξ)(1 + η)(−ξ− η− 1) 1

4 (2ξ− η)(1 + η) 1
4 (1 − ξ)(2η− ξ)

5 1
2 (1 − ξ2)(1 − η) −ξ(1 − η) − 1

2 (1 − ξ2)

6 1
2 (1 + ξ)(1 − η2) 1

2 (1 − η2) −(1 + ξ)η

7 1
2 (1 − ξ2)(1 + η) −ξ(1 + η) 1

2 (1 − ξ2)

8 1
2 (1 − ξ)(1 − η2) − 1

2 (1 − η2) −(1 − ξ)η
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Serendipity Element (Q8)

The shape functions for the corner and midisde nodes are

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1
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Serendipity Element (Q8)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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 0.8

 0.9

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Isoparameteric Elements 35/1



Lagrangian element (Q9)

If we were to follow a similar procedure to the one adopted to extract the bilinear
shape fuctions, we would obtain 9 shape functions, which must in turn
correspond to 9 (rather than 8) nodes.

In this element, the displacement field is given by

u = a1︸︷︷︸
0

+ a2x + a3y︸ ︷︷ ︸
1

+ a4x2 + a5xy + a6y2︸ ︷︷ ︸
2

+ a8x2y + a9xy2︸ ︷︷ ︸
3︸ ︷︷ ︸

Serendipity

+ a12x2y2︸ ︷︷ ︸
4

(56)

All the quadratic terms are present, hence there are 9 terms in the polynomial
expansion, and the 9th node will correspond to an internal node.

The shape functions in this case can be directly obtained from the Lagrangian
interpolation functions, yielding

Ni = 1
4 (1 + ξξi) (1 + ηηi) (ξξi + ηηi − 1) i = 1, 2, 3, 4

Ni = 1
2

(
1 − ξ2) (1 + ηηi) i = 5, 7

Ni = 1
2 (1 + ξξi)

(
1 − η2) i = 6, 8

N9 = (1 − ξ2)(1 − η2) i = 9

(57)
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Lagrangian element (Q9)

The last shape function is often called bubble function

Those shape function differ slightly from those of the serendipity element.

Q9 elements perform much better than the Q8 if edges are not parallel or slightly
curved.

The shape functions for the corner and midisde nodes are
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Lagrangian element (Q9)
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Lagrangian element (Q9)
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Variable (Hierarchical) Element

Based on the above, we can generalize the formulation to one of a quadrilateral
element with variable number of nodes.

This element may have different order of variation along different edges, and is
quite useful to facilitate the grading of a finite element mesh.

In its simplest formulation, it has four nodes, and has a linear variation along all
sides, and in the most general case it is a full quadratic element.

The shape functions may than be obtained from the table. Note that these shape
functions are for the hierarchical element in which the corner nodes are
numbered first, and midside ones after.

1 25

8

4 7 3

69
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Variable (Hierarchical) Element

Only if node i is present
i = 5 i = 6 i = 7 i = 8 i = 9

N1
1
4 (1 − ξ)(1 − η) − 1

2 N5 − 1
2 N8

1
4 N9

N2
1
4 (1 + ξ)(1 − η) − 1

2 N5 − 1
2 N6

1
4 N9

N3
1
4 (1 + ξ)(1 + η) − 1

2 N6 − 1
2 N7

1
4 N9

N4
1
4 (1 − ξ)(1 + η) − 1

2 N7 − 1
2 N8

1
4 N9

N5
1
2 (1 − ξ2)(1 − η) − 1

2 N9

N6
1
2 (1 + ξ)(1 − η2) − 1

2 N9

N7
1
2 (1 − ξ2)(1 + η) − 1

2 N9

N8
1
2 (1 − ξ)(1 − η2) − 1

2 N9

N9 (1 − ξ2)(1 − η2)
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Triangular Elements

For the six noded triangle, the partial derivatives of a variable ϕ with respect to x
and y can be expressed as, [?]

{ ∂ϕ
∂x
∂ϕ
∂y

}
=

[
∂L1
∂x

∂L2
∂x

∂L3
∂x

∂L1
∂y

∂L2
∂y

∂L3
∂y

]
∑6

i=1 ϕi
∂Ni
∂L1∑6

i=1 ϕi
∂Ni
∂L2∑6

i=1 ϕi
∂Ni
∂L3

 (58)

Transposing both sides

⌊
∑6

i=1 ϕi
∂Ni
∂L1

∑6
i=1 ϕi

∂Ni
∂L2

∑6
i=1 ϕi

∂Ni
∂L3

⌋


∂L1
∂x

∂L1
∂y

∂L2
∂x

∂L2
∂y

∂L3
∂x

∂L3
∂y

 = ⌊ ∂ϕ
∂x

∂ϕ
∂y ⌋

(59)

We now make ϕ ≡ 1, x , and y :
∑6

i=1
∂Ni
∂L1

∑6
i=1

∂Ni
∂L2

∑6
i=1

∂Ni
∂L3∑6

i=1 xi
∂Ni
∂L1

∑6
i=1 xi

∂Ni
∂L2

∑6
i=1 xi

∂Ni
∂L3∑6

i=1 yi
∂Ni
∂L1

∑6
i=1 yi

∂Ni
∂L2

∑6
i=1 yi

∂Ni
∂L3




∂L1
∂x

∂L1
∂y

∂L2
∂x

∂L2
∂y

∂L3
∂x

∂L3
∂y

 =


∂1
∂x

∂1
∂y

∂x
∂x

∂x
∂y

∂y
∂x

∂y
∂y


(60)
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Triangular Elements

But ∂x
∂x = ∂y

∂y = 1, and ∂1
∂x = ∂1

∂y = ∂x
∂y = ∂y

∂x = 0 since x and y are independent
coordinates. Furthermore all entries in the first row are equal to a constant (3 for
the T6 element), and since the corresponding right hand side, this row can be
normalized, yielding the Jacobian matrix for this element 1 1 1∑6

i=1 xi
∂Ni
∂L1

∑6
i=1 xi

∂Ni
∂L2

∑6
i=1 xi

∂Ni
∂L3∑6

i=1 yi
∂Ni
∂L1

∑6
i=1 yi

∂Ni
∂L2

∑6
i=1 yi

∂Ni
∂L3


︸ ︷︷ ︸

J


∂L1
∂x

∂L1
∂y

∂L2
∂x

∂L2
∂y

∂L3
∂x

∂L3
∂y

 =

 0 0
1 0
0 1

 (61)

Substituting 1 1 1
x1(4L1 − 1) + 4x4L2 + 4x6L3 x2(4L2 − 1) + 4x5L3 + 4x4L1 x3(4L3 − 1) + 4x6L1 + 4x5L2

y1(4L1 − 1) + 4y4L2 + 4y6L3 y2(4L2 − 1) + 4y5L3 + 4y4L1 y3(4L3 − 1) + 4y6L1 + 4y5L2


︸ ︷︷ ︸

J
∂L1
∂x

∂L1
∂y

∂L2
∂x

∂L2
∂y

∂L3
∂x

∂L3
∂y

 =

 0 0
1 0
0 1


(62)
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Triangular Elements

Next we invert the matrix and solve for the six triangular coordinates partials and
substitute in Eq. ?? which in turn will enable us to determine the B matrix in Eq.
?? 

εxx(L1, L2, L3)

εyy (L1, L2, L3)

γxy (L1, L2, L3)

 =
6∑

i=1


∂Ni (L1,L2,L3)

∂x 0
0 ∂Ni (L1,L2,L3)

∂y
∂Ni (L1,L2,L3)

∂y
∂Ni (L1,L2,L3)

∂x


︸ ︷︷ ︸

B=LN

{
u i

v i

}
︸ ︷︷ ︸

u

(63)
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Numerical Integration

Understanding numerical integration is not only essential for a proper integration
of the isoparameteric family of elements, but also helpful in understanding the
Weighted Residual methods (Chapter ??),

A crucial aspect of isoparametric element formulation is the numerical
integration which can be expressed as∫

F(ξ)dξ or
∫ ∫

F(ξ, η)dξdη (64)

In practice we perform the integration numerically using∫
F(ξ)dξ =

∑
i

WiF(ξi)+Rn or
∫ ∫

F(ξ, η)dξdη =
∑

i

∑
j

WijF(ξi , ηj)+Rn

(65)
where the summations extend over all i and j , and Wi , Wij are weighting factors,
and F(ξi) and F(ξi , ηj) are the matrices evaluated at the points specified in the
arguments.

The matrices Rn are error matrices, which are in general not computed.
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Numerical Integration

As shown above, F = BT .D.B for finite element stiffness matrix evaluation, and
each element is integrated individually.

The integration of
∫ b

a F (ξ)dξ is essentially based on passing a polynomial P(ξ)
through given values of F (ξ) and then use

∫ b
a P(ξ)dξ as an approximation.

∫ b

a
F (ξ)dξ ≈

∫ b

a
P(ξ)dξ (66)

Using P(ξ) = F (ξ) at n points, and recalling the properties of Lagrangian
interpolation functions, we obtain

P(ξ) = l1(ξ)F (ξ1) + l2(ξ)F (ξ2) + · · ·+ ln(ξ)F (ξn) (67)

=
n∑

i=1

li(ξ)F (ξi) (68)

and note that at ξ = ξi li = 1, while all other li = 0.
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Numerical Integration Newton-Cotes

In Newton-Cotes integration, it is assumed that the sampling points are equally
spaced.

ξF(   )

-1 10
ξ

ξP(   )

thus we define∫ b

a
P(ξ)dξ =

∫ b

a

n∑
i=1

li(ξ)F (ξi)dξ =
n∑

i=1

∫ b

a
li(ξ)dξF (ξi) (69)

or

Approximation
∫ b

a P(ξ)dξ =
∑n

i=1 W (n)
i F (ξi)

Weights W (n)
i =

∫ b
a li(ξ)dξ = (b − a)C(n)

i

(70)

where C(n)
i are the “weights” of the Newton-Cotes quadrature for numerical

integration with n equally spaced sampling points.
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Numerical Integration Newton-Cotes

Newton-Cotes constants, and corresponding reminder are shown

n C(n)
0 C(n)

1 C(n)
2 C(n)

3 C(n)
4 Error

2 1
2

1
2 10−1(b − a)3F II(ξ)

3 1
6

4
6

1
6 10−3(b − a)5F IV (ξ)

4 1
8

3
8

3
8

1
8 10−3(b − a)5F IV (ξ)

5 7
90

32
90

12
90

32
90

7
90 10−6(b − a)7F VI(ξ)

It can be shown that this method permits exact integration of polynomial of order
n − 1, and that if n is odd, then we can exactly integrate polynomials of order n.
Hence we use in general odd values of n,
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Numerical Integration Newton-Cotes

For n = 2 over [−1, 1], we select equally spaced points at ξ1 = −1 and ξ2 = 1 to
evaluate

∫ 1
−1 P(ξ)dξ

P(ξ) =
2∑

i=1

li(ξ)F (ξi) (71)

l1(ξ) =
ξ− ξ2

ξ1 − ξ2
=

1
2
(1 − ξ) (72)

l2(ξ) =
ξ− ξ1

ξ2 − ξ1
=

1
2
(1 + ξ) (73)

W (2)
1 =

∫ 1

−1
l1(ξ)dξ =

1
2

∫ 1

−1
(1 − ξ)dξ = 1 (74)

W (2)
2 =

∫ 1

−1
l2(ξ)dξ =

1
2

∫ 1

−1
(1 + ξ)dξ = 1 (75)

∫ 1

−1
F (ξ)dξ ≈

∫ 1

−1
P(ξ)dξ =

2∑
i=1

W (2)
i F (ξi) = F (−1) + F (1) (76)

which is the trapezoidal rule
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Numerical Integration Newton-Cotes

For n = 3 over [−1, 1], we select equally spaced points at ξ1 = −1 ξ2 = 0, and
ξ3 = 1, to evaluate

∫ 1
−1 P(ξ)dξ

P(ξ) =
3∑

i=1

li(ξ)F (ξi) (77)

l1(ξ) =
(ξ− ξ2)(ξ− ξ3)

(ξ1 − ξ2)(ξ1 − ξ3)
=

1
2
ξ(ξ− 1) (78)

l2(ξ) =
(ξ− ξ1)(ξ− ξ3)

(ξ2 − ξ1)(ξ2 − ξ3)
= −(1 + ξ)(ξ− 1) (79)

l3(ξ) =
(ξ− ξ1)(ξ− ξ2)

(ξ3 − ξ1)(ξ3 − ξ2)
=

1
2
ξ(1 + ξ) (80)

W (3)
1 =

∫ 1

−1
l1(ξ)dξ =

1
2

∫ 1

−1
ξ(ξ− 1)dξ =

1
3

(81)

W (3)
2 =

∫ 1

−1
l2(ξ)dξ =

∫ 1

−1
−(1 + ξ)(ξ− 1)dξ =

4
3

(82)

W (3)
3 =

∫ 1

−1
l3(ξ)dξ =

1
2

∫ 1

−1
ξ(1 + ξ)dξ =

1
3

(83)

∫ 1

−1
F (ξ)dξ ≈

∫ 1

−1
P(ξ)dξ =

3∑
i=1

W (3)
i F (ξi) =

1
3
[F (−1) + 4F (0) + F (1)](84)

which is Simpson’s rule
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Numerical Integration Gauss-Legendre Quadrature

In Gauss-Legendre quadrature, the points are not fixed and equally spaced, but
are selected to achieve best accuracy.

Again we start with

∫ 1

−1
F (ξ)dξ ≈

∫ 1

−1
P(ξ)dξ =

n∑
i=1

W (n)
i F (ξi) (85)

however in this formulation both W (n)
i and ξi are unknowns to be yet

determined. Thus, we have a total of 2n unknowns.

At the integration points P(ξi) = F (ξi), however at intermediary points the
difference can be expressed as

F (ξ) = P(ξ) + χ(ξ)(β0 + β1ξ+ β2ξ
2 + · · ·)︸ ︷︷ ︸

0 at ξ=ξi ;i=1,2,···,n

(86)

since we want the left side to be exactly equal to P(ξ) at the integration points,
we define

χ(ξ) = (ξ− ξ1)(ξ− ξ2)...(ξ− ξn) (87)

as a polynomial of order n, to be equal to zero at the integration points ξi .
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Numerical Integration Gauss-Legendre Quadrature

βi should be appropriately selected in orer to eliminate the gap between F (ξ)
and P(ξ) at intermediary points.

Integrating ∫ 1

−1
F (ξ)dξ =

∫ 1

−1
P(ξ) +

∞∑
j=0

βj

∫ 1

−1
χ(ξ)ξjdξ (88)

We split the last term

∞∑
j=0

βj

∫ 1

−1
χ(ξ)ξjdξ =

n−1∑
j=0

βj

∫ 1

−1
χ(ξ)ξjdξ+

∞∑
j=n

βj

∫ 1

−1
χ(ξ)ξjdξ (89)

Truncating the last terms of the expansion∫ 1

−1
F (ξ)dξ ≈

∫ 1

−1
P(ξ) +

n−1∑
j=0

βj

∫ 1

−1
χ(ξ)ξjdξ (90)

we observe that the first integral on the right-hand side involves a polynomial of
order n − 1, and the second integral a polynomial of order 2n − 1. Thus we set∫ 1

−1
χ(ξ)ξjdξ = 0 j = 0, 1, · · · , n − 1 (91)
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Numerical Integration Gauss-Legendre Quadrature

which would result in a set of n simultaneous equations of order n in terms of the
unknowns ξi , i = 0, 1, · · · , n − 1.

Back to Eq. ??∫ 1

−1
F (ξ)dξ ≈

∫ 1

−1
P(ξ) =

n∑
i=1

F (ξi)

∫ 1

−1
li(ξ)dξ =

n∑
i=1

W (n)
i F (ξi) (92)

or

Approximation
∫ 1
−1 F (ξ)dξ ≈

∑n
i=1 W (n)

i F (ξi)

Weights W (n)
i =

∫ 1
−1 li(ξ)dξ

Gauss Points
∫ 1
−1 χ(ξ)ξ

jdξ = 0 j = 0, 1, · · · , n − 1
(93)

Integration points ξi and weight coefficients W (n)
i are

n ξi W (n)
i Error

1 0 2 1
3 F (2)(ξ)

2 −1/
√

3 1/
√

3 1 1 1
135 F (4)(ξ)

3 −
√

3/5 0
√

3/5 5/9 8/9 5/9 1
15,750 F (6)(ξ)
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Numerical Integration † Legendre Polynomial

The solutions (Gauss integration points) are equal to the roots of a Legendre
polynomial defined by

L0(ξ) = 1
L1(ξ) = ξ

Lk (ξ) = 2k−1
k ξLk−1(ξ)− k−1

k ξLk−2(ξ) 2 ≤ k ≤ n
(94)

and the n Gauss integration points are determined by solving Ln(ξ) = 0 for its
roots ξi , i = 0, 1, · · · , n − 1.

The weighting functions are then given by

W (n)
i =

2(1 − ξ2
i )

[nLn−1(ξi)]2
(95)
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Numerical Integration † Legendre Polynomial

First we seek the integration points for n = 2, χ(ξ) = (ξ− ξ1)(ξ− ξ2), and the
resulting equations are ∫ 1

−1
(ξ− ξ1)(ξ− ξ2)ξ

0dξ = 0 (96)∫ 1

−1
(ξ− ξ1)(ξ− ξ2)ξ

1dξ = 0 (97)

(98)

Upon integration, we obtain

ξ1ξ2 = −1
3

and ξ1 + ξ2 = 0 (99)

hence
ξ1 = − 1√

3
and ξ2 =

1√
3

(100)
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Numerical Integration † Legendre Polynomial

The weight coefficients are

W (n)
i =

∫ 1

−1
li(ξ)dξ (101)

W (2)
1 =

∫ 1

−1

ξ− ξ2

ξ1 − ξ2
dξ =

−2ξ2

ξ1 − ξ2
= 1.0 (102)

W (2)
2 =

∫ 1

−1

ξ− ξ1

ξ2 − ξ1
dξ =

−2ξ1

ξ1 − ξ2
= 1.0 (103)

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Isoparameteric Elements 56/1



Numerical Integration Rectangular and Prism Regions

Numerical integration of F (ξ, η) over a rectangular region −1 ≤ ξ ≤ 1, and
−1 ≤ η ≤ 1, is accomplished by selecting m and n (not to be confused with the
order of the polynomial) integration points in the ξ and η directions

∫ 1

−1

∫ 1

−1
F (ξ.η)dξdη ≈

∫ 1

−1

∫ 1

−1
P(ξ, η)dξdη =

n∑
i=1

m∑
j=1

W (m)
i W (n)

j F (ξi , ηj)

(104)
and the total number of integration points will thus be m × n, Fig. ??.

ξ= −1/  3 ξ= −  0.6

η= −  0.6

η= +  0.6

ξ= +  0.6

ξ ξ

ξ= +1/  3

η= +1/  3

η η

η= −1/  3

1

2

4

3
1

2

3

4

5

6

7

8

9

For the numerical integration over a triangle, the Gauss points are shown in Fig.
??, and the corresponding triangular coordinates are given by Table ??.
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Numerical Integration Rectangular and Prism Regions

a

a

c

b a

b

c

d

Linear Quadratic Cubic

Order Error Points Triang. Coord. Weights
Linear R = O(h2) a 1

3 ,
1
3 ,

1
3 1

Quadratic a 1
2 ,

1
2 , 0

1
3

R = O(h3) b 0, 1
2 ,

1
2 ,

1
3

c 1
2 , 0,

1
2

1
3

Cubic a 1
3 ,

1
3 ,

1
3 − 27

48
R = O(h4) b 0.6, 0.2, 0.2 25

48
c 0.2, 0.6, 0.2 25

48
d 0.2, 0.2, 0.6 25

48
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Stress Recovery; Nodal Stresses

Stresses are evaluated from
σ = DBu (105)

in general, it is desirable to have them evaluated at the elements nodal points.
However, it should be kept in mind that stresses computed at a given nodes from
different elements need not be the same (since stresses are not required to be
continuous in displacement based finite element formulations).

Hence some sort of stress averaging at nodal points may be desirable.

In the isoparametric formulation, nodal stresses are very poor, and best results
are obtained at the Gauss points.

To evaluate nodal stresses, two approaches:

1 Evaluate σ directly at the nodes (ξ = η = ±1)
2 Evaluate the stresses at the Gauss points and then extrapolate.

The second approach yields far better results.

Extrapolation from Gauss points will be illustrated through Fig. ?? for the 4
noded isoparametric quadrilateral.
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Stress Recovery; Nodal Stresses

We specify an “internal” element with its own nodes and natural coordinates ξ ′

and η ′ which are related to ξ and η through Table ??

Corner ξ η ξ ′ η ′ Gauss ξ η ξ ′ η ′

Node Node
1 −1 −1 −

√
3 −

√
3 1’ −1/

√
3 −1/

√
3 −1 −1

2 +1 −1 +
√

3 −
√

3 2’ +1/
√

3 −1/
√

3 +1 −1
3 +1 +1 +

√
3 +

√
3 3’ +1/

√
3 +1/

√
3 +1 +1

4 −1 +1 −
√

3 +
√

3 4’ −1/
√

3 +1/
√

3 −1 +1
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Stress Recovery; Nodal Stresses

or
ξ ′ =

√
3ξ η ′ =

√
3η (106)

hence any scalar quantity σ (such as σxx ) whose values σ ′
i is known at the

Gauss element corners can be interpolated through the usual bilinear shape
functions now expressed in terms of ξ ′ and η ′

σ(ξ ′, η ′) = ⌊ Ne ′
1 Ne ′

2 Ne ′
3 Ne ′

4 ⌋


σ ′

1

σ ′
2

σ ′
3

σ ′
4

 (107)

where

Ne ′
1 =

1
4
(1 − ξ ′)(1 − η ′) (108)

Ne ′
2 =

1
4
(1 + ξ ′)(1 − η ′) (109)

Ne ′
3 =

1
4
(1 + ξ ′)(1 + η ′) (110)

Ne ′
4 =

1
4
(1 − ξ ′)(1 + η ′) (111)
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Stress Recovery; Nodal Stresses

Similarly, we can extrapolate σ to the corners of the element. For corner 1, for
instance, we replace ξ ′ and η ′ in the preceding equations by −

√
3. Doing that

for the four corners, we obtain
σ1

σ2

σ3

σ4

 =


1 + 1

2

√
3 − 1

2 1 − 1
2

√
3 − 1

2
− 1

2 1 + 1
2

√
3 − 1

2 1 − 1
2

√
3

1 − 1
2

√
3 − 1

2 1 + 1
2

√
3 − 1

2
− 1

2 1 − 1
2

√
3 − 1

2 1 + 1
2

√
3




σ ′
1

σ ′
2

σ ′
3

σ ′
4

 (112)

As expected, the sum of each row is equal to one, and for stresses we replace σ

by σxx , σyy , and τxy

As we know, different nodal stresses will be obtained from adjacent elements. To
obtain a single value we can either take

1 Unweighted average of all the nodal stresses.
2 Weighted average of nodal stresses based on the relative sizes of the

elements as determined from their area through det(J).
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Nodal Equivalent Loads

In the finite element formulation, all loads must be replaced by an “energy
equivalent” nodal load.

We shall consider the following cases: nodal load, gravity, tractions, and thermal.

Gravity forces are equivalent to a body force/unit volume acting within the solid in
the direction of the gravity axis, Fig. ??,

x

y

Direction of Gravity

θ

η

ξ

1
2 3

4

5
6

7

8

Volume d Ω

(which need not be coincident with either of the coordinate axis).

dGx = ρgd
sin θ (113)

dGy = −ρgd
cos θ (114)

where g is the gravitational acceleration and ρ is the mass density.
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Nodal Equivalent Loads

Recalling from Eq. ?? that

fe =

∫

e

NTbd
 (115)

we obtain {
Pxi

Pyi

}
=

∫

e

Niρg
{

sin θ

− cos θ

}
d
 (116)

or the energy equivalent nodal forces for node i are

{
Pxi

Pyi

}
=

ngaus∑
j=1

ngaus∑
k=1

ρgt
{

sin θ

− cos θ

}
Ni(ξjηk )WjWk detJ(ξj , ηk ) (117)

The angle θ is to be measured counter-clockwise from the positive y axis.

Any element edge can have a distributed load per unit length in a normal and
tangential direction prescribed.

The variation of the distributed load is polynomial and its order can not exceed
the order of the element.

For the sake of consistency, loaded nodes are listed also counterclockwise.
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Nodal Equivalent Loads

First we determine the components of the distributed loads in the x and y
directions by considering the forces acting on an incremental length dS of the
loaded edge, Fig. ??:

P
n

x

y

P
t

P
n

P
t

ξ

ν

1 3

4

5
6

7

8

2

α

dx

dy

dPx = (ptdS cos θ− pndS sin θ) = (ptdx − pndy)
dPy = (pndS cos θ− ptdS sin θ) = (pndx − ptdy)

(118)
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Nodal Equivalent Loads

But since integration is to be carried on in terms of natural coordinates:

dx =
∂x
∂ξ

dξ dy =
∂y
∂ξ

dξ (119)

Substituting

dPx =

(
pt
∂x
∂ξ

− pn
∂y
∂ξ

)
dξ (120)

dPy =

(
pn

∂x
∂ξ

+ pt
∂y
∂ξ

)
dξ (121)

(122)

From Eq. ?? we have

fe =

∫
�t

NT t̂d� (123)

or

Pxi =

∫
�t

Ni

(
pt
∂x
∂ξ

− pn
∂y
∂ξ

)
dξ (124)

Pyi =

∫
�t

Ni

(
pn

∂x
∂ξ

+ pt
∂y
∂ξ

)
dξ (125)
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Nodal Equivalent Loads

The integration is again carried on numerically (along the edge) and the energy
equivalent nodal forces for node i are

Pxi =
∑ngaus

j=1 Ni

(
pt

∂x
∂ξ

− pn
∂y
∂ξ

)
Wj

Pyi =
∑ngaus

j=1 Ni

(
pn

∂x
∂ξ

+ pt
∂y
∂ξ

)
Wj

(126)

where the integration is carried on numerically along the edge. and note that ∂x
∂ξ

and ∂y
∂ξ

are taken straight out of the Jacobian matrix.

Note that since integration is to be carried along the edge, we have used ξ.

For adjacent elements
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Nodal Equivalent Loads
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Nodal Equivalent Loads Initial Strains/Stresses; Thermal Load

We distinguish between two cases:

Plane Stress which is the simplest

ε0
xx = α�T (127)

ε0
yy = α�T (128)

γ0
xy = 0 (129)

Plane Strain we have

ε0
xx = −νσ0

zz

E
+ α�T (130)

ε0
yy = −νσ0

zz

E
+ α�T (131)

γ0
xy = 0 (132)

ε0
zz =

σ0
zz

E
+ α�T = 0 (133)
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Nodal Equivalent Loads Initial Strains/Stresses; Thermal Load

Using the last expression to eliminate σ0
zz , we obtain

ε0
xx = (1 + ν)α�T (134)

ε0
yy = (1 + ν)α�T (135)

γ0
xy = 0 (136)

σ0
zz = −Eα�T (137)

Those expressions are then substituted into Eq. ??

f0e =

∫

e

BTDϵ0d
−
∫

t

BTσ0d
 (138)

and integrated numerically.
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Computer Implementation Algorithm

The computer implementation of a numerically integrated isoparametric element
is summarized as follows.

But first, it is assumed that this operation is to be performed in a function called
stiff and it takes as input arguments elcod, young, poiss, type, ndime,

ndofn, ngaus. In turn it will compute the stiffness matrix KELEM of element
ielem.

1 Retrieve element geometry and material properties for the current element
2 Zero the stiffness matrix
3 Call function dmat to set the constitutive matrix De of the element
4 Enter (nested) loop covering all integration points

1 Look up the sampling position of the current point (ξp , ηq) (s, t) and their
weights (weigp)

2 Call shape function routine sfr given ξp , ηq which will return the shape

function Ne
i (sfr) and the derivatives ∂Ne

i
∂ξ

and ∂Ne
i

∂η
(deriv) at the point ξp , ηq

3 Call another subroutine (jacob), given Ne
i , ∂Ne

i
∂ξ

and ∂Ne
i

∂η
at point ξp , ηq will

return cartesian shape function derivatives ∂Ne
i

∂x and ∂Ne
i

∂y (cartd), the

Jacobian matrix Je (jacm), its inverse Je−1 (jaci), its determinant det Je

(djac) and the x and y coordinates all at the point ξp , ηq
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Computer Implementation Algorithm

4 Call strain matrix (bmatps) routine, given Ne
i , ∂Ne

i
∂x , ∂Ne

i
∂y , at ξp , ηq will return the

strain matrix Be
i (bmat)

5 Call a routine (dbmat) to evaluate DeBe
i (dbmat)

6 Evaluate Be
i

T
DeBe

j detJe× integration weights and assemble them into the
element stiffness matrix Ke

ij

7 Assemble DeBe (smat into a stress array for later evaluation of stresses from
the nodal displacements.

5 Write Stiffness matrix
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Computer Implementation Algorithm

Suggested list of variables:
idime, ndime Index, Number of dimensions (2 for 2D)
idofn,ndofn Index, Number of degree of freedom per node
ielem,nelem Index, number of elements
igaus,jgaus,ngaus Index, Index, Number of Gauss rule adopted
inode, nnode Index, number of nodes per element
kgasp,ngasp Kounter, number of Gauss points used
type 1 for plane stress; 2 for plane strain
poiss Poisson’s ratio
young Young’s modulus
elcod(ndime,nnode) Local array of nodal cartesian coordinates of the element currently under consider-

ation
[

x(ξ1, η1) · · · x(ξ8, η8)

y(ξ1, η1) · · · y(ξ8, η8)

]
s ξ coordinate of sampling point
t η coordinate of sampling point
gpcod(ndime,ngasp) Local array of cartesian coordinates of the Gauss points for element currently under

consideration
[

x(ξG1 , ηG1 · · · x(ξG5 , ηG5) · · ·
y(ξG1 , ηG1 · · · y(ξG5 , ηG5) · · ·

]
posgp(mgaus) ξ coordinates of Gauss point
weigp(mgaus) Weight factor for Gauss point
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Computer Implementation Algorithm

shape(nnode) Shape function associated with each node of current element at (ξp, ηp)[
N1(ξp, ηp)
...N8(ξp, ηp)

]
deriv(ndime,nnode) Shape function derivative at sampling point (ξp, ηp) within the element[

∂N1
∂ξ

(ξp, ηp) · · · ∂N8
∂ξ

(ξp, ηp)
∂N1
∂η

(ξp, ηp) · · · ∂N8
∂η

(ξp, ηp)

]
cartd(ndime,nnode) Cartesian shape function derivatives associated with the nodes of

the current element sampled at any point (ξp, ηp) within the element[
∂N1
∂x (ξp, ηp) · · · ∂N8

∂x (ξp, ηp)
∂N1
∂y (ξp, ηp) · · · ∂N8

∂y (ξp, ηp)

]
djacb Determinant of the Jacobian matrix sampled at any point (ξp, ηp) within the element
jacm(ndime,ndime) Jacobian matrix at sampling point
jaci(ndime,ndime) Inverse of Jacobian matrix at sampling point
bmat(nstre,nevab) Element strain matrix at any point within the element B = [ B1 B2 · · · B8 ]

where Bi =


∂Ni
∂x 0
0 ∂Ni

∂y
∂Ni
∂y

∂Ni
∂x


dbmat(istre,ievab) stores DB
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Computer Implementation Algorithm
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Computer Implementation Stiff.m

1 f u n c t i o n KELEM = s t i f f ( ngaus , posgp , weigp , type , nelem , lnods , coord , nnode )
2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % The purpose of t h i s f u n c t i o n i s c a l c u l a t e element s t i f f n e s s m a t r i c i e s f o r
4 % b i l i n e a r and b i q u a d r a t i c i sopa remt r i c elements using Gaussian i n t e g r a t i o n .
5 % Funct ions c a l l e d by t h i s f u n c t i o n are : dmat , s f r , jacob , bmatps
6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 % VARIABLES
8 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 % nelem Global v a r i a b l e NELEM

10 % nnode Global v a r i a b l e NNODES
11 % posgp Global v a r i a b l e POSGP
12 % weigp Global v a r i a b l e WEIGP
13 % ngaus Global v a r i a b l e NGAUS
14 % type Global v a r i a b l e TYPE
15 % lnods Global v a r i a b l e LNODS
16 % coord Global v a r i a b l e COORD
17 %
18 % s t i f s i z e Number o f columns i n the element s t i f f n e s s mat r i x
19 % nrowcount Pos i t i on i n d i c a t o r f o r element s t i f f n e s s mat r i x
20 % elmt Current element f o r fo rmat ion o f s t i f f n e s s mat r i x
21 % young Modulus o f e l a s t i c i t y f o r cu r ren t element
22 % poiss Poisson ’ s r a t i o n f o r cu r ren t element
23 % D C o n s t i t u t i v e mat ix
24 % elcod Mat r i x o f element coord ina tes
25 % row Counter
26 % kelem Element s t i f f n e s s mat r i x
27 % KELEM Element s t i f f n e s s m a t r i c i e s f o r a l l elements re turned by f u n c t i o n
28 % s Current i n t e g r a t i o n p o s i t i o n
29 % t Current i n t e g r a t i o n p o s i t i o n
30 % shape Shape f u n c t i o n a t cu r ren t po in t
31 % de r i v D e r i v a t i v e o f shape f u n c t i o n a t cu r ren t po in t
32 % car td Car tes ian shape f u n c t i o n d e r i v a t i v e s
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Computer Implementation Stiff.m

33 % jacm Jacobian mat r i x
34 % j a c i Jacobian mat r i x inverse
35 % djac Determinant o f Jacobian mat r i x
36 % xy x and y coord ina tes a t the cu r ren t po in t i n the element
37 % bmat S t r a i n mat r i x [B ]
38 % dbmat S t r a i n mat r i x * c o n s t i t u t i v e mat r i x [B ] * [ D]
39 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 t i c
41 f p r i n t f ( ’ Ca l cu l a t i ng ELEMENT STIFFNESS m a t r i c i e s \ n ’ )
42 s t i f s i z e = 2*nnode ;
43 nrowcount = s t i f s i z e −1;
44 f o r ie lem = 1: nelem
45 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
46 % Ex t rac t ma te r i a l constants from lnods
47 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48 elmt = lnods ( ielem , 1 ) ;
49 young = lnods ( ielem , 2 ) ;
50 poiss = lnods ( ielem , 3 ) ;
51 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 % Ex t rac t element coord ina tes
53 %
54 % elcod = [ X1 X2 X3 . . . Xn ]
55 % [ Y1 Y2 Y3 . . . Yn ]
56 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
57 elcod = zeros (2 , nnode ) ;
58 f o r inode = 1: nnode
59 row = f i n d ( coord ( : , 1 : 1 ) ==lnods ( ielem , inode +3) ) ;
60 elcod ( : , inode : inode ) = coord ( row : row , 2 : 3 ) ’ ;
61 end
62 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
63 % C o n s t i t u t i v e mat r i x
64 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Computer Implementation Stiff.m

65 D = dmat ( young , poiss , type ) ;
66 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67 % Element s t i f f n e s s mat r i x − element ie lem
68 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
69 kelem = zeros ( s t i f s i z e ) ;
70 f o r igaus = 1: ngaus
71 f o r jgaus = 1: ngaus
72 s = posgp ( igaus ) ;
73 t = posgp ( jgaus ) ;
74 W = weigp ( igaus ) * weigp ( jgaus ) ;
75 [ shape , de r i v ] = s f r ( s , t , nnode ) ;
76 [ car td , jacm , j a c i , djac , xy ] = jacob ( shape , der iv , e lcod ) ;
77 [ bmat , dbmat ] = bmatps ( shape , car td ,D) ;
78 kelem = kelem + bmat ’ * dbmat * d jac ;
79 end
80 end
81 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
82 % Store element s t i f f n e s s m a t r i c i e s i n as a stack i n a s i n g l e mat r i x :
83 % kelem ( 1 )
84 % KELEM = :
85 % kelem ( nelem )
86 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
87 s ta r t r ow = s t i f s i z e * ie lem − nrowcount ;
88 endrow = ielem * s t i f s i z e ;
89 KELEM( s ta r t r ow : endrow , : ) = kelem ;
90 end
91 t = toc ;
92 f p r i n t f (1 , ’ Elapsed t ime f o r t h i s opera t ion =%3.4 fsec \ n \ n ’ , t )
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Computer Implementation dmat.m

1 f u n c t i o n D = dmat ( young , poiss , type )
2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % This f u n c t i o n c a l c u l a t e s the c o n s t i t u t i v e mat r i x f o r an element
4 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 % VARIABLES
6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 % young Young ’ s modulus / Modulus o f e l a s t i c i t y
8 % poiss Poisson ’ s r a t i o
9 % E Modulus o f e l a s t i c i t y

10 % type type of problem − p l a i n s t ress = 1 , p l a i n s t r a i n = 2
11 % D C o n s t i t u t i v e mat r i x re turned by f u n c t i o n
12 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 t i c
14 %f p r i n t f ( ’ Ca l cu l a t i ng element c o n s t i t u t i v e mat r i x \ n ’ )
15 E = young ;
16 v = poiss ;
17 %−−−−−−−−−−−−−−−−−−−−−−−−−−
18 % Pla in s t ress
19 %−−−−−−−−−−−−−−−−−−−−−−−−−−
20 i f type == 1.0
21 D = (E/(1 − v ^2) ) * [ 1 v 0 ;
22 v 1 0;
23 0 0 (1−v ) / 2 ] ;
24 %−−−−−−−−−−−−−−−−−−−−−−−−−−
25 % Pla in s t r a i n
26 %−−−−−−−−−−−−−−−−−−−−−−−−−−
27 else
28 D = E/ ( ( 1 + v ) *(1 −2* v ) ) * [ 1−v v 0 ;
29 v 1−v 0 ;
30 0 0 (1 −2*v ) / 2 ] ;
31 end
32 t = toc ;
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33 %f p r i n t f ( 1 , ’ Elapsed t ime f o r t h i s opera t ion =%3.4 fsec \ n \ n ’ , t )
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Computer Implementation sfr.m

1 f u n c t i o n [ shape , de r i v ] = s f r ( s , t , nnode )
2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % This f u n c t i o n c a l c u l a t e s the shape f u n c t i o n and d e r i v a t i v e f o r the cu r ren t node
4 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 % VARIABLES
6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 % shape Shape f u n c t i o n re turned by f u n c t i o n
8 % der i v D e r i v a t i v e o f shape f u n c t i o n re turned by f u n c t i o n
9 % nnode Number o f nodes per element

10 % s Natura l coord ina te ( x i ) o f sampling po in t − h o r i z o n t a l
11 % t Natura l coord ina te ( eta ) o f sampling po in t − v e r t i c a l
12 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 t i c
14 %f p r i n t f ( ’ Ca l cu l a t i ng shape f u n c t i o n s and d e r i v a t i v e s \ n ’ )
15 %−−−−−−−−−−−−−−−−−−−
16 % Q9 Element
17 %−−−−−−−−−−−−−−−−−−−
18 i f nnode == 9
19 N9 = (1−s ^2) *(1 − t ^2) ;
20 N8 = .5*(1 − s ) *(1 − t ^2) −.5*N9 ;
21 N7 = .5*(1 − s ^2) *(1+ t ) −.5*N9 ;
22 N6 = .5* (1+ s ) *(1 − t ^2) −.5*N9 ;
23 N5 = .5*(1 − s ^2) *(1 − t ) −.5*N9 ;
24 N4 = .25*(1 − s ) *(1+ t ) −.5*N7 − . 5 *N8 − .25*N9 ;
25 N3 = .25*(1+ s ) *(1+ t ) −.5*N6 − . 5 *N7 − .25*N9 ;
26 N2 = .25*(1+ s ) *(1 − t ) −.5*N5 − . 5 *N6 − .25*N9 ;
27 N1 = .25*(1 − s ) *(1 − t ) −.5*N5 − . 5 *N8 − .25*N9 ;
28 shape = [N1 N2 N3 N4 N5 N6 N7 N8 N9 ] ’ ;
29 dN9ds = −2*s *(1 − t ^2) ;
30 dN9dt = −2* t *(1 − s ^2) ;
31 dN8ds = −.5*(1 − t ^2) −.5*dN9ds ;
32 dN8dt = − t *(1 − s ) −.5* dN9dt ;
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Computer Implementation sfr.m

33 dN7ds = −s *(1+ t ) −.5*dN9ds ;
34 dN7dt = .5*(1 − s ^2) −.5* dN9dt ;
35 dN6ds = .5*(1 − t ^2) −.5*dN9ds ;
36 dN6dt = − t *(1+ s ) −.5* dN9dt ;
37 dN5ds = −s *(1 − t ) −.5*dN9ds ;
38 dN5dt = −.5*(1 − s ^2) −.5* dN9dt ;
39 dN4ds = −.25*(1+ t ) −.5*dN7ds − . 5 * dN8ds − .25* dN9ds ;
40 dN4dt = .25*(1 − s ) −.5* dN7dt − . 5 * dN8dt − .25* dN9dt ;
41 dN3ds = .25* (1+ t ) −.5*dN6ds − . 5 * dN7ds − .25* dN9ds ;
42 dN3dt = .25* (1+ s ) −.5* dN6dt − . 5 * dN7dt − .25* dN9dt ;
43 dN2ds = .25*(1 − t ) −.5*dN5ds − . 5 * dN6ds − .25* dN9ds ;
44 dN2dt = −.25*(1+ s ) −.5* dN5dt − . 5 * dN6dt − .25* dN9dt ;
45 dN1ds = −.25*(1 − t ) −.5*dN5ds − . 5 * dN8ds − .25* dN9ds ;
46 dN1dt = −.25*(1 −s ) −.5* dN5dt − . 5 * dN8dt − .25* dN9dt ;
47 de r i v = [ dN1ds dN2ds dN3ds dN4ds dN5ds dN6ds dN7ds dN8ds dN9ds ;
48 dN1dt dN2dt dN3dt dN4dt dN5dt dN6dt dN7dt dN8dt dN9dt ] ;
49 %−−−−−−−−−−−−−−−−−−−
50 % Q8 Element
51 %−−−−−−−−−−−−−−−−−−−
52 e l s e i f nnode == 8
53 N8 = .5*(1 − s ) *(1 − t ^2) ;
54 N7 = .5*(1 − s ^2) *(1+ t ) ;
55 N6 = .5* (1+ s ) *(1 − t ^2) ;
56 N5 = .5*(1 − s ^2) *(1 − t ) ;
57 N4 = .25*(1 − s ) *(1+ t ) −.5*N7 − . 5 *N8 ;
58 N3 = .25*(1+ s ) *(1+ t ) −.5*N6 − . 5 *N7 ;
59 N2 = .25*(1+ s ) *(1 − t ) −.5*N5 − . 5 *N6 ;
60 N1 = .25*(1 − s ) *(1 − t ) −.5*N5 − . 5 *N8 ;
61 shape = [N1 N2 N3 N4 N5 N6 N7 N8 ] ’ ;
62 dN8ds = −.5*(1 − t ^2) ;
63 dN8dt = − t *(1 − s ) ;
64 dN7ds = −s *(1+ t ) ;
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Computer Implementation sfr.m

65 dN7dt = .5*(1 − s ^2) ;
66 dN6ds = .5*(1 − t ^2) ;
67 dN6dt = − t *(1+ s ) ;
68 dN5ds = −s *(1 − t ) ;
69 dN5dt = −.5*(1 − s ^2) ;
70 dN4ds = −.25*(1+ t ) −.5*dN7ds − . 5 * dN8ds ;
71 dN4dt = .25*(1 − s ) −.5* dN7dt − . 5 * dN8dt ;
72 dN3ds = .25* (1+ t ) −.5*dN6ds − . 5 * dN7ds ;
73 dN3dt = .25* (1+ s ) −.5* dN6dt − . 5 * dN7dt ;
74 dN2ds = .25*(1 − t ) −.5*dN5ds − . 5 * dN6ds ;
75 dN2dt = −.25*(1+ s ) −.5* dN5dt − . 5 * dN6dt ;
76 dN1ds = −.25*(1 − t ) −.5*dN5ds − . 5 * dN8ds ;
77 dN1dt = −.25*(1 −s ) −.5* dN5dt − . 5 * dN8dt ;
78 de r i v = [ dN1ds dN2ds dN3ds dN4ds dN5ds dN6ds dN7ds dN8ds ;
79 dN1dt dN2dt dN3dt dN4dt dN5dt dN6dt dN7dt dN8dt ] ;
80 %−−−−−−−−−−−−−−−−−−−
81 % Q4 Element
82 %−−−−−−−−−−−−−−−−−−−
83 else
84 N4 = .25*(1 − s ) *(1+ t ) ;
85 N3 = .25*(1+ s ) *(1+ t ) ;
86 N2 = .25*(1+ s ) *(1 − t ) ;
87 N1 = .25*(1 − s ) *(1 − t ) ;
88 shape = [N1 N2 N3 N4 ] ’ ;
89 dN4ds = −.25*(1+ t ) ;
90 dN4dt = .25*(1 − s ) ;
91 dN3ds = .25* (1+ t ) ;
92 dN3dt = .25* (1+ s ) ;
93 dN2ds = .25*(1 − t ) ;
94 dN2dt = −.25*(1+ s ) ;
95 dN1ds = −.25*(1 − t ) ;
96 dN1dt = −.25*(1 −s ) ;
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Computer Implementation sfr.m

97 de r i v = [ dN1ds dN2ds dN3ds dN4ds ;
98 dN1dt dN2dt dN3dt dN4dt ] ;
99 end

100 t = toc ;
101 %f p r i n t f ( 1 , ’ Elapsed t ime f o r t h i s opera t ion =%3.4 fsec \ n \ n ’ , t )
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Computer Implementation jacob.m

1 f u n c t i o n [ car td , jacm , j a c i , djac , xy ] = jacob ( shape , der iv , e lcod )
2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % This f u n c t i o n c a l c u l a t e s the ca r tes ian shape f u n c t i o n d e r i v a t i v e s
4 % the Jacobian matr ix , Jacobian inverse and Jacobian determinant
5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 % VARIABLES
7 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 % shape Shape f u n c t i o n a t cu r ren t po in t
9 % de r i v D e r i v a t i v e o f shape f u n c t i o n a t cu r ren t po in t

10 % car td Car tes ian shape f u n c t i o n d e r i v a t i v e s re turned by f u n c t i o n
11 % jacm Jacobian mat r i x re turned by f u n c t i o n
12 % j a c i Jacobian mat r i x inverse re turned by f u n c t i o n
13 % djac Determinant o f Jacobian mat r i x re turned by f u n c t i o n
14 % xy x and y coord ina tes a t the cu r ren t po in t i n the element
15 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 t i c
17 %f p r i n t f ( ’ Ca l cu l a t i ng Jacobian mat r i x \ n ’ )
18 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 % The ca r tes ian shape f u n c t i o n d e r i v a t i v e s { ca r td } are given by :
20 %
21 % {dN/ dx } −1 {dN / ds }
22 % { ca r td } = { } = [ J ] { }
23 % {dN/ dy } {dN / d t }
24 % S t a r t by c a l c u l a t i n g Jacobian [ J ] = jacm :
25 % T T
26 % [ dX / ds dY / ds ] [ { dN / ds } * { x } {dN / ds } * { y } ]
27 % [ J ] = [ ] = [ T T ]
28 % [ dX / d t dY / d t ] [ { dN / d t } * { x } {dN / d t } * { y } ]
29 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 jacm = de r i v * elcod ’ ;
31 j a c i = inv ( jacm ) ;
32 d jac = det ( jacm ) ;
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Computer Implementation jacob.m

33 car td = j a c i * de r i v ;
34 xy = elcod * shape ;
35 t = toc ;
36 %f p r i n t f ( 1 , ’ Elapsed t ime f o r t h i s opera t ion =%3.4 fsec \ n \ n ’ , t )

Victor E. Saouma; CVEN 4525/5525; Univ. of Colorado Isoparameteric Elements 86/1



Computer Implementation bmatps

1 f u n c t i o n [ bmat , dbmat ] = bmatps ( shape , car td ,D)
2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % This f u n c t i o n c a l c u l a t e s the s t r a i n mat r i x B
4 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 % VARIABLES
6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 % shape Shape f u n c t i o n a t cu r ren t po in t
8 % car td Car tes ian shape f u n c t i o n d e r i v a t i v e s
9 % bmat S t r a i n mat r i x re turned by f u n c t i o n

10 % dbmat S t r a i n mat r i x * c o n s t i t u t i v e mat r i x D
11 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 t i c
13 %f p r i n t f ( ’ Ca l cu l a t i ng s t r a i n mat r i x [B ] \ n ’ )
14 numcols = 2* leng th ( ca r td ) ;
15 bmat = zeros (3 , numcols ) ;
16 c a r t d c o l = 0 ;
17 f o r ibmatco l = 1 : 2 : numcols
18 c a r t d c o l = c a r t d c o l +1;
19 bmat ( : , ibmatco l : ibmatco l +1) = [ ca r td (1 , c a r t d c o l ) 0 ;
20 0 car td (2 , c a r t d c o l ) ;
21 ca r td (2 , c a r t d c o l ) ca r td (1 , c a r t d c o l ) ] ;
22 end
23 dbmat = D* bmat ;
24 t = toc ;
25 %f p r i n t f ( 1 , ’ Elapsed t ime f o r t h i s opera t ion =%3.4 fsec \ n \ n ’ , t )
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Computer Implementation Plotting

1 X= −1:1 /20:1 ;
2 Y=X;
3 YT=Y ’ ;
4 XT=X ’ ;
5 N9=(1−YT . * YT) *(1 −X . * X) ;
6 N8=0.5*(1 −YT . * YT) *(1 −X) ;
7 N7=0.5*(1 −XT . * XT) *(1+Y) ;
8 N6=0.5*(1 −YT . * YT) *(1+X) ;
9 N5=0.5*(1 −XT . * XT) *(1 −Y) ;

10 N4=0.25*(1 −XT) *(1+Y) −0.5*(N7+N8) ;
11 N3=0.25*(1+XT) *(1+Y) −0.5*(N6+N7) ;
12 N2=0.25*(1+XT) *(1 −Y) −0.5*(N5+N6) ;
13 N1=0.25*(1 −XT) *(1 −Y) −0.5*(N8+N5) ;
14 meshc (X,Y,N1)
15 p r i n t −deps2 shap8 −1. eps
16 c=contour (X,Y,N1) ;
17 c l a b e l ( c )
18 p r i n t −deps2 shap8−1−c . eps
19 meshc (X,Y,N8)
20 p r i n t −deps2 shap8 −8. eps
21 c=contour (X,Y,N8) ;
22 c l a b e l ( c )
23 p r i n t −deps2 shap8−8−c . eps
24 N1=N1−0.25*N9 ;
25 meshc (X,Y,N1)
26 p r i n t −deps2 shap9 −1. eps
27 c=contour (X,Y,N1) ;
28 c l a b e l ( c )
29 p r i n t −deps2 shap9−1−c . eps
30 N8=N8−0.5*N9 ;
31 meshc (X,Y,N8)
32 p r i n t −deps2 shap9 −8. eps
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Computer Implementation Plotting

33 c=contour (X,Y,N8) ;
34 c l a b e l ( c )
35 p r i n t −deps2 shap9−8−c . eps
36 meshc (X,Y,N9)
37 p r i n t −deps2 shap9 −9. eps
38 c=contour (X,Y,N9) ;
39 c l a b e l ( c )
40 p r i n t −deps2 shap9−9−c . eps
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Introduction Loads and Response

Dead Load

Live Load

Wind or EQ Load
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Introduction Sources of Nonlinearities

Constitutive model (non-linear stress strain curve of steel, concrete),

k =

∫



BTDBd


large strains:

εxx = u,x︸︷︷︸
First Order

+
1
2
(u2
,x + v2

,x + w2
,x)︸ ︷︷ ︸

Second Order

k =

∫



BTDBd
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Levels of Structural Analysis

Displacement

L
oa

d
3. Elastic Critical Load

5*  Elastic Stability

4. Inelastic Critical Load

7 Plastic Limit Load

6* Inelastic Stability

1. First Order Elastic

B
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6. Second Order Inelastic

2. First Order Inelastic L
im
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s

Constitutive Equations
Undeformed Shape Deformed Shape

Elastic Inelastic Elastic Inelastic
(Linear) (Non Linear) (Linear) (Non Linear)

Kinematic Eq.

1st Order 1 (C:L-K:L) 2 (C:NL-K:L) Critical Load
(Linear) 3 Elastic 4 Inelastic

2nd Order 5 (C:L-K:NL) 6 (C:NL-K:NL) - -(Non Linear)
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Levels of Structural Analysis

First Order Elastic excludes any nonlinearities. If the equilibrium equation is written in
terms of
1 (C:L-K:L); Undeformed Shape This is the most common case,

linear elastic. It is usually acceptable for service loads.
For time dependent cases, we must consider
visco-elastic models.

3 Bifurcation; Deformed shape (or ‘zero order”) an eigenvalue
analysis which would lead to the Elastic Critical Load.
Note that we do not have a corresponding
load-displacement curve, but rather “buckling modes”.

First Order Inelastic Accounts for material non-linearity. In such an analysis, the
inelastic region (plastic zone) develops gradually, and it will provide a
good estimate of the elasto-plastic response (note that instability is not
addressed). We consider

Non-linear Elasticity: reversible non-linear stress-strain (upon
unloading, the strain goes back to zero).
Plasticity, non reversible non-linear stress-strain.
Damage
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Levels of Structural Analysis

If the equilibrium equation is written in terms of
2 (C:NL-K:L); Undeformed Shape Second most common form of

analysis, typically conducted for ultimate/unusual
loads.

4 Bifurcation; Deformed shape an eigenvalue analysis which would
lead to the Inelastic Critical Load. Note that we do not
have a corresponding load-displacement curve, but
rather “buckling modes”. This inelastic critical load will
be smaller than the elastic one.

For time dependent cases, we consider visco-plasticity, or fatigue, or
continuous damage models.

5 (C:L-K:NL); Second-order elastic accounts for the effects of finite deformation and
displacements, equilibrium equations are written in terms of the
geometry of the deformed shape (Eulerian), does not account for
material non-linearities, may be able to detect bifurcation and or
increased stiffness (when a member is subjected to a tensile axial
load). Best for the analysis of cables, nets, catenary structures.
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Levels of Structural Analysis

6 (C:NL-K:NL); Second-order inelastic equations of equilibrium written in terms of the
geometry of the deformed shape, can account for both geometric and
material nonlinearities. Most suitable to determine failure or ultimate
loads. By far the most complex form of analysis, used in Metal
Forming simulation, fragmentation of structures (missile impact).
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Finite Element Analysis Process

Physical 
Problem
Definition

Data Gathering

Compromise, 
Refine Model

Project 
Assignment

Conceptual 
Model

Preliminary
Report

No Feasible

Software SelectionPreliminary 
Analyses

1st 
Assessment

Data Mining
Final
Report

2nd 
Assessment

Good

Fine Grained

NG

FEA

Problem Definition

Final Evaluation

Mathematical  
Model

NG

Correct Errors

YES

Analyses

OK

Mathematical 
Model

Weakest link: not 
enough attention 
paid to this detail

Disproportionate attention 
given to a potentially 
irrelevant detail
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Analysis Support

EC8 and PBE require the completion of

Nonlinear Static Procedure or Nonlinear Pushover (NPO)
Nonlinear Dynamic Procedure or Nonlinear Time History (NTH)
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Numerical Methods

Two classes of solutions

Actual

Computed

ΔP1

ΔP2

ΔP3

ΔP4

Δu2 Δu3
Δu4

u2

u3

u4

Parallel

Event to Event: No iterations, small
increments, easy to implement, no check
for convergence. Explicit method

{�u}i = K−1
i

{
�P

}
i

ui = ui−1 +�ui

Newton’s Method; Numerical aspects will
first be introduced from a conceptual point
of view first, connection to structural
analysis will be made at the end. Implicit
method
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Numerical Methods

u

Exact Actual load 
displacement 

curve (unknown)

Computed

ΔP1

ΔP2

ΔP3

ΔP4

Δu2 Δu3 Δu4u2 u3 u4

Kt
2

Kt
3

Kt
4

Tangent stiffness matrix 
at load increment 2

Incremental 
displacement at 
load increment 4

Total displacement at 
end of  increment 4

Divergence (no 
equilibrium)

Force, P

P1

P2

P3

P4

n

n+1

Force

un un+1

R2
n

Pn

Displacement

ΔP
n Ktx1

n

Kty2
n

R1
nResidual Force at load  

increment n iteration 1

External Force

Incremental displacement at 
load increment n, iteration 1

Total Incremental displacement at load increment n

Total displacement at the 
beginning of increment n

Total displacement at the 
beginning of increment n+1

Convergence (Residual 
smaller than epsilon)

Pn+1

Internal force at load 
increment n, iteration 1

Tangent stiffness matrix at load 
increment n, iteration 1; x and y 
depend on solution strategy
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Introduction; Newton Methods

Linear problems: unique solution; Nonlinear problems: can not ensure the
existence of a solution, nor ensure the uniqueness of one.

At best we can say that an approximate numerical solution of the problem is
given, or that an approximation does not exist (typically this implies local or
global failure).

Most widely used class of numerical solution: “Newton Methods”, or “Quasi
Newton”. Other methods may include the bisection method (only linearly
convergent).

Essence of the method which seeks to solve f (x) = 0, is to linearize the
equation about the current approximation xn and solve for the resulting linear
equation for the next approximation xn+1
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Introduction; Newton Methods Newton Method

If we set f (x) = 0⇒ x ' x − f(x)
f ′(x)

This is an approximate solution, at x , which presumes that we also have f ′(x).

In an iterative procedure, this equation can be rewritten as

(n)(n+1)

n
+
1

dy
dx

= f ′(xn)

⇒ dx =
dy

f ′(xn)
=

0︷ ︸︸ ︷
f (xn+1)−f (xn)

f ′(xn)

xn+1 ' xn−
f (xn)

f ′(xn)︸ ︷︷ ︸
δxn

Convergence will be ensured when
|δxn|≤ εδ or |f (xn+1)|≤ εf
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Introduction; Newton Methods Newton Method

Solve f (x) = Tan(x)− x = 0
1 c lea r
2 xn = 4 . 3 ;
3 n = 0;
4 eps i=1e 4 ;
5 maxi ter = 20;
6 d isp ( " " )
7 d isp ( " n xn norm " )
8 xn_m1 = 0 . ;
9 f o r i = 1 : max i ter

10 f_x=tan ( xn ) xn ; df_dx=sec ( xn ) ^ 2 1 ;
11 xn = xn f_x / df_dx ;
12 my_norm = abs ( xn xn_m1) ;
13 disp ( s p r i n t f ( "%5 i %16.15e %16.15e " , i , xn , my_norm) )
14 i f my_norm <epsi
15 break
16 end
17 xn_m1=xn ;
18 end

Note that this is a particularly sensitive problem, because tan x is discontinuous, a

small change in the initial guess may yield to divergence of the solution.
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Introduction; Newton Methods Newton Method

Given an initial x, a required tolerance ε > 0
Repeat

1 Evaluate g = f (x) and H = J(x)
2 If ‖ g ‖≤ ε, return x
3 v = xn − xn−1 = f(x)

J(x)
4 Solve Hv = −g
5 x := x + v

until maximum number of iterations is exceeded

Each iteration requires the evaluation of (x) (n scalar functions evaluation in
terms of x) and J(x) (n2 derivatives).
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Introduction; Newton Methods Examples

Solve f (x) =


x2

1 + x2
2 + x2

3 − 9
x3 − x2 sin(x1)

3x2 + 4x3

⇒ J(x) =

 2x1 2x2 2x3

−x2 cos(x1) − sin(x1) 1
0 3 4


1 f = @( x ) [ x ( 1 ) ^2 + x ( 2 ) ^2 + x ( 3 ) ^2 9
2 x ( 3 ) x ( 2 )∗s in ( x ( 1 ) )
3 3∗x ( 2 ) +4∗x ( 3 ) ] ;
4 % The Jacobian mat r i x :
5 J = @( x ) [2∗x ( 1 ) 2∗x ( 2 ) 2∗x ( 3 )
6 x ( 2 )∗cos ( x ( 1 ) ) s in ( x ( 1 ) ) 1
7 0 3 4 ] ;
8 % i n i t i a l guess :
9 x = [ 1 ; 2 ; 1 ] ;

10 maxi ter = 10;
11 t o l = 1e 1 2 ;
12 disp ( " " )
13 d isp ( " i t e r a t i o n x ( 1 ) x ( 2 ) x ( 3 ) norm ( de l t a ) " )
14 f o r n=1: max i ter
15 de l t a = J ( x ) \ f ( x ) ;
16 x = x + de l t a ;
17 disp ( s p r i n t f ( "%5 i %10.5e %10.5e %10.5e %8.3e " , . . .
18 n , x ( 1 ) , x ( 2 ) , x ( 3 ) ,norm ( de l ta , i n f ) ) ) ;
19 i f norm ( de l ta , i n f ) < t o l
20 break
21 end
22 end
23 i f n==maxi ter
24 disp ("∗∗∗ Warning : may not have converged to le rance not s a t i s f i e d " )
25 end
26 end
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Relationship to Structural Mechanics Introduction

n

n+1

Force

un un+1

R2
n

Pn

Displacement

ΔP
n Ktx1

n

Kty2
n

R1
nResidual Force at load  

increment n iteration 1

External Force

Incremental displacement at 
load increment n, iteration 1

Total Incremental displacement at load increment n

Total displacement at the 
beginning of increment n

Total displacement at the 
beginning of increment n+1

Convergence (Residual 
smaller than epsilon)

Pn+1

Internal force at load 
increment n, iteration 1

Tangent stiffness matrix at load 
increment n, iteration 1; x and y 
depend on solution strategy

Objective go from n to n + 1.

Jacobian corresponds to the
tangent stiffness matrix of
the structure which in turn
depends on the tangent of
the constitutive matrix (DT ).

So far: f(x) = 0, in structural analysis
PR

t,n = Pext
t,n −Pint

t,n = 0, superscript R refers to
the residual, and both Pext

t,n and Pint
t,n are

determined from the principle of virtual
displacement. Internal nodal force vector Pint

t,n

is a function of nodal displacements ut,n, thus
we have a nonlinear problem. (Recall
Pint =

∫
BTσd
 or K∆)

Within each iteration we determine the
residual nodal force vector, and this would
yield an incremental nodal displacement
vector. The iterations continue until the
residual nodal force vector or the incremental
nodal displacement vector, is sufficiently
small.

Newton’s methods hinge on our ability to linearize (through a truncated Taylor
series) the problem as follows PR,k

t,n = Pext
t,n −Pint,k

t,n ; δuk
t,n = [Kk−1

tt,n ]−1 ·PR,k
t,n ; and
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Relationship to Structural Mechanics Introduction

uk
t,n = uk−1

t,n + δuk
t,n where, uk=0

t,n = ut,n−1 and Pint,k=0
t,n = Pint

t,n−1 and subscript n
refers to the load increment, and subscript k to the iteration number within a load
increment.

Assume equilibrium to have been reached at increment n, we then apply an
increment of external force �Pext , and we seek to determine the corresponding
incremental displacement �un+1.

The internal forces and corresponding displacements will then be in (near)
equilibrium.

We distinguish between load increment, and iterations within an increment to
reach equilibrium.

At each iteration, we determine the residual R
(n+1)
i which corresponds to

Pext −Pint , and seek to minimize this residual. At each iteration, we update (in
the Newton method) the tangent stiffness matrix which corresponds to the
jacobian.

At the heart of all of them, is the determination of the internal nodal force vector
Pint,k

t,n , and the tangent stiffness matrix Kk−1
tt,n .
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Relationship to Structural Mechanics Newton-Raphson iterative method

Nodal displacement tu

Nodal force tP

0
,

k
tt n
K 1

,
k
tt n
K 2

,
k
tt n
K

, 1t n


u ?
,t nu

 
, 1
ext
t n


P

 
,
ext
t n

P

1
,

k
t n u 2

,
k
t n u 3

,
k
t n u

, 0
,
R k
t n

P

, 1
,
R k
t n

P
, 2

,
R k
t n

P

Need to solve f(u∗) = Pext
t,n(u

∗)− Pint
t,n(u

∗) = 0
and f(·) is the function of internal state value (·). In the
preceding equation it is often, but not exclusively, the
vector of nodal displacement u.

Assuming that uk−1
t,n is known, then a Taylor series

expansion gives f(u∗) = f(uk−1
t,n ) +

∂f
∂u
|
u

k−1
t,n
·(u∗ − uk−1

t,n ) + High-order terms

Substituting we obtain
∂Pint

t
∂u
|
u

k−1
t,n
·(u∗ − uk−1

t,n ) + High-order terms =

Pext
t,n − Pint,k−1

t,n = PR,k
t,n where we assume that the

external nodal forces are displacement-independent.

Since an incremental analysis is driven by external force
steps (or time steps �t), the initial conditions are given
by Kk=0

tt,n = Ktt,n−1, uk=0
t,n = ut,n−1,

Pint,k=0
t,n = Pint

t,n−1. Again, the iterations continue
until an appropriate convergence criteria is satisfied.

A characteristic of this iterative method is that an
updated tangent stiffness matrix must be determined at
each iteration, as such this method is often referred to
as the full Newton-Raphson iterative method.
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Relationship to Structural Mechanics Initial stiffness iterative method

Nodal displacement tu

Nodal force tP
ttK

, 1t n−u ,t nu

, 1
ext

t n−P

,
ext
t nP

1
,

k
t nδ =u

2
,

k
t nδ =u

, 0
,
R k

t n
=P

, 1
,
R k

t n
=P

, 2
,
R k

t n
=P

In the Newton-Raphson iterative method
most of the computational effort is
associated with the factorization of the
tangent stiffness matrix. For large systems,
it is often more convenient to modify the
approach by reducing the number of such
factorizations albeit at the cost of increased
number of iterations to reach proper
convergence.

Initial stiffness algorithm

δu
k
t,n = [Ktt ]

−1 · PR,k
t,n

with the initial conditions defined by

u
k=0
t,n = ut,n−1

P
int,k=0
t,n = P

int
t,n−1

In this method, only the initial Kk=0
tt,n=0

needs to be factorized, thus avoiding the
expense of recalculating and factorizing
many times the tangent stiffness matrix.
This initial stiffness iterative method
corresponds to a linearization of the
response about the initial configuration of
the finite element system and will converge
very slowly and may even diverge.
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Relationship to Structural Mechanics Modified Newton-Raphson

Nodal displacement tu

Nodal force tP

, 2tt n−K

, 1t n−u ,t nu

, 1
ext

t n−P

,
ext
t nP

1
,

k
t nδ =u

2
,

k
t nδ =u

, 0
,
R k

t n
=P

, 1
,
R k

t n
=P

, 2
,
R k

t n
=P

, 1tt n−K

Modified Newton-Raphson iterative method
is an approach somewhat in between
Newton-Raphson iterative method and the
initial stiffness iterative method.

δu
k
t,n = [Ktt,n−1]

−1 · PR,k
t,n

with the initial conditions

u
k=0
t,n = ut,n−1

P
int,k=0
t,n = P

int
t,n−1

The modified Newton-Raphson iterative
method involves fewer stiffness
decompositions than the Newton-Raphson
iterative method. The choice of external
force steps or time steps when the stiffness
matrix should be updated depends on the
degree of nonlinearity in the system
response; i.e. the more nonlinear the
response, the more often the updating
should be performed.
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Relationship to Structural Mechanics Secant Newton Method

Force

un un+1

Fn

Fn+1

Δun

Displacement

Δ
F
ex
t

n+1

0

T
K

2

1nR +

3

1nR +

we do not explicitly invert
the Jacobian (or need to
invert KT ), but rather
compute KT through finite
difference.
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Relationship to Structural Mechanics Arc-Length Method

u

µ
∆l

∆l

∆l

u

µ

u

µ

Load Control Displacement Control Arc-Length Control

Displacement control should be used when softening is present; arc length
should be used if snap-back is anticipated.

Arch-length method hinges on our ability to define an arc length in terms of both
displacement and force, and then seek a multiplier.
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Relationship to Structural Mechanics Convergence criteria

An appropriate termination criteria of the iteration should be adopted for any incremental
solution strategy based on iterative methods. At the end of each iteration, the solution
obtained should be checked to see whether it has converged within defined tolerances or
whether the iteration may be diverging.

If the convergence tolerances are too loose, inaccurate results are obtained, and if the
tolerances are too tight, much computational effort is spent to obtain needless accuracy.

Some commonly used convergence criteria include:

Displacement criteria ‖δuk
n‖< εD where εD is a displacement convergence tolerance and ‖·‖ is

the Euclidian norm defined as the square root of the sum of the vector
components squared.

Force criteria PR,k
t,n and ‖PR,k

t,n ‖< εF where εF is a force convergence tolerance.

Energy criteria A difficulty with the force criterion is that the displacement solution does not
introduce the termination criterion. As an illustration, consider an elasto-plastic
truss with a very small strain-hardening modulus entering the plastic region. In
this case, the residual force vector may be very small while the displacements
may still be much in error. Hence, the convergence criteria may have to be
used with very small values of εD and εF . Also, the expressions must be
modified appropriately when quantities of different units are measured. In order
to provide some indication of when both the displacements and the forces are
near their equilibrium values, the energy criteria can be used∣∣∣ 1

2 ·P
R,k
t,n · δu

k
n

∣∣∣ < εE
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Design Codes: US

Congress allocated funding to the National Earthquake Hazard Reduction Program
(NEHRP) which is administered by NIST, NEHRP in turns funds FEMA, NSF, USGS
NIST for earthquake related research. Transformation of research into code practice is
performed by the Applied Technology Council (ATC).

Allowable Stress Design Oldest, simplest approach to introduce concept of safety.

Load Resistance Factor Design introduced in ACI code in 1977, AISC in 1986. Key
reference Ellingwood.

Performance Based Engineering 1 Most recent code, FEMA 750-p developed by the
Building Seismic Safety Council for FEMA. It builds on previous
pre-Standards.

New Design FEMA 310 (ASCE 1998) ASCE/SEI 31 (2003)
Existing Buildings FEMA 356 (ASCE 2000) ASCE/SEI 41 (2006)

Performance based Engineering 2 Based on ATC 58, FEMA published Next
Generation Performance Based Seismic Design Guidelines;program
Plan for New and Existing Buildings, itself based on FEMA 283 and
FEMA 349.
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Design Codes: US

Minimum Design 
Loads for Buildings 
and Other Structures

This document uses both the 
International System of Units (SI) 
and customary units

A S C E  S T A N D A R D
ASCE/SEI

7–10

NEHRP Recommended 
Seismic Provisions
for New Buildings and Other Structures

FEMA P-750 / 2009 Edition 

FEMA

Next-Generation 
Performance-Based 
Seismic Design Guidelines 
Program Plan for New and Existing Buildings

FEMA-445 / August 2006

FEMA nehrp
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Design Codes: US Key Concepts

Load and resistance are not deterministic quantities (as in the allowable stress
design, ASD), but are random variables with their own probability distribution
functions.

There is a probability of failure.

Load will be multiplied by a factor α, (ASCE-7-10) and we shall consider the
ultimate resistance (reduced by �)

We will assign α and � such that the probability of failure does not exceed a
certain value.

LRFD is generally expressed as

�Cn ≥ �αiDi (1)

where Cn and D are the nominal capacity and demands (or nominal resistance
and load).

Limit state is generally determined from Plastic capacity without a nonlinear
analysis.
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Design Codes: US Key Concepts

LRFD seeks to have a Reliability Index above ∼ 3.5. The Reliability Index is a
“universal” indicator on the adequacy of a structure, and can be used as a metric
to 1) assess the health of a structure, and 2) compare different structures
targeted for possible remediation.
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Design Codes: US Reliability Index

Capacity C and demand D are both random variables.
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Probability of failure=0.0585 or 1/17
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Design Codes: US Reliability Index

ln (C/D)

βσln (C/D)

μ

P
D

F

0.

Failure

We define the reliability index as the distance between mean
performance value and the limit state normalized with respect to the
standard deviation

X = ln C
D Failure would occur for negative values of X
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Design Codes: US Reliability Index

Reliability Index β =
ln
µC
µD√

σ2
C+σ

2
D

β is selected to reflect failure consequences

Type of Load/Member β

AISC
DL + LL; Members 3.0
DL + LL; Connections 4.5
DL + LL + WL; Members 3.5
DL + LL +EL; Members 1.75

ACI
Ductile Failure 3-3.5
Sudden Failures 3.5-4
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Design Codes: US Reliability Index

The probability of failure Pf is equal to the ratio of the shaded area to the total area
under the curve and is given by �(−β) where � is the standard normal cumulative
probability function

�(x) =
1√
2π

∫ x

−∞
e−t2/2dt =

1
2

[
1 + erf

(
x√
2

)]
(2)

Target values for β
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Design Codes: US Reliability Index
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Design Codes: US Limitations of LRFD

1 Inconsistent: Linear analysis, but plastic design.

2 Ignores load redistribution near failure (though ACI implicitly accounts for
some of it through reduction of negative moments).

3 Addresses only one level of hazard: failure of one structural component
(and not the entire system), but how about quantification of damage due
to more frequent events?
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Design Codes: US PBEE

PBE seeks first to identify discrete performance levels for the major structural
components which significantly affect the building function and safety.

ASCE 41 (ASCE 2007) (and other codes) generally provide guidance three
performance levels

Immediate Occupancy where an essentially elastic behavior is sought by
limiting structural damage (e.g., yielding of steel, significant cracking of
concrete, and nonstructural damage.)
Life Safety Limit damage of structural and nonstructural components so as
to minimize the risk of injury or casualties and to keep essential circulation
routes accessible.
Collapse Prevention Ensure a small risk of partial or complete building
collapse by limiting structural deformations and forces to the onset of
significant strength and stiffness degradation.

The engineer decides which performance levels

Performance Based Engineering 1 Most recent code, FEMA 750-p developed by
the Building Seismic Safety Council for FEMA. It builds on previous
pre-Standards.
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Design Codes: US PBEE

New Design FEMA 310 (ASCE 1998) ASCE/SEI 31 (2003)
Existing Buildings FEMA 356 (ASCE 2000) ASCE/SEI 41 (2006)

NEHRP Recommended 
Seismic Provisions
for New Buildings and Other Structures

FEMA P-750 / 2009 Edition 

FEMA
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Design Codes: US PBEE

Figure C11.5-1  Expected perform ance as related to occupancy category (OC)
and level of ground m otion.

PERFORM ANCE LEVEL

Immediate
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Prevention

Frequent

M CE

Design

GROUND
M OTION

Operational Life Safety

OC IV: Essential         
OC III: High     
                 Occupancy

             OCII:  Ordinary
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Design Codes: US PBE 1

First-generation procedures introduced the concept of performance in
terms of discretely defined performance levels with names intended to
connote the expected level of damage: Collapse, Collapse Prevention,
Life Safety, Immediate Occupancy, and Operational Performance.

They also introduced the concept of performance related to damage of
both structural and nonstructural components. Performance Objectives
were developed by linking one of these performance levels to a specific
level of earthquake hazard.

It is the state of the practice amongst high end companies. It is well
established

However:

Limit states are component-based not truly system-wide, (what if one
component fails, does it trigger progressive collapse?)
treats only MCE event (2%/50years).
Limited treatment of uncertainty and probability.
Limited information for designing above code.
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Design Codes: US PBE 2

Create new performance measures (e.g. repair costs, casualties, and
time of occupancy interruption) that better relate to the decision-making
needs of stakeholders.

Create procedures for estimating probable repair costs, casualties, and
time of occupancy interruption, for both new and existing buildings.

Hazard
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Hazard model

λ[IM|D]

Site hazard
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Structural
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Structural model
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Structural 
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λ[EDP]

Damage

analysis
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Damage 
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Loss model
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Loss response
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D

Facility 
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Decision 

making

D is OK?
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Capacity and Demand

We will need to identify specific engineering demand parameters (EDP) and
appropriate acceptance criteria to quantitatively evaluate the performance levels.

The demand parameters typically include peak (shear) forces and deformations,
inter-story drifts, and floor accelerations in structural and nonstructural
components.

Performance is checked by comparing computed demands with acceptance
criteria (capacity) for the desired performance level.

Depending on the structural configuration, the results of nonlinear analyses can
be sensitive to assumed input parameters and the types of models used.

One must have clear expectations about those portions of the structure that are
expected to undergo inelastic deformations and then use the analyses to

1 Confirm the locations of inelastic deformations
2 Characterize

Deformation demands of yielding elements
Force demands in non-yielding elements.

Capacity design concepts can provide reliable performance.
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Capacity Design

Capacity Design is indeed the approach where the engineer decides a priori
which elements will yield (and thus need to be ductile) and those which will not
yield (and will need to be stiff and with sufficient strength).

Advantages

Safeguard against brittle failure of elements which can not be designed as
ductile.
Limiting the location of the structure where expensive ductile detailing is
required (they act as fuses).
Reliable energy dissipation by enforcing deformation modes where
inelastic deformations are routed to ductile elements.

Very similar to the structural design of a car.

Example: strong column/weak beam.
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Seismic Hazard Analysis

In the context of PBEE, one must first conduct a seismic hazard analysis (SHA) which
includes location identification (with respect to a fault), geotechnical conditions (shear
wave velocity), magnitude of previously recorded earthquakes, size of the rupture area,
type of fault, crustal rock damping characteristics, rock properties.

From the corresponding analysis one can determine annual rate of exceedance λ vs
intensity measure (IM) a measure of the ground motion characteristic, typically the (peak
or spectral) ground acceleration.
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Engineering Seismic Risk Analysis

The annual rate of exceedance of the ground motion amplitude, λ, (inverse of
return period TR) for Design Base Level (DBL) and Maximum Design Level
(MDL) are determined from a Poisson probability model

λ = −Ln (1− PE )

t

where PE is the probability of occurrence of at least one event (i.e. an
earthquake) during the life time t .

t is usually taken as 50 years for buildings, and 100 years for dams.

PE for ground motion is usually assumed to be in the ranges [20% 64%] for
DBL and [10% 20%] for MDL.

Assuming a lifetime of 100 years, the corresponding Tr = 1/λ is determined for
450 and 1,000 years for DBL and MDL, respectively from.
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Engineering Seismic Risk Analysis
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PSHA=SHA+ESRA

Probability Seismic Hazard Analysis or PSHA=SHA+ESRA.

Engineering Seismic Risk Analysis yielded annual rate of exceedance λ in terms of
probability of occurrence of at least one event and life time t .

Seismic hazard analysis yielded annual rate of exceedance λ vs intensity measure.

Select λ from the first curve, and PGA from the second.

with the PGA known, one selects (or generate) a set of n ground motion acceleration time
histories to perform multiple analyses.

From the corresponding analysis one plots
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PSHA=SHA+ESRA

Intensity Measure (IM) a measure of the ground motion characteristic, typically the (peak
or spectral) ground acceleration.

Engineering demand parameter (EDP) which corresponds to any outcome of the analysis
of relevance to the safety assessment, such as base shear, drift.

We repeat this process m times for different intensity levels.

There are four types of analysis that can be performed.

Method S/D Analysis m n
Push Over Analysis POA Static na na
Multi Strip Analysis MSA Dynamic 3 n
Incremental Dynamic Analysis IDA Dynamic Variable n
Endurance Time Analysis ETA Dynamic 1 n

where m be the number of ground motion intensity levels (or strips), and n the number of
ground motions for a given m.

In all cases we plot IM vs EDP (and not the other way around!)
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Pushover Analysis
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Applies incrementally load or displacement

Extensively used in building to capture failure mode in lieu of the more expensive
transient nonlinear analysis.

Assumed to be capable of mobilizing principal nonlinear modes of structural
behavior up to collapse.
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Multiple-Strip Analysis

. . .

. . .

. . .

3 in
EDP

IM

m
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Hinges on a deterministic number of ground motion intensity levels m (or strips)

Typically m = 3 corresponding to the exceedance probabilities of 10% in 50-year, 5% in
50-year, and 2% in 50-year.

To each strip correspond n ground motions.

Two possibilities:

Selection of n different ground motions scaled at m different levels.
Selection of ni ground motions for each of the intensity levels with no scaling.

Following the analysis, and for each m the usual IM versus EDP results are first plotted.

Then for each IM histograms are generated and the most suitable probability distribution
function (normal or log-normal) is selected.
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Incremental Dynamic Analysis
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mi intensity level

im nFailure

Considers n ground motions which will all be incrementally scaled m times until failure.

a priori m is unknown and each ground motion n will result in a corresponding failure at a
different intensity level mi .

Following the analysis, the IDA curve connects the resulting m demand parameters for
each of the n ground motions.

Each one of those curve will be asymptotic to the corresponding failure.

Capture of the overall response by a single measurable quantity at a given EDP (EDP =
edpi ) can be determined through the corresponding probability distribution function.

Similarly probability distribution function for a given IM (IM = imi ) can also be determined.

Those curves can be used for the determination of the fragility plots, and probability of
failure.
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Endurance Time Analysis
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The preceding two methods started with actual recorded ground motion and required up to
m × n analysis, computationally expensive and may force the analysis to make greatly
simplified assumption in their model. Such assumptions may lead to erroneous
conclusions.

ETA method starts with a synthetic ground motion and modify it to be characterized with an
increasing amplitude.

Substitute to the m intensity levels previously determined and n endurance time
acceleration function (ETAF) are used.

Outcome of the analysis, is the average of the n analyses in terms of IM versus EDP. The
resulting curve is analogous to the one of the POA or 50% fractile of IDA.
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Summary
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US Codes

Congress allocated funding to the National Earthquake Hazard Reduction Program
(NEHRP) which is administered by NIST, NEHRP in turns funds FEMA, NSF, USGS
NIST for earthquake related research. Transformation of research into code practice is
performed by the Applied Technology Council (ATC).

Allowable Stress Design Oldest, simplest approach to introduce concept of safety.

Load Resistance Factor Design introduced in ACI code in 1977, AISC in 1986. Key
reference Ellingwood.

Performance Based Engineering 1 (this is confusing)

FEMA P-58 developed by the Applied Technology Council
(ATC).
It builds on previous pre-Standards: FEMA 310 (ASCE
1998) is the pre-code to ASCE/SEI 31 (2003) and they are
both for existing buildings.
ASCE 31 controls the evaluation of existing buildings,
ASCE 41 covers procedures for retrofit of existing
buildings. However, they have both been merged into one
document now: ASCE 41-17
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US Codes

Chapter 16 of ASCE 7-16 is the governance for PBEE of
new design.

Performance based Engineering 2 Based on ATC 58, FEMA published Next
Generation Performance Based Seismic Design Guidelines;program
Plan for New and Existing Buildings, itself based on FEMA 283 and
FEMA 349.

May need correction
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US Codes

Minimum Design 
Loads for Buildings 
and Other Structures

This document uses both the 
International System of Units (SI) 
and customary units

A S C E  S T A N D A R D
ASCE/SEI

7–10

Seismic Performance 
Assessment of Buildings 
Volume 1 – Methodology 

FEMA P-58-1 / September 2012 

FEMA

 
  

   

    

NEHRP Recommended 
Seismic Provisions
for New Buildings and Other Structures

FEMA P-750 / 2009 Edition 

FEMA

Next-Generation 
Performance-Based 
Seismic Design Guidelines 
Program Plan for New and Existing Buildings

FEMA-445 / August 2006

FEMA nehrp
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LRFD Key Concepts

Load and resistance are not deterministic quantities (as in the allowable stress
design, ASD), but are random variables with their own probability distribution
functions.

There is a probability of failure.

Load will be multiplied by a factor α, (ASCE-7-10) and we shall consider the
ultimate resistance (reduced by �)

We will assign α and � such that the probability of failure does not exceed a
certain value.

LRFD is generally expressed as

�Cn ≥ �αiDi (1)

where Cn and D are the nominal capacity and demands (or nominal resistance
and load).

Limit state is generally determined from Plastic capacity without a nonlinear
analysis.
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LRFD Key Concepts

LRFD seeks to have a Reliability Index such that β >∼ 3.5. The Reliability Index
is a “universal” indicator on the adequacy of a structure, and can be used as a
metric to 1) assess the health of a structure, and 2) compare different structures
targeted for possible remediation.
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LRFD Reliability Index

Capacity C and demand D are both random variables (usually assumed to be
normal, though a log-normal may be prefereable in some instances).
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Demand;  = 150;  = 30

Probability of failure=0.0585 or 1/17

Two approaches to determine β depending on how is the safety margin
computed.
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LRFD Reliability Index

M = C − D

µM = µC − µD
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LRFD Reliability Index
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LRFD Reliability Index

β is selected to reflect failure consequences

Type of Load/Member β

AISC

DL + LL; Members 3.0
DL + LL; Connections 4.5
DL + LL + WL; Members 3.5
DL + LL +EL; Members 1.75

ACI

Ductile Failure 3-3.5
Brittle Failures 3.5-4
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LRFD Reliability Index

The probability of failure Pf is equal to the ratio of the shaded area to the total area
under the curve and is given by �(−β) where � is the standard normal cumulative
probability function

�(x) =
1√
2π

∫ x

−∞
e−t2/2dt =

1
2

[
1 + erf

(
x√
2

)]
(2)

Target values for β
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LRFD Reliability Index
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LRFD Limitations of LRFD

1 Inconsistent: Linear analysis, but plastic design.

2 Ignores load redistribution near failure (though ACI implicitly accounts for
some of it through reduction of negative moments).

3 Addresses only one level of hazard: failure of one structural component
(and not the entire system), but how about quantification of damage due
to more frequent events?
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LRFD
Performance Base Earthquake

Engineering

Performance-based seismic design explicitly evaluates how a building is likely to
perform, given the potential hazard it is likely to experience, considering
uncertainties inherent in the quantification of potential hazard and uncertainties
in assessment of the actual building response.

Contrarily to LRFD, it does not limit itself to one level of hazard, but multiple.

Performance is measured in terms of the
probability of incurring casualties, repair and
replacement costs, repair time, and unsafe
placarding.

Performance can be assessed for a particular
earthquake scenario or intensity, or considering all
earthquakes that could occur, and the likelihood of
each, over a specified period of time.

Performance expressed in terms of a series of
discrete performance levels identified as
Operational, Immediate Occupancy, Life Safety,
and Collapse Prevention.

 

1-2 1: Introduction FEMA P-58-1 

Guidelines for the Seismic Rehabilitation of Buildings (FEMA, 1997), which 
addressed seismic strengthening of existing buildings, and outlined initial 
concepts of performance levels related to damageability and varying levels of 
seismic hazard.  Its successor documents, FEMA 356, Prestandard and 
Commentary for the Seismic Rehabilitation of Buildings (FEMA, 2000b), and 
the American Society of Civil Engineers (ASCE) Standard ASCE/SEI 41-06, 
Seismic Rehabilitation of Existing Buildings (ASCE, 2007) define current 
practice for performance-based seismic design in the United States. 

In present-generation procedures, performance is expressed in terms of a 
series of discrete performance levels identified as Operational, Immediate 
Occupancy, Life Safety, and Collapse Prevention.  These performance levels 
are applied to both structural and nonstructural components, and are assessed 
at a specified seismic hazard level.  Although they established a vocabulary 
and provided a means by which engineers could quantify and communicate 
seismic performance to clients and other stakeholders, implementation of 
present-generation procedures in practice uncovered certain limitations and 
identified enhancements that were needed. 

1.2 The Need for Next-Generation Performance-Based 
Seismic Design Procedures 

Limitations in present-generation procedures included: (1) questions 
regarding the accuracy and reliability of available analytical procedures in 
predicting actual building response; (2) questions regarding the level of 
conservatism underlying the acceptance criteria; (3) the inability to reliably 
and economically apply performance-based procedures to the design of new 
buildings; and (4) the need for alternative ways of communicating 
performance to stakeholders that is more meaningful and useful for decision-
making purposes. 

In order to fulfill the promise of performance-based engineering, FEMA 
began planning the development of next-generation procedures to address the 
above limitations.  The FEMA 349 Action Plan for Performance Based 
Seismic Design was prepared by the Earthquake Engineering Research 
Institute for FEMA in 2000.  Using this plan as a basis, FEMA initiated the 
first in a series of projects with the Applied Technology Council in 2001, 
which would become known as the ATC-58/ATC-58-1 Projects.  

The first step in this work was to update the FEMA 349 Action Plan, 
resulting in the publication of FEMA 445, Next-Generation Performance-
Based Seismic Design Guidelines, Program Plan for New and Existing 
Buildings (FEMA, 2006).  As outlined in FEMA 445, the objectives of the 
ATC-58/ATC-58-1 Projects were to:  

 
Present-generation discrete 
performance levels. 
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LRFD
Performance Base Earthquake

Engineering

Introduced the concept of performance related to damage of both structural and
nonstructural components. Performance Objectives were developed by linking
one of these performance levels to a specific level of earthquake hazard.

It is the state of the practice among high end companies. It is well established

However:

Limit states are component-based not truly system-wide, (what if one
component fails, does it trigger progressive collapse?)
treats only MCE event (2%/50years).
Limited treatment of uncertainty and probability.
Limited information for designing above code.
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LRFD PBE 2

New performance measures (e.g. repair costs, casualties, and time of
occupancy interruption).

Create procedures for estimating probable repair costs, casualties, and time of
occupancy interruption, for both new and existing buildings.

Site hazard
g[IM]

Hazard model
g[IM|D]

Hazard analysis

IM: Intensity 
Measure

Structural 
response
g[EDP]

Structural model
g[EDP|IM]

Srtuctural analysis

EDP: Engineering 
Demand Parameter

Damage 
response
g[DM]

Fragility model
p[DM|EDP]

Damage analysis

DM: Damage 
Measure

Performance
g[DV]

Loss model
p[DV|DM]

Loss analysis

DV: Decision 
Variable

D D OK?

Facility definition
D: Location and 

decision

Decision‐making

Covered
Not

Covered
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LRFD Summary

LRFDASD PBEESteel

Concrete
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Analysis Linear Non Linear
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Europe

Eurocodes are a series of 10 European Standards,which will supersede national
codes and should be enforced throughout Europe.

EN 1990 Eurocode: Basis of structural design
EN 1991 Eurocode 1: Actions on structures
EN 1992 Eurocode 2: Design of concrete structures
EN 1993 Eurocode 3: Design of steel structures
EN 1994 Eurocode 4: Design of composite steel and concrete structures
EN 1995 Eurocode 5: Design of timber structures
EN 1996 Eurocode 6: Design of masonry structures
EN 1997 Eurocode 7: Geotechnical design
EN 1998 Eurocode 8: Design of structures for earthquake resistance
EN 1999 Eurocode 9: Design of aluminium structures

Each one of them is divided in package, as for Eurocode 8
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Europe

EN 1998-1:2004 Part 1: General rules, seismic actions and rules for buildings
EN 1998-2:2005 Part 2: Bridges
EN 1998-3:2005 Part 3: Assessment and retrofitting of buildings
EN 1998-4:2006 Part 4: Silos, tanks and pipelines
EN 1998-5:2004 Part 5: Foundations, retaining structures &geotechnical aspects
EN 1998-6:2005 Part 6: Towers, masts and chimneys
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Analysis Support

EC8 and PBE require the completion of

Nonlinear Static Procedure or Nonlinear Pushover (NPO)
Nonlinear Dynamic Procedure or Nonlinear Time History (NTH)
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Course Objectives

Emphasis will be on

Basic fundamental understanding of the analysis techniques as opposed to
how to use them in the context of meeting code provisions.
How to perform NPO and NTH rather than going through the details of EC8
or PBEE code requirements (those can be easily studied individually).
1D frame elements as opposed to continuum elements
Nonlinear static and dynamic analysis.

Methodology presented constitutes the State of the Art as practiced only by a
few “high end consulting firms”.

Additional lectures

Performance Based Engineering
Examples of nonlinear analysis of structures (dams, nuclear reactors)
using continuum elements.
Guest Lecture(s)

Computer skills: Matlab

Grading: 1-2 exams(?), homeworks, term project/report.
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Loads and Response

Dead Load

Live Load

Wind or EQ Load

Reserve load capacity

Elastic Behavior Plastic Behavior
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Levels of Structural Analysis

Displacement

L
oa

d
3. Elastic Critical Load

5*  Elastic Stability

4. Inelastic Critical Load

7 Plastic Limit Load

6* Inelastic Stability

1. First Order Elastic

B
if
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6. Second Order Inelastic

2. First Order Inelastic L
im

it
s

Constitutive Equations
Undeformed Shape Deformed Shape

Elastic Inelastic Elastic Inelastic
(Linear) (Non Linear) (Linear) (Non Linear)

Kinematic Eq.

1st Order
1 (C:L-K:L) 2 (C:NL-K:L)

Critical Load
(Linear) 3 Elastic 4 Inelastic

2nd Order Deformed Shape
(non Linear) 5 (C:L-K:NL) 6 (C:NL-K:NL) - -
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Levels of Structural Analysis

1 2 3 4 5 6 7
CM L NL L NL L NL NL

Analysis Lin. Inc Bif. Bif. Inc Inc Bif
FBD US DS DS DS DS DS DS

L: Linear elastic; NL: Nonlinear;
Lin: Linear; Incr: Nonlinear incremental analysis; Bif: Biffurcation (Eigenvalue) analysis;

US: Undeformed state (Lagranfian); DS: Deformed state (Eulerian);

First Order Elastic excludes any nonlinearities. If the equilibrium equation is written in
terms of
1 (C:L-K:L); Undeformed Shape This is the most common case,

linear elastic. It is usually acceptable for service loads.
For time dependent cases, we must consider
visco-elastic models.

3 Bifurcation; Deformed shape (or ‘zero order”) an eigenvalue
analysis which would lead to the Elastic Critical Load.
Note that we do not have a corresponding
load-displacement curve, but rather “buckling modes”.
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Levels of Structural Analysis

First Order Inelastic Accounts for material non-linearity. In such an analysis, the
inelastic region (plastic zone) develops gradually, and it will provide a
good estimate of the elasto-plastic response (note that instability is not
addressed). We consider

Non-linear Elasticity: reversible non-linear stress-strain (upon
unloading, the strain goes back to zero).
Plasticity, non reversible non-linear stress-strain.
Damage

If the equilibrium equation is written in terms of

2 (C:NL-K:L); Undeformed Shape Second most common form of
analysis, typically conducted for ultimate/unusual
loads.
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Levels of Structural Analysis

4 Bifurcation; Deformed shape an eigenvalue analysis which would
lead to the Inelastic Critical Load. Note that we do not
have a corresponding load-displacement curve, but
rather “buckling modes”. This inelastic critical load will
be smaller than the elastic one.
For time dependent cases, we consider visco-plasticity,
or fatigue, or continuous damage models.

Second Order Need to draw FBD in the deformed shape:
5 (C:L-K:NL); Elastic accounts for the effects of finite deformation and

displacements, equilibrium equations are written in
terms of the geometry of the deformed shape
(Eulerian), does not account for material
non-linearities, may be able to detect bifurcation and
or increased stiffness (when a member is subjected to
a tensile axial load). Analysis of cables, nets, catenary
structures.
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Levels of Structural Analysis

6 (C:NL-K:NL); Inelastic equations of equilibrium written in terms of
the geometry of the deformed shape, can account for
both geometric and material nonlinearities. Most
suitable to determine failure or ultimate loads. By far
the most complex form of analysis, used in Metal
Forming simulation, fragmentation of structures
(missile impact).

How does it relate to the stiffness matrix

K =

∫



B
T
DBd


Geometric nonlinearity impacts B

Material nonlinearity impacts D
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Introduction

Motivation I

Ultimately we rely on computer programs to perform structural analysis.

Commercial codes are widely available for linear analysis.

“Modern Non Linear” analysis codes are still in infancy, these include

OpenSEES developed by PEER/NEES, open source, c++, tcl. Very
powerful, yet modification is not simple for most students.
FEADAS, Prof. Filippou/Berkeley, Matlab, closed source code.
Mercury, Prof. Saouma’s group, primarily for hybrid simulation, however
two identical versions are available: Matlab and c++
Matlab is far “friendlier” than c++ for programming.
You will be asked to modify the Matlab version as part of homeworks.
Though you are expected to have had some exposure to Matlab, there are
certain features, widely used in modern codes, that you may not have been
exposed to.

Matlab: Interpreter, slow (even the compiled version), expensive.
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Introduction

Motivation II

Octave is a Matlab-alike free program,

For new programming language: use Python

There are many textbooks, and hundred of on-line tutorials.
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Functions

Functions I

A script is the simplest kind of program file because there is no input or output
arguments. It is an external file that contains a sequence of MATLAB
statements. There are no local variables in a script.

A function which accepts input from and returns output to its caller. Functions
operate on variables within their own workspace. This workspace is separate
from the base workspace; it allows for local variable which do not interfere with
the ones of the calling entity. Ideally, each function is stored in an .m file with the
same name.

1 f u n c t i o n [ out1 , out2 , . . . ] = myfun ( in1 , in2 , . . . )

Listing 1: Function Defintion
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Functions

Functions II

1 f u n c t i o n [ s t r , e le ] = FEAnalysis ( s t r , ele , sec , mat , fos )

Listing 2: Example of Function Definition

1 [ s t r , e le ] = FEAnalysis ( s t r , ele , sec , mat , fos )

Listing 3: Example Invocation of function
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Switch Case

Switch Case

http://blogs.mathworks.com/pick/2008/01/02/matlab-basics-switch-case-vs-if-elseif/

1 swi tch e le type
2 case ’ Simple2DTruss ’
3 [ tmpe le in fo ] = Simple2DTrussInfo ( e l e i n f o ) ;
4 case ’ Simple3DTruss ’
5 [ tmpe le in fo ] = Simple3DTrussInfo ( e l e i n f o ) ;
6 case ’ StiffnessBasedBeam ’
7 [ tmpe le in fo ] = St i f fnessBasedBeamInfo ( e l e i n f o ) ;
8 case ’ StiffnessBased2DBeamColumn ’
9 [ tmpe le in fo ] = StiffnessBased2DBeamColumnInfo ( e l e i n f o ) ;

10 case ’ StiffnessBased3DBeamColumn ’
11 [ tmpe le in fo ] = StiffnessBased3DBeamColumnInfo ( e l e i n f o ) ;
12 case ’ Gr id ’
13 [ tmpe le in fo ] = Gr i d In fo ( e l e i n f o ) ;
14 end
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Data Types

Data Types

Numeric Types: Integer and floating-point data

Characters and Strings: Characters and arrays of characters

Cell Arrays Data of varying types and sizes stored in cells of array.

Structures: Data of varying types and sizes stored in fields of a structure
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Cell Arrays

Cell Arrays

String arrays must have all entries
with the same length.
c=['steel';'concrete'] is not
acceptable (CAT arguments

dimensions are not consistent.)

Cell arrays may contain

Strings of various length
C =

{'Steel';'Concrete';'Structural

Analysis' }
creates a 3-by-1 cell array that
requires no padding because
each row of the array can have
a different length:
C =

'Steel'

'Concrete'

'Structural Analysis'

Data of unlike type

1 elements = { {1 , ’ Simple2DTruss ’ , 1 , 2 , 1 } ;
2 {2 , ’ Simple2DTruss ’ , 2 , 3 , 1 } ;
3 {3 , ’ Simple2DTruss ’ , 1 , 4 , 1 } ;
4 {4 , ’ Simple2DTruss ’ , 2 , 4 , 1 } ;
5 {5 , ’ Simple2DTruss ’ , 3 , 4 , 1 } ;
6 {6 , ’ Simple2DTruss ’ , 4 , 5 , 1} } ;
7 >> elements { 1 }
8 ans =
9 [ 1 ] ’ Simple2DTruss ’ [ 1 ] [ 2 ] [ 1 ]

10 >> elements { 1 } { 2 }
11 ans =
12 Simple2DTruss
13 >> elements { 1 } { 3 }
14 ans =
15 1
16 s ize ( elements )
17 ans =
18 6 1
19 >> elements
20 elements =
21 {1 x5 c e l l }
22 {1 x5 c e l l }
23 {1 x5 c e l l }
24 {1 x5 c e l l }
25 {1 x5 c e l l }
26 {1 x5 c e l l }
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Cell Arrays

Cell Arrays; Example

variable length cell array.

Example of input data for material properties, length of cell array
depends on the constitutive model selected.

1 mate r i a l s = { { 1 , ’ModKP ’ , 3 .57 , 0 .0026 , 1 .19 , 0 .0078 ,0 .3 ,0 .448121077 ,549 .2307692 ,0 } ;
2 {2 , ’ModKP ’ , 3 .9 , 0 .00284 , 3 .51 , 0 .00852 ,0 .3 ,0 .46837485 ,549 .4505495 ,0 } ;
3 {3 , ’ModGMP ’ ,27300 ,80 ,0 .01 ,15 ,0 .925 ,0 .15 ,0 ,0 ,55 ,0 ,55} ; } ;
4 >> mate r i a l s
5 ma te r i a l s =
6 {1 x10 c e l l }
7 {1 x10 c e l l }
8 {1 x13 c e l l }
9 >> mate r i a l s { 2 } { 2 }

10 ans =
11 ModKP
12 >> { ma te r i a l s { 2 } { 9 }
13 ans =
14 549.4505

materials = mattagi , mattypei , modulusi , densityi , { MatPropi } ; where:

- mattagi : Consecutive integer number identifying material at i th material

- mattypei : Material type at i th material

- modulusi : Material modulus at i th material

- densityi : Density at i th material

- MatPropi : Material properties at i th material
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Structures

Structures I

Structures are like cell arrays, in that they allow one to group collections of
dissimilar data into a single variable. However, instead of addressing elements
by number, structure elements are addressed by names called fields.

Cell arrays use curly braces to access data, structures use dot notation.

Structures are multidimensional arrays with elements accessed by textual field
designators. For example, S.name = 'Barack Obama'; S.score = 83;

S.grade = 'B+' as opposed to a cell array which would look like S = {'Barack

Obama', '83', 'B+'} and S(2)='83'.

In this example we have created a scalar structure with three fields:

S =

name: 'Barack Obama'

score: 83

grade: 'B+'
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Structures

Structures II

Like everything else in the MATLAB environment, structures are arrays, so you
can insert additional elements. In this case, each element of the array is a
structure with several fields. The fields can be added one at a time,
S(2).name = 'Ronald Reagan'; S(2).score = 91; S(2).grade = 'A-';

or an entire element can be added with a single statement:
S(3) = struct('name','George Washington','score',70,'grade','C')

Now the structure is large enough that only a summary is printed:

S =

1x3 struct array with fields:

name

score

grade
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Structures

Structures III

There are several ways to reassemble the various fields into other MATLAB
arrays. They are mostly based on the notation of a comma-separated list. If you
type S.score it is the same as typing S(1).score, S(2).score, S(3).score

which is a comma-separated list.
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Structures

Mercury Example I

1 f u n c t i o n [ s t r , e le ] = ElementInfo ( s t r , elements )
2 %
3 s t r . nele = s ize ( elements , 1 ) ;
4 f o r i e l e = 1 : s t r . nele
5 e le tag = elements { i e l e } { 1 } ;
6 e le type = elements { i e l e } { 2 } ;
7 e l e i n f o = elements { i e l e } ;
8 e le ( e le tag ) . type = e le type ;
9 swi tch e le type

10 case ’ Simple2DTruss ’
11 [ tmpe le in fo ] = Simple2DTrussInfo ( e l e i n f o ) ;
12 case ’ StiffnessBased2DBeamColumn ’
13 [ tmpe le in fo ] = StiffnessBased2DBeamColumnInfo ( e l e i n f o ) ;
14 . . .
15 end
16 ele ( e le tag ) . ( e le type ) = tmpe le in fo ;
17 end

1 % Make LM mat r i x
2 f o r i e l e = 1 : s t r . nele
3 e le type = ele ( i e l e ) . type ;
4 s t r .LM( i e l e , 1 ) = s t r . ID ( e le ( i e l e ) . ( e le type ) . snode , 1 ) ;
5 . . .
6 s t r . e lecoord ( i e l e , 1 ) = s t r . nodcoord ( e le ( i e l e ) . ( e le type ) . snode , 1 ) ;
7 . . .
8 end
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Structures

Mercury Example II

1 f o r i e l e = 1 : s t r . nele
2 e le type = ele ( i e l e ) . type ;
3 swi tch e le type
4 case ’ ZeroLength2D ’
5 % Do noth ing
6 case ’ ZeroLength2DSection ’
7 % Do noth ing
8 otherwise
9 xs = s t r . e lecoord ( i e l e , 1 ) ;

10 ys = s t r . e lecoord ( i e l e , 2 ) ;
11 xe = s t r . e lecoord ( i e l e , 3 ) ;
12 ye = s t r . e lecoord ( i e l e , 4 ) ;
13 dx = xe xs ;
14 dy = ye ys ;
15 e le ( i e l e ) . ( e le type ) . L = s q r t ( dx∗dx + dy∗dy ) ;
16 e le ( i e l e ) . ( e le type ) . Cx = dx / e le ( i e l e ) . ( e le type ) . L ;
17 e le ( i e l e ) . ( e le type ) . Cy = dy / e le ( i e l e ) . ( e le type ) . L ;
18 end
19 end

Victor E. Saouma; Univ. of Colorado Matlab; Advanced Features for NSA 15/20



Mercury Structure Data

Structure Data

Data
Structure

sec mat

A

Ix

mattag

Iy

type

Iz

tag

E

G

type

tag

str

elecoord

nodcoord

LM

originalID

ID

Static_Pt

Static_edf2n
ef

Static_uu

Static_Pt

ele

tag

eletype snode

enode

Cy

Cz

Cx

L

Gamma

ndim

Funit

ndofpn

analysis

Lunit

str.ID(ele(iele).(eletype).enode,6) corresponds to xxx;

str.elecoord(iele,4) = str.nodcoord(ele(iele).(eletype).enode,2)

corresponds to xxx;;

str.LM(iele, 8) = str.ID(ele(iele).(eletype).enode,2) corresponds to
xxx;
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Mercury Sample Input File

Input File Example I

1 AnalysisType = 2;
2 %
3 % Preface
4 Un i t = { ’kN ’ , ’mm’ } ;
5 StrMode = {2 , 2 } ;
6 %
7 % Cont ro l b lock
8 I t e r a t i o n = { ’ s t a t i c ’ , { { ’ L inear ’ } } ;
9 ’ t r a n s i e n t ’ , { { ’ L inear ’ } } ;

10 } ;
11 i f ( AnalysisType == 2)
12 I n t e g r a t i o n = { ’Newmark ’ , 0 , 1 /4 , 1 /2 , 0 , 0 } ;
13 eigens = {0 .02 , 0 . 0 2 } ;
14 end
15 %
16 % Geometry b lock
17 nodcoord = {1 , 0 , 0 ;
18 2 , 1500 , 0 ;
19 3 , 3000 , 0 ;
20 4 , 1500 , 2000;
21 5 , 3000 , 2000} ;
22 c o n s t r a i n t = {3 , 1 , 1 ;
23 5 , 1 , 1 } ;
24 %
25 % Element b lock
26 elements = { {1 , ’ Simple2DTruss ’ , 1 , 2 , 1 } ;
27 {2 , ’ Simple2DTruss ’ , 2 , 3 , 1 } ;
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Mercury Sample Input File

Input File Example II

28 {3 , ’ Simple2DTruss ’ , 1 , 4 , 1 } ;
29 {4 , ’ Simple2DTruss ’ , 2 , 4 , 1 } ;
30 {5 , ’ Simple2DTruss ’ , 3 , 4 , 1 } ;
31 {6 , ’ Simple2DTruss ’ , 4 , 5 , 1} } ;
32 %
33 % Sect ion block
34 sec t ions = { 1 , ’ General ’ , {1 , 400 , 0 , 0 , 0} } ;
35 %
36 % Mate r i a l b lock
37 ma te r i a l s = { {1 , ’ E l a s t i c ’ , 200 , 0 , 7850∗10^ 9} } ;
38 %
39 % Force block
40 i f ( AnalysisType == 1)
41 fo rces = { 1 , ’ S t a t i c ’ , { ’ NodalForces ’ , {1 , 2 , 3 0 ;
42 2 , 2 , 2 0 } } } ;
43 e l s e i f ( AnalysisType == 2)
44 ga = load ( ’ ElCentro_g_0_01_Matlab . t x t ’ ) ;
45 nga = s ize ( ga , 1) ;
46 f o r i = 1 : nga
47 groundacce lera t ion { i , 1 } = ga ( i , 1 ) ;
48 groundacce lera t ion { i , 2 } = ga ( i , 2 ) ;
49 groundacce lera t ion { i , 3 } = ga ( i , 3 ) ;
50 end
51 fo rces = { 1 , ’ S t a t i c ’ , { ’ NodalForces ’ , {1 , 2 , 0} } ;
52 2 , ’ Acce le ra t i on ’ , {9810 , groundacce le ra t ion } } ;
53 end
54 %
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Mercury Sample Input File

Input File Example III
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Save data

Save Data

Often times, there is a need to store
some or all the data in a binary file.

Examples: Results of an experiment,
or data from an analysis for
subsequent post-processing.

This can be easily accomplished by
the save and load commands.

Try to load the Recorder_6.mat file
which was generated by an
experiment.

1 % c lea r a l l data
2 c l ea r
3 % def ine an ar ray and perform a dummy opera t ion
4 x = [ 1 : 1 : 2 0 ] ;
5 y=2∗x ;
6 % save only the x ar ray i n a b inary f i l e

my_data
7 %( which w i l l be assigned the extens ion . mat )
8 save ( ’ my_data ’ , ’ x ’ )
9 % c lea r a l l the data

10 c l ea r
11 % convince o u r s e l f t h a t x i s gone
12 x
13 %load the data s tored i n my_data . mat
14 load ( ’ my_data . mat ’ )
15 % v e r i f y t h a t we recover x
16 x
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Introduction

Motivation I

Structural engineering (and mechanics) can be approached from two
different angles:

1 Newtonian approach, equations of equilibrium.
2 Lagrangian approach: thermodynamics (balance of energy).

So far we have pursued the former, from this point onward, we shall
focus on the second which will provide the formalism needed to develop
the finite element method.

Some of the concepts will look familiar (first law of thermodynamic,
principle of virtual force, minimum potential energy) at first.

This lecturewill
1 Bring together the various "energy methods" and show that they are all

(essentially) the same.
2 Develop the principle of virtual displacement as a prelude to the finite

element method.
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Introduction

Motivation II

3 Show the duality between the so-called strong form (differential equation)
and the weak form (satisfy a principle in an average sense).

4 Formalize the definition of Natural and Essential boundary conditions.
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Definitions First law of Thermodynamics

First law of Thermodynamics

First Law of Thermodynamics: The time-rate of change of the total energy (i.e.,
sum of the kinetic energy K and the internal energy U) is equal to the sum of the
rate of work done by the external forces We and the change of heat content per
unit time H: d

dt
(K + U) = We + H

For an adiabatic system (no heat exchange) and if loads are applied in a quasi
static manner (no kinetic energy), the above relation simplifies to: We = U
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Definitions Internal Energy

InternalEnergy I

U0 U0

U0
*

σ σ

ε
ε

Nonlinear Linear 

U0
*

dσ 

dε dε 

dσ 

Strain energy density :

U0
def
=

∫ ε

0
σdε (1)

Complementary strain energy density :

U∗
0

def
=

∫ σ

0
εdσ (2)
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Definitions Internal Energy

InternalEnergy II

strain and complementary strain energy :

U def
=

∫



U0d
 (3)

U∗ def
=

∫



U∗
0 d
 (4)

Stress Strain Relation :
σ = D(ϵ − ϵ0) + σ0 (5)

Strain Energy for Linear Systems :

U =
1
2

∫



ϵTDϵd
−
∫



ϵTDϵ0d


+

∫



ϵTσ0d
 (6)
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Definitions External Work and Virtual Work

External Work and Virtual Work I

Forces Only two types of forces:

Surface traction t̂

t̂

+ t

u

û = 0

t n

Unit exterior 
normal

n̂t t̂t

t̂

n̂t t̂t

t̂
Boundary tractions   

are prescribed on 
t̂

tBoundary displacements   

are prescribed on

û

u
xx

yy xy

xy
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Definitions External Work and Virtual Work

External Work and Virtual Work II

Body force b

External work We
def
=

∫


uTbd
+

∫
�t
uT t̂d�

Point Force/Moment We =

∫ �f

0
Pd�+

∫ θf

0
Mdθ

Internal Strain Energy/Virtual Work δU = −δW i
def
=

∫


σδεd


External Virtual Work δW e
def
=

∫
�t
δut t̂d� +

∫


δutbd


Complementary Internal Strain Energy-Internal Virtual Work
δU

∗
= −δW

∗
i

def
=

∫


εδσd


Complementary External Virtual Work δW
∗
e

def
=

∫
�u
ûtδtd�
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Definitions Internal Virtual Strain Energy

Variables

The complementary internal virtual strain energy is expressed in terms
of strain or internal displacements (u(x), v(x)).

It will lead to the formulation at the root of the finite element method.
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Definitions Internal Virtual Strain Energy

Axial Members

Strains and displacements constitute the virtual quantities identified by
δ.
Elastic System

δU =

∫



σδεd


d
 = Adx

 δU = A
∫ L

0
σδεdx (7)

Linear Elastic

δU =

∫
σδεd


σx = Eεx = E du
dx

δε = d(δu)
dx

d
 = Adx


δU =

∫ L

0
E

du
dx︸ ︷︷ ︸
"σ"

d(δu)
dx︸ ︷︷ ︸
"δε"

Adx︸︷︷︸
d


(8)
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Definitions Internal Virtual Strain Energy

Flexural Members I

Elastic System

δU =

∫
σxδεx d


M =

∫
A
σxx ydA ⇒ M

y
=

∫
A
σxx dA

δϕ = δε
y ⇒ δϕy = δε

d
 =

∫ L

0

∫
A
dAdx


δU =

∫ L

0
M(x)δϕdx (9)

Linear Elastic

δU =

∫



σxδεx d


σx = My
Iz

M = d2
v

dx2 EIz

}
σx =

d2v
dx2︸︷︷︸
κ

Ey

δεx = δσx
E = d2

(δv)
dx2 y

d
 = dAdx


δU =

∫ L

0

∫
A

d2v
dx2 Ey

d2(δv)
dx2 ydAdx
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Definitions Internal Virtual Strain Energy

Flexural Members II

Since
∫

A
y2dA = Iz ⇒

δU =

∫ L

0
EIz

d2v
dx2︸ ︷︷ ︸

"σ"

d2(δv)
dx2︸ ︷︷ ︸
"δε"

dx (10)
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Definitions Total Potential Energy

Potential Energy I

Potential of external work W

We
def
=

∫



uTbd
+

∫
�t

uT t̂d� + uP (11)

Potential energy

�
def
= U −We =

∫



U0d
−
(∫




ubd
+

∫
�t

ut̂d� + uP

)
(12)

Complementary potential energy

�
def
= U∗ −W∗

e =

∫



U∗
0 d
−

(∫



ubd
+

∫
�t

ut̂d� + uP

)
(13)
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Definitions Summary

Summary I U Virtual Displacement δU Virtual Force δU∗

−
∫

 δuT

(
LT σ + b

)
d


∫



(
εij − ui,j

)
δσij d


+
∫
�t

δuT (t− t̂)d� = 0 −
∫
�u

(ui − û) δt i d� = 0

Essential BC Natural BC
Elastic El. Linear Elastic El. Linear

Axial 1
2

∫ L

0

P2

AE
dx A

∫ L

0
σδεdx

∫ L

0
E

du

dx︸ ︷︷ ︸
σ

d(δu)

dx︸ ︷︷ ︸
δε

Adx︸︷︷︸
d


A
∫ L

0
δσεdx

∫ L

0
δP︸︷︷︸
δσ

P

AE︸︷︷︸
ε

dx

Flexure 1
2

∫ L

0

M2

EIz
dx

∫ L

0
Mδϕdx

∫ L

0
EIz

d2v

dx2︸ ︷︷ ︸
σ

d2(δv)

dx2︸ ︷︷ ︸
δε

dx
∫ L

0
δMϕdx

∫ L

0
δM︸︷︷︸
δσ

M

EIz︸︷︷︸
ε

dx

P �i
1
2 Pi�i �i Piδ�i �iδP i�i

M �i
1
2 Miθi �i Miδθi �iδM iθi

w
∫ L

0
w(x)v(x)dx

∫ L

0
w(x)δv(x)dx

∫ L

0
δw(x)v(x)dx

Potential Energy Complementary
Formulation Displacement Force

Axial 1
2

∫ L

0
E
( du

dx

)2
dx 1

2

∫ L

0

P2

AE
dx

Flexural 1
2

∫ L

0
EIz(v

′′
)

2dx 1
2

∫ L

0

M2

EIz
dx

P �i Pi�i
M �i Miθi

w
∫ L

0
w(x)v(x)dx
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Definitions Summary

Summary II

Need to derive potential energy in terms of displacements in beamer and book
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Definitions Strong/Weak; Natural Essential

Strong/Weak; Natural Essential

Strong/Weak We will refer to a strong form a derivation stemming from a differential
equation, and one which is exactly satisfied.
The weak form will be only satisfied in an average sense over a
volume 
.

Boundary Conditions A more detailed coverage of B.C. entails calculus of variation,
and derivation of the Euler equation associated with a potential.

� Traction Displ. Math. Structural Mechanics DOF
�t t

√
u? Dirichlet Essential Primary Kinematic Free

�u t? u
√

Neuman Natural Secondary Static Fixed/Constrained
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Principle of Virtual Work and Complementary
Virtual Work

Principle of Virtual Work and Complementary Virtual Work

The principles of Virtual Work and Complementary Virtual Work relate

force systems which satisfy the requirements of equilibrium
deformation systems which satisfy the requirement of compatibility.

Force Deformation IVW Formulation

External Internal External Internal

1 δp δσ du dε δU
∗

CVW/Flexibility
2 dp dσ δu δε δU VW/Stiffness

The principle of Complementary Virtual Work (of Principle of Virtual Force) is
what we have already seen previously (unit force method).

The Principle of Virtual work is new, and is at the basis of the finite element
method.
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Principle of Virtual Work and Complementary
Virtual Work Approaches

Approaches

Principle Real BC Virtual BC Proves
VW Equilibrium 
 Natural �t Kinematic 
 Essential �u δU = δW e
CVW Kinematic 
 Essential �u Equilibrium
 Natural �t δU∗

= δW∗
e

Principle Primary Variable Satisfying on Apply Weak
Real & Virtual (Strong) BC Form of

VW Displacements Kinematic Essential δU = δW e Equilibrium
CVW Forces Equilibrium Natural δU∗

= δW∗
e Kinematic

Principle of Complementary Virtual Work
δU*=δWe

*

Principle of Stationary Complementary 
Potential Energy

δΠ*=0 

Virtual 
forces

Real displacements

Principle of Virtual Work
δU=δWe

Principle of Stationary Potential Energy
δΠ=0 

Statically admissible forces satisfying 
 Equilibrium (static) Equation 
 Natural (static) boundary conditions on Γt

Kinematically admissible displacements satisfying 
 Compatibility (kinematic) Equations
 Essential  (kinematic) boundary conditions on Γu

Satisfying

Virtual 
displacements

Real forces Satisfying

SatisfyingSatisfying

Start

End

End

Start

Seek

Seek

VW

CVW
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Principle of Virtual Work and Complementary
Virtual Work Principle of Virtual Work (Displacement)

Principle of Virtual Work; Derivation I

1 Derivation of the principle of virtual work starts with the assumption that forces
are in equilibrium and satisfaction of the natural (tractions) boundary conditions.

∂σxx

∂x
+

∂τxy

∂y
+ bx = 0 (14)

∂σyy

∂y
+

∂τxy

∂x
+ by = 0 (15)

where b representing the body force.

2 In matrix form, this can be rewritten as

[
∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

]
σxx

σyy

τxy

+

{
bx

by

}
= 0 (16)

or Strong Form
LTσ︸︷︷︸
∇.σ

+b = 0 (17)
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Principle of Virtual Work and Complementary
Virtual Work Principle of Virtual Work (Displacement)

Principle of Virtual Work; Derivation II

3 The surface � of the solid can be decomposed into two parts �t and �u

� = �t ∪ �u

where tractions and displacements are respectively specified.

4 Essential B.C.
t− t̂ = 0 on �t Essential B.C. (18)

where t̂ are known traction along �t .

5 Equations 17 and 18 constitute a statically admissible stress field.

6 We are going to enforce satisfaction of the local condition of equilibrium Eq. 17
and the static boundary condition Eq. 18 in global (or integral/weak) form. This is
accomplished by multiplying both equations by a virtual displacement δu
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Principle of Virtual Work and Complementary
Virtual Work Principle of Virtual Work (Displacement)

Principle of Virtual Work; Derivation III

7 The Weak Form is thus given by

−
∫



δuT
(
LTσ+ b

)
︸ ︷︷ ︸

Equil.

d
+

∫
�t

δuT (t− t̂)︸ ︷︷ ︸
Essential B.C.

d� = 0 (19)

8 An important requirement on the (virtual) displacements, is that they must satisfy
the requirement of compatibility (by contrast, in the principle of complementary
virtual work, stresses had to be statically admissible). The virtual displacements
must satisfy the essential boundary condition:

Lδu = divδu = δε (20)

9 Focus on
∫
�t
δuT td� ∫

�t

δuT td� =

∫
�

δuT td�−
∫
�u

δuT td� (21)

and we seek to convert into a volume integral through Gauss Theorem.
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Principle of Virtual Work and Complementary
Virtual Work Principle of Virtual Work (Displacement)

Principle of Virtual Work; Derivation IV

10 Recall the definition of the traction vector

t = σ.n or ti = σijnj (22)

applying Gauss theorem we obtain∫
�

δuT td� =

∫
�

(δuTσ)nd� =

∫



div(δuTσ)d
 (23)

=

∫



divδuTσd
+

∫



δuT divσd
 (24)

However, divσ = LTσ thus∫
�

δuT td� =

∫



divδuTσd
+

∫



δuTLTσd
 (25)
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Principle of Virtual Work and Complementary
Virtual Work Principle of Virtual Work (Displacement)

Principle of Virtual Work; Derivation V

11 Following some skipped exciting derivation, the above equation yields the
Principle of Virtual Work (Displacements)∫




δεTσd
︸ ︷︷ ︸
−δW i=δU i

−
∫



δuTbd
−
∫
�t

δuT t̂d�︸ ︷︷ ︸
−δW e

= 0 ⇒ δU i = δW e (26)

A deformable system is in equilibrium (Eq. 17) if the sum of the external virtual
work and the internal virtual work is zero for virtual displacements δu that satisfy
the kinematic equation and kinematic boundary conditions (Eq. 20).

12 For one dimensional elements, this reduces to∫
σδεd
︸ ︷︷ ︸
δU

= Pδv︸︷︷︸
δW

(27)
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Principle of Virtual Work and Complementary
Virtual Work Principle of Virtual Work (Displacement)

Example; PVW I

1

In applying the PVW, we need to
have an approximation of the actual
displacement v and the virtual one
δv . Those expressions must satisfy
the essential boundary conditions
(displacement and slope for beams).

The approximate solutions proposed
to this problem are

v =
(

1 − cos
πx
2L

)
v2 (28)

v =

[
3
(x

L

)2
− 2

(x
L

)3
]

v2 (29)

They satisfy the essential B.C:
v = v ′ = 0 at x = 0.

We consider 3 cases:

Solution Real Virtual

1 Eqn. 50 Eqn. 51
2 Eqn. 50 Eqn. 50
3 Eqn. 51 Eqn. 51
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Principle of Virtual Work and Complementary
Virtual Work Principle of Virtual Work (Displacement)

Example; PVW II

Application of the PVW requires evaluation of the functions second derivatives.

Trigonometric (Eqn. 50) Polynomial (Eqn. 51)

v
(
1 − cos πx

2L

)
v2

[
3
( x

L

)2 − 2
( x

L

)3
]

v2

δv
(
1 − cos πx

2L

)
δv2

[
3
( x

L

)2 − 2
( x

L

)3
]
δv2

v ′′ π2

4L2 cos
πx
2L v2

( 6
L2 − 12x

L3

)
v2

δv ′′ π2

4L2 cos
πx
2L δv2

[ 6
L2 − 12x

L3

]
δv2

δU =

∫ L

0
EIz

d2v
dx2

d2(δv)
dx2 dx ; δW = P2δv2
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Principle of Virtual Work and Complementary
Virtual Work Principle of Virtual Work (Displacement)

Example; PVW III

Solution 1:

δU =

∫ L

0

π2

4L2 cos
(πx

2L

)
v2︸ ︷︷ ︸

v ′′

(
6
L2 − 12x

L3

)
δv2︸ ︷︷ ︸

δv ′′

EI1
(

1 − x
2L

)
︸ ︷︷ ︸

EI

dx

=
3πEI1
2L3

[
1 − 10

π
+

16
π2

]
v2δv2

δW = P2δv2

which yields:

v2 =
P2L3

2.648EI1
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Principle of Virtual Work and Complementary
Virtual Work Principle of Virtual Work (Displacement)

Example; PVW IV

Solution 2:

δU =

∫ L

0

π4

16L4 cos
2
(πx

2L

)
v2︸ ︷︷ ︸ δv2EI1

(
1 − x

2L

)
︸ ︷︷ ︸ dx

=
π4EI1
32L3

(
3
4
+

1
π2

)
v2δv2

δW = P2δv2

which yields:

v2 =
P2L3

2.57EI1
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Principle of Virtual Work and Complementary
Virtual Work Principle of Virtual Work (Displacement)

Example; PVW V

Solution 3:

δU =

∫ L

0

(
6
L2 − 12x

L3

)2 (
1 − x

2L

)
EI1δv2v2dx

=
9EI
L3 v2δv2

δW = P2δv2

which yields:

v2 =
P2L3

9EI1
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Principle of Virtual Work and Complementary
Virtual Work Summary

Summary

Principle Real BC Virtual BC Proves
VW Equilibrium 
 Natural �t Kinematic 
 Essential �u δU = δW e
CVW Kinematic 
 Essential �u Equilibrium
 Natural �t δU∗

= δW∗
e

Principle Primary Variable Satisfying on Apply Weak
Real & Virtual (Strong) BC Form of

VW Displacements Kinematic Essential δU = δW e Equilibrium
CVW Forces Equilibrium Natural δU∗

= δW∗
e Kinematic

Principle of Complementary Virtual Work
δU*=δWe

*

Principle of Stationary Complementary 
Potential Energy

δΠ*=0 

Virtual 
forces

Real displacements

Principle of Virtual Work
δU=δWe

Principle of Stationary Potential Energy
δΠ=0 

Statically admissible forces satisfying 
 Equilibrium (static) Equation 
 Natural (static) boundary conditions on Γt

Kinematically admissible displacements satisfying 
 Compatibility (kinematic) Equations
 Essential  (kinematic) boundary conditions on Γu

Satisfying

Virtual 
displacements

Real forces Satisfying

SatisfyingSatisfying

Start

End

End

Start

Seek

Seek

VW

CVW
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Principle of Virtual Work and Complementary
Virtual Work Tonti Diagrams

Tonti Diagrams

Prescribed
displacements

û

Displacement
(State variable)

u

Strains
(Intermediary 

variable)
ε

Body forces

b

Stresses

σ
Prescribed 
tractions t̂

ˆ

uon 
u = u

in 
ε = Lu

in 

σ = Dε

ε = Cσ

T

in 
L σ + b = 0

ˆT

ton 
σ n = t

Displacement
 BCs

Kinematics

Constitutive

Equilibrium
(aka Balance)

Force BCs

Prescribed
displacements

û

Displacements
(State variable)

u

Strains
(Intermediary 

variable)
ε

Body forces

b

Stresses

σ
Prescribed 
tractions t̂

ˆ

uon 
u = u

in 
ε = Lu

in 

σ = Dε

ε = Cσ

in 
δΠ = 0

ton 
δΠ = 0

Displacement
 BCs

Kinematics

Constitutive

Equilibrium
(Weak)

Force BCs
(Weak)
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Principle of Total and Complementary
Potential Energy

Principle of Total and Complementary Potential Energy

A completely different but related approach will now be presented.

Rather than convoluting real and virtual quantities, we will simply seek to
minimize the total (or complementary) potential energy.

Those two principles will be derived from those of the virtual strain
energy (and the inverse operation is naturally possible).

The δ operator will assume its full mathematical meaning: differential,
whereas before it implied a virtual quantity.
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Principle of Total and Complementary
Potential Energy Total Potential Energy

Total Potential Energy I

If U0 is a potential function, we take its differential δU0 =
∂U0
∂εij

δεij and the

fundamental theorem of calculus states that d
dx

∫ x

0
f (u)du = f (x). Thus

δU0
δεij

= ∂U0
∂εij

U0 =
∫ εij

0 σijdεij

δ
δεij

∫ x

0
σijdεij = σij


δU0

δεij
= σij (30)

We now define the variation of the strain energy density at a point (Note that the
variation of strain energy density is, δU0 = σijδεij , and the variation of the strain
energy itself is δU =

∫


δU0d
.) Thus

δU0 = σijδεij (31)
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Principle of Total and Complementary
Potential Energy Total Potential Energy

Total Potential Energy II

The principle of virtual work
∫


δεijσijd
−

∫


δu ibid
−

∫
�t
δu i t̂id� = 0 can now

be rewritten as ∫



δU0d
−
∫



δuibid
−
∫
�t

δui t̂id� = 0 (32)

If nor the surface tractions, nor the body forces alter their magnitudes or
directions during deformation, the previous equation can be rewritten as

δ


U︷ ︸︸ ︷∫




U0d


−W⌉︷ ︸︸ ︷
−
∫



uibid
−
∫
�t

ui t̂id�︸ ︷︷ ︸
�

 = 0 (33)

Victor E. Saouma; Univ. of Colorado Strong to Weak Formulations 36/72



Principle of Total and Complementary
Potential Energy Total Potential Energy

Total Potential Energy III

Comparing this last equation, with
�

def
= U −We =

∫



U0d
−
(∫



ubd
+

∫
�t
ut̂d� + uP

)
we show that the

variation of the potential energy is zero.

δ� = 0 (34)

The principle of stationary value of the potential energy can now be stated as
follows:

Of all kinematically admissible deformations (displacements satisfying the
essential boundary conditions), the actual deformations (those which corre-
spond to stresses which satisfy equilibrium) are the ones for which the total
potential energy assumes a stationary value.
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Principle of Total and Complementary
Potential Energy Total Potential Energy

Total Potential Energy IV

For problems involving multiple degrees of freedom,

δ� =
∂�

∂�1
δ�1 +

∂�

∂�2
δ�2 + . . .+

∂�

∂�n
δ�n = 0 (35)

or n equations with n unknowns.
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Principle of Total and Complementary
Potential Energy Total Potential Energy

Example 1

K=500 lbf/in

100 lbf

The strain energy U and potential of the
external work W are given by

U =
1
2

u(Ku) = 250u2 We = mgu = 100u

Note that there is no 1/2 in We because
the force is constant during the work. Thus
the total potential energy is given by
� = 250u2 − 100u and will be stationary
for δ� = d�

du
= 0 ⇒ 500u − 100 = 0 ⇒

u = 0.2 in

0.00 0.10 0.20 0.30

Displacement [in]

−40.0

−20.0

0.0

20.0

E
n
e
rg

y
 [

lb
f−

in
]

Potential Energy of Single DOF Structure

Total Potential Energy

Strain Energy

External Work

Obviously, similar result could have been
obtained from statics.
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Principle of Total and Complementary
Potential Energy Total Potential Energy

Example 2 I

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

X

P

EI/2 EI

L/4 L/4 L/4 L/4

Let us assume that
v = a1x3 + a2x2 + a3x + a4

This solution must satisfy the
essential B.C.: v = v ′ = 0 at x = 0;
Secondly, v = vmax and v ′ = 0 at
x = L

2 .

This will be enforced by determining
the four parameters in terms of a
single unknown quantity (4 equations
and 4 B.C.’s):

@x = 0 v = 0 ⇒ a4 = 0

@x = 0 dv
dx

= 0 ⇒ a3 = 0

@x = L
2 v = vmax ⇒ vmax = a1

L3

8 + a2
L2

4

@x = L
2

dv
dx

= 0 ⇒ 3
4 a1L2 + a2L = 0 ⇒ a2 = − 3

4 a1L

upon substitution, we obtain:

v =

(
−16x3

L3 +
12x2

L2

)
vmax (36)
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Principle of Total and Complementary
Potential Energy Total Potential Energy

Example 2 II

Hence, in this problem the solution is in terms of only one unknown variable vmax .

In order to apply the principle of Minimum Potential Energy we should evaluate:

Internal Strain Energy U: for flexural members, expressed in terms of
displacements (a must in this method) is given by

U = 2

[
1
2

∫ L/2

0
E
(

d2v
dx2

)2

Izdx

]
thus we must evaluate d2

v
dx2 :

dv
dx

=

(
−48x2

L3 +
24x
L2

)
vmax ;

d2v
dx2 = −24

L2

(
1 − 4x

L

)
vmax

Substituting

U
2
=

E
2

∫ L
4

0

242

L4

(
1 − 4x

L

)2

v2
max

Iz
2

dx+
E
2

∫ L
2

L
4

242

L4

(
1 − 4x

L

)2

v2
max Izdx ⇒ U = 72EIz

L3 v2
max

Potential of the External Work We: For a point load, We = Pvmax
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Principle of Total and Complementary
Potential Energy Total Potential Energy

Example 2 III

Finally,

∂�

∂vmax
= 0;

∂U
∂vmax

−
∂W⌉

∂vmax
= 0

144EIz
L3 vmax = P ⇒ vmax =

PL3

144EIz
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Principle of Total and Complementary
Potential Energy Total Complementary Potential Energy

Total Complementary Potential Energy

Mildly relevant, not covered.
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Rayleigh-Ritz Method Derivation

Rayleigh Ritz; Derivation I

In the minimization of the total potential energy, we expressed the
potential energy in terms of physical quantities (displacements/rotations)
at certain nodes, and then stated that the potential is stationary, i.e.

δ� =
∂�

∂�1
δ�1 +

∂�

∂�2
δ�2 + . . .+

∂�

∂�n
δ�n (37)

A more general (and still approximate) approach is to express the
displacements, and thus the potential in terms of unknown coefficients in
a function such as:

u1 ≈
n∑

i=1

c1
i ϕ

1
i + ϕ1

0 u2 ≈
n∑

i=1

c2
i ϕ

2
i + ϕ2

0 u3 ≈
n∑

i=1

c3
i ϕ

3
i + ϕ3

0 (38)

where c j
i denote undetermined parameters, and ϕ are appropriate

functions of positions.
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Rayleigh-Ritz Method Derivation

Rayleigh Ritz; Derivation II

In the PTPE, we had a single displacement field in terms of n variables
(unknown displacements), now we have multiple expressions of the
displacement field in terms of n coefficients c.

ϕ should satisfy three conditions
1 Be continuous.
2 Must be admissible, i.e. satisfy the essential boundary conditions (the

natural boundary conditions are included already in the variational
statement. However, if ϕ also satisfy them, then better results are
achieved).

3 Must be independent and complete (which means that the exact
displacement and their derivatives that appear in � can be arbitrary
matched if enough terms are used. Furthermore, lowest order terms must
also be included).

In general ϕ is a polynomial or trigonometric function.
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Rayleigh-Ritz Method Derivation

Rayleigh Ritz; Derivation III

We determine the parameters c j
i satisfying the stationarity of � for

arbitrary variations δc j
i . or

δ�(u1,u2,u3) =
∑n

i=1

(
∂�
∂c1

i
δc1

i +
∂�
∂c2

i
δc2

i +
∂�
∂c3

i
δc3

i

)
= 0 for arbitrary and

independent variations of δc1
i , δc2

i , and δc3
i , thus it follows that

∂�

∂c j
i

= 0 i = 1,2, · · · ,n; j = 1,2,3 (39)

Thus we obtain a total of 3n linearly independent simultaneous
equations. From these displacements, we can then determine strains
and stresses (or internal forces). Hence we have replaced a problem
with an infinite number of d.o.f by one with a finite number.
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Rayleigh-Ritz Method Example

Rayleigh Ritz; Example I

L

x

y

w

let us assume a solution given by the following infinite series:

v = a1x(L − x) + a2x2(L − x)2 + . . . (40)

for this particular solution, let us retain only the first term:

v = a1x(L − x) (41)

We observe that:

1 Contrarily to the previous example problem the essential (or geometric)
B.C. are immediately satisfied at both x = 0 and x = L.
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Rayleigh-Ritz Method Example

Rayleigh Ritz; Example II

2 We can keep v in terms of a1 and take ∂�
∂a1

= 0 (If we had left v in terms
of a1 and a2 we should then have to take both ∂�

∂a1
= 0, and ∂�

∂a2
= 0 ).

3 Or we can solve for a1 in terms of vmax at x = L
2 and take ∂�

∂vmax
= 0.

� = U −W⌉ (42)

=

∫ L

0

EIz
2

(
d2v
dx2

)2

dx −
∫ L

0
wv(x)dx (43)

=

∫ L

0

[
EIz
2
(−2a1)

2 − a1wx(L − x)
]

dx (44)

=
EIz
2

4a2
1L − a1w

L3

2
+ a1w

L3

3
(45)

= 2a2
1EIzL − a1wL3

6
(46)
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Rayleigh-Ritz Method Example

Rayleigh Ritz; Example III

If we now take ∂�
∂a1

= 0, we would obtain:

4a1EIzL − wL3

6
= 0 (47)

a1 =
wL2

24EIz
(48)

Having solved the displacement field in terms of a1, we now determine vmax at L
2 :

v =
wL4

24EIz︸ ︷︷ ︸
a1

(
x
L
− x2

L2

)
= wL4

96EIz
(49)

This is to be compared with the exact value of vexact
max = 5

384
wL4

EIz
= wL4

76.8EIz
which

constitutes ≈ 17% error.

Note: If two terms were retained, then we would have obtained: a1 =
wL2

24EIz
and

a2 =
w

24EIz
and vmax would be equal to vexact

max . (Why?)
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Rayleigh-Ritz Method Example

Example; PVW I

In applying the PVW, we need to have an approximation of the actual displacement v and the virtual one δv . Those expressions
must satisfy the essential boundary conditions (displacement and slope for beams).

1

The approximate solutions proposed to this problem are

v =

(
1 − cos

πx

2L

)
v2 (50)

v =

[
3
( x

L

)2
− 2

( x

L

)3
]

v2 (51)

They satisfy the essential B.C: v = v ′ = 0 at x = 0.
We consider 3 cases:

Solution Real Virtual
1 Eqn. 50 Eqn. 51
2 Eqn. 50 Eqn. 50
3 Eqn. 51 Eqn. 51
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Rayleigh-Ritz Method Example

Example; PVW II

Application of the PVW requires evaluation of the functions second derivatives.

Trigonometric (Eqn. 50) Polynomial (Eqn. 51)

v
(

1 − cos πx
2L

)
v2

[
3
(

x
L

)2
− 2

(
x
L

)3
]

v2

δv
(

1 − cos πx
2L

)
δv2

[
3
(

x
L

)2
− 2

(
x
L

)3
]
δv2

v ′′ π2

4L2 cos πx
2L v2

(
6

L2 − 12x
L3

)
v2

δv ′′ π2

4L2 cos πx
2L δv2

[
6

L2 − 12x
L3

]
δv2

δU =

∫ L

0
EIz

d2v

dx2

d2(δv)

dx2
dx; δW = P2δv2

Solution 1:

δU =

∫ L

0

π2

4L2
cos

(
πx

2L

)
v2︸ ︷︷ ︸

v ′′

( 6

L2
−

12x

L3

)
δv2︸ ︷︷ ︸

δv ′′

EI1

(
1 −

x

2L

)
︸ ︷︷ ︸

EI

dx =
3πEI1

2L3

[
1 −

10

π
+

16

π2

]
v2δv2

δW = P2δv2
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Rayleigh-Ritz Method Example

Example; PVW III

which yields:

v2 =
P2L3

2.648EI1

Solution 2:

δU =

∫ L

0

π4

16L4
cos

2
(

πx

2L

)
v2︸ ︷︷ ︸ δv2EI1

(
1 −

x

2L

)
︸ ︷︷ ︸ dx =

π4EI1
32L3

( 3

4
+

1

π2

)
v2δv2

δW = P2δv2

which yields:

v2 =
P2L3

2.57EI1

Solution 3:

δU =

∫ L

0

( 6

L2
−

12x

L3

)2 (
1 −

x

2L

)
EI1δv2v2dx =

9EI

L3
v2δv2

δW = P2δv2

which yields:

v2 =
P2L3

9EI1
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Rayleigh-Ritz Method Summary

Summary

Princ.
Real/Weak Virtual/Strong

Proves
Var. Satisfies BC Var. Satisfies BC

VW σ Equil. �t u Kinem. �u δU = δWe

CVW u Kinem. �u σ Equil. �t δU∗ = δW ∗
e

�t : Natural B.C.; �u : Essential B.C.
Note: in VW displacements do not satisfy equilibrium, (M ̸= EI d2v

dx2 ); more about this
later.
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Rayleigh-Ritz Method Tonti Diagram

Tonti Diagram
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Shape Functions definition

Shape Functions; Definitions I

Expression for the generalized
displacement (translation or rotation), � at
any point in terms of all its known nodal
ones, �.

� =
n∑

i=1

Ni(x)�i = ⌊N(x)⌋{�}

�i is the (generalized) nodal displacement
corresponding to d.o.f i

1 Ni is an interpolation function, or
shape function which has the
following characteristics: Ni = 1
at node i and Ni = 0 at node j
where i ̸= j .

2 Summation of N at any point is
equal to unity �N = 1.

3 N can be derived on the bases of:

1 Assumed deformation state
defined in terms of polynomial
series.

2 Interpolation function
(Lagrangian or Hermitian).

Shape functions should

1 Be continuous, of the type required
by the variational principle.

2 Exhibit rigid body motion (i.e.
v = a1 + . . .)

3 Exhibit constant strain.

Shape functions should be complete, and
meet the same requirements as the
coefficients of the Rayleigh Ritz method.
Shape functions can often be written in
non-dimensional coordinates (i.e. ξ = x

l ).
This will be exploited later by the so-called
isoparametric elements.
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Shape Functions definition

Generalization

u = a1x + a2 = ⌊ x 1 ⌋︸ ︷︷ ︸
[p]

{
a1

a2

}
︸ ︷︷ ︸

{a}

where [p] corresponds to the polynomial
approximation, and {a} is the coefficient
vector. We next apply the boundary
conditions:{

u1

u2

}
︸ ︷︷ ︸

{�}

=

[
0 1
L 1

]
︸ ︷︷ ︸

[L]

{
a1

a2

}
︸ ︷︷ ︸

{a}

Following inversion of [L], this leads to{
a1

a2

}
︸ ︷︷ ︸

{a}

=
1
L

[
−1 1
L 0

]
︸ ︷︷ ︸

[L]−1

{
u1

u2

}
︸ ︷︷ ︸

{�}

Substituting this last equation, we obtain:

u = ⌊ (1 − x
L )

x
L ⌋︸ ︷︷ ︸

[p][L]−1︸ ︷︷ ︸
[N]

{
u1

u2

}
︸ ︷︷ ︸

{�}

Hence, the shape functions [N] can be
directly obtained from

[N] = [p][L]−1
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Shape Functions C1 Flexural

C1, Flexural Shape Functions I

v2

x

y,v1

z, θ1

1 2
L z, θ2

We have 4 d.o.f.’s, {�}4×1: and hence will need 4 shape functions, N1 to N4, and those will be obtained through 4 boundary
conditions. Therefore we need to assume a polynomial approximation for displacements of degree 3.

v = a1x3
+ a2x2

+ a3x + a4

θ =
dv

dx
= 3a1x2

+ 2a2x + a3

Note that v can be rewritten as: {
v
dv
dx

}
=

[
x3 x2 x 1
3x2 2x 1 0

]
a1
a2
a3
a4

︸ ︷︷ ︸
{a}
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Shape Functions C1 Flexural

C1, Flexural Shape Functions II

We now apply the boundary conditions:

v = v1 at x = 0
v = v2 at x = L
θ = θ1 =

dv
dx at x = 0

θ = θ2 =
dv
dx at x = L

or: 
v1
θ1
v2
θ2

︸ ︷︷ ︸
{�}

=


0 0 0 1
0 0 1 0
L3 L2 L 1
3L2 2L 1 0


︸ ︷︷ ︸

[L]


a1
a2
a3
a4

︸ ︷︷ ︸
{a}

which when inverted yields:


a1
a2
a3
a4

︸ ︷︷ ︸
{a}

=
1

L3


2 L −2 L

−3L −2L2 3L −L2

0 L3 0 0
L3 0 0 0


︸ ︷︷ ︸

[L]−1


v1
θ1
v2
θ2

︸ ︷︷ ︸
{�}
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Shape Functions C1 Flexural

C1, Flexural Shape Functions III

Combining, we obtain:

� = ⌊ x3 x2 x 1 ⌋︸ ︷︷ ︸
[p]

1

L3


2 L −2 L

−3L −2L2 3L −L2

0 L3 0 0
L3 0 0 0


︸ ︷︷ ︸

[L]−1


v1
θ1
v2
θ2

︸ ︷︷ ︸
{�}

= ⌊
(1 + 2ξ3 − 3ξ2

)︸ ︷︷ ︸
N1

x(1 − ξ)
2︸ ︷︷ ︸

N2

(3ξ2 − 2ξ3
)︸ ︷︷ ︸

N3

x(ξ2 − ξ)︸ ︷︷ ︸
N4

⌋

︸ ︷︷ ︸
[p][L]−1︸ ︷︷ ︸

[N]


v1
θ1
v2
θ2

︸ ︷︷ ︸
{�}

where ξ = x
L . Hence, the shape functions for the flexural element are given by:

N1 = (1 + 2ξ3 − 3ξ2
)

N2 = x(1 − ξ)
2

N3 = (3ξ2 − 2ξ3
)

N4 = x(ξ2 − ξ)
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Shape Functions C1 Flexural

C1, Flexural Shape Functions IV
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Shape Functions C1 Flexural

C1, Flexural Shape Functions V

ξ = 0 ξ = 1
Function Ni Ni,x Ni Ni,x

N1 = (1 + 2ξ3 − 3ξ2) 1 0 0 0
N2 = ξ(1 − ξ)2 0 1 0 0
N3 = (3ξ2 − 2ξ3) 0 0 1 0
N4 = ξ(ξ2 − ξ) 0 0 0 1

The displacements can now be expressed as

{
u
θ

}
=

[
N1 0 N3 0
0 N2 0 N4

]
u1
θ1
u2
θ2
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Finite Element Strain Displacement Relations

Strain Displacement Relations

The displacement � at any point inside an element can be written in
terms of the shape functions ⌊N⌋ and the nodal displacements {�} as
�(x) def

= ⌊N(x)⌋{�}

The strain is then defined as ε(x) def
= [B(x)]{�} where [B] is the matrix

which relates nodal displacements to strain field and is clearly
expressed in terms of derivatives of N.
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Finite Element Strain Displacement Relations

Strain Displacement Relations; Axial

u(x) = ⌊
(1 − x

L
)︸ ︷︷ ︸

N1

x
L︸︷︷︸
N2

⌋

︸ ︷︷ ︸
⌊N⌋

{
u1

u2

}
︸ ︷︷ ︸

{�}

ε(x) = εxx =
du
dx

=

 −1
L︸︷︷︸

∂N1
∂x

1
L︸︷︷︸

∂N2
∂x


︸ ︷︷ ︸

[B]

{
u1

u2

}
︸ ︷︷ ︸

{�}
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Finite Element Flexural Members

Strain Displacement Relations; Flexural Members

Using the shape functions for flexural elements previously derived in

ε =
y
ρ
= y

d2v
dx2

= y
d2v
dx2

= y


6
L2 (2ξ− 1)︸ ︷︷ ︸

∂2N1
∂x2

−2
L
(3ξ− 2)︸ ︷︷ ︸
∂2N2
∂x2

6
L2 (−2ξ+ 1)︸ ︷︷ ︸

∂2N3
∂x2

−2
L
(3ξ− 1)︸ ︷︷ ︸
∂2N4
∂x2


︸ ︷︷ ︸

[B]


v1

θ1

v2

θ2

︸ ︷︷ ︸
{�}
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Finite Element Virtual Displacement and Strains

Virtual Displacement and Strain

In anticipation of the application of the principle of virtual displacement, we define the
vectors of virtual displacements and strain in terms of nodal displacements and shape
functions:

δ�(x) = [N(x)]{δ�} (52)

δε(x) = [B(x)]{δ�} (53)
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Finite Element Element Stiffness Matrix Formulation

Element Stiffness Matrix I

{σ} = [D]{ε} − [D]{ε0} (54)

where [D] is the constitutive matrix which relates stress and strain vectors. and q(x) is the load acting on its surface.
Let us now apply the principle of virtual displacement and restate some known relations:

δU = δW (55)

δU =

∫


⌊δε⌋{σ}d
 (56)

{σ} = [D]{ε} − [D]{ε0} (57)

{ε} = [B]{�} (58)

{δε} = [B]{δ�} (59)

⌊δε⌋ = ⌊δ�⌋[B]T (60)

Combining Eqns. 55, 56, 57, 60, and 58, the internal virtual strain energy is given by:

δU =

∫



⌊δ�⌋[B]T︸ ︷︷ ︸
⌊δε⌋

[D][B]{�}︸ ︷︷ ︸
{σ}

d
−
∫



⌊δ�⌋[B]T︸ ︷︷ ︸
⌊δε⌋

[D]{ε0}︸ ︷︷ ︸{
σ0

}
d


= ⌊δ�⌋
∫


[B]

T
[D][B] d
{�} − ⌊δ�⌋

∫


[B]

T
[D]{ε0}d


(61)
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Finite Element Element Stiffness Matrix Formulation

Element Stiffness Matrix II

The virtual external work in turn is given by:

δW = ⌊δ�⌋︸ ︷︷ ︸
Virt. Nodal Displ.

{F}︸︷︷︸
Nodal Force

+

∫
l
⌊δ�⌋q(x)dx (62)

combining this equation with {δ�} = [N]{δ�} yields:

δW = ⌊δ�⌋{F} + ⌊δ�⌋
∫ l

0
[N]

T q(x) dx (63)

Equating the internal strain energy Eqn. 61 with the external work Eqn. 63, we obtain:

⌊δ�⌋
∫


[B]

T
[D][B] d
︸ ︷︷ ︸
[k]

{�} − ⌊δ�⌋
∫


[B]

T
[D]{ε0}d
︸ ︷︷ ︸

{F0}︸ ︷︷ ︸
δU

=

⌊δ�⌋{F} + ⌊δ�⌋
∫ l

0
[N]

T q(x) dx︸ ︷︷ ︸
{Fe}︸ ︷︷ ︸

δW

(64)
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Finite Element Element Stiffness Matrix Formulation

Element Stiffness Matrix III

or

[k]{�} − {Fo} = {F} + {Fe} (65)

which is the counterpart of Eq. 54.
Canceling out the ⌊δ�⌋ term, this is the same equation of equilibrium as the one written earlier on. It relates the (unknown)

nodal displacement
{
�
}

, the structure stiffness matrix [k], the external nodal force vector
{
F
}

, the distributed element force{
F

e
}

, and the vector of initial displacement.

From this relation we define:

The element stiffness matrix:

[k] =

∫


[B]

T
[D][B]d
 (66)

Element initial force vector:

{F0} =

∫


[B]

T
[D]{ε0}d
 (67)

Element equivalent load vector:

{Fe} =

∫ L

0
[N] q(x) dx (68)
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Finite Element Element Stiffness Matrix Formulation

Element Stiffness Matrix IV

and the general equation of equilibrium can be written as:

[k]{�} − {F0} = {F} + {Fe} (69)

or Internal forces equal external forces
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Finite Element Stress Recovery

Stress Recovery I

{σ} = [D]{ε} (70)

{ε} = [B]{�} (71)

With the vector of nodal displacement {�} known, those two equations would yield:

{σ} = [D] · [B]{�} (72)

We note that the secondary variables (strain and stresses) are derivatives of the

primary variables (displacement), and as such may not always be determined with the

same accuracy.
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application Truss Element

Stiffness Matrix of the Truss Element

The shape functions of the truss element
were derived earlier:

N1 = 1 − x
L

N2 =
x
L

The corresponding strain displacement
relation [B] is given by:

εxx =
du
dx

= [ dN1
dx

dN2
dx

]

= [ − 1
L

1
L ]︸ ︷︷ ︸

[B]

For the truss element, the constitutive
matrix [D] reduces to the scalar E; Hence,
substituting into Eq. 66, with d
 = dAdx :

[k] =

∫



[B]T [D][B]d
 and with d
 = Adx

for element with constant cross sectional
area we obtain:

[k] = A
∫ L

0

{
− 1

L
1
L

}
· E · ⌊ − 1

L
1
L ⌋dx

[k] =
AE
L2

∫ L

0

[
1 −1
−1 1

]
dx

= AE
L

[
1 −1
−1 1

]
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application Flexural Element

Stiffness Matrix of Beam Element

For a beam element, for which we have
previously derived the shape functions and
the [B] matrix. Substituting in Eq. 66:

[k] =

∫ L

0

∫
A
[B]T [D][B] y2 dA dx

and noting that
∫

A
y2 dA = Iz Eq. 66

reduces to

[k] =

∫ L

0
[B]T [D][B]Iz dx

For this simple case, we have: [D] = E ,
thus:

[k] = EIz
∫ l

0
[B]T [B] dx

Using the shape function for the beam
element, and noting the change of
integration variable from dx to dξ, we
obtain

[k] = EIz
∫ 1

0


6

L2 (2ξ − 1)

− 2
L (3ξ − 2)

6
L2 (−2ξ + 1)

− 2
L (3ξ − 1)


⌊

6
L2 (2ξ − 1) − 2

L (3ξ − 2) 6
L2 (−2ξ + 1) − 2

L (3ξ − 1)
⌋

Ldξ︸︷︷︸
dx

or

[k] =



v1 θ1 v2 θ2

V1
12EIz

L3
6EIz
L2 − 12EIz

L3
6EIz
L2

M1
6EIz
L2

4EIz
L − 6EIz

L2
2EIz

L
V2 − 12EIz

L3 − 6EIz
L2

12EIz
L3 − 6EIz

L2

M2
6EIz
L2

2EIz
L − 6EIz

L2
4EIz

L
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FEA Process
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FEA Process Computer Simulation
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Motivation

Solutions to many physical problems require maximizing or minimizing some
parameter F .

Distance
Time
Surface Area

Parameter F dependent on function u (field variable), and variable x

�(u) =
∫




F (x , u(x), u ′(x))dx (1)
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Objective

A problem may be formulated as a partial differential equation, or as a variational
one (maximize/minimize function).

For example equation of equilibrium and minimization of total potential energy
are analogous.

Question: Can we go back and forth from one formulation to the other? and in so
doing what are the boundary conditions?

Reason: it may be easier to solve a problem one way or another.

We will resort to calculus of variation that deals with minima or maxima of
functionals.

The origin of CV can be traced to the brachistochrone problem (find the path that
will carry a point-like body from one place to another in the least amount of time).
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Euler Equation Formulation

Differential calculus involves a function of one or more variable, variational
calculus involves a function of a function, or a functional

We seek a function u(x) such that

�(u) =
∫ b

a
F (x , u(x), u ′(x))dx (2)

is stationary. Or, δ� = 0 where δ indicates the variation operator.

u(x) is a function of x in the interval (a, b), and F to be a known real function
(such as the energy density).

The domain of a functional is the collection of admissible functions belonging to
a class of functions in function space rather than a region in coordinate space
(as is the case for a function).

We seek the function u(x) which extremizes �.

Letting ~u(x) to be a family of neighboring paths of the extremizing function u(x)
and we assume that at the end points x = a, b they coincide.

We define ~u(x) as the sum of the extremizing path and some arbitrary variation.
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Euler Equation Formulation

x

A

B

dx

du

u(x)

u(x)~

x=a x=c x=b

uδ

Solutions satisfying BC
Solution satisfying BC and δ П =0

η(
x)

=
0

η(
x)

=
0

η(x)≠0 

u, u~

~u(x , ε) = u(x) + εη(x) = u(x) + δu(x) (3)

where ε is a small parameter, and δu(x) is the variation of u(x)

δu(x) = ~u(x , ε)− u(x) (4)

= εη(x) (5)

and η(x) is twice differentiable, has undefined amplitude but is such that
η(a) = η(b) = 0. We note that ~u coincides with u if ε = 0.
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Euler Equation Formulation

Again, to reinforce the distinction between differential calculus (DC) and
variational calculus (VC) it should be noted that:

The necessary condition to extremize a value in DC is that the first
derivative be equal to zero, and that the first variation be zero in VC.
The result of the extremization is a single variable x in DC, and u(x) in VC.

Variation and derivation operators are commutative

d
dx
(δu) = ~u ′(x , ε)− u ′(x)

δu ′ = ~u ′(x , ε)− u ′(x)

}
d
dx
(δu) = δ

(
du
dx

)
(6)

Variational operator δ and the differential calculus operator d can be similarly
used, i.e.

δ(u ′)2 = 2u ′δu ′ (7)

δ(u + v) = δu + δv (8)

δ

(∫
udx

)
=

∫
(δu)dx (9)

δu =
∂u
∂x
δx +

∂u
∂y
δy (10)
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Euler Equation Formulation

however, they have clearly different meanings. du is associated with a
neighboring point at a distance dx , however δu is a small arbitrary change in the
function u for a given x (there is no associated δx).

For boundaries where u is specified, its variation must be zero, and it is arbitrary
elsewhere. The variation δu of u is said to undergo a virtual change.
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Euler Equation Differential Form of δ�

Define �(ε)

�(ε)
def
= �(u + εη) =

∫ b

a
F (x , u + εη, u ′ + εη ′)dx (11)

Using this “trick” we now Cast the variational formulation (δ� = 0) into a
differential one d�(ε)

dε = 0

Since ~u → u as ε→ 0, the necessary condition for � to be an extremum is

d�(ε)
dε

∣∣∣∣
ε=0

= 0 (12)

From Eq. 3 ~u = u + εη, and ~u(x)
′
= u ′(x) + εη ′(x), and applying the chain rule

d�(ε)
dε

=

∫ b

a

(
∂F
∂~u

d~u
dε

+
∂F
∂~u ′

d~u ′

dε

)
dx =

∫ b

a

(
η
∂F
∂~u

+ η ′ ∂F
∂~u ′

)
dx (13)

for ε = 0, ~u = u, thus

d�(ε)
dε

∣∣∣∣
ε=0

=

∫ b

a

(
η
∂F
∂u

+ η ′ ∂F
∂u ′

)
dx = 0 (14)
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Euler Equation Differential Form of δ�

Integration by part of the second term leads to∫ b

a

(
η ′ ∂F
∂u ′

)
dx = η

∂F
∂u ′

∣∣∣∣b
a
−
∫ b

a
η(x)

(
d

dx
∂F
∂u ′

)
dx (15)

Substituting,

d�(ε)
dε

∣∣∣∣
ε=0

=

∫ b

a
η(x)

[
∂F
∂u
− d

dx
∂F
∂u ′

]
︸ ︷︷ ︸

I (x ∈ [a, b])

+ η(x)
∂F
∂u ′

∣∣∣∣b
a︸ ︷︷ ︸

II (x = a, b)

= 0 (16)

We will force each one of the two terms to be equal to zero.

First term : will give rise to the governing partial differential equation (or
Euler equation).

Secon term : will enable us to define the boundary conditions
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Euler Equation First term: Euler Equation

The fundamental Lemma of the calculus of variation states that for continuous
	(x) in a ≤ x ≤ b, and with arbitrary continuous function η(x) which vanishes at
a and b, then ∫ b

a
η(x)	(x)dx = 0⇔ 	(x) = 0 (17)

Thus, part I in Eq. 16 yields

∂F
∂u
− d

dx
∂F
∂u ′ = 0 in a < x < b (18)

This differential equation is called the Euler-Lagrange equation associated with
� and is a necessary condition for u(x) to extremize �.

Victor E. Saouma; Univ. of Colorado Euler Equations; Boundary Conditions 11/24



Euler Equation First term: Euler Equation

Generalizing for a functional � which depends on two field variables, u = u(x , y)
and v = v(x , y)

� =

∫ ∫
F (x , y , u, v , u,x , u,y , u,xx , v,yy )dxdy (19)

There would be as many Euler equations as dependent field variables{
∂F
∂u −

∂
∂x

∂F
∂u,x
− ∂
∂y

∂F
∂u,y

+ ∂2

∂x2
∂F
∂u,xx

+ ∂2

∂x∂y
∂F
∂u,xy

+ ∂2

∂y2
∂F
∂u,yy

= 0
∂F
∂v −

∂
∂x

∂F
∂v,x
− ∂
∂y

∂F
∂v,y

+ ∂2

∂x2
∂F
∂v,xx

+ ∂2

∂x∂y
∂F
∂v,xy

+ ∂2

∂y2
∂F
∂v,yy

= 0
(20)

We note that the Functional and the corresponding Euler Equations, Eq. 2 and
18, or Eq. 19 and 20 describe the same problem.

The Euler equations usually correspond to the governing differential equation
and are referred to as the strong form (or classical form).

The functional is referred to as the weak form (or generalized solution). This
classification stems from the fact that equilibrium is enforced in an average
sense over the body.
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Euler Equation First term: Euler Equation

The field variable is differentiated m times in the weak form , and 2m times in the
strong form.

From above, m = 1 (u,xx in Eq. 19 and u,xxxx in Eq. 20.

It can be shown that in the principle of virtual displacements, the Euler equations
are the equilibrium equations, whereas in the principle of virtual forces, they are
the compatibility equations.

Euler equations are differential equations which can not always be solved by
exact methods.

An alternative method consists in bypassing the Euler equations and go directly
to the variational statement of the problem to the solution of the Euler equations.

Finite Element formulation are based on the weak form, whereas the formulation
of Finite Differences are based on the strong form.
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Euler Equation Define δ�

In the preceding section we have just shown that d�(ε)/dε leads to the
Euler-Lagrange equation. We still have to define δ�. The first variation of a
functional expression is

δF = ∂F
∂u δu + ∂F

∂u ′ δu ′

δ� =
∫ b

a δFdx

}
δ� =

∫ b

a

(
∂F
∂u
δu +

∂F
∂u ′ δu

′
)

dx (21)

Integration by parts of the second term (as in Eq. 14) yields

δ� =

∫ b

a
δu
(
∂F
∂u
− d

dx
∂F
∂u ′

)
dx (22)
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Euler Equation Define δ�

We have just shown that finding the stationary value of � by setting δ� = 0 is
equivalent to finding the extremal value of � by setting d�(ε)

dε

∣∣∣
ε=0

equal to zero.

We could have also applied the fundamental Lemma of the calculus of variation
to obtain Euler’s Equation from Eq. 22 since δu is arbitrary.

Similarly, it can be shown that as with second derivatives in calculus, the second
variation δ2� can be used to characterize the extremum as either a minimum or
maximum.

An important observation is that the variational formulation is a scalar one,
whereas the Eulerian one is vectorial.
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Euler Equation Second Term: Boundary Conditions

Revisiting the second part of Eq. 16, we had

η(x)︸︷︷︸
Ess.

∂F
∂u ′

∣∣∣∣b
a︸ ︷︷ ︸

Nat.︸ ︷︷ ︸
Boundary Cond.

= 0 (23)

This can be achieved through the following combinations

η(a) = 0 and η(b) = 0 Essential �u

η(a) = 0 and ∂F
∂u ′ (b) = 0 Mixed �u

⋃
�t

∂F
∂u ′ (a) = 0 and η(b) = 0 Mixed �u

⋃
�t

∂F
∂u ′ (a) = 0 and ∂F

∂u ′ (b) = 0 Natural �t

(24)
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Euler Equation Second Term: Boundary Conditions

For example in the previously investigated column with one end fixed and the
other hinged we had:

Essential: v |x=0= 0; v |x=L= 0; v,x |x=L︸ ︷︷ ︸
θ|x=L

= 0;

Natural: v,xx |x=0︸ ︷︷ ︸
M|x=0

= 0

Generalizing, for a problem with, one field variable, in which the highest
derivative in the governing differential equation is of order 2m (or simply m in the
corresponding functional), then we have

Essential (or forced, or geometric) boundary conditions, (because it was
essential for the derivation of the Euler equation) if η(a) or η(b)
=0. Essential boundary conditions, involve derivatives of order
zero (the field variable itself) through m-1. Trial displacement
functions are explicitly required to satisfy this B.C.
Mathematically, this corresponds to Dirichlet boundary-value
problems.

Victor E. Saouma; Univ. of Colorado Euler Equations; Boundary Conditions 17/24



Euler Equation Second Term: Boundary Conditions

Natural (or natural or static) if we left η to be arbitrary, then it would be
necessary to use ∂F

∂u ′ = 0 at x = a or b. Natural boundary
conditions, involve derivatives of order m and up. This B.C. is
implied by the satisfaction of the variational statement but not
explicitly stated in the functional itself. Mathematically, this
corresponds to Neuman boundary-value problems.

Mixed Boundary-Value/Robin problems, are those in which both essential and
natural boundary conditions are specified on complementary
portions of the boundary (such as �u and �t ).

Problem Axial Member Flexural Member
Distributed load Distributed load

Differential Equation AE d2
u

dx2 + q = 0 EI d4
w

dx4 − q = 0

m 1 2

Essential B.C. [0,m − 1] u w , dw
dx

Natural B.C. [m, 2m − 1] du
dx

d2
w

dx2 and d3
w

dx3

or σxx = Eu,x or M = EIw,xx and V = EIw,xxx
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Euler Equation Example: Bar Extension

The total potential energy � of an axial member of length L, modulus of elasticity
E , cross sectional area A, fixed at left end and subjected to an axial force P at
the right one is given by

� =

∫ L

0

EA
2

(
du
dx

)2

dx − Pu(L) (25)

where the first term represents the strain energy sotred in the bar, and the
second term denotes the work done on the bar by the load P in displacing the
end x = L through displacement u(L).

Determine the Euler Equation by requiring that � be a minimum.
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Euler Equation Example: Bar Extension

Solution I The first variation of � is given by

δ� =

∫ L

0

EA
2

2
(

du
dx

)
δ

(
du
dx

)
dx − Pδu(L) (26)

Integrating by parts we obtain

δ� =

∫ L

0
− d

dx

(
EA

du
dx

)
δudx + EA

du
dx
δu
∣∣∣∣L
0
− Pδu(L) = 0 (27)

= −
∫ L

0
δu

d
dx

(
EA

du
dx

)
︸ ︷︷ ︸

Euler Eq.

dx +

[(
EA

du
dx

)∣∣∣∣
x=L
− P

]
︸ ︷︷ ︸

B.C.

δu(L)

−
(

EA
du
dx

)∣∣∣∣
x=0

δu(0)︸ ︷︷ ︸
0

(28)

The last term is zero because of the specified essential boundary
condition which implies that δu(0) = 0. Recalling that δ in an arbitrary
operator which can be assigned any value, we set the coefficients of
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Euler Equation Example: Bar Extension

δu between (0, L) and those for δu at x = L equal to zero separately,
and obtain
Euler Equation:

− d
dx

(
EA

du
dx

)
= 0 0 < x < L (29)

Natural Boundary Condition:

EA
du
dx
− P = 0 at x = L (30)

Solution II We have

F (x , u, u ′) =
EA
2

(
du
dx

)2

(31)

(note that since P is an applied load at the end of the member, it does
not appear as part of F (x , u, u ′). To evaluate the Euler Equation from
Eq. 18, we evaluate

∂F
∂u

= 0 &
∂F
∂u ′ = EAu ′ (32)
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Euler Equation Example: Bar Extension

Thus, substituting into Eq. 18, we obtain

∂F
∂u
− d

dx
∂F
∂u ′ = 0⇒ − d

dx
(EAu ′) = 0 Euler Equation (33)

EA
du
dx

= 0 B.C. (34)
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Euler Equation Flexure of a Beam

The total potential energy of a beam supporting a uniform load p is given by

� =

∫ L

0

(
1
2

Mκ− pw
)

dx =

∫ L

0

(
1
2
(EIw ′′)w ′′ − pw

)
︸ ︷︷ ︸

F

dx (35)

Derive the first variational of �.

Extending Eq. 21, and integrating by part twice

δ� =

∫ L

0
δFdx =

∫ L

0

(
∂F
∂w ′′ δw

′′ +
∂F
∂w

δw
)

dx (36)

=

∫ L

0
(EIw ′′δw ′′ − pδw)dx (37)

= (EIw ′′δw ′)
∣∣L
0 −

∫ L

0

[
(EIw ′′) ′δw ′ + pδw

]
dx (38)

= (EIw ′′︸ ︷︷ ︸
Nat.

δw ′)
∣∣L
0︸ ︷︷ ︸

Ess.

− [(EIw ′′) ′︸ ︷︷ ︸
Nat.

δw ]|L0︸ ︷︷ ︸
Ess.︸ ︷︷ ︸

BC

+

∫ L

0

[
(EIw ′′) ′′ − p

]︸ ︷︷ ︸
Euler Eq.

δwdx = 0 (39)
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Euler Equation Flexure of a Beam

Or
(EIw ′′) ′′ = p for all x

which is the governing differential equation of beams and

Essential Natural
δw ′ = 0 or EIw ′′ = −M = 0
δw = 0 or (EIw ′′) ′ = −V = 0

at x = 0 and x = L
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Introduction

There are two sources of nonlinearities: Material and Geometric.

Geometric nonlinearity, in the context of analysis of skeletal structures, refers to

Effect if initial member imperfection which could result in instability or
buckling.
P −� effects, secondary moments equal to vertical loads time the
corresponding lateral displacements. It is a structural effect.
P − δ effects is the “stress stiffening” of an element on account of the axial
load. It is an member effect.

We will focus on the former, and in so doing will also address the interaction
between axial and flexural stiffnesses (through the geometric stiffness matrix)
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Introduction

Displacement
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3. Elastic Critical Load

5*  Elastic Stability

4. Inelastic Critical Load

7 Plastic Limit Load

6* Inelastic Stability

1. First Order Elastic
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6. Second Order Inelastic

2. First Order Inelastic L
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Introduction

Constitutive Equations
Undeformed Shape Deformed Shape

Elastic Inelastic Elastic Inelastic
(Linear) (Non Linear) (Linear) (Non Linear)

Kinematic Eq.

1st Order
1 (C:L-K:L) 2 (C:NL-K:L)

Critical Load
(Linear) 3 Elastic 4 Inelastic

2nd Order
5 (C:L-K:NL) 6 (C:NL-K:NL) - -

(Non Linear)
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Euler Buckling Load Derivation

i
d

d M

V

d

d

x

x
V+       Δ x

M+       Δ x

w(x)

P

y, v Δ x

x

w

M
P

Δ x

dv
dx P

V
P

Summing moments wrt i using the deformed shape:

M −
(

M +
dM
dx

�x
)
+
�
��
�*0

w
(�x)2

2
+

V +
�
�
��>

0
dV
dx

�x

�x

︸ ︷︷ ︸
+P

(
dv
dx

)
�x︸ ︷︷ ︸ = 0

Neglecting the terms in �x2, and then differentiating each term with respect to x

−d2M
dx2 +

dV
dx

+ P
d2v
dx2 = 0
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Euler Buckling Load Derivation

Equilibrium in the y direction gives dV
dx = −w , and beam theory M = −EI d2v

dx2 .

Combining

EI
d4v
dx4 + P

d2v
dx2 = w

Let k2 = P
EI ⇒ v = C1 sin kx + C2 cos kx + C3x + C4
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Euler Buckling Load Application 1: Hinged-Hinged

For a hinge-hinge column, BC:

Essential: v |x=0 = 0; v |x=L = 0;
Natural: v,xx |x=0︸ ︷︷ ︸

M|x=0

= 0; v,xx |x=L︸ ︷︷ ︸
M|x=L

= 0

substitution of the two conditions at x = 0 leads to C2 = C4 = 0.

From the remaining conditions, we obtain C1 sin kL + C3L = 0 and
−C1k2 sin kl = 0⇒ kL = nπ for n = 1, 2, 3 · · ·.

For n = 1,

Pcr =
π2EI
L2
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Euler Buckling Load Application 2: Hinged-Fixed

Consider a column with one end fixed (at x = L), and one end hinged (at x = 0)

Essential: v |x=0= 0; v |x=L= 0; v,x |x=L︸ ︷︷ ︸
θ|x=L

= 0;

Natural: v,xx |x=0︸ ︷︷ ︸
M|x=0

= 0

⇒ C2 = C4 = 0 and sin kL− kL cos kL = 0 or tan kL = kL which is a
transcendental algebraic equation and can only be solved numerically.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
−10.0

−8.0

−6.0

−4.0

−2.0

0.0

2.0

4.0

6.0

8.0

10.0

Smallest positive root is kL = 4.4934,
since k2 = P

EI , the smallest critical

load is Pcr =
(4.4934)2

L2 EI = π2

(0.699L)2 EI

Note that if we were to solve for x
such that v,xx = 0 (i.e. an inflection
point), then x = 0.699L.
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Weak Form

In order to discretize the problem (through finite element), we need to
first obtain the weak form of the governing differential equation.

We will (as before) apply the principle of virtual strain energy.

Contrarily to before, the expression of the strain will be enriched by
additional higher order terms (initially neglected).
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Weak Form Strain

Axial:
εxx = u,x︸︷︷︸

First Order

+
1
2
(u2
,x + v2

,x + w2
,x)︸ ︷︷ ︸

Second Order

u and v are the axial and transversal displacements respectively. Second order
term is the “counterpart” of writing the equilibrium equation in the deformed
shape in the analytical solution

Flexural
d2v
dx2 = M

EI

σxx = −My
I

}
εxx = −y

d2v
dx2

Total strain would be

εxx(x , y) =
du
dx︸︷︷︸
Axial

− y
(

d2v
dx2

)
︸ ︷︷ ︸

Flexure︸ ︷︷ ︸
Small Deformation

+
1
2

(
dv
dx

)2

︸ ︷︷ ︸
Large Deformation

(1)

Note that second term is negative since for positive y (top) we have
compressive stresses, and the first and second terms are the familiar
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Weak Form Strain

components of axial and flexural strains respectively, and the third one (which is
nonlinear) is obtained from large-deflection strain-displacement.
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Weak Form Internal Strain Energy of a Beam Column

The (elastic) virtual Strain energy of the element is given by

δU(e)
i =

1
2

∫



σxxδεxx d
 =
1
2

∫



Eεxxδεxx d
 (2)

Substituting Eq. ?? into U(e)
i we obtain

δU(e)
i = 1

2

∫
L

∫
A

[
du
dx

dδu
dx

+ y2 d2v
dx2

d2δv
dx2 +

1
4

(
dv
dx

)2(dδv
dx

)2

−2y
( du

dx

) dv
dx

dδv
dx −y

( dv
dx

dδv
dx

) ( dv
dx

)2
+
( du

dx

) ( dv
dx

dδv
dx

)]
EdAdx

(3)

Recalling that
∫

A
dA = A, and

∫
A
ydA def

= 0 and
∫

A
y2dA def

= I,

Discarding highest order term and under the assumption of an independent
prebuckling analysis for axial loading where P(e) = EA du

dx ⇒ A du
dx = P(e)

E
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Weak Form Internal Strain Energy of a Beam Column

We obtain

δU(e)
i = δU(e,a)

i + δU(e,f)
i (4)

δU(e,a)
i =

1
2

∫
L
EA

dδu
dx

du
dx

dx (5)

δU(e,f)
i =

1
2

∫
L

[
EI

d2v
dx2

d2δv
dx2 + P(e) dv

dx
dδv
dx

]
dx (6)
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Finite Element Discretization

Assuming a functional representation of the transverse displacements in terms
of the four joint displacements v = Nu, dv

dx = N,xu, d2v
dx2 = N,xxu,

The internal virtual strain energy must be equal to the external virtual work

δU(e,f)
i =

1
2

∫
L

[
EI

d2v
dx2

d2δv
dx2 + P(e) dv

dx
dδv
dx

]
dx

δWe = P(e)
∫ L

0

[(
dδu
dx

du
dx

)
+

(
dδv
dx

dv
dx

)]
dx

[Ke +Kg ]ue = P

[
k
(e)
e

]
=

∫
L
EI {N,xx}︸ ︷︷ ︸

BT

bN,xxc︸ ︷︷ ︸
B

dx


[
k
(e)
g

]
=

[
P(e)

∫
L
{N,x} bN,xcdx

]
Geometric Stiffness Matrix

Note that the geometric stiffness matrix terms solely depend on geometric
parameters (length).
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Finite Element Discretization

Substituting the shape functions:

k
(e)
g =

P
L



u1 v1 θ1 u2 v2 θ2

0 0 0 0 0 0
0 6

5
L

10 0 − 6
5

L
10

0 L
10

2
15 L2 0 − L

10 − L2

30
0 0 0 0 0 0
0 − 6

5 − L
10 0 6

5 − L
10

0 L
10 − L2

30 0 − L
10

2
15 L2



The equilibrium relation is ku = P and k(e) = k
(e)
e + k

(e)
g and in a global

formulation,we would have K = Ke +Kg

We note that the structure becomes stiffer for tensile load P applied through Kg ,
and weaker in compression.
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Elastic Instability; Bifurcation Analysis Derivation

We seek to determine the multiplier λ of an initial load vector P
∗

obtained from a
first order linear elastic analysis which will cause buckling, Pcr = λP

∗

Since the geometric stiffness matrix is proportional to the internal forces,
Kg = λK

∗
g where K∗g corresponds to the geometric stiffness matrix for the

reference load P
∗

(usually set to unity).

The elastic stiffness matrix Ke remains a constant, hence we can write
(Ke + λK

∗
g)u− λP

∗︸︷︷︸
Pcr

= 0

The displacements are in turn given by u = (Ke + λK
∗
g)
−1λP

∗
and for the

displacements to tend toward infinity (i.e buckling/bifurcation/instability), then
|Ke + λK

∗
g |= 0 which can also be expressed as |K∗−1

g Ke + λI|= 0 which is an
eigenvalue problem from which we can solve the eigenvalues λ.

Since K∗g has some zero terms along the diagonal, we use an alternate
formulation

|K−1
e K∗g +

1
λ
I|= 0

however, K−1
e K∗g may not be symmetric.
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Elastic Instability; Bifurcation Analysis Derivation

The lowest value of λ, λcrit will give the buckling load for the structure and the
buckling loads will be given by Pcrit = λcritP

∗
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Elastic Instability; Bifurcation Analysis Example 1

k1
e =



1 2 3 4 5 6
EA
L 0 0 −EA

L 0 0
0 12EI

L3
6EI
L2 0 − 12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 − 6EI

L2
2EI
L

−EA
L 0 0 EA

L 0 0
0 − 12EI

L3 − 6EI
L2 0 12EI

L3 − 6EI
L2

0 6EI
L2

2EI
L 0 − 6EI

L2
4EI
L



k1
g =

−P
L



1 2 3 4 5 6
0 0 0 0 0 0
0 6

5
L

10 0 − 6
5

L
10

0 L
10

2
15 L2 0 − L

10 − L2

30
0 0 0 0 0 0
0 − 6

5 − L
10 0 6

5 − L
10

0 L
10 − L2

30 0 − L
10

2
15 L2


The structure’s stiffness matrices Ke and Kg can now be assembled from the
element stiffnesses.
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Elastic Instability; Bifurcation Analysis Example 1

Eliminating rows and columns 2, 7, 8, 9 corresponding to zero displacements in
the column, we obtain

Ke =
EI
L3



1 4 3 5 6
AL2

I −AL2

I 0 0 0
−AL2

I 2 AL2

I 0 0 0
0 0 4L2 −6L 2L2

0 0 −6L 24 0
0 0 2L2 0 8L2



Kg =
−P
L



1 4 3 5 6
0 0 0 0 0
0 0 0 0 0
0 0 2

15 L2 −L
10

−L2

30
0 0 −L

10
12
5 0

0 0 −L2

30 0 4
15 L2
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Elastic Instability; Bifurcation Analysis Example 1

Noting that in this case K∗g = Kg for P = 1, the determinant |Ke + λK
∗
g |= 0 leads

to ∣∣∣∣∣∣∣∣∣∣∣∣

1 4 3 5 6
1 AL2

I −AL2

I 0 0 0
4 −AL2

I 2 AL2

I 0 0 0
3 0 0 4L2 − 2

15
λL4

EI −6L + 1
10
λL3

EI 2L2 + 1
30
λL4

EI

5 0 0 −6L + 1
10
λL3

EI 24− 12
5
λL2

EI 0

6 0 0 2L2 + 1
30
λL4

EI 0 8L2 − 4
15
λL4

EI

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

At his point we can either solve numerically or algebraically. Let us be brave
enoughand go with the second:

Introducing φ = AL2

I and µ = λL2

EI , the determinant becomes

∣∣∣∣∣∣∣∣∣∣

1 4 3 5 6
1 φ −φ 0 0 0
4 −φ 2φ 0 0 0
3 0 0 2

(
2− µ

15

)
−6L + µ

10 2 + µ
30

5 0 0 −6L + µ
10 12

(
2− µ

5

)
0

6 0 0 2 + µ
30 0 4

(
2− µ

15

)

∣∣∣∣∣∣∣∣∣∣
= 0
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Elastic Instability; Bifurcation Analysis Example 1

Expanding the determinant, we obtain the cubic equation in µ
3µ3 − 220µ2 + 3, 840µ− 14, 400 = 0 and the lowest root of this equation is
µ = 5.1772. Hence the buckling load of the column of length 2L is
Pcr = λ =

5.1772EI
L2

The exact solution for a column of length L is

Pcr =
(4.4934)2

L2 EI = (4.4934)2

(2L)2 EI = 5.0477 EI
L2

Thus, the numerical value is about 2.6 percent higher than the exact one.
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Elastic Instability; Bifurcation Analysis Example 2;

θ2
u1 u1

I=100

I=200
I=50

P P

10'

15'

6'

θ3

1

2

3

(Ke − PKg)u = 0

∣∣∣∣∣∣
u1 θ2 θ3

(66.75)− P(0.026666) (1, 208.33)− P(0.1) (1, 678.24)− P(0.1)
(1, 208.33)− P(0.1) (225, 556.)− P(16.) (64, 444.4)− P(0)
(1, 678.24)− P(0.1) (64, 444.)− P(0) (209, 444.)− P(9.6)

∣∣∣∣∣∣ = 0

The smallest buckling load amplification factor λ is equal to 2, 017 kips.
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Elastic Instability; Bifurcation Analysis Example 2; II Mathematica Code

1 ( * I n i t i a l i z e constants * )
2 a1=0 a2=0 a3=0 i 1 =100 i 2 =200 i 3 =50 l 1 =10 12 l 2 =15 12 l 3 =6 12 e1=29000 e2=e1 e3=e1
3 ( * Def ine e l a s t i c s t i f f n e s s matr ices * )
4 ke [ e_ , a_ , l_ , i _ ] : = {
5 { e a / l , 0 , 0 , −e a / l , 0 , 0 } ,
6 {0 , 12 e i / l ^3 , 6 e i / l ^2 , 0 , −12 e i / l ^3 , 6 e i / l ^2 } ,
7 {0 , 6 e i / l ^2 , 4 e i / l , 0 , −6 e i / l ^2 , 2 e i / l } ,
8 { −e a / l , 0 , 0 , e a / l , 0 , 0 } ,
9 { 0 , −12 e i / l ^3 , −6 e i / l ^2 , 0 , 12 e i / l ^3 , −6 e i / l ^2 } ,

10 { 0 , 6e i / l ^2 , 2 e i / l , 0 , −6 e i / l ^2 , 4 e i / l } }
11 ke1=ke [ e1 , a1 , l1 , i 1 ] ; ke2=ke [ e2 , a2 , l2 , i 2 ] ; ke3=ke [ e3 , a3 , l3 , i 3 ]
12 ( * Def ine geometr ic s t i f f n e s s matr ices * )
13 kg [ l_ , p_ ] : = p / l {
14 {0 , 0 , 0 , 0 , 0 , 0 } , {0 , 6/5 , l /10 , 0 , − 6/5 , l /10 } ,
15 {0 , l /10 , 2 l ^2/15 , 0 , − l /10 , − l ^2/30 } , {0 , 0 , 0 , 0 , 0 , 0 } ,
16 {0 , −6/5 , − l /10 , 0 , 6/5 , − l /10 } , {0 , l /10 , − l ^2/30 , 0 , − l /10 , 2 l ^2/15 }

}
17 kg1=kg [ l1 , 1 ]
18 kg3=kg [ l3 , 1 ]
19 ( * Assemble s t r u c t u r e e l a s t i c and geometr ic s t i f f n e s s matr ices * )
20 ke ={
21 { ke1 [ [ 2 , 2 ] ] + ke3 [ [ 2 , 2 ] ] , ke1 [ [ 2 , 3 ] ] , ke3 [ [ 2 , 3 ] ] } ,
22 { ke1 [ [ 3 , 2 ] ] , ke1 [ [ 3 , 3 ] ] + ke2 [ [ 3 , 3 ] ] , ke2 [ [ 3 , 6 ] ] } ,
23 { ke3 [ [ 3 , 2 ] ] , ke2 [ [ 6 , 3 ] ] , ke2 [ [ 6 , 6 ] ] + ke3 [ [ 3 , 3 ] ] } }
24 kg ={
25 { kg1 [ [ 2 , 2 ] ] + kg3 [ [ 2 , 2 ] ] , kg1 [ [ 2 , 3 ] ] , kg3 [ [ 2 , 3 ] ] } ,
26 { kg1 [ [ 3 , 2 ] ] , kg1 [ [ 3 , 3 ] ] , 0 } ,
27 { kg3 [ [ 3 , 2 ] ] , 0 , kg3 [ [ 3 , 3 ] ] } }
28 ( * Determine c r i t i c a l loads i n terms of p ( note p=1) * )
29 p=1
30 keigen=Inverse [ kg ] . ke ; p c r i t =N[ Eigenvalues [ keigen ] ] ; modshap=N[ Eigensystems [ keigen ] ]
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Effect of Axial Load on Flexural
Deformation

v1 Θ 2
6 m 6 m

50 kN
80,000kN 80,000 kN

Using two elements for the beam column, the only degrees of freedom are the deflection and rotation at midspan (we
neglect the axial deformation).

Assembling the stiffness and geometric matrices:{
v1
θ2

}
=

{
−0.00012123

0

}
︸ ︷︷ ︸

P=−80,000

=

{
−0.0001125

0

}
︸ ︷︷ ︸

P=0

=

{
−0.000104944

0

}
︸ ︷︷ ︸

P=80,000

The member end forces for element 1 are given by

Plft
Vlft
Mlft
Prgt
Vrgt
Mrgt


=

[
[k

1
e] + [k

1
g ]
]


ulft
vlft
θlft
urgt
vrgt
θrgt


=



0
25.

79.8491
0.
−25.

79.8491

︸ ︷︷ ︸
P=−80,000

=



0
25.
75.
0.
−25.
75.

︸ ︷︷ ︸
P=0

=



0
25.

70.8022
0.
−25.

70.8022

︸ ︷︷ ︸
P=80,000

Compressive force increased the displacements and the end moments, whereas a tensile one stiffens the structure by
reducing them.
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Effect of Axial Load on Flexural
Deformation II Mathematica

1 ( * I n i t i a l i z e constants * )
2 OpenWrite [ " mat . out " ] ; a1=1; a2=1; i 1 =1 l ^3 /12 ; i 2 = i 1 ; l 1 =12; l 2 =12; e1=200000;e2=e1 ; e3=e1 ;
3 theta1=N[ Pi / 8 ] ; the ta2=Pi − theta1 ; load i 1 = i i 2 = i 1 l =6 l 1 = l l 2 =6 p=−80000 load ={ −50 ,0}
4 ( * Def ine e l a s t i c s t i f f n e s s matr ices * )
5 ke [ e_ , a_ , l_ , i _ ] : = {
6 { e a / l , 0 , 0 , −e a / l , 0 , 0 } ,
7 {0 , 12 e i / l ^3 , 6 e i / l ^2 , 0 , −12 e i / l ^3 , 6 e i / l ^2 } ,
8 {0 , 6 e i / l ^2 , 4 e i / l , 0 , −6 e i / l ^2 , 2 e i / l } ,
9 { −e a / l , 0 , 0 , e a / l , 0 , 0 } ,

10 { 0 , −12 e i / l ^3 , −6 e i / l ^2 , 0 , 12 e i / l ^3 , −6 e i / l ^2 } ,
11 { 0 , 6e i / l ^2 , 2 e i / l , 0 , −6 e i / l ^2 , 4 e i / l } }
12 ke1=N[ ke [ e , a1 , l1 , i 1 ] ] ; ke2=N[ ke [ e , a2 , l2 , i 2 ] ]
13 ( * Assemble s t r u c t u r e e l a s t i c s t i f f n e s s matr ices * )
14 ke=N[ {
15 { ke1 [ [ 5 , 5 ] ] + ke2 [ [ 2 , 2 ] ] , ke1 [ [ 5 , 6 ] ] + ke2 [ [ 2 , 3 ] ] } ,
16 { ke1 [ [ 6 , 5 ] ] + ke2 [ [ 3 , 2 ] ] , ke1 [ [ 6 , 6 ] ] + ke2 [ [ 3 , 3 ] ] } } ]
17 Wr i t eS t r i ng [ " mat . out " , MatrixForm [ ke1 ] ] ; Wr i t eS t r i ng [ " mat . out " , MatrixForm [ ke2 ] ] ;
18 Wr i t eS t r i ng [ " mat . out " , MatrixForm [ ke ] ]
19 ( * Def ine geometr ic s t i f f n e s s matr ices * )
20 kg [ p_ , l _ ] : = p / l {
21 {0 , 0 , 0 , 0 , 0 , 0 } , {0 , 6/5 , l /10 , 0 , − 6/5 , l /10 } ,
22 {0 , l /10 , 2 l ^2/15 , 0 , − l /10 , − l ^2/30 } , {0 , 0 , 0 , 0 , 0 , 0 } ,
23 {0 , −6/5 , − l /10 , 0 , 6/5 , − l /10 } , {0 , l /10 , − l ^2/30 , 0 , − l /10 , 2 l ^2/15 }

}
24 kg1=N[ kg [ p , l 1 ] ] ; kg2=N[ kg [ p , l 2 ] ]
25 ( * Assemble s t r u c t u r e geometr ic s t i f f n e s s matr ices * )
26 kg=N[ {
27 { kg1 [ [ 5 , 5 ] ] + kg2 [ [ 2 , 2 ] ] , kg1 [ [ 5 , 6 ] ] + kg2 [ [ 2 , 3 ] ] } ,
28 { kg1 [ [ 6 , 5 ] ] + kg2 [ [ 3 , 2 ] ] , kg1 [ [ 6 , 6 ] ] + kg2 [ [ 3 , 3 ] ] } } ]
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Effect of Axial Load on Flexural
Deformation II Mathematica

1 ( * Determine c r i t i c a l loads and normal ize wr t p * )
2 keigen=Inverse [ kg ] . ke ; p c r i t =N[ Eigenvalues [ keigen ] p ]
3 ( * Note t h a t t h i s g ives lowest p c r i t =1.11 10^6 , exact value i s 1.095 10^6 * )
4 ( * Add e l a s t i c to geometr ic s t r u c t u r e s t i f f n e s s matr ices * )
5 k=ke+kg
6 ( * I n v e r t s t i f f n e s s mat r i x and solve f o r displacements * )
7 km1=Inverse [ k ] d i s=N[km1 . load ]
8 ( * Displacements o f element 1* )
9 d is1 ={0 , 0 , 0 , 0 , d i s [ [ 1 ] ] , d i s [ [ 2 ] ] }

10 k1=ke1+kg1
11 ( * Member end fo rces f o r element 1 w i th a x i a l fo rces * )
12 endfrc1=N[ k1 . d is1 ]
13 ( * Member end fo rces f o r element 1 w i thou t a x i a l fo rces * )
14 knopm1=Inverse [ ke ] ; disnop=N[ knopm1 . load ] ; disnop1 ={0 , 0 , 0 , 0 , disnop [ [ 1 ] ] , disnop [ [ 2 ] ] }
15 ( * Displacements o f element 1* )
16 endfrcnop1=N[ ke1 . disnop1 ]
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Second-Order Elastic Analysis; Geometric
Non-Linearity Theory

Displacement

L
oa

d
3. Elastic Critical Load

5*  Elastic Stability

4. Inelastic Critical Load

7 Plastic Limit Load

6* Inelastic Stability

1. First Order Elastic

B
if

ur
ca

ti
on

6. Second Order Inelastic

2. First Order Inelastic L
im

it
s

So far, we have focused on bifurcation analysis (type 3), we now seek to perform
a second order elastic analysis (type 5).

[Ke +Kg ]u = P
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Second-Order Elastic Analysis; Geometric
Non-Linearity Theory

Since kg depends on the magnitude of P(e), which itself may be an unknown in a
framework, then we do have a geometrically non-linear problem.

A simple way to solve this nonlinear equation is to use a step-by-step or
incremental procedure. The linearized incremental formulation can be obtained
by applying an incremental operator �

{�u}i = [Ke +Kg ]
−1
i

{
�P
}

i

Actual

Computed

ΔP1

ΔP2

ΔP3

ΔP4

Δu2 Δu3
Δu4

u2

u3

u4

Parallel

In an incremental analysis, we should:

Apply an incremental load �Pi at each increment i .

At the end of each increment:
Update the total displacement ui = ui−1 +�ui .

Update the geometry xi = xi−1 +�ui , get new lengths.

Update the transformation matrix.

Update the elastic and geometric stiffness matrix

Note that we are not checking for equilibrium at the end of each increment
(more about this later), and if we take sufficiently small steps, solution should
not diverge too much.

Update of geometry should also take care of P −� effects.

Victor E. Saouma; Univ. of Colorado Geometric Non-Linearities 29/1



Second-Order Elastic Analysis; Geometric
Non-Linearity Algorithmic Considerations

Keep in mind that this is an incremental analysis, each analysis is one
associated with an increment of the load. At the each of each increment:

Displacements �ui ; ui = ui−1 +�ui

Nodal coordinates xi = xi−1 +�ui

Internal forces �Fi ; Fi = Fi−1 +�Fi

Total Reactions �Ri ; Ri = Ri−1 +�Ri

Recompute at the beginning of each increment:

Lengths, direction cosines, transformation matrix.
Element stiffness matrix based on updated nodal coordinates and
transformation matrix.
Geometric stiffness matrix based on updated total axial force (from
element internal forces) for each element.

Use k and kg to compute the internal forces.
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P-Delta Revisited

P −� a structural effect achieved by updating the geometry
Augmented Lagrangian formulation: xi = xi−1 +�ui . It
does not account for the deformed shape of the member.
It accounts for the effect of axial load on equilibrium.

P − δ a member effect accounted for through the addition of the
geometric stiffness matrix. It accounts for the effect of
axial load on internal forces in the deformed configuration.

If many elements model a column, in the limit one can ignore Kg , and
eventually, there will be a large displacement at the corresponding
“buckling load". This can be easily verified.
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Introduction

Material nonlinearity is the dominant source of nonlinearity in the structural
response of most civil engineering structures.

In the context of this course, plasticity would refer to both steel and concrete.

Coverage will follow a three tier approach:

Material (stress-strain) level, uniaxial and multiaxial (though not as relevant
in this course).
Section (Moment-Curvature)
Structural.
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Mechanics Stress Tensor
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31
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32

X
2

X1

 

1

X3

X2

Components of a vector are scalars

V

V

V2

3

 11

3
X

1

V

X

Stresses as components of a traction vector, 

Components of tensor of order 2 are vectors 

t

t

t
1

2

3

tn1 = σ11n1 + σ21n2 + σ31n3

tn2 = σ12n1 + σ22n2 + σ32n3

tn3 = σ13n1 + σ23n2 + σ33n3

tni = σji nj

tn = n·σ = σ
T ·n

Cauchy stress tensor:

σij =


t(1)

t(2)

t(3)

 =

 σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33


Note that this stress tensor is really defined in the
undeformed space (Eulerian), it could be defined in
terms of the deformed space (Lagrangian).

σ =

 7 −5 0
−5 3 1
0 1 2

 =


t1
t2
t3


We seek to determine the traction (or stress vector) t passing through P and
parallel to the plane ABC where A(4, 0, 0), B(0, 2, 0) and C(0, 0, 6).
The vector normal to the plane can be found by taking the cross products of
vectors AB and AC:

N = AB×AC =

∣∣∣∣∣∣∣
e1 e2 e3
−4 2 0
−4 0 6

∣∣∣∣∣∣∣ = 12e1 + 24e2 + 8e3 The unit

normal of N is given by n = 3
7 e1 + 6

7 e2 + 2
7 e3 Hence the stress vector

(traction) will be

b 3
7

6
7

2
7 c

 7 −5 0
−5 3 1
0 1 2

 = b − 9
7

5
7

10
7 c

and thus t = − 9
7 e1 + 5

7 e2 + 10
7 e3
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Mechanics Stress Transformation

Stress transformation for the second order stress tensor is given by
[σ] = [A][σ][A]T where [A] is the transformation matrix composed of the direction
cosines.

Note analogy with the transformation of the stiffness matrix from local to global
coordinate system K = ΓT kΓ

For the 2D plane stress this simplifies to


σxx
σyy
σxy

 =

 cos2 α sin2 α 2 sinα cosα

sin2 α cos2 α −2 sinα cosα

− sinα cosα cosα sinα cos2 α− sin2 α




σxx
σyy
σxy
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Mechanics Principal Stresses

σ
11

σ 12

tn

t
n1

n2ttnn
σ=

t
n1

t
n2

n
n

n1

n2

σ
11

σ 12
t n

=

=

n

Arbitrary Plane

Initial (X1) Plane

Principal Plane

t
n2

t
n1

σ n

σ s sσ  =0

Choose a special set of axis through the point so that
the shear stress components vanish when the stress
components are referred to this system of axis
⇒principal axes of the principal stresses.

n unit vector in one of the unknown directions. λ: the
principal-stress component on the plane whose normal
is n (note both n and λ are yet unknown). Since there is
no shear stress component on the plane perpendicular
to n, the stress vector on this plane must be parallel to
n and tn = λn⇒ n·σ = λn or n (σ− λI) = 0

∣∣∣∣∣∣∣
σ11 − λ σ12 σ13
σ21 σ22 − λ σ23
σ31 σ32 σ33 − λ

∣∣∣∣∣∣∣ = 0

The three lambdas correspond to the three principal
stresses σ(1) > σ(2) > σ(3).

Stress tensor σ =

 3 1 1
1 0 2
1 2 0

, determine the principal

stress values and the corresponding directions.∣∣∣∣∣∣∣
3− λ 1 1

1 0− λ 2
1 2 0− λ

∣∣∣∣∣∣∣ = 0 Or upon expansion (and

simplification) (λ + 2)(λ− 4)(λ− 1) = 0, thus the roots are
σ(1) = −2, σ(2) = 1 and σ(3) = 4. We also note that those
are the three eigenvalues of the stress tensor. If we let x1 axis

be the one corresponding to the direction of σ(1) and n(1)
i be

the direction cosines of this axis, then


(3 + 2)n(1)

1 + n(1)
2 + n(1)

3 = 0

n(1)
1 − 2n(1)

2 + 2n(1)
3 = 0

n(1)
1 + 2n(1)

2 − 2n(1)
3 = 0

thus

n(1)
1 = 0 n(1)

2 = 1√
2

n(1)
3 = − 1√

2
n(2)

1 = 1√
3

n(2)
2 = − 1√

3
n(2)

3 = − 1√
3

n(3)
1 = − 2√

6
n(3)

2 = − 1√
6

n(3)
3 = − 1√

6

Finally, we can convince ourselves that the two stress tensors
have the same invariants I1, I2 and I3.
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Mechanics Invariants

Principal stresses are physical quantities, whose values do not depend on the
coordinate system in which the components of the stress were initially given.
They are therefore invariants of the stress state.

When the determinant in the characteristic equation is expanded, the cubic
equation is: λ3 − I1λ2 − I2λ− I3 = 0 where I1, I2 and I3 (in terms of principal
stresses are given by

I1 = σ(1) + σ(2) + σ(3)

I2 = −
(
σ(1)σ(2) + σ(2)σ(3) + σ(3)σ(1)

)
I3 = σ(1)σ(2)σ(3)

where σ(1) < σ(2) < σ(3)
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Mechanics Hydrostatic and Deviatoric Stress Tensors

We first define a mean normal stress as
σ = p = 1

3 (σ11 + σ22 + σ33) =
1
3σii =

1
3 tr σ

The stress tensor can be written as the
sum of two tensors a hydrostatic one and a
deviatoric one:
Hydrostatic stress in which each normal
stress is equal to−p and the shear
stresses are zero. The hydrostatic stress
produces volume change without change in
shape

σhyd = pI =

 p 0 0
0 p 0
0 0 p



Deviatoric Stress: which causes the change in shape.

σdev = s = σ− σhyd =

 σ11 − p σ12 σ13
σ21 σ22 − p σ23
σ31 σ32 σ33 − p


The deviatoric stress Invariants are referred as (in terms of principal
stresses) J1 = s(1) + s(2) + s(3),
J2 = −(s(1)s(2) + s(2)s(3) + s(3)s(1)), and J3 = s(1)s(2)s(3).

It can be shown (upon substitution) that in terms of principal stresses,
J2 =

2
3

[(
σ(1)−σ(2)

2

)2
+

(
σ(2)−σ(3)

2

)2
+

(
σ(3)−σ(1)

2

)2
]

and J2 = 2
3

(
τ2
(1) + τ

2
(2) + τ

2
(3)

)
We note that J2 is really associated with shear stresses and
distortional deformation.
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Laboratory Observations Metals

σy

O

A

C

E

ε

σu

σ

D
B

εe
A
εp

B εe
A

Up to A, linearly elastic unloading follows
initial loading path. O-A behavior is load path
independent.

At A we reach the elastic limit, material
becomes plastic and behaves irreversibly.
First yielding (A-D) and then hardening.

Unloading: permanent strain or plastic strain
εp. Thus only part of the total strain εB at B is
recovered upon unloading, that is the elastic
strain εe

A.
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Laboratory Observations Metals

σ

O

A0

C

σyA
A

B

σy0

σy0 2σy0

σy0
σyB

σyB

σy0 Yield point due to Baushinger Effect

Yield point ignoring Baushinger Effect

TensionCompression

σ i
=

σ y
σ b

=
σ p

Strain hardening in one direction, followed by reversed loading in the other,⇒
stress-strain curve will be different from the one obtained from pure tension or
compression.
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Laboratory Observations Metals

New yield point in compression at B corresponds to stress σB
y smaller than σ0

y

and much smaller than the previous yield stress at A. This phenomena is called
Bauschinger effect, or kinematic hardening (as opposed to isotropic hardening).

Stress-strain behavior in the plastic range is path dependent, i.e. strain will not
depend on the the current stress state, but also on the entire loading history, i.e.
stress history and deformation history.
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Laboratory Observations Concrete

fc

fc

E  , E  ,   
1 2

ν12

1

2

31

1

2

3

4

5

6

1

2

3

4

5

6

σ

ε~0.003

~0.5

Isotropic

νE,  

Orthotropic

1

Concrete contains microcracks due
to shrinkage, and is originally
isotropic.

As the stress reaches ' 0.5f ′c ,
interface cracks around the
aggregates propagate, and tend to
align themselves with the
compressive stress.

At peak stress, a mechanism is formed (coalescence of the micro-cracks).

If a load is applied, sudden failure at peak.

if displacement is imposed, post-peak softening
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Chemical Bonds

Na+Cl-Cl- Na+

Na+

Cl-Cl-Cl- Na+

Cl-Cl- Na+

N

Cl-

N

Cl-

Na+

Na+

Na+

Ionic bond

Na+

Na+

CC

H H

HH

H H
+17 +17

Covalent  bond

-

--- -

- -

-
-

-

--

-

-
-

--

-

--

-

+12

Metallic  bond

+2

+2
+2 +2

+2

+2+2

+2
+2

+2 +2

+2

+2
+2

+2

+2

+2 +2

+2
+2+2

+2

+2

+2

+2 +2+2

+2

Ionic Bond Atoms held together by
electrostatic attraction as electrons
are transferred from one atom to a
neighbouring one. The atom giving
up the electron, becomes positively
charged and the atom receiving it
becomes negatively charged.

Covalent Bond: electrons are shared
more or less equally between
neighboring atoms. Although the
electrostatic force of attraction
between adjacent atoms is less than
it is in ionic bonds, covalent bonds
tend to be highly directional, meaning
that they resist motion of atoms past
one another. Diamond has covalent
bonds.

Metallic Bond: electrons are
delocalized or distributed equally
through a metallic crystal, bond is not
localized between two atoms. Best
described as positive ions in a sea of
electrons.
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Chemical Bonds Ductile and Brittle Failures

-
- - - - - -

-----

- - - - -
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-

-

- - -
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-
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Brittle Material

Metal
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σ
σ

Plastic Material

-

-
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+
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-
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+
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- -
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-

- +
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-
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+ + ε+ + + +

+ + + + + +

+ + + + + ++ + + + + +

+ + + + + +

+ + + + + +

+ + + + +

+ + + + + +

ionic solid: each ion is surrounded by
oppositely charged ions,⇒ slipping much
more difficult to achieve, and the material
responds by breaking in a brittle behavior.
When a force of sufficient magnitude
displaces atoms from one equilibrium
position to another we have a plastic
deformation along the slip plane.

Shear stress applied on a metal bond:
atoms can slip and slide past one another
without regard to electrical charge
constraint, and thus it gives rise to a ductile
response.

τ

τ τ

τ
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Chemical Bonds Dislocation

Dislocation

τ

τ

CB

A

τ

τ

CB

A

Permanent Displacement

Theoretical strength of perfect crystals (stress it takes to separate two adjacent
atoms) is about E/10. Never achieved due to presence of random imperfections.
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Chemical Bonds Dislocation

Edge dislocation: internal flaws in atomic plane. Due to τ there is a driving force
for breaking atomic bonds between atoms A and C until the dislocation passes
entirely out of the crystal: dislocation glide.

When the dislocation leaves the crystal: permanent offset.

Yield stress: the applied shear stress necessary to provide the dislocations with
enough energy to overcome short range forces exerted by the obstacles.

Work-Hardening: With plastic deformation dislocations multiply and greater
stresses are needed to overcome this resistance and strain hardening occurs.

Bauschinger Effect: With deformations, dislocations accumulate,⇒ dislocation
pile-ups. Since strain hardening is related to increased dislocation density,
reducing the number of dislocations (through stress reversal) reduces strength.
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Back to Mechanics Physical interpretation of Stress Invariants

Octahedral plane is one which makes
equal angles with respect to each of
the principal-stress directions, the
normal to this plane is given by

n = 1√
3


1
1
1


The vector of traction on this plane is

toct =
1√
3


σ1

σ2

σ3

 and the normal

component of the stress on the
octahedral plane is given by σoct =

toct ·n = σ1+σ2+σ3
3 = 1

3 I1 = σhyd

The octahedral shear stress is obtained from
τ2

oct = |toct |2−σ2
oct =

σ2
1

3 +
σ2

2
3 +

σ2
3

3 −
(σ1+σ2+σ3)

2

9 Upon algebraic manipulation, it
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Back to Mechanics Physical interpretation of Stress Invariants

can be shown that τoct =
√

2
3 J2 and finally, the direction of the octahedral shear

stress is given by cos 3θ =
√

2 J3
τ3

oct

The elastic strain energy (total) per unit volume can be decomposed into two
parts: U = U1 + U2, where

U1 = 1−2ν
E I2

1 Dilational energy
U2 = 1+ν

E J2 Distortional energy
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Back to Mechanics Geometric Representation of Stress States

Using the three principal stresses σ(1), σ2,
and σ3, as the coordinates, a
three-dimensional stress space can be
constructed. This stress representation is
known as the Haigh-Westergaard stress
space.

OP = ON + NP. The former is along the
direction of the unit vector
(1
√

3, 1/
√

3, 1/
√

3), and NP⊥ON.

ON is the hydrostatic component of the stress state,
and axis Oξ is called the hydrostatic axis ξ, and every
point on this axis has σ(1) = σ(2) = σ(3) = p, or

ξ =
√

3p

NP represents the deviatoric component of the stress state (s1, s2, s3) and is
perpendicular to the ξ axis. Any plane perpendicular to the hydrostatic axis is
called the deviatoric plane and is expressed as 1√

3
(σ(1) + σ(2) + σ(3)) = ξ
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Back to Mechanics Geometric Representation of Stress States

Plane which passes through the origin is called the π plane and is represented
by ξ = 0. Any plane containing the hydrostatic axis is called a meridian plane.

The vector NP lies in a meridian plane and has ρ =
√

s2
1 + s2

2 + s2
3 =
√

2J2
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Failure Surfaces Plastic Yield Conditions; Formulation

σ(1)

σ(2)

F=0

F>0 
(invalid)F<0

Yielding in a uniaxially loaded structural
element can be easily determined from
| σ
σyld
|≥ 1. But what about a general three

dimensional stress state?

Yield function F is a function of all six stress
components of the stress tensor and a (or
multiple) uniaxial yield stress.

In biaxial or triaxial state of stresses, the
elastic limit is defined mathematically by a
certain yield criterion which is a function of the
stress state σij expressed as F (σij) = 0

F can not be greater than zero.

F = F (σ(1), σ(2), σ(3), σy )


< 0 Elastic

∣∣∣ dεP

dt

∣∣∣ = 0

= 0 Plastic
∣∣∣ dεP

dt

∣∣∣ ≥ 0

> 0 Impossible
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Failure Surfaces Plastic Yield Conditions; Formulation

For isotropic materials, the stress state is usually defined by
F (σ(1), σ(2), σ(3)) = 0 or F (I1, J2, J3) = 0 which define the yield surface.

We will distinguish between pressure independent and pressure dependent
models.
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Failure Surfaces Hydrostatic Pressure Independent Models

Planeπ

σ3

σ1

σ2

ξ

ρ

πPlane

σ1

ξ

ρ

σ3

σ2

Tresca Von Mises

For hydrostatic pressure independent
yield surfaces (e.g. steel) shearing
stress (and not its direction) is the
major cause of yielding⇒
elastic-plastic behavior in tension and
in compression should be equivalent
for hydrostatic-pressure independent
materials.

Tresca criterion: yielding occurs
when the maximum shear stress
reaches a limiting value k , or
F
(
max

( 1
2 |σ(1) − σ(2)|,

1
2 |σ(2) − σ(3)|,

1
2 |σ(3) − σ(1)|

)
− k

)
=

0 from uniaxial tension test, we
determine that k = σy/2 and from
pure shear test k = τy . Hence, in
Tresca, tensile strength and shear
strength are related by σy = 2τy
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Failure Surfaces Hydrostatic Pressure Independent Models

von Mises: Material will yield when the second deviatoric stress invariant
reaches a critical value
F (J2) = J2 − k2 =

(σ(1)−σ(2))
2+(σ(2)−σ(3))

2+(σ(1)−σ(3))
2

2 − σ2
y = 0 or when the

maximum distorsional (shear) energy reaches the same critical value as for yield
as in uniaxial tension.
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Failure Surfaces Hydrostatic Pressure Dependent Models

Planeπ

ξ

ρ σ1

σ2

σ3 Planeπ
σ2

σ1

σ3

ξ

ρ

Planeπ

σ1

ξ

ρ

σ3

σ2

Rankine Mohr-Coulomb Drucker Prager

Pressure sensitive frictional materials (such as soil, rock, concrete) need to
consider the effects of both the first and second stress invariants.

The cross-sections of a yield surface are the intersection curves between the
yield surface and the deviatoric plane (perpendicular to the hydrostatic axis ξ)
and with ξ = constant. Threefold symmetry.
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Failure Surfaces Hydrostatic Pressure Dependent Models

Rankine criterion postulates that yielding occur when the maximum principal
stress reaches the tensile strength; σ(1) = σy ; σ(2) = σy ; σ(3) = σy

Mohr-Coulomb: extension of the Tresca criterion. The maximum shear stress is
a constant plus a function of the normal stress acting on the same plane;
|τ|= c − σ tanφ where c is the cohesion, and φ the angle of internal friction.

Both c and φ are material properties which can be calibrated from uniaxial
tensile and uniaxail compressive tests; σt =

2c cosφ
1+sinφ

and σc = 2c cosφ
1−sinφ .

Drucker-Prager postulates is a simple extension of the von Mises criterion to
include the effect of hydrostatic pressure on the yielding of the materials through
I1: F (I1, J2) = αI1 + J2 − k The strength parameters α and k can be determined
from the uni axial tension and compression tests σt =

√
3k

1+
√

3α
; and σc =

√
3k

1−
√

3α
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Fundamentals of Plasticity Introduction

There are two major theories for elastoplasticity

Deformation Theory (or Total) of Hencky and Nadai, where the total strain εij is
a function of the current stress. ε = εe + εp leads to a
secant-type formulation of plasticity that is based on the additive
decomposition of total strain into elastic and plastic components
(Hencky).

Rate Theory (or incremental) of Prandtl-Reuss, defined by _ε = _εe + _εp

We will use the rate theory in this course.

Though most of the formulations in this course will be uniaxial, for the sake of
completeness multi-axial failure models will be briefly presented
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Fundamentals of Plasticity Tangent Elastic Modulus





E

Etan0

Ee√

 P

e ?

p (a.k.a q)

p

H=Ep√

0

Note P is q classical 
plasticity notation

e

e

Ee

0

 

Elastic Perfectly plastic Elasto-Plastic

√

We can experimentally determine Ee and Ep = H (elastic and plastic moduli):

_σe = Ee _εe (1)

_σp = Ep _εp (2)

i.e. taken separately we know how to compute the incremental stress from the
incremental elastic or plastic strains.
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Fundamentals of Plasticity Tangent Elastic Modulus

The incremental (total) strain _ε, has two components: elastic and plastic ones:

_ε = _εe + _εp (3)

Hence, the incremental strain has a component characterized by Ee and another
by Ep

We seek to determine the total incremental stress-strain relationship such that

_σ = E tan _ε (4)

where E tan is the tangent modulus yet to be determined.

Thus, we can rewrite Eq. 3
_εe = _ε− _εp (5)

and
_σ = Ee(_ε− _εp) (6)

The plastic strain and corresponding plastic stress increment:

_σp = _q = H _εp (7)
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Fundamentals of Plasticity Tangent Elastic Modulus

The total strain ( _εij )is usually known because it is incrementally defined, thus we
seek to determine the incremental plastic one _εp

ij such that

_σ = E tan _ε (8)

Do not confuse H and E tan

Two Approaches:

1 Generalized, 3D, Mechanics; this will require
1 Yield function
2 Flow rule
3 Consistency condition

2 Engineering 1D

Each will be separately addressed.
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Fundamentals of Plasticity Tangent Modulus; Engineering

Rate theory (Eq. 3): _ε = _εe + _εp

if σ ≤ σy (elasticity), then _ε = _εe = _σ
Ee

if σ > σy (plasticity), then from Eq. 1, 2, and 4:

_ε = _εe + _εp

=
_σ

Ee +
_σ

Ep =
_σ

E tan

⇒ E tan =
E .Ep

E + Ep

Note

E tan =


> 0, Hardening
= 0, Perfectly Plastic
< 0, Softening

andE tan is independent of the type of hardening (isotropic or kinematic).

Note: There is a counterpart in nonlinear structural analysis where we seek to

determine the Tangent stiffness matrix of an element at a given time step. Procedure

is conceptually identical to what was done analytically in the first part.
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Fundamentals of Plasticity Yield Function; Isotropic Hardening Model

Yield function denotes the current level of stress minus the initial yield stress to
which one may add a function of α which describes the type of hardening. In 1D,
it can be defined as

h(σ, q) = |σ|−q ≤ 0 (9)

h determines the motion and deformation of the yield surface (Hardening or
Softening).

if h < 0, then the stress is within the elastic domain, and if h = 0, the stress has
reached its plastic limit.

First the strain reaches yielding (σ0 = σy ), and then at that point further increase
in strain results in an expansion of q this will in turn expand the elastic domain.
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Fundamentals of Plasticity Flow Rule

When the stress is inside the yield surface, it is elastic, Hooke’s law is applicable,
strains are recoverable, and there is no dissipation of energy

When the load on the structure pushes the stress tensor to be beyond the yield
surface, the stress tensor locks up on the yield surface, and the structure
deforms plastically.

If the material exhibits hardening as opposed to elastic-perfectly plastic
response, then the yield surface expands or moves with the stress point still on
the yield surface.

The crucial question is what will be direction of the plastic flow (that is the
relative magnitude of the components of εP . This question is addressed by the
flow rule, or normality rule.
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Fundamentals of Plasticity Flow Rule

Initial yield surface
Subsequent yield surface

Elastic unloading

Elastic loading

Stress at 
initial yield Plastic deformation 

(hardening)

σ1 

σ2 

Initial yield surface

Subsequent yield surface

Elastic unloading

Elastic loading

Stress at 
initial yield Plastic 

deformation 
(hardening)

σ1 

σ2 

Isotropic Hardening Kinematic Hardening

Flow rule assumes that the plastic strain increment and deviatoric stress tensor
have the same principal directions and it defines the evolution of plastic strain

_εp := λ · ∂g(σ, εp, q)
∂σ

= λ · h(σ, q) (10)

where, g(σ, εp, q) is the plastic potential and λ is a plastic multiplier that
measures the magnitude of the plastic deformation (as we shall see later, this
term will drop and lead to E tan (which is what we are ultimately seeking).

Victor E. Saouma; Univ. of Colorado Plasticity I; Material & Mechanics 35/43



Fundamentals of Plasticity Flow Rule

If g ≡ h, we have associated flow rule (usually in metals). If g 6= h we have non
associated flow rule, (concrete and geomaterials exhibiting dilatancy).

For isotropic hardening models and associated flow rule,

g(σ, εp, q) = h(σ, q) = |σ|−q ⇒ ∂g
∂σ

= sign(σ) (11)

where sign(σ) is 1 if σ ≥ 0 or −1 if σ < 0.

Then, from Eq. 10
_εp = λ · sign(σ) (12)

or
λ = | _εp|≥ 0 (13)

For simplicity and under the assumption of elasto-plastic hardening material with
bilinear curve,

h(σ, q) = − ∂g
∂q

= 1 (14)
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Fundamentals of Plasticity Flow Rule

Therefore, we can express the stress (Eq. 6) as

_σ = E(_ε− _εp)⇒ _σ = E · (_ε− λ · ∂g
∂σ

) = E · (_ε− λ · sign(σ)) (15)

and from Eq. 7
_q = H _εp ⇒ _q = H · λ · h(σ, q) = H · λ (16)
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Fundamentals of Plasticity Consistency Condition

During plastic loading the stress path is constrained to move along the yield surface,
thus this consistency condition precludes us from going beyond the yield surface and
is mathematically expressed as _f (σ, q) = 0, or

_f (σ, q) =
∂f
∂σ
· ∂σ
∂t

+
∂f
∂q
· ∂q
∂t

=
∂f
∂σ
· _σ+

∂f
∂q
· _q = 0 (17)
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Fundamentals of Plasticity Tangent Modulus; Mechanics

Now, we can finally solve Eq. 8

_σ = E tan _ε (18)

where the tangent modulus is the slope of the stress-strain curve at any
specified stress or strain. Below the proportional limit the tangent modulus is
equivalent to Young’s modulus

Not to be confused with _σp = _q = H _εp

Substituting

Flow Rule Eq. 15 _σ = E · (_ε− λ · ∂g
∂σ

)

Eq. 16 _q = H · λ · h(σ, q)
Consistency Eq. 17 _f (σ, q) = ∂f

∂σ
· _σ+ ∂f

∂q · _q = 0

we obtain
∂f
∂σ
· E ·

(
_ε− λ · ∂g

∂σ

)
+
∂f
∂q
· H · λ · h(σ, q) = 0

Therefore, λ =
∂f
∂σ
·E· _ε

∂f
∂σ
·E· ∂g
∂σ
− ∂f
∂q ·H·h(σ, q)
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Fundamentals of Plasticity Tangent Modulus; Mechanics

Substituting back into _σ = E · (_ε− _γ · sign(σ)), we obtain an explicit expression
for the incremental stress,

_σ = E ·
(
_ε− λ · ∂g

∂σ

)
=

(
E −

∂f
∂σ
· E2 · ∂g

∂σ

∂f
∂σ
· E · ∂g

∂σ
− ∂f
∂q · H · h(σ, q)

)
︸ ︷︷ ︸

(by definition) E tan

· _ε

For elasto-plastic hardening material with bilinear curve in one dimension,

λ =
sign(σ) · E · _ε

E + H

and the tangent modulus reduces to

E tan = E − sign(σ) · E2 · sign(σ)
sign(σ) · E · sign(σ)− (−1) · H · (1)

= E − E2

E + H
=

E · H
E + H

Note that if H = E/9, then E tan = E/10
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Figures
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Introduction

There are two types of element formulation for material nonlinearity:

Lumped plasticity:

Inelastic behavior of beam-column concentrated at end of members
(adequate for horizontal load, not so for vertical ones).
Use zero-length plastic hinges through nonlinear spring elements.
Requires stiffness calibration to determine the nonlinear M − θ

Distributed plasticity

Sectional (M −�) constitutive behavior of cross-section formulated in terms
of moment and axial forces . Does not capture gradual spread of plasticity.
Layered/Fiber (σ− ε), the cross-section is discretized into section fibers,
stress-strain formulation for each fiber, captures gradual spread of plasticity
over the cross section.

Two formulations

Euler-Bernoulli, linear strain distribution, does not account for shear
deformation.
Timoshenko accounts for shear displacement, non-linear strain distribution.
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Introduction

Basic Assumptions:

Forces: Axial, N and Moment, M
Plane section remains plane (Bernouilli)
For R/C perfect bond between steel and concrete.

Governing equations:

Equilibrium of force and moment at cross section
Compatibility of strain-curvature ε = �.y = M

E.I y
Constitutive Laws

Moment-Curvature M − �
Stress-Strain σ− ε

Curvature: rotation per unit length θAB =

∫ B

A
�dx

Outcome

Moment-Curvature M − �

Load-Deflection (pushover P −�)
Interaction diagram (M − N)
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Introduction

Note: Often use non-layered approach based on M − � for steel, and
layered for concrete.

Ductility may be defined as the ability to undergo deformations without a
substantial reduction in the flexural capacity of the member.

The ductility ratio is defined as ξ = �u
�y

where �u is the curvature at
ultimate when the concrete compression strain reaches a specified
limiting value, �y is the curvature when the tension reinforcement first
reaches the yield strength. This is very important for seismic design.
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Introduction Curvature Equation

u

N.A.

ds≈dx

dθ

1

2 dθ=θ2-θ1

θ1

ρ

ρ

θ2

dθ dθ

Linear Strain Distribution

φ
y

ε

ε=φy

θ2

θ1

dx

The slope is denoted by θ, the change in slope per unit length is the curvature φ,
the radius of curvature is ρ. From Strength of Materials we have the following
relations

φ =
1
ρ
=

dθ
ds

(1)
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Introduction Curvature Equation

For small displacements, and as a first order approximation, with ds ≈ dx and
θ = dy

dx Eq. 1 becomes

φ =
1
ρ
=

dθ
dx

=
d2y
dx2 (2)

A positive dθ at a positive y (upper fibers) will cause a shortening of the upper
fibers du = −ydθ, Dividing both sides by dx ,

du
dx︸︷︷︸
ε

= −y
dθ
dx

Combining this with Eq. 2

1
ρ
= φ = − ε

y
or ε = −�y (3)

This is the fundamental relationship between curvature (φ), elastic curve (i.e.
displacement) (y ), and linear strain (ε).
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Introduction Curvature Equation

Note that so far we made no assumptions about material properties, i.e. it can
be elastic or inelastic.

For the elastic case:
ε = σ

E

σ = −My
I

}
ε = −My

EI
(4)

Combining this last equation with Eq. 1 yields

φ =
1
ρ
=

dθ
dx

=
d2y
dx2 =

M
EI

This fundamental differential equation governing for beam. Similar equations
will be derived later for cables and beam-columns.

Victor E. Saouma; Univ. of Colorado Plasticity II; Sections 8/38



Introduction Moment-Curvature; M − �

L

P

xy

L

P

PL

My

M=Px

My

EI

αEI

Bending Moment 
Diagram

Column under 
Horizontal Load

Moment curvature curve 

Φ 

σ

E

βE

εy

fy

ε
Stress strain curveMy/EI (M-My)/αEI

Φ y

Yielding occurs at xy such that
xy =

My
P ≤ L

The curvatures are given by

φ =

{
P.x
E.I if x < xy
My
E.I +

P.x−My
α.E.I if x > xy

Using the principle of complementary
virtual work (virtual force), where
δM = x

δP� =

∫ L

0
δM.φdx =

∫ L

0
x .φ.dx

δP� =

∫ xy

0
x

P.x
E .I

dx +∫ L

xy

x
(

My

E .I
+

P.x −My

α.E .I

)
· dx

or δP.� =
P.xy

3

3.E.I +
3(−1+α)My(L2−xy

2)+2.P(L3−xy
3)

6E.I.α

Substituting with xy = My/P gives
Force-displacement or Pushover

� =
2L3P3−(α−1)My(M2

y−3L2P2)
6αEIP2
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Introduction Matlab Code

1 c lea r a l l
2 c l c
3 c lose a l l
4 f p r i n t f ( ’ ===========================\n ’ )
5 %% I n i t i a l i z a t i o n f o r f i g u r e s
6 f s = 28;
7 scrsz = get (0 , ’ ScreenSize ’ ) ;
8 f i gpos = [2 2 scrsz ( 3 ) /2 scrsz ( 4 ) / 2 ] ;
9 %% u n i t s : k ips i n

10 E=29000; f y =36;L=6∗12; alpha =0.01;
11 %% Consider W16x100
12 I =1490; S=175; EI=E∗ I ; My=S∗ f y ; Phiy=My/ EI ;
13 %
14 %% MOMENT CURVATURE PLOT
15 M( 1 ) = 0 ; Phi ( 1 ) = 0 . ;
16 M( 2 ) = My; Phi ( 2 ) = Phiy ;
17 M( 3 ) = 1.2∗M( 2 ) ; Phi ( 3 ) = (M( 3 ) My) / ( alpha∗EI )
18 h = f i g u r e ( ’ Pos i t i on ’ , f i gpos ) ; se t ( gca , ’ FontSize ’ ,28) ;
19 p l o t ( Phi ,M/12 , ’ LineWidth ’ ,2 )
20 x l a b e l ( ’ Curvature ’ ) ; y l a b e l ( ’Moment [ k . f t ] ’ ) ; t i t l e ( ’W16x100 ’ ) ;
21 g r i d minor ; se t ( gcf , ’ PaperPositionMode ’ , ’ auto ’ ) ;
22 p r i n t depsc2 NonLayeredMomentCurvature . eps
23 % LOAD DISPLACEMENT CURVE
24 %%
25 DeltaP = 0 . 5 ;% k ip increment
26 P( 1 ) = 0 . 0 ; Del ta ( 1 ) = 0 ;
27 f o r i =2:190
28 P( i ) = P( i 1 ) +DeltaP ;
29 xy = My/P( i ) ;
30 i f xy>L
31 Del ta ( i ) = P( i )∗L^3/(3∗E∗ I ) ;
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Introduction Matlab Code

32 else
33 Del ta ( i ) = (2∗L^3∗P( i ) ^3 My∗(My^2 3∗L^2∗P( i ) ^2) ∗ ( 1 + alpha ) ) / . . .
34 (6 .∗ EI∗P( i ) ^2∗alpha ) ;
35 end
36 end
37 %%
38 h = f i g u r e ( ’ Pos i t i on ’ , f i gpos ) ; se t ( gca , ’ FontSize ’ ,28) ;
39 p l o t ( Delta ,P, ’ LineWidth ’ ,2 )
40 x l a b e l ( ’ Displacement [ i n ] ’ ) ; y l a b e l ( ’ Load [ Kip ’ ) ; t i t l e ( ’W16x100 ’ ) ;
41 g r i d minor ; se t ( gcf , ’ PaperPositionMode ’ , ’ auto ’ ) ;
42 p r i n t depsc2 NonLayeredLoadDisplacement . eps
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Layered; (σ− ε); Steel Derive Equivalent M − �

b

h

 

h/2

h/2

 

hy =E!

!  !

h/2

 

 =fy+"E(!-!y)

 =fy+"E(!-!y)

hy

We analyze a rectangular section and account for the nonlinear stress
distribution across the section (as will be done later in layered fiber elements).

Yielding occurs first at the outer fibers at xy such that (and recalling that
φ = ε/y ): P.xy = E .I.φy = E .I εy

h/2 ⇒ xy =
2.fy .I
P.h ≤ L.

The maximum curvature below which all the stresses are elastic is given by
φy =

2.fy
E.h

Victor E. Saouma; Univ. of Colorado Plasticity II; Sections 12/38



Layered; (σ− ε); Steel Derive Equivalent M − �

If h ≤ hy , then we have a linear elastic stress distribution and φ = M
E.I =

P.x
E.I

If h > hy , then at a distance hy from the neutral axis hardening begins. and
hy =

fy
E.φ ≤

h
2 .

The stresses are given by σxx =

{
E .ε if h < hy

fy + βE .(ε− εy ) if hy < h

Recalling that ε = φy , the internal resisting moment will thus be given by

M =

∫ h/2

−h/2
b.σxx .y .dy or

M = 2.b.
∫ hy

0
E .(φ.y).ydy + 2b

∫ h/2

hy

[fy + β.E .(φy − εy )].y .dy =

2E .b.φ
∫ hy

0
y2.dy + 2b

∫ h

hy

[
fy .y + β.E .φ.y2 − βfy .y

]
dy =

−
(
b
(
3.fy

(
h2 − 4.hy

2) (−1 + β)+ Eφ
(
8hy

3 (−1 + β)− h3β
)))

12
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Layered; (σ− ε); Steel Derive Equivalent M − �

Substituting (using Mathematica) the value of hy , this reduces to Moment
Curvature relation

M =
b
(

4fy 3 (−1 + β)− 3E2fy h2φ2 (−1 + β)+ E3h3φ3β
)

12E2φ2 (5)

which is essentially an expression for the moment in terms of the curvature
φ > φy .

Armed with this relationship, we can repeat the procedure used in the previous
example and apply the principle of virtual force to determine the displacement.

Numerical solution: Increment �
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Layered; (σ− ε); Steel Derive Equivalent M − �

1 c lea r a l l
2 f p r i n t f ("===========================\n " )
3 E=29000; f y =36;h=20;h2=h / 2 ; b=10; beta =0.01; I =b∗h ^3 /12 ;
4 epsiy=E/ f y ; phi_y= f y / ( E∗h2 ) ; de l t a =10^ 5 ; ph i ( 1 ) = 0 . ;
5 M( 1 ) = 0 . ; hy ( 1 ) =h2 ; k =0;
6 f o r i =2:80
7 ph i ( i ) =ph i ( i 1 ) + de l t a ; hy ( i ) = f y / ( E∗phi ( i ) ) ;
8 i f hy ( i ) >h2
9 M( i ) =ph i ( i )∗E∗ I ; hy ( i ) =h2 ;

10 else
11 M( i ) =(b∗(4∗ f y ^3∗ ( 1 + beta ) 3∗E^2∗ f y∗h^2∗phi ( i ) ^2∗ ( 1 + beta ) . . .
12 + E^3∗h^3∗phi ( i ) ^3∗beta ) ) / ( 12 .∗E^2∗phi ( i ) ^2) ;
13 k=k +1;
14 n l p h i ( k ) =ph i ( i ) ; nlM ( k ) =M( i ) ;
15 end
16 f p r i n t f ( " i %6.0 f hy %10.4e ph i %10.4e phi_y %10.4e \ n " , i , hy ( i ) , ph i ( i ) , phi_y ) ;
17 end
18 subp lo t (2 ,1 ,1 ) ; p l o t ( phi ,M) ; x l a b e l ( " ph i [ rad . ] " ) ; y l a b e l ( "M [ k i n ] " ) ; g r i d ;
19 subp lo t (2 ,1 ,2 ) ; p l o t ( phi , hy ) ; x l a b e l ( " ph i [ rad . ] " ) ; y l a b e l ( " h_y [ i n ] " ) ; g r i d ;
20 y l im ( [ 0 . , 1 0 ] )
21 %=========================
22 % F i t po lynomia l i n non l i nea r p o r t i o n o f the curve
23 f i g u r e
24 f o r i =2:5
25 c l ea r p
26 [ p ]= p o l y f i t ( nlM , n lph i , i ) ; f = po l yva l ( p , nlM ) ;
27 subp lo t (2 ,2 , i 1 ) ; p l o t ( nlM , n lph i , " r " , nlM , f , " . b " ) ;
28 asc=num2str ( i ) ; legend ( " Exact " , " Approx " , 2 ) ; y l a b e l ( " ph i [ rad . ] " ) ;
29 x l a b e l ( "M [ k i n ] " ) ; g r i d ; t i t l e ( [ " Order= " asc ] )
30 end
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Layered; (σ− ε); Steel Derive Equivalent M − �

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
−3

0

1

2

3

4
x 10

4

phi [rad.]

M
 [k

−
in

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
−3

0

2

4

6

8

10

phi [rad.]

h y [i
n]

Linear Range
Nonlinear Range

.

.

.
Maximum
residual
compressive

stress

Ideal coupon containing 
no residual stress

Members with
residual stress

Fy

Fp

2

1

3

Average copressive strain

A
ve

ra
ge

 s
tr

es
s 

 P
/A

Shaded portion indicates area which 
has achieved a stress F y

1 2 3

Compression  (-)

Tension  
(+) (+)

(-)

Maximum 
compressive 

stress, say 12 ksi 
average

We captured spread of plasticity (note analogy with effect of residual strains on
steel σ− ε curve),⇒ nonlinear shape, as contrasted with the bilinear M − �

earlier assumed.
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Layered; (σ− ε); Steel Derive Equivalent M − �

Since we will need the curvature-moment relationship (φ = φ(M)), a polynomial
is then fitted to the nonlinear portion of the moment curvature,
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Layered; (σ− ε); Steel Derive Equivalent M − �

Opting for the one of order 5, the coefficients are:
φ = 3.6396× 10−23M5 − 5.4368× 10−18M4 + 3.2411× 10−13M3 − 9.6360×
10−9M2 + 1.4285× 10−4M − 8.4445× 10−1
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Layered; (σ− ε); Steel Push Over P −�

We now apply the principle of virtual force to solve for the displacement of the
cantilevered beam. This is solved by Matlab:

1 %============================
2 % Compute the d e f l e c t i o n o f a beam of leng th L using v i r t u a l fo rce method
3 %P_y i s when x_y i s equal to the leng th ( a l l the element i s l i n e a r )
4 L=20∗h ; P_y=2∗ f y∗ I / ( h∗L ) ; P_max=2∗P_y ; np=100; del ta_P=P_max / np ;E . I =E∗ I ; de l ta_L =0.001∗L ;
5 %
6 P( 1 ) = 0 . ; de l t a ( 1 ) =0;
7 f o r i =2:np
8 P( i ) =P( i 1 ) +del ta_P ; x_y ( i ) =2∗ f y∗ I / ( h∗P( i ) ) ;
9 i f x_y ( i ) >L

10 del ta_1=P( i )∗L^3/(3∗E. I ) ;
11 % E n t i r e Beam i s i n the l i n e a r range
12 del ta_2 = 0 . ;
13 e lse
14 del ta_1=P( i )∗x_y ( i ) ^3/ (3∗E. I ) ;
15 de l ta_2 = 0 . ;
16 f o r x=x_y ( i ) : de l ta_L : L
17 M=P( i )∗x ; ph i= po l yva l ( p ,M) ; de l ta_2=del ta_2+ph i∗x∗del ta_L ;
18 end
19 end
20 de l t a ( i ) =de l ta_1+del ta_2 ;
21 end
22 %
23 f i g u r e ; subp lo t (2 ,1 ,1 ) ;
24 p l o t ( de l ta ,P) ; g r i d ; x l a b e l ( " Displacement [ i n ] " ) ; y l a b e l ( " Load [ k ] " ) ;
25 subp lo t (2 ,1 ,2 ) ; p l o t ( de l ta ,P) ; g r i d ;
26 x l a b e l ( " Displacement [ i n ] " ) ; y l a b e l ( " Load [ k ] " ) ; x l im ( [ 0 . , 5 0 ] )
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Layered; (σ− ε); Steel Push Over P −�
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Layered; (σ− ε); Concrete/ACI Formulation

As an Engineer questioning the validity of the ACI equation for the ultimate flexural
capacity of R/C beams, you determined experimentally the following stress strain
curve for concrete (Desayi and Krishnan other equations have been proposed by
Saenz, Kent-Park and Mander):

σ =
2 f ′c
εmax

ε

1 +
(

ε
εmax

)2 (6)

where f ′c corresponds to εmax .

1 Determine the exact balanced steel ratio for a R/C beam with b = 10", d = 23",
f ′c = 4, 000 psi, fy = 60 ksi, εmax = 0.003.

1 Determine the equation for the exact stress distribution on the section.
2 Determine the total compressive force C, and its location, in terms of the

location of the neutral axis c.
3 Apply equilibrium

2 Using the ACI equations, determine the:

1 Ultimate moment capacity.
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Layered; (σ− ε); Concrete/ACI Formulation

2 Balanced steel ratio.

3 For the two approaches, compare:

1 Balanced steel area.
2 Location of the neutral axis.
3 Centroid of resultant compressive force.
4 Ultimate moment capacity.
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Layered; (σ− ε); Concrete/ACI Ultimate Moment Mu

Stress-Strain:

σ =
2 4,000
.003 ε

1 +
(
ε
.003

)2 =
2.667× 106ε

1 + 1.11× 105ε2 (7)

Compatibility:Assume crushing at failure, hence strain distribution will be given
by

ε =
0.003

c
y (8)

Combine those two equation:

σ =
8, 000 y

c

1 +
( y

c

)2 (9)
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Layered; (σ− ε); Concrete/ACI Ultimate Moment Mu

The total compressive force is given by

F =

∫ c

0
dF = b

∫ c

0
σdy = b

∫ c

0

8, 000 y
c

1 +
( y

c

)2 dy = b
8, 000

c

∫ c

0

y

1 +
( y

c

)2 dy (10)

= 8, 000
b
c

1

2
( 1

c

)2 ln

[
1 +

(y
c

)2
]∣∣∣∣∣

c

0

= 8, 000
b
c

c2

2
ln

[
1 +

(y
c

)2
]∣∣∣∣c

0
(11)

= 4, 000bc ln(2) = 2, 773bc (12)

Equilibrium requires that C = T

2, 773bc = Asfy (13)

From the strain diagram:

.003
c

=
εy + .003

d
⇒ c =

(.003)d
εy + .003

(14)

c =
(.003)(23)
60

29,000 + .003
= 13.6in. (15)
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Layered; (σ− ε); Concrete/ACI Ultimate Moment Mu

Combining Eq. 13 with Eq. 15

As =
(2, 773)(10)(13.6)

60, 000
= 6.28in.2 (16)

To determine the moment, we must first determine the centroid of the
compressive force measured from the neutral axis

y def
=

∫
ydA

A
=

b
∫

y

dC︷︸︸︷
σdy

C
=

b
∫ c

0

8, 000 y2

c

1 + (y/c)2

2, 773bc
dy =

8, 000b
2, 773bc2

∫ c

0

y2

1 +
( 1

c

)2 y2
dy

=
2.885

c2

∫ c

0

y2

1 +
( 1

c

)2 y2
dy =

2.885
(13.61)2

[
y( 1
c

)2 −
1( 1
c

)2

∫ c

0

dy

1 +
( 1

c

)2 y2

]

= .01557

yc2 − c2

 1√
1
c2

tan−1 y

√
1
c2

∣∣∣∣∣∣
c

0

= .01557
[
c3 − c3 tan−1(1)

]
= (.01557)(13.61)3(1− tan−1(1)) = 8.43in.

(17)
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Layered; (σ− ε); Concrete/ACI Ultimate Moment Mu

Next we solve for the moment

M = Asfy (d − c + y) = (6.28)(60)(23− 13.61− 8.43) = 6, 713 k.in (18)

Using the ACI Code

ρb = .85β1
f ′c
fy

87
87 + 60

= (.85)2 4
60

87
147

= .0285

As = ρbbd = (.0285)(10)(23) = 6.55in.2

a =
Asfy
.85f ′cb

=
(6.55)(60)
(.85)(4)(10)

= 11.57in.

M = Asfy
(

d − a
2

)
= (6.55)(60)

(
23− 11.57

2

)
= 6, 765k.in

c =
a
β1

=
11.57
.85

= 13.61in.

We summarize
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Layered; (σ− ε); Concrete/ACI Ultimate Moment Mu

Exact ACI

As in2 6.28 6.55
c Kip 13.6 13.6

y ′ in. 5.18 5.78
M K-in 6,713 6,765
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Moment Curvature M − � Free Body Diagram

y
dy

d’

NA

b(y)
kd

εc
εs'

Φ

εs

Strain

Ts

Cs Cc

yt Tc

Stress Resultants

N

M

e’

As

A’s
σc

σt

d

k’d

External axial force Next is applied with an eccentricity e ′ and is fixed.

Internal equilibrium of forces requires Next = Nint and Mint = Nint .e ′

We seek to determine the M − � relation
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Moment Curvature M − � Free Body Diagram

Nint =

∫ k.d

0
σcbcdy︸ ︷︷ ︸
Cc

+A ′sf ′s︸︷︷︸
Cs

−
∫ yt

0
σtbtdy︸ ︷︷ ︸
Tc

−Asfs︸︷︷︸
Ts

(19)

Ninte ′ + M = Cc(d − k ′d) + Cs(d − d ′)− Tc(d − kd − 2
3

yt) (20)

Note: σc = σc(εc), bc = bc(yc), σt = σt(εt), bt = bt(yt).
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Moment Curvature M − � Procedure

For a given (and fixed) Next , we gradually increase εtop
c (i.e. � indirectly), and

solve for k and corresponding Mint . This will result in the M − � diagram.

The problem is nonlinear as there is only one value of k which will ensure
equilibrium of axial forces.

Caution: If Next 6= 0, then must add the initial strain due to the constant force.

φi 

εtop 

Ni

Ni‐1

Ni‐2

Ni‐3

Next

εtop  fixed, iterate on k to 
satisfy Next=Nint

φi‐1 

φi‐2 

K
i

K
i‐
1

K
i‐
2

εu 
1 Increment top strain
ε

top
n+1 = ε

top
n +�εtop < εu (Next fixed).

2 Assume k , Determine forces

3 Steel stress from

� =
ε

top
c

k .d
=

ε ′s
k .d − d ′

=
εs

d − kd
εs = �(d − k .d)

fs = Esεs

4 Compute Nint from Eq. 19

5 If |Next − Nint |> ε correct k and
iterate, otherwise exit.
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Moment Curvature M − � Procedure

Solve for the corresponding M from Eq. 20

Determine corresponding curvature from

�i+1 = −
ε

top
i+1

ki+1d
(21)

and stiffness
EIi+1 =

dM
d�

(22)

Once completed, plot M − �, and identify �cr , �y and �u , ductility ratio ξ = �u
�y

if we repeat analysis for different N, we could then generate the beam-column
interaction diagram (corresponding to Mu).
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Moment Curvature M − � Algorithm

Analytical evaluation of M − Phi was presented; Next a numerical procedure is
described. It begins with the discretization of the cross-section into layers.

Strain

Neutral Axis

i

Stress-strain Stress

i

y

dΦ

Strain

dε0

Stress Resultants

N

Mσc

nc, ns, Aci , Asj, yi

σt

σ 

σi

ε  

σ =f(ε) 

εi
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Moment Curvature M − � Algorithm

Break concrete section into nc layers (index i), and steel into ns layers (index j).

Later, we will differentiate between confined (inside the steel cage) and
unconfined as they have different properties.

Aci and Asj = As area of each concrete and steel layer

yi distance of fiber i from NA

For a given (and fixed) Next , we will gradually increase � by �� (note that in the
analytical approach we increased εtop

c ), and solve for Nint (Previously k ). We
seek to determine Mext for a given �.

At any section ε(y) = ε0 + y� where ε0 is the axial strain caused by Next .

Assume that strain is given, resulting internal force:

Nint =

∫
EdεdA =

∫
EdAdε0 +

∫
EdAyd� (23)

=

 nc∑
i=1

EciAci +

ns∑
j=1

EsjAsj


︸ ︷︷ ︸

Initial strain

ε0 +

 nc∑
i=1

EciAciyi +

ns∑
j=1

EsjAsjyi


︸ ︷︷ ︸

curvature �

� (24)
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Moment Curvature M − � Algorithm

φ 

φ 

φ 

φ 

εi 
εi-1 εi-2 

εi-3 

Ni

Ni‐1

Ni‐2

Ni‐3

Next

Curvature fixed, 
iterate on N

εu 
1 Increment curvature
�n+1 = �n +�φ (Next fixed).

2 Assume neutral axis location (k )
and update strain profile
ε(yi) = dε0 + yid� where
dε0 = (�N − Ex��)/Ea.

3 If ε ≥ εu (usually 0.003 for
concrete), exit.

4 Determine Nint from Eq. 24

5 If |Next − Nint |> ε adjust k and iterate, otherwise exit.

6 Compute

Mint =

nc∑
i=1

σciAciyi +

ns∑
j=1

σsjAsjyi
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Interaction Diagram M − N

N

M

Φ 

M

Repeating previous procedure for
various Next we can derive the beam column interaction diagram.
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Lumped Plasticity

Single zero length end nonlinear spring, typically linear elements in between.

Spring must capture effects of

Bond
Bond-Slip
Cracked moment of inertia
Diagonal tension
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Lumped Plasticity

L

P

θ 

KSpring

θ 

K0

θy Δspring = PL/KSpring

ΔElas = PL3/3EI

Δspring
ΔElas

+

P

Δ

ΔElas

K(θ )

ΔSpring

+ ΔTotal

KSpring

M

My

EI
αEI

Moment curvature curve 
Φ ε Φ y

σ

E
βE

εy

fy

Stress strain curve

As

A’s

Cross-Section

+
L

P

+

P

Δ

Optional

D
is

tri
bu

te
d 

Pl
as

tic
ity

Lu
m

pe
d 

Pl
as

tic
ity

Calibration: Solve for spring stiffness K(θ ) for the two force displacements to be nearly equal
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Lumped Plasticity

From Moment 
Curvature Δ 

Initial
K(θ)

Analyse Column
F(K(θ) )=Δ’

Update parameter 
vector K(θ)

Final parameter 
K(θ)

||Δ-Δ’||<ε 

Can be easily implemented in Matlab using 
an optimization function which minimizes 
the square of the error

P

Δ

P

Δ’
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Introduction

In the context of PBEE, Engineering Demand Parameters (EDP) are essential.
They are the results of response prediction (i.e analysis). Those include
interstory drift, plastic hinge rotations, and member forces. Analysis procedures
in FEMA 356/ASCE 41, and commonly used in Performance based design
approach, are:

1 Linear static
2 Linear time history (LTH)
3 Nonlinear static: Pushover analysis (POA).
4 Nonlinear time history (NTH)

Why is POA relevant?

A linear elastic based design would have a much higher reserve strength
beyond the elastic, i.e. the ultimate strength is much higher.
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Introduction

Dead Load

Live Load

Wind or EQ Load

Reserve load capacity

Elastic Behavior Plastic Behavior

Pl
as

tic
 R

an
ge

El
as

tic
 R

an
ge

Ultimate Load

Load

Deflection

This is due to the structural redundancy and the ability of structural
members to deform inelastically without major loss of strength (i.e.,
ductility).
In this context, we must differentiate between localized failure and
structural failure. The former relates to the failure of one single member,
the later to the collapse of the entire structure.

Before POA is initiated, one must ensure that:
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Introduction

1 Structure is well “understood”,
2 Identify element properties and strengths.
3 Concrete: use effective cracked section properties
4 Prepare M − � relations, identify nonlinear concrete model.

Select lateral load pattern distributed along the height based on first mode
response. This can be

Inverse triangular Rectangular First mode Modal dynamic

Inverse triangular where the force is linearly distributed with height.
Rectangular where we approximate the first mode with very soft or post-yield

response with weak first story.
First Mode obtained from a modal analysis.
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Introduction

Modal dynamic deformed shape is based on combining modes.
Force or Displacment Typically in a high seismic zone like California and

Washington, use displacement-based design because the
requirements for ductility and displacement capacity are more
rigorous in seismic than in LRFD,

First the static vertical load is applied, and then the pushover load.

Though it may be more accurate to imposed displacements, most pushover
analysis impose forces instead.

The objective is to push the structure to the displacement expected under design
earthquake, the target displacement (or drift).

Target displacement can be determined from the response spectrum

� = g
(

T
2π

)2

Cs (1)

where � is the spectral displacement, T is the period, and Cs the elastic seismic
coefficient.
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Introduction

With the increase in the magnitude of the loading, weak links (plastic joint) and
failure modes of the structure are found.

Loading is monotonic with the effects of the cyclic behavior and load reversals
being estimated by using a modified monotonic force-deformation criteria and
with damping approximations.

Careful POA may provide very misleading results for force and overturning
moments.

ATC-40 and FEMA-273 documents have developed modeling procedures,
acceptance criteria and analysis procedures for pushover analysis. These
documents define force-deformation criteria for hinges used in pushover
analysis.

It seeks to determine the collapse mechanism of a structure through a static
analysis with increasing load.
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Demand

The method allows tracing the sequence of yielding and failure on the member
and the structure levels as well as the progress of the overall capacity curve of
the structure.

This essentially defines the Demand on the structure

Vyld

Vult

Displacement

Base Shear
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Member Capacity

Prior to a pushover analysis, the moment curvature of the sections must be
identified.

Moment curvatures are often nonlinear, and can be idealized as follows

Deformation, Δ/Δy , Δ/h, or θ/θy 

Im
m

ed
ia

te
 O

cc
up

an
cy

L
if

e 
S

af
et

y

C
ol

la
ps

e 
P

re
ve

nt
io

n
A

B
C

D E
1

E

1
~0.1E

F
/F

y 
or

 M
/M

y

1.0

This is essentially the Capacity of an individual member.
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Example of Demand Curve

Adapted from Performance-Based Plastic Design: Earthquake-Resistant Steel
Structures by Goel and Chao.

14
'

3@
13

'=
39

'

30'

W1=2.7 k/ft

W3=2.7 k/ft

W2=2.7 k/ft

W4=2.35 k/ft
43.2 k

22.4 k

13.8 k

16.9 k

43.2+22.4+13.8
+6.9=86.3k

Fy = 50 ksi, E=30,000 ksi, axial and shear
deformation are neglected.
Elastic-perfectly plastic Moment curvature
assumed.

Victor E. Saouma; Univ. of Colorado Earthquake analyses methods; Pushover 10/13



D
ra

ft
D

ra
ft

Example of Demand Curve

First an elastic analysis is performed, and all members satisfied
Mmax < Mp = Fy Zx .

Floor
Beam Column

Mu,req Section Mp Mu,req Section Mp

(k-ft) (k-ft) (k-ft) (k-ft)

4 301 W16x40 304 301 W16x40 304
3 531 W24x55 558 294 W16x40 304
2 633 W24x62 638 364 W21x44 398
1 611 W24x62 638 482 W21x55 525

‐
168

147‐
130

147‐19

5

‐
482

247‐
364

352‐
281

294‐
237

301

611

‐
398

81
‐

275

‐
297

‐
221

‐
139

301

531

633

Base shear (total lateral force) versus roof drift ratio (roof displacement/height)
and the location and sequence of formation of the plastic hinges are shown
below.
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Example of Demand Curve

The lateral force at the elastic limit when the first plastic hinge forms is 87.6 kips,
slightly above the design value of 86.3 kips.

From that point onward, redistribution of moments occurs with plastic hinges
forming sequentially, and the frame reaches its ultimate strength of 117.5 kips at
a roof drift ratio of 2.7%.

The yield mechanism turned out to be a partial sway mechanism over 3 stories
with plastic hinges at the beam ends and the base of the columns and at the top
of the second and third stories.

The ductility ratio (Vult/Vy ) is 1.36.
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Example of Demand Curve
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Introduction

Elastic solution fulfills:

1 Equilibrium
2 “Elasticity” condition (|M|< Myld )
3 Compatibility (continuity)

Plastic solution fulfills:

1 Equilibrium
2 Yield condition (|M|< Mpl )
3 Mechanism (additional deformations are possible without load increase)

Frames typically fail after a sufficient number of plastic hinges form, and the
structures turns into a mechanism, and thus collapse (partially or totally).

At times, it is sufficient to capture the failure mechanism (and corresponding
load) and not worry about deflections (strength and not stiffness)

Limit loads can be determine from two approaches:
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Introduction

[Upper Bound; Kinematic: A load computed on the basis of an assumed
mechanism will always be greater than, or at best equal to, the true
ultimate load. We do not seek to simulate the order in which hinges
formed, we simply assume the simultaneous presence of all possible
hinges. Easier. Assumes equilibrium, fulfills plasticity but may violate
formation of mechanism.
Lower Bound; Statics: A load computed on the basis of an assumed
moment distribution, which is in equilibrium with the applied loading, and
where no moment exceeds Mp is less than, or at best equal to the true
ultimate load. We seek to simulate the order in which hinges formed.
Assumes mechanism, fulfills equilibrium but may violate plasticity.

Method Bound Assumes fulfills Violates

Kinematic Upper Mechanism Plasticity formation mechanism
Statics Lower Equilibrium Mechanism Plasticity

We shall examine each one separately.
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Kinematic; Upper Bound Theorem Theory

Theorem: Any set of loads in equilibrium with an assumed kinematically
admissible field is larger than or at least equal to the set of loads that produces
collapse of the structure. The safety factor is the smallest kinematically
admissible multiplier.

Note similarly with principle of Virtual Work (or displacement).

A kinematically admissible field is one where the external workWe done by the
forces F on the deformation ∆F and the internal work Wi done by the moments
Mp on the rotations θ are positives.

The collapse of a structure can be determined by equating the external and
internal work during a virtual movement. Considering a possible mechanism, i ,
equilibrium requires that Ui = λiWi

Wi is the external work of the applied service load a, λi is a kinematic multiplier,
Ui is the total internal energy dissipated by plastic hinges Ui =

∑n
j=1 Mpjθij , Mpj :

plastic moment, θij the hinge rotation, andn the number of potential plastic
hinges or critical sections.

Assumptions:
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Kinematic; Upper Bound Theorem Theory

Response of a member is elastic perfectly plastic.
Plasticity is localized at specific points.
Only the plastic moment capacity Mp of a cross section is governing.

Number of independent mechanisms n is related to the number of possible
plastic hinge locations h and number of degree of redundancy r

n = h − r (1)
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Kinematic; Upper Bound Theorem Kinematic; Example 1

L/2 L/2

P

θ

θ

θ

θ

Pcr

n = 3− 2 = 1

Internal work done Mpθ+Mpθ+ 2Mpθ = 4Mpθ

External work done by the point load PcrθL/2

Equating the two, we obtain Pcr = 8Mp/L.
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Kinematic; Upper Bound Theorem Kinematic; Example 2

L L

3P

θ
θ

θ
θ

2L 2L

P

θ
θ

θ
θ

A B C

Pcr

3Pcr

Equating external work done by the vertical forces to the internal work:

Span AB: 3Pcr Lθ = 3Mpθ or Pcr =
Mp
L .

Span BC: 2Pcr Lθ = 3Mpθ or Pcr =
3
2

Mp
L
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Kinematic; Upper Bound Theorem Kinematic; Example 3

10' 20'

P

2θ

3θ

θ

Pcr

Wint = Wext

Mp(θ+ 2θ+ 3θ) = Pcr�

6Mpθ = Pcrθ(20)⇒ Pcr = 6
MP

20
Pcr = 0.3Mp
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Kinematic; Upper Bound Theorem Kinematic; Example 4

2Mp

Mp
0.

6L
θ

P

2P

0.5L 0.5L

0.
6L

1

2 3 4

5

θθ

2θ

λ1P

0.5Lθ

θ θ 2θ

2θ

Beam 
Mechanism

Sway 
Mechanism

Combined

θθ

Mp

λ12P

λ22P

λ2P
λ3

P

λ32P

0.5Lθ0.
6L

θ
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Kinematic; Upper Bound Theorem Kinematic; Example 4

n = 5− 3 = 2 independent modes.

The total number of possible mechanisms is three (one is dependent on the
other two).

To verify that λ is indeed the lowest bound, we may draw the corresponding
moment diagram, and verify that at no section is the moment greater than Mp.

Beam Mechanism Mp(θ + θ) + 2Mp(2θ) = λ1(2P)(0.5Lθ) ⇒ λ1 = 6
Mp

PL

Sway Mechanism Mp(θ + θ + θ + θ) = λ2(P)(0.6Lθ) ⇒ λ2 = 6.67
Mp

PL

Combined Mechanism Mp(θ + θ + 2θ) + 2Mp(2θ) = λ3 (P(0.6Lθ) + 2P(0.5Lθ)) ⇒ λ3 = 5
Mp

PL
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Statics; Lower Bound Theory

Assumptions

The applied loads must be in equilibrium with the internal forces.
There must be a sufficient number of plastic hinges for the formation of a
mechanism.

load computed on the basis of an assumed moment distribution, which is in
equilibrium with the applied loading, and where no moment exceeds Mp is less
than, or at best equal to the true ultimate load.

Note similarly with principle of complementary virtual work.

The statics method of solution is as follows:

1 Select redundant moments.
2 Draw the statically determinate moment diagram.
3 Superimpose the redundant moments on the determinate moment diagram

and determine the peak moments.
4 Set peak moments equal to Mp and check that the number of plastic hinges

is sufficient to form a mechanism.
5 Compute the corresponding ultimate load by statics.
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Statics; Lower Bound Statics; Example 1

1 2
p

Perform an incremental analysis.

Stage 1: We have a statically indeterminate structure subjected to P=100
(magnitude is irrelevant, could have been 1, 10, etc.), following analysis, we
obtain;

MC = 3
16 PL = 225 ⇒ λC

1 = 270
225 = 1.2

MB = 5
32 PL = 187.5 ⇒ λB

1 = 270
187.5 = 1.44

Thus, the first hinge forms at C, and P = 1.2(100) = 120,
M total

C = 1.2(225) = 270, and M total
B = 1.2(187.5) = 225
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Statics; Lower Bound Statics; Example 1

Stage 2: A hinge has formed at C (MC = 0), we now have a statically
determinate beam with a point middle load of again P=100 and MB = PL/4=300.
The remaining plastic moment capacity at B is 270-225=45,
⇒ λ2 = 45/300=0.15

Adding the two loads (by now M total
C =270, and M total

B =225+0.15(300)=270), and
the total λC = λ1 + λ2 = 1.2+ 0.15 = 1.35, thus the collapse load is
1.35(100) = 135
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Statics; Lower Bound Statics; Example 2

2 2

30λ

2

50λA

B C

D
30λ 50λ

73.4λ 86.6λ
= +

M

M
M/3 2M/3

36.7λ
43.3λ

Statically indeterminate structure. Rather than performing an analysis to
determine where first hinge occurs, we make two assumptions

First consider the formation of hinges at C and D{
MD = Mp

MC = 86.6λ− 2
3 MD = Mp

⇒ λ =
Mp

52

The other possibility hinges at B and D{
MD = Mp

MB = 73.4λ− 1
3 MD = Mp

⇒ λ =
Mp

55

Hence, the second case governs.
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Statics; Lower Bound Statics; Example 3

-4.44ΔF1 F1 = ΔF0 +ΔF1

    = (0.225+0.0656)Mp

-Mp

ΔF1

ΔF2

F2 = (0.225+0.0656
+0.0105)Mp =0.30Mp

10' 20'

F0

5.185ΔF1

20ΔF2

2.96ΔF0

-4.44ΔF0

-2.22ΔF0

(-2.22)(0.225Mp)=-0.5Mp

(2.96)(0.225)Mp=0.66Mp

Mp

-Mp
[(4.44)(0.0656)+0.5]Mp

Mp

-Mp-Mp

-4.44ΔF0=Mp

ΔF0 = 1/4.44Mp  

          = 0.225Mp

ΔF1=0.0656Mp

5.185ΔF1+0.66Mp=Mp

-20ΔF2-0.79Mp=-Mp

ΔF2 =0.0105Mp

=-0.79Mp

INCREMENTAL M TOTAL MMODEL
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Statics; Lower Bound Statics; Example 3

1 First we consider the original structure

1 Apply a load F0., determine the corresponding moment diagram.
2 Identify the largest moment (-4.44F0) and set it equal to MP . This is the first

point where a plastic hinge will form.
3 We redraw the moment diagram in terms of MP .

2 Next we consider the structure with a plastic hinge on the left support.

1 Apply an incremental load �F1.
2 Draw the corresponding moment diagram in terms of �F1.
3 Identify the point of maximum total moment as the point under the load

5.185�F1 + 0.666MP and set it equal to MP .
4 Solve for �F1, and determine the total externally applied load.
5 Draw the updated total moment diagram. We now have two plastic hinges,

we still need a third one to have a mechanism leading to collapse.

3 Finally, we analyze the revised structure with the two plastic hinges.

1 Apply an incremental load �F2.
2 Draw the corresponding moment diagram in terms of �F2.
3 Set the total moment node on the right equal to MP .
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Statics; Lower Bound Statics; Example 3

4 Solve for �F2, and determine the total external load. This load will
correspond to the failure load of the structure.
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Statics; Lower Bound Statics; Example 4

2 k1 k

1.823 (0.265 Mp)

0.483 (0.070 Mp)

6.885 (Mp)

0.714 (0.714 Mp)

5.798 (0.842 Mp)

1 k 2 k

8.347 (0.104 Mp)1.607 (0.02Mp)

7.362 (0.092Mp) 12.622 (0.158 Mp)

Step 1

1 k 2 k

20 (0.179 Mp)

20.295 (0.182 Mp)

Step 2

1 k 2 k

32 (0.65 Mp)

20 (0.410 Mp)

Step 4

F0=0.145Mp

F1=0.013Mp

F2=0.009Mp

F3=0.021Mp

1 k 2 k

Mp

0.751 Mp

Mp

Mp

MpFinal

Step 3

A

B DC

E

A

B DC

E

A

B DC

E

A

B DC

E

A

B DC

E

NEED TO CHECK PROCEDURE CORRECT NUMBERS FOR MP DO
NOT

1 First plastic hinge will occur at C: 6.885F0 = Mp ⇒ F0 = 0.145Mp.

2 Second hinge at D: Mmax = Mp − 0.842Mp = 0.158Mp, and
�F1 =

0.158
12.633 Mp = 0.013Mp
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Statics; Lower Bound Statics; Example 4

3 Third hinge at E : Mmax = Mp − (0.714+ 0.104)Mp = 0.182Mp and
�F2 =

0.182
20.295 Mp = 0.009Mp

4 Fourth hinge at A Mmax = Mp − 0.344Mp = 0.656Mp and
�F3 =

0.656
32 Mp = 0.021Mp

5 Hence the final collapse load is
F0 +�F1 +�F2 +�F3 = (0.145+ 0.013+ 0.009+ 0.021)Mp = 0.188Mp or
Fmax = 3.76 Mp

L
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Relation with PushOver Analysis

The statics approach to determine
the failure mechanism/load bears
great similarity with the Push Over
analysis that will be covered later.

Major difference: in the approach
followed in the preceding examples,
linear elastic analyses are performed,
and the procedure is akin of a
nonlinear solution using the Secant
method.

Note that in our analysis, we do not
need to keep track of the
displacements (whereas in a Push
Over analysis, those are essential to
determine the Capacity Curve.

Force

Displacement

F 1
F 2

F 3

u3
u2

u1

1st
 P

la
st

ic
 H

in
ge

2nd
 P

la
st

ic
 H

in
ge

3rd
 P

la
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 H

in
ge

All analyses: linear elastic
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Slabs Yield Line Theory

ACI code: The design of the slab may be achieved through the combined use of
classic solutions based on a linearly elastic continuum, numerical solutions
based on discrete elements, or yield-line analyses.

Yield line theory (YLT) investigates failure mechanisms at the ultimate limit state.
It is simple, but demands familiarity with the failure patterns (i.e. knowledge of
how slabs may fail).

When a slab is on the verge of collapse (sufficient number of real or plastic
hinges to form a mechanism) axes of rotation will be located along lines of
support or over point supports such as columns. The slab segments can be
considered to rotate as rigid bodies in space about these axes of rotation.

Two type of YL: positive (crack below) and negative (crack on top).

Guidelines for establishing YL patterns:

1 YL are straight lines (intersections of two planes).
2 YL are axes of rotation.
3 Supported edges of a slab will also establish axes of rotation. If fixed: -ve

YL; if free: no restraint.
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Slabs Yield Line Theory

4 Continuous supports repel and simple supports attract positive or sagging
YL.

5 Axis of rotation passes over any column support. Orientation depends on
other considerations.

6 YL form under concentrated loads radiating outward.
7 YL between two slab segments must pass through the point of intersection

of the axes of rotation of the adjacent slab segments.

The aim of investigating YL patterns is to find the one pattern that gives the least
load capacity).
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Slabs Yield Line Theory
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YIELD LINE ANALYSIS FOR SLABS   5

two axes of rotation, which is also common to the two planes. That is, the yield line (or 

yield line extended) must pass through the point of intersection of the axes of rotation 

of the two adjacent slab segments. 

 The terms  positive yield line  and  negative yield line  are used to distinguish 

between those associated with tension at the bottom and tension at the top of the slab, 

respectively. 

 Guidelines for establishing axes of rotation and yield lines are summarized as 

follows:

     1.  Yield lines are straight lines because they represent the intersection of two planes.  

    2.  Yield lines represent axes of rotation.  

    3.  The supported edges of the slab will also establish axes of rotation. If the edge is 

fixed, a negative yield line may form, providing constant resistance to rotation. If 

the edge is simply supported, the axis of rotation provides zero restraint.  

    4.  An axis of rotation will pass over any column support. Its orientation depends on 

other considerations.  

    5.  Yield lines form under concentrated loads, radiating outward from the point of 

application.  

    6.  A yield line between two slab segments must pass through the point of intersec-

tion of the axes of rotation of the adjacent slab segments.    

 In  Fig. 23.3 , which shows a slab simply supported along its four sides, rotation 

of slab segments  A  and  B  is about  ab  and  cd,  respectively. The yield line  ef  between 

these two segments is a straight line passing through  f,  the point of intersection of the 

axes of rotation.  

 Illustrations are given in  Fig.  23.4  of the application of the guidelines to the 

establishment of yield line locations and failure mechanisms for a number of slabs 

with various support conditions.  Figure 23.4 a   shows a slab continuous over parallel 

supports. Axes of rotation are situated along the supports (negative yield lines) and 

near midspan, parallel to the supports (positive yield line). The particular location of 

the positive yield line in this case and the other cases in  Fig. 23.4  depends upon the 

distribution of loading and the reinforcement of the slab. Methods for determining its 

location will be discussed later.  

 For the continuous slab on nonparallel supports, shown in  Fig. 23.4 b  , the mid-

span yield line (extended) must pass through the intersection of the axes of rotation 

over the supports. In  Fig. 23.4 c   there are axes of rotation over all four simple sup-

ports. Positive yield lines form along the lines of intersection of the rotating segments 

of the slab. A rectangular two-way slab on simple supports is shown in  Fig. 23.4 d  . 

The diagonal yield lines must pass through the corners, while the central yield line 

 FIGURE 23.3  
 Two-way slab with simply 

supported edges. 
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Slabs Statics Example

This method is seldom used for slab analysis.
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YIELD LINE ANALYSIS FOR SLABS   9

 If a slab is reinforced in orthogonal directions so that the resisting moment is 

the same in these two directions, the moment capacity of the slab will be the same 

along any other line, regardless of direction. Such a slab is said to be  isotropically  

reinforced. If, however, the strengths are different in two perpendicular directions, the 

slab is called  orthogonally anisotropic,  or simply  orthotropic.  Only isotropic slabs 

will be discussed in this section. Orthotropic reinforcement, which is very common in 

practice, will be discussed in Section 23.6. 

 It is convenient in yield line analysis to represent moments with vectors. The 

standard convention, in which the moment acts in a clockwise direction when viewed 

along the vector arrow, will be followed. Treatment of moments as vector quantities 

will be illustrated by the following example. 

the supports. Taking the left segment of the slab as a free body and writing the equation for 

moment equilibrium about the left support line (see  Fig. 23.6 b  ) lead to

        
qx  2 

 ___ 
2

    −  10.0  =  0  (a)

     Similarly, for the right slab segment,

        
q 

 __ 
2

   (10  −   x ) 2   −  12.5  =  0  (b)

     Solving Eqs. ( a ) and ( b ) simultaneously for  q  and  x  results in

     q   =  0.89 kipyft 2    x   =  4.75 ft      

  EXAMPLE 23.2   Segment equilibrium analysis of square slab.   A square slab is simply supported along all 

sides and is to be isotropically reinforced. Determine the resisting moment  m   =   ϕ  m   n   per linear 

foot required just to sustain a uniformly distributed factored load of  q  psf. 

  S olution.    Conditions of symmetry indicate the yield line pattern shown in  Fig. 23.7 a  . Con-

sidering the moment equilibrium of any one of the identical slab segments about its support 

(see  Fig. 23.7 b  ), one obtains 

     
  qℓ  2 

 ___ 
4

      
ℓ 
 __ 

6
    −  2    

mℓ 
 ___ 

 √ 

_
 2 
     

1
 ___ 

 √ 

_
 2 
    =  0

               m   =    
 qℓ  2 

 ___ 
24 

       

 FIGURE 23.7  
 Analysis of a square two-way 

slab by segment equilibrium 

equations. 
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A square slab is simply supported along four sides and is
isotropically reinforced. Given the plastic moment per linear foot mP ,
determine the uniform wult .
Due to symmetry, the YL pattern is as shown. Considering
equilibrium of moment of any of the four slab segments about its
support:

Mext = w
l2

4︸︷︷︸
area

L
6︸︷︷︸

moment arm

Mint = 2
mp l√

2︸︷︷︸
moment

1√
2︸︷︷︸

Hor. component

Mext = Mint ⇒ wult =
24mp

l2

Confirming Pages

YIELD LINE ANALYSIS FOR SLABS   9

 If a slab is reinforced in orthogonal directions so that the resisting moment is 

the same in these two directions, the moment capacity of the slab will be the same 

along any other line, regardless of direction. Such a slab is said to be  isotropically  

reinforced. If, however, the strengths are different in two perpendicular directions, the 

slab is called  orthogonally anisotropic,  or simply  orthotropic.  Only isotropic slabs 

will be discussed in this section. Orthotropic reinforcement, which is very common in 

practice, will be discussed in Section 23.6. 

 It is convenient in yield line analysis to represent moments with vectors. The 

standard convention, in which the moment acts in a clockwise direction when viewed 

along the vector arrow, will be followed. Treatment of moments as vector quantities 

will be illustrated by the following example. 

the supports. Taking the left segment of the slab as a free body and writing the equation for 

moment equilibrium about the left support line (see  Fig. 23.6 b  ) lead to

        
qx  2 

 ___ 
2
    −  10.0  =  0  (a)

     Similarly, for the right slab segment,

        
q 
 __ 

2
   (10  −   x ) 2   −  12.5  =  0  (b)

     Solving Eqs. ( a ) and ( b ) simultaneously for  q  and  x  results in

     q   =  0.89 kipyft 2    x   =  4.75 ft      

  EXAMPLE 23.2   Segment equilibrium analysis of square slab.   A square slab is simply supported along all 

sides and is to be isotropically reinforced. Determine the resisting moment  m   =   ϕ  m   n   per linear 

foot required just to sustain a uniformly distributed factored load of  q  psf. 

  S olution.    Conditions of symmetry indicate the yield line pattern shown in  Fig. 23.7 a  . Con-

sidering the moment equilibrium of any one of the identical slab segments about its support 

(see  Fig. 23.7 b  ), one obtains 

     
  qℓ  2 

 ___ 
4
      

ℓ 
 __ 

6
    −  2    

mℓ 
 ___ 

 √ 

_
 2 
     

1
 ___ 

 √ 

_
 2 
    =  0

               m   =    
 qℓ  2 

 ___ 
24 

       

 FIGURE 23.7  
 Analysis of a square two-way 

slab by segment equilibrium 

equations. 

�

�

(a) (b)

�

m�
2

m�
2

dar97946_ch23_001-024.indd   9dar97946_ch23_001-024.indd   9 12/9/14   7:05 PM12/9/14   7:05 PM

Victor E. Saouma; Univ. of Colorado Plasticity III; Limit Analysis of Structure 27/31



Slabs Kinematics

External work: Wext = σ(Niδi) where N is the resultant force, δ corresponding
vertical displacement.

Internal work: Wint =
∑

mlθ where m is the internal moment in the slab per
meter run, l is the length of the YL or its projected length onto the axis os the
rotation for the corresponding region; θ rotation of the region about its axis.
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Slabs Kinematics; Example

The two way slab is simply
supported on all four sides
and supports a uniform load
w . Determine the required
resistance for the slab. 20'

10
'

5'

a?

α 

α 

1

1

2 2
5'

8' (a=6') 6'

1

1/
3

1
1/31/2

1/
2

A
C

B

Section 2-2

S
ec

ti
on

 1
-1

α2=1/5

Θ2=2α2=0.4

3

3
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Slabs Kinematics; Example

+ve YL form as shown, dimension a is unknown.

From geometry: length of diagonal =
√

25+ a2, and form similar triangles

b
5
=

√
25+ a2

a
⇒ b = 5

√
25+ a2

a
(2)

c
a
=

√
25+ a2

5
⇒ c = a

√
25+ a2

5
(3)

Corresponding to a unit deflection, the rotation of the plastic hinge at the
diagonal YL is

θ1 =
1
b +

1
c =

a

5
√

25+a2
+ 5

a
√

25+a2
= 1√

25+a2

( a
5 +

5
a

)
The rotation of the yield line parallel to the long edges of the slab

θ2 =
1
5 +

1
5 = 0.40

Assume a = 6 ft, then the length of the diagonal YL is
√

25+ 36 = 7.81 ft.

Corresponding rotation of the diagonal YL is: θ1 =
1

7.81

( 6
5 +

5
6

)
= 0.261

Rotation angle at the central YL: θ2 = 0.4.

Victor E. Saouma; Univ. of Colorado Plasticity III; Limit Analysis of Structure 30/31



Slabs Kinematics; Example

Wint = 4(mp × 7.81× 0.261) + (mp × (20− 6− 6)× 0.4) = 11.36mp

Wext = 2
(

10× 6× 1
2

w × 1
3

)
︸ ︷︷ ︸

A

++ 4
(

6× 5× 1
2

w × 1
3

)
︸ ︷︷ ︸

B

+ 2
(

8× 5w × 1
2

)
︸ ︷︷ ︸

C

=

80w

Equating Wint = Wext gives wult =
11.36MP

80 = 0.14mP

Successive trials
a Wint Wext wult

6.0 11.36 mP 80.0 w 0.142mP

6.5 11.08 mP 78.4 w 0.141 mP Controls
7.0 10.87 mP 76.6 w 0.142 mP

7.5 10.69 mP 75.0 w 0.143mP

Note that if a unit width strip was considered instead, then
mp =

wult L
2

8 ⇒ wult =
8mp
L2 =

8mp
102 = 0.08mp instead of 0.141mp.

Victor E. Saouma; Univ. of Colorado Plasticity III; Limit Analysis of Structure 31/31



Non Linear Structural Analysis
Nonlinear Analysis; Introduction: Numerical Methods

Victor E. Saouma
saouma@colorado.edu

University of Colorado, Boulder

Fall 2020

Victor E. Saouma; Univ. of Colorado Nonlinear Analysis; Introduction: Numerical Methods 1/43



Table of Contents I

1 Explicit

2 Newton Methods
Taylor Series and Linearization
Newton Method
Matlab Listing
Multi-Dimensional
Multi-Dimensional; Algorithm
Convergence and Error Estimate
Final Remarks
Examples
Quasi Newton

3 Relationship to Structural Mechanics
Introduction
Predictor-Corrector
Newton-Raphson
Initial stiffness
Modified Newton-Raphson
Victor E. Saouma; Univ. of Colorado Nonlinear Analysis; Introduction: Numerical Methods 2/43



Table of Contents II

Secant Newton
Displacement Control
Arc-Length Method
Convergence criteria

Victor E. Saouma; Univ. of Colorado Nonlinear Analysis; Introduction: Numerical Methods 3/43



Explicit

u

Exact Actual load 
displacement 

curve (unknown)

Computed

ΔP1

ΔP2

ΔP3

ΔP4

Δu2 Δu3 Δu4u2 u3 u4

Kt
2

Kt
3

Kt
4

Tangent stiffness matrix 
at load increment 2

Incremental 
displacement at 
load increment 4

Total displacement at 
end of  increment 4

Divergence (no 
equilibrium)

Force, P

P1

P2

P3

P4

In an explicit integration scheme
(also known as “step by step”), load
is applied incrementally and at the
end of each increment:

1 Compute the tangent stiffness
on the basis of the current
displacements, this is the slope
of the load displacement curve);

2 Invert the stiffness matrix and
multiply it by the incremental
load to get the corresponding
incremental displacement;

3 Add the incremental displacement to the sum of the previous ones to obtain the
actual displacement corresponding to the actual load (sum of all previous
incremental loads).
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Explicit

Major advantage a solution will always be found

Major disadvantage: at the end of each increment we do not verify that
equilibrium between internal and external forces is satisfied. This may result in a
diverging solution as the load increases.

A partial palliative to this problem, is the adoption of very small load increments
to minimize errors.

This method should be used extremely carefully, as a solution will always be
obtained no matter how good or bad the model and its parameters are.

Unfortunately, there are some constitutive models which are very fragile when
run within an implicit integration scheme, and as a result they are used (or
misused) in an explicit one.
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Newton Methods

Linear problems: unique solution; Nonlinear problems: can not ensure the
existence of a solution, nor ensure the uniqueness of one.

At best we can say that an approximate numerical solution of the problem is
given, or that an approximation does not exist (typically this implies local or
global failure).

Most widely used class of numerical solution: “Newton Methods”, or “Quasi
Newton”. Other methods may include the bisection method (only linearly
convergent).

Essence of the method which seeks to solve f (x) = 0, is to linearize the
equation about the current approximation xn and solve for the resulting linear
equation for the next approximation xn+1
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Newton Methods Taylor Series and Linearization

Traditionally, Newton’s method start with Taylor’s series where we express a
function as an infinite series with respect to point x :

f (x) = f (x) + (x − x)f ′(x) +
(x − x)2

2!
f
′′
(x) + ...

⇒ = f (x) + (x − x)f ′(x) +O(|x − x |2|︸ ︷︷ ︸
ξ2

)

Ignoring the higher order terms, gives a linear function

L(x) = f (x) + (x − x)f ′(x)

If f(x) is a function of two variables, then x ∈ R2 and x = b x1 x2 cT . The
Taylor series expansion about the fixed point (x1, x2) will be

f(x1, x2) = f (x1, x2) +
∂f (x1, x2)

∂x1
(x1 − x1) +

∂f (x1, x2)

∂x2
(x2 − x2)

Ignoring the higher order terms, we have again linearized the equation.
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Newton Methods Newton Method

If we set f (x) = 0⇒ x ' x − f(x)
f ′(x)

This is an approximate solution, at x , which presumes that we also have f ′(x).

In an iterative procedure, this equation can be rewritten as

x(n
)

x(n
+1

)

f(x)

dy
dx dy

n =
 f(

x n
) -

 f(
x n

+1
)

x(n
+2

)

dx
n+

1

x*

dx
n+

2

x(n
+3

) x(n
)

x(n
+1

)

x(n
+2

)

x*
x(n

+3
)

dy
dx

= f ′(xn)

⇒ dx =
dy

f ′(xn)
=

0︷ ︸︸ ︷
f (xn+1)−f (xn)

f ′(xn)

xn+1 ' xn−
f (xn)

f ′(xn)︸ ︷︷ ︸
δxn

Convergence will be ensured when
|δxn|≤ εδ or |f (xn+1)|≤ εf
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Newton Methods Matlab Listing

Solve f (x) = Tan(x)− x = 0
1 c lea r
2 xn = 4 . 3 ;
3 n = 0;
4 eps i=1e−4;
5 maxi ter = 20;
6 d isp ( " " )
7 d isp ( " n xn norm " )
8 xn_m1 = 0 . ;
9 f o r i = 1 : max i ter

10 f_x=tan ( xn ) −xn ; df_dx=sec ( xn ) ^2 −1;
11 xn = xn − f_x / df_dx ;
12 my_norm = abs ( xn−xn_m1) ;
13 disp ( s p r i n t f ( "%5 i %16.15e %16.15e " , i , xn , my_norm " ) )
14 i f my_norm <epsi
15 break
16 end
17 xn_m1=xn ;
18 end

Note that this is a particularly sensitive problem, because tan x is discontinuous, a

small change in the initial guess may yield to divergence of the solution.
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Newton Methods Multi-Dimensional

For the single variable

xn+1 ' xn−
f (xn)

f ′(xn)︸ ︷︷ ︸
δxn

⇒ f (x) + f ′(x)(x2 − x1) ' 0

If we want to solve two equations with two unknowns, then we should linearize
f1(x) and f2(x) and

L(x) = f(x) + J(x)(x− x) = 0⇒

or

L(x) =

[
f1(x) + ∂f1(x)

∂x1
(x1 − x1) +

∂f1(x)
∂x2

(x2 − x2)

f2(x) + ∂f2(x)
∂x1

(x1 − x1) +
∂f2(x)
∂x2

(x2 − x2)

]
= 0

where J(x) is the Jacobian matrix

J(x) =

[
∂f1(x)
∂x1

∂f1(x)
∂x2

∂f2(x)
∂x1

∂f2(x)
∂x2

]

and J(x)(x− x) is a matrix vector product; Note that the i th row corresponds to
the gradient of the i th component function fi (∇fi . ).
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Newton Methods Multi-Dimensional

Scalar derivative has been replaced by the 2x2 Jacobian matrix of partial
derivatives.

We can further generalize the problem to one of m nonlinear equations with m
unknowns

x =



x1

x2

...
xm


and f(x) =



f1(x)
f2(x)

...
fm(x)


The Jacobian matrix J(x) for this matrix will be an m×m matrix with (i , j) entries
corresponding to the partial derivative of the function i with respect to the
variable j or ∂fi (x)

∂xj

At each step of the Newton method, we have an approximate value of xn to the
exact solution x∗ of the nonlinear equations f(x) = 0. We thus determine xn+1 by
solving the linearized system of equations L(n)(xn+1) = 0.

f(xn) + J(xn)(xn+1 − xn) = 0⇒ xn+1 = xn − J(xn)
−1f(xn)
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Newton Methods Multi-Dimensional

Note the similarity with J(x) = f ′(x) for m = 1.

At each step we should evaluate the Jacobian matrix at a new point, and then
solve a linear system of equations using this new updated matrix.

Again convergence will be ensured when

‖ δxn ‖≤ εδ or ‖ f (xn+1) ‖≤ εf

where ‖ v ‖ is the Euclidian norm of v (strictly speaking, it should be written as
‖ v ‖2) computed as the square root of the sum of the vector components
square,

‖ v ‖=

√√√√ N∑
i=1

v2
i

in an N dimensional space.
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Newton Methods Multi-Dimensional; Algorithm

Given an initial x, a required tolerance ε > 0
Repeat

1 Evaluate g = f (x) and H = J(x)
2 If ‖ g ‖≤ ε, return x
3 v = xn − xn−1 =

f(x)
J(x)

4 Solve Hv = −g
5 x := x + v

until maximum number of iterations is exceeded

Each iteration requires the evaluation of (x) (n scalar functions evaluation in
terms of x) and J(x) (n2 derivatives).
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Newton Methods Convergence and Error Estimate

Must ensure convergence of the method, and the order of the error

Given g(x) = x − f(x)
f ′(x) define a convergence factor ρ(n) as the ratio of the error in xn+1 to

the error in xn. Near the exact solution (x∗, where g(x∗) = x∗) ρ(n) ' g ′(x∗) and is called
the asymptotic convergence factor. Determining g ′(x)

g ′(x) =
f (x)f

′′
(x)

f ′(x)2

if f ′(x∗) 6= 0 and f
′′
(x∗) is finite, then g ′(x∗)=0 and we conclude that the convergence

factor tends to zero when and if xn → x∗.

To determine the error x∗ − xn,

x∗ − xn+1 = x∗ − xn −
f (x∗)− f (xn)

f ′(xn)
⇒ x∗ − xn+1 = −

1
2
(x∗ − xn)

2 f
′′
(ξn)

f ′(xn)

Thus if the iteration converges to x∗, there follows

x∗ − xn+1︸ ︷︷ ︸
error at n + 1

' −
f
′′
(x∗)

2f ′(x∗)
(x∗ − xn)

2︸ ︷︷ ︸
error at n

as n→∞

as long as f ′(x∗) and f
′′
(x∗) are both finite and nonzero.
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Newton Methods Convergence and Error Estimate

Hence we note that the error tends to be proportional to the square of the error in xn as n
tends to infinity.

Other methods (such as the bisection) have a linear convergence.
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Newton Methods Final Remarks

The Newton method:

1 Requires an analytical expression of the derivative

2 If the initial value is too far from the correct value, convergence may not be
ensured (which is why one must place an upper limit on the number of iterations).

3 Fails if the slope is close to zero (such as around the peak load).

4 Works best with curves with low curvatures.

5 Convergence is often quadratic.

‖ xn+1 − x∗ ‖≤ c ‖ xn − x∗ ‖2 (1)

however, in practice we do not know what c is
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Newton Methods Examples

Solve f (x) =


x2

1 + x2
2 + x2

3 − 9
x3 − x2 sin(x1)

3x2 + 4x3

⇒ J(x) =

 2x1 2x2 2x3

−x2 cos(x1) − sin(x1) 1
0 3 4


1 f = @( x ) [ x ( 1 ) ^2+x ( 2 ) ^2+x ( 3 ) ^2−9
2 x ( 3 ) −x ( 2 ) * s in ( x ( 1 ) )
3 3*x ( 2 ) +4*x ( 3 ) ] ;
4 % The Jacobian mat r i x :
5 J = @( x ) [ 2 * x ( 1 ) 2*x ( 2 ) 2*x ( 3 )
6 −x ( 2 ) * cos ( x ( 1 ) ) −s in ( x ( 1 ) ) 1
7 0 3 4] ;
8 % i n i t i a l guess :
9 x = [ −1 ; −2 ;1 ] ;

10 maxi ter = 10;
11 t o l = 1e−12;
12 disp ( ’ ’ )
13 d isp ( ’ i t e r a t i o n x ( 1 ) x ( 2 ) x ( 3 ) norm ( de l t a ) ’ )
14 f o r n=1: max i ter
15 de l t a = −J ( x ) \ f ( x ) ;
16 x = x + de l t a ;
17 disp ( s p r i n t f ( ’%5i %10.5e %10.5e %10.5e %8.3e ’ , . . .
18 n , x ( 1 ) , x ( 2 ) , x ( 3 ) ,norm ( de l ta , i n f ) ) ) ;
19 i f norm ( de l ta , i n f ) < t o l
20 break
21 end
22 end
23 i f n==maxi ter
24 disp ( " Warning : may not have converged to le rance not s a t i s f i e d " )
25 end
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Newton Methods Quasi Newton

Quasi-Newton; Secant Method: In many instances, it is nearly impossible to
compute J(x), as f(x) may not be analytically defined. In such cases, we will
numerically determine the Jacobian based on the simple approximation

f ′(xn+1) '
f(xn)− f(xn−1)

xn − xn−1

Substituting for J(xn)
−1

xn+1 = xn −
xn − xn−1

f(xn)− f(xn−1)︸ ︷︷ ︸
'J−1(xn)

f(xn)

Modified Newton In some applications, the evaluation of the Jacobian is
computationally expensive, and in such case, J−1 is kept constant throughout
the analysis (this will be referred to the initial stiffness method) or the load
increment (modified Newton).
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Relationship to Structural Mechanics Introduction

Objective go from n to n + 1.

Jacobian corresponds to the tangent stiffness matrix of the structure which in
turn depends on the tangent of the constitutive matrix (DT ).(
KT =

∫



BTDTBd

)

.

So far: f(x) = 0, we know how to handle it.

In structural analysis must satisfy within an increment PR
t,n = Pext

t,n − Pint
t,n = 0,

superscript R refers to the residual.

Internal nodal force vector Pint
t,n is a function of nodal displacements ut,n, thus we

have a nonlinear problem. (Recall Pint =
∫
BTσd
 or K�)

Within each iteration we determine the residual nodal force vector, and set it to
zero: PR

t,n = 0

It is an iterative procedure that continues until the residual nodal force vector or
the incremental nodal displacement vector, is sufficiently small (i.e. convergence
is satisfied).
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Relationship to Structural Mechanics Introduction

Newton’s methods hinge on our ability to linearize (through a truncated Taylor
series) the problem as follows
PR,k

t,n = Pext
t,n − Pint,k

t,n δuk
t,n = [Kk−1

tt,n ]−1 · PR,k
t,n ;

and
uk

t,n = uk−1
t,n + δuk

t,n where, uk=0
t,n = ut,n−1 and Pint,k=0

t,n = Pint
t,n−1

and subscript n refers to the load increment, and subscript k to the iteration
number within a load increment.

Assume equilibrium to have been reached at increment n, we then apply an
increment of external force �Pext , and we seek to determine the corresponding
incremental displacement �un+1.

The internal forces and corresponding displacements will then be in (near)
equilibrium.

We distinguish between load increment, and iteration number within an
increment to reach equilibrium.
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Relationship to Structural Mechanics Introduction

At each iteration, we determine the residual R(n+1)
i which corresponds to

Pext − Pint , and seek to minimize this residual. At each iteration, we update (in
the Newton method) the tangent stiffness matrix which corresponds to the
jacobian.

At the heart of all of them, is the determination of the internal nodal force vector
Pint,k

t,n , and the tangent stiffness matrix Kk−1
tt,n .
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Relationship to Structural Mechanics Predictor-Corrector

n

n+1

Force

un un+1

R
2n

Pn

Displacement

Δ
P

n√  
Ktx1

n

Kty2
n
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1nResidual Force at load  

increment n iteration 1

Imposed Force

Incremental displacement at 
load increment n, iteration 1

Total Incremental displacement at load increment n

Total displacement at the 
beginning of increment n
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beginning of increment n+1

Convergence (Residual 
smaller than epsilon)

Pn+1

Internal force at load 
increment n, iteration 1

Tangent stiffness matrix at load 
increment n, iteration 1; x and y 
depend on solution strategy C

om
pu
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d 

di
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m
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t
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Relationship to Structural Mechanics Predictor-Corrector

Newton’s method can be redescribed in terms of Predictor-Corrector

I Predictor (associated with an increment of load) Determine incremental
displacement

II Corrector to check equilibrium iteratively.

1 Compute the corresponding internal forces (not evaluated in the explicit
method);

2 Compute the residual forces
3 If residual is larger than user specified convergence criteria, update the

displacement by multiplying the inverse of the tangent stiffness matrix by
the residual force;

4 Update the total displacement vector.

Hence to each load increment, we would have multiple iterations until equilibrium
is satisfied within a numerical tolerance.

Victor E. Saouma; Univ. of Colorado Nonlinear Analysis; Introduction: Numerical Methods 23/43



Relationship to Structural Mechanics Predictor-Corrector

There are different flavors of this so-called Newton technique. Those are
associated with the tangent stiffness matrix to be considered

Method
Tangent stiffness matrix computed at

Predictor (x in K n
txi ) Corrector (y in K n

tyi )
Increment Iteration Increment Iteration

Newton-Raphson n 1 n i
Modified Newton-Raphson n 1 n 1
Initial Stiffness 1 1 1 1
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Relationship to Structural Mechanics Newton-Raphson

n

n+1

1
nu

2
nu

1
TK

Equilibrium path

R
n+

13

R
n+

12

R
n+

11

ex
t

nf

ext

nf

1

ext

nf 

ext
f

1
nu 1

1nu 
2

1nu 
3

1nu  u

int, 1

1

n
f



int, 1

2

n
f



1
nu

2
nu

Need to solve f(u∗) = Pext
t,n(u

∗)− Pint
t,n(u

∗) = 0 and f(·) is the function of internal
state value (·). In the preceding equation it is often, but not exclusively, the
vector of nodal displacement u.
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Relationship to Structural Mechanics Newton-Raphson

Assuming that uk−1
t,n is known, then a Taylor series expansion gives

f(u∗) = f (uk−1
t,n ) + ∂f

∂u
|
uk−1

t,n
·(u∗ − uk−1

t,n ) + High-order terms Substituting we obtain
∂Pint

t
∂u
|
uk−1

t,n
·(u∗ − uk−1

t,n ) + High-order terms = Pext
t,n − Pint,k−1

t,n = PR,k
t,n where we

assume that the external nodal forces are displacement-independent.

Since an incremental analysis is driven by external force steps (or time steps
�t), the initial conditions are given by Kk=0

tt,n = Ktt,n−1, uk=0
t,n = ut,n−1,

Pint,k=0
t,n = Pint

t,n−1. Again, the iterations continue until an appropriate convergence
criteria is satisfied.

A characteristic of this iterative method is that an updated tangent stiffness
matrix must be determined at each iteration, as such this method is often
referred to as the full Newton-Raphson iterative method.
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Relationship to Structural Mechanics Initial stiffness
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Relationship to Structural Mechanics Initial stiffness
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Relationship to Structural Mechanics Initial stiffness

In the Newton-Raphson iterative method most of the computational effort is
associated with the factorization of the tangent stiffness matrix. For large
systems, it is often more convenient to modify the approach by reducing the
number of such factorizations albeit at the cost of increased number of iterations
to reach proper convergence.

Initial stiffness algorithm
δuk

t,n = [Ktt ]
−1 · PR,k

t,n

with the initial conditions defined by

uk=0
t,n = ut,n−1

Pint,k=0
t,n = Pint

t,n−1

In this method, only the initial Kk=0
tt,n=0 needs to be factorized, thus avoiding the

expense of recalculating and factorizing many times the tangent stiffness matrix.
This initial stiffness iterative method corresponds to a linearization of the
response about the initial configuration of the finite element system and will
converge very slowly and may even diverge.
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Relationship to Structural Mechanics Modified Newton-Raphson
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Relationship to Structural Mechanics Modified Newton-Raphson

Modified Newton-Raphson iterative method is an approach somewhat in
between Newton-Raphson iterative method and the initial stiffness iterative
method.

δuk
t,n = [Ktt,n−1]

−1 · PR,k
t,n

with the initial conditions

uk=0
t,n = ut,n−1

Pint,k=0
t,n = Pint

t,n−1

The modified Newton-Raphson iterative method involves fewer stiffness
decompositions than the Newton-Raphson iterative method. The choice of
external force steps or time steps when the stiffness matrix should be updated
depends on the degree of nonlinearity in the system response; i.e. the more
nonlinear the response, the more often the updating should be performed.
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Relationship to Structural Mechanics Secant Newton
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we do not explicitly invert the Jacobian (or need to invert KT ), but rather compute KT

through finite difference.
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Relationship to Structural Mechanics Displacement Control

In the load control method, we may have oscillation of the solution, or even
divergence. This implies that equilibrium was not restored. This is often
associated with “failure” at peak load.

Failure may be structural or just localized in a subregion.

In most engineering problems, we only seek the peak-load.

In softening materials (such as concrete), we may be seek to capture the
ductility or post-peak response when an imposed displacement is applied (such
as thermal or even seismic). However, this is impossible under load control
because the determination of the residual is impossible close to a peak.

Under displacement control (as further explained below), the restoring force can
always be determined (unless there is a snap-back).
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Relationship to Structural Mechanics Displacement Control

ext
f

u

ext
f

u

Load Control

Displacement Control

For displacement control, we define the vector of residual displacements Rk
n as

Rk
n+1 ≡ Rk

n(fn+1) = uint(fn+1)− uext = 0 (2)

note the difference with Equation 2.

Hence to capture the post-peak response we need to numerically adopt a
displacement control algorithm.

At the beginning of each step n + 1, we start from the forces fn that were
computed in the previous step through equilibrium, Rk

n ≈ 0 or uint
n ≈ uext

n .
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Relationship to Structural Mechanics Displacement Control

The external displacement are now increased from uext
n to uext

n+1 = uext
n+1 +�uext ,

and we seek to determine the corresponding forces fn+1 through equilibrium,
Rk

n+1 ≈ 0 or uint
n+1 ≈ uext

n+1.

Within the current step (identified through the subscript n), we will be iterating
(through superscript k ) in order to achieve equilibrium, Figure ??
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Relationship to Structural Mechanics Displacement Control
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Relationship to Structural Mechanics Displacement Control

As an initial guess for f
0
n+1 we take it to be fn, and based on the linearization

around this initial state, we have

uint(u
0
n+1) + KT (f

0
n+1)�f

1
n+1 = uext

n+1 (3)

where �f
1
n+1 is the first approximation for the unknown displacement increment,

�fn+1 = fn+1 − fn.

Alternatively, we begin from a linearization of Equation 2, Figure ??
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Relationship to Structural Mechanics Displacement Control
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Relationship to Structural Mechanics Displacement Control

Rk
n(f

i+1
n+1) ≈ Rk

n(f
i
n+1) +

(
∂Rk

n

∂f

)i

n+1
δf

i
n = 0 (4)

where i is a counter starting from f
1
n+1 = fn. We observe that

∂Rk
n

∂f
=
∂uint

∂f
= KT (5)

Assuming that uext is constant and KT is the tangent stiffness matrix, Equation 4
yields

Ki
Tδf

i
n = −Ri

n+1 (6)

or
δf

i
n = −(Ki

T )
−1Ri

n+1 (7)
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Relationship to Structural Mechanics Displacement Control

Thus, a series of successive approximations yields

f
i+1
n+1 = fn +�f

i
n = f

i
n+1 + δf

i
n (8)

with
�f

i
n =

∑
k≤i

δf
k
n (9)

very rapidly.

It should be noted that each iteration involves three computationally expensive
steps:

1 Evaluation of internal displacements uint

2 Evaluation of the global tangent stiffness matrix, KT

3 Solution of a system of linear equations
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Relationship to Structural Mechanics Arc-Length Method

u

µ
∆l

∆l

∆l

u

µ

u

µ

Load Control Displacement Control Arc-Length Control

Displacement control should be used when softening is present; arc length
should be used if snap-back is anticipated.

Arch-length method hinges on our ability to define an arc length in terms of both
displacement and force, and then seek a multiplier.

Victor E. Saouma; Univ. of Colorado Nonlinear Analysis; Introduction: Numerical Methods 41/43



Relationship to Structural Mechanics Convergence criteria

An appropriate termination criteria of the iteration should be adopted for any incremental
solution strategy based on iterative methods. At the end of each iteration, the solution
obtained should be checked to see whether it has converged within defined tolerances or
whether the iteration may be diverging.

If the convergence tolerances are too loose, inaccurate results are obtained, and if the
tolerances are too tight, much computational effort is spent to obtain needless accuracy.

Some commonly used convergence criteria include:

Displacement criteria ‖δuk
n‖< εD where εD is a displacement convergence tolerance and ‖·‖ is

the Euclidian norm defined as the square root of the sum of the vector
components squared.

Force criteria PR,k
t,n and ‖PR,k

t,n ‖< εF where εF is a force convergence tolerance.
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Relationship to Structural Mechanics Convergence criteria

Energy criteria A difficulty with the force criterion is that the displacement solution does not
introduce the termination criterion. As an illustration, consider an elasto-plastic
truss with a very small strain-hardening modulus entering the plastic region. In
this case, the residual force vector may be very small while the displacements
may still be much in error. Hence, the convergence criteria may have to be
used with very small values of εD and εF . Also, the expressions must be
modified appropriately when quantities of different units are measured. In order
to provide some indication of when both the displacements and the forces are
near their equilibrium values, the energy criteria can be used∣∣∣ 1

2 · P
R,k
t,n · δu

k
n

∣∣∣ < εE
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Non Linear Structural Analysis
Element Formulation Notation

Victor E. Saouma

1 Nodal Quantities

Pint
S Internal nodal force vector

Pext
t External nodal force vector at free degrees of freedom at structural level

Pint
t Internal nodal force vector at free degrees of freedom at structural level

Pint
u Internal nodal force vector at constraint degrees of freedom at structural level

PR
t Residual nodal force vector at free degrees of freedom at structural level

ut Nodal displacement vector at free degrees of freedom at structural level
Fe Element nodal force vector in global reference;

bNX1, VY 1, MZ1, NX2, VY 2, MZ2cT
Fint

e Internal element nodal force vector in global reference
δδδe Element nodal displacement vector in global reference;

buX1, vY 1, θZ1, uX2, vY 2, θZ2cT
fe Element nodal force vector in local reference with rigid body modes;

bNx1, V y1, Mz1, Nx2, V y2, Mz2cT

f
int

e Internal element nodal force vector in local reference with rigid body modes

de Element nodal displacement vector in local reference with rigid body modes;

bux1, vy1, θz1, uX2, vY 2, θZ2cT
f̃e Element nodal force vector in local reference without rigid body modes;

bM̃z1, M̃z2, Ñx2cT
f̃ inte Internal element nodal force vector in local reference without rigid body modes

f̃Re Residual element nodal force vector in local reference without rigid body modes

d̃e Element nodal displacement vector in local reference without rigid body modes;

bθ̃z1, θ̃z2, ũx2cT
d̃R
e Residual element nodal displacement vector in local reference without rigid body modes

δde Virtual element nodal displacement vector in local reference

2 Section Quantities

ds(x) Section displacement vector; bu(x), v(x)cT
Φ Curvature
σσσs(x) Section force vector; bN(x), M(x)cT
σσσint
s (x) Internal section force vector

σσσR
s (x) Residual section force vector

εεεs(x) Section deformation vector; bεx(x), φz(x)cT
εεεints (x) Residual section deformation vector
δεεεs(x) Virtual section deformation vector
κ Plastic stress

3 Fiber Quantities

σ Uniaxial stress
ε Uniaxial strain
σr Uniaxial stress of layer/fiber
εr Uniaxial strain of layer/fiber

1



4 Stiffness Matrices

Nd(x) Shape function on displacement field
Bd(x) The matrix derived from the derivatives of Nd(x)
Nf (x) Shape function on force field
KS Augmented stiffness matrix at structural level
Ktt Stiffness matrix associated natural boundary conditions
Ktu Stiffness matrix associated natural and essential boundary conditions
Kut Stiffness matrix associated essential and natural boundary conditions
Kuu Stiffness matrix associated essential boundary conditions
Ke Element stiffness matrix in global reference

ke Element stiffness matrix in local reference with rigid body modes

k
tan

e Element tangent stiffness matrix in local reference with rigid body modes

k̃e Element stiffness matrix in local reference without rigid body modes
c̃e Element flexibility matrix in local reference without rigid body modes
ks(x) Section stiffness matrix
ktan
s (x) Section tangent stiffness matrix

cs(x) Section flexibility matrix

5 Misc.

E(x) Elastic modulus
A(x) Section area
Iz(x) Moment of inertia on section area
Le Element length
ΓΓΓe Transformation matrix between local and global coordinate system

Γ̃ΓΓe Transformation matrix between rigid body modes and no rigid body modes

6 Subscripts

t Known traction
u Known displacement
S Structural level
e Element level or eth element at element state determination
r Layer/fiber level or rth layer/fiber at layer/fiber state determination
s Section level or sth section at section state determination
d Displacement field
f Force field
n Current step of External force/displacement vector

7 Superscripts

int Internal
ext External
R Residual
k kth iteration at structural level
j jth iteration at element level

2
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Introduction

Element formulations, and constitutive models are at the heart of our
nonlinear analysis.

Element formulation of beam-column is more complex than the one of
solid elements (except for plates and shells).

We will review “standard” (stiffness based) element formulation, but will
also review formulation of “modern elements”, such as

Fiber sections
zero length elements/sections
Flexibility based elements

At time coverage of some of those elements is quite complex, brace
yourself.

Careful with the notation.
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Truss Element Stiffness Matrix

In the context of the classical stiffness method, derivation of the truss stiffness
matrix is simple. We hereby re-derive it as a mean to “gently” introduce new
notation that you should familiarize yourself with.

As with all finite elements, stiffness matrix derivation hinges on three
requirements.

1 Compatibility

Displacements generalized relationship between section displacement
vector ds(x) and element nodal displacement vector de is expressed
through the displacement interpolation functions (shape functions), Nd(x)
as

ds(x) =
{

u(x)
}
=

[
− x

L + 1 x
L

]
︸ ︷︷ ︸

Nd (x)

·

{
ux1

ux2

}
︸ ︷︷ ︸

de

(1)

Victor E. Saouma; Univ. of Colorado Element Formulations 5/75



Truss Element Stiffness Matrix

Deformation of displacements: Under the assumption that displacements
are small, the section deformation vector εεεs(x) is related to the element
nodal displacement vector by

εεεs(x) =
{
εx(x)

}
=

[
− 1

L
1
L

]
︸ ︷︷ ︸

Bd (x)

·de

where Bd(x) is the matrix which relates displacement to strain through the
derivatives of Nd(x).

2 Constitutive law is expressed as{
Nx(x)

}
︸ ︷︷ ︸

σσσs(x)

= ks(x) · εεεs(x)

where σσσs(x) is the section1 force vector, and ks(x) is the section stiffness matrix.

For linear elastic analysis ks(x) is simply a scalar equal to
ks(x) =

[
E(x) · A(x)

]
where, E(x) and A(x) are elastic modulus and cross

sectional area.
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Truss Element Stiffness Matrix

3 Equilibrium (weak form) through the principle of virtual work (displacement)
which is expressed as

δd
T
e · f e︸ ︷︷ ︸

External

=

∫ Le

0
δεεεs(x)T .σσσs(x) dx︸ ︷︷ ︸

Internal

Substitution leads to

δd
T
e · f e =

∫ Le

0
δd

T
e ·Bd(x)T · ks(x) · εεεs(x) dx

⇒ f e =

∫ Le

0
Bd (x)T · ks(x) · εεεs(x) dx =

∫ Le

0
Bd(x)T · ks(x) ·Bd(x) dx︸ ︷︷ ︸

ke

·de

or f e = ke · de The element stiffness matrix in local reference is thus given by

ke =

∫ Le

0
Bd(x)T · ks(x) ·Bd (x) dx

1
The notion of section is not essential to understand the formulation of the truss element stiffness matrix. It is nevertheless

introduced to be consistent with the subsequent formulation of beam-column
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Truss Element Coordinate system for 2D truss element

(a) Global reference in an element (b) Local reference in an element

1 1,Y YV v

1 1,X XN u
X

Y

X

Y



x

y

2 2,Y YV v

2 2,X XN u

1 1,x xN u

2 2,x xN u

Element nodal forces and
displacements are expressed with
respect to the global reference
Fe = bNX1, VY 1, NX2, VY 2cT ;
δδδe = buX1, vY 1, uX2, vY 2cT

Element nodal forces and displacements can also be expressed with respect to
the local reference,

f e = bNx1, Nx2cT ; de = bux1, ux2cT

Victor E. Saouma; Univ. of Colorado Element Formulations 8/75



Truss Element Coordinate system for 2D truss element

Rotation matrix which transform global reference to local reference, is given by
���e such that

f e = ���e · Fe; de = ���e · δδδe; Ke = ���T
e · ke ·���e

where, Ke is the element stiffness matrix in global reference and the rotation
matrix is

���e =

 NX1 VY 1 NX2 VY 2

Nx1 cosα sinα 0 0
Nx2 0 0 cosα sinα
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Truss Element State determination

In thermodynamic the current state of the material can be uniquely
characterized by a suitably selected set of state variables, i.e. what we
need to predict future states of the system.

In the context of structural analysis, state determination is the process of
determining for a set of element nodal displacements:

Tangent stiffness matrix to apply Newton’s method to solve the
nonlinear system (Tangent stiffness matrix corresponding
to the Jacobian).

Internal forces to then determine the residual forces which should be
nearly equal to zero.

needed to make prediction for state n + 1 from state n.
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Beam-Column; Stiffness; M − � Stiffness Matrix

1 Compatibility of
Displacement Section displacements are determined from the element
nodal displacements through the shape functions.

ds(x) =

{
u(x)
v(x)

}
= Nd (x) · b ux1, v y1, θz1, ux2, v y2, θz2 cT︸ ︷︷ ︸

de

where Nd(x) is the matrix of displacement interpolation functions which
can be expressed as

Nd(x) =

[
ψ1(x) 0 0 ψ2(x) 0 0

0 φ1(x) φ2(x) 0 φ3(x) φ4(x)

]
where ψ1,

ψ2, φ1, φ2, φ3 and φ4 are the interpolation functions for axial and
transverse displacements respectively and are given by

ψ1(x) = − x
Le

+ 1 ψ2(x) = x
Le

φ1(x) = 2 x3

Le3 − 3 x2

Le2 + 1 φ2(x) = x3

Le2 − 2 x2

Le
+ x

φ3(x) = −2 x3

Le3 + 3 x2

Le2 φ4(x) = x3

Le2 − x2

Le

Victor E. Saouma; Univ. of Colorado Element Formulations 11/75



Beam-Column; Stiffness; M − � Stiffness Matrix

We note the uncoupling between axial and transverse displacements since
geometric nonlinearity is ignored.
Again note that ds is nonlinear
Deformation Under the assumptions of small displacements and plane
sections remaining plane (Euler Bernouilli as opposed to Timoshenko), the
section deformation vector εεεs(x) (axial strain εx(x) and curvature φz(x)) is
related to the element nodal displacement vector

εεεs(x) =

{
εx(x)
φz(x)

}
= Bd(x) · de (2)

where Bd(x) is the matrix obtained from the appropriate derivatives of the
displacement interpolation functions

Bd (x) =

[
ψ

′
1(x) 0 0 ψ

′
2(x) 0 0

0 φ
′′
1 (x) φ

′′
2 (x) 0 φ

′′
3 (x) φ

′′
4 (x)

]
with

ψ
′
1(x) = − 1

Le
ψ

′
2(x) = 1

Le

φ
′′
1 (x) = 12x

Le3 − 6
Le2 φ

′′
2 (x) = 6x

Le2 − 4
Le

φ
′′
3 (x) = − 12x

Le3 + 6
Le2 φ

′′
4 (x) = 6 x

Le2 − 2
Le
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Beam-Column; Stiffness; M − � Stiffness Matrix

Note Bd,e(x) is an approximation since we are approximating the
displacement field.

2 Constitutive law Section constitutive law relates axial strain and curvature to
axial force and moment {

Nx(x)
Mz(x)

}
︸ ︷︷ ︸

σσσs(x)

= ks(x) εεεs(x) (3)

where σσσs(x) is the section force vector, and ks(x) is the section stiffness matrix.

If ks(x) is not derived from layer/fiber discretization of the cross section, then we
assume a moment-curvature relation

ks,(x) =

[
E(x) · A(x) 0

0 E(x) · Iz(x)

]
(4)

where, E(x), A(x), and Iz(x) are elastic modulus at increment n, cross sectional
area, and section moment of inertia. Note that ks is nonlinear as the elastic
modulus E varies in a nonlinear formulation.
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Beam-Column; Stiffness; M − � Stiffness Matrix

3 Equilibrium will be satisfied only in the weak sense through the principle of
virtual displacement expressed as

δd
T
e · f e︸ ︷︷ ︸

External

=

∫ Le

0
δεεεs(x)T · σσσs(x) dx︸ ︷︷ ︸

Internal

Substituting and since the latter must hold for any arbitrary δde, the principle of virtual
work leads to

δd
T
e · f e =

∫ Le

0
δd

T
e ·Bd (x)T · ks(x) · εεεs(x) dx

⇒ f e =

∫ Le

0
Bd(x)T · ks(x) · εεεs(x) dx

=

∫ Le

0
Bd(x)T · ks(x) ·Bd (x) dx︸ ︷︷ ︸

ke

·de
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Beam-Column; Stiffness; M − � Stiffness Matrix

or
fe = ke · de (5)

The element stiffness matrix in local reference is thus given by

ke =

∫ Le

0
Bd(x)T · ks(x) ·Bd(x) dx (6)

Note analogy with ke =
∫
BTD(
)Bd
 where D(
) is now replaced

by Ks(x) and 
 by Le.
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Beam-Column; Stiffness; M − � Coordinate system

(a) Global reference in an element (b) Local reference in an element

1 1
,

Y Y
V v

1 1
,

Z Z
M  

1 1
,

X X
N u

X

Y

1 1
,

y y
V v

1 1
,

z z
M  

1 1
,

x x
N u

X

Y

!

x

y

2 2
,

Y Y
V v

2 2
,

Z Z
M  

2 2
,

X X
N u

2 2
,

y y
V v

2 2
,

z z
M  

2 2
,

x x
N u

Element nodal forces and displacements
are expressed with respect to the global
reference
Fe = bNX1, VY1, MZ1, NX2, VY 2, MZ2cT
δδδe = buX1, vY 1, θZ1, uX2, vY 2, θZ2cT

Element nodal forces and displacements of the element can be expressed with
respect to the local reference

f e = bNx1, V y1, Mz1, Nx2, V y2, Mz2cT ; de = bux1, v y1, θz1, ux2, v y2, θz2cT

Rotation matrix which transforms from global reference

f e = ���e · Fe; de = ���e · δδδe; Ke = ���T
e · ke ·���e
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Beam-Column; Stiffness; M − � Coordinate system

where, Ke is the element stiffness matrix in global reference and the rotation
matrix is

���e =



NX1 VY 1 MZ1 NX2 VY 2 MZ2

Nx1 cosα sinα 0 0 0 0
V y1 − sinα cosα 0 0 0 0
Mz1 0 0 1 0 0 0
Nx2 0 0 0 cosα sinα 0
V y2 0 0 0 − sinα cosα 0
Mz2 0 0 0 0 0 1
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Beam-Column; Stiffness; M − � State Determination

We operate at three different levels in the structural analysis: a) structure level,
b) element level, and c) section level.

State determination (internal forces and tangent stiffness matrix corresponding
to element nodal displacements) for

1 Section: internal section forces are computed from section deformations
which are in turn determined from element nodal displacements and the
section stiffness matrix.

2 Element tangent stiffness matrices and internal element nodal forces of
each element are determined from the internal section forces for each
element which are in turn computed from section deformations.

3 Structure: element tangent stiffness matrices and internal element force
vector of all the elements are assembled to form the (augmented) tangent
stiffness matrix Ktan

S and internal nodal force vector Pint
S (Pint

S = Pint
t +Pint

u )
of the structure. Subscript t and u refer to free and constrained degrees of
freedom respectively (that is along the natural and essential boundaries).
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Beam-Column; Stiffness; M − � State Determination

Once the structure state determination is complete, the internal nodal force
vector (Pint

t,n) is compared with the total applied external nodal force vector
(Pext

t,n )and the difference (PR
t,n), is the residual nodal force vector which is then

reapplied to the structure in an iterative solution process until convergence
(equilibrium) is satisfied.

Level Internal Force Tangent Stiffness matrix “Displacement”

Section

{
Nx (x)
Mz(x)

}
︸ ︷︷ ︸

σσσs(x)

= ks(x)εεεs(x) ks(x) =

[
E(x)A(x) 0

0 E(x)Iz(x)

]
εεεs(x) =

{
εx (x)
φz(x)

}
= Bd (x)de

Element Local f
int
e =

∫ Le
0 Bd,e(x)

Tσσσint
s,e(x)dx ke =

∫ Le
0 Bd (x)

T ks(x)Bd (x)dx de = ���e · δδδe

Element Global Fint,k
e,n = ���T

e f
int,k
e,n Ktan,k

e,n = ���T
e k

tan,k
e,n ���e δδδe

Structure Pint,k
t,n =

∑
e A

T
b,eF

int,k
e,n Ktan,k

S,n =
∑

e A
T
b,eK

tan,k
e,n Ab,e δδδe

AT
b,e is a force assembling operator, and Ktan,k

S,n encompasses the four submatrices, Ktan,k
tt,n , Ktan,k

tu,n , Ktan,k
ut,n , and Ktan,k

uu,n
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Beam-Column; Stiffness; M − � State Determination

(a) Structure level at force step n+1 with Newton-Raphson iterations

(b) Element level in local reference

(c) Section level

int, 1
, , ( )k

s e n xσ

A

C

E
G H

0
, , 1 , ,( ) = ( )k

s e n s e nx x
ε ε

1
, , ( )k

s e n xε

, , 1( )s e n xσ

int
, , ( )s e n xσ

A

C

E

G H

n L T
,0

ii t nt, )

. 

= (  () d

e e

dn
,k

s,e,e

k

k

e

e n, xx x



 σBf

Γ δd

,t nP

A

B

C

D

E

F

G

H

, 1
ext
t nP

0
, 1 ,

k
t n t n


 δ δ 1

,
k
t n
δ 4

, ,
k
t n t n
 δ δ

int
, ,
ext
t n t nP P

, 1e nf

int, 1
,

k
e n

f

int
,e nf

0
, 1 ,

k
e n e n


 d d 1

,
k
e n
d 4

, ,
k
e n e n
 d d2

,
k
e n
d 3

,
k
e n
d

tδ
Structure

Nodal displacement

tPExternal nodal force

int, 1
,

k
t n

P

2
,

k
t n
δ 3

,
k
t n
δ

efElement nodal force

edElement
Nodal displacement

, ( )s e xσSection force

4
, , , ,( ) ( )k

s e n s e nx x ε ε
2

, , ( )k
s e n xε

3
, , ( )k

s e n xε

1

2

3

4

5

6

7

, 1
,
R k

t n
P8

Exact solution

Approximation

, ( )s e xεSection
deformation

Exact

Approximate, No correction

Approximate, correction

Hidden Error

,

,

, ,

,

,

( )

( )(

= ( )  

= () )  k
s e n

d

k

e e
k
s

sn es

k
e x

x

x

x x





Bε

εk

d

σ

i

int,

innt,
,

t,

,
t,

ink
e,n

k
e

k
t e

k

e

T
,

,nb

ee

T

n

n



 FP

fF Γ

= 

4

5

3

6

7

, , , 1
ext ext

t n t n t n  P P P ,
k
t nu

tan, int,
, ,, k k

e n e nk f ,
k
e nd

tan, int,
, ,, k k

tt n t nK P
, int,

, , ,
R k ext k

t n t n t n P P P

tan 1
, 1]tt n


[K

,b e

,
k
e n

e

, ( )d e xB

tan, int,
, ,, k k

e n e nK F
e

,
T

b e

Convergence

1 2

36

7 8

Structure level

Element level

, , ( )k
s e n x

, , , 1
ext ext

t n t n t n  P P P ,
k
t nδ

tan, int,
, ,, k k

e n e nk f ,
k
e nd

tan, int,
, ,, k k

tt n t nK P , int,
, , ,
R k ext k
t n t n t n P P P

tan 1
, 1]tt n


[K

,b e

,
k
e n

e

, ( )d e xB

Section/material constitutive lawtan, int,
, , , ,( ), ( )k k

s e n s e nx xk 

, ( )d e xB

tan, int,
, ,, k k

e n e nK F
e

,
T

b e
Convergence

1 2

3

45

6

7 8

a) Structure level

b) Element level

c) Section level

, , and  are the displacement extracting operator and the force assembling operator.T
b e b e 

Analysis
,t nP1

int
, ,

ext
t n t nP P

?
8

a) Structure level;  ,  δ P b) Element level; ,  d f

,t nδ
2

c) Section level; ,   

3

4

5

6

Element Nodal 
Displacements ,e nd

Section 
Deformations , ,s e n

Constitutive Model
 D   f  

Section
Forces , ,s e n

Element Nodal
Forces

int
,e nf

6
Element Tangent
Stiffness Matrix

tan
,e nkStructure Tangent

Stiffness Matrix
tan
SK

Structure Nodal
Forces

int
,t nP 7

7

Victor E. Saouma; Univ. of Colorado Element Formulations 20/75



Beam-Column; Stiffness; M − � State Determination

(a) Structure level at force step n+1 with Newton-Raphson iterations

(b) Element level in local reference

(c) Section level
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Beam-Column; Stiffness; M − � “Hidden” Error

(a) Structure level at force step n+1 with Newton-Raphson iterations

(b) Element level in local reference

(c) Section level
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Newton-Raphson iteration
method operates in the
global coordinate (structural
level) system.

At the k th iteration: de,n → ds,n(x) (section
displacements from element nodal
displacements in local reference, Eq. 1) (®).
For each section: ds,n(x)→ εεεk

s,e,n(x) (Section
deformation from element displacements Eq,
2) (¯), since Bd,e(x) is exact only in the linear
elastic case.
Assuming that the section constitutive law is
explicitly known, εεεk

s,e,n(x)→ ktan,k
s,e,n(x) Eq. 4

(tangent stiffness matrix from section
deformation); εεεk

s,e,n(x)→ σσσint,k
s,e,n(x) (internal

section force vectors from section
deformation, Eq. 3 (°).
Element stiffness matrices k

k
e,n in local

reference (Eq. 6) and the internal element
nodal force vectors in local reference f

int,k
e,n

(Eq. 5 are determined next (±).
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Beam-Column; Stiffness; M − � “Hidden” Error

During assembly of the global stiffness matrix, the structure’s tangent stiffness
matrix and vector of nodal internal forces are determined (²), before the residual
is computed (³) for convergence.
Since Bd,e(x) is only approximate (i.e. evaluated in terms of the estimate values
of the nodal displacements at the structure level), then element stiffness
matrices k

k
e,n (Eq. 6) and internal element nodal force vectors f

int,k
e,n (Eq. 5) are

also approximate.
The approximation of Bd,e(x) leads to stiffer solution. Note that the curve
labeled “Exact solution” is only exact within the assumptions of the section
constitutive law and the kinematic approximations that deformations are small
and plane sections remain plane.
Solutions: a) finer mesh discretization of the structure especially, in frame
regions that undergo highly nonlinear behaviors, such as the member ends.; b)
use flexibility based elements.
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Beam-Column; Stiffness σ− ε (Fiber) Layer/Fiber Sections; Introduction

So far, assumed that a section is characterized by a moment curvature relation,
i.e when the moment reaches the plastic/yield moment, the whole section
plastifies.

This is only an approximation, as in reality there is a gradual plastification
starting from the outer fibers, and this plastification zone gradually spreads
inward until the whole section ultimately becomes plastic.

Note analogy with what we have previously seen in terms of sectional plasticity
(Moment curvature vs stress-strain).

To capture this gradual spread one can either resort to continuum 2D/3D solid
(finite) elements, which is computationally expensive/inefficient, or use layered
elements.

Ultimately, our objective remains the derivation of ktan
s,e(x) such that{

N(x)
Mz(x)

}
= ktan

s,e(x)

{
ε(x)
φz(x)

}
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Beam-Column; Stiffness σ− ε (Fiber) Layer/Fiber Sections; Introduction

Ignoring transverse shear deformation (accounted for in the so-called
Timoshenko beam), and thus assuming a linear strain distribution
(Euler-Bernouilli beam), but a non linear stress-stain behavior, the stress
distribution is σt(x) = Nx (x)

A(x) ±
Mz(x)
Iz(x)

y

At this point, from the nodal displacement, we can determine the section
deformations (axial strain, ε(x) and curvature, φ(x)) (and thus the linear strain
distribution), and since we have a nonlinear material, the exact location of the
neutral axis is not yet known, and at each fiber elevation we do have a different
E tan

r (x). r is the fiber subscript.
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Beam-Column; Stiffness σ− ε (Fiber) Section Stiffness Matrix

(3) Stress distribution

(a) Axial (b) Flexure (c) Total

(2) Strain distribution (Bernoulli theory)
Axial  Flexure Total

(1) Section in an 
element along x 

direction

Φ

Nx(x),ε(x) 

Mz(x),fz(x) 

we,x(x)

x

y2

yr

y1

z

y

y2

yr

y1

z

y ε(x) εM(x) 

we,y(x)

εT(x) 

σ(x) σM(x) σT(x) 

We know ε and �, must determine N and M

Primary Terms are those due to pure axial and flexure:
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Beam-Column; Stiffness σ− ε (Fiber) Section Stiffness Matrix

Pure axial force due to σ(x) is simply determined from

Nx(x) =

∫ y2

−y1

σ(x)dA =

∫ y2

−y1

E tan
r (x) · ε(x)︸ ︷︷ ︸

σ(x)

dA

'
∑

r E tan
r (x) · Ar (x) · ε(x)

(7)

Pure moment due to σM(x) is considered next, and again we seek an
expression of (M(x)) in terms of the curvature and and E tan

r (x), and
recalling that I =

∫
y2dA and σM(x)@yr = E tan

r (x) · φz(x) · yr

Mz(x) =

∫ y2

−y1

σM(x) · ydA =

∫ y2

−y1

E tan
r (x) · φz(x) · y︸ ︷︷ ︸

ε︸ ︷︷ ︸
σ

·ydA

= φz(x)
∫ y2

−y1

E tan
r (x) · y2dA

'
∑

r E tan
r (x) · Ar (x) · y2

r · φz(x)

(8)
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Beam-Column; Stiffness σ− ε (Fiber) Section Stiffness Matrix

Secondary Terms are due to coupling and will result in non-zero off diagonal
terms in the stiffness matrix. Note that this cancels out in linear elastic analysis.

Second axial force due to curvature as there is no reason why the
nonlinear flexural stress distribution will necessarily yield a summation of
forces equal to zero.

dNx(x) = −E tan
r (x) · εM(x)dA = −E tan

r (x) · φz(x) · ydA

Nx(x) = −
∫ y2

−y1

E tan
r (x) · φz(x) · ydA

' −
∑

r

E tan
r (x) · Ar (x) · yr · φz(x)

where the strain (εM(x)) is obtained from the curvature (φz(x)).
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Beam-Column; Stiffness σ− ε (Fiber) Section Stiffness Matrix

Secondary moment due to axial strain as there is no reason why the
location of the neutral axis is indeed correct resulting in a summation of
moment equal to zero.

dMz(x) = −E tan
r (x) · ε(x) · y · dA

Mz(x) = −
∫ y2

−y1

E tan
r (x) · ε(x) · ydA

' −
∑

r

E tan
r (x) · Ar (x) · yr · ε(x)

Summing up within a matrix, ktan
s,e(x) takes the form:{

N
M

}
︸ ︷︷ ︸

σS

=
∑

r

[
E tan

r (x) · Ar (x) −E tan
r (x) · Ar (x) · yr

−E tan
r (x) · Ar (x) · yr E tan

r (x) · Ar (x) · y2
r

]
︸ ︷︷ ︸

ktan,n
s

{
ε(x)
φz(x)

}
(9)

The implementation of this layer or fiber section will require an additional
discretization of the cross section into layers or fibers

Victor E. Saouma; Univ. of Colorado Element Formulations 29/75



Beam-Column; Stiffness σ− ε (Fiber) Section Stiffness Matrix

(a) Layer section (b) Fiber section

y
yr

y
yr

σr=fr(εr) σr=fr(εr)

z z

zr

y

z

x
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Beam-Column; Stiffness σ− ε (Fiber) State Determination

Noting that layer/fiber stress-strain relations are typically expressed as explicit
functions of strain, state determination is given by

Layer or Fiber section
( Iteration loop: r = 1 to # of layers or fibers )

[ ] ,
, , ,1 k j

r n s e nryε − ⋅= ε

tan
, ,, Er n r nσ

1int, tan, tan, tan,
, , , , , , , , ,

1
,   ,   k k k k

s e n r n s e n s e n s e n
r ry

σ
−⎡ ⎤

⎡ ⎤= ⋅ =⎢ ⎥ ⎣ ⎦−⎣ ⎦
∑ k c kσ

tan
, , ,( ),  where  is function  layer/fiber with E .th

r n r r n r r nf f rσ ε=
Each fiber material constitutive law
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Beam-Column; Stiffness σ− ε (Fiber) State Determination

We note that this cross sectional definition allows us to easily specify longitudinal
steel reinforcement. Shear reinforcement, on the other hand, can not be
explicitly modeled, however, common practice is to assign modified properties to
the confined concrete.

Neutral Axis is implicitly determined.

1 In input data, assume the neutral axis to be in the bottom layer (for ease of
determining layer elevation yr ).

2 At the global level equilibrium will not be satisfied.
3 Displacements will be adjusted
4 Indirectly strain distribution will be corrected by shifting the N.A.
5 Faster convergence could be achieved if an intelligent guess is made for

the location of the NA, and define all fibers with respect to that location.
6 Alternatively, the program could immediately (first increment/iteration)

determine the elastic neutral axis.
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Zero-Length Element (M − θ) Introduction

Zero-length elements are needed for a)
lumped plasticity models where plastic hinges
form at the end of the element (They are more
suitable for lateral loads than for vertical ones)
and b) to capture bond slip.

Element end deformations in the reinforced
concrete are composed of two types:

Flexural deformation that causes inelastic strains

Element end rotation which may be caused be the slip of longitudinal
reinforcement in reinforced concrete or plastic hinges in steel members.
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Zero-Length Element (M − θ) Introduction

0eL 

1 2

a

b

c

tan
2 1

tan
2 1

tan
2 1

a.  [ ] ,  where 

b.  [ ] , where 

c.  [ ] ,  where 

x x x x x

y y y y y

z z z z z z

N EA u u

V GA v v

M EI

 

 

   

   

   

   

x

y

z

Nx1,ux1

Mz1,θz1

Vy1,vy1
Vy2,vy2

Mz2,θz2

Nx2,ux2
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Zero-Length Element (M − θ) Stiffness Matrix

x x2 x1x ε = u -uN ,
z1 z1M ,θ

y1 y1V ,v

x1 x1N ,u

y y2 y1y γ = v -vV ,

z1z z z2f = θ, -θ M

1 2

1 Constitutive law Section constitutive law is expressed as
Nx

Vy

Mz

︸ ︷︷ ︸
σσσs

=

 [EA]tan 0 0
0 [GA]tan 0
0 0 [EIz ]tan


︸ ︷︷ ︸

ktan
s


ux2 − ux1

v y2 − v y1

θz2 − θz1

︸ ︷︷ ︸
εεεs

where, [EA]tan, [GA]tan and [EIz ]tan are tangent stiffnesses associated with axial,
shear and moment.

Note that the displaceemnets are the relative displacements between the two
adjacent nodes.
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Zero-Length Element (M − θ) Stiffness Matrix

2 Equilibrium Composing equilibrium equations between point A and point B

Nx1 = [EA]tan ·(ux1 − ux2); V y1 = [GA]tan ·(v y1 − v y2); Mz1 = [EIz ]tan ·(θz1 − θz2)

Likewise between point B and point C,

Nx2 = [EA]tan ·(ux2 − ux1); V y2 = [GA]tan ·(v y2 − v y1); Mz2 = [EIz ]tan ·(θz2 − θz1)

Rewriting in matrix form, the relationship between element nodal force and
displacement vector is given by

Nx1

V y1

Mz1

Nx2

V y2

Mz2

︸ ︷︷ ︸
fe

= k
tan
e



ux1

v y1

θz1

ux2

v y2

θz2

︸ ︷︷ ︸
de
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Zero-Length Element (M − θ) Stiffness Matrix

where, k
tan
e is the element stiffness matrix in local reference.

k
tan
e =



[EA]tan 0 0 −[EA]tan 0 0
0 [GA]tan 0 0 −[GA]tan 0
0 0 [EIz ]tan 0 0 −[EIz ]tan

−[EA]tan 0 0 [EA]tan 0 0
0 −[GA]tan 0 0 [GA]tan 0
0 0 −[EIz ]tan 0 0 [EIz ]tan



Note analogy with the simpler spring elements previously seen (Matrix
analysis).
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Zero-Length Element (M − θ) Coordinate system

Coordinate system in zero-length 2D element is same as the one of the 2D stiffness element.

(a) Global reference in an element (b) Local reference in an element

1 1
,

Y Y
V v

1 1
,

Z Z
M  

1 1
,

X X
N u

X

Y

1 1
,

y y
V v

1 1
,

z z
M  

1 1
,

x x
N u

X

Y

!

x

y

2 2
,

Y Y
V v

2 2
,

Z Z
M  

2 2
,

X X
N u

2 2
,

y y
V v

2 2
,

z z
M  

2 2
,

x x
N u

���e =



NX1 VY1 MZ1 NX2 VY 2 MZ2

Nx1 cosα sinα 0 0 0 0
V y1 − sinα cosα 0 0 0 0
Mz1 0 0 1 0 0 0
Nx2 0 0 0 cosα sinα 0
V y2 0 0 0 − sinα cosα 0
Mz2 0 0 0 0 0 1
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Zero-Length Element (M − θ) Element state determination

`

Element determination for zero-length 2D element

k = 1

Yes

No

, , 2, , 2, ,
k k k
x e n x e n x e nu uε = −

Axial deformation Shear deformation

, , 2, , 1, ,
k k k
y e n y e n y e nv vγ = −

Curvatrue

, , 2, , 1, ,
k k k
z e n y e n y e nφ θ θ= −

Section constitutive law on
axial force-deformation

Section constitutive law on
shear force-deformation

Section constitutive law on
moment-curvature

tan, tan,
, ,

int, int,
, ,

k T k
e n e e n e

k T k
e n e e n

=

=

K k

F f

i i

i

Γ Γ

Γ

, , , , ,
k k k
e n b e t n b e u nδ δ δ= +A u A ui iδ

, , ,
k k
e n b e t nδ δ= A uiδ

1
, , ,

k k k
e n e n e nδ−= +δ δ δ

1
, , ,

k k k
e n e n e nδ−= +d d d

, ,
k k
e n e e nδ δ=d diΓ

int, int, int, int,
, , , , , , , ,

int, int, int, int, int, int, int,
, , , , , , , , , , , , ,

tan
, , ,11

tan, tan
, , , , ,22

tan
, , ,33

0 0

0 0

0 0

Tk k k k
s e n x e n y e n z e n

Tk k k k k k k
e n x e n y e n z e n x e n y e n z e n

s e n
k

s e n s e n

s e n

e

N V M

N V M N V M

k

k

k

⎢ ⎥= ⎣ ⎦

⎢ ⎥= − − −⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

f

k

k

σ

tan tan
, , ,11 , , ,11

tan tan
, , ,22 , , ,22

tan tan
, , ,33 , , ,33tan,

, tan tan
, , ,11 , , ,11

tan tan
, , ,22 , , ,22

tan tan
, , ,22 , , ,33

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

s e n s e n

s e n s e n

s e n s e nk
n

s e n s e n

s e n s e n

s e n s e n

k k

k k

k k

k k

k k

k k

⎡ ⎤−
⎢ ⎥−⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
−⎢ ⎥
⎢ ⎥−
⎢

−⎢⎣ ⎦
⎥
⎥
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Zero-Length Element (M − θ) Element state determination

1 Step 1: Determine the section deformation vector, axial deformation, shear
deformation and curvature. For each deformation, we extract the associated
components from d

k
e,n.

d
k
e,n = buk

x1,e,n v k
y1,e,n θ

k
z1,e,n uk

x2,e,n v k
y2,e,n θ

k
z2,e,ncT

εεεk
s,e,n = bεk

x,e,n, γ
k
y,e,n, φ

k
z,e,ncT

εk
x,e,n = uk

x2,e,n − uk
x2,e,n

γk
y,e,n = v k

y2,e,n − v k
y2,e,n

φk
z,e,n = θ

k
z2,e,n − θ

k
z2,e,n

which define axial section deformation, shear deformation, and curvature.
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Zero-Length Element (M − θ) Element state determination

2 Step 2: Determine the section tangent stiffness associated with axial
force-deformation, shear force-deformation, and moment-curvature in the
section constitutive laws.

If we assume that the section constitutive law is explicitly known, ktan,k
s,e,n and σσσint,k

s,e,n

are determined from εεεk
s,e,n.

In elastic section, we need not to compute ktan,k
s,e,n again as it is identical to the

initial section stiffness matrix ks,e. For an elastic section,

ktan
s,e,n = ks,e

N int,k
x,e,n

V int,k
y,e,n

M int,k
z,e,n

︸ ︷︷ ︸
σσσint,k

s,e,n

= ktan
s,e,n


εk

x,e,n

γk
y,e,n

φk
z,e,n

︸ ︷︷ ︸
εεεk

s,e,n

where, ktan,k
s,e,n is the section tangent stiffness matrix at k th iteration.
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Zero-Length Element (M − θ) Element state determination

3 Step 3: Determine the internal element nodal force vector and the element
tangent stiffness matrix

f
int,k
e,n = bN int,k

x,e,n,V
int,k
y,e,n,M

int,k
z,e,n,−N int,k

x,e,n,−V int,k
y,e,n,−M int,k

z,e,ncT (10)

k
tan,k
e =



EAtan,k
e,n 0 0 −EAtan,k

e,n 0 0
0 GAtan,k

e,n 0 0 −GAtan,k
e,n 0

0 0 EI tan,k
z,e,n 0 0 −EI tan,k

z,e,n

−EAtan,k
e,n 0 0 EAtan,k

e,n 0 0
0 −GAtan,k

e,n 0 0 GAtan,k
e,n 0

0 0 −EI tan,k
z,e,n 0 0 EI tan,k

z,e,n


(11)

where, k
tan,k
e,n is the element tangent stiffness matrix in local reference.

In global, we determine Fint,k
e,n and Ktan,k

e,n .

Fint,k
e,n = ���e

T · f int,k
e,n

Ktan,k
e,n = ���e

T · ktan,k
e,n ·���e

Victor E. Saouma; Univ. of Colorado Element Formulations 42/75



Zero-Length Section; Fiber (σ− ε) Introduction

Zero-length section element is analogous to the zero length element, however, it uses
layer/fiber. This element enables us to model the shift in center of section rotation
which may occur (in bar-slip for example). The element is formulated on the basis of
coupled axial force and moment; No shear forces.

eL =0

z2 z2M ,θ

x

y

z
1 2

z1 z1M ,θ

2 2,y yV vy1 y1V ,v

x2 x2N ,ux1 x1N ,u

x x2 x1

z z2 z1

ε =u -u

f =θ -θ
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Zero-Length Section; Fiber (σ− ε) Stiffness Matrix

Constitutive law Section constitutive law is expressed as{
Nx

Mz

}
︸ ︷︷ ︸

σσσs

=

[
ktan

s,11 ktan
s,12

ktan
s,21 ktan

s,22

]
︸ ︷︷ ︸

ktan
s

·

{
ux2 − ux1

θz2 − θz1

}
︸ ︷︷ ︸

εεεs

where, N and M are analogous to Eqs. 7, 8, and ktan
s is the section

tangent stiffness matrix obtained from layer/fiber state determination,
analogous to Eq. 9.

Equilibrium Zero-length section element is based on Bernoulli beam theory.

z2 z2M ,θ

x
x2 x2N ,u

xN
z1 z1M ,θ

x1 x1N ,u

z M

1 2
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Zero-Length Section; Fiber (σ− ε) Stiffness Matrix

Composing equilibrium equations

Nx1 = k tan
s,11 · (ux1 − ux2) + k tan

s,12 · (θz1 − θz2)

Mz1 = k tan
s,21 · (ux1 − ux2) + k tan

s,22 · (θz1 − θz2)
(12)

Likewise

Nx2 = k tan
s,11 · (ux2 − ux1) + k tan

s,12 · (θz2 − θz1)

Mz2 = k tan
s,21 · (ux2 − ux1) + k tan

s,22 · (θz2 − θz1)
(13)

Rewriting Eq. 12 and 13 to matrix form, the relationship between
element nodal force and displacement vector is given by

Nx1

0
Mz1

Nx2

0
Mz2

︸ ︷︷ ︸
fe

= k
tan
e



ux1

0
θz1

ux2

0
θz2

︸ ︷︷ ︸
de
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Zero-Length Section; Fiber (σ− ε) Stiffness Matrix

where, k
tan
e is the element stiffness matrix in local reference.

k
tan
e =



ktan
s,11 0 ktan

s,12 −ktan
s,11 0 −ktan

s,12

0 0 0 0 0 0
ktan

s,21 0 ktan
s,22 −ktan

s,21 0 −ktan
s,22

−ktan
s,11 0 −ktan

s,12 ktan
s,11 0 ktan

s,12

0 0 0 0 0 0
−ktan

s,21 0 −ktan
s,22 ktan

s,21 0 ktan
s,22


(14)
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Zero-Length Section; Fiber (σ− ε) Coordinate system

Coordinate system in zero-length 2D element is same as in 2D stiffness element.

(a) Global reference in an element (b) Local reference in an element

1 1
,

Y Y
V v

1 1
,

Z Z
M  

1 1
,

X X
N u

X

Y

1 1
,

y y
V v

1 1
,

z z
M  

1 1
,

x x
N u

X

Y

!

x

y

2 2
,

Y Y
V v

2 2
,

Z Z
M  

2 2
,

X X
N u

2 2
,

y y
V v

2 2
,

z z
M  

2 2
,

x x
N u

���e =



NX1 VY 1 MZ1 NX2 VY 2 MZ2

Nx1 cosα sinα 0 0 0 0
V y1 − sinα cosα 0 0 0 0
Mz1 0 0 1 0 0 0
Nx2 0 0 0 cosα sinα 0
V y2 0 0 0 − sinα cosα 0
Mz2 0 0 0 0 0 1
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Zero-Length Section; Fiber (σ− ε) Element state determination

Element determination for zero-length 2D sectionelement

Section determination

k = 1

Yes

No

, , ,
k k
e n b e t nδ δ= A uiδ

, , , , ,
k k k
e n b e t n b e u nδ δ δ= ⋅ +A u A uiδ

1
, , ,

k k k
e n e n e nδ−= +δ δ δ

1
, , ,

k k k
e n e n e nδ−= +d d d

, ,
k k
e n e e nδ δ=d diΓ

, , 2, , 2, ,
, ,

, , 2, , 1, ,

k k k
x e n x e n x e nk

s e n k k k
z e n y e n y e n

u uε
φ θ θ
⎧ ⎫= −⎪ ⎪= ⎨ ⎬= −⎪ ⎪⎩ ⎭

ε

Layer or Fiber section

tan, tan,
, ,

int, int,
, ,

k T k
e n e e n e

k T k
e n e e n

=

=

K k

F f

i i

i

Γ Γ

Γ

int, int, int,
, , , , , ,

int, int, int, int, int,
, , , , , , , , ,

tan tan
, , ,11 , , ,12tan,

, , tan tan
, , ,21 , , ,22

tan
, , ,11 , , ,12

tan,
,

0 0

0

Tk k k
s e n x e n z e n

Tk k k k k
e n x e n z e n x e n z e n

s e n s e nk
s e n

s e n s e n

s e n s e n

k
e n

N M

N M N M

k k

k k

k k

⎢ ⎥= ⎣ ⎦

⎢ ⎥= − −⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

=

f

k

k

σ

tan tan tan
, , ,11 , , ,12

tan tan tan tan
, , ,21 , , ,22 , , ,21 , , ,22
tan tan tan tan
, , ,11 , , ,12 , , ,11 , , ,12

tan tan tan tan
, , ,21 , , ,22 , , ,21 , , ,22

0

0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0

0 0

s e n s e n

s e n s e n s e n s e n

s e n s e n s e n s e n

s e n s e n s e n s e n

k k

k k k k

k k k k

k k k k

⎡ − −

− −
− −

− −⎣

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

Step 1: Determine the section deformation vector,
axial deformation and curvature. For each
deformation, we extracts the associated
components from d

k
e,n.

d
k
e,n = buk

x1,e,n 0 θ
k
z1,e,n uk

x2,e,n 0 θ
k
z2,e,ncT

εεεk
s,e,n = bεk

x,e,n, φ
k
z,e,ncT

εk
x,e,n = uk

x2,e,n − uk
x2,e,n

φk
z,e,n = θ

k
z2,e,n − θ

k
z2,e,n

Step 2: Determine the section tangent stiffness associated with axial force-deformation
and moment-curvature using layer/fiber state determination as in for Layr/fiber.
Determine next the internal section force vector. If we assume that the material
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Zero-Length Section; Fiber (σ− ε) Element state determination

constitutive law is explicitly known, ktan,k
s,e,n and σσσint,k

s,e,n are determined from εεεk
s,e,n.

However, in the section with elastic material, we need not to compute ktan,k
s,e,n

again as it is identical to the initial section stiffness matrix ks,e. If we have a
section with elastic material, then

ktan
s,e,n = ks,e{

N int,k
x,e,n

M int,k
z,e,n

}
︸ ︷︷ ︸

σσσint,k
s,e,n

= ktan
s,e,n

{
εk

x,e,n

φk
z,e,n

}
︸ ︷︷ ︸

εεεk
s,e,n

where, ktan,k
s,e,n is the section tangent stiffness matrix at k th iteration.
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Zero-Length Section; Fiber (σ− ε) Element state determination

Step 3: Determine the internal element nodal force vector and the element tangent
stiffness matrix

f
int,k
e,n = bN int,k

x,e,n, 0,M
int,k
z,e,n,−N int,k

x,e,n, 0,−M int,k
z,e,ncT

k
tan,k
e,n =



ktan,k
s,e,n,11 0 ktan,k

s,e,n,12 −ktan,k
s,e,n,11 0 −ktan,k

s,e,n,12

0 0 0 0 0 0
ktan,k

s,e,n,21 0 ktan,k
s,e,n,22 −ktan,k

s,e,n,21 0 −ktan,k
s,e,n,22

−ktan,k
s,e,n,11 0 −ktan,k

s,12e,n, ktan,k
s,e,n,11 0 ktan,k

s,e,n,12

0 0 0 0 0 0
−ktan,k

s,e,n,21 0 −ktan,k
s,e,n,22 ktan,k

s,e,n,21 0 ktan,k
s,e,n,22


where, k

tan,k
e,n is the element tangent stiffness matrix in local reference. We

determine Fint,k
e,n and Ktan,k

e,n .

Fint,k
e,n = ���e

T · f int,k
e,n

Ktan,k
e,n = ���e

T · ktan,k
e,n ·���e
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Flexibility Based Elements Introduction

Flexibility based elements

Are nonconformist finite elements since they yield the element flexibility
matrix rather than the classical stiffness matrix.
Are based on the equations of equilibrium rather than on assumed
displacement field, while at the global level formulation is displacement
based.
Offer some important advantages over stiffness based elements: fewer
elements are needed (albeit at the cost of a more complex formulation);
stiffness-based method formulations are approximate and flexibility-based
method formulations are exact such as a section varying along the element
and elements with material nonlinearity.

We derive the element flexibility matrix ~ce without rigid body modes and then
invert it to obtain the corresponding element stiffness matrix ~ke (again without
rigid body modes). The retained degrees of freedom are the axial force at node
2, and the two end moments.

There are two distinct formulations: a) with element iterations, and b) without
element iterations. We will focus on the former.
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Flexibility Based Elements Introduction

Whereas we have used the principle of virtual work (displacement) for the
derivation of the stiffness based element, we shall now use the principle of
complementary virtual work (force) through the usual three steps.
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Flexibility Based Elements Stiffness Matrix

x

y

z

, ( )e yw x

, ( )e xw x

1 1,z zM 

2 2,x xN u 

2 2,z zM 

eL

x

1 1,z zM 

, ( )e yw x

, ( )e xw x ( ), ( )z zM x x

( ), ( )x zN x x
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Flexibility Based Elements Stiffness Matrix

(a) Positive section axial force

(b) Positive section moment

Equilibrium will now be strongly enforced (whereas it was satisfied in the weak
sense previously) and we seek to derive the force shape functions:

For uniformly distributed axial forces, we have dNx(x) = w (e)
x dx or

dNx (x)
dx = w (e)

x (x)
For uniformly distributed transverse forces dVy (x)

dx = w (e)
y (x)) and

d2
M

dx2 = w(x)
Equilibrium can be expressed as

we(x)︸ ︷︷ ︸
External

+Lf · σσσs(x)︸ ︷︷ ︸
Internal

= 0;

{
w (e)

x (x)
w (e)

y (x)

}
+

 d
dx

0

0 d2

dx
2

{
Nx(x)
Mz(x)

}
= 0

we(x) is the external element traction vector, Lf is the force differential
operator which enforces equilibrium. (Note in stiffness formulation, the
compatibility was “strongly” enforced).
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Flexibility Based Elements Stiffness Matrix

We will write equilibrium of sectional stresses in terms of the nodal forces,
and assume that there are no external element traction.
Whereas we previously used displacement interpolation functions, we now
need force interpolation functions, Nf (x) in order to exactly satisfy
equilibrium along the element d

dx
0

0 d2

dx
2

{
Nx(x)
Mz(x)

}
= 0

Integrating these equations, we obtain Nx(x) = c3 and Mz(x) = c1x + c2.
We now seek to determine the shape functions that relate section internal
forces at any point x to the nodal forces. We enforce natural boundary
condition

Nx(L) = ~Nx2; Mz(0) = − ~Mz1; Mz(L) = ~Mz2;

⇒ c1 =
~Mz1+~Mz2

Le
; c2 = − ~Mz1; c3 = ~Nx2;
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Flexibility Based Elements Stiffness Matrix

Substituting, we have the internal axial force and moment at any point (x)
in terms of the nodal forces.

{
Nx(x)
Mz(x)

}
︸ ︷︷ ︸

σσσs(x)

=

[
0 0 1

x
Le
− 1 x

Le
0

]
︸ ︷︷ ︸

Nf (x)


~Mz1

~Mz2

~Nx2

︸ ︷︷ ︸
~fe

where, ~fe is the element nodal force vector without rigid body modes.
It should be noted that these shape functions enforce equilibrium at any
section along the element

Constitutive law: Previously expressed section forces in terms of section
deformations, we now need to express section deformations in terms of section
forces: εεεs(x) = cs(x) · σσσs(x) where, cs(x) is the section flexibility matrix. If cs(x)
is not derived from fiber section, then for linear elastic analysis cs(x) is simply.

cs(x) =

[
1

E(x)·A(x) 0

0 1
E(x)·Iz(x)

]
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Flexibility Based Elements Stiffness Matrix

Compatibility of displacements: enforced only in a weak form through the
principle of complementary virtual work (as opposed to the principle of virtual
work for the stiffness-based method).

δ~fe
T ~de︸ ︷︷ ︸

External

=

∫ Le

0
δσσσs(x)T · εεεs(x)dx︸ ︷︷ ︸

Internal

where ~de is the element nodal displacement vector without rigid body modes.

Substituting

δ~fe
T ~de =

∫ Le

0
δ~fe

T ·Nf (x)
T · cs(x) · σσσs(x) dx

~de =

∫ Le

0
Nf (x)

T · cs(x) · σσσs(x) dx =

∫ Le

0
Nf (x)

T · cs(x) ·Nf (x) dx︸ ︷︷ ︸
~ce

·~fe

or
~de = ~ce · ~fe
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Flexibility Based Elements Stiffness Matrix

The element flexibility matrix without rigid body modes in local reference is thus
given by

~ce =

∫ Le

0
Nf (x)

T · cs(x) ·Nf (x) dx

The corresponding element stiffness matrix without rigid body modes in local
reference is simply

~ke = [~ce]
−1

Note this is a 3x3 matrix, we still have to insert equilibrium relations and
transform it into the usual 6x6 stiffness matrix
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Flexibility Based Elements Coordinate system

(a) Local reference in an element (b) Local reference in an element
without rigid body modes

X

Y

X

Y x

y

x

y


1 1,y yV v

1 1,z zM 
1 1,x xN u

2 2,y yV v

2 2,z zM 
2 2,x xN u

1 1,z zM 

2 2,z zM 
2 2,x xN u 



1 2z z

e

M M

L

 

1 1,z zM  2 2,z zM 

2 2,x xN u 

1 2z z

e

M M

L

 

eL

1 1,y yV v

1 1,z zM 

1 1,x xN u

2 2,y yV v

2 2,z zM 

2 2,x xN u

1 1,x xN u 
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Flexibility Based Elements Coordinate system

Contrarily to the reference system of the stiffness-based method, we need to
consider forces and displacements in local reference with and without rigid body
modes.

Element nodal force vector without rigid body modes in local reference are
(arbitrarily) selected as ~fe = b ~Mz1, ~Mz2, ~Nx2cT , and the corresponding element
nodal displacement vector without rigid body modes in local reference are given
by ~de = b~θz1, ~θz2, ~ux2cT

The relationship between rigid body modes and no rigid body modes is obtained
through equilibrium

Nx1

V y1

Mz1

Nx2

V y2

Mz2

︸ ︷︷ ︸
fe

=



0 0 −1
1

Le

1
Le

0
1 0 0
0 0 1
− 1

Le
− 1

Le
0

0 1 0


︸ ︷︷ ︸

~���
T
e


~Mz1

~Mz2

~Nx2

︸ ︷︷ ︸
~fe
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Flexibility Based Elements Coordinate system

Substituting, f e = ~���
T
e · ~fe; de = ~���

T
e · ~de; or

Ke = ~���
T
e · ~ke · ~���e

Note that whereas previously ���e denoted a geometric transformation matrix (for
stiffness based elements), it now corresponds to a statics matrix (also denoted
as B previously).

Derivation of the stiffness matrix from the flexibility one and the equations of
equilibrium parallels the one earlier derived

[K] =

[
[d]−1 [d]−1[B]T

[B][d]−1 [B][d]−1[B]T

]
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Flexibility Based Elements State determination; Introduction

The flexibility-based element (derived from the complementary principle of virtual work)
does not have shape functions that relate deformation field inside the element with element
nodal displacement vector, but shape functions which relate section forces to nodal forces.

The global formulation is based on the stiffness (displacement) formulation, the element is
based on a flexibility (force) formulation; the two will have to be reconciled (in the
determination of the internal element force vectors).

At the element level, the flexibility based element will provide nodal displacements which
are not necessarily compatible with the ones coming from adjacent elements just as in the
stiffness based formulation, forces were not compatible at the element level.

We must ensure nodal displacement compatibility (in the same way as we ensured nodal
equilibrium in the stiffness based formulation. Accomplished iteratively.

Note that in the stiffness based method, there was a discontinuity in nodal forces.

There are two algorithms for the mixed stiffness-based and flexibility-based methods: (a)
with Newton-Raphson iteration in the element level to determine element state (Spacone),
(b) without iteration in the element level to determine element state (Carol).
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Flexibility Based Elements State Determination; No Iterations
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Flexibility Based Elements
State Determination; Iterations; The “Big

Picture”
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Flexibility Based Elements
State Determination; Iterations; The “Big

Picture”

A

B

D

E

F

A

D

F

A

D

F

B

C

E

B

C

E

(c) Section level

(b) Element level in local reference without rigid body modes

(a) Structure level at force step  n+1 with Newton-Raphson iterations

Structure

Nodal displacement

External nodal force

Element nodal force

Element

Nodal displacement

Section force

Section

deformation

A

B

described in element state determination

described in section state determination

1

2

3

3a 5

4

6

8

7

A

D

B

C

1, 1
, , ( )k j

s e n x  

, ( )s e x

, ( )s e x
0, 0

, , 1 , ,( ) = ( )k j
s e n s e nx x 

 
, , 1( )s e n x

1, 1
, , ( )k j

s e n x 

int, 1, 1
, , ( )k j

s e n x 

, 1, 1
, , ( )R k j

s e n x 

tan, 1, 1
, ( )k j

s n x c

, 1, 1
, , ( )R k j

s e n x 

1,
1

1,
1

,
,

,
,

(
)

(
)

k
j

k
j

s
e

n
f

e
e

n
x

x











N
f



1, 1
, , ( )k j

s e n x 

116

7

4

5

9 10

8

(b) Section state determination 4

B

ef

A

D

B

C

, 1e nf
0, 0

, 1 ,
k j

e n e n
 

 d d  1, 1
,

k j
e n
 d ed1, 2

,
k j
e n
 d1, 3

,
k j
e n
 d

1,
1

1,
0

1,
1

,
,

k
j

k
j

k
j

e
n

e
e

n














f
k

d





int, 1, 1
,

k j
e n

 f

1, 1
,

k j
e n  d , 1, 1

,
R k j
e n

 d

tan, 1, 1
,

k j
e n

 c

3

2

1 13

12

(a) Element state determination 3a 5

A

Victor E. Saouma; Univ. of Colorado Element Formulations 65/75



Flexibility Based Elements
State Determination; Iterations; The “Big

Picture”
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Flexibility Based Elements
State Determination; Iterations; The “Big

Picture”

In the flexibility based element we can not go directly from nodal displacements
to section strains (as was the case in the stiffness based element), this is
accomplished

1 Determine the element nodal force vector ~f k,j
e,n (±) from the current element

nodal displacement vector using the element tangent stiffness matrix
~ktan,k,j−1

e,n (®) of the previous iteration.
2 Through the force interpolation functions Nf ,e(x) determine the section

force vectors σσσk,j
s,e,n(x) along the element.

3 Determine the section strains by multiplying the constitutive model times
the section forces.

When we recompute the displacements corresponding to the strains.

Compatibility of displacements at the structural level will not be satisfied.

Thus we have an additional loop at the element level to reconcile structure
based displacement and element based (through the flexibility matrix) ones, or
compatibility of displacement.

There are two complications in this procedure.
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Flexibility Based Elements
State Determination; Iterations; The “Big

Picture”

1 The determination of the section deformation vectors εεεk,j
s,e,n(x) from section

force vectors since the nonlinear section force-deformation relation is
commonly expressed as an explicit function of section deformation vector
(¯).

2 Changes in the section tangent stiffness matrices ktan
s,e,n(x) produce a new

element tangent stiffness matrix which, in turn, changes the element nodal
force vector for the given element nodal displacement vector (±).
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Flexibility Based Elements State Determination; Details

The problem is solved through a nonlinear approach which first determines
residual element nodal displacement vector ~dR,k,j

e,n at each iteration. Then,
compatibility of displacement at the structural level requires that this residual
element nodal displacement vector be corrected.

At the element level by applying corrective element nodal force vector based on
the current element tangent stiffness matrix. The corresponding section force
vectors are then determined from the force interpolation functions so that
equilibrium will always be satisfied along the element. Section force vectors will
not change during the section state determination in order to maintain
equilibrium along the element.

Linear approximation of section force-deformation relation about the present
state results in residual section deformation vectors σσσR,k,j

s,e,n(x). These are then
integrated along the element to obtain new residual element nodal displacement
vector (°) and the whole process is repeated until convergence occurs.

Compatibility of element nodal displacement vector and equilibrium along the
element are always satisfied.
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Flexibility Based Elements State Determination; Details

The goal of the Newton-Raphson iteration loop in the element level is to
determine the internal element nodal force vector (±) for the current element
nodal displacement vector at the k th Newton-Raphson iteration, hence
~dk

e,n = ~dk−1
e,n + δ~dk

e,n

1 The initial state of the element, represented by the point A, and j = 0 and k = 0
corresponds to the state at the end of the last convergence in structural level. With the
initial element tangent flexibility matrix given by ~ctan,k=1,j=0

e,n = ~ctan
e,n−1 and the given

incremental element nodal displacement vector δ~dk=1,j=1
e,n = δ~dk=1

e,n hence, the
corresponding incremental element nodal force vector is

δ~f k=1,j=1
e,n =

[
~ctan,k=1,j=0

e,n

]−1
· δ~dk=1,j=1

e,n = ~ktan,k=1,j=0
e,n · δ~dk=1,j=1

e,n

2 The incremental section force vectors can now be determined from the force interpolation
functions δσσσk=1,j=1

s,e,n (x) = Nf ,e(x) · δ~f
k=1,j=1
e,n With the section tangent flexibility matrices at

end of the last convergence in structural level given by c
tan,k=1,j=0
s,e,n (x) = ctan

s,e,n−1(x)

3 The linearization of the section force-deformation relation yields the incremental section
deformation vectors. δεεεk=1,j=1

s,e,n (x) = c
tan,k=1,j=0
s,e,n (x) · δσσσk=1,j=1

s,e,n (x)

Victor E. Saouma; Univ. of Colorado Element Formulations 70/75



Flexibility Based Elements State Determination; Details

4 The section deformation vectors are updated to the state that corresponds to point B and
the updated section deformation vector (¯) will be given by
εεε

k=1,j=1
s,e,n (x) = εεε

k=1,j=0
s,e,n (x) + δεεεk=1,j=1

s,e,n (x) For the sake of simplicity we will assume that
the section force-deformation relation is explicitly known, then the section deformation
vectors εεεk=1,j=1

s,e,n (x) will correspond to internal section force vectors σσσint,k=1,j=1
s,e,n (x) and

updated section tangent flexibility matrices c
tan,k=1,j=1
s,e,n (x)can be defined.

5 The residual section force vectors are then determined
σσσ

R,k=1,j=1
s,e,n (x) = σσσ

k=1,j=1
s,e,n (x)− σσσint,k=1,j=1

s,e,n (x) and are transformed into residual section
deformation vectors εεεR,k=1,j=1

s,e,n (x)

εεε
R,k=1,j=1
s,e,n (x) = c

tan,k=1,j=1
s,e,n (x) · σσσR,k=1,j=1

s,e,n (x)

6 The residual section deformation vectors are thus the linear approximation of the
deformation error made in the linearization of the section force-deformation relation. While
any suitable section flexibility matrix can be used to calculate the residual section
deformation vector, the section tangent flexibility matrices offer the fastest convergence
rate.

7 The residual section deformation vectors are integrated along the element using the
complimentary principle of virtual work to obtain the residual element nodal displacement
vector (°), ~dR,k=1,j=1

e,n =
∫ Le

0 Nf ,e(x)T · εεεR,k=1,j=1
s,e,n (x)dx
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Flexibility Based Elements State Determination; Details

8 At this stage the first iteration (j = 1) is completed. The final element and section states for
j = 1 correspond to point B. The residual section deformation vectors εεεR,k=1,j=1

s,e,n (x) and
the residual element nodal displacement vector ~dR,k=1,j=1

e,n were determined in the first
iteration, but the corresponding element nodal displacement vector have not yet been
updated. Instead, they constitute the starting point of the remaining steps within iteration
loop j .

9 The presence of residual element nodal displacement vector ~dR,k=1,j=1
e,n will violate

compatibility, since elements sharing a common node would now have different element
nodal displacement vector. In order to restore the inter-element compatibility, corrective
force vector δ~f k=1,j=2

e,n must be applied at the ends of the element as follows

δ~f k=1,j=2
e,n = −

[
~ck=1,j=1

e,n

]−1
·~dR,k=1,j=1

e,n ; ~ck=1,j=1
e,n =

∫ Le

0
Nf ,e(x)

T ·ctan,k=1,j=1
s,e,n (x)·Nf ,e(x)dx
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Flexibility Based Elements State Determination; Details

10 Thus, in the second iteration (j = 2), the element nodal force vector (±) is updated as
~f k=1,j=2
e,n = ~f k=1,j=1

e,n + δ~f k=1,j=2
e,n and the section force and deformation vectors are also

updated to

δσσσ
k=1,j=2
s,e,n (x) = Nf ,e(x) · δ~f

k=1,j=2
e,n

σσσ
k=1,j=2
s,e,n (x) = σσσ

k=1,j=1
s,e,n (x) + δσσσk=1,j=2

s,e,n (x)

δεεε
k=1,j=2
s,e,n (x) = εεε

R,k=1,j=1
s,e,n (x) + c

tan,k=1,j=1
s,e,n (x) · δσσσk=1,j=2

s,e,n (x)

εεε
k=1,j=2
s,e,n (x) = εεε

k=1,j=1
s,e,n (x) + δεεεk=1,j=2

s,e,n (x)

11 The state of the element and sections within the element at the end of the second iteration
j = 2 corresponds to point C.

It should be noted that the updated tangent flexibility matrices ctan,k=1,j=2
s,e,n (x) and

residual section deformation vectors εεεR,k=1,j=2
s,e,n (x) are computed for all sections.

Residual section deformation vectors are then integrated to obtain the residual
element nodal deformation vector ~dR,k=1,j=2

e,n and the new element tangent
flexibility matrix ~ck=1,j=2

e,n is determined by integration of the section flexibility
matrices ctan,k=1,j=2

s,e,n (x). This completes the second iteration within loop j .
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Flexibility Based Elements State Determination; Details

When incremental element nodal displacement vector δ~dk,j=1
e,n = δ~dk

e,n is added
to the element nodal displacement vector ~dk−1

e,n at the end of the previous
Newton-Raphson iteration, it is important to make sure that the element nodal
displacement vector ~dk

e,n do not change except in the first iteration j = 1 during
iteration loop j

Equilibrium along the element is always strictly satisfied since section force
vectors (¯) are derived from element nodal force vector by the force interpolation
functions.

σσσk
s,e,n(x) = Nf ,e(x) · ~f k

e,n and δσσσk
s,e,n(x) = Nf ,e(x) · δ~f k

e,n

Compatibility is also satisfied, not only at the element ends, but also along the
element.

δ~f k,j
e,n = −

[
~ck,j−1

e,n

]−1
· ~dR,k,j−1

e,n

δσσσ
k,j
s,e,n(x) = Nf ,e(x) · δ~f k,j

e,n

δεεε
k,j
s,e,n(x) = εεε

R,k,j−1
s,e,n (x) + ctan,k,j−1

s,e,n (x) · δσσσk,j
s,e,n(x)
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Flexibility Based Elements State Determination; Details

The second term expresses the relation between section deformation vectors
and element nodal displacement vector. However, it should be noted that
residual section deformation vectors εεεR,k,j−1

s,e,n (x) do not strictly satisfy this
compatibility condition. This requirement can only be satisfied by integrating the
residual section deformation vectors εεεR,k,j−1

s,e,n (x) to obtain ~dR,k,j−1
e,n . Since this is

rather inefficient from a computational standpoint, the small compatibility error in
the calculation of residual section deformation vectors εεεR,k,j−1

s,e,n (x) will be
neglected.

While equilibrium and compatibility are satisfied along the element during each
iteration of loop j , the section force-deformation relation and the element
force-deformation relation is only satisfied within a specified tolerance when
convergence is achieved.
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Beam-Column; Stiffness Based Stiffness Matrix

1 Compatibility of

Displacement Section displacements:

ds(x) =

{
u(x)
v(x)

}
= Nd (x) · b ux1, v y1, θz1, ux2, v y2, θz2 cT︸ ︷︷ ︸

de

Deformation

εεεs(x) =

{
εx(x)
φz(x)

}
= Bd(x) · de

2 Constitutive law axial strain and curvature to axial force and moment{
Nx(x)
Mz(x)

}
︸ ︷︷ ︸

σσσs(x)

= ks(x) εεεs(x)
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Beam-Column; Stiffness Based Stiffness Matrix

where σσσs(x) is the section force vector, and ks(x) is the section stiffness matrix.
If ks(x) is not derived from layer/fiber discretization of the cross section, and for
linear elastic case ks(x) is simply equal to

ks(x) =

[
E(x) · A(x) 0

0 E(x) · Iz(x)

]

where, E(x), A(x), and Iz(x) are elastic modulus, cross sectional area, and
section moment of inertia.

3 Equilibrium will be satisfied only in the weak sense through the principle of
virtual displacement expressed as

δd
T
e · f e︸ ︷︷ ︸

External

=

∫ Le

0
δεεεs(x)T · σσσs(x) dx︸ ︷︷ ︸

Internal

Substituting:

ke =

∫ Le

0
Bd(x)T · ks(x) ·Bd(x) dx
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Beam-Column; Stiffness Based Coordinate system

(a) Global reference in an element (b) Local reference in an element
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Element nodal forces and displacements
are expressed with respect to the global
reference
Fe = bNX1, VY1, MZ1, NX2, VY 2, MZ2cT
δδδe = buX1, vY 1, θZ1, uX2, vY 2, θZ2cT

Rotation matrix which transforms from global reference

f e = ���e · Fe; de = ���e · δδδe; Ke = ���T
e · ke ·���e
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Beam-Column; Stiffness Based State Determination

three levels: a) structure, b) element, and c) section.

State determination (internal forces and tangent stiffness matrix corresponding
to element nodal displacements) for

1 Section where internal section forces, are computed from section
deformations which are in turn determined from element nodal
displacements and the section stiffness matrix

2 Element tangent stiffness matrices and internal element nodal forces of
each element are determined from the internal section forces for each
element which are in turn computed from section deformations.

3 Structure: element tangent stiffness matrices and internal element force
vector of all the elements are assembled to form the (augmented) tangent
stiffness matrix Ktan

S and internal nodal force vector Pint
S (Pint

S = Pint
t +Pint

u )
of the structure. Subscript t and u refer to free and constrained degrees of
freedom respectively (that is along the natural and essential boundaries).
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Beam-Column; Stiffness Based State Determination

Once the structure state determination is complete, the internal nodal force
vector (Pint

t,n) is compared with the total applied external nodal force vector
(Pext

t,n )and the difference (PR
t,n), is the residual nodal force vector which is then

reapplied to the structure in an iterative solution process until convergence
(equilibrium) is satisfied.

Level Internal Force Tangent Stiffness matrix “Displacement”

Section

{
Nx (x)
Mz(x)

}
︸ ︷︷ ︸

σσσs(x)

= ks(x)εεεs(x) ks(x) =

[
E(x)A(x) 0

0 E(x)Iz(x)

]
εεεs(x) =

{
εx (x)
φz(x)

}
= Bd (x)de

Element Local f
int
e =

∫ Le
0 Bd,e(x)

Tσσσint
s,e(x)dx ke =

∫ Le
0 Bd (x)

T ks(x)Bd (x)dx de = ���e · δδδe

Element Global Fint,k
e,n = ���T

e f
int,k
e,n Ktan,k

e,n = ���T
e k

tan,k
e,n ���e δδδe

Structure Pint,k
t,n =

∑
e A

T
b,eF

int,k
e,n Ktan,k

S,n =
∑

e A
T
b,eK

tan,k
e,n Ab,e δδδe

AT
b,e is a force assembling operator, and Ktan,k

S,n encompasses the four submatrices, Ktan,k
tt,n , Ktan,k

tu,n , Ktan,k
ut,n , and Ktan,k

uu,n
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Beam-Column; Stiffness Based State Determination

(a) Structure level at force step n+1 with Newton-Raphson iterations

(b) Element level in local reference

(c) Section level
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Beam-Column; Stiffness Based “Hidden” Error

(a) Structure level at force step n+1 with Newton-Raphson iterations

(b) Element level in local reference

(c) Section level
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,
k
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k
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,
k
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,
k
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d

tδ
Structure

Nodal displacement

tPExternal nodal force

int, 1
,

k
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2
,

k
t n
δ 3

,
k
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δ

efElement nodal force

edElement
Nodal displacement

, ( )s e xSection force

4
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s e n x
3

, , ( )k
s e n x
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, 1
,
R k

t n
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Exact solution

Approximation

, ( )s e xSection
deformation

Exact

Approximate, No correction

Approximate, correction

Hidden Error

Newton-Raphson iteration method
operates in the global coordinate (structural
level) system.

At the k th iteration, determine the section displacements ds,n(x)
from the element nodal displacements in local reference de,n (®).

Section deformation vectors εεεk
s,e,n(x) (¯)for each section are

computed. This is the first approximation of the element state
determination, since Bd,e(x) is exact only in the linear elastic case.

Assuming that the section constitutive law is explicitly known, the
section tangent stiffness matrices ktan,k

s,e,n(x) and the internal section
force vectorsσσσint,k

s,e,n(x) are readily determined from εεεk
s,e,n(x) (°).

Element stiffness matrices k
k
e,n in local reference and the internal

element nodal force vectors in local reference f
int,k
e,n are determined

next (±).

During assembly of the global stiffness matrix, the structure’s tangent
stiffness matrix and vector of nodal internal forces are determined
(²), before the residual is computed (³) for convergence.

Since Bd,e(x) is only approximate (since we are approximating the
displacement field), the state variables: a) integrals for the element
tangent stiffness matrix in local reference and b)internal element
nodal force vector in local reference will also yield approximate
results.
The approximation of Bd,e(x) leads to stiffer solution. Note that the
curve labeled “Exact solution” is only exact within the assumptions of
the section constitutive law and the kinematic approximations that
deformations are small and plane sections remain plane.

Solutions: a) finer mesh discretization of the structure, especially, in
frame regions that undergo highly nonlinear behaviors, such as the
member ends.; b) use flexibility based elements.
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Layer/Fiber Section Layer/Fiber Sections; Introduction

So far, assumed that a section is characterized by a moment curvature relation,
i.e when the moment reaches the plastic/yield moment, the whole section
pastifies.

This is only an approximation, as in reality there is a gradual plastification
starting from the outer fibers, and this plastification zone gradually spreads
inward until the whole section ultimately becomes plastic.

To capture this gradual spread one can either resort to continuum 2D/3D solid
(finite) elements, which is computationally expensive/inefficient, or use layered
elements.

Ultimately, our objective remains the derivation of ktan
s,e(x) such that{

N(x)
Mz(x)

}
= ktan

s,e(x)

{
ε(x)
φz(x)

}
Ignoring transverse shear deformation (accounted for in the so-called
Timoshenko beam), and thus assuming a linear strain distribution
(Euler-Bernouilli beam), but a non linear stress-stain behavior, the stress
distribution is σt(x) = Nx (x)

A(x) ±
Mz(x)
Iz(x)

y

Victor E. Saouma; Univ. of Colorado Element Formulations 11/62



Layer/Fiber Section Layer/Fiber Sections; Introduction

At this point, from the nodal displacement, we can determine the section
deformations (axial strain, ε(x) and curvature, φ(x)) (and thus the linear strain
distribution), and since we have a nonlinear material, the exact location of the
neutral axis is not yet known, and at each fiber elevation we do have a different
E tan

r (x). r is the fiber subscript.
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Layer/Fiber Section Section Stiffness Matrix

(a) Strain distributioin
(Bernoulli theroy)

Neutral 
Axis

r

(b) Stress-strain curve

Stress 

r

r

Strain 

( )r r rf 

(c) Stress distributioin
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( )x
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( )
M

x ( )t x
2

y

1y

ry

(3) Stress distribution

(a) Axial (b) Flexure (c) Total

(2) Strain distribution (Bernoulli theory)
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M

x ( )t x
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z

2
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1
y

ry

Axial  Flexure Total

x

( ), ( )z zM x f x
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(1) Section in an 
element along x 

direction

Φ

We know ε and �, must determine N and M
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Layer/Fiber Section Section Stiffness Matrix

Primary Terms are those due to pure axial and flexure:

Pure axial force due to σ(x) is simply determined from
Nx(x) =

∫ y2
−y1

σ(x)dA =
∫ y2
−y1

E tan
r (x) · ε(x)︸ ︷︷ ︸

σ(x)

dA '
∑

r E tan
r (x) · Ar (x) · ε(x)

Pure moment due to σM(x) is considered next, and again we week an
expression of (M(x)) in terms of the curvature and and E tan

r (x), and
recalling that I =

∫
y2dA and σM(x)@yr = E tan

r (x) · φz(x) · yr

Mz(x) =

∫ y2

−y1

σM(x) · ydA =

∫ y2

−y1

E tan
r (x) · φz(x) · y︸ ︷︷ ︸

ε︸ ︷︷ ︸
σ

·ydA

= φz(x)
∫ y2

−y1

E tan
r (x) · y2dA

'
∑

r

E tan
r (x) · Ar (x) · y2

r · φz(x)

Secondary Terms are due to coupling and will result in non-zero off diagonal
terms in the stiffness matrix. Note that this cancels out in linear elastic analysis.
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Layer/Fiber Section Section Stiffness Matrix

Second axial force due to curvature as there is no reason why the
nonlinear flexural stress distribution will necessarily yield a summation of
forces equal to zero.

dNx(x) = −E tan
r (x) · εM(x)dA = −E tan

r (x) · φz(x) · ydA

Nx(x) = −
∫ y2

−y1

E tan
r (x) · φz(x) · ydA

' −
∑

r

E tan
r (x) · Ar (x) · yr · φz(x)

where the strain (εM(x)) is obtained from the curvature (φz(x)).
Secondary moment due to axial strain as there is no reason why the
location of the neutral axis is indeed correct resulting in a summation of
moment equal to zero.

dMz(x) = −E tan
r (x) · ε(x) · y · dA

Mz(x) = −
∫ y2

−y1

E tan
r (x) · ε(x) · ydA

' −
∑

r

E tan
r (x) · Ar (x) · yr · ε(x)
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Layer/Fiber Section Section Stiffness Matrix

Summing up within a matrix, ktan
s,e(x) takes the form:{

N
M

}
︸ ︷︷ ︸

σS

=
∑

r

[
E tan

r (x) · Ar (x) −E tan
r (x) · Ar (x) · yr

−E tan
r (x) · Ar (x) · yr E tan

r (x) · Ar (x) · y2
r

]
︸ ︷︷ ︸

ktan,n
s

{
ε(x)
φz(x)

}

The implementation of this layer or fiber section will require an additional
discretization of the cross section into layers or fibers
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Layer/Fiber Section Section Stiffness Matrix

y

z

x

ry

z

y

( )r r rf 

(a) Layer section (b) Fiber section

z

ry

rz

y

( )r r rf 
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Layer/Fiber Section State Determination

Noting that layer/fiber stress-strain relations are typically expressed as explicit
functions of strain, state determination is given by

Layer or Fiber section
( Iteration loop: r = 1 to # of layers or fibers )

[ ] ,
, , ,1 k j

r n s e nryε − ⋅= ε

tan
, ,, Er n r nσ

1int, tan, tan, tan,
, , , , , , , , ,

1
,   ,   k k k k

s e n r n s e n s e n s e n
r ry

σ
−⎡ ⎤

⎡ ⎤= ⋅ =⎢ ⎥ ⎣ ⎦−⎣ ⎦
∑ k c kσ

tan
, , ,( ),  where  is function  layer/fiber with E .th

r n r r n r r nf f rσ ε=
Each fiber material constitutive law
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Layer/Fiber Section State Determination

We note that this cross sectional definition allows us to easily specify longitudinal
steel reinforcement. Shear reinforcement, on the other hand, can not be
explicitly modeled, however, common practice is to assign modified properties to
the confined concrete.

Neutral Axis is implicitly determined. In the input data, we can assume the
neutral axis to be in the bottom layer (for ease of determining layer elevation yr ),
then at the global level equilibrium will not be satisfied, and then displacements
will be adjusted, and indirectly strain distribution will be corrected by shifting the
N.A. Faster convergence could be achieved if an intelligent guess is made for the
location of the NA, and define all fibers with respect to that location.
Alternatively, the program could immediately (first increment/iteration) determine
the elastic neutral axis.
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Zero-Length 2D Element Introduction

0eL 

2 2,z zM 

x

y

z
1 2

1 1,z zM 

2 2,y yV v1 1,y yV v

2 2,x xN u1 1,x xN u
a

b

c

tan
2 1

tan
2 1

tan
2 1

a.  [ ] ,  where 

b.  [ ] , where 

c.  [ ] ,  where 

x x x x x

y y y y y

z z z z z z

N EA u u

V GA v v

M EI

 

 

   

   

   

   

Zero-length elements are needed for
lumped plasticity models where
plastic hinges form at the end of the
element. They are more suitable for
lateral loads than for vertical ones.

Element end deformations in the
reinforced concrete are composed of
two types:

flexural deformation that causes
inelastic strains
element end rotation which may
be caused be the slip of
longitudinal reinforcement in
reinforced concrete or plastic
hinges in steel members.
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Zero-Length 2D Element Stiffness Matrix

2 2,z zM 

x

y

z

1 1,z zM 
2 2,y yV v1 1,y yV v

2 2,x xN u1 1,x xN u

2 1, x x x xN u u  
1 1,z zM 

1 1,y yV v

1 1,x xN u

2 1,  y y y yV v v  

2 1 , z z z zM    

A B

A B C

eL

1 Constitutive law Section constitutive law is expressed as
Nx

Vy

Mz

︸ ︷︷ ︸
σσσs

=

 [EA]tan 0 0
0 [GA]tan 0
0 0 [EIz ]tan


︸ ︷︷ ︸

ktan
s


ux2 − ux1

v y2 − v y1

θz2 − θz1

︸ ︷︷ ︸
εεεs

where, [EA]tan, [GA]tan and [EIz ]tan are tangent stiffnesses associated with axial,
shear and moment.
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Zero-Length 2D Element Stiffness Matrix

2 Equilibrium Composing equilibrium equations between point A and point B

Nx1 = [EA]tan · (ux1−ux2); V y1 = [GA]tan · (v y1− v y2); Mz1 = [EIz ]tan · (θz1−θz2)

Likewise between point B and point C,

Nx2 = [EA]tan · (ux2−ux1); V y2 = [GA]tan · (v y2− v y1); Mz2 = [EIz ]tan · (θz2−θz1)

Rewriting in matrix form, the relationship between element nodal force and
displacement vector is given by

Nx1

V y1

Mz1

Nx2

V y2

Mz2

︸ ︷︷ ︸
fe

= k
tan
e



ux1

v y1

θz1

ux2

v y2

θz2

︸ ︷︷ ︸
de

Victor E. Saouma; Univ. of Colorado Element Formulations 22/62



Zero-Length 2D Element Stiffness Matrix

where, k
tan
e is the element stiffness matrix in local reference.

k
tan
e =



[EA]tan 0 0 −[EA]tan 0 0
0 [GA]tan 0 0 −[GA]tan 0
0 0 [EIz ]tan 0 0 −[EIz ]tan

−[EA]tan 0 0 [EA]tan 0 0
0 −[GA]tan 0 0 [GA]tan 0
0 0 −[EIz ]tan 0 0 [EIz ]tan
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Zero-Length 2D Element Coordinate system

Coordinate system in zero-length 2D element is same as the one of the 2D stiffness element.

(a) Global reference in an element (b) Local reference in an element

1 1
,

Y Y
V v

1 1
,

Z Z
M  

1 1
,

X X
N u

X

Y

1 1
,

y y
V v

1 1
,

z z
M  

1 1
,

x x
N u

X

Y

!

x

y

2 2
,

Y Y
V v

2 2
,

Z Z
M  

2 2
,

X X
N u

2 2
,

y y
V v

2 2
,

z z
M  

2 2
,

x x
N u

���e =



NX1 VY1 MZ1 NX2 VY 2 MZ2

Nx1 cosα sinα 0 0 0 0
V y1 − sinα cosα 0 0 0 0
Mz1 0 0 1 0 0 0
Nx2 0 0 0 cosα sinα 0
V y2 0 0 0 − sinα cosα 0
Mz2 0 0 0 0 0 1
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Zero-Length 2D Element Element state determination

`

Element determination for zero-length 2D element

k = 1

Yes

No

, , 2, , 2, ,
k k k
x e n x e n x e nu uε = −

Axial deformation Shear deformation

, , 2, , 1, ,
k k k
y e n y e n y e nv vγ = −

Curvatrue

, , 2, , 1, ,
k k k
z e n y e n y e nφ θ θ= −

Section constitutive law on
axial force-deformation

Section constitutive law on
shear force-deformation

Section constitutive law on
moment-curvature

tan, tan,
, ,

int, int,
, ,

k T k
e n e e n e

k T k
e n e e n

=

=

K k

F f

i i

i

Γ Γ

Γ

, , , , ,
k k k
e n b e t n b e u nδ δ δ= +A u A ui iδ

, , ,
k k
e n b e t nδ δ= A uiδ

1
, , ,

k k k
e n e n e nδ−= +δ δ δ

1
, , ,

k k k
e n e n e nδ−= +d d d

, ,
k k
e n e e nδ δ=d diΓ

int, int, int, int,
, , , , , , , ,

int, int, int, int, int, int, int,
, , , , , , , , , , , , ,

tan
, , ,11

tan, tan
, , , , ,22

tan
, , ,33

0 0

0 0

0 0

Tk k k k
s e n x e n y e n z e n

Tk k k k k k k
e n x e n y e n z e n x e n y e n z e n

s e n
k

s e n s e n

s e n

e

N V M

N V M N V M

k

k

k

⎢ ⎥= ⎣ ⎦

⎢ ⎥= − − −⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

f

k

k

σ

tan tan
, , ,11 , , ,11

tan tan
, , ,22 , , ,22

tan tan
, , ,33 , , ,33tan,

, tan tan
, , ,11 , , ,11

tan tan
, , ,22 , , ,22

tan tan
, , ,22 , , ,33

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

s e n s e n

s e n s e n

s e n s e nk
n

s e n s e n

s e n s e n

s e n s e n

k k

k k

k k

k k

k k

k k

⎡ ⎤−
⎢ ⎥−⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
−⎢ ⎥
⎢ ⎥−
⎢

−⎢⎣ ⎦
⎥
⎥
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Zero-Length 2D Element Element state determination

Step 1: Determine the section deformation vector, axial deformation, shear deformation
and curvature. For each deformation, we extract the associated components
from d

k
e,n.

d
k
e,n = buk

x1,e,n v k
y1,e,n θ

k
z1,e,n uk

x2,e,n v k
y2,e,n θ

k
z2,e,ncT

εεεk
s,e,n = bεk

x,e,n, γ
k
y,e,n, φ

k
z,e,ncT

εk
x,e,n = uk

x2,e,n − uk
x2,e,n

γk
y,e,n = v k

y2,e,n − v k
y2,e,n

φk
z,e,n = θ

k
z2,e,n − θ

k
z2,e,n

which define axial section deformation, shear deformation, and curvature.
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Zero-Length 2D Element Element state determination

Step 2: Determine the section tangent stiffness associated with axial force-deformation,
shear force-deformation, and moment-curvature in the section constitutive laws.
Section constitutive laws modified with several variables in function of material
constitutive law associated with uniaxial stress-strain relationship can be used.
The internal section force vector is determined next. If we assume that the
section constitutive law is explicitly known, ktan,k

s,e,n and σσσint,k
s,e,n are determined from

εεεk
s,e,n. However, in elastic section, we need not to compute ktan,k

s,e,n again as it is
identical to the initial section stiffness matrix ks,e. For an elastic section,

ktan
s,e,n = ks,e

N int,k
x,e,n

V int,k
y,e,n

M int,k
z,e,n

︸ ︷︷ ︸
σσσint,k

s,e,n

= ktan
s,e,n


εk

x,e,n

γk
y,e,n

φk
z,e,n

︸ ︷︷ ︸
εεεk

s,e,n

where, ktan,k
s,e,n is the section tangent stiffness matrix at k th iteration.
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Zero-Length 2D Element Element state determination

Step 3: Determine the internal element nodal force vector and the element tangent
stiffness matrix

f
int,k
e,n = bN int,k

x,e,n,V
int,k
y,e,n,M

int,k
z,e,n,−N int,k

x,e,n,−V int,k
y,e,n,−M int,k

z,e,ncT

k
tan,k
e =



EAtan,k
e,n 0 0 −EAtan,k

e,n 0 0
0 GAtan,k

e,n 0 0 −GAtan,k
e,n 0

0 0 EI tan,k
z,e,n 0 0 −EI tan,k

z,e,n

−EAtan,k
e,n 0 0 EAtan,k

e,n 0 0
0 −GAtan,k

e,n 0 0 GAtan,k
e,n 0

0 0 −EI tan,k
z,e,n 0 0 EI tan,k

z,e,n


where, k

tan,k
e,n is the element tangent stiffness matrix in local reference.

We determine Fint,k
e,n and Ktan,k

e,n .

Fint,k
e,n = ���e

T · f int,k
e,n

Ktan,k
e,n = ���e

T · ktan,k
e,n ·���e
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Zero-Length 2D Element Element state determination
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Zero-Length Section Element Introduction

Zero-length section element is analogous to the zero length element, however, it uses
layer/fiber. This element enables us to model the shift in center of section rotation
which may occur (in bar-slip for example). The element is formulated on the basis of
coupled axial force and moment.

0eL 

2 2,z zM 

x

y

z
1 2

1 1,z zM 
2 2,y yV v1 1,y yV v

2 2,x xN u1 1,x xN u

2 1

2 1

x x x

z z z

u u
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Zero-Length Section Element Stiffness Matrix

Constitutive law Section constitutive law is expressed as{
Nx

Mz

}
︸ ︷︷ ︸

σσσs

=

[
ktan

s,11 ktan
s,12

ktan
s,21 ktan

s,22

]
︸ ︷︷ ︸

ktan
s

·

{
ux2 − ux1

θz2 − θz1

}
︸ ︷︷ ︸

εεεs

where, ktan
s is the section tangent stiffness matrix obtained from

layer/fiber state determination.

Equilibrium Zero-length section element is based on Bernoulli beam theory.

2 2,z zM 
x

y

z

1 1,z zM 

2 2,x xN u1 1,x xN u

xN
1 1,z zM 

1 1,x xN u

zM

A B

A B C

eL
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Zero-Length Section Element Stiffness Matrix

Composing equilibrium equations between point A and point B.

Nx1 = k tan
s,11 · (ux1 − ux2) + k tan

s,12 · (θz1 − θz2)

Mz1 = k tan
s,21 · (ux1 − ux2) + k tan

s,22 · (θz1 − θz2)
(1)

Likewise between point B and point C,

Nx2 = k tan
s,11 · (ux2 − ux1) + k tan

s,12 · (θz2 − θz1)

Mz2 = k tan
s,21 · (ux2 − ux1) + k tan

s,22 · (θz2 − θz1)
(2)

Rewriting Eq. 1 and 2 to matrix form, the relationship between
element nodal force and displacement vector is given by

Nx1

0
Mz1

Nx2

0
Mz2

︸ ︷︷ ︸
fe

= k
tan
e



ux1

0
θz1

ux2

0
θz2

︸ ︷︷ ︸
de
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Zero-Length Section Element Stiffness Matrix

where, k
tan
e is the element stiffness matrix in local reference.

k
tan
e =



ktan
s,11 0 ktan

s,12 −ktan
s,11 0 −ktan

s,12

0 0 0 0 0 0
ktan

s,21 0 ktan
s,22 −ktan

s,21 0 −ktan
s,22

−ktan
s,11 0 −ktan

s,12 ktan
s,11 0 ktan

s,12

0 0 0 0 0 0
−ktan

s,21 0 −ktan
s,22 ktan

s,21 0 ktan
s,22


(3)
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Zero-Length Section Element Coordinate system

Coordinate system in zero-length 2D element is same as in 2D stiffness element.

(a) Global reference in an element (b) Local reference in an element

1 1
,

Y Y
V v

1 1
,

Z Z
M  

1 1
,

X X
N u

X

Y

1 1
,

y y
V v

1 1
,

z z
M  

1 1
,

x x
N u

X

Y

!

x

y

2 2
,

Y Y
V v

2 2
,

Z Z
M  

2 2
,

X X
N u

2 2
,

y y
V v

2 2
,

z z
M  

2 2
,

x x
N u

���e =



NX1 VY 1 MZ1 NX2 VY 2 MZ2

Nx1 cosα sinα 0 0 0 0
V y1 − sinα cosα 0 0 0 0
Mz1 0 0 1 0 0 0
Nx2 0 0 0 cosα sinα 0
V y2 0 0 0 − sinα cosα 0
Mz2 0 0 0 0 0 1
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Zero-Length Section Element Element state determination

Element determination for zero-length 2D sectionelement

Section determination

k = 1

Yes

No

, , ,
k k
e n b e t nδ δ= A uiδ

, , , , ,
k k k
e n b e t n b e u nδ δ δ= ⋅ +A u A uiδ

1
, , ,

k k k
e n e n e nδ−= +δ δ δ

1
, , ,

k k k
e n e n e nδ−= +d d d

, ,
k k
e n e e nδ δ=d diΓ

, , 2, , 2, ,
, ,

, , 2, , 1, ,

k k k
x e n x e n x e nk

s e n k k k
z e n y e n y e n

u uε
φ θ θ
⎧ ⎫= −⎪ ⎪= ⎨ ⎬= −⎪ ⎪⎩ ⎭

ε

Layer or Fiber section

tan, tan,
, ,

int, int,
, ,

k T k
e n e e n e

k T k
e n e e n

=

=

K k

F f

i i

i

Γ Γ

Γ

int, int, int,
, , , , , ,

int, int, int, int, int,
, , , , , , , , ,

tan tan
, , ,11 , , ,12tan,

, , tan tan
, , ,21 , , ,22

tan
, , ,11 , , ,12

tan,
,

0 0

0

Tk k k
s e n x e n z e n

Tk k k k k
e n x e n z e n x e n z e n

s e n s e nk
s e n

s e n s e n

s e n s e n

k
e n

N M

N M N M

k k

k k

k k

⎢ ⎥= ⎣ ⎦

⎢ ⎥= − −⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

=

f

k

k

σ

tan tan tan
, , ,11 , , ,12

tan tan tan tan
, , ,21 , , ,22 , , ,21 , , ,22
tan tan tan tan
, , ,11 , , ,12 , , ,11 , , ,12

tan tan tan tan
, , ,21 , , ,22 , , ,21 , , ,22

0

0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0

0 0

s e n s e n

s e n s e n s e n s e n

s e n s e n s e n s e n

s e n s e n s e n s e n

k k

k k k k

k k k k

k k k k

⎡ − −

− −
− −

− −⎣

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

Step 1: Determine the section deformation vector,
axial deformation and curvature. For each
deformation, we extracts the associated
components from d

k
e,n.

d
k
e,n = buk

x1,e,n 0 θ
k
z1,e,n uk

x2,e,n 0 θ
k
z2,e,ncT

εεεk
s,e,n = bεk

x,e,n, φ
k
z,e,ncT

εk
x,e,n = uk

x2,e,n − uk
x2,e,n

φk
z,e,n = θ

k
z2,e,n − θ

k
z2,e,n

Step 2: Determine the section tangent stiffness associated with axial force-deformation
and moment-curvature using layer/fiber state determination as in for Layr/fiber.
Determine next the internal section force vector. If we assume that the material
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Zero-Length Section Element Element state determination

constitutive law is explicitly known, ktan,k
s,e,n and σσσint,k

s,e,n are determined from εεεk
s,e,n.

However, in the section with elastic material, we need not to compute ktan,k
s,e,n

again as it is identical to the initial section stiffness matrix ks,e. If we have a
section with elastic material, then

ktan
s,e,n = ks,e{

N int,k
x,e,n

M int,k
z,e,n

}
︸ ︷︷ ︸

σσσint,k
s,e,n

= ktan
s,e,n

{
εk

x,e,n

φk
z,e,n

}
︸ ︷︷ ︸

εεεk
s,e,n

where, ktan,k
s,e,n is the section tangent stiffness matrix at k th iteration.
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Zero-Length Section Element Element state determination

Step 3: Determine the internal element nodal force vector and the element tangent
stiffness matrix

f
int,k
e,n = bN int,k

x,e,n, 0,M
int,k
z,e,n,−N int,k

x,e,n, 0,−M int,k
z,e,ncT

k
tan,k
e,n =



ktan,k
s,e,n,11 0 ktan,k

s,e,n,12 −ktan,k
s,e,n,11 0 −ktan,k

s,e,n,12

0 0 0 0 0 0
ktan,k

s,e,n,21 0 ktan,k
s,e,n,22 −ktan,k

s,e,n,21 0 −ktan,k
s,e,n,22

−ktan,k
s,e,n,11 0 −ktan,k

s,12e,n, ktan,k
s,e,n,11 0 ktan,k

s,e,n,12

0 0 0 0 0 0
−ktan,k

s,e,n,21 0 −ktan,k
s,e,n,22 ktan,k

s,e,n,21 0 ktan,k
s,e,n,22


where, k

tan,k
e,n is the element tangent stiffness matrix in local reference. We

determine Fint,k
e,n and Ktan,k

e,n .

Fint,k
e,n = ���e

T · f int,k
e,n

Ktan,k
e,n = ���e

T · ktan,k
e,n ·���e
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Flexibility Based Elements Introduction

Flexibility based elements

Are nonconformist finite elements since they yield the element flexibility
matrix rather than the classical stiffness matrix.
Are based on the equations of equilibrium rather than on assumed
displacement field, while at the global level formulation is displacement
based.
Offer some important advantages over stiffness based elements: fewer
elements are needed (albeit at the cost of a more complex formulation);
stiffness-based method formulations are approximate and flexibility-based
method formulations are exact such as a section varying along the element
and elements with material nonlinearity.

We derive the element flexibility matrix ~ce without rigid body modes and then invert it to
obtain the corresponding element stiffness matrix ~ke (again without rigid body modes).
The retained degrees of freedom are the axial force at node 2, and the two end moments.

There are two distinct formulations: a) with element iterations, and b) without element
iterations. We will focus on the former.
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Flexibility Based Elements Introduction

Whereas we have used the principle of virtual work (displacement) for the derivation of the
stiffness based element, we shall now use the principle of complementary virtual work
(force) through the usual three steps.
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Flexibility Based Elements Stiffness Matrix

x

y

z

, ( )e yw x

, ( )e xw x

1 1,z zM 

2 2,x xN u 

2 2,z zM 

eL

x

1 1,z zM 

, ( )e yw x

, ( )e xw x ( ), ( )z zM x x

( ), ( )x zN x x
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Flexibility Based Elements Stiffness Matrix

(a) Positive section axial force

(b) Positive section moment

Equilibrium will now be strongly enforced (whereas it was satisfied in the weak
sense previously) and we seek to derive the force shape functions:

For uniformly distributed axial forces, we have dNx(x) = w (e)
x dx or

dNx (x)
dx = w (e)

x (x)
For uniformly distributed transverse forces dVy (x)

dx = w (e)
y (x)) and

d2
M

dx2 = w(x)
Equilibrium can be expressed as

we(x)︸ ︷︷ ︸
External

+Lf · σσσs(x)︸ ︷︷ ︸
Internal

= 0;

{
w (e)

x (x)
w (e)

y (x)

}
+

 d
dx

0

0 d2

dx
2

{
Nx(x)
Mz(x)

}
= 0

we(x) is the external element traction vector, Lf is the force differential
operator which enforces equilibrium. (Note in stiffness formulation, the
compatibility was “strongly” enforced).
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Flexibility Based Elements Stiffness Matrix

We will write equilibrium of sectional stresses in terms of the nodal forces,
and assume that there are no external element traction.
Whereas we previously used displacement interpolation functions, we now
need force interpolation functions, Nf (x) in order to exactly satisfy
equilibrium along the element d

dx
0

0 d2

dx
2

{
Nx(x)
Mz(x)

}
= 0

Integrating these equations, we obtain Nx(x) = c3 and Mz(x) = c1x + c2.
We now seek to determine the shape functions that relate section internal
forces at any point x to the nodal forces. We enforce natural boundary
condition

Nx(L) = ~Nx2; Mz(0) = − ~Mz1; Mz(L) = ~Mz2;

⇒ c1 =
~Mz1+~Mz2

Le
; c2 = − ~Mz1; c3 = ~Nx2;
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Flexibility Based Elements Stiffness Matrix

Substituting, we have the internal axial force and moment at any point (x)
in terms of the nodal forces.

{
Nx(x)
Mz(x)

}
︸ ︷︷ ︸

σσσs(x)

=

[
0 0 1

x
Le
− 1 x

Le
0

]
︸ ︷︷ ︸

Nf (x)


~Mz1

~Mz2

~Nx2

︸ ︷︷ ︸
~fe

where, ~fe is the element nodal force vector without rigid body modes.
It should be noted that these shape functions enforce equilibrium at any
section along the element

Constitutive law: Previously expressed section forces in terms of section
deformations, we now need to express section deformations in terms of section
forces: εεεs(x) = cs(x) · σσσs(x) where, cs(x) is the section flexibility matrix. If cs(x)
is not derived from fiber section, then for linear elastic analysis cs(x) is simply.

cs(x) =

[
1

E(x)·A(x) 0

0 1
E(x)·Iz(x)

]
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Flexibility Based Elements Stiffness Matrix

Compatibility of displacements: enforced only in a weak form through the
principle of complementary virtual work (as opposed to the principle of virtual
work for the stiffness-based method).

δ~fe
T ~de︸ ︷︷ ︸

External

=

∫ Le

0
δσσσs(x)T · εεεs(x)dx︸ ︷︷ ︸

Internal

where ~de is the element nodal displacement vector without rigid body modes.

Substituting

δ~fe
T ~de =

∫ Le

0
δ~fe

T ·Nf (x)
T · cs(x) · σσσs(x) dx

~de =

∫ Le

0
Nf (x)

T · cs(x) · σσσs(x) dx =

∫ Le

0
Nf (x)

T · cs(x) ·Nf (x) dx︸ ︷︷ ︸
~ce

·~fe

or
~de = ~ce · ~fe
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Flexibility Based Elements Stiffness Matrix

The element flexibility matrix without rigid body modes in local reference is thus
given by

~ce =

∫ Le

0
Nf (x)

T · cs(x) ·Nf (x) dx

The corresponding element stiffness matrix without rigid body modes in local
reference is simply

~ke = [~ce]
−1

Note this is a 3x3 matrix, we still have to insert equilibrium relations and
transform it into the usual 6x6 stiffness matrix
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Flexibility Based Elements Coordinate system

(a) Local reference in an element (b) Local reference in an element
without rigid body modes

X

Y

X

Y x

y

x

y


1 1,y yV v

1 1,z zM 
1 1,x xN u

2 2,y yV v

2 2,z zM 
2 2,x xN u

1 1,z zM 

2 2,z zM 
2 2,x xN u 



1 2z z

e

M M

L

 

1 1,z zM  2 2,z zM 

2 2,x xN u 

1 2z z

e

M M

L

 

eL

1 1,y yV v

1 1,z zM 

1 1,x xN u

2 2,y yV v

2 2,z zM 

2 2,x xN u

1 1,x xN u 
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Flexibility Based Elements Coordinate system

Contrarily to the reference system of the stiffness-based method, we need to
consider forces and displacements in local reference with and without rigid body
modes.

Element nodal force vector without rigid body modes in local reference are
(arbitrarily) selected as ~fe = b ~Mz1, ~Mz2, ~Nx2cT , and the corresponding element
nodal displacement vector without rigid body modes in local reference are given
by ~de = b~θz1, ~θz2, ~ux2cT

The relationship between rigid body modes and no rigid body modes is obtained
through equilibrium

Nx1

V y1

Mz1

Nx2

V y2

Mz2

︸ ︷︷ ︸
fe

=



0 0 −1
1

Le

1
Le

0
1 0 0
0 0 1
− 1

Le
− 1

Le
0

0 1 0


︸ ︷︷ ︸

~���
T
e


~Mz1

~Mz2

~Nx2

︸ ︷︷ ︸
~fe
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Flexibility Based Elements Coordinate system

Substituting, f e = ~���
T
e · ~fe; de = ~���

T
e · ~de; or

Ke = ~���
T
e · ~ke · ~���e

Note that whereas previously ���e denoted a geometric transformation matrix (for
stiffness based elements), it now corresponds to a statics matrix (also denoted
as B previously).

Derivation of the stiffness matrix from the flexibility one and the equations of
equilibrium parallels the one earlier derived

[K] =

[
[d]−1 [d]−1[B]T

[B][d]−1 [B][d]−1[B]T

]
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Flexibility Based Elements State determination; Introduction

The flexibility-based element (derived from the complementary principle of virtual work)
does not have shape functions that relate deformation field inside the element with element
nodal displacement vector, but shape functions which relate section forces to nodal forces.

The global formulation is based on the stiffness (displacement) formulation, the element is
based on a flexibility (force) formulation; the two will have to be reconciled (in the
determination of the internal element force vectors).

At the element level, the flexibility based element will provide nodal displacements which
are not necessarily compatible with the ones coming from adjacent elements just as in the
stiffness based formulation, forces were not compatible at the element level.

We must ensure nodal displacement compatibility (in the same way as we ensured nodal
equilibrium in the stiffness based formulation. Accomplished iteratively.

Note that in the stiffness based method, there was a discontinuity in nodal forces.

There are two algorithms for the mixed stiffness-based and flexibility-based methods: (a)
with Newton-Raphson iteration in the element level to determine element state (Spacone),
(b) without iteration in the element level to determine element state (Carol).
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Flexibility Based Elements State Determination; No Iterations
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Flexibility Based Elements
State Determination; Iterations; The “Big

Picture”
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Flexibility Based Elements
State Determination; Iterations; The “Big

Picture”
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Flexibility Based Elements
State Determination; Iterations; The “Big

Picture”
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Flexibility Based Elements
State Determination; Iterations; The “Big

Picture”

In the flexibility based element we can not go directly from nodal displacements
to section strains (as was the case in the stiffness based element), this is
accomplished

1 Determine the element nodal force vector ~f k,j
e,n (±) from the current element

nodal displacement vector using the element tangent stiffness matrix
~ktan,k,j−1

e,n (®) of the previous iteration.
2 Through the force interpolation functions Nf ,e(x) determine the section

force vectors σσσk,j
s,e,n(x) along the element.

3 Determine the section strains by multiplying the constitutive model times
the section forces.

When we recompute the displacements corresponding to the strains.

Compatibility of displacements at the structural level will not be satisfied.

Thus we have an additional loop at the element level to reconcile structure
based displacement and element based (through the flexibility matrix) ones, or
compatibility of displacement.

There are two complications in this procedure.

Victor E. Saouma; Univ. of Colorado Element Formulations 54/62



Flexibility Based Elements
State Determination; Iterations; The “Big

Picture”

1 The determination of the section deformation vectors εεεk,j
s,e,n(x) from section

force vectors since the nonlinear section force-deformation relation is
commonly expressed as an explicit function of section deformation vector
(¯).

2 Changes in the section tangent stiffness matrices ktan
s,e,n(x) produce a new

element tangent stiffness matrix which, in turn, changes the element nodal
force vector for the given element nodal displacement vector (±).
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Flexibility Based Elements State Determination; Details

The problem is solved through a nonlinear approach which first determines
residual element nodal displacement vector ~dR,k,j

e,n at each iteration. Then,
compatibility of displacement at the structural level requires that this residual
element nodal displacement vector be corrected.

At the element level by applying corrective element nodal force vector based on
the current element tangent stiffness matrix. The corresponding section force
vectors are then determined from the force interpolation functions so that
equilibrium will always be satisfied along the element. Section force vectors will
not change during the section state determination in order to maintain
equilibrium along the element.

Linear approximation of section force-deformation relation about the present
state results in residual section deformation vectors σσσR,k,j

s,e,n(x). These are then
integrated along the element to obtain new residual element nodal displacement
vector (°) and the whole process is repeated until convergence occurs.

Compatibility of element nodal displacement vector and equilibrium along the
element are always satisfied.
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Flexibility Based Elements State Determination; Details

The goal of the Newton-Raphson iteration loop in the element level is to
determine the internal element nodal force vector (±) for the current element
nodal displacement vector at the k th Newton-Raphson iteration, hence
~dk

e,n = ~dk−1
e,n + δ~dk

e,n

1 The initial state of the element, represented by the point A, and j = 0 and k = 0
corresponds to the state at the end of the last convergence in structural level. With the
initial element tangent flexibility matrix given by ~ctan,k=1,j=0

e,n = ~ctan
e,n−1 and the given

incremental element nodal displacement vector δ~dk=1,j=1
e,n = δ~dk=1

e,n hence, the
corresponding incremental element nodal force vector is

δ~f k=1,j=1
e,n =

[
~ctan,k=1,j=0

e,n

]−1
· δ~dk=1,j=1

e,n = ~ktan,k=1,j=0
e,n · δ~dk=1,j=1

e,n

2 The incremental section force vectors can now be determined from the force interpolation
functions δσσσk=1,j=1

s,e,n (x) = Nf ,e(x) · δ~f
k=1,j=1
e,n With the section tangent flexibility matrices at

end of the last convergence in structural level given by c
tan,k=1,j=0
s,e,n (x) = ctan

s,e,n−1(x)

3 The linearization of the section force-deformation relation yields the incremental section
deformation vectors. δεεεk=1,j=1

s,e,n (x) = c
tan,k=1,j=0
s,e,n (x) · δσσσk=1,j=1

s,e,n (x)
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Flexibility Based Elements State Determination; Details

4 The section deformation vectors are updated to the state that corresponds to point B and
the updated section deformation vector (¯) will be given by
εεε

k=1,j=1
s,e,n (x) = εεε

k=1,j=0
s,e,n (x) + δεεεk=1,j=1

s,e,n (x) For the sake of simplicity we will assume that
the section force-deformation relation is explicitly known, then the section deformation
vectors εεεk=1,j=1

s,e,n (x) will correspond to internal section force vectors σσσint,k=1,j=1
s,e,n (x) and

updated section tangent flexibility matrices c
tan,k=1,j=1
s,e,n (x)can be defined.

5 The residual section force vectors are then determined
σσσ

R,k=1,j=1
s,e,n (x) = σσσ

k=1,j=1
s,e,n (x)− σσσint,k=1,j=1

s,e,n (x) and are transformed into residual section
deformation vectors εεεR,k=1,j=1

s,e,n (x)

εεε
R,k=1,j=1
s,e,n (x) = c

tan,k=1,j=1
s,e,n (x) · σσσR,k=1,j=1

s,e,n (x)

6 The residual section deformation vectors are thus the linear approximation of the
deformation error made in the linearization of the section force-deformation relation. While
any suitable section flexibility matrix can be used to calculate the residual section
deformation vector, the section tangent flexibility matrices offer the fastest convergence
rate.

7 The residual section deformation vectors are integrated along the element using the
complimentary principle of virtual work to obtain the residual element nodal displacement
vector (°), ~dR,k=1,j=1

e,n =
∫ Le

0 Nf ,e(x)T · εεεR,k=1,j=1
s,e,n (x)dx
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Flexibility Based Elements State Determination; Details

8 At this stage the first iteration (j = 1) is completed. The final element and section states for
j = 1 correspond to point B. The residual section deformation vectors εεεR,k=1,j=1

s,e,n (x) and
the residual element nodal displacement vector ~dR,k=1,j=1

e,n were determined in the first
iteration, but the corresponding element nodal displacement vector have not yet been
updated. Instead, they constitute the starting point of the remaining steps within iteration
loop j .

9 The presence of residual element nodal displacement vector ~dR,k=1,j=1
e,n will violate

compatibility, since elements sharing a common node would now have different element
nodal displacement vector. In order to restore the inter-element compatibility, corrective
force vector δ~f k=1,j=2

e,n must be applied at the ends of the element as follows

δ~f k=1,j=2
e,n = −

[
~ck=1,j=1

e,n

]−1
·~dR,k=1,j=1

e,n ; ~ck=1,j=1
e,n =

∫ Le

0
Nf ,e(x)

T ·ctan,k=1,j=1
s,e,n (x)·Nf ,e(x)dx
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Flexibility Based Elements State Determination; Details

10 Thus, in the second iteration (j = 2), the element nodal force vector (±) is updated as
~f k=1,j=2
e,n = ~f k=1,j=1

e,n + δ~f k=1,j=2
e,n and the section force and deformation vectors are also

updated to

δσσσ
k=1,j=2
s,e,n (x) = Nf ,e(x) · δ~f

k=1,j=2
e,n

σσσ
k=1,j=2
s,e,n (x) = σσσ

k=1,j=1
s,e,n (x) + δσσσk=1,j=2

s,e,n (x)

δεεε
k=1,j=2
s,e,n (x) = εεε

R,k=1,j=1
s,e,n (x) + c

tan,k=1,j=1
s,e,n (x) · δσσσk=1,j=2

s,e,n (x)

εεε
k=1,j=2
s,e,n (x) = εεε

k=1,j=1
s,e,n (x) + δεεεk=1,j=2

s,e,n (x)

11 The state of the element and sections within the element at the end of the second iteration
j = 2 corresponds to point C.

It should be noted that the updated tangent flexibility matrices ctan,k=1,j=2
s,e,n (x) and

residual section deformation vectors εεεR,k=1,j=2
s,e,n (x) are computed for all sections.

Residual section deformation vectors are then integrated to obtain the residual
element nodal deformation vector ~dR,k=1,j=2

e,n and the new element tangent
flexibility matrix ~ck=1,j=2

e,n is determined by integration of the section flexibility
matrices ctan,k=1,j=2

s,e,n (x). This completes the second iteration within loop j .
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Flexibility Based Elements State Determination; Details

When incremental element nodal displacement vector δ~dk,j=1
e,n = δ~dk

e,n is added
to the element nodal displacement vector ~dk−1

e,n at the end of the previous
Newton-Raphson iteration, it is important to make sure that the element nodal
displacement vector ~dk

e,n do not change except in the first iteration j = 1 during
iteration loop j

Equilibrium along the element is always strictly satisfied since section force
vectors (¯) are derived from element nodal force vector by the force interpolation
functions.

σσσk
s,e,n(x) = Nf ,e(x) · ~f k

e,n and δσσσk
s,e,n(x) = Nf ,e(x) · δ~f k

e,n

Compatibility is also satisfied, not only at the element ends, but also along the
element.

δ~f k,j
e,n = −

[
~ck,j−1

e,n

]−1
· ~dR,k,j−1

e,n

δσσσ
k,j
s,e,n(x) = Nf ,e(x) · δ~f k,j

e,n

δεεε
k,j
s,e,n(x) = εεε

R,k,j−1
s,e,n (x) + ctan,k,j−1

s,e,n (x) · δσσσk,j
s,e,n(x)
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Flexibility Based Elements State Determination; Details

The second term expresses the relation between section deformation vectors
and element nodal displacement vector. However, it should be noted that
residual section deformation vectors εεεR,k,j−1

s,e,n (x) do not strictly satisfy this
compatibility condition. This requirement can only be satisfied by integrating the
residual section deformation vectors εεεR,k,j−1

s,e,n (x) to obtain ~dR,k,j−1
e,n . Since this is

rather inefficient from a computational standpoint, the small compatibility error in
the calculation of residual section deformation vectors εεεR,k,j−1

s,e,n (x) will be
neglected.

While equilibrium and compatibility are satisfied along the element during each
iteration of loop j , the section force-deformation relation and the element
force-deformation relation is only satisfied within a specified tolerance when
convergence is achieved.

Victor E. Saouma; Univ. of Colorado Element Formulations 62/62



Non Linear Structural Analysis
Modelling

Victor E. Saouma
saouma@colorado.edu

University of Colorado, Boulder

Fall 2020

Victor E. Saouma; Univ. of Colorado Modelling 1/14



Table of Contents I

1 Introduction

2 Lumped vs Distributed Plasticity

3 Plastic Hinge

4 Lumped Elements
Zero lengths

5 LP: Limit State Element
Columns
Beams

6 Layers
Connection

Victor E. Saouma; Univ. of Colorado Modelling 2/14



Introduction

So far we have covered:

Classical plasticity

Computational Methods
Elements (including flexibility based,
zero length, layers, limit states).
Constitutive models

methods of analysis
Nonlinear (static) Push over analysis
Nonlinear transient (dynamic) analysis

Basis for Performance Based Structural Design

We now can finally talk about modeling

Modeling is the science and art of putting together a
mathematical model, i.e. mesh, material properties,
load.

Modeling in the context of nonlinear frame analysis is
not as simple as “meshing” a 2D or 3D solid for stress
analysis.

There is never a single, unique, correct way of putting a
mesh.

Before we start, we should ask ourseleves:

2D or 3D?
Lumped or distributed plasticity?
Layered section or Sectional forces?
Bond slip?
Limit state?
Pushover or transient analysis?
Damping: Rayleigh and/or hysteretic?
How much non-linearity to expect? up to peak?,
post-peak?
Rigorous single analysis or approximate
multiple analysis (Monte-Carlo)?

It is always a compromise between:

Needs, time constraint
Our understanding of the problem and of
nonlinear analysis,
Tools available
Quality of results expected.
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Lumped vs Distributed Plasticity

Elasto-Plastic
(Distributed Plasticity) 

Element

FF

Δt = Δe+ Δp

Lumped Plasticity 
Element 

Δt = Δe +Δp

ΔeΔp

Distributed PlasticityLumped Plasticity

Elastic Element 
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Plastic Hinge

MuM

φu

φy

lp

Mu
My

φy φu

Idealization

Actual

Plastic Hinge 
Rotation

Idealized

Actual

φ

A B

L

M diagram, Linear

Curvature φ = M
EI diagram depends on the corresponding moment of inertia,

whether gross or cracked.

At crack location, there is an increase in the curvature.
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Plastic Hinge

Moment curvature has two distinct points corresponding to φy and φu .

Considering a cantilevered beam cracking occur at the support, and inelastic
rotation (φy < φ < φu) will occur at the “plastic hinge” close to the critical
section.

We define an equivalent plastic hinge the length over which the plastic curvature
is considered constant.

Rotation θ is given by

θAB =

∫ B

A
φdx =

 θe =

∫ B

A

M
EI

dx Elastic rotation

θp = (φu − φy )lp Inelastic rotation
(1)

For the cantilevered beam, θAB is the area of the curvature diagram.

θAB = θe + θp

= φy
L
2
+ (φu − φy )lp (2)
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Plastic Hinge

The displacement between A and B is given by the second Moment curvature
theorem

�AB =

∫ B

A
xφABdx where x is the distance of dx from A (3)

=

(
φy L

2
2L
3

)
+ (φu − φy )lp

(
L − lp

2

)
(4)

Not addressed her is the importance of using the gross or cracked elastic moduli
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Lumped Elements Relative Displacements
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Used to model bond slip.

Ideally Fiber section must match the one of adjacent
elements

Careful, consult Ghannoum’s model for correct
properties (tricky).

All of these model require proper calibration to determine spring stiffnesses.

Reference Haselton et al., Beam-Column Element Model Calibrated for Predicting Flexural Response Leading to Global
Collapse of RC Frame Buildings, PEER Report 2007/03
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Lumped Elements Limit State Element

ag

1
Zero-Length 
Limit State

Element    

3
Flexibility-Based 

Element        

4
Zero-Length 

Element      

5,6
Stiffness-Based 

Elements        

2
Stiffness-Based 

Element       

How do we model lateral deformation of
column using LS model?

Flexibility-based element: Elastic response

Zero-length elements

Limit state shear spring with stiff axial
and rotational springs
Shear spring to model column shear
plastic response

Stiffness-based elements; Rigid element
connectors
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Lumped Elements Columns
F

-N
L

F
-N

L
S

 R
E

S
-N

L
S

-N
L

FlexibilityNonlinear

Limit State shear 

spring, and zero 

length section in 

parallel

Stiffness Nonlinear; 

Optional, may 

accelerate

convergence

Stiffness 

Rigid

Stiffness Nonlinear; 

Optional, may 

accelerate

convergence

Limit State shear 

spring, and zero 

length section in 

parallel

F
-N

L
F

-N
L

S
-L

Flexibility

Nonlinear

Stiffness

Linear

Limit State shear 

spring, and zero 

length section in 

parallel

S
 R

E
F

 o
r 

S
; 
L

in
e

a
r 

E
la

s
ti
c

Nonlinear

Springs

Linear 

Elastic

Element(

s)

Nonlinear

Springs

Rigid

Connecto

r

Shown are the rigid elements for the
connection.

If you anticipate excessive nonlinear
deformation in the distributed
plasticity model, insert the nonlinear
stiffness based element at each end.

The flexibility based element is
almost invariably used with layered
elements (it could also be defined in
terms of section forces (Nx and Mz )).
If bond slip is to be modeled, can
place zero-length section element in
parallel with the zero-length element.
In case of mild nonlinearity, one
flexibility element should suffice, but
at least 3-4 stiffness based elements
would be necessary.
Stiffness based element: 3 IP;
Flexibility based element: 5 IP.
Choice between stiffness or flexibility
based element is not obvious.
Determination of the non-zero length
of the plastic hinge, Lp can be
“tricky”, consult the work of Spacone.
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Lumped Elements Beams

F-NL F-NL

F or S Linear

Non-

Linear

Spring

One or more elements Non-

Linear

Spring

S-L

FlexibilityNonlinear

Stiffness Linear

F-NLF-NL F-NLF-NL

FlexibilityNonlinear

FlexibilityNonlinear

Usually, we do not
include bond slip for
beams.

In the lumped
plasticity, the
rotational spring can
be either nonlinear,
or elasto perfectly
plastic (EPP)

Determination of
the non-zero length
of the plastic hinge,
Lp can be “tricky”,
consult the work of
Spacone.
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Layers

In 2D analysis, we refer to layers as opposed to fibers (3D).

The z position of the layer is irrelevant (and need not be specified).

Distinguish between

Unconfined concrete
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Layers

Confined concrete
Reinforcement

Can place multiple layers at same y elevations.

Mercury will provide stress and strain for each layer.
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Layers Connection

Can not connect zero length
elements amongst themselves.

Adjacent model does not allow
independent joint shear and
rotational deformation; It is a rigid
connection

For non-rigid connectors, consult
work of Lowes
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Introduction

Constitutive models are at the heart of the finite element (material)
non-linear analysis.

In finite element of solids this would require Dt , however in the context
we deal exclusively with one dimensional formulation, hence we will be
seeking E tan.

“classical” (1D) plasticity based models for steel were covered in the first
plasticity lecture, all other models are “heuristically” based as they best
capture the nonlinear cyclic response we are primarily interested in.
Two parts:

Major focus on fiber/layered elements (thus distributed plasticity), where we
seek the non-linear stress-strain relationship1.
Lumped plasticity to be characterized by nonlinear moment-curvature
relations.

1Zero length elements can also be characterized by non-linear stress-strain
relations.
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Introduction Linear Thermo-Elasticity

This is how it ought to be.

From continuum mechanics, we select for a convex thermodynamic potential a
positive definite quadratic function in the components of the strain tensor

	 =
1
2ρ

a:ε:ε

and by definition σ = ρ∂	
∂ε = a:ε which is Hooke’s law.

Isotropy and linearity require that the potential 	 be a quadratic invariant of the
strain tensor, i.e. a linear combination of the square of the first invariant
ε2

I = [tr (ε)]2, and the second invariant ε2
II =

1
2 tr (ε2)

	 =
1
ρ

[
1
2

(
λε2

I + 4µεII

)
− (3λ+ 2µ)αθεI

]
− Cε

2T0
θ2

where λ and µ are Lame’s parameters.
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Introduction Linear Thermo-Elasticity

Differentiating

σ = ρ
∂	

∂ε
= λtr (ε)I+ 2µε− (3λ+ 2µ)αθI

σij = λδijεkk + 2µεij − (3λ+ 2µ)αθδij

However too complex to develop a potential that can capture complex cyclic load
and accompanying deterioration.

Victor E. Saouma; Univ. of Colorado Constitutive Models; Distributed Plasticity 6/47



Introduction Heuristic Models

Ultimately, we seek to capture the complex nonlinear response of steel and
reinforced concretes structures subjected to reverse cyclic loading
(earthquakes).
There are very few thermodynamically rooted models which can achieve that
(except those based on damage mechanics).
As an alternative, models can be heuristically developed on the basis of
laboratory observations resulting in empirical relations. All the models
subsequently presented will fall in that category and are thus phenomenological
models.

Figure 2-3 – Types of hysteretic modeling. 

(a) Hysteretic m odel 
without deterioration

(b) M odel with stiffness 
degradation

(c) M odel with cyclic 
strength degradation

(d) M odel with fracture 
strength degradation

(e) M odel with post-capping 
gradual strength deterioration

(f) M odel with bond slip or 
crack closure (pinching)

Cyclic load

Degradation

Strength
Tension
Tension and Compression

Stiffness

Crack closure
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Dist. Plast.; Steel Models Introduction

Steel model for random cyclic excitations present only minor difficulties.

Most models are heuristic, analytically defined, and the most successful ones
are those with variable parameters.

Within this group, we distinguish three different formulations:
1 An explicit algebraic equation of the stress: σ = f (ε).
2 An implicit algebraic equation of the stress: f (σ, ε) = 0.
3 A first order differential equation: dσ

dεp = Ep = f (σ)

A commonly used explicit model is:

σ

σ0
= b

ε

ε0
+

(1− b) ε
ε0[

1 +
(
ε
ε0

)R
]

1/R

where σ0, ε0, b, and R are the yield stress and strain, strain hardening
parameter, and a coefficient which account for the Baushinger effect and varies
depending on the magnitude of the excursion εmax into the inelastic range.

Victor E. Saouma; Univ. of Colorado Constitutive Models; Distributed Plasticity 8/47



Dist. Plast.; Steel Models Bilinear Model with Isotropic Hardening

Stress/
Section force

Strain/
Section deformation

y
tanE b E 

E

y
tanE b E 
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2σy
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σy2σ
y

σ/
σ 0

ε/ε0

Recall that

Isotropic Hardening yield surface expands isotropically and keeps growing.
Ultimately most of the response is linear.

Kinematic hardening yield surface remains constant, translates with respect to
the original position.

Model originally developed by Filippou (1983).
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Dist. Plast.; Steel Models Bilinear Model with Isotropic Hardening

Rather than determining E tan through H (E tan = E.H
E+H ) the simplified bilinear

model computes it through a strain-hardening coefficient b which is the ratio of
the post-yield tangent modulus E tan and the initial elastic modulus E , and
considers only isotropic hardening E tan = b · E

To account for the evolution of elastic domain in isotropic harding, a stress shift
σ� is determined:

If the incremental strain �ε changes a positive value into a negative one:

�N = 1 + a1 ·
(
εmax − εmin

2 · a2 · εy

)0.8

; σ� = �N · σy · (1− b)

If the incremental strain �ε changes a negative value into a positive one:

�P = 1 + a3 ·
(
εmax − εmin

2 · a4 · εy

)0.8

; σ� = �P · σy · (1− b)
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Dist. Plast.; Steel Models Bilinear Model with Isotropic Hardening

a1 and a3 are isotropic hardening parameter which reflect an increase of the
compression yield envelope through a fraction of the yield strength after a plastic
strain a2 · σy

E , and tension yield envelope as a fraction of the yield strength after a
plastic strain of a4 · σy

E .

a2 and a4 are isotropic hardening parameter with respect to a1 and a3, and εmax

and εmin are the strain at the maximum and minimum strain reversal point.

Limiting factor of this model is that a1, a2, a3 and a4 must be determined through
curve fitting of the model with experimental results.

Default values are a1 = 0, a2 = 55, a3 = 0, and a4 = 55 in OpenSees.
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Dist. Plast.; Steel Models Bilinear Model with Isotropic Hardening

Requires input data in Mercury:

- mattag: Material tag

- modulus: Young’s modulus of a material with mattag

- sigmaY0: Initial yield stress of a material with mattag

- b: Strain-hardening ratio between post-yield tangent and Young’s
modulus of a material with mattag

- a1: Isotropic hardening coefficient 1 of a material with mattag - increase
of compression yield envelope as proportion of initial yield stress after a
plastic strain of a2 × (SigmaY0/modulus); (optional)

- a2: Isotropic hardening coefficient 2 of a material with mattag

- a3: Isotropic hardening coefficient 3 of a material with mattag - increase
of tension yield envelope as proportion of initial yield stress after a
plastic strain of a4 × (SigmaY0/modulus)

- a4: Isotropic hardening coefficient 4 of a material with mattag (optional)

- density: Density of a material with mattag
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Dist. Plast.; Steel Models Bilinear Model with Isotropic Hardening
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Figure 11. Material Parameters of Monotonic Envelope of Steel_1 Model
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Figure 12. Hysteretic Behavior of Steel_1 Model w/o Isotropic Hardening
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Figure 13. Hysteretic Behavior of Steel_1 Model with Isotropic Hardening in Compression
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Figure 14. Hysteretic Behavior of Steel_1 Model with Isotropic Hardening in Tension
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Figure 13. Hysteretic Behavior of Steel_1 Model with Isotropic Hardening in Compression
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Figure 14. Hysteretic Behavior of Steel_1 Model with Isotropic Hardening in Tension
a)

b) c)

a) Hysteretic Behavior of Model w/o Isotropic Hardening

b) Hysteretic Behavior of Model with Isotropic Hardening in Compression

c) Hysteretic Behavior of Model with Isotropic Hardening in Tension
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Dist. Plast.; Steel Models G-F-M Model Modified by Filippou et al.

Model was originally developed by Giuffre, Menegotto and Pinto. It was then
modified by Filippou to include strain hardening.

Main characteristic is the smooth curve which describes a behavior similar to the
experimental one.
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Figure 15. Material Parameters of Monotonic Envelope of Steel_2 Model
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Figure 16. Hysteretic Behavior of Steel_2 Model w/o Isotropic Hardening
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Figure 17. Hysteretic Behavior of Steel_2 Model with Isotropic Hardening in Compression
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Figure 18. Hysteretic Behavior of Steel_2 Model with Isotropic Hardening in Tension
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Figure 17. Hysteretic Behavior of Steel_2 Model with Isotropic Hardening in Compression
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Figure 18. Hysteretic Behavior of Steel_2 Model with Isotropic Hardening in Tensiona) b) c)

a) Hysteretic Behavior of Model w/o Isotropic Hardening
b) Hysteretic Behavior of Model with Isotropic Hardening in Compression
c) Hysteretic Behavior of Model with Isotropic Hardening in Tension

Note that for cyclic load (load/reload)
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Dist. Plast.; Steel Models G-F-M Model Modified by Filippou et al.

Isotropic hardening is not desirable as the yield stress keeps on increasing
and at some point we only have an elastic response.
Kinematic hardening is desirable as it accounts for Bauschinger effect
under cyclic load.
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Dist. Plast.; Steel Models G-F-M Model Modified by Filippou et al.

Starts with empirical stress-strain relation

σ∗ = b · ε∗ + (1− b) · ε∗

(1 + ε∗R)1/R

where,
ε∗ =

ε− εrev

ε0 − εrev
; σ∗ =

σ− σrev

σ0 − σrev

σ0 and ε0 are the stress and strain at the point where the two asymptotes of the
branch under consideration meet (B); σrev and εrev are the stress and strain at
the point where the last strain reversal took place (A).

The tangent modulus E tan is obtained by differentiating

E tan =
dσ
dε

=
σ0 − σrev

ε0 − εrev
· dσ∗

dε∗
;

dσ∗

dε∗
= b +

[
1− b

(1 + ε∗R)1/R

]
·
[
1− ε∗R

1 + ε∗R

]
There is a curved transition from a straight line asymptote with slope E (a) to
another asymptote with slope E tan (b).

σrev , εrev are the stress and strain at the point of strain reversal (point A), which
also forms the origin of the asymptote with slope E (a).
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Dist. Plast.; Steel Models G-F-M Model Modified by Filippou et al.

σ0 and ε0 are the stress and strain at the point of intersection of the two
asymptotes (point B).

b is the strain hardening ratio between slope E tan and E , and R is a parameter
that influences the curvature of the transition curve between the two asymptotes
and permits a good representation of the Bauschinger effect.

σ0, ε0, σrev and εrev are updated after each strain reversal.

R depends on the absolute strain difference between the current asymptote
intersection point (point B) and the previous maximum or minimum strain
reversal point (point C) depending on whether the current strain is increasing or
decreasing, respectively.

There are two reported expression for R(ξ):

Menegotto-Pinto original model R(ξ) = R0 − cR1·ξ
cR2+ξ

The one reported in OpenSees: R(ξ) = R0

(
1 − cR1·ξ

cR2+ξ

)
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Dist. Plast.; Steel Models G-F-M Model Modified by Filippou et al.

where, R0 is the value of the parameter R during first loading, and cR1 and cR2

are experimentally determined parameters to be defined together with R0. ξ can
be expressed as

ξ =

∣∣∣∣εm − ε0

εy

∣∣∣∣ (1)

where, εm is the strain at the previous maximum or minimum strain reversal point
depending on whether the current strain is increasing or decreasing, respectively.
ε0 is the strain at the current intersection point of the two asymptotes.

both εm and ε0 lie along the same asymptote and εy is the initial yield strain.

So far, model does not account for isotropic hardening in reverse cyclic load.
Filippou proposed a shift of σ0 and ε0 in the linearly yield asymptote as follows:

If the incremental strain �ε changes a positive value to a negative value:

�N = 1 + a1 ·
(
εmax − εmin

2 · a2 · εy

)0.8

ε0 =
−σy ·�N + E tan · εy ·�N − σrev + E · εrev

E − E tan

σ0 = −σy ·�N + E tan · (εo + εy ·�N)
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Dist. Plast.; Steel Models G-F-M Model Modified by Filippou et al.

If the incremental strain �ε changes a negative value to a positive value,

�P = 1 + a3 ·
(
εmax − εmin

2 · a4 · εy

)0.8

ε0 =
σy ·�P − E tan · εy ·�P − σrev + E · εrev

E − E tan

σ0 = σy ·�P + E tan · (εo − εy ·�P)

where, a1 and a3 are isotropic hardening parameter which reflect an increase of
the compression yield envelope through a fraction of the yield strength after a
plastic strain a2 · σy

E , and tension yield envelope as a fraction of the yield strength
after a plastic strain of a4 · σy

E . a2 and a4 are isotropic hardening parameter with
respect to a1 and a3, and εmax and εmin are the strain at the maximum and
minimum strain reversal point.

The problem is that a1, a2, a3 and a4 must be determined through curve fitting of
the model with experimental results. Default values are a1 = 0, a2 = 55, a3 = 0,
and a4 = 55. Note similarity with previous model.
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Dist. Plast.; Steel Models G-F-M Model Modified by Filippou et al.

Required Input data in Mercury:

- mattag: Material tag

- modulus: Young’s modulus of a material with mattag

- sigmaY0: Initial yield stress of a material with mattag

- b: Strain-hardening ratio between post-yield tangent and Young’s modulus of a material
with mattag

- R0: Coefficient 0 of a material with mattag to control the transition from elastic to plastic
branches - value between 10 and 20 is recommended

- cR1: Coefficient 1 of a material with mattag to control the transition from elastic to plastic
branches - 0.925 is recommended

- cR2: Coefficient 1 of a material with mattag to control the transition from elastic to plastic
branches - 0.15 is recommended

- a1: Isotropic hardening coefficient 1 of a material with mattag - increase of compression
yield envelope as proportion of initial yield stress after a plastic strain of a2 ×
(SigmaY0/modulus)

- a2: Isotropic hardening coefficient 2 of a material with mattag

- a3: Isotropic hardening coefficient 3 of a material with mattag - increase of tension yield
envelope as proportion of initial yield stress after a plastic strain of a4 × (SigmaY0/modulus)
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Dist. Plast.; Steel Models G-F-M Model Modified by Filippou et al.

- a4: Isotropic hardening coefficient 4 of a material with mattag

- density: Density of a material with mattag
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Dist. Plast.; Steel Models G-F-M Model Modified by Filippou et al.

Giuffre-Menegotto-Pinto Model Modified by Filippou et al. determination
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Dist. Plast.; Steel Models G-F-M Model Modified by Filippou et al.

,if  Foceflag 0r n =

if  0εΔ = else if  0εΔ < else if  0εΔ >

, ,

, ,

0, ,

0, ,

max
, ,

min
, ,

,

, ,

tan
,

0

0

0

0

/

/

Forceflag 0

rev r n

rev r n

r n

r n

r n y r r

r n y r r

r n

r n ini r

r n r

E

E

E E

ε
σ
ε
σ

ε σ

ε σ

σ σ

=
=

=
=

=

= −

=
=

=

, ,

, ,

0, , ,

0, , ,

max
, ,

min
, ,

min
, ,

,

, 0, ,

,

1
0 0

2

, , ,

0, , , ,

1

1/
2 1

,

0

0

/

/

/

Forceflag 1

c 1

c c

rev r n

rev r n

r n y r r

r n y r

r n y r r

r n y r r

pe n r n

r n

pe n r n

y r

nratio

r n rev r n

r n rev r n

R

R

r n r

E

E

E

cR
R R R

cR

b

ε
σ
ε σ
σ σ

ε σ

ε σ

ε ε

ε ε
ξ

ε

ξ
ξ

ε ε
ε

ε ε

ε

σ

=
=

=

=

=

= −

=

=

−
=

⋅= − ⋅
+

−
=

−

= +

=

= ⋅

&

&

2

, , 0, , , , , ,

tan
,

1 2

0, , , ,tan tan
, ,

0, , , ,

(1 )
c

( )

(1 )

c c

r

r n r n r n rev r n rev r n

r
r n r

r n rev r n
r n r n

r n rev r n

b

b
E b

E E

εε

σ σ σ σ σ

σ σ
ε ε

+ − ⋅

= ⋅ − +
−= +
⋅

−
= ⋅

−

&

&

, ,

, ,

0, , ,

0, , ,

max
, ,

min
, ,

max
, ,

,

, 0, ,

,

1
0 0

2

, , ,

0, , , ,

1

1/
2 1

,

0

0

/

/

/

Forceflag 1

c 1

c c

rev r n

rev r n

r n y r r

r n y r

r n y r r

r n y r r

pe n r n

r n

pe n r n

y r

nratio

r n rev r n

r n rev r n

R

R

r n

E

E

E

cR
R R R

cR

ε
σ
ε σ
σ σ

ε σ

ε σ

ε ε

ε ε
ξ

ε

ξ
ξ

ε ε
ε

ε ε

ε

σ

=
=

= −

= −

=

= −

=

= −

−
=

⋅= − ⋅
+

−
=

−

= +

=

=

&

&

2

, , 0, , , , , ,

tan
,

1 2

0, , , ,tan tan
, ,

0, , , ,

(1 )
c

( )

(1 )

c c

r r

r n r n r n rev r n rev r n

r
r n r

r n rev r n
r n r n

r n rev r n

b b

b
E b

E E

εε

σ σ σ σ σ

σ σ
ε ε

⋅ + − ⋅

= ⋅ − +
−= +
⋅

−
= ⋅

−

&

&

Determination (2) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al.

Victor E. Saouma; Univ. of Colorado Constitutive Models; Distributed Plasticity 23/47



Dist. Plast.; Steel Models G-F-M Model Modified by Filippou et al.

,else if   Foceflag 1r n =

if  0εΔ < else if  0εΔ >

, , , ,

0.8max min
, ,

1
2

,   

1
2

rev r n rev r n

r n r nN

y

a
a

ε σ

ε ε
ε

⎛ ⎞−
Δ = + ⋅ ⎜ ⎟⎜ ⎟⋅ ⋅⎝ ⎠

, , , , 0, , 0, ,

max max
, , , 1

min min
, , , 1

max
, ,

,

, 0, ,

,

1
0 0

2

, , ,

0, , , ,

1

,   ,   ,   

Max ,

Min ,

Forceflag 1

c 1

rev r n rev r n r n r n

r n r n r n

r n r n r n

pe n r n

r n

pe n r n

y r

nratio

r n rev r n

r n rev r n

cR
R R R

cR

ε σ ε σ

ε ε ε

ε ε ε

ε ε

ε ε
ξ

ε

ξ
ξ

ε ε
ε

ε ε

−

−

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦

=

=

−
=

⋅= − ⋅
+

−
=

−

= +

&

1/
2 1

,
2

, , 0, , , , , ,

tan
,

1 2

0, , , ,tan tan
, ,

0, , , ,

c c

(1 )
c

( )

(1 )

c c

R

R

r n r r

r n r n r n rev r n rev r n

r
r n r

r n rev r n
r n r n

r n rev r n

b b

b
E b

E E

ε

εσ ε

σ σ σ σ σ

σ σ
ε ε

=

= ⋅ + − ⋅

= ⋅ − +
−= +
⋅

−
= ⋅

−

&

&

&

, , , , , ,
0, ,

0, , , 0, , ,( )

N sh N
y r r y r rev r n r rev r n

r n sh
r r

N sh N
r n y r r r n y r

E E

E E

E

σ ε σ ε
ε

σ σ ε ε

− ⋅ Δ + ⋅ ⋅ Δ − + ⋅
=

−

= − ⋅ Δ + ⋅ + ⋅ Δ

max max
, , , 1

min min
, , , 1

min
, ,

,

, 0, ,

,

1
0 0

2

, , ,

0, , , ,

1

1/
2 1

,
2

,

Max ,

Min ,

Forceflag 1

c 1

c c

(1 )
c

r n r n r n

r n r n r n

pe n r n

r n

pe n r n

y r

nratio

r n rev r n

r n rev r n

R

R

r n r r

r

cR
R R R

cR

b b

ε ε ε

ε ε ε

ε ε

ε ε
ξ

ε

ξ
ξ

ε ε
ε

ε ε

ε

εσ ε

σ

−

−

⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦

=

= −

−
=

⋅= − ⋅
+

−
=

−

= +

=

= ⋅ + − ⋅

&

&

&

&

, 0, , , , , ,

tan
,

1 2

0, , , ,tan tan
, ,

0, , , ,

( )

(1 )

c c

n r n r n rev r n rev r n

r
r n r

r n rev r n
r n r n

r n rev r n

b
E b

E E

σ σ σ σ

σ σ
ε ε

= ⋅ − +
−= +
⋅

−
= ⋅

−

Determination (3) for Giuffre-Menegotto-Pinto Model Modified by Filippou et al.
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Dist. Plast.; Steel Models G-F-M Model Modified by Filippou et al.
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Dist. Plast.; Concrete Models

Concrete is much more difficult to model than steel.

We need to address nonlinearity in compression, tension stiffening, and
softening following tensile strength.

Most popular model: Modified Kent and Park.
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Dist. Plast.; Concrete Models Modified Kent and Park Model
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Dist. Plast.; Concrete Models Modified Kent and Park Model

Normalized Strain
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Dist. Plast.; Concrete Models Modified Kent and Park Model

A “good” concrete model must account for

Effect of concrete confinement (by shear reinforcement) on the monotonic
envelope curve in compression
Successive degradation of stiffness of both the unloading and reloading
curves, for increasing values of compressive strain
Effect of tension stiffening: ability of concrete between cracks to resist
tensile stress and contribute to the flexural stiffness of the member. As the
magnitude of load increases, additional cracks form at closer intervals,
hence reducing the tensile stress that can be developed in the concrete.
Therefore tension stiffening is gradually reduced as load is increased in the
post-cracking stage.

Hysteretic response under cyclic loading in compression

In compression stress-strain relation is empirically defined by three regions
(compression positive)

OA : εc ≤ ε0 ⇒ σc = K · fc ·
[
2 · εc

ε0
−
(
εc
ε0

)2
]

and E tan = 2·K ·fc
ε0
·
(

1− εc
ε0

)
From this equation, we can determine the maximum compressive strength
of confined concrete (by simply setting εc = ε0) fc,confined = Kfc
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Dist. Plast.; Concrete Models Modified Kent and Park Model

AB : ε0 < εc ≤ ε20 ⇒ σc = K · fc · [1− Z (εc − ε0)] and E tan = −Z · K · fc
BC : εc > ε20 ⇒ σc = 0.2 · K · fc and E tan = 0

where

εunconfined
0 0.003
εconfined

0 0.002 ·K
K 1 +

ρs·fys
fc

Z 0.5
3+0.29·fc

145·fc−1,000+0.75·ρs·
√

h
sh
−0.002·K

εunconfined
0 Concrete strain corresponding maximum stress usually set to 0.003
ε20 Concrete strain at 20 percent of maximum stress
K factor which accounts for the strength increase due to confinement
Z Strain softening slope
fc Concrete compressive cylinder strength in MPa (1 MPa = 145 psi)
fys Yield strength of stirrups in MPa
ρs Ratio of the volume of hoop reinforcement to the volume of

concrete core measured to outside of stirrups
h Width of concrete core measured to outside of stirrups
sh Center to center spacing of stirrups or hoop sets
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Dist. Plast.; Concrete Models Modified Kent and Park Model

The cyclic unloading and reloading behavior is represented by a set of straight
lines. Hysteretic behavior occurs under, both, tensile and compressive stress.

ε0 fc ft E0 Et fc,20 ε20

Unconfined 0.003 Test 7.5
√

f unc
c 2

f unc
c
εunc

0

Eunc
0
5 f unc

c /3 3εunc
0

Confined 0.002K Kf unc
c 7.5

√
f unc
c 2

f conf
c
εconf

0

Econf
0
5 0.2f conf

c εconf
0 +

Kfunc
c −f confined

c,20
ZKfunc

c

fc in psi for ft ; An alternative to the Kent and Park residual stress/strain is to use f conf
c,res = 0.9fc and εconf

res is assigned a “large”

value to ensure gradual descent. This combination ensures stable analysis (Ghannoum, 2011).
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Dist. Plast.; Concrete Models Modified K & P Model; Compression

A

B CE
F

G

H
1
t c

c

D(ε1
m , σ1

m)  

I(ε2
m , σ2

m)  

R(εR , σR)  

ε2
t  E20  E2

R  
E1

R  

Ec  

0.5 .E2
R  

Ec  
0.2f’c

0.5 .E1
R  

On the compressive side of the model, there is a successive degradation of
stiffness of both the unloading and reloading lines for increasing values of
maximum strain.
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Dist. Plast.; Concrete Models Modified K & P Model; Compression

The degradation of stiffness is such that the projections of all reloading lines
intersect at a common point R

R is determined by the intersection of the tangent to the monotonic envelope
curve at the origin and the projection of the unloading line from point B that
corresponds to concrete strength of 0.2 · fc
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Dist. Plast.; Concrete Models Modified Kent and Park Model; Tension

K(ε1
tp , σ

1
tp)  

L(ε2
tp , σ

2
tp)  

K’(ε3
tp , σ

3
tp)  

ε2
u  ε1

u  εt  
ε2  

Ec

Et

Et

Δεt  Δεt  

ft σt  

N M M’N’J J’
ε1

t  

The tensile behavior of the model takes into account tension stiffening and the
degradation of the unloading and reloading stiffness for increasing values of
maximum tensile strain after initial cracking. The maximum tensile strength of
the concrete (modulus of rupture) is assumed equal to be ft = 0.6228

√
fc where

ft and fc are expressed in MPa.

Victor E. Saouma; Univ. of Colorado Constitutive Models; Distributed Plasticity 34/47



Dist. Plast.; Concrete Models Modified Kent and Park Model; Tension

Tensile stress-strain relation is defined by three points with coordinates (εt , 0),
(εtp, σtp) and (εu , 0), as represented by points J, K and M. εt is the strain at the
point where the unloading line from the compressive stress region crosses the
strain axis. εt changes with maximum compressive strain. εtp and σtp are the
strain and stress at the peak of the tensile stress-strain relation.

Given these three control points, the tensile stress-strain relation and tangent
moduli are defined by the following equations (tension is positive),

JK : εt < εc ≤ εtp, σc = E tan · (εc − εt ), E tan =
σtp

εtp−εt

KM : εtp < εc ≤ εu , σc = σtp + E tan · (εc − εtp), E tan = −Et
MN : εc > εu , σc = 0, E tan = 0

Model can be better understood by following the example load paths.

As the model unloads from compression, it crosses the strain axis at the point J.

It then loads in tension until initial cracking occurs at point K.

Beyond point K softening commences until the strain reversal point L.

The unloading path follows a straight line from point L to point J where the model
reloads in compression.

Victor E. Saouma; Univ. of Colorado Constitutive Models; Distributed Plasticity 35/47



Dist. Plast.; Concrete Models Modified Kent and Park Model; Tension

The second time the model goes into tension is at point J’. The reloading path
J’K’ is exactly the duplication of the previous unloading path LJ that has been
shifted a distance JJ’ along the strain axis.

At point K’ the model rejoins the softening branch which continues until the
tensile stress is reduced to zero at point M’. The stress remains zero through the
strain reversal point N’ until the model reloads in compression at point J’.
Henceforth, the tensile stress capacity of the model is reduced to zero.

This concrete model is relatively economical in terms of the amount of memory
required of the past stress-strain history. The parameters that are used as
memory can be listed as follows:

the stress and strain at the point corresponding to the last model state
the strain at the last unloading point on the compressive monotonic envelope, εm
The differential �εt between maximum previous tensile strain and εt
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Dist. Plast.; Concrete Models Modified Kent and Park Model; Tension

Required Input data in Mercury:

- mattag: Material tag

- σc : Compressive yield stress of a material with mattag - -ve

- εc : Compressive yield strain of a material with mattag - -ve

- σcu : Compressive crushing stress of a material with mattag - -ve

- εcu : Compressive crushing strain of a material with mattag - -ve

- λ: Ratio between unloading slope at εc and slope Young’s modulus of a material with
mattag

- σt : Tensile yield stress of a material with mattag

- modulus: Tension softening stiffness(absolute value) - slope of the linear tension softening
branch of a material with mattag

- density: Density of a material with mattag
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Dist. Plast.; Concrete Models Modified Kent and Park Model; Tension

Concrete linear tension softening model determination
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Determination (1) for modified Kent and Park
model
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Lump-Plast.: Moment Rotation
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Chord rotation θ  (radians)

Kc

Ks

Ke

θy θcap

θcap
tot

My

Mcap

θcap
pl θpc

My “Yield” Moment
θy Chord rotation at “Yield”
θcap Chord rotation (monotonic) at onset

of strength loss (capping)
KS Hardening
Kc Post-capping stiffness

Parameters obtained through calibration with experimental data.

Caution with unload (not addressed here)
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Lump-Plast.: Moment Rotation Lump-Plast.: Limit State Model

Δc

Limit 
State 

element

Δs

1

2

3

V

V
Zero-length shear spring in series with
beam-column constitutive model

Upon reaching failure surface, shear spring
stiffness degraded to user defined value (Kdeg)

Member total lateral response (�) is sum of
shear spring displacement (�s) and
beam-column displacement (�f )

Results in

Increased deformation/drift
Shear strength loss
Flexural yielding
Loss of axial load carrying capacity
leading to collapse
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Lump-Plast.: Moment Rotation Free Body Diagram

Slip due to longitudinal reinforcing bar near the column and
from the anchorage can be easily determined if we assume a
uniform bond stress ub along the bars within the development
length inside the footing or the beam-column joint.

From equilibrium ub(πdb)ld =
πd2

b
4 fs where db is the bar

diameter, ld is the development length over which the slip
occurs, solving for ld , ld =

db fs
4ub

Assuming that the maximum strain occurs at the end of the
column, and a linear variation of strain along the development
length, the integral of the strain curve will give the total bar
slip at the footing-column interface or beam-column interface
is the slip given by S =

εs ld
2 =

fs ld
2Es

Substituting S =
εsdb fs

8ub

Assuming that the cross section rotates about its neutral axis when slip occurs
(φy = εy/(d − c)), the displacement related to the bar slip at a point at a distance L from
the column base will be �slip =

φy db fy L
8ub
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Lump-Plast.: Moment Rotation Simplified Model

s s
12

' c
f
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f

s

y

s

y

d
dy

Column Base
ss

A simplified bond model for bond stress in
terms of the actual steel stress assumes a
constant bond stress of ue = 12

√
f ′c prior

to steel yielding, and another constant
bond stress of up = 6

√
f ′c past steel

yielding

Based on this assumption, the total bar
slip S at the edge of the anchorage is
obtained by integrating the steel strains
over the embedded length.

This model was used to obtain a
monotonic relation for bar slip versus bar
stress at the column base. Assuming
sufficient anchorage:

S1 =
εs fs
8ue

db; εs ≤ εy ; S2 =
εy fy
8ue

db +
(εs + εy )(fs − fy )

8up
db; εs > εy

where db is the bar diameter, ue is the elastic bond stress = 12
√

f ′c (psi), and up is the plastic
bond stress = 6

√
f ′c .
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Lump-Plast.: Moment Rotation Simplified Model

1 c lea r
2 ’ +++++++ ’
3 %% Inpu t parameters
4 d_b =3/8 ; % bar diameter i n inches
5 f_c =4000; % compressive s t reng th ( ps i )
6 E_s=27300000; % ps i
7 b=0.01; %
8 f y =64000;% o r i g i n a l y i e l d s t ress i n ps i
9 f_y =1.25∗ f y ; % y i e l d s t ress increaed by 25% f o r ra te e f f e c t

10 %f_u =100000; % k s i
11 %
12 eps i lon_y= f_y / E_s ;
13 %% Bond
14 u_e=12∗ s q r t ( f_c ) ;
15 u_p=6∗ s q r t ( f_c ) ;
16 %
17 k =0;
18 e p s i l o n _ f i n a l =30∗eps i lon_y ;
19 de l t a_eps i l on = e p s i l o n _ f i n a l /100 ;
20 f o r eps i lon_s =0: de l t a_eps i l on : e p s i l o n _ f i n a l
21 k=k +1;
22 i f epsi lon_s <=eps i lon_y
23 f_s=eps i lon_s∗E_s ;
24 s l i p _ y =eps i lon_s∗ f_s∗d_b / (8∗u_e ) ;
25 s l i p ( k ) = s l i p _ y ;
26 else
27 f_s=eps i lon_y∗E_s+b∗( epsi lon_s eps i lon_y )∗E_s ;
28 s l i p _ u =eps i lon_y∗ f_y∗d_b / (8∗u_e ) +( eps i lon_s+eps i lon_y ) ∗( f_s f_y )∗d_b / (8∗u_p ) ;
29 s l i p ( k ) = s l i p _ u ;
30 end
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Lump-Plast.: Moment Rotation Simplified Model

31 normal ized_st ress ( k ) = f_s / f_y ;
32 end
33 p l o t ( s l i p , normal ized_st ress , ’ l i n e w i d t h ’ ,2 ) ; g r i d ; x l im ( [ 0 ,max( s l i p ) ] ) ;
34 x l a b e l ( ’ S l i p [ i n ] ’ , ’ f o n t s i z e ’ ,14) ; y l a b e l ( ’ f_s / f_y ’ , ’ f o n t s i z e ’ ,14) ;
35 p r i n t deps ’ bond s l i p curve . pdf ’
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Lump-Plast.: Moment Rotation Zero length section element

This section is an adaptation from Ghannoum's model

Zero length section element should be used only when fiber elements are used if
we want to capture the bond slip between concrete and rebar.

We have a nonlinear post-peak response of bond stress vs bond slip, and we
need to linearize it, and then solve for up (which will be different than the
previously given value of 6

√
f ′c suitable for the nonlinear hardening segment.

We seek to have the linearized segment intersect the nonlinear one at 1.25fy ,
hence εu = εy + 0.25 fy

Es/h =
fy
Es

+ 0.25h fy
Es

= 0.26hεy where h is the hardening

parameter set to 100. Substituting with S2 =
εy fy
8ue

db +
(εs+εy )(fs−fy )

8up
db; we

obtainSu = Sy +
6.75εy fy

8up
db

We can reasonably assume that Su = εu
εy

Sy = 26Sy , upon substitution, we get:

up = 3.24
√

f ′c

up may be used in so-called limit state elements to assess bond slip induced
failure.
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Lump-Plast.: Moment Rotation Zero length section element

Irrespective of which steel model is used in the beam-column, it is recommended
to use the bilinear one for this element. Using a bilinear model, with h = 100 will
be equivalent to having a bar slip curve such that the second segment intersect
the exact one at fs = 1.25fy with up = 3.24

√
f ′c .

In the steel bilinear model, Young’s modulus should be adjusted to reflect bond
slip, by replacing Es by Ebs; Ebs =

fy
Sy

It should be noted that inherent in this assumption is a unit length of the zero
length element.

Finally, to maintain the same material stiffness ratio between bar-slip steel in the
zero length section element, and the one in the frame element (longitudinal
steel), we multiply the bar slip concrete material strains by Es/Ebs.

The concrete properties for the zero length section element are such that the
location of the neutral axis in the beam-column element and the zero length fiber
section is the same.
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Lump-Plast.: Moment Rotation Zero length section element

col

s

s
s s

Thus
θs = Ss

c ′

	col = εs
c ′

}
θs = 	col

Ss

εs
(2)

Hence all fiber strains (corresponding to steel and concrete) in the zero length
section must be scaled by Ss

εs

This can be easily achieved in altering the material input data such that

1 All stress values remain unchanged
2 Strains are scaled by Sy

εy
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Introduction

Introduction

By now, we have a good basic understandings of the tools to undertake
a nonlinear analysis.

We still have to review fundamental issues associated with time-history
analysis.

Ultimately, those tools will be used to undertake a modern Performance
Based Earthquake Engineering investigation.

The methodology of PBEE hinges on some basic definitions which must
be understood.

This lecture will present those ingredients necessary (but not yet how to
combine them into a meal)
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Levels and Acceptance Criteria

Performance Levels and Acceptance Criteria I

PBE seeks first to identify discrete performance levels for the major structural
components which significantly affect the building function and safety.

ASCE 41 (ASCE 2007) (and other codes) generally provide guidance three
performance levels

Immediate Occupancy where an essentially elastic behavior is sought by
limiting structural damage (e.g., yielding of steel, significant cracking of
concrete, and nonstructural damage.)
Life Safety Limit damage of structural and nonstructural components so as
to minimize the risk of injury or casualties and to keep essential circulation
routes accessible.
Collapse Prevention Ensure a small risk of partial or complete building
collapse by limiting structural deformations and forces to the onset of
significant strength and stiffness degradation.

The engineer decides which performance levels

Victor E. Saouma; Univ. of Colorado Engineering Seismic Risk Analysis 4/18



Levels and Acceptance Criteria

Performance Levels and Acceptance Criteria II

Performance Based Engineering 1 Most recent code, FEMA 750-p developed by
the Building Seismic Safety Council for FEMA. It builds on previous
pre-Standards.

New Design FEMA 310 (ASCE 1998) ASCE/SEI 31 (2003)
Existing Buildings FEMA 356 (ASCE 2000) ASCE/SEI 41 (2006)

Victor E. Saouma; Univ. of Colorado Engineering Seismic Risk Analysis 5/18



Levels and Acceptance Criteria

Performance Levels and Acceptance Criteria III

NEHRP Recommended 
Seismic Provisions
for New Buildings and Other Structures

FEMA P-750 / 2009 Edition 

FEMA Figure C11.5-1  Expected perform ance as related to occupancy category (OC)
and level of ground m otion.

PERFORM ANCE LEVEL

Immediate
Occupancy

Collapse
Prevention

Frequent

M CE

Design

GROUND
M OTION

Operational Life Safety

OC IV: Essential         
OC III: High     
                 Occupancy

             OCII:  Ordinary
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Capacity and Demand

Capacity and Demand

We will need to identify specific engineering demand parameters (EDP) and
appropriate acceptance criteria to quantitatively evaluate the performance levels.

The demand parameters typically include peak (shear) forces and deformations,
inter-story drifts, and floor accelerations in structural and nonstructural
components.

Performance is checked by comparing computed demands with acceptance
criteria (capacity) for the desired performance level.

Depending on the structural configuration, the results of nonlinear analyses can
be sensitive to assumed input parameters and the types of models used.

One must have clear expectations about those portions of the structure that are
expected to undergo inelastic deformations and then use the analyses to

1 Confirm the locations of inelastic deformations
2 Characterize

Deformation demands of yielding elements
Force demands in non-yielding elements.

Capacity design concepts can provide reliable performance.
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Capacity Design

Capacity Design

Capacity Design is indeed the approach where the engineer decides a priori
which elements will yield (and thus need to be ductile) and those which will not
yield (and will need to be stiff and with sufficient strength).

Advantages

Safeguard against brittle failure of elements which can not be designed as
ductile.
Limiting the location of the structure where expensive ductile detailing is
required (they act as fuses).
Reliable energy dissipation by enforcing deformation modes where
inelastic deformations are routed to ductile elements.

Very similar to the structural design of a car.

Example: strong column/weak beam.
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Seismic Hazard Analysis

Seismic Hazard Analysis

In the context of PBEE, one must first conduct a seismic hazard analysis (SHA) which
includes location identification (with respect to a fault), geotechnical conditions (shear
wave velocity), magnitude of previously recorded earthquakes, size of the rupture area,
type of fault, crustal rock damping characteristics, rock properties.

From the corresponding analysis one can determine annual rate of exceedance λ vs
intensity measure (IM) a measure of the ground motion characteristic, typically the (peak
or spectral) ground acceleration.
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Engineering Seismic Risk Analysis

Engineering Seismic Risk Analysis I

The annual rate of exceedance of the ground motion amplitude, λ, (inverse of
return period TR) for Design Base Level (DBL) and Maximum Design Level
(MDL) are determined from a Poisson probability model

λ = −
Ln (1 − PE )

t

where PE is the probability of occurrence of at least one event (i.e. an
earthquake) during the life time t .

t is usually taken as 50 years for buildings, and 100 years for dams.

PE for ground motion is usually assumed to be in the ranges [20% 64%] for
DBL and [10% 20%] for MDL.

Assuming a lifetime of 100 years, the corresponding Tr = 1/λ is determined for
450 and 1,000 years for DBL and MDL, respectively from.

Victor E. Saouma; Univ. of Colorado Engineering Seismic Risk Analysis 10/18



Engineering Seismic Risk Analysis

Engineering Seismic Risk Analysis II
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PSHA=SHA+ESRA

PSHA=SHA+ESRA I

Probability Seismic Hazard Analysis or PSHA=SHA+ESRA.

Engineering Seismic Risk Analysis yielded annual rate of exceedance λ in terms of
probability of occurrence of at least one event and life time t .

Seismic hazard analysis yielded annual rate of exceedance λ vs intensity measure.

Select λ from the first curve, and PGA from the second.

with the PGA known, one selects (or generate) a set of n ground motion acceleration time
histories to perform multiple analyses.
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PSHA=SHA+ESRA

PSHA=SHA+ESRA II

From the corresponding analysis one plots

Intensity Measure (IM) a measure of the ground motion characteristic, typically the (peak
or spectral) ground acceleration.

Engineering demand parameter (EDP) which corresponds to any outcome of the analysis
of relevance to the safety assessment, such as base shear, drift.

We repeat this process m times for different intensity levels.

There are four types of analysis that can be performed.

Method S/D Analysis m n
Push Over Analysis POA Static na na
Multi Strip Analysis MSA Dynamic 3 n
Incremental Dynamic Analysis IDA Dynamic Variable n
Endurance Time Analysis ETA Dynamic 1 n

where m be the number of ground motion intensity levels (or strips), and n the number of
ground motions for a given m.

In all cases we plot IM vs EDP (and not the other way around!)
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Pushover Analysis

PushOver Analysis
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Applies incrementally load or displacement

Extensively used in building to capture failure mode in lieu of the more expensive
transient nonlinear analysis.

Assumed to be capable of mobilizing principal nonlinear modes of structural
behavior up to collapse.
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Multiple-Strip Analysis

Multiple-Strip Analysis

. . .

. . .

. . .

3 in
EDP

IM

m
=

3 
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Hinges on a deterministic number of ground motion intensity levels m (or strips)

Typically m = 3 corresponding to the exceedance probabilities of 10% in 50-year, 5% in
50-year, and 2% in 50-year.

To each strip correspond n ground motions.

Two possibilities:
Selection of n different ground motions scaled at m different levels.
Selection of ni ground motions for each of the intensity levels with no scaling.

Following the analysis, and for each m the usual IM versus EDP results are first plotted.

Then for each IM histograms are generated and the most suitable probability distribution
function (normal or log-normal) is selected.

Victor E. Saouma; Univ. of Colorado Engineering Seismic Risk Analysis 15/18



Incremental Dynamic Analysis

Incremental Dynamic Analysis
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mi intensity level

im nFailure

Considers n ground motions which will all be incrementally scaled m times until failure.

a priori m is unknown and each ground motion n will result in a corresponding failure at a
different intensity level mi .

Following the analysis, the IDA curve connects the resulting m demand parameters for
each of the n ground motions.

Each one of those curve will be asymptotic to the corresponding failure.

Capture of the overall response by a single measurable quantity at a given EDP (EDP =
edpi ) can be determined through the corresponding probability distribution function.

Similarly probability distribution function for a given IM (IM = imi ) can also be determined.

Those curves can be used for the determination of the fragility plots, and probability of
failure.
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Endurance Time Analysis

Endurance Time Analysis
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The preceding two methods started with actual recorded ground motion and required up to
m × n analysis, computationally expensive and may force the analysis to make greatly
simplified assumption in their model. Such assumptions may lead to erroneous
conclusions.

ETA method starts with a synthetic ground motion and modify it to be characterized with an
increasing amplitude.

Substitute to the m intensity levels previously determined and n endurance time
acceleration function (ETAF) are used.

Outcome of the analysis, is the average of the n analyses in terms of IM versus EDP. The
resulting curve is analogous to the one of the POA or 50% fractile of IDA.
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Summary

Summary
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Introduction

When the frequency of the applied load (excitation) of a structure is less than
about a third of its lowest natural frequency of vibration, then we can neglect
inertia effects and treat the problem as a quasi-static one, otherwise a dynamic
analysis must be performed.

For a very flexible structure, even a slowly applied load may necessitate a
dynamic analysis.

If the structure is subjected to an impact load, than one must be primarily
concerned with (stress) wave propagation. In such a problem, we often have
high frequencies and the duration of the dynamic analysis is about the time it
takes for the wave to travel across the structure.

If inertia forces are present, then we are confronted with a dynamic problem and
can analyse it through any one of the following solution procedures:

1 Response Spectrum (only linear elastic systems)
2 Time history analysis through modal analysis (again linear elastic), or

direct time integration.
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Introduction

Prof. Wilson is reported to have said:
Ray Clough and I regret we created the approximate response spectrum
method for seismic analysis of structures in 1962.... At that time many
members of the profession were using the sum of the absolute values of
the modal values to estimate the maximum member forces. Ray suggested
we use the SRSS method to combine the modal values. However, I am the
one who put the approximate method in many dynamic analysis programs
which allowed engineers to produce meaningless positive numbers of little
or no value... After working with the RSM for over 50 years, I recommend it
not be used for seismic analysis.

Methods of structural dynamics are essentially independent of finite element
analysis as these methods presume that we already have the stiffness, mass,
and damping matrices. Those matrices may be obtained from a single degree of
freedom system, from an idealization/simplification of a frame structure, or from
a very complex finite element mesh. The time history analysis procedure
remains the same.
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Background Variational Formulation

In a general three-dimensional continuum, the equations of motion of an
elementary volume 
 without damping is LTσ+ b = m�u where m is the mass
density matrix equal to ρI, and b is the vector of body forces. The Differential

operator L is L =



∂
∂x 0 0
0 ∂

∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y


For linear elastic material σ = Deε and for incremental nonlinear analysis, the
constitutive equations can be written as _σ = Di _ε where Di is the tangent
stiffness matrix.

LTσ+ b = m�u describes the body motion in a strong sense, a weak formulation
is obtained by the principle of minimum complementary virtual work (or

Weighted Residual/Galerkin)
∫




δuT [LTσ+ b−m�u]d
 = 0
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Background Variational Formulation

Applying Gauss divergence theorem
(
∫ ∫

A φdiv qdA =
∮

s φq
Tnds −

∫ ∫
A(∇φ)

TqdA) and recalling that Lu = ε, we

obtain
∫




[δuT (m�u− b) + δεTσ]d
−
∫

�

δuT td� = 0 so far no assumption has

been made with regard to material behavior.

Next we will seek the spatial discretization of the virtual work equation.

u = Nu; δuT = δuTNT ; �u = N�u

B = LN; ε = Bu; δεT = δuTBT

_ε = B _u

For linear problems σt,n = DeBut,n, and with proper substitution, this would yield∫



NTmNd
︸ ︷︷ ︸
Mtt

�ut,n

︸ ︷︷ ︸
Pinertia

t,n

+

∫



BTDeBd
︸ ︷︷ ︸
K

ut,n

︸ ︷︷ ︸
Pint

t,n

−
(∫




NTPext
t,n d
+

∫
�

NT tt,nd�
)

︸ ︷︷ ︸
Pext

t,n

= 0

or M�ut,n +Kut,n = Pext
t,n Which represents the semi-discrete linear equation of

motion in the implicit time integration.
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Background Variational Formulation

Note similarity between the mass matrix and the geometric one,[
k
(e)
g

]
=

[
P(e)

∫
L
{N,x} bN,xcdx

}
Note the absence of the damping coefficient (which is a non-rational numerical
“trick”).

If we assume viscous damping (and replacing u by u) we obtain

Mtt · �ut +Ctt · _ut +Pint
t = Pext

t

where Mtt and Ctt are the mass and viscous damping matrices for the
idealization of the structure; �ut is the nodal acceleration vector, _ut is the nodal
velocity vector, Pint

t is the static restoring or internal nodal force vector resulting
from the nodal displacement vector ut , and Pext

t is the vector of applied nodal
forces due to a seismic loading.

Numerical methods for solving this differential equation are divided into two
major categories; explicit and implicit methods. We will limit coverage to implicit
schemes and in particular: 1) Newmark β method, 2) the Hilber-Hughes-Taylor
(HHT) method.
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Background Mass Representation

There are two possible representation of the mass matrix: lumped and
consistent.

Lumped mass: it is assumed that all the masses are concentrated at the end
nodes. Though not exactly correct, the advantage of this model is that we will
have a diagonal matrix which can be easily inverted.

me = ρ · A · Le



1/2 0 0 0 0 0
0 1/2 0 0 0 0
0 0 αr · L2

e 0 0 0
0 0 0 1/2 0 0
0 0 0 0 1/2 0
0 0 0 0 0 αr · L2

e


Note: αr zero will result in a singular mass matrix which is undesirable if we have
to invert the mass matrix. An ad hoc solution to define αr is to imagine that a
uniform slender bar of length Le/2 and mass m/2 is attached to each node and
rotates with it. The associated mass moment of inertia would be
Iz = (m/2)(Le/2)2/3, and consequently αr = 1/24. It should be noted that
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Background Mass Representation

models based on lumped mass can run substantially faster than those based on
consistent mass.

Consistent mass uses a kinematically equivalent mass matrix where inertia
forces are associated with all degrees of freedom.

Given me =
∫ Le

0 ρ · A(x) ·Nd(x)T ·Nd (x)dx and the shape functions of the
beam column, it can be shown that the matrix is

me =
ρ · A · Le

420



140 0 0 70 0 0
0 156 22 · Le 0 54 −13 · Le

0 22 · Le 4 · L2
e 0 13 · Le −3 · L2

e

70 0 0 140 0 0
0 54 13 · Le 0 156 −22 · Le

0 −13 · Le −3 · L2
e 0 −22 · Le 4 · L2

e


The mass matrix is then transformed into the global reference Me = ���T

e ·me ·���e
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Background Damping

All structures are damped, (2nd law of thermodynamic) otherwise their
oscillations will never stop. Damping can be viewed as a frictional force which
dissipates energy, and can take different form.

Most commonly used form of damping is the so-called viscous or Rayleigh
damping which, when inserted in the equation of motion, has the following form

Mtt · �ut,n +Ctt · _ut,n +Pint
t,n = Pext

t,n

where, �ut,n, _ut,n and ut,n are the nodal acceleration, velocity, and displacement
vectors at the current time step, respectively; Pint

t,n is the static restoring or
internal nodal force vector at the current time step.

Damping is supposed to model the dissipation of energy. In a nonlinear analysis,
this is accounted for by some constitutive models which include hysterisis
damping, such as the Modified Kent and Park model for concrete.

Victor E. Saouma; Univ. of Colorado Nonlinear Transient Analysis 10/40



Background Damping
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In linear elastic analysis, the most common
form of damping is the so-called viscous
damping (better known as Rayleigh damping).
In this simplification, we assume the presence
of a viscous damper (which by definition is
sensitive to velocity) between the structure
and an external fixed point (mass
proportional), and another set of dampers
inside the structure connecting all the degrees
of freedom (stiffness proportional damper).

Viscous damping: Ctt = am ·Mtt + bk ·Ktt

where, am and bk are coefficients which
pre-multiply the mass and stiffness terms
respectively.
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Background Damping

Coefficients am and bk are calculated based upon two circular frequencies (ω1

and ω2, radians/sec.) to be damped at ξ1 and ξ2 respectively. Where ωm and
ξm are the circular frequency and the damping ratio of the mth mode.

It can be easily shown that

1
2

[
1
ωi

ωi

1
ωj

ωj

]{
am

bk

}
=

{
ζi

ζj

}

If one assumes the same damping ratio ζ for both modes (reasonable practical
assumption), then

am = ζ
2ωi ·ωj

ωi +ωj
; bk = ζ

2
ωi +ωj

Again, it should be emphasized that different damping coefficients should be
used in linear and in nonlinear analysis (specially if the nonlinear constitutive
model accounts for hysterisis damping. Furthermore, if Rayleigh damping is
used in a nonlinear analysis, then coefficients am and bk may have to be updated
at each time increment to reflect the change in the tangential stiffness matrix Kt .
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Background Damping

In practice we can obtain damping coefficients by exciting a structure with
shakers albeit for only the elastic range.
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Background Euler Methods

Euler method is a numerical procedure to solve initial values ordinary differential
equations (as in structural dynamics). In other words, given a solution at time tn,
how do we get the solution at time tn+1.

Note that we referred to Newton’s method for nonlinear analysis, and Euler for
dynamic.

In our case, we discretize space by the finite element, and discretize time by the
finite difference.

As with Newton’s method, it all start with the Taylor’s series.

Forward Euler/Explicit

y(tn + h) ≡ yn+1 = y(tn)+h
dy
dt

∣∣∣∣
tn

+ O(h2)⇒ y?n+1 ' y
√

n + hf (y
√

n , tn)

where h = �t , and f (yn, tn) = dy
dt

∣∣∣
tn

This is also referred to as explicit since yn+1

is given explicitly in terms of known quantities such as yn and f (yn, tn) and there
is no equation to solve.
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Background Euler Methods

Explicit methods are easy to implement but are conditionally sable (i.e. h should
be smaller than a critical value). This is similar to the approximate step by step
method used earlier for geometric nonlinear problems.

Backward Euler/Implicit starts with the following backward Taylor series
expansion

y(tn) ≡ yn = y(tn+1−h) = y(tn+1)−h
dy
dt

∣∣∣∣
tn+1

+O(h2)⇒ y?n+1 ' y
√

n +hf (y?n+1, tn+1)

It is an implicit method since f (yn+1, tn+1) is not known and a (usually) nonlinear
equation must be solved at every time step (possibly by the Newton-Raphson
method). Evidently, this is more computationally expensive than the explicit
method, however the method is unconditionally stable.

We note that the implicit method (at the cost of a Newton-Raphson solution)
always provides an “exact” solution. In the context of structural dynamics, we
can say that equilibrium is satisfied. This is not the case in the explicit method.

Numerical example: Solve the following ordinary linear first order differential
equation: dy

dt = 1 + (t − y(t))2; 2 ≤ t ≤ 3; y(0) = 1; n = 0.
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Background Euler Methods

Forward Euler with h = 0.1

yn+1 = yn + hf (yn, tn)⇒ y1 = 1 + 0.1
[
1 + (2.− 1.)2

]
= 1.2

The Backward Euler will give

yn+1 = yn + hf (yn+1, tn+1)

⇒ y1 = 1 + 0.1
[
1 + (2.1− y1)

2
]

⇒ 0 = 0.1y2
1 − 1.42y1 + 1.541

⇒ y1 = 1.1839

In this case we had a quadratic equation to solve, however in general we
may have to use Newton’s method to solve for yn.
In the context of nonlinear structural analysis, this would imply that we are
checking equilibrium at n = 1, which is not the case in the explicit method.
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Background Euler Methods
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Time Integration Methods Newmark’s Method; Derivation

Newmark’s method is a generalization of Euler’s method for second order
differential equations (equation of motion)

Taylor’s series (as usual) is our starting point(
u

_u

)n

=

(
u

_u

)n−1

+�t

(
_u

�u

)n−1

Forward Euler(
u

_u

)n

=

(
u

_u

)n−1

+�t

(
_u

�u

)n

Backward Euler

Newmark’s method differs from Euler’s method by replacing higher order
derivatives with simpler expressions (and thus lower accuracy) for the sake of
efficiency.

Again, we first consider the Taylor series expansions of the nodal displacement
and velocity vector terms about the values at the previous time n − 1.

ut,n ≈ ut,n−1 +
∂ut,n−1
∂t �t + ∂2ut,n−1

∂t2
�t2

2! +
∂3ut,n−1
∂t3

�t3

3! + · · ·

_ut,n ≈ _ut,n−1 +
∂2ut,n−1
∂t2 �t + ∂3ut,n−1

∂t3
�t2

2! + · · ·
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Time Integration Methods Newmark’s Method; Derivation

Those two equations represent the approximate displacement and velocity
vectors (ut,n and _ut,n) except for high order terms of Taylor series. We represent
the last terms of the above two equations as follow:

∂3ut,n−1

∂t3

�t3

3!
≈

∂2ut,n
∂2t −

∂2ut,n−1
∂2t

�t
�t3

3!
≈ (�ut,n − �ut,n−1)

�t2

3!
≈ β(�ut,n − �ut,n−1)�t2

∂3ut,n−1

∂t3

�t2

2!
≈

∂2ut,n
∂2t −

∂2ut,n−1
∂2t

�t
�t2

2!
≈ (�ut,n − �ut,n−1)

�t
2!

≈ γ(�ut,n − �ut,n−1)�t

where β and γ are parameters which depict numerical approximations.

Substituting

ut,n = ut,n−1 +�t · _ut,n−1 +
�t2

2
· �ut,n−1 +�t2 · β · (�ut,n − �ut,n−1)

_ut,n = _ut,n−1 +�t · �ut,n−1 +�t · γ · (�ut,n − �ut,n−1)
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Time Integration Methods Newmark’s Method; Derivation

Hence, we obtain the Newmark β method, which consists of the following
equations (forward difference):

Pext
t,n = Mtt · �ut,n +Ctt · _ut,n +Pint

t,n (1)

ut,n = ut,n−1 +�t · _ut,n−1 +
�t2

2
[(1− 2β)�ut,n−1 + 2β · �ut,n] (2)

_ut,n = _ut,n−1 +�t [(1− γ)�ut,n−1 + γ · �ut,n] (3)

where the first equation is the equation of equilibrium expressed at time n, and
the other two are finite difference formulas describing the evolution of the
approximation solution (Note we have three equations and three unknowns: ut,n,
_ut,n and �ut,n. β and γ are parameters that determine the stability and accuracy
characteristics. Stability conditions for the Newmark β method follows:

unconditionally stable if γ ≥ 1
2 and β ≥ γ

2
conditionally stable if γ ≥ 1

2 and β < γ
2 with the following stability limit:

�t
T ≤

1
2π

1√
γ−2β

= 0.551

Method Type β γ Stability condition Order of accuracy
Constant acceleration Implicit 1/4 1/2 Unconditional 2

Linear acceleration implicit 1/3!=1/6 1/2!=1/2 �t ≤ 2
√

3/ω 2
Central difference Explicit 0 1/2 �t ≤ 2/ω 2
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Time Integration Methods Newmark’s Algorithm

Eq. 1, 2 and 3 can be rewritten as:

Pext
t,n = Mtt · �ut,n +Ctt · _ut,n +Pint

t,n (4)

ut,n = ~ut,n +�t2 · β · �ut,n (5)

_ut,n = ~_ut,n +�t · γ · �ut,n (6)

where the known quantities at time step n − 1 have a ~(.) with

~ut,n = ut,n−1 +�t · _ut,n−1 +
�t2

2
(1− 2β)�ut,n−1

~_ut,n = _ut,n−1 +�t(1− γ)�ut,n−1

Eq. 5 gives �ut,n = ut,n−~ut,n
�t2·β ;

Substituting in Eq. 6 we can solve for _ut,n = ~_ut,n + γ
�t·β (ut,n − ~ut,n).
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Time Integration Methods Newmark’s Algorithm

Finally substituting in Eq. 4 we obtain:

1
�t2 · β

Mtt · ut,n +
γ

�t · βCtt · ut,n +Pint
t,n︸ ︷︷ ︸

?

= Pext
t,n +

1
�t2 · β

Mtt · ~ut,n +
γ

�t · βCtt · ~ut,n −Ctt · ~_ut,n︸ ︷︷ ︸
X

(7)

If the trial solutions in given iteration step k are uk
t,n, and Pint,k

t,n , then it does not
satisfy the equations of motion. Hence, we can write for this particular step with
residual force vector PR,k

t,n :

PR,k
t,n = Pext

t,n +Mtt

(
~ut,n − uk

t,n

)
−Ctt · ~_ut,n −Pint,k

t,n

where, Mtt =
Mtt+�t·γ·C

�t2·β

Using initial stiffness iterative method, we can solve for �uk
t,n from

PR,k
t,n = Keff ·�uk

t,nwhere, Keff is the effective stiffness matrix, and
�uk

t,n = ut,n − uk
t,n.
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Time Integration Methods Newmark’s Algorithm

In elastic section, Pint
t,n = Ktt · ut,n; Substituting we can solve for ut,n:

Keff · ut,n = Pext
t,n +Mtt · ~ut,n −Ctt · ~_ut,n

where, Keff = Mtt +Ktt (lumped or consistent mass matrix).

Finally, we solve for δuk
t,n and the updated displacement vector uk+1

t,n at the next
iteration step k + 1:

δuk
t,n = [Keff ]

−1 ·PR,k
t,n ; uk+1

t,n = uk
t,n + δuk

t,n

Note need to invert the mass matrix only for consistent matrix.

Note analogy with nonlinear analysis where δu is equal to the tangent stiffness
matrix times the residual force.
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Time Integration Methods Hilber-Hughes-Taylor Method

A major drawback of Newmark β method is the tendency for high frequency
noise to persist in the solution. On the other hand, when linear damping or
artificial viscosity is added via the parameter γ, the accuracy is markedly
degraded. The α method, improves numerical dissipation for high frequency
without degrading the accuracy as much.

Equation of motion in HHT method is written at current time step n (forward
difference) as:

Mtt · �ut,n︸ ︷︷ ︸
Pinertia

t,n

+Pint
t,n = Pext

t,n

Seeking an approximate solution of this equation by one-step difference, we
write,

Mtt · �ut,n + (1 + α)Pint
t,n − α ·Pint

t,n−1 = (1 + α)Pext
t,n − αPext

t,n−1

We note that the HHT method introduces α(Pint
t,n −Pint

t,n−1) which is akin of
stiffness proportional damping (indeed it is commonly said that the α method
provides numerical damping). If the above equation is expanded, effect of
damping introduced, and possible material nonlinearity introduced, we obtain:

(1+α)Pext
t,n−αPext

t,n−1 = Mtt ·�ut,n+(1+α)Ctt · _ut,n−α·Ctt · _ut,n−1+(1+α)Pint
t,n−α·Pint

t,n−1
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Time Integration Methods Hilber-Hughes-Taylor Method

If −1/3 ≤ α ≤ 0, β = (1− α)2/4, and γ = (1− 2α)/2, then the α method is
unconditionally stable and has a second-order accuracy.

Assuming that we have obtained the response at the previous time step n − 1,
i.e. ut,n−1, _ut,n−1 and �ut,n−1 which satisfy the equation of motion, we now seek
to determine the solution at the current time step n by iteration.

First of all, we need to determine effective external force and effective stiffness.

1
�t2 · β

Mtt · ut,n +
γ

�t · β (1 + α)Ctt · ut,n + (1 + α)Pint
t,n︸ ︷︷ ︸

?

= (1 + α)Pext
t,n − α ·Pext

t,n−1 +
1

�t2 · β
Mtt · ~ut,n +

γ

�t · β (1 + α)Ctt · ~ut,n︸ ︷︷ ︸
X

−(1 + α)Ctt · ~_ut,n + α ·Ctt · _un−1 + α ·Pint
t,n︸ ︷︷ ︸

X

(8)
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Time Integration Methods Hilber-Hughes-Taylor Method

The trial solutions in iteration step k are uk
t,n, and Pint,k

t,n , does not necessarily
satisfy the equations of motion. Hence, we can write for this particular step:

PR,k
t,n = (1 + α)Pext

t,n − α ·Pext
t,n−1 +Mtt

(
~ut,n − uk

t,n

)
− (1 + α)Ctt · ~_ut,n + α ·Ctt · _ut,n−1

− (1 + α)Pint,k
t,n + α ·Pint

t,n−1

where, Mtt =
Mtt+�t·γ(1+α)Ctt

�t2·β and PR,k
t,n is the residual force vector.

Using the initial stiffness iterative method, we can solve for �uk
t,n from

PR,k
t,n = Keff ·�uk

t,n where, Keff is the effective stiffness matrix, and
�uk

t,n = ut,n − uk
t,n

In elastic section, we can express Pint
t,n to compute the effective stiffness matrix

with initial stiffness matrix Ktt as: Pint
t,n = Ktt · ut,n .

Substituting we solve for ut,n:

Keff ·ut,n = (1+α)Pext
t,n−α·Pext

t,n−1+Mtt ·~ut,n−(1+α)·Ctt ·~_ut,n+α·Ctt · _ut,n−1+α·Pint
t,n−1

where, Keff = Mtt + (1 + α)Ktt
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Time Integration Methods Hilber-Hughes-Taylor Method

Finally, we solve for δuk
t,n and the updated displacement vector uk+1

t,n at the next
iteration step k + 1:

δuk
t,n = [Keff ]

−1 ·PR,k
t,n ; uk+1

t,n = uk
t,n + δuk

t,n

Final Remarks:

α introduces a damping that grows with the ratio of time increment to the
period of vibration of a node.
Negative values of α cause damping
If α = 0, we have no artificial damping (energy preseving) and is exactly
the constant acceleration (trapezoidal rule) - Newmark’s β method if
β = 1/4 and γ = 1/2.
Minimum value is α = −1/3 which provides the maximum artificial
damping. This results in a damping ratio of about 6% when the time
increment is 40% of the period of oscillation of the mode being studied and
smaller if the oscillation period increases.
This artificial damping is not very substantial for realistic time increment
and low frequencies, but is non-negligible for high frequencies.
A default value of -0.05 is recommended.
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Fast Fourrier Transform

We are accustomed to consider a signal in the time domain, i.e f (t).

Fourier series provides an alternate way of representing data: instead of
representing the signal amplitude as a function of time, we represent the signal
by how much information is contained at different frequencies.

A Fourier series takes a signal and decomposes it into a sum of sines and
cosines of different frequencies, f (t) = a0 +

∑∞
n=1 (an sin(2πnt) + bn cos(2πnt))

where f (t) is the signal in the time domain, an and bn are unknown coefficients, n
is an integer with units of Hertz (Hz)=1/s and corresponds to the frequency of
the wave.

Just as any function can be replaced by a corresponding Fourrier series, a signal
originally expressed in the time domain, can be expressed in the frequency
domain through a so-called Fast Fourrier Transform (FFT).

x(t) FFT−→ X (ω)⇒ X (ω) =

∞∫
−∞

x(t)e−i2πωtdt (9)
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Fast Fourrier Transform

while the inverse FFT takes us back from the frequency domain to the time
domain through:

X (ω)
FFT

−1

−→ x(t)⇒ x(t) =

∞∫
−∞

X (ω)ei2πωtdω (10)

Reason we perform this operation:

Much “hidden” information contained in the signal can be best captured in
the frequency domain (for instance, identify natural frequencies of a
structural response to an excitation)
Filter response in the frequency domain, and then go back to the time
domain.

Victor E. Saouma; Univ. of Colorado Nonlinear Transient Analysis 29/40



Fast Fourrier Transform

Examples of so-called Butterworth filter:

|H(jω)|2=



Low pass 1

1+
(

ω
ωL

)2n

High pass 1

1+(
ωU
ω )2n

Band pass 1

1+
(

ω
ωL

)2n
1

1+
( omegaU

ω

)2n

Band stop 1
1+(

ωL
ω )2n

1

1+
(

omega
ωU

)2n

where ω, ωL, ωU and n are the frequency, the lower and upper filter frequency,
and the order of the filter respectively. Following figure: Low Pass (25); High
Pass (50); Band Pass (25-50); Band Stop (25-50) Filters, N = 4
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Fast Fourrier Transform
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Fast Fourrier Transform Matlab Code

1 %% F i r s t Example
2 c l ea r ; c lose a l l ; c l c
3 GS = ’ c : / Program F i l e s / gs / gs9 . 2 3 / b in / gswin64 . exe ’ ;
4 scrsz = get (0 , ’ ScreenSize ’ ) ; % Screen s ize
5 f s =14;
6 x = rand (1 ,10) ; % suppose 10 samples o f a random s i g n a l
7 y = f f t ( x ) ; % Four ie r t rans form of the s i g n a l
8 i y = i f f t ( y ) ; % inverse Four ie r t rans form
9 x2 = r e a l ( i y ) ; % chop o f f t i n y imaginary par t s

10 norm ( x x2 ) % compare o r i g i n a l w i th inverse o f t ransformed
11 %==========================================================================
12 %% Create a s i g n a l o f 4 seconds at a sampling ra te o f 0 .01 :
13 dt = 1/100; % sampling ra te
14 et = 4 ; % end of the i n t e r v a l
15 t = 0 : d t : e t ; % sampling range
16 y = 3∗s in (4∗2∗ p i∗ t ) + 5∗s in (2∗2∗ p i∗ t ) ; % sample the s i g n a l
17 %
18 hf1 = f i g u r e ( ’ Pos i t i on ’ , [ 1 scrsz ( 4 ) / 4 . 5 scrsz ( 3 ) / 2 . 5 scrsz ( 4 ) / 2 . 0 ] ) ;
19 subp lo t (3 ,2 ,1 ) ; % f i r s t o f two p l o t s
20 p l o t ( t , y , ’ LineWidth ’ ,2 ) ; g r i d % p l o t w i th g r i d
21 ax is ( [ 0 e t 8 8 ] ) ; % ad jus t sca l i ng
22 x l a b e l ( ’ Time ( s ) ’ ) ; % t ime expressed i n seconds
23 y l a b e l ( ’ Ampli tude ’ ) ;% ampl i tude as f u n c t i o n o f t ime
24 t i t l e ( ’ O r i g i n a l S igna l ’ ) ; ax is ( [ 0 4 7 . 5 7 . 5 ] ) ;
25 %
26 %% Compute and p l o t F o u r r i e r t rans form
27 Y = f f t ( y ) ; % compute Four ie r t rans form
28 n = s ize ( y , 2 ) / 2 ; % 2nd h a l f are complex conjugates
29 amp_spec = abs (Y) / n ;% absolu te value and normal ize
30 %
31 subp lo t (3 ,2 ,2 ) ;
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Fast Fourrier Transform Matlab Code

32 f req = ( 0 : 7 9 ) / (2∗n∗dt ) ; % abscissa viewing wind
33 p l o t ( f req , amp_spec ( 1 : 8 0 ) , ’ LineWidth ’ ,2 ) ; g r i d % p l o t ampl i tude spectrum
34 x l a b e l ( ’ Frequency (Hz) ’ ) ; % 1 Herz = number o f cyc les / second
35 y l a b e l ( ’ Ampli tude ’ ) ; % ampl i tude as f u n c t i o n o f frequency
36 t i t l e ( ’ O r i g i n a l S igna l ’ ) ; ax is ( [ 0 8 0 6 ] ) ;
37 %==========================================================================
38 %% Add Noise to s i g n a l and compute the ampl i tude spectrum .
39 noise = randn (1 , s i ze ( y , 2 ) ) ; % random noise
40 ey = y + 2∗noise ; % samples wi th noise
41 eY = f f t ( ey ) ; % Four ie r t rans form of noisy s i g n a l
42 n = s ize ( ey , 2 ) / 2 ; % use s ize f o r sca l i ng
43 amp_spec = abs (eY) / n ; % compute ampl i tude spectrum
44 subp lo t (3 ,2 ,3 ) ;
45 p l o t ( t , ey , ’ LineWidth ’ ,2 ) ; g r i d on % p l o t no isy s i g n a l w i th g r i d
46 ax is ( [ 0 e t 8 8 ] ) ; % scale axes f o r v iewing
47 x l a b e l ( ’ Time ( s ) ’ ) ; % t ime expressed i n seconds
48 y l a b e l ( ’ Ampli tude ’ ) ; % ampl i tude as f u n c t i o n o f t ime
49 t i t l e ( ’ Noise Added to Signa l ’ ) ; ax is ( [ 0 4 7 . 5 7 . 5 ] ) ;
50 %
51 f req = ( 0 : 7 9 ) / (2∗n∗dt ) ; % abscissa viewing window
52 eY = f f t ( ey ) ; % compute Four ie r t rans form
53 n = s ize ( y , 2 ) / 2 ; % 2nd h a l f are complex conjugates
54 e_amp_spec = abs (eY) / n ; % absolu te value and normal ize
55 subp lo t (3 ,2 ,4 ) ;
56 p l o t ( f req , e_amp_spec ( 1 : 8 0 ) , ’ LineWidth ’ ,2 ) ; g r i d % p l o t ampl i tude spectrum
57 t i t l e ( ’ Noise Added to SIgnal ’ ) ; ax is ( [ 0 8 0 6 ] ) ;
58 %==========================================================================
59 %% f i t e r noise
60 fY = f i x (eY/500)∗500; % set numbers < 500 to zero
61 i f Y = i f f t ( fY ) ; % inverse Four ie r t rans form of f i x e d data
62 cy = r e a l ( i f Y ) ; % remove imaginary par t s
63 subp lo t (3 ,2 ,5 )
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64 p l o t ( t , cy , ’ LineWidth ’ ,2 ) ; g r i d on % p l o t cor rec ted s i g n a l
65 ax is ( [ 0 e t 8 8 ] ) ; % ad jus t sca le f o r v iewing
66 x l a b e l ( ’ Time ( s ) ’ ) ; % t ime expressed i n seconds
67 y l a b e l ( ’ Ampli tude ’ ) ; % ampl i tude as f u n c t i o n o f t ime
68 t i t l e ( ’ Noisy F i l t e r e d Signa l ’ ) ; ax is ( [ 0 4 7 . 5 7 . 5 ] ) ;
69 %
70 cY = f f t ( cy ) ; % compute Four ie r t rans form
71 n = s ize ( cy , 2 ) / 2 ; % 2nd h a l f are complex conjugates
72 e_amp_spec = abs ( cY ) / n ; % absolu te value and normal ize
73 subp lo t (3 ,2 ,6 ) ;
74 p l o t ( f req , e_amp_spec ( 1 : 8 0 ) , ’ LineWidth ’ ,2 ) ; g r i d % p l o t ampl i tude spectrum
75 t i t l e ( ’ Noisy F i l t e r e d Signa l ’ ) ; ax is ( [ 0 8 0 6 ] ) ;
76 set ( gcf , ’ PaperPositionMode ’ , ’ auto ’ ) ;
77 FileName= ’ f f t example . eps ’ ;
78 p r i n t ( FileName , ’ depsc ’ ) ;
79 eps2pdf ( FileName ,GS, 0 ) ;
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Fast Fourrier Transform

We are accustomed to consider a signal in the time domain, i.e f (t).

Fourier series provides an alternate way of representing data: instead of
representing the signal amplitude as a function of time, we represent the signal
by how much information is contained at different frequencies.

A Fourier series takes a signal and decomposes it into a sum of sines and
cosines of different frequencies, f (t) = a0 +

∑∞
n=1 (an sin(2πnt) + bn cos(2πnt))

where f (t) is the signal in the time domain, an and bn are unknown coefficients, n
is an integer with units of Hertz (Hz)=1/s and corresponds to the frequency of
the wave.

Just as any function can be replaced by a corresponding Fourrier series, a signal
originally expressed in the time domain, can be expressed in the frequency
domain through a so-called Fast Fourrier Transform (FFT).

x(t) FFT−→ X (ω)⇒ X (ω) =

∞∫
−∞

x(t)e−i2πωtdt (1)
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Fast Fourrier Transform

while the inverse FFT takes us back from the frequency domain to the time
domain through:

X (ω)
FFT

−1
−→ x(t)⇒ x(t) =

∞∫
−∞

X (ω)ei2πωtdω (2)

Reason we perform this operation:

Much “hidden” information contained in the signal can be best captured in
the frequency domain (for instance, identify natural frequencies of a
structural response to an excitation)
Filter response in the frequency domain, and then go back to the time
domain.
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Fast Fourrier Transform

Examples of so-called Butterworth filter:

|H(jω)|2=



Low pass 1

1+
(

ω
ωL

)2n

High pass 1

1+(
ωU
ω )2n

Band pass 1

1+
(

ω
ωL

)2n
1

1+
( omegaU

ω

)2n

Band stop 1
1+(

ωL
ω )2n

1

1+
(

omega
ωU

)2n

where ω, ωL, ωU and n are the frequency, the lower and upper filter frequency,
and the order of the filter respectively. Following figure: Low Pass (25); High
Pass (50); Band Pass (25-50); Band Stop (25-50) Filters, N = 4
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Fast Fourrier Transform
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Fast Fourrier Transform Matlab Code

1 %% F i r s t Example
2 c l ea r ; c lose a l l ; c l c
3 GS = ’ c : / Program F i l e s / gs / gs9 . 2 3 / b in / gswin64 . exe ’ ;
4 scrsz = get (0 , ’ ScreenSize ’ ) ; % Screen s ize
5 f s =14;
6 x = rand (1 ,10) ; % suppose 10 samples o f a random s i g n a l
7 y = f f t ( x ) ; % Four ie r t rans form of the s i g n a l
8 i y = i f f t ( y ) ; % inverse Four ie r t rans form
9 x2 = r e a l ( i y ) ; % chop o f f t i n y imaginary par t s

10 norm ( x−x2 ) % compare o r i g i n a l w i th inverse o f t ransformed
11 %==========================================================================
12 %% Create a s i g n a l o f 4 seconds at a sampling ra te o f 0 .01 :
13 dt = 1/100; % sampling ra te
14 et = 4 ; % end of the i n t e r v a l
15 t = 0 : d t : e t ; % sampling range
16 y = 3* s in (4 *2* p i * t ) + 5* s in (2*2* p i * t ) ; % sample the s i g n a l
17 %
18 hf1 = f i g u r e ( ’ Pos i t i on ’ , [ 1 scrsz ( 4 ) / 4 . 5 scrsz ( 3 ) / 2 . 5 scrsz ( 4 ) / 2 . 0 ] ) ;
19 subp lo t (3 ,2 ,1 ) ; % f i r s t o f two p l o t s
20 p l o t ( t , y , ’ LineWidth ’ ,2 ) ; g r i d % p l o t w i th g r i d
21 ax is ( [ 0 e t −8 8 ] ) ; % ad jus t sca l i ng
22 x l a b e l ( ’ Time ( s ) ’ ) ; % t ime expressed i n seconds
23 y l a b e l ( ’ Ampli tude ’ ) ;% ampl i tude as f u n c t i o n o f t ime
24 t i t l e ( ’ O r i g i n a l S igna l ’ ) ; ax is ( [ 0 4 −7.5 7 . 5 ] ) ;
25 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 %% Compute and p l o t F o u r r i e r t rans form
27 Y = f f t ( y ) ; % compute Four ie r t rans form
28 n = s ize ( y , 2 ) / 2 ; % 2nd h a l f are complex conjugates
29 amp_spec = abs (Y) / n ;% absolu te value and normal ize
30 %
31 subp lo t (3 ,2 ,2 ) ;
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Fast Fourrier Transform Matlab Code

32 f req = ( 0 : 7 9 ) / ( 2 * n* d t ) ; % abscissa viewing wind
33 p l o t ( f req , amp_spec ( 1 : 8 0 ) , ’ LineWidth ’ ,2 ) ; g r i d % p l o t ampl i tude spectrum
34 x l a b e l ( ’ Frequency (Hz) ’ ) ; % 1 Herz = number o f cyc les / second
35 y l a b e l ( ’ Ampli tude ’ ) ; % ampl i tude as f u n c t i o n o f frequency
36 t i t l e ( ’ O r i g i n a l S igna l ’ ) ; ax is ( [ 0 8 0 6 ] ) ;
37 %==========================================================================
38 %% Add Noise to s i g n a l and compute the ampl i tude spectrum .
39 noise = randn (1 , s i ze ( y , 2 ) ) ; % random noise
40 ey = y + 2* noise ; % samples wi th noise
41 eY = f f t ( ey ) ; % Four ie r t rans form of noisy s i g n a l
42 n = s ize ( ey , 2 ) / 2 ; % use s ize f o r sca l i ng
43 amp_spec = abs (eY) / n ; % compute ampl i tude spectrum
44 subp lo t (3 ,2 ,3 ) ;
45 p l o t ( t , ey , ’ LineWidth ’ ,2 ) ; g r i d on % p l o t no isy s i g n a l w i th g r i d
46 ax is ( [ 0 e t −8 8 ] ) ; % scale axes f o r v iewing
47 x l a b e l ( ’ Time ( s ) ’ ) ; % t ime expressed i n seconds
48 y l a b e l ( ’ Ampli tude ’ ) ; % ampl i tude as f u n c t i o n o f t ime
49 t i t l e ( ’ Noise Added to Signa l ’ ) ; ax is ( [ 0 4 −7.5 7 . 5 ] ) ;
50 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
51 f req = ( 0 : 7 9 ) / ( 2 * n* d t ) ; % abscissa viewing window
52 eY = f f t ( ey ) ; % compute Four ie r t rans form
53 n = s ize ( y , 2 ) / 2 ; % 2nd h a l f are complex conjugates
54 e_amp_spec = abs (eY) / n ; % absolu te value and normal ize
55 subp lo t (3 ,2 ,4 ) ;
56 p l o t ( f req , e_amp_spec ( 1 : 8 0 ) , ’ LineWidth ’ ,2 ) ; g r i d % p l o t ampl i tude spectrum
57 t i t l e ( ’ Noise Added to SIgnal ’ ) ; ax is ( [ 0 8 0 6 ] ) ;
58 %==========================================================================
59 %% f i t e r noise
60 fY = f i x (eY/500) *500; % set numbers < 500 to zero
61 i f Y = i f f t ( fY ) ; % inverse Four ie r t rans form of f i x e d data
62 cy = r e a l ( i f Y ) ; % remove imaginary par t s
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Fast Fourrier Transform Matlab Code

63 subp lo t (3 ,2 ,5 )
64 p l o t ( t , cy , ’ LineWidth ’ ,2 ) ; g r i d on % p l o t cor rec ted s i g n a l
65 ax is ( [ 0 e t −8 8 ] ) ; % ad jus t sca le f o r v iewing
66 x l a b e l ( ’ Time ( s ) ’ ) ; % t ime expressed i n seconds
67 y l a b e l ( ’ Ampli tude ’ ) ; % ampl i tude as f u n c t i o n o f t ime
68 t i t l e ( ’ Noisy F i l t e r e d Signa l ’ ) ; ax is ( [ 0 4 −7.5 7 . 5 ] ) ;
69 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
70 cY = f f t ( cy ) ; % compute Four ie r t rans form
71 n = s ize ( cy , 2 ) / 2 ; % 2nd h a l f are complex conjugates
72 e_amp_spec = abs ( cY ) / n ; % absolu te value and normal ize
73 subp lo t (3 ,2 ,6 ) ;
74 p l o t ( f req , e_amp_spec ( 1 : 8 0 ) , ’ LineWidth ’ ,2 ) ; g r i d % p l o t ampl i tude spectrum
75 t i t l e ( ’ Noisy F i l t e r e d Signa l ’ ) ; ax is ( [ 0 8 0 6 ] ) ;
76 set ( gcf , ’ PaperPositionMode ’ , ’ auto ’ ) ;
77 FileName= ’ f f t −example . eps ’ ;
78 p r i n t ( FileName , ’−depsc ’ ) ;
79 eps2pdf ( FileName ,GS, 0 ) ;
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Fast Fourrier Transform Transfer Function

In dynamic event, we can define an input record i(t) which is amplified by h(t)
resulting in an output signal o(t).

Similarly, the operation can be defined in the frequency domain. This output to
input relationship is of major importance in many disciplines.

The transfer function is the Laplace transform of the output divided by the
Laplace transform of the input.

Hence, in 1D, we can determine the transfer function as follows:

1 i(t) FFT−→ I(ω)
2 o(t) FFT−→ O(ω)
3 Transfer Function is TFI−O = O(ω)/I(ω)

i(t) h(t) o(t)

I(ω) H(ω) O(ω)
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Deconvolution

a’(t)
Seismic source Ground motion attenuation

Site amplification
a’(t)

i(t)?

Seismic events originate through
tectonic slips and elastic waves (p
and s) traveling through rock/soil
foundation up to the surface. Hence,
the seismographs (usually installed
at the foot of the dam) record only the
manifestation of the event.

On the other hand, modelling the foundation is essential for proper and
comprehensive analysis of the dam, and as such the seismic excitation will have
to be applied at the base of the foundation.

If we were to apply at the base the accelerogram recorded on the surface I(t),
the output signal A(t) at the surface will be different than the one originally
recorded (unless we have rigid foundation).

Hence, the accelerogram recorded on the surface must be deconvoluted into a
new one I ′(t), such that when the new signal is applied at the base of the
foundation, the computed signal at the dam base matches the one recorded by
the accelerogram.
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Deconvolution

a’(t)

i(t)
i’(t)=a’(t)

Numerical Model
Physical Model

a(t)

1 We record the
earthquake induced
acceleration on the
surface a ′(t). and
apply it as i ′(t) at
the base of the
foundation.

2 Perform a transient
finite element
analysis.

3 Determine the surface acceleration a(t) (which is obviously different from i(t).

4 Compute: i ′(t) FFT−→ I ′(ω) = A ′(ω) and a(t) FFT−→ A(ω)

5 Compute transfer function from base to surface as TFI ′−A = A(ω)/I ′(ω).

6 Compute the inverse transfer function TF−1
I ′−A.
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Deconvolution

7 Determine the updated excitation record in the frequency domain
I(ω) = TF−1

I ′−AA ′(ω) = I ′(ω)
A(ω) A ′(ω)

8 Determine the updated excitation in the time domain i(t) FFT
−1

−→ I(ω)

Process automated in our FE code Merlin.
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Soil-Structure Interaction

ax

Free Field
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Abstract This paper addresses the time history finite element analysis of rock-structure
interaction. Modeled is not only the lateral energy dissipation, but also the interaction between
the far field and the numerical model itself. This is accomplished by a preliminary analysis
of the far field as a shear beam (for lateral excitation), and then velocities and displacements
are transferred to the model as nodal forces through damping and stiffness matrices respec-
tively. Details of the finite element implementation are given, along with an extensive series
of simulations comparing this method, with the one of Lysmer for both 2D and 3D models.
The model is derived from the principle of virtual work, and its implementation does not
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Base of the Structure excited by a seismic wave that will travel through the
model, and eventually hit the boundary.
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Soil-Structure Interaction

As with all waves, it will be reflected by the free surface whereas actually it
propagates in the foundation to the free-field.

Reflected wave may either amplify or decrease seismic excitation, in either case,
it must be eliminated.

Reflection can be eliminated either by a) “infinitely” large large mesh
(expensive), b) “infinite” (boundary) element; or through Radiation Damping
which will absorb the incident waves (P and S).

Effect of free field on model must also be accounted for.
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Free Field

Velocities

Displacements

FC

FK

FR

KS

KN

Cdp
n

Cdp
s

uΓ

uΩ··uΓ
Lysmer

Ω
Γ +

F
ree F

ield

Γ -

We identify four distinct parts:
1 The free field itself (F) without its contact

surface �−;

2 The contact surface of the free field �−;

3 the contact surface of the model �+;

4 the model 
 without its contact surface �+.[
M
�u
 +C
 _u
 +K
u


]
+

[
Cdp

lft _u


lft +Cdp

rgt _u


rgt +Cdp

bot _u


B

]
= t
bot +

[
FC

lft + FK
lft + FR

lft

]
+

[
FC

rgt + FK
rgt + FR

rgt

]
Where FC , FK , and FR are the vectors of nodal equivalent forces caused by the free

field velocities, stiffness and damping respectively.
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Free Field

Free Field Free Field

dp
botC

{ } { }, ,,ff R ff Ru uɺ{ } { }, ,,ff L ff Lu uɺ

F F

Free Field Free Field

dp
botC

{ } { }, ,,ff R ff Ru uɺ{ } { }, ,,ff L ff Lu uɺ

F F

2

2

2

2

1 1

11 2

2

2

2

1 11

1111

1 Discretize the free field with an arbitrary mesh. Place dashpots at the base of
the mesh.

2 Constrain the vertical displacements of all the nodes (thus allowing only shear
deformation), apply an horizontal excitation and analyze.

3 If the seismic record includes a vertical component, repeat the analysis by
constraining all the horizontal displacements (thus allowing only axial
deformation), apply the vertical component of the excitation and analyze.

4 Determine the nodal equivalent forces FC , FK and FR .

5 Apply these as external (time dependent) boundary forces to the bounded
domain and analyze.

Major advantage of this method, is that there is no need to modify existing finite
element programs
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Free Field Validation

Excite base with a harmonic excitation with period of 0.4 sec, a full wave length
develops over 200 m which is the height of the model.

Free Boundaries, bad
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Free Field Validation

2D Miura-Saouma model
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Free Field Validation
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Rocking

Foundation Far-Field
Dam Foundation

ax

Fx=Max

ax

Fx=Max

ax

Fx=Max

induced parasitic effects

Apply vertical forces equal to the reactions; Note 
no supports

ax

Determine vertical reactions

m≠ 0; g=0

m≠ 0; g≠0

Fx=Max

Tension

Compression

Δ vy

Insert zero thickness joint element 

m≠ 0; g=0

m≠ 0; g≠0

m≠ 0; g=0

m≠ 0; g≠0

Horizontal foundation
modeling requires special
attention as fixed supports
would also reflect elastic
waves resulting in “rocking”
and can not be used.

Foundation must simply be
“supported” by vertical
dashpots.

To account for gravity loads, first a static analysis is performed with vertical
supports, then supports are removed, and reactions replaced by nodal forces for
the dynamic analysis along with dashpots.

Process automated in Merlin
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3

NOTICES

1. Intentionally, this book can not be printed. It is best read

on a computer to easily follow the multiple hyperlinks and

bookmarks.

2. It is particularly important that you start with the Pref-

ace, as this is an atypical book.

3. This book is free, feel free to share it.

Victor E. Saouma The Four Books of Structural Analysis
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Dedication

To my grandfather

whom I never met.

And to all future Structural Engineers.
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Preface

Genesis

This book, like so many others, had its genesis in notes of three courses taught over the span
of over thirty years. But not only notes, but also a multitude of documents collected over the
years in anticipation of this book. This resulted in a big puzzle where all the pieces had to
smoothly fit together.
Hence, at the dusk of my academic career, and with a shade of vanity, I thought that I could
share my 35+ years of teaching Structural Analysis with intrepid readers through a magnum
opus.

Coverage
Broadly speaking the book is divided into four parts:

Book I is an extensive history of structural analysis. It does not pretend to be exhaustive,
but was probably the most intersting part for me to write. Unconstrained, I have selected
key events at first, and then when Galileo Galilei came, it had to follow a more disciplined
path.

Book II is what one would expect students to be exposed in a first course in structural
analysis (following Statics and Mechanics of Deformable Bodies (a.k.a. Materials). I have
greatly expanded the coverage of some topics insufficiently covered in most books such
as Cables, Arches, 3D structures. This book ends with a chapter containing numerous
examples of preliminary design as it is important for the structural analyst to also have
a sense of design.

Book III is what many institutions refer to as Matrix Structural Analysis. It is entirely
devoted to the finite element method of framework members at first, but then rapidly
expand into continuum elements. Along the way extensive coverage is given to variational
methods as the foundation of the finite element method.

Book IV is based on a new course I had introduced, and which has only few counterparts in
academia. It is devoted to the nonlinear analysis of framed structures, but also addresses
plasticity, stability dynamics, and last but not least Performance Based Earthquake En-
gineering.

Hence, the pertinacious reader will be reward with an encyclopedic knowledge of structural
engineering.

Yet another book?

The casual reader would wonder why is there yet another book on Structural Analysis? I have
found that most textbooks on structural analysis) are really variation on a theme, all practically
identical (and some have had as many of 15 editions and counting).
Many of them provide a rudimentary coverage of the underlying theory, and most importantly
limit the examples to simple structures.
Finally, throughout the book I have attempted to correlate the various procedures of structural
analysis with the principles of applied mechanics and mathematics on which they are based.
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Audience

Students: This book is appropriate for three consecutive courses: Structural Analysis, In-
termediate Structural Analysis, and Nonlinear Structural Analysis, combining in a single
volume what has traditionally has required in at least two books. It further benefits from
consistent notation throughout the coverage and includes illustrative examples prepared
intentionally be challenging to the student.

However, only “mature audience’ should consult it. By that, I mean those students who
do not necessarily look for a simple and verbose coverage of the basics1, of students
motivated enough to explore sub-topics traditionally not covered, and students who aim
to be structural engineers.

This book will also be of great values to those students who would like to see a unified
(notation, philosophy) coverage of structural engineering with smooth transitions from
fundamentals to intermediary and into advanced.

Engineers: This book is also addressed to structural engineers, wise enough to take a pause
from computer programs, and explore the beauty of analytical solutions that can be of
much greater value than thought of. Indeed too often many of them run to the computer
before any attempt to obtain an exact or approximate analytical solution which could
thne be validated by a program.

Historians: The first of the four books exhaustively covers the history of structural analysis.
Aside from the great classical books that addressed this them, this is by far the most
exhaustive coverage that can be found in a structural analysis book.

Style

A book is characterized by its content and its form. The form (or style) is utterly and blatantly
personal, it reflects the teaching style, the focus of interest, ultimately, it reflects the delivery
system of the author. As such, I have at times peppered this book with personal comment, and
the depth and breadth of the coverage reflect my personal take on the topic.

For over 35 years, I have been a big fan of LATEX(̇and felt pity for those who insisted in writing
technical documents in a tool originally meant for lawyers: Word). As such, with a decent
command of LATEX,̇ countless packages developed by others, and few macros I wrote myself I
always tried to make sure that any manuscript I author is not only rigorous, complete, but also
“looks nice”2

So, I have paid great attention to the layout, have personally drawn all the figures3 and wrote
the MATLAB®programs found in the appendix.

Oh “my English” is far from perfect, evidently is is not my native language, tried my best, so
be kind and try not to be too critical.

1hence, for most, this book should never be assigned as the primary textbook in a course
2I have been fortunate to collaborate for nine years with the Tokyo Electric Power Company (TEPCO) on the

nonlinear seismic analysis of tall arch dams. After about six years, I thought that we had accomplished all the
work. No! no! Prof. Saouma, in Japan, a program has not only to work properly but it must look beautiful. This
simple comment, along with my many visits/stays in Switzerland (where a great value is placed on sobriety),
and a certain taste for architecture, influenced me.

3Starting with Xfig on Unix, ending with Visio on Windows
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Why is it free?

On the supply side, there are two main reasons books are written. One is it may provide
financial reward to its author, the second it may bring self-satisfaction and then possibly fame.

In both cases, there is an anticipation that the publisher will provide text-editing, page layouts,
and marketing that is unachievable by the author.

In our disciplines, I would venture to say that very few were awarded sufficient royalties to pay
for a transatlantic flight. Fame on the other hand (in theory) should not be of concern to true
scholars.

As to the demand side, students/readers have seen the price of books sky-rocket, even though
nowadays there are clever marketing strategies whereas a reader may rent a book (or even
specific chapters) for a limited time for a fixed fee (akin of renting a movie from Netflix).

As to formatting/marketing!. Any author sufficiently familiar with LATEXcan quasi-professionally
format any scientific book. No need to have a professional accomplish this task (unless one is
stuck with Word that is). Marketing is also nowadays made so much easier, suffice it to publish
a book through Amazon and it will be instantaneously be within reach of millions.

On the other hand if a book is well written (as this one pretends to be), and is free, then it will
be naturally disseminated.

Finally, as a University Professor, our responsibility is to acquire and share knowledge. We are
semi-decently paid by our institution, and the crumbs given to us by publisher are not worth a
Faustian bargain.

Accordingly, this book can be freely downloaded and freely shared.

Books Consulted
In writing my notes and this book, I have consulted numerous books that have lend me some
their coverage or examples. The following are the primary (but not only) ones.

� Indeterminate Structural Analysis
Kinney, 1957

� Elementary Structural Analysis
Norris and Wilbur, 1960

� Theory of Matrix Structural Analysis
Przemieniecki, 1968

� Basic Structural Analysis
Gerstle, 1974

� Programming the matrix analysis of skeletal structures
Bhatt, 1986

� Mechanics of Structures, Variational and Computational Methods
Pilkey and Wunderlich, 1994

Finally, I have tried in as much as possible to give proper credit within the book. If some were
missing, it was certainly not intentional, and apologies are hereby offered.
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A major challenge in teaching Structural Analysis is motivation. Hence, one should always
keep in mind that structural analysis is not an end by itself, but only an indispensable tool to
design or structural safety assessment (or design).

Victor E. Saouma
Boulder, CO 2023
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