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PREFACE

Philosophy

I have been teaching fracture mechanics on and off1 at the University of Colorado for over 40 years.
My focus was to cover in sufficient details fundamental aspects of fracture mechanics, numerical

methods that could be (or are) implemented in finite element codes, and finally properly address
fracture of cementitious materials (fancy word for concrete really).

As many (good) Professors, I was never pleased with any particular textbook that could cover
the three topics. So, I wrote my own set of notes over the years, and kept on refining them over
the years2.

Unfortunately, it is very challenging to sufficiently motivate (even graduate) students to embark
in such a course.

Let us face it the fracture mechanics tools that many practicing (specially forensic) engineers
can be taught in less than a week: Stress concentrations/stress intensity factors concepts, Paris law
for fatigue, and rudimentary concepts of plastic zones (metals) or fracture process zones (concrete).

However, I always felt that a good graduate student in structural engineering/Mechanics should
also be exposed to the complexity and beauty of some of the fundamental equations in fracture
mechanics3 . This will not only provide a library of analytical “tricks” that could be adapted to
other disciplines, but it will also instill an added respect for theory and the endurance it takes to
solve a complex problem.

Of course, most modern finite element codes can compute stress intensity factors, J integrals,
and have cohesive crack models. It is regretful that many students rush to those codes without a
basic understanding of the underlying method.

As to concrete fracture (topic of my Ph.D. dissertation in 1980 under the supervision of Tony
Ingraffea), it has attracted some of the brightest researchers in academia. Yet, it is nevertheless
an ever-ending search for a solution which can capture the localization of a crack (unless you use
a discrete crack model that is) without making compromises numerical “tricks” along the way.

Yet, I have been amazed to see many students refer to cohesive cracks, yet they have never
heard of Hillerborg. Clearly different “tribes” who seldom talk to each others.

Notes not a Book

It has never been my intention to publish yet another book covering Fracture Mechanics (though
I flirted with the thought about 10 years ago when I started merging notes in what may look like
a book)

Beside, with my experience in publishing Aging, Shaking, and Cracking of Infrastructures;From
Mechanics to Concrete Dams and Nuclear Structures and a few others, I concluded that: a) pub-
lishing a book nowadays with a “major” publisher reaps very little benefit; b) except a handful few
(who may have watered-down content to please a large audience), no ones makes enough money
to spend a night in NY; and as to “fame”, no serious author needs to get it through a book which
would be readily accepted by even some of the “big” publisher.

1Though t was not always easy to find sufficient students interested in such an advanced course, and then to retain
them after a few weeks.

2Likewise, I am proud to have never used a commercial code (i.e. Abaqus) with its multitude of their features,
instead I relied on Merlin that was developed by two of my former students (It would be nearly impossible today to
find a graduate student who can develop from scratch a decent nonlinear finite element code.

3Consider the derivation of σ = σ0

(
1 + 2

√
a
ρ

)
, to derive such a simple and beautiful equation, one has to use

elliptical coordinate system, complex potentials and Airy stress functions!!

https://link.springer.com/book/10.1007/978-3-030-57434-5
https://link.springer.com/book/10.1007/978-3-030-57434-5


As a University Professor, our responsibility is to acquire and share knowledge. We are semi-
decently paid by our institution, and the crumbs given to us by publisher are not worth it.

Accordingly, these notes are to be freely distributed.

Formatting

For over 35 years, I have been a big fan of LATEXȧnd felt pity for those who insisted in writing
technical documents in a tool originally meant for lawyers (Word). As such, with a decent command
of LATEX,̇ countless packages developed by others, and few macros I wrote myself I always tried to
make sure that any manuscript I author is not only rigorous, complete, but also “looks nice”4

So, I have paid great attention to the layout, and as much as possible prepared all drawings
myself with Visio or Matlab.

Oh “my English” is far from perfect, evidently is is not my native language, tried my best, so
be kind not to be too critical.

Contents

This document is composed of the following parts

1. Syllabus

2. Lecture Notes (Beamer based files)

3. Assigned homework with their solutions

4. Mathematica Solutions

5. Exams

6. Early version of the manuscript I assembled based on my notes

The respective pdfs have been collated.

Books consulted

The preparation of these notes greatly benefited from a multitude of papers5, and a few books:

1. Anderson, T.L., Fracture Mechanics; Fundamentals and Applications, CRC Press, 1995.

2. Atkins, A.G., and Mai, Y.W., Elastic & Plastic Fracture, John Wiley, 1985.

3. Broek D., The Practical Use of Fracture Mechanics, Kluwer Academic Publishers, 1989.

4. Broek D., Elementary Engineering Fracture Mechanics, 4th Revised Edition, Martinus Nijhoff
Publishers, 1986.

5. Cherepanov G.P., Mechanics of Brittle Fracture, McGraw Hill, 1979.

6. Gdoutos, E.E., Fracture Mechanics; An Introduction, Kluwer Academic Press, 1993

4I have been fortunate to collaborate for nine years with the Tokyo Electric Power Company (TEPCO) on the
nonlinear seismic analysis of tall arch dams. After about six years, I thought that we had accomplished all the work.
No! no! Prof. Saouma, in Japan, a program has not only to work properly but it must look beautiful. This simple
comment, along with my many visits/stays in Switzerland (where a great value is placed on sobriety), and a certain
taste for architecture, influenced me.

5Which unfortunately have not been cited inside Beamer (LATEXḃased program used for the notes), but are within
the “manuscript”.



7. Hertzberg, Deformation and Fracture Mechnaics of Engineering Materials, Fifth Ed., J. Wil-
ley.

8. Hudson, C.M. and Rich, T.P. (Eds.) Case Histories Involving Fatigue and Fracture Mechan-
ics, ASTM STP918, American Society for Testing and Materials, Philadelphia, 1986.

9. Kanninen, M.F., and Popelar, C.H., Advanced Fracture Mechanics, Oxford Engineering Sci-
ence, Series 15, 1985.

10. Knott, J.F., Fundamentals of Fracture Mechanics, Halsted Press/John Wiley & sons 1973.

11. Liebowitz (Ed.), Fracture -An Advanced Treatise, Academic Press, 1968.

12. Owen, D.R., and Fawkes, A.J., Engineering Fracture Mechanics Numerical Methods and Ap-
plications, Pineridge Press, 1983.

13. Rolfe, S., and Barsom, J., Fracture and Fatigue Control in Structures: Applications of Fracture
Mechanics, Prentice-Hall Inc., 1977.

14. Suresh, S., Fatigue of Materials, Cambridge University Press, 1991.

15. Tada and Irwin, Stress Analysis of Cracks, Del Research Corp.
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Spring 2020
FRACTURE MECHANICS

CVEN-6831/7161

T-Th 2:00-3:15 ECCE-1B47

Victor E. Saouma
saouma@colorado.edu

ECOT450; 2-1622

Dept. of Civil, Environmental and Architectural Engineering

University of Colorado, Boulder, CO
Jan. 8, 2020

Target This course addresses the need of students interested in: a) Fundamental understand-
ing of fracture mechanics starting from continuum mechanics; b)Understanding failure and
size effects; c)role of fracture mechanics in understanding design and analysis of flawed or
potentially flawed components; d) forensic engineering.

Open to M.S. and PhD students.

Course description: In most structures (Civil, Mechanical, Aerospace), failure is directly or indi-
rectly related to fracture. This course will blend theoretical (50%) computational (20%), and
material (30%) aspects into a course geared for students interested in exploring the analysis
of fracture based failures. Very heavy emphasis will be placed on independent work/projec-
t/presentations.

Meeting prerequisites: Mechanics of Materials, Finite element. The course will start with a
brief review of continuum mechanics and elasticity. Mathematica will be extensively used
throughout the course.

Schedule: T-Th: 3:30-4:45

Textbooks: None required. Occasionally, selected pages from Instructor’s notes will be provided.

Assignments: There will be approximately 5 homework assignments, a term paper, a term project
and one exam. The term paper and project may be related to a student research interest or
industrial application.

Instructor: Has been involved in theoretical, numerical and experimental fracture mechanics for
over 30 years. His research has been applied to dams, nuclear reactors, solid-rocket propel-
lants, and metal fatigue. He is past President of the international Association of Fracture
Mechanics of Concrete FraMCoS. This course has been offered in Boulder, Milan, Barcelona,
Lausanne and Paris.

Enrollment: Only students registered for the course could attend the lectures

Outcome After completion of this course, you would have strengthen your basic understanding
in Mechanics (and Mathematica), acquired the knowledge to conduct forensic studies in the
investigation of failures/accidents and to understand the true strength of many materials.

http://civil.colorado.edu/~saouma
mailto:saouma@colorado.edu
http://framcos.org


Tentative Course Outline (not necessarily in this order)

Following is the tentative course outline. Coverage may vary depending on student interests.

I Introduction

1. Historical Overview

2. Stress based failure theories

3. Design Philosophies

II Review of Mechanics (∼ 1-2 weeks) Review of the fundamental relations in Mechanics using tensor
(indicial) notation: Strain, Strain, Equilibrium, Compatibility, Hooke’s Law, Airy Stress Function,
Complex Functions using Mathematica.

III Linear Elastic Fracture Mechanics: (∼ 2 weeks)

1. Elastic Crack Tip Stress Field: Stress around an Elliptical Hole (Inglis, 1913), Complex Stress
Functions (Westergaard, 1939), Bi-Material (Williams, 1959).

2. Stress Intensity Factors (Irwin, 1957): Elliptical Cracks, Design Philosophy (Example)

3. Energy Principles (Griffith, 1921): Ideal Fracture Strength (?), Griffith’s Theory (Griffith, 1924),
Energy Release Rate, Gc and R Curves, Compliance Calibration Method (Mostovoy, 1967).

4. Fracture of Anisotropic Bodies: Basic Equations of Anisotropic Elasticity (Lekhnitskii), Stress
Analysis (Sih, Paris, and Irwin, 1965).

5. Mixed Mode Crack Propagation: Maximum Circumferential Tensile Stress (Erdogan, 1963),
Maximum Strain Energy Release Rate (Hussain et al. 1974), Minimum Strain Energy Density
(Sih, 1974), Anisotropic Materials (Saouma, Ayari, Leavell, 1986).

IV Elasto-Plastic Fracture Mechanics: (∼ 1 Week)

1. The Crack Tip Plastic Zone: First and second Order Approximation (Irwin), Dugdale and
Barenblat’s models, Multiaxial Stress Based (Von-Mises, Tresca); Plane Stress versus Plane
Strain.

2. Crack Tip Opening Displacements (Wells)

3. Energy Methods: J Integral Derivation (Rice); Variations on Original J Formulation, J-R Con-
cept, EPRI method.

V Fracture Toughness Testing: (∼ 1 week)

1. Fracture toughness (ASTM E399)

2. Fracture Energy (RILEM, ISRM)

VI Subcritical Crack Growth: (∼ 1 week)

1. Fatigue Models: Paris Law (Paris, 1963), Forman Law (Forman, 1967), Walker’s Law, Table
Look-Up.

2. Other: Mixed Mode Fatigue Crack Growth, Fatigue Life Prediction, Variable Amplitude Loading,

3. Load Interaction, Retardation Model: Wheeler, Generalized Willenborg

4. Corrosion

VII Numerical Methods: (∼ 2 weeks)

1. Isoparametric singular element: Original Formulation (Barsoum), Subsequent Extensions, Ass-
esment of Singular Isoparametric Elements (Fawkes et al.).

2. Extraction of SIF: Nodal Displacement Based: Without Singular Elements (Displacement Ex-
trapolation) With Singular Elements (Displacement Correlation Method), Energy Based Meth-
ods: Energy Release Rate, Virtual Crack Extension (Park), Virtual Crack Extension (Sha), J1
and J2 Integrals (Hellen and Blackburn), Mutual Potentials (Stern & Becker), Surface Integral
(Babuska)



3. Elasto-Plastic Analysis, J Integral

4. Fracture of cementitious materials: Fictitious Crack Model, (Hillerborg 1976), Size Effect Law
(Bazant, 1984), ICM (Červenka and Saouma, 1994), Crack Band Model (Bažant, LEFM and
NLFM (Fictitious Crack Model), (Reich 1992)

5. Lattice Model.

VIII Applications And Case Studies: (∼ 4 weeks)

1. Concrete: Applications to nuclear power containment vessels: Creep fracture, Transport (gas
and liquid) in porous media, permeability, hydro-mechanical behavior.

2. Rock: Blasting; Hydro-fracturing.

3. Metals (connections under seismic excitation).

4. Solid rocket propellants (polymers).

Past Term Projects

� Analysis Of Butt Welded Joints

� Cohesive Crack Models

� Cohesive Cracks For Interfaces

� Concrete Under High Temperatures

� Concrete Fracture

� Crack Between 2 Dissimilar Materials

� Crack Detection Location With White Noise
Vibration

� Crack Propagation In Draw Cylinder

� Crack Propagation In Aluminium Panels

� Dynamic Fracture Mechanics

� Fatigue Crack Propagation With Retardation

� Fatigue Crack Propagation

� Fracture Mechanics Based Simulation Of An-
chors

� Fracture And Fractals

� Fracture In Solid Rocket Propellants

� Fracture Mechanics Of Bond In reinforced con-
crete

� Fracture Mechanics Partition Unity Method

� Fracture Steel Connection Under Earthquake
Load

� Fracture Testing Of Concrete

� Indentation Of Rock; Numerical Simulation

� Numerical Fracture Simulation Of Porous Sin-
tered Steels

� Size Effects On Shear Strength

� Slope Stability

� Fracture and flow (liquid and/or gas).

� Numerical analysis of brittle fracture; Explo-
ration of the Phase Field Method in the Frame-
work of Finite Elements.

� Fracture Mechanics of a Pressure Vessel

� Compliance Change in Linear Elastic Solids
due to Microcracking

� Stress Corrosion Cracking

� Finite element Analysis of fracture mechanics
in plane problems using a Cohesive Surface El-
ement (CSE)

� Fracture of Steel Building’s Welded Connec-
tions When Subjected to Seismic Ground Mo-
tions

� Cohesive constitutive law; Review of Puntel’s
model and Matlab implementation

� Probablisitic Fracture Mechanics

� Dynamic Crack Propagation



Part II

Lecture Notes

Following are the lecture notes I used in class. Typi-
cally, I would redact key concepts/definitions, parts of
equations, of axis labels. Make the redacted files avail-
able to the students, who would then have to complete
the redacted parts.
This part is the most up-to-date one of my course,
however it is not as detailed as the part that includes
an early version of the manuscript.
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Mechanics Landscape

Courses (not disciplines)

Statics Rigid bodies, forces and moments, basic equilibrium, no stress or
strain.

Mechanics of Materials beams, deformable bodies, stress, strain, engineering
notation (σx , εy ), temperature, deformation, elastic/plastic solutions,
simple structural elements.

Structural Analysis idealized structures (trusses, frames, cables),
force-displacements, determinate and undeterminate structures; no
stress-strain.

Continuum Mechanics Strain (small, large), Stress (Cauchy, Piola-Kirchoff),
Fundamental laws (conservation of mass, momentum and energy);
Constitutive equations.

Solid Mechanics

Elasticity Mathematical solution of simple problems using
fundamental equations, polynomial/Fourrier solutions,
Airy stress functions; Cartesian or polar coordinates;
Real or Complex solutions.

Plasticity continuum, structural component, or structural level.

Fracture Mechanics; V. E. Saouma; Introduction 3/17



Mechanics Landscape

Fracture Mechanics Analysis of structures subjected to
presence/propagation of cracks. Crack formation is
studied by Metallurgists of Material Scientists.

Fluid Mechanics Non listing sub-categories

Computational Mechanics To be addressed once one or more of the above well
understood

Fracture Mechanics; V. E. Saouma; Introduction 4/17



Models

Fracture Mechanics could really be called Failure Mechanics.

Models for material failure

Yield Theory plastic deformation, stress based failure theory.
Damage Theory gradual degradation of properties, decrease in E , large

deformation.
Fracture Theory brittle behavior, leads to material rupture.

Fracture Mechanics; V. E. Saouma; Introduction 5/17



Motivation

The fundamental requirement of any structure is that it should be
designed to resist mechanical failure through any (or a combination of)
the following modes:

1 Elastic instability (buckling)

2 Large elastic deformation (jamming)

3 Gross plastic deformation (yielding)

4 Tensile instability (necking)

5 Fracture

Fracture Mechanics; V. E. Saouma; Introduction 6/17



Examples of Failure

Some well-known, and classical, examples of fracture failures include:

Mechanical, aeronautical, or marine

Fracture of train wheels, axles, and rails
Fracture of the Liberty ships during and after World War II
Fracture of airplanes, such as the Comet airliners, which exploded in
mid-air during the fifties, or more recently fatigue fracture of bulkhead in a
Japan Air Line Boeing 747
Fatigue fractures found in the Grumman buses in New York City, which
resulted in the recall of 637 of them
Fatigue crack that triggered the sudden loss of the upper cockpit in the Air
Aloha plane in Hawaii in 1988.
Fracture of solid rocket propellants.

Civil engineering

Compressive failure of cementitious materials (concrete, ceramic, rock).
Fractures of bridge girders (Silver bridge in Ohio)
Fracture of Statfjord A platform concrete off-shore structure
Cracks in nuclear reactor piping systems
Fractures found in dams (usually unpublicized)

Fracture Mechanics; V. E. Saouma; Introduction 7/17



Examples of Failure

Delamination in a Nuclear reactor containment vessel (Crystal River).

Despite the usually well-known detrimental effects of fractures, in many cases
fractures are man-made and induced for beneficial purposes Examples include:

Rock cutting in mining

Hydro-fracturing for oil, gas, and geothermal energy recovery

“Biting” of candies (!)

Fracture environmental interactions:

Fatigue crack propagation.

Corrosion assisted crack propagation.

Fracture-Fluid interaction (Fracking).

Fracture gas interaction (gaz leakage through concrete in nuclear containment
structures).

Even under all-around compressive loads, brittle materials tend to fail by the formation
of tensile microcracks at microdefects such as cavities, grain boundaries, inclusions,
and other inhomogeneities

Fracture Mechanics; V. E. Saouma; Introduction 8/17



Cost and Consequences

Cost
[The] cost of material fracture to the US [is] $ 119 billion per year,
about 4 percent of the gross national product. The costs could be
reduced by an estimated missing 35 billion per year if technology
transfer were employed to assure the use of best practice. Costs could
be further reduced by as much as $ 28 billion per year through
fracture-related research.

In light of the variety, and complexity of problems associated with
fracture mechanics, it has become a field of research interest to
mathematicians, scientists, and engineers (metallurgical, mechanical,
aerospace, and civil).

Fracture Mechanics; V. E. Saouma; Introduction 9/17



MOM vs FM

MOM vs FM
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Major Historical Developments

1 1898, Kirsch Stress concentration around circular hole

2 1913, Inglis Stresss concentration around ellipse

3 1930’s Griffith, Theoretical Strength

4 1930’s Griffith Thermodynamical criterion for fracture

5 1939 Westergaard, stress field near a sharp crack tip

6 1940’s Irwin Plastic zone size

7 1940’s, Irwin Energy Release rate

8 1961, Paris empirical equation relating the range of the stress intensity factor to
the rate of crack growth

9 1963, Rice, J Integral

10 1960’s, Erdogan and Sih, first model for mixed-mode crack propagation.

11 In 1976, Hillerborg: fictitious crack model

12 In 1979 Bažant and Cedolin Requirements for an “objective” analysis

Fracture Mechanics; V. E. Saouma; Introduction 11/17



Coverage

I Introduction

II Review of Mechanics (∼ 1-2 weeks) Review of the fundamental relations in
Mechanics using tensor (indicial) notation: Strain, Strain, Equilibrium,
Compatibility, Hooke’s Law, Airy Stress Function, Complex Functions
using Mathematica.

III Linear Elastic Fracture Mechanics: (∼ 2 weeks)
1 Elastic Crack Tip Stress Field: Stress around an Elliptical

Hole (Inglis, 1913), Complex Stress Functions
(Westergaard, 1939), Bi-Material (Williams, 1959).

2 Stress Intensity Factors (Irwin, 1957): Elliptical Cracks,
Design Philosophy (Example)

3 Energy Principles (Griffith, 1921): Ideal Fracture Strength
(?), Griffith’s Theory (Griffith, 1924), Energy Release Rate,
Gc and R Curves, Compliance Calibration Method
(Mostovoy, 1967).

Fracture Mechanics; V. E. Saouma; Introduction 12/17



Coverage

4 Fracture of Anisotropic Bodies: Basic Equations of
Anisotropic Elasticity (Lekhnitskii), Stress Analysis (Sih,
Paris, and Irwin, 1965).

5 Mixed Mode Crack Propagation: Maximum
Circumferential Tensile Stress (Erdogan, 1963), Maximum
Strain Energy Release Rate (Hussain et al. 1974),
Minimum Strain Energy Density (Sih, 1974), Anisotropic
Materials (Saouma, Ayari, Leavell, 1986).

IV Elasto-Plastic Fracture Mechanics: (∼ 1 Week)
1 The Crack Tip Plastic Zone: First and second Order

Approximation (Irwin), Dugdale and Barenblat’s models,
Multiaxial Stress Based (Von-Mises, Tresca); Plane Stress
versus Plane Strain.

2 Crack Tip Opening Displacements (Wells)
3 Energy Methods: J Integral Derivation (Rice); Variations

on Original J Formulation, J-R Concept, EPRI method.

V Fracture Toughness Testing: (∼ 1 week)

Fracture Mechanics; V. E. Saouma; Introduction 13/17



Coverage

1 Fracture toughness (ASTM E399)
2 Fracture Energy (RILEM, ISRM)

VI Subcritical Crack Growth: (∼ 1 week)
1 Fatigue Models: Paris Law (Paris, 1963), Forman Law

(Forman, 1967), Walker’s Law, Table Look-Up.
2 Other: Mixed Mode Fatigue Crack Growth, Fatigue Life

Prediction, Variable Amplitude Loading,
3 Load Interaction, Retardation Model: Wheeler,

Generalized Willenborg
4 Corrosion

VII Numerical Methods: (∼ 2 weeks)
1 Isoparametric singular element: Original Formulation

(Barsoum), Subsequent Extensions, Assesment of
Singular Isoparametric Elements (Fawkes et al.).

Fracture Mechanics; V. E. Saouma; Introduction 14/17



Coverage

2 Extraction of SIF: Nodal Displacement Based: Without
Singular Elements (Displacement Extrapolation) With
Singular Elements (Displacement Correlation Method),
Energy Based Methods: Energy Release Rate, Virtual
Crack Extension (Park), Virtual Crack Extension (Sha), J1

and J2 Integrals (Hellen and Blackburn), Mutual Potentials
(Stern & Becker), Surface Integral (Babuska)

3 Elasto-Plastic Analysis, J Integral
4 Fracture of cementitious materials: Fictitious Crack Model,

(Hillerborg 1976), Size Effect Law (Bazant, 1984), ICM
(Červenka and Saouma, 1994), Crack Band Model
(Bažant, LEFM and NLFM (Fictitious Crack Model), (Reich
1992)

5 Lattice Model.

VIII Applications And Case Studies: (∼ 4 weeks)

Fracture Mechanics; V. E. Saouma; Introduction 15/17



Coverage

1 Concrete: Applications to nuclear power containment
vessels: Creep fracture, Transport (gas and liquid) in
porous media, permeability, hydro-mechanical behavior.

2 Rock: Blasting; Hydro-fracturing.
3 Metals (connections under seismic excitation).
4 Solid rocket propellants (polymers).

Fracture Mechanics; V. E. Saouma; Introduction 16/17



Approach

Emphasis will be on Problem formulation and outline of solution
(skipping details) and final solution

Coverage will not be exclusively mechanics, theory, application, but
rather a delicate (and dynamically varying) mix.

Heavy emphasis on term paper and term project which could hopefully
be tied to your research interest.

Occasional presentation of your work throughout the semester.

Fracture Mechanics; V. E. Saouma; Introduction 17/17



Approach Term Projects

A very important component of the course. Past Term Projects Can be viewed here.

Cohesive Crack Models

Cohesive Cracks For Interfaces

Concrete Under High Temperatures

Concrete Fracture

Crack Between 2 Dissimilar Materials

Crack Propagation In Aluminium Panels

Dynamic Fracture Mechanics

Fatigue Crack Propagation With Retardation

Fatigue Crack Propagation

Fracture Mechanics Based Simulation Of Anchors

Fracture And Fractals

Analysis Of Butt Welded Joints

Cohesive Crack Models

Cohesive Cracks For Interfaces

Concrete Under High Temperatures

Fracture and flow (liquid and/or gas).

Concrete Fracture

Crack Between 2 Dissimilar Materials

Crack Detection Location With White Noise Vibration

Crack Propagation In Draw Cylinder

Crack Propagation In Aluminium Panels

Fracture In Solid Rocket Propellants

Fracture Mechanics Of Bond In reinforced concrete

Fracture Mechanics Partition Unity Method

Fracture Steel Connection Under Earthquake Load

Fracture Testing Of Concrete

Indentation Of Rock; Numerical Simulation

Numerical Fracture Simulation Of Porous Sintered
Steels

Size Effects On Shear Strength

Slope Stability

Steel Fiber Reinforced Concrete

Fracture Mechanics; V. E. Saouma; Introduction 17/17
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Table of Contents I

1 Tensors
Tensors: Definition
Tensors: Indicial Notation
Tensor Operations
Rotation of Axes
Tensor Transformation
Trace and Inverse
Principal Values of Symmetric Second Order Tensors

2 Calculus Review

3 Kinetics
Force, Traction and Body Forces
Cauchy’s Stress Tensor

Example
Spherical and Deviatoric Stress Tensors

4 Kinematic
Position and Displacement
Strains
Fracture Mechanics; V. E. Saouma; Elements of Solid Mechanics 2/75



Table of Contents II

Compatibility Equation

5 Fundamental Laws of Continuum Mechanics
Conservation Laws
Conservation of Momentum
Conservation of Energy; First Principle of Thermodynamics

6 Intermission
7 Constitutive Equations

Hooke
Lame’s Constants
Expanded

8 Airy Stress Functions
Real Variables; Cartesian
Complex Variables; Cartesian
Complex variables; Elliptical Coordinates

9 Basic Equations of Anisotropic Elasticity
Plane Stress-Strain Compliance Transformation
Fracture Mechanics; V. E. Saouma; Elements of Solid Mechanics 3/75



Table of Contents III

Stress Functions
Stresses and Displacements
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Tensors Tensors: Definition

Generalize the concept of a vector by introducing the tensor (T).

A tensor is an operator which operates on tensors to produce other tensors.

Designate this operation as T·v or simply Tv.

A tensor is also a physical quantity, independent of any particular coordinate
system yet specified most conveniently by referring to an appropriate system of
coordinates.

A tensor is classified by the rank or order. A Tensor of order zero is specified in
any coordinate system by one coordinate and is a scalar (such as temperature).
A tensor of order one has three coordinate components in space, hence it is a
vector (such as force). In general 3-D space the number of components of a
tensor is 3n where n is the order of the tensor.

A force and a stress are tensors of order 1 and 2 respectively.
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Tensors Tensors: Indicial Notation

Engineering notation may be the simplest and most intuitive one, it often leads to
long and repetitive equations. Alternatively, tensor or the dyadic form will lead to
shorter and more compact forms.

The following rules define indicial notation:

1 If there is one letter index (free index), that index goes from i to n (range of
the tensor). For instance:

ai = ai = ⌊ a1 a2 a3 ⌋ =


a1

a2

a3

 i = 1, 3

assuming that n = 3.
2 A repeated index or (dummy index) will take on all the values of its range,

and the resulting tensors summed. In general no index occurs more than
twice in a properly written expression.For instance:

a1ixi = a11x1 + a12x2 + a13x3

3 Tensor’s order:

Fracture Mechanics; V. E. Saouma; Elements of Solid Mechanics 6/75



Tensors Tensors: Indicial Notation

First order tensor (such as force) has only one free index:

ai = ai = ⌊ a1 a2 a3 ⌋

other first order tensors aijbj = ai1b1 + ai2b2 + ai3b3, Fikk , εijk ujvk

(note that there is only one free index).
Second order tensor (such as stress or strain) will have two free
indices.

Tij =

 T11 T12 T13

T21 T22 T23

T31 T32 T33


other examples Aijip, δijuk vk .
A fourth order tensor (such as Elastic constants) will have four free
indices: σij = Dijklεkl

4 Derivatives of tensor with respect to xi is written as , i . For example:

∂ϕ
∂xi

= ϕ,i
∂vi
∂xi

= vi,i
∂vi
∂xj

= vi,j
∂Ti,j
∂xk

= Ti,j,k
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Tensors Tensors: Indicial Notation

Usefulness of the indicial notation is in presenting systems of equations in
compact form. For instance:

xi = cijzj

this simple compacted equation, when expanded would yield:

x1 = c11z1 + c12z2 + c13z3

x2 = c21z1 + c22z2 + c23z3

x3 = c31z1 + c32z2 + c33z3

Similarly:
Aij = BipCjqDpq

A11 = B11C11D11 + B11C12D12 + B12C11D21 + B12C12D22

A12 = B11C21D11 + B11C22D12 + B12C21D21 + B12C22D22

A21 = B21C11D11 + B21C12D12 + B22C11D21 + B22C12D22

A22 = B21C21D11 + B21C22D12 + B22C21D21 + B22C22D22
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Tensors Tensors: Indicial Notation

Using indicial notation, we may rewrite the definition of the dot product

a·b = aibi = (ax i + ay j + azk)·(bx i + by j + bzk) = ax bx + ay by + azbz

Note that one can adopt the dyadic instead of the indicial notation for tensors as
linear vector operators u = T·v or ui = Tijvj
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Tensors Tensor Operations

The sum of two tensors (must be of the same orde)is simply defined as:

Sij = Tij +Uij

The scalar multiplication of a (second order) tensor is defined by:

Sij = λTij

The outer product of two tensors is the tensor whose components are formed by
multiplying each component of one of the tensors by every component of the
other. This produces a tensor with an order equal to the sum of the orders of the
factor tensors.

aibj = Tij or
{ }

nx1

⌊ ⌋1xm =

[ ]
nxm

viFjk = bijk

DijTkm = ϕijkm
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Tensors Tensor Operations

The inner product of two tensors: contraction of one index from each tensor

aibi

aiEik = fk or⌊ ⌋1xm

[ ]
mxn

= ⌊ ⌋1xn

Ei jFjm = Gim or
[ ]

nxp

[ ]
pxm

=

[ ]
nxm

The cross product can be defined

a×b = εpqr aqbrep = (ay bz − azby )i + (azbx − ax bz)j + (ax by − ay bx)k

In the second equation, there is one free index p thus there are three equations,
there are two repeated (dummy) indices q and r , thus each equation has nine
terms. εpqr is called the permutation symbol and is defined as

εpqr =



1 If the value ofi , j , kare an even permutation of 1,2,3
(i.e. if they appear as 1 2 3 1 2)

−1 If the value ofi , j , kare an odd permutation of 1,2,3
(i.e. if they appear as 3 2 1 3 2)

0 If the value ofi , j , kare not permutation of 1,2,3
(i.e. if two or more indices have the same value)
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Tensors Tensor Operations

The scalar product of two tensors is defined as

T : U = TijUij

in any rectangular system.

The following inner-product axioms are satisfied:

T : U = U : T

T : (U + V) = T : U + T : V

α(T : U) = (αT) : U = T : (αU)

T : T > 0 unless T = 0
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Tensors Rotation of Axes

Consider two different sets of cartesian orthonormal coordinate systems
{e1, e2, e3} and {e1, e2, e3}, any vector v can be expressed in one system or the
other

v = vjej = v jej

To determine the relationship between the two sets of components, we consider
the dot product of v with one (any) of the base vectors

ei ·v = v i = vj(ei ·ej)

We can thus define the nine scalar values

aj
i ≡ ei ·ej = cos(x i , xj)

which are the direction cosines between the nine pairing of base vectors.

A covariant transformation will transform a tensor from one basis to another:

v j = ap
j vp (1)

note that the free index in the first and second equations appear on the upper
and lower index respectively.
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Tensors Rotation of Axes

vy
vx

X

Y

Z

x

y

z

VZ

VY

VX

vz

α

β

γ

Consider the transformation of a vector V
from (X,Y,Z) coordinate system to (x, y, z)

From Eq. 1

Vj = ap
j V p or


V1 = a1

1V 1 + a2
1V 2 + a3

1V 3

V2 = a1
2V 2 + a2

1V 2 + a3
2V 3

V3 = a1
3V 3 + a2

1V 2 + a3
3V 3

or 
Vx

Vy

Vz

 =

 aX
x aY

x aZ
x

aX
y aY

y aZ
y

aX
z aY

z aZ
z


︸ ︷︷ ︸

ak
j


VX

VY

VZ



aj
i is the direction cosine of axis i with respect to axis j

aj
x = (aX

x , aY
x , aZ

x ) direction cosines of x with respect to X,Y and Z
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Tensors Rotation of Axes

aj
y = (aX

y , aY
y , aZ

y ) direction cosines of y with respect to X,Y and Z

aj
z = (aX

z , aY
z , aZ

z ) direction cosines of z with respect to X,Y and Z

X

X

γ

XX

1

1

2
2

α

α

β

For the 2D case, the transformation matrix is
written as

T =

[
a1

1 a2
1

a1
2 a2

2

]
=

[
cosα cosβ

cosγ cosα

]
but since γ = π

2 + α, and β = π
2 − α, then

cosγ = − sinα and cosβ = sinα, thus the
transformation matrix becomes

T =

[
cosα sinα

− sinα cosα

]
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Tensors Tensor Transformation

Rotation of a second order tensor Tjq :

u j = Tjqvq

u i = aj
iuj

= aj
iTjqvq

= aj
iTjqaq

pvp

But we also have u i = T ipvp in the barred system, equating these two
expressions we obtain

T ip = aj
ia

q
pTjq

hence

T ip = aj
ia

q
pTjq in Matrix Form [T ] = [A]T [T ][A] (2)

Tjq = aj
ia

q
pT ip in Matrix Form [T ] = [A][T ][A]T (3)
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Tensors Tensor Transformation

If we consider the 2D case, From Eq. 13

A =

 cosα sinα 0
− sinα cosα 0

0 0 1


T =

 Txx Txy 0
Txy Tyy 0
0 0 0


T =

 T xx T xy 0
T xy T yy 0
0 0 0

 = AT TA

Substituting

T =

 cos2 αTxx + sin2 αTyy + sin 2αTxy
1
2 (− sin 2αTxx + sin 2αTyy + 2 cos 2αTxy 0

1
2 (− sin 2αTxx + sin 2αTyy + 2 cos 2αTxy sin2 αTxx + cosα(cosαTyy − 2 sinαTxy 0

0 0 0
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Tensors Tensor Transformation

alternatively, using sin 2α = 2 sinα cosα and cos 2α = cos2 α− sin2 α, this last
equation can be rewritten as

T xx

T yy

T xy

 =

 cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ cos θ sin θ cos2 θ− sin2 θ


Txx

Tyy

Txy
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Tensors Trace and Inverse

The trace of a second-order tensor, denoted tr T is a scalar invariant function of
the tensor and is defined as

tr T ≡ Tii

Thus it is equal to the sum of the diagonal elements in a matrix.

An inverse tensor is simply defined as follows

T−1(Tv) = v and T(T−1v) = v

alternatively T−1T = TT−1 = I, or T−1
ik Tkj = δij and Tik T−1

kj = δij

Fracture Mechanics; V. E. Saouma; Elements of Solid Mechanics 19/75



Tensors Principal Values of Symmetric Second Order Tensors

T11

T12
n1v1

v1

n1

Two fundamental tensors in
continuum mechanics are second
order and symmetric (stress and
strain), we examine some important
properties of these tensors.

For every symmetric tensor Tij defined at some point in space, there is
associated with each direction (specified by unit normal nj ) at that point, a vector
given by the inner product

vi = Tijnj

It will be later shown that this is the relationship between stress (T) and traction
(v)

If the direction is one for which vi is parallel to ni , the inner product is

Tijnj = λni

and the direction ni is called principal direction of Tij . Since ni = δijnj , this can be
rewritten as

(Tij − λδij)nj = 0
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Tensors Principal Values of Symmetric Second Order Tensors

This is an Eigenvalue problem in which the Eigenvalues correspond to the
principal stresses and the Eigenvectors correspond to the principal stress
directions. Hence, we can easily compute principal stresses for any Cauchy
stress tensor by simply computing the Eigenvalues of the stress tensor.

To have a non-trivial solution (ni = 0) the determinant of the coefficients must be
zero,

|Tij − λδij | = 0

Expansion of this determinant leads to the following characteristic equation

λ3 − ITλ2 + IITλ− IIIT = 0

the roots are called the principal values of Tij and

IT = Tii = tr Tij

IIT =
1
2
(TiiTjj − TijTij)

IIIT = |Tij |= detTij

are called the first, second and third invariants respectively of Tij .
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Tensors Principal Values of Symmetric Second Order Tensors

It is customary to order those roots as λ(1) > λ(2) > λ(3)

In terms of the principal stresses, those invariants can be simplified into

IT = T(1) + T(2) + T(3)
IIT = −(T(1)T(2) + T(2)T(3) + T(3)T(1))

IIIT = T(1)T(2)T(3)

For a symmetric tensor with real components, the principal values are also real.
If those values are distinct, the three principal directions are mutually orthogonal.

Fracture Mechanics; V. E. Saouma; Elements of Solid Mechanics 22/75



Calculus Review

A+ B = B+A

A×B = −B×A

A = Ax i + Ay j + Azk

A·B = |A||B|cos(A,B)
= Ax Bx + Ay By + AzBz

A⊗B =

∣∣∣∣∣∣
i j k

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣
grad A = ∇A = i

∂A
∂x

+ j
∂A
∂y

+ k
∂A
∂z

div A = ∇·A =

(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
·(iAx + jAy + kAz)

=
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z

Laplacian ∇2 = ∇·∇

=
∂2A
∂x2 +

∂2A
∂y2 +

∂2A
∂z2

Integration by part∫ b

a
u(x)v ′(x)dx = u(x)v(x)|ba

−
∫ b

a
v(x)u ′(x)dx∫ b

a
udv = uv |ba −

∫ b

a
vdu

Green-Gradient Theorem∮
(Rdx + Sdy) =

∫
�

(
∂S
∂x

− ∂R
∂y

)
dxdy

Gauss-Divergence Theorem∫
�

v.nd� =

∫



divvd
∫
�

vinid� =

∫



vi,id
∫



div qd
 =

∫
�

qT .nd�∫



vi,id
 =

∫
�

vinid�
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Kinetics Force, Traction and Body Forces

There are two kinds of forces in continuum mechanics

body forces: act on the elements of volume or mass inside the body, e.g.
gravity, electromagnetic fields. dF = ρbdVol .

Surface forces (or traction) are contact forces acting on the free body at its
bounding surface. Those will be defined in terms of force per unit
area.

t̂
t

t n

Unit exterior 
normal

n̂t t̂t

t̂

n̂t t̂t

t̂
xx

yy
xy

xy

∫
�

td� = i

∫
�

tx d� + j

∫
�

ty d� + k

∫
�

tzd�
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Kinetics Force, Traction and Body Forces

Usually limit the term traction to an actual bounding surface of a body, and use
the term stress vector ()not yet defined, see below) for an imaginary interior
surface.
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Kinetics Cauchy’s Stress Tensor

The concept of force was at first abstract, Aristotelian physics refereed to
impetus. Galileo and Newton (1687) formalized it.

The concept of stress was not firmly understood until Cauchy

In 1822, Cauchy presented the idea of traction vector that contains both the
normal and tangential components t = tnen + ttet

His “genius” was to consider what became known as the Cauchy tetrahedron
and applied Newton’s second law (or more precisely its extension to particles by
Euler: Euler’s first law of motion)

O
N

-t1

tn

-t3

-t2

X2

X3

X1

dA1

dA3

dA2 dVe2

e3

e1

Equilibrium of the Cauchy tetrahedron:

tdA − t1dA1 − t2dA2 − t3dA3 = ρdVa (4)

a is the acceleration and ρ the mass density.

The areas of the faces are given by

dA1 = n.e1dA = n1dA

dA2 = n.e1dA = n2dA

dA3 = n.e1dA = n3dA
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Kinetics Cauchy’s Stress Tensor

Substituting in the equilibrium equation, and considering the limiting case where
dV → 0

t = t1n1 + t2n2 + t3n3 (5)

 σ11

 σ13

 σ12

 σ23

 σ22
 σ21 n1

 n2

 n3

 x3

 x1

 x2

 t1
 t2

 t3

 σ33

 σ32 σ31

The traction vectors must have
components

t1 = σ11e1 + σ12e2 + σ13e3

t2 = σ21e1 + σ22e2 + σ23e3

t3 = σ31e1 + σ32e2 + σ33e3

(6)

Note that historically and traditionally
in continuum mechanics the stress is
denoted by T. This was replaced by
σ (I believe through the Voigt
notation).

Substituting into Eq. 5

t = n1(σ11e1 + σ12e2 + σ13e3) + n2(σ21e1 + σ22e2 + σ23e3) + n3(σ31e1 + σ32e2 + σ33e3)

= (n1σ11 + n2σ21 + n3σ31)e1 + (n1σ12 + n2σ22 + n3σ32)e2 + (n1σ13 + n2σ23 + n3σ33)e3 (7)
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Kinetics Cauchy’s Stress Tensor

or
tn = n·σ (8)

Hence, there is a second order tensor called Cauchy stress tensor where the 1st
subscript (i) refers to the direction of outward facing normal, and the second one
(j) to the direction of component force.

t1

t2

t3

 =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


︸ ︷︷ ︸

σ

(9)

The preceding equations played a major role in the foundation of Continuum
mechanics.

Voigt Notation (commonly used in engineering) is a way to represent the
symmetric tensor by reducing its order.

σ =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 → ⌊ σxx σyy σzz σxy σxz σyz ⌋ (10)
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Kinetics Cauchy’s Stress Tensor

Note: we have not yet introduced the equation of equilibrium (momentum
equation).

Fracture Mechanics; V. E. Saouma; Elements of Solid Mechanics 29/75



Kinetics Cauchy’s Stress Tensor

For a stress tensor at point P given by

σ =

 7 −5 0
−5 3 1
0 1 2

 =


t1

t2

t3


We seek to determine the traction (or stress vector) t passing through P and
parallel to the plane ABC where A(4, 0, 0), B(0, 2, 0) and C(0, 0, 6).

The vector normal to the plane can be found by taking the cross products of
vectors AB and AC:

N = AB×AC =

∣∣∣∣∣∣
e1 e2 e3

−4 2 0
−4 0 6

∣∣∣∣∣∣
= 12e1 + 24e2 + 8e3

Fracture Mechanics; V. E. Saouma; Elements of Solid Mechanics 30/75



Kinetics Cauchy’s Stress Tensor

The unit normal of N is given by

n =
3
7
e1 +

6
7
e2 +

2
7
e3

Hence the stress vector (traction) will be

⌊ 3
7

6
7

2
7 ⌋

 7 −5 0
−5 3 1
0 1 2

 = ⌊ − 9
7

5
7

10
7 ⌋

and thus t = − 9
7e1 +

5
7e2 +

10
7 e3
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Kinetics Spherical and Deviatoric Stress Tensors

let σ denote the mean normal stress p

σ = −p =
1
3
(σ11 + σ22 + σ33) =

1
3
σii =

1
3

tr σ

then the stress tensor can be written as the sum of two tensors:

Hydrostatic stress in which each normal stress is equal to −p and the shear
stresses are zero. The hydrostatic stress produces volume
change without change in shape in an isotropic medium.

σhyd = −pI =

 −p 0 0
0 −p 0
0 0 −p


Deviatoric Stress: which causes the change in shape.

σdev =

 σ11 − σ σ12 σ13

σ21 σ22 − σ σ23

σ31 σ32 σ33 − σ
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Kinematic Position and Displacement

The undeformed configuration of a material continuum at time t = 0 together
with the deformed configuration at t = t .

I

I
i

i
i

u

b

X

X

X

x

x

x

P

P

1

2

3

1

3
1

1

2

2

3

3

0

t=0

t=t

X

x

O

o

U

Material

Spatial

I
2

In the initial configuration P0 has the position vector

X = X1I1 + X2I2 + X3I3

which is here expressed in terms of the material coordinates (X1,X2,X3).
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Kinematic Position and Displacement

In the deformed configuration, the particle P0 has now moved to the new position
P and has the following position vector

x = x1i1 + x2i2 + x3i3

which is expressed in terms of the spatial coordinates.

The displacement vector u connecting P0 and P is the displacement vector
which can be expressed in both the material or spatial coordinates

U = UK IK

u = uk ik

From the preceding figure we can express motion as

xi = xi(X1,X2,X3, t) Lagrangian formulation
Xi = Xi(x1, x2, x3, t) Eulerian formulation

Ignoring a detailed analysis of large deformation, it is determined that

Displacement gradient
Small Large

Displacement Small Lagrangian small strain (Cauchy) Lagrangian large strain (Green-Lagrange)
Large Eulerian small strain Eulerian finite strain (Eulerian-Almansi)
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Kinematic Strains

The Lagrangian finite strain tensor can be written as

εij =
1
2
(ui,j + uj,i + uk,iuk,j)

Alternatively these equations may be expanded as

εxx =
∂u

∂x
+

1

2

[(
∂u

∂x

)2
+

(
∂v

∂x

)2
+

(
∂w

∂x

)2
]

εyy =
∂v

∂y
+

1

2

[(
∂u

∂y

)2
+

(
∂v

∂y

)2
+

(
∂w

∂y

)2
]

εzz =
∂w

∂z
+

1

2

[(
∂u

∂z

)2
+

(
∂v

∂z

)2
+

(
∂w

∂z

)2
]

εxy =
1

2

(
∂v

∂x
+

∂u

∂y
+

∂u

∂x

∂u

∂y
+

∂v

∂x

∂v

∂y
+

∂w

∂x

∂w

∂y

)

εxz =
1

2

(
∂w

∂x
+

∂u

∂z
+

∂u

∂x

∂u

∂z
+

∂v

∂x

∂v

∂z
+

∂w

∂x

∂w

∂z

)
εyz =

1

2

(
∂w

∂y
+

∂v

∂z
+

∂u

∂y

∂u

∂z
+

∂v

∂y

∂v

∂z
+

∂w

∂y

∂w

∂z

)
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Kinematic Strains

We define the engineering shear strain as

γij = 2εij (i ̸= j)

Note that for small displacements, the strains can be expressed as

εxx

εyy

εzz

εxy

εxz

εyz

︸ ︷︷ ︸
ε

=



∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x
0 ∂

∂z
∂
∂y


︸ ︷︷ ︸

L


ux

uy

uz

︸ ︷︷ ︸
u

(11)

Fracture Mechanics; V. E. Saouma; Elements of Solid Mechanics 36/75



Kinematic Compatibility Equation

If εij =
1
2 (ui,j + uj,i) then we have six differential equations (in 3D the strain

tensor has a total of 9 terms, but due to symmetry, there are 6 independent
ones) for determining (upon integration) three unknowns displacements ui .
Hence the system is overdetermined, and there must be some linear relations
between the strains or compatibility equations

It can be shown (through appropriate successive differentiation) that the
compatibility relation for strain reduces to:

∂2εik

∂xj∂xj
+

∂2εjj

∂xi∂xk
− ∂2εjk

∂xi∂xj
− ∂2εij

∂xj∂xk
= 0.

In 3D, this would yield 9 equations in total, however only six are distinct.

In 2D, this results in (by setting i = 2, j = 1 and k = 2):

∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

=
∂2γ12

∂x1∂x2
(12)

(recall that 2ε12 = γ12).
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Fundamental Laws of Continuum Mechanics Conservation Laws

We have thus far studied tensor fields (stress and strain).

We have also obtained only one differential equation, that was the compatibility
equation.

Next we still derive additional differential equations governing the way stress and
deformation vary at a point and with time. They will apply to any continuous
medium, and yet we will not have enough equations to determine unknown
tensor field. For that we need to wait for constitutive laws relating stress and
strain will be introduced.

A conservation law states that a particular measurable property of an isolated
physical system does not change as the system evolves over time.

The fundamental equations are:

1 Conservation of mass (continuity equation)
2 Conservation of momentum (Equation of motion; Equilibrium)
3 Conservation of Energy.
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Fundamental Laws of Continuum Mechanics Conservation Laws

A conservation law establishes a balance of a scalar or tensorial quantity in
volume V bounded by a surface S (inside a control surface). In its most general
form, such a law may be expressed as

d
dt

∫
V
AdV︸ ︷︷ ︸

Rate of variation

−
∫

S
αdS︸ ︷︷ ︸

Exchange by Diffusion

=

∫
V
AdV︸ ︷︷ ︸

Source

The preceding equation reads: rate of increase of A inside a control volume plus
the rate of outward flux of A through the surface of the control volume is equal to
the rate of increase of A inside the control volume

The dimensions of various quantities are given by

dim(α) = dim(ALt−1)

dim(A) = dim(At−1)

rightfully all expressed in terms of A.
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Fundamental Laws of Continuum Mechanics Conservation of Momentum

the time rate of change of the total momentum of a given set of particles equals
the vector sum of all external forces acting on the particles of the set, provided
Newton’s Third Law applies.

The continuum form of this principle is a basic postulate of continuum mechanics
(postulate: a statement, also known as an axiom, which is taken to be true
without proof).

Starting with
d
dt

∫
V
ρv︸︷︷︸
A

dV −
∫

S
t︸︷︷︸
α

dS =

∫
V
ρb︸︷︷︸
A

dV

and noting that
dim(A) = ρv = m

L2t
dim(α) = t = ma

L2 = m
Lt2

dim(A) = ρb = m
L3

L
t2 = m

L2t2

v: velocity; t: traction; b body force
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Fundamental Laws of Continuum Mechanics Conservation of Momentum

Recall Divergence Theorem ∫
V

vi,idV =

∫
S

vini︸︷︷︸
flux

dS

The flux of a vector function through some closed surface equals the integral of
the divergence of that function over the volume enclosed by the surface.

we substitute ti = Tijnj and apply the divergence theorem to obtain∫
V

(
∂Tij

∂xj
+ ρbi

)
dV =

∫
V
ρ

dvi

dt
dV∫

V

[
∂Tij

∂xj
+ ρbi − ρ

dvi

dt

]
dV = 0

or for an arbitrary volume
∂Tij

∂xj
+ ρbi = ρ

dvi

dt

which is Cauchy’s (first) equation of motion, or the linear momentum principle,
or more simply equilibrium equation.
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Fundamental Laws of Continuum Mechanics Conservation of Momentum

When expanded in 3D, and for static problems, this equation yields:

∂T11

∂x1
+
∂T12

∂x2
+
∂T13

∂x3
+ ρb1 = 0

∂T21

∂x1
+
∂T22

∂x2
+
∂T23

∂x3
+ ρb2 = 0

∂T31

∂x1
+
∂T32

∂x2
+
∂T33

∂x3
+ ρb3 = 0


∂

∂x1
0 0 ∂

∂x2

∂
∂xx

0
0 ∂

∂x2
0 ∂

∂x1
0 ∂

∂x3

0 0 ∂
∂x3

0 ∂
∂x1

∂
∂x2


︸ ︷︷ ︸

L



T11

T22

T33

T12

T13

T23

︸ ︷︷ ︸
T

+ρ


b1

b2

b3

︸ ︷︷ ︸
T

=


0
0
0

 (13)

Compare with Eq. 11.

Divergence of the stress tensor is zero (in the absence of body force and static).

∇·T = 0
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Fundamental Laws of Continuum Mechanics Conservation of Momentum

We note that these equations could also have been derived from the free body
diagram with the assumption of equilibrium (via Newton’s second law)
considering an infinitesimal element of dimensions dx1 × dx2 × dx3.

σ +
δyy
δσyy

y
dy

τ xy

σ
σ

σ

+
δxx

dy

yy

xx

σδ xx

x
dx

τ +
δxy

τδ xy d

τ yx

τ +
δ

τδ
y

dy
yx

yx

x
x

dx
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Fundamental Laws of Continuum Mechanics Conservation of Energy; First Principle of Thermodynamics

If mechanical quantities only are considered, the principle of conservation of
energy for the continuum may be derived directly from the equation of motion by
taking the integral over the volume V of the scalar product and the velocity vi .∫

V
viTji,jdV +

∫
V

viρbidV =

∫
V

viρ
dvi

dt
dV

Applying the divergence theorem, and skipping details of the derivation, we
obtain:

dK
dt

+
dU
dt

=
dW
dt

+ Q

this equation relates the time rate of change of total mechanical energy of the
continuum on the left side to the rate of work done by the surface and body
forces on the right hand side.

If both mechanical and non mechanical energies are to be considered, the first
principle states that the time rate of change of the kinetic plus the internal energy
is equal to the sum of the rate of work plus all other energies supplied to, or
removed from the continuum per unit time (heat, chemical, electromagnetic,
etc.).
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Fundamental Laws of Continuum Mechanics Conservation of Energy; First Principle of Thermodynamics

For a thermomechanical continuum, it is customary to express the time rate of
change of internal energy by the integral expression

dU
dt

=
d
dt

∫
V
ρudV

where u is the internal energy per unit mass or specific internal energy.

The dimension of U is one of energy dim U = ML2T−2, and the SI unit is the
Joule, similarly dim u = L2T−2 with the SI unit of Joule/Kg.

Fracture Mechanics; V. E. Saouma; Elements of Solid Mechanics 45/75



Intermission

If we define the tensor

T =

[
xy x2y
x2y 2x2y

]
if T = σ, then it would have to satisfy the equation of equilibrium. If it fails, then
we could add a body force vector to enforce equilibrium

if T = ε, then it would have to satisfy the compatibility equation.
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Constitutive Equations Hooke

Hooke
ceiinosssttuu

Hooke, 1676
Ut tensio sic vis

Hooke, 1678

The Generalized Hooke’s Law can be written as:

σij = Dijklεkl i , j , k , l = 1, 2, 3

The (fourth order) tensor of elastic constants Dijkl has 81
(34) components however, due to the symmetry of both σ

and ε,there are at most 36
(

9(9−1)
2

)
distinct elastic terms.
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Constitutive Equations Lame’s Constants

In terms of Lame’s constants (which are naturally derived from continuum
mechanics consideration, but can not be both experimentally measured),
Hooke’s Law for an isotropic body is written as

Tij = λδijEkk + 2µEij ; Eij =
1

2µ

(
Tij −

λ

3λ+ 2µ
δijTkk

)
In terms of engineering constants (which can be measured in the laboratory)

1
E = λ+µ

µ(3λ+2µ) ; ν = λ
2(λ+µ)

λ = νE
(1+ν)(1−2ν) ; µ = G = E

2(1+ν)

Hooke’s law for isotropic material in terms of engineering constants becomes

σij =
E

1 + ν

(
εij +

ν

1 − 2ν
δijεkk

)
; εij =

1 + ν

E
σij −

ν

E
δijσkk
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Constitutive Equations Expanded

When the strain equation is expanded in 3D cartesian coordinates it would yield:

εxx

εyy

εzz

γxy (2εxy )

γyz(2εyz)

γzx(2εzx)


=

1
E



1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1 + ν 0 0
0 0 0 0 1 + ν 0
0 0 0 0 0 1 + ν





σxx

σyy

σzz

τxy

τyz

τzx


Plane Strain

σxx

σyy

σzz

τxy

 =
E

(1 + ν)(1 − 2ν)


(1 − ν) ν 0
ν (1 − ν) 0
ν ν 0
0 0 1−2ν

2




εxx

εyy

γxy
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Constitutive Equations Expanded

Axisymmetry
εrr = ∂u

∂r ; εθθ = u
r

εzz = ∂w
∂z ; εrz = ∂u

∂z + ∂w
∂r

The constitutive relation is again analogous to 3D/plane strain


σrr

σzz

σθθ

τrz

 =
E

(1 + ν)(1 − 2ν)


1 − ν ν ν 0
ν 1 − ν ν 0
ν ν 1 − ν 0
ν ν 1 − ν 0
0 0 0 1−2ν

2




εrr

εzz

εθθ
γrz


Plane Stress 

σxx

σyy

τxy

 =
1

1 − ν2

 1 ν 0
ν 1 0
0 0 1−ν

2


εxx

εyy

γxy


εzz = − 1

1 − νν(εxx + εyy )
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Airy Stress Functions Real Variables; Cartesian

The solution of a boundary value problem must satisfy

1 Equilibrium
2 constitutive relation (if compatibility was expressed solely in terms of

strains)
3 Compatibility (of strains or stresses)
4 Boundary conditions

We enforced this in the solution of statically indeterminate structures, and in the
derivation of an element stiffness matrix.

Q: Can we define a general solution which automatically satisfies the first three
conditions (e.g. “Grand Unifying theory”) within a continuum?

In some simple problems: yes
In general: no; unless we use Airy stress functions

Airy has shown that we can define a potential function �(x) in terms of the
stresses as:

σ11 =
∂2�
∂x2

2
; σ22 =

∂2�
∂x2

1
; σ12 = − ∂2�

∂x1∂x2
; (14)
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Airy Stress Functions Real Variables; Cartesian

Based on this definition, equilibrium

∂σij

∂xj
= 0

∂σ11

∂x1
+
∂σ12

∂x2
= 0

is automatically satisfied.

In polar coordinates:

σrr =
1
r
∂�
∂r + 1

r2
∂2�
∂θ2 σθθ = ∂2�

∂r2 σrθ = − ∂
∂r

( 1
r
∂�
∂θ

)
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Airy Stress Functions Real Variables; Cartesian

We must satisfy constitutive relation. Substituting with the constitutive relations,
we express the strains components in terms of � from Hooke’s law,

ε11 =
1
E

[
(1 − ν2)σ11 − ν(1 + ν)σ22

]
=

1
E

[
(1 − ν2)

∂2�

∂x2
2
− ν(1 + ν)

∂2�

∂x2
1

]
ε22 =

1
E

[
(1 − ν2)σ22 − ν(1 + ν)σ11

]
=

1
E

[
(1 − ν2)

∂2�

∂x2
1
− ν(1 + ν)

∂2�

∂x2
2

]
ε12 =

1
E
(1 + ν)σ12 = − 1

E
(1 + ν)

∂2�

∂x1∂x2

What is still missing: compatibility equation is (Eq.12)

∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

= 2
∂2ε12

∂x1∂x2
(15)
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Airy Stress Functions Real Variables; Cartesian

Substituting, and simplifying:

(1 − ν)
(
∂4�

∂x4
1
+ 2

∂4�

∂x2
1∂x2

2
+
∂4�

∂x4
1

)
= 0 (16)

or

∇4� = ∇2
(
∇2�

)
= 0 (17)

∂4�

∂x4
1
+ 2

∂4�

∂x2
1∂x2

2
+
∂4�

∂x4
2

= 0 (18)

note that the Lapacian (∇2) is simply:

∇2 =
∂2�

∂x2
1
+
∂2�

∂x2
2

(19)

Hence, any function which satisfies the preceding equation will satisfy all three
requirements: equilibrium, kinematic, stress-strain (albeit plane strain) and is
thus an acceptable elasticity solution.
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Airy Stress Functions Real Variables; Cartesian

In polar coordinates

∇2
(
∇2�

)
=

(
∂2

∂r 2 +
1
r
∂

∂r
+

1
r 2

∂2

∂θ2

)
︸ ︷︷ ︸

∇

(
∂2�

∂r 2 +
1
r
∂�

∂r
+

1
r 2

∂2�

∂θ2

)
︸ ︷︷ ︸

∇2�

∇2 (or ∇.∇ ) is the Laplacian operator; ∇2� = 0 is Laplace equation; A solution
to Laplace’s equation is referred to as a harmonic function. ∇4 is the biharmonic
or bi-Laplacian operator,

Back to the boundary value problem formulation from above,

� must satisfy the bi-harmonic equation however, there is an infinite
number of such equations!
For � to satisfy a specific problem, the solution must satisfy its boundary
conditions which may be expressed in terms of displacements or stresses.

The trick is to guess � which satisfies a given set of boundary conditions.

Only approach, come up with � and find out which set of B.C. are satisfied (i.e
we have a solution in search of a problem). Hopefully it corresponds to a real
physical problem (if one is lucky)
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Airy Stress Functions Complex Variables; Cartesian

Airy stress function with real variables enable us to determine the stress field
around a circular hole (Kirsch)

Need to extend Airy stress functions to complex variables in order to analyze
stresses around:

Elliptical hole (Inglis),
Sharp crack (Westergaard).

We define complex number z as:

z = x1 + ix2 = reiθ

where i =
√
−1, x1 and x2 are the cartesian coordinates, and r and θ are the

polar coordinates.

We define an analytic function, f (z) one which derivatives depend only on z.
Applying the chain rule

∂

∂x1
f (z) =

∂

∂z
f (z)

∂z
∂x1

= f ′(z)
∂z
∂x1

= f ′(z) (20)

∂

∂x2
f (z) =

∂

∂z
f (z)

∂z
∂x2

= f ′(z)
∂z
∂x2

= if ′(z) (21)
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Airy Stress Functions Complex Variables; Cartesian

If f (z) = α+ iβ where α and β are real functions of x1 and x2, and f (z) is
analytic, then from Eq. 20 and 21 we have:

∂f(z)
∂x1

= ∂α
∂x1

+ i ∂β
∂x1

= f ′(z)
∂f(z)
∂x2

= ∂α
∂x2

+ i ∂β
∂x2

= if ′(z)

}
i

(
∂α

∂x1
+ i

∂β

∂x1

)
︸ ︷︷ ︸

i1st Equation

=
∂α

∂x2
+ i

∂β

∂x2︸ ︷︷ ︸
2nd Equation

Equating the real and imaginary parts yields the Cauchy-Riemann equations:

∂α

∂x1
=
∂β

∂x2
;

∂α

∂x2
= − ∂β

∂x1

Differentiate the first equation with respect to x1, the second wrt x2 and sum

∂2α

∂x2
1
+
∂2α

∂x2
2
= 0 or ∇2 (α) = 0

which is Laplace’s equation.

Similarly we can have:
∇2 (β) = 0
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Airy Stress Functions Complex Variables; Cartesian

Thus the real (α) and the imaginary part (β) of an analytic function will
separately provide solution to Laplace’s equation.

α and β are conjugate harmonic functions.

It can be shown that any stress function can be expressed as

� = ℜ[(x1 − ix2)ψ(z) + χ(z)] (22)

provided that both ψ(z) (psi) and χ(z) (chi) are harmonic (i.e
∇2(ψ) = ∇2(χ) = 0) analytic functions of x1 and x2.

ψ and χ are often referred to as the Kolonov-Muskhelishvili complex potentials.

If f (z) = α+ iβ and both α and β are real, then we define its conjugate function:

�f (�z) = α− iβ

Conjugate functions should not be confused with conjugate harmonic functions.
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Airy Stress Functions Complex Variables; Cartesian

Rewrite Eq. 22 as:
� = ℜ[�zψ(z) + χ(z)] (23)

Substituting Eq. 23 into Eq. 14, we can determine the stresses

σ11 + σ22 = 4ℜψ ′(z) (24)

σ22 − σ11 + 2iσ12 = 2[�zψ ′′(z) + χ ′′(z)] (25)

By separation of real and imaginary parts we can then solve for σ22 − σ11 & σ12.
Displacements can be similarly obtained.
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Airy Stress Functions Complex variables; Elliptical Coordinates

There is a multitude of orthogonal co-ordinate systems: cartesian, polar,
spherical, and elliptical.

An elliptical co-ordinate system is a two-dimensional orthogonal coordinate
system in which the coordinate lines are confocal ellipses and hyperbolae.

0 /1
2

/6

/4

/3

5 /12

/2

7 /12

2
/3

3
/4

5
/61

1
/1

2

00
.5

11
.5

2

X2

X1
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σ11
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σ22
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σαβ

The two foci F1 and F2 are generally taken to be fixed at -a and +a, respectively,
on the x-axis of the Cartesian co-ordinate system.

Rather than using carterian or polar (x − y , r − θ) coordinate system, we use an
elliptical one (α− β) where p = α+ iβ. α and β are the co-ordinates in the
elliptical system.
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Airy Stress Functions Complex variables; Elliptical Coordinates

We seek to solve for x1 and x2 in terms of α and β.

The relationship between p = α+ iβ and z = x1 + ix2 in a cartesian coordinate
system is given by

z = x1 + ix2 = c cosh p = c cosh(α+ iβ) (26)

where c is a constant. This is the definition of elliptic coordinates α and β.

Recalling that

coshα =
1
2
(eα + e−α)

sinhα =
1
2
(eα − e−α)

eiβ = cosβ+ i sinβ
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Airy Stress Functions Complex variables; Elliptical Coordinates

we substitute those equations into Eq. 26

x1 + ix2 =
c
2

(
eα+iβ + e−α−iβ

)
=

c
2

(
eα cosβ+ ieα sinβ︸ ︷︷ ︸+ e−α cosβ− ie−α sinβ︸ ︷︷ ︸

)

=
c
2

cosβ (eα + e−α)︸ ︷︷ ︸
2 coshα

+i sinβ (eα − e−α)︸ ︷︷ ︸
2 sinhα


= c(coshα cosβ+ i sinhα sinβ)

Separating reals from imaginary parts we obtain

x1 = c coshα cosβ

x2 = c sinhα sinβ
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Airy Stress Functions Complex variables; Elliptical Coordinates

If we eliminate β from those equation, we obtain

x2
1

cosh2 α
+

x2
2

sinh2 α
= c2

Constant value of α represents the equation of an ellipse in the x1 − x2 plane.

Constant β represent confocal hyperebolae which intersect the ellipse at right
angle.

In terms of complex potentials, it can be shown that the stresses are given in an
analogous way as in Eq. 24:

σαα + σββ = 2[ψ ′(z) + �ψ ′(�z)] = 4ℜψ ′(z)

σββ − σαα + 2iσαβ = 2e2iθ[�zψ ′′(z) + ψ ′′(z)]

Note that what we have here is a set of three equations in terms of three
unknowns. Individual stresses are obtained by separating the real from the
imaginary components.
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Basic Equations of Anisotropic Elasticity

An alternate form of Eq. 47 is
εi = aijσj (27)

where the indices i and j go from 1 to 6.

In the most general case this would yield 36 independent constants aij however
by virtue of symmetry (aij = aji ) this reduces to 21

(
(7)(6)

2

)
.

If the the material has one plane of elastic symmetry,then there would 13
independent constants;

If it has three mutually orthogonal planes of elastic symmetry, then we would say
that it is orthogonally anisotropic or orthotropic, and we will have
a16 = a26 = a36 = a45 = 0, thus there will be 9 independent constants.

ε1

ε2

ε3

ε4

ε5

ε6


=



a11 a12 a13

a22 a23

a33

a44

a55

a66





σ1

σ2

σ3

σ4

σ5

σ6


(28)
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Basic Equations of Anisotropic Elasticity

If the material is transversally isotropic then it will have 5 independent constants,

ε1

ε2

ε3

ε4

ε5

ε6


=



a11 a12 a13

a11 a13

a33

2(a11 − a12)

a44

a44





σ1

σ2

σ3

σ4

σ5

σ6


(29)
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Basic Equations of Anisotropic Elasticity

The total number of coefficients for different materials is
Class of Material Number of Non Zero Coeff. Number of Indep. Coeff.

3D 2D 3D 2D
General Anisotropy 36 9 21 6
One plane of Symmetry 20 9 13 6
Orthotropic 12 5 9 4
Transversely Isotropic 12 5 5 4
Isotropic 12 5 2 2

In terms of engineering constants for an orthotropic solid we would have

εx =
1
E1
σx − ν21

E2
σy − ν31

E3
σz (30)

εy = −ν12

E1
σx +

1
E2
σy − ν32

E3
σz (31)

εz = −ν13

E1
σx − ν23

E2
σy +

1
E3
σz (32)

γyz =
1
µ23

τyz (33)

γxz =
1
µ13

τxz (34)

γxy =
1
µ12

τxy (35)
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Basic Equations of Anisotropic Elasticity

however, of the 12 elastic constants, only 9 are independent because the
following: relations

E1ν21 = E2ν12 (36)

E2ν32 = E3ν23 (37)

E3ν13 = E1ν31 (38)

Preceding equations are written for the principal directions of elasticity, x , y , and
z in terms of the principal elastic constants (as opposed to constants in
equations for an arbitrary system of coordinates).

Whereas very few natural or man-made materials are truly orthotropic (certain
crystals as topaz are), a number of others are transversely isotropic. They have
through every point a plane in which all directions are equivalent with respect to
elastic properties (such as in laminates, shist, quartz, roller compacted concrete,
etc...).
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Basic Equations of Anisotropic Elasticity

For transversely isotropic solids in 3D, we have

εx = a11σx + a12σy + a13σz (39)

εy = a12σx + a11σy + a13σz (40)

εz = a13(σx + σy ) + a33σz (41)

γxy = 2(a11 − a12)τxy (42)

γyz = a44τxy (43)

γxz = a44τxz (44)

and

a11 =
1
E
; a12 = − ν

E
; a13 = − ν

′

E ′ ; a33 = − 1
E ′ ; a44 = − 1

µ ′ (45)

Thus we have five elastic constants.
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Basic Equations of Anisotropic Elasticity

E the Young’s modulus in the plane of isotropy and E ′ the one in the plane
normal to it, we would have ν corresponds to the transverse contraction in the
plane of isotropy when tension is applied in the plane; ν ′ corresponding to the
transverse contraction in the plane of isotropy when tension is applied normal to
the plane; µ ′ corresponding to the shear moduli for the plane of isotropy and any
plane normal to it, and µ is shear moduli for the plane of isotropy.
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Basic Equations of Anisotropic Elasticity Plane Stress-Strain Compliance Transformation

If we consider εi = aijσj for plane strain and εi = bijσj for plane stress then it can
be shown that

bij = aij −
ai3aj3

a33
(46)
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Basic Equations of Anisotropic Elasticity Stress Functions

The stress function �(x , y) can be written as

�(x , y) = 2Re[�1(z1) + �2(z2] (47)

where �1(z1) is an arbitrary function of z1 = x + s1y and �2(z2) is an arbitrary
function of z2 = x + s2y

Note the analogy with ϕ = Re[(x1 − ix2)ψ(z) + χ(z)] derived earlier for isotropic
cases, Eq. 22, where ψ and χ were the Muskhelisvily complex potentials.

It can be shown that using the Airy stress function defined in Eq. 14 and
combined with the compatibility Equation (Eq. 12) for anisotropic solids we
obtain (neglecting body forces)

a22
∂4�

∂x4 − 2a26
∂4�

∂x∂y
+ (2a12 + a66)

∂4�

∂x2∂y2 − 2a16
∂4�

∂x∂y3 + a11
∂4�

∂y4 = 0 (48)

For isotropic material this equation reduces to:

∂4�

∂x4 + 2
∂4�

∂x2∂y2 +
∂4�

∂y4 = 0 (49)
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Basic Equations of Anisotropic Elasticity Stress Functions

The characteristic equation of this homogeneous partial differential equation is

a11s4 − 2a16s3 + (2a12 + a66)s2 − 2a26s + a22 = 0 (50)

By energy considerations, Leknitskii, has shown that:

1 All roots are complex or purely imaginary for an ideally elastic body with
a11 ̸= 0, 2a12 + a66 ̸= 0, & a22 ̸= 0

2 Only exceptions are:
1 a22 = a26 = 0 ⇒ 2 roots equal to zero
2 a22 = a26 = 2a12 + a66 = a16 = 0 ⇒ all four roots are zero
3 a11 = a16 = 0 ⇒ 2 roots are infinite
4 a11 = a16 = 2a12 + a66 = a26 = 0 ⇒ 4 roots are infinite.

3 Two of the roots are conjugates of the two others: if we let

s1 = α1 + iβ1 s2 = α2 + iβ2 (51)

then

s3 = �s1 s4 = �s2 (52)

then β1 & β2 are both positive and β1 ̸= β2
4 Two cases are possible:
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Basic Equations of Anisotropic Elasticity Stress Functions

1 Roots are all different
2 Roots are pairwise equal

5 For isotropic material

α = 0 (53)

β = 1 (54)

s1 = s2 = i (55)
�s1 = �s2 = −i (56)

So s1 and s2 are complex parameters of first order of plane stress (or
strain). They characterize the degree of anisotropy for plane problems.
From it we can judge how much a body differs from isotropy.

6 If a material is orthotropic and x and y coincide with 1 and 2, then
a16 = a26 = 0 and we have

s4 + (
E1

µ
− 2ν1)s2 +

E1

E2
= 0 (57)

and
1 s1 = βi & s2 = δi ; purely imaginary and unequal roots
2 s1 = s2 = βi ; complex and equal roots
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Basic Equations of Anisotropic Elasticity Stress Functions

3 s1 = α+ βi ; s2 = −α+ βi
7 In addition we have

s ′
1 =

s2 cosψ− sinψ

cosψ+ s1 sinψ
(58)

s ′
2 =

s1 cosψ− sinψ

cosψ+ s2 sinψ
(59)

8 Invariants for orthotropic bodies are

I1 = a11 + a22 + 2a12 =
1
E1

+
1
E2

− 2ν12

E1
(60)

I2 = a66 − 4a12 =
1
µ12

+
4ν12

E1
(61)

I3 = a44 + a55 =
1
µ13

+
1
µ23

(62)

I4 = a13 + a23 = −(ν13

E1
+
ν23

E2
) = −ν31 + ν32

E2
(63)
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Basic Equations of Anisotropic Elasticity Stresses and Displacements

If we define:
ϕ1(z1) =

d�1

dz1
and ϕ2(z2) =

d�2

dz2
(64)

and using the definition of stress functions, the stresses are

σx = 2Re[s2
1ϕ1′(z1) + s2

2ϕ2′(z2)] (65)

σy = 2Re[ϕ1′(z1) + ϕ2′(z2)] (66)

τxy = −2Re[s1ϕ1′(z1) + s2ϕ2′(z2)] (67)

and the displacements are

u = 2Re[p1ϕ1(z1) + p2ϕ2(z2)] (68)

υ = 2Re[q1ϕ1(z1) + q2ϕ2(z2)] (69)

where {
pi = a11s2

i + a12 − a16si , (i = 1, 2)
qi = a12si +

a22
si

− a26
(70)
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Introduction

Introduction

Problem Coordinate System Real/Complex Solution Date
Circular Hole Polar Real Kirsh 1898
Elliptical Hole Elliptical Complex Inglis 1913
Crack Cartesian Complex Westergaard 1939
V Notch Polar Complex Williams 1952
Dissimilar Materials Polar Complex Williams 1959
Anisotropic Materials Cartesian Complex Sih 1965
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Circular Hole Fermi’s Solution

 ασ0 

σ0 

a

βa 

σ0 
σ 

x

Fermi’s problem, is an estimation based on a back-of-the-envelope solution to a
complex problem. It involves making guesses about quantities and does not
seek an exact solution.

A simple approximate solution should always be sought before a more complex
(and “exact” one is searched, typically finite element). Fermi’s solution is simple,
easy to follow, and less prone to error than the exact one.
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Circular Hole Fermi’s Solution

To examine the problem of stress concentration around a circular hole, let us
consider a pictorial representation of two rigid plates subjected to σ0 connected
by an infinite number of elastic strings. The stress trajectory is pretty simple.

If the strings are perturbed by inserting through them a a circular tube, then
strings are to be displaced.

Initial internal uniform stress is σ0, total force which would have been transmitted

through the opening (considering symmetry) �F− =

∫ a

0
σ0dx = σ0a. This force

has to be redirected over a segment βa.

Assume a quadratic stress redistribution

σ+ =
ασ0

β2a2 x2

�F+ =

∫ βa

0

ασ0

β2a2 x2dx =
ασ0βa

3

Equating �F− to �F+ we obtain

α =
β

3
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Circular Hole Fermi’s Solution

Hence at x = βa,

σT = σ0 + σ
+

= σ0(1 + α) = σ0

(
3 + β

β

)
The stress concentration factor is σT/σ0 or

SCF =
3 + β

β

As β→ 0 SCF=3, and correspondingly β = 1 (consistent with St Venant
Principle.

Of course, a different SCF would have been obtained had a different stress
distribution been assumed.
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Circular Hole Formulation

θb

I II

θ

a aa

θ
b x

y

σrr
τrθ

σ0

σ0

= +

σi
rr σii

rr

τrθb

Far-field boundary conditions are better expressed in cartesian coordinates,
whereas the ones around the hole should be written in polar coordinate system.

Solve by replacing plate with a thick tube subjected to two different set of loads.

I: Thick cylinder subjected to uniform radial pressure (solution of
which is well known from Strength of Materials)

II: Thick cylinder subjected to both radial and shear stresses which
must be compatible with the traction applied on the rectangular
plate.

Stress function must satisfies biharmonic Equation ∇2 (∇2�
)

and the far-field
boundary conditions.
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Circular Hole Formulation

From St Venant principle, away from the hole, the boundary conditions are given
by:

σxx = σ0; σyy = τxy = 0

Recalling that σxx = ∂2�
∂y2 , this would would suggest a stress function � of the

form � = σ0y2.

Alternatively, the presence of the circular hole would suggest a polar
representation of �.

Substituting y = r sin θ would result in � = σ0r 2 sin2 θ.

Since sin2 θ = 1
2 (1 − cos 2θ), we could simplify the stress function into

� = f (r) cos 2θ
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Circular Hole Formulation

This function must also satisfy the biharmonic equation(
∂2

∂r 2 +
1
r
∂

∂r
+

1
r 2

∂2

∂θ2

)(
∂2�

∂r 2 +
1
r
∂�

∂r
+

1
r 2

∂2�

∂θ2

)
= 0

or (
d2

dr 2 +
1
r

d
dr

− 4
r 2

)(
d2f
dr 2 +

1
r

df
dr

− 4f
r 2

)
= 0

(note that the cos 2θ term is dropped since f does not depend on θ)
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Circular Hole Solution

The general solution of this ordinary linear fourth order differential equation is

f (r) = Ar 2 + Br 4 + C
1
r 2 + D

Stress function becomes

� =

(
Ar 2 + Br 4 + C

1
r 2 + D

)
cos 2θ (1)

The stresses are given by:

σrr =
1
r
∂�
∂r + 1

r2
∂2�
∂θ2 σθθ = ∂2�

∂r2 σrθ = − ∂
∂r

( 1
r
∂�
∂θ

)
(2)

Substituting into Eq. 1

σrr = 1
r
∂�
∂r + 1

r2
∂2�
∂θ2 = −

(
2A + 6C

r4 + 4D
r2

)
cos 2θ

σθθ = ∂2�
∂r2 =

(
2A + 12Br 2 + 6C

r4

)
cos 2θ

τrθ = − ∂
∂r

( 1
r
∂�
∂θ

)
=

(
2A + 6Br 2 − 6C

r4 − 2D
r2

)
sin 2θ

(3)
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Circular Hole Solution

We still need to solve for A → D through enforcement of the boundary
conditions.

Solve for the four constants of integration by applying the boundary conditions.

But first we must transform the cartesian stress σxx = σ0 away from the hole into
polar stresses (inner around r = b). The stress transformation from cartesian to
polar is given by[

σrr σrθ

σrθ σθθ

]
=

[
cos θ − sin θ

sin θ cos θ

] [
σ0 0
0 0

] [
cos θ − sin θ

sin θ cos θ

]T

Recall that sin2 θ = 1−cos 2θ
2 , and cos2 θ = 1+cos 2θ

2 .

Substituting, we obtain

(σrr )r=b = σ0 cos
2 θ =

1
2
σ0( 1︸︷︷︸

I

+cos 2θ︸ ︷︷ ︸
II

) (4)

(σrθ)r=b =
1
2
σ0 sin 2θ︸ ︷︷ ︸

II

(5)

(σθθ)r=b =
σ0

2
(1 − cos 2θ) (6)
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Circular Hole Solution

The trick now is to decompose the state of stress given by Eq. 4 and 5, into two
states I and II (see figure)

State I

(σrr )
I
r=b =

1
2
σ0 (7)

(σrθ)
I
r=b = 0 (8)

which actually corresponds to a thick cylinder with external pressure
applied on r = b and of magnitude σ0/2. We know how to solve this from
Strength of Materials
State II

(σrr )
II
r=b =

1
2
σ0 cos 2θ BC # 1 (9)

(σrθ)
II
r=b =

1
2
σ0 sin 2θ BC # 2 (10)
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Circular Hole Solution

We have 2 boundary conditions at r = b, we need 2 more. Around the
inner hole: the stresses should be equal to zero:

(σrr )r=a = 0 BC # 3 (11)

(σrθ)r=a = 0 BC # 4 (12)

Note that we could not have obtained a closed form solution by simply adding
stat I and II solutions as the cos term will not cancel out.

Upon substitution in Eq. 3 the four boundary conditions (Eq. 9, 10, 11, and 12)

−
(

2A +
6C
b4 +

4D
b2

)
=

1
2
σ0 (13)(

2A + 6Bb2 − 6C
b4 − 2D

b2

)
=

1
2
σ0 (14)

−
(

2A +
6C
a4 +

4D
a2

)
= 0 (15)(

2A + 6Ba2 − 6C
a4 − 2D

a2

)
= 0 (16)
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Circular Hole Solution

Solve for the four unknowns, and taking a
b = 0 (i.e. an infinite plate), we obtain:

A = −σ0

4
; B = 0; C = −a4

4
σ0; D =

a2

2
σ0

To this solution, we must superimpose the one of a thick cylinder subjected to a
uniform radial traction σ0/2 on the outer surface (solution I), and with b much
greater than a (Eq. 7 and 8).

Stresses are obtained from Strength of Materials yielding for this problem
(careful about the sign)

σrr =
σ0

2

(
1 − a2

r 2

)
(17)

σθθ =
σ0

2

(
1 +

a2

r 2

)
(18)
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Circular Hole Solution

Substituting Eq. 13-16, and 17-18 into Eq. 3, we obtain

σrr =
σ0

2

(
1 − a2

r 2

)
︸ ︷︷ ︸

I

+

(
1 + 3

a4

r 4 − 4a2

r 2

)
1
2
σ0 cos 2θ︸ ︷︷ ︸

II

(19)

σθθ =
σ0

2

(
1 +

a2

r 2

)
︸ ︷︷ ︸

I

−
(

1 +
3a4

r 4

)
1
2
σ0 cos 2θ︸ ︷︷ ︸

II

(20)

σrθ = −
(

1 − 3a4

r 4 +
2a2

r 2

)
1
2
σ0 sin 2θ︸ ︷︷ ︸

II

(21)

Observe that as r → ∞, both σrr and σrθ are equal to the values given in Eq. 4
and 5 respectively.
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Circular Hole Solution

Alternatively, at the edge of the hole when r = a we obtain

σrr = 0

σrθ = 0

σθθ|r=a = σ0(1 − 2 cos 2θ)

which gives the following stress concentration factors

θ SCF
π/2, 3π/2 (Normal to load) 3

0, π (Along load) -1

Fracture Mechanics; V. E. Saouma; Elasticity Based Solutions 17/69



Elliptical hole Formulation

2a

2b
α=α0  x1

x2

σ0 

a and b are the major and minor semi-axes.

Elliptical hole defined along α = α0, and as we go
around the ellipse 0 ≤ β ≤ 2π.

Note that for infinite boundary conditions we will use
cartesian, and around the ellipse curvilinear
coordinate system equations.

Fracture Mechanics; V. E. Saouma; Elasticity Based Solutions 18/69



Elliptical hole Formulation

In order to properly apply the boundary condition around the elliptical hole, we
need to relate a and b to α and β. Substitute β = 0 and β = π

2 in

x1 = c coshα cosβ =
c
2
cosβ(eα + e−α) (22)

x2 = c sinhα sinβ =
c
2
sinβ(eα − e−α) (23)

x1|β=0;α=α0
⇒ a = c coshα cosβ = c coshα0 ⇒ coshα0 =

a
c

(24)

x2|β=π/2;α=α0
⇒ b = c sinhα sinβ = c sinhα0 ⇒ sinhα0 =

b
c

(25)
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Elliptical hole Boundary Conditions

Boundary conditions:

1 At infinity we have σ22 = σ0 and σ11 = σ12 = 0. Substituting,

σ11 + σ22 = 4ℜψ ′(z) = σ0 (26)

σ22 − σ11 + 2iσ12 = 2[�zψ ′′(z) + χ ′′(z)] = σ0 (27)

2 Around the elliptical hole (α = α0): σαα = σαβ = 0
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Elliptical hole Solution

Inglis found that the following complex potentials satisfy those boundary
conditions:

4ψ(z) = σ0c
[(

1 + e2α0
)
sinh p − e2α0 cosh p

]
4χ(z) = −σ0c2

[
(cosh 2α0 − coshπ) p +

1
2

e2α0 − cosh 2
(

p − α0 − i
π

2

)]
Note that they are periodic in β (period of 2π) and that p = α+ iβ

Since σαα = 0 for α = α0, we can solve for σββ from

σαα︸︷︷︸
0

+σββ = 2[ψ ′(z) + �ψ ′(�z)]

thus differentiating ψ(z) and �ψ ′(�z) and substituting

(σββ)α=α0 =
sinh 2αo − 1 + e2α0 cos 2β

cosh 2αo − cos 2β
σ0
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Elliptical hole Solution

The maximum value of σββ occurs at the end of the ellipse where β = 0 or π.
For those points we have cos 2β = 1, and since the tangent to the ellipse is now
parallel to x2 we have:

(σββ)
β=0,π
α=α0 = σ22 =

sinh 2α0 − 1 + e2α0

cosh 2α0 − 1
σ0 (28)

We now have a solution for the stress at the tip of the ellipse. However it is
expressed in curvilinear coordinates. We seek a solution in terms of a and b.
This will be achieved through sinh(2α0) and cosh(2α0)

We can exploit these relationships

cosh 2α0 = 2 cosh2 α0 − 1

sinh 2α0 = 2 sinhα0 coshα0

and from Eq. 24 and 25 we have coshα0 = a
c and sinhα0 = b

c . Substituting

sinh 2α0 =
2ab
c2

cosh 2α0 =
a2 + b2

c2
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Elliptical hole Solution

Finally, substituting those two equations into Eq. 28

(σββ)
β=0,π
α=α0 = σ0

(
1 + 2

a
b

)
(29)

We observe that for a = b, we recover the stress concentration factor of 3 of a
circular hole, and that for a degenerated ellipse, i.e a crack there is an infinite
stress.

Alternatively, let ρ be the radius of curvature of a parametric curve. From
analytical geometry,

ρ2 =

(
x

′2 + y
′2
)3

(x ′y ′′ − y ′x ′′)2

derivatives taken with respect to a parameter t .

Define x1 = a cos t and x2 = b sin t ; substituting

ρ2 =
1

a2b2 (a
2 sin2 t + b2 cos2 t)3

At the tip of the ellipse x2 = 0 and x1 = ±a. Thus, sin t = 0 and cos t = 1, and ρ
becomes equal to ρ = b2

a .
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Elliptical hole Solution

Substituting into Eq. 29

(σββ)
β=0,π
α=α0 = σ0

(
1 + 2

√
a
ρ

)
(30)

Note that the stress concentration factor is inversely proportional to the radius of
curvature of an opening.
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Crack; Westergaard Formulation

2a

x1

x2

σ0 

σ0 r
θ 

z

Consider an infinite plate subjected to uniform
biaxial stress σ0 with a central crack of length
2a,

From Inglis solution, we know that there would
be a theoretically infinite stress at the tip of
the crack, however neither the nature of the
singularity nor the stress field can be derived
from it.
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Crack; Westergaard Solution

Let ϕ ′(z) and ϕ ′′(z) the first and second derivatives respectively, and �ϕ(z) and
��ϕ(z) its first and second integrals respectively of the function ϕ(z).

Westergaard’s solution, starts by assuming �(z) as a harmonic function (thus
satisfying Laplace’s equation ∇2 (�) = 0) and postulates that

� = ℜ��ϕ(z) + x2ℑ�ϕ(z)

is a solution to the crack problem. Must determine ϕ such that the boundary
conditions are satisfied.

For reasons which will become apparent later, we generalize our problem to one
in which we have a biaxial state of stress applied on the plate. Hence:

Along the crack: at x2 = 0 and −a < x1 < a we have σ22 = 0 (traction free
crack).
At infinity: at x2 = ±∞, σ22 = σ0

Fracture Mechanics; V. E. Saouma; Elasticity Based Solutions 26/69



Crack; Westergaard Solution

The function is analytic
∂

∂x1
=

d
dz

and from Cauchy-Riemann
∂Re
∂x1

=
∂Im
∂x2

;

The stress σ22 will then be given by

σ22 =
∂2�

∂x2
1
=
∂

∂z

(
∂�

∂z

)
= ℜϕ(z) + x2ℑϕ ′(z) (31)

thus at x2 = 0, σ22 reduces to

(σ22)x2=0 = ℜϕ(z) (32)
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Crack; Westergaard Solution

Furthermore, we expect σ22 → σ0 as x1 → ∞, and σ22 to be greater than σ0

when | x1 − a |> ϵ (due to anticipated singularity predicted by Inglis), thus a
possible choice for σ22 would be σ22 = σ0

1− a
x1

, for symmetry, this is extended to

σ22 = σ0(
1− a2

x2
1

) . However, we also need to have σ22 = 0 when x2 = 0 and

−a < x1 < a, thus the function ϕ(z) should become imaginary along the crack,
and

σ22 = ℜ

 σ0√
1 − a2

x2
1


Thus from Eq. 32 we have (note the transition from x1 to z).

ϕ(z) =
σ0√

1 − a2

z2

we first consider the first term of Eq. 31 (ℜϕ(z)):

Perform a change of variable and define η = z − a = reiθ
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Crack; Westergaard Solution

Assume η
a ≪ 1

Recall that eiθ = cos θ+ i sin θ,

then ℜϕ(z) can be rewritten as

ℜϕ(z) = ℜ σ0√
η2+2aη

η2+a2+2aη

≈ℜ σ0√
2aη
a2

≈ ℜσ0

√
a

2η
≈ ℜσ0

√
a

2reiθ ≈ ℜσ0

√
a
2r

e−i θ2 ≈ σ0

√
a
2r

cos
θ

2

We then consider the second term of Eq. 31 (x2ℑϕ ′(z)) (and recall that
sin 2θ = 2 sin θ cos θ; e−iθ = cos θ− i sin θ), substitute x2 = r sin θ into the
second term to obtain

x2ℑϕ ′ = r sin θℑσ0

2

√
a

2(reiθ)3 = σ0

√
a
2r

sin
θ

2
cos

θ

2
sin

3θ
2
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Crack; Westergaard Solution

We thus obtain

σ22 = σ0

√
a
2r

cos
θ

2

(
1 + sin

θ

2
sin

3θ
2

)
+ · · · (33)

σ11 = σ0

√
a
2r

cos
θ

2

(
1 − sin

θ

2
sin

3θ
2

)
+ · · · (34)

σ12 = σ0

√
a
2r

sin
θ

2
cos

θ

2
cos

3θ
2

+ · · · (35)

Recall that this was the biaxial case, the uniaxial case may be reproduced by
superimposing a traction in the x1 direction equal to −σ0, however this should
not affect the stress field close to the crack tip.
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Crack; Westergaard Solution

Using a similar approach, we can derive expressions for the stress field around a
crack tip in a plate subjected to far field shear stresses (mode II as defined later)
using the following expression of ϕ

�II(z) = −x2ℜ�ϕII(z) ⇒ ϕII =
τ√

1 − a2

z2

and for the same crack but subjected to antiplane shear stresses (mode III)

� ′
III(z) =

σ13√
1 − a2

z2
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Williams Solution Formulation

α 

2γ 
θ r

P Using the method of separation of variables in 1952,
Williams proposed the following solution

�(r , θ) ≡ rλ+1F (θ, λ) (36)

where F (θ, λ) = em(λ)θ is a real function, and m(λ) is
yet to be determined, by satisfying the bi-harmonic
equation.

∇2
(
∇2�

)
=

(
∂2

∂r 2 +
1
r
∂

∂r
+

1
r 2

∂2

∂θ2

)(
∂2�

∂r 2 +
1
r
∂�

∂r
+

1
r 2

∂2�

∂θ2

)
= 0 (37)

Considered problem is not a crack, but rather a plate under tension with angular
corners making an angle 2γ (for γ = 0 we recover the crack problem of
Westergaard).
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Williams Solution Solution

Substituting Eq. 36 into the biharmonic equation (Eq. 37) gives

∂4F (θ, λ)

∂θ4 + 2(λ2 + 1)
∂2F (θ, λ)

∂θ2 + (λ2 − 1)2F (θ, λ) = 0

Substituting F (θ, λ) with em(λ)θ, this equation reduces to

em(λ)θ
[
(λ− 1)2 + m(λ)2

] [
(1 + λ)2 + m(λ)2

]
= 0

The roots of this equation are

m(λ) = ±i (λ− 1)

m(λ) = ±i (λ+ 1)
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Williams Solution Solution

Since F (θ, λ) = em(λ)θ = e±i(λ±1) is a real function then the solutions of the
differential equation 37 are also real functions. Recalling that

eim(λ)θ = cosm(λ)θ+ i sinm(λ)θ

we select as solution
F1(θ, λ) = cos(λ− 1)θ
F2(θ, λ) = cos(λ+ 1)θ
F3(θ, λ) = sin(λ− 1)θ
F4(θ, λ) = sin(λ+ 1)θ

and finally F (θ, λ) will be a linear combination of F1, F2, F3 and F4, thus

�(r , θ) = rλ+1

 Symmetric︷ ︸︸ ︷
A cos(λ− 1)θ+ B cos(λ+ 1)θ+

Unsymmetric︷ ︸︸ ︷
C sin(λ− 1)θ+ D sin(λ+ 1)θ


︸ ︷︷ ︸

F(θ,λ)

(38)
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Williams Solution Solution

We seek to determine the stresses in polar coordinates in order to apply the
boundary conditions. Substituting Eq. 36 into Eq. 2

σθθ =
∂2�

∂r 2

σrθ = − ∂

∂r

(
1
r
∂�

∂θ

)
we obtain:

σθθ = rλ−1λ(λ+ 1)F (θ, λ) (39)

σrθ = rλ−1[−λF ′(θ, λ)] (40)

Substituting

σθθ = rλ−1λ(λ+ 1)[A cos(λ− 1)θ+ B cos(λ+ 1)θ

+ C sin(λ− 1)θ+ D sin(λ+ 1)θ]

σrθ = −λrλ−1[−A(λ− 1) sin(λ− 1)θ− B(λ+ 1) sin(λ+ 1)θ

+ C(λ− 1) cos(λ− 1)θ+ D(λ+ 1) cos(λ+ 1)θ]
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Williams Solution Solution

The boundary conditions are next applied by considering a plate with a central
crack, applying the following 4 boundary conditions along the crack edges

σθθ |θ=±α = 0

σrθ |θ=±α = 0

where α+ γ = π, which implies that

F (α) = F (−α) = F ′(α) = F ′(−α) = 0
cos(λ− 1)α cos(λ+ 1)α 0 0
ω sin(λ− 1)α sin(λ+ 1)α 0 0

0 0 sin(λ− 1)α sin(λ+ 1)α
0 0 ω cos(λ− 1)α cos(λ+ 1)α




A
B
C
D

 = 0

where ω = λ−1
λ+1 .

Note that whereas Eq. 39 and 40 are expressed in terms of the four constants
(A,B,C, and D), the above equation is written in terms of the summation and the
differences of the stress equations, thus yielding a block diagonal matrix.
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Williams Solution Solution

It can readily be seen that A and B are independent of C and D, and that for this
homogeneous equation a nontrivial solution would exist if and only if the
determinant of the system of linear equations vanishes to zero. This would lead
(after some simplifications) to:

sin 2λα± λ sin 2α = 0 (41)

We observe from Eq. 38 that the coefficients A and B correspond to symmetric
loadings (mode I), and C and D to unsymmetric loading (mode II).

Let us denote by λn the eigenvalues of λ which are solution of Eq. 41 for the
symmetrical loading, and ξn solutions for the antisymmetric loading:

sin 2λnα+ λn sin 2α = 0

sin 2ξnα− ξn sin 2α = 0
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Williams Solution Solution

For the case of a crack, i.e α = π solution of the characteristic equation1 is

sin(2πλn) = 0

sin(2πξn) = 0

which has solutions λn = n
2 with n = 1, 3, 4, · · · (it can be shown that n = 2 gives

rise to a rigid body motion contribution). Substituting into Eq. 38

F (θ, λ) = An cos
(n

2
− 1
)
θ+ Bn cos

(n
2
+ 1
)
θ

+Cn sin
(n

2
− 1
)
θ+ Dn sin

(n
2
+ 1
)
θ

We observe that the previous expression can be simplified by noting that for
each eigenvalue λn and ξn there is a relationship between A and B, and between
C and D in Eq. 32. For symmetrical loading we have

An cos(λn − 1)α+ Bn cos(λn + 1)α = 0

Anω sin(λn − 1)α+ Bn sin(λn + 1)α = 0
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Williams Solution Solution

and for antisymmetric loading we have

Cn sin(ξn − 1)α+ Dn sin(ξn + 1)α = 0

Cnω cos(ξn − 1)α+ Dn cos(ξn + 1)α = 0

Thus we can define

an =
An

Bn
= −cos(λn − 1)α

cos(λn + 1)α
= −ω sin(λn − 1)α

sin(λn + 1)α

bn =
Cn

Dn
= − sin(λn − 1)α

sin(λn + 1)α
= −ω cos(λn − 1)α

cos(λn + 1)α

these ratios are equal to 1/3 and −1 respectively for α = π and λ = 1/2. and

F (θ) =
∑[

an

(
sin

3
2
θ+ sin

1
2
θ

)
+ bn

(
1
3
cos

3
2
θ+ cos

1
2
θ

)]
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Williams Solution Solution

The stresses are obtained by substituting

σrr =
∑[

bn√
r

(
5
4
cos

θ

2
− 1

4
cos

3θ
2

)
+

an√
r

(
−5

4
sin

θ

2
+

3
4
sin

3θ
2

)]
σθθ =

∑[
bn√

r

(
3
4
cos

θ

2
+

1
4
cos

3θ
2

)
+

an√
r

(
−3

4
sin

θ

2
− 3

4
sin

3θ
2

)]
σrθ =

∑[
bn√

r

(
1
4
sin

θ

2
+

1
4
sin

3θ
2

)
+

an√
r

(
1
4
cos

θ

2
+

3
4
cos

3θ
2

)]
These equations can be further simplified into

σrr =
∑[

bn√
r
cos

θ

2

(
1 + sin2 θ

2

)
+

an√
r

(
−5

4
sin

θ

2
+

3
4
sin

3θ
2

)]
σθθ =

∑[
bn√

r
cos

θ

2

(
1 − sin2 θ

2

)
+

an√
r

(
−3

4
sin

θ

2
− 3

4
sin

3θ
2

)]
σrθ =

∑[
bn√

r
sin

θ

2
cos2 θ

2
+

an√
r

(
1
4
cos

θ

2
+

3
4
cos

3θ
2

)]
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Williams Solution Solution

It can be shown that the displacements will be given by

u =
1

2µ

∑
Re
{

anrλn [(κ+ λn cos 2α+ cos 2λnα) cos λnθ− λn cos(λn − 2)θ]

−bnrξn [(κ+ ξn cos 2α− cos 2ξnα) sin ξnθ− ξn sin(ξn − 2)θ]
}

v =
1

2µ

∑
Re
{

anrλn [(κ− λn cos 2α− cos 2λnα) sin λnθ+ λn sin(λn − 2)θ]

+bnrξn [(κ− ξn cos 2α+ cos 2ξnα) cos ξnθ+ ξn cos(ξn − 2)θ]
}

This solution can be compared with Westergaard’s solution by comparing
Equations 137 and 137 with Eq. 42; Eq. 137 and 137 with Eq. 42; and Eq. 137
and 137 with Eq. 42 for n = 1. From this we observe that

b1 =
KI√
2π

a1 =
KII√
2π

1Note that the solution for λn and ξn for other angles can not be obtained
algebraically, a numerical technique must be used.
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Interface between Two Dissimilar Materials General Function

2γ 

E1,ν1  

E2,ν2  

Problem of a crack at the interface between two dissimilar
isotropic materials, rewrite Eq. 36 as

�i(r , θ) ≡ rλ+1Fi(θ, λ) (42)

where the subscript i refers to material 1 and 2

Hence:

Fi(θ, λ) = Ai cos(λ− 1)θ+ Bi cos(λ+ 1)θ+ Ci sin(λ− 1)θ+ Di sin(λ+ 1)θ (43)
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Interface between Two Dissimilar Materials Boundary Conditions

Boundary conditions:

1 Zero stresses, σθθ, on the free edges (at θ = ±π). From Eq. 39

σθθ|θ=π = rλ−1λ(λ+ 1)[A1 cos(λ− 1)π+ B1 cos(λ+ 1)π

+C1 sin(λ− 1)π+ D1 sin(λ+ 1)π] = 0 (44)

σθθ|θ=−π = rλ−1λ(λ+ 1)[A2 cos(λ− 1)π+ B2 cos(λ+ 1)π

−C2 sin(λ− 1)π− D2 sin(λ+ 1)π] = 0 (45)

or F1(π) = F2(−π) = 0

2 Zero stresses, σrθ, on the free edges (at θ = ±π); From Eq. 40

σrθ|θ=π = −λrλ−1[−A1(λ− 1) sin(λ− 1)θ− B1(λ+ 1) sin(λ+ 1)θ

+C1(λ− 1) cos(λ− 1)θ+ D1(λ+ 1) cos(λ+ 1)θ] = 0 (46)

σrθ|θ=−π = −λrλ−1F ′(θ) (47)

= −λrλ−1[+A2(λ− 1) sin(λ− 1)θ+ B2(λ+ 1) sin(λ+ 1)θ

−C2(λ− 1) cos(λ− 1)θ− D2(λ+ 1) cos(λ+ 1)θ] = 0 (48)

or F ′
1 (π) = F ′

2 (−π) = 0
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Interface between Two Dissimilar Materials Boundary Conditions

3 Continuity of σθθ at the interface, θ = 0

A1 + B1 = A2 + B2 (49)

4 Continuity of σrθ at θ = 0 along the interface

(λ− 1)C1 + (λ+ 1)D1 = −(λ− 1)C2 − (λ+ 1)D2 (50)

5 Continuity of displacements (ur , uθ) at the interface. Using the polar expression
of the displacements

u i
r =

1
2µi

rλ{−(λ+ 1)Fi(θ) + 4(1 − αi)[Ci sin(λ− 1)θ+ Ai cos(λ− 1)θ]}(51)

u i
θ =

1
2µi

rλ{−F ′
i (θ)− 4(1 − αi)[Ci cos(λ− 1)θ− Ai sin(λ− 1)θ]} (52)

where µ is the shear modulus, and αi ≡ νi
1+νi

we obtain

1
2µ1

[−(λ+ 1)F1(0) + 4A1(1 − α1)] =
1

2µ2
[−(λ+ 1)F2(0) + 4A2(1 − α2)](53)

1
2µ1

[
−F ′

1 (0)− 4C1(1 − α1)
]

=
1

2µ2

[
−F ′

2 (0)− 4C2(1 − α2)
]

(54)

Fracture Mechanics; V. E. Saouma; Elasticity Based Solutions 44/69



Interface between Two Dissimilar Materials Homogeneous Equations

Applying those boundary conditions, will lead to 8 homogeneous linear
equations (Eq. 44, 45, 47, 48, 49, 50, 53, 54) in terms of the 8 unknowns
A1,B1,C1,D1,A2,B2,C2 and D2.

A nontrivial solution exists if the determinant of the 8 equations is equal to zero.
This determinant2 is equal to

cot2 λπ+

[
2k(1 − α2)− 2(1 − α1)− (k − 1)

2k(1 − α2) + 2(1 − α1)

]2

= 0 (55)

where k = µ1
µ2

.

2The original paper states: ... After some algebraic simplification...
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Interface between Two Dissimilar Materials Homogeneous Equations

For the homogeneous case α1 = α2 and k = 1, the previous equation reduces
to cot2 λπ = 0 or sin2 λπ = 0 thus we recover the same solution as the one of
Eq. 42 for a crack in one material:

λ =
n
2

n = 1, 2, 3, ... (56)

Note that we exclude negative values of n to ensure finite displacements as the
origin is approached, and the lowest eigenvalue controls.

Noting that there can not be a real solution to Eq. 55, we define

β =
2k(1 − α2)− 2(1 − α1)− (k − 1)

2k(1 − α2) + 2(1 − α1)
(57)

and thus, Eq. 55 leads to cot2 λπ = −β2, or

cot λπ = ±iβ (58)
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Interface between Two Dissimilar Materials Homogeneous Equations

To solve this equation, we use the following trigonometric relations

cot z =
sin 2x − i sinh 2y
cosh 2y − cos 2x

(59)

sin 2θπ =
2u

1 + u2 (60)

cos 2θπ =
1 − u2

1 + u2 (61)

sinh 2θπ =
2v

1 − v2 (62)

cosh 2θπ =
1 + v2

1 − v2 (63)

where

u = tan λrπ (64)

v = tanh λjπ (65)
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Interface between Two Dissimilar Materials Homogeneous Equations

where we have assumed a complex value for λ

λ = λr + iλj (66)

Then, we obtain

sin 2λrπ =
2u

1 + u2 (67)

cos 2λrπ =
1 − u2

1 + u2 (68)

sinh 2λjπ =
2v

1 − v2 (69)

cosh 2λjπ =
1 + v2

1 − v2 (70)

Substituting in Eq. 59 lead to

cot λπ =
u(1 − v2)− iv(1 + u2)

u2 + v2 (71)

=
tan λrπ(1 − tanh2 λjπ)

tan2 λrπ+ tanh2 λjπ︸ ︷︷ ︸
ℜ(cot λπ)=0

−i
(tan2 λrπ+ 1) tanh λjπ

tan2 λrπ+ tanh2 λjπ︸ ︷︷ ︸
ℑ(cot λπ)=±β

(72)

Fracture Mechanics; V. E. Saouma; Elasticity Based Solutions 48/69



Interface between Two Dissimilar Materials Homogeneous Equations

Thus, Eq. 55 finally leads to

ℜ(cot λπ) = 0 (73)

ℑ(cot λπ) = ±β (74)

we thus have two equations with two unknowns.
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Interface between Two Dissimilar Materials Solve for λ

Let us solve those two equations. Two sets of solutions are possible:

1 If from 72 tan λrπ = 0 then

λr = n = 0, 1, 2, 3, ... (75)

and accordingly from Eq. 74

λj = ±1
π
coth−1 β (76)

2 Alternatively, from Eq. 73 cot λrπ = 0 ⇒ tan λrπ = ∞ and3:

λr =
2n + 1

2
n = 0, 1, 2, 3, ... (77)

λj = ±1
π
tanh−1 β (78)

=
1

2π
log

[
β+ 1
β− 1

]
(79)

We note that for this case, λj → 0 as α1 → α2 and k → 1 in β.

3Recall that tanh−1 x = 1
2 log

1+x
1−x
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Interface between Two Dissimilar Materials Near Crack Tip Stresses

Now that we have solved for λ, we need to derive expressions for the near crack tip stress field. We rewrite Eq. 42 as

�(r) = rλ+1︸ ︷︷ ︸
G(r)

F(θ, λ) (80)

we note that we no longer have two sets of functions, as the effect of dissimilar materials has been accounted for and is
embedded in λ.

The stresses will be given by Eq. 2

σrr =
1

r2

∂2�

∂θ2
+

1

r

∂�

∂r
= r−2G(r)F ′′

(θ) + r−1G ′
(r)F(θ) (81)

σθθ =
∂2�

∂r2
= G ′′

(r)F(θ) (82)

σrθ =
1

r2

∂�

∂θ
−

1

r

∂2�

∂r∂θ
= r−2G(r)F ′

(θ) − r−1G ′
(r)F ′

(θ) (83)

Therefore, we must solve for F ′(θ), F ′′(θ), G ′(r) and G ′′(r) in terms of λ = λr + iλj .
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Interface between Two Dissimilar Materials Near Crack Tip Stresses

First we note that

G(r) = rλ+1
= rλr+1+iλj (84)

r iλj = eiλj log(r) (85)

recalling that log(z) = log|z|+i arg z, and since |z|=
√

x2 + y2 =
√

r2 + 0 = r , we have arg z = 2kπ, and
k = 0,±1,±2, · · ·. Hence,

log(r) = log|r|+i2kπ (86)

and Eq. 85 becomes

r iλj = eiλj log(r) (87)

= eiλj [log(r)+i2kπ (88)

= eiλj log(r)−2kπλj (89)

= e−2kπλj eiλj log(r) (90)

= e−2kπλj
[
cos

(
λj log(r)

)
+ i sin

(
λj log(r)

)]
(91)
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Interface between Two Dissimilar Materials Near Crack Tip Stresses

Now, for k = 0, r iλj becomes

r iλj = cos(λj log(r)) + i sin(λj log(r)) (92)

and accordingly, Eq. 84 becomes

G(r) = rλ+1
= rλr+1r iλj (93)

= rλr+1
[
cos(λj log(r)) + i sin(λj log(r))

]
(94)

and for λr = 1/2

G(r) = r
3
2
[
cos(λj log(r)) + i sin(λj log(r))

]
(95)

ℜG(r) = r
3
2 cos(λj log(r)) (96)

G ′
(r) = r

1
2

[ 3

2
cos(λj log(r)) + λj sin(λj log(r))

]
(97)

G ′′
(r) = r−

1
2

[( 3

4
− λ

2
j

)
cos(λj log(r)) +

( 3

2
+

λj

2

)
sin(λj log(r))

]
(98)
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Interface between Two Dissimilar Materials Near Crack Tip Stresses

Back to F(θ), which was defined in Eq. 43

F(θ, λ) = A cos(λ − 1)θ + B cos(λ + 1)θ + C sin(λ − 1)θ + D sin(λ + 1)θ (99)

we need to replace λ by λr + iλj . However, first we recall the following relations

sin(x + iy) = sin(x) cosh(y) − i cos(x) sinh(y) (100)

cos(x + iy) = cos(x) cosh(y) + i sin(x) sinh(y) (101)

thus,

ℜ
{
sin
[
(λr ± 1) + iλj

]
θ
}

= sin(λr ± 1) cos(θ) cosh λjθ (102)

ℜ
{
cos

[
(λr ± 1) + iλj

]
θ
}

= cos(λr ± 1) cos(θ) cosh λjθ (103)

Substituting those relations in Eq. 99

ℜ [F(θ)] = cosh λjθ︸ ︷︷ ︸
f(θ)

(104)

[A cos(λr − 1)θ + B cos(λr + 1)θ + C sin(λr − 1)θ + D sin(λr + 1)θ]︸ ︷︷ ︸
g(θ)

(105)

ℜ [�(r , θ)] = rλr+1
cos(λj log(r)) cosh λjθ

[A cos(λr − 1)θ + B cos(λr + 1)θ

+C sin(λr − 1)θ + D sin(λr + 1)θ] (106)
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Interface between Two Dissimilar Materials Near Crack Tip Stresses

For λr =
1
2

g(θ) = A cos
θ

2
+ B cos

3θ
2

− C sin
θ

2
+ D sin

3θ
2

(107)

Applying the boundary conditions at θ = ±π, σθθ = 0, Eq. 82 F (θ) = 0, that is
g1(−π) = g2(π) or

C = −D = −a (108)

Similarly at θ = ±π, σrθ = 0. Thus, from Eq. 83 F ′(θ) = 0, or g ′
1(−π) = g ′

2(π) or

A = 3B = b (109)

From those two equations we rewrite Eq. 107

g(θ) = a
(
sin

θ

2
+ sin

3θ
2

)
+ b

(
3 cos

θ

2
+ cos

3θ
2

)
(110)

We now determine the derivatives

f ′(θ) = λj sinh λjθ (111)

g ′(θ) = a
(

3
2
cos

3θ
2

+
1
2
cos

θ

2

)
+ b

(
−3

2
sin

3θ
2

− 3
2
sin

θ

2

)
(112)
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Interface between Two Dissimilar Materials Near Crack Tip Stresses

Thus, we now can determine

F ′
(θ) = f ′(θ)g(θ) + f(θ)g ′

(θ) (113)

= a
{
cosh λjθ

[ 3

2
cos

3θ

2
+

1

2
cos

θ

2

]
+ λj sinh λjθ

[
sin

3θ

2
+ sin

θ

2

]}
+b
{
cosh λjθ

[
−

3

2
sin

3θ

2
−

3

2
sin

θ

2

]
+ λj sinh λjθ

[
cos

3θ

2
+ 3 cos

θ

2

]}
(114)

Similarly, the second derivative F ′′(θ) is determined

F ′′
(θ) = f ′′(θ)g(θ) + 2f ′(θ)g ′

(θ) + f(θ)g ′′
(θ) (115)

= a
{
cosh λjθ

[
−

9

4
sin

3θ

2
−

1

4
sin

θ

2

]
+ 2λj sinh λjθ

[ 3

2
cos

3θ

2
+

1

2
cos

θ

2

]
+λ

2
j cosh

2
λjθ

[
sin

3θ

2
+ sin

θ

2

]}
+

b
{
cosh λjθ

[
−

9

4
cos

3θ

2
−

3

4
cos

θ

2

]
+ 2λj sinh λjθ

[
−

3

2
sin

3θ

2
−

3

2
sin

θ

2

]
+λ

2
j cosh

2
λjθ

[
cos

3θ

2
+ 3 cos

θ

2

]}
(116)
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Interface between Two Dissimilar Materials Near Crack Tip Stresses

We can now substitute in Eq. 82, 83 and 81 to determine the stresses

σrr = r−
1
2 cos(λj log(r))F

′′
(θ) + r−

1
2

[ 3

2
cos(λj log(r)) + λj sin(λj log(r))

]
F(θ) (117)

σθθ = r−
1
2

[( 3

4
− λ

2
j

)
cos(λj log(r)) +

( 3

2
+

λj

2

)
sin(λj log(r))

]
F(θ) (118)

σrθ = r−
1
2

{
cos(λj log(r))F

′
(θ) +

[ 3

2
cos(λj log(r)) + λj sin(λj log(r))

]
F ′

(θ)

}
(119)
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Homogeneous Anisotropic Material (Sih and Paris)

To analyze an anisotropic body with with a crack, we need to derive the two
stress functions �1 and �2 in Eq. ?? such that they satisfy the boundary
conditions of the problem under consideration.

For an infinite plate with a central crack in an anisotropic body the derivation for
the stress functions was undertaken by Sih, Paris and Irwin This solution is the
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Homogeneous Anisotropic Material (Sih and Paris)

“counterpart” or generalization of Westergaard’s solutions.

u1 = KI

√
2r
π
Re

{
1

s1 − s2

[
s1p2 (cos θ+ s2 sin θ)

1
2 − s2p1 (cos θ+ s1 sin θ)

1
2

]}
(120)

v1 = KI

√
2r
π
Re

{
1

s1 − s2

[
s1q2 (cos θ+ s2 sin θ)

1
2 − s2q1 (cos θ+ s1 sin θ)

1
2

]}
(121)

w1 = 0 (122)

u2 = KII

√
2r
π
Re

{
1

s1 − s2

[
p2 (cos θ+ s2 sin θ)

1
2 − p1 (cos θ+ s1 sin θ)

1
2

]}
(123)

v2 = KII

√
2r
π
Re

{
1

s1 − s2

[
q2 (cos θ+ s2 sin θ)

1
2 − q1 (cos θ+ s1 sin θ)

1
2

]}
(124)

w2 = 0 (125)

u3 = 0 (126)

v3 = 0 (127)

w3 = KIII

√
2r
π

(
c44c55 − c2

45

)− 1
2
Im

[
(cos θ+ s3 sin θ)

1
2

]
(128)
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Homogeneous Anisotropic Material (Sih and Paris)

where s1 and s2 are roots, in general complex, of Eq. ?? where sj = αj + iβj for
j = 1, 2, and the roots of interests are taken such that βj > 0, and

pj = a11s2
j + a12 − a16sj (129)

qj = a12sj +
a22

sj
− a26 (130)

After appropriate substitution, it can be shown that the cartesian stresses at the
tip of the crack for symmetric loading are

σx =
KI√
2πr

Re

[
s1s2

s1 − s2

(
s2

(cos θ+ s2 sin θ)
1
2
− s1

(cos θ+ s1 sin θ)
1
2

)]
(131)

σy =
KI√
2πr

Re

[
1

s1 − s2

(
s1

(cos θ+ s2 sin θ)
1
2
− s2

(cos θ+ s1 sin θ)
1
2

)]
(132)

σxy =
KI√
2πr

Re

[
s1s2

s1 − s2

(
1

(cos θ+ s1 sin θ)
1
2
− s1

(cos θ+ s2 sin θ)
1
2

)]
(133)
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Homogeneous Anisotropic Material (Sih and Paris)

and, for plane skew-symmetric loading:

σx =
KII√
2πr

Re

[
1

s1 − s2

(
s2

2

(cos θ+ s2 sin θ)
1
2
− s2

1

(cos θ+ s1 sin θ)
1
2

)]
(134)

σy =
KII√
2πr

Re

[
1

s1 − s2

(
1

(cos θ+ s2 sin θ)
1
2
− 1

(cos θ+ s1 sin θ)
1
2

)]
(135)

σxy =
KII√
2πr

Re

[
1

s1 − s2

(
s1

(cos θ+ s1 sin θ)
1
2
− s2

(cos θ+ s2 sin θ)
1
2

)]
(136)

For in-plane loadings, these stresses can be summed to give the stresses at a
distance r and an angle θ from the crack tip.

An important observation to be made is that the form of the stress singularity
r−1/2 is identical to the one found in isotropic solids.

It should be noted that contrarily to the isotropic case where both the stress
magnitude and its spatial distribution are controlled by the stress intensity factor
only, in the anisotropic case they will also depend on the material elastic
properties and the orientation of the crack with respect to the principal planes of
elastic symmetry (through s1 and s2).
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Stress Intensity Factors (Irwin)

1 Irwin introduced the concept of stress intensity factor defined as:
KI

KII

KIII

 = lim
r→0,θ=0

√
2πr


σ22

σ12

σ23


where σij are the near crack tip stresses, and Ki are associated with three

independent kinematic movements of the upper and lower crack surfaces with

respect to each other
Opening Sliding TearingIIKIK IIIK

Opening Mode, I: The two crack surfaces are pulled apart in the y direction,
but the deformations are symmetric about the x − z and x − y planes.
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Stress Intensity Factors (Irwin)

Shearing Mode, II: The two crack surfaces slide over each other in the
x-direction, but the deformations are symmetric about the x − y plane and
skew symmetric about the x − z plane.
Tearing Mode, III: The crack surfaces slide over each other in the
z-direction, but the deformations are skew symmetric about the x − y and
x − z planes.

2 From Eq. 33, 34 and 35 with θ = 0, we have

KI =
√

2πrσ22

=
√

2πrσ0

√
a
2r

= σ0
√
πa

where r is the length of a small vector extending directly forward from the crack
tip.
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Stress Intensity Factors (Irwin)

3 Thus stresses and displacements can all be rewritten in terms of the SIF
σ22

σ12

σ23

 =
1√
2πr

 f I
11(θ) f II

11(θ) f III
11(θ)

f I
22(θ) f II

22(θ) f III
22(θ)

f I
12(θ) f II

12(θ) f III
12(θ)


KI

KII

KIII


i.e.

σ12 =
KII√
2πr

sin
θ

2
cos

θ

2
cos

3θ
2︸ ︷︷ ︸

f II
22

1 Since higher order terms in r were neglected, previous equations are exact
in the limit as r → 0

2 Distribution of elastic stress field at tip can be described by KI ,KII and KIII .
3 SIF are additives.
4 The SIF is the measure of the strength of the singularity (analogous to

SCF)
5 K = βσ

√
πa where β is a parameter that depends on the specimen, crack

geometry, and loading.
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Stress Intensity Factors (Irwin)

6 One of the underlying principles of FM is that unstable fracture occurs
when the SIF reaches a critical value KIc . KIc or fracture toughness
represents the inherent ability of a material to withstand a given stress field
intensity at the tip of a crack and to resist progressive tensile crack
extensions.
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Stress Intensity Factors (Irwin)
Near Crack Tip Stresses and Displacements in Isotropic Cracked

Solids

1 Using Irwin’s concept of the stress intensity factors, which characterize
the strength of the singularity at a crack tip, the near crack tip (r ≪ a)
stresses and displacements are always expressed as:
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Stress Intensity Factors (Irwin)
Near Crack Tip Stresses and Displacements in Isotropic Cracked

Solids

Pure mode I loading:

σxx =
KI

(2πr) 1
2
cos

θ

2

[
1 − sin

θ

2
sin

3θ
2

]
+ · · ·

σyy =
KI

(2πr) 1
2
cos

θ

2

[
1 + sin

θ

2
sin

3θ
2

]
+ · · ·

τxy =
KI

(2πr) 1
2
sin

θ

2
cos

θ

2
cos

3θ
2

+ · · ·

σzz = ν(σx + σy ) + · · ·
τxz = τyz = 0

u =
KI

2µ

[ r
2π

] 1
2
cos

θ

2

[
κ− 1 + 2 sin2 θ

2

]
+ · · ·

v =
KI

2µ

[ r
2π

] 1
2
sin

θ

2

[
κ+ 1 − 2 cos2 θ

2

]
+ · · ·

w = 0
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Stress Intensity Factors (Irwin)
Near Crack Tip Stresses and Displacements in Isotropic Cracked

Solids

Pure mode II loading:

σxx = − KII

(2πr) 1
2
sin

θ

2

[
2 + cos

θ

2
cos

3θ
2

]
+ · · ·

σyy =
KII

(2πr) 1
2
sin

θ

2
cos

θ

2
cos

3θ
2

+ · · ·

τxy =
KII

(2πr) 1
2
cos

θ

2

[
1 − sin

θ

2
sin

3θ
2

]
+ · · ·

σzz = ν(σx + σy )

τxz = τyz = 0

u =
KII

2µ

[ r
2π

] 1
2
sin

θ

2

[
κ+ 1 + 2 cos2 θ

2

]
+ · · ·

v = −KII

2µ

[ r
2π

] 1
2
cos

θ

2

[
κ− 1 − 2 sin2 θ

2

]
+ · · ·

w = 0
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Stress Intensity Factors (Irwin)
Near Crack Tip Stresses and Displacements in Isotropic Cracked

Solids

Pure mode III loading:

τxz = − KIII

(2πr) 1
2
sin

θ

2
+ · · ·

τyz =
KIII

(2πr) 1
2
cos

θ

2
+ · · ·

σxx = σy = σz = τxy = 0

w =
KIII

µ

[
2r
π

] 1
2

sin
θ

2
+ · · ·

u = v = 0

where κ = 3 − 4ν for plane strain, and κ = 3−ν
1+ν

for plane stress.

2 we can write the stresses in polar coordinates
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Stress Intensity Factors (Irwin)
Near Crack Tip Stresses and Displacements in Isotropic Cracked

Solids

Pure mode I loading:

σrr =
KI√
2πr

cos
θ

2

(
1 + sin2 θ

2

)
+ · · ·

σθθ =
KI√
2πr

cos
θ

2

(
1 − sin2 θ

2

)
+ · · ·

τrθ =
KI√
2πr

sin
θ

2
cos2 θ

2
+ · · ·

Pure mode II loading:

σrr =
KII√
2πr

(
−5

4
sin

θ

2
+

3
4
sin

3θ
2

)
+ · · ·

σθθ =
KII√
2πr

(
−3

4
sin

θ

2
− 3

4
sin

3θ
2

)
+ · · ·

τrθ =
KII√
2πr

(
1
4
cos

θ

2
+

3
4
cos

3θ
2

)
+ · · ·
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Fundamental Relation

KIc = βσ
√
πa

Three design variables are:

1 Material properties: (such as special steel to resist corrosive liquid) ⇒ Kc is
fixed.

2 Design stress level: (which may be governed by weight considerations)
⇒ σ is fixed.

3 Flaw size: a refers to half the total crack length, ⇒ a.

Known Unknown Determine
KIc ac σc Maximum load that can be carried
KIc σc ac Maximum crack (should be detectable)
ac σc KIc Material with sufficient toughness

Even if we do not “see” a crack, a crack equal to the smallest detectable one
should always be assumed to be present.
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If a is known, it must be least equal to the smallest flaw size which can be
detected.

Simple inspection, “large” a, expensive nondestructive techniques, “small” a.

Once two parameters are specified, the third one is fixed.

In most cases the geometry is fixed (hence β), occasionally, there is the
possibility to alter it in such a way to reduce (or maximize).

Stress Intensity Factor handbooks.

1 Tada, H., P. Paris, and G. R. Irwin. The Stress Analysis Handbook, Del
Research Corporation, St." Louis, USA (1973). http:
//www.ltas-cm3.ulg.ac.be/MECA0058-1/TheHandbookExcerpts.pdf

2 Murakami, Y. Stress Intensity Factors Handbook, Elsevier (1987).
3 Rooke, D.P. and Cartwright, D.J., 1976. Compendium of stress intensity

factors. Procurement Executive, Ministry of Defence. H. M. S. O. 1976, 330
p(Book).
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Stress Intensity Factors Middle Tension Panel; MT

2a

W

s

KI =

√
sec

πa
W︸ ︷︷ ︸

β

σ
√
πa

=

[
1 + 0.256

( a
W

)
− 1.152

( a
W

)2
+ 12.2

( a
W

)3
]

︸ ︷︷ ︸
β

σ
√
πa

We note that for W very large with respect to a,
√

π sec πa
W = 1 as anticipated.
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Stress Intensity Factors Single Edge Notch Tension Panel; SENT

a

W

s

For L
W ≥ 2 and a/W ≤ 0.6

KI =

[
1.12 − 0.23

( a
W

)
+ 10.56

( a
W

)2
− 21.74

( a
W

)3
+ 30.42

( a
W

)4
]

︸ ︷︷ ︸
β

σ
√
πa (1)

We observe that here the β factor for small crack ( a
W ≪ 1) is grater than one and is

approximately 1.12.

For L
W ≥ 2 and a/W ≥ 0.3 KI = σ

√
πa

[
1+3 a

b

2
√

π a
b (1− a

b )
3/2

]
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Stress Intensity Factors Double Edge Notch Tension Panel; DENT

a

W

s

a

KI =

[
1.12 + 0.43

( a
W

)
− 4.79

( a
W

)2
+ 15.46

( a
W

)3
]

︸ ︷︷ ︸
β

σ
√
πa (2)
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Stress Intensity Factors Three Point Bend; TPB

2.1 WB

a

2.1 W

W

S

P

KI =
PS

BW
3
2

[
2.9

( a
W

)1/2
− 4.6

( a
W

)3/2
+ 21.8

( a
W

)5/2
− 37.6

( a
W

)7/2
+ 38.7

( a
W

)9/2
]
(3)
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Stress Intensity Factors Compact tension Specimen; CTS

Used in ASTM E-399 Standard Test Method for Plane-Strain Fracture Toughness of
Metallic Materials

KI =

[
16.7 − 104.6

( a
W

)
+ 370

( a
W

)2
− 574

( a
W

)3
+ 361

( a
W

)4
]

︸ ︷︷ ︸
β

P
BW︸︷︷︸
σ

√
πa (4)

We note that this is not exactly the equation found in the ASTM standard, but rather an
equivalent one written in the standard form.
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Stress Intensity Factors Circular Holes; Approximate

For a plate with a far field uniform stress σ, we know that there is a stress
concentration factor of 3.

for a crack radiating from this hole, we consider two cases
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Stress Intensity Factors Circular Holes; Approximate

1 Short Crack: a
D → 0, and thus we have an approximate far field stress of 3σ, and

for an edge crack β = 1.12

KI = 1.12(3σ)
√
πa

= 3.36σ
√
πa

2 Long Crack D ≪ 2a + D, in this case, we can for all practical purposes ignore
the presence of the hole, and assume that we have a central crack with an
effective length aeff =

2a+D
2 , thus

KI = σ

√
π

2a + D
2

=

√
1 +

D
2a︸ ︷︷ ︸

β

σ
√
πa
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Stress Intensity Factors Point Load on Crack Surface

The solution of this problem, is of great practical importance, as it provides the
Green’s function for numerous other ones.

P

a a

x

P

B A

K A
I =

P
πa

√
a + x
a − x

K B
I =

P
πa

√
a − x
a + x

(5)
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Stress Intensity Factors Point Load Acting on Crack Surfaces of an Edge Crack

P
a

x
P

KI =
2P
πa

C√
1 +

( x
a

)2

[
−0.4

(x
a

)2
+ 1.3

]
(6)

where C is given by

x
a C

< 0.6 1
0.6-0.7 1.01
0.7-0.8 1.03
0.8-0.9 1.07
> 0.9 1.11
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Stress Intensity Factors Embedded Elliptical Crack

A large number of naturally occurring defects are present as embedded, surface or
corner cracks (such as fillet welding)

Corner CrackEmbedded Crack

Surface Crack
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Stress Intensity Factors Embedded Elliptical Crack

Irwin proposed the following solution for the elliptical crack, with x = a cos θ and
y = b sin θ:

KI (θ) =
1
�0

(
sin2 θ+

b2

a2 cos2 θ

) 1
4

σ
√
πb (7)

where �0 is a complete elliptical integral of the second kind

�0 =

∫ π
2

0

√
1 − a2 − b2

a2 sin2 θdθ

=
√

Q

An approximation to Eq. 7 was given by Cherepanov

KI(θ) =

[
sin2 θ+

(
b
a

)2

cos2 θ

] 1
4

σ
√
πb (8)

for 0 ≤ b
a ≤ 1.

Oservations:
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Stress Intensity Factors Embedded Elliptical Crack

1 If a = b then we have a “penny-shape’ circular crack and Eq. 7 reduces to

KI =
2
π
σ
√
πa (9)

2 If a = ∞ & θ = π
2 then we retrieve the solution KI = σ

√
πa of a through

crack.
3 At the end of the minor axes, θ = π

2 the stress intensity factor is maximum:

(KI)θ=π
2
=

σ
√
πb

�0
= σ

√
πb
Q

(10)

4 At the end of the major axes, θ = 0 the stress intensity factor is minimum

(KI)θ=0 =
σ

√
π b2

a

�0
(11)

Thus an embedded elliptical crack will propagate into a circular one
“penny-shaped”.
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Stress Intensity Factors Surface Crack

Irwin’s original solution has been extended to semi-elliptical surface flaws,
quarter elliptical corner cracks, and to surface cracks emanating from circular
holes.

Using the results of three dimensional finite element analysis, Newman and Raju
developed an empirical SIF equation for semi-elliptical surface cracks,

This is perhaps the most accurate solution and is almost universally used:

2a

t

b

q
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Stress Intensity Factors Surface Crack

K = σ
√
πb

[
M1 + M2

(
b
t

)2

+ M3

(
b
t

)4
][

1 + 1.464
(

b
a

)1.65
]− 1

2

[(
b
a

)2

cos2 θ+ sin2 θ

] 1
4
{

1 +

[
0.1 + 0.35

(
b
t

)2
]
(1 − sin θ)2

}
(12)

M1 = 1.13 − 0.09
(

b
a

)
M2 = 0.89

[
0.2 +

(
b
a

)]−1

− 0.54

M3 = 0.5 −
[
0.65 +

(
b
a

)]−1

+ 14
[
1.−

(
b
a

)]24

This equation is accurate within ±5 percent, provided 0 < b
a ≤ 1.0 and b

t ≤ 0.8.
For b

a approximately equal to 0.25, K is roughly independent of θ.
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Stress Intensity Factors Surface Crack

For shallow cracks b
t ≪ 1, Equation 12 reduces to

K = 1.13σ
√
πb

[
1 − .08

(
b
a

)][
1 + 1.464

(
b
a

)1.65
]− 1

2

(13)

For very long cracks b
a ≪ 1, Equation 12 reduces to

K = 1.13σ
√
πb

[
1 + 3.46

(
b
t

)2

+ 11.5
(

b
t

)4
]

(14)
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Indicative Fracture Toughness Values

Material Type KIc

ksi
√

in
Steel, Medium Carbon 49
Steel, Pressure Vessel 190
Hardened Steel 20
Aluminum 20-30
Titanium 70
Copper 100
Lead 18
Glass 0.7
Westerly Granite 16
Cement Paste 0.5
Concrete 1
Nylon 3

Material Type KIc

MPa
√

m
Metal

Aluminum alloy (7075) 24
Steel alloy (4340) 50
Titanium alloy 44-66
Aluminum 14-28

Ceramic
Aluminum oxide 3-5
Silicon carbide 3-5
Soda-lime glass 0.7-0.8
Concrete 0.2-1.4

Polymer
Polymethyl methacrylate 0.7-1.6
Polystyrene 0.7-1.1

Note that stress intensity factors in metric units are commonly expressed in Mpa
√

m,
and that

1ksi
√

in = 1.099Mpa
√

m (15)
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Examples Material Selection

Assume that a component in the shape of a large sheet is to be fabricated from
.45C − Ni − Cr − Mo steel, with a decreasing fracture toughness with increase in yield
stress

Yield Stress KIc

Ksi ksi
√

in
210 65
220 60
230 40
240 38
290 35
300 30

The smallest crack size(2a) which can be detected is approximately .12 in. The
specified design stress is σy

2 . To save weight, an increase of tensile strength from 220
ksi to 300 ksi is suggested. β = 1. Is this reasonable?

1 At 220 ksi KIc = 60 ksi
√

in, and at 300 ksi KIc = 30 ksi
√

in. Thus, the design

stress will be given by σd =
σy
2 and from KIc = σd

√
πacr ⇒ acr =

1
π

(
KI c
σy
2

)2
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Examples Material Selection

2 Thus,

Yield Stress Design Stress Fracture Toug. Critical Crack Total Crack
σy σd KIc acr 2acr

220 110 60 .0947 .189
300 150 30 .0127 .0255

3 We observe that for the first case, the total crack length is larger than the
smallest one which can be detected (which is O.K.);

4 Alternatively, for the second case the total critical crack size is approximately five
times smaller than the minimum flaw size required and approximately eight times
smaller than the flaw size tolerated at the 220 ksi level.

5 Hence, σy should not be raised to 300 ksi.

Fracture Mechanics; V. E. Saouma; Applications of LEFM 23/36



Examples Material Selection

6 if we wanted to use the flaw size found with the 300 ksi alloy, we should have a
decrease in design stress (since KIc and acr are now set)

KIc = σd
√
πavis ⇒ σd = KIc√

πavis
= 30ksi

√
in√

0.06π
= 69 ksi, with a potential factor of

safety of one against cracking (we can not be sure 100% that there is no crack of
that size or smaller as we can not detect it). We observe that since the design
stress level is approximately half of that of the weaker alloy, there will be a two
fold increase in weight.
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Examples Forensic Study

A small beer barrel of diameter 15” and wall thickness of .126” made of aluminum
alloy exploded when a pressure reduction valve malfunctioned and the barrel
experienced the 610 psi full pressure of the CO2 cylinder supplying it with gas.
Afterwards, cracks approximately 4.0 inch long by (probably) .07 inch deep were
discovered on the inside of the salvaged pieces of the barrel (it was impossible to
measure their depth). Independent tests gave 40. ksi

√
in for KIc of the aluminum alloy.

The question is whether the cracks were critical for the 610 psi pressure?

1 For a cylinder under internal pressure, the hoop stress is
σ = pD

2t = 610 lb
in2

15 in
2(.126) in = 36, 310 psi = 36.3 ksi. This can be used as the far

field stress (neglecting curvature).
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Examples Forensic Study

2 First we use the exact solution as given in Eq. 12, with a = 2. in, b = .07 in, and
t = .126 in. upon substitution we obtain:

M1 = 1.13 − 0.09
(
.07
2.

)
= 1.127

M2 = 0.89
[
0.2 +

(
.07
2.

)]−1

− 0.54

= 3.247

M3 = 0.5 −
[
0.65 +

(
.07
2

)]−1

+ 14
[
1.−

(
.07
2

)]24

= 4.994
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Examples Forensic Study

3 Substituting

K = 36.3
√
π.07

[
1.127 + 3.247

(
.07
.126

)2

+ 4.994
(

.07
.126

)4
][

1 + 1.464
(
.07
2

)1.65
]− 1

2

[(
.07
2.

)2

0 + 1

] 1
4
{

1 +

[
0.1 + 0.35

(
.07
.126

)2
]
(1 − 1)2

}
= 44.2ksi

√
in

This is about equal to the fracture toughness.

4 Note that if we were to use the approximate equation, for long cracks we would
have obtained:

K = (1.13)(36.3)
√

π(.07)

[
1 + 3.46

(
.07
.126

)2

+ 11.5
(

.07
.126

)4
]

= 60.85

> KIc
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Leak Before Break (LBB)

As observed from the preceding example, many pressurized vessels are
subject to crack growth if internal flaws are present. Two scenarios may
happen,

2c

t

2a=2t

Initially Elliptical crack

Final semi‐circular crack (leak)

Break-through: In this case critical crack configuration is reached before
the crack has “daylighted”, and there is a sudden and unstable crack
growth.
Leak Before Fail: In this case, crack growth occur, and the crack “pierces”
through the thickness of the vessel before unstable crack growth occurs.
This in turn will result in a sudden depressurization, and this will stop any
further crack growth.
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Leak Before Break (LBB)

Pressurized vessels should be designed to ensure a leak before fail
failure scenario, as this would usually be immediately noticed and
corrected (assuming that there is no leak of flammable gas!).
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Leak Before Break (LBB)

©

Crack

Leak before break - better

Leak but stable crack serves 

as a warning

Hypothetical rupture at much larger crack

Leak Before Break (LBB)

Crack

Break before leak - worse

Catastrophic 

rupture without 

warning

Crack becomes unstable 

before breaking through

Courtesy Dr. Brian Rose

Leak before break assessment should be made on the basis of a
complete residual strength diagram for both the part through and the
through crack. Various ratios should be considered
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Leak Before Break (LBB)

Fracture mechanics is not limited to determining the critical crack size,
load, or stress combination. It can also be applied to establish a fracture
control plan, or damage tolerance analysis with the following objectives:

1 Determine the effect of cracks on strength. This will result in a plot of crack
size versus residual strength, or Residual Strength Diagram

Crack length

R
es
id
u
al
 s
tr
en

gt
h
 

o
f 
fa
ilu
re
 s
tr
en

gt
h

ac

sc

Yield Strength 
(Plasticity)

Failure Strength 
(LEFM)

0 50 100 150 200

Slenderness Ratio KL/r

0
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20

30

40

50

S
tr

es
s 

[k
si

]

F
y
=36 ksi, E=29,000 Ksi

Euler
Beam Column
Plastic Limit

2 Note analogy with column curve.
3 Determine crack growth with time, resulting in Crack Growth Curve.
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Inspection Techniques

Penetrant Testing: Penetrant solution is applied to the surface of a
precleaned component. The liquid is pulled into surface-breaking
defects by capillary action. Excess penetrant material is carefully
cleaned from the surface. A developer is applied to pull the trapped
penetrant back to the surface where it is spread out and forms an
indication. The indication is much easier to see than the actual
defect.

Magnetic Particle Testing: A magnetic field is established in a
component made from ferromagnetic material. The magnetic lines
of force travel through the material, and exit and reenter the
material at the poles. Defects such as crack or voids cannot support
as much flux, and force some of the flux outside of the part.
Magnetic particles distributed over the component will be attracted
to areas of flux leakage and produce a visible indication.

Ultrasonic Testing: High frequency sound waves are sent into a
material by use of a transducer. The sound waves travel through the
material and are received by the same transducer or a second
transducer. The amount of energy transmitted or received and the
time the energy is received are analyzed to determine the presence
of flaws. Changes in material thickness, and changes in material
properties can also be measured.
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Inspection Techniques

Eddy Current Testing: Alternating electrical current is passed
through a coil producing a magnetic field. When the coil is placed
near a conductive material, the changing magnetic field induces
current flow in the material. These currents travel in closed loops
and are called eddy currents. Eddy currents produce their own
magnetic field that can be measured and used to find flaws and
characterize conductivity, permeability, and dimensional features.

Radiographic Testing: X-rays are used to produce images of objects
using film or other detector that is sensitive to radiation. The test
object is placed between the radiation source and detector. The
thickness and the density of the material that X-rays must penetrate
affects the amount of radiation reaching the detector. This variation
in radiation produces an image on the detector that often shows
internal features of the test object

https://www.nde-ed.org

"Alway assume the existence of a crack equal to the smallest
detectable one.
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Inspection Inspection Rate

$

amin

Cost is inversely proportional to the minimum crack
size to be detected

Increasing cost of detection equipment, reduces the
frequency of inspection

a

t

acr

aal

adet

Margin of safety

Small crack 
detected, reduce 
inspection interval 
α<1

No crack detected, 
assume crack=min. 
detectable crack

Crack detected 
reached maximum 
allowable size. 
Retire structure

∆t ∆t 
α ∆t 
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Inspection Example

A cylindrical pressure vessel, with R = 1
m, t=50mm, is subjected to an internal
pressure p.

1 Draw the residual strength diagram.

2 What is the maximum permissible
crack ac for p = 20 MPa.

3 What is pc for a maximum
detectablecrack ac = 2 mm

Use

Steel σy [MPa] KIc [MPa
√

m]
A 800 100
B 1,200 70
C 1,600 50

σθ =
pR
t

σz =
pR
2t

von Mises yield criteria

σ2
θ − σzσθ + σ2

z =
(σy

2

)2

py =
σy t√
3R

pc [MPa]
A B C

23.1 34.6 46.2

For long axial surface crack of depth a, can
use KI = 1.12σθ

√
πa

pc =
tKIc

2.24R
√
πa
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Inspection Example

1 Residual strength diagram

0 2 4 6 8 10
a [mm]
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50
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P
a]
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C

2 ac = 1, 2 and 4.2 mm for A, B, and C respectively.

3 pc = 14, 20, 23 MPa for A, B and C respectively
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Objective

Griffith tried to explain the increase in strength with the decrease in diameter of
glass fibers.

He postulated that this can be explained by the presence of internal flaws
(idealized as elliptical)and then used Inglis solution to explain this discrepancy.

We shall derive an expression for the theoretical strength of perfect crystals
(theoretically the strongest form of solid). This derivation starts at the atomic
level.
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Derivation Energy of Interaction

Plane of Rupture

A

B

C

D

A
'

B'

C'

D
'

E'E

a0
c c'

σ σ 

Total energy which must be supplied to
separate atom C from C’ at equilibrium
separated by a distance a0 is

U0 = 2γ (1)

where γ is the surface energy

Factor of 2 is due to the fact that upon
separation, we have two distinct surfaces.

Surface energy γ is expressed in J/m2 and
the surface energies of water, most solids,
and diamonds are approximately .077, 1.0,
and 5.14 respectively.
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Tensile Strength In Terms of Physical Parameters

Solution I, Forces/Newtonian:

Distance of 
Separation

Inflection Point
U0

E
N

E
R

G
Y

 U

Displacement. ax

F
or

ce

a0

Repulsive force (electrons)

Attractive (Cohesive, ions, electrostatic)

Net energy

Equilibrium

1 Consider interatomic forces (from
Physics) or rather the potential
energies. Two components:

1 Attractive (or cohesive) forces
between two ions (of opposite
charges)

2 Repulsive due to the electrons
interacting as the ions get too
close.

2 Net potential energy is the sum of the
two.

3 Force being the derivative of energy,
we have F = dU

da , thus F = 0 at
a = a0 and is maximum at the
inflection point of the U0 − a curve.
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Tensile Strength In Terms of Physical Parameters

4 Slope of the force displacement
curve is the stiffness of the atomic
spring and should be related to E .

5 If we let x = a − a0, then the strain
would be equal to ε = x

a0
.

Furthermore, if we define the stress
as σ = F

a2
0
, then the σ− ε curve can

be approximated by a sine curve.

Young's modulus E

Area=2 γ 

ε = x/a0 0X=λ/4 X=λ/2

Stress

F/a2

σmax
Th.

6 From this diagram, it would appear that the sine curve would be an adequate
approximation to this relationship. Hence,

σ = σtheor
max sin 2π

x
λ

(2)

and the maximum stress σtheor
max would occur at x = λ

4 .
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Tensile Strength In Terms of Physical Parameters

7 The energy required to separate two atoms is thus given by the area under the
sine curve, and from Eq. 1, we would have

2γ = U0 =

∫ λ
2

0
σtheor

max sin
(

2π
x
λ

)
dx (3)

=
λ

2π
σtheor

max [− cos (
2πx
λ

)] |
λ
2

0 (4)

=
λ

2π
σtheor

max [−

−1︷ ︸︸ ︷
cos (

2πλ
2λ

)+

1︷ ︸︸ ︷
cos(0)] (5)

⇒ λ =
2γπ
σtheor

max
(6)

8 For very small displacements (small x) sin x ≈ x , thus Eq. 2 reduces to

σ ≈ σtheor
max

2πx
λ

def
= E

x
a0

eliminating x ,

σtheor
max ≈ E

a0

λ

2π
(7)
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Tensile Strength In Terms of Physical Parameters

9 Substituting for λ from Eq. 6, we get

σtheor
max ≈

√
Eγ

a0
(8)

Solution II, Energy/Lagrangian:

1 For two layers of atoms a0 apart, the strain energy per unit area due to σ (for
linear elastic systems) is

U = 1
2σεao

σ = Eε

}
U =

σ2ao

2E

2 Assume that there is a transfer from strain energy to surface energy where γ is
the surface energy of the solid per unit area, then the total surface energy of two
new fracture surfaces is 2γ.
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Tensile Strength In Terms of Physical Parameters

3 For our theoretical strength, U = 2γ ⇒ (σtheor
max )2a0

2E = 2γ or σtheor
max = 2

√
Eγ
a0

Note that here we have assumed that the material obeys Hooke’s Law up to
failure, since this is seldom the case, we can simplify this approximation to:

σtheor
max =

√
Eγ

a0

which is the same as Equation 8
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Tensile Strength Example

As an example, let us consider steel which has the following properties: γ = 1 J
m2 ;

E = 2 × 1011 N
m2 ; and a0 ≈ 2 × 10−10 m. Thus from Eq. 8 we would have:

σtheor
max ≈

√
(2 × 1011)(1)

2 × 10−10

≈ 3.16 × 1010 N
m2

≈ E
6

Thus this would be the ideal theoretical strength of steel.
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Tensile Strength In Terms of Engineering Parameters

1 The force to separate two atoms drops to zero when the distance between them
is a0 + a where a0 corresponds to the origin and a to λ

2 .

2 If we take a = λ
2 or λ = 2a, combined with Eq. 7 would yield σtheor

max ≈ E
a0

a
π

3 Alternatively combining Eq. 6 with λ = 2a gives a ≈ γπ

σtheor
max

4 Combining those two equations γ ≈ E
a0

( a
π

)2

5 However, since as a first order approximation a ≈ a0 then the surface energy will
be γ ≈ Ea0

10

6 This equation, combined with Eq. 8 will finally give

σtheor
max ≈ E√

10

which is an approximate expression for the theoretical maximum strength in
terms of E .
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Griffith’s Theory Introduction

Around 1920, Griffith was exploring the theoretical strength of solids by
performing a series of experiments on glass rods of various diameters.

He observed that the tensile strength (σt ) of glass decreased with an increase in
diameter, and that for a diameter ϕ ≈ 1

10,000 in., σt = 500, 000 psi; furthermore,
by extrapolation to “zero” diameter he obtained a theoretical maximum strength
of approximately 1,600,000 psi, and on the other hand for very large diameters
the asymptotic values was around 25,000 psi.

Griffith had thus demonstrated that the theoretical strength could be
experimentally approached, he now needed to show why the great majority of
solids fell so far below it.
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Griffith’s Theory Derivation

In his quest for an explanation, he came across Inglis’s paper, and his “strike of
genius” was to assume that strength is reduced due to the presence of internal
flaws.

Griffith postulated that the theoretical strength can only be reached at the point
of highest stress concentration, and accordingly the far-field applied stress will
be much smaller.

Hence, assuming an elliptical imperfection, and from
(σββ)

β=0,π
α=α0 = σ0

(
1 + 2

√
a
ρ

)
determined σtheor

max = σact
cr

(
1 + 2

√
a
ρ

)
where σ is

the stress at the tip of the ellipse which is caused by a (lower) far field stress σact
cr .

Assuming ρ ≈ a0 and since 2
√

a
a0

≫ 1, for an ideal plate under tension with only

one single elliptical flaw the strength may be obtained from

σtheor
max︸ ︷︷ ︸

micro

= 2σact
cr

√
a
a0︸ ︷︷ ︸

macro

Fracture Mechanics; V. E. Saouma; Theoretical Strength 13/15



Griffith’s Theory Derivation

hence, equating with Eq. 8, we obtain

σtheor
max = 2σact

cr

√
a
ao︸ ︷︷ ︸

Macro

=

√
Eγ

a0︸ ︷︷ ︸
Micro

From this very important equation, we observe that

1 The left hand side is based on a linear elastic solution of a macroscopic
problem solved by Inglis.

2 The right hand side is based on the theoretical strength derived from the
sinusoidal stress-strain assumption of the interatomic forces, and finds its
roots in micro-physics.

Equating both sides of the preceding equations yields (at fracture)

σact
cr =

√
Eγ

4a
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Griffith’s Theory Example

Consider a flaw with a size of 2a = 5, 000a0

σact
cr =

√
Eγ
4a

γ = Ea0
10

}
σact

cr =
√

E2

40
ao
a

a
a0

= 2, 500

}
σact

cr =
√

E2

100,000 = E
100

√
10

Thus if we set a flaw size of 2a = 5, 000a0 in γ ≈ Ea0
10 this is enough to lower the

theoretical fracture strength from E√
10

to a critical value of magnitude E
100

√
10

, or a
factor of 100.

Also

σtheor
max = 2σact

cr

√
a

ao

a = 10−6m = 1µm
ao = 1 = ρ = 10−10m

σtheor
max = 2σact

cr

√
10−6

10−10 = 200σact
cr

At failure

σact
cr =

σtheor
max
200

σtheor
max = E

10

}
σact

cr ≈ E
2, 000

which can be attained. For instance for steel E
2,000 = 30,000

2,000 = 15 ksi
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Introduction Thermodynamics

First Law of Thermodynamics can be expressed as

_W = _U + _K + _�

W work, K kinetic energy, U internal energy (elastic and plastic), � surface
energy (energy needed to increase the crack area). Derivative is with respect to
time.

Since all changes with respect to time are caused by changes in crack size, we
can write

∂

∂t
=

∂A
∂t

∂

∂A
In adiabatic system (no heat exchange), l;oads are applied in a quasi static
manner (no kinetic energy), then Q and K are zero.

For unit thickness replace A by a

∂W
∂a︸︷︷︸

External

=

(
∂Ue

∂a
+

∂Up

∂a

)
+

∂�

∂a︸ ︷︷ ︸
Internal
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Introduction Thermodynamics

We can rewrite it as
∂W
∂a

− ∂Ue

∂a︸ ︷︷ ︸
G

=
∂Up

∂a
+

∂�

∂a︸ ︷︷ ︸
R

R is the rate of energy dissipation during stable crack growth= plastic
deformation + energy consumed during crack propagation.

In terms of Potential Energy �:

� ≡ Ue − W

−∂�

∂a
= −∂Ue

∂a
+

∂W
∂a

=
∂Up

∂a
+

∂�

∂a

Crack stability can be assessed from

−∂�

∂a


< ∂Up

∂a + ∂�
∂a No crack growth

= ∂Up

∂a + ∂�
∂a Quasi static crack growth

> ∂Up

∂a + ∂�
∂a Dynamic crack growth
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Introduction Thermodynamics

For quasi-static crack growth: Rate of potential energy decrease during crack
growth is equal to the rate of energy dissipated in plastic deformation and crack
growth.

For brittle material (Up = 0) potential energy is released from a volume (∝ L3)
whereas surface energy is consumed over a surface (∝ L2), thus we have a size
discrepancy or a size effect (which will be studied later).
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Introduction Brittle Material, Griffith’s Model

For a perfectly brittle material, potential energy is released to create surface
energy

G def
=

∂W
∂a

− ∂Ue

∂a︸ ︷︷ ︸
−∂�

∂a

=
∂�

∂a
= 2γ (1)

Griffith assumed that it was possible to produce a macroscopical load
displacement (P − u) curve for two different crack lengths a and a + da.

Consider two limiting cases for the propagation of a crack from a to a + da:

2a2a

2(a+da)

P1, u1

P1

P2

u1 u2 u

P

A E

B

O

C F

P2, u2

d
P

du
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Introduction Brittle Material, Griffith’s Model

1 Fixed Grip: Displacement constant (u2 = u1), but load drops from P1 to P2,
Work: None as there is no displacement.

Internal Strain Energy: decreases, (OBC-OAC=-OAB):

�U =
1
2

P2u1 −
1
2

P1u1

=
1
2
(P2 − P1) u1

< 0

Change in potential enenrgy: decrease is the same as the decrease in
stored internal strain energy:

�2 − �1 = �W −�U

= −1
2
(P2 − P1)u1 =

1
2
(P1 − P2)u1

2 Fixed Load: P2 = P1, there is an increase in displacement from u1 to u2.
External Work (AEFC):

�W = P1(u2 − u1)

Fracture Mechanics; V. E. Saouma; Thermodynamics of Crack Growth 7/24



Introduction Brittle Material, Griffith’s Model

Internal Strain Energy: increases from OAC to OEF, or OAE. Increase
caused by the load 1

2 P1 (u2 − u1)

Change in potential energy: is thus

�2 − �1 = �W −�U

= P1 (u2 − u1)−
1
2

P1 (u2 − u1)

=
1
2

P1 (u2 − u1)

Since AEFC is twice OAE, the net is OAE

Fixed grip: decrease in strain energy of magnitude 1
2 u1(P1 − P2) as the crack

extends from a to (a +�a), under constant load, there is a net decrease in
potential energy of magnitude 1

2 P1(u2 − u1).

Neglecting AEB (dp × du/2), in the limit: OAB=OAE or energy available for crack
growth is the same in both extreme cases.

Mathematically, as �a → da, then dP = P2 − P1 and du = u2 − u1.

As da → 0,
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Introduction Brittle Material, Griffith’s Model

Fixed Grip: Decrease in strain energy (and potential energy in this case),
and d� = 1

2 udP.
Constant Load: Incrase in strain energy and decrease in potential energy with

d� = 1
2 Pdu

Compliance (inverse of the stiffness) is

u = CP ⇒ du = CdP

Then decrease in potential energy for both cases

d� =
1
2

CP dP

In summary, As the crack extends there is a release of excess energy. The
energy released is consumed to form surface energy.

A criteria for crack propagation would be

d� ≥ 2γda

The difference between the two sides of the inequality will appear as kinetic
energy at a real crack propagation.
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Energy Release Rate; Global; Compliance Derivation

Under constant load, energy to extend crack
by da was 1

2 Pdu, G the energy release rate, B
thickness, and u = CP, (where u, C and P
are the point load displacement, compliance
and the load respectively)

GBda =
1
2

Pd(CP) =
1
2

P2dC

at the limit as da → 0:

G =
1
2

P2

B

(
dC
da

)
(2)

i.e. energy release rate is proportional to the
rate of change of the compliance.

Thus can use numerical or experimental

techniques to obtain G and from G =
K 2

I
E ′ (to

be derived later) get KI ,

u

P

a1 a2 a3 a4

1 1 1 1
C1 C2 C3 C4

a
a1 a2 a3 a4

C

C1

C2

C3

C4

dC

da
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Energy Release Rate; Global; Compliance Example

a

h

B
From strength of materials:

C =
24
EB

∫ a

0

x2

h3 dx︸ ︷︷ ︸
flexural

+
6(1 + ν)

EB

∫ a

0

1
h

dx︸ ︷︷ ︸
shear

Taking ν = 1
3 we obtain

C =
8

EB

∫ a

0

(
3x2

h3 +
1
h

)
dx ⇒ dC

da
=

8
EB

(
3a2

h3 +
1
h

)
(3)

Substituting in Eq. 2

G =
1
2

P2

B

(
dc
da

)
=

1
2

P28
EB2

(
3a2

h3 +
1
h

)
=

4P2

EB2h3

(
3a2 + h2

)
Thus, the stress intensity factor will be

K =
√

GE =
2P
B

(
3a2

h3 +
1
h

) 1
2

(4)
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Energy Release Rate; Local Derivation of G

y,v

x,u

a da

σ 

σ 

Need to relate energy release rate G to the SIF K .
Both previously derived but not tied together.

Energy change is given by:

G =
2
�a

∫ a+�a

a

1
2
σyy (x)v(x − da)dx

2 in the numerator: two crack surfaces (upper and
lower); 2 in the denominator due to the linear
elastic assumption.

Substitution for σyy and v (with θ = π) from the
Westergaard equations

σyy =
KI√
2πr

cos
θ

2

[
1 + sin

θ

2
sin

3θ
2

]
v =

KI

2µ

√
r

2π
sin

θ

2

[
κ+ 1 − 2 cos2 θ

2

]
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Energy Release Rate; Local Derivation of G

(µ is shear modulus); Setting θ = π, and after simplification:

G =
K 2
I

E ′

where E ′ = E for plane stress, and E ′ = E
1−ν2 for plane strain.

For the simple case K = σ
√
πa we obtain the energy release rate in

terms of the far field stress

G =

σ2πa
E ′
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Energy Release Rate; Local Derivation of R (Gcr )

Total energy consumed over the crack extension will be:

d� =

∫ da

0
Gdx =

∫ da

0

σ2πa
E ′ dx =

σ2πada
E ′ = 2γda (5)

Crack instability will occur when for an infinitesimal crack extension da, the rate
of energy released is just equal to surface energy absorbed.

σ2
crπada

E ′︸ ︷︷ ︸
d�

= 2γda

or

σcr =

√
2E ′γ

πa
originally derived by Griffith.
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Energy Release Rate; Local Derivation of R (Gcr )

This equation can be rewritten as

σ2
crπa
E ′︸ ︷︷ ︸
Gcr

≡ R︸︷︷︸
2γ

and as
σcr

√
πa =

√
2E ′γ = KIc

thus

R = Gcr =
d�
da

= 2γ =
K 2

Ic

E ′

R (for Resistance) is only equal to a constant (Gcr ) under plane strain conditions.

R is material dependent and � is problem dependent.

Critical energy release rate for plane stress is not a constant, thus KIc is not
constant, and we will instead use K1c and G1c .

Alternatively, KIc , and GIc correspond to plane strain in mode I which is constant.
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Energy Release Rate; Local Derivation of R (Gcr )

Shape of the R-curve depends on the plate thickness, where plane strain is
approached for thick plates, and is constant; and for thin plates we do not have
constant R due to plane stress conditions.

As with the Westergaard/Irwin criteria (where we zoomed on the crack tip), a
global energy change can also predict a local event (crack growth).

The duality between energy and stress approach G > Gcr = R, or K > KIc ,
should also be noted.
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Crack Stability Impact of Geometry

Criteria for crack growth can best be understood through a graphical
representation of those curves under plane strain and plane stress conditions.

Crack stability depends on both the geometry, and on the material resistance.

From Eq. 1, crack growth is considered unstable when the energy at equilibrium
is a maximum, and stable when it is a minimum. Hence, a sufficient condition for
crack stability is

∂2(� + �)

∂A2


< 0 unstable fracture
> 0 stable fracture
= 0 neutral equilibrium

&G > R (6)
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Crack Stability Impact of Geometry

2a

σ

a

P

h d

Γ=4γa 

Π=σ2πa2/2E

Γ+Π

ac

a

Unstable

Γ=2γa 

Ue

ac

Stable

Ue+Π

a

E
ne

rg
y

E
ne

rg
y

da

d(
Γ

+
Π

) da
d(Γ+Π)

Line crack in an infinite plate
subjected to uniform stress,
potential energy of the system is
� = Ue where Eq. 1 yields

KI = σ
√
πa

G =
K 2

I

E ′ =
σ2πa
E ′

� =

∫
Gda = −1

2
σ2πa2

E ′

and � = 4γa (crack length is 2a).
Note that Ue is negative because
there is a decrease in strain
energy during crack propagation.

If we plot �, � and � + �, then we observe that the total potential energy of the
system (�+ �) is maximum at the critical crack length which corresponds to unstable
equilibrium.
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Crack Stability Impact of Geometry

A wedge of thickness h is inserted under a flake of mica which is detached from
a mica block along a length a. Energy is determined by considering the mica
flake as a cantilever beam with depth d .

From beam theory

Ue =
Ed3h2

8a3

Ue is positive because there is an increase in strain energy as a increases

Surface energy is � = 2γa (crack length is a).

Substituting in Eq. 6, the equilibrium crack is ac =
(

3Ed3h2

16γ

)1/4

Total potential energy of the system at ac is a minimum, which corresponds to
stable equilibrium.

a

4.33

1.0

1.0

3a2/h3 + 1/h =4
Revisiting Eq. 4 K increases with a, hence unstable crack growth. If
B increases with a, such that 3a2

h3 + 1
h = m = Cst, then

K =
2P
B

m
1
2 (7)

K is now independent of a (Mostovoy’s test).
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Crack Stability Plane Strain

Plane strain conditions, the R curve is constant and is equal to GIc .

a1a2 Da

R=G1c

s2 s1

G, R

s2

K
N

F

H

M L
Oa

G, R

R=G1c

Daa

Fixed Grip

a1 a2 a

R=G1c

s1

s2

G, R

A C

B

  12
2

1
a

G
E

     22
2

1
a

G
E

  

σ2
σ1

G = σ2πa
E ′ , thus G is always a linear function of a, and is a straight line.
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Crack Stability Plane Strain

For a1, and stress σ2, energy release rate is point B.

Increase stress from σ2 to σ1, will raise G from B to A where the crack will
extend. Had we had a longer crack a2, it would have extended at σ2.

Shift the plot, ai on the left, �a to the right.

At σ2, G line is LF (really only point F).

Loading the crack from 0 to σ2, G increases from O to F, further increase of the
stress to σ1 raises G from F to H, and then fracture occurs, and the crack goes
from H to K.

For a2 loaded from 0 to σ2, G increases from O to H (note that LF and MH are
parallel). At H crack extension occurs along HN.

Depending on the boundary conditions, G may increase linearly (constant load)
or as a polynomial (fixed grips).
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Crack Stability Plane Stress

Plane Stress condition.

G, R

Daai

R=G1c

H

A

B

ac

Da3

C

D

F

R (Plane Strain)
s1

s2

s3

sc

R is found to be an increasing
function of a. Examining ai :

under σ1 at A, G < R, thus no
crack extension.

Increase σ1 to σ2, point B, then
G = R crack propagates by an
infinitesimal increment �a and will
immediately stop as G becomes
smaller than R.

Increase σ1 to σ3, (point C) then G > R crack extends to a +�a3. G increases
to H, however, this increase is at a lower rate than the increase in R

dG
da

<
dR
da

thus the crack stabilizes: stable crack growth.

Increase σ1 to σc , not only is G equal to R, but it grows faster than R: unstable
crack growth.
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Crack Stability Observations

From this simple illustrative example:

Stable Crack Growth: G > R
dG
da

<
dR
da

Unstable Crack Growth: G > R
dG
da

>
dR
da

For unstable crack growth, excess energy is transformed into kinetic energy.

Analogous to to Eq. 6 where the potential energy has been expressed in terms
of G, and the surface energy expressed in terms of R.

Some materials exhibit a flat R curve, while other have an ascending one. The
shape of the R curve is a material property.

For ideally brittle material, R is flat since the surface energy γ is constant.

Nonlinear material would have a small plastic zone at the tip of the crack. The
driving force in this case must increase. If the plastic zone is small compared to
the crack (as would be eventually the case for sufficiently long crack in a large
body), then R would approach a constant value.
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Crack Stability Observations

The thickness of the cracked body can also play an important role. For thin
sheets, the load is predominantly plane stress

Center, Plane 
Strain; Triaxial state 
of stress

Surface, Plane Stress, Biaxial 
state of stress

Y

X

Z

a rp

Plastic zone

Crack

Alternatively, for a thick plate it would be predominantly plane strain. Hence a
plane stress configuration would have a steeper R curve.
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Introduction

Practical engineering cracked structures are subjected to mixed mode loading,
thus in general KI and KII are both nonzero, yet we usually measure only mode I
fracture toughness

So far the only fracture propagation criterion we have is for mode I only (KI vs
KIc , and GI vs R)

Under pure mode I in homogeneous isotropic material, crack propagation is
collinear, in all other cases the propagation will be curvilinear and at an angle θ0

with respect to the crack axis. Thus, for the general mixed mode case, we seek
to formulate a criterion that will determine:

1 The angle of incipient propagation, θ0, with respect to the crack axis.
2 If the stress intensity factors are in such a critical combination as to render

the crack locally unstable and force it to propagate.

(in that order)
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Introduction

The determination of a fracture initiation criterion for an existing crack in mode I
and II would require a relationship between KI,KII, and KIc of the form

F (KI,KII,KIc) = 1

and would be analogous to the one between the two principal stresses and a
yield stress such as von-Mises

F (J2) = J2 − k2 =
(σ(1)−σ(2))

2+(σ(2)−σ(3))
2+(σ(1)−σ(3))

2

2 − σ2
y = 0

Model could be based on SIFs (KI ,KII), enelrgy release rate (G), or strain energy
density (S).

σ1 

σ1 

KI

σ1 

σ1 

σ1 

σ1 

KI ,KII

σ1 

σ1 

σ2 σ2 
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Models Maximum Circumferential Tensile Stress

The maximum circumferential stress theory states that the crack extension
starts:

1 At its tip in a radial direction

2 In the plane perpendicular to the
direction of greatest tension, i.e at
an angle θ0 such that τrθ = 0

3 When σθmax reaches a critical
material constant

θ0 

τrθ =0 @θ0 

r

σθθ reaches its maximum value when τrθ = 0. Replacing τrθ for mode I and II by
their expressions

τrθ =
KI√
2πr

sin
θ

2
cos2 θ

2
+

KII√
2πr

(
1
4
cos

θ

2
+

3
4
cos

3θ
2

)
= 0

⇒ cos
θ0

2
[KI sin θ0 + KII (3 cos θ0 − 1)] = 0
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Models Maximum Circumferential Tensile Stress

this equation has two solutions:

θ0 = ±π trivial

KI sin θ0 + KII (3 cos θ0 − 1) = 0

Solution of the second equation yields the angle of crack extension θ0

tan
θ0

2
=

1
4

KI

KII

± 1
4

√(
KI

KII

)2

+ 8

For the crack to extend, the maximum circumferential tensile stress, σθ

σθθ =
KI√
2πr

cos
θ0

2

(
1 − sin2 θ0

2

)
+

KII√
2πr

(
−3

4
sin

θ0

2
− 3

4
sin

3θ0

2

)
must reach a critical value which is obtained by rearranging the previous
equation

σθmax
√

2πr = KIc = cos
θ0

2

[
KI cos

2 θ0

2
− 3

2
KII sin θ0

]
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Models Maximum Circumferential Tensile Stress

which can be normalized as

KI

KIc

cos3 θ0

2
− 3

2
KII

KIc

cos
θ0

2
sin θ0 = 1
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Models Maximum Energy Release Rate

If we accept Griffith (energy) theory,
then the crack will grow in the
direction along which the elastic
energy release per unit crack
extension will be maximum and the
crack will start to grow when this
energy reaches a critical value (or
G = G(δ, θ)).

The stress intensity factor of a major
crack with an infinitesimal “kink” at an
angle θ, are KI(θ) and KII(θ) (in
terms of the stress intensity factors of
the original crack KI and KII and θ.

KI(θ), KII(θ)

θ

KI, KII

This was an extremely (mathematically) complex problem, which was solved by
Hussain, Pu and Underwood:

{
KI(θ)

KII(θ)

}
=

(
4

3 + cos2 θ

)(
1 − θ

π

1 + θ
π

) θ
2π { KI cos θ+ 3

2 KII sin θ

KII cos θ− 1
2 KI sin θ

}
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Models Maximum Energy Release Rate

KI(θ) and KII(θ) are then substituted into Irwin’s generalized expression for the
energy release rate (assuming collinear crack growth)

G(θ) =
1

E ′

(
K 2

I (θ) + K 2
II (θ)

)
yielding

G(θ) =
4

E ′

(
1

3 + cos2 θ

)2
(

1 − θ
π

1 + θ
π

) θ
π

[(1 + 3 cos2 θ)K 2
I + 8 sin θ cos θKIKII + (9 − 5 cos2 θ)K 2

II ]

The angle of crack propagation θ0 is found by maximizing G(θ);

∂G(θ)

∂θ
= 0

∂2G(θ)

∂θ2 < 0

For pure mode II (KI = 0), it is found that θ0 = 75.2o
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Models Maximum Energy Release Rate

Crack extension occurs when G reaches a critical value (same scalar quantity for

all cases), that can be determined by setting KII = 0 and Gcr =
K 2

Icr
E ; thus

4
(

1
3 + cos2 θ0

)2
(

1 − θ0
π

1 +
θ0
π

)θ0
π

[(
1 + 3 cos2 θ0

)( KI

KIc

)2
+ 8 sin θ0 cos θ0

(
KIKII

K 2
Ic

)
+

(
9 − 5 cos2 θ0

)(KII

KIc

)2
]
= 1
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Models Minimum Strain Energy Density Criteria

Minimum strain energy density theory postulates that a fracture initiates from the
crack tip in a direction θ0, along which the strain energy density at a critical
distance is a minimum (i.e. crack propagates along path of minimum resistance),
when this minimum reaches a critical value.

The strain energy density dU per unit volume dV is

S =
dU
dV

=
1

2E
(σ2

xx +σ2
yy +σ2

zz)−
ν

E
(σxxσyy +σyyσzz +σzzσxx)+

1
2µ

(τ2
xy +τ2

yz +τ2
zx)

where µ is the shear modulus (often referred to as G).

In two dimensional problems, this equation reduces to:

S =
dU
dV

=
1

4µ

[
κ+ 1

4
(σxx + σyy )

2 − 2(σxxσyy − τ2
xy )

]
(1)

where κ = 3 − 4ν plane strain, and κ = 3−ν
1+ν

for plane stress.
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Models Minimum Strain Energy Density Criteria

Using Westergaard’s solution for a cracked infinite plate and substituting the
stress into Eq. 1, dU

dV
, we obtain

S =
∂U
∂V

=
1

r0π

(
a11K 2

I + 2a12KIKII + a22K 2
II

)
=

S(θ)

r0

where

a11 =
1

16µ
[(1 + cos θ) (κ− cos θ)]

a12 =
sin θ

16µ
[2 cos θ− (κ− 1)]

a22 =
1

16µ
[(κ+ 1) (1 − cos θ)+ (1 + cos θ) (3 cos θ− 1)]

where

κ = 3−ν
1+ν

(plane stress)

κ = 3 − 4ν (plane strain)

and µ is the shear modulus.
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Models Minimum Strain Energy Density Criteria

This model is based on the following assumptions:

1 Direction of fracture initiation (in 3-D) is toward the point of minimum strain
energy density factor Smin as compared to other points on the same
spherical surface surrounding that point

∂S
∂θ

= 0

∂2S
∂θ2 > 0

2 Fracture initiation is assumed to occur when Sθmin reaches the maximum
critical value Scr .

If we set KII = 0, thus θ0 = 0 and Scr = (S(θ))min = S(θ = 0) = a11KIc

Scr =
2(κ− 1)K 2

Ic

16µπ

=
(κ− 1)

8πµ
K 2

Ic
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Models Minimum Strain Energy Density Criteria

Thus, the fracture locus predicted by this theory is given by:

8µ
(κ− 1)

[
a11

(
KI

KIc

)2

+ 2a12

(
KIKII

K 2
Ic

)
+ a22

(
KII

KIc

)2
]
= 1

Note: decompose strain energy density into two components a volumetric one
and a deviatoric one:

S =
dU
dV

=

(
dU
dV

)
D
+

(
dU
dV

)
V

where the deviatoric part is given by(
dU
dV

)
D
=

1 + ν

6E

[
(σxx − σyy )

2 + (σyy − σzz)
2 + (σzz − σxx)

2 + 6(τ2
xy + τ2

yz + τ2
xz)
]

and the volumetric one by(
dU
dV

)
V
=

1 − 2ν
6E

(σxx + σyy + σzz)
2
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Models Minimum Strain Energy Density Criteria

Smin is associated with brittle fracture, Smax with yielding. Its direction coincides
with the direction of maximum distortion while Smin coincides with maximum
dilation.

dilation

distortion

yi
el

di
ng
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Observations

Check for corrections in Chapter 5 of book by Sun and Jin (in this
folder) for maximum energy release rate. I also do have the matlab

code
0.0 0.2 0.4 0.6 0.8 1.0

KI/KIc

0.0

0.2

0.4

0.6

0.8

1.0

K
II/

K
Ic

σθmax
 

Sθmin
G θ max

1 Algorithmically, the angle of crack propagation θ0 is first obtained and then the
criteria are assessed for local fracture stability.

2 Near the crack tip we have a near state of biaxial stress
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Observations

3 All models can be represented by a normalized fracture locus.

4 For all practical purposes, all three theories give identical results for small ratios
of KII

KI
and diverge slightly as this ratio increases.

5 A crack will always extend in the direction which minimizes KII
KI

.

6 For mixed-mode loading crack will reorient itself so that KII is minimized. During
its trajectory a crack will most often be in that portion of the normalized KI

KIc

− KII

KIc

space where the three theories are in close agreement.

7 If the pair of SIF is inside the fracture loci, then that crack cannot propagate
without sufficient increase in stress intensity factors. If outside, then the crack is
locally unstable and will continue to propagate in either of the following ways:

1 With an increase in the SIF (and the energy release rate G), thus resulting
in a global instability, failure of the structure (crack reaching a free surface)
will occur.

2 With a decrease in the SIF (and the energy release rate G), due to a stress
redistribution, the SIF pair will return to within the locus.
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Observations
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Introduction

LEFM: stress at crack tip theoretically infinite. All materials have a finite strength,
there will always be a small plastified zone around the crack tip.

If this zone is small compared to the crack size, then LEFM assumptions are
correct; if not, LEFM is not applicable and a nonlinear model must be used. This
“damaged” zone is referred to as a plastic zone for metals, and a fracture
process zone for cementitious materials and ceramics.

There are two important issues associated with nonlinear fracture:

1 What is the relative size of the plastic or process zone (with respect to the
crack length a)?

2 If the relative size is “large”, what would be the criteria for crack growth?

The evaluation of the plastic zone for plastified materials can be determined
through various levels of approximations:

1 Uniaxial stress criteria
1 first order approximation
2 second order approximation (Irwin)
3 Dugdale’s model

2 Multiaxial yield criteria
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Uniaxial Stress Criteria First Order Approximation

Simplest and most straightforward model:

σ 

σyld 

r*
p

Equate σyy to σyld

σyy =
KI

(2πr)
1
2
cos

θ

2

[
1 + sin

θ

2
sin

3θ
2

]

set θ = 0, r = r∗p , σyy = σyld

σyld =
KI√
2πr∗p

Solve

r∗p =
1

2π
K 2

I

σ2
yld

=
a
2

(
σ

σyld

)2

(1)
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Uniaxial Stress Criteria Second Order Approximation

σyld
A

B

rp
* a

aeff
δ +rp

* 

rp

Crack tip blunted

Equilibrium must be maintained through
stress redistribution

B = σyldδ (2)

A =

∫ r∗p

0
σdr − σyldr∗p =

∫ r∗p

0

K√
2πr

dr − σyldr∗p

=

∫ r∗p

0

σ
√
πa√

2πr
dr − σyldr∗p = σ

√
2ar∗p − σyldr∗p (3)

Equating A to B we obtain:

σ
√

2ar∗p − σyldr∗p = σyldδ; σyld(δ+ r∗p ) = σ
√

2ar∗p ; (δ+ r∗p )
2 =

2aσ2

σ2
yld

r∗p

From Eq. 1, r∗p = a
2

(
σ

σyld

)2
, thus this simplifies into

δ+ r∗p = 2r∗p ⇒ δ = r∗p ; rp = 2r∗p ; or rp =
1
π

K 2
I

σ2
yld

=

(
σ

σyld

)2

a
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Uniaxial Stress Criteria Second Order Approximation

Note that rp = 2r∗p and that we can still use r∗p but with aeff = a + r∗p ; thus we can
consider an effective crack length of a + r∗p which would result in:

Keff = f (g)σ
√

π(a + r∗p ) = f (g)σ

√
π(a +

K 2

2πσ2
yld

)

For linear elastic fracture mechanics to be applicable, we must have:

LEFM ⇔ K ≈ Keff
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Uniaxial Stress Criteria Example

Considering an infinite with central crack of size 2a = 16 mm, a far field applied stress
σapp = 350 MPa, and the plate has a yield stress σyld = 1, 400 MPa.

1 Using the 1st order approximation:

r∗p =
σ2a
2σ2

yld
=

(350)2(.008)
2(1, 400)2 ≈ .00025 m = .25 mm

Since rp
a is very small, Keff ≈ Kapplied

2 The effective SIF are then given by

Keff = σ
√

π(a + r∗p ) = 350
√

π(.008 + .00025) = 56.4MPa
√

m

Kapp = σ
√
πa = 350

√
π(.008) = 55.5MPa

√
m

3 We note that there is only 2 percent difference between those two solutions,
hence LEFM is applicable.

4 If yield stress was decreased by heat treatment to 385 MPa, then

r∗p =
(350)2(.008)

2(385)2 = 3.3mm.; and Keff = 350
√

π(.008 + .0033) = 66MPa
√

m

and in this case LEFM may no longer be applicable.
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Uniaxial Stress Criteria Dugdale’s Model

x

2a

2c

σyld σyld

σyld σyldy

ρ ρ

x2

x1

P

a a

x

P

Dugdale assumed that the actual physical crack of length 2a is replaced by a
total effective crack of length 2c, where c = a + ρ such that: a constant stress
σyld is applied over ρ where a < x < c causing (a negative) Kρ and c is selected
in such a manner that

∑
K = 0 or Kremote = −Kρ.
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Uniaxial Stress Criteria Dugdale’s Model

Considering first

KA =
P√
πa

√
a + x
a − x

; KB =
P√
πa

√
a − x
a + x

and assuming dP = σylddx , and replacing in the above equations, we obtain:

Kρ =
σyld√
πa

∫ c

a

{√
a + x
a − x

+

√
a − x
a + x

}
dx

Integration of this equation results in

Kρ = 2σy

√
c
π
arccos

a
c

SIF caused by the remote far field stress is given by: Kremote = σ
√
πc

Equating, we obtain:
a
c
= cos

(
π

2
σ

σyld

)
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Uniaxial Stress Criteria Dugdale’s Model

It can be shown that

ρ =
π2

8

(
σ

σyld

)2

a =
π

8
K 2

I

σ2
yld

This should be compared with Eq. 5 rp =
(

σ
σyld

)2
a previously obtained.
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Uniaxial Stress Criteria Barenblatt’s Model

A variation of Dugdale’s model was suggested by Barenblatt where linear stress
distribution replaces the constant one

x
2a

2c

y

ρ ρ

σyld

σyld

σyld

σyld
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Multiaxial Yield Criteria Shape of Plastic Zone

All the previous models have restricted themselves to θ = 0 and have used
uniaxial yield criteria, but the size of the plastic zone can be similarly derived
from a multi-axial yield criterion.

The crack tip stress field equations in terms of principal stresses are:

σ(1) =
KI√
2πr

cos
θ

2

[
1 + sin

θ

2

]
σ(2) =

KI√
2πr

cos
θ

2

[
1 − sin

θ

2

]
σ(3) = ν(σ1 + σ2) plane strain

= 0 Plane stress

Using the von Mises criteria

σe =
1√
2

[
(σ(1) − σ(2))

2 + (σ(2) − σ(3))
2 + (σ(3) − σ(1))

2
] 1

2

and yielding would occur when σe reaches σyld.
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Multiaxial Yield Criteria Shape of Plastic Zone

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Normalized (wrt r_p) Plastic Zone
Mode I; Von-Myses
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Plane Strain (nu=0.3)

Substituting the principal stresses (with r = rp) into this
equation and solving for rp yields

Plane strain:
K 2

I
2πr

[ 3
2 sin

2 θ+ (1 − 2ν)2(1 + cos θ)
]
= 2σ2

yld

rp(θ) =
1

4π
K 2

I
σ2

yld

[ 3
2 sin

2 θ+ (1 − 2ν)2(1 + cos θ)
]

plane stress:
K 2

I
2πr

[
1 + 3

2 sin
2 θ+ cos θ

]
= 2σ2

yld

rp(θ) =
1

4π
K 2

I
σ2

yld

[
1 + 3

2 sin
2 θ+ cos θ

]
For the Drucker-Prager model, and for different mixed
mode ratios, the expected plastic (or more
appropriately process) zones.

The plastic zone size for plane strain is much smaller
than the one for plane stress (by a factor of (1 − 2ν)2).

Which is why all fracture tests should be conducted under plane strain
conditions.
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Plane Strain vs. Plane Stress

Irrespective of a plate thickness, there is a gradual decrease in size of the plastic
zone from the plate surface (plane stress) to the interior (plane strain).

no contraction

contraction

σ 

x

y

z

Constrained 
yielding

σz 

Plane Stress

Plane strain 
large σz

Transition

Plane Stressz

x

y

The ratio of the plastic zone size to the plate thickness rp
B must be much smaller

than unity for plane strain to prevail. It has been experimentally shown that this
ratio should be less than 0.025.

For Plane Strain KIc ⇔ rp < .025B
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Plane Strain vs. Plane Stress

We also observe that since rp is proportional to
(

KI
σyld

)2
, the plate thickness

should increase as either the SIF increase or the yield stress decrease.

Furthermore, the different stress fields present at the tip of the crack under plane
stress and plane strain will result in different deformation patterns. This is best
explained in terms of the orientation of the planes of maximum shear stress for
both cases.
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Plane Strain vs. Plane Stress

Plane stress

Plane strain

x

x

y

y

z

z

σz σ

σ

σ

σ

σ

σ

τ 

τ 

τmax 

45o

45o

τmax 

Out of plane shear bands

In plane shear bands

Stress triaxiality induces geometric 
confinement

Energy release induces 
geometric confinement

σ(2)
σ(1)

σ(1)σ(2) σz

Plane Stress: σz = 0, and the maximum shear stress τmax is at planes rotated
45◦ from the directions of σ(1) and σ(3). If σ(1) = σyld and
σ(3) = 0, then crack will be at 45 o with the X-Z plane
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Plane Strain vs. Plane Stress

Plane Strain: In this case we have σ(1) and σ(2) that have same magnitude, as
in plane stress, the third principal stress is σ(3) = ν(σ(1) + σ(2)).
For plastic deformation ν = 1/2, thus σ(3) =

1
2 (σ(1) + σ(2)), τmax

is much smaller than in plane stress, and is on a different plane,
rotated 45◦ from the directions of σ(2) and σ(1).

Finally, it should be noted, once again, that fracture toughness KIc can only be
measured under plane strain conditions.

Kc

Plane Strain Plane Stress

Ry/t

transition

thickness

KIc

Plane StrainPlane Stress
T

ou
gh

ne
ss

 K
Ic
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Introduction

Note the various stages of ductile fracture:

CTOD

1 Blunting: Under LEFM assumptions, the crack tip
opening displacement (CTOD) is zero, however in
elasto-plastic material due to blunting it is different
from zero.

2 Crack initiation

3 Slow (stable) crack growth

4 Unstable crack growth

LEFM can be either: too conservative and expensive (does not account for
plastification at the crack tip), and/or invalid based on calculations of r∗p .

When LEFM is not applicable, an alternative criteria for crack growth in Elasto
Plastic Fracture Mechanics (EPFM) is sought.

Two approaches are currently in use

1 a local criterion based on the crack tip opening displacement (CTOD).
2 a global criterion based on the quasi-strain energy release rate (J integral),

JIC.
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Introduction

As usual, we have a Newtonian (stress based) or Lagrangian (energy based)
approach.

Local Vector Global Scalar
LEFM K (KI , KII) G
EPFM CTOD,CSOD,CTOD J

CTOD: Crack Tip Opening Displacement (0 in LEFM, ̸= 0 in NLFM)
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CTOD; Irwin

Plastic Zone

v

ry

The vertical displacement of a point next to the crack
tip due to mode I loading is given by

v =
KI

2µ

[ r
2π

] 1
2
sin

θ

2

[
κ+ 1 − 2 cos2 θ

2

]

If we substitute θ = ±π we obtain the upper and lower displacements of
the crack face, and due to symmetry their sum corresponds to the crack
opening displacement. Hence the crack opening is given by

COD = 2v =
κ+ 1
µ

KI

√
r

2π

If we substitute the crack tip opening displacement a distance r∗p away

from the crack tip using Irwin’s plastic zone correction r∗p = 1
2π

K 2
I

σ2
yld

and

using κ = 3−ν
1+ν

for plane stress, and recall that µ = E/2(1 + ν), we
obtain

CTOD =
4
π

K 2
I

Eσyld
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J Integral Definition

 Ω 

Γ 

x

y

u

tdΓ 
Eshelby defined a number of contour integrals that
are path independent by virtue of the theorem of
energy conservation. The two-dimensional form of
one of these integrals can be written as:

J =

∮

�

(
wdy − t

∂u

∂x
d�
)
= 0 (1)

with
w =

∫ ε

0
σijdεij

Where w is the strain energy density; � is a closed contour followed
counter-clockwise; t is the traction vector on a plane defined by the
outward drawn normal n and t = σn; u the displacement vector, and d�
is the element of the arc along the path �.

Whereas Eshelby had defined a number of similar path independent
contour integrals, he had not assigned them with a particular physical
meaning.
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J Integral Proof J = 0 in closed path

Given J =
∮
�

(
wdy − ti ∂ui

∂x d�
)

and assuming � to be defined counterclockwise,
then dx = −ny d�, and dy = nx d� and ti = njσij where nx , ny and nj are direction
cosines.

Substituting

J =

∮

�

(
wnx − njσij

∂ui

∂x

)
d�

Invoking Divergence theorem (
∮
�

vinid� =
∫



vi,id
) we obtain

J =

∫






∂w
∂x︸︷︷︸
A

− ∂

∂xj

(
σij

∂ui

∂x

)

︸ ︷︷ ︸
B


 dxdy (2)

Applying the chain rule, the first term A in the square bracket becomes

∂w
∂x

=
∂w
∂εij

∂εij

∂x
= σij

∂εij

∂x
(3)

where the strain is given by

εij =
1
2
(ui,j + uj,i)
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J Integral Proof J = 0 in closed path

Substituting for the first term A

A =
∂w
∂x

=
1
2
σij

[
∂

∂x

(
∂ui

∂xj

)
+

∂

∂x

(
∂uj

∂xi

)]
= σij

∂

∂xj

(
∂ui

∂x

)
(4)

On the other hand, we have for the second term B

B =
∂

∂xj

(
σij

∂ui

∂x

)
= σij

∂

∂xj

(
∂ui

∂x

)
+

∂σij

∂xj︸︷︷︸
0

∂ui

∂x

which is identical to A. Thus, the integrand in Eq. 2 vanishes and J = 0 for any
closed contour.

second term is zero (divergence of stress tensor is zero ∇·T = 0
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J Integral Proof Path Independence

Γ1 

x

y

Γ3 Γ2 

Γ4 

Γ 

x

y

 Ω 

x

y

u

tds

Proved J = 0 along closed path. Need to prove that J
is non-zero and constant around an arbitrary path.

Consider the closed path � = �1 + �2 + �3 + �4 in
which �1 and �3 are arbitrarily chosen contours.

J = 0 over �.

Along �2 and �4, the traction vector ti = 0, dy = 0.
Consequently, the contributions to J from �2 and �4

vanish.

Considering the difference sense of integration along
�1 and �3 we conclude that the values of J integrated
over paths �1 and �3 are identical and opposite.

The two paths were arbitrarily chosen, hence, the path
independence of J is assured
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J Integral Physical Meaning: Nonlinear Elastic Energy Release Rate

When J is applied along a contour around a crack tip, it represents the change in
potential energy for a virtual crack extension da.

Consider a two-dimensional crack surrounded by a line � which encompasses
an area 
.

Under quasi-static conditions, and in the absence of body forces, the potential
energy is given by

� =

∫




wd
︸ ︷︷ ︸
U

−
∮

�

tiuid�︸ ︷︷ ︸
W

(5)

For a virtual crack extension, the change in potential energy is

d�
da

=

∫




dw
da

d
−
∮

�

[
ti

dui

da
+ ui

dti
da

]
d�

=

∫




dw
da

d
−
∮

�u︸︷︷︸
0

[
ti

dui

da
+ ui

dti
da

]
d�−

∮

�t


ti

dui

da
+ ui

dti
da︸ ︷︷ ︸
0


 d� (6)
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J Integral Physical Meaning: Nonlinear Elastic Energy Release Rate

Contour path was decomposed into two parts, one with prescribed displacement
(�u) and the other with prescribed traction (�t ).

�u is zero along the path, we maintain a closed contour integral along �t .

The second term inside the square bracket will be zero along �t because the
traction is constant during crack growth.

Thus we can write
d

da
=

∂

∂a
+

∂

∂x
∂x
∂a

=
∂

∂a
− ∂

∂x
for a crack extension along a (∂x

∂a = −1) with respect to the new coordinate
system.

Substituting into Eq. 6

d�
da

=

∫




[
∂w
∂a

− ∂w
∂x

]
d
−

∮

�t

ti
(
∂ui

∂a
− ∂ui

∂x

)
d� (7)

But from the divergence theorem (and ti = njσij )
∮

�t

ti
∂ui

∂a
d� =

∫




σij
∂

∂xj

(
∂ui

∂a

)
d
 =

∫




∂w
∂a

d
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J Integral Physical Meaning: Nonlinear Elastic Energy Release Rate

Hence, the first terms in each of the two integrals in Eq. 7 cancel out, and we are
left with

d�
da

=

∮

�t

ti
∂ui

∂x
d�−

∫




∂w
∂x

d


Apply the divergence theorem again, multiply both sides by −1 and recalling that
nx d� = dy

−d�
da

=

∮

�t

(
wnx − ti

∂ui

∂x

)
d� =

∮

�t

(
wdy − ti

∂ui

∂x
d�
)

which is the same as Eq. 1. Henceforth, the J integral is equal to the energy
release rate for linear and nonlinear elastic material under quasi-static
conditions.
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J Integral Plastic Crack Tip Fields

r

Under LEFM assumptions, we had a 1√
r stress and

strain singularity, we now seek to determine the
corresponding one, for EPFM.

Starting with

J =

∮

�

(
wdy − t

∂u

∂x
d�
)

Taking the contour around a circle of radius r we substitute d� = rdθ;
y = r sin θ; and dy = r cos θdθ

J =

∮ π

−π

(
w cos θ− t

∂u

∂x

)
rdθ (8)

but J should be independent of r by virtue of path independence hence both
w cos θ and t∂u

∂x should be proportional to 1
r .
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J Integral Plastic Crack Tip Fields

0 1 2 3 4 5
ε/εyld

0.0

0.5
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1.5

2.0
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σ/
σ yl

d

Ramberg−Osgood Stress−Strain Relation
α=.001

n=1
n=15
n=10
n=7
n=5

Consider a material with a (uniaxial)
power law hardening model
(Ramberg-Osgood) (often used to
curve-fit stress-strain data):

ε

εyld
=

σ

σyld
+ α

(
σ

σyld

)n

(9)

n is the strain hardening exponent,
and for n = 1 we have a linear elastic
response, for n = ∞ we would have
an elastic perfectly plastic one. α is a
dimensionless constant.

In the vicinity of the crack tip, plastic strain is dominant (the elastic one is
negligible) and

ε

εyld
= α

(
σ

σyld

)n

(10)
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J Integral Plastic Crack Tip Fields

Let x and y be the order of the stress and strain singularities:

σ =
c1

r x ; ε =
c2

r y

From Eq. 8, energy w must be proportional to 1
r , so

σε ∝ 1
r
⇒ x + y = 1 (11)

Furthermore, from Eq. 9 and 10

c2

r yεyld
= α

(
c1

r xσyld

)n

⇒ c3

r y = c4
1

r nx ⇒ y = nx (12)

Solving Eq. 11 and 12, we obtain

x =
1

1 + n
; y =

n
1 + n
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J Integral Plastic Crack Tip Fields

Thus the singularities are:

ε(r) =
C

r
n

1+n
; σ(r) =

D

r
1

1+n

For linear elastic solids n = 1 and these equations reduce to the familiar

ε(r) =
C

r
1
2
; σ =

D

r
1
2

For elastic perfectly plastic material n = ∞ (elasto-plastic), the stress field is
non-singular (as expected) while the strain field has a singularity of the form r−1.

Those singularities n
1+n and 1

1+n are often referred to as the HRR singularities
after Hutchinson, Rice, and Rosengren.
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J Integral Plastic Crack Tip Fields

It can be shown that there is a relationship between J and the crack tip σ− ε

field:

σij = σyld

(
EJ

ασ2
yldInr

) 1
1+n

~σij (θ, n)

εij =
ασyld

E

(
EJ

ασ2
yldInr

) n
1+n

~εij(θ, n)

where In is an integration constant which depends on the σ− ε curve, and ~σ & ~ε

are dimensionless functions of n and θ (analogous to fij(θ)I in LEFM which also
depend on the stress state (plane stress/strain)

Thus, J also characterizes the σ and ε singularities in EPFM just as K did in
LEFM (σij =

K√
2πr

).

Finally, we should note that at the crack tip we have two stress singularities, the
first one 1√

r in the elastic region, and the later 1

r
1

1+n
.
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J Integral Plastic Crack Tip Fields

Elastic 
Unloading

Nonproportional Plastic 
Loading

 J Dominated 
Zone

da

We observe that material behind a propagating crack unload elastically (as
opposed to nonlinear elastic). Note analogy with cohesive crack model to be
discussed later.
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J Integral Plastic Crack Tip Fields

a Large Strain Region    b: J-dominated zone;     c: Kdominated zone

a

ba

cba

Large Strain J Dominated K Dominated
Small scale yielding Y Y Y
Elastic Plastic Conditions Y Y N
Large Scale Yileding Y N N
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J Integral Plastic Crack Tip Fields

Small Scale Yielding: both K and J characterize this zone. At a short distance from
the crack tip (relative to a), the stress is proportional to 1√

r this area is
K-dominated region. If we have monotonic loading, a J dominated
region occurs in the plastic zone where the elastic singularity is no
longer valid. Inside the plastic zone, the HRR is approximately valid.
Finite strain region occurs within approximately 2δ from the crack tip
where the large deformation invalidates HRR.

Elastic-Plastic: J is still valid, but K no longer.

Large Scale Yielding: here the size of the finite strain zone becomes significant
relative to a and there is no longer a region uniquely characterized by
J. J becomes size and geometry dependent.
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J Integral Nonlinear Energy Release Rate

Elastic-Plastic

Nonlinear Elastic

ε

σ
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*

d Δ
*dU=-dU

U

U

dP

a+
da

a

P

Δ

Whereas LEFM is restricted to linear elastic materials,
most metals have a nonlinear stress-strain curve.

Loading behavior of both materials is identical, differ at
unloaded.

If no unloading, we can assume a nonlinear elastic
behavior, and the deformation theory of plasticity,
which relates the total strains to stresses, is applicable.

Recall that for nonlinear elastic material J is the
energy release rate in nonlinear elastic materials:

J = −d�
da

(13)

for a unit thickness crack extension.

Following a similar approach, we consider the load
displacement curves curve of a notched specimen
made of nonlinear elastic material for two different
conditions, during crack extension from a to a + da:
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J Integral Nonlinear Energy Release Rate

Load control we have d� = 0 and � = U − W = U − P� = −U∗ where

U∗ def
=

∫ P

0
�dP is the complimentary strain energy. Thus for constant

load JP =
(

dU∗

da

)
P

Constant Displacement, dP = 0, and J� = −
(

dU
da

)
�

The difference between JP and J� is 1
2 dPd� (shown in red in the previous

figure) which is vanishingly small compared to dU.

Therefore J is the same for load control and displacement control.

For linear elastic materials J = G = K 2

E ′ .
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J Integral J Testing

a

4
a

3a

a

a
1

a

4
Δ1

1
a

4321
a < a < a < a

4
a

3a

2

2
3

Δ

2
Δ

1
Δ

4
Δ

3
Δ

2
Δ

1
a2 a3

a
4Δ

P

Δ

dU/da

U

a

Δ

J

a

P Δ

U

For nonlinear material, the principle of
superposition does not apply, and can not
have a simple relation between J, the load,
and the crack length.

Test a number of identical specimens, but with
slightly different crack lengths.

Recall that J = − 1
B

(
∂U
∂a

)
�

1 Test specimens with different crack lengths ai .

2 Record load displacement curves.

3 Compute the strain energy U (The area under each P −� curve) at different
displacements �j for each ai

4 plot U in terms of a, at various fixed displacements.

5 Since J = − 1
B

∂U
∂A

∣∣
�

, J could be determined from the slope of the tangent to the
curves.
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J Integral J Testing

6 Determine a calibration curve applicable to the material, specimen size,
specimen geometry, and temperature from which it was obtained. This can be a
very expensive test.
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J Integral Engineering Approach to Fracture

The solution of a plastic problem involves the determination of the J integral.
This usually involves a finite element analysis.

If such a capability is not available, and a first order approximation of J is
required, then a simplified engineering approach can be followed.

General Solution: For Ramberg-Osgood material, we can write

J = Je(ae) + JP(a, n)

δ = δe(ae) + δP(a, n)

�c = �ec(ae) + �Pc(a, n)

where: J, δ, and � are the J integral, the crack tip opening displacement, and
point load displacement respectively, and

ae = a + ϕry

ry =
1
βπ

n − 1
n + 1

(
KI

σy

)2

ϕ =
1

1 + (P/Po)
2
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J Integral Engineering Approach to Fracture

for plane stress β = 2 and for plane strain β = 6. Jp(a, n), δp(a, n), and �pc(a, n)
are the plastic contributions based on the material hardening exponent n. P0 is
the limit load based on σy

We note that P is the generalized load per unit thickness, � is the load-point
displacement, and that δ is the crack opening displacement.

Elastic Solution: The elastic solution can be written as

Je = f1
( a

W

) P2

E ′ =
K 2

I

E ′

δe = f2
( a

W

) P
E ′

�ce = f3
( a

W

) P
E ′

Fully Plastic Solution: where εe ≪ εp if the plastic deformation can be described
by J2, deformation plasticity theory with power law and isotropic hardening,
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J Integral Engineering Approach to Fracture

The small strain constitutive relation is given by

εij

εyld
=

3
2
α(

�σ

σyld
)n−1 Sij

σyld

where Sij and σe =
3
2

√
SijSij are the stress deviator and the von-Mises

effective stress, respectively.
For such a material Ilyushin has shown that the solution of the boundary
value problems based on the above equation, and involving a single load or
displacement parameter which is increasing monotonically has two
important properties:

Field quantities increase in direct proportion to the load or displacement
parameter raised to some power dependent on n. For example if the traction is
Ti = PT ′

i and P is a loading parameter, then

σij = Pσ′
ij (xi , n)

εij = αεy

(
P
σy

)n
ε′ij (xi , n)

ui = αεy

(
P
σy

)n
u′

i (xi , n)
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J Integral Engineering Approach to Fracture

where σ′
ij (xi , n), ε′ij (xi , n) and u′

i (xi , n) are functions of xi and n and are
independent of P.
Since σ and ε increase in the same proportion, fully plastic solution based on
deformation plasticity is also the exact solution to the same problem posed for
incremental or flow theory.

Since the integrand of J involves the product of σ and u gradients, then the
fully plastic J will be proportional to Pn+1 and we can write:

Jp = αεyσy bg1(a/W )h1(a/W , n)(P/P0)
n+1 (14)

δp = αεy ag2(a/W )h2(a/W , n)(P/P0)
n

�cp = αεy ag3(a/W )h3(a/W , n)(P/P0)
n

δtp = αεy bg4(a/W )h4(a/W , n)(P/P0)
n+1

b is the ligament length (W − a). α is from Eq. 10 ε/εyld = α(σ/σyld)
n.

The dimensionless functions (h1 − h4) depend upon a/W and n and
possibly other geometric parameters, but are independent of P. Those
functions can be obtained from F.E. analysis and are tabulated (±5%) in an
EPRI report.
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J Integral Example of EPRI’Solutions

1.2 W

1.25 W

P

P
a

W

b

Considering the Compact Tension Specimen

P0 = 1.455βbσy Plane Strain

P0 = 1.071βbσy Plane Stress

β =

√(
2

a
b

)2
+ 4

a
b
+ 2 − 2

a
b
− 1

gi = 1

� crack opening displacement at the load line; δ is
the crack mouth opening displacement.

n = 1 n = 2 n = 3 n = 5 n = 7 n = 10 n = 13 n = 16 n = 20
Plane Strain

h1 2.23 2.05 1.78 1.48 1.33 1.26 1.25 1.32 1.57
a
W = 1

4 h2 17.9 12.5 11.7 10.9 10.5 10.7 11.5 12.6 14.6
h3 9.85 8.51 8.17 7.77 7.71 7.92 8.52 9.31 10.9
h1 2.15 1.72 1.39 0.97 0.69 0.443 0.28 0.176 0.098

a
W = 3

8 h2 12.60 8.18 6.52 4.32 2.97 1.79 1.10 0.686 0.370
h3 7.94 5.76 4.64 3.10 2.14 1.29 0.793 0.494 0.266

Fracture Mechanics; V. E. Saouma; Elasto-Plastic Fracture Mechanics 29/35



J Integral Numerical Example

Consider a single edge notched panel with W = 1 m, a = 125 mm. Determine J in
terms of the applied load assuming plane stress conditions, neglect plastic zone
correction.

a

P Assume: σyld = 414 MPa, n = 10, α = 1.0, E = 207, 000
MPa, εyld = σyld/E = 0.002.

From the EPRI report

b = W − a = 1000 − 125 = 875 mm
a
b

=
125
875

= 0.143

β =

√
1 +

(a
b

)2
− a

b

=
√

1 + (0.143)2 − 0.143 = 0.867

P0 = 1.072βbσy

= (1.072)(0.867)(414) MPa(875) mm(25) mm
= = 8.42 MN
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J Integral Numerical Example

D
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J INTEGRAL

∆ is the load-point displacement at the centerline of the specimen, and δ is the crack mouth opening displace-
ment.

n = 1 n = 2 n = 3 n = 5 n = 7 n= 10 n = 13 n = 16 n = 20
Plane Strain

h1 4.95 6.93 8.57 11.50 13.5 16.1 18.1 19.9 21.2
a
W = 1

8 h2 5.250 6.47 7.56 9.46 11.1 12.9 14.4 15.7 16.8
h3 26.60 25.80 25.20 24.20 23.6 23.2 23.2 23.5 23.7
h1 4.34 4.77 4.64 3.82 3.06 2.170 1.55 1.11 0.712

a
W = 1

4 h2 4.760 4.56 4.28 3.39 2.64 1.910 1.25 0.875 0.552
h3 10.30 7.64 5.87 3.70 2.48 1.500 0.97 0.654 0.404
h1 3.88 3.25 2.63 1.68 1.06 0.539 0.276 0.142 0.060

a
W = 3

8 h2 4.540 3.49 2.67 1.57 0.94 0.458 0.229 0.116 0.048
h3 5.14 2.99 1.90 0.923 0.51 0.240 0.119 0.060 0.025
h1 3.40 2.30 1.69 0.928 0.51 0.213 0.090 0.039 0.012

a
W = 1

2 h2 4.450 2.77 1.89 0.954 0.50 0.204 0.085 0.036 0.011
h3 3.15 1.54 0.91 0.417 0.21 0.085 0.036 0.015 0.004
h1 2.86 1.80 1.30 0.697 0.37 0.153 0.064 0.026 0.008

a
W = 5

8 h2 4.370 2.44 1.62 0.081 0.42 0.167 0.067 0.027 0.008
h3 2.31 1.08 0.68 0.329 0.17 0.067 0.027 0.011 0.003
h1 2.34 1.61 1.25 0.769 0.47 0.233 0.116 0.059 0.022

a
W = 3

4 h2 4.320 2.52 1.79 1.03 0.69 0.296 0.146 0.074 0.027
h3 2.02 1.10 0.765 0.435 0.26 0.125 0.062 0.031 0.011
h1 1.91 1.57 1.37 1.10 0.92 0.702

a
W = 7

8 h2 4.29 2.75 2.14 1.55 1.23 0.921
h3 2.01 1.27 0.988 0.713 0.56 0.424

Plane Stress
h1 3.58 4.55 5.06 5.30 4.96 4.14 3.29 2.60 1.92

a
W = 1

8 h2 5.15 5.43 6.05 6.01 5.47 4.46 3.48 2.74 2.02
h3 26.10 21.60 18.00 12.70 9.24 5.98 3.94 2.72 2.00
h1 3.14 3.26 2.920 2.120 1.53 0.96 0.615 0.40 0.23

a
W = 1

4 h2 4.67 4.30 3.700 2.530 1.76 1.05 0.656 0.419 0.237
h3 10.10 6.49 4.360 2.190 1.24 0.63 0.362 0.224 0.123
h1 2.81 2.37 1.940 1.370 1.01 0.677 0.474 0.342 0.226

a
W = 3

8 h2 4.47 3.43 2.630 1.690 1.18 0.762 0.524 0.372 0.244
h3 5.05 2.65 1.600 0.812 0.525 0.328 0.223 0.157 0.102
h1 2.46 1.67 1.250 0.776 0.510 0.286 0.164 0.0956 0.0469

a
W = 1

2 h2 4.37 2.73 1.91 1.09 0.694 0.380 0.216 0.124 0.0607
h3 3.10 1.43 0.871 0.461 0.286 0.155 0.088 0.0506 0.0247
h1 2.07 1.41 1.105 0.755 0.551 0.363 0.248 0.172 0.107

a
W = 5

8 h2 4.30 2.55 1.840 1.160 0.816 0.523 0.353 0.242 0.150
h3 2.27 1.13 0.771 0.478 0.336 0.215 0.146 0.100 0.062
h1 1.70 1.14 0.910 0.624 0.447 0.280 0.181 0.118 0.067

a
W = 3

4 h2 4.24 2.47 1.81 1.150 0.798 0.490 0.314 0.203 0.115
h3 1.98 1.09 0.784 0.494 0.344 0.211 0.136 0.0581 0.0496
h1 1.38 1.11 0.962 0.792 0.677 0.574

a
W = 7

8 h2 4.22 2.68 2.08 1.54 1.27 1.04
h3 1.97 1.25 0.969 0.716 0.592 0.483

Table 11.4: h-Functions for Single Edge Notched Specimen, (Kumar et al., 1981)

Double Edge Notched Specimen: Table 11.5, Fig. 11.17.

Plane Strain P0 = (0.72W + 1.82b)σy (11.84)

Plane Stress P0 = 4bσy/
√

3 (11.85)

β =

√
1 +

(a
b

)2

− a

b
(11.86)

g1 = g4 = 1 (11.87)

g2 = g3 = W/a− 1 (11.88)

∆ is the load-point displacement at the centerline of the specimen, and δ is the crack mouth opening displace-
ment.

Axially Cracked Pressurized Cylinder: Table ??, Fig. 11.18.
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J Integral Numerical Example

From EPRI report, for a/W = 0.125, and n = 10, h1=0.96 Thus the fully plastic J
is given by Eq. 14

Jp = αεyσy bg1(a/W )h1(a/W , n)(P/P0)
n+1

= (1.0)(0.002)(414, 000) kPa(0.875) m 125
1000

(0.96)
(

P
8.42 MN

)10+1

= 5.76 × 10−9P11

where P in in MN, and Jpl in in kJ/m2.

KI and the Elastic J are given by

KI =

[
1.12 − 0.23

( a
W

)
+ 10.56

( a
W

)2

−21.74
( a

W

)3
+ 30.42

( a
W

)4
]
σ
√
πa

Jel =
K 2

I

E
= G =

1, 000P2(0.770)2

(0.025)2 m2(1.0) m(207, 000) MPa
= 4.584P2

where P in in MN, and Jel in in kJ/m2.
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J Integral Numerical Example

The total J is
J = Jel + Jpl = 4.584P2 + 5.76 × 10−9P11
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J Integral J1 and J2 Generalization

Knowles and Stenberg have extended the definition of Rice’s J integral to

Jk =

∫
{wnk − ti

∂ui

∂xk
}d�

which is also path independent.

When written in vector form, this gives

J1 =

∫

�

(
wdy − t

∂u

∂x
d�
)

J2 =

∫

�

(
wdx − t

∂u

∂y
d�
)

Heller and Blackburn showed that

J = J1 − iJ2 =
(1 + ν)(1 + κ)

4E
(K 2

I + K 2
II + 2iKIKII)
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J Integral J1 and J2 Generalization

Thus the values of energy release rates (J1 and J2) for crack extensions parallel
and perpendicular to the crack, respectively, will be given by:

J1 =
K 2

I + K 2
II

H

J2 =
−2KIKII

H

where

H = E plane strain;

H =
E

1 − ν2 plane stress

Convenient set of integrals to numerically determine the SIF’s.
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Compact Tension Specimen: Table 11.2, Fig. 11.14.

1.2 W

1.25 W

P

P
a

W

b

Figure 11.14: Compact tension Specimen

Plane Strain P0 = 1.455βbσy (11.70)

Plane Stress P0 = 1.071βbσy (11.71)

β =

√(
2
a

b

)2

+ 4
a

b
+ 2− 2

a

b
− 1 (11.72)

gi = 1 (11.73)

∆ corresponds to the crack opening displacement at the load line and δ is the crack mouth opening displacement.

Center Cracked Panel: Table 11.3, Fig. 11.15

Plane Strain P0 = 4bσy/
√

3 (11.74)

Plane Stress P0 = 2bσy (11.75)

g1 = g4 = a/W (11.76)

g2 = g3 = 1 (11.77)

∆ corresponds to the average load-point displacement defined by

∆ =
1

2W

∫ W

W

[u2(x1, L)− u2(x1, L)]dx1 (11.78)

δ is the crack opening displacement at the center of the crack.

Single Edge Notched Specimen: Table 11.4, Fig. 11.16.

Plane Strain P0 = 1.455βbσy (11.79)

Plane Stress P0 = 1.072βbσy (11.80)

β =

√
1 +

(a
b

)2

− a

b
(11.81)

g1 = g4 = a/W (11.82)

g2 = g3 = 1 (11.83)
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n = 1 n = 2 n = 3 n = 5 n = 7 n = 10 n = 13 n = 16 n = 20
Plane Strain

h1 2.23 2.05 1.78 1.48 1.33 1.26 1.25 1.32 1.57
a
W = 1

4 h2 17.9 12.5 11.7 10.9 10.5 10.7 11.5 12.6 14.6
h3 9.85 8.51 8.17 7.77 7.71 7.92 8.52 9.31 10.9
h1 2.15 1.72 1.39 0.97 0.69 0.443 0.28 0.176 0.098

a
W = 3

8 h2 12.60 8.18 6.52 4.32 2.97 1.79 1.10 0.686 0.370
h3 7.94 5.76 4.64 3.10 2.14 1.29 0.793 0.494 0.266
h1 1.94 1.51 1.24 0.919 0.68 0.461 0.314 0.216 0.132

a
W = 1

2 h2 9.33 5.85 4.30 2.75 1.91 1.20 0.788 0.530 0.370
h3 6.41 4.27 3.16 2.02 1.41 0.998 0.585 0.393 0.236
h1 1.76 1.45 1.24 0.97 0.75 0.602 0.459 0.347 0.248

a
W = 5

8 h2 7.61 4.57 3.42 2.36 1.51 1.32 0.983 0.749 0.485
h3 5.52 3.43 2.58 1.79 1.37 1.00 0.746 0.568 0.368
h1 1.71 1.42 1.26 1.03 0.86 0.717 0.575 0.448 0.345

a
W = 3

4 h2 6.37 3.95 3.18 2.34 1.89 1.440 1.120 0.887 0.665
h3 4.86 3.05 2.46 1.81 1.45 1.110 0.869 0.686 0.514
h1 1.57 1.45 1.35 1.18 1.08 0.95 0.85 0.73 0.63

a
W ≈ 1 h2 5.39 3.74 3.09 2.43 2.12 1.80 1.57 1.33 1.14

h3 4.31 2.99 2.47 1.95 1.79 1.44 1.26 1.07 0.909
Plane Stress

h1 1.61 1.460 1.28 1.06 0.90 0.729 0.601 0.511 0.395
a
W = 1

4 h2 17.60 12.00 10.70 8.74 7.32 5.74 4.63 3.75 2.92
h3 9.67 8.00 7.21 5.94 5.00 3.95 3.19 2.59 2.023
h1 1.55 1.25 1.050 0.801 0.64 0.484 0.377 0.284 0.22

a
W = 3

8 h2 12.40 8.20 6.540 4.56 3.45 2.44 1.83 1.36 1.02
h3 7.80 5.73 4.620 3.250 2.48 1.77 1.33 0.99 0.746
h1 1.40 1.08 0.901 0.686 0.55 0.436 0.356 0.298 0.238

a
W = 1

2 h2 9.16 5.67 4.21 2.80 2.12 1.57 1.25 1.03 0.814
h3 6.29 4.15 3.11 2.09 1.59 1.18 0.938 0.774 0.614
h1 1.27 1.03 0.875 0.695 0.59 0.494 0.423 0.37 0.310

a
W = 5

8 h2 7.470 4.48 3.35 2.37 1.92 1.540 1.29 1.12 0.928
h3 5.42 3.38 2.54 1.80 1.47 1.180 0.988 0.853 0.710
h1 1.23 0.977 0.833 0.683 0.59 0.506 0.431 0.373 0.314

a
W = 3

4 h2 6.25 3.78 2.89 2.14 1.78 1.440 1.20 1.03 0.857
h3 4.77 2.92 2.24 1.66 1.38 1.120 0.936 0.80 0.666
h1 1.130 1.01 0.775 0.68 0.65 0.620 0.490 0.47 0.42

a
W ≈ 1 h2 5.29 3.54 2.41 1.91 1.73 1.59 1.23 1.17 1.03

h3 4.23 2.83 1.93 1.52 1.39 1.270 0.985 0.933 0.824

Table 11.2: h-Functions for Standard ASTM Compact Tension Specimen, (Kumar et al., 1981)
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n = 1 n = 2 n = 3 n = 5 n = 7 n = 10 n = 13 n = 16 n = 20
Plane Strain

h1 2.80 3.61 4.06 4.35 4.33 4.02 3.56 3.06 2.46
a
W = 1

8 h2 3.05 3.62 3.91 4.06 3.93 3.54 3.07 2.60 2.06
h3 0.303 0.574 0.84 1.30 1.63 1.95 2.03 1.96 1.77
h1 2.54 3.01 3.21 3.29 3.18 2.92 2.63 2.34 2.03

a
W = 1

4 h2 2.68 2.99 3.01 2.85 2.61 2.30 1.00 1.71 1.45
h3 0.536 0.911 1.22 1.64 1.84 1.85 1.80 1.64 1.43
h1 2.340 2.62 2.65 2.51 2.28 1.97 1.71 1.46 1.19

a
W = 3

8 h2 2.350 2.39 2.23 1.88 1.58 1.28 1.07 0.89 0.715
h3 0.699 1.06 1.28 1.44 1.40 1.23 1.05 0.888 0.719
h1 2.21 2.29 2.20 1.97 1.76 1.52 1.32 1.16 0.978

a
W = 1

2 h2 2.030 1.860 1.60 1.23 1.00 0.799 0.664 0.564 0.466
h3 0.803 1.07 1.16 1.10 0.96 0.796 0.665 0.565 0.469
h1 2.12 1.96 1.76 1.43 1.17 0.863 0.628 0.458 0.300

a
W = 5

8 h2 1.71 1.320 1.04 0.707 0.52 0.358 0.250 0.178 0.114
h3 0.844 0.937 0.879 0.701 0.52 0.361 0.251 0.178 0.115
h1 2.070 1.73 1.47 1.11 0.89 0.642 0.461 0.337 0.216

a
W = 3

4 h2 1.350 0.857 0.596 0.361 0.25 0.167 0.114 0.081 0.0511
h3 805 0.70 0.555 0.359 0.25 0.168 0.114 0.081 0.052
h1 2.08 1.64 1.40 1.14 0.98 0.814 0.688 0.573 0.461

a
W = 7

8 h2 0.889 0.428 0.287 0.181 0.13 0.105 0.084 0.068 0.0533
h3 0.632 0.400 0.291 0.182 0.14 0.106 0.084 0.068 0.054

Plane Stress
h1 2.80 3.57 4.01 4.47 4.65 4.62 4.41 4.13 3.72

a
W = 1

8 h2 3.530 4.09 4.43 4.74 4.79 4.63 4.33 4.00 3.55
h3 0.350 0.661 1.00 1.55 2.05 2.56 2.83 2.95 2.92
h1 2.54 2.97 3.14 3.20 3.11 2.86 2.65 2.47 2.20

a
W = 1

4 h2 3.100 3.29 3.30 3.15 2.93 2.56 2.29 2.08 1.81
h3 0.619 1.01 1.35 1.83 2.08 2.19 2.12 2.01 1.79
h1 2.340 2.53 2.52 2.35 2.17 1.95 1.77 1.61 1.43

a
W = 3

8 h2 2.710 2.62 2.41 2.03 1.75 1.47 1.28 1.13 0.988
h3 0.807 1.20 1.43 1.59 1.57 1.43 1.27 1.13 0.994
h1 2.210 2.20 2.06 1.81 1.63 1.43 1.30 1.17 1.00

a
W = 1

2 h2 2.340 2.01 1.70 1.30 1.07 0.871 0.757 0.666 0.557
h3 0.927 1.19 1.26 1.18 1.04 0.867 0.758 0.668 0.560
h1 2.12 1.91 1.69 1.41 1.22 1.01 0.853 0.712 0.573

a
W = 5

8 h2 1.970 1.46 1.13 0.785 0.61 0.474 0.383 0.313 0.256
h3 0.975 1.05 0.97 0.763 0.62 0.478 0.386 0.318 0.273
h1 2.07 1.71 1.46 1.21 1.08 0.867 0.745 0.646 0.532

a
W = 3

4 h2 1.550 0.97 0.685 0.452 0.36 0.262 0.216 0.183 0.148
h3 0.929 0.802 0.642 0.45 0.36 0.263 0.216 0.183 0.149
h1 2.08 1.57 1.31 1.08 0.97 0.862 0.778 0.715 0.630

a
W = 7

8 h2 1.030 0.485 0.31 0.196 0.15 0.127 0.109 0.0971 0.0842
h3 0.730 0.452 0.313 0.198 0.15 0.127 0.109 0.0973 0.0842

Table 11.3: Plane Stress h-Functions for a Center-Cracked Panel, (Kumar et al., 1981)
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∆ is the load-point displacement at the centerline of the specimen, and δ is the crack mouth opening displace-
ment.

n = 1 n = 2 n = 3 n = 5 n = 7 n= 10 n = 13 n = 16 n = 20
Plane Strain

h1 4.95 6.93 8.57 11.50 13.5 16.1 18.1 19.9 21.2
a
W = 1

8 h2 5.250 6.47 7.56 9.46 11.1 12.9 14.4 15.7 16.8
h3 26.60 25.80 25.20 24.20 23.6 23.2 23.2 23.5 23.7
h1 4.34 4.77 4.64 3.82 3.06 2.170 1.55 1.11 0.712

a
W = 1

4 h2 4.760 4.56 4.28 3.39 2.64 1.910 1.25 0.875 0.552
h3 10.30 7.64 5.87 3.70 2.48 1.500 0.97 0.654 0.404
h1 3.88 3.25 2.63 1.68 1.06 0.539 0.276 0.142 0.060

a
W = 3

8 h2 4.540 3.49 2.67 1.57 0.94 0.458 0.229 0.116 0.048
h3 5.14 2.99 1.90 0.923 0.51 0.240 0.119 0.060 0.025
h1 3.40 2.30 1.69 0.928 0.51 0.213 0.090 0.039 0.012

a
W = 1

2 h2 4.450 2.77 1.89 0.954 0.50 0.204 0.085 0.036 0.011
h3 3.15 1.54 0.91 0.417 0.21 0.085 0.036 0.015 0.004
h1 2.86 1.80 1.30 0.697 0.37 0.153 0.064 0.026 0.008

a
W = 5

8 h2 4.370 2.44 1.62 0.081 0.42 0.167 0.067 0.027 0.008
h3 2.31 1.08 0.68 0.329 0.17 0.067 0.027 0.011 0.003
h1 2.34 1.61 1.25 0.769 0.47 0.233 0.116 0.059 0.022

a
W = 3

4 h2 4.320 2.52 1.79 1.03 0.69 0.296 0.146 0.074 0.027
h3 2.02 1.10 0.765 0.435 0.26 0.125 0.062 0.031 0.011
h1 1.91 1.57 1.37 1.10 0.92 0.702

a
W = 7

8 h2 4.29 2.75 2.14 1.55 1.23 0.921
h3 2.01 1.27 0.988 0.713 0.56 0.424

Plane Stress
h1 3.58 4.55 5.06 5.30 4.96 4.14 3.29 2.60 1.92

a
W = 1

8 h2 5.15 5.43 6.05 6.01 5.47 4.46 3.48 2.74 2.02
h3 26.10 21.60 18.00 12.70 9.24 5.98 3.94 2.72 2.00
h1 3.14 3.26 2.920 2.120 1.53 0.96 0.615 0.40 0.23

a
W = 1

4 h2 4.67 4.30 3.700 2.530 1.76 1.05 0.656 0.419 0.237
h3 10.10 6.49 4.360 2.190 1.24 0.63 0.362 0.224 0.123
h1 2.81 2.37 1.940 1.370 1.01 0.677 0.474 0.342 0.226

a
W = 3

8 h2 4.47 3.43 2.630 1.690 1.18 0.762 0.524 0.372 0.244
h3 5.05 2.65 1.600 0.812 0.525 0.328 0.223 0.157 0.102
h1 2.46 1.67 1.250 0.776 0.510 0.286 0.164 0.0956 0.0469

a
W = 1

2 h2 4.37 2.73 1.91 1.09 0.694 0.380 0.216 0.124 0.0607
h3 3.10 1.43 0.871 0.461 0.286 0.155 0.088 0.0506 0.0247
h1 2.07 1.41 1.105 0.755 0.551 0.363 0.248 0.172 0.107

a
W = 5

8 h2 4.30 2.55 1.840 1.160 0.816 0.523 0.353 0.242 0.150
h3 2.27 1.13 0.771 0.478 0.336 0.215 0.146 0.100 0.062
h1 1.70 1.14 0.910 0.624 0.447 0.280 0.181 0.118 0.067

a
W = 3

4 h2 4.24 2.47 1.81 1.150 0.798 0.490 0.314 0.203 0.115
h3 1.98 1.09 0.784 0.494 0.344 0.211 0.136 0.0581 0.0496
h1 1.38 1.11 0.962 0.792 0.677 0.574

a
W = 7

8 h2 4.22 2.68 2.08 1.54 1.27 1.04
h3 1.97 1.25 0.969 0.716 0.592 0.483

Table 11.4: h-Functions for Single Edge Notched Specimen, (Kumar et al., 1981)

Double Edge Notched Specimen: Table 11.5, Fig. 11.17.

Plane Strain P0 = (0.72W + 1.82b)σy (11.84)

Plane Stress P0 = 4bσy/
√

3 (11.85)

β =

√
1 +

(a
b

)2

− a

b
(11.86)

g1 = g4 = 1 (11.87)

g2 = g3 = W/a− 1 (11.88)

∆ is the load-point displacement at the centerline of the specimen, and δ is the crack mouth opening displace-
ment.

Axially Cracked Pressurized Cylinder: Table ??, Fig. 11.18.
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n = 1 n = 2 n = 3 n = 5 n = 7 n = 10 n = 13 n = 16 n = 20
Plane Strain

h1 0.572 0.772 0.922 1.13 1.35 1.61 1.86 2.09 2.44
a
W = 1

8 h2 0.732 0.852 0.961 1.14 1.29 1.50 1.70 1.94 2.17
h3 0.063 0.126 0.200 0.372 0.57 0.911 1.30 1.74 2.29
h1 1.10 1.320 1.38 1.65 1.75 1.82 1.86 1.89 1.92

a
W = 1

4 h2 1.56 1.63 1.70 1.79 1.80 1.81 1.79 1.78 1.76
h3 0.267 0.479 0.698 1.11 1.47 1.92 2.25 2.49 2.73
h1 1.61 1.83 1.92 1.92 1.84 1.68 1.49 1.32 1.12

a
W = 3

8 h2 2.51 2.41 2.35 2.15 1.94 1.68 1.44 1.25 1.05
h3 0.637 1.05 1.40 1.87 2.11 2.20 2.09 1.92 1.67
h1 2.22 2.43 2.49 2.43 2.32 2.12 1.91 1.60 1.51

a
W = 1

2 h2 3.73 3.40 3.15 2.70 2.37 2.01 1.72 1.40 1.38
h3 1.26 1.92 2.37 2.79 2.85 2.68 2.40 1.99 1.94
h1 3.16 3.38 3.45 3.42 3.28 3.00 2.54 2.36 2.27

a
W = 5

8 h2 5.57 4.76 4.23 3.46 2.97 2.48 2.02 1.82 1.66
h3 2.36 3.29 3.74 3.90 3.68 3.23 2.66 2.40 2.19
h1 5.24 6.29 7.17 8.44 9.46 10.90 119.0 11.3 17.4

a
W = 3

4 h2 9.10 7.76 7.14 6.64 6.83 7.48 7.790 7.14 11.0
h3 4.73 6.26 7.03 7.63 8.14 9.04 9.4 8.58 13.5
h1 14.2 24.8 39.0 78.4 140. 341.0 777.0 1570.0 3820.0

a
W = 7

8 h2 20.1 19.4 22.7 36.1 58.9 133.0 294.0 585.0 1400.0
h3 12.7 18.2 24.1 40.4 65.9 149.0 327.0 650.0 1560.0

Plane Stress
h1 0.583 0.825 1.02 1.37 1.71 2.24 2.84 3.54 4.62

a
W = 1

8 h2 0.853 1.050 1.23 1.55 1.87 2.38 2.96 3.65 4.70
h3 0.0729 0.159 0.26 0.504 0.82 1.41 2.18 3.16 4.73
h1 1.01 1.23 1.36 1.48 1.54 1.58 1.59 1.59 1.59

a
W = 1

4 h2 1.73 1.82 1.89 1.92 1.91 1.85 1.80 1.75 1.70
h3 0.296 0.537 0.77 1.17 1.49 1.82 2.02 2.12 2.20
h1 1.29 1.42 1.43 1.34 1.24 1.09 0.97 0.873 0.674

a
W = 3

8 h2 2.59 2.39 2.22 1.86 1.59 1.28 1.07 0.922 0.709
h3 658 1.04 1.30 1.52 1.55 1.41 1.23 1.07 0.830
h1 1.48 1.47 1.38 1.17 1.01 0.845 0.732 0.625 0.208

a
W = 1

2 h2 3.51 2.82 2.34 1.67 1.28 0.944 0.762 0.630 0.232
h3 1.18 1.58 1.69 1.56 1.32 1.01 0.809 0.662 0.266
h1 1.59 1.45 1.29 1.04 0.88 0.737 0.649 0.466 0.020

a
W = 5

8 h2 4.56 3.15 2.32 1.45 1.06 0.790 0.657 0.473 0.028
h3 1.93 2.14 1.95 1.44 1.09 0.809 0.665 0.487 0.032
h1 1.65 1.43 1.22 0.979 0.83 0.701 0.630 0.297

a
W = 3

4 h2 5.90 3.37 2.22 1.30 0.96 0.741 0.636 0.312
h3 3.06 2.67 2.06 1.31 0.97 0.747 0.638 0.318
h1 1.69 1.43 1.22 0.979 0.84 0.738 0.664 0.614 0.562

a
W = 7

8 h2 8.02 3.51 2.14 1.27 0.97 0.775 0.663 0.596 0.535
h3 5.07 3.180 2.16 1.30 0.98 0.779 0.665 0.597 0.538

Table 11.5: h-Functions for Double Edge Notched Specimen, (Kumar et al., 1981)
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p0 =
2bσy√

3Rc
(11.89)

Rc = Ri + a (11.90)

g1 =
a

W
(11.91)

g2 = 1 (11.92)

δ is the crack mouth opening displacement. Note that in the elastic range:

KI =
2pR2

0

√
πa

R2
0 −R2

i

F

(
a

W
,
Ri
R0

)
(11.93)

δe =
8pR2

0a

(R2
0 −R2

i )E
′ V

(
a

W
,
Ri
R0

)
(11.94)

where the dimensionless functions F and V are tabulated in Table 11.7.

n = 1 n = 2 n = 3 n = 5 n = 7 n = 10
W
Ri

= 1
5

a
W = 1

8 h1 6.32 7.93 9.32 11.50 13.1 14.94
h2 5.83 7.01 7.96 9.49 10.6 11.96

a
W = 1

4 h1 7.00 9.34 9.03 9.59 9.71 9.45
h2 5.92 8.72 7.07 7.26 7.14 6.71

a
W = 1

2 h1 9.79 10.37 9.07 5.61 3.52 2.11
h2 7.05 6.97 6.01 3.70 2.28 1.25

a
W = 3

4 h1 11.00 5.54 2.84 1.24 0.83 0.493
h2 7.35 3.86 1.86 0.56 0.26 0.129

W
Ri

= 1
10

a
W = 1

8 h1 5.22 6.64 7.59 8.76 9.34 9.55
h2 5.31 6.25 6.88 7.65 8.02 8.09

a
W = 1

4 h1 6.16 7.49 7.96 8.08 7.78 6.98
h2 5.56 6.31 6.52 6.40 6.01 5.27

a
W = 1

2 h1 10.5 11.6 10.7 6.47 3.95 2.27
h2 7.48 7.72 7.01 4.29 2.58 1.37

a
W = 3

4 h1 16.10 8.19 3.87 1.46 1.05 0.787
h2 9.57 5.40 2.57 0.71 0.37 0.232

W
Ri

= 1
20

a
W = 1

8 h1 4.50 5.79 6.62 7.65 8.07 7.75
h2 4.96 5.71 6.20 6.82 7.02 6.66

a
W = 1

4 h1 5.57 6.91 7.37 7.47 7.21 6.53
h2 5.29 5.98 6.16 6.01 5.63 4.93

a
W = 1

2 h1 10.80 12.80 12.80 8.16 4.88 2.62
h2 7.66 8.33 8.13 5.33 3.20 1.65

a
W = 3

4 h1 23.10 13.10 5.87 1.90 1.23 0.883
h2 12.10 7.88 3.84 1.01 0.45 0.24

Table 11.6: h-Functions for an Internally Pressurized, Axially Cracked Cylinder, (Kumar et al., 1981)

a
W = 1

8
a
W = 1

4
a
W = 1

2
a
W = 3

4
W
RI

= 1
5 F 1.19 1.38 2.10 3.30

V1 1.51 1.83 3.44 7.50
W
RI

= 1
10 F 1.20 1.44 2.36 4.23

V1 1.54 1.91 3.96 10.40
W
RI

= 1
20 F 1.20 1.45 2.51 5.25

V1 1.54 1.92 4.23 13.50

Table 11.7: F and V1 for Internally Pressurized, Axially Cracked Cylinder, (Kumar et al., 1981)

Circumferentially Cracked Cylinder: Table 11.8, Fig. 11.19.
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Figure 11.19: Circumferentially Cracked Cylinder
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P0 =
2πσy(R2

0 −R2
i )√

3
(11.95)

Rc = Ri + a (11.96)

g1 = g4 =
a

W
(11.97)

g2 = g3 = 1 (11.98)

δ is the crack mouth opening displacement.

In the elastic range

KI = σ
√
πaF

(
a

W
,
Ri
R0

)
(11.99)

δe =
4σaV1

(
a
W
, Ri
R0

)
E′

(11.100)

∆ce =
4σaV2

(
a
W
, Ri
R0

)
E′

(11.101)

where the functions F , V1, and V2 are tabulated in Table 11.9.

n = 1 n = 2 n = 3 n = 5 n = 7 n = 10
W
Ri

= 1
5

h1 3.78 5.00 5.94 7.54 8.99 11.1
a
W = 1

8 h2 4.560 5.55 6.37 7.79 9.10 11.0
h3 0.369 0.70 1.07 1.96 3.04 4.94
h1 3.88 4.95 5.64 6.49 6.94 7.22

a
W = 1

4 h2 4.40 5.12 5.57 6.07 6.28 6.30
h3 0.673 1.25 1.79 2.79 3.61 4.52
h1 4.40 4.78 4.59 3.79 3.07 2.34

a
W = 1

2 h2 4.36 4.30 3.91 3.00 2.26 1.55
h3 1.33 1.93 2.21 2.23 1.94 1.46
h1 4.12 3.03 2.23 1.546 1.30 1.110

a
W = 3

4 h2 3.46 2.19 1.36 0.638 0.43 0.325
h3 1.54 1.39 1.04 0.686 0.50 0.366

W
Ri

= 1
10

h1 4.00 5.13 6.09 7.69 9.09 11.1
a
W = 1

8 h2 4.71 5.63 6.45 7.85 9.09 10.9
h3 0.548 0.733 1.13 2.07 3.16 5.07
h1 4.17 5.35 6.09 6.93 7.30 7.41

a
W = 1

4 h2 4.58 5.36 5.84 6.31 6.44 6.31
h3 757 1.35 1.93 2.96 3.78 4.60
h1 5.40 5.90 5.63 4.51 3.49 2.47

a
W = 1

2 h2 4.99 5.01 4.59 3.48 2.56 1.67
h3 1,555 2.26 2.59 2.57 2.18 1.56
h1 5.18 3.78 2.57 1.59 1.31 1.10

a
W = 3

4 h2 4.22 2.79 1.67 0.725 0.48 0.30
h3 1.86 1.73 1.26 0.775 0.56 0.36

W
Ri

= 1
20

h1 4.04 5.23 6.22 7.82 9.19 11.1
a
W = 1

8 h2 4.82 5.69 6.52 7.90 9.11 10.8
h3 0.68 0.76 1.17 2.13 3.23 5.12
h1 4.39 5.68 6.45 7.29 7.62 7.65

a
W = 1

4 h2 4.71 5.56 6.05 6.51 6.59 6.39
h3 0.82 1.43 2.03 3.10 3.91 4.69
h1 6.55 7.17 6.89 5.46 4.13 2.77

a
W = 1

2 h2 5.67 5.77 5.36 4.08 2.97 1.88
h3 1.80 2.59 2.99 2.98 2.50 1.74
h1 6.64 4.87 3.08 1.68 1.30 1.07

a
W = 3

4 h2 5.18 3.57 2.07 0.808 0.47 0.316
h3 2.36 2.18 1.53 0.772 0.49 0.330

Table 11.8: h-Functions for a Circumferentially Cracked Cylinder in Tension, (Kumar et al., 1981)

11.9.2 Numerical Example

From (Anderson, 1995), Consider a single edge notched panel with W = 1 m, a = 125 mm. Determine J in terms of
the applied load assuming plane stress conditions, neglect plastic zone correction.
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Introduction

Introduction

Crack propagation occurs for critical crack lengths acr .

Subcritical crack growth may occur for a < acr under two conditions: Crack
subjected to either fatigue (i.e. cyclic) loading or corrosive environment.

Thus an important question that arises is how long (i.e. how many cycles) would
it be before this subcritical crack of length ai grows to reach a critical size acr and
thus trigger failure? in order to predict the minimum fatigue life and to establish
safe inspection intervals.
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Experimental Observation

t

σ 

σmin 

σmax 

σ 

da/dN

I

II

III

a

A plate that has no crack subjected to a series
of repeated loading, three distinct stages:

1 Stage 1 : Micro coalescence of voids
and formation of microcracks. Difficult to
capture, realm of metallurgists or
material scientists, compared to stage II
and III by far the longest.

2 Stage II: Micro crack of finite size was
formed, its SIF’well below KIc ,
(K << KIc), and crack growth occurs
after each cycle of loading.

3 Stage III: Crack has reached a size a
such that a = ac , thus rapid unstable
crack growth occurs.

Primarily be concerned by stage II.
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Fatigue Laws Under Constant Amplitude Loading Paris Law

First (and most widely used) fracture mechanics-based model for fatigue crack
growth: Paris Law early ’60s.

Empirical law based on experimental observations. Most other empirical laws
are direct extensions, or refinements.

da
dN

= C (�K )n

Straight line on a log-log plot of da
dN

vs �K , and

�K = Kmax − Kmin = (σmax − σmin)f (g)
√
πa

a crack length; N the number of load cycles; C the intercept of line along da
dN

(of

the order of 10−6) units of m/cycle/(MPa
√

m)n; n is the slope of the line and
ranges from 2 to 10. C and n are experimentally determined. Very expensive
test.
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Fatigue Laws Under Constant Amplitude Loading Paris Law

Paris law can be rewritten as :

�N =
�a

C [�K (a)]n

or

N =

∫
dN =

∫ af

ai

da
C [�K (a)]n

Small error in the SIF calculations would be magnified greatly as n ranges from 2
to 6.

Analytical solutions for SIF often do not exist resulting in large approximation
errors. More reliable numerical solutions should be used.
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Fatigue Laws Under Constant Amplitude Loading Forman; Walker Laws

da/dN

ΔKKIc

Forman

Paris

When compared with experimental data, it is evident
that Paris law does not account for:

1 Increase in crack growth rate as Kmax

approaches KIc
2 Slow increase in crack growth at Kmin ≈ Kth

thus it was modified by Forman

da
dN

=
C(�K )n

(1 − R)Kc −�K

Walker’s model is yet another variation of Paris Law which accounts for the
stress ratio R = Kmin

Kmax
= σmin

σmax

da
dN

= C
[

�K
(1 − R)(1−m)

]n
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Examples Example 1

An aircraft flight produces 10 gusts per flight (between take-off and landing). It has two
flights per day. Each gust has a σmax = 200 MPa and σmin = 50 MPa. The aircraft is
made up of aluminum which has R = 15 kJ/m2 E = 70 GPa C = 5 × 10−11 m/cycle,
and n = 3. The smallest detectable flaw is 4 mm. How long would it be before the
crack will propagate to its critical length?

Assuming K = σ
√
πa and KIc =

√
ER, then ac =

K 2
c

σ2
maxπ

= ER
σ2

maxπ
or

ac =
(70 × 109)(15 × 103)

(200 × 106)2π
= 0.0084 m = 8.4 mm

⇒ N =

∫ af

ai

da
C[�K (a)]n

=

∫ af

ai

da

C (σmax − σmin)
n︸ ︷︷ ︸

(�σ)n

((πa)
1
2 )n

=

∫ 8.4×10−3

4×10−3

da
(5 × 10−11)︸ ︷︷ ︸

C

(200 − 50)3︸ ︷︷ ︸
(�σ)3

(πa)1.5︸ ︷︷ ︸
((πa).5)3

= 1064
∫ .0084

.004
a−1.5da

= −2128a−.5 |.0084
.004 = 2128[− 1√

.0084
+ 1√

.004
]

= 10, 428 cycles
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Examples Example 1

thus the time t will be: t = (10,428) cycles × 1
10

flight
cycle × 1

2
day
flight ×

1
30

month
day

≈ 17.38 month ≈ 1.5 years.

If a longer lifetime is desired, then we can:

Employ a different material with higher KIc , so as to increase the critical
crack length ac at instability;
reduce the maximum value of the stress σmax .
reduce the stress range �σ;
improve the inspection so as to reduce the assumed initial crack length
amin.
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Examples Example 2

Repeat the previous problem except that more sophisticated (and expensive) NDT
equipment is available with a resolution of .1 mm thus ai = .1mm

t = 2128[− 1√
.0084

+ 1√
.0001

] = 184, 583 cycles

t = 1738
10,428 (189, 583) = 316 months ≈ 26 years!
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Effective Stress Intensity Factor Range

Paris Law in terms of �KI; Must consider fatigue crack growth under mixed
mode conditions.

Using the maximum circumferential stress theory, use

�KIeff = �KI cos
3 θ0

2
− 3

2
�KII cos

θ0

2
sin θ0
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Variable Amplitude Loading with Load Interaction No Load Interactions

Root Mean Square Model (Barsoum)

da
dN

= C(�Krms)
n

�Krms =

√∑n
i=1 �K 2

i

n

where �Krms is the square root of the mean of the squares of the individual
stress intensity factors cycles in a spectrum.

Accurate “block by block” numerical integration of the fatigue law

�a = C(�K )n�N

solve for a instead of N.
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Variable Amplitude Loading with Load Interaction Load Interactions; Retardation Models

a

N

A B

B

A

A
B

σy

σy

r r

σyield

Load spike in a sequence of low amplitude cycles
significantly reduces the rate of crack growth
during the cycles applied subsequent to the
overload. This phenomena is called Retardation.

The crack front to plastically deform and a tensile
plastic zone is formed.

When load is released, the surrounding material is
elastically unloaded and a part of the plastic zone
experiences compressive stresses.

If the the load history contains a mix of constant amplitude loads and discretely
applied higher level loads, the patterns of residual stress and plastic deformation
are perturbed.

As the crack propagates through this perturbed zone under the constant
amplitude loading cycles, it grows slower (the crack is retarded).

Once it emerges from the previously formed large plastic zone, then the crack
growth rate returns to its typical steady-state level.
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Variable Amplitude Loading with Load Interaction Wheeler’s Model

rp0

λ ai

rpi

λ ai

rpi

Current “plastic 
enclave”

“Plastic enclave” 
due to overload

Current “plastic 
enclave”

“Plastic enclave” 
due to overload

The presence of a plastic zone at the tip of the crack
will constrain (due to volumetric expansion) its
expansion, thus it will retard its growth.

Wheeler defined a crack-growth retardation factor Cp:

da
dN retarded

= Cp

(
da
dN

)
linear

Cp =
( rpi

λ

)m
=

(
rpi

ao + rpo − ai

)m

as long as ai + rpi < a0 + rp0

in which rpi is the current plastic zone size in the i th cycle under consideration, ai is the
current crack size, rpoL is the plastic size generated by a previous higher load
excursion, aoL is the crack size at which the higher load excursion occurred, and m is
an empirical constant.

Thus there is retardation as long as the current plastic zone is contained within
the previously generated one.

Fracture Mechanics; V. E. Saouma; Fatigue Crack Propagation 14/17



Variable Amplitude Loading with Load Interaction Generalized Willenborg’s Model

In the generalized Willenborg model, the stress intensity factor KI is replaced by
an effective one in which KR that senses the differences in compressive residual
stress state caused by difference in load levels and is given by:

K eff
I = KI − KR

KR = ϕK w
R

ϕ =
1 − Kmax,th

Kmax,i

soL − 1

K w
R = K oL

max

√
1 − ai − aoL

rpoL
− Kmax,i

ai is the current crack size, aoL the crack size at the occurrence of the overload,
rpoL the yield zone produced by the overload, K oL

max the maximum stress intensity
of the overload, and Kmax,i the maximum stress intensity for the current cycle.

There are two empirical constants: Kmax,th is the threshold SIF level associated
with zero fatigue carck growth rates, and Sol is the overload (shut-off) ratio
required to cause crack arrest for the given material.
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Variable Amplitude Loading with Load Interaction Generalized Willenborg’s Model

Hence, retardation will occur until the crack has generated a plastic zone size
that reaches the boundary of the overload yield zone. At that time, ai − aoL = rpoL

and the reduction becomes zero.

Maximum and minimum levels (Kmax,i and Kmin,i ), are reduced by the same
amount (KR).

Retardation effect is sensed by the change in the effective stress ratio calculated
from:

Reff =
K eff

min,i

K eff
max,i

=
Kmin,i − KR

Kmax,i − KR

because the range in stress intensity factor is unchanged by the uniform
reduction.

For the i th load cycle, the crack growth increment �ai is:

�ai =
da
dN

= f (�K ,Reff )
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Variable Amplitude Loading with Load Interaction Generalized Willenborg’s Model

Then this is used in conjunction with Forman’s law. thus it was modified by
Foreman

da
dN

=
C(�K )n

(1 − R)Kc −�K
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Introduction

Often times one is confronted with a fracture problem for which there is no
readily available analytical solution.

Should resort to numerical methods for analysis.

This chapter will focus on

SIF
J Integral

EPFM of metals will not be covered.

NLFM of concrete will be separately addressed.
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Energy Release Rate Mode I

Recalling that strain energy release rate G is:

G = −∂�

∂a
=

K 2
I

E ′ ≃ �U
�a

a simple algorithm for the SIF calculation emerges:

1 For an initial crack length a, determine the total strain energy:

1 U = utKu over 
 where u nodal displacement, K structural stiffness matrix.
2 U = utP along � where P and u are the externally applied nodal load and

displacement, respectively.

2 Increase the crack length from a to a +�a, and reanalyze.

3 Determine G from G ≃ (U+�U)−U
(a+�a)−a = �U

�a =
K 2

I
E ′

Note that:

1 This procedure requires two complete separate analyses.
2 The stress singularity need not be modeled.
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Energy Release Rate Mode I

3 This technique is restricted to mode I only.
4 Can be extended to mixed mode (would require three complete analysis).
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Energy Release Rate Virtual Crack Extension.

The stiffness matrix is only slightly perturbed in the second analysis (associated
with a +�a), so take derivative

The potential energy � is given by:

� =
1
2
⌊u⌋[K ]{u} − ⌊u⌋{p}

and

−G =
∂�

∂a
= ∂⌊u⌋

∂a [K ]{u}+ 1
2⌊u⌋

∂[K ]
∂a {u} − ∂⌊u⌋

∂a {P} − ⌊u⌋∂{P}
∂a

= −∂⌊u⌋
∂a ([K ]{u} − {P})︸ ︷︷ ︸

0

+ 1
2⌊u⌋

∂[K ]
∂a {u} − ⌊u⌋∂{P}

∂a

Noting that the first term in the last equation is zero, we obtain:

G = −1
2
⌊u⌋∂[K ]

∂a
{u}+ ⌊u⌋∂{P}

∂a

Thus if the load is unaltered during the crack extension, than the energy release
rate is directly related to the derivative of the stiffness.
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Energy Release Rate Virtual Crack Extension.

Note that:

1 Only the portion of the stiffness matrix associated with the elements
surrounding the crack tip needs to be perturbed.

2 Better results are obtained if singular elements are used.
3 The method can easily be generalized to three-dimensional problems.
4 It can be shown that this technique is equivalent to the determination of the

J integral.
5 This method is restricted to mode I loading only.
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Mixed Mode Cases Two Analyses

Previous model did not distinguish the mode I from the mode II components in
the energy release rate.

Use

J1 = G1 =
K 2

I + K 2
II

E ′ +
K 2

III

2µ

J2 = G2 =
−2KIKII

E ′

where E ′ = E for plane stress, and E ′ = E
1−ν2 for plane strain. G1 and G2 are

associated with virtual crack extensions at θ = 0 and θ = π
2 respectively.

Algorithm

1 For an initial crack length a, determine the total strain energy U.
2 Extend the crack length from a to a +�a:

1 Along θ = 0, and determine G1.
2 Along θ = π

2 , and determine G2.
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Mixed Mode Cases Two Analyses

3 Solve for the two SIF from:

KI =
s ±

√
s2 + 8G2

α

2

KII =
s ∓

√
s2 + 8G2

α

2

where s = 2
√

G1−G2
α

and α = (1+ν)(1+κ)
E

An alternative to this technique is to use G(θ) = G1 cos(θ) + G2 sin(θ), and use
two distinct values of θ, which are not necessarily 0 or π

2 .

This method required least one complete finite element analysis, followed by
either two separate ones or two virtual crack extensions.
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Mixed Mode Cases Single Analysis

This method requires only one analysis is needed

We can decompose the nodal displacements into two local components:

� = �1 +�2
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Mixed Mode Cases Single Analysis

where

{�1} =

{
u1

v1

}
=

1
2

{
u + u ′

v − v ′

}
{�2} =

{
u2

v2

}
=

1
2

{
u − u ′

v + v ′

}

Better results are achieved if singular elements are used around the crack tip, we
can determine (following one single analysis):

G1 = −1
2
⌊�1⌋∂[K ]

∂a
{�1}+ ⌊�1⌋∂{P1}

∂a

G2 = −1
2
⌊�2⌋∂[K ]

∂a
{�2}+ ⌊�2⌋∂{P2}

∂a

Because propagation is now assumed to be colinear, we can determine the two
stress intensity factors from

KI =
√

E ′G1

KII =
√

E ′GII
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Mixed Mode Cases Single Analysis

Saving of one analysis (or virtual crack extension) is made possible through the
constraint of having a symmetrical local mesh around the crack tip.

Note this consideration was at one time very important given the limited
computer power.

The End for Energy Based Methods
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Singular Elements Introduction

Singular isoparametric elements are the simplest singular elements which can be
implemeted. This sections will

1 Cover a brief review of isoparametric element formulation

2 Show how the element can be distorted in order to achieve a stress singularity

3 Determine order of the stress singularity

4 How to compute SIF
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Singular Elements Review of Isoparameteric Elements

1 2 3

4

567

8

Y,v

X, u

1
2 3

4

567

11 1

1
1

1

ξ

η 

In isoparametric finite element representation, both the
internal displacement and coordinates are related to
their nodal values through the shape functions:{

x

y

}
=

8∑
i=1

[
Ni 0
0 Ni

]{
x i

y i

}

{d} =
{

u

v

}
=

8∑
i=1

[
Ni 0
0 Ni

]{
u i

v i

}
where the Ni are the assumed shape functions.

1 The shape functions are obtained by mere inspection (i.e.serependitiously),

Ni = 1
4 (1 + ξξi) (1 + ηηi) (ξξi + ηηi − 1) i = 1, 2, 3, 4

Ni = 1
2

(
1 − ξ2) (1 + ηηi) i = 5, 7

Ni = 1
2 (1 + ξξi)

(
1 + η2) i = 6, 8

(1)

Note that we can also use the Lagrangian element (9 nodes).
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Singular Elements Review of Isoparameteric Elements

i Ni Ni,ξ Ni,η

1 1
4 (1 − ξ)(1 − η)(−ξ− η− 1) 1

4 (2ξ+ η)(1 − η) 1
4 (1 − ξ)(2η+ ξ)

2 1
4 (1 + ξ)(1 − η)(ξ− η− 1) 1

4 (2ξ− η)(1 − η) 1
4 (1 + ξ)(2η− ξ)

3 1
4 (1 + ξ)(1 + η)(ξ+ η− 1) 1

4 (2ξ+ η)(1 + η) 1
4 (1 + ξ)(2η+ ξ)

4 1
4 (1 − ξ)(1 + η)(−ξ− η− 1) 1

4 (2ξ− η)(1 + η) 1
4 (1 − ξ)(2η− ξ)

5 1
2 (1 − ξ2)(1 − η) −ξ(1 − η) − 1

2 (1 − ξ2)

6 1
2 (1 + ξ)(1 − η2) 1

2 (1 − η2) −(1 + ξ)η

7 1
2 (1 − ξ2)(1 + η) −ξ(1 + η) 1

2 (1 − ξ2)

8 1
2 (1 − ξ)(1 − η2) − 1

2 (1 − η2) −(1 − ξ)η

2 Strain is the derivative of the displacement, we will need later to define ∂N
∂x and

∂N
∂y . N has been defined in Eq. 1 in terms of the natural coordinates ξ and η.
Thus the chain rule will have to be invoked and the inverse of the jacobian will be
needed.

Fracture Mechanics; V. E. Saouma; Numerical Methods 16/49



Singular Elements Review of Isoparameteric Elements

3 The strain displacement relationship is:

{ϵ} =
8∑

i=1

[Bi ]
[
d i

]
where [Bi ] is the strain matrix given by:

[Bi ] =


∂Ni
∂x 0
0 ∂Ni

∂y
∂Ni
∂y

∂Ni
∂x


where the following chain rule is invoked to determine the coefficients of [B]:

∂N
∂x

∂N
∂y

 =

[ ∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

]
︸ ︷︷ ︸

[J]−1


∂N
∂ξ

∂N
∂η
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Singular Elements Review of Isoparameteric Elements

4 Recall that given a point in (x , y , z) coordinates, it can be transformed to a
general coordinate system (µη) through a transformation function, all the
first-order partial derivatives of which define the Jacobian.

[J] =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
(2)

=

[ ∑8
i=1

∂Ni
∂ξ

xi
∑8

i=1
∂Ni
∂ξ

yi∑8
i=1

∂Ni
∂η

xi
∑8

i=1
∂Ni
∂η

yi

]

5 The inverse jacobian is then evaluated from the preceding equation

[J]−1 =

[ ∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

]
=

[ ∑8
i=1

∂Ni
∂ξ

xi
∑8

i=1
∂Ni
∂ξ

yi∑8
i=1

∂Ni
∂η

xi
∑8

i=1
∂Ni
∂η

yi

]−1

=
1

DetJ

[
∂y
∂η

− ∂y
∂ξ

− ∂x
∂η

∂x
∂ξ

]
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Singular Elements Review of Isoparameteric Elements

6 Finally, the element stiffness matrix of an element is given by

[K ] =

∫ 1

−1

∫ 1

−1
[B (ξ, η)]T [D] [B (ξ, η)] detJdξdη︸ ︷︷ ︸

dA

where [D] is the stress-strain or constitutive matrix.

7 The stress is given by:

{σ} = [D] [B]

{
u i

v i

}
(3)
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Singular Elements How to Distort the Element to Model the Singularity

L/4 3L/4

3
H
/4

1
2

3

Crack Tip

4

5

6

7

8

η 

ζ 

x

y

In Eq. 3 {σ} = [D] [B]

{
u i

v i

}
if the stresses

are to be singular, then [B] has to be singular
as the two other components are constants.

Consequently, if [B] is to be singular then the
determinant of J must vanish to zero (Eq. 2);

[J] =

 ∂x
∂ξ �

�7
0

∂y
∂ξ

�
�7

0
∂x
∂η

∂y
∂η

 at the crack tip.

1 A rectangular element of length L along its first side (1-5-2)). both off-diagonal
terms ( ∂y

∂ξ
and ∂x

∂η
) in J are zero

2 Thus, for the determinant of the jacobian to be zero we must have either one of
the diagonal terms equal to zero.

Fracture Mechanics; V. E. Saouma; Numerical Methods 20/49



Singular Elements How to Distort the Element to Model the Singularity

3 It will suffice to force ∂x
∂ξ

to be zero. Substituting for ∂x
∂ξ

at η = −1

∂x
∂ξ

∣∣∣∣
η=−1

=
8∑

i=1

∂Ni

∂ξ
x i =

1
4
[−1 + 2ξ+ 2ξ− 1] (0)+

1
4
[1 + 2ξ+ 2ξ+ 1] (L)

+
1
4
[−1 + 2ξ− 2ξ+ 1] (L)+

1
4
[1 − 2ξ+ 2ξ− 1] (0)− 2ξ (x5)

+
1
2
(1 − 1)L +

1
2
(1 − 1) (L)+

1
2
(1 − 1)

(
L
2

)
=

1
4
(2 + 4ξ) L − 2ξx5

4 We set ∂x
∂ξ

= 0 at the first corner where η = ξ = −1:

∂x
∂ξ

∣∣∣∣ξ=−1
η=−1

= 0 ⇒ 1
4
(2 − 4)L + 2x5 = 0

⇒ x5 =
L
4

(4)
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Singular Elements How to Distort the Element to Model the Singularity

5 Thus all the terms in the jacobian vanish if and only if the second node is located
at L

4 instead of L
2 , and subsequently both the stresses and strains at the first

node will become singular.

6 Singularity at the crack tip is achieved by shifting the mid-side node to its
quarter-point position

Note the 9 noded Lagrangian element could similarly be distorted.
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Singular Elements Order of Singularity

What is the degree of singularity?

1 Solve for ξ in terms of x and L at η = −1 (that is, alongside 1-5-2):

x =
8∑

i=1

Nix i =
1
2

(
1 − ξ2

)
(1 + 1)

L
4
+

1
4
(1 + ξ) (1 + 1) (ξ) L

=
1
2
ξ (1 + ξ) L +

(
1 − ξ2

) L
4

⇒ ξ = −1 + 2
√

x
L

(5)

2 Recalling that in isoparametric elements the displacement field along η = −1 is
given by:

u = −1
2
ξ (1 − ξ) u1 +

1
2
ξ (1 + ξ) u5 +

(
1 − ξ2

)
u2 (6)
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Singular Elements Order of Singularity

3 we can rewrite Eq. 6 by replacing ξ with the previously derived expression, Eq.
5):

u = −
1

2

(
−1 + 2

√
x

L

)(
2 − 2

√
x

L

)
u1 +

1

2

(
−1 + 2

√
x

L

)(
2

√
x

L

)
u5 +

(
4

√
x

L
− 4

x

L

)
u2 (7)

This equation can be factorized as:

u = A + Bx + C
√

x
L

(8)

Note that the displacement field has had its quadratic term replaced by x
1
2 .

4 Differentiating Eq. 7 we obtain the strain in the x direction

ϵx = −1
2

(
3√
xL

− 4
L

)
u1 +

1
2

(
−1√

xL
+

4
L

)
u5 +

(
2√
xL

− 4
L

)
u2 (9)

5 Strength of the singularity is of order 1
2 , just as we wanted it to be for linear

elastic fracture mechanics !
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Singular Elements Stress Intensity Factors Extraction

AB

C
D

E
L

x'
y'

L/4

θ 

Numerical expression of displacement field is obtained from Eq. 7:

u ′ = u
′
A +

(
−3u

′
A + 4u

′
B − u

′
C

)√
r
L +

(
2u

′
A + 2u

′
C − 4u

′
B

)
r
L

v ′ = v
′
A +

(
−3v

′
A + 4v

′
B − v

′
C

)√
r
L +

(
2v

′
A + 2v

′
C − 4v

′
B

)
r
L

where u ′ and v ′ are the local displacements (with x ′ aligned with the crack axis)
of the nodes along the crack in the singular elements.
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Singular Elements Stress Intensity Factors Extraction

Analytical expression for v is given by Westergaard with θ = 180, yielding:

v = KI

κ+ 1
2G

√
r

2π

Equating the terms of equal power ( 1
2 ) in the preceding two equations, the

√
r

term vanishes, and we obtain:

KI =
2G

κ+ 1

√
2π
L

(
−3v

′
A + 4v

′
B − v

′
C

)
If this approach is generalized to mixed mode problems, then the two stress
intensity factors are given by:

{
KI

KII

}
=

1
2

2G
κ+ 1

√
2π
L

[
0 1
1 0

] −3u
′
A + 4

(
u

′
B − u

′
D

)
−

(
u

′
C − u

′
E

)
−3v

′
A + 4

(
v

′
B − v

′
D

)
−

(
v

′
C − v

′
E

) 

Extraction of the SIF can be accomplished through a “post-processing” routine
following a conventional finite element analysis in which the quarter-point
elements have been used.
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Singular Elements 3D

C
ra

ck
 F

ro
nt

Crack 
Faces

z, w

x, u

y, v

θ
 

A

B'

B

C
C'

D'

DE'

E
F

F'
G

Method easily extended to 3D

Meshing around crack front can be
problematic

The End for Singular Element
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J Integral Line Integral

1
2

3
4

5
6

7

8
9

η
ζ 

Ζ=ζcst 

Gauss Points 
Numbering Sequence

x

y
Γ 

Ω
 

Γt
+ 

Γt
- 

Crack surfaces

u

tdΓ 

We seek a finite element based solution to the
J integral

J = −∂�

∂a
=

∫
r
(wdy − t · ∂d

∂x
ds)

Usually, nodal stresses are poorley evaluated,
we will rely in Gauss Points stresses.

Assume that isoparametric elements are used
and that the path can be conveniently chosen
to coincide with ξ = ξcst .

For corner elements the integration will have
to be performed twice along the two
directions.

Fracture Mechanics; V. E. Saouma; Numerical Methods 28/49



J Integral Line Integral

Now let us start from the basic definition of J:

J =

∫
�

wdy − t · ∂d
∂x

ds (10)

where t is the traction vector along n, which is normal to the path; d is the
displacement vector; ds is the element of arc along path �; and w is the strain
energy density.

Now, we will be going from an analytical equation to a numerical solution rooted
in the finite element method.

Crack is assumed to be along the x axis. If it is not, stresses and displacements
would first have to be rotated.

First, expand the terms in Eq. 10 into their basic constituents:

Traction vector

ti = σijnj ⇒ t =

{
σxx n1 + τxy n2

τxy n1 + σyy n2

}
Displacement vector:

d =

{
u
v

}
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J Integral Line Integral

Strain energy density w :

w =
1
2
(σxxεxx + 2τxyγxy + σyyεyy )

=
1
2
[σxx

∂u
∂x

+ τxy (
∂u
∂y

+
∂v
∂x

) + σyy
∂v
∂y

]

arc length ds and dy :

ds =
√

dx2 + dy2 =

√(
∂x
∂η

)2

+

(
∂y
∂η

)2

dη

=
∂y
∂η

dη

Substitution phase:

1 Evaluate part of the second term of J =
∫
�

wdy − t · ∂d
∂x ds:

t · ∂d
∂x

= (σxx n1 + τxy n2)
∂u
∂x

+ (τxy n1 + σyy n2)
∂v
∂x

where n1 and n2 are the components of n, which is a unit vector normal to
the contour line at the Gauss point under consideration.
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J Integral Line Integral

2 Ready to substitute in J =
∫
�

wdy − t · ∂d
∂x ds to obtain the contribution to J

from a particular Gauss point within an element.

Je =

∫ 1

−1


1
2

[
σxx

∂u
∂x

+ τxy

(
∂u
∂y

+
∂v
∂x

)
+ σyy

∂v
∂y

]
︸ ︷︷ ︸

w

∂y
∂η︸︷︷︸
dy

−
[
(σxx n1 + τxy n2)

∂u
∂x

+ (τxy n1 + σyy n2)
∂v
∂x

]
︸ ︷︷ ︸

t·∂d
∂x

√(
∂x
∂η

)2
+

(
∂y
∂η

)2

︸ ︷︷ ︸
ds


dη(11)

=

∫ 1

−1
Idη
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J Integral Line Integral

Integration is to be carried out numerically along the path (using the same
integration points used for the element stiffness matrix), we have:

Je =
NGAUS∑

q=1

I(ξp, ηq)Wq

where Wq is the weighting factor corresponding to ηq and NGAUS is the order of
integration (2 or 3).

Where from? for each term

Stresses σxx , σyy , τxy are readily available at the Gauss points.
∂u
∂x , ∂u

∂y , ∂v
∂x , and ∂v

∂y are obtained through the shape function. For instance
∂u
∂x = ⌊∂Ni

∂x ⌋{u i} where u i are the nodal displacements and ∂Ni
∂x is the

Cartesian derivative of the shape function stored in the [B] matrix:

[B] =


∂Ni
∂x 0
0 ∂Ni

∂y
∂Ni
∂y

∂Ni
∂x


where i ranges from 1 to 8 for quadrilateral elements.
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J Integral Line Integral

Another term not yet defined in Eq. 11 is ∂y
∂η

. This term is actually stored
already in the Gauss point Jacobian matrix:

[J] =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]

Determine n1 and n2 (components of n). Infinite number of vectors normal
to ξ, and we want the one which is in the ξ− η plane. It should be noted
that if we had a rectangular element, then η is orthogonal to ξ in the
physical space, but in general we have a distorted element, and thus η and
ξ are not necessarily orthogonal to each others in the physical space.
Hence, we determine the normal as follows:

Define two arbitrary vectors: A along ξ = ξcst and B along η = ηcst

such that:

At = ⌊ ∂x
∂η

, ∂y
∂η

, 0 ⌋

Bt = ⌊ ∂x
∂ξ

, ∂y
∂ξ

, 0 ⌋

as three-dimensional components of those two vectors.
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J Integral Line Integral

Define a third vector, which is normal to the plane defined by the
preceding two: C = A× B, (cross product of two vectors) or: i j k

∂x
∂η

∂y
∂η

0
∂x
∂ξ

∂y
∂ξ

0


This leads to:

C = ⌊ 0, 0, ∂x
∂η

∂y
∂ξ

− ∂y
∂η

∂x
∂ξ ⌋

With C defined, we can now return to the original plane and define

D = C× A

= ⌊
∂y
∂η

(
∂y
∂η

∂x
∂ξ

− ∂x
∂η

∂y
∂ξ

)
︸ ︷︷ ︸

D1

,
∂x
∂η

(
∂x
∂η

∂y
∂ξ

− ∂y
∂η

∂x
∂ξ

)
︸ ︷︷ ︸

D2

, 0
⌋

Note that the first term inside the parenthesis corresponds to the
determinant of the Jacobian, whereas the second term corresponds
to the negative of the determinant.
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J Integral Line Integral

The unit normal vector is now given by:

n =


n1

n2

0

 =


D1
N
D2
N
0


where N =

√
D2

1 + D2
2 and all terms are taken from the Jacobian

matrix.

The End for J
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J Integral Equivalent Domain Integral; Theoretical Background

The Equivalent Domain Integral is an extension of the J integral as it is to replace
line/surface integral by surface/volume integral (through Green’s theorem).

It can be shown (Anderson pg. 256) that the generalized energy release rate can
be expressed by

J = lim
�0→0

∫
�0

[
(w + T ) δ1i − σij

∂uj

∂x1

]
nid� (12)

where w is the strain energy density, T is the kinetic energy

T =
1
2
ρ
∂ui

∂t
∂ui

∂t

and δ the Kronecker delta.

The essence of the method: replace contour integral, by a closed integral (outer
and inner) while multiplying the expression of J by a function q equal to zero on
the outer surface and unity on the inner one.

Unlike the conventional J integral, contour path for this equation can not be
arbitrarily selected.

Fracture Mechanics; V. E. Saouma; Numerical Methods 36/49



J Integral Equivalent Domain Integral; Theoretical Background

This equation is path independent only within an elastic zone.

This equation is not suited for numerical evaluation as the path would have to be
along a vanishingly small one where the stresses and strains could not be
determined.

Γ 0

Γ 1

Γ +

Γ -

x2

x1

1
q

For quasi-static cases (T = 0).

Consider a closed contour by
connecting inner and outer ones. The
outer one �1 is finite, while the inner
one �0 is vanishingly small.

For linear (or nonlinear) elastic material J can be evaluated along either one of
those two contours, but only the inner one gives the exact solution in the general
case.
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J Integral Equivalent Domain Integral; Theoretical Background

Rewrite Eq. 12 around the following closed contour

�∗ = �1 + �+ + �− − �0

yielding

J =

∫
�∗

[
σij

∂uj

∂x1
− wδ1i

]
qmid�−

∫
�+∪�−

σ2j
∂uj

∂x1
qd� (13)

mi is the outward normal to �∗ (thus mi = ni on �1, and mi = −ni on �0, m1 = 0
and m2 = ±1 on �+ and �−), and q is an arbitrary but smooth function which is
equal to unity on �0 and zero on �1.

Since the integral is taken along the contours, by explicitly specifying q = 0 on
the outer one, and q = 1 on the inner one, Eq. 12 and 13 are identical.
Furthermore, in the absence of crack surface tractions, the second term is equal
to zero.
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J Integral Equivalent Domain Integral; Theoretical Background

Apply divergence theorem to Eq. 13
∮
�
v.n =

∫
A

(
∂vx

∂x
+

∂vy

∂y

)
dxdy we obtain

J =

∫
A∗

∂

∂xi

{[
σij

∂uj

∂x1
− wδ1i

]
q
}

dA

=

∫
A∗

[(
σij

∂uj

∂x1
− wδ1i

)
∂q
∂xi

+

(
∂

∂xi

(
σij

∂uj

∂x1

)
− ∂w

∂x1

)]
qdA (14)

where A∗ is the area enclosed by �∗.

It can be shown ( refer to the derivation of j) that the second term in Eq. 14 is
equal to zero and we are left with

J =

∫
A∗

[
σij

∂ui

∂x1
− wδ1i

]
∂q
∂xi

dA (15)
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J Integral Equivalent Domain Integral; FEA Implementation

S0

x2

x3

x1η 
Γ0 

r0

Let us now generalize to 3D our previous
derivation

We define a local coordinate system such that
x1 is normal to the crack front, x2 normal to the
crack plane, and x3 tangent to the crack front.

For an arbitrary point, the J integral is given
by Eq. 12.

Consider a tube of length �L and radius r0 that surrounds the segment of the
crack front under consideration. We now define a weighted average J over the
crack front segment of length �L as

�J�L =

∫
�L

J(η)qdη

= lim
r0→0

∫
S0

[
wδ1i − σij

∂uj

∂x1

]
qnids
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J Integral Equivalent Domain Integral; FEA Implementation

where J(η) is the point-wise value of J, S0 is the vanishingly small surface area
of the tube, q is the weight function previously introduced.

S0 S1

r0
r1

S+

S-

qΔamax

ΔL

Δamax

q can be interpreted as a virtual crack advance

�a(η) = q(η)�amax (16)

and the corresponding incremental area of the virtual
crack is

�Ac = �amax

∫
�L

q(η)dη (17)

As before, J can not be numerically determined for a
vanishingly small radius r0, as such and as in the
previous 2D case, we define a second tube of radius r1

around the crack front

�J�L =

∮
S∗

[
σij

∂ui

∂x1
− wδ1i

]
qmidS−

∮
S−∪S+

σ2j
∂uj

∂x1
qds
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J Integral Equivalent Domain Integral; FEA Implementation

where
S∗ = S1 + S+ + S− − S0

and S+ and S− are the upper and lower crack surfaces respectively, S0 and S1 the
inner and outer tube surfaces. Note that this equation is the 3D counterpart of Eq. 13
which was written in 2D.

Applying the divergence theorem, this equation reduces to a volume integral

�J�L =

∫
V∗

{[
σij

∂uj

∂x1
− wδ1i

]
∂q
∂xi

+

[
− ∂w
∂x1

+ σij
∂εij

∂x1

]
q
}

dV

−
∫

S+∪S−

σ2j
∂uj

∂x1
qdS

and q must be equal to zero at either end of �L that is on A1 and A2.

It has been shown that in the absence of non-elastic (thermal and plastic)
deformations the second term would be equal to zero. The third term will also be
equal to zero because q is arbitrarily selected to be zero at each end.

From Eq. 40 it is impossible to extract the 3 distinct stress intensity factors.
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J Integral Equivalent Domain Integral; FEA Implementation

We now can generalize this equation and write it as (ignoring the second and
third terms)

�Jk�L =

∫
V∗

(
σij

∂ui

∂xk

∂q
∂xj

− w
∂q
∂xk

)
dV

Note that k = 1, 2 only thus defining G1 = J1 and G2 = J2. However, it has been
shown that G3 has a similar form and is equal to

GIII =

∫
V∗

(
σ3j

∂u3

∂x1

∂q
∂xj

− w III ∂q
∂x1

)
dV

With G1, G2 and G3 known we need to extract the three stress intensity factors
KI , KII and KIII .

KI = 1
2

√
E∗

(√
(J1 − J2 − G3)+

√
(J1 + J2 − G3)

)
KII = 1

2

√
E∗

(√
(J1 − J2 − G3)−

√
(J1 + J2 − G3)

)
KIII =

√
2µG3
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J Integral Equivalent Domain Integral; FEA Implementation

where

E∗ = E
[

1
1 − ν2 +

(
ν

1 + ν

)
ε33

ε11 + ε22

]
which is a weighted value of E such that we retrieve E∗ = E

1−ν2 for plane strain
and E∗ = E for plane stress.

The End for Domain Integral
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Reciprocal Work Integrals

Betti’s reciprocal work theorem defines the relationship between two equilibrium
states for a solid. In the absence of body forces and initial strains and stresses∮

�

ti ûi d� =

∮
�

t̂i ui d�

where ui and ti are the solution of any particular equilibrium problem along the
boundary � bounding 
; ûi and t̂i correspond to another such problem
(complmentary/auxiliary state).

x

y

Γ 

Γε 

ε Ω
 

Γt
+ 

Γt
- 

Crack 
surfaces

n


 must be defined such that the
singularity at the crack tip is avoided,
this is done by deleting the body
points within a circle of radius ε

centered at the crack tip. singularity
at the crack tip is thus excluded.
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Reciprocal Work Integrals

Assuming that �+t and �−
t are traction free∫

�

ti ûi d� +

∫
�ϵ

ti ûi d� =

∫
�

t̂i ui d� +

∫
�ϵ

t̂i ui d�

contributions from � and �ϵ are clearly separated.

Expanded expression is then rewritten in the form of a Somigliana’s identity

Iϵ = − lim
ϵ→0

∫
�ϵ

(ti s ûi − t̂i ui
s) d�︸ ︷︷ ︸

Iϵ=c1KI−c2KII

=

∫
�

(ti ûi − t̂i ui) d� (18)

Approach:

1 Determine a suitable auxiliary solution in terms of ûi and t̂i (that are
functions of c1 and c2).

2 Convolute it with the singular tractions and displacements (Westergaard) ti s

and ui
s) (in terms of KI and KII) and obtain and equation of the form

Iϵ = c1KI − c2KII

3 Perform a finite element analysis, and determine ui and ti
4 Convolute ûi and t̂i with ui and ti .
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Reciprocal Work Integrals

5 Integrate over
∫
�

and obtain a numerical expression in terms of c1 and c2.
6 Equate factors premultiplying c1 and c2 from both sides of the equation,

and solve for KI and KII .

Major advantage over J integral: single contour integral can determine both KI

and KII

For the isotropic case, in the neighborhood of the crack tip, the displacements
and the stresses, in polar coordinate system, are given by Westergaard as:

ur − u0
r = 1

4µ

(
r

2π

) 1
2
{[

(2κ − 1) cos θ
2 − cos 3θ

2

]
KI

−
[
(2κ − 1) sin θ

2 − 3 sin 3θ
2

]
KII

}
+ O

(
r

1
2

)
uθ − u0

θ = 1
4µ

(
r

2π

) 1
2
{[

−(2κ + 1) sin θ
2 + sin 3θ

2

]
KI

−
[
(2κ + 1) cos θ

2 − 3 cos 3θ
2

]
KII

}
+ O

(
r

1
2

)
σr = 1

4(2πr)
1
2

{(
5 cos θ

2 − cos 3θ
2

)
KI −

(
5 sin θ

2 − 3 sin 3θ
2

)
KII

}
+ O

(
r−

1
2

)
σθ = 1

4(2πr)
1
2

{(
3 cos θ

2 + cos 3θ
2

)
KI −

(
3 sin θ

2 + 3 sin 3θ
2

)
KII

}
+ O

(
r−

1
2

)
σrθ = 1

4(2πr)
1
2

{(
sin θ

2 + sin 3θ
2

)
KI +

(
cos θ

2 + 3 cos 3θ
2

)
KII

}
+ O

(
r−

1
2

)

(19)
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Reciprocal Work Integrals

where u0
r and u0

θ are the radial and tangential components, respectively, of the
displacements u0 of the crack tip, and

KI = limr→0(2πr)
1
2 σθ|θ=0

KII = limr→0(2πr)
1
2 σrθ|θ=0

(20)

are the usual stress intensity factors.

Stern (1976) derived the the Auxiliary solution based on Williams solution:

ûr = 1

2(2πr)
1
2 (1+κ){[

(2κ+ 1) cos 3θ
2 − 3 cos θ

2

]
c1 +

[
(2κ+ 1) sin 3θ

2 − sin θ
2

]
c2
}

ûθ = 1

2(2πr)
1
2 (1+κ){[

−(2κ− 1) sin 3θ
2 + 3 sin θ

2

]
c1 +

[
(2κ− 1) cos 3θ

2 − cos θ
2

]
c2
}

σ̂r = − µ

2(2πr3)
1
2 (1+κ)

{[
7 cos 3θ

2 − 3 cos θ
2

]
c1 +

[
7 sin 3θ

2 − sin θ
2

]
c2
}

σ̂θ = − µ

2(2πr3)
1
2 (1+κ)

{[
cos 3θ

2 + 3 cos θ
2

]
c1 +

[
sin 3θ

2 + sin θ
2

]
c2
}

σ̂rθ = − µ

2(2πr3)
1
2 (1+κ)

{
3
[
sin 3θ

2 + sin θ
2

]
c1 −

[
3 cos 3θ

2 − cos θ
2

]
c2
}

(21)
where c1 and c2 are arbitrary constants.
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Reciprocal Work Integrals

Now, on the inner circular boundary, the evaluation of the contour integral in
terms of traction and displacement takes the form:

Iϵ = −
∫
�ϵ

[
(u− u0) · t̂− û · t

]
ds

=
∫ π

−π
[σ̂r (ur − u0

r )− σ̂rθ(uθ − u0
θ)− σr ûr + σrθûθ]rdθ

(22)

Substituting Eq. 19 and 21 we obtain:

Iϵ = c1KI − c2KII (23)

Thus, for arbitrarily small ε, Eq. 18 produces

c1KI − c2KII =

∫
�

[(
u− u0

)
· t̂(c1, c2)− û(c1, c2) · t

]
ds (24)

Note that the integral is taken along the outer boundary � only.
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Introduction Test Controls

t

P

t t

Δ ε

Load Displacement Strain

Actual
Programmed

1 Load Control: Cross-head applies an increasing load irrespective of the
specimen deformation or response. When peak load is reached, sudden and
abrupt brittle failure. The strain energy accumulated in the specimen is suddenly
released once the ultimate load of the specimen is reached, thus the sudden
failure can be explosive.

2 Displacement/Stroke Control: Cross-head applies an increasing displacement to
the specimen. For softening material there will be a post-peak response with a
gradual decrease in stress accompanying an increase in displacement. In this
case, there is a gradual release of strain energy which is then transferred to
surface energy during crack formation.

3 Strain Control: is analogous to displacement control, except that the feedback is
provided by (“strategically positioned”) strain gage or a clip gage or an arbitrary
specimen deformation (not necessarily corresponding to the loading direction).
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Introduction Pre-Post-Peak Responses

ε

σ σ

ε ε

Steel Concrete

.1% .01%.2% 25%

f’

.6f’c

c

Pre-peak:
1 Metal Linear elastic response up to the yield stress σyld,
2 Cementitious material Linear response up to ≃ 0.6f ′

t ⇒ internal
microcracking induces a nonlinear response up to a peak stress f ′

t

Post-peak:
1 Metals Not yet well understood, not of practical usefulness, largely

overshadowed by necking.
2 Cementitious material Descending branch of the concrete response is an

idealization of the average material response. A more accurate description
should account for the localization of the induced cracks.

Away from the localized crack there is an elastic unloading
At the crack, since a strain cannot be properly defined, a stress-crack
opening displacement is a more appropriate model.
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Experimental Evidence

F

u

FF

u

3

u

Elastic Unloading Elastic Softening Snap-back

21

F, u

1

1

2
3

Once the peak load is reached, and cracking is initiated, Transducers:

1: elastic unloading
2: strain softening
3: snap-back

If we were to homogeneize by taking σ = F/A, and ε = u/L, it is clear that we
can not provide a unique definition of the strain across the crack.

At this location, the strain can no longer be defined, and instead we should
characterize the crack by its crack opening displacement COD which will then be
plotted along with the stress (σ-COD).
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Experimental Evidence

Capability of transmitting stresses across a crack under controlled displacement
is a characteristic of softening materials.
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σ-COD Diagram, Hillerborg’s Model

It is now clear that Cementitious material softening is characterized by a
stress-crack opening width curve (and not stress-strain).

The exact characterization of the softening response should ideally be obtained
from a uniaxial test of an uncracked specimen.

This is extremely difficult, hence, softening curve is often indirectly determined
by testing notched specimens.

Hillerborg presented in 1976 a very simple and elegant model (inspired by
Barenblatt and Dugdale). In this model, the crack is composed of two parts

True or physical crack across which no stresses can be transmitted. Along
this zone we have both displacement and stress discontinuities.
Fictitious crack, or Fracture Process Zone (FPZ) ahead of the previous
one, characterized by:

Peak stress at its tip equal to the tensile strength of Cementitious
material
decreasing stress distribution from f ′

t at the tip of the fictitious crack to
zero at the tip of the physical crack

Along FPZ, we have displacement discontinuity and stress continuity.

Fracture Mechanics; V. E. Saouma; Fracture Mechanics of Softening Material 7/51



σ-COD Diagram, Hillerborg’s Model

Microcracks
Fracture Process 

Zone (FPZ) True Crack
Spalling

COD

Effective Crack aeff

Thickness

CODw1 w2

s1

f’t

Stress

Gf

GF

x

2a

2c

σyld σyld

σyld σyldy

ρ ρ

x
2a

2c

y

ρ ρ

σyld

σyld

σyld

σyld

There is an inflection point in the
descending branch.

The first part has been
associated with (unconnected)
microcracking ahead of the
stress-free crack
The second part with bridging
of the crack by aggregates

The area under the curve is the
fracture energy GF (not to be
confused with Gc or critical energy
release rate), is a measure of the
energy that needs to be spent to
generate a unit surface of crack.

Contrast with Dugdale and Barenblat
models where the stresses are
constant and independent of the
COD.
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Implication Size Effect; Preliminary

ft

ε

σ

1

E
1

h

ε0 εu/2 εu

Consider the response a concrete element
subjected to a uniform displacement (not load)

Prior to reaching the peak stress ft , we have a
linear stress strain relationship σ = Eε.

Once peak load is reached, the concrete
softens and the peak strain is εu . At that point
the load carrying capacity of the bar is
exhausted.

Post-peak stress is given by σ = ft + h(ε− ε0) for degrading (softening) material,
h is the softening modulus and is less than zero, and for linear softening
h = − ft

εu−ε0
where ε0 = ft/E .

Consider next an assemblage of “elements”,

Fracture Mechanics; V. E. Saouma; Fracture Mechanics of Softening Material 9/51



Implication Size Effect; Preliminary

ft

u

ε

σ

m
=

n

m elements

L

Weak Element

L/m

1
E

1
h

ε0 εu/2 εu

Assume that one of the elements is weaker than the other m − 1 ones. Thus,
when this element reaches its own tensile strength (lower than ft ), it fails.

Upon failure of this element, the other ones will have to unload elastically.
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Implication Size Effect; Preliminary

Thus, in the post-peak zone the displacement will be

u =
L
m
εf + (m − 1)

L
m
εe

εf =
ft
E

+
σ− ft

h

εe =
σ

E

ε =
u
L

⇒ ε =
σ

E
+

E − h
Eh

σ− ft
m

(1)

If we define n = εu
ε0

then h = −E/(n − 1) the last equation reduces to

ε =
σ

E
+

n(ft − σ)

mE

Note “similarity” with the tangent modulus in plasticity.

From the figure, we note that depending on the number of element used (m),
there is a wide range of possible responses.
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Implication Size Effect; Preliminary

For m = 1 Softening curve reproduced
For m = n brittle failure.
For m = 2 half the bar localizes
For m > n Strain decrease, i.e. snap-back behavior, impossible to achieve
experimentally. Physically, that implies that the localization zone can not
absorb the elastic energy released by the elastic part of the bar.

If m → ∞ elastic unloading. Physically, this is impossible as it would imply failure
occurred without dissipation of energy. As a result we would have:

Loss of local material stability
Loss of structural stability
Loss of ellipticity
Mesh dependence
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Implication Example

Consider a softening material member subjected to uniaxial displacement with:
f ′
t = 3MPa; E =30 GPa; wmax =.02 cm.

Fracture energy GF = 1
2 (3 × 106)(2 × 10−4) = 300 N/m.

Peak elastic strain is ε0 = 3×106

3×1010 = 10−4.

Maximum elastic displacement is 10−4L.

Consider the load displacement curve (P − u) of this member for various lengths
L.

In all cases the peak load will be Pmax = 3A A is the cross sectional area
(since results are independent of A we shall assume A=1).
Corresponding displacement: u = ε0 × L.
In all cases maximum displacement: umax = wmax = .02 cm and the
corresponding load will obviously be equal to zero.
Displacement corresponding to peak load will be equal to wmax if
L = wmax

ϵ0
= 2×104

10−4 = 2 m.
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Implication Example
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Implication Example

This figure calls for the following observations:
1 Specimens less than 2 m long: softening branch which can be

experimentally obtained only through displacement controlled tests.
2 For a 2 m specimen, perfectly brittle response.
3 For specimens larger than 2 m, snapback, which can only be hypothesized

but not experimentally obtained.
4 Large specimens could still be tested, however rather than using the entire

specimen length as “gage length” (or displacement/stroke control test), we
would have to use a smaller gage length (through strain control tests)
across a potential crack. Thus a notched specimen should be used.

Load displacement curve of this simple test is clearly size dependent.
The larger the specimen, the larger the stored strain energy which would
be released to form surface energy.

An energetic interpretation of this figure would lead us to compare the
elastic energy U = 1

2 f ′t ϵuAL = 1
2 (3 × 106)(10−4)AL = 150AL at peak

load with the fracture energy GF = 300 N/m, thus 300A = 150AL and
L = 2 m.
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Implication Example

As long as the strain energy is smaller than the fracture energy, then we
do have structural softening

if the two energies are equal, then we would have a perfectly brittle
response.

If the elastic energy exceeds the fracture energy, then we would have a
sudden failure with snap-back.

L (m) 0.1 1. 2. 3. 4.
U
A 15. 150. 300. 450. 600.

We observe that U
A = GF for L = 2 m. Thus, as long as the energy

released can be transformed into fracture energy, we do have a stable
configuration.

However if the accumulated strain energy being released (including not
only the one stored in the specimen, but also in the experimental set-up)
is greater than the one which can be absorbed to create new surface
energy (cracks), then we do have instability.
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Implication Example

For a successful post-peak experiment the total strain energy (of the
specimen and of the testing frame) should be less than the fracture
energy. Hence, to avoid snap-backs the testing frame should be as stiff
as possible.

X

Imposed displacement

0
10

1

#10-4

S
tr

ai
n 2

x

3

0
0.2

Imposed Displacement

0.40.60.8-10

Localized Failure

Localization of Damage

Elastic Loading
Elastic Unloading
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Implication Example
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Micro Cracks Theoretical Considerations

The remaining frames of this file have been imported from my book Aging,
Shaking and Cracking of Structures. Formatting is certainly “sub-optimal”.

This is a fascinating subject, one which seems to have been ignored by many
researchers (who prefer a heuristic/observational approach), yet one that have
multiple potential applications to better understand crack nucleation, coales-
cence, and ultimately failure or delamination.

Strength Griffith addressed the impact of imperfections to the strength of (perfect
crystalline) solids by revisiting the work of Inglis.

σnominal = σthe

(
1 + 2

√
a
ρ

)
(2)

where σth is the theoretical strength of solids estimated to be

σth ≈ E
10

(3)

Fracture Mechanics; V. E. Saouma; Fracture Mechanics of Softening Material 19/51

https://link.springer.com/book/10.1007/978-3-030-57434-5
https://link.springer.com/book/10.1007/978-3-030-57434-5


Micro Cracks Theoretical Considerations

Which explains why smaller solids, in defiance to the theory of plasticity, have higher
strength.
Compliance The impact of imperfections, on the formation, propagation and
compliance in brittle material was experimentally and analytically investigated by the
seminal book of Nemat-Nasser (1993)

Voids

Inclusionns

Cracks

e1

e2

e3

magnified

V
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v

Macroscale 
continuum

Microscale

grain 
boundaries

x

Experimental Evidence
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Micro Cracks Theoretical Considerations

The attached figures are indeed an illustration of the response of flawed
(inherently caused by “manufacturing”) solids to increasing compressive load.

First crack will nucleate, then they coalesce and finally failure occurs and is
driven by a predominantly coalesced crack.

Figure 5. (a) Specimen containing a large number of flaws, (b) Under axial compression without confinement, cracks nucleate first at larger flaws; (c) axial splitting
S? by the growth and coalescence of cracks; (d) shattering of a part of the specimen while many flaws in the remaining part are inactive.
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The impact of imperfections, on the formation, propagation and compliance in
brittle material was experimentally and analytically investigated by the seminal
book of Nemat-Nasser (1993)

Fracture Mechanics; V. E. Saouma; Fracture Mechanics of Softening Material 21/51



Micro Cracks Theoretical Considerations
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Analytical Considerations

In a comprehensive and detailed study, Nemat-Nasser (1993) derived analytical
expressions for the impact of micro-cracks on the compliance (E) of a brittle
solid by c Considering penny-shaped micro-cracks defined by their radius aα

and orientation given by the unit normal nα = n

n1 = sin	 cos θ; n2 = sin	 sin θ; n3 = cos	 (4)
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Micro Cracks Theoretical Considerations

When there are a very large number of microcracks with radii ranging from am to
aM , and with unit normals ranging over all orientations, a density function,
w = w(a, θ,	), may be introduced such that the number of cracks per unit
volume with radii in the range of a to a + da, and orientations in the range of
(θ,	) to (θ+ dθ,	+ d	) is given by w(a, θ,	) sin	dadθd	, then the total
number of cracks per unit volume, N, is

N =
1

4π

∫ aM

am

∫ 2π

0

∫ π

0
w(a, θ,	) sin	dadθd	 (5)

sin	dθd	 defines the elementary solid angle with orientation (θ,	). With θ

ranging from 0 to 2π and 	 ranging from 0 to π, the corresponding unit vector
traces a unit sphere.
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Micro Cracks Theoretical Considerations

When the crack size distribution is independent of the crack orientation, the
density function may be expressed as

w(a, θ,	) = wr (a)w0(θ,	) (6)

and

N =

∫ aM

am

wr (a)da (7)

1 =
1

4π

∫ 2π

0

∫ π

0
w0(θ,	) sin	dθd	 (8)

§ 6.5 ELASTIC SOLIDS WITH MICROCRACKS 143 

These shear moduli are equivalent to those given by (6.5.6c) and (6.5.6e), up to 
the first order in the crack density parameter f. 

For the self-consistent model, the H-tensor is to be computed for a 
penny-shaped crack in an unbounded transversely isotropic elastic solid, with 
the crack normal to the axis of elastic isotropy. This problem is not examined 
here; see Section 21. The self-consistent results, however, are given by Hoenig 
(1979) using a different method; see also Laws and Brockenbrough (1987). 

6.6. EFFECTIVE MODULI OF AN ELASTIC BODY CONTAINING 
RANDOMLY DISTRIBUTED PENNY-SHAPED MICROCRACKS 

6.6.1. Dilute Open Microcracks with Prescribed Distribution 

A typical penny-shaped microcrack is defined by its radius, aa, and its 
orientation given by the unit normal, na = n. The components of n in fixed 
Cartesian coordinates may be expressed by 

n1 = sin0 cosO, n2 = sin0 sini, n3 = cosY; (6.6.1) 

see Figure 6.6.1. When there are a very large number of microcracks with radii 
ranging from am to aM, and with unit normals ranging over all orientations, a 
density function, w = w(a, Q, Y, may be introduced such that the number of 
cracks per unit volume with radii in the range of a to a + da, and orientations in 
the range of (Q, 0) to (8+ dl, 0 + d0), is given by w(a, 8, 0) sin0 da dq d. 
Then the total number of cracks per unit volume, N, is 

1 aM 
r
2p P 

N 4- f am J o f8 
w(a, Q' Y) siny da dq d. 

Figure 6.6.1 

Distribution of radii and unit 
normals of penny-shaped cracks 

(6.6.2a) 

146 CHAPTER II § 6.6 

with other components being zero; see (6.5.9a) and (6.5.9b). Similarly to  
the components J  are independent of crack size. In a manner similar to 
(6.6.5a), the tensor J is given by 

1 am 
r
2p P 

 

4p Ja J o 1o a
3 J (Y' q) w(a, q, Y) sinY da dq d = H: C. (6.6.7a) 

In particular, when the crack size distribution is independent of the crack orien-
tation, from (6.6.2b) and (6.6.6b—d), J becomes 

aM 
= 1 

Ja 
a3 w(a) dal Jijkl 

1 4 
 2p P 

x ~ !o fo er®e ra®eka®era w0(8, hi) sinhi dq d}, (6.6.7b) 

where, again, e and w0 are functions of 8 and hj. It should be noted that, unlike 
Ha and H, Ja and J may not be symmetric with respect to the first and last pair 
of their indices, i.e., JykI # Jkly. However, the tensors C : Jr' and C : J, which 
determine the overall elasticity tensor C, have this symmetry; see Subsections 
6.3.2 and 6.5.2. 

6.6.2. Effective Moduli: Random Dilute Distribution of Microcracks 

Consider a simple case where: (1) the distribution of microcracks is 
dilute; (2) the crack orientation distribution is random; and (3) the crack size 
distribution is independent of the crack orientation; Figure 6.6.3. Then, the 
crack orientation distribution function, w0(8, Y), given by (6.6.2b), becomes 

w0(8, hi) = constant = 1. (6.6.8) 

Figure 6.6.3 

A random dilute distribu-
tion of microcracks 
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Micro Cracks Theoretical Considerations

Now, if we consider a simple case where: (1) the distribution of microcracks is
dilute (which assumes that the inhomogeneities are small and far apart, so that
their interaction may be neglected) and (2) the crack orientation distribution is
random; and (3) the crack size distribution is independent of the crack orientation
(right figure). Then, the crack orientation distribution function, w0(θ,	) given by
Equation 6 becomes

w0(θ,	) = constant = 1 (9)

Then
�E
E

= 1 − f
16(1 − ν2)(10 − 3ν)

45(2 − ν)
+ O(f 2) (10)

where

f is the crack density parameter

f ≡
∫ aM

an

a3wr (a)da (11)
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Micro Cracks Theoretical Considerations

Since the microcracks distribution is dilute f << 1, for a uniform crack size
distribution

wr (a) =
N

aM − am
(12)

and the crack density parameter f becomes

f =
N

an − aM

∫ aM

an

a3da =
N
4
(a3

M + a2
Mam + aMa2

m + a3
m) (13)

if all the microcracks in the RVE have the same radius a then

f = Na3 (14)
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Micro Cracks in Concrete Conjectures

Micro-cracks are omnipresent in concrete. Under tension, we have a
macro-crack, and in this context, the model of Hillerborg is by now universally
accepted, and is characterized by a so-called fracture process zone composed
of multiple micro-cracks.

Under compression, micro cracks are most likely to initiate at Interface Transition
Zones (ITZ) around (non-shrinking) aggregate, then we do have micro-cracks
due to poor vibration.

Micro-cracks will form and extend due to external strain or internal swelling. Hsu
et al. (1963) were the first to connect the formation (and propagation) of
micro-cracks to the nonlinear (compressive) stress strain curve of concrete,
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Micro Cracks in Concrete Conjectures
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Isotropic

νE,  

Orthotropic

1

ASR, by virtue of the (often constrained) expansion will induce the formation of
micro cracks that will propagate as a result of additional swelling. Indeed, for
ASR, the reduced elastic modulus due to ASR could conceivably be interpreted
through the prisms of Nemat-Nasser’s model.
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Estimates must therefore be based on subs1antial completion of 
expansion, say 90%. 

A measure of the potential for further unrestrained expansion 
can be obtained by subjecting cores extracted from the structure 
to controlled damp conditions. (See appendix A for Lest 
procedures). As moisture is absorbed concrete swells, typically 
by 0.2 mm/m, due to the recovery of drying shrinkage. In very 
severe cases of ASR, further expansion, typically 3 mm/m, may 
be expected. The expansion of a core is dependent on moisture, 
previous expansion, curing history and the restraints that were 
experienced by the core in the structure. 

4 .3 Cracking 
Expansion is not uniform throughout the volume of the concrete. 
It is greater in the immediate vicinity of each reactive particle or 
around a cluster of such particles. The resulting differential 
effects can result in micro-cracking. Furthermore the 
micro-cracking is not uniformly distributed because it is 
innuenced by restraints and effects at the edges of the concrete 
mass (see Fig. 4). 

The micro-cracks within a mass of unrestrained concrete are 
orientated randomly. In the surface layer the degree of reactivity 
may be changed due to leaching of alkalis by water 4.1. 4.8 or by 
a reduction in alkalinity due to precipitation of sodium and 
potassium carbonates.4·9 Greater porosity in the outer layer may 
also lead to less ex~nsion as gel may permeate into the more 
porous concrete.4· The combination of the variability of 
expansion and greater expansion of llhe interior concrete results 
in tensile strain at the surface, which can develop into 
macro-cracking. 

In unrestrained concrete the pattern of macro-cracks is an 
irregular one of intersecting and bifurcating cracks which is often 
referred Lo as map cracking or ' Isle of Man' cracking. It should 
be noted that this pattern is also observed where differential 
expansion or shrinkage has occurred, and on surfaces subjected 
to rapid cooling. for example, when form work on mass concrete 
is struck too early. In the presence of restraint to expansion, the 
macro-cracks will tend to be parallel to lhc direction of the 
restraint, as explained in Chapter 5. 

The depth of macro-cracks does not usually exceed the lesser 
of the cover and about one-tenth of the member thickness,4 ·10 or 
is also crudely related to the width at the surface. Fig. 5 shows 
data from both Japanese and U.K. observations. The sectioning 
of members from demolished structures has shown that 
reinforcement effectively checks the surface crack propagation 
and a single surface crack spreads out into branching finer cr.1cks 
and then merges into microcracking. The restraint from the 
surface layer of steel tends to concentrate micro cracking in its 
plane. This can develop into more severe delamination cracking. 
With high expansions this can lead to debonding and the 
development of stepped cracks on the end faces of members. 

4.4 Changes in physical properties 
Physical properties measured on unrestrained concrete 
specimens generally show a reduction in compressive strength, 
tensile sirength,elastic modulus and UPV relative to their 28 day 
values. 

The measurement of UPV is sometimes a usefu l 
non-destructive testing method. Changes in pulse velocity in 
concrete with ASR, calibrated relative to cores from the 
structure, can indicate different degrees of deterioration as 
outlined in Table 3. However, the pu~se can be shon circuited by 
reinforcement so that the procedure is not readily applicable to 
reinforced elements. The inherent scatter of UPV readings also 
renders it insensitive to changes in concrete condition. While 
pulse velocity falls rapidly in the early stages of ASR expansion 
it changes relatively liule as further expansion develops. 

The UPV may be markedly reduced by micro-cracking. Even 
small expansions can cause a decrease in pulse velocity lo well 
below that expected in normal concrete. However, where cracks 
are filled with gel and/or water, the UPV may not be reduced. 

IStructf: ASR technical guidance 
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Estimates must therefore be based on subs1antial completion of 
expansion, say 90%. 

A measure of the potential for further unrestrained expansion 
can be obtained by subjecting cores extracted from the structure 
to controlled damp conditions. (See appendix A for Lest 
procedures). As moisture is absorbed concrete swells, typically 
by 0.2 mm/m, due to the recovery of drying shrinkage. In very 
severe cases of ASR, further expansion, typically 3 mm/m, may 
be expected. The expansion of a core is dependent on moisture, 
previous expansion, curing history and the restraints that were 
experienced by the core in the structure. 

4 .3 Cracking 
Expansion is not uniform throughout the volume of the concrete. 
It is greater in the immediate vicinity of each reactive particle or 
around a cluster of such particles. The resulting differential 
effects can result in micro-cracking. Furthermore the 
micro-cracking is not uniformly distributed because it is 
innuenced by restraints and effects at the edges of the concrete 
mass (see Fig. 4). 

The micro-cracks within a mass of unrestrained concrete are 
orientated randomly. In the surface layer the degree of reactivity 
may be changed due to leaching of alkalis by water 4.1. 4.8 or by 
a reduction in alkalinity due to precipitation of sodium and 
potassium carbonates.4·9 Greater porosity in the outer layer may 
also lead to less ex~nsion as gel may permeate into the more 
porous concrete.4· The combination of the variability of 
expansion and greater expansion of llhe interior concrete results 
in tensile strain at the surface, which can develop into 
macro-cracking. 

In unrestrained concrete the pattern of macro-cracks is an 
irregular one of intersecting and bifurcating cracks which is often 
referred Lo as map cracking or ' Isle of Man' cracking. It should 
be noted that this pattern is also observed where differential 
expansion or shrinkage has occurred, and on surfaces subjected 
to rapid cooling. for example, when form work on mass concrete 
is struck too early. In the presence of restraint to expansion, the 
macro-cracks will tend to be parallel to lhc direction of the 
restraint, as explained in Chapter 5. 

The depth of macro-cracks does not usually exceed the lesser 
of the cover and about one-tenth of the member thickness,4 ·10 or 
is also crudely related to the width at the surface. Fig. 5 shows 
data from both Japanese and U.K. observations. The sectioning 
of members from demolished structures has shown that 
reinforcement effectively checks the surface crack propagation 
and a single surface crack spreads out into branching finer cr.1cks 
and then merges into microcracking. The restraint from the 
surface layer of steel tends to concentrate micro cracking in its 
plane. This can develop into more severe delamination cracking. 
With high expansions this can lead to debonding and the 
development of stepped cracks on the end faces of members. 

4.4 Changes in physical properties 
Physical properties measured on unrestrained concrete 
specimens generally show a reduction in compressive strength, 
tensile sirength,elastic modulus and UPV relative to their 28 day 
values. 

The measurement of UPV is sometimes a usefu l 
non-destructive testing method. Changes in pulse velocity in 
concrete with ASR, calibrated relative to cores from the 
structure, can indicate different degrees of deterioration as 
outlined in Table 3. However, the pu~se can be shon circuited by 
reinforcement so that the procedure is not readily applicable to 
reinforced elements. The inherent scatter of UPV readings also 
renders it insensitive to changes in concrete condition. While 
pulse velocity falls rapidly in the early stages of ASR expansion 
it changes relatively liule as further expansion develops. 

The UPV may be markedly reduced by micro-cracking. Even 
small expansions can cause a decrease in pulse velocity lo well 
below that expected in normal concrete. However, where cracks 
are filled with gel and/or water, the UPV may not be reduced. 

IStructf: ASR technical guidance 
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Micro Cracks in Concrete Physical Evidences

Experimental quantification of the impact of micro-crack on the macro
response of concrete is notoriously difficult to achieve.

In a seminal paper, Atiogbe and Darwiin (1987) measured the
submicroscopic cracking of cement paste and mortar under uniaxial
compression and compared them to applied strain. They showed that

1 Crack density in cement paste and mortar increases with increasing
uniaxial compressive strain, starting at strains as low as 0.0005.

2 The density of surface cracks in cement paste and mortar is an order of
magnitude greater than the density of bond and mortar microcracks in
concrete at the same values of compressive strain.

3 Under uniaxial compressive loading, the mean size of submicroscopic
cracks increases with increasing strain, while the number of cracks per unit
volume decreases. This suggests that as compressive strain increases,
small cracks coalesce to form larger cracks.

4 Under increasing uniaxial compression, three-dimensional distributions of
submicroscopic cracks become skewed towards the direction of applied
stress.
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Micro Cracks in Concrete Physical Evidences

5 On the average, three-dimensional crack distributions in cement paste
show only small variations with water to cement (w/c) ratio. However, at
high strains volumetric crack density increases more rapidly the lower the
w/c.

6 Crack density is lower initially but increases more rapidly in mortar than in
cement paste. Thus, sand particles appear to act as stress raisers that
result in a greater degree of softening and a lower strain capacity for mortar
than for cement paste.
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Micro Cracks in Concrete Physical Evidences

Landis (2005) used three-dimensional measurements of internal
cracking and simple relationships were made between the quantity of
cracking and a corresponding scalar damage variable. A scalar damage
variable was determined from the changes in stiffness measured in
successive loading cycles. Results showed a nearly linear relationship
between the damage variable and the fractal dimension of the internal
crack system. In contrast, results showed a nonlinear relationship
between the damage variable and the crack surface area.
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Images of specimen sections at different levels of damage:

E.N. Landis / Damage variables based on 3D measurements of crack geometry 165

Fig. 2. Load-unload cycles and tomographic scans.

Fig. 3. Images of specimen section at different levels of damage.

A true benefit of the digital data produced by the 3D scans is that we are able to employ quantitative
image processing techniques to make actual measurements of internal changes in the material. In this
work, two preliminary image processing steps were taken. First, the images were segmented to separate
solid material from void or crack space. This is accomplished by establishing a pixel intensity threshold
above which all pixels are labeled as solid, while the remaining are labeled as void. The effect of this is
illustrated in Fig. 4.

The second step of the image processing is to identify each individual void space for subsequent
measurement. This accomplished by examining each dark voxel (a “voxel” is a 3D “volume element” –
analogous to a 2D pixel), and considering whether adjacent voxels are also dark. If they are, then they
are considered part of the same object (crack or void). Once an object is identified its volume, surface
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Binary images highlighting crack and void space in the same sections166 E.N. Landis / Damage variables based on 3D measurements of crack geometry

Fig. 4. Binary images highlighting crack and void space in the same sections as Fig. 3.

area, and other traits can be measured. For this work a fast connected components code, “connect” was
used [7]. Object volume is determined by adding up the number of voxels in the object, and multiplying
by the unit voxel volume. Surface area is determined by counting the number of black voxel faces that
are in contact with white voxels, and multiplying that number by the unit voxel area.

3. Experimental measurements and damage formulation

Small mortar specimens were prepared to mimic the mortar phase of a conventional concrete mix,
with a proportion of one part ordinary Portland cement to two parts fine aggregate (max size 0.425 mm).
The water/cement ratio was 0.6. The specimens were 4 mm diameter cylinders 4 mm in height. The
small size was dictated by the constraints of the synchrotron X-ray source. The small specimens did
allow a relatively high spatial resolution of 6 microns per pixel. The results presented here include only
two specimens due to limited access to a shared facility.

Experimental measurements of internal cracks as well as the corresponding changes in specimen stiff-
ness between scans are presented in Table 1. The table shows crack data measured using the 3D digital
image analysis described above. As is seen in the table, the small specimens contain very large num-
bers of crack of void objects. It is also interesting to note that the total number of void objects actually
decreases as damage increases. This can be understood by considering the different images of Fig. 4.
As a crack grows it intersects and connects previously disconnected void space. Hence, even though the
volume and surface area of void space is increasing, the number of individual objects decreases.

The total volume of void objects in the initial scan is between 2.15 and 2.56 cubic millimeters. This
represents a total porosity between 4 and 5%, which is reasonable for a material of such high wa-
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Damage variable plotted against the cumulative increase in crack object
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Finally, those micro-crack may propagate as a result of creep, and may
coalesce leading to failure (of a concrete cylinder or worst a delamination
in the absence of reinforcement). This will be addressed next.
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Creep Fracture

The structures considered are likely to sustain large, sustained compressive
stresses i the presence of internal damage (micro-cracks) possibly caused by
ASR. Accordingly their long term response must be ascertained and possibly
accounted for in some critical cases.

The time dependence of fracture has two sources:

1 Viscoelasticity of material behavior in the bulk of the structure
2 the rate process of the breakage of bonds in the fracture process zone

which causes the softening law for the crack opening to be rate-dependent
Bazant 1997.

Load Carrying Capacity

Zhou (1992) was the first to experimentally investigate creep fracture in his
doctoral research Time-Dependent Crack Growth and Fracture of Concrete).
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Creep Fracture

His experimental work has been extensively referenced thereafter, and to the
best of my knowledge, they have never since been replicated. The premises of
the investigation is the observation that if we increase the rate of loading, there is
an increase in “strength” (Malvars 1998), would there be a corollary, that is for
very slow loading (such as effect of time, or simply creep), there would be a
decrease in “strength”?

Hence, fracture tests under sustained loading were performed, and an empirical
relationship for the rate effect on the fracture energy was determined. It was
found that if the stress is close to the tensile strength, then under sustained
static loading, we may have a rupture point

CMOD

P

Possible rupture 
point

Static load
Sustained loading

Possible Failure Under Sustained Load adapted from Zhou (1992)
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Creep Fracture

Analogous results were obtained by Bazant & Gettu (1992) who followed a
fracture mechanics interpretation, and showed that under sustained loading,
behavior shifts from quasi-brittle material to brittle material.

In other words whereas under normal load energy is smeared along the fracture
process zone, under sustained load, the fracture process zone tends to shrink to
almost zero, and we are now closer to the linear elastic fracture mechanics
condition (with singularity at the tip).

Likewise, it was found that the load he work of Zhou (1992) (with A. Hillerborg)
has been widely referenced by modelers and seldom replicated by
experimentalists. It provides ample experimental evidence that creep fracture is
a phenomenon to be reckoned with.

Carpinteri (1997) did carry out additional tests (with Zhou), and those results
have been primarily used by the “Italian” school of fracture. They have shown
that a slow rate of loading will reduce the peak load, and more importantly that
the mode of failure is altered from one of a quasi-brittle to brittle (i.e approaching
linear elastic fracture mechanics), Figure 36.

Likewise, it was found that the load rate will have an influence on the peak load
carrying capacity of concrete.
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Change in Mode of Failure with Loading Rate (tp average time to peak)
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A theoretical framework for creep fracture was set by Bazant (1997a-b)

Application to nuclear container was (indirectly) addressed by Masuero (1995),
and most recently by Vanzij (2001) who analyzed the test results of Zhou (1992).

Mihashi (1980) presented a power low for the tensile strength of concrete in
terms of the load rate, which is actually analogous to the one of Zhou (1992).
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Creep Fracture

To the best of my knowledge, the only experimental work reporting on the
decrease of tensile strength due to compression induced “damage” is the one of
Liniers (1987) who first applied compressive loads on concrete specimens, and
then determined the splitting tensile strength using a “Brazilian Tests”. it was
determined that for compressive stresses over 40% of compressive strength
there is a substantial (up to 50%) decrease in tensile strength reduction.

This tensile strength reduction is further exacerbated by time as shown below,

On a related issue, the role of pre-damage (micro-cracks) in tension of the
compressive strength of concrete has also been studied by Katsarakis (2009).

Fracture Energy

In the preceding section, we reported on the impact of creep on load carrying
capacity (compression or tension). However, for applications relevant in this
course, one seeks to quantify the decrease in GF and ft following creep fracture.
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Creep Fracture

Specifically, based on his tests, Zhou (1992) has shown that the fracture energy
decreases as loading rate decreases. For the tested beams, the fracture energy
was found to be related to deflection rate in a poser law

GF

GF0
=

(
_u
_u0

)0.04

(15)

where _u is the displacement rate, and _u0=2µm/s.

Alternatively, one can attempt to infer the decrease in GF from the one of the
elastic modulus E .

Recalling that the characteristic length is given by

lch =
EGF

f 2
t

(16)
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Creep Fracture

Bazant (personal communication) estimates that it should drop about 10 times,
the long term tensile strength being about 80% of the static one. If we use
Equation ?? Eeff = E/(1 +�), then

G∞
F

G0
F

=

(0.1)l0(0.8)2f 2
t

E
(1+�)

l0f 2
t

E

, or G∞
F = 0.192G0

F (17)

Thus, we could have a decrease of about 80% in GF as a result of creep fracture.
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Coalescence of Micro-Cracks

Using a highly analytical approach, the interaction of adjacent cracks, (such as
those in a fracture process zone, or possibly caused by ASR), were first
investigated by Hori (1987) and explicit asymptotic expressions are obtained for
the stress intensity factors of the macro-crack, as well as those of the
micro-cracks.

The mechanism of fracture coalescence in hard, porous material has been
investigated experimentally and through numerical simulation Shen (1995)

It was found that fracture coalescence can be generated by mode I failure, mode
II failure, or mixed mode I and II failure. The mode II failure plays an important
role in the coalescence between two non-overlapping cracks. The mechanism of
coalescence observed in gypsum does not agree with previous experimental
results where glass and polymer have been used.

For those materials coalescence only occurs between overlapping cracks and is
caused by mode I failure. The possible reason why mode II failure can occur in
gypsum and other earth materials such as rock and concrete is the existence of
voids and pores in these materials.
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Coalescence of Micro-Cracks

Porous material can absorb the shear dilation in the fracture process zone and
prevent the development of resistant stress due to shear dilation. The mode II
fracture toughness of material with high porosity is known to be low (in concrete
GII

F is about 10 times smaller than GI
F .

A (mixed mode) crack propagation model was developed for the failures in
compression Hussain and Pu. It is an extension of the classical maximum
energy release rate G. However, the authors found that when applied to crack
propagation under compressive load, the original G criterion can lead to wrong
results, especially for the direction of wing crack initiation and it does not
consider difference between mode I surface energy (GIcr ) and mode II surface
energy (GIIcr ).

Therefore, a modified G criterion, (called the F criterion, was proposed

F =
GI

GIcr
+

GII

GIIcr
≥ 1.0 (18)

where GI and GII are the mode I and II energy release rates during crack growth.

Extension occurs in the direction θ which maximizes F .
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Coalescence of Micro-Cracks

Geometry of gypsum samples and pre-existing cracks

α 

α 

β Bridge inclination

Inner tips152.4 m
m

76.2 mm

Simulated coalescence of two 45 /105 closed cracks
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Coalescence of Micro-Cracks

Load=O Load = 18 MPa 

f 

S 
~ Mode I 

(a) (b} 

80 B. SHEN 

Load = 18 MPa 

Mode I 1 ~  

'~' (el 

Load = 18 MPa l Load = 18 MPa 

t / ( d ~ ¢ )  ~ l ? ( e  ) 

Load = 18 MPa 

/ 

(f) 
Fig. 7. Simulation of coalescence between two 45 /60 closed cracks. (a) Initial state; (b) mode I crack 
propagation; (c)-(f), mode 11 crack initiation, propagation and coalescence. Compare with the experimen- 

tal results in Fig. 2. 

the critical crack length (a) for the material and it is estimated by using the equation for a central 
crack in an infinite medium under maximum tensile stress (G) 

Gu ( I - v  2)K - v2 E G, - E ~ , _ ~ z ( l  ) a ~ a ;  a -  ,. E 7t (1 - v 2) o'7 (5) 

Substituting the values in Table 2 into eq. (5), the crack length is calculated to be a = 2.0 mm. 

Whereas the previous model was experimentally driven(or heuristic in nature), a
mechanics based one was followed by Ortiz (1988) (albeit for mode I crack
propagation only). In this model the author studied the analytical estimation of
the effect of microcracking on crack growth initiation in brittle solids.

Particular attention was given to the counteracting effects of toughness
degradation and shielding (reduction of the stress intensity factors) by
macrocracking, with a view to determining the range of dominance of each
mechanism.
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Coalescence of Micro-Cracks

Crack growth initiation by coalescence with microcracks was studied with the aid
of a cohesive zone model. The extent of shielding of the crack tip by the
intervening microcracks is estimated under isotropic damage conditions.

A comparison of these effects reveals that, were the crack capable of growing
within its plane, the toughness enhancement derived from shielding would be
almost exactly counterbalanced by the reduction of toughness in the
microcracked material.

ENVELOPE
𝑀𝐼𝐶𝑅𝑂𝐶𝑅𝐴𝐶𝐾𝑆

𝑀𝐴𝐶𝑅𝑂𝐶𝑅𝐴𝐶𝐾𝑆

MACROCRACK COHESIVE ZONE

a0a0

𝑙 𝑙𝑙𝑙𝑙𝑙

Crack coalescence (adapted from Ortiz 1988)
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Coalescence of Micro-Cracks

Two excellent papers, not reviewed in the preparation of these notes, are:

1 Huq, F., Liu, J., Tonge, A.L. and Graham-Brady, L., 2019. it A
micromechanics based model to predict micro-crack coalescence
in brittle materials under dynamic compression. Engineering
Fracture Mechanics, 217, p.106515.

2 Li, X., Li, X., Yang, H. and Jiang, X., 2018. Interaction between a
Macrocrack and a Cluster of Microcracks by Muskhelishvili’s
Complex Potential Method. Mathematical Problems in
Engineering, 2018.
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Introduction

Size Effect

Recall that

−∂�

∂a
= −∂Ue

∂a
+

∂W
∂a

=
∂Up

∂a
+

∂�

∂a

For quasi-static crack growth: Rate of potential energy decrease during crack
growth is equal to the rate of energy dissipated in plastic deformation and crack
growth.

For brittle material (Up = 0) potential energy released stored in R3 is released to
create a surface energy (crack) in R2. Thus we have a Size Effect.

It has profound influence in assessing the strength of “large” structures.
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Derivation Original: Bažant

Examine the Energy exchanged during infinitesimal crack
extension in a plate.

Noting that: y
a0+cf

= k
1 , the Energy released under the

shaded area can be approximated by
b2k(a0 + cf )�aσ2

n/2E , which must be equal to the energy
consumed during crack growth: bGF�a, hence

b2k(a0 + cf )�aσ2
n/2E = bGF�a (1)

yielding

σn =
Bf ′

t√
1 + D

D0

where

Bf ′
t =

√
GF E
kcf

and
D
D0

=
a0

cf
= β

σN

σN
b

a0 cf

1
k

In his original paper, Bažant noted that analytical or numerical derivation of B and β is
too difficult, and they are best obtained through statistical regression analysis of test
data.
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Derivation Derivation: Saouma

Bažant’s derivation does not clearly establish the tie
between LEFM and NLFM

Alternate derivation based on classical elasto-plastic
fracture mechanics. As with Barenblatt and Dugdale,
in its simplest form the stress intensity factors caused
by the cohesive stresses (in a plastic zone or process
zone), are assumed to cancel the ones caused by the
far field load.

The size effect law will be shown to have explicit roots
in plasticity and linear elastic fracture mechanics.

Not only quasi-brittle materials exhibit a size effect, but
elasto-plastic ones as well.

An infinite plate subjected to a far field uniform tensile
stress σ and a crack of length 2a, at the tip of which
we have a uniform cohesive compressive stress
(Dugdale type) equal to the tensile strength f ′

t ,

x

tftf

0a

a a

a0

σ

c
f

c
f

σ
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Derivation Derivation: Saouma

The stress intensity factors due to the far field and cohesive stresses are:

Ka = σ
√
πa

Kb = f ′
t
√
πa

(
1 − 2

π
arcsin

a − cf

a

)
; arcsin θ =

1
sin θ

respectively,

Equating those two stress intensity factors, we obtain the nominal strength

σn = f ′
t

[
1 − 2

π
arcsin

(
1 − cf

a

)]
In the limit, for small sizes when a ≃ cf , σn approaches asymptotically f ′

t . On the
other hand, for large sizes, cf ≃ 0, σn will asymptotically approach zero.
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Derivation Derivation: Saouma

Whereas the expression of σn appears to have the same limits as the Size Effect
Law, it is not mathematically similar to it. This will only become apparent if one
takes a series expansion of the ArcSin function, and substituting cf/a by s:

σn = σn = f ′
t

[
1 − 2

π
arcsin(1 − s)

]
≃ 2

√
2f ′

t

π
s1/2 +

f ′
t

3
√

2π
s3/2 +

3f ′
t

40
√

2π
s5/2 + O[s]7/2

Neglecting the terms of power greater than 1 (since s is at most equal to 1), and
substituting s = 1/(1 + r) where r = a0/cf , we obtain

σn =
2
√

2
π︸ ︷︷ ︸
B

f ′
t

√√√√√ 1
1 + r︸︷︷︸

β

We have thus recovered the size effect law as originally derived by Bažant as
expressed by Eq. 1, with the additional benefit that B is quantified for this
combination of geometry and cohesive stresses.
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Derivation Derivation: Saouma
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Implications of the SEL

We can rewrite Eq. 1 as

f ∗t =
f ′
t√

1 + β
=

σN

B
, (2)

where f ∗t is termed the size-reduced-strength and is a
characteristic of the entire structure and not only of the
material.

Bazant has defined β = λ
λ0

= D
D0

where D is a
representative dimension of the structure and D0 the
average aggregate size.

Undoubtedly the size effect law is a very elegant
generalized model for concrete fracture. It attempts to
provide a unified mathematical model for concrete
cracking by merging two different approaches.
Furthermore, it has been experimentally validated with
numerous tests, many of which involved uncracked
(initial) structures.

The size effect law can be plotted on a log-log scale
with σn versus size d .

log σN

log d

Plasticity

LEFM

2
1

d
d

d

?

Small scale laboratory 
experiment

Actual structure

?



NLFM

Tests by Saouma, 1 ′ < h < 5 ′,

3/4" < da < 3"
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Implications of the SEL

For structures of a small size relative to the size of aggregate, i.e for small λ

The value of λ
λ0

in Eq. 2 may be neglected in comparison to 1, yielding
f ∗t ≃ f ′

t , and the classical strength criterion governs.
B = σN

f ′t
and can be determined from plastic limit analysis.

For structures with very large size compared to aggregate size, λ
λ0

≫ 1. Thus

Eq. 2 reduces to f ∗t ≃ f ′
t

√
λ0
λ

, and we see that “For very large concrete
structures, such as dams (or large rock masses), Eq. 2 asymptotically
approaches the size effect of linear elastic fracture mechanics”.

In general, Eq. 2 represents a gradual transition from the strength criterion for
small structures to linear elastic fracture mechanics for large structures.

To assess the size effect law, geometrically identical specimens, but with
different sizes must be tested. Then Eq. 2 can be cast in the form:

Y = a + bλ =
1
σ2

N
, (3)

where a = 1
B2 and b = 1

B2λ0
.
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Implications of the SEL

From statistical regression analysis, the intercept a, and the slope b can be
determined, and then B = 1√

a and λ0 = a
b

If λ
λ0

= β is less than 0.1, then a strength criterion must be used, and if β is
greater than 10, then a LEFM criterion is to be used. Note that those are
arbitrary guidelines.

The point of intersection of the two asymptotes corresponds to β = 1.

It can be shown, that the fracture energy GF can be recovered from the Size
Effect Law

There is a strong analogy between the size effect and column buckling

Column Buckling Size Effect
Euler Equation LEFM

Slenderness ratio Size
Plastic failure Plastic failure

Inelastic stresses Cohesive stresses
Inelastic Buckling NLFM

Column Equation (SSRC) Size Effect law (Bažant)

σcr = σy

[
1 − σy

4π2E

(
KL
rmin

)2
]

σn =
Bf ′t√
1+β
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Implications of the SEL

Size Effect is most critical in unreinforced concrete, this is the case in many old
structures with no shear reinforcement.

Recently (and finally) implicitly accounted for in the latest ACI-318-19 design
code.

Chapter 22: New Sectional Shear Strength 
Equations

for one-way shear strength, applicable to nonprestressed 
beams, slabs, and walls loaded out-of-plane. The equations 

two-way shear and to strut capacity for strut-and-tie models 

factor is not applicable to isolated and combined footings.

beams, slabs, and walls loaded out-of-plane. The equations 
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The reduction in shear stress at shear failure as member depth of
beams and slabs not containing stirrups increases is known as the
size effect in shear. While many theoretical models for this phe-
nomenon have been proposed over the years, this paper provides a
purely empirical study of the effect. Twenty-four different size effect
series of shear experiments are examined, and curve fit parameters
are calculated for three different equation formats. Equations to
estimate the curve fit parameters are presented that may be useful
in generating design specifications that include size effect. The
conclusions include that a size effect equation based on a power
equation is not as good as a 1/d-based equation with a depth off-
set. Aggregate size and longitudinal percentage of reinforcement
were found to be important in the estimation of shear strength. No
strong evidence was found that size effect data for shear in reinforced
concrete beams without stirrups should be modeled with effective
depth to the power of –0.5 as would be expected from linear elastic
fracture mechanics.

Keywords: shear strength; size effect; stirrup.

INTRODUCTION
It has been known for many years that the shear strength of

members that do not contain stirrups shows a size effect. That
is, as the absolute depth of the member increases, the shear
stress at failure decreases (Fig. 1). Many different theories have
been suggested to account for this behavior, including methods
based on the reduced shear resistance of wider diagonal
cracks1,2 and energy-based fracture mechanics arguments3

among others. This behavior is of particular interest, as the
current ACI Code4 does not codify any size effect, as is also
shown in Fig. 1. It is important to determine which members
may have an unacceptably low level of safety, such as deep
transfer slabs, large tunnel roofs, and, much more rarely, large
lightly loaded beams.

Rather than looking at the size effect from a theoretical
perspective, it is also reasonable to examine it from a purely
empirical perspective. It could be argued that such a purely
empirical procedure may produce the simplest form of
design equation as there are no restrictions on the algebraic
form of the equation to be developed. It could equally well
be argued, however, that a purely empirical process is much
more likely to produce results that are inappropriate to
extrapolate from. Given the long history of the use of empirical
equations by ACI, it will be assumed that a purely empirical
approach to the size effect question can be useful and will
therefore be explored. These empirical equations may be of
use to the code development process where simple equations
are desired. Recently published databases that allow the
empirical curve-fitting process to proceed have been used by
ACI Committee 445, Shear and Torsion, to determine
improved shear design methods.5,6 While this has led to some
success, there have been some strong concerns expressed on

the idea of a purely empirical methodology from some of the
participants in this process.7 Specifically, it was considered
inappropriate by some to develop empirical methods based on
a large dataset that did not separate out the effects of different
variables. It was noted that a better method to show the true
impact of the size effect would be to only consider experi-
mental datasets that were actively prepared to look at the size
effect phenomena and thus largely exclude the variation of
any other parameters.

In this paper, 24 separate size effect series of experimental
beam shear tests are compared individually as suggested
previously. Note that the process used in this paper is 100%
empirical curve fitting, although the algebraic form of the
equations is suggested from theoretical studies. If the
process set out in this paper is successful, then it will be
possible to make simple predictive equations that model
future size effect tests reasonably well so long as they do not
represent extreme extrapolations from the datasets used. It
should also be possible to identify if certain types of equations
work better or worse than others at modeling these data. Note
that the author is not abandoning the concepts of theoretically
rigorous and rationally-based methods, but is simply making
an empirical comparison of different datasets.

RESEARCH SIGNIFICANCE
Recent activities of ACI Committee 318, Structural Concrete

Building Code, and Joint ACI-ASCE Committee 445, Shear

Title no. 102-S23

Empirical Modeling of Reinforced Concrete Shear Strength 
Size Effect for Members without Stirrups
by Evan C. Bentz

Fig. 1—Example of size effect in shear for reinforced
concrete members without stirrups.1

Fracture Mechanics; V. E. Saouma; Size Effect 12/12



Fictitious and Interface Crack Models

Victor E. Saouma
saouma@colorado.edu

University of Colorado, Boulder

Spring 2022

Fracture Mechanics; V. E. Saouma; Fictitious and Interface Crack Models 1/47



Table of Contents I

1 Introduction

2 Fictitious Crack Model
Approach
Computational Algorithm
Weak Form of Governing Equations
Discretization of Governing Equations
Penalty Method Solution
Incremental-Iterative Solution Strategy

3 Interface Crack Model
Premises
Model
Application: Gilboa Dam
Application: Seismic Safety of Buttress Dam
Application: Crystal River
Polymers

Fracture Mechanics; V. E. Saouma; Fictitious and Interface Crack Models 2/47



Introduction

Finite element simulation of solids with cohesive materials (post-peak softening
curve in tension) is addressed in this lecture.

Two models (based on 2 PhD thesis of the author) will be presented:

1 Fictitious Crack Model by Reich. Very efficient model, limited to Mode I,
with load scale.

2 Interface crack model a very comprehensive zero thickness element
developed by Červenka.

An extension of the interface crack model to account for surface degradation was
developed by Puntel, but will not be presented.
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Fictitious Crack Model Approach

Treat the structure as a set of sub-domains bonded along assumed crack paths.

Crack paths are defined by fictitious interface elements that initially act as
constraints enforcing the bond between adjacent sub-domains.

Change of state will function as standard interface elements as the crack
propagates.

Constraints are enforced on the global system of equations using a penalty
approach.

Load scaling strategy, which allows for load controlled analyses in the post-peak
regime, is used to enforce stress continuity at the tip of the Fracture Process
Zone (FPZ).
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Fictitious Crack Model Computational Algorithm

Treatment of the structure as a set of bonded sub-domains results in a system of
mixed equations with the unknowns being displacements and surface tractions
on the interface between the sub-domains.

The weak form of the system of mixed equations will be derived from the
Principle of Virtual Work. The weak form equations will then be discretized for
solution using the finite element method.

The penalty method solution for the mixed system of equations will be used.

An incremental-iterative solution strategy based on the modified-Newton
algorithm that includes load scaling and allows for load control in the post-peak
regime will be discussed.
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Fictitious Crack Model Weak Form of Governing Equations

Γt1Ω1

Ω2

Γu1

Γu2

Γt2
t1
ʌ 

t2
ʌ 

tb1
tb2

tc1
tc2

Body consisting of two sub-domains, 
1 and

2 that intersect on a surface �I without
penetration. Each sub-domain may be subject
to body forces bm or to prescribed surface
tractions t̂m on �tm .

Define the volume of the body as


 = 
1 ∪ 
2

and the surface of the body subject to
prescribed surface tractions as

�t = �t1 ∪ �t2 , (1)

Principle of Virtual Work for the body is∫



δϵTσd
−
∫



δuTbd
−
∫
�t

δuT t̂d� = 0 (2)
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Fictitious Crack Model Weak Form of Governing Equations

where

δϵ = Lδu (3)

ϵ = Lu (4)

σ = Dϵ (5)

Within each sub-domain of the body 
m the Principle of Virtual Work must also
hold, but additional integrals are required to account for the work performed by
the surface tractions tIm on the interface �I .

Surface tractions on the interface are due to bonding of the sub-domains tbm or
to cohesive stresses in the FPZ tcm . In either case, stress continuity on �I

requires that

tb2 = −tb1 (6)

tc2 = −tc1 (7)
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Fictitious Crack Model Weak Form of Governing Equations

Defining the interface surface as

�I = �Ib ∪ �Ic ,

where �Ib is the bonded interface surface and �Ic is the interface surface subject
to cohesive stresses.

External work on interface∫
�I

δuT
1 tI1 d� =

∫
�Ib

δuT
1 tbd� +

∫
�Ic

δuT
1 tcd�∫

�I

δuT
2 tI2 d� = −

∫
�Ib

δuT
2 tbd�−

∫
�Ic

δuT
2 tcd�

Both tb and tc are unknown, but as tb acts on the bonded, or constrained,
interface it will be treated as a Lagrange multiplier

λ = tb
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Fictitious Crack Model Weak Form of Governing Equations

Substituting λ into Equations 2 and 3-5 and including the external work
performed by the surface tractions on the interface surface, the Principle of
Virtual Work for sub-domains 
1 and 
2 is∫


1
δϵ

T
1 σ1d
−

∫

1

δu
T
1 b1d
−

∫
�t1

δu
T
1 t̂1d�−

∫
�Ib

δu
T
1 λd�−

∫
�Ic

δu
T
1 tcd� = 0 (8)

∫

2

δϵ
T
2 σ2d
−

∫

2

δu
T
2 b2d
−

∫
�t2

δu
T
2 t̂2d� +

∫
�Ib

δu
T
2 λd� +

∫
�Ic

δu
T
2 tcd� = 0 (9)

On �Ib the displacements for the two sub-domains, u1 |�Ib
and u2 |�Ib

, must be
equal. This condition can be written as a constraint in the strong form

u2 |�Ib
−u1 |�Ib

= 0,

but a weak form is required to be compatible with Equation 6-7.

The following weak form ∫
�i

δλT (u2 − u1)d� = 0 (10)

was chosen for the constraint equation as it makes the system of mixed
equations symmetric.
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Fictitious Crack Model Discretization of Governing Equations

Discretization of Equations 8-9. Each sub-domain 
m is discretized for
displacements um such that nodes on �tm and �I are included in the vector of
discrete displacements um.

Number of nodes on �I in 
1 is equal to the number of nodes on �I in 
2. For
each node on �I in 
1 there is a node on �I in 
2 with the same coordinates.

Displacements um within the sub-domains 
m and the surface tractions λ on the
bonded interface �Ib :

um = Numum (11)

λ = Nλλ (12)

δum = Numδum (13)

δλ = Nλδλ (14)

Num and Nλ are standard shape functions.
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Fictitious Crack Model Discretization of Governing Equations

To discretize the integral defining the virtual strain energy, the stresses and the
virtual strains defined in Equation 3-5 must be expressed in terms of the discrete
displacements and virtual displacements using Equations 11-12 and 13-14

δϵm = LNumδum

σm = DmLNumum

Defining the discrete strain-displacement operator Bm as

Bm = LNum ,

the virtual strain energy can be written as∫

m

δϵT
mσmd
 = δuT

m

∫

m

BT
mDmBmd
um (15)

Km =
∫

m

BT
mDmBmd
 is the standard stiffness matrix for the finite element

method, thus Equation 15 can be rewritten as∫

m

δϵT
mσmd
 = δuT

mKmum (16)
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Fictitious Crack Model Discretization of Governing Equations

Discretization of the integrals for the internal virtual work due to body forces and
the external virtual work due to prescribed surface tractions simply involves
expressing the virtual displacements in terms of the discrete virtual
displacements using Equation 13-14∫


m

δuT
mbmd
 = δuT

m

∫

m

NT
umbmd
∫

�tm

δuT
m t̂md� = δuT

m

∫
�tm

NT
um t̂md�

Recognizing that

fm =

∫

m

NT
umbmd
+

∫
�tm

NT
um t̂md�

is the standard applied load vector for the finite element method, the sum of the
internal virtual work and the external virtual work is∫


m

δuT
mbmd
+

∫
�tm

δuT
m t̂md� = δuT

mfm (17)
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Fictitious Crack Model Discretization of Governing Equations

Discretization of the external virtual work due to surface tractions on the
interface, requires that the surface tractions and the virtual displacements be
expressed in terms of the discrete surface tractions and virtual displacements
using Equations 11-12 and 13-14∫

�Ib

δuT
mλd� = δuT

m

∫
�Ib

NT
umNλd�λ∫

�tc

δuT
mtcd� = δuT

m

∫
�tc

NT
um tcd�

Definw the operator matrix for the load vector due to surface tractions on the
bonded interface as

Qm =

∫
�Ib

NT
umNλd�

and the load vector for the cohesive stresses as

fcm =

∫
�tc

NT
um tcd� (18)
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Fictitious Crack Model Discretization of Governing Equations

the external work due to surface tractions on the interface is∫
�Ib

δuT
mλd� +

∫
�tc

δuT
mtcd� = δuT

m(Qmλ+ fcm ) (19)

To discretize the weak constraint equation, the displacements and the virtual
surface tractions must be expressed in terms of the discrete displacements and
the discrete virtual surface tractions using Equations 11-12 and 13-14∫

�Ib

δλTu1d� = δλ
T
∫
�Ib

NT
λNu1 d�u1∫

�Ib

δλTu2d� = δλ
T
∫
�Ib

NT
λNu2 d�u2
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Fictitious Crack Model Discretization of Governing Equations

Recognizing that

QT
m =

∫
�Ib

NT
λNum d�

is the transpose of the operator matrix for the load vector due to surface tractions
on the bonded interface defined in Equation 18, the weak constraint equation
can be rewritten as∫

�Ib

δλT (u2 − u1)d� = δλ
T
(QT

2 u2 −QT
1 u1) = 0 (20)

Define the discrete system of mixed equations. Substituting Equations 16, 17,
and 19 into Equation 8-9 and rearranging terms, the discrete Principle of Virtual
Work is written as

δuT
1 (K1u1 −Q1λ) = δuT

1 (f1 + fc1) (21)

δuT
2 (K2u2 +Q2λ) = δuT

2 (f2 − fc2) (22)
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Fictitious Crack Model Discretization of Governing Equations

As δuT
m appears in both sides of Equation 21-22, it can be eliminated, leaving

K1u1 −Q1λ = f1 + fc1 (23)

K2u2 +Q2λ = f2 − fc2 (24)

In a similar fashion, δλ
T

can be eliminated from Equation 20, leaving

QT
2 u2 −QT

1 u1 = 0 (25)

as the discrete constraint equation.

Finally, the discrete system of mixed equations is defined by Equations 23-24
and 25, which can be written in matrix form as K1 0 −Q1

0 K2 Q2

−QT
1 QT

2 0


u1

u2

λ

 =


f1 + fc1

f2 − fc2

0

 (26)
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Fictitious Crack Model Penalty Method Solution

The penalty method is used to solve the discrete system of mixed equations as it
reduces the problem to that of a single-field.

Crack propagation is simulated by the release of constraints on the interface, the
total number of unknowns changes as the crack propagates.

Equation 26 is rewritten as K1 0 −Q1

0 K2 Q2

−QT
1 QT

2 − 1
α
I


u1

u2

λ

 =


f1 + fc1

f2 − fc2

0

 (27)

where α is the penalty number and should be sufficiently large that 1
α
I is close to

zero.

Express λ in terms of u1 and u2

λ = α(Q2u2 −Q1u1) (28)
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Fictitious Crack Model Penalty Method Solution

Substituting Equation 28 into Equation 27, a single-field penalized stiffness
matrix equation is obtained[

(K1 + αQ1Q
T
1 ) −αQ1Q

T
2

−αQ2Q
T
1 (K2 + αQ2Q

T
2 )

]{
u1

u2

}
=

{
f1 + fc1

f2 − fc2

}
(29)

Selection of a good penalty number is a rather difficult task. If too small
substantial error in in the constraint equation

Q2u2 −Q1u1 = ϵ ≫ 0

If too large ϵ → 0, but impact of K1 and K2 is diminished: large errors in
displacements not associated with the constraint equation (round off errors).

Goal is to select a penalty number that yields an acceptable error. This may be
problem dependent. Reich’s experience is that a penalty number selected using

α =
max(diag(Km))

max(diag(QmQT
m))

× 106 (30)

yields very good results for the class of problems being considered (computed
u1 and u2 on the interface tend to be identical for the first five or six digits when
the penalized stiffness matrix is assembled in double precision.
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Fictitious Crack Model Incremental-Iterative Solution Strategy

Incremental-iterative solution strategy is used.

At zero load, the entire interface is constrained (i.e., fully bonded). As load is
applied, surface tractions on the constrained interface violate a strength criteria
and corresponding constraints are released.

On that portion of the interface where constraints have been released, cohesive
stresses act until the relative displacements of the unconstrained interface
surfaces become large enough to dictate otherwise.

In this solution strategy crack propagation occurs after every increment.

The magnitude of the applied loads must be such that the surface tractions at a
node on the constrained interface are precisely equal to the maximum allowable
stress. Hence normal surface traction and the uniaxial tensile strength must be
equal.

However, magnitude of the applied loads that causes the strength criteria to be
satisfied exactly is not known a priori, some form of automatic load scaling is
used.
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Fictitious Crack Model Incremental-Iterative Solution Strategy

Assuming that the applied loads are proportional, a load factor β can be used to
scale an arbitrary set of applied load vector f of some arbitrary magnitude.

At the beginning of each load increment i , the load factor is βi and the applied
load vector is

βi f = βi

{
f1
f2

}
βi is zero at the beginning of the first increment. The incremental load factor for
increment i is �βi and the applied incremental load vector is

�βi f = �βi

{
f1
f2

}
The load factor at the end of increment i is

βi+1 = βi +�βi
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Fictitious Crack Model Incremental-Iterative Solution Strategy

Modified-Newton algorithm is used to solve for incremental displacements due to
the applied incremental loads. The incremental displacements for a generic
increment are defined as

�un+1 = �un + δun

where

u =

{
u1

u2

}
and �un is the incremental displacement vector at the beginning of iteration n
and δun is the correction to the incremental displacement vector for iteration n.

In a similar fashion, the incremental load factor is defined as

�βn+1 = �βn + δβn

where �βn is the incremental load factor at the beginning of iteration n and δβn

is the correction to the incremental load factor for iteration n. At the beginning of
the first iteration both �un and �βn are zero.
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Fictitious Crack Model Incremental-Iterative Solution Strategy

Displacement corrections are computed by solving

Kαdun = (βf + �βnf + dβnf + fnc − pn) (31)

where

Kα =

[
(K1 + αQ1Q

T
1 ) −αQ1Q

T
2

−αQ2Q
T
1 (K2 + αQ2Q

T
2 )

]
is the penalized stiffness matrix;

fnc =

{
fnc1

−fnc2

}
is the load vector due to cohesive stresses on the interface at the beginning of
iteration n; and

pn =

nelem∑
i=1

∫

ei

BTD(ϵ+�ϵn)d


is the reaction vector for the state of stress at iteration n.
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Fictitious Crack Model Incremental-Iterative Solution Strategy

Recognizing that
rn = βf + �βnf + fnc − pn

is the residual force vector at the beginning of iteration n, Equation 31 can be
written in a more compact fashion as

dun = K−1
α (δβnf + rn)

Since the K−1
α f term does not change throughout the course of the iterative

process it can be defined as a constant value for the increment

δuT = K−1
α f

The displacement vector δuT is commonly called the tangent displacement
vector. At this point, the iterative displacement correction can be defined as

δun = δβnδuT +K−1
α rn
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Fictitious Crack Model Incremental-Iterative Solution Strategy

δβn must be computed such that the strength criteria is exactly satisfied. Since
the surface tractions on the constrained interface are used to determine the
magnitude of the applied load, the total surface tractions for iteration n must be
expressed in terms of its various contributions

λ
n+1

= λ+�λ
n
+ δλ

n
r + δβnδλT

where

λ is the surface traction vector at the beginning of the increment.
�λ

n
is the incremental surface traction vector at the beginning of iteration

n.
δλ

n
r is correction to the incremental surface traction vector due to the

residual load vector rn for iteration n.
δλT is the surface traction vector due to the tangent displacement vector
δuT .

δλ
n
r and δλT are defined as

δλ
n
r = α(QT

2 δu
n
r2 −QT

1 δu
n
r1)

δλT = α(QT
2 δuT −QT

1 δuT )
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Fictitious Crack Model Incremental-Iterative Solution Strategy

The strength criteria is applied to λ
n+1

on a node-by-node basis such that

max((λ
n+1

)i(n)i) = ft

where (n)i is the normal vector at node i and ft is the uniaxial tensile strength.

Recognizing that λ, �λ
n
, and δλ

n
r are fixed for iteration n, the iterative load factor

correction is defined as

δβn = min

 ft −
[
(λ)i + (�λ

n
)i + (δλ

n
r )i

]
(n)i

(δλT )i(n)i


Provided that the cohesive stresses on the interface are treated as forces and

no stiffness matrix is assembled for those interface elements, this solution
strategy allows for load control in the post peak regime.

The use of stiffness matrices for the interface elements subject to softening is
avoided because their presence in the global stiffness matrix will eventually
cause it to become non-positive definite.
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Interface Crack Model Premises

Objective is to develop a physically sound model, yet simple enough so that all
its parameters can be easily derived from laboratory tests

Define relationships between normal and tangential stresses with opening and

sliding displacements.

Material   1

Material  2 Material  2

Material   1

,
,

Interface Interface Model

u σ
u τx

y

u  ,

u  ,
u  ,

τ

τ
σ

x

y

z

1

2

Major premises upon which the model is developed are:
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Interface Crack Model Premises

1 Softening is present both in shear and tension (Hillerborg extended)
2 Residual shear strength due to the friction along the interface, which

depends on the compressive normal stress, (Coulomb).
3 Reduction in strength, i.e. softening, is caused by crack formation.
4 Zero normal and shear stiffness when the interface is totally destroyed.
5 Under compressive normal stresses neither the shear and nor the normal

stiffnesses decrease to zero. In addition, should a compressive stress be
introduced in the normal direction following a full crack opening, two faces
of the interface come to contact, and both tangential and normal
stiffnesses become nonzero. (contact problem).

6 Irreversible relative displacements are caused by broken segments of the
interface material and by friction between the two crack surfaces,
(permanent plastic damage)

7 Roughness of the interface causes opening displacements (i.e. dilatancy)
when subjected to sliding displacements.

8 The dilatancy vanishes with increasing sliding or opening displacements.
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Interface Crack Model Model

Strength of the interface is described
by a hyperbolic failure function:

F = (τ2
1+τ2

2)−2 c tan(ϕf )(σt−σ)−tan2(ϕf )(σ
2−σ2

t ) = 0
(32)

where:

c is the cohesion
ϕf is the angle of friction
σt is the tensile strength of the
interface
τ1 and τ2 are the two tangential
components of the interface
traction vector
σ is the normal traction
component

Initially proposed by Carol

The general three-dimensional failure
function is obtained by mere rotation
around the σ-axis.

φ

tan(     )φf

Final Failure
Function

Initial Failure
Function

σ

τ

c

σ

tan(     )
f

t

1

1

Fracture Mechanics; V. E. Saouma; Fictitious and Interface Crack Models 28/47



Interface Crack Model Model

The evolution of the failure function is based on a softening parameter
u ieff which is the norm of the inelastic displacement vector ui .

The inelastic displacement vector is obtained by decomposition of the
displacement vector u into an elastic part ue and an inelastic part ui .

The inelastic part can subsequently be decomposed into plastic (i.e.
irreversible) displacements up and fracturing displacements uf .

The plastic displacements are assumed to be caused by friction
between crack surfaces and the fracturing displacements by the
formation of microcracks.

F = F (c, σt , ϕf ), c = c(u ieff), σt = σt(u ieff)

u = ue + ui , ui = up + uf

u ieff = ||ui ||= (ui
x

2
+ ui

y
2
+ ui

z
2
)1/2

(33)
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Interface Crack Model Model

Linear and bilinear relationship are used for c(u ieff) and σt(u ieff).

c(u ieff) = c0(1 − uieff

wc
) ∀ u ieff < wc

c(u ieff) = 0 ∀ u ieff ≥ wc

wc =
2GIIa

F
c0

 linear for cohesion

c(u ieff) = c0 + u ieff s1c−c0
w1c

∀ u ieff < w1c

c(u ieff) = sc(1 − uieff−w1c
wc−w1c

) ∀ u ieff ∈ ⟨w1c ,wc⟩
c(u ieff) = 0 ∀ u ieff > wc

wc =
2GIIa

F −(s1c+c0)w1c
s1c

 bi-linear for cohesion

(34)
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Interface Crack Model Model

σt(u ieff) = σt0(1 − uieff

wσ
) ∀ u ieff < wσ

σt(u ieff) = 0 ∀ u ieff ≥ wσt

wσ =
2GI

F
σt0

 linear for tensile strength

σt(u ieff) = σt0 + u ieff s1σ−σt0
w1σ

∀ u ieff < w1σ

σt(u ieff) = s1σ(1 − uieff−w1σ
wσt −w1σ

) ∀ u ieff ∈ ⟨w1σ,wσ⟩
σt(u ieff) = 0 ∀ u ieff > wσ

wσ =
2GI

F−(s1σ+σt0)w1σ
s1σ


bi-linear for
tensile strength

(35)
where GI

F and GIIa
F are mode I and II fracture energies. s1c , w1c and s1σ,

w1σ are the coordinates of the breakpoint in the bi-linear softening laws
for cohesion and tensile strength respectively.
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Interface Crack Model Model

The critical opening and sliding corresponding to zero cohesion and
tensile strength are denoted by wσ and wc respectively, and they are
determined from the condition that the area under the linear or bilinear
softening law must be equal to GI

F and GIIa
F respectively.

w1σ wσ uieff

S1σ 

σt0 

σt 

GF
1 

w1c wc uieff

S1c 

c0 

c 

GF
IIa 

GIIa
F is not the pure mode II fracture energy (i.e. the area under a τ-ux

curve), but rather is the energy dissipated during a shear test with high
confining normal stress (Carol).
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Interface Crack Model Model

Determination of GII
F would require a pure shear test without

confinement, which is extremely difficult to perform.

GIIa
F test requires a large normal confinement, and is therefore easier to

accomplish.

Residual shear strength is obtained from the failure function by setting
both c and σt equal to 0, which corresponds to the final shape of the
failure function and is given by:

τ2
1 + τ2

2 = tan2(ϕf ) σ
2 (36)

Stiffness degradation is modeled through a damage parameter,
D ∈ ⟨0,1⟩, which is a relative measure of the fractured surface. Thus, D
is related to the secant of the normal stiffness Kns in the uniaxial case:

D =
Af

Ao
= 1 − Kns

Kno
(37)

where Kno is the initial normal stiffness of the interface; Ao and Af are
the total interface area and the fractured area respectively.
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Interface Crack Model Model

It is assumed, that the damage parameter D can be determined by
converting the mixed mode problem into an equivalent uniaxial one. In
the equivalent uniaxial problem the normal inelastic displacement is set
equal to u ieff. Then, the secant normal stiffness can be determined from:

Kns =
σ

u − up =
σt(u ieff)

ue + up + uf − up =
σt(u ieff)

σt(u ieff)/Kno + (1 − γ)u ieff
(38)

where γ is the ratio of irreversible inelastic normal displacement to the
total value of inelastic displacement.

Experimentally, γ can be determined from a pure mode I test through:

γ =
up

ui
(39)
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Interface Crack Model Model

where up is the residual displacement after unloading and ui is the
inelastic displacement before unloading.

σ

u

no
K

K ns

σ i

σ

u =     uγ u

u  = ui ieff

ip i

GF
I

For concrete, γ is usually assumed equal to 0.2 or 0.3

Evolution of the damage parameter D is defined by

D = 1 − σt(u ieff)

σt(u ieff) + (1 − γ)u ieffKno
(40)

which is obtained by substituting Equation 38 into Eq. 37.
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Interface Crack Model Model

The stress-displacement relationship of the interface is expressed as:

σ = αE(u − up) (41)

where:

σ is the vector of tangential and normal stress at the interface.

σ = {τ1, τ2, σ}T (42)

α is the integrity parameter defining the relative active area of the interface,
and it is related to the damage parameter D.

α = 1 − |σ|+σ

2|σ| D (43)

The activation of D is controlled through the fraction |σ|+σ

2|σ| , which is equal
to one if σ is positive, and is zero otherwise.
E is the elastic stiffness matrix of the interface.

E =

 Kto 0 0
0 Kto 0
0 0 Kno

 (44)
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Interface Crack Model Model

It should be noted, that the off-diagonal terms in the elastic stiffness
matrix E of the interface are all equal to zero, which implies that no
dilatancy is considered in the elastic range.

The dilatancy of the interface is given by dilatancy angle ϕd , which is
again assumed to be a function of u ieff.

ϕd (u ieff) = ϕd0(1 − uieff

udil
) ∀u ieff ≤ udil

ϕd (u ieff) = 0 ∀u ieff > udil
(45)

where udil is the critical relative displacement after which, the interface
does not exhibit the dilatancy effect any more, and ϕd0 is the initial value
of the dilatancy angle.
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Interface Crack Model Application: Gilboa Dam

Identify potential failure modes, insert joint elements, load, and
compute safety factor against sliding.
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Interface Crack Model Application: Gilboa Dam
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Interface Crack Model Application: Gilboa Dam
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Interface Crack Model Application: Seismic Safety of Buttress Dam

Slab 

Diagonal Cracks

Horizontal Cracks

10/11/2010

φ 19mm

300mm

200mm

280mm

125mm

4
0

0
m

m125mm

87.5mm

40mm

87.5mm

40mm

H- 125X125X6.5X9

10/8/2010
10/8/2010

Anticipated rehabilitation (multi-billion Yens)

Performed nonlinear transient fracture mechanics based analysis (interface
elements modified to model dowel effects)

Analysis proved the dam to be safe, no rehabilitation performed.

About $ 150,000 saved multi-million dollars in unnecessary rehabilitation.
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Interface Crack Model Application: Crystal River
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Tendons 

released
Interface Elements;

Based on Hillerborg’s 

model, will crack only 

if tensile stress 

exceeds the tensile 

strength; No bonds 
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concrete

C
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X

Y

Free X

Fixed y

Tractions due to 

Postensioning 

cables; Applied 

as uniform load

10/5/2010

Location of delamination known

Insert zero-thickness discrete
interface elements along the potential
plane of delamination

Concrete otherwise linear elastic

Account for creep
item Carefully release tendons in the
proper sequence, and observe
potential cracking along the joints
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Interface Crack Model Application: Crystal River
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Used exclusively 3D solid elements with variable gradation.
All the tendons above the hatch and up to 240' are individually modeled.
Each one of those tendons can be individually released
Vertical tendons in panel 45 plus four on each side)  are individually 
modeled and can be individually released.
Vertical tendons elsewhere are modeled by a uniform downward traction 
Post tensioning of the dome is modeled by a uniform pressure of 240 psi;
An upward uniform load of 0.5 ksi is applied along the ring to negate the 
effect of the dome pressure on the shell (since dome post tensioning is 
self-equilibrated by the top ring)
Cables below the hatch elevations are modeled as external pressure
Mesh has about 60,000 nodes, or about 180k dof

10/20/2011
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Interface Crack Model Application: Crystal River

Tendons 

represented as a 

smeared uniform 

traction on the 
outside

Dome prestressing 
modelled as a 

uniform traction of 

124 psi

Vertical tendon force:1,635 kips
Dome equivalent pressure: 124 psi
Radial force exerted by each horizontal tendon:
Radial pressure applied by each tendon: 383.2 psi
Bottom radial pressure varies with element height (around 100 psi)

Relative Temperature Scenarios:

1)  40oF Inside; 0 outside
2)  0 Inside; 18oF Outside

Interpolated between inside and 
outside; average of inside and 
outside applied in the dome

Tendons 

individually 
modeled

10/20/2011
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Interface Crack Model Application: Crystal River

Final Initial
1 0 41 16 16 35H17

2-3 1-2 27 41 14 17 35H19
4-5 3-4 42 15 18 13H21 35H21
6 5 43 16 19 13H23 35H23 51H23
7 6 44 17 20 13H25 35H25 51H25
8 7 45 18 21 13H27 35H27 51H27
9 8 46 19 22 13H29 35H29 51H29
10 9 3V13 42H27 47 20 23 13H31 35H31 51H31
11 10 3V14 3V15 3V16 53H27 42H28 48 21 24 13H33 35H33 51H33
12 11 3V17 53H28 42H29 42H30 49 22 25 13H35 35H35 51H35
13 12 53H29 53H30 42H31 42H32 42H33 50 23 26 13H37 35H37 51H37
14 13 53H31 53H32 53H33 42H34 51 24 27 13H39 35H39 51H39
15 14 53H34 53H35 52 25 28 13H41 35H41 51H41
16 15 53 26 29 13H43 35H43 51H43

54 30 30 42H18

Final Initial Seq. 27 54 27 31 42H20 64H20
16 17 V-1 V-1 61V11 61V14 55 28 32 42H22 64H22 62H22

18 V-2 V-2 61V09 61V16 56 29 33 42H24 64H24 62H24
19 V-3 V-3 61V12 61V13 57 30 34 42H26 64H26 62H26
20 V-4 V-4 61V10 61V15 58 31 35 62H28 42H28 64H28
21 V-5 V-5 61V08 61V17 59 32 36 62H30 42H30 64H30

22 1 1 13H18 35H18 51H18 60 33 37 62H32 42H32 64H32
21 22 1 2 13H20 35H20 51H19 61 34 38 62H34 42H34 64H34

23 2 3 13H22 35H22 62 35 39 42H36 62H36 64H36
24 3 4 13H24 35H24 51H24 63 36 40 42H38 62H38 64H38
25 4 5 13H38 35H38 51H38 64 37 41 42H40 62H40 64H40
26 5 6 13H42 35H42 51H42 65 38 42 42H42 62H42 64H42
27 6 7 13H44 35H44 51H44 66 39 43 42H44 62H44 64H44

22 28 V-6 V-6 61V07 61V18 34V18 34V07 27 67 40 44 13H28 35H28 51H28
29 V-7 V-7 61V05 61V20 34V20 34V05 68 41 45 13H32 35H32 51H32
30 V-8 V-8 61V03 61V22 34V22 34V03 69 42 46 13H36 35H36 51H36

31 V-9 V-9 61V01 61V24 34V24 34V01 27 70 43 47 62H29 42H29 64H29
32 V-10 V-10 12V23 56V02 23V02 45V23 71 44 48 62H33 42H33 64H33
33 V-11 V-11 12V21 56V04 23V04 45V21 72 45 49 42H37 62H37 64H37

34 8 8 42H17 73 46 50 42H39 62H39 64H39
27 34 7 9 42H19 62 74 V-12 V-12 61V06 61V19 34V19 34V06

35 8 10 42H21 62H21 64H21 75 V-13 V-13 61V04 61V21 34V21 34V04
36 9 11 42H23 62H23 64H23 76 V-14 V-14 61V02 61V23 34V23 34V02
37 10 12 42H25 62H25 64H25 77 V-15 V-15 12V24 56V01 23V01 45V24
38 11 13 42H35 78 V-16 V-16 12V22 56V03 23V03 45V22

39 12 14 42H41 62H41 64H41 32 79 47 51 13H26 35H26 51H26
40 13 15 42H43 62H43 64H43 80 48 52 13H30 35H30 51H30

81 49 53 13H34 35H34 51H34

82 50 54 13H40 35H40 51H40

32 83 51 55 62H27 42H27 64H27

84 52 56 62H31 42H31 64H31

85 53 57 62H35 64H35
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Those cables are modeled as "smear" 
and can not be released

Increment

Increment

Release of

Those cables are outisde the 
zone modelled

Description
Gravity

Intial

Si
m

ila
r t

o 
pr

ev
io

us
 s

im
ul

at
io

nPostensioning
Creep
Temperature; Hot inside
Restore temperature
Temperature; Hot outside
Restore temperature

Pass 2

Pass 3

Pass 4

Pass 5

Pass 6

Pass 7

Pass 8

Pass 9

Pass 
10

Pass 
11

SGR 
Cut

Concrete Removal

Pass 1

SGR

Notes:
We simulate gravity, 
postensioning, creep, 
temperature, detensioning in 
SGR zone, and concrete 
removal in the first 16 
increments.
From increments 17 to 85 we 
simulate all the detensioning 
with exception to 4 because 
they entail cables which are 
lower than 19 (not explicitly 
modeled in Merlin).
Those sequences are H1, H8, 
H16, and H18).

10/20/2011
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Interface Crack Model Application: Crystal River

10/20/2011
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Interface Crack Model Polymers

Cohesive crack growth in solid rocket propellants (may induce
unsymmetrical comustion leading to explosion)

a F
P

Z

Llig

p

p

10/10/2010
10/13/2010
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Mechanism

Hydrogen embrittlement: hydrogeneous gases (H2,H2S or water vapor hydrogen
can be introduced into the metal. Under cyclic load the embrittling environment
can accelerate the initiation of surface cracks

Liquid metal embrittlement: embrittling medium is a liquid metal. Embrittlement
of alloys resulting from aqueous solution is stress corrosion cracking (SCC).

Metal embrittlement: weakening of higher melting point metal when in contact
with certain lower melting point metals; for instance mercury will corrode metals.

All the above will result in corrosion fatigue commonly used to denote
damage (and failure) of material under combined actions of cyclic
stresses and embrittling medium.
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Hydrogeneous gases

H2

1

2

3
4

5
Hads

1 Transport of gaseous hydrogen

2 Surface adsorption

3 Dissociation into hydrogen atom

4 Hydrogen into the lattice

5 Transport in material of high tensile
hydrostatic stresses

No single theory can account for all phenomenon.

Decohesion provide a partial explanation in high strength steel

cb = c0 expσH
�v

R0T )
(1)

c0 Equilibrium concentration of hydrogen in unstressed region
�v Partial molar volume of hydrogen in iron
σH Tensile hydrostatic stress
R) Universal gas constant
T Absolute temperature
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Hydrogeneous gases

Fracture of metals in the presence of hydrogen generally occurs in any one of
two ways:

1 Rate of failure is accelerated by the presence of hydrogen without a
change in the microscopic mode of failure

2 Transition from normally ductile mode of failure to a brittle mode of failure in
th presence of hydrogen (very common inside nuclear reactors).
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Aqueous Media gases

Anode ‐ Cathode +

Fe++

OH‐

e‐

Ion flow

Cl‐

Cl‐

Rebar

Aquaeous 
Solution

rustpitting

Iron hydroxide 
forms and 
precipitates

Low pH High pH

First analogy with concrete

Under high pH rebars are
“passivated” and immune to
corrosion.

With ingress of chloride, pH
decreases, and steel loses
its protection.

corrosion begins.

For ductile alloy/aquaeous environment under both monotonic and cyclic loads:
electrochemical reaction at freshly formed slip steps or at crack tips Can occur
through either one of two mechanisms

Anodic slip dissolution with an accompanying rupture of protective oxide film at a
crack tip by strain concentration between the crack faces.

Hydrogen embrittlement

Occurs in acidic solution
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Aqueous Media gases

H3O
+

1

2
3

4

5

Hads

H2
e‐

6
Habs

1 Liquid diffusion of water molecules or hydrogen ions between the crack walls
toward the crack tip.

2 Discharge and reduction to create adsorbed hydrogen atoms at the crack tip.
Adsorption on the surface is a process that prefaces absorption of gases in
the bulk of solids

3 Hydrogen adatom recombination
4 Surface diffusion of an adatom (an atom that is on a crystal surface).
5 Hydrogen absorption in metal
6 Diffusion of absorbed hydrogen
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Growth of Corrosion-Fatigue Cracks
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Khreshold

1 Fatigue crack growth in inert environment

2 Stress corrosion crack growth under sustained loading. Typical variation of da/dt
is a function of K . Environment has no effect on fracture behavior of material
below the static SIF KIscc . Above KIscc , three region:

I Crack velocity increases with increased K
II Crack velocity independent of applied K .

III As Kmax approachces KIc , rapid increase in crack velocity

Hence, subcritical crack growth can occur for K < KIc . For example 4340 steel
has KIc =56MPA

√
m, but in seawater KIscc =17MPA

√
m
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Growth of Corrosion-Fatigue Cracks

3 True corrosion-fatigue arising from synergistic effects of cyclic loading and
aggressive environment

4 Stress corrosion fatigue behavior obtained from a superposition of mechanical
fatigue (1) and stress corrosion cracking (2)
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Models

Corrosion fatigue is a process which is an outcome of synergetic interactions
among

Environment
Material microstructure
Cyclic loads

There is not yet a single model to account for all three.

Simple models based on the principle of superposition(
da
dN

)
C
=

(
da
dN

)
F
+

∫
da
dt

.k(t)dt (2)

where

(da/dN)C Rate of fatigue crack growth in an aggressive environment
(da/dN)F Rate of fatigue crack growth in an inert environment∫ da

dt .k(t)dt Environmental component computed from sustained-load
crack growth data obtained in the same aggressive environment

Note that below KIscc there is no environmental effect.
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Disclaimer

The following slides are adapted from the term projects of Rezgar Shakeri, (2018),
and to a much lesser extent the project of Aldo Ghisi (2003)
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Introduction

In dynamic fracture mechanics (DFM), there is an interaction between stress
waves and propagating cracks. Hence, the dynamic stress intensity factors must
be determined).

DFM is relevant in impact load, seismology, and others.

Inertial effects become relevant (thus DFM) when the speed of the crack tip or
edge is a significant fraction of the lowest characteristic wave speed of the
material.

Derivation of DSIF is relatively simple to follow (if the introductory review of
Mechanics is well understood), however there will be one notable exception
(highlighted below).

Need to first address wave propagation in solids.
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Linear Elastodynamics Introduction

Strain-Displacement relation

ε(x, t) =
1
2
(∇u + (∇u)T ) (1)

Constitutive equation for linear homogeneous elastic

σ(x, t) = λεkk I + 2µε (2)

The Balance of linear momentum

∇ · σ+ f = ρ�u (3)

Substitute constitutive equation (in terms lf Lame’s parameters) in (3), the above
equation in terms of displacement will be Navier’s Equation

µ∇2u + (λ+ µ)∇∇ · u + f = ρ�u (4)

or
(λ+ µ)ui,ij + µj,ii + bj = ρ�uj (5)

where, λ and µ are Lame constants, f is body force and ρ is density.
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Linear Elastodynamics Helmholtz Decomposition

In mechanics we like to take an alternative representation (or “tricks”):

Coordinate system → Galillean transformation, and many others
Time series data → Fast Fourier transform.
Second order tensors

Eigenvalues/Eigenmodes
Helmholtz decomposition

Deformation gradient (strain) → Polar Decomposition
Stress → Hydrostatic/volumetric

From vector calculus, Helmholtz has shown that any sufficiently smooth, rapidly
decaying vector field in three dimensions (such as displacement u can be
decomposed into the sum of an irrotational (curl-free) vector field (i.e. a vector
field that is the gradient of some function) and a solenoidal (where the
divergence is zero at every point, ∇.u = 0) vector field; this is known as the
Helmholtz decomposition.

The vector displacement u will be decomposed into the gradient of a scalar
potential ϕ and the curl of a vector potential ψ.

Potentials exist to be ultimately differentiated.
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Linear Elastodynamics Helmholtz Decomposition

Note analogy with the ϕ potential of Westergaard, or the Kolonov-Muskhelishvili
complex potentials ψ(z) and χ(z) used by Inglis solution

u = ∇ϕ+∇×ψ; & ∇ ·ψ = 0 (6)

Recalling the following identities:

∇.(∇× A) = 0 (7)

∇2(∇ϕ) = ∇(∇2ϕ) (8)

∇2(∇× A) = ∇×∇2A (9)

Equation (6) reduces to

(λ+ µ)∇ (∇ · ∇ϕ+∇ · ∇ ×ψ)+ µ∇2 (∇ϕ+∇×ψ) = ρ
∂2 (∇ϕ+∇×ψ)

∂ t2 (10)
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Linear Elastodynamics Helmholtz Decomposition

In the absence of body force, this reduces to

∇
[
(λ+ 2µ)∇2ϕ− ρ�ϕ

]
︸ ︷︷ ︸

0

+∇×
[
µ∇2ψ− ρ�ψ

]
︸ ︷︷ ︸

0

= 0 (11)

or

∇2ϕ =
1

C2
p

∂ϕ

∂t2 (12)

∇2ψ =
1

C2
s

�ψ (13)

where

Cp =

√
λ+ 2µ
ρ

Pressure wave (P) velocity (14)

Cs =

√
µ

ρ
Shear wave (S) velocity (15)

in the elastic medium, respectively.
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Linear Elastodynamics Helmholtz Decomposition

Clearly Cp > Cs; and
Cp

Cs
=

√
2 − 2ν
1 − 2ν

= κ (16)

Note that (12) is the classical (hyperbolic) wave equation, in 1D it reduces to

∂2ϕ

∂t2 = C2 ∂
2ϕ

∂x2 (17)

not to be confused with the (parabolic) heat (or transport) equation

∂ϕ

∂t
= C2 ∂

2ϕ

∂x2 (18)
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Linear Elastodynamics P and S waves

Propagation of P-waves in an elastic body,
the particle motion is parallel to direction of
propagation.

Propagation of S-waves in an elastic body,
the particle motion is perpendicular to
direction of propagation.

Fracture Mechanics; V. E. Saouma; Dynamic Fracture 10/47



Linear Elastodynamics Displacement and Stress

displacement and stress fields are defined in terms of the potential function ϕ
and ψ (Just like stresses were defined in terms of Airy stress functions).

For 2D configuration, we have only ψ3 component, for simplicity it is written ψ in
following equations

u1 =
∂ϕ

∂x1
+
∂ψ

∂x2

u2 =
∂ϕ

∂x2
− ∂ψ

∂x1

(19)

σ11 = λ∇2ϕ+ 2µ
[
∂2ϕ

∂x2
1
+
∂2ψ

∂x1x2

]
σ22 = λ∇2ϕ+ 2µ

[
∂2ϕ

∂x2
2
− ∂2ψ

∂x1x2

]
σ12 = µ

[
2
∂2ϕ

∂x1∂x2
+
∂2ψ

∂x2
2
− ∂2ψ

∂x2
1

] (20)

where ∇2 is the two-dimensional Laplacian operator.
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Linear Elastodynamics Surface Waves

In so far, we have focused on bulk waves inside the medium.

When a surface is present, there is a special wave that travels along the surface
and decays into the medium. It is the Rayleigh wave.

Consider the region x2 > 0, with a traction free boundary at x2 = 0. A surface
wave propagating along the x1 direction with a speed c and decaying in the x2

direction can be represented as

ϕ = f (x2)exp[ik(x1 − ct)]

ψ = g(x2)exp[ik(x1 − ct)]
(21)

where i =
√
−1, k = ω/c is the wave number and ω is the frequency of a time

harmonic disturbance.
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Linear Elastodynamics Surface Waves

Substituting in the wave equations (12) and (13) gives two ordinary differential
equation for f and g

d2f
dx2

2
− k2α2

pf = 0

d2g
dx2

2
− k2α2

sg = 0
(22)

where

αp =

√
1 − c2

C2
p
, and αs =

√
1 − c2

C2
s

(23)

Solving these equation and retaining only the solution that decays as x2 → ∞

ϕ = A exp(−αpkx2)exp[ik(x1 − ct)]

ψ = B exp(−αskx2)exp[ik(x1 − ct)]
(24)

where A and B are arbitrary constants.
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Linear Elastodynamics Surface Waves

Substitute the above into relation of stresses (20) and satisfying the traction free
condition (σ12 = 0, σ22 = 0) at x2 = 0

(1 + α2
s)A + i2αsB = 0

− i2αpA + (1 + α2
s)B = 0

(25)

For a nontrivial solution the determinant of coefficients must be zero

R(c) = 4αpαs − (1 + α2
s)

2 = 0, (26)

Function R(c) is called the Rayleigh function and its variation with c for different
Poison’s ratio is shown below.

Letting c/Cs = κR and recalling from equation (16) that the ratio of the bulk wave
speeds, κ, depends only on the Poisson’s ratio, the above can be written as

R(c) = 4

√
1 −

κ2
R

κ2

√
1 − κ2

R − (2 − κ2
R)

2 = 0 (27)

The root of the preceding equation is the Rayleigh wave speed, CR and it is clear
that CR < Cs.
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Linear Elastodynamics Surface Waves

Viktorov (1967) developed an approximate representation for the Rayleigh wave
speed, CR

κR =
CR

Cs
=

0.862 + 1.14ν
1 + ν

, (28)

Propagation of Rayleigh-waves in the surface of elastic
body, the particles move in elliptical path.

0 0.2 0.4 0.6 0.8 1
c/C s

-1

-0.5

0

0.5

R
(c

)

 = 0.4
 = 0.3
 = 0.2

Variation of the Rayleigh
function R(c) with speed.
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Dynamic Crack Tip Fields Mode I

Mode I, II and III.

As with Westergaard, assume a crack along x1 < 0, x2 = 0 and moving along
x2 = 0 at a constant speed V < CR .

The governing differential equations for the potentials ϕ = ϕ(x1, x2, t) and
ψ = ψ(x1, x2, t) are the wave equations (12) and (13).

Introducing the Galilean transformation (transformation between the coordinates
of two reference frames which differ only by constant relative motion)
ξ1 = x1 − Vt and ξ2 = x2 the wave equations reduce to(

1 − V 2

C2
p

)
∂2ϕ

∂ξ2
1
+
∂2ϕ

∂ξ2
2
+

_V
C2

p

∂2ϕ

∂ξ2
1
+ 2

V
C2

p

∂2ϕ

∂t∂ξ1
=

1
C2

p

∂2ϕ

∂t2(
1 − V 2

C2
s

)
∂2ψ

∂ξ2
1
+
∂2ψ

∂ξ2
2
+

_V
C2

s

∂2ψ

∂ξ2
1
+ 2

V
C2

s

∂2ψ

∂t∂ξ1
=

1
C2

s

∂2ψ

∂t2

(29)
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Dynamic Crack Tip Fields Mode I

If we assumed that _V = 0, for the stationary crack growth, the wave equations
become

β2
p
∂2ϕ

∂ξ2
1
+
∂2ϕ

∂ξ2
2
= 0

β2
s
∂2ψ

∂ξ2
1
+
∂2ψ

∂ξ2
2
= 0

(30)

where

β2
p = 1 − V 2

C2
p
, β2

s = 1 − V 2

C2
s

Changing the coordinate y1 = βpξ2, y2 = βsξ2, x = ξ1 (30) becomes

∂2ϕ

∂x2 +
∂2ϕ

∂y2
1

= 0

∂2ψ

∂x2 +
∂2ψ

∂y2
2

= 0
(31)
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Dynamic Crack Tip Fields Mode I

Hence, clearly the potential functions ϕ and ψ satisfy the Laplacian equation and
they can be real or imaginary part of analytic function in complex plane of the
complex variable

Recall Williams’ (1952) solution to the crack stress field (alternative to
Westergaard) based on separation of variables

�(r , θ) ≡ rλ+1F (θ, λ) (32)

where F (θ, λ) = em(λ)θ is a real function, and m(λ) is yet to be determined, by
satisfying the bi-harmonic equation.

Likewise, for dynamic crack:

z1 = x + iy1 = ξ1 + βpξ2 = r1eiθ1

z2 = x + iy2 = ξ1 + βsξ2 = r2eiθ2
(33)

where

r1 =
√
ξ2

1 + β
2
pξ

2
2 =

√
(x1 − Vt)2 + β2

px2
2 θ1 = arctan

(
βpξ2

ξ1

)
r2 =

√
ξ2

1 + β
2
sξ

2
2 =

√
(x1 − Vt)2 + β2

sx2
2 θ1 = arctan

(
βsξ2

ξ1

) (34)

Fracture Mechanics; V. E. Saouma; Dynamic Fracture 18/47



Dynamic Crack Tip Fields Mode I

Introducing the complex function for ϕ and ψ as

ϕ(r1, θ1) = A Re[zm
1 ] = Arm

1 cos(mθ1)

ψ(r2, θ2) = B Im[zm
1 ] = Brm

2 sin(mθ2)
(35)

satisfaction of boundary condition at θ1 = θ2 = π gives

(1 + β2
s)A cos(m − 1)π+ 2βsB cos(m − 1)π = 0,

2βpA sin(m − 1)π+ (1 + β2
s)B sin(m − 1)π = 0,

(36)

For nontrivial solutions, the determinant fo the above system of equations must
be zero;

Characteristic equation is thus needed, giving

m =
1
2

n + 1, n = 1, 2, 3, ..., (37)

Negative values of n make (35) and therefore displacement singular at the crack
tip and are rejected.
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Dynamic Crack Tip Fields Mode I

From equation (36) it can be shown that for n = 1 the constant A and B are
related by

B = − 2βp

1 + β2
s

A, (38)

Using equations (35), (37) and (38) in (19) and (20), the displacement
components can be determined as

u1(r , θ) =
3
2

A
[
r 1/2
1 cos

(
θ1

2

)
− 2βpβs

1 + β2
s

r 1/2
2 cos

(
θ2

2

)]
u2(r , θ) =

3
2
βpA

[
−r 1/2

1 sin

(
θ1

2

)
+

2
1 + β2

s
r 1/2
2 sin

(
θ2

2

)] (39)
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Dynamic Crack Tip Fields Mode I

The corresponding stress components are

σ11(r , θ) =
3
4

µA
(1 + β2

s)

(1 + β2
s)(1 + 2β2

p − β2
s)
cos

(
θ1
2

)
r 1/2
1

− 4βpβs

cos
(

θ2
2

)
r 1/2
2


σ22(r , θ) =

3
4

µA
(1 + β2

s)

[
−(1 + β2

s)
2r−1/2

1 cos

(
θ1

2

)
+ 4βpβsr−1/2

2 cos

(
θ2

2

)]
σ12(r , θ) =

3
4
µA

(2βs)

[
4βsβpr−1/2

1 sin

(
θ1

2

)
− 4βpβsr−1/2

2 sin

(
θ2

2

)]
(40)

These are the dynamic counterpart of Westergaard (static) solutions previously
derived.

Introducing the dynamic stress intensity factor for mode I

KI = lim
ξ1→0

√
2πξ1σ22(r , 0±) =

3
√

2πµD(V )

4(1 + β2
s)

A (41)
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Dynamic Crack Tip Fields Mode I

Crack tip stress and displacement fields:

σ11(r , θ) =
KI√
2πr

f I
11(θ)

σ22(r , θ) =
KI√
2πr

f I
22(θ)

σ12(r , θ) =
KI√
2πr

f I
12(θ)

u1(r , θ) =
KI

µ
√

2π
gI

1(θ)

u2(r , θ) =
KI

µ
√

2π
gI

2(θ)

(42)
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Dynamic Crack Tip Fields Mode I

where the polar distribution is given by

f I
11(θ) =

1
D(V )

[(1 + β2
s)(1 + 2β2

p − β2
s)γ

−1/2
p cos

(
θ1

2

)
− 4βpβsγ

−1/2
s cos

(
θ2

2

)
]

f I
22(θ) =

1
D(V )

[
−(1 + β2

s)
2γ

−1/2
p cos

(
θ1

2

)
+ 4βpβsγ

−1/2
s cos

(
θ2

2

)]
f I
12(θ) =

2βp(1 + β2
s)

D(V )

[
γ
−1/2
p sin

(
θ1

2

)
− γ−1/2

s sin

(
θ2

2

)]
gI

1(θ) =
2

D(V )

[
(1 + β2

s)r
1/2
1 cos

(
θ1

2

)
− 2βpβsr 1/2

2 cos

(
θ2

2

)]
gI

2(θ) =
2βp

D(V )

[
(1 + β2

s)r
1/2
1 sin

(
θ1

2

)
− 2r 1/2

2 sin

(
θ2

2

)]

(43)

and
D(V ) = 4βpβs − (1 + β2

s)
2

γp =
√

1 − (V sin θ/Cp)2 and γs =
√

1 − (V sin θ/Cs)2

tan θ1 = βp tan θ, tan θ2 = βs tan θ =
r1

γp
=

r2

γs

(44)
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Dynamic Crack Tip Fields Mode I

Angular Variation of f I
22(θ)

for mode I.
Angular Variation of f I

11(θ)

for mode I.
Angular Variation of f I

12(θ)

for mode I.
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Dynamic Crack Tip Fields Mode II

Following a procedure similar to mode I

The stress and displacement field corresponding to a mode II crack growing at a
constant speed V can be determined in a similar manner except the
antisymmetric solutions of (31) will be used

ϕ(r1, θ1) = A Im[zm
1 ] = Arm

1 sin(mθ1),

ψ(r2, θ2) = B Re[zm
1 ] = Brm

2 cos(mθ2),
(45)

Following the same procedure as described in previous section, the
displacement fields for mode II can be given as

u1(r , θ) =
3
2

A
[
r 1/2
1 sin

(
θ1

2

)
− 1 + β2

s

2
r 1/2
2 sin

(
θ2

2

)]
,

u2(r , θ) =
3
2
βpA

[
r 1/2
1 sin

(
θ1

2

)
− 1 + β2

s

2βsβp
r 1/2
2 sin

(
θ2

2

)]
,

(46)
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Dynamic Crack Tip Fields Mode II

σ11(r , θ) =
3
4

µA
(1 + β2

s)
[−(1 + β2

s)(1 + 2β2
p − β2

s)
sin

(
θ1
2

)
r 1/2
1

+

(1 + β2
s)

2
sin

(
θ2
2

)
r 1/2
2

],

σ22(r , θ) =
3
4

µA
(1 + β2

s)

[
(1 + β2

s)
2r−1/2

1 sin

(
θ1

2

)
− (1 + β2

s)
2r−1/2

2 sin

(
θ2

2

)]
σ12(r , θ) =

3
4
µA

(2βs)

[
4βsβpr−1/2

1 cos

(
θ1

2

)
− (1 + β2

s)
2r−1/2

2 cos

(
θ2

2

)]
,

(47)

Introducing the dynamic stress intensity factor for mode II

KII = lim
ξ1→0

√
2πξ1σ12(r , 0±) =

3
√

2πµD(V )

8βs
A (48)
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Dynamic Crack Tip Fields Mode II

The crack tip stress and displacement fields may be written as

σ11(r , θ) =
KII√
2πr

f II
11(θ)

σ22(r , θ) =
KII√
2πr

f II
22(θ)

σ12(r , θ) =
KII√
2πr

f II
12(θ)

u1(r , θ) =
KII

µ
√

2π
gII

1 (θ)

u2(r , θ) =
KII

µ
√

2π
gII

2 (θ)

(49)

Angular Variation of f II
11(θ)

for mode II.
Angular Variation of f II

22(θ)

for mode II.
Angular Variation of f II

12(θ)

for mode II.Fracture Mechanics; V. E. Saouma; Dynamic Fracture 27/47



Dynamic Stress Intensity Factors Mode I; Stationary

If a normal pressure of magnitude p begins to act on
the crack faces at time t = 0, then the stress intensity
factor for mode I is given by

KI(t) =
2p

1 − ν

√
Cpt(1 − 2ν)

π
(50)

If a shear traction of magnitude s begins to act on the
crack faces at time t = 0, then the stress intensity
factor for mode II is given by

KII(t) = 2s

√
2Cst

π(1 − ν) (51)

If a out of plane shear traction of magnitude q begins
to act on the crack faces at time t = 0, then the stress
intensity factor for mode III is given by

KIII(t) = 2q

√
2Cst
π

(52)

Fracture Mechanics; V. E. Saouma; Dynamic Fracture 28/47



Dynamic Stress Intensity Factors Non-Stationary

0 0.2 0.4 0.6 0.8 1

V/C
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k
(V

)

 = 0.2

 = 0.3

 = 0.4

Universal Function

So far, the crack speed was constant.

For nonuniform crack growth Freund
(1973) considered a crack growing at
a nonuniform speed to be the limit of
a sequence of piecewise constant
velocity segments, and he showed
the stress intensity factor for
non-stationary case can be given by
universal function k(V ) times the
stress intensity factor for steady crack
growth.

For example for mode I

KI(t ,a, _a) = k(V )KI(t ,a,0), (53)
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Dynamic Stress Intensity Factors Non-Stationary

a is the length of crack and _a = V is the speed of crack growth. The
universal function k(V ) is

k(V ) ≈ 1 − V/CR√
1 − V/Cp

, (54)

Fracture Mechanics; V. E. Saouma; Dynamic Fracture 30/47



Energy Balance Equation and Fracture Criteria

Failure criteria for dynamic fracture may be motivated by an extension of
Griffith’s ideas postulated for equilibrium cracks.

_U + _K =
d
dt

∫
R

1
2
[σijεij + ρ _ui _ui ]dA, (55)

Crack tip contour for evaluation of the energy flux integral

Integral (55) could be applied on any closed contour within the body, and R is
any region near the crack tip bounded by the curve ∂R.
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Energy Balance Equation and Fracture Criteria

Assuming that crack propagates along the x1 direction at a constant speed V .
Due to the singularity of the stress and strain fields, we must exclude a small
region near the crack tip. This region is enclosed by the contour labeled � and is
indicated by R�.

Thus, the rate of change of the strain energy and kinetic energy can be written as

_U + _K =
d
dt

∫
R−R�

1
2
[σijεij + ρ _ui _ui ]dA, (56)

In evaluating the integrals above, the limits of integration vary with time as well;
hence Reynolds transport theorem should be invoked in taking the time
derivatives indicated in the terms on the right-hand side of (56) which gives

_U + _K = lim
�→0

∫
R−R�

[σij _ui,j + ρ _ui �ui ]dA + lim
�→0

∫
�

1
2
[σijui,j + ρ _ui _ui ]Vn1ds, (57)

where V is the speed of translation of the contour � and n1 is the component of
the outward normal to the contour in the direction of translation of the contour.
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Energy Balance Equation and Fracture Criteria

The first integral in (57) can be simplified by replacing ρ�ui = σij,j and then
applying the divergence theorem to yield

lim
�→0

∫
R−R�

[σij _ui,j + ρ _ui �ui ]dA =

∫
∂R
σij _uinids + lim

�→0

∫
�

σij _uinjds, (58)

That the newly created crack surfaces are traction free has been used in writing
the above equation. The first term on the right-hand side of (??) is the power of
the external forces, P. Now, (57) can be rewritten as

P − ( _U + _K ) = − lim
�→0

∫
�

[
σij _uinj +

1
2
(σijui,j + ρ _ui _ui)Vn1

]
ds, (59)

The integral represents the amount of energy flowing out of the region R and into
the crack tip region through the contour �. The crack tip energy flux integral is
then defined as follows

F =

∫
�

[
σij _uinj +

1
2
(σijui,j + ρ _ui _ui)Vn1

]
ds, (60)
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Energy Balance Equation and Fracture Criteria

This energy flux is dissipated in the crack tip process zone as the crack
propagates along the x1 direction at a constant speed V . For steady-state crack
growth assumed in the present analysis, it turns out to be independent of the
path �.

If D is the total dissipation in the fracture process, dD/dt = VdD/da = Vγ is the
rate of energy dissipation at the moving crack tip, where γ is the fracture energy
per unit extension of the crack and a is the crack length.

In analogy with the quasi-static crack problems, it is possible to define a dynamic
energy release, G

G = V−1F = γ (61)

It corresponds to the energy released into the crack tip process zone per unit
crack extension and must be equal to the dissipation per unit extension.
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Energy Balance Equation and Fracture Criteria

Introducing the elastodynamics singular stress field from (42) in (61), G can be
related to the dynamic stress intensity factor as

G =
1 − ν2

E
[AI(V )K 2

I + AII(V )K 2
II ] +

1
2µ

AIII(V )K 2
III ,

AI(V ) =
V 2βp

(1 − ν)C2
s D(V )

, AII(V ) =
V 2βs

(1 − ν)C2
s D(V )

, AIII(V ) =
1
βs

(62)

Clearly, if V = 0 we recover the static expression of G

First, it has been assumed that the fracture energy is a material constant.
Second, the functions AI(V ) and AII(V ) are singular as V → CR and the function
AIII(V ) is singular as V → Cs.

To satisfy the energy balance equation, the dynamic stress intensity factors KI

and KII must tend to zero as V → CR and KIII must tend to zero as V → Cs. This
implies that the limiting crack speed in modes I and II is the Rayleigh wave
speed and in mode III, the shear wave speed.
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Energy Balance Equation and Fracture Criteria

In dynamic formulations, due to practical complications in evaluating (62) the
fracture criterion is simply evaluated in terms of the stress intensity factors rather
than in terms of energy

The dynamic fracture criterion is traditionally separated into three parts:

1 Dynamic crack initiation criterion
2 Dynamic crack growth
3 Dynamic crack arrest criterion

all imposed independently on the growing crack, and each one having its own
corresponding toughness
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Dynamic Toughnesses Crack Initiation

Since the state of stress near the crack tip is described in terms of the dynamic
stress intensity factor, K dyn

I ; crack initiation can be identified with the stress
intensity factor reaching a critical value, just as in the case of quasi-static
fracture.

Therefore, the crack initiation criterion can be postulated as follows

K dyn
I (tf ) = KId(T , _K dyn

I ) (63)

The right-hand side represents the dynamic initiation toughness.

The dependence of the dynamic crack initiation toughness on the temperature
and rate of loading is indicated through the arguments; this dependence must be
determined through experiments covering the range of temperatures and rates
of loading of interest.
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Dynamic Toughnesses Crack Growth

Once dynamic crack growth has been initiated as per the conditions of the
dynamic initiation toughness, subsequent growth must be determined through a
separate criterion that characterizes the energy rate balance during growth.

The dynamic stress field near a growing crack is still characterized by the
dynamic stress intensity factor, but now this is a function of loading, time, crack
position, and speed and is represented as K dyn

I (t ,V ). the dynamic crack growth
criterion is written as

K dyn
I (t ,V ) = KID(V ; _K dyn

I ,T ), (64)

The upper case subscript D is used to indicate the dynamic crack growth
toughness instead of the lower case d used to indicate the dynamic initiation
toughness.

Once again, the right-hand side represents the material property to be
characterized through experiments and the left-hand side represents the
dynamic stress intensity factor calculated form the solution of the boundary initial
value problem in elastodynamics.
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Dynamic Toughnesses Crack Growth

Dynamic crack growth criterion (Ravi. 2004)

In numerical simulations, the crack extension must be imposed in such a manner
that (64) is satisfied at each increment in time.
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Dynamic Toughnesses Crack Arrest Toughness

Dynamic crack arrest toughness is defined as the smallest value of the dynamic
stress intensity factor for which a growing crack cannot be maintained; thus the
crack arrests when

K dyn
I (t) < KIa(T ) (65)

In applications, the most conservative approach to design would utilize (??),
thus assuring that the dynamic stress intensity factor for all possible loading
conditions never exceeds the crack arrest toughness.
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Crack Branching

Crack branching is a phenomenon that the main crack inside the material
separated to two or more cracks.

Branching pattern in a Homalite-100 specimen

Yoffe (1951) attempted to explain the branching of cracks from an analysis of the
problem of a crack with a constant velocity in an unbounded medium. From this
solution she found that the maximum of the hoop stress acted normal to lines
that make an angle of 60◦ with the direction of crack propagation when the crack
speed exceeded 0.60CR .
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Crack Branching

Therefore, Yoffe suggested that this stress field rearrangement might lead to
crack branching.

A lot of experiments after Yoffe, showed that the velocity is not only significant
parameters for branching, and it should be noted that in practical experiment
crack cannot reach the 0.60CR .

Measurements from different investigators indicate that branching occurs when
the stress intensity factor reaches a critical value that is between two and three
times the quasi-static fracture toughness of the material, but the crack speed at
branching varied in different experiments.

A narrow strip specimen, 500 mm long and 50 mm wide and 4.76 mm thick. The
electromagnetic loading scheme was used to generate a uniform pressure
loading over the crack surfaces.
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Crack Branching

Selected frames from a high-speed sequence showing caustics at the tip of a
branching crack. The vertical dimension is 25 mm (Ravi (2004)).

Continued loading from the pressure loading on the parent crack and the arrival
of reflected stress waves in the narrow strip configuration cause additional
increase in the stress intensity factor
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Crack Branching
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Crack Branching

Variations in the crack branching angle were also found different. Clearly, the
macroscopic stress field also influences the angle and number of branches that
appear. Ravi-Chandar and Knauss (1984d) explored this by altering the crack
parallel compressive stress at the branch location; the following loading was
generated with the electromagnetic loading device.
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Crack Branching

The process of branching is governed by the inner problem and not the outer
problem that is treated by the continuum elastodynamics. A mechanism for crack
branching illustrated in below
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Conclusion

Linear elastodynamics, P, S and Rayleigh Waves

Dynamic Fields for crack with constant speed derived in terms of DSIF
(Stationary crack growth)

In non-stationary case, the relation of DSIF in this case with DSIF in
stationary case presented by using universal function k(V )

Energy balance and fracture criteria, Dynamic Crack initiation, crack
growth, and crack arrest discussed

Crack branching discussed. First attempt in branching was based on
crack speed.

More measurement showed that we have branching when when the
stress intensity factor reaches a critical value that is between tow and
three times the quasi-static fracture toughness

Some specific experiment discussed to see the angle and length of
branching
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Part III

Homeworks

All homework, along with their solution



CVEN 7161
FRACTURE MECHANICS

SPRING 2020

HOME-WORK 1

Review Mechanics

Due: Feb. 6, 2020

You are strongly encouraged to use Mathematica for the following assignment (possible excep-
tion problem 1)

1. Show that
z2 = (x2 − y2) + 2xyi (1)

satisfies the Cauchy-Riemann equation.

2. The stress tensor at a point P is given by

T =

 7 0 −2
0 5 0
−2 0 4

 (2)

Determine the traction (stress vector) on the plane at P whose unit normal is n⃗ =
2
3 e⃗1 −

2
3 e⃗2 +

1
3 e⃗3.

3. The stress tensor throughout a continuum is given by

T =

 3x1x2 5x22 0
5x22 0 2x3
0 2x3 0

 (3)

Determine the stress vector acting at the point P (2, 1,
√
3) of the plane that is tangent to

the cylindrical surface x22 + x33 = 4 at P

4. For the stress distribution given by the preceding problem, what should be the body force
vector ρb to ensure equilibrium

5. For the stress tensor

T =

 6 −3 0
−3 6 0
0 0 8

 (4)

(a) Determine the three invariants Iσ, IIσIIIσ.

(b) Determine the principal stresses and the principal stress directions.

(c) Show that the transformation tensor of direction cosines transforms the original
stress tensor into the diagonal principal axes stress tensor.

(d) Recompute the three invariants from the principal stresses.

(e) Split the stress tensor into its spherical and deviator parts.

(f) Show that the first invariant of the deviator is zero.
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6. Determine the stress tensor at a point where the Lagrangian strain tensor is given by

T =

 30 50 20
50 40 0
20 0 30

 10−6 (5)

and the material is steel: λ = 119.2 GPa, and µ = 79.2 GPa.

7. Determine the strain tensor at a point where the Cauchy stress tensor is given by

T =

 100 42 6
42 −2 0
6 0 15

MPa (6)

and E = 207 GPa, µ=79.2 GPa, and ν=0.30

8. For the following proposed Airy stress function:

Φ =
3F

4c

(
x1x2 −

x1x
3
2

3c2

)
+

P

4c
x22 (7)

(a) Show that it is indeed suitable as an Airy stress function.

(b) Determine the stress components in the region x1 > 0, −c < x2 < c.

(c) Plot σ11, σ12 and show that these stresses are those of a cantilever beam subjected
to a transverse end load and axial pull (which one is P and which one is F?).

2



Fracture Mechanics

Spring 2018

HW-1

(Rezgar Shakeri)

Note: To solve the following problems, you may need the following Mathematica functions: Chop[ ],

Clear[ ], ClearAll[“Global`*”],  Det[ ], Div[ ], Eigenvalues[ ], Eigenvectors[  ], Grad[ ], Inverse[ ], Matrix-

Form[ ], N[ ], Normalize[ ], Orthogonalize[ ], Plot, Simplify[ ], Solve[ ], Sqrt[ ], Tr[], Transpose[ ],  [[ ]], 

ClearAll["Global`*"]

Stress

1. The stress tensor at P is given by
7 0

0 5

-2 0

-2

0

4

determine the traction (stress vector) on the plane

at P whose unit normal is n =
2

3
e1 -

2

3
e2 +

1

3
e3

Answer: We know that the traction vector on the surface can be found by dot product of unit normal

vector and stress tensor.

the traction is 

t1=4 e1-10/3 e2

t1 = 2  3, -2  3, 1  3.{{7, 0, -2}, {0, 5, 0}, {-2, 0, 4}}

4, -
10

3
, 0

2. The state of stress through a continuum is given with respect to the  cartesian 

axes by 
3 x1 x2

5 x22
5 x22

0

0 2 x3

0
2 x3

0

MPa; Determine the stress vector at point P(2,1, 3 ) of 

the plane that is normal to the tangent to the cylindrical surface x22+x32=4 at P.

Answer: The gradient vector is along the normal vector to the surface at desired point. we can show

that. For example point P is at the surface of the cylinder,  if you look at this point in (x2,x3) plane the

direction of the radius  (line between center  (0,0) and (1, 3 )) which is normal to the surface  of the

cylinder is n=1e2+ 3 e3. 
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And the gradient of cylinder is gradient(x22+x32-4=0)=2x2 e2+2x3 e3 and at point P is

gradient at P = 2 e2+2 3  e3, which is at the same direction of n.

We have to evaluate the given stress tensor at point P,   and finding the unit normal vector by calculat-

ing the gradient of cylinder eq at point P,  then dot product of unit vector and stress tensor gives the

stress vector at point P.

s1 = 3 x1 x2, 5 x22, 0, 5 x22, 0, 2 x3, {0, 2 x3, 0}

3 x1 x2, 5 x22, 0, 5 x22, 0, 2 x3, {0, 2 x3, 0}

Nq1 = Grad[x2^2 + x3^2 - 4, {x1, x2, x3}]

{0, 2 x2, 2 x3}

x1 = 2;

x2 = 1;

x3 = Sqrt[3];

nq1 = Normalize[Nq1]

0, 1

2
,

3

2


t2 = nq1.s1

 5
2
, 3, 3 

3. For the stress distribution given by the preceding problem, what would be 

the the body force vector ρb  to ensure equilibrium.

Answer: we have to find vector b such that the equilibrium be satisfied. We have to solve the following

Divergence (stress) +B=0 or

B = -Divergence(stress).

So the the three components of ρb=B vector are 

Clear[x1, x2, x3]

s11 = 3 x1 x2, 5 x22, 0;
s12 = 5 x22, 0, 2 x3;
s13 = {{0, 2 x3, 0}};

B1 = -Div[s11, {x1, x2, x3}]

{-13 x2}
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B2 = -Div[s12, {x1, x2, x3}]

{-2}

B3 = -Div[s13, {x1, x2, x3}]

{0}

4. For the following stress tensor 
6
-3

-3
60

0 0

0
0

8

.  a) Determine directly the three 

invariants Iσ,IIσ,IIIσ. b) Determine the principal stresses and the principal stress 

directions. c) Show that the transformation tensor of direction cosines 

transforms the original stress tensor into the diagonal principal axes stress 

tensor. d)    Recompute the three invariants from the principal stresses. e) Split 

the stress tensor into its spherical and deviator parts. f) Show that the first 

invariant of the deviator is zero.

a) we have to find first trace of T,  and trace of T^2 and determinant of T as follow

T = {{6, -3, 0}, {-3, 60, 0}, {0, 0, 8}}

{{6, -3, 0}, {-3, 60, 0}, {0, 0, 8}}

I1 = Tr[T]

I2 = Tr[T]^2 - Tr[T.T]  2
I3 = Det[T]

74

879

2808

b) The equation for Principal stress is  “n.[T-λI]=0” , we are looking for nontrivial solution for “n” so the

determinant of  [T-λI]=0, gives the principal stress  λ1, λ2, λ3.

So we have to  find the eigenvalues  of  the “T” which are  our principal  stresses,  and corresponding

eigenvector for each eigenvalue is principal stress direction

λ = Simplify[Eigenvalues[T]]

3 11 + 82 , 8, 33 - 3 82 
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Nq4 = Eigenvectors[T]

9 - 82 , 1, 0, {0, 0, 1}, 9 + 82 , 1, 0

we have to normalize eigenvectors which are our principal stress directions

n1q4 = Normalize[Nq4[[1]]]

 9 - 82

1 + -9 + 82 2
,

1

1 + -9 + 82 2
, 0

n2q4 = Normalize[Nq4[[2]]]

{0, 0, 1}

n3q4 = Normalize[Nq4[[3]]]

 9 + 82

1 + 9 + 82 2
,

1

1 + 9 + 82 2
, 0

c) The above unit eigenvectors, actually can be seen as the unit bases for “Principal frame”.  We 

Q = {n1q4, n2q4, n3q4}

 9 - 82

1 + -9 + 82 2
,

1

1 + -9 + 82 2
, 0,

{0, 0, 1},  9 + 82

1 + 9 + 82 2
,

1

1 + 9 + 82 2
, 0

Simplify[Q.T.Transpose[Q]]

3 11 + 82 , 0, 0, {0, 8, 0}, 0, 0, 33 - 3 82 

d) We have  λ3 - I1 λ2 + I2λ - I3 = 0

I1 = λ1 + λ2 + λ3

I2= λ1λ2+λ1 λ3+λ2λ3    

I3= λ1 λ2 λ3
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λ1 = 33 + 3 * Sqrt[82];

λ2 = 8;

λ3 = 33 - 3 * Sqrt[82];

I1 = λ1 + λ2 + λ3
I2 = Simplify[λ1 * λ2 + λ1 * λ3 + λ2 * λ3]
I3 = Simplify[λ1 * λ2 * λ3]

74

879

2808

e) We have to find mean stress for spherical or hydrostatics  stress,  and then subtract  it from original

stress tensor to find the deviator stress 

Tm = Tr[T]  3

74

3

Td = Simplify[T - Tm * IdentityMatrix[3]]

- 56

3
, -3, 0, -3, 106

3
, 0, 0, 0, -

50

3


f)The first invariant of deviator stress (Td) is the trace of Td.

FirsttInvarientofTd = Tr[Td]

0

Constitutive Relations

5. Determine the stress tensor at a point where the

Lagrangian strain tensor is given by

30

50

50

40

20 0

20

0

30

10-6

and the material is stell : λ = 119.2 GPa, and μ = 79.2 GPa

Strain = {{30}, {40}, {30}, {50}, {0}, {20}} 10-6

 3

100000
,  1

25000
,  3

100000
,  1

20000
, {0},  1

50000


The  constitutive  relation  is  σij = λ trace(ε)  δij + 2μ  εij where εij=
1
2
(ui,j + uj,i) , u is the displacement. or in matrix form
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σ11
σ22
σ33
σ12
σ23
σ13

=

λ + 2 μ λ λ 0 0 0

λ λ + 2 μ λ 0 0 0

λ λ λ + 2 μ 0 0 0

0 0 0 2 μ 0 0

0 0 0 0 2 μ 0

0 0 0 0 0 2 μ

ε11
ε22
ε33
ε12
ε23
ε13

λq5 = 119.2 * 109;

μq5 = 79.2 * 109;

Cc = {{λq5 + 2 * μq5, λq5, λq5, 0, 0, 0},

{λq5, λq5 + 2 * μq5, λq5, 0, 0, 0}, {λq5, λq5, λq5 + 2 * μq5, 0, 0, 0},

{0, 0, 0, 2 * μq5, 0, 0}, {0, 0, 0, 0, 2 * μq5, 0}, {0, 0, 0, 0, 0, 2 * μq5}}

2.776 × 1011, 1.192 × 1011, 1.192 × 1011, 0, 0, 0,
1.192 × 1011, 2.776 × 1011, 1.192 × 1011, 0, 0, 0,
1.192 × 1011, 1.192 × 1011, 2.776 × 1011, 0, 0, 0, 0, 0, 0, 1.584 × 1011, 0, 0,
0, 0, 0, 0, 1.584 × 1011, 0, 0, 0, 0, 0, 0, 1.584 × 1011

σq5 = Cc.Strain

1.6672 × 107, 1.8256 × 107, 1.6672 × 107, 7.92 × 106, {0.}, 3.168 × 106

6. Determine the strain tensor at a point where the Cauchy

stress tensor is given by

100

42

42

-2

6 0

6

0

15

MPa with E =

207 GPa, μ = 79.2 GPa, and ν = 0.30

The inverse Hooke’s law is given as εij= 1+ν
E
σij- ν

E
trace(σ) δij or in matrix form,  we know also μ = E

2 (1+ν)

ε11
ε22
ε33
ε12
ε23
ε13

=

1

E

-ν
E

-ν
E

0 0 0

-ν
E

1

E

-ν
E

0 0 0

-ν
E

-ν
E

1

E
0 0 0

0 0 0
1+ν
E

0 0

0 0 0 0
1+ν
E

0

0 0 0 0 0
1+ν
E

σ11
σ22
σ33
σ12
σ23
σ13

  

Em = 207 × 109; μ = 79.2 × 109; ν = 0.3;

Stress = {{100}, {-2}, {15}, {42}, {0}, {6}} * 106;

Ccc = 1  Em, -ν  Em, -ν  Em, 0, 0, 0, -ν  Em, 1  Em, -ν  Em, 0, 0, 0,
-ν  Em, -ν  Em, 1  Em, 0, 0, 0, 0, 0, 0, 1  2 * μ, 0, 0,
0, 0, 0, 0, 1  2 * μ, 0, 0, 0, 0, 0, 0, 1  2 * μ;

ε = Ccc.Stress

{{0.000464251}, {-0.000176329},

{-0.0000695652}, {0.000265152}, {0.}, {0.0000378788}}
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Airy Stress Function

7. For the following proposed Airy stress functionΦ =

3 F

4 c
x1 x2 -

x1 x2
3

3 c2
+

P

4 c
x2

2

a) The Airy stress function must satisfy biharmonic equation

∇4Φ  =0,  or   Φ,1111+2Φ,2211+Φ,2222=0

Φ,11 = 0, ⟹Φ,1111 = 0 and Φ,2211 = 0

Φ,22 = - 3 F

2 c3 x1 x2 +
P

2 c
⟹Φ,2222 = 0

So the given function satisfies biharmonic equation.

b) The stress components are given by

σ11 = Φ,22 = - 3 F

2 c3
x1 x2 + P

2 c

σ22 =Φ,11 = 0

σ12 = -Φ,12 =
-3 F
4 c

1 - x22

c2 
c)plot of  σ11

c = 1; P = 1; F = 1;

Plot3D-3 * F * x1 * x2  2 * c^3 + P  2 * c,
{x1, 0, 1}, {x2, -1, 1}, FaceGrids -> All

x1 = 1;
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Plot-3 * F * x1 * x2  2 * c^3 + P  2 * c, {x2, -1, 1}

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1.5

2.0

plot of σ12

Plot3D-3 * F  (4 * c) * 1 - x2^2  c^2,
{x1, 0, 1}, {x2, -1, 1}, FaceGrids -> All

If we consider the cantilever beam with length L (in x1-direction),  height 2c (in x2-direction) and the

width b=1 unit  (x3-direction-normal  to  the surface),  yields  to  cross  section  area,  A=2c,  and second

moment of area about x3  I= b(2 c)
3

12
= 2 c3

3
.

Now, look at the relation σ11

σ11 =  - 3 F

2 c3
x1 x2 + P

2 c

It is clear that second term is normal force P over cross section area which gives stress in x1 direction.

So, the axial pull is P.

Now look at the first term , we can say F*x1=M, the moment about x3 direction, 3

2 c3 =
1
I
, . So, F is trans-

verse end load and we can rewrite the  σ11 as

σ11= P
A
- Mx2

I
, which is exactly the relation for stress of the beam under bending moment and axial pull.

And it is linear function of x2, which the plot above shows that.

The relation for shear stress is given by σ12=- VQ
Ib

 , where V is shear force (in x2-direction), Q is the first

moment of area , Q=int(y dA), which dA=b*dx2.

for rectangle cross section with b=1, Q= 1
2

 (c2 - x2
2), and I is given in above so shear stress is

σ12=- VQ
I

= - 3 V

4 c3 (c
2 - x2

2)= - 3 V
4 c

1 - x2
2

c2 
If  compare it with what is obtained from Airy stress function, we conclude again that the F is transverse

end load (in x2-direction). And it is the function of x2 square , which the plot above shows that.
3 F
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σ12 = -Φ,12 =
-3 F
4 c

1 - x22

c2 

New Question in Revised HW
The Cauchy-Riemann equation for complex function f(z)=u(x,y)+iv(x,y) is

u,x = v,y

u,y = -v,x

So we have z2 = (x2 - y2)+2xyi    ⟹  z2 = (x + iy)2 ⟹ z1 = f(z) = x + iy     and     z2 = g(z) = -x - iy

for the f(z) the C-R is

1 = 1

0 = 0

and for g(z)

-1 = -1

0 = 0

which satisfy the C-R relations, and f(z) and g(z) are analytical functions.

Before  we do that,  it  was  obvious  that  the f(z)  and g(z)  are  analytical  functions,  because  with the

definition z=x+iy

f(z)=z, g(z)=-z

we know that these functions are differentiable everywhere in z-plane. 
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CVEN 7161
FRACTURE MECHANICS

SPRING 2020

HOME-WORK 2

Derivation of SIF

Due: Thursday Feb. 20, 2020

1. Show that
z2 = (x2 − y2) + 2xyi (1)

satisfies the Cauchy-Riemann equation.

2. For the following proposed Airy stress function:

Φ =
3F

4c

(
x1x2 −

x1x
3
2

3c2

)
+
P

4c
x22 (2)

(a) Show that it is indeed suitable as an Airy stress function.

(b) Determine the stress components in the region x1 > 0, −c < x2 < c.

(c) Plot σ11, σ12 and show that these stresses are those of a cantilever beam subjected
to a transverse end load and axial pull (which one is P and which one is F?).

3. A cylindrical pressure vessel of radius R and thickness t contains a through crack of length
2a oriented at an angle β with the circumferential direction. When the vessel is subjected
to an internal pressure p, determine the stress intensity factors at the crack tip.

R
t

s y 

s x

y

x

x’

y’

Hint Show that σxx = pR
2t (corresponding to the longitudinal stress), and that σyy = pR

t ,
(corresponding to the tangential stress) and then transform into σx′x′ , σy′y′ , and σx′y′

1



using [
σx′x′ σx′y′

σx′y′ σy′y′

]
=

[
cos θ sin θ
− sin θ cos θ

] [
σxx 0
0 σyy

] [
cos θ sin θ
− sin θ cos θ

]T
(3)

(4)

Those relationships may be helpful:

sin 2β = 2 sinβ cosβ (5)

cos 2β = 1− 2 sin2 β (6)

sin2 β =
1− cos 2β

2
(7)

cos2 β =
1 + cos 2β

2
(8)

sinβ cosβ =
sin 2β

2
(9)

4. The stress function for a crack subjected to splitting forces P, as shown below

x2

x1

P

P
2a

a

is given by:

φ =
Pa

πz
√
z2 − a2

(10)

where z = x1 + ix2 and P is a load per unit thickness. Calculate the expressions of σ22
at x2 = 0 and derive an expression for KI . (KP = P√

πa
) Hint:

(a) At crack tip η
a << 1.

(b) η = z − a = z = reiθ

5. The stress intensity factor of the following problem:

2



x2

x1

P

a a

x

P

AB

is given by:

KA =
P√
πa

√
a+ x

a− x
(11)

Kb =
P√
πa

√
a− x
a+ x

(12)

Based on those expressions, and results from the previous problem, determine the stress
function Φ.

6. Barenblatt’s model assumes a linearly varying closing pressure at the tip of a crack,

x2

x1

c

sy sy

sy
sy

c2a‐2c

Using Mathematica and the expressions of KA and KB from the previous problem, de-
termine an expression for the stress intensity factors for this case.

3



SOLUTION

1 Problem 1

The Cauchy-Riemann equation for complex function f(z) = u(x, y) + iv(x, y) is

u,x = v,y (13)

u,y = v,x (14)

So we have

z2 = (x2 − y2) + 2xyi⇒ z2 = (x+ iy)2 ⇒ z1 = f(z) = x+ iyandz2 = g(z) = −x− iy (15)

for the f(z) the Cauchy-Rieman is

1 = 1 (16)

0 = 0 (17)

and for g(z)

−1 = −1 (18)

0 = 0 (19)

which satisfy the C-R relations, and f(z) and g(z) are analytical functions.
However, it was obvious that the f(z) and g(z) were analytical functions, because given

z = x + iy f(z) = z, g(z) = −z we know that these functions are differentiable everywhere in
z-plane.

2 Problem 2

Φ =
(3F )

(
x1x2 −

x1x32
3c2

)
4c

+
Px22
4c

(20)

satisfies the Laplacian

σ11 =
∂2Φ

∂ (x2) 2
(21)

=
P

2c
− 3Fx1x2

2c3
(22)

σ22 =
∂2Φ

∂ (x1) 2
(23)

= 0 (24)

σ12 =

[
− ∂

∂x2

∂Φ

∂x1

]
(25)

= −3F
(
c2 − x22

)
4c3

(26)

If we consider the cantilever beam with length L (in x1-direction), height 2c (in x2-direction)
and the width b = 1 unit (x3-direction-normal to the surface), yields to cross section area,
A=2c, and second moment of area about x3 , I = b(2c)3/12 = (2c3)/3.

4



From σ11It is clear that second term is normal force P over cross section area which gives
stress in x1 direction. So, the axial pull is P .

Now look at the first term , we can say Fx1 = M , the moment about x3 direction, 3/(2c3) =
1/I . So, F is transverse end load and we can rewrite the

3 Problem 3

[
σx′x′ σx′y′

σx′y′ σy′y′

]
=

[
cos θ sin θ
− sin θ cos θ

] [
σxx 0
0 σyy

] [
cos θ sin θ
− sin θ cos θ

]T
(27)

(28)

But θ = π
2 − β, substituting, we obtain

σx′x′ =
1

2
σxx(1− cos 2β) +

1

2
σyy(1 + cos 2β) (29)

σy′y′ =
1

2
σxx(1 + cos 2β) +

1

2
σyy(1− cos 2β) (30)

σx′y′ = −1

2
(σxx − σyy) sin 2β (31)

for this problem

σxx =
pR

2t
(32)

σyy =
pR

t
(33)

KI =
√
πaσy′y′ (34)

=
pR

2t
(1 + sin2 β)

√
πa (35)

KII =
√
πaσx′y′ (36)

=
pR

2t
sinβ cosβ

√
πa (37)

Note that we have used various trigonometric relationships in order to sove this problem

sin 2β = 2 sinβ cosβ (38)

cos 2β = 1− 2 sin2 β (39)

sin2 β =
1− cos 2β

2
(40)

cos2 β =
1 + cos 2β

2
(41)

sinβ cosβ =
sin 2β

2
(42)

4 Problem 4

φ =
Pa

πz

1√
z2 − a2

(43)

5



z = x1 + ix2 (44)

σ22 = Reφ(z) + x2Imφ
′(z) (45)

x2 = 0⇒ Reφ(z) = Re

[
Pa

πz

1√
z2 − a2

]
(46)

z = η + a (47)

σ22 = Re

[
Pa

πη + a

1√
η2 + 2aη + a2 − a2

]
(48)

= Re

[
P

π

√
a2

(η + a)2(η2 + 2aη)

]
(49)

= Re

P
π

√√√√ a2

a3η(η
3

a3
+ 4η

2

a2
+ 5ηa + 2)

 (50)

But η
a << 1, thus we can simplify

σ22 = Re

[
P

πa

√
a

2η

]
(51)

we now substitute η = reiθ

σ22 = Re

[
P

πa

√
a

2r
e−i

θ
2

]
(52)

but e−iθ = cos θ − i sin θ, thus

σ22 = Re

[
P

πa

√
a

2r

(
cos

θ

2
− i sin

θ

2

)]
(53)

=
P

πa

√
a

2r
cos

θ

2
(54)

Finally,

KI = lim
r→0,θ=0

√
2πrσ22 (55)

= lim
r→0,θ=0

√
2πr

P

πa

√
a

2r
cos

θ

2
(56)

=
P√
aπ

(57)

5 Problem 5

KA =
P√
πa

√
a+ x

a− x
(58)

KB =
P√
πa

√
a− x
a+ x

(59)

σ22 = Reφ(z) + x2φ
′(z) =

KI√
2πr

(60)

σA22 =
KA

√
2πr

=
P

π
√

2ar

√
a+ x

a− x
(61)

z = r(cos θ + i sin θ) and θ = 0 (62)

6



Replace r by z

φA(z) =
P

π
√

2az

√
a+ x

a− x
(63)

Similarly for point B

φB(z) =
P

π
√

2az

√
a− x
a+ x

(64)

6 Problem 6

K = KA = KB (65)

p(x) =
P

c
(a− x) (66)

K =

∫ a

a−c

p(x)√
πa

√
a+ x

a− x
dx+

∫ a

a−c

p(x)√
πa

√
a− x
a+ x

dx (67)

x′ = a− x⇒ p(x′) =
p

c
x′ (68)

K =

∫ c

0

p(x′)√
πa

√
2a− x′
x′

dx′ +

∫ c

0

p(x′)√
πa

√
x′

2a− x′
dx′ (69)

=
P

c
√
πa

∫ c

0

√2a− x′
x′

+

√
x′

2a− x′

x′dx′ (70)

=
P

c
√
πa

∫ c

0

√
2ax′

2ax′ − x′2
dx′ (71)

(72)

Using Mathematica, we obtain

K =
2aP

c
√
πa

[
πa

2
− a arcsin

a− c
a
−
√

2ac− c2
]

(73)

7 Problem XX

The stress function is given by

ΦII(z) = −x2Re[

∫
φII(z)dz] (74)

where φII is an arbitrary function which must satisfy

∂ΦII(z)

∂x1
= −x2Re[φII(z)] (75)

∂2ΦII(z)

∂x21
= −x2Re[φ′II(z)] (76)

∂ΦII(z)

∂x2
= −Re[φII(z)] + x2Im[φII(z)] (77)

7



∂2ΦII(z)

∂x22
= Im[φII(z)] + Im[φII(z)] + x2Re[φ′II(z)] (78)

= 2Im[φII(z)] + x2Re[φ′II(z)] (79)

∂2ΦII(z)

∂x1∂x2
= −Re[φII(z)] + x2Im[φ′II(z)] (80)

∂2ΦII(z)

∂x21
+
∂2ΦII(z)

∂x22
= 2Im[φ′II(z)] (81)

The compatibility equation is

∇2(∇2Φ) =

(
∂2

∂x21
+

∂2

∂x22

)
2Im[φ′II(z)] (82)

∂2

∂x21
Im[ΦII(z)] = Im[Φ

′′
II(z)] (83)

∂

∂x2
Im[ΦII(z)] = Re[Φ

′′
II(z)] (84)

∂2

∂x22
Im[ΦII(z)] = −Im[Φ

′′
II(z)] (85)

(86)

It is clear that substituting Eq. 83 and 85 into 82 then ΦII(z) satisfies the compatibility
equation

∇2(∇2Φ) = 0 (87)

The stresses are then given by

σ11 =
∂2ΦII(z)

∂x22
= Im[φII(z)] + Im[φII(z)] + x2Re[φ′II(z)] (88)

σ22 =
∂2

∂x21
= −x2Re[Φ

′′
II(z)] (89)

σ12 = −∂
2ΦII(z)

∂x1∂x2
= Re[φII(z)]− x2Im[φ′II(z)] (90)

The boundary conditions are

x1 = ±∞ σ12 = τ (91)

x2 = ±∞ σ12 = τ (92)

x2 = 0− a < x1 < a σ22 = 0 (93)

x2 = 0− a < x1 < a σ12 = 0 (94)

|x1 − a| < ε σ12 >> 1 (95)

To determine the function φII which satisfies those B.C. we follow a similar line of arguments
as the one developed for mode I and select

φII =
τ√

1− a2

z2

(96)
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To determine the stress distribution near the crack tip we introduce η = z − a = reiθ, thus for
η << a

Re[φII ] = Re

 τ√
1− a2

z2

 = Re

 τ√
aη(2+η/a)

a2(1+2η/a+η2/a2

 (97)

' Re

[
τ

√
a

2η

]
' Re

[
τ

√
a

2reiθ

]
(98)

' Re

[
τ

√
a

r
e−

1
2
iθ

]
' τ

√
a

2r
cos

θ

2
(99)

dφII
dz

= −1

2
τ

(
1− a2

z2

)− 3
2

2
a2

z3
= −τ(z2 − a2)−

3
2a2 (100)

= −τ(η2 + 2aη)−
3
2a2 = −τ

2

√
a4

2a3η3
= −τ

2

√
a

2r3ei3θ
(101)

= − τ

2r

√
a

2r
e−

3
2
θi (102)

x2Im[φ′(z)] = r sin θ

(
− τ

2r

√
a

2r

)
sin(−3

2
θ) (103)

= τ
√
a2r sin

θ

2
cos

θ

2
sin

3

2
θ (104)

Substituting to solve for the stresses

σ11 = 2Im[φII(z)] + x2Re[φ′II(z)] (105)

= 2Im[τ

√
a

2r
e−

1
2
θi] + r sin θRe[− τ

2r

√
a

2r
e−

3
2
θi (106)

= −2τ

√
a

2r
sin

θ

2
− τ

√
a

2r
sin

θ

2
cos

θ

2
cos

3θ

2
(107)

= −τ
√
a

2r
sin

θ

2
(2 + cos

θ

2
cos

3θ

2
) (108)

σ22 = −x2Re[Φ
′′
II(z)] = −r sin θ − τ

2r

√
a

2r
cos−3θ

2
(109)

= τ
√
a2r sin

θ

2
cos

θ

2
cos

3

2
θ (110)

σ12 = Re[φII(z)]− x2Im[φ′II(z)] (111)

= τ

√
a

2r
cos

θ

2

(
1− sin

θ

2
sin

3θ

2

)
(112)
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CVEN 7161
FRACTURE MECHANICS

SPRING 2020

HOME-WORK

Application of LEFM

Due: Mar 3, 2020

1 Assignment

1. A cylindrical pressure vessel of diameter 3 m and length 9 m, with closed ends, is to be
constructed using butt-welded steel plates which are 0.03 m thick and approximately 1
m square. It must be designed to contain a pressure p without failure by yielding or by
brittle fracture. Yield occurs when the equivalent tensile stress equals the yield stress,
i.e., when:

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 = 2σ2y (1)

The butt welds joining the plates are known to contain a thumbnail (semi-circular) cracks
with a maximum depth of a. For such cracksKI = 1.128σθ

√
πa where σ is the tensile stress

across a crack, and brittle failure will occur when KI ≥ KIc. Three steels are available
for constructing the pressure vessel. Their yield strength and fracture toughnesses are:

STEEL σy (MPa) KIc(MNm−3/2)

HY 140 965 280
T 1 690 180

HY 180 1240 180

Construct a plot of maximum pressure against crack depth a for each steel, showing the
region of p and a which is safe against fracture and yielding. If non-destructive testing
can detect cracks of depths a1 ≥ 20 mm (allowing welds with larger cracks than this to
be repaired) which steel gives the greatest margin of safety? If a more refined technique
will detect cracks of depth a1 ≥ 2 mm which steel offers the greatest margin of safety?
Discuss your results.

2. Design (by selecting the most economical material and the thickness t) a high strength
steel pressure vessel which must withstand 5,000 psi of internal pressure p, the nominal
diameter d is 30 in., and the wall thickness t must be greater than 0.5 in.

The steels available for use are:

Steel σys KIc Cost

(Ksi) Ksi
√

in $/lb

A 260 80 1.40
B 220 110 1.40
C 180 140 1.00
D 180 220 1.20
E 140 260 0.50
F 110 170 0.15

1



Assume that inspection procedures dictate a surface (elliptical) flaw with a depth b of 0.5
inch and b/2a=0.25; Assume a factor of safety of two for both the design stress (vs yield
stress) and the stress intensity factor (vs the fracture toughness). Make sure to check for
fracture failure and yielding of the section.

3. Repeat the beer barrel problem discussed in class, by determining the reliability index
assuming that we have:

Variable Mean Standard Deviation
2a (in) 3.5 0.2
b (in) 0.05 0.01
p (psi) 600 20

KIc ksi
√

in 40 5

Try to understand and implement the following sample code:� �
1 c l e a r ; c l c ; c l o s e a l l ;
2 %% I n i t i a l i z a t i o n
3 %mean and standard dev i a t i on value ( un i t s k ips and inches )
4 P=0.6; sd P=0.02;
5 a=3.5/2 ; sd a =0.2;
6 b=0.05 ; sd b =0.01;
7 theta=pi /2 ;
8 t =0.126;
9 Diam=15;

10 C=40; sd C=5; % Capacity Kic
11 % number o f d i c e throwing
12 m=5; %try m=3 ,4 ,5; 6 i s too slow .
13 n=10ˆm;
14 % number o f f a i l u r e s
15 nf=0;
16 %% Create ar rays with random normal d i s t r i b u t i o n s
17 f p r i n t f ( ’ Generating ar rays with normal d i s t r i b u t i o n s \n ’ ) ;
18 YP=normrnd (P, sd P , 1 , n ) ;
19 Ya=XX
20 Yb=XX
21 YC=XX
22 %% loop
23 waitbar (0 , ’Be pat ient ’ ) ;
24 f p r i n t f ( ’ Generating Demand data\n ’ ) ;
25 for i =1:n
26 h=waitbar ( i /n ) ;
27 % Hoop s t r e s s
28 Sigma=YP( i )∗Diam/(2∗ t ) ;
29 %some constants
30 bda=Yb( i )/Ya( i ) ;
31 bdt=Yb( i )/ t ;
32 % compute
33 M1=1.13−0.09∗bda ;
34 M2=0.89∗(0.2+bda)ˆ−1−0.54;
35 M3=0.5−(0.65+bda)ˆ−1+14∗(1−bda )ˆ24 ;
36 g1=(M1+M2∗( bdt)ˆ2+M3∗bdt ˆ4 ) ;
37 g2=(1+1.464∗(bda ˆ1 .65 ) )ˆ ( −0 . 5 ) ;
38 g3=(bdaˆ2∗ cos ( theta )ˆ2+ s in ( theta ) ˆ 2 ) ˆ 0 . 2 5 ;
39 g4=1+(0.1+0.35∗bdtˆ2)∗(1− s i n ( theta ) ) ˆ 2 ;
40 % Demand
41 YD( i )=Sigma∗xx
42 lnD ( i )=XX
43 lnC ( i )=XX
44 CoD( i )=XX
45 i f XXX
46 nf=nf+1;
47 end
48 end
49 d e l e t e (h ) ;
50 %% Compute mean and standard dev i a t i on o f demand
51 D=mean(YD) ;
52 sd D=std (YD) ;
53 % Generate data f o r p l o t t i n g
54 x1=min(YD) ; x2=max(YC) ; xr=(x2−x1 )/100 ;
55 x=x1 : xr : x2 ;
56 % Def ine ar rays with normal d i s t r i b u t i o n s o f capac i ty and demands
57 Cap=normpdf (x ,C, sd C ) ;
58 Dem=xxx
59 %% Compute Beta
60 beta1=mean(CoD)/ std (CoD) ;
61 beta2=(mean( lnC)−mean( lnD ))/ sq r t ( std ( lnC)ˆ2+ std ( lnD ) ˆ 2 ) ;
62 pf1=nf /n ;
63 pf2=(1/2∗(1+ e r f (−beta1 /( sq r t ( 2 ) ) ) ) ) ;
64 f p r i n t f ( ’ beta : %f ; p r obab i l i t y o f f a i l u r e : %e ; %e\n ’ , beta1 , pf1 , pf2 ) ;
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65 %% Graphics
66 % Graphics i n i t i a l i z a t i o n
67 f s =12;
68 s c r s z=get (0 , ’ ScreenSize ’ ) ;
69 f i g p o s =[2 2 s c r s z (3 ) / 2 s c r s z (4 ) / 2 ] ;
70 h = f i g u r e ( ’ Pos i t ion ’ , f i g p o s ) ; s e t ( gca , ’ FontSize ’ , f s ) ;
71 % Plot 1 ; Based on an a l y t i c a l data
72 p lo t (x ,Cap , x ,Dem, ’ LineWidth ’ , 2 )
73 g r id
74 t i t l e ( ’PDF of Cap and Dem ( Ana ly t i ca l ) ’ )
75 x l ab e l (XXX)
76 y l abe l (XXX)
77 legend ( ’ Capacity ’ , ’Demand ’ )
78 g r id minor ;
79 s e t (h , ’ PaperPositionMode ’ , ’ auto ’ ) ;
80 p r in t ( gcf , ’−depsc2 ’ , ’Ca−Dem−Anal . eps ’ )
81 %==============
82 h = f i g u r e ( ’ Pos i t ion ’ , f i g p o s ) ; s e t ( gca , ’ FontSize ’ , f s ) ;
83 % Plot 2 based on raw data
84 p lo t (x , h i s t (YC, x )/n , x , h i s t (YD, x )/n , ’ LineWidth ’ , 2 ) ;
85 s t r g =[ ’PDF of Cap and Dem (Raw data , n = ’ num2str (n) ’ ) ’ ] ;
86 t i t l e ( s t r g ) ;
87 x l ab e l ( ’ K I and K I c ( ks i−sq r t ( in ) ) ’ )
88 y l ab e l ( ’PDF’ )
89 legend ( ’ Capacity ’ , ’Demand ’ )
90 g r id minor ; s e t ( gcf , ’ PaperPositionMode ’ , ’ auto ’ ) ;
91 p r in t −depsc2 Cap−Dem−2. eps� �
4. Determine the residual strength diagram (crack size versus residual strength) in terms of
a for longitudinal surface flaws for both embedded and surface cracks with b

a = 1 and
b
a = 0.3 in a pressurized cylinder 10 inch diameter with a wall thickness of 0.5 inch; assume

KIc = 35ksi
√
in, σy = 70ksi. Use Newman’s equation

5. You are offered an opportunity to earn $10 million by simply hanging from a rope for only
one minute. The rope is attached to a glass sheet (300 cm long by 10 cm wide and 0.127
cm thick). Complicating the situation is the fact that the glass sheet contains a central
crack with total length of 1.62 cm that is oriented parallel to the ground. The fracture
toughness of the glass is 0.93 MPa

√
m.

3
0

0
m

m

100mm

1.27mm

16.2mm

Physical model Mathematical model

Convert

The rope is suspended 3 m above a pit of poisonous snakes. Would you try for the pot of
gold?

6. (Open-Ended) Using Newman’s solution and Mathematica/Matlab, write a function which
will give the stress intensity factor for an elliptical hole in terms of b

a , b
t , and the angle θ.

Use this function to develop some relevant plots.
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2 Solution

2.1 Problem 1

Figure 3: Schematic of longitudinal and tangential stresses calculation in cylindrical vessel
[Felippa, C. 2013]

1. The diameter to thickness ratio is 3/0.03 = 100 > 20,

2. We neglect flexural stresses, and use thin vessel analysis

Longitudinal stress σzz =
pr

2t
=

1.5p

2(0.03)
= 25p (2)

Tangential stress σθθ =
pr

t
=

1.5p

0.03
= 50p (3)

Radial stress σrr = −p
2

(4)

3. Yield condition

2σ2y = (σθθ − σrr)2 + (σrr − σzz)2 + (σzz − σθθ)2 (5)

= p2y[(50− 0.5)2 + (−0.5− 25)2 + (25− 50)2] (6)

σy = 43.16py (7)

Note if we neglected σr we obtain σy = 43.3py

4. Stress intensity factor

KI = 1.128σθ
√
πa = (1.128)(50p)(πa)1/2 = 99.97pf

√
a (8)
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5. We now consider each of the three types of steel alloy

HY140 KI = 99.97pf
√
a = 280MNm−3/2 (9)

⇒ pf = 2.8a−1/2 MPa (10)

py =
σy

43.3
=

965

43.3
= 22.29 MPa (11)

HY180 KI = 99.97pf
√
a = 180MNm−3/2 (12)

⇒ pf = 1.8a−1/2 MPa (13)

py =
σy

43.3
=

1240

43.3
= 28.64 MPa (14)

T1 KI = 99.97pf
√
a = 180MNm−3/2 (15)

⇒ pf = 1.8a−1/2 MPa (16)

py =
σy

43.3
=

690

43.3
= 15.94 MPa (17)

(18)

6. Plotting the results
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For a = 20 mm, all are suceptible to brittle failure, HY140 is best
For leak before failure (a=.03 m) HY140 will provide PL=16.2 MPa, and HY180/T1 PL=
10.4 MPa

Problem 2

% data

type=[’A’,’B’,’C’,’D’,’E’,’F’];

sigyld=[260,220,180,180,140,110];

kic=[80,110,140,220,260,170];

cost_lb=[1.4,1.4,1.0,1.2,0.5,0.15];

p=5; % ksi

d=30; % in

b=0.5; % in

a=1; % in

density=0.283; % lbs/in^3

% Tradional calculation, no flaws

sig_des=sigyld/2;

t_plast=p*d./(2*sig_des);

weight_plast=pi*d*t_plast*12*density;

cost_plast=weight_plast.*cost_lb;

fid = fopen(’hw2-sol.out’,’wt’);

fprintf(fid,’\n PLASTICITY BASED DESIGN ’);

fprintf(fid,’\n-------+------------+--------------+------+--------+------+’);

fprintf(fid,’\n Steel |Yield stress| Design stress| t | Weight | Cost |’);

fprintf(fid,’\n | ksi | ksi | in | lb/ft | $/ft |’)

fprintf(fid,’\n-------+------------+--------------+------+--------+------+’);

for i=1:6

fprintf(fid,’\n %s | %3.0f | %3.0f | %3.2f | %3.0f | %3.0f |’,type(i),sigyld(i),sig_des(i),t_

end

fprintf(fid,’\n-------+------------+--------------+------+--------+------+’);

% Fracture mechanics based investigation

theta=pi/2;

% sigma=36.3;theta=pi/2;a=2;t=.126;b=0.07; Test example in notes

for i=1:6

4

For a = 20 mm, all are suceptible to brittle failure, HY140 is best
For leak before failure (a=.03 m) HY140 will provide PL=16.2 MPa, and HY180/T1 PL=
10.4 MPa

7. Additional results1: If we construct a plot of pressure (based on σy and KIc) against crack
depth a for each steel, we could be able to find a safe region against fracture and yielding.

According to the Figures 4 and 5 the first type of steel (HY 140) gives the greatest
margin of safety for a1 ≥ 20mm, because the area of intersection of a1 = 20mm line
and the fracture curve is bigger for steel type one (HY 140). In both three cases for
a1 ≥ 20mm the collapse is dominated by fracture rather than yielding.

For a1 ≥ 2mm in all curves both yielding and fracture should be considered. In steels
type HY 140 and T 1 for 2 ≤ a1 < 15mm the collapse dominated by yielding rather than

1Courtesy Hehrou/Hariri
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fracture, however, for steel types HY 180 the collapse dominated by fracture rather than
yielding. Generally steel type HY 140 offers the greatest margin of safety for a1 ≥ 20mm
because the area under the curves is bigger than others, Figure 6.
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Figure 4: Maximum pressures versus crack depth a for different steel type

Figure 5: Maximum pressure versus crack depth a for the combination of fracture toughness
and yield stress
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2.2 Problem 2

1. stresses

Longitudinal stress σzz =
pr

2t
=

5× 15

2(t)
=

37.5

t
(19)

Tangential stress σθθ =
pr

t
=

5× 15

t
=

75

t
(20)

Radial stress σrr = −p
2

=
5

2
= 2.5 ' 0. (21)

2. Thickness must satisfy three requirements:

(a) Plasticity (based on yield stress)

(b) Fracture mechanics (fracture toughness)

(c) t > 0.5in

3. Yield condition

2
(σy

2

)2
= (σθθ − σrr)2 + (σrr − σzz)2 + (σzz − σθθ)2 (22)

=
1

t2
[
(75)2 + (−37.5)2 + (37.5− 75)2

]
=

8, 437.5

t2
(23)

t =
130

σy
(24)

4. Fracture mechanics

KI =
KIc

2
= σ
√
πb

[
M1 +M2

(
b

t

)2

+M3

(
b

t

)4
][

1 + 1.464

(
b

a

)1.65
]− 1

2

[(
b

a

)2

cos2 θ + sin2 θ

] 1
4
{

1 +

[
0.1 + 0.35

(
b

t

)2
]

(1− sin θ)2

}
(25)

where

M1 = 1.13− 0.09

(
b

a

)
(26)

M2 = 0.89

[
0.2 +

(
b

a

)]−1

− 0.54 (27)

M3 = 0.5−
[
0.65 +

(
b

a

)]−1

+ 14

[
1.0−

(
b

a

)]24
(28)

5. Substituting we get

So, Steel type F is the most economical material.
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Table 1: Design parameters for different steel type.
Steel σys KIc Cost tplas tfm tfinal Weight Cost

Ksi Ksi
√
in $/lb in in in. lb $

A 260.00 80.00 1.40 0.50 2.18 2.18 697.19 976.07
B 220.00 110.00 1.40 0.59 1.62 1.62 519.91 727.87
C 180.00 140.00 1.00 0.72 1.31 1.31 420.00 420.00
D 180.00 220.00 1.20 0.72 0.90 0.90 288.08 345.70
E 140.00 260.00 0.50 0.93 0.79 0.93 296.98 148.49
F 110.00 170.00 0.15 1.18 1.11 1.18 377.98 56.70

� �
1 c l c ; c l e a r ; c l o s e a l l ;
2 f i d=fopen ( ’ problem−2.out ’ , ’w+ ’) ;
3 b = 0 . 5 ; a = 1 . 0 ; th = pi /2 ; p = 5 ; D = 30 ; r=D/2 ;
4 sy = [260 220 180 180 140 1 1 0 ] ’ ;
5 KIc = [80 110 140 220 260 1 7 0 ] ’ ;
6 co s t =[1.4 1 .4 1 .0 1 .2 0 .5 0 . 1 5 ] ;
7 dens i ty =0.283; % lb s / in ˆ3
8 % i n i t i a l i z e
9 t s y = ze ro s ( s i z e ( sy , 1 ) , 1 ) ;

10 t KI = ze ro s ( s i z e ( sy , 1 ) , 1 ) ;
11 ns = s i z e ( sy , 1 ) ;
12 t s i g z z=p∗ r /2 ;
13 ts ighoop=p∗ r ;
14 temp=t s i g z z ˆ2+ts ighoop ˆ2+( ts ighoop−t s i g z z ) ˆ2 ;
15 t s i g y=sq r t ( temp ∗2 ) ;
16 f p r i n t f ( f id , ’ t p l a s t fm t f i n a l Weight Cost \n ’ ) ;
17
18 for i = 1 : ns
19 t p l a s = t s i g y / sy ( i ) ;
20 kIc = KIc ( i , 1 ) / 2 ;
21 t0=5.
22 [ t , f v a l ]= f s o l v e (@( t ) Kel lep ( t , ts ighoop , a , b , th , kIc ) , t0 ) ;
23 t fm=t ;
24 t f i n a l=max( t fm , t p l a s ) ;
25 t f i n a l=max( t f i n a l , 0 . 5 ) ;
26 weight=pi ∗D∗ t f i n a l ∗12∗ dens i ty ;
27 Cos t i=cos t ( i )∗weight ;
28 f p r i n t f ( f id , ’ %5 .2 f &%5.2 f &%5.2 f &%5.2 f &%5.2 f &%5.2 f &%5.2 f &%5.2 f \\ \n ’ , sy ( i ) , KIc ( i ) , co s t ( i ) , t p l a s , t fm , t f i n a l , weight , Cos t i )
29 end
30 f c l o s e ( f i d ) ;� �� �
1 function F=Kel lep ( t , ts ighoop , a , b , th , kIc )
2 M1 = 1.13 − 0 .09∗ ( b/a ) ;
3 M2 = 0.89 ∗ ( 0 . 2 + b/a)ˆ(−1) − 0 . 5 4 ;
4 M3 = 0.5 − ( 0 . 65 + b/a)ˆ(−1) + 14∗ (1 .0 − b/a ) ˆ ( 2 4 ) ;
5 % constant part o f KI
6 C1 = sqr t ( p i ∗b ) ;
7 C2 = M1 + M2∗(b/ t )ˆ (2 ) + M3∗(b/ t ) ˆ ( 4 ) ;
8 C3 = (1 + 1.464∗ ( b/a )ˆ1 .65)ˆ( −1/2) ;
9 C4 = ( ( ( b/a )ˆ2) ∗ ( cos ( th ))ˆ2 + ( s i n ( th ) ) ˆ 2 ) ;

10 C5 = 1 + (0 . 1 + 0 .35∗ ( b/ t )ˆ2) ∗ (1 − s i n ( th ) ) ˆ 2 ;
11 sigma=ts ighoop / t ;
12 Kin=sigma ∗(C1 ∗ C2 ∗ C3 ∗ C4 ∗ C5 ) ;
13 F=Kin−kIc ;
14 end� �

2.3 Problem 3

1. Assuming normal distributions, generate arrays of random normal distributions for P , a,
b and C (size n).

2. Loop from 1 to n

(a) Select Pi, ai, bi and Ci.

(b) Hoop stress σ = PiD
2t

(c) Parameters Mi and gi.

(d) Demand Di = K.
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(e) If Di > Ci failure occurs at i, increment nf = nf + 1.

(f) Compute CoDi = Ci/Di

3. Detemine meand and standard deviation of demand.

4. β = µ(CoD)
σ(CoD)

5. Prob of failure=nf/n.

β = 3.3 and probability of failure is 0.06.
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� �
1 c l e a r ; c l c ; c l o s e a l l ;
2 %% I n i t i a l i z a t i o n
3 %mean and standard dev i a t i on value ( un i t s k ips and inches )
4 P=0.6; sd P=0.02;
5 a=3.5/2 ; sd a =0.2;
6 b=0.05 ; sd b =0.01;
7 theta=pi /2 ;
8 t =0.126;
9 Diam=15;

10 C=40; sd C=5; % Capacity Kic
11 % number o f d i c e throwing
12 m=5; %try m=3 ,4 ,5; 6 i s too slow .
13 n=10ˆm;
14 % number o f f a i l u r e s
15 nf=0;
16 %% Create ar rays with random normal d i s t r i b u t i o n s
17 f p r i n t f ( ’ Generating ar rays with normal d i s t r i b u t i o n s \n ’ ) ;
18 YP=normrnd (P, sd P , 1 , n ) ;
19 Ya=normrnd (a , sd a , 1 , n ) ;
20 Yb=normrnd (b , sd b , 1 , n ) ;
21 YC=normrnd (C, sd C , 1 , n ) ;
22 %% loop
23 waitbar (0 , ’Be pat ient ’ ) ;
24 f p r i n t f ( ’ Generating Demand data\n ’ ) ;
25 for i =1:n
26 h=waitbar ( i /n ) ;
27 % Hoop s t r e s s
28 Sigma=YP( i )∗Diam/(2∗ t ) ;
29 %some constants
30 bda=Yb( i )/Ya( i ) ;
31 bdt=Yb( i )/ t ;
32 % compute
33 M1=1.13−0.09∗bda ;
34 M2=0.89∗(0.2+bda)ˆ−1−0.54;
35 M3=0.5−(0.65+bda)ˆ−1+14∗(1−bda )ˆ24 ;
36 g1=(M1+M2∗( bdt)ˆ2+M3∗bdt ˆ4 ) ;
37 g2=(1+1.464∗(bda ˆ1 .65 ) )ˆ ( −0 . 5 ) ;
38 g3=(bdaˆ2∗ cos ( theta )ˆ2+ s in ( theta ) ˆ 2 ) ˆ 0 . 2 5 ;
39 g4=1+(0.1+0.35∗bdtˆ2)∗(1− s i n ( theta ) ) ˆ 2 ;
40 % Demand
41 YD( i )=Sigma∗( sq r t ( p i ∗Yb( i ) )∗ g1∗g2∗g3∗g4 ) ;
42 lnD ( i )= log (YD( i ) ) ;
43 lnC ( i )= log (YC( i ) ) ;
44 CoD( i )=YC( i )/YD( i ) ;
45 i f CoD( i )<1
46 nf=nf+1;
47 end
48 end
49 d e l e t e (h ) ;
50 %% Compute mean and standard dev i a t i on o f demand
51 D=mean(YD) ;
52 sd D=std (YD) ;
53 % Generate data f o r p l o t t i n g
54 x1=min(YD) ; x2=max(YC) ; xr=(x2−x1 )/100 ;
55 x=x1 : xr : x2 ;
56 % Def ine ar rays with normal d i s t r i b u t i o n s o f capac i ty and demands
57 Cap=normpdf (x ,C, sd C ) ;
58 Dem=normpdf (x ,D, sd D ) ;
59 %% Compute Beta
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60 beta1=mean(CoD)/ std (CoD) ;
61 beta2=(mean( lnC)−mean( lnD ))/ sq r t ( std ( lnC)ˆ2+ std ( lnD ) ˆ 2 ) ;
62 pf1=nf /n ;
63 pf2=(1/2∗(1+ e r f (−beta1 /( sq r t ( 2 ) ) ) ) ) ;
64 f p r i n t f ( ’ beta : %f ; p r obab i l i t y o f f a i l u r e : %e ; %e\n ’ , beta1 , pf1 , pf2 ) ;
65 %% Graphics
66 % Graphics i n i t i a l i z a t i o n
67 f s =12;
68 s c r s z=get (0 , ’ ScreenSize ’ ) ;
69 f i g p o s =[2 2 s c r s z (3 ) / 2 s c r s z (4 ) / 2 ] ;
70 h = f i g u r e ( ’ Pos i t ion ’ , f i g p o s ) ; s e t ( gca , ’ FontSize ’ , f s ) ;
71 % Plot 1 ; Based on an a l y t i c a l data
72 p lo t (x ,Cap , x ,Dem, ’ LineWidth ’ , 2 )
73 g r id
74 t i t l e ( ’PDF of Cap and Dem ( Ana ly t i ca l ) ’ )
75 x l ab e l ( ’ K I and K I c ( ks i−sq r t ( in ) ) ’ )
76 y l ab e l ( ’PDF’ )
77 legend ( ’ Capacity ’ , ’Demand ’ )
78 g r id minor ;
79 s e t (h , ’ PaperPositionMode ’ , ’ auto ’ ) ;
80 p r in t ( gcf , ’−depsc2 ’ , ’Ca−Dem−Anal . eps ’ )
81 %==============
82 h = f i g u r e ( ’ Pos i t ion ’ , f i g p o s ) ; s e t ( gca , ’ FontSize ’ , f s ) ;
83 % Plot 2 based on raw data
84 p lo t (x , h i s t (YC, x )/n , x , h i s t (YD, x )/n , ’ LineWidth ’ , 2 ) ;
85 s t r g =[ ’PDF of Cap and Dem (Raw data , n = ’ num2str (n) ’ ) ’ ] ;
86 t i t l e ( s t r g ) ;
87 x l ab e l ( ’ K I and K I c ( ks i−sq r t ( in ) ) ’ )
88 y l ab e l ( ’PDF’ )
89 legend ( ’ Capacity ’ , ’Demand ’ )
90 g r id minor ; s e t ( gcf , ’ PaperPositionMode ’ , ’ auto ’ ) ;
91 p r in t −depsc2 Cap−Dem−2. eps
92 %% Bonus
93 % Semi−l og Plot o f p r obab i l i t y o f f a i l u r e g iven by Beta Vary Beta from 0
94 % to 4
95 beta = 0 . 0 : 0 . 1 : 4 ;
96 % Equation f o r Standard Normal Cumulative Probab i l i t y
97 PhiOfX = (1 / 2 ∗ (1 + e r f (−beta / ( sq r t ( 2 ) ) ) ) ) ;
98 % Def ine Prob . o f Fa i l u r e as 1 / Ix
99 pf = 1 ./ PhiOfX ;

100 % Plot o f beta vs . Prob . on with a y−ax i s in log s c a l e
101 f s =20;
102 h = f i g u r e ( ’ Pos i t ion ’ , f i g p o s ) ; s e t ( gca , ’ FontSize ’ , f s ) ;
103 semi logy ( beta , pf , ’ LineWidth ’ , 2 )
104 g r id
105 t i t l e ( ’ P robab i l i t y o f Fa i l u r e in terms o f \beta ’ )
106 x l ab e l ( ’\ beta ’ )
107 y l ab e l ( ’1 / ( Probab i l i t y o f Fa i l u r e ) ’ )
108 g r id minor ; s e t ( gcf , ’ PaperPositionMode ’ , ’ auto ’ ) ;
109 p r in t −depsc2 PlotBeta . eps� �

3 Problem 4

1. Assuming elliptical cracks, one can use the Newman’s equation to compute the critical
stress in terms of a.

2. Plots must be capped to the yeld stress.

3. Below are the residual stresses for two set of values for b
a and for θ equal to zero and π

2� �
1 c l e a r a l l ; c l c ; c l o s e a l l ;
2 for theta=0: p i /2 : p i /2
3 i =0; %theta=pi /2 ;
4 for a =0:0 .01 :1
5 i=i +1;
6 b=a ;
7 i f b>0.5
8 break
9 end

10 bda=1;
11 bdt=b /0 . 5 ;
12 M1=1.13−0.09∗bda ;
13 M2=0.89∗(0.2+bda)ˆ−1−0.54;
14 M3=0.5−(0.65+bda)ˆ−1+14∗(1−bda )ˆ24 ;
15 g1=(M1+M2∗( bdt)ˆ2+M3∗bdt ˆ4 ) ;
16 g2=(1+1.464∗bda ˆ1.65)ˆ −0 .5 ;
17 g3=(bdaˆ2∗ cos ( theta )ˆ2+ s in ( theta ) ˆ 2 ) ˆ 0 . 2 5 ;
18 g4=1+(0.1+0.35∗bdtˆ2)∗(1− s i n ( theta ) ) ˆ 2 ;
19 Sc ( i )=35/( sq r t ( p i ∗b)∗ g1∗g2∗g3∗g4 ) ;
20 i f Sc ( i )>70
21 Sc ( i )=70;
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22 end
23 A( i )=a ;
24 end
25 h=f i g u r e ;
26 p lo t (A, Sc , ’ LineWidth ’ , 2 )
27 ax i s ( [ 0 0 .5 25 75 ] )
28 x l ab e l ( ’ Crack Length ( in ) ’ )
29 y l ab e l ( ’ Al lowable Strength ’ )
30 g r id
31 fn =[ ’ theta=’ num2str ( theta ) ’ boa=’ num2str (b/a ) ’ . eps ’ ] ;
32 p r in t (h, ’−dpsc2 ’ , fn )
33 A=0;
34 Sc=0;
35 i =0;
36 for a =0:0 .01 :2
37 i=i +1;
38 b=0.3∗a ;
39 i f b>0.5
40 break
41 end
42 bda=0.3;
43 bdt=b /0 . 5 ;
44 M1=1.13−0.09∗bda ;
45 M2=0.89∗(0.2+bda)ˆ−1−0.54;
46 M3=0.5−(0.65+bda)ˆ−1+14∗(1−bda )ˆ24 ;
47 g1=(M1+M2∗( bdt)ˆ2+M3∗bdt ˆ4 ) ;
48 g2=(1+1.464∗bda ˆ1.65)ˆ −0 .5 ;
49 g3=(bdaˆ2∗ cos ( theta )ˆ2+ s in ( theta ) ˆ 2 ) ˆ 0 . 2 5 ;
50 g4=1+(0.1+0.35∗bdtˆ2)∗(1− s i n ( theta ) ) ˆ 2 ;
51 Sc ( i )=35/( sq r t ( p i ∗b)∗ g1∗g2∗g3∗g4 ) ;
52 i f Sc ( i )>70
53 Sc ( i )=70;
54 end
55 A( i )=a ;
56 end
57 h=f i g u r e ;
58 p lo t (A, Sc , ’ LineWidth ’ , 2 )
59 ax i s ( [ 0 A(end) 10 75 ] )
60 x l ab e l ( ’ Crack Length ( in ) ’ )
61 y l ab e l ( ’ Al lowable Strength ’ )
62 g r id
63 fn =[ ’ theta=’ num2str ( theta ) ’ boa=’ num2str (b/a ) ’ . eps ’ ]
64 p r in t (h, ’−dpsc2 ’ , fn )
65 end� �
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Figure 7: Residual Strength Diagram for b/a = 1
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Figure 8: Residual Strength Diagram with b/a = 0.3

4 Problem 5

Courtesy Benet, Behru, Hariri

1. Assume that the mass of the person is uniformly distributed along the surface of the glass.

2. For L/W = 30 we determine the stress intensity factor from

KI =

[
1 + 0.256

( a
W

)
− 1.152

( a
W

)2
+ 12.2

( a
W

)3]
σ
√
πa (29)

3. For a mass of 80 kg, the applied stress is

Mass = 80kg ⇒ Weight = 80·9.81 = 784.8 N ⇒ σ =
784.8

0.00127 · 0.10 · 1e6
= 6.1795 Mpa

(30)

4. Substituting with a = 0.81 cm, and W = 10 cm

KI = 1.0051 Mpa
√

m > 0.93 Mpa
√

m (31)

hence, no hanging.

5. The limit weight can be easily determined:

σc =
KIc[

1 + 0.256
(
a
W

)
− 1.152

(
a
W

)2
+ 12.2

(
a
W

)3]√
πa

(32)

and for KIc = 0.93

σc = 5.7175 Mpa ⇒ Max Weight = 74.0kg (33)
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5 Problem 6

Courtesy Behrou, Hariri

In this question we tried to demonstrate the effects of b
a , bt , and θ on stress intensity factor.

The results are presented in Figures 9 and 10 for different configuration.

KIc = σc
√
πb

[
M1 +M2

(
b

t

)2

+M3

(
b

t

)4
][

1 + 1.464

(
b

a

)1.65
]− 1

2

[(
b

a

)2

cos2 θ + sin2 θ

] 1
4
{

1 +

[
0.1 + 0.35

(
b

t

)2
]

(1− sin θ)2

}
(34)
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CVEN 7161
FRACTURE MECHANICS

SPRING 2020

HOME-WORK 4

LEFM; Energy

Due: March 12, 2020

1. The following data were obtained from a series of tests conducted on precracked specimens
with 1 mm thickness

Crack Length Critical Load Critical Displacement
a (mm) Pcr (kN) ucr (mm)

30.0 4.00 0.40
40.00 3.50 0.50
50.5 3.12 0.63
61.6 2.80 0.78
71.7 2.62 0.94
79.0 2.56 1.09

The load displacement curve for all cracks is linearly elastic up to the critical point.

Determine Gc from: 1) the load displacement records (based on the mean of the mea-
surements in between two consecutive values), and b) from the compliance curve. Discuss
your results.

2. Assume that the R curve of a certain material can be represented by R =
K2

Ic
E +0.4(∆a)0.25

(kip/in), and that KIc = 30Ksi
√

in, E = 30, 000. Ksi, and σyld = 100 Ksi. For a center
cracked panel of a thickness for which the above R curve is applicable and of width W = 50
in with a crack 2a = 2 in, calculate ac, σc, and ∆a. the amount of stable growth, the final
crack size and the fracture stress. Show graphically your results. Assume plane stress
condition E′ = E, and we can consider that for all practical purposes we have an infinite
plate (W >> 2a).

3. Using the data from the previous problem, repeat the calculation for a finite size panel

with W = 6 in and 2a = 2 in and R =
K2

Ic
E + 0.4(∆a)0.25 (kip/in). Assume plane stress

conditions.

4. Consider a long strip of height 2h and thickness B with a crack length 2a subjected to
a uniform stress σ along its upper and lower faces. For a >> h, determine the stress
intensity factor.
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Note that:

M = −qB
6

(2a2 − 6ax+ 3x2) for 0 ≤ x ≤ a (1)

U = 2

∫ a

0

M2

2EI
dx (2)
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SOLUTION

Problem 1

B=1;

a=[30., 40., 50.5, 61.6, 71.7, 79.]; % mm

p=[4., 3.5, 3.12, 2.8, 2.62, 2.56]; % kN

u=[0.4, 0.5, 0.63, 0.78, 0.94, 1.09]; % mm

%

a=a/1000; % m

u=u/1000; % m

p=p*1000; % N

% From Load displacement curve

for i=1:5

j=i+1;

g_ld(i)=(p(i)*u(j)-p(j)*u(i))/(2*B*(a(j)-a(i))); %J/m^2

end

g_ld_mean=mean(g_ld)

% From the compliance

c=u./p;

for i=1:5

j=i+1;

dcda_rgt(i)=(c(j)-c(i))/(a(j)-a(i));

end

for i=2:6

j=i-1;

dcda_lft(i)=(c(i)-c(j))/(a(i)-a(j));

end

dcda(1)=dcda_rgt(1);

dcda(6)=dcda_lft(6);

for i=2:5

dcda(i)=0.5*(dcda_lft(i)+dcda_rgt(i));

end

g_cmp=p.^2.*dcda./(2*B);

g_cmp_mean=mean(g_cmp)

%

fid = fopen(’hw5-sol.out’,’wt’);

fprintf(fid,’\n--------+---------++----------+------------+--------+’);

fprintf(fid,’\n a | G_ld || C | dC/da | G_cmp |’);

fprintf(fid,’\n m | J/m^2 || 1/N | 1/Nm | J/m^2 |’);

fprintf(fid,’\n--------+---------++----------+------------+--------+’);

for i=1:6

fprintf(fid,’\n %4.3f | %4.2f || %3.2e | %3.2e | %4.2f |’,a(i),g_ld(i),c(i),dcda(i),g_cmp(i));

end

fprintf(fid,’\n--------+---------++----------+------------+--------+’);

fprintf(fid,’\n mean | %4.2f %4.2f’,g_ld_mean,g_cmp_mean);

fprintf(fid,’\n--------+---------++----------+------------+--------+’);

st=fclose(’all’);

--------+---------++----------+------------+--------+

a | G_ld || C | dC/da | G_cmp |

m | J/m^2 || 1/N | 1/Nm | J/m^2 |

--------+---------++----------+------------+--------+

0.030 | 30.00 || 1.00e-07 | 4.29e-06 | 34.29 |

0.040 | 30.71 || 1.43e-07 | 4.96e-06 | 30.35 |

0.051 | 30.16 || 2.02e-07 | 6.27e-06 | 30.49 |
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0.062 | 29.13 || 2.79e-07 | 7.42e-06 | 29.10 |

0.072 | 30.78 || 3.59e-07 | 8.56e-06 | 29.38 |

0.079 | || 4.26e-07 | 9.18e-06 | 30.08 |

--------+---------++----------+------------+--------+

mean | 30.10 30.61

--------+---------++----------+------------+--------+

Problem 2

R =
K2

Ic
E + 0.4(∆a)0.25, KIc = 30ksi

√
in E = 30, 000 ksi, σyld = 100 ksi, W = 50 in, β = 1,

a = 1 in

G =
K2
I

E
=
σ2πa

E
(3)

R =
302

30, 000
+ 0.4(ac − 1)0.25 (4)

G = R⇒ σ2cπac
E

= 0.03 + 0.4(ac − 1)0.25 (5)

∂G

∂a
=

σ2cπ

E
(6)

∂R

∂a
= 0.1(ac − 1)−3/4 (7)

∂G

∂a
=
∂R

∂a
⇒ σ2cπ

E
= 0.1(ac − 1)−3/4 (8)

⇒ ac(0.1)(ac − 1)−3/4 − 0.03− 0.4(ac − 1)0.25 = 0 (9)

Solving, we obtain: ac = 1.295 in., ∆a = .295 in., σc = 48.9 ksi.

% zoom on the curve to solve for x

x=[1.29:0.00001:1.295];

y=0.1*x.*(x-1).^(-0.75)-0.03-0.4*(x-1).^(0.25);

%plot(x,y)

%grid

% x=a_c=1.2935

ac=1.2935;

E=30000;

sigma=sqrt((0.03+0.4*(ac-1)^(0.25))*E/(pi*ac));

sigma2=sqrt(0.1*E*(ac-1)^(-0.75)/pi)

%sigma=46.7

a=1;

delta_a=[0.:0.01:0.4];

a_c=a+delta_a;

g=sigma.^2*pi*a_c’./E;

r=30^2/E+0.4*(a_c-1).^(0.25);

plot(delta_a,r,’k-’,delta_a,g,’k-.’);

grid

legend(’R’,’G’)

xlabel(’Delta a’)

ylabel(’G,R’)
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Problem 3

For W = 6,

KI = σ
√
πa

√
sec

πa

W
(10)

G =
K2
I

E
=
σ2πa

E
sec

πa

W
(11)

R =
K2
Ic

E
+ 0.4(∆a)0.25 (12)

=
302

30, 000
+ 0.4(ac − 1)0.25 (13)

G = R⇒ σ2πa

E
sec

πa

W
=

0.32

30, 000
+ 0.4(ac − 1)0.25 (14)

⇒ σ2c =
[
0.03 + 0.4(ac − 1)0.25

] E

πac
sec

πac
W

(15)

∂G

∂a
=

σ2cπ

E
sec

πa

W

(
1 +

πa

W
tan

πa

W

)
(16)

∂R

∂a
= 0.1(ac − 1)−3/4 (17)

∂G

∂a
=
∂R

∂a
⇒ σ2cπ

E
sec

πa

W︸ ︷︷ ︸
G/a

(
1 +

πa

W
tan

πa

W

)
= 0.1(ac − 1)−3/4 (18)

or [
0.03 + 0.4(ac − 1)0.25

] (
1 +

πa

W
tan

πa

W

)
− 0.1ac(ac − 1)−3/4 = 0 (19)

Solving, we obtain: ac = 1.184 in., ∆a = .184 in., σc = 43.7 ksi.
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% zoom on the curve to solve for x

W=6

x=[1.18:0.00001:1.185];

y=(0.03+0.4*(x-1).^0.25).*(1+pi*x/W.*tan(pi*x./W))-0.1*x.*(x-1).^(-0.75);

%plot(x,y)

%grid

% x=a_c=1.184

ac=1.184;

E=30000;

sigma=sqrt((0.03+0.4*(ac-1)^0.25)*E/(pi*ac*sec(pi*ac/W)));

%sigma=43.78

a=1;

delta_a=[0.:0.01:0.4];

a_c=a+delta_a;

g=sigma^2*pi*a_c.*sec(pi*a_c/W)./E;

r=30^2/E+0.4*(a_c-1).^(0.25);

plot(delta_a,r,’k-’,delta_a,g,’k-.’);

grid

legend(’R’,’G’)

xlabel(’Delta a’)

ylabel(’G,R’)
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Problem 4

courtesy Rezgar Shakeri

Thermodynamic law
Ẇ = U̇ e + U̇p + K̇ + Γ̇, (20)

For quasi static K = 0, and the variation of energy respect to time can be represent as

∂

∂t
= Ȧ

∂

∂A
, (21)

where A is crack face, and rewriting Eq. 20

∂W

∂A
− ∂U e

∂A
=
∂Up

∂A
+
∂Γ

∂A
, (22)

the left hand side of above equation is called G. For fixed displacement external work is zero,
so

G = −∂U
e

∂A
, (23)

and for constant load, based on Clapeyron’s theorem

∂W

∂A
= 2

∂U e

∂A

then G is

G =
∂U e

∂A
, (24)

In this problem, load is fixed and we have to use Eq. 24.
The strain energy can be decomposed in two parts, far from the crack which is given by

U e1 =
1

2E
σ2wBL, (25)

where L is length, w is width and B is the thickness. And strain energy near the crack is
obtained by using Eq. 24

G =
∂U e1
∂A

+
∂U e2
∂A

, (26)

the first term of Eqq. 26 is zero, then strain energy near the crack U e2 with crack face A = 2aB
is

G =
1

2B

∂U e2
∂a

, (27)

and for plane stress condition and w >> a, G is

G =
K2
I

E
=
σ2πa

E
, (28)

and from 27
∂U e2
∂a

= 2B
σ2πa

E
=⇒ U e2 =

σ2πBa2

E
, (29)

Thus, total strain energy is

U e =
σ2

2E
(wBL+ 2Bπa2), (30)

7



by equating external work and strain energy we have

(σwB)v =
σ2

2E
(wBL+ 2Bπa2), (31)

which gives the displacement v as

v =
σ

2E
(L+

2πa2

w
), (32)

and dv is

dv =
dv

da
da+

dv

dσ
dσ =

σ

2E

4πa

w
da+

1

2E
(L+

2πa2

w
)dσ, (33)

solving for dv = 0

σ

2E

4πa

w
da = − 1

2E
(L+

2πa2

w
)dσ =⇒ −dσ

σ
=

4πa

Lw + 2πa2
da, (34)

integrating the above equation

− ln(σ) = ln(Lw + 2πa2) + ln(C), (35)

ln(
1

σ
) = lnC(Lw + 2πa2), (36)

σ =
C1

Lw + 2πa2
, (37)

where C1 = 1/C is constant of integration which is obtained by σ|ac = σc, then

σ = σc

(
Lw + 2πa2c
Lw + 2πa2

)
, (38)

I am wondering can we say that for large w, σ = σc?! because we can rewrite
(19) as

σ = σc

(
L+ 2πa2c/w

L+ 2πa2/w

)
, (39)

and a/w is very small compare to L then

σ = σc

+++++++++++++++++++++++++
The total strain energy is composed of the one away from the crack in the plate, and the

one close to the crack tip. Assuming B=1:

U = Up + Uc (40)

Up =
1

2
σεV ol (41)

=
1

2

σ2

E
WL (42)

Uc =

∫
Gda (43)
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G =
K2
I

E
(44)

KI = σ
√
πa (45)

G =
σ2πa

E
(46)

Uc =

∫
σ2πa

E
da (47)

=
1

2

σ2πa2

E
(48)

U = Up + Uc (49)

=
1

2

σ2

E
WL+

1

2

σ2πa2

E
(50)

The total external work is
W = Pv (51)

Equating external work to strain energy

Pv =
1

2

σ2

E
WL+

1

2

σ2πa2

E
(52)

P = σW (53)

σWv =
1

2

σ2

E
WL+

1

2

σ2πa2

E
(54)

⇒ v =
σ

2EW
(WL+ πa2) (55)

But v is stationary, thus

dv =
dσ

2EW
(LW + πa2) +

σπa

EW
da = 0 (56)

⇒ dσ

σ
= − 2πada

LW + πa2
(57)

ln |σ| = −
∫

2πada

LW + πa2
(58)

= − ln |WL+ πa2|+ ln |C| (59)

⇒ σ =
C

LW + πa2
(60)

a = ac;σ = σc ⇒ C = σc(LW + πa2c) (61)

σ = σc
LW + πa2c
LW + πa2

(62)

Problem 5

For L = 50”, W = 50”, ac = 1.295”, σc = 48.9 ksi, σ = 48.9502+π(1.295)2

502+πa2
and R = 0.03 +

0.4(∆a)0.25.

E=30000;

sigma=48.9;

a=1;

delta_a=[0.:0.01:0.4];

9



a_c=a+delta_a;

g=sigma^2*pi*a_c./E;

r=30^2/E+0.4*(a_c-1).^(0.25);

plot(delta_a,r,’k-’,delta_a,g,’k-.’);

grid

legend(’R’,’G’)

xlabel(’Delta a’)

ylabel(’G,R’)
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Problem 6

From structural analysis, the fixed end moment is qBL2/12, but L = 2a, thus the moment at

the support will be M = − qBa2

3 , and

M = −qB
6

(2a2 − 6ax+ 3x2) for 0 ≤ x ≤ a (63)

U = 2

∫ a

0

M2

2EI
dx (64)

I =
Bh3

12
(65)

⇒ U =
24

45

q2a5B

Eh3
(66)

G =
∂U

∂A
(67)

=
1

2B

∂U

∂a
(68)

=
4

3

q2a4

Eh3
(69)

KI =
√
EG (70)
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=
2√
3

qa2

h3/2
(71)
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CVEN 7161
FRACTURE MECHANICS

SPRING 2020

HOME-WORK 5

Mixed-Mode; FPZ

Due: March 27, 2020

1. A large thick plate containing a crack length of 4 mm oriented at an angle β = 60o with
respect to the the direction of the applied uniaxial tensile stress σ fractures at a value
of σc = 1, 000MPa. Using the minimum strain energy density model, compute KIc with
E = 210 GPa and ν = 0.3

2. For the preceding problem, plot the deviatoric and volumetric strain energy densities
around the crack tip.

3. Repeat for pure Mode I and Mode II cases.

4. For the first problem, plot the plastic zone size for plane strain and for plane stress.
Assume σy = 2,000 MPa

To facilitate the task, I am providing you with the following Matlab files:

HW6 part 1.m Which a short master file that should call the script HW6 part 2.m.

HW6 part 2.m The rest of the code; I have inserted a couple of XXX, you just have to type the
correct Matlab code. (you may want to replace all the -dpsc2 with -dpng to save the
figures as .png files).

HW6 part 2.p which is the exact, correct file for part 2, however the content is obfuscated (i.e.e
non readable).

What to submit?
A word file composed of two arts:

1. A table showing the line number of HW6 part 2.m and the correct complete line

2. A word file, with the figures, and a discussion

Note: The problem can be described as shown in figure 2.
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4mm

60o

σy′y′
σx′x′

σxx

σyy

1000 Mpa

Figure 1: Stketch of the problem

Since we only have uniaxial tensile stress, the corresponding stress tensor is given by

σ =

(
0 0
0 σc

)
(1)

We need to determine KI and KII we need the stresses in the axis x′ and y′ as shown in
figure 2. Therefore we apply a rotation of 30o to the stress tensor obtaining:(

σx′x′ σx′y′

σx′y′ σy′y′

)
=

(
cos(30) sin(30)
− sin(30) cos(30)

)(
0 0
0 σc

)(
cos(30) − sin(30)
sin(30) cos(30)

)
= (2)

Resulting:

σ′ =

(
250 433
433 750

)
Mpa (3)
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Solution

Courtesy Benet

1 PROBLEM 1

1. The problem can be described as shown in figure 2.

4mm

60o

σy′y′
σx′x′

σxx

σyy

1000 Mpa

Figure 2: Stketch of the problem

2. Since we only have uniaxial tensile stress, the corresponding stress tensor is given by

σ =

(
0 0
0 σc

)
(4)

3. Since we need to determine KI and KII we need the stresses in the axis x′ and y′ as
shown in figure 2. Therefore we apply a rotation of 30o to the stress tensor obtaining:(

σx′x′ σx′y′

σx′y′ σy′y′

)
=

(
cos(30) sin(30)
− sin(30) cos(30)

)(
0 0
0 σc

)(
cos(30) − sin(30)
sin(30) cos(30)

)
= (5)

Resulting:

σ′ =

(
250 433
433 750

)
Mpa (6)

4. Next, we compute the stress intensity factors:

KI = σy′y′
√
πa = 750

√
π2 = 1880 Mpa

√
mm (7)

KII = σx′y′
√
πa = 433

√
π2 = 1085 Mpa

√
mm (8)

5. The strain energy density per unit volume, S is determined next

S =
(
a11K

2
I + 2a12KIKII + a22K

2
II

)
(9)
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6. For plane stress problem

κ = 3− 4ν µ =
E

2(1 + ν)
(10)

7. According to the minimum strain energy density model, the direction of propagation
occurs when the following two conditions are met:

∂S

∂θ
= 0 and

∂2S

∂θ2
> 0 (11)

8. Derivatives are given by

∂S

∂θ
=

1

16µ
[2 cos θ − (κ− 1)] sin θK2

I +
2

16µ
[2 cos 2θ − (κ− 1) cos θ]KIKII

+
1

16µ
[(κ− 1− 6 cos θ) sin θ]K2

II = 0

(12)

∂2S

∂θ2
=

1

16µ
[2 cos 2θ − (κ− 1) cos θ]K2

I +
2

16µ
[(κ− 1) sin θ − 4 sin 2θ]KIKII

+
1

16µ
[(κ− 1) cos−6 cos 2θ]K2

II > 0

(13)

9. We plot S and its derivatives (figure 3). By observation, crack propagation occurs around
-40 degrees.
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Figure 3: Strain Energy against the angle in plain strain
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10. The exact solution can be determined solving equation 12 using a Newton-Raphson algo-
rithm. This would give:

• θc = -40.5839

• Scr = 7.3461

11. Now that the minimum strain energy is known, we can determine the critical stress
intensity factor KIc from

KIc =

√
8πµScr
κ− 1

= 4317.5 Mpa
√

mm (14)

12. For plane stress, κ is given by

κ =
3− ν
1 + ν

(15)

and the strain energy density is shown in figure 4
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Figure 4: Strain Energy against the angle in plain stress

The corresponding values are now:

• θc = −38.3776

• Scr = 8.1502

• KIc = 3919.6 Mpa
√

mm

5



2 PROBLEM 2

The deviatoric and volumetric parts of the strain energy are respectively given by:

SD =
1 + ν

6E

[
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(τ2xy + τ2yz + τ2xz)

]
(16)

SV =
1− 2ν

6E
(σxx + σyy + σzz)

2 (17)

And the values of σxx, σyy and τxy can be calculated from Westergaard as:

σxx =
KI√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
− KII√

2πr
sin

θ

2

(
2 + cos

θ

2
cos

3θ

2

)
(18)

σyy =
KI√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+

KII√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
(19)

σxy =
KI√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2
+

KII√
2πr

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
(20)

σzz = 0 in plane stress σzz = ν (σxx + σyy) in plane strain (21)

σxz = σyz = 0 (22)

Therefore, using the values of KI and KII from problem 1, we can calculate the volumetric
and deviatoric energies at any point. The results obtained for PLANE STRESS are shown in
figures 5 and 6. Note that the value of the strain goes to infinity at the crack tip because is
inversely proportional to the radius, so the values inside the red zone keep growing up but for
the sake of having a nice plot we limited them.

Figure 5: Volumetric Strain Energy in PLANE STRESS
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Also, it is good to note that in the deviatoric strain energy, the minimum of the ”kidney” shape
is aligned with −40 degree, which is the direction of propagation.

Figure 6: Deviatoric Strain Energy in PLANE STRESS

For PLANE STRAIN we can obtain similar plots by just considering different values of κ and
σzz as shown in equations 15 and 21 obtaining:

7



Figure 7: Volumetric Strain Energy in PLANE STRAIN

Figure 8: Deviatoric Strain Energy in PLANE STRAIN
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3 PROBLEM 3

3.1 Mode I

For mode I we repeat the exact same problem that we did before with the difference that now
the stress tensor is:

σ =

(
0 0
0 σc

)
(23)

For PLANE STRESS the strain energy density and its derivatives result:
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Figure 9: Strain energy density and its derivatives for PLANE STRESS

Note that now the propagation angle is set when θ = 0, which means that the crack will
propagate along its axis, or what is the same, perpendicular to the stress. In this case we
obtain:

• θc = 0

• Scr = 10.4720

• KIc = 4442.9 Mpa
√

mm

And doing the exact same problem in MODE I for PLANE STRAIN we get:

• θc = 0

• Scr = 7.7792

• KIc = 4442.9 Mpa
√

mm
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Figure 10: Strain energy density and its derivatives for PLANE STRAIN

Again we plot the results obtained for the volumetric and deviatoric energies in PLANE
STRESS (figures 9 and 10). In this case we considered a horizontal crack to simplify the
representation of mode I, so we didn’t have to rotate the stresses. Note that now the minimum
of the deviatoric strain energy is located in the same line of the crack which means that the
crack will propagate horizontally.

Also, it is good to note that the shape of the deviatoric stress is similar to the plastic zone
defined in class for mode I, which means that the results are reasonable.

Similar results could be obtained for plane strain by just changing the values of κ and σzz.

10



Figure 11: Volumetric Strain Energy in Mode I for PLANE STRESS

Figure 12: Deviatoric Strain Energy in Mode I for PLANE STRESS
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3.2 Mode II

We repeat the problem for an horizontal crack with the following stress tensor:

σ =

(
0 σc
σc 0

)
(24)

For PLANE STRESS, the strain energy density and its derivatives result:
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Figure 13: Strain energy density and its derivatives in PLANE STRESS

Note that in this case there are two possible solutions for the propagation angle approximately
at -80 and 80 degrees, and there is no mathematical way to chose one or the other. However,
because we considered a positive value of σxy, we know that the correct value is the negative
one. Hence we obtained:

• θc = −79.6601

• Scr = 15.1432

• KIc = 5342.7 Mpa
√

mm

And doing the same problem in PLANE STRAIN we obtain:
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Figure 14: Strain energy density and its derivatives in PLANE STRAIN

And the exact values are:

• θc = −82.3377

• Scr = 14.8248

• KIc = 6133.3 Mpa
√

mm

The critical angle for the plane strain case can be easily verified in the literature, so it assures
that the code implemented is correct.

Next, for the PLANE STRESS CASE we plot the volumetric and deviatoric energiy densities,
obtaining:
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Figure 15: Volumetric Strain Energy in PLANE STRESS

Figure 16: Deviatoric Strain Energy in PLANE STRESS
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4 PROBLEM 4

To calculate the plastic zone we simply use the von Misses criteria. Since we know that yield
occurs when σe = σy we can write:

σy =
1√
2

[
(σx − σy)2 + (σy − σz)2 + (σz − σx)2 + 6τ2xy

] 1
2 (25)

The plastic zone is defined by the values of r that solve the previous equation. Therefore,
substituting the stresses from Westergaard (equations 18,19,20,21,22) for the mixed mode case
and solving the equation we will find the plastic zone.

The problem is done in both plane strain and plane stress using the MATLAB solver directly
on equation 25 so we obtained:
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Figure 17: Plastic Zone in Plane Stress and Plane Strain

Note that the plastic zone has the same shape as the deviatoric strain energy density plot from
PROBLEM 2, which means that the results are reasonable.
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CVEN 7161
FRACTURE MECHANICS

SPRING 2018

HOME-WORK 6

J Integral; Application

Due: April 2, 2020

A pipe with 1.10 m outside diameter and 50 mm thick wall contains a long axial flaw 10 mm
deep. The material flow properties have been fit to a Ramberg-Osgood equation: σy = 450
MPa; εy = σy/E; α = 1.25; n = 7; E = 207, 000 MPa.

1. Plot the applied Jel, Jpl, and J versus internal pressure.

2. If JIc is 300 kJ/m2, determine the pressure required to initiate ductile crack growth.

3. What would be the pressure to initiate brittle crack growth, assume KIc = 110 MPa
√

m
Solution

R

R

o

i

p

p

a b

W

Ro =
1.10

2
= 0.55 m (1)

Ri = 0.55− t = 0.55− 0.05 = 0.50 m (2)

σy = 450× 106 Pa (3)

E = 207.× 109 Pa (4)

α = 1.25 (5)

εy =
σy

E
=

450× 106

207× 109
= 2.17× 10−3 (6)

n = 7 (7)

a = 0.01 m (8)

W = 0.05 m (9)

b = W − a = 0.05− 0.01 = 0.04 m (10)

Rc = Ri + a = 0.50 + 0.01 = 0.51 m (11)

p0 =
2bσy√
3Rc

=
2(0.04)(450× 106)

0.51
√
3

= 40.7× 106 Pa (12)

g1 =
a

W
=

0.01

0.05
= 0.2 (13)

g2 = 1 (14)

W

Ri
=

0.05

0.5
= 0.1 (15)

(16)

From the table, and through interpoloation

h1 = 8.31 (17)

F = 1.33 (18)

KI =
2pR2

0

√
πa

R2
0 −R2

i

F

(
a

W
,
Ri

R0

)
(19)

=
2p(0.55)2

√
0.01π

0.552 − 0.502
1.33 = 2.72p (20)

2.72pecr = 110× 106 Pa
√

m ⇒ pecr = 4.04× 107 Pa = 40 MPa (21)

2
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Solution

Ro =
1.10

2
= 0.55 m (1)

Ri = 0.55− t = 0.55− 0.05 = 0.50 m (2)

σy = 450× MPa (3)

E = 207, 000 MPa (4)

α = 1.25 (5)

εy =
σy
E

=
450× 106

207× 109
= 2.17× 10−3 (6)

n = 7 (7)

a = 0.01 m (8)

W = 0.05 m (9)

b = W − a = 0.05− 0.01 = 0.04 m (10)

Rc = Ri + a = 0.50 + 0.01 = 0.51 m (11)

p0 =
2bσy√

3Rc

=
2(0.04)(450)

0.51
√

3
= 40.7 MPa (12)

g1 =
a

W
=

0.01

0.05
= 0.2 (13)

g2 = 1 (14)

W

Ri
=

0.05

0.5
= 0.1 (15)

(16)

From the table, and through interpolation

h1 = 8.4 (by interpolation; Table 11.6) (17)

F = 1.34 (by interpolation; Table 11.7) (18)

KI =
2pR2

0

√
πa

R2
0 −R2

i

F

(
a

W
,
Ri

R0

)
(19)

=
2p(0.55)2

√
0.01π

0.552 − 0.502
1.33 = 2.745p (20)

2.74pecr = 110 MPa
√

m⇒ pecr = 40.07 MPa (21)

Jel =
K2

I

E
(22)

=
(2.745p)2

207, 000
(23)

= 3.64× 10−5p2 MJ/m2 (24)

Jp = αεyσybg1(a/W )h1(a/W, n)

(
P

P0

)n+1

(25)

= (1.25)(2.17× 10−3)(450)(0.04)(0.2)(8.31)

(
p

40.7

)7+1

(26)

= 2.16× 10−15p8 MJ/m2 (27)

2



Jtotal = Jel + Jpl = 3.64× 10−5p2 + 2.16× 10−15p8 (28)

Jcr = Jtotal (29)

300, 000 = 3.64× 10−5p2 + 2.16× 10−15p8 MJ/m2 (30)

pcr ' 55.2 MPa (31)
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1. The crack growth properties of a certain material can be described by

da

dN
= 1× 10−8∆K2K1.5

max (1)

If the geometric factor β is equal to 1., what would be the rate of growth of a crack of
length a = 0.5 in if σmax = 12 Ksi, and R = 0.2. How many cycles does it take for this
crack to grow to a = 0.51 in?

2. The following data was obtained from crack growth tests at constant amplitude for a
center crack with W = 20 inches.

a (inches) N (cycles)

∆σ = 16 Ksi; R=0 ∆σ = 10 Ksi; R=0.5

0.1 0 0
0.105 1,100 2,000

1.5 i k
1.55 i+ 100 k + 170

(a) Establish the rate diagram (i.e. compute ∆a/∆N , ∆K for each of the two sets, and
for both R = 0 and R = 0.5)

(b) Determine the Paris Law constants C and n (Take the log of the Paris law, and you
will have two linear equations in terms of C and n to determine).

Note:

3. Write a Matlab code to perform fatigue life prediction for constant and variable amplitude
loading (using the Wheeler model). Use functions to define a) fatigue law (Paris or other);
b) stress intensity factors; Output of the program: a plot crack lengths a in terms of cycles
N , number of cycles for a to reach acr.

Test your code (convert to m first) by repeating the class example (aircraft), with the
assumptions:

ai 1 mm
acr 8 mm

1



C 5× 10−10 m/cycle/MPa
√
m

n 3
m 2; for retardation
σy 100 MPa

under the following conditions:

(a) Same loading as in the example, but replace analytical integration by step by step
calculation.

(b) Data set 1 (to be looped until a = acr).

0 100 200 300 400 500 600
Cycles

140

160

180

200

S
tr

es
s 

[M
P
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(c) Data set 2 (to be looped until a = acr).

0 100 200 300 400 500 600
Cycles

140

160

180

200

S
tr

es
s 

[M
P

a]

using two approaches: without and with retardation

Following are results obtained.
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N
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a

10
-3Data set 0; Retardation No
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a

10
-3Data set 1; Retardation No
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-3Data set 2; Retardation No
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10
-3Data set 0; Retardation Yes
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a

10
-3Data set 1; Retardation Yes

0 5 10 15

N 10
5

0
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8

a

10
-3Data set 2; Retardation Yes

Matlab code that generated the data� �
1 c l o s e a l l ; c l c ; c l e a r a l l
2 %INPUT MATIERIAL PROPERTIES DATA
3 a i n i t i a l =1; %mm
4 a c r i t i c a l= 8 . ; %mm
5 %convert to meters
6 a i n i t i a l=a i n i t i a l * . 0 0 1 ; %m
7 a c r i t i c a l=a c r i t i c a l * . 0 0 1 ; %m
8 C=5*10ˆ=10; %(m/ cyc l e ( cy c l e (MPasqrt (m) )

2



9 n=3;
10 m2=2; %f o r r e t a rda t i on
11 s t r e s s y =100;
12 %=======================================
13 r e t a r s ={ ’No ’ ’Yes ’ } ;
14 for r e t a r =1:2
15 for datase t =1:3
16 switch datase t
17 case 1
18 s igma se t=da t a s e t a i r p l a n e ;
19 case 2
20 s igma se t=da ta s e t 1 ;
21 case 3
22 s igma se t=da ta s e t 2 ;
23 end
24 %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
25 %Step=by=s tep Par i s law
26 N=0;
27 a=a i n i t i a l ;
28 sp ike xpz =0;
29 k=1;
30 j =0;
31 while a<a c r i t i c a l
32 Sigma1=s igma se t (k+1);
33 Sigma2=s igma se t (k ) ;
34 SigmaMin=XXX
35 SigmaMax=XXX
36 k=k+XXX;
37 Kmin=XXX
38 Kmax=XXX
39 delta K=XXX
40 da dN=XXX
41 %ca l c u l a t e p l a s t i c zone
42 Rp=XXX
43 %p l a s t i c zone max cord inate
44 xpz=XXX
45 i f r e t a r==2 %Check f o r r e t a rda t i on
46 i f xpz<sp ike xpz
47 Cp=XXX
48 a=XXX
49 e l s e i f xpz>=sp ike xpz
50 sp ike xpz=xpz ;
51 Rpspike=XXX
52 asp ike=XXX
53 a=XXX
54 end
55 else
56 a=XXX
57 end
58 %Check f o r end o f data block
59 i f k==length ( s i gma se t )=1
60 k=1;
61 end
62 %counts c y c l e s
63 N=N+1;
64 %record va lues f o r p lo t
65 a p l o t (N)=a ;
66 N plot (N)=N;
67 end
68 subplot ( 2 , 3 , ( r e tar =1)*3+datase t ) ;
69 y0=a p l o t ; y=y0 ( y0 ˜=0);
70 x0=N plot ; x=x0 ( x0 ˜=0);
71 c l e a r a p l o t N plot
72 p lo t (x , y ) ;
73 s t r g =[ ’Data s e t ’ num2str ( dataset =1) ’ ; Retardat ion ’ char ( r e t a r s ( r e t a r ) ) ] ;
74 t i t l e ( s t r g ) ;
75 x l ab e l ( ’N’ ) ; y l ab e l ( ’ a ’ ) ; g r id minor
76 end
77 c l e a r s i gma se t
78 end� �
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SOLUTION

Problem 1

da

dN
= 1× 10−8∆K2K1.5

max

a = 0.5 in;σmax = 12 ksi;R = 0.2;β = 1

R =
σmin

σmax
⇒ σmin = (0.2)(12) = 2.4 ksi

K = σβ
√
πa

∆σ = 12− 2.4 = 9.6

Kmax = 12
√
π(0.5) = 15.0ksi

√
in

∆K = 9.6
√
π(0.5) = 12ksi

√
in

da

dN
= 1× 10−8(12)2(15)1.5 = 8.4× 10−5 in/cycle

N ≃ 0.01

8.4× 10−5
= 120 cycles

Problem 2

K = σ
√
sec πa

W

√
πa

da
dN = C(∆K)n ⇒ ∆a

∆N ≃ C(∆K)n

∆K = ∆σ
√
sec πa

W

√
πa

ae = 0.1+0.105
2 = 0.1025; ∆a = 0.005; ∆K = 16

√
sec

0.1025π

20︸ ︷︷ ︸
1.0000

√
0.1025π = 9.08

ae = 1.5+1.55
2 = 1.525; ∆a = 0.05; ∆K = 16

√
sec

1.525π

20︸ ︷︷ ︸
1.0146

√
1.525π = 35.53

For R = 0;

da

dN
≃ 0.005

1, 100
= 4.55× 10−6; ∆K = 9.08ksi

√
in

da

dN
≃ 0.05

100
= 5.00× 10−4; ∆K = 35.52ksi

√
in

For R = 0.5; we just scale the stress by 10
16

da

dN
≃ 0.005

2, 000
= 2.50× 10−6; ∆K =

9.08

16
10 = 5.68ksi

√
in

da

dN
≃ 0.05

170
= 2.94× 10−4; ∆K =

35.52

16
10 = 22.2ksi

√
in

For R = 0, solve for the constants by taking the log

log

(
da

dN

)
= logC + n log∆K

log(4.55× 10−6) = logC + n log 9.08 ⇒ −5.34 = logC + 0.96n

log(5.00× 10−4) = logC + n log 35.52 ⇒ −3.30 = logC + 1.55n

4



Solving we get C = 2.27× 10−9 in/cycle , and n = 3.44 .

Similarly, for R = 0.5

log(2.5× 10−6) = logC + n log 5.68 ⇒ −5.60 = logC + 0.75n

log(2.94× 10−4) = logC + n log 22.2 ⇒ −3.53 = logC + 1.35n

Solving we get C = 5.8× 10−9 in/cycle , and n = 3.49 .

Problem 3� �
1 r e t a r s ={ ’No ’ ’Yes ’ } ;
2 for r e t a r =1:2
3 for datase t =2:2 % %%%%1:3
4 switch datase t
5 case 1
6 s igma se t=da t a s e t a i r p l a n e ;
7 case 2
8 s igma se t=da ta s e t 1 ;
9 case 3

10 s igma se t=da ta s e t 2 ;
11 end
12 %++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13 %Step=by=s tep Par i s law
14 N=0;
15 a=a i n i t i a l ;
16 %prev sigma=s igma se t ( 1 ) ;
17 %prev K=s igma se t (1)* sq r t ( p i *a ) ;
18 sp ike xpz =0;
19 k=1;
20 j =0;
21 while a<a c r i t i c a l
22 Sigma1=s igma se t (k+1);
23 Sigma2=s igma se t (k ) ;
24 SigmaMin=min( Sigma1 , Sigma2 ) ;
25 SigmaMax=max( Sigma1 , Sigma2 ) ;
26 k=k+2;
27 Kmin=SigmaMin* sq r t ( p i *a ) ;
28 Kmax=SigmaMax* sq r t ( p i *a ) ;
29 delta K=Kmax=Kmin ;
30 j=j +1;
31 junk ( j )=delta K ;
32 %determine i f s t r e s s increased , apply pa r i s law and r e t a rda t i on i f
33 %re l evan t
34 %i f sigma>prev s igma
35
36 da dN=C*( delta K )ˆn ;
37 %ca l c u l a t e p l a s t i c zone
38 Rp=a *(Kmaxˆ2/ s t r e s s y ) ;
39 %p l a s t i c zone max cord ina te
40 xpz=a+Rp;
41 i f r e t a r==2 %Check f o r r e t a rda t i on
42 i f xpz<sp ike xpz
43 Cp=(Rp/( asp ike+Rpspike=a ) )ˆm2;
44 a=a+Cp*da dN ;
45 e l s e i f xpz>=sp ike xpz
46 sp ike xpz=xpz ;
47 Rpspike=Rp;
48 asp ike=a ;
49 a=a+da dN ;
50 end
51 else
52 a=a+da dN
53 end
54 %Check f o r end o f data block
55 i f k==length ( s i gma se t )=1
56 k=1;
57 end
58 %counts c y c l e s
59 N=N+1;
60 %record va lues f o r p lo t
61 a p l o t (N)=a ;
62 N plot (N)=N;
63 end
64 subplot ( 2 , 3 , ( r e tar =1)*3+datase t ) ;
65 y0=a p l o t ; y=y0 ( y0 ˜=0);
66 x0=N plot ; x=x0 ( x0 ˜=0);
67 c l e a r a p l o t N plot
68 p lo t (x , y ) ;
69 s t r g =[ ’Data s e t ’ num2str ( dataset =1) ’ ; Retardat ion ’ char ( r e t a r s ( r e t a r ) ) ] ;
70 t i t l e ( s t r g ) ;
71 x l ab e l ( ’N’ ) ; y l ab e l ( ’ a ’ ) ; g r id minor
72 end
73 c l e a r s i gma se t
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74 end� �
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Part IV

Exam

This is the single (closed notes/book) exam given
around 3/4th of the course. It is meant to test stu-
dents fundamental and pratical understandingof frac-
ture mechanics



CVEN 7161
FRACTURE MECHANICS

CLOSE NOTES EXAM

2.5 hrs

Note: 1) This exam is composed of two parts (theory and applications) with respective weights α and β
(α + β = 100%). Please specify clearly what would you like α to be, (α ∈ [50, 70]%). 2) return this exam
sheet with your name and α.

PART I α%

Answer 40 of the following 54 questions. Each question is 2pt.

1. For the Maximum energy release rate theory, it was assumed that G = K2
I (θ) + K2

II(θ). Using an
appropriate figure, explain what is KI(θ) and KII(θ)

2. Using a figure explain why is J non-zero around a traction free crack.

3. Why do we have size effect?

4. Using an appropriate figure explain softening in concrete.

5. Draw the figure associated with the residual strength diagram of a structure.

6. Draw a figure explaining how often inspection is of a potentially cracked structure is to be performed.

7. What is (or are) the criteria for stable and unstable crack propagation.

8. Write the definition of the three stress intensity factors in term of the stresses.

9. Why was Φ = σ√
1− a

z
2
a good choice for Westergaard’s solution of a cracked infinite plate under uniform

tensile stress σ, where σ22 = Re(Φ(z))

10. Who developped the following solutions:

(a) Elliptical hole in infinite plate

(b) Crack in isotropic solid.

(c) Elliptical crack.

(d) Crack in anisotropic material.

11. What is the stress intensity factor for an infinite plate with central crack a subjected to uniform
traction σ.

12. Using an appropriate diagram, describe the boundary conditions associated with William’s solution
for an interface crack between two dissimilar materials.

13. In not more than two lines, and one figure, show how Irwin derived an expression for the energy release
rate G.

14. Show the figure summarizing Griffith’s experimental study on the strength of solids, explain how his
work related to Inglis equation.

15. What is the theoretical strength of crystalline solids? Explain the basics of the derivation using one
or two (or n) figures.

16. Why is the actual measured strength of solids much lower than their theoretical values?

17. Would you expect an elliptical crack to grow along its major or minor axis, why?



18. Discuss the energy transfer occurring during crack growth under constant load.

19. Which inherent assumption is made in the following equation:G = GI +GII +GIII? is this correct?
why?

20. Derive an expression for the energy transferred during an infinitesimal crack extension δa under fixed
load P.

21. Using an appropriate figure discuss (stable and unstable) crack growth in plane stress problems (in
terms of G and R).

22. Label the following figure:

23. What is the fundamental difference between the spatial stress distribution around (and close to) the
crack tip for isotropic and anisotropic solids?

24. What is the order of strain singularity in cracked anisotropic solids?

25. Describe a criteria for mixed mode crack propagation.

26. What are the assumptions of the Maximum Energy Release Rate model?

27. Given KI,KIIand,KIC outline the procedure to assess whether the crack will grow or not, and at
which angle θ0.

28. Plot the strain energy density at a point close to the crack tip subjected to pure mode I loading, and
show the directions of Smax and Smin.

29. For the above figure indicate where does the maximum distortional and dilational deformation take
place.

30. On two separate figures, and using two simple equations, show the first and second order Irwin ap-
proximation for the plastic zone.

31. How can you approximate the plastic zone size in metals?

32. Why do you get an unsymmetric process zone in pure mode II using the Drucker-Prager yield criterion,
while a symmetric one is obtained using the tresca criterion?

33. Under which circumstances would the size of the process zone under plane stress and plane strain be
identical?

34. Show the variation of plastic zone size ahead of a crack front across the thickness of a steel plate.

35. What is the difference between K1c and KIc, which one is larger.

36. Briefly explain how we can determine the orientation of the crack growth under plane stress and plane
strain conditions.

37. Write the expression of the J integral for a crack aligned with the x axis.

38. Show through an appropriate diagram why is J a path independent contour line integral.

39. What are the fundamental differences between G and J?

40. What is HRR singularity?

41. How can we determine if crack propagation and possibly kinking occur in interface crack (Hutchinson
model)?

42. Give two examples of subcritical crack growth.

43. What is meant by stage I in fatigue crack growth?

44. Write Paris law for fatigue.

45. Explain, using a figure, what causes retardation in fatigue crack growth.



46. Using a diagram, and appropriate equations, indicate how is retardation accounted for by Wheeler’s
model.

47. Show how you can distort a quadratic isoparameteric element to achieve the 1/2 stress singularity (no
equations, just one figure).

48. What is a transition element?

49. Outline a solution procedure to extract the mixed mode stress intensity factors KIandKII from a finite
element analysis in which the stress singularity is not accounted for.

50. Outline a solution procedure to extract the mixed mode stress intensity factors KIandKII from a finite
element analysis in which the stress singularity is modeled by the quarter point element (QPE).

51. What is a Process zone?

52. Label and draw the following three graphs.

53. In no more than 3 lines discuss wave propagation in softening material.

54. Outline Bazant’s and Saouma’s size effect laws.

PART II Theory β%

Solve three of the following five problems:

1. A thick cylindrical pipe with inner radius b = 10 cm and outer radius c = 20 cm is internally
stressed due to a temperature difference ∆T across the wall. Positive ∆T indicates that the outside
wall temperature is higher than the inside. The pipe has an initial crack length of 2 mm (a = 1
mm) emanating from its inner radius. Yield stress is 1,000 MPa, Poisson’s ratio is 0.3, modulus of
elasticity E = 210 GPa, coefficient of thermal expansion α = 6.6× 10−6 oF, and a fracture toughness
KIc = 100MPA

√
m. For fatigue, it was found from separate tests on identical material that the crack

growth per cycle is 1 × 10−12m, and that the exponent n is proportional to the square of the size of
the plastic zone.

(a) (50%) Determine the maximum temperature difference (∆T )c the pipe can withstand without
failure with a factor of safety S = 2 against yielding and S = 3 against fracture.

(b) (25%) What is the corresponding size of the plastic zone (use the simplest approximation, and
recall that we can write K = σ

√
2πr)

(c) (25%) If the cylinder is subjected to thermal cycles for ∆T ranging from 0 to 200oF, estimate
the number of thermal cycles to double the crack size (do not account for the safety factors).

Note The maximum stress at the rim of the inner radius of a pipe is given by

σmax =
αE∆T

2(1− ν)

[
2

1− (b/c)2
− 1

ln(c/b)

]
(1)

the stress intensity factor can be approximated by

KI = 1.12σmax

√
πa (2)

2. A 10 cm square, 20 cm long extruded bar of 7075-T6511 is hollowed out to form a thin walled cylinder
(closed at one end), 20 cm long with an outer diameter of 9 cm. The cylinder is fitted with a 7 cm
diameter piston designed to increase pressure within the cylinder to 55 MPa. On one occasion, a
malfunction in the system caused an unanticipated pressure surge of unknown magnitude, and the
cylinder burst. Examination of the fracture surface revealed a metallurgical defect in the form of an
elliptical flaw of 0.45 cm long at the inner diameter wall and 0.15 cm deep. This flaw was oriented
normal to the hoop stress of the cylinder.



(a) Compute the magnitude of the pressure surge responsible for failure.

(b) Assume that another cylinder had a similarly oriented surface flaw but with a semi-circular shape
(a=0.15 cm). How many pressure cycles could the cylinder withstand before failure?

Assume the following:

(a) Fatigue law: Assume the Paris Law to prevail.

i. The value of n was never computed but it was noted that the crack growth rate varied
directly with the square of the plastic zone dimensions at the crack tip.

ii. Through microscopic measurement it was found that the spacing between adjacent striation
is 5x10−39 m.

(b) KIc = 20.9MPa
√
m

(c) Stress intensity factors are given by:

i. Part a: KI = 1.1σ
√
π a

Q

√
secπa2t and Q = 1.65

ii. Part b: KI = (1.1)(1.1)σ( 2π )
√
πa

(d) Hoop stress is: σhoop = PD
2t , where P , D, and t are the internal pressure, internal diameter, and

thickness respectively.

3. A material possessing a plane strain fracture toughness of 50 MPa(m)1/2 and a yield stress of 1000
MPa is to be made into a large panel.

(a) If the panel is stressed to a level of 250 MPa, what is the maximum size flaw that can be tolerated
before catastrophic failure occurs (assume a center notch configuration).

(b) At the point of fracture, what is the size of the plastic zone at the middle of the panel along the
crack front?

(c) If the plate thickness is 2.5 cm, do we have a plane stress or plane strain condition?

(d) If the critical flaw size is to be at least equal to 5 cm., what could be the maximum applied
stress?

4. Determine the fracture toughness using the compliance method from the following test results:

a 1 2
P 1 1
∆ 1 2

Assuming P = 1, E = 1, B = 1, and Plane Stress conditions. (Recall that G = 1
2
P 2

B
∂C
∂a )

5. A steam engine develop 105 HP at 15 RPM with 2.5 meter stroke. A through-thickness crack of 2
cm is found in the crankshaft. Its crankshaft cross sectional area is 0.04m2 and is made of cast iron
(Fracture toughness 18MNm−3/2, and C and n for cast iron are 4.3x10−8 and 4 respectively).

(a) Will we be able to use this motor?

(b) If yes for how long (assuming the engine runs for 2 hrs/day)?

NOTE: Power = Force x Stroke x 2 x Speed. Where Force is the axial force in the crankshaft
(Newtons), Speed is in radians/sec, Stroke is in meter, Power is in Joules/sec (7.8 J/sec = 1 HP)



Part V

Mathematica Solutions

Contains Mathematica based solutions (Courtesy of
Thomas Allard) to all the homework (albeit at times
there is a mismatch between probem numbers). Also
included are Westergaard and William solutions (for
both simiar and dissimilar materials).



Homework 1
Thomas Allard
CVEN 7161

Problem 1
Show that z2 = x2 - y2 + 2 xyi satisfies the Cauchy-Riemann equation.

The Cauchy-Riemann equations require a function f(z) to be of the form f(z)=α+iβ. Here, 

In[1]:= alpha[x_, y_] := x^2 - y^2;

and

In[2]:= beta[x_, y_] := 2 * x * y;

Now in order to satisfy the Cauchy-Riemann equations, the following must be true:
∂α

∂ x
=
∂β

∂ y
and

∂α

∂ y
= -

∂β

∂ x

Compute each component:

In[3]:= adx = D[alpha[x, y], x]

Out[3]= 2 x

In[4]:= bdy = D[beta[x, y], y]

Out[4]= 2 x

Here we see the first Cauchy-Riemann equation, ∂α
∂x

=
∂β

∂y
 , is satisfied!

In[5]:= ady = D[alpha[x, y], y]

Out[5]= -2 y

In[6]:= bdx = D[beta[x, y], x]

Out[6]= 2 y



And here we see that the second Cauchy-Riemann equation, ∂α
∂y

= -
∂β

∂x
, is satisfied!
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Problem 2
The stress tensor at a point P is given by:

In[7]:= T = {{7, 0, -2}, {0, 5, 0}, {-2, 0, 4}};

MatrixForm[T]

Out[8]//MatrixForm=

7 0 -2

0 5 0

-2 0 4

Determine the traction (stress vector) on the plane at P whose unit normal is (in a rectangular coordi-
nate system):

In[9]:= n = {2 / 3, -2 / 3, 1 / 3};

MatrixForm[n]

Out[10]//MatrixForm=

2

3

-
2

3

1

3

The stress vector is simply the dot product of the stress T with the normal n.

In[11]:= tau = n.T;

MatrixForm[tau]

Out[12]//MatrixForm=

4

-
10

3

0

This is the stress vector at point P!
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Problem 3
A 3d cylinder is described by the following surface function:

x2
2
+ x3

2
= 4

A point of interest P is given by coordinates (2, 1, 3 ), which can be defined explicitly as:

In[13]:= x1 = 2;

x2 = 1;

x3 = Sqrt[3.];

The stress tensor throughout a continuum is described by:

In[16]:= T = {{3 * x1 * x2, 5 * x2^2, 0}, {5 * x2^2, 0, 2 * x3}, {0, 2 * x3, 0}};

MatrixForm[T]

Out[17]//MatrixForm=

6 5 0

5 0 3.4641

0 3.4641 0

Determine the stress vector acting at the point P of the plane tangent to the cylindrical surface.

By inspection of the surface function, it is clear that the cylinder’s longitudinal axis is in the x1 direc-

tion. The radius of the cylinder is 4 = 2. This can be confirmed by taking the length of the vector
joining the cylindrical axis with the point P.

In[18]:= r = Sqrt[x2^2 + x3^2]

Out[18]= 2.

We need to find the normal vector at point P in the x2-x3 plane at x1=2. Since we are looking at a circle
in the x2-x3 plane, the normal will simply be the vector with components n={0, x2/r, x3/r}

In[19]:= n = {0., x2 / r, x3 / r}

Out[19]= {0., 0.5, 0.866025}

Now that we have the normal vector and stress tensor defined at point P, the stress vector is simply the
inner product of n and T. 

In[20]:= tau = n.T

Out[20]= {2.5, 3., 1.73205}

This is our stress vector at point P!

4   | Homework-1_Thomas_Allard.nb



Problem 4
For the stress distribution given by problem 3,  what should be the body force ρb  vector to ensure
equilibrium?

Static equilibrium is given as 
∇T + ρb = 0 ∇T = -ρb 
So we must take the divergence of T and multiply by -1 to get ρb.

In[21]:= TTT[xx1_, xx2_, xx3_] =

{{3 * xx1 * xx2, 5 * xx2^2, 0}, {5 * xx2^2, 0, 2 * xx3}, {0, 2 * xx3, 0}};

MatrixForm[TTT[xx1, xx2, xx3]]

Out[22]//MatrixForm=

3 xx1 xx2 5 xx22 0

5 xx22 0 2 xx3

0 2 xx3 0

In[23]:= TTTdiv = Div[TTT[xx1, xx2, xx3], {xx1, xx2, xx3}]

Out[23]= {13 xx2, 2, 0}

This expresses the divergence of the stress tensor in general. Here we see that the vector only depends
on x2. Substitute the value of x2 with 1 as was done for problem 3.

In[24]:= Tdiv = With[{xx2 = 1}, Evaluate[TTTdiv]]

Out[24]= {13, 2, 0}

Finally the body force vector required for equilibrium at the point P (2, 1, 3 ) is the negative of the
divergence of the stress tensor at P.

In[25]:= pb = -Tdiv;

MatrixForm[pb]

Out[26]//MatrixForm=

-13

-2

0
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Problem 5
For the stress tensor

In[27]:= TT = {{6, -3, 0}, {-3, 6, 0}, {0, 0, 8}};

MatrixForm[TT]

Out[28]//MatrixForm=

6 -3 0

-3 6 0

0 0 8

(a) Determine the invariants 
The first invariant is the trace of the tensor .

In[29]:= Invariant1 = Tr[TT]

Out[29]= 20

The second invariant is given by the following expression. (It  is important to use the MatrixPower[]
function for this operation, otherwise the calculation will be incorrect.)

In[30]:= TTs = MatrixPower[TT, 2];

Invariant2 = 0.5 * ((Tr[TT]^2) - Tr[TTs])

Out[31]= 123.

The third invariant is the determinant of the tensor .

In[32]:= Invariant3 = Det[TT]

Out[32]= 216

(b) Determine principal stresses and stress directions
Find the eigenvalues by simply using the "Eigenvalues" function .

In[33]:= Eigenvalues[TT]

Out[33]= {9, 8, 3}

Here we see that the first eigenvalue is 9, the second is 8, and the third is 3! Store these variables to be
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used later.

In[34]:= sig1 = 9;

sig2 = 8;

sig3 = 3;

Similarly, the eigenvectors can be found using the "Eigenvectors" function .

In[37]:= MatrixForm[Eigenvectors[TT]]

Out[37]//MatrixForm=

-1 1 0

0 0 1

1 1 0

Here we see that the first eigenvector is {-1, 1, 0}, the second is {0, 0, 1}, and the third is {1, 1, 0}. Store
these vectors after normalizing.

In[38]:= vec1 = Normalize[{-1, 1, 0}];

vec2 = Normalize[{0, 0, 1}];

vec3 = Normalize[{1, 1, 0}];

(c) Show that the transformation tensor of direction 
cosines transforms the original stress tensor into the 
diagonal principal axes stress tensor
In[41]:= Trec = sig1 * TensorProduct[vec1, vec1] +

sig2 * TensorProduct[vec2, vec2] + sig3 * TensorProduct[vec3, vec3]

Out[41]= {{6, -3, 0}, {-3, 6, 0}, {0, 0, 8}}

Define Cartesian Basis vectors

In[42]:= x1 = {1, 0, 0};

x2 = {0, 1, 0};

x3 = {0, 0, 1};

Create Direction Cosine Matrix (DCM)
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In[45]:= DCM = {{x1.vec1, x2.vec1, x3.vec1},

{x1.vec2, x2.vec2, x2.vec3}, {x1.vec3, x2.vec3, x3.vec3}};

MatrixForm[

DCM]

Out[46]//MatrixForm=

-
1

2

1

2
0

0 0
1

2

1

2

1

2
0

Calculate the diagonal principal axes stress tensor using the DCM as a rotation matrix .

In[47]:= New = DCM.TT.Transpose[DCM];

MatrixForm[N[New]]

Out[48]//MatrixForm=

9. 0. 0.

0. 4. 0.

0. 0. 3.

Unfortunately it looks like the middle entry is one half of the expected value of 8.  By looking at our
DCM, we see that a there is a factor of 1

2
 in the (2,3) location. When rotating TT by the DCM, this

operation results in a factor of ( 1
2
×

1
2

)= 1
2

 which is why the (2,2) location of the “New” matrix is one

half of 8. We may manually modify the DCM as follows:

In[49]:= DCM2 = {{x1.vec1, x2.vec1, x3.vec1},

{x1.vec2, x2.vec2, (x2.vec3) * Sqrt[2]}, {x1.vec3, x2.vec3, x3.vec3}};

MatrixForm[

DCM2]

Out[50]//MatrixForm=

-
1

2

1

2
0

0 0 1
1

2

1

2
0

In[51]:= New2 = DCM2.TT.Transpose[DCM2];

MatrixForm[N[New2]]

Out[52]//MatrixForm=

9. 0. 0.

0. 8. 0.

0. 0. 3.

We  have  recovered  the  diagonal  principal  axes  stress  tensor!  There  is  a  mistake  somewhere  that
resulted in the the matrix “New” having its second diagonal entry one half of the expected value.
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(d) Recombine the three invariants from the principal 
stresses

The first invariant can be calculated from the principal stresses as follows:

In[53]:= Invariant11 = sig1 + sig2 + sig3

Out[53]= 20

Clearly this matches the first invariant that was calculated previously. A simple check shows this to be
true:

In[54]:= Invariant11 - Invariant1

Out[54]= 0

The second invariant can be calculated from the principal stresses as follows:

In[55]:= Invariant22 = -1 * ((sig1 * sig2) + (sig2 * sig3) + (sig3 * sig1))

Out[55]= -123

This second invariant was calculated according to the second equation given in equation 2.40 of the
class notes. This value matches the second invariant that was calculated previously, but with a nega-
tive sign. The same check shows the difference to be non-zero.

In[56]:= Invariant22 - Invariant2

Out[56]= -246.

But if we take the absolute value, we can see these invariants have the same magnitude:

In[57]:= Abs[Invariant22] - Invariant2

Out[57]= 0.

The third invariant can be calculated from the principal stresses as follows:

In[58]:= Invariant33 = sig1 * sig2 * sig3

Out[58]= 216

Clearly this matches the third invariant that was calculated previously. A simple check shows this to be
true:
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In[59]:= Invariant33 - Invariant3

Out[59]= 0

(e) Split the stress tensor into its spherical and deviator 
parts

The pressure (or mean stress) is computed as follows 

In[60]:= p = (1 / 3) * Tr[TT]

Out[60]=

20

3

Thus the hydrostatic stress tensor is simply a diagonal matrix in which each term on the diagonal is the
pressure p.

In[61]:= Sighyd = DiagonalMatrix[{p, p, p}];

MatrixForm[Sighyd]

Out[62]//MatrixForm=

20

3
0 0

0
20

3
0

0 0
20

3

Finally, the deviatoric stress is the hydrostatic stress tensor subtracted from the original stress tensor.

In[63]:= Sigdev = TT - Sighyd;

MatrixForm[Sigdev]

Out[64]//MatrixForm=

-
2

3
-3 0

-3 -
2

3
0

0 0
4

3

(f) Show that the first invariant of the deviator is zero
Here, just take the trace of the deviatoric stress to find the first invariant.
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In[65]:= Tr[Sigdev]

Out[65]= 0

The first invariant of the deviatoric stress is zero as expected!
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Problem 6
The Lagrangian Strain Tensor is given by:

In[66]:= T = (1.00*^-6) * {{30.0, 50.0, 20.0}, {50.0, 40.0, 0.0}, {20.0, 0.0, 30.0}};

ScientificForm[MatrixForm[T]]

Out[67]//ScientificForm=

3. × 10-5 5. × 10-5 2. × 10-5

5. × 10-5 4. × 10-5 0.

2. × 10-5 0. 3. × 10-5

The material is a steel with the following material parameters in Pascals:

In[68]:= lambda = 119.2 * (1.00*^9);

mu = 79.2 * (1.00*^9);

Determine the stress tensor.

The stress tensor is calculated using Hooke' s Law in the following form where σ is the stress tensor
and T is the strain tensor.

σij = λδij Tkk + 2 μTij

In[70]:= sig = lambda * IdentityMatrix[3] * Tr[T] + 2 * mu * T;

Thus the stress in Pascals is:

In[71]:= MatrixForm[sig]

Out[71]//MatrixForm=

1.6672 × 107 7.92 × 106 3.168 × 106

7.92 × 106 1.8256 × 107 0.

3.168 × 106 0. 1.6672 × 107

Or in Mega Pascals (MPa):

In[72]:= MatrixForm[Evaluate[sig / (1*^6)]]

Out[72]//MatrixForm=

16.672 7.92 3.168

7.92 18.256 0.

3.168 0. 16.672
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Problem 7
Determine the strain tensor at a point where the Cauchy stress tensor is given by T where the elastic
modulus is 207 GPa, mu is 79.2 GPa, and Poisson’s ratio is 0.3

The Cauchy stress tensor is given by T:

In[73]:= T = (1.0*^6) * {{100, 42, 6}, {42, -2, 0}, {6, 0, 15}};

MatrixForm[T]

Out[74]//MatrixForm=

1. × 108 4.2 × 107 6. × 106

4.2 × 107 -2. × 106 0.

6. × 106 0. 1.5 × 107

The material properties are given as follows (elastic modulus and shear modulus are in Pascals):

In[75]:= Emod = 207 * (1.0*^9);

mu = 79.2 * (1.0*^9);

nu = 0.3;

Determine the strain tensor given T and material properties above.

First calculate Lame parameter λ.

In[78]:= lambda = (nu * Emod) / ((1 + nu) * (1 - 2 * nu));

The strain tensor can be calculated using Hooke' s Law using the following form where T is the stress
tensor and E is the strain tensor:

Eij =
1

2 μ
Tij -

λ

3 λ + 2 μ
δij Tkk

Finally, here is the strain tensor:

In[79]:= EE = (1 / (2 * mu)) * (T - (lambda / (3 * lambda + 2 * mu)) * IdentityMatrix[3] * Tr[T]);

ScientificForm[MatrixForm[EE]]

Out[80]//ScientificForm=

4.66421 × 10-4 2.65152 × 10-4 3.78788 × 10-5

2.65152 × 10-4 -1.77518 × 10-4 0.

3.78788 × 10-5 0. -7.01948 × 10-5
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Problem 8
For the following proposed Airy Stress function:

In[81]:= ClearAll[x1, x2, x3]

In[82]:= phi[x1_, x2_, F_, c_, P_] :=

((3 * F) / (4 * c)) * (x1 * x2 - ((x1 * x2^3) / (3 * c^2))) + (P / (4 * c)) * x2^2;

phi[

x1,

x2,

F,

c,

P]

Out[83]=

P x22

4 c
+

3 F x1 x2 -
x1 x23

3 c2


4 c

(a) Show that it is indeed suitable as an Airy stress function
First, lets check equilibrium. Airy has shown that the stresses can be defined in terms of the function Φ
as follows:

σ11 =
∂2Φ

∂x2
2
, σ22 =

∂2Φ

∂x1
2
, σ12 =

∂2Φ

∂x1 ∂x1

In[84]:= sig11 = D[phi[x1, x2, F, c, P], {x2, 2}]

Out[84]=

P

2 c
-
3 F x1 x2

2 c3

In[85]:= sig22 = D[phi[x1, x2, F, c, P], {x1, 2}]

Out[85]= 0

In[86]:= sig12 = D[phi[x1, x2, F, c, P], {x1, 1}, {x2, 1}]

Out[86]=

3 F 1 -
x22

c2


4 c

The 2d stress tensor is thus:
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In[87]:= sig = {{sig11, sig12}, {sig12, sig22}};

MatrixForm[sig]

Out[88]//MatrixForm=

P

2 c
-

3 F x1 x2

2 c3

3 F 1-
x22

c2


4 c

3 F 1-
x22

c2


4 c
0

To check that the proposed Airy Stress function satisfies equilibrium, make sure that the divergence of
the stress is zero.

In[89]:= Div[sig, {x1, x2}]

Out[89]= -
3 F x2

c3
, 0

For some reason the divergence of the stress is not a vector of zeros... There must be a mistake some-
where! :(

Now, lets check the compatibility equations.

∂4Φ

∂x1
4
+ 2

∂4Φ

∂x1
2 ∂x2

2
+
∂4Φ

∂x2
4
= 0

In[90]:= term1 = D[phi[x1, x2, F, c, P], {x1, 4}];

term2 = 2 * D[phi[x1, x2, F, c, P], {x1, 2}, {x2, 2}];

term3 = D[phi[x1, x2, F, c, P], {x2, 4}];

term1 + term2 + term3

Out[93]= 0

Compatibility is satisfied!

(b) Determine the stress components in the region x1 > 0, -c 
< x2 < c

As shown before, the stresses are as follows:

In[94]:= sig11

Out[94]=

P

2 c
-
3 F x1 x2

2 c3
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In[95]:= sig22

Out[95]= 0

In[96]:= sig12

Out[96]=

3 F 1 -
x22

c2


4 c

(c) Plot sig_11, sig_12 and show that these stresses are 
those of a cantilever beam subjected to a transverse end 
load and axial pull (which one is P and which one is F?).

Let variable F=-10, c=5, and length=100. F is an end load. Using a negative value for F means there is a
downward force acting on the left-end of the beam. P is an axial load. A positive value of P indicates a
compressive force acting on the left-end of the beam. The parameter c is half of the depth of the beam.
The locations x2=-c and x2=c correspond to the bottom fiber and top fiber of beam. 

In[97]:= vF = -10;

vc = 5;

L = 100;

Evaluate the expression for normal stresses. 

In[100]:= normal = With[{F = vF, c = vc}, Evaluate[sig11]]

Out[100]=

P

10
+
3 x1 x2

25

We see here that, for F = -10, the normal stresses depend on the axial load P, location along the length
of the beam x1, and the location along them beam depth x2.

Plot of sig_ 11 for a modest axial load of P=1.
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In[101]:= Plot[{With[{x2 = -vc, P = 1}, Evaluate[normal]],

With[{x2 = vc, P = 1}, Evaluate[normal]]}, {x1, 0, L},

PlotLegends  {"Bottom Fiber", "Top Fiber"}, AxesLabel  {"x1", "Stress"}]

Out[101]=

20 40 60 80 100
x1

-60

-40

-20

20

40

60

Stress

Bottom Fiber

Top Fiber

Here we see that the top fiber of the beam is in tension while the bottom fiber is in compression as
expected. 

Lets investigate what happens when we increase the axial load P to a value of 1000.

In[102]:= Plot[{With[{x2 = -vc, P = 1000}, Evaluate[normal]],

With[{x2 = vc, P = 1000}, Evaluate[normal]]}, {x1, 0, L},

PlotLegends  {"Bottom Fiber", "Top Fiber"}, AxesLabel  {"x1", "Normal Stress"}]

Out[102]=

20 40 60 80 100
x1

60

80

100

120

140

160

Normal Stress

Bottom Fiber

Top Fiber

By applying a very large tensile load, the entire normal stress distribution throughout the beam is now
tensile despite the bending moment imposed by the force F.
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Evaluate the expression for shear stresses.

In[103]:= shear = With[{F = vF, c = vc}, Evaluate[sig12]]

Out[103]= -
3

2
× 1 -

x22

25

We see here that, for F = -10, the shear stress depends on the location along the beam depth x2, but
does not depend on the axial load P or location along the length of the beam x1.

This can be verified by plotting the shear stress along the length at the center, top, and bottom of the
beam.

In[104]:= Plot[{With[{x2 = 0}, Evaluate[shear]],

With[{x2 = -vc}, Evaluate[shear]], With[{x2 = vc}, Evaluate[shear]]},

{x1, 0, L}, PlotLegends  {"Center", "Bottom Fiber", "Top Fiber"},

AxesLabel  {"x1", "Shear Stress"}]

Out[104]=

20 40 60 80 100
x1

-1.5

-1.0

-0.5

Shear Stress

Center

Bottom Fiber

Top Fiber

Here we confirm that the shear stress in the beam does not depend on length. The shear stress appears
to be zero at the top and bottom fibers which should be expected.

Lets look further at the distribution of shear stresses along the depth of the beam.

In[105]:= axisFlip = # /. {x_Line x_GraphicsComplex  MapAt[#~Reverse~2 &, x, 1],

x : (PlotRange  _)  x~Reverse~2} &;
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In[106]:= shearplot = Plot[With[{x1 = 0}, Evaluate[shear]],

{x2, -5, 5}, AxesLabel  {"Shear Stress", "x2"}];

shearplot // axisFlip

Out[107]=

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2
Shear Stress

-4

-2

2

4

x2

Check that this is Airy Stress Function describes a cantilever beam
Finally, lets make sure these stresses do indeed describe a cantilever beam with both a transverse and
axial point load.

Normal Stresses

We will exploit superposition to analyse the contribution from the (1) transverse load F and (2) axial
load P . We will assume that the cantilever beam has a rectangular cross section given by a width of 1
and height 2c.

(1) For a cantilever beam subjected to a transverse load F, the normal stress distribution is described
using the following simple equation:

σ =
My

I
=

-F * x * y

I

Assuming that the width of the beam (in the out - of - plane direction) is 1 and height is 2c,  the moment
of inertia (second moment of area) is:

I =
1

12
(width) * (height)3 =

1

12
× (1) * (2 * c)3 =

2

3
c3

So the normal stress, using the variables x=x1 and y=x2, is given as:

σ =
-3 * F * x1 * x2

2 * c3

(2) For a beam subjected to an axial load P, the normal stress is uniform and simply given by the P
divided by cross-sectional area A. The area A is the product of width 1 and height 2c.

σ =
P

A
=

P

(1) * (2 c)
=

P

2 c
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Now we superimpose the two stresses giving:

σ =
P

A
+
My

I
=

P

2 c
-
3 * F * x1 * x2

2 * c3

Comparing to sig11, they are identical!

In[108]:= sig11

Out[108]=

P

2 c
-
3 F x1 x2

2 c3

Shear Stresses

For shear stresses, we do not need to superimpose the contribution of transverse force F and axial
force P. This is because the axial force does not contribute to any shear stresses. For a cantilever beam,
we know that the shear stress will be zero at the extreme fibers. A quadratic distribution describes the
variation from the bottom fiber to the top. The maximum shear stress occurs at the neutral axis (x2 = 0
for our rectangular beam) given by the following simple formula:

τ =
3 V

2 A

Here V indicates the shear force acting on the beam at a location along the length x1 . We know that for
a cantilever beam with an end load F, the shear force distribution is constant and equal to F. The area A
is still simply 2c.  

τ =
3 * F

2 * (2 c)
=
3 * F

4 * c

For our chosen F = -10 and c = 5,

τ =
3 * F

2 * (2 c)
=
3 * (-10)

4 * 5
=

-30

20
= -

3

2

We can check that our shear stress formula equals tau max by substituting x2 = 0.

In[109]:= With[{x2 = 0}, Evaluate[shear]]

Out[109]= -
3

2

Everything checks out!
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Homework 2

Thomas Allard
CVEN 7161

Answers are highlighted with a light blue background and are occasionally boxed.

Problem 1

Completed as problem 1 in Homework 1

Problem 2

Completed as problem 8 in Homework 1

Problem 3
A cylindrical pressure vessel of Radius R and thickness t contains a through crack of length 2a oriented
at an angle β with the circumferential direction. When the vessel is subjected to an internal pressure p,
determine the stress intensity factors at the crack tip.



In[110]:=

Out[110]=

Hint: Show that σxx =
pR
2 t

 (corresponding to the longitudinal stress), and that σyy =
pR
t

 (corresponding to

the tangential stress) and then transform into σx' x', σy' y', and σx' y' using

σx' x' σx' y'

σx' y' σy' y'
=

cosθ sinθ
-sinθ cosθ

σxx 0
0 σyy

cosθ sinθ
-sinθ cosθ

T

These relations may be helpful:

sin2β = 2sinβcosβ
cos2β = 1-2(sinβ)2

(sinβ)2 = 1-cos2β
2

 

(cosβ)2 = 1+cos2β
2

sinβcosβ = sin2β
2
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Solution

For a thin-walled cylindrical pressure vessel, internal pressure p is balanced by hoop stresses (σh = σy)

and longitudinal/axial stresses (σl = σx). These stresses may be determined by balancing forces. 
Observing a  cross-section of  the vessel  along the longitudinal  axis  to  analyze the hoop stress,  the
pressure acts upon an area of 2 times the radius times a differential length dx while the hoop stress
acts on an area of 2 times the thickness of the vessel times a differential length dx. 

In[111]:= (*2*σh*t*dx-p*2*r*dx=0;*)

σh[p_, R_, t_] :=
p * R

t
;

Observing a circular cross-section of the vessel to analyze the longitudinal stress, the pressure acts
upon an the circular area of πr2  while the longitudinal stress acts on an area of the thickness of the
vessel times the circumference 2πr.

In[112]:= (*σl*t*2*π*r - p*π*r2=0;*)

σl[p_, R_, t_] :=
p * R

2 * t
;

The stress transformation from coordinates x,y to x’,y’ (by the angle -β) can be calculated as:

In[113]:= rot[β_] := {{Cos[β], Sin[β]}, {-Sin[β], Cos[β]}};

T[p_, R_, t_, β_] := rot[-β].{{σl, 0}, {0, σh}}.Transpose[rot[-β]];

MatrixForm[Simplify[T[p, R, t, β]]]

SetDelayed: Tag List in 1.×108, 4.2×107, 6.×106, 4.2×107, -2.×106, 0., 6.×106, 0., 1.5×107[p_, R_, t_, β_] is Protected.
Out[115]//MatrixForm=

1. × 108, 4.2 × 107, 6. × 106,

4.2 × 107, -2. × 106, 0., 6. × 106, 0., 1.5 × 107
20

3
, R, t, β

We know that the shear components are equal because of symmetry, so lets move to Voigt notation.
Lets substitute in the values for hoop and longitudinal stress.

In[116]:= sigxx = Sin[β]2 σhh + Cos[β]2 σll;

sigxy = Cos[β] Sin[β] (σhh - σll);

sigyy = Cos[β]2 σhh + Sin[β]2 σll;

Substitute and simplify
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In[119]:= Simplifysigxx /. σhh 
p * R

t
, σll 

p * R

2 * t


Simplifysigxy /. σhh 
p * R

t
, σll 

p * R

2 * t


Simplifysigyy /. σhh 
p * R

t
, σll 

p * R

2 * t


Out[119]= -
5 R (-3 + Cos[2 β])

3 t

Out[120]=

5 R Sin[2 β]

3 t

Out[121]=

5 R (3 + Cos[2 β])

3 t

Finally, we may express the stress intensity factors. Sigxx provides mode I loading and Sigxy provides

mode II loading while Sigyy does not contribute. We must simply multiply by the factor πa .

In[122]:= K1[p_, β_, t_, a_, R_] := π * a *
-p * R * (-3 + Cos[2 * β])

4 * t
;

Framed[Simplify[K1[p, β, t, a, R]]]

K2[p_, β_, t_, a_, R_] := π * a *
p * R * Cos[β] * Sin[β]

2 * t
;

Framed[Simplify[K2[p, β, t, a, R]]]

Out[122]= -
5 a π R (-3 + Cos[2 β])

3 t

Out[123]=
5 a π R Sin[2 β]

3 t

These are the stress intensity factors!
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Problem 4
The stress function for a crack subjected to splitting forces P, as shown below:

In[124]:=

Out[124]=

Is given by:

ϕ =
Pa

πz z2 - a2

where z = x1 + ix2 and P is a load per unit thickness. 
Calculate the expressions of σ22 at x2 = 0 and derive an expression for KI. (KP =

P
πa

)

Hint: 
(a) At crack tip η

a
<< 1

(b) η = z-a = z = reiθ

Solution

Find σ22
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In[125]:= ClearAll[p, β, t, a, R, r, sigxx, sigxy, sigyy]

In[126]:= zz[x1_, x2_] := x1 +  * x2

In[127]:= ϕ[z_, P_, a_] :=
P * a

π * z z2 - a2

Apply the change of variables z=η+a.

In[128]:= SimplifyWith{z = η + a}, Evaluate
P * a

π * z z2 - a2


Out[128]=

a P

π (a + η) η (2 a + η)

This can be expanded to:

ϕ =
a P

π (a + η) 2 aη + η2

Since η
a
<< 1, we may drop the high order term η2. So now

ϕ =
a P

π (a + η) 2 aη

Lets make the substitution that η = reiθ

In[129]:= SimplifyWithη = r * 
*θ

, Evaluate
a P

π (a + η) 2 a * η



Out[129]=

a P

2 π a  θ r a +  θ r

This equation may be further simplified

ϕ =
a * P * 

-
θ

2

π a + r *  θ 2 ar

Now we may define the stress as follows:
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In[130]:= stress[r_, θ_, P_, a_] := Re
a * P * 

-
θ

2

π a + r * 
 θ

 2 ar
;

Simplify[stress[r, θ, P, a]]

Out[130]=

Re
a 

-
 θ

2 P

ar a+ θ r


2 π

Mathematica seems to need some help. Lets do some manual evaluation of terms.

In[131]:= ComplexExpandRe
-

θ

2

Out[131]= Cos
θ

2


In[132]:= ComplexExpandRer * 
 θ



Out[132]= r Cos[θ]

So now we can define stress as follows:

In[133]:= stress[r_, θ_, P_, a_] :=
a * P * Cos

θ

2


π (a + r * Cos[θ]) 2 a * r
;

Framed[Simplify[stress[r, θ, P, a]]]

Out[133]=

P a r Cos
θ

2


2 a π r + π r2 Cos[θ]

Find KI

Now we can find the stress intensity factor! Let r and θ go to 0.

In[134]:= K1[P_, a_] := Limit 2 * π * r stress[r, θ, P, a], {r  0};

Simplify[K1[P, a]]

Out[134]= Indeterminate

Lets take the 2 limits one at a time.
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In[135]:= SimplifyLimit
2 * π * r * P a r Cos

θ

2


2 a π r + π r2 Cos[θ]
, θ  0

Out[135]=

P a r

π r (a + r)

In[136]:= SimplifyLimit
P a r

π r (a + r)
, r  0

Out[136]= Indeterminate

Lets use L'Hopital’s rule to simplify. Take the r derivative of the numerator and denominator.

In[137]:= numer[P_, a_, r_] := DP a * r , {r, 1}; Simplify[numer[P, a, r]]

Out[137]=

a P

2 a r

In[138]:= denom[P_, a_, r_] := D π r (a + r), {r, 1}; Simplify[denom[P, a, r]]

Out[138]=

π (a + 3 r)

2 r

In[139]:= Simplify
numer[P, a, r]

denom[P, a, r]


Out[139]=

P a r

π r (a + 3 r)

Alright, now lets cancel the r  in the numerator and denominator and take the limit:

In[140]:= FramedSimplifyLimit
P a

(a + 3 * r) * π

, r  0

Out[140]=

P

a π

This is our stress intensity factor! It matches KP
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Problem 5
The stress intensity factor of the following problem:

In[141]:=

Out[141]=

is given by:

KA =
P

πa

a + x

a - x

KB =
P

πa

a - x

a + x

Based on those expressions, and results from the previous problem, determine the stress function Φ.

Solution

The stress intensity factors are related as follows:

KI = KA = KB = 2 πr σ22

The tensile stress may be related to the stress function as follows:
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σ22 = Re[ϕ (z)] + x2 ϕ' (z) =
KI

2 πr

Using the right side of the crack, we may substitute KI = KA

σ22
A
=

KA

2 πr
=

P

πa 2 πr

a + x

a - x
=

P

π 2 ar

a + x

a - x

And similarly for the left side where KI = KB

σ22
B
=

KB

2 πr
=

P

πa 2 πr

a - x

a + x
=

P

π 2 ar

a - x

a + x

In this case, x2 is zero. The tensile stress is also related to the stress intensity factors, so

σ22 = Re[ϕ (z)] =
KI

2 πr

For the relationship between stress and the stress function, x2 is zero.

σ22 = Re[ϕ (z)]

And the complex function z may also be simplified because θ=0.

z = r (Cos[θ] + Sin[θ]) = r

Finally, upon simplification, the results are as follows.

ϕ
A
(z) =

P

π 2 az

a + x

a - x

ϕ
B
(z) =

P

π 2 az

a - x

a + x
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Problem 6
Barenblatt’s model assumes a linearly varying closing pressure at the tip of a crack,

In[142]:=

Out[142]=

Using the expressions of KA  and KB  from the previous problem, determine an expression for the stress
intensity factors for this case.

Solution
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Before we only had the loads P acting on a single crack location.  We can easily  replace the stress
distribution with the resultant load. 

R =
c * σy

2

These loads acts at the centroid of their respective distribution, which is 2
3

c away from the crack tip.

Replace P with R. Allow σy  to equal y for convenience. We may replace the previous expressions of KA
and KB as follows:

In[143]:= KA[a_, y_, c_] :=
0.5 * y * c

π * a

a + a -
2

3
c

a - a -
2

3
c

; Simplify[KA[a, y, c]]

KB[a_, y_, c_] :=
0.5 * y * c

π * a

a - -a +
2

3
c

a + -a +
2

3
c

;

Simplify[KB[a, y, c]]

Out[143]=

0.282095 -1 +
3 a

c
c y

a

Out[144]=

0.282095 -1 +
3 a

c
c y

a

We see here that the stress intensity factors are the same! We may clean this up, and the two factors
together, and the final stress intensity factor is:

KI =

c * σy
3 a

c
- 1

π * a

The stress intensity factors for both sides of the crack will be the same due to symmetry.

K = KA = KB

We may follow a similar approach to the method from the previous problem, except that the concen-
trated force P is replaced by a distribution. In order to determine the stress intensity factor we will
need to integrate over the loaded crack length.

The distributed force can be defined as follows.

p (x) =
P

c
(a - x)

Replacing P with p(x), we may integrate over the loaded crack lengths for KA  and KB  provided in the
previous problem.
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K = 
a-c

a p (x)

πa

a + x

a - x
x + 

a-c

a p (x)

πa

a - x

a + x
x

First, lets use a change of variables for x1 = a - x. Now,

p x1 =
Px1

c

And the updated integral for K is

K = 
0

c Px1

c πa

2 a - x1

x1
x1 + 

0

c Px1

c πa

x1

2 a - x1
x1

K =
P

c πa


0

c 2 a - x1

x1
+

x1

2 a - x1
x1 x1

K =
P

c πa

0

c 2 * a * x1

2 * a * x1 - x1
2

x1

Finally, evaluate the integral. Lets just look at portion in the integral.

In[145]:= (*Kint[x_,c_,a_,P_]:=
P

c π*a
*Integrate

2*a*x

2*a*x-x2
,{x,0,c}*)

In[146]:= Int[x_, a_, c_] := Integrate
2 * a * x

2 * a * x - x2
, x; Simplify[Int[x, a, c]]

Out[146]= -
2 a

a

4 a-2 x

We may now evaluate the bounds of this integral and combine it with the other components of the
expression for K to get

K =
2 aP

c πa
2 - 

a

4 a - 2 c


-1

2


There is  likely  further  expansion and simplification to evaluate K in terms of  inverse trigonometric
functions, but we will stop here for now.
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Homework 3
Thomas Allard
CVEN 7161

Answers are highlighted in a light blue background and are occasionally boxed.

Problem 1 
A cylindrical pressure vessel of diameter 3 m and length 9 m, with closed ends, is to be constructed
using  butt-welded  steel  plates  which  are  0.03  m  thick  and  approximately  1  m  square.  It  must  be
designed to contain a pressure p without failure by yielding or by brittle fracture. yield occurs when the
equivalent tensile stress equals the yield stress, i.e., when:

(σ1 - σ2)
2
+ (σ2 - σ3)

2
+ (σ3 - σ1)

2
= 2 σy

2

The  butt  welds  joining  the  plates  are  known  to  contain  a  thumbnail  (semi-circular)  cracks  with  a

maximum depth of a. For such cracks KI = 1.128σθ πa  where σ is the tensile stress across a crack,
and  brittle  failure  will  occur  when  KI ⩾ KIc.  Three  steels  are  available  for  constructing  the  pressure
vessel. Their yield strength and fracture toughnesses are:

In[1]:=

Out[1]=

Construct a plot of maximum pressure against crack depth a for each steel, showing the region of p and
a which is safe against fracture and yielding. If  non-destructive testing can detect cracks of depths
a1 ⩾ 20 mm (allowing welds with larger cracks than this to be repaired) which steel gives the greatest
margin of safety? If a more refined technique will detect cracks of depth a1 ⩾ 2 mm, which steel offers
the greatest margin of safety? Discuss your results.

Solution

Yield criteria



In[2]:= ClearAll["Global'*"]

Clear[p, r, t, y]

For the state of biaxial stress induced by the hoop and longitudinal stresses, we need to for the pres-
sure that causes yield. We will ignore radial stress as it is very small in comparison. Allow σ1 = σhoop,

σ2 = σlong, and σ3 = 0. 

In[4]:= σhoop =
pr

t

σlong =
pr

2 t

Out[4]=

pr

t

Out[5]=

pr

2 t

Plugging σ1 = σhoop, σ2 = σlong, and σ3 = 0 into the provided yield criteria and solving for pressure p we

get the following function which depends only on σy (here denoted “y”) since t and r are fixed. 

In[6]:= yielding[p_, r_, t_, y_] :=
p * r

t
-
p * r

2 * t

2

+
p * r

2 * t

2

+ -
p * r

t

2

- 2 y2;

Simplify[yielding[p, r, t, y]]

Out[6]=

3 p2 r2

2 t2
- 2 y2

In[7]:= Solve[yielding[p, r, t, y]  0, p]

Out[7]= p  -
2 t y

3 r
, p 

2 t y

3 r


Lets define the yield function as Pyield[y]

In[8]:= r = 1.500;(*m*)

t = .030;(*m*)

In[10]:= Pyield[y_] :=
2 * y * t

r * 3
; Simplify[Pyield[y]]

Out[10]= 0.023094 y

As  expected,  this  results  in  only  a  linear  dependence  between  a  material's  yield  strength  and  the
maximum pressure before yield.
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Fracture Criteria

The expression for KI  can be solved for the applied tensile stress. In this case the tensile stress is the
hoop stress. We may then solve for pressure p to come up with another max pressure criteria, but this
one will also depend on the crack length a.

σhoop =
K

1.128 πa
=
pr

t
 p =

K * t

1.128 * r πa

In[11]:= Pfrac[K_, aa_] :=
K * t

1.128 * r * π * aa
; Simplify[Pfrac[K, aa]]

Out[11]=

0.0100034 K

aa

Plots and analysis

We may now plot the pressure associated with crack growth against crack length a. We may also plot
the pressure associated with yield.

In[12]:= y1 = 965 * 106;(*Pa*)

y2 = 690 * 106;(*Pa*)

y3 = 1240 * 106;(*Pa*)

k1 = 280 * 106;(*N*m
-3

2 *)

k2 = 180 * 106;(*N*m
-3

2 *)

k3 = 180 * 106;(*N*m
-3

2 *)

In[18]:= PlotPfrac[k1, a / 1000]  106, Pfrac[k2, a / 1000]  106,

Pfrac[k3, a / 1000]  106, Pyield[y1]  106, Pyield[y2]  106, Pyield[y3]  106,

{a, 0.0, 20}, PlotLegends  {"HY 140", "T 1", "HY 180", "y1", "y2", "y3"},

AxesLabel  {"a (mm)", "Pressure (MPa)"}, PlotRange  {{0, 20}, {0, 50}}

Out[18]=

0 5 10 15 20
a (mm)0

10

20

30

40

50
Pressure (MPa)

HY 140

T 1

HY 180

y1

y2

y3

For each material, we may create an envelope that gives the minimum allowable pressure depending
on if yielding or fracture is more likely.
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In[19]:= envelope1[aa_] := Min[Pfrac[k1, aa], Pyield[y1]]

envelope2[aa_] := Min[Pfrac[k2, aa], Pyield[y2]]

envelope3[aa_] := Min[Pfrac[k3, aa], Pyield[y3]]

Plotenvelope1[a / 1000]  106, envelope2[a / 1000]  106, envelope3[a / 1000]  106,

{a, 0, 40}, PlotRange  {{0, 40}, {0, 30}}, AxesLabel  {"a (mm)", "Pressure (MPa)"},

PlotLegends  {"HY 140", "T 1", "HY 180"}

Out[22]=

0 10 20 30 40
a (mm)0

5

10

15

20

25

30
Pressure (MPa)

HY 140

T 1

HY 180

For each material, there are two stages of the maximum pressure curves corresponding to failure of the
pressure vessel.  The initial  flat portion of these envelopes corresponds to yielding. The descending
branch corresponds to fracture. As crack length “a” increases, the maximum allowable pressure dramat-
ically decreases. 

a1 ⩾ 20 mm
According to these results, the only difference between the materials T 1 and HY 180 is their yield limit
for cracks smaller than about 12mm. They have the same fracture criteria. Considering that only cracks
of 20mm and larger can be determined, we can find the maximum allowable pressure for each material.

In[23]:= Framedenvelope1[20 / 1000]  106

envelope2[20 / 1000]  106

envelope3[20 / 1000]  106

Out[23]= 19.8056

Out[24]= 12.7322

Out[25]= 12.7322

Clearly the first material, HY 140, has the greatest margin of safety since the maximum allowable
pressure for cracks of 20mm is higher than that of the other materials.

a1 ⩾ 2 mm

The results of this analysis will be the same as the previous case where HY 140 will be the best. This is
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obvious by looking at the most recent plot. We may calculate the max pressures associated with cracks
of 2mm.

In[26]:= envelope1[2 / 1000]  106

envelope2[2 / 1000]  106

Framedenvelope3[2 / 1000]  106

Out[26]= 22.2857

Out[27]= 15.9349

Out[28]= 28.6366

Now we see that the HY 180 material has the greatest margin of safety!
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Problem 2
Design (by selecting the most economical material and the thickness t) a high strength steel pressure
vessel which must withstand 5,000 psi of internal pressure p, the nominal diameter d is 30 in., and the
wall thickness t must be greater than 0.5 in.

The steels available for use are:

In[29]:=

Out[29]=

Assume that inspection procedures dictate a surface (elliptical) flaw with a depth b of 0.5 inch and
b/2a=0.25; Assume a factor of safety of two for both the design stress (vs yield stress) and the stress
intensity factor (vs the fracture toughness). Make sure to check for fracture failure and yielding of the
section.

Solution

We will check both the yielding and fracture criteria separately. We will calculate the minimum thick-
ness required for each material for each criteria. Since the global dimensions of the vessel will only
differ between different material designs by the thickness, the cost per pound can be multiplied by the
plate thickness to come up with a value we want minimized, thus giving the most cost effective design.

In[30]:= Clear[p, r, t, y]

1. Stress

We may use the  same yield criteria as the previous problem in which σ1 = σhoop, σ2 = σlong, and σ3 = 0.

This time the thickness “t” is unkown. We will solve for the yield stress this time.
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In[31]:= yielding[p_, r_, t_, y_] :=
p * r

t
-
p * r

2 * t

2

+
p * r

2 * t

2

+ -
p * r

t

2

- 2 y2;

Solve[yielding[p, r, t, y]  0, y]

Out[31]= y  -
3 p r

2 t
, y 

3 p r

2 t


Now we will define the max design stress as:

In[32]:= p = 5000; (*psi*)

r = 15;(*inches*)

In[34]:= σ[t_] :=
p * r * 3

2 * t
; Simplify[σ[t]]

Out[34]=

37 500 3

t

In[35]:= Plot[{Evaluate[σ[t]] / 1000}, {t, 0.5, 2},

AxesLabel  {"thickness t (in)", "Design stress (Ksi)"}]

Out[35]=

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
thickness t (in)

40

60

80

100

120

Design stress (Ksi)

Define the yield stress for each material:

In[36]:= yA = 260 * 103;(*psi*)

yB = 220 * 103;(*psi*)

yC = 180 * 103;(*psi*)

yD = 180 * 103;(*psi*)

yE = 140 * 103;(*psi*)

yF = 110 * 103;(*psi*)

As can be seen in the figure above, comparing with yield strengths in the provided table, we see that
some materials will be unable to be used for t = 0.5. We may calculate the minimum thickness required
for each material by substituting the max allowable design stress (0.5*σys) and solving for thickness, t.
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In[42]:= tAS = NSolve[σ[t] - 0.5 * yA  0, t]

tBS = NSolve[σ[t] - 0.5 * yB  0, t]

tCS = NSolve[σ[t] - 0.5 * yC  0, t]

tDS = NSolve[σ[t] - 0.5 * yD  0, t]

tES = NSolve[σ[t] - 0.5 * yE  0, t]

tFS = NSolve[σ[t] - 0.5 * yF  0, t]

Out[42]= {{t  0.49963}}

Out[43]= {{t  0.590472}}

Out[44]= {{t  0.721688}}

Out[45]= {{t  0.721688}}

Out[46]= {{t  0.927884}}

Out[47]= {{t  1.18094}}

Lets define the cost per pound for each material

In[48]:= costA = 1.4;(*$/lb*)

costB = 1.4;(*$/lb*)

costC = 1.0;(*$/lb*)

costD = 1.2;(*$/lb*)

costE = 0.5;(*$/lb*)

costF = 0.15;(*$/lb*)

Since all geometric parameters are fixed except for thickness, we do not need to calculate the weight of
the proposed design for each material.  We may simply calculate a cost metric for each material  as
follows. 
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In[54]:= CA1 = t * costA /. tAS〚1〛

CB1 = t * costB /. tBS〚1〛

CC1 = t * costC /. tCS〚1〛

CD1 = t * costD /. tDS〚1〛

CE1 = t * costE /. tES〚1〛

CF1 = t * costF /. tFS〚1〛

Out[54]= 0.699482

Out[55]= 0.826661

Out[56]= 0.721688

Out[57]= 0.866025

Out[58]= 0.463942

Out[59]= 0.177142

We will wait to make a design decision until both yield and fracture criteria have been addressed.

2. Fracture

For this problem, we will use The Newman and Raju 1981 empirical SIF equation. For this case with
b/2a = 0.25, we have a ratio b/a = 0.5. First, calculate the factors M1, M2, and M3 since they are the same
regardless of material.

In[60]:= ba = 0.5;

b = 0.5;

M1 = 1.13 - 0.09 * ba;

M2 = 0.89 * (0.2 + ba)-1
- 0.54;

M3 = 0.5 - (0.65 + ba)-1
+ 14 * (1 - ba)24;

Now we may define the stress intensity factor as a function of the design thickness t and angle θ accord-
ing to Newman & Raju.
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In[65]:= part1[t_] :=
p * r

t
π * b ;

part2[t_] := M1 + M2
b

t

2

+ M3
b

t

4

* 1 + 1.464 ba1.65
-0.5

;

part3[t_, θ_] := ba2 Cos[θ]2 + Sin[θ]2
0.25

;

part4[t_, θ_] := 1 + 0.1 + 0.35
b

t

2

(1 - Sin[θ])2 ;

K[t_, θ_] := part1[t] * part2[t] * part3[t, θ] * part4[t, θ];

Simplify[K[t, θ]]

Out[70]=

1

t
77 621.5 × 1.085 -

0.0230978

t4
+
0.182857

t2
×

1 + 0.1 +
0.0875

t2
(-1 + Sin[θ])2 0.25 Cos[θ]2 + Sin[θ]2

0.25

For the sake of comparison, we may investigate a reduced form of the Newman and Raju equation for
b
a
≈ 0.25. We shouldn’t expect this relationship to hold for our case since  b

a
= 0.5.

In[71]:= Kk[t_] := 1.13 *
p * r

t
* π * b * (1 - 0.08 * ba) * 1 + 1.464 * ba1.65

-0.5

The reduced relationship does not depend on θ, while the Newman & Raju form does. We are inter-
ested in the maximum stress intensity factors which will occur at θ =

π

2
. Lets plot the two approaches.

In[72]:= PlotEvaluate[Kk[t]] / 1000, Withθ =
π

2
, Evaluate[K[t, θ] / 1000],

{t, 0.5, 2}, AxesLabel  "thickness t (in)", "K (Ksi in )",

PlotLegends  {"reduced", "Newman & Raju"}

Out[72]=

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
thickness t (in)

100

150

200

K (Ksi in )

reduced

Newman & Raju

Here we see that the reduced form does not agree with the Newman & Raju equation and under esti-
mates the stress intensity factor! We will use the Newman & Raju system. Now lets find the minimum
thickness for each steel to meet fracture criteria.
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In[73]:= kA = 80 * 103;(*psi in *)

kB = 110 * 103;(*psi in *)

kC = 140 * 103;(*psi in *)

kD = 220 * 103;(*psi in *)

kE = 260 * 103;(*psi in *)

kF = 170 * 103;(*psi in *)

In[79]:= tAK = NSolveKt,
π

2
 - 0.5 * kA  0, t

tBK = NSolveKt,
π

2
 - 0.5 * kB  0, t

tCK = NSolveKt,
π

2
 - 0.5 * kC  0, t

tDK = NSolveKt,
π

2
 - 0.5 * kD  0, t

tEK = NSolveKt,
π

2
 - 0.5 * kE  0, t

tFK = NSolveKt,
π

2
 - 0.5 * kF  0, t

Out[79]= {{t  2.17827}, {t  -0.0414279 - 0.492018 },

{t  -0.0414279 + 0.492018 }, {t  0.295594}, {t  -0.285531}}

Out[80]= {{t  1.62438}, {t  -0.0535194 - 0.484202 },

{t  -0.0535194 + 0.484202 }, {t  0.297837}, {t  -0.28392}}

Out[81]= {{t  1.31225}, {t  -0.0634828 - 0.475603 },

{t  -0.0634828 + 0.475603 }, {t  0.300229}, {t  -0.282377}}

Out[82]= {{t  0.900071}, {t  -0.0817002 - 0.452464 },

{t  -0.0817002 + 0.452464 }, {t  0.307516}, {t  -0.278556}}

Out[83]= {{t  0.787924}, {t  -0.0875518 - 0.441753 },

{t  -0.0875518 + 0.441753 }, {t  0.311807}, {t  -0.276787}}

Out[84]= {{t  1.11205}, {t  -0.0715652 - 0.466782 },

{t  -0.0715652 + 0.466782 }, {t  0.302791}, {t  -0.280896}}

Similar to what was done for stress based minimum thickness, we may define a cost metric based on
the maximum allowable stress intensity factor as follows:
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In[85]:= CA2 = t * costA /. tAK〚1〛

CB2 = t * costB /. tBK〚1〛

CC2 = t * costC /. tCK〚1〛

CD2 = t * costD /. tDK〚1〛

CE2 = t * costE /. tEK〚1〛

CF2 = t * costF /. tFK〚1〛

Out[85]= 3.04958

Out[86]= 2.27413

Out[87]= 1.31225

Out[88]= 1.08008

Out[89]= 0.393962

Out[90]= 0.166808

Select best material

The best material and design will be based on the material with the lowest cost metric. We must only
look at the cost metric associated with a thickness that passes both criteria for a material.

In[91]:= Framed[Min[Max[CA1, CA2], Max[CB1, CB2],

Max[CC1, CC2], Max[CD1, CD2], Max[CE1, CE2], Max[CF1, CF2]]]

Out[91]= 0.177142

The material that meets all of the criteria and has the lowest cost is material F! The wall thickness is
limited by the yield strength and requires a thickness of at least 1.11 inches.
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Problem 3
Repeat the beer barrel problem discussed in class, by determining the reliability index assuming that
we have:

In[92]:=

Out[92]=

A small beer barrel of diameter 15” and wall thickness of 0.126” made of aluminum alloy exploded
when a pressure reduction valve malfunctioned and the barrel experienced the 610 psi full pressure of
the CO2 cylinder supplying it with gas. Afterwards,  cracks approximately 4.0 inch long by (probably)
0.07 inch deep were discovered on the inside of the salvaged pieces of the barrel. Independent tests

gave 40 ksi in  for KIc of the aluminum alloy. 
The question is whether the cracks were critical for the 610 psi of pressure?

Hint: try to understand and implement the code given in the assignment.

Solution

This problem was solved using a matlab code which is attached at the end of this assignment. The
likelihood of failure is estimated by randomly sampling the crack length “a”, the crack depth “b”, the
pressure “p,” and the critical stress intensity factor “KIc” on normal distributions characterized by the
mean and standard deviations given in the provided table. The capacity is compared to the demand
and a reliability index “beta” and probability of failure is determined. This analysis was conducted for
sample sizes of 10n where n is {3,4,5}. A summary of these calculations is provided below.

n=3: beta: 3.387822; probability of failure; 5.800000e-02; 3.522503e-04
n=4: beta: 3.364352; probability of failure; 5.840000e-02; 3.836174e-04
n=5: beta: 3.326491; probability of failure; 5.843000e-02; 4.397344e-04

We see that the results are in good agreement for each case with a beta of 3.33 calculated for n=5 with
a corresponding probability of failure of 5.843%. Here are the resulting probability density functions for
an approximate normal distribution and the real data. The PDF for the fit data is pretty much identical
for each case, so only the one for n=3 will be shown.
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n=3

In[93]:=

Out[93]=
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In[94]:=

Out[94]=
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n = 4

In[95]:=

Out[95]=

n=5
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In[96]:=

Out[96]=

As can be seen, as the number of samples increase, the smoother the plots become.
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Problem 4
Determine the residual strength diagram (crack size versus residual strength) in terms of a for longitudi-

nal surface flaws for both embedded and surface cracks with b
a
= 1 and b

a
= 0.3 in a pressurized cylinder

10 inch diameter with a wall thickness of 0.5 inch; assume K1 c = 35 ksi in , σy = 70 ksi. Use Newman’s

equation.

Solution - Surface Crack

In[97]:= Clear[p, r, t, y, b, ba, M1, M2, M3, σ]

In[98]:= (*ba = 0.5; MAKE THINGS A FUNCTION OF THIS*)

(*b = 0.5;*)

r = 5;(*in*)

t = 0.5;(*in*)

M1[ba_] := 1.13 - 0.09 * ba;

M2[ba_] := 0.89 * (0.2 + ba)-1
- 0.54;

M3[ba_] := 0.5 - (0.65 + ba)-1
+ 14 * (1 - ba)24;

In[103]:= part1[ba_, a_, p_] :=
p * r

t
π * ba * a ;

part2[ba_, a_] :=

M1[ba] + M2[ba] *
ba * a

t

2

+ M3[ba] *
ba * a

t

4

* 1 + 1.464 ba1.65
-0.5

;

part3[ba_, θ_] := ba2 Cos[θ]2 + Sin[θ]2
0.25

;

part4[ba_, a_, θ_] := 1 + 0.1 + 0.35
ba * a

t

2

(1 - Sin[θ])2 ;

K[ba_, a_, p_, θ_] := part1[ba, a, p] * part2[ba, a] * part3[ba, θ] * part4[ba, a, θ];

Simplify[K[ba, a, p, θ]]

Out[108]=

1

1 + 1.464 ba1.65
0.5

17.7245 a ba

1.13 - 0.09 ba + 4. a2 ba2 -0.54 +
0.89

0.2 + ba
+ 16. a4 ba4 0.5 + 14 (-1 + ba)24 -

1.

0.65 + ba

p 1 + 1.4 × 0.0714286 + 1. a2 ba2 (-1. + Sin[θ])2 ba2 Cos[θ]2 + Sin[θ]2
0.25

We will check for the maximum K at θ = 0 and θ =
π

2
. Lets look at θ =

π

2
 first.

θ =
π

2
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In[109]:= SimplifyKba, a, p,
π

2


Out[109]=

1

1 + 1.464 ba1.65
0.5

17.7245 a ba

1.13 - 0.09 ba + 4. a2 ba2 -0.54 +
0.89

0.2 + ba
+ 16. a4 ba4 0.5 + 14 (-1 + ba)24 -

1.

0.65 + ba
p

Now divide the stress intensity factor by KIc to establish a residual strength and solve for p.

In[110]:= K1c = 35 * 103;(*psi in *)

newK[ba_, a_, p_] := Kba, a, p,
π

2
  K1c; Simplify[newK[ba, a, p]]

Out[111]=

1

1 + 1.464 ba1.65
0.5

0.000506415 a ba

1.13 - 0.09 ba + 4. a2 ba2 -0.54 +
0.89

0.2 + ba
+ 16. a4 ba4 0.5 + 14 (-1 + ba)24 -

1.

0.65 + ba
p

Although this equation looks complicated, we must simply solve for p. Since we have divided K/KIc, we
want to know p when this ratio equals 1.

In[112]:= pK[ba_, a_] :=

1 + 1.464 * ba1.65
0.5

  0.0005064153859730045 * a * ba 1.13 - 0.09 * ba +

4. * a2 * ba2 -0.54 +
0.89

0.2 + ba
+ 16. * a4 * ba4 0.5 + 14 (-1 + ba)24 -

1.

0.65` + ba
;

Simplify[

pK[

ba,

a]]

Out[113]=

1974.66 1 + 1.464 ba1.65
0.5

a ba 1.13 - 0.09 ba + 4. a2 ba2 -0.54 +
0.89

0.2+ba
 + 16. a4 ba4 0.5 + 14 (-1 + ba)24 -

1.

0.65+ba


The stress will calculated using the same equation as for problem 2.

In[114]:= σ[p] :=
p * r * 3

2 * t
; Simplify[σ[p]]

Out[114]= 8.66025 p

We will plug in the expression for p into the previous equation to determine allowable strength versus
crack size.
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In[115]:= sigy = 70 * 103;(*psi*)

Now establish envelopes for the two cases where b
a
= 1 and b

a
= 0.3.

In[116]:= env1[a_] := Min[8.66025 * pK[1, a], sigy];

env2[a_] := Min[8.66025 * pK[0.3, a], sigy];

In[118]:= FramedPlot{env1[a], env2[a]}, {a, 0, 0.5},

AxesLabel  {"a (in)", "Allowable Strength (psi)"},

PlotLegends  "
b

a
= 1", "

b

a
= 0.3", PlotLabel  "Surface crack, θ = π / 2"

Out[118]=

0.1 0.2 0.3 0.4 0.5
a (in)

40000

50000

60000

70000

Allowable Strength (psi)

Surface crack, θ = π 2

b

a
= 1

b

a
= 0.3

In[119]:= θ = 0

Out[119]= 0

In[120]:= Simplify[K[ba, a, p, 0]]

Out[120]=

1

1 + 1.464 ba1.65
0.5

17.7245 a ba ba2
0.25

1.1 + 1.4 a2 ba2 ×

1.13 - 0.09 ba + 4. a2 ba2 -0.54 +
0.89

0.2 + ba
+ 16. a4 ba4 0.5 + 14 (-1 + ba)24 -

1.

0.65 + ba
p

Now divide the stress intensity factor by KIc to establish a residual strength and solve for p.

In[121]:= newK2[ba_, a_, p_] := K[ba, a, p, 0] / K1c; Simplify[newK2[ba, a, p]]

Out[121]=

1

1 + 1.464 ba1.65
0.5

0.000506415 a ba ba2
0.25

1.1 + 1.4 a2 ba2 ×

1.13 - 0.09 ba + 4. a2 ba2 -0.54 +
0.89

0.2 + ba
+ 16. a4 ba4 0.5 + 14 (-1 + ba)24 -

1.

0.65 + ba
p
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Solve for p as we did for θ =
π

2
. Since we have divided K/KIc, we want to know p when this ratio equals 1.

In[122]:= pK2[ba_, a_] :=

1 + 1.464 * ba1.65
0.5

 0.0005064153859730045 * a * ba ba2
0.25

1.1 + 1.4 * a2 * ba2 ×

1.13 - 0.09 * ba + 4.0 * a2 * ba2 -0.54 +
0.89

0.2` + ba
+ 16.0 *

a4 * ba4 0.5 + 14 * (-1 + ba)24 -
1.

0.65 + ba
;

Simplify[

pK2[

ba,

a]]

Out[123]= 1974.66 1 + 1.464 ba1.65
0.5

  a ba ba2
0.25

1.1 + 1.4 a2 ba2 ×

1.13 - 0.09 ba + 4. a2 ba2 -0.54 +
0.89

0.2 + ba
+ 16. a4 ba4 0.5 + 14 (-1 + ba)24 -

1.

0.65 + ba

Just like before, establish envelopes for the two cases where b
a
= 1 and b

a
= 0.3.

In[124]:= env01[a_] := Min[8.66025 * pK2[1, a], sigy];

env02[a_] := Min[8.66025 * pK2[0.3, a], sigy];

In[126]:= FramedPlot{env01[a], env02[a]}, {a, 0, 0.5},

AxesLabel  {"a (in)", "Allowable Strength (psi)"},

PlotLegends  "
b

a
= 1", "

b

a
= 0.3", PlotLabel  "Surface crack, θ = 0"

Out[126]=

0.1 0.2 0.3 0.4 0.5
a (in)

30000

40000

50000

60000

70000

Allowable Strength (psi)
Surface crack, θ = 0

b

a
= 1

b

a
= 0.3

Note that for both values of theta, the solutions for b
a

= 0.3  show that there is still  some residual

strength when the crack reaches 0.5”. This indicates that the vessel would “leak before fail”!
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Solution - Embedded crack

For an embedded crack, we will use the Cherepanov 1979 solution.

In[127]:= Clear[p, y, b, ba, M1, M2, M3, σ]

In[128]:= K[ba_, a_, p_, θ_] :=
p * r

t
π * ba * a * (Sin[θ])2 + (ba)2 * (Cos[θ])2

1

4 ;

Simplify[K[ba, a, p, θ]]

Out[128]= 17.7245 a ba ba2
1/4

p

As before, let θ = 0 and θ =
π

2

For θ = 0 

In[129]:= Simplify[K[ba, a, p, 0]]

Out[129]= 17.7245 a ba ba2
1/4

p

And for θ =
π

2

In[130]:= SimplifyKba, a, p,
π

2


Out[130]= 17.7245 a ba p

Now lets define the function for the residual strength by dividing by KIc and solving for p.

For θ = 0 

In[131]:= ppK0[ba_, a_] := K1c  17.724538509055158 * a * ba * ba2
1/4

;

Simplify[ppK0[ba, a]]

Out[131]=

1974.66

a ba ba2
1/4

For θ =
π

2

In[132]:= ppK[ba_, a_] := K1c  17.724538509055158 * a * ba ; Simplify[ppK[ba, a]]

Out[132]=

1974.66

a ba

We do not need to redefine the stress function. We may go ahead and define the envelope necessary to
show our residual strength diagram.
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For θ = 0

In[133]:= env210[a_] := Min[8.66025 * ppK0[1, a], sigy];

env220[a_] := Min[8.66025 * ppK0[0.3, a], sigy];

Extend the range for plotting to see the trends, but note that the wall  thickness is 0.5”,  so a crack
cannot extend further then that as the vessel will fail. 

In[135]:= FramedPlot{env210[a], env220[a]}, {a, 0, 1.0},

AxesLabel  {"a (in)", "Allowable Strength (psi)"},

PlotLegends  "
b

a
= 1", "

b

a
= 0.3", PlotLabel  "Embedded crack, θ = 0"

Out[135]=

0.2 0.4 0.6 0.8 1.0
a (in)

20000

30000

40000

50000

60000

70000

Allowable Strength (psi)
Embedded crack, θ = 0

b

a
= 1

b

a
= 0.3

For θ =
π

2

In[136]:= env21[a_] := Min[8.66025 * ppK[1, a], sigy];

env22[a_] := Min[8.66025 * ppK[0.3, a], sigy];
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In[138]:= FramedPlot{env21[a], env22[a]}, {a, 0, 0.5},

AxesLabel  {"a (in)", "Allowable Strength (psi)"},

PlotLegends  "
b

a
= 1", "

b

a
= 0.3", PlotLabel  "Embedded crack, θ = π / 2"

Out[138]=

0.1 0.2 0.3 0.4 0.5
a (in)

30000

40000

50000

60000

70000

Allowable Strength (psi)

Embedded crack, θ = π 2

b

a
= 1

b

a
= 0.3

Notice that for b
a
= 0.3  for both values of theta, there is still  some residual strength even once the

crack length equals the thickness (i.e. the crack “pierces” through the thickness of the vessel).  This
shows that for this situation, the pressure vessel would experience a “Leak Before Fail.”
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Problem 5
You are offered an opportunity to earn $10 million by simply hanging from a rope for only one minute.
The rope is attached to a glass sheet (300 cm long by 10 cm wide and 0.127 cm thick). Complicating the
situation is the fact that the glass sheet contains a central crack with total length of 1.62 cm that is

oriented parallel to the ground. The fracture toughness of the glass is 0.93 MPa m .

In[139]:=

Out[139]=

The rope is suspended 3 m above a pit of poisonous snakes. Would you try for the pot of gold?

Solution

For the sake of this problem, lets assume that a dead weight of 890N (~200lb) is acting on the glass
sheet.  The uncracked cross-sectional area of the glass is  100x1.27=127mm^2. The nominal stress is
thus:
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In[140]:= sig =
890.0

127.0
;

DecimalForm[sig, 0]

Out[141]//DecimalForm=

7.00787

So the far field stress is 7.01 MPa. 

For Middle Tension Panel, we may use the following formula to calculate the stress intensity factor
based on a polynomial expansion:

In[142]:= a = 16.2 / (2 * 1000); (*meters*)

W = 100.0 / 1000;(*meters*)

KI = 1 + 0.256 *
a

W
- 1.152 *

a

W

2

+ 12.2 *
a

W

3

* sig * π * a

Out[144]= 1.13988

Just to make sure, calculate again using the original formula

In[145]:= KIb = Sec
π * a

W
 * sig * π * a

Out[145]= 1.13635

The calculated stress intensity factor is 1.14 MPa m  for both calculations which exceeds the frac-

ture toughness of 0.93 MPa m , so I would not try for the pot of gold.
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Problem 6
(Open-ended) Using Newman’s solution and Mathematica/Matlab, write a function which will give the

stress  intensity  factor  for  an elliptical  hole  in  terms of  b
a

,  b
t

,  and the angle  θ.  Use this  function to

develop some relevant plots.
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In[146]:=

Out[146]=

Solution

In[147]:= Clear[p, r, t, y, b, ba, bt, M1, M2, M3, σ]
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In[148]:= (*ba = 0.5; MAKE THINGS A FUNCTION OF THIS*)

(*b = 0.5;*)

σ = 10;(*psi*)

M1[ba_] := 1.13 - 0.09 * ba;

M2[ba_] := 0.89 * (0.2 + ba)-1
- 0.54;

M3[ba_] := 0.5 - (0.65 + ba)-1
+ 14 * (1 - ba)24;

a = 1.0;

In[153]:= part1[ba_] := σ π * ba * a ;

part2[ba_, bt_] := M1[ba] + M2[ba] * (bt)2
+ M3[ba] * (bt)4 * 1 + 1.464 ba1.65

-0.5
;

part3[ba_, θ_] := ba2 Cos[θ]2 + Sin[θ]2
0.25

;

part4[bt_, θ_] := 1 + 0.1 + 0.35 (bt)2
 (1 - Sin[θ])2;

K[ba_, bt_, θ_] := part1[ba] * part2[ba, bt] * part3[ba, θ] * part4[bt, θ];

Simplify[K[ba, bt, θ]]

Out[158]=

1

1 + 1.464 ba1.65
0.5

17.7245 ba ba2
0.25

1.1 + 0.35 bt2 ×

1.13 - 0.09 ba + -0.54 +
0.89

0.2 + ba
bt2 + 0.5 + 14 (-1 + ba)24 -

1.

0.65 + ba
bt4

Fix b/t

In[159]:= Plot3D{K[ba, 0.2, θ]}, {θ, 0, π},

{ba, 0.02, 0.2}, AxesLabel  "θ", "b/a", "KI (ksi in )",

ColorFunction  "BlueGreenYellow", ViewPoint  {1.2, -2, 1},

BoxRatios  {1, 1, 1}, PlotLabel  "KI versus θ &
b

a
with

b

t
= 0.2"

Plot3D{K[ba, 0.4, θ]}, {θ, 0, π}, {ba, 0.02, 0.2},

AxesLabel  "θ", "b/a", "KI (ksi in )",

ColorFunction  "BlueGreenYellow", ViewPoint  {1.2, -2, 1},

BoxRatios  {1, 1, 1}, PlotLabel  "KI versus θ &
b

a
with

b

t
= 0.4"

Plot3D{K[ba, 0.8, θ]}, {θ, 0, π}, {ba, 0.02, 0.2},

AxesLabel  "θ", "b/a", "KI (ksi in )",

ColorFunction  "BlueGreenYellow", ViewPoint  {1.2, -2, 1},

BoxRatios  {1, 1, 1}, PlotLabel  "KI versus θ &
b

a
with

b

t
= 0.8"
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Out[159]=

Out[160]=
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Out[161]=

Fix b/a

In[162]:= Plot3D{K[0.01, bt, θ]}, {θ, 0, π},

{bt, 0.1, 0.8}, AxesLabel  "θ", "b/t", "KI (ksi in )",

ColorFunction  "BlueGreenYellow", ViewPoint  {1.2, -2, 1},

BoxRatios  {1, 1, 1}, PlotLabel  "KI versus θ &
b

t
with

b

a
= 0.01"

Plot3D{K[0.5, bt, θ]}, {θ, 0, π}, {bt, 0.1, 0.8},

AxesLabel  "θ", "b/t", "KI (ksi in )",

ColorFunction  "BlueGreenYellow", ViewPoint  {1.2, -2, 1},

BoxRatios  {1, 1, 1}, PlotLabel  "KI versus θ &
b

t
with

b

a
= 0.5"

Plot3D{K[1, bt, θ]}, {θ, 0, π}, {bt, 0.1, 0.8},

AxesLabel  "θ", "b/t", "KI (ksi in )",

ColorFunction  "BlueGreenYellow", ViewPoint  {1.2, -2, 1},

BoxRatios  {1, 1, 1}, PlotLabel  "KI versus θ &
b

t
with

b

a
= 1"
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Out[162]=

Out[163]=
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Out[164]=
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Homework 4
Thomas Allard
CVEN 7161

Problem 1
The following data were obtained from a series of tests conducted on pre-cracked specimens with 1
mm thickness

In[1]:=

Out[1]=

The load displacement curve for all cracks is linearly elastic up to the critical point.

Determine Gc from:
a)  The  load  displacement  records  (based  on  the  mean  of  the  measurements  in  between  two

consecutive values, and
b) from the compliance curve.

Discuss your results.

Solution

In[2]:= ClearAll["Global'*"]

Clear[c1, c2, c3, cc1, cc2, cc3, d1, d2, d3, dd1, dd2, dd3]

Determining the critical energy release rate from experimental data can be done in several different



ways. We will explore the results of several methods. 

(a) Gc from  load displacement records

In[4]:= alist = {30.0, 40.0, 50.5, 61.6, 71.7, 79.0};

Plist = {4.0, 3.5, 3.12, 2.8, 2.62, 2.56};

ulist = {0.4, 0.5, 0.63, 0.78, 0.94, 1.09};

We may determine Gc using the following formula:

G = 

i=1

n OAi Ai+1

ai+1 - ai

We have 6 data points, but we will set n=5 since there are only 5 consecutive steps between points. Lets
calculate each area directly.

In[7]:= area1 = 0.5 * (Plist〚1〛 * ulist〚2〛 - Plist〚2〛 * ulist〚1〛);

area2 = 0.5 * (Plist〚2〛 * ulist〚3〛 - Plist〚3〛 * ulist〚2〛);

area3 = 0.5 * (Plist〚3〛 * ulist〚4〛 - Plist〚4〛 * ulist〚3〛);

area4 = 0.5 * (Plist〚4〛 * ulist〚5〛 - Plist〚5〛 * ulist〚4〛);

area5 = 0.5 * (Plist〚5〛 * ulist〚6〛 - Plist〚6〛 * ulist〚5〛);

Now we’ll calculate each contribution to the energy release rate

In[12]:= da1 = 0.5 * (alist〚2〛 + alist〚1〛);

da2 = 0.5 * (alist〚3〛 + alist〚2〛);

da3 = 0.5 * (alist〚4〛 + alist〚3〛);

da4 = 0.5 * (alist〚5〛 + alist〚4〛);

da5 = 0.5 * (alist〚6〛 + alist〚5〛);

G1 = area1 / (alist〚2〛 - alist〚1〛) * 1000;

G2 = area2 / (alist〚2〛 - alist〚1〛) * 1000;

G3 = area3 / (alist〚2〛 - alist〚1〛) * 1000;

G4 = area4 / (alist〚2〛 - alist〚1〛) * 1000;

G5 = area5 / (alist〚2〛 - alist〚1〛) * 1000;

Lets plot this.
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In[22]:= gdata = Transpose[{{da1, da2, da3, da4, da5}, {G1, G2, G3, G4, G5}}];

ListLinePlot{gdata}, AxesLabel  "a (mm)", "G (J/m2)"

Out[23]=

40 50 60 70
a (mm)

24

26

28

30

32

34

G (J/m2)

In[24]:= gdata

Out[24]= {{35., 30.}, {45.25, 32.25}, {56.05, 33.48}, {66.65, 29.42}, {75.35, 22.47}}

In[25]:= Mean[{G1, G2, G3, G4, G5}]

Out[25]= 29.524

Using numerical derivatives, we calculate that the average energy release rate is 29.5 J/m2 while the
maximum is 33.5 J/m2!

(b) Gc from compliance curve

Lets start off by putting our data into lists and plotting. We’ll fit a quadratic curve to Pcr vs. a for rea-
sons that will be apparent later. 

In[26]:= data1 = Transpose[{ulist, Plist}];

data2 = Transpose[{alist, ulist}];

data3 = Transpose[{alist, Plist}];

ListLinePlot[data1, AxesLabel  {"ucr (mm)", "Pcr (kN)"}]

ListLinePlot[data2, AxesLabel  {"a (mm)", "ucr (mm)"}]

Pcoeffs = FindFitdata3, d1 * aa2 + (d2 * aa) + d3, {d1, d2, d3}, aa;

dd1 = d1 /. Pcoeffs〚1〛;

dd2 = d2 /. Pcoeffs〚2〛;

dd3 = d3 /. Pcoeffs〚3〛;

Pcr[aa_] = dd1 * aa2 + (dd2 * aa) + dd3; Simplify[Pcr[aa]]

Show[Plot[{Pcr[aa]}, {aa, 20, 90}, AxesLabel  {"a (mm)", "Pcr (kN)"}],

ListPlot[data3, PlotStyle  {Red, PointSize[0.02]}]]
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Out[29]=

0.5 0.6 0.7 0.8 0.9 1.0 1.1
ucr (mm)

3.0

3.5

4.0

Pcr (kN)

Out[30]=

40 50 60 70 80
a (mm)

0.2

0.4

0.6

0.8

1.0

ucr (mm)

Out[35]= 6.03197 - 0.0825085 aa + 0.000487821 aa2

Out[36]=

30 40 50 60 70 80 90
a (mm)

3.0

3.5

4.0

4.5

Pcr (kN)

Our trend-line for Pcr looks great.

We may compute the compliance by dividing each ucr by Pcr.

In[37]:= Clist = ulist / Plist

Out[37]= {0.1, 0.142857, 0.201923, 0.278571, 0.358779, 0.425781}
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Lets plot the compliance versus crack length a. Lets also fit a quadratic trend line to the data which will
be convenient later.

In[38]:= data4 = Transpose[{alist, Clist}];

coeffs = FindFitdata4, c1 * aa2 + (c2 * aa) + c3, {c1, c2, c3}, aa

Out[39]= {c1  0.0000583911, c2  0.000287841, c3  0.0385099}

In[40]:= cc1 = c1 /. coeffs〚1〛;

cc2 = c2 /. coeffs〚2〛;

cc3 = c3 /. coeffs〚3〛;

In[43]:= comp[aa_] := cc1 * aa2 + (cc2 * aa) + cc3;

In[44]:= Show[Plot[{comp[aa]}, {aa, 20, 90}, AxesLabel  {"a (mm)", "C (mm/kN)"}],

ListPlot[data4, PlotStyle  {Red, PointSize[0.02]}]]

Out[44]=

30 40 50 60 70 80 90
a (mm)

0.1

0.2

0.3

0.4

0.5

C (mm/kN)

It  looks like we have a perfect  fit!  To determine the energy release rate,  we will  use the following
equation:

G =
1

2

P2

B

dC

da

Where B is the specimen width which is 1mm and P is the critical load Pcr.

Lets first try to determine G using numerical derivatives and plot.

In[45]:= Clist2 = Clist〚2 ;; 6〛 - Clist〚1 ;; 5〛;

alist2 = alist〚2 ;; 6〛 - alist〚1 ;; 5〛;

Plist2 = 0.5 * (Plist〚2 ;; 6〛 + Plist〚1 ;; 5〛)

dCda = Clist2 / alist2

Out[47]= {3.75, 3.31, 2.96, 2.71, 2.59}

Out[48]= {0.00428571, 0.00562533, 0.00690526, 0.00794131, 0.00917844}
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In[49]:= Gg = 0.5 * (Plist2^2) * dCda

Out[49]= {0.0301339, 0.0308158, 0.0302505, 0.0291609, 0.030785}

In[50]:= data5 = Transpose[{alist〚1 ;; 5〛, Gg * 1000}];

In[51]:= ListLinePlotdata5, AxesLabel  "a (mm)", "G (J/m2)"

Out[51]=

40 50 60 70
a (mm)

29.5

30.0

30.5

G (J/m2)

In[52]:= Mean[Gg] * 1000

Out[52]= 30.2292

Based on this plot, we can see that the energy release rate calculated for each crack length is close
to each other. The average value is 30.2 J/m2and the max is 30.8 J/m2!

However, the plot above is very jagged. Lets use an approach with analytical derivatives using our the
curve-fits.

In[53]:= dCda2[aa_] := D[comp[aa], {aa, 1}]; Simplify[dCda2[aa]]

Out[53]= 0.000287841 + 0.000116782 aa

Now calculate energy release rate. We’ll need to use our trend-line for Pcr.

In[54]:= Gg2[aa_] :=
(Pcr[aa])2

2
* dCda2[aa]; Simplify[Gg2[aa]]

Out[54]= 1.38953 × 10-11 × (2.46477 + 1. aa) 12 365.1 - 169.137 aa + 1. aa2
2

Mathematica seems to have a hard time plotting this function directly, so we’ll redefine it.
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In[55]:= release[aa_] := 1.3895272400576719*^-11 × (2.4647685549212377 + aa)

12 365.140727904993 - 169.13697736800404 aa + aa2
2
 * 1000;

In[56]:= (*Plot[{Gg2[a]},{a,30,80}]*)

Plot{release[aa]}, {aa, 20, 80}, AxesLabel  "a (mm)", "G (J/m2)"

Out[56]=

30 40 50 60 70 80
a (mm)

28

29

30

31

G (J/m2)

Lets find the release rate corresponding to the top of the bump between crack lengths of 30 and 40
mm. 

In[57]:= dGda[aa_] := D[release[aa] , {aa, 1}];

acrit = NSolve[dGda[aa]  0, aa]

Out[58]= {{aa  36.7435}, {aa  62.7669}, {aa  84.5685 - 72.2033 }, {aa  84.5685 + 72.2033 }}

The solution for Gc occurs at a crack length of 36.74mm and is thus:

In[59]:= Framed[Gcrit = release[aa] /. acrit〚1〛]

Out[59]= 30.65

Finally, lets calculate the average energy release rate by integrating and dividing by the interval length
(between 20 and 80mm).

In[60]:= Framed[Integrate[release[aa], {aa, 20, 80}] / (80 - 20)]

Out[60]= 29.8992

Whether using numerical or analytical derivates, the average energy release rate calculated for each
method was 29.5, 30.2, and 29.9 J/m2. The maximum value for each method are calculated as 33.5,
30.8, and 30.7 J/m2. These methods all give roughly the same answer!

Homework-4_Thomas_Allard_corrected.nb     7



8     Homework-4_Thomas_Allard_corrected.nb



Problem 2
Assume that the R curve of a certain material can be represented by R = KIc

2

E
+ 0.4 (Δa)0.25 (kip / in), and

that KIc = 30 Ksi in , E=30,000 Ksi, and σy = 100 Ksi. For a center cracked panel of a thickness for which

the above R curve is applicable and of width W=50 in with a crack 2a=2in, calculate ac  (the final crack
size), σc (the fracture stress), and Δa (the final amount of stable growth).

Show graphically your results. Assume plane stress condition E’=E, and we can consider that for all
practical purposes we have an infinite plate (W>>2a).

Solution

In[61]:= ClearAll["Global'*"]

Clear[c1, c2, c3, cc1, cc2, cc3, d1, d2, d3, dd1, dd2, dd3, a, aa, da, G, Gg, release]

First, plot the R curve versus Δa. 

In[63]:= KIc = 30; (*Ksi*(in)^0.5*)

Emod = 30 000; (*Ksi*)

W = 50;(*in*)

sigy = 100;(*ksi*)

R[Δa_] :=
KIc2

Emod
+ 0.4 * (Δa)0.25;

a0 = 1;(*inch*)

Plot[{R[Δa]}, {Δa, 0.0, 20}, AxesLabel  {"Δa (in)", "R (kip/in)"}]

Out[69]=

5 10 15 20
Δa (in)

0.2

0.4

0.6

0.8

R (kip/in)

For a centered crack panel, we may calculate the stress intensity factor as follows:

In[70]:= K1[a_, s_] := Sec
π * a

W
 * s * π * a ;

However, W>>2a, we may set Sec π*a

W
 =1, so
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In[71]:= KI[a_, s_] := s * π * a ;

We may convert this to an energy release rate as follows:

In[72]:= G[a_, s_] :=
(KI[a, s])2

Emod
; Simplify[G[a, s]]

Out[72]=

a π s2

30 000

Lets look at several different energy release rates for varying applied stresses “s” versus the R curve

In[73]:= Plot[{R[da], G[a0 + da, 20], G[a0 + da, 30], G[a0 + da, 40], G[a0 + da, 50], , G[a0 + da, 60]},

{da, 0.0, 24}, AxesLabel  {"Δa (in)", "Energy release (kip/in)"},

PlotRange  {{0, 24}, {0, 1}}, PlotLegends 

{"R", "G(σ=20 ksi)", "G(σ=30 ksi)", "G(σ=40 ksi)", "G(σ=50 ksi)", "G(σ=60 ksi)"}]

Out[73]=

0 5 10 15 20
Δa (in)0.0

0.2

0.4

0.6

0.8

1.0

Energy release (kip/in)

R

G(σ=20 ksi)

G(σ=30 ksi)

G(σ=40 ksi)

G(σ=50 ksi)

G(σ=60 ksi)

Or in terms of the crack length “a”.
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In[74]:= Plot[{R[a - a0], G[a, 20], G[a, 30], G[a, 40], G[a, 50], , G[a, 60]},

{a, 0.0, 24}, AxesLabel  {"a (in)", "Energy release (kip/in)"},

PlotRange  {{0, 24}, {0, 1}}, PlotLegends 

{"R", "G(σ=20 ksi)", "G(σ=30 ksi)", "G(σ=40 ksi)", "G(σ=50 ksi)", "G(σ=60 ksi)"}]

Out[74]=

0 5 10 15 20
a (in)0.0

0.2

0.4

0.6

0.8

1.0

Energy release (kip/in)

R

G(σ=20 ksi)

G(σ=30 ksi)

G(σ=40 ksi)

G(σ=50 ksi)

G(σ=60 ksi)

Here we see that for applied stresses of 20, 30, and 40 ksi,  a long regime of stable crack growth is
possible because the energy release rate is less than the R-curve. We may determine how the critical
crack length changes as a function of applied stress as follows:

In[75]:= ac10 = NSolve[G[a, 10] - R[a - a0]  0, a]

ac15 = NSolve[G[a, 15] - R[a - a0]  0, a]

ac20 = NSolve[G[a, 20] - R[a - a0]  0, a]

ac25 = NSolve[G[a, 25] - R[a - a0]  0, a]

ac30 = NSolve[G[a, 30] - R[a - a0]  0, a]

ac35 = NSolve[G[a, 35] - R[a - a0]  0, a]

ac40 = NSolve[G[a, 40] - R[a - a0]  0, a]

ac45 = NSolve[G[a, 45] - R[a - a0]  0, a]

Out[75]= {{a  132.12}}

Out[76]= {{a  44.9953}}

Out[77]= {{a  20.8802}, {a  1.}}

Out[78]= {{a  11.4455}, {a  1.00006}}

Out[79]= {{a  6.94564}, {a  1.00067}}

Out[80]= {{a  4.49827}, {a  1.00372}}

Out[81]= {{a  3.02793}, {a  1.01504}}

Out[82]= {{a  2.05165}, {a  1.05502}}
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Lets put this in a table and plot.

In[83]:= acrList = {a /. ac10〚1〛, a /. ac15〚1〛, a /. ac20〚1〛,

a /. ac25〚1〛, a /. ac30〚1〛, a /. ac35〚1〛, a /. ac40〚1〛, a /. ac45〚1〛};

stresses = {10, 15, 20, 25, 30, 35, 40, 45};

ListLinePlot[Transpose[{stresses, acrList}], AxesLabel  {"stress (ksi)", "acr(in)"}]

Out[85]=

15 20 25 30 35 40 45
stress (ksi)

20

40

60

80

100

120

acr(in)

Since the plate is 50 inches wides, only cracks of 25 in or lower are even possible.  We see that for
stresses greater than 30 ksi, the critical crack length rapidly approaches 0. 

Lets investigate the unstable crack growth regime. We know that unstable crack growth occurs when:

G = R &
∂G

∂a
>

∂R

∂a

The critical point will be when the slopes of the G and R curves are equal AND G=R. Based on previously
shown plots, this is likely to occur around 50ksi of applied stress.
A  Matlab  code  was  written  to  iteratively  solve  for  this  point  of  tangency.  It  is  attached.  The  final
answers are:

In[86]:= Framed[σc = 48.9389]

Framed[ac = 1.2930]

Framed[Δac = ac - a0]

Out[86]= 48.9389

Out[87]= 1.293

Out[88]= 0.293

Lets plot these results
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In[89]:= Plot[{R[a - a0], G[a, σc]}, {a, 0.0, 5},

AxesLabel  {"a (in)", "Energy release (kip/in)"},

PlotRange  {{0, 5}, {0, 0.8}}, PlotLegends  {"R", "G(σc=48.94 ksi)"}]

Out[89]=

0 1 2 3 4 5
a (in)0.0

0.2

0.4

0.6

0.8

Energy release (kip/in)

R

G(σc=48.94 ksi)

For stresses below the critical stress of 48.94 ksi, stable crack growth occurs! Cracks do not grow until
energy release rate equals the resistance curve. After the crack starts to grow, the energy release rate
will decrease and no more energy can be released by the material without an increase in the applied
stress.  This stable crack growth will  continue until  the applied stress is 48.94 ksi.  At this point,  the
energy release rate is  tangent to the resistance curve.  An increase in stress will  result  in a sudden
release of energy that can not be arrested by the material. For this applied stress, the crack can only
grow an additional 0.293 inches. While the yield stress is 100 ksi, fracture occurs long before any yield-
ing is possible.
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Problem 3
Using the data from the previous problem, repeat the calculation for a finite sized panel with W=6in

and 2a=2 in and R = KIc
2

E
+ 0.4 (Δa)0.25 (kip / in). Assume plane stress conditions.

Solution

In[90]:= ClearAll["Global'*"]

Clear[c1, c2, c3, cc1, cc2, cc3, d1, d2, d3,

dd1, dd2, dd3, a, aa, da, G, Gg, release, R, K, K1, KI]

In[92]:= KIc = 30; (*Ksi*(in)^0.5*)

Emod = 30 000; (*Ksi*)

W2 = 6;(*in*)

sigy = 100;(*ksi*)

R[Δa_] :=
KIc2

Emod
+ 0.4 * (Δa)0.25;

a0 = 1;(*inch*)

In[98]:= K1b[a_, s_] := Sec
π * a

W2
 * s * π * a ;

In[99]:= Gb[a_, s_] :=
(K1b[a, s])2

Emod
; Simplify[Gb[a, s]]

Out[99]=

a π s2 Sec
a π

6


30 000

Similar to the previous problem, a Matlab code was used to solve this problem. The final results are
shown below:

In[100]:= Framed[σc = 43.7798]

Framed[ac = 1.1841]

Framed[Δac = ac - a0]

Out[100]= 43.7798

Out[101]= 1.1841

Out[102]= 0.1841
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In[103]:= Plot[{R[da], Gb[a0 + da, σc]}, {da, 0.0, 2},

AxesLabel  {"Δa (in)", "Energy release (kip/in)"},

PlotRange  {{0, 2}, {0, 1}}, PlotLegends  {"R", "G(σ=43.78 ksi)"}]

Out[103]=

0.0 0.5 1.0 1.5 2.0
Δa (in)0.0

0.2

0.4

0.6

0.8

1.0

Energy release (kip/in)

R

G(σ=43.78 ksi)

We can see that the energy release rate for the finite width plate is nonlinear compared to the previous
problem. The critical energy release rate for this problem is slightly lower at 43.78 kip/in compared to
48.94 kip/in. The critical crack length also decreased from 1.293 inches to 1.1841. 
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Problem 4
Consider a long strip of height 2h and thickness B with a crack length 2a subjected to a uniform stress σ
along its upper and lower faces. For a >> h, determine the stress intensity factor.

In[104]:=

Out[104]=

Note that:

In[105]:= M = -
qB

6
2 a2 - 6 ax + 3 x2 for 0 ⩽ x ⩽ a

U = 
0

a M2

2 EI
 x

Out[105]= 0 ≤ x ≤ a

Out[106]= 
0

a (0 ≤ x ≤ a)2

2 EI
x
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Solution

We may treat this problem symmetrically like two double cantilever beams (DCB) that are joined in the
middle. See the image of a DCM below borrowed from Zehnder 2012. 

In[107]:=

Out[107]=

We will need to analyze a traction applied to the top and bottom surfaces instead of an applied point
load. 

The second moment of area (or moment of inertia) can be calculated simply as:

In[108]:= ClearAll["Global'*"]

Clear[c1, c2, c3, cc1, cc2, cc3, d1, d2, d3,

dd1, dd2, dd3, a, aa, da, G, Gg, release, R, K, K1, KI]

In[110]:= Inert[B_, h_] :=
1

12
B * h3;

We'll define the moment “M” and the internal strain energy “U” as follows:
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In[111]:= M[q_, B_, a_, x_] :=
-q * B

6
* 2 a2 - 6 * a * x + 3 x2;

U[q_, B_, a_, x_, h_, Em_] := 2 * 
0

a (M(q, B, a, x))2

2 * Em * Inert(B, h)
x;

Simplify[U[q, B, a, x, h, Em]]

SetDelayed: Tag LessEqual in (0 ≤ x ≤ a)[q_, B_, a_, x_] is Protected.

SetDelayed: Tag Integrate in 
0

a (0 ≤ x ≤ a)2

2 EI
 x [q_, B_, a_, x_, h_, Em_] is Protected.

Out[112]= 
0

a (0 ≤ x ≤ a)2

2 EI
x [q, B, a, x, h, Em]

We want to take the potential energy (internal energy) and relate it to the energy release rate which will
then be related to the stress intensity factor. Here is the expression we wish to determine:

G =
∂U

∂A
=

1

2 B

∂U

∂a

The energy release rate is then

In[113]:= G[q_, B_, a_, x_, h_, Em_] := D[U[q, B, a, x, h, Em], {a, 1}] / (2 * B);

Simplify[G[q, B, a, x, h, Em]]

Out[113]=


(a≥0)2

2 EI
+ ∫0

a ∂a(0≤x≤a)×(0≤x≤a)

EI
x[q, B, a, x, h, Em] + ∫0

a (0≤x≤a)2

2 EI
x

(0,0,1,0,0,0)
[q, B, a, x, h, Em]

2 B

Lastly, we can determine the energy release rate as

KI = G * E

So

In[114]:= KI[q_, B_, a_, x_, h_, Em_] := G[q, B, a, x, h, Em] * Em ;

Framed[Simplify[KI[q, B, a, x, h, Em]]]

Out[114]=

Em 
(a≥0)2

2 EI
+∫

0

a ∂a(0≤x≤a)×(0≤x≤a)

EI
x[q,B,a,x,h,Em]+∫

0

a (0≤x≤a)2

2 EI
x

(0,0,1,0,0,0)

[q,B,a,x,h,Em]

B

2

This is the stress intensity factor! Simplifying further:

KI =
2 qa2

3 h3
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Homework 5
Thomas Allard
CVEN 7161

Problem 1
A large plate, containing a crack length of 4mm oriented at an angle β = 60° with respect to the direc-
tion of the applied uniaxial tensile stress σ, fractures at a value of σc  = 1,000 MPa. Using the minimum
strain energy density model, compute KIc with E = 210 GPa and ν = 0.3.



In[1]:=

Out[1]=

Solution

In[2]:= ClearAll["Global'*"]

Clear[θ]
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Background from Sih and Gdoutos

Sih formulated the Minimum Strain Energy Density Criteria in 1974. The strain energy density per unit
volume can be calculated using the following formula.
dU

dV
=

1

2 E
σxx

2
+ σyy

2
+ σzz

2
 -

ν

E
σxx σyy + σyy σzz + σzz σxx +

1

2 μ
σxy

2
+ σyz

2
+ σzx

2


Sih defines the following strain energy density factor S for 2D geometries as follows:

S = a11 KI
2
+ 2 a12 KI KII + a22 KII

2

Where

a11 =
1

16 πμ
((κ - Cos[θ]) (1 + Cos[θ]))

a12 =
1

16 πμ
Sin[θ] (2 Cos[θ] - (κ - 1))

a22 =
1

16 πμ
((κ + 1) (1 - Cos[θ]) + (1 + Cos[θ]) × (3 Cos[θ] - 1)

Calculations

First, we need to transform our stress vector (assuming σ = σc) to determine KI  and KII  in the x’ and y’
directions. 

In[4]:= σc = 1000.0;(*MPa*)

β = π / 3;

βrot = (π / 2) - β;

σ' =
Cos[βrot] Sin[βrot]

-Sin[βrot] Cos[βrot]
.

0 0

0 σc
.

Cos[βrot] -Sin[βrot]

Sin[βrot] Cos[βrot]
;

MatrixForm[Simplify[σ']]

Out[7]//MatrixForm=

250. 433.013

433.013 750.

The stress intensity factors are then calculated with the shape parameter equal to 1 for an infinitely
wide plate.

In[8]:= KI[a_] := σ'〚2, 2〛 * π * a ; Simplify[KI[2]]

KII[a_] := σ'〚1, 2〛 * π * a ;

Simplify[KII[2]]

Out[8]= 1879.97

Out[9]= 1085.4

We need to calculate the shear modulus.
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In[10]:= Em = 210 000;

nu = 0.3;

mu = Em / (2 * (1 + nu))

Out[12]= 80 769.2

First, we will assume plane stress conditions. Therefore kappa:

In[13]:= kappa = (3 - nu) / (1 + nu)

Out[13]= 2.07692

The coefficients a11, a12, and a22 can be defined as follows:

In[14]:= (*theta=π/3;(*60 degrees*)*)

a11[θ_] := (1 / (16 * mu)) * ((kappa - Cos[θ]) * (1 + Cos[θ]));

a12[θ_] := (Sin[θ] / (16 * mu)) * (2 * Cos[θ] - (kappa - 1));

a22[θ_] := (1 / (16 * mu)) * ((kappa + 1) * (1 - Cos[θ]) + (1 + Cos[θ]) * (3 * Cos[θ] - 1));

Now define a function for the strain energy density factor.

In[17]:= S[a_, θ_] := a11[θ] * KI[a]2 + (2 * a12[θ] * KI[a] * KII[a]) + a22[θ] * KII[a]2
;

Simplify[S[a, θ]]

Out[17]= a 3.78674 + 6.66134 × 10-16 Cos[θ]2 - 1.70044 Sin[θ] + Cos[θ] (0.981748 + 3.15795 Sin[θ])

The fundamental hypothesis of the strain energy density criterion are that (1) the crack will extend in
the direction of minimum strain energy density and (2)  crack extension occurs when the minimum
strain energy density factor, S = Smin, reaches a critical values, say Scr. This results in two criterion for
the strain energy density in which we will look for the critical crack propagation angle θc.
∂S

∂θ
= 0

∂2S

∂θ2
> 0

Take the first and second derivatives of S with respect to θ.
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In[18]:= dS[a_, θ_] := D[S[a, θ], {θ, 1}]; Simplify[dS[a, θ]]

ddS[a_, θ_] := D[S[a, θ], {θ, 2}];

Simplify[ddS[a, θ]]

Out[18]= a 3.15795 Cos[θ]2 +

Cos[θ] -1.70044 - 1.33227 × 10-15 Sin[θ] + (-0.981748 - 3.15795 Sin[θ]) Sin[θ]

Out[19]= a -1.33227 × 10-15 Cos[θ]2 +

Cos[θ] (-0.981748 - 12.6318 Sin[θ]) + 1.70044 + 1.33227 × 10-15 Sin[θ] Sin[θ]

As outlined by Gdoutos 1989, for a particular problem under consideration with known values of KI and
KII the value of crack extension angle θc can be determined by finding the roots of the preceding equa-
tions.  By substituting θc  into  the stress  energy density  factor,  the value of  Smin  is  determined and
equated to the critical strain energy density factor Scr to determine if crack propagation will occur. 

A Matlab script (attached at the end of this assignment) was written that performs the calculation of θc. 
In  the rotated coordinate frame,  a  value of  for  θc  was determined as   -38.3776°  or   8.3776°  with
respect to the original Cartesian frame. The plot below shows the variation in the strain energy per unit

volume with angle theta. We see the ∂S
∂θ

 has two roots, but only one of which occurs when ∂
2S

∂θ2
> 0. It

should be noted that this will give an Scr that isn’t necessarily the minimum value of S. 
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In[20]:=

Out[20]=
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In[21]:= θc = -38.3776 *
π

180
;

a11[θc]

a12[θc]

a22[θc]

Out[22]= 1.78487 × 10-6

Out[23]= -2.35858 × 10-7

Out[24]= 2.38051 × 10-6

We may now calculate Scr.

In[25]:= Scr = S[2, θc]

Out[25]= 8.15019

And finally the critical stress intensity factor is determined using the following formula:

In[26]:= FramedKIc =
Scr * 8 * π * mu

(kappa - 1)


Out[26]= 3919.53

This is our stress intensity factor!! The same procedure could be repeated for plane strain conditions by
simply changing the expression for kappa.
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Problem 2
For the preceding problem, plot the deviatoric and volumetric strain energy densities around the crack
tip.

Solution

The strain energy density (per unit volume) may be decomposed into deviatoric (D) and volumetric (V)
components as follows:
dW

dV
=

dW

dV D
+

dW

dV V

dW

dV D
=
1 + ν

6 E
σxx - σyy

2
+ σyy - σzz

2
+ (σzz - σxx)

2
+ 6 σxy

2
+ σyz

2
+ σzx

2


dW

dV V
=
1 - 2 ν

6 E
σxx + σyy + σzz

2

In 2D plane stress, σyz=σxz=0 and σzz=0. Thus

dW

dV D
=
1 + ν

6 E
σxx - σyy

2
+ σyy

2
+ (σxx)

2
+ 6 σxy

2


dW

dV V
=
1 - 2 ν

6 E
σxx + σyy

2

Plots were generated using the same Matlab code as for the previous problem. 

Below is a plot of the Volumetric strain energy
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In[27]:=

Out[27]=

Below is a plot of the Deviatoric strain energy
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In[28]:=

Out[28]=

The  volumetric  strain  energy  represents  the  strain  energy  associated  with  volume  change  and  no
shape change. The deviatoric strain energy represents the strain energy associated with distortional
shape change and no volume change. 
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Problem 3
Repeat for pure Mode I and Mode II cases.

Solution

Mode I

The two stress intensity factors will now be defined as 

In[29]:= KIa[a_] = σc * π * a ;

KIIa = 0;

And the strain energy density factor is then

In[31]:= Sa[a_, θ_] := a11[θ] * KIa[a]2 + (2 * a12[θ] * KIa[a] * KIIa) + a22[θ] * KIIa2;

Simplify[Sa[a, θ]]

Out[31]= -2.43099 a (-2.07692 + Cos[θ]) × (1. + Cos[θ])

The same Matlab code is used again to determine θc  which is calculated as  0° as expected. The plot
below shows the variation in S  and its  derivatives with angle,  clearly  showing 0°  to  be the critical
direction of strain energy factor.
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In[32]:=

Out[32]=

In[33]:= θca = 0;

The stain energy factor is thus

In[34]:= Scra = Sa[2, θca]

Out[34]= 10.472

And the critical stress intensity factor
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In[35]:= FramedKIca =
Scra * 8 * π * mu

(kappa - 1)


Out[35]= 4442.88

We may plot the Volumetric strain energy using the same Matlab code as before.

In[36]:=

Out[36]=

And the Deviatoric strain energy
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In[37]:=

Out[37]=

These plots show that the strain energy is symmetric about a line parallel and coincident with the crack
front as expected! The deviatoric strain energy is more intense and occupies a larger region than the
volumetric strain energy.

Mode II

The two stress intensity factors will now be defined as 

In[38]:= KIb = 0;

KIIb[a_] = σc * π * a ;
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And the strain energy density factor is then

In[40]:= Sb[a_, θ_] := a11[θ] * KIb2 + (2 * a12[θ] * KIb * KIIb[a]) + a22[θ] * KIIb[a]2
;

Simplify[Sb[a, θ]]

Out[40]= 7.29298 a 0.692308 - 0.358974 Cos[θ] + Cos[θ]2


The same Matlab code is used again to determine θc  which is calculated as  -79.6601°. The plot below
shows the variation in S and its derivatives with angle. Notice that the negative of the calculated angle,
79.6601° is also a valid solution!

In[41]:=

Out[41]=
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In[42]:=

In[43]:= θcb = -79.6601 *
π

180
;

The stain energy factor is thus

In[44]:= Scrb = Sb[2, θcb]

Out[44]= 9.62808

The same strain energy factor is calculated for the negative of the angle!

In[45]:= Scrb = Sb[2, -1 * θcb]

Out[45]= 9.62808

And the critical stress intensity factor

In[46]:= FramedKIcb =
Scrb * 8 * π * mu

(kappa - 1)


Out[46]= 4260.11

We may plot the Volumetric strain energy using the same Matlab code as before.

16     Homework-5_Thomas_Allard_corrected.nb



In[47]:=

Out[47]=

And the Deviatoric strain energy
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In[48]:=

Out[48]=

These plots are also symmetric. It is interesting to see that there is a considerable amount of strain
energy behind the crack tip for the the deviatoric component and the volumetric part is almost only
behind the crack tip. 
Considering the result that the new crack propagation angle could be -79.6601° or 79.6601, this prob-
lem sheds light on the complexity of this system and a potentially non-unique solution under ideal
circumstances.  This  point  may be worth paying attention to  in  the  context  of  crack branching.  Or
perhaps in a heterogeneous system, there may be an imperfection that results in a preferential crack
growth in one of these two directions.
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Problem 4
For the first problem, plot the plastic zone size for plane strain and for plane stress. Assume σy  = 2,000

MPa.

Solution

First, we will discuss how the plastic zone will be calculated under plane stress and plane strain condi-
tions. The plot for both cases will be shown at the end

Plane Stress

We may use the same system for stress and strain energy density as was used for problem 1.

We will  determine the plastic  zone size  using the most  straightforward model.  We will  equate  the
deviatoric stress (which is associated with distortion and therefore yielding) to the square of the yield
stress of 2000 MPa and search for the radius of the plastic zone as a function of angle θ. Our criteria:

σy
2
-

1

2
σxx[r, θ] - σyy[r, θ]

2
+

σyy[r, θ] - σzz[r, θ]
2
+ (σzz[r, θ] - σxx[r, θ])

2
+ 6 σxy[r, θ]

2
 = 0

For plane stress where σzz =0, this reduces to

σy
2
-

1

2
σxx[r, θ] - σyy[r, θ]

2
+ σyy[r, θ]

2
+ (σxx[r, θ])

2
+ 6 σxy[r, θ]

2
 = 0

The stresses of interest are calculated as follows

σxx[r, θ] =

KI

2 πr
Cos

θ

2
 1 - Sin

θ

2
 × Sin

3 θ

2
 -

KII

2 πr
Sin

θ

2
 2 + Cos

θ

2
 × Cos

3 θ

2


σyy[r, θ] =
KI

2 πr
Cos

θ

2
 1 + Sin

θ

2
 × Sin

3 θ

2
 +

KII

2 πr
Sin

θ

2
 × Cos

θ

2
 × Cos

3 θ

2


σxy[r, θ] =
KI

2 πr
Cos

θ

2
 × Sin

θ

2
 × Cos

3 θ

2
 +

KII

2 πr
Cos

θ

2
 1 - Sin

θ

2
 × Sin

3 θ

2


The attached Matlab code then searches for the radius that meets this criteria for each angle of θ from
0 to 2π.

Plane Strain

For plane strain, the out-of-plane stress is no longer zero. This stress may be calculated as follows:

σzz = ν σxx + σyy

Our yield criteria for plane strain is then the same as the original one shown (before removing σzz  for
plane stress).

The attached Matlab code then searches for the radius that meets this criteria for each angle of θ from
0 to 2π .
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Final Plot

The final plot for the plastic zone sizes, using the same Matlab script, is shown below

In[49]:=

Out[49]=

As expected, the plastic zone looks like a peanut for plane strain and a kidney for plane stress. Under
plane strain conditions, the additional out-of-plane stress σzz  significantly contributes to the “right-
hand side” of the yield criteria thus reducing the plastic zone radius. With σzz = 0 for plane stress, this
contribution changes the stress state for yield and the plastic zone is much larger in size. 

Part : Part 1 of {} does not exist.

Part : Part 3 of {}〚1〛 does not exist.
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Set: Tag Part in {}〚1〛〚3〛[Source] is Protected.

Lookup: The argument {}〚1〛〚3〛 is not a valid Association or a list of rules.

Set: Part 3 of {}〚1〛 does not exist.

Part : Part specification KeyAbsent is not applicable.

Append: Nonatomic expression expected at position 1 in Append[KeyAbsent, Switch[Missing[

KeyAbsent, Source], _List, None, _After, -1, _Before, 1]].

Part : The expression Switch[Missing[KeyAbsent, Source], _List, None, _After, -1, _Before, 1] cannot be used as a part

specification.

Append: Append called with 3 arguments; 1 or 2 arguments are expected.

Part : The expression Switch[Missing[KeyAbsent, Source], _List, None, _After, -1, _Before, 1] cannot be used as a part

specification.

Append: Append called with 4 arguments; 1 or 2 arguments are expected.

Part : The expression Switch[Missing[KeyAbsent, Source], _List, None, _After, -1, _Before, 1] cannot be used as a part

specification.

General : Further output of Part::pkspec1 will be suppressed during this calculation.

Append: Append called with 5 arguments; 1 or 2 arguments are expected.

General : Further output of Append::argt will be suppressed during this calculation.

MapAt: Position specification Append[KeyAbsent, Switch[Missing[

KeyAbsent, Source], _List, None, _After, -1, _Before, 1], Switch[Missing[

KeyAbsent, Source], _List, None, _After, -1, _Before, 1],6, Switch[Missing[

KeyAbsent, Source], _List, None, _After, -1, _Before, 1],991] in

MapAtFunctionCodeInspector`LinterUI`Private`token$, CodeInspector`LinterUI`Private`varSetNotebookObject

Homework-5_Thomas_Allard_corrected.nb , CellObject Input , InspectionObject An internal error
Source: Missing

inactive; WithCodeInspector`LinterUI`Private`markup$ = DynamicModuleBox[{2}, Evaluate[1], RuleDelayed[

2]], If[1], , Append[1] is not a machine-sized integer or a list of

machine-sized integers.
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MapAt: Position specification Append[KeyAbsent, Switch[Missing[

KeyAbsent, Source], _List, None, _After, -1, _Before, 1], Switch[Missing[

KeyAbsent, Source], _List, None, _After, -1, _Before, 1],6, Switch[Missing[

KeyAbsent, Source], _List, None, _After, -1, _Before, 1],991] in

MapAtFunctionCodeInspector`LinterUI`Private`token$, CodeInspector`LinterUI`Private`varSetNotebookObject

Homework-5_Thomas_Allard_corrected.nb , CellObject Input , InspectionObject An internal error
Source: Missing

inactive; WithCodeInspector`LinterUI`Private`markup$ = DynamicModuleBox[{2}, Evaluate[1], RuleDelayed[

2]], If[1], , Append[1] is not a machine-sized integer or a list of

machine-sized integers.

Homework-5_Thomas_Allard_corrected.nb     23



Homework 6
Thomas Allard
CVEN 7161

A pipe with 1.10m outside diameter and 50 mm thick wall contains a long axial flaw 10 mm deep. The
material properties have been fit to a Ramberg-Osgood equation: σy  = 450 MPa, ϵy =

σy

E
, α = 1.25, n = 7,

and E = 207,000 MPa.

1. Plot the applied Jel, Jpl, and J versus internal pressure.

2. If JIc is 300 kJ/m2, determine the pressure required to initiate ductile crack growth.

3. What would be the pressure to initiate brittle crack growth? Assume KIc = 110 MPa m



In[1]:=

Out[1]=

Solution

In[2]:= ClearAll["Global'*"]

As mentioned in the course notes, the solution of a plastic problem involves the determination of the J
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integral.  This usually involves a finite element analysis,  but a first order approximation of J can be
achieved. Following the simplified engineering approach for a Ramberg-Osgood material, we can write:

J = Je (ae) + Jp (a, n)

In[3]:= r0 = 1.10 / 2;(*meters*)

t = 0.05;(*meters*)

ri = r0 - t;

a0 = 0.01;(*meters*)

b = t - a0;

σy = 450 * 106;(*Pa*)

Emod = 207 000 * 106;(*Pa*)

α = 1.25;

n = 7;

ϵy = σy  Emod;

W = t;

(1) Determine J integrals

We will follow the solution outlined by Kumar et al. 1981 for an axially cracked cylinder (section 4.2).

Elastic

In the linear elastic range, the stress intensity factor can be written as:

KIe =
2 p R0

2 πa

R0
2 - Ri

2
F

a

b
,
Ri

R0

The function for F 
a

b
, Ri

R0
 is determined by interpolating values in the table provided by Kumar et al.

1981 which is shown below. For our case, W
Ri

 is  1
10

. Also, a
W

 is a
t
=

1
5

. We will interpolate between a /W =
1
8

and a /W =
1
4

 to determine the function F.

In[14]:= W / ri

Out[14]= 0.1
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In[15]:=

Out[15]=

In[16]:= Fa = 1.20;

Fb = 1.44;

In[18]:= F = Fa +
1

5
-
1

8
*
Fb - Fa

1

4
-

1

8

Out[18]= 1.344

So, the elastic stress intensity factor as a function of pressure is given as:

In[19]:= KIe[p_] :=
2 p r02 π * a0

r02 - ri2
F;

Simplify[KIe[p]]

Out[20]= 2.74518 p

The elastic J integral is then

In[21]:= Jel[p_] :=
KIe[p]2

Emod
;

Simplify[Jel[p]]

Out[22]= 3.64058 × 10-11 p2

Plastic

We can  write the fully plastic J solution as :

Jp = αϵy σy b
a

W
h1 

a

W
, n

P

P0

n+1
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The limit load, P0, can be calculated as:

In[23]:= P0 =
2

3

b * σy

ri + a0

Out[23]= 4.07541 × 107

The table below shows the h - functions for an internally pressurized, axially cracked cylinder as investi-
gated by Kumar et al. 1981. 

In[24]:=

Homework-6_Thomas_Allard_corrected.nb     5



Out[24]=

For our case,  W
Ri

 is  1
10

.  In our case,  a
W

 is  a
t
=

1
5

.  We will  interpolate between a /W =
1
8

 and a /W =
1
4

 to

determine h1 and h2 for n=7.

In[25]:= h1a = 9.34;

h1b = 7.78;

h2a = 8.02;

h2b = 6.01;

In[29]:= h1 = h1a +
1

5
-
1

8
*
h1b - h1a

1

4
-

1

8

h2 = h2a +
1

5
-
1

8
*
h2b - h2a

1

4
-

1

8

Out[29]= 8.404

Out[30]= 6.814

Finally, lets determine the plastic J integral.
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In[31]:= Jpl[p_] := α * ϵy * σy * b *
a0

W
* h1 *

p

P0

n+1

;

Simplify[Jpl[p]]

Out[32]= 1.08036 × 10-56 p8

So the total integral is :

In[33]:= J[p_] := Jel[p] + Jpl[p];

Framed[Simplify[J[p]]]

Out[34]= 3.64058 × 10-11 p2 + 1.08036 × 10-56 p8

In[35]:= FramedPlotJelp * 106  1000, Jplp * 106  1000, Jp * 106  1000, {p, 0, 60},

AxesLabel  "pressure (MPa)", "J (kJ/m2)", PlotLegends  {"Jel", "Jpl", "J"}

Out[35]=

10 20 30 40 50 60
pressure (MPa)

100

200

300

400

500

J (kJ/m2)

Jel

Jpl

J

(2) Ductile crack growth

In[36]:= JIc = 300 * 1000;(*J/m^2*)

We simply need to find the pressure associated with J equaling the critical value.

In[37]:= Pcpl = NSolve[J[p] - JIc  0, p]

Out[37]= p  -4.61539 × 107, p  -3.51182 × 107 - 3.27632 × 107 ,

p  -3.51182 × 107 + 3.27632 × 107 , p  0. - 4.94965 × 107 ,

p  0. + 4.94965 × 107 , p  3.51182 × 107 - 3.27632 × 107 ,

p  3.51182 × 107 + 3.27632 × 107 , p  4.61539 × 107

Here the solution of interest (ignoring negative or imaginary pressures) is when the pressure is equal to
46.15 MPa!
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In[38]:= Framedp  106 /. Pcpl〚8〛

Out[38]= 46.1539

(3) Brittle Crack Growth

In[39]:= KIc = 110 * 106;(*Pa m *)

We simply need to find the pressure associated with KIe equaling the critical value.

In[40]:= Pcel = NSolve[KIe[p] - KIc  0, p]

Out[40]= p  4.00703 × 107

Here the solution of interest is is when the pressure is equal to 40.1 MPa!

In[41]:= Framedp  106 /. Pcel〚1〛

Out[41]= 40.0703

Alternatively, we can convert KIc to an equivalent energy release rate.

In[42]:= Gc =
KIc2

Emod
; DecimalForm[Gc, 2]

Out[42]//DecimalForm=

12100000

207

In[43]:= Pcel2 = NSolve[Jel[p] - Gc  0, p]

Out[43]= p  -4.00703 × 107, p  4.00703 × 107

In[44]:= Framedp  106 /. Pcel2〚2〛

Out[44]= 40.0703

Now we have the same answer as before. It looks like brittle crack growth is more likely than plastic! 
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Homework 7
Thomas Allard
CVEN 7161

Problem 1
The crack growth properties of a a certain material can be described by

da

dN
= 1*10-8 ΔK2 Kmax

1.5

If the geometric factor β is equal to 1, what would be the rate of growth of a crack of length a = 0.5 in if
σmax = 12 Ksi, and R = 0.2? 
How many cycles does it take for this crack to grow to a = 0.51 in?

Solution

Crack Growth Rate

A shortcoming of Paris’s law is it’s inability to account for an increase in crack growth rate as Kmax

approaches KIC. Several models have been proposed to address this issue. The following image (bo-
rrowed from the lecture slides) qualitatively compares Paris’s law with a model proposed by Forman:



In[1]:=

Out[1]=

Since we know the function (da/dN) for  our material,  the crack growth rate can be determined by
differentiating with respect to ΔK. First, lets manipulate our equations.
da

dN
= 1 * 10-8 ΔK2 Kmax

1.5

R = 0.2 =
Kmin

Kmax
=

σmin

σmax

 Kmin = 0.2 Kmax, σmin = 0.2 σmax

ΔK = Kmax - Kmin = Kmax - 0.2 Kmax = 0.8 Kmax  Kmax =
ΔK

0.8
= 1.25 ΔK

da

dN
= 1 * 10-8 ΔK2 (1.25 ΔK)1.5

Do some algebra
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In[2]:= dadN[ΔK_] := 1 * 10-8 * ΔK2 * (1.25 * ΔK)1.5;

Simplify[dadN[ΔK]]

Out[3]= 1.39754 × 10-8 ΔK3.5

In[4]:= σmax = 12;(*KSi*)

a = 0.5;(*inches*)

rate = WithΔK = 0.8 σmax π * a , Evaluate[dadN[ΔK]];

Framed[rate]

Out[7]= 0.0000844353

This is the crack growth rate!

Cycles to reach a=0.51 inches

The number of cycles for the crack to grow from 0.50” to 0.51” can simply be evaluated as

In[8]:= Nn =
0.01

rate

Out[8]= 118.434

So it will take ~118 cycles for the crack to grow from 0.5 to 0.51 inches!
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Problem 2
The following data was obtained from crack growth tests at constant amplitude for a center crack with
W = 20 inches.

In[9]:=

Out[9]=

(a) Establish the rate diagram (i.e. compute Δa / ΔN, ΔK for each of the two sets, and for both R = 0 and
R = 0.5.
(b) Determine the Paris Law constants C and n (take the log of the Paris law, and you will have two
linear equations in terms of C and n).

Solution

(a) Rate diagram

Lets calculate Δa for both rows of data.

In[10]:= Δa1 = 0.105 - 0.1;

Δa2 = 1.55 - 1.5;

ΔN for each set of data is determined simply.

In[12]:= ΔN11 = 1100;

ΔN12 = 100;

ΔN21 = 2000;

ΔN22 = 170;

Lastly, we will need to calculate ΔK . 

ΔK = Kmax - Kmin = (σmax - σmin) β πa = Δσβ πa

For a center cracked panel:
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β = sec 
πa

W
 ≈ 1 + 0.256 * 

a

W
 - 1.152 * 

a

W

2

+ 12.2 * 
a

W

3

Lets assume that "a" refers to the initial crack length . Since we are using Mathematica, lets use the
Secant form for β .

In[16]:= W = 20;(*inches*)

ΔK11 = (16) * Sec
π * (0.1)

W
 * π * (0.1)

ΔK12 = (16) * Sec
π * (1.5)

W
 * π * (1.5)

ΔK21 = (10) * Sec
π * (0.1)

W
 * π * (0.1)

ΔK22 = (10) * Sec
π * (1.5)

W
 * π * (1.5)

Out[17]= 8.96854

Out[18]= 35.2229

Out[19]= 5.60534

Out[20]= 22.0143

Lets arrange our data  and plot for the two cases (R=0 and R=0.5)

In[21]:= series1 = {{ΔK11, Δa1 / ΔN11}, {ΔK12, Δa2 / ΔN12}};

series2 = {{ΔK21, Δa1 / ΔN21}, {ΔK22, Δa2 / ΔN22}};

Framed[ListLinePlot[{series1, series2},

PlotLegends  {"R=0", "R=0.5"}, AxesLabel  {"ΔK", "Δa/ΔN"}]]

Out[23]=

5 10 15 20 25 30 35
ΔK

0.0001

0.0002

0.0003

0.0004

0.0005

Δa/ΔN

R=0

R=0.5
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(b) Paris Law Constants

We can determine the constants for Paris's law by “hand.” In general:
Δa

ΔN
= C (ΔK)n  log

Δa

ΔN
= log (C) + n * log (ΔK)

For both cases (R = 0 and R = 0.5) we have 2 equations and 2 unknowns .
For R = 0 :

log
Δa1

ΔN11
= log (C) + n * log (ΔK11)

log
Δa2

ΔN12
= log (C) + n * log (ΔK12)

Subtract the equations:

log
Δa1

ΔN11
- log

Δa2

ΔN12
= n * (log (ΔK11) - log (ΔK12))  log

Δa1ΔN12

ΔN11Δa2
= n * log

ΔK11

ΔK12

n = log
Δa1ΔN12

ΔN11Δa2
 log

ΔK11

ΔK12

This gives us

In[24]:= Framedn1 = Log
Δa1 * ΔN12

ΔN11 * Δa2
  Log

ΔK11

ΔK12


Out[24]= 3.43609

Now lets find C
Δa

ΔN
= C (ΔK)n  C =

Δa

ΔN
 (ΔK)n

In[25]:= FramedC1 =
Δa1

ΔN11
 ΔK11n1

Out[25]= 2.42068 × 10-9

So for R = 0, the Paris Law constants are C =2.42068 × 10-9 and n=3.43609.

For R = 0.5

We can use the same equations as before but with the data for R=0.5

In[26]:= Framedn2 = Log
Δa1 * ΔN22

ΔN21 * Δa2
  Log

ΔK21

ΔK22


Out[26]= 3.48522
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In[27]:= FramedC2 =
Δa1

ΔN21
 ΔK21n2

Out[27]= 6.15031 × 10-9

So for R=0.5, the Paris Law constants are C=6.15031 × 10-9 and n=3.48522
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Problem 3
Write a Matlab code to perform fatigue life  prediction for  constant and variable amplitude loading
(using the Wheeler model). 
Use functions to define: 

(a) fatigue law (Paris or other),
(b) stress intensity factors,
(c) a plot of crack lengths a in terms of cycles N, and
(d) the number of cycles for a to reach acr.

Test Your code (convert to m first) by repeating the class example (aircraft), with the assumptions:
ai = 1 mm
acr = 8 mm

C = 5*10-10 m/cycle/MPa m
n = 3
m = 2; for retardation
σy = 100 MPa

Under the following conditions:

(a) Same loading as in the example, but replace analytical integration by step-by-step calculation.

(b) Data set 1 (to be looped until a = acr).

In[28]:=

Out[28]=

(c) Data set 2 (to be looped until a = acr). 
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In[29]:=

Out[29]=

Solution
A Matlab script was modified to run fatigue life prediction for the three cases requested and is attached
to the end of this assignment. 

The stress history and the number of cycles to failure for each case with and without retardation are
shown below:

(a) Airplane:

In[30]:=

Out[30]=

N = 4353 cycles without retardation
N = 4353 cycles with retardation
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(b) Data set 1

In[31]:=

Out[31]=

N = 10,570,592 cycles without retardation
N = 17,180,495 cycles with retardation

(c) Data set 2
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In[32]:=

Out[32]=

N = 2,147,110 cycles without retardation
N = 2,541,814 cycles with retardation

Here is a plot showing the crack length “a” versus for each case with and without retardation.
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In[33]:=
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Out[33]=

For the airplane loading scenario,  it  takes the same number of  cycles for the crack to grow to acr.
Looking at the load history, we can see that the peak stress of 200 MPa is well above the yield stress of
100 MPa while the minimum stress is 50 MPa. This results in a consistent growth of the plastic zone
every 2 cycles and there is  no “overloading” effect  that retardation has any influence on. The high
mean stress also makes sens of why the number of cycles to failure is so low compared to the other 2
cases (3 to 4 order of magnitude lower). 

For data set 1, the effect of retardation greatly increases the number of cycles to failure from around 11
million to 17 million! This data set was the most influenced by retardation as there is a very regular,
periodic “overloading” that takes place on the for 1/6th of the time. This looks like the best scenario for
the benefits of retardation!

Similar to data set 1, the effect of retardation increases the number cycles to failure from around 2.1
million cycles to 2.5 million cycles for data set 2. In this dataset, the applied number of cycles “rando-
mly” increases as opposed to data set 2’s very periodic overloading. The effect of retardation is some-
what mild in this case, but certainly noticeable.
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Isoparametric Singular Elements

Define Shape functions for 8 noded element

In[1]:= N1[ξ_, η_] =
1

4
× (1 + ξ ξ1) × (1 + η η1) (ξ ξ1 + η η1 - 1);

In[2]:= N3[ξ_, η_] :=
1

4
× (1 + ξ ξ3) × (1 + η η3) (ξ ξ3 + η η3 - 1);

In[3]:= N5[ξ_, η_] =
1

4
× (1 + ξ ξ5) × (1 + η η5) (ξ ξ5 + η η5 - 1);

In[4]:= N7[ξ_, η_] :=
1

4
× (1 + ξ ξ7) × (1 + η η7) (ξ ξ7 + η η7 - 1);

In[5]:= N2[ξ_, η_] :=
1

2
× 1 - ξ

2
 × (1 + η η2);

In[6]:= N6[ξ_, η_] :=
1

2
× 1 - ξ

2
 × (1 + η η6);

In[7]:= N4[ξ_, η_] :=
1

2
× (1 + ξ ξ4) × 1 - η

2
;

In[8]:= N8[ξ_, η_] :=
1

2
× (1 + ξ ξ8) × 1 - η

2
;

Set natural coordinates
In[9]:= ξ1 = -1; ξ2 = 0; ξ3 = 1; ξ4 = 1; ξ5 = 1; ξ6 = 0; ξ7 = -1; ξ8 = -1;

In[10]:= η1 = -1; η2 = -1; η3 = -1; η4 = 0; η5 = 1; η6 = 1; η7 = 1; η8 = 0;

Determine x in terms of shape functions
In[11]:= Nmat = {N1[ξ, η], N2[ξ, η], N3[ξ, η], N4[ξ, η], N5[ξ, η], N6[ξ, η], N7[ξ, η], N8[ξ, η]};

In[12]:= xnodes = {0, x2, L, L, L, x2, 0, 0};



In[13]:= xint = Nmat.xnodes

Out[13]=

1

2
L 1 - η

2
 × (1 + ξ) +

1

4
L (1 - η) × (1 + ξ) × (-1 - η + ξ) +

1

4
L (1 + η) × (1 + ξ) × (-1 + η + ξ) +

1

2
x2 (1 - η) × 1 - ξ

2
 +

1

2
x2 (1 + η) × 1 - ξ

2


In[14]:= η = -1;

Take 
d x
d ξ and set it equal to zero to make j = 0, solve for x2

In[15]:= dxdξ = Simplify[D[xint, ξ]]

Out[15]= -2 x2 ξ + L
1

2
+ ξ

In[16]:= Solve[dxdξ  0, x2] /. {ξ  -1}

Out[16]= x2 
L

4


In[17]:= x2 = L / 4;

Solve for ξ in terms of x
In[18]:= expr = x - xint

Out[18]= x -
1

2
L ξ (1 + ξ) -

1

4
L 1 - ξ

2


In[19]:= Simplify[Solve[expr  0, ξ]]

Out[19]= ξ  -1 -
2 x

L
, ξ  -1 +

2 x

L


In[20]:= unodes = {u1, u2, u3, u4, u5, u6, u7, u8};
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Write displacement field in terms of x

In[21]:= uint = Nmat.unodes /. ξ  -1 +
2 x

L

Out[21]= u2 1 - -1 +
2 x

L

2

-
1

2
u1 2 -

2 x

L
× -1 +

2 x

L
+

u3 -1 +
2 x

L
 x

L

Determine the strain εxx

In[22]:= Simplify[D[uint, x]]

Out[22]=

2 (u1 - 2 u2 + u3)

L
-
3 u1 - 4 u2 + u3

2 L x

Write the displacement field in terms of the 3 nodal 
displacements for
the displacement correlation technique of SIF 
determination
In[23]:= Expand[uint]

Out[23]= u1 -
3 u1 x

L
+
4 u2 x

L
-
u3 x

L
+
2 u1 x

L
-
4 u2 x

L
+
2 u3 x

L

In[24]:= SimplifyCoefficientuint, x  L 

Out[24]= -3 u1 + 4 u2 - u3
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Westergaard Mode I

Complex Stress  function for the Westergaard's solution:

In[1]:= Φ = σ0  1 -
a2

z2

Out[1]=

σ0

1 -
a2

z2

Modified Φ, z = η + a = reiθ;
η

a
<< 1

In[2]:= appΦ = Expand[Φ] /. {z  (η + a)}

Out[2]=

σ0

1 -
a2

(a+η)2

In[3]:= intΦ = FunctionExpandσ0
a

2 * η

/. η  r (E^(I * θ))

Out[3]=

a - θ

r
σ0

2

Since σ22 = Re (Φ (z)) + x2Im Φ
'
(z),

therefore we require to find the real and imaginary parts

of the complex stress function and that of its derivative

We first find the real part of function Φ(z):

In[4]:= ComplexExpand[Re[ExpToTrig[E^(-I θ / 2)]], TargetFunctions  {Re, Im}]

Out[4]= Cos
θ

2




Therefore real part of Φ(z) is:

In[5]:= part1 = σ0
a

2
r^(-1 / 2) Cos[θ / 2]

Out[5]=

a σ0 Cos
θ

2


2 r

The first derivative of Φ(z) is:

In[6]:= Φdash = (σ0 / 2)
a

2 r EI*θ^3

Out[6]=

a -3  θ

r3
σ0

2 2

Imaginary part of this function derivative is the

imaginary part of the exponen tial term since all other

quantities are real. Therefore imaginary part of Φ
' is :

In[7]:= ComplexExpand[Im[ExpToTrig[E^(-3 I θ / 2)]], TargetFunctions  {Re, Im}]

Out[7]= -Sin
3 θ

2


Therfore the second part of the stress expression is obtained

as : x2ImΦ'. Using x2 = rSinθ = 2 rSin
θ

2
Cos

θ

2
we get : 

In[8]:= part2 = FullSimplify(σ0 / 2) r 2 Sin
θ

2
 Cos

θ

2


a

2
r^(-3 / 2) Sin

3 θ

2


Out[8]=

a σ0 Sin[θ] Sin
3 θ

2


2 2 r
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In[9]:= σ22 = part1 + part2

Out[9]=

a σ0 Cos
θ

2


2 r
+

a σ0 Sin[θ] Sin
3 θ

2


2 2 r

In[10]:= σ11 = -part2 + part1

Out[10]=

a σ0 Cos
θ

2


2 r
-

a σ0 Sin[θ] Sin
3 θ

2


2 2 r

For the stress σ12, we need to find the real part of Φ
' :

In[11]:= ComplexExpand[Re[ExpToTrig[E^(-3 I θ / 2)]], TargetFunctions  {Re, Im}]

Out[11]= Cos
3 θ

2


Therfore σ12 = Re Φ
'
 is given by :

In[12]:= σ12 = (σ0 / 2)
a

2 r
2 Sin

θ

2
 Cos

θ

2
 Cos[3 θ / 2]

Out[12]=

a

r
σ0 Cos

θ

2
 Cos

3 θ

2
 Sin

θ

2


2

Westergaard Mode II

Given ΦII = -x2Re ϕ II, where ϕII =
τ

1 -
a2

z2

Where, ϕ =  ϕ (z) z

We know that σ11 =
∂
2
Φ

∂x22

σ22 =
∂
2
Φ

∂x12

σ12 =
∂
2
Φ

∂x1x2

Using the Cauchy - Reimann equalities we can show that,
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given a complex funcion F (z) = α + I β , the following identities hold :

Re
dF

dz
=

∂Re (F)

∂x1
=

∂Im (F)

∂x2

Im
dF

dz
=

∂Im (F)

∂x1
= -

∂Re (F)

∂x2

Using these expressions we have :

∂Φ

∂x1
=

∂-x2Re ϕ II

∂x1
= -x2

∂Re ϕ II

∂x1
= -x2 Re

∂ϕ II

∂z
= -x2ReϕII

σ22 =
∂
2
Φ

∂x12
=

∂(-x2ReϕII)

∂x1
= -x2

∂(ReϕII)

∂x1
= -x2Re

∂(ϕII)

∂z
= -x2Reϕ' II

∂Φ

∂x2
=

∂-x2Re ϕ II

∂x2
=

-Re ϕ II - x2
∂Re ϕ II

∂x2
= -Re ϕ II + x2Im

∂ϕ II

∂z
= -Re ϕ II + x2ImϕII

σ11 =
∂
2
Φ

∂x22
=

∂-Re ϕ II + x2ImϕII

∂x2
= Im

∂ϕ II

∂z
+ ImϕII + x2Re

∂(ϕII)

∂z
=

2 ImϕII + x2Reϕ' II

σ12 =
∂
2
Φ

∂x1x2
=

∂-Re ϕ II + x2ImϕII

∂x1
= -Re

∂ϕ II

∂z
+ x2Im

∂(ϕII)

∂z
=

-ReϕII + x2 Imϕ' II

Consider ϕII:

In[13]:= ϕII = τ / (Sqrt[1 - ((a^2) / (z^2))]) /. z  (η + z)

Out[13]=

τ

1 -
a2

(z+η)2

Using
η

a
<< 1,

In[14]:= ϕIIint = FunctionExpandσ0
a

2 η

/. η  r (E^(I θ))

Out[14]=

a - θ

r
σ0

2
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In[15]:= ReϕII = Sqrt[a / (2 r)] σ0 ComplexExpand[Re[E^(-I θ / 2)], TargetFunctions  {Re, Im}]

Out[15]=

a

r
σ0 Cos

θ

2


2

In[16]:= ImϕII = Sqrt[a / (2 r)] σ0 ComplexExpand[Im[E^(-I θ / 2)], TargetFunctions  {Re, Im}]

Out[16]= -

a

r
σ0 Sin

θ

2


2

In[17]:= Imϕdash =

Sqrt[a / (2 r^3)] (σ0 / 2) ComplexExpand[Im[E^(-3 I θ / 2)], TargetFunctions  {Re, Im}]

Out[17]= -

a

r3
σ0 Sin

3 θ

2


2 2

In[18]:= Reϕdash =

Sqrt[a / (2 r^3)] (σ0 / 2) ComplexExpand[Re[E^(-3 I θ / 2)], TargetFunctions  {Re, Im}]

Out[18]=

a

r3
σ0 Cos

3 θ

2


2 2

In[19]:= σ22 = -r 2 Sin[θ / 2] Cos[θ / 2] Reϕdash

Out[19]= -

a

r3
r σ0 Cos

θ

2
 Cos

3 θ

2
 Sin

θ

2


2

In[20]:= σ11 = 2 ImϕII + 2 r Sin[θ / 2] Cos[θ / 2] Reϕdash

Out[20]= - 2
a

r
σ0 Sin

θ

2
 +

a

r3
r σ0 Cos

θ

2
 Cos

3 θ

2
 Sin

θ

2


2
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Simplifying : σ11 = -σ0
a

2 r
Sin[θ/2] (2 + Cos[θ/2] Cos[3 θ/2])

In[21]:= σ12 = -ReϕII + 2 r Sin[θ / 2] Cos[θ / 2] Imϕdash

Out[21]= -

a

r
σ0 Cos

θ

2


2
-

a

r3
r σ0 Cos

θ

2
 Sin

θ

2
 Sin

3 θ

2


2
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William's Solution

Dissimilar Material
Function Definition

In[1]:= Φ1[r_, θ_] := rλ+1 F1[θ]

In[2]:= Φ2[r_, θ_] := rλ+1 F2[θ]

Define the biharmonic Equation, test on Φ1

In[3]:= g1[r_, θ_] := D[Φ1[r, θ], r, r] + D[Φ1[r, θ], r]/r +

D[Φ1[r, θ], θ, θ] r2

In[4]:= g2[r_, θ_] := D[g1[r, θ], r, r] + D[g1[r, θ], r]/r +

D[g1[r, θ], θ, θ] r2

Define the function F

In[5]:= F1[θ_] = Exp[m[λ] θ]

Out[5]= 
θ m[λ]



Solve the differential equation

In[6]:= eqdiff = SimplifyFactor[g2[r, θ]] r3-λ

Out[6]= 
θ m[λ]

(-1 + λ)
2
+ m[λ]2 (1 + λ)

2
+ m[λ]2

In[7]:= Solve[ eqdiff Exp[-m[λ] θ]  0, m[λ]]

Out[7]= m[λ]  - -1 - 2 λ - λ
2
, m[λ]  -1 - 2 λ - λ

2
,

m[λ]  - -1 + 2 λ - λ
2
, m[λ]  -1 + 2 λ - λ

2


Define the general solution

In[8]:= F1[θ_] := a1 Cos[λ θ - θ] + b1 Cos[λ θ + θ] + c1 Sin[λ θ - θ] +

d1 Sin[λ θ + θ]

In[9]:= F2[θ_] := a2 Cos[λ θ - θ] + b2 Cos[λ θ + θ] + c2 Sin[λ θ - θ] +

d2 Sin[λ θ + θ]

In[10]:= Φ1[r_, θ_] := rλ+1 F1[θ]

In[11]:= Φ2[r_, θ_] := rλ+1 F2[θ]

Evaluate the stresses in polar coordinates

In[12]:= temp1[r_, θ_] = D[Φ1[r, θ], θ]

Out[12]= r1+λ (-((1 - λ) Sin[θ - θ λ] a1) - (1 + λ) Sin[θ + θ λ] b1 -

(1 - λ) Cos[θ - θ λ] c1 + (1 + λ) Cos[θ + θ λ] d1)

In[13]:= σ1 rθ[r_, θ_] := -D[temp1[r, θ]/r, r]
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In[14]:= temp2[r_, θ_] = D[Φ2[r, θ], θ]

Out[14]= r1+λ (-((1 - λ) Sin[θ - θ λ] a2) - (1 + λ) Sin[θ + θ λ] b2 -

(1 - λ) Cos[θ - θ λ] c2 + (1 + λ) Cos[θ + θ λ] d2)

In[15]:= σ2 rθ[r_, θ_] := -D[temp2[r, θ]/r, r]

In[16]:= σ1 θθ[r_, θ_] := Factor[D[Φ1[r, θ], r, r]]

In[17]:= σ2 θθ[r_, θ_] := Factor[D[Φ2[r, θ], r, r]]

In[18]:= σ1 rr[r_, θ_] :=

FactorD[Φ1[r, θ], r]/r + D[Φ1[r, θ], θ, θ] r2

In[19]:= σ2 rr[r_, θ_] :=

FactorD[Φ2[r, θ], r]/r + D[Φ2[r, θ], θ, θ] r2

Displacements

In[20]:= u1 r[r_, θ_] :=

rλ

2 µ1

(-(λ + 1) F1[θ] +

4×(1 - α1) (c1 Sin[(λ - 1) θ] + a1 Cos[(λ - 1) θ]))

In[21]:= u2 r[r_, θ_] :=

rλ

2 µ2

(-(λ + 1) F2[θ] +

4×(1 - α2) (c2 Sin[(λ - 1) θ] + a2 Cos[(λ - 1) θ]))
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In[22]:= u1 θ[r_, θ_] :=

rλ

2 µ1

(-D[ F1[θ], θ] -

4×(1 - α1) (c1 Cos[(λ - 1) θ] - a1 Sin[(λ - 1) θ]))

In[23]:= u2 θ[r_, θ_] :=

rλ

2 µ2

(-D[ F2[θ], θ] -

4×(1 - α2) (c2 Cos[(λ - 1) θ] - a2 Sin[(λ - 1) θ]))

Apply the boundary conditions 

In[24]:= bc1 = -σ1 θθ[r, π]
r1-λ

λ (1 + λ)

Out[24]= Cos[π λ] a1 + Cos[π λ] b1 + Sin[π λ] c1 + Sin[π λ] d1

In[25]:= bc2 = -σ2 θθ[r, -π]
r1-λ

λ (1 + λ)

Out[25]= Cos[π λ] a2 + Cos[π λ] b2 - Sin[π λ] c2 - Sin[π λ] d2

In[26]:= bc3 = σ1 rθ[r, π]
r1-λ

λ

Out[26]= (1 - λ) Sin[π λ] a1 - (1 + λ) Sin[π λ] b1 -

(1 - λ) Cos[π λ] c1 + (1 + λ) Cos[π λ] d1
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In[27]:= bc4 = σ2 rθ[r, -π]
r1-λ

λ

Out[27]= -((1 - λ) Sin[π λ] a2) + (1 + λ) Sin[π λ] b2 -

(1 - λ) Cos[π λ] c2 + (1 + λ) Cos[π λ] d2

In[28]:= bc5 = Factor(σ1 θθ[r, 0] - σ2 θθ[r, 0])
r1-λ

λ (1 + λ)


Out[28]= a1 - a2 + b1 - b2

In[29]:= bc6 = Factor(σ1 rθ[r, 0] - σ2 rθ[r, 0])
r1-λ

λ


Out[29]= c1 - λ c1 - c2 + λ c2 - d1 - λ d1 + d2 + λ d2

In[30]:= bc7 = Factor(u1 r[r, 0] - u2 r[r, 0]) r-λ

Out[30]= -
1

2 µ1 µ2

(3 a2 µ1 - λ a2 µ1 - b2 µ1 - λ b2 µ1 -

4 a2 α2 µ1 - 3 a1 µ2 + λ a1 µ2 + b1 µ2 + λ b1 µ2 + 4 a1 α1 µ2)
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In[31]:= bc8 = Factor(u1 θ[r, zero] - u2 θ[r, zero]) r-λ

Out[31]= -
1

2 µ1 µ2

(4 Sin[zero (-1 + λ)] a2 µ1 + Sin[zero - zero λ] a2 µ1 -

λ Sin[zero - zero λ] a2 µ1 + Sin[zero + zero λ] b2 µ1 +

λ Sin[zero + zero λ] b2 µ1 - 4 Cos[zero (-1 + λ)] c2 µ1 +

Cos[zero - zero λ] c2 µ1 - λ Cos[zero - zero λ] c2 µ1 -

Cos[zero + zero λ] d2 µ1 - λ Cos[zero + zero λ] d2 µ1 -

4 Sin[zero (-1 + λ)] a2 α2 µ1 + 4 Cos[zero (-1 + λ)] c2 α2 µ1 -

4 Sin[zero (-1 + λ)] a1 µ2 - Sin[zero - zero λ] a1 µ2 +

λ Sin[zero - zero λ] a1 µ2 - Sin[zero + zero λ] b1 µ2 -

λ Sin[zero + zero λ] b1 µ2 + 4 Cos[zero (-1 + λ)] c1 µ2 -

Cos[zero - zero λ] c1 µ2 + λ Cos[zero - zero λ] c1 µ2 +

Cos[zero + zero λ] d1 µ2 + λ Cos[zero + zero λ] d1 µ2 +

4 Sin[zero (-1 + λ)] a1 α1 µ2 - 4 Cos[zero (-1 + λ)] c1 α1 µ2)

In[32]:= zero = 0;

In[33]:= Simplify[bc8]

Out[33]=
1

2 µ1 µ2

((1 + λ) d2 µ1 + c2 (3 + λ - 4 α2) µ1 -

((1 + λ) d1 + c1 (3 + λ - 4 α1)) µ2)

In[34]:= µ1 = k µ2

Out[34]= k µ2

Get the Matrix

In[35]:= matrix =

Factor[
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{{Coefficient[bc1, a1], Coefficient[bc1, b1],

Coefficient[bc1, c1], Coefficient[bc1, d1],

Coefficient[bc1, a2], Coefficient[bc1, b2],

Coefficient[bc1, c2], Coefficient[bc1, d2]},

{Coefficient[bc2, a1], Coefficient[bc2, b1],

Coefficient[bc2, c1], Coefficient[bc2, d1],

Coefficient[bc2, a2], Coefficient[bc2, b2],

Coefficient[bc2, c2], Coefficient[bc2, d2]},

{Coefficient[bc3, a1], Coefficient[bc3, b1],

Coefficient[bc3, c1], Coefficient[bc3, d1],

Coefficient[bc3, a2], Coefficient[bc3, b2],

Coefficient[bc3, c2], Coefficient[bc3, d2]},

{Coefficient[bc4, a1], Coefficient[bc4, b1],

Coefficient[bc4, c1], Coefficient[bc4, d1],

Coefficient[bc4, a2], Coefficient[bc4, b2],

Coefficient[bc4, c2], Coefficient[bc4, d2]},

{Coefficient[bc5, a1], Coefficient[bc5, b1],

Coefficient[bc5, c1], Coefficient[bc5, d1],

Coefficient[bc5, a2], Coefficient[bc5, b2],

Coefficient[bc5, c2], Coefficient[bc5, d2]},

{Coefficient[bc6, a1], Coefficient[bc6, b1],

Coefficient[bc6, c1], Coefficient[bc6, d1],

Coefficient[bc6, a2], Coefficient[bc6, b2],

Coefficient[bc6, c2], Coefficient[bc6, d2]},

{Coefficient[bc7, a1], Coefficient[bc7, b1],

Coefficient[bc7, c1], Coefficient[bc7, d1],

Coefficient[bc7, a2], Coefficient[bc7, b2],

Coefficient[bc7, c2], Coefficient[bc7, d2]},

{Coefficient[bc8, a1], Coefficient[bc8, b1],

Coefficient[bc8, c1], Coefficient[bc8, d1],

Coefficient[bc8, a2], Coefficient[bc8, b2],

Coefficient[bc8, c2], Coefficient[bc8, d2]}}]
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Out[35]= {Cos[π λ], Cos[π λ], Sin[π λ], Sin[π λ], 0, 0, 0, 0},

{0, 0, 0, 0, Cos[π λ], Cos[π λ], -Sin[π λ], -Sin[π λ]},

{-((-1 + λ) Sin[π λ]), -((1 + λ) Sin[π λ]),

(-1 + λ) Cos[π λ], (1 + λ) Cos[π λ], 0, 0, 0, 0},

{0, 0, 0, 0, (-1 + λ) Sin[π λ], (1 + λ) Sin[π λ],

(-1 + λ) Cos[π λ], (1 + λ) Cos[π λ]},

{1, 1, 0, 0, -1, -1, 0, 0},

{0, 0, 1 - λ, -1 - λ, 0, 0, -1 + λ, 1 + λ},

-
-3 + λ + 4 α1

2 k µ2

, -
1 + λ

2 k µ2

, 0, 0,
-3 + λ + 4 α2

2 µ2

,
1 + λ

2 µ2

, 0, 0,

0, 0, -
3 + λ - 4 α1

2 k µ2

, -
1 + λ

2 k µ2

, 0, 0,
3 + λ - 4 α2

2 µ2

,
1 + λ

2 µ2



In[36]:= MatrixForm[Factor[matrix]]

Out[36]//MatrixForm=

Cos[π λ] Cos[π λ] Sin[π λ]

0 0 0

-((-1 + λ) Sin[π λ]) -((1 + λ) Sin[π λ]) (-1 + λ) Cos[π λ]

0 0 0

1 1 0

0 0 1 - λ

-
-3+λ+4 α1

2 k µ2
-

1+λ

2 k µ2
0

0 0 -
3+λ-4 α1

2 k µ2
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In[37]:= det1 =

Factor

FullSimplifyDet[matrix]
k2 µ2

2

Sin[π λ]
2

1

2 k (1 - α2) + 2×(1 - α1)


Out[37]= -
1

-1 - k + α1 + k α2

(1 + λ)×5 + 6 k + 5 k2 + 3 Cos[2 π λ] + 10 k Cos[2 π λ] +

3 k2 Cos[2 π λ] - 12 α1 - 4 k α1 - 4 Cos[2 π λ] α1 - 12 k

Cos[2 π λ] α1 + 8 α1
2
- 4 k α2 - 12 k2 α2 - 12 k Cos[2 π λ] α2 -

4 k2 Cos[2 π λ] α2 + 16 k Cos[2 π λ] α1 α2 + 8 k2 α2
2


At this point, we should have obtained the following relations

In[38]:= β =
2 k (1 - α2) - 2×(1 - α1) - (k - 1)2

2 k (1 - α2) + 2×(1 - α1)

Out[38]=
-(-1 + k)2 - 2×(1 - α1) + 2 k (1 - α2)

2×(1 - α1) + 2 k (1 - α2)

This is the equation which must be solved for λ (eq1=0, or 
Cot[λ π] = +- I β2 

In[39]:= eq1 = Cot[λ π]
2
+ β

2

Out[39]= Cot[π λ]
2
+
-(-1 + k)2 - 2×(1 - α1) + 2 k (1 - α2)

2

(2×(1 - α1) + 2 k (1 - α2))
2
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In[40]:= λ = λr + I λj

Out[40]=  λj + λr

In[41]:= u = Tan[λr π]

Out[41]= Tan[π λr]

In[42]:= v = Tanh[λj π]

Out[42]= Tanh[π λj]

Exploit those trigonometric relations

In[43]:= sin2θ =
2 u

1 + u2
;

In[44]:= cos2θ =
1 - u2

1 + u2
;

In[45]:= sinh2θ =
2 v

1 - v2
;

In[46]:= cosh2θ =
1 + v2

1 - v2
;

In[47]:= myCot =
Simplify[sin2θ - I sinh2θ]

Simplify[cosh2θ - cos2θ]

Out[47]=
Sin[2 π λr] -  Sinh[2 π λj]

-Cos[2 π λr] + Cosh[2 π λj]
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Since Re[Cot[λ π]]=0, then Sin[2 λr π]=0, and 

We must now solve for the Immaginary part 

In[48]:= impart =
Sinh[2 π λj]

-Cos[2 π λr] + Cosh[2 π λj]

Out[48]=
Sinh[2 π λj]

-Cos[2 π λr] + Cosh[2 π λj]

In[49]:= λr = 1/2

Out[49]=
1

2

In[50]:= impart

Out[50]=
Sinh[2 π λj]

1 + Cosh[2 π λj]

In[51]:= Simplify[Solve[impart - cc  0, λj]]

Out[51]= λj   1 +

Log- 1+cc

-1+cc


2 π
if 1 ∈  
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William's Solution

Similar Material
Function Definition

In[52]:= Φ[r_, θ_] := rλ+1 F[θ, λ]

Define the biharmonic Equation (could use 
Laplacian)

In[53]:= g1[r_, θ_] := D[Φ[r, θ], r, r] + D[Φ[r, θ], r]/r +

D[Φ[r, θ], θ, θ] r2

In[54]:= g2[r_, θ_] := D[g1[r, θ], r, r] + D[g1[r, θ], r]/r +

D[g1[r, θ], θ, θ] r2

Define the function F

In[55]:= F[θ, λ] = Exp[m[λ] θ]

Out[55]= 
θ m

1
2
+ λj



Solve the differential equation

In[56]:= eqdiff = SimplifyFactor[g2[r, θ]] r3-λ

Out[56]=
1

16

θ m

1
2
+ λj

- - 2 λj + 2 m
1

2
+  λj

3  - 2 λj + 2 m
1

2
+  λj  + 2 λj + 2 m

1

2
+  λj

-3  + 2 λj + 2 m
1

2
+  λj

In[57]:= Solve[ eqdiff Exp[-m[λ] θ]  0, m[λ]]

Out[57]= m
1

2
+  λj 

1

2
(- - 2 λj),

m
1

2
+  λj 

1

2
×(3  - 2 λj),

m
1

2
+  λj 

1

2
( + 2 λj),

m
1

2
+  λj 

1

2
×(-3  + 2 λj)

Define the general solution

In[58]:= F[θ_] := a Cos[λ θ - θ] + b Cos[λ θ + θ] +

c Sin[λ θ - θ] + d Sin[λ θ + θ]

In[59]:= F[θ]

Out[59]= a Cosθ - θ
1

2
+  λj  + b Cosθ + θ

1

2
+  λj  -

c Sinθ - θ
1

2
+  λj  + d Sinθ + θ

1

2
+  λj 
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In[60]:= Φ[r_, θ_] := rλ+1 F[θ]

Evaluate the stresses in polar coordinates

In[61]:= temp[r_, θ_] = D[Φ[r, θ], θ]

Out[61]= r
3
2
+ λj

-c
1

2
-  λj Cosθ - θ

1

2
+  λj  +

d
3

2
+  λj Cosθ + θ

1

2
+  λj  -

a
1

2
-  λj Sinθ - θ

1

2
+  λj  -

b
3

2
+  λj Sinθ + θ

1

2
+  λj 

In[62]:= σrθ[r_, θ_] := -D[temp[r, θ]/r, r]

In[63]:= σrθ[r, θ]

Out[63]= -r
-
1
2
+ λj 1

2
+  λj -c

1

2
-  λj Cosθ - θ

1

2
+  λj  +

d
3

2
+  λj Cosθ + θ

1

2
+  λj  -

a
1

2
-  λj Sinθ - θ

1

2
+  λj  -

b
3

2
+  λj Sinθ + θ

1

2
+  λj 

In[64]:= σθθ[r_, θ_] := Factor[D[Φ[r, θ], r, r]]

In[65]:= σrr[r_, θ_] :=

FactorD[Φ[r, θ], r]/r + D[Φ[r, θ], θ, θ] r2
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Apply the boundary conditions

In[66]:= bc1 = σθθ[r, -α]

Out[66]= -
1

4
r
-
1
2
+ λj

(- + 2 λj) (-3  + 2 λj)

a Cosα - α
1

2
+  λj  + b Cosα + α

1

2
+  λj  +

c Sinα - α
1

2
+  λj  - d Sinα + α

1

2
+  λj 

In[67]:= bc2 = σθθ[r, α]

Out[67]= -
1

4
r
-
1
2
+ λj

(- + 2 λj) (-3  + 2 λj)

a Cosα - α
1

2
+  λj  + b Cosα + α

1

2
+  λj  -

c Sinα - α
1

2
+  λj  + d Sinα + α

1

2
+  λj 

In[68]:= bc3 = σrθ[r, -α]

Out[68]= -r
-
1
2
+ λj 1

2
+  λj -c

1

2
-  λj Cosα - α

1

2
+  λj  +

d
3

2
+  λj Cosα + α

1

2
+  λj  +

a
1

2
-  λj Sinα - α

1

2
+  λj  +

b
3

2
+  λj Sinα + α

1

2
+  λj 
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In[69]:= bc4 = σrθ[r, α]

Out[69]= -r
-
1
2
+ λj 1

2
+  λj -c

1

2
-  λj Cosα - α

1

2
+  λj  +

d
3

2
+  λj Cosα + α

1

2
+  λj  -

a
1

2
-  λj Sinα - α

1

2
+  λj  -

b
3

2
+  λj Sinα + α

1

2
+  λj 

Rearrange Equations for BC

In[70]:= cl1 = -Factor[bc1 + bc2] r(1-λ)  2

Out[70]=
1

4
(- + 2 λj) (-3  + 2 λj)

a Cosα - α
1

2
+  λj  + b Cosα + α

1

2
+  λj 

In[71]:= cl2 = Factor[bc1 - bc2] r1-λ  2

Out[71]= -
1

4
(- + 2 λj) (-3  + 2 λj)

c Sinα - α
1

2
+  λj  - d Sinα + α

1

2
+  λj 
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In[72]:= cl3 = Factor[bc3 + bc4] r1-λ  2

Out[72]=
1

4
(- + 2 λj)

 c Cosα - α
1

2
+  λj  + 2 c λj Cosα - α

1

2
+  λj  -

3  d Cosα + α
1

2
+  λj  +

2 d λj Cosα + α
1

2
+  λj 

In[73]:= cl4 = -Factor[bc3 - bc4] r1-λ  2

Out[73]=
1

4
(- + 2 λj)

 a Sinα - α
1

2
+  λj  + 2 a λj Sinα - α

1

2
+  λj  +

3  b Sinα + α
1

2
+  λj  -

2 b λj Sinα + α
1

2
+  λj 
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Solve for λ

In[74]:= matrix =

Factor[

{{Coefficient[cl1, a], Coefficient[cl1, b],

Coefficient[cl1, c], Coefficient[cl1, d]},

{Coefficient[cl2, a], Coefficient[cl2, b],

Coefficient[cl2, c], Coefficient[cl2, d]},

{Coefficient[cl3, a], Coefficient[cl3, b],

Coefficient[cl3, c], Coefficient[cl3, d]},

{Coefficient[cl4, a], Coefficient[cl4, b],

Coefficient[cl4, c], Coefficient[cl4, d]}}]

Out[74]= 
1

4
(- + 2 λj) (-3  + 2 λj) Cosα - α

1

2
+  λj ,

1

4
(- + 2 λj) (-3  + 2 λj) Cosα + α

1

2
+  λj ,

0, 0, 0, 0,

-
1

4
(- + 2 λj) (-3  + 2 λj) Sinα - α

1

2
+  λj ,

1

4
(- + 2 λj) (-3  + 2 λj) Sinα + α

1

2
+  λj ,

0, 0,
1

4
(- + 2 λj) ( + 2 λj) Cosα - α

1

2
+  λj ,

1

4
(- + 2 λj) (-3  + 2 λj) Cosα + α

1

2
+  λj ,


1

4
(- + 2 λj) ( + 2 λj) Sinα - α

1

2
+  λj , -

1

4

(- + 2 λj) (-3  + 2 λj) Sinα + α
1

2
+  λj , 0, 0
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In[75]:= MatrixForm[Simplify[%]]

Out[75]//MatrixForm=

1

4
(- + 2 λj) (-3  + 2 λj) Cos 1

2
α (1 - 2  λj) 1

4
(- +

0

0

1

4
(- + 2 λj) ( + 2 λj) Sin 1

2
(α - 2  α λj) -

1

4
(- +

In[76]:= α = π

Out[76]= π

In[77]:= determinant = FactorDet[matrix] λ + λ
2

2


Out[77]= (- + 2 λj)2 Cosπ
1

2
+  λj 

2
Sinπ

1

2
+  λj 

2

In[78]:= Solve[determinant  0, λ]

Solve:
1

2
+  λj is not a valid variable.

Out[78]= Solve

(- + 2 λj)2 Cosπ
1

2
+  λj 

2
Sinπ

1

2
+  λj 

2
 0,

1

2
+  λj
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In[79]:= F[θ]

Out[79]= a Cosθ - θ
1

2
+  λj  + b Cosθ + θ

1

2
+  λj  -

c Sinθ - θ
1

2
+  λj  + d Sinθ + θ

1

2
+  λj 

In[80]:= ϖ =
λ - 1

λ + 1

Out[80]=

-
1

2
+  λj

3

2
+  λj

In[81]:= λ = n/2

Out[81]=
n

2

In[82]:= F[θ]

Out[82]= a Cosθ -
n θ

2
 + b Cosθ +

n θ

2
 -

c Sinθ -
n θ

2
 + d Sinθ +

n θ

2


In[83]:= boa = -
ϖ Sin[(λ - 1) α]

Sin[(λ + 1) α]

Out[83]= -

-
1

2
+  λj Csc1 +

n

2
 π Sin-1 +

n

2
 π

3

2
+  λj
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In[84]:= b = a boa

Out[84]= -

a -
1

2
+  λj Csc1 +

n

2
 π Sin-1 +

n

2
 π

3

2
+  λj

In[85]:= cod = -
Sin[(λ - 1) α]

Sin[(λ + 1) α]

Out[85]= -Csc1 +
n

2
 π Sin-1 +

n

2
 π

In[86]:= d = c/cod

Out[86]= -c Csc-1 +
n

2
 π Sin1 +

n

2
 π

In[87]:= n = 1

Out[87]= 1

In[88]:= TrigReduce[F[θ]]

Out[88]=

-
3

2
 a Cos θ

2
 -

3

2
a Sin θ

2


-3  + 2 λj
+

-
3

2
 a Cos θ

2
 +

3

2
a Sin θ

2


-3  + 2 λj
+

-
3

2
c Cos θ

2
 +

3

2
 c Sin θ

2


-3  + 2 λj
+

3

2
c Cos θ

2
 +

3

2
 c Sin θ

2


-3  + 2 λj
+
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a λj Cos θ

2
 -  a λj Sin θ

2


-3  + 2 λj
+

a λj Cos θ

2
 +  a λj Sin θ

2


-3  + 2 λj
+

- c λj Cos θ

2
 - c λj Sin θ

2


-3  + 2 λj
+

 c λj Cos θ

2
 - c λj Sin θ

2


-3  + 2 λj
+

-
1

2
 a Cos 3 θ

2
 -

1

2
a Sin 3 θ

2


-3  + 2 λj
+

-
1

2
 a Cos 3 θ

2
 +

1

2
a Sin 3 θ

2


-3  + 2 λj
+

-
3

2
c Cos 3 θ

2
 +

3

2
 c Sin 3 θ

2


-3  + 2 λj
+

3

2
c Cos 3 θ

2
 +

3

2
 c Sin 3 θ

2


-3  + 2 λj
+

-a λj Cos 3 θ

2
 -  a λj Sin 3 θ

2


-3  + 2 λj
+

-a λj Cos 3 θ

2
 +  a λj Sin 3 θ

2


-3  + 2 λj
+

- c λj Cos 3 θ

2
 - c λj Sin 3 θ

2


-3  + 2 λj
+

 c λj Cos 3 θ

2
 - c λj Sin 3 θ

2


-3  + 2 λj

Determine the polar stresses
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In[89]:= σrr[r, θ]

Out[89]= -15  a Cos
θ

2
 + 10 a λj Cos

θ

2
 +

3  a Cos
3 θ

2
 + 6 a λj Cos

3 θ

2
 + 15  c Sin

θ

2
 -

10 c λj Sin
θ

2
 - 9  c Sin

3 θ

2
 + 6 c λj Sin

3 θ

2
 

4 r (-3  + 2 λj)

In[90]:= Factor[σrθ[r, θ]]

Out[90]=
1

4
r
-
1
2
+ λj

(- + 2 λj)

 c Cosθ - θ
1

2
+  λj  + 2 c λj Cosθ - θ

1

2
+  λj  +

3  c Cosθ + θ
1

2
+  λj  - 2 c λj

Cosθ + θ
1

2
+  λj  +  a Sinθ - θ

1

2
+  λj  +

2 a λj Sinθ - θ
1

2
+  λj  +  a

Sinθ + θ
1

2
+  λj  + 2 a λj Sinθ + θ

1

2
+  λj 
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In[91]:= σθθ[r, θ]

Out[91]= 3× -3  a Cos
θ

2
 + 2 a λj Cos

θ

2
 -  a Cos

3 θ

2
 -

2 a λj Cos
3 θ

2
 + 3  c Sin

θ

2
 - 2 c λj Sin

θ

2
 +

3  c Sin
3 θ

2
 - 2 c λj Sin

3 θ

2
 

4 r (-3  + 2 λj)

Introduce SIF

In[92]:= a =
KI

2 π

Out[92]=
K

2 π

In[93]:= c =
KII

2 π

Out[93]=
KII

2 π
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In[94]:= σrr = σrr[r, θ]

Out[94]=
1

4 2 π r (-3  + 2 λj)

-15  Cos
θ

2
 K + 10 λj Cos

θ

2
 K +

3  Cos
3 θ

2
 K + 6 λj Cos

3 θ

2
 K + 15  Sin

θ

2
 KII -

10 λj Sin
θ

2
 KII - 9  Sin

3 θ

2
 KII + 6 λj Sin

3 θ

2
 KII

In[95]:= σθθ = σθθ[r, θ]

Out[95]=
1

4 2 π r (-3  + 2 λj)

3× -3  Cos
θ

2
 K + 2 λj Cos

θ

2
 K -

 Cos
3 θ

2
 K - 2 λj Cos

3 θ

2
 K + 3  Sin

θ

2
 KII -

2 λj Sin
θ

2
 KII + 3  Sin

3 θ

2
 KII - 2 λj Sin

3 θ

2
 KII
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In[96]:= σrθ = Factor[σrθ[r, θ]]

Out[96]=
1

4 2 π

r
-
1
2
+ λj

(- + 2 λj)  Sinθ - θ
1

2
+  λj  K + 2 λj

Sinθ - θ
1

2
+  λj  K +  Sinθ + θ

1

2
+  λj  K +

2 λj Sinθ + θ
1

2
+  λj  K +

 Cosθ - θ
1

2
+  λj  KII + 2 λj Cosθ - θ

1

2
+  λj 

KII + 3  Cosθ + θ
1

2
+  λj  KII -

2 λj Cosθ + θ
1

2
+  λj  KII

Stresses in Cartesian Coordinates

In[97]:=
σxx σxy

σxy σyy
=

Simplify
Cos[θ] Sin[θ]

-Sin[θ] Cos[θ]
.

σrr σrθ

σrθ σθθ

.

Transpose
Cos[θ] Sin[θ]

-Sin[θ] Cos[θ]


Out[97]= 
1

4 2 π r (-3  + 2 λj)

r (-3  + 2 λj) Cos
θ

2
 (4 + Cos[2 θ]) +

( + 2 λj) 3 r Cos[θ]2 Cos
3 θ

2
 -
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3 r Cos
3 θ

2
 Sin[θ]2 + r

1
2
+ λj

-3 - 8  λj +

4 λj2 Sin[2 θ] Sin
1

2
θ (1 - 2  λj) +

Sin
1

2
θ (3 + 2  λj) K +

(-3  + 2 λj)× -3 r Sin
θ

2
 Sin[θ]2 -

3 r Sin[θ]2 Sin
3 θ

2
 +

r Cos[θ]2 -5 Sin
θ

2
 + 3 Sin

3 θ

2
 +

r
1
2
+ λj

Cos
1

2
θ (1 - 2  λj) Sin[2 θ] +

4 r
1
2
+ λj

λj2 Cos
1

2
θ (1 - 2  λj) Sin[2 θ] +

3 r
1
2
+ λj

Cos
1

2
θ (3 + 2  λj) Sin[2 θ] +

8  r
1
2
+ λj

λj Cos
1

2
θ (3 + 2  λj) Sin[2 θ] -

4 r
1
2
+ λj

λj2 Cos
1

2
θ (3 + 2  λj) Sin[2 θ] KII ,

1

4 2 π r (3  - 2 λj)

6 Cos
θ

2

2

-Sin
θ

2
 + Sin

3 θ

2


(( - 2 λj + ( + 2 λj) Cos[θ]) K +

(-3  + 2 λj) Sin[θ] KII) + Cos[θ] Sin[θ]

2 Cos
θ

2
 (-9  + 2 λj + (3  + 6 λj) Cos[θ]) K +
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2
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Sin
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Cos
1

2
θ (1 - 2  λj) + (3  - 2 λj)

Cos
1

2
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Part VI

Early (partially outdated) Manuscript

This an early version of an attempt to put the notes
into a manuscript.
It is not as up to date as the lecture notes, however it
will contain: a) more details in some cases; b) some
topics not covered; and c) an extensive bibliography of
referenced papers.
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Chapter 1

INTRODUCTION

In this introductory chapter, we shall start by reviewing the various modes of structural failure and highlight the importance of

fracture induced failure and contrast it with the limited coverage given to fracture mechanics in Engineering Education. In the

next section we will discuss some examples of well known failures/accidents attributed to cracking. Then, using a simple example

we shall compare the failure load predicted from linear elastic fracture mechanics with the one predicted by “classical” strength

of materials. The next section will provide a brief panoramic overview of the major developments in fracture mechanics. Finally,

the chapter will conclude with an outline of the lecture notes.

1.1 Modes of Failures

The fundamental requirement of any structure is that it should be designed to resist mechanical failure through any (or a combi-

nation of) the following modes:

1. Elastic instability (buckling)

2. Large elastic deformation (jamming)

3. Gross plastic deformation (yielding)

4. Tensile instability (necking)

5. Fracture

Most of these failure modes are relatively well understood, and proper design procedures have been developed to resist them.

However, fractures occurring after earthquakes constitute the major source of structural damage (Duga et al., 1983), and are the

least well understood.

In fact, fracture often has been overlooked as a potential mode of failure at the expense of an overemphasis on strength. Such

a simplification is not new, and finds a very similar analogy in the critical load of a column. If column strength is based entirely

on a strength criterion, an unsafe design may result as instability (or buckling) is overlooked for slender members. Thus failure

curves for columns show a smooth transition in the failure mode from columns based on gross section yielding to columns based

on instability.

By analogy, a cracked structure can be designed on the sole basis of strength as long as the crack size does not exceed a critical

value. Should the crack size exceed this critical value, then a fracture-based failure results. Again, on the basis of those two theories

(strength of materials and fracture mechanics), one could draw a failure curve that exhibits a smooth transition between those

two modes.
1

1.2 Examples of Structural Failures Caused by Fracture

Some well-known, and classical, examples of fracture failures include:

• Mechanical, aeronautical, or marine

1. Fracture of train wheels, axles, and rails

2. Fracture of the Liberty ships during and after World War II

3. Fracture of airplanes, such as the Comet airliners, which exploded in mid-air during the fifties, or more recently

fatigue fracture of bulkhead in a Japan Air Line Boeing 747

4. Fatigue fractures found in the Grumman buses in New York City, which resulted in the recall of 637 of them

5. Fracture of the Glomar Java sea boat in 1984

6. Fatigue crack that triggered the sudden loss of the upper cockpit in the Air Aloha plane in Hawaii in 1988

• Civil engineering

1. Fractures of bridge girders (Silver bridge in Ohio)

1

When high strength rolled sections were first introduced, there was a rush to use them. However, after some spectacular bridge girder failures, it was found that

strength was achieved at the expense of toughness (which is the material ability to resist crack growth).
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2. Fracture of Statfjord A platform concrete off-shore structure

3. Cracks in nuclear reactor piping systems

4. Fractures found in dams (usually unpublicized)

Despite the usually well-known detrimental effects of fractures, in many cases fractures are man-made and induced for bene-

ficial purposes Examples include:

1. Rock cutting in mining

2. hydrau-fracturing for oil, gas, and geothermal energy recovery

3. “Biting” of candies (!)

Costs associated with fracture in general are so exorbitant, that a recent NBS report (Duga et al., 1983) stated:

[The] cost of material fracture to the US [is] $ 119 billion per year, about 4 percent of the gross national product. The

costs could be reduced by an estimated missing 35 billion per year if technology transfer were employed to assure

the use of best practice. Costs could be further reduced by as much as $ 28 billion per year through fracture-related

research.

In light of the variety, and complexity of problems associated with fracture mechanics, it has become a field of research interest

to mathematicians, scientists, and engineers (metallurgical, mechanical, aerospace, and civil).

1.3 Fracture Mechanics vs Strength of Materials

In order to highlight the fundamental differences between strength of materials and fracture mechanics approaches, we consider

a simple problem, a cantilevered beam of length L, width B, height H , and subjected to a point load P at its free end, Fig. 1.1

Maximum flexural stress is given by

L

h

P

L
ha

P

Figure 1.1: Cracked Cantilevered Beam

σmax =
6PL

BH2
(1.1)

We will seek to determine its safe load-carrying capacity using the two approaches
2

.

1. Based on classical strength of materials the maximum flexural stress should not exceed the yield stress σy , or

σmax ≤ σy (1.2)

Thus, based on this first approach, the maximum load which can be safely carried is:

PSOM
max =

BH2

6L
σy (1.3)

2. In applying a different approach, one based on fracture mechanics, the structure cannot be assumed to be defect free. Rather,

an initial crack must be assumed. Eq. 1.2 governed failure; for the strength of materials approach in the linear elastic fracture

mechanics approach (as discussed in the next chapter), failure is governed by:

KI ≤ KIc (1.4)

2

This example is adapted from (Kanninen and Popelar, 1985).
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where KI is a measure of the stress singularity at the tip of the crack and KIc is the critical value of KI. KI is related to

σmax through:

KI = 1.12σmax

√
πa (1.5)

where a is the crack length.KI is a structural parameter (analogous to σmax), andKIc, is a material parameter (analogous

to σy). Fracture toughness is a measure of the material ability to resist crack growth (not to be confused with its tensile

strength, which is associated with crack nucleation or formation). Thus, the maximum load that can be carried is given by:

PFM
max =

BH2

6L

KIc

1.12
√
πa

(1.6)

The two equations, Eq. 1.3 and 1.6 governing the load capacity of the beam according to two different approaches, call for the

following remarks:

1. Both equations are in terms of
BH2

6L

2. The strength of materials approach equation is a function of a material property that is not size dependent.

3. The fracture mechanics approach is not only a function of an intrinsic material property,
3

but also of crack size a.

On the basis of the above, we can schematically represent the failure envelope of this beam in Fig. 1.2, where failure stress is

Plasticity (Gross section)

Plasticity (net section)

Fracture mechanics

Fracture mechanicsPlasticity Crack length a

Fa
ilu
re
 st
re
ss
 

Figure 1.2: Failure Envelope for a Cracked Cantilevered Beam

clearly a function of the crack length.

On the basis of this simple example, we can generalize our preliminary finding by the curve shown in Fig. 1.3. We thus identify

four corners: on the lower left we have our usual engineering design zone, where factors of safety are relatively high; on the

bottom right we have failure governed by yielding, or plasticity; on the upper left failure is governed by linear elastic fracture

mechanics; and on the upper right failure is triggered by a combination of fracture mechanics and plasticity. This last zone has

been called elasto-plastic in metals, and nonlinear fracture in concrete.
4

Finally, we should emphasize that size effect is not unique to fractures but also has been encountered by most engineers in the

design of columns. In fact, depending upon its slenderness ratio, a column failure load is governed by either the Euler equation

for long columns, or the strength of materials for short columns.

Column formulas have been developed, as seen in Fig. 1.4, which is similar to Fig. 1.2. Also note that column instability is

caused by a not perfectly straight element, whereas fracture failure is caused by the presence of a crack. In all other cases, a

perfect material is assumed, as shown in Table 1.1. As will be shown later, similar transition curves have also been developed

by Bažant (Bažant, 1984) for the failure of small or large cracked structures on the basis of either strength of materials or linear

elastic fracture mechanics.

3

We will see later that KIc is often a function of crack length. Similarly compressive strength of concrete is known to be slightly affected by the cylinder size.

4

This curve will be subsequently developed for concrete materials according to Bažant’s size effect law.
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Engineering 
Design Regime

Strength of 
Materials

Elasto‐Plastic 
Fracture 
Mechanics

Linear Elastic 
Fracture 
Mechanics

KI/KIC

σmax/σy 
1

1

Plasticity

Figure 1.3: Generalized Failure Envelope

Figure 1.4: Column Curve

Approach Governing Eq. Theory Imperfection

Strength of Material σ = P
A

Plasticity σy Dislocation

Column Instability σ = π2E

(KL
r

)2
Euler

KL
r

Not Perfectly straight

Fracture σ = Kc√
πa

Griffith KIc Micro-defects

Table 1.1: Column Instability Versus Fracture Instability
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1.4 Major Historical Developments in Fracture Mechanics

As with any engineering discipline approached for the first time, it is helpful to put fracture mechanics into perspective by first

listing its major developments:

1. In 1898, a German Engineer by the name of Kirsch showed that a stress concentration factor of 3 was found to exist around

a circular hole in an infinite plate subjected to uniform tensile stresses (Timoshenko and Goodier, 1970).

2. While investigating the unexpected failure of naval ships in 1913, Inglis (Inglis, 1913) extended the solution for stresses

around a circular hole in an infinite plate to the more general case of an ellipse. It should be noted that this problem was

solved 3 years earlier by Kolosoff (who was the mentor of Muschelisvili) in St Petersbourg, however history remembers

only Inglis who showed that a stress concentration factor of

S.C.F. = 1 + 2

(
a

ρ

)1/2

(1.7)

prevails around the ellipse (where a is the half length of the major axis, and ρ is the radius of curvature)
5

.

3. Inglis’s early work was followed by the classical studies of Griffith, who was not orginally interested in the strength of

cracked structures (fracture mechanics was not yet a discipline), but rather in the tensile strength of crystalline solids and

its relation to the theory based on their lattice properties, which is approximately equal to E/10 where E is the Young’s

Modulus (Kelly, 1974).

With his assistant Lockspeiser, Griffith was then working at the Royal Aircraft Establishment (RAE) at Farnborough, Eng-

land (which had a tradition of tolerance for original and eccentric young researchers), and was testing the strength of

glass rods of different diameters at different temperatures (Gordon, 1988). They found that the strength increased rapidly

as the size decreased. Asymptotic values of 1,600 and 25 Ksi were found for infinitesimally small and bulk size specimens,

respectively.

On the basis of those two observations, Griffith’s first major contribution to fracture mechanics was to suggest that internal

minute flaws acted as stress raisers in solids, thus strongly affecting their tensile strengths. Thus, in reviewing Inglis’s early

work, Griffith determined that the presence of minute elliptical flaws were responsible in dramatically reducing the glass

strength from the theoretical value to the actually measured value.

4. The second major contribution made by Griffith was in deriving a thermodynamical criterion for fracture by considering

the total change in energy taking place during cracking. During crack extension, potential energy (both external work and

internal strain energy) is released and “transferred” to form surface energy.

Unfortunately, one night Lockspeiser forgot to turn off the gas torch used for glass melting, resulting in a fire. Following an

investigation, (RAE) decided that Griffith should stop wasting his time, and he was transferred to the engine department.

5. After Griffith’s work, the subject of fracture mechanics was relatively dormant for about 20 years until 1939 when Wester-

gaard (Westergaard, 1939a) derived an expression for the stress field near a sharp crack tip.

6. Up to this point, fracture mechanics was still a relatively obscure and esoteric science. However, more than any other single

factor, the large number of sudden and catastrophic fractures that occurred in ships during and following World War II

gave the impetus for the development of fracture mechanics. Of approximately 5,000 welded ships constructed during the

war, over 1,000 suffered structural damage, with 150 of these being seriously damaged, and 10 fractured into two parts.

After the war, George Irwin, who was at the U.S. Naval Research Laboratory, made use of Griffith’s idea, and thus set the

foundations of fracture mechanics. He made three major contributions:

a) He (and independently Orowan) extended the Griffith’s original theory to metals by accounting for yielding at the

crack tip. This resulted in what is sometimes called the modified Griffith’s theory.

b) He altered Westergaard’s general solution by introducing the concept of the stress intensity factor (SIF).

c) He introduced the concept of energy release rate G

7. Subcritical crack growth was subsequently studied. This form of crack propagation is driven by either applying repeated

loading (fatigue) to a crack, or surround it by a corrosive environment. In either case the original crack length, and loading

condition, taken separately, are below their critical value. Paris in 1961 proposed the first empirical equation relating the

range of the stress intensity factor to the rate of crack growth.

5

Note that for a circle, a stress concentration of 3 is recovered.

7



D
R
A
FT

INTRODUCTION

8. Non-linear considerations were further addressed by Wells, who around 1963 utilized the crack opening displacement

(COD) as the parameter to characterize the strength of a crack in an elasto-plastic solid, and by Rice, who introduce his J

integral in 1968 in probably the second most referenced paper in the field (after Griffith); it introduced a path independent

contour line integral that is the rate of change of the potential energy for an elastic non-linear solid during a unit crack

extension.

9. Another major contribution was made by Erdogan and Sih in the mid ’60s when they introduced the first model for mixed-

mode crack propagation.

10. Other major advances have been made subsequently in a number of subdisciplines of fracture mechanics: (i) dynamic crack

growth; (ii) fracture of laminates and composites; (iii) numerical techniques; (iv) design philosophies; and others.

11. In 1976, Hillerborg (Hillerborg et al., 1976a) introduced the fictitious crack model in which residual tensile stresses can be

transmitted across a portion of the crack. Thus a new meaning was given to cracks in cementitious materials.

12. In 1979 Bažant and Cedolin (Bažant and Cedolin, 1979) showed that for the objective analysis of cracked concrete structure,

fracture mechanics concepts must be used, and that classical strength of materials models would yield results that are mesh

sensitive.

This brief overview is designed to make detailed coverage of subsequent topics better understood when put into global per-

spective.

1.5 Coverage

Following this brief overview, chapter two will provide the reader with a review of elasticity. In particular we shall revisit the

major equations needed to analytically solve simple problems involving elliptical holes or sharp cracks.

Those solutions will be presented in detail in chapter three. This chapter, mathematically the most challenging, is an important

one to understand the mathematical complexity of solutions of simple crack problem, and to appreciate the value of numerical

based solutions which will be discussed later. First Inglis solution of a circular and elliptical hole will be presented, then the

problem of a sharp crack in an infinite plate will be solved using the two classical methods. The first one is based on Westergaard’s

solution, and the second on Williams’s classical paper. Through Westergaard’s solution, we shall introduce the concept of stress

intensity factors, and William’s solution will be extended to cracks along an interface between two dissimilar materials. Also

covered in this chapter will be the solutions of a crack in a homogeneous anisotropic solid based on the solution of Sih and Paris.

With the rigorous derivation of the stress field ahead of a crack tip performed, Chapter four will formalize the Linear Elastic

Fracture Mechanics approach, and show how it can be used in some practical design cases.

A complementary approach to the stress based one, will be presented in chapter five which discusses Energy Methods in linear

elastic fracture mechanics. First, we shall thoroughly examine the theoretical strength of crystalline materials and contrast it with

the actual one, then we will define the energy release rate G, and discuss the duality between the stress based and the energy

based approaches.

Chapter six will extend the simple mode I crack propagation criteria to mixed modes (where a crack is simultaneously subjected

to opening and sliding) by discussing some of the major criterions.

Subcritical crack growth, and more specifically fatigue crack growth will be covered in chapter seven.

Elasto-Plastic fracture mechanics, and derivation of the J integral will then be covered in chapter eight. First we will derive

expressions for the size of the plastic zone ahead of the crack tip, then criteria for crack growth presented.

In chapter nine, we shall examine some of the fracture testing techniques, with emphasize on both metallic and cementitious

materials.

Fracture of cementitious material, such as concrete and rock, will be studied in chapter ten. In this extensive chapter, we shall

review some of the major models currently investigated, and examine some applications.

Numerical techniques will then be discussed in chapter eleven. First techniques of modelling the stress singularity at the crack

tip will be examined, followed by methods to extract the stress intensity factors from a finite element analysis and evaluation of

J integral will be presented.

The last chapter, twelve, will focus on numerical techniques for cementitious materials.

For more detailed coverage, the reader is referred to the numerous excellent books available, such as Broek (Broek, 1986, 1989),

Cherepanov (Cherepanov, 1979), Kanninen (Kanninen and Popelar, 1985), Knott (Knott, 1976), Barsom and Rolfe (Barsom and

Rolfe, 1987), and Anderson’s (Anderson, 1995). Finally, a recent book by Bažant (Bažant and Cedolin, 1991) covers (among other

things) some of the issues related to fracture of concrete.
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Chapter 2

PRELIMINARY CONSIDERATIONS

Needs some minor editing!

1 Whereas, ideally, an introductory course in Continuum Mechanics should be taken prior to a fracture mechanics, this is seldom

the case. Most often, students have had a graduate course in Advanced Strength of Materials, which can only provide limited

background to a solid fracture mechanics course.

2 Accordingly, this preliminary chapter (mostly extracted from the author’s lecture notes in Continuum Mechanics) will partially

remedy for occasional deficiencies and will be often referenced.

3 It should be noted that most, but not all, of the material in this chapter will be subsequently referenced.

2.1 Tensors

4 We now seek to generalize the concept of a vector by introducing the tensor (T), which essentially exists to operate on vectors
v to produce other vectors (or on tensors to produce other tensors!). We designate this operation by T·v or simply Tv.

5 We hereby adopt the dyadic and indicialnotation for tensors as linear vector operators

u = T·v or ui = Tijvj (2.1-a)

u = v·S where S = TT
(2.1-b)

6 Whereas a tensor is essentially an operator on vectors (or other tensors), it is also a physical quantity, independent of any

particular coordinate system yet specified most conveniently by referring to an appropriate system of coordinates.

7 Tensors frequently arise as physical entities whose components are the coefficients of a linear relationship between vectors.

8 A tensor is classified by the rank or order. A Tensor of order zero is specified in any coordinate system by one coordinate and

is a scalar (such as temperature). A tensor of order one has three coordinate components in space, hence it is a vector (such as

force). In general 3-D space the number of components of a tensor is 3n where n is the order of the tensor.

9 A force and a stress are tensors of order 1 and 2 respectively.

2.1.1 Indicial Notation

10 Whereas the Engineering notation may be the simplest and most intuitive one, it often leads to long and repetitive equations.

Alternatively, the tensor and the dyadic form will lead to shorter and more compact forms.

11 While working on general relativity, Einstein got tired of writing the summation symbol with its range of summation below

and above (such as

∑n=3
i=1 aijbi) and noted that most of the time the upper range (n) was equal to the dimension of space (3 for

us, 4 for him), and that when the summation involved a product of two terms, the summation was over a repeated index (i in our

example). Hence, he decided that there is no need to include the summation sign

∑
if there was repeated indices (i), and thus

any repeated index is a dummy index and is summed over the range 1 to 3. An index that is not repeated is called free index
and assumed to take a value from 1 to 3.

12 Hence, this so called indicial notation is also referred to Einstein’s notation.

13 The following rules define indicial notation:

1. If there is one letter index, that index goes from i to n (range of the tensor). For instance:

ai = ai = ⌊ a1 a2 a3 ⌋ =


a1
a2
a3

 i = 1, 3 (2.2)

9
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assuming that n = 3.

2. A repeated index will take on all the values of its range, and the resulting tensors summed. For instance:

a1ixi = a11x1 + a12x2 + a13x3 (2.3)

3. Tensor’s order:

• First order tensor (such as force) has only one free index:

ai = ai = ⌊ a1 a2 a3 ⌋ (2.4)

other first order tensors aijbj = ai1b1 + ai2b2 + ai3b3, Fikk , εijkujvk

• Second order tensor (such as stress or strain) will have two free indices.

Dij =

 D11 D22 D13

D21 D22 D23

D31 D32 D33

 (2.5)

other examples Aijip, δijukvk .

• A fourth order tensor (such as Elastic constants) will have four free indices.

4. Derivatives of tensor with respect to xi is written as , i. For example:

∂Φ
∂xi

= Φ,i
∂vi
∂xi

= vi,i
∂vi
∂xj

= vi,j
∂Ti,j

∂xk
= Ti,j,k (2.6)

14 Usefulness of the indicial notation is in presenting systems of equations in compact form. For instance:

xi = cijzj (2.7)

this simple compacted equation, when expanded would yield:

x1 = c11z1 + c12z2 + c13z3
x2 = c21z1 + c22z2 + c23z3
x3 = c31z1 + c32z2 + c33z3

(2.8)

Similarly:

Aij = BipCjqDpq (2.9)

A11 = B11C11D11 +B11C12D12 +B12C11D21 +B12C12D22

A12 = B11C11D11 +B11C12D12 +B12C11D21 +B12C12D22

A21 = B21C11D11 +B21C12D12 +B22C11D21 +B22C12D22

A22 = B21C21D11 +B21C22D12 +B22C21D21 +B22C22D22

(2.10)

15 Using indicial notation, we may rewrite the definition of the dot product

a·b = aibi (2.11)

and of the cross product

a×b = εpqraqbrep (2.12)

we note that in the second equation, there is one free index p thus there are three equations, there are two repeated (dummy)

indices q and r, thus each equation has nine terms.

10
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2.1.2 Tensor Operations

16 The sum of two (second order) tensors is simply defined as:

Sij = Tij +Uij (2.13)

17 The multiplication of a (second order) tensor by a scalar is defined by:

Sij = λTij (2.14)

18 The inner product is obtained from an outer product by contraction involving one index from each tensor. For example

aibj → aibi (2.15-a)

aiEjk → aiEik = fk (2.15-b)

EijFkm → EijFjm = Gim (2.15-c)

AiB.k
i → AiB.k

i = Dk
(2.15-d)

19 The scalar product of two tensors is defined as

T : U = TijUij (2.16)

in any rectangular system.

20 The following inner-product axioms are satisfied:

T : U = U : T (2.17-a)

T : (U+V) = T : U+T : V (2.17-b)

α(T : U) = (αT) : U = T : (αU) (2.17-c)

T : T > 0 unless T = 0 (2.17-d)

2.1.3 Rotation of Axes

21 The rule for changing second order tensor components under rotation of axes goes as follow:

ui = ajiuj From Eq. ??
= ajiTjqvq From Eq. 2.1-a

= ajiTjqa
q
pvp From Eq. ??

But we also have ui = T ipvp (again from Eq. 2.1-a) in the barred system, equating these two expressions we obtain

T ip − (ajia
q
pTjq)vp = 0 (2.18)

hence

T ip = ajia
q
pTjq in Matrix Form [T ] = [A]T [T ][A]

Tjq = ajia
q
pT ip in Matrix Form [T ] = [A][T ][A]T

(2.19)

By extension, higher order tensors can be similarly transformed from one coordinate system to another.

11
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22 If we consider the 2D case, From Eq. ??

A =

 cosα sinα 0
− sinα cosα 0

0 0 1

 (2.20-a)

T =

 Txx Txy 0
Txy Tyy 0
0 0 0

 (2.20-b)

T = ATTA =

 T xx T xy 0

T xy T yy 0
0 0 0

 (2.20-c)

=

 cos2 αTxx + sin2 αTyy + sin 2αTxy
1
2
(− sin 2αTxx + sin 2αTyy + 2 cos 2αTxy 0

1
2
(− sin 2αTxx + sin 2αTyy + 2 cos 2αTxy sin2 αTxx + cosα(cosαTyy − 2 sinαTxy 0

0 0 0


(2.20-d)

alternatively, using sin 2α = 2 sinα cosα and cos 2α = cos2 α− sin2 α, this last equation can be rewritten as
T xx

T yy

T xy

 =

 cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ cos θ sin θ cos2 θ − sin2 θ


Txx

Tyy

Txy

 (2.21)

2.1.4 Trace

23 The trace of a second-order tensor, denoted tr T is a scalar invariant function of the tensor and is defined as

tr T ≡ Tii (2.22)

Thus it is equal to the sum of the diagonal elements in a matrix.

2.1.5 Inverse Tensor

24 An inverse tensor is simply defined as follows

T−1(Tv) = v and T(T−1v) = v (2.23)

alternatively T−1T = TT−1 = I, or T−1
ik Tkj = δij and TikT

−1
kj = δij

2.1.6 Principal Values and Directions of Symmetric Second Order Tensors

25 Since the two fundamental tensors in continuum mechanics are of the second order and symmetric (stress and strain), we

examine some important properties of these tensors.

26 For every symmetric tensor Tij defined at some point in space, there is associated with each direction (specified by unit normal

nj ) at that point, a vector given by the inner product

vi = Tijnj (2.24)

If the direction is one for which vi is parallel to ni, the inner product may be expressed as

Tijnj = λni (2.25)

and the direction ni is called principal direction of Tij . Since ni = δijnj , this can be rewritten as

(Tij − λδij)nj = 0 (2.26)

12
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which represents a system of three equations for the four unknowns ni and λ.

(T11 − λ)n1 + T12n2 + T13n3 = 0

T21n1 + (T22 − λ)n2 + T23n3 = 0 (2.27-a)

T31n1 + T32n2 + (T33 − λ)n3 = 0

To have a non-trivial solution (ni = 0) the determinant of the coefficients must be zero,

|Tij − λδij | = 0 (2.28)

27 Expansion of this determinant leads to the following characteristic equation

λ3 − ITλ
2 + IITλ− IIIT = 0 (2.29)

the roots are called the principal values of Tij and

IT = Tij = tr Tij

IIT = 1
2
(TiiTjj − TijTij)

IIIT = |Tij | = detTij

(2.30)

are called the first, second and third invariants respectively of Tij .

28 It is customary to order those roots as λ1 > λ2 > λ3

29 For a symmetric tensor with real components, the principal values are also real. If those values are distinct, the three principal

directions are mutually orthogonal.

2.2 Kinetics

2.2.1 Force, Traction and Stress Vectors

30 There are two kinds of forces in continuum mechanics

body forces: act on the elements of volume or mass inside the body, e.g. gravity, electromagnetic fields. dF = ρbdV ol.

surface forces: are contact forces acting on the free body at its bounding surface. Those will be defined in terms of force per
unit area.

31 The surface force per unit area acting on an element dS is called traction or more accurately stress vector.∫
S

tdS = i

∫
S

txdS + j

∫
S

tydS + k

∫
S

tzdS (2.31)

Most authors limit the term traction to an actual bounding surface of a body, and use the term stress vector for an imaginary

interior surface (even though the state of stress is a tensor and not a vector).

32 The traction vectors on planes perpendicular to the coordinate axes are particularly useful. When the vectors acting at a point

on three such mutually perpendicular planes is given, the stress vector at that point on any other arbitrarily inclined plane can

be expressed in terms of the first set of tractions.

33 A stress, Fig 2.1 is a second order cartesian tensor, σij where the 1st subscript (i) refers to the direction of outward facing

normal, and the second one (j) to the direction of component force.

σ = σij =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =


t1
t2
t3

 (2.32)

34 In fact the nine rectangular components σij of σ turn out to be the three sets of three vector components (σ11, σ12, σ13),

(σ21, σ22, σ23), (σ31, σ32, σ33) which correspond to the three tractions t1, t2 and t3 which are acting on the x1, x2 and x3 faces
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(It should be noted that those tractions are not necesarily normal to the faces, and they can be decomposed into a normal and

shear traction if need be). In other words, stresses are nothing else than the components of tractions (stress vector), Fig. 2.2.

35 The state of stress at a point cannot be specified entirely by a single vector with three components; it requires the second-order

tensor with all nine components.

2.2.2 Traction on an Arbitrary Plane; Cauchy’s Stress Tensor

36 Let us now consider the problem of determining the traction acting on the surface of an oblique plane (characterized by its

normal n) in terms of the known tractions normal to the three principal axis, t1, t2 and t3. This will be done through the so-called

Cauchy’s tetrahedron shown in Fig. 2.3, and will be obtained without any assumption of equilibrium and it will apply in fluid

O
N

-t1

tn

-t3

-t2

X2

X3

X1

dA1

dA3

dA2 dVe2

e3

e1

Figure 2.3: Cauchy’s Tetrahedron

dynamics as well as in solid mechanics.

37 This equation is a vector equation, and the corresponding algebraic equations for the components of tn are

tn1 = σ11n1 + σ21n2 + σ31n3

tn2 = σ12n1 + σ22n2 + σ32n3

tn3 = σ13n1 + σ23n2 + σ33n3

Indicial notation tni = σjinj

dyadic notation tn = n·σ = σT ·n

(2.33)

38 We have thus established that the nine components σij are components of the second order tensor, Cauchy’s stress tensor.

2.2.2.1 Stress Vectors

if the stress tensor at point P is given by

σ =

 7 −5 0
−5 3 1
0 1 2

 =


t1
t2
t3

 (2.34)

We seek to determine the traction (or stress vector) t passing throughP and parallel to the planeABC whereA(4, 0, 0),B(0, 2, 0)
and C(0, 0, 6).
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The vector normal to the plane can be found by taking the cross products of vectors AB and AC:

N = AB×AC =

∣∣∣∣∣∣
e1 e2 e3

−4 2 0
−4 0 6

∣∣∣∣∣∣ (2.35-a)

= 12e1 + 24e2 + 8e3 (2.35-b)

The unit normal of N is given by

n =
3

7
e1 +

6

7
e2 +

2

7
e3 (2.36)

Hence the stress vector (traction) will be

⌊ 3
7

6
7

2
7 ⌋

 7 −5 0
−5 3 1
0 1 2

 = ⌊ − 9
7

5
7

10
7 ⌋ (2.37)

and thus t = − 9
7
e1 +

5
7
e2 +

10
7
e3

2.2.3 Invariants

39 The principal stresses are physical quantities, whose values do not depend on the coordinate system in which the components

of the stress were initially given. They are therefore invariants of the stress state.

40 When the determinant in the characteristic equation is expanded, the cubic equation takes the form

λ3 − Iσλ
2 − IIσλ− IIIσ = 0 (2.38)

where the symbols Iσ , IIσ and IIIσ denote the following scalar expressions in the stress components:

Iσ = σ11 + σ22 + σ33 = σii = tr σ
IIσ = −(σ11σ22 + σ22σ33 + σ33σ11) + σ2

23 + σ2
31 + σ2

12

= 1
2
(σijσij − σiiσjj) =

1
2
σijσij − 1

2
I2σ

= 1
2
(σ : σ − I2σ)

IIIσ = detσ = 1
6
eijkepqrσipσjqσkr

(2.39)

41 In terms of the principal stresses, those invariants can be simplified into

Iσ = σ(1) + σ(2) + σ(3)

IIσ = −(σ(1)σ(2) + σ(2)σ(3) + σ(3)σ(1))
IIIσ = σ(1)σ(2)σ(3)

(2.40)

2.2.4 Spherical and Deviatoric Stress Tensors

42 If we let σ denote the mean normal stress p

σ = −p =
1

3
(σ11 + σ22 + σ33) =

1

3
σii =

1

3
tr σ (2.41)

then the stress tensor can be written as the sum of two tensors:

Hydrostatic stress in which each normal stress is equal to −p and the shear stresses are zero. The hydrostatic stress produces

volume change without change in shape in an isotropic medium.

σhyd = −pI =

 −p 0 0
0 −p 0
0 0 −p

 (2.42)

Deviatoric Stress: which causes the change in shape.

σdev =

 σ11 − σ σ12 σ13

σ21 σ22 − σ σ23

σ31 σ32 σ33 − σ

 (2.43)
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2.2.5 Stress Transformation

43 From Eq. 2.19 and 2.19, the stress transformation for the second order stress tensor is given by

σip = ajia
q
pσjq in Matrix Form [σ] = [A]T [σ][A]

σjq = ajia
q
pσip in Matrix Form [σ] = [A][σ][A]T

(2.44)

44 For the 2D plane stress case we rewrite Eq. 2.21
σxx

σyy

σxy

 =

 cos2 α sin2 α 2 sinα cosα
sin2 α cos2 α −2 sinα cosα

− sinα cosα cosα sinα cos2 α− sin2 α


σxx

σyy

σxy

 (2.45)

2.2.6 Polar Coordinates

It is often necessary to express cartesian stresses in terms of polar stresses and vice versa. This can be done through the following

relationships

σxx = σrr cos
2 θ + σθθ sin

2 θ − σrθ sin 2θ (2.46-a)

σyy = σrr sin
2 θ + σθθ cos

2 θ + σrθ sin 2θ (2.46-b)

σxy = (σrr − σθθ) sin θ cos θ + σrθ(cos
2 θ − sin2 θ) (2.46-c)

and

σrr =
(σxx + σyy

2

)(
1− a2

r2

)
+
(σxx − σyy

2

)(
1 +

3a4

r4
− 4a2

r2

)
cos 2θ

+σxy

(
1 +

3a4

r4
− 4a2

r2

)
sin 2θ (2.47-a)

σθθ =
(σxx + σyy

2

)(
1 +

a2

r2

)
−
(σxx − σyy

2

)(
1 +

3a4

r4

)
cos 2θ

−σxy

(
1 +

3a4

r4

)
sin 2θ (2.47-b)

σrθ = −
(σxx − σyy

2

)(
1− 3a4

r4
+

2a2

r2

)
sin 2θ + σxy

(
1− 3a4

r4
+

2a2

r2

)
cos 2θ (2.47-c)

2.3 Kinematic

2.3.1 Strain Tensors

45 The Lagrangian finite strain tensor can be written as

Eij =
1

2

(
∂ui

∂Xj
+
∂uj

∂Xi
+
∂uk

∂Xi

∂uk

∂Xj

)
or E =

1

2
(u∇X +∇Xu︸ ︷︷ ︸

J+Jc

+∇Xu·u∇X︸ ︷︷ ︸
Jc·J

) (2.48)

or:

E11 =
∂u1

∂X1
+

1

2

[(
∂u1

∂X1

)2

+

(
∂u2

∂X1

)2

+

(
∂u3

∂X1

)2
]

(2.49-a)

E12 =
1

2

(
∂u1

∂X2
+
∂u2

∂X1

)
+

1

2

[
∂u1

∂X1

∂u1

∂X2
+
∂u2

∂X1

∂u2

∂X2
+
∂u3

∂X1

∂u3

∂X2

]
(2.49-b)

· · · = · · · (2.49-c)

46 The Eulerian finite strain tensor can be written as

E∗
ij =

1

2

(
∂ui

∂xj
+
∂uj

∂xi
− ∂uk

∂xi

∂uk

∂xj

)
or E∗ =

1

2
(u∇x +∇xu︸ ︷︷ ︸

K+Kc

−∇xu·u∇x︸ ︷︷ ︸
Kc·K

) (2.50)
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47 Expanding

E∗
11 =

∂u1

∂x1
− 1

2

[(
∂u1

∂x1

)2

+

(
∂u2

∂x1

)2

+

(
∂u3

∂x1

)2
]

(2.51-a)

E∗
12 =

1

2

(
∂u1

∂x2
+
∂u2

∂x1

)
− 1

2

[
∂u1

∂x1

∂u1

∂x2
+
∂u2

∂x1

∂u2

∂x2
+
∂u3

∂x1

∂u3

∂x2

]
(2.51-b)

· · · = · · · (2.51-c)

48 Alternatively these equations may be expanded as

εxx = ∂u
∂x

+ 1
2

[(
∂u
∂x

)2
+
(
∂v
∂x

)2
+
(
∂w
∂x

)2]
εyy = ∂v

∂y
+ 1

2

[(
∂u
∂y

)2
+
(

∂v
∂y

)2
+
(

∂w
∂y

)2]
εzz = ∂w

∂z
+ 1

2

[(
∂u
∂z

)2
+
(
∂v
∂z

)2
+
(
∂w
∂z

)2]
εxy = 1

2

(
∂v
∂x

+ ∂u
∂y

+ ∂u
∂x

∂u
∂y

+ ∂v
∂x

∂v
∂y

+ ∂w
∂x

∂w
∂y

)
εxz = 1

2

(
∂w
∂x

+ ∂u
∂z

+ ∂u
∂x

∂u
∂z

+ ∂v
∂x

∂v
∂z

+ ∂w
∂x

∂w
∂z

)
εyz = 1

2

(
∂w
∂y

+ ∂v
∂z

+ ∂u
∂y

∂u
∂z

+ ∂v
∂y

∂v
∂z

+ ∂w
∂y

∂w
∂z

)
(2.52)

or

εij =
1

2
(ui,j + uj,i + uk,iuk,j) (2.53)

From this equation, we note that:

1. We define the engineering shear strain as

γij = 2εij (i ̸= j) (2.54)

2. If the strains are given, then these strain-displacements provide a system of (6) nonlinear partial differential equation in

terms of the unknown displacements (3).

3. εik is the Green-Lagrange strain tensor.

4. The strains have been expressed in terms of the coordinates x, y, z in the undeformed state, i.e. in the Lagrangian coor-
dinate which is the preferred one in structural mechanics.

5. Alternatively we could have expressed ds′
2−dS2

in terms of coordinates in the deformed state, i.e. Eulerian coordinates
x′, y′, z′, and the resulting strains are referred to as the Almansi strain which is the preferred one in fluid mechanics.

6. In most cases the deformations are small enough for the quadratic term to be dropped, the resulting equations reduce to

εxx = ∂u
∂x

εyy = ∂v
∂y

εzz = ∂w
∂z

γxy = ∂v
∂x

+ ∂u
∂y

γxz = ∂w
∂x

+ ∂u
∂z

γyz = ∂w
∂y

+ ∂v
∂z

(2.55)

or

εij =
1

2
(ui,k + uk,i) (2.56)

which is called the Cauchy strain
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49 In finite element, the strain is often expressed through the linear operator L

ε = Lu (2.57)

or 

εxx
εyy
εzz
εxy
εxz
εyz

︸ ︷︷ ︸
ε

=



∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂y

∂
∂x

0
∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y


︸ ︷︷ ︸

L


ux

uy

uz

︸ ︷︷ ︸
u

(2.58)

2.3.2 Compatibility Equation

If εij = 1
2
(ui,j + uj,i) then we have six differential equations (in 3D the strain tensor has a total of 9 terms, but due to sym-

metry, there are 6 independent ones) for determining (upon integration) three unknowns displacements ui. Hence the system is

overdetermined, and there must be some linear relations between the strains.

It can be shown (through appropriate successive differentiation of Eq. ??) that the compatibility relation for strain reduces to:

∂2εik
∂xj∂xj

+
∂2εjj
∂xi∂xk

− ∂2εjk
∂xi∂xj

− ∂2εij
∂xj∂xk

= 0. (2.59)

In 3D, this would yield 9 equations in total, however only six are distinct. In 2D, this results in (by setting i = 2, j = 1 and l = 2):

∂2ε11
∂x22

+
∂2ε22
∂x21

=
∂2γ12
∂x1∂x2

(2.60)

(recall that 2ε12 = γ12).

When he compatibility equation is written in term of the stresses, it yields:

∂2σ11

∂x22
− ν

∂σ22
2

∂x22
+
∂2σ22

∂x21
− ν

∂2σ11

∂x21
= 2 (1 + ν)

∂2σ21

∂x1∂x2
(2.61)

2.4 Fundamental Laws of Continuum Mechanics

50 We have thus far studied the stress tensors (Cauchy, Piola Kirchoff), and several other tensors which describe strain at a point.

In general, those tensors will vary from point to point and represent a tensor field.

51 We have also obtained only one differential equation, that was the compatibility equation.

52 In this section, we will derive additional differential equations governing the way stress and deformation vary at a point and

with time. They will apply to any continuous medium, and yet we will not have enough equations to determine unknown tensor

field. For that we need to wait for the next chapter where constitututive laws relating stress and strain will be introduced. Only

with constitutive equations and boundary and initial conditions would we be able to obtain a well defined mathematical problem

to solve for the stress and deformation distribution or the displacement or velocity fields.

53 In this chapter we shall derive differential equations expressing locally the conservation of mass, momentum and energy.

These differential equations of balance will be derived from integral forms of the equation of balance expressing the fundamental

postulates of continuum mechanics.
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2.4.1 Conservation Laws

54 Conservation laws constitute a fundamental component of classical physics. A conservation law establishes a balance of a

scalar or tensorial quantity in volume V bounded by a surface S. In its most general form, such a law may be expressed as

d

dt

∫
V

AdV︸ ︷︷ ︸
Rate of variation

+

∫
S

αdS︸ ︷︷ ︸
Exchange by Diffusion

=

∫
V

AdV︸ ︷︷ ︸
Source

(2.62)

where A is the volumetric density of the quantity of interest (mass, linear momentum, energy, …) a, A is the rate of volumetric

density of what is provided from the outside, and α is the rate of surface density of what is lost through the surface S of V and

will be a function of the normal to the surface n.

55 Hence, we read the previous equation as: The input quantity (provided by the right hand side) is equal to what is lost across

the boundary, and to modify A which is the quantity of interest. The dimensions of various quantities are given by

dim(a) = dim(AL−3) (2.63-a)

dim(α) = dim(AL−2t−1) (2.63-b)

dim(A) = dim(AL−3t−1) (2.63-c)

56 Hence, this section will apply the previous conservation law to mass, momentum, and energy. the resulting differential equa-

tions will provide additional interesting relation with regard to the imcompressibiltiy of solids (important in classical hydrody-

namics and plasticity theories), equilibrium and symmetry of the stress tensor, and the first law of thermodynamics.

57 The enunciation of the preceding three conservation laws plus the second law of thermodynamics, constitute what is commonly

known as the fundamental laws of continuum mechanics.

2.4.2 Fluxes

58 Prior to the enunciation of the first conservation law, we need to define the concept of flux across a bounding surface.

59 The flux across a surface can be graphically defined through the consideration of an imaginary surface fixed in space with

continuous “medium” flowing through it. If we assign a positive side to the surface, and take n in the positive sense, then the

volume of “material” flowing through the infinitesimal surface area dS in time dt is equal to the volume of the cylinder with base

dS and slant height vdt parallel to the velocity vector v, Fig. 2.4 (If v·n is negative, then the flow is in the negative direction).

v

n

dS

vdt
v dtn

Figure 2.4: Flux Through Area dS

Hence, we define the volume flux as

Volume Flux =

∫
S

v·ndS =

∫
S

vjnjdS (2.64)
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where the last form is for rectangular cartesian components.

60 We can generalize this definition and define the following fluxes per unit area through dS:

Mass Flux =

∫
S

ρv·ndS =

∫
S

ρvjnjdS

Momentum Flux =

∫
S

ρv(v·n)dS =

∫
S

ρvkvjnjdS

Kinetic Energy Flux =

∫
S

1

2
ρv2(v·n)dS =

∫
S

1

2
ρvivivjnjdS

Heat flux =

∫
S

q·ndS =

∫
S

qjnjdS

Electric flux =

∫
S

J·ndS =

∫
S

JjnjdS

(2.65)

2.4.3 Conservation of Mass; Continuity Equation

dρ

dt
+ ρ

∂vi
∂xi

= 0 or

dρ

dt
+ ρ∇·v = 0 (2.66)

The vector form is independent of any choice of coordinates. This equation shows that the divergence of the velocity vector field

equals (−1/ρ)(dρ/dt) and measures the rate of flow of material away from the particle and is equal to the unit rate of decrease

of density ρ in the neighborhood of the particle.

61 If the material is incompressible, so that the density in the neighborhood of each material particle remains constant as it moves,

then the continuity equation takes the simpler form

∂vi
∂xi

= 0 or ∇·v = 0 (2.67)

this is the condition of incompressibility

2.4.4 Linear Momentum Principle; Equation of Motion

62 The momentum principle states that the time rate of change of the total momentum of a given set of particles equals the vector sum
of all external forces acting on the particles of the set, provided Newton’s Third Law applies. The continuum form of this principle is

a basic postulate of continuum mechanics.∫
S

tdS +

∫
V

ρbdV =
d

dt

∫
V

ρvdV (2.68)

Then we substitute ti = Tijnj and apply the divergence theorm to obtain∫
V

(
∂Tij

∂xj
+ ρbi

)
dV =

∫
V

ρ
dVi

dt
dV (2.69-a)∫

V

[
∂Tij

∂xj
+ ρbi − ρ

dVi

dt

]
dV = 0 (2.69-b)

or for an arbitrary volume

∂Tij

∂xj
+ ρbi = ρ

dVi

dt
or ∇T+ ρb = ρ

dV

dt
(2.70)

which is Cauchy’s (first) equation of motion, or the linear momentum principle, or more simply equilibrium equation.

63 When expanded in 3D, this equation yields:

∂T11
∂x1

+ ∂T12
∂x2

+ ∂T13
∂x3

+ ρb1 = 0
∂T21
∂x1

+ ∂T22
∂x2

+ ∂T23
∂x3

+ ρb2 = 0
∂T31
∂x1

+ ∂T32
∂x2

+ ∂T33
∂x3

+ ρb3 = 0

(2.71)
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64 We note that these equations could also have been derived from the free body diagram shown in Fig. 2.5 with the assumption

of equilibrium (via Newton’s second law) considering an infinitesimal element of dimensions dx1 × dx2 × dx3. Writing the

summation of forces, will yield

Tij,j + ρbi = 0 (2.72)

where ρ is the density, bi is the body force (including inertia).

σ +
δyy
δσyy

y
dy

τ xy

σ
σ

σ

+
δxx

dy

yy

xx

σδ xx

x
dx

τ +
δxy

τδ xy d

τ yx

τ +
δ

τδ
y

dy
yx

yx

x
x

dx

Figure 2.5: Equilibrium of Stresses, Cartesian Coordinates

2.4.5 Moment of Momentum Principle

65 The moment of momentum principle states that the time rate of change of the total moment of momentum of a given set of
particles equals the vector sum of the moments of all external forces acting on the particles of the set.

66 Thus, in the absence of distributed couples (this theory of Cosserat will not be covered in this course) we postulate the same

principle for a continuum as

∫
S

(r×t)dS +

∫
V

(r×ρb)dV =
d

dt

∫
V

(r×ρv)dV (2.73)

2.4.6 Conservation of Energy; First Principle of Thermodynamics

67 The first principle of thermodynamics relates the work done on a (closed) system and the heat transfer into the system to the

change in energy of the system. We shall assume that the only energy transfers to the system are by mechanical work done on

the system by surface traction and body forces, by heat transfer through the boundary.

68 If mechanical quantities only are considered, the principle of conservation of energy for the continuum may be derived

directly from the equation of motion given by Eq. 2.70. This is accomplished by taking the integral over the volume V of the scalar

product between Eq. 2.70 and the velocity vi.∫
V

viTji,jdV +

∫
V

ρbividV =

∫
V

ρvi
dVi

dt
dV (2.74)

Applying the divergence theorem,

dK

dt
+

dU

dt
=

dW

dt
+Q (2.75)
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this equation relates the time rate of change of total mechanical energy of the continuum on the left side to the rate of work done

by the surface and body forces on the right hand side.

69 If both mechanical and non mechanical energies are to be considered, the first principle states that the time rate of change of
the kinetic plus the internal energy is equal to the sum of the rate of work plus all other energies supplied to, or removed from the
continuum per unit time (heat, chemical, electromagnetic, etc.).

70 For a thermomechanical continuum, it is customary to express the time rate of change of internal energy by the integral

expression

dU

dt
=

d

dt

∫
V

ρudV (2.76)

where u is the internal energy per unit mass or specific internal energy. We note that U appears only as a differential in the

first principle, hence if we really need to evaluate this quantity, we need to have a reference value for which U will be null. The

dimension of U is one of energy dim U = ML2T−2
, and the SI unit is the Joule, similarly dim u = L2T−2

with the SI unit of

Joule/Kg.

2.5 Constitutive Equations

ceiinosssttuu
Hooke, 1676

Ut tensio sic vis
Hooke, 1678

71 The Generalized Hooke’s Law can be written as:

σij = Dijklεkl i, j, k, l = 1, 2, 3 (2.77)

72 The (fourth order) tensor of elastic constants Dijkl has 81 (34) components however, due to the symmetry of both σ and ε,

there are at most 36

(
9(9−1)

2

)
distinct elastic terms.

73 For the purpose of writing Hooke’s Law, the double indexed system is often replaced by a simple indexed system with a range

of six:

σk =

62=36︷ ︸︸ ︷
Dkm εm k,m = 1, 2, 3, 4, 5, 6 (2.78)

74 In terms of Lame’s constants, Hooke’s Law for an isotropic body is written as

Tij = λδijEkk + 2µEij or T = λIE + 2µE

Eij = 1
2µ

(
Tij − λ

3λ+2µ
δijTkk

)
or E = −λ

2µ(3λ+2µ)
IT + 1

2µ
T

(2.79)

75 In terms of engineering constants:

1

E
= λ+µ

µ(3λ+2µ)
; ν = λ

2(λ+µ)

λ = νE
(1+ν)(1−2ν)

; µ = G = E
2(1+ν)

(2.80)

76 Similarly in the case of pure shear in the x1x3 and x2x3 planes, we have

σ21 = σ12 = τ all other σij = 0 (2.81-a)

2ε12 =
τ

G
(2.81-b)

and the µ is equal to the shear modulus G.

77 Hooke’s law for isotropic material in terms of engineering constants becomes

σij = E
1+ν

(
εij +

ν
1−2ν

δijεkk
)

or σ = E
1+ν

(
ε+ ν

1−2ν
Iε
)

εij = 1+ν
E
σij − ν

E
δijσkk or ε = 1+ν

E
σ − ν

E
Iσ

(2.82)
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78 When the strain equation is expanded in 3D cartesian coordinates it would yield:

εxx
εyy
εzz

γxy(2εxy)
γyz(2εyz)
γzx(2εzx)


=

1

E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1 + ν 0 0
0 0 0 0 1 + ν 0
0 0 0 0 0 1 + ν





σxx

σyy

σzz

τxy
τyz
τzx


(2.83)

79 If we invert this equation, we obtain

σxx

σyy

σzz

τxy
τyz
τzx


=


E

(1+ν)(1−2ν)

 1− ν ν ν
ν 1− ν ν
ν ν 1− ν

 0

0 G

 1 0 0
0 1 0
0 0 1







εxx
εyy
εzz

γxy(2εxy)
γyz(2εyz)
γzx(2εzx)


(2.84)

2.5.1 Transversly Isotropic Case

80 For transversely isotropic, we can express the stress-strain relation in tems of

εxx = a11σxx + a12σyy + a13σzz

εyy = a12σxx + a11σyy + a13σzz

εzz = a13(σxx + σyy) + a33σzz

γxy = 2(a11 − a12)τxy
γyz = a44τxy
γxz = a44τxz

(2.85)

and

a11 =
1

E
; a12 = − ν

E
; a13 = − ν′

E′ ; a33 = − 1

E′ ; a44 = − 1

µ′ (2.86)

whereE is the Young’s modulus in the plane of isotropy andE′
the one in the plane normal to it. ν corresponds to the transverse

contraction in the plane of isotropy when tension is applied in the plane; ν′ corresponding to the transverse contraction in the

plane of isotropy when tension is applied normal to the plane; µ′
corresponding to the shear moduli for the plane of isotropy and

any plane normal to it, and µ is shear moduli for the plane of isotropy.

2.5.2 Special 2D Cases

81 Often times one can make simplifying assumptions to reduce a 3D problem into a 2D one.

2.5.2.1 Plane Strain

82 For problems involving a long body in the z direction with no variation in load or geometry, then εzz = γyz = γxz = τxz =
τyz = 0. Thus, replacing into Eq. 2.84 we obtain

σxx

σyy

σzz

τxy

 =
E

(1 + ν)(1− 2ν)


(1− ν) ν 0
ν (1− ν) 0
ν ν 0
0 0 1−2ν

2




εxx
εyy
γxy

 (2.87)
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2.5.2.2 Axisymmetry

83 In solids of revolution, we can use a polar coordinate sytem and

εrr =
∂u

∂r
(2.88-a)

εθθ =
u

r
(2.88-b)

εzz =
∂w

∂z
(2.88-c)

εrz =
∂u

∂z
+
∂w

∂r
(2.88-d)

84 The constitutive relation is again analogous to 3D/plane strain


σrr

σzz

σθθ

τrz

 =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0
ν 1− ν ν 0
ν ν 1− ν 0
ν ν 1− ν 0
0 0 0 1−2ν

2




εrr
εzz
εθθ
γrz

 (2.89)

2.5.2.3 Plane Stress

85 If the longitudinal dimension in z direction is much smaller than in the x and y directions, then τyz = τxz = σzz = γxz =
γyz = 0 throughout the thickness. Again, substituting into Eq. 2.84 we obtain:

σxx

σyy

τxy

 =
1

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2


εxx
εyy
γxy

 (2.90-a)

εzz = − 1

1− ν
ν(εxx + εyy) (2.90-b)

2.6 Airy Stress Function

86 In elasticity problems we seek a function in terms of the spatial coordinates which can satisfy both the equilibrium and the

compatibility equations. Airy has shown that we can define such a function Φ(x) such that:

σ11 = ∂2Φ
∂x2

2
; σ22 = ∂2Φ

∂x2
1
; σ12 = − ∂2Φ

∂x1∂x2
; (2.91)

87 In polar coordinates:

σrr = 1
r

∂Φ
∂r

+ 1
r2

∂2Φ
∂θ2

σθθ = ∂2Φ
∂r2

σrθ = − ∂
∂r

(
1
r

∂Φ
∂θ

)
(2.92)

It can be shown (by direct substitution of these equations in Eq. 2.71) that the equilibrium equation is automatically satisfied.

88 For linear elastic isotropic materials, the satisfaction of the compatibility equation (Eq. 2.61) further requires that Φ must be

such that

∇2 (∇2Φ
)
≡
(
∂2

∂x21
+

∂2

∂x22

)(
∂2Φ

∂x21
+
∂2Φ

∂x22

)
=
∂4Φ

∂x41
+ 2

∂4Φ

∂x21∂x
2
2

+
∂4Φ

∂x42
= 0 (2.93)

where ∇2
is the Laplacian operator. A solution to Laplace’s equation is referred to as a harmonic function.
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89 In polar coordinates

∇2 (∇2Φ
)
=

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)(
∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2

)
(2.94)

90 Thus, the Airy stress function will enable us to solve elasticity problems provided we can come up with the right choice for Φ
which satisfies the natural boundary conditions (stresses).

2.7 Complex Variables

91 As will be shown in the next chapter, we can use Airy stress function with real variables to determine the stress field around

a circular hole, however we need to extend Airy stress functions to complex variables in order to analyze: 1) stresses around an

elliptical hole (Inglis), and stresses at the tip of a crack (Westergaard).

92 First we define the complex number z as:

z = x1 + ix2 = reiθ (2.95)

where i =
√
−1, x1 and x2 are the cartesian coordinates, and r and θ are the polar coordinates.

93 We further define an analytic function, f(z) one which derivatives depend only on z. Applying the chain rule

∂

∂x1
f(z) =

∂

∂z
f(z)

∂z

∂x1
= f ′(z)

∂z

∂x1
= f ′(z) (2.96-a)

∂

∂x2
f(z) =

∂

∂z
f(z)

∂z

∂x2
= f ′(z)

∂z

∂x2
= if ′(z) (2.96-b)

94 If f(z) = α+ iβ where α and β are real functions of x1 and x2, and f(z) is analytic, then from Eq. 2.96-a and 2.96-b we have:

∂f(z)
∂x1

= ∂α
∂x1

+ i ∂β
∂x1

= f ′(z)
∂f(z)
∂x2

= ∂α
∂x2

+ i ∂β
∂x2

= if ′(z)

}
i

(
∂α

∂x1
+ i

∂β

∂x1

)
︸ ︷︷ ︸

i1
st

Equation

=
∂α

∂x2
+ i

∂β

∂x2︸ ︷︷ ︸
2
nd

Equation

(2.97)

95 Equating the real and imaginary parts yields the Cauchy-Riemann equations:

∂α

∂x1
=

∂β

∂x2
;

∂α

∂x2
= − ∂β

∂x1
(2.98)

96 If we differentiate those two equation, first with respect to x1, then with respect to x2, and then add them up we obtain

∂2α

∂x21
+
∂2α

∂x22
= 0 or ∇2 (α) = 0 (2.99)

which is Laplace’s equation.

97 Similarly we can have:

∇2 (β) = 0 (2.100)

Hence both the real (α) and the imaginary part (β) of an analytic function will separately provide solution to Laplace’s equation,

and α and β are conjugate harmonic functions.
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2.7.1 Complex Airy Stress Functions

98 It can be shown that any stress function can be expressed as

Φ = Re[(x1 − ix2)ψ(z) + χ(z)] (2.101)

provided that both ψ(z) (psi) and χ(z) (chi) are harmonic (i.e ∇2(ψ) = ∇2(χ) = 0) analytic functions of x1 and x2. ψ and χ
are often referred to as the Kolonov-Muskhelishvili complex potentials.

99 If f(z) = α+ iβ and both α and β are real, then its conjugate function is defined as:

f̄(z̄) = α− iβ (2.102)

100 Note that conjugate functions should not be confused with the conjugate harmonic functions. Hence we can rewrite Eq. 2.101

as:

Φ = Re[z̄ψ(z) + χ(z)] (2.103)

101 Substituting Eq. 2.103 into Eq. 2.91, we can determine the stresses

σ11 + σ22 = 4Reψ′(z)
σ22 − σ11 + 2iσ12 = 2[z̄ψ′′(z) + χ′′(z)]

(2.104)

and by separation of real and imaginary parts we can then solve for σ22 − σ11 & σ12.

102 Displacements can be similarly obtained.

2.8 Curvilinear Coordinates

103 A variable z = x1 + ix2 in the cartesian coordinate system can be expressed as reiθ in polar coordinate systems, and as

p = α+ iβ in curvilinear system.

104 Next, we seek to solve for x1 and x2 in terms of α and β. The relationship between z and p is given by

z = c cosh p (2.105)

where c is a constant.

105 Recalling that

coshα =
1

2
(eα + e−α) (2.106-a)

sinhα =
1

2
(eα − e−α) (2.106-b)

eiβ = cosβ + i sinβ (2.106-c)

we substitute those equations into Eq. 2.105

x1 + ix2 =
c

2

(
eα+iβ + e−α−iβ

)
=

c

2

(
eα cosβ + ieα sinβ︸ ︷︷ ︸+ e−α cosβ − ie−α sinβ︸ ︷︷ ︸

)
= cosβ (eα + e−α)︸ ︷︷ ︸

2 coshα

+i sinβ (eα − e−α)︸ ︷︷ ︸
2 sinhα

= c(coshα cosβ + i sinhα sinβ) (2.107-a)
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Figure 2.6: Curvilinear Coordinates

106 Separating reals from immaginary parts we obtain

x1 = c coshα cosβ = c
2
cosβ(eα + e−α)

x2 = c sinhα sinβ = c
2
sinβ(eα − e−α)

(2.108)

107 If we eliminate β from those equation, we obtain

x21
cosh2 α

+
x22

sinh2 α
= c2 (2.109)

108 Thus for a constant value of α this represents the equation of an ellipse in the x1 − x2 plane. Similarly lines of constant β
represent confocal hyperebolae which intersect the ellipse at right angle, Fig. 2.6.

109 In terms of complex potentials, it can be shown that the stresses are given in an analogous way as in Eq. 2.104:

σαα + σββ = 2[ψ′(z) + ψ̄′(z̄)] = 4Reψ′(z)

σββ − σαα + 2iσαβ = 2e2iθ[z̄ψ′′(z) + ψ′′(z)]
(2.110)

Note that what we have here is a set of three equations in terms of three unknowns.

110 Individual stresses are obtained by separating the real from the imaginary components.

2.9 Basic Equations of Anisotropic Elasticity

111 An alternate form of Eq. 2.77 is

εi = aijσj (2.111)

where the indices i and j go from 1 to 6.

112 In the most general case this would yield 36 independent constants aij , (Lekhnitskii, 1981), however by virtue of symmetry

(aij = aji) this reduces to 21

(
(7)(6)

2

)
. If the the material has one plane of elastic symmetry, then there would 13 independent

constants; If it has three mutually orthogonal planes of elastic symmetry, then we would say that it is orthogonally anisotropic
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or orthotropic, and we will have a16 = a26 = a36 = a45 = 0, thus there will be 9 independent constants.

ε1
ε2
ε3
ε4
ε5
ε6


=


a11 a12 a13

a22 a23
a33

a44
a55

a66





σ1

σ2

σ3

σ4

σ5

σ6


(2.112)

113 If the material is transversally isotropic then it will have 5 independent constants, Fig. 2.7,

ε1
ε2
ε3
ε4
ε5
ε6


=


a11 a12 a13

a11 a13
a33

2(a11 − a12)
a44

a44





σ1

σ2

σ3

σ4

σ5

σ6


(2.113)

Figure 2.7: Transversly Isotropic Material

114 The total number of coefficients for different materials is summarized in Table 2.1.

Class of Material Number of Non Zero Coeff. Number of Indep. Coeff.

3D 2D 3D 2D

General Anisotropy 36 9 21 6

One plane of Symmetry 20 9 13 6

Orthotropic 12 5 9 4

Transversely Isotropic 12 5 5 4

Isotropic 12 5 2 2

Table 2.1: Number of Elastic Constants for Different Materials
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115 In terms of engineering constants for an orthotropic solid we would have

εx =
1

E1
σx − ν21

E2
σy − ν31

E3
σz (2.114-a)

εy = −ν12
E1

σx +
1

E2
σy − ν32

E3
σz (2.114-b)

εz = −ν13
E1

σx − ν23
E2

σy +
1

E3
σz (2.114-c)

γyz =
1

µ23
τyz (2.114-d)

γxz =
1

µ13
τxz (2.114-e)

γxy =
1

µ12
τxy (2.114-f)

however, of the 12 elastic constants, only 9 are independent because the following relations

E1ν21 = E2ν12 (2.115-a)

E2ν32 = E3ν23 (2.115-b)

E3ν13 = E1ν31 (2.115-c)

116 Note that the preceding equations are written for the principal directions of elasticity, x, y, and z in terms of the principal
elastic constants (as opposed to constants in equations for an arbitrary system of coordinates).

117 Whereas very few natural or man-made materials are truly orthotropic (certain crystals as topaz are), a number of others

are transversely isotropic. Transversely isotropic have through every point a plane in which all directions are equivalent with

respect to elastic properties (such as in laminates, shist, quartz, roller compacted concrete, etc…). For transversely isotropic solids

in 3D, we have

εx = a11σx + a12σy + a13σz (2.116-a)

εy = a12σx + a11σy + a13σz (2.116-b)

εz = a13(σx + σy) + a33σz (2.116-c)

γxy = 2(a11 − a12)τxy (2.116-d)

γyz = a44τxy (2.116-e)

γxz = a44τxz (2.116-f)

and

a11 =
1

E
; a12 = − ν

E
; a13 = − ν′

E′ ; a33 = − 1

E′ ; a44 = − 1

µ′ (2.117)

118 Thus we have five elastic constants. Denoting by E the Young’s modulus in the plane of isotropy and E′
the one in the plane

normal to it, we would have ν corresponds to the transverse contraction in the plane of isotropy when tension is applied in the

plane; ν′ corresponding to the transverse contraction in the plane of isotropy when tension is applied normal to the plane; µ′

corresponding to the shear moduli for the plane of isotropy and any plane normal to it, and µ is shear moduli for the plane of

isotropy.

2.9.1 Coordinate Transformations

119 If the elastic constants are to be determined for an arbitrary orientation 1-2, Fig. 2.8 then the compliance matrix is given by

[C′] = [Γ]T [C][Γ] (2.118)

where [Γ] is the usual second order tensor transformation for rotation in a plane.

[Γ] =

 cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ −2 sin θ cos θ
− sin θ cos θ cos θ sin θ cos2 θ − sin2 θ

 (2.119)

120 Note that after transformation, a transversely isotropic material will not have anymore 5 nonzero coefficients, but 9 in (3-D).
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Figure 2.8: Coordinate Systems for Stress Transformations

2.9.2 Plane Stress-Strain Compliance Transformation

121 If we consider εi = aijσj for plane strain and εi = bijσj for plane stress then it can be shown that

bij = aij −
ai3aj3
a33

(2.120)

2.9.3 Stress Functions

122 The stress function Φ(x, y) can be written as

Φ(x, y) = 2Re[Φ1(z1) + Φ2(z2] (2.121)

where Φ1(z1) is an arbitrary function of z1 = x+ s1y and Φ2(z2) is an arbitrary function of z2 = x+ s2y

123 Note the analogy with ϕ = Re[(x1 − ix2)ψ(z) + χ(z)] derived earlier for isotropic cases, Eq. 2.101, where ψ and χ were the

Muskhelisvily complex potentials.

124 It can be shown that using the Airy stress function defined in Eq. 2.91 and combined with the compatibility Equation (Eq. 2.59)

for anisotropic solids we obtain (neglecting body forces)

a22
∂4Φ

∂x4
− 2a26

∂4Φ

∂x∂y
+ (2a12 + a66)

∂4Φ

∂x2∂y2
− 2a16

∂4Φ

∂x∂y3
+ a11

∂4Φ

∂y4
= 0 (2.122)

125 For isotropic material this equation reduces to:

∂4Φ

∂x4
+ 2

∂4Φ

∂x2∂y2
+
∂4Φ

∂y4
= 0 (2.123)

which is Eq. 2.93 as derived earlier.

126 The characteristic equation of this homogeneous partial differential equation is

a11s
4 − 2a16s

3 + (2a12 + a66)s
2 − 2a26s+ a22 = 0 (2.124)

127 By energy considerations, Leknitskii, (Lekhnitskii, 1981) has shown that:

1. All roots are complex or purely imaginary for an ideally elastic body with a11 ̸= 0, 2a12 + a66 ̸= 0, & a22 ̸= 0

2. Only exceptions are:

a) a22 = a26 = 0 ⇒ 2 roots equal to zero

b) a22 = a26 = 2a12 + a66 = a16 = 0 ⇒ all four roots are zero

c) a11 = a16 = 0 ⇒ 2 roots are infinite

d) a11 = a16 = 2a12 + a66 = a26 = 0 ⇒ 4 roots are infinite.

31



D
R
A
FT

PRELIMINARY CONSIDERATIONS

3. Two of the roots are conjugates of the two others: if we let

s1 = α1 + iβ1 s2 = α2 + iβ2 (2.125-a)

then

s3 = s̄1 s4 = s̄2 (2.126-a)

then β1 & β2 are both positive and β1 ̸= β2

4. Two cases are possible:

a) Roots are all different

b) Roots are pairwise equal

5. For isotropic material

α = 0 (2.127-a)

β = 1 (2.127-b)

s1 = s2 = i (2.127-c)

s̄1 = s̄2 = −i (2.127-d)

So s1 and s2 are complex parameters of first order of plane stress (or strain). They characterize the degree of anisotropy

for plane problems. From it we can judge how much a body differs from isotropy.

6. If a material is orthotropic and x and y coincide with 1 and 2, then a16 = a26 = 0 and we have

s4 + (
E1

µ
− 2ν1)s

2 +
E1

E2
= 0 (2.128)

and

a) s1 = βi & s2 = δi; purely imaginary and unequal roots

b) s1 = s2 = βi; complex and equal roots

c) s1 = α+ βi; s2 = −α+ βi

7. In addition we have

s′1 =
s2 cosψ − sinψ

cosψ + s1 sinψ
(2.129-a)

s′2 =
s1 cosψ − sinψ

cosψ + s2 sinψ
(2.129-b)

8. Invariants for orthotropic bodies are

I1 = a11 + a22 + 2a12 =
1

E1
+

1

E2
− 2ν12

E1
(2.130-a)

I2 = a66 − 4a12 =
1

µ12
+

4ν12
E1

(2.130-b)

I3 = a44 + a55 =
1

µ13
+

1

µ23
(2.130-c)

I4 = a13 + a23 = −(
ν13
E1

+
ν23
E2

) = −ν31 + ν32
E2

(2.130-d)
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2.9.4 Stresses and Displacements

128 If we define:

ϕ1(z1) =
dΦ1

dz1
and ϕ2(z2) =

dΦ2

dz2
(2.131)

and using the definition of stress functions, the stresses are

σx = 2Re[s21ϕ1′(z1) + s22ϕ2′(z2)]
σy = 2Re[ϕ1′(z1) + ϕ2′(z2)]
τxy = −2Re[s1ϕ1′(z1) + s2ϕ2′(z2)]

(2.132)

and the displacements are

u = 2Re[p1ϕ1(z1) + p2ϕ2(z2)]
υ = 2Re[q1ϕ1(z1) + q2ϕ2(z2)]

(2.133)

where{
pi = a11s

2
i + a12 − a16si, (i = 1, 2)

qi = a12si +
a22
si

− a26
(2.134-a)

2.10 Conclusion

129 In summary, this chapter has provided the mathematical foundation required to develop the solutions of some “simple” prob-

lems which will be presented in the subsequent chapter.
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Chapter 3

ELASTICITY BASED SOLUTIONS FOR CRACK PROBLEMS

3.1 Introduction

1 This chapter will present mathematically rigorous derivations of some simple elasticity problems. All the theoretical basis

required to follow those derivations have been covered in the previous chapter. A summary of problems to be investigated is

shown in Table 3.1.

3.2 Circular Hole, (Kirsch, 1898)

2 Analysing the infinite plate under uniform tension with a circular hole of diameter a, (Kirsch, 1898) and subjected to a uniform

stress σ0, Fig. 3.1.

3 The peculiarity of this problem is that the far-field boundary conditions are better expressed in cartesian coordinates, whereas

the ones around the hole should be written in polar coordinate system.

4 We will solve this problem by replacing the plate with a thick tube subjected to two different set of loads. The first one is a thick

cylinder subjected to uniform radial pressure (solution of which is well known from Strength of Materials), the second one is a

thick cylinder subjected to both radial and shear stresses which must be compatible with the traction applied on the rectangular

plate.

5 First we select a stress function which satisfies the biharmonic Equation ∇2
(
∇2Φ

)
(Eq. 2.93), and the far-field boundary

conditions. From St Venant principle, away from the hole, the boundary conditions are given by:

σxx = σ0; σyy = τxy = 0 (3.1)

6 Recalling (Eq. 2.91) that σxx = ∂2Φ
∂y2 , this would would suggest a stress function Φ of the form Φ = σ0y

2
. Alternatively,

the presence of the circular hole would suggest a polar representation of Φ. Thus, substituting y = r sin θ would result in

Φ = σ0r
2 sin2 θ.

7 Since sin2 θ = 1
2
(1− cos 2θ), we could simplify the stress function into

Φ = f(r) cos 2θ (3.2)

8 Substituting this function into the biharmonic equation (Eq. 2.94) yields(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)(
∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2

)
= 0 (3.3-a)(

d
2

dr2
+

1

r

d

dr
− 4

r2

)(
d
2f

dr2
+

1

r

df

dr
− 4f

r2

)
= 0 (3.3-b)

(note that the cos 2θ term is dropped)

Problem Coordinate System Real/Complex Solution Date

Circular Hole Polar Real Kirsh 1898

Elliptical Hole Curvilinear Complex Inglis 1913

Crack Cartesian Complex Westergaard 1939

V Notch Polar Complex Willimas 1952

Dissimilar Materials Polar Complex Williams 1959

Anisotropic Materials Cartesian Complex Sih 1965

Table 3.1: Summary of Elasticity Based Problems Analysed

35



D
R
A
FT

ELASTICITY BASED SOLUTIONS FOR CRACK PROBLEMS

θb

I II

θ

a aa

θ
b x

y

σrr
τrθ

σ0

σ0

= +

σi
rr σii

rr

τrθb

Figure 3.1: Circular Hole in an Infinite Plate need to correct alignment of x

9 The general solution of this ordinary linear fourth order differential equation is

f(r) = Ar2 +Br4 + C
1

r2
+D (3.4)

thus the stress function becomes

Φ =

(
Ar2 +Br4 + C

1

r2
+D

)
cos 2θ (3.5)

10 Next, we must determine the four constantsA,B, C , andD by applying four boundary conditions. Using Eq. 2.92, the stresses

are given by

σrr = 1
r

∂Φ
∂r

+ 1
r2

∂2Φ
∂θ2

= −
(
2A+ 6C

r4
+ 4D

r2

)
cos 2θ

σθθ = ∂2Φ
∂r2

=
(
2A+ 12Br2 + 6C

r4

)
cos 2θ

τrθ = − ∂
∂r

(
1
r

∂Φ
∂θ

)
=

(
2A+ 6Br2 − 6C

r4
− 2D

r2

)
sin 2θ

(3.6)

11 Next we seek to solve for the four constants of integration by applying the boundary conditions. We will identify two sets of

boundary conditions:

1. Around outer boundaries: around an infinitely large circle of radius b inside a plate subjected to uniform stress σ0, the

stresses in polar coordinates are obtained from Strength of Materials[
σrr σrθ

σrθ σθθ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
σ0 0
0 0

] [
cos θ − sin θ
sin θ cos θ

]T
(3.7)

yielding (recalling that sin2 θ = 1/2 sin 2θ, and cos2 θ = 1/2(1 + cos 2θ)).

(σrr)r=b = σ0 cos
2 θ =

1

2
σ0(1 + cos 2θ) (3.8-a)

(σrθ)r=b =
1

2
σ0 sin 2θ (3.8-b)

(σθθ)r=b =
σ0

2
(1− cos 2θ) (3.8-c)

For reasons which will become apparent later, it is more convenient to decompose the state of stress given by Eq. 3.8-a

and 3.8-b, into state I and II:

(σrr)
I
r=b =

1

2
σ0 (3.9-a)

(σrθ)
I
r=b = 0 (3.9-b)

(σrr)
II
r=b =

1

2
σ0 cos 2θ �

(3.9-c)

(σrθ)
II
r=b =

1

2
σ0 sin 2θ �

(3.9-d)

Where state I corresponds to a thick cylinder with external pressure applied on r = b and of magnitude σ0/2. Hence,

only the last two equations will provide us with boundary conditions.
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2. Around the innerhole: the stresses should be equal to zero:

(σrr)r=a = 0 �
(3.10-a)

(σrθ)r=a = 0 �
(3.10-b)

12 Upon substitution in Eq. 3.6 the four boundary conditions (Eq. 3.9-c, 3.9-d, 3.10-a, and 3.10-b) become

−
(
2A+

6C

b4
+

4D

b2

)
=

1

2
σ0 (3.11-a)(

2A+ 6Bb2 − 6C

b4
− 2D

b2

)
=

1

2
σ0 (3.11-b)

−
(
2A+

6C

a4
+

4D

a2

)
= 0 (3.11-c)(

2A+ 6Ba2 − 6C

a4
− 2D

a2

)
= 0 (3.11-d)

13 Solving for the four unknowns, and taking
a
b
= 0 (i.e. an infinite plate), we obtain:

A = −σ0

4
; B = 0; C = −a

4

4
σ0; D =

a2

2
σ0 (3.12)

14 To this solution, we must superimpose the one of a thick cylinder subjected to a uniform radial traction σ0/2 on the outer

surface (solution I), and with b much greater than a (Eq. 3.9-a and 3.9-b. These stresses are obtained from Strength of Materials
yielding for this problem (carefull about the sign)

σrr =
σ0

2

(
1− a2

r2

)
(3.13-a)

σθθ =
σ0

2

(
1 +

a2

r2

)
(3.13-b)

15 Thus, substituting Eq. 3.11-a- into Eq. 3.6, we obtain

σrr =
σ0

2

(
1− a2

r2

)
+

(
1 + 3

a4

r4
− 4a2

r2

)
1

2
σ0 cos 2θ (3.14-a)

σθθ =
σ0

2

(
1 +

a2

r2

)
−
(
1 +

3a4

r4

)
1

2
σ0 cos 2θ (3.14-b)

σrθ = −
(
1− 3a4

r4
+

2a2

r2

)
1

2
σ0 sin 2θ (3.14-c)

16 We observe that as r → ∞, both σrr and σrθ are equal to the values given in Eq. 3.8-a and 3.8-b respectively.

17 Alternatively, at the edge of the hole when r = a we obtain

σrr = 0
σrθ = 0

σθθ|r=a = σ0(1− 2 cos 2θ)
(3.15)

which for θ = π
2

and
3π
2

gives a stress concentration factor (SCF) of 3. For θ = 0 and θ = π, σθθ = −σ0.

3.3 Elliptical hole in a Uniformly Stressed Plate (Inglis, 1913)

18 Next we consider the problem of an elliptical hole in an infinite plate under uniform stress, Fig. 3.2. Adopting the curvilinear

coordinate system described in sect. 2.8, we define a and b as the major and minor semi-axes respectively. The elliptical hole is

itself defined along α = α0, and as we go around the ellipse β varies from 0 to 2π.
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2a

2b
α=α0  x1

x2

σ0 

Figure 3.2: Elliptical Hole in an Infinite Plate

19 We need to relate a and b to α and β, thus we substitute β = 0 and β = π
2

in

x1 = c coshα cosβ =
c

2
cosβ(eα + e−α) (3.16)

(Eq. 2.108) and we obtain

x1|β=0;α=α0
= a = c coshα cosβ = c coshα0 ⇒ a = c coshα0 (3.17-a)

x2|β=π/2;α=α0
= b = c sinhα sinβ = c sinhα0 ⇒ b = c sinhα0 (3.17-b)

respectively.

20 We then seek to apply the boundary conditions in an analogous manner as we did for the circular hole problem:

1. At infinity we have σ22 = σ0 and σ11 = σ12 = 0. Thus, substituting into Eq. 2.104 we obtain

σ11 + σ22 = 4Reψ′(z) = σ0 (3.18-a)

σ22 − σ11 + 2iσ12 = 2[z̄ψ′′(z) + χ′′(z)] = σ0 (3.18-b)

2. Around the elliptical hole (α = α0) we have σαα = σαβ = 0

21 Inglis found that the following complex potentials satisfy the boundary conditions, and are periodic in β (period of 2π)

4ψ(z) = σ0c
[(
1 + e2α0

)
sinh p− e2α0 cosh p

]
(3.19-a)

4χ(z) = −σ0c
2

[
(cosh 2α0 − coshπ) p+

1

2
e2α0 − cosh 2

(
p− α0 − i

π

2

)]
(3.19-b)

where p = α+ iβ

22 Since σαα = 0 for α = α0, we can solve for σββ from Eq. 2.110

σαα︸︷︷︸
0

+σββ = 2[ψ′(z) + ψ̄′(z̄)] (3.20)

thus differentiating

(σββ)α=α0 =
sinh 2αo − 1 + e2α0 cos 2β

cosh 2αo − cos 2β
σ0 (3.21)
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23 But we need to express σββ in terms of a and b rather than α0. The maximum value of σββ occurs at the end of the ellipse

where β = 0 or π. For those points we have cos 2β = 1, and since the tangent to the ellipse is now parallel to x2 we have:

(σββ)
β=0,π
α=α0

= σ22 =
sinh 2α0 − 1 + e2α0

cosh 2α0 − 1
σ0 (3.22)

24 We now have a solution for the stress at the tip of the ellipse. However it is expressed in curvilinear coordinates, and we shall

rewrite this expression in terms of a and b. Combining Eq. 3.17-a and 3.17-b with

cosh2 α− sinh2 α = 1 (3.23)

we obtain

c2 = a2 − b2 (3.24)

25 The following relations

cosh 2α0 = 2 cosh2 α0 − 1 (3.25-a)

sinh 2α0 = 2 sinhα0 coshα0 (3.25-b)

when combined with coshα0 = a
c

and sinhα0 = b
c

yield

sinh 2α0 =
2ab

c2
(3.26-a)

cosh 2α0 =
a2 + b2

c2
(3.26-b)

26 Finally, substituting those two equations into Eq. 3.22

(σββ)
β=0,π
α=α0

= σ0

(
1 + 2

a

b

)
(3.27)

27 We observe that for a = b, we recover the stress concentration factor of 3 of a circular hole, and that for a degenerated ellipse,

i.e a crack there is an infinite stress.

28 Alternatively, let ρ be the radius of curvature of a parametric curve. From analytical geometry,

ρ2 =

(
dx21 + dx22

)3
(dx1d2x2 − dx2d2x1)

2 (3.28)

Using a parametric representation, we can define x1 = a cos t and x2 = b sin t; substituting into the above equation gives:

ρ2 =
1

a2b2
(a2 sin2 t+ b2 cos2 t)3 (3.29)

At the tip of the ellipse x2 = 0 and x1 = ±a. Thus, sin t = 0 and cos t = 1, and ρ becomes equal to ρ = b2

a
. Substituting into

Eq. 3.27

(σββ)
β=0,π
α=α0

= σ0

(
1 + 2

√
a

ρ

)
(3.30)

From this equation, we note that the stress concentration factor is inversely proportional to the radius of curvature of an opening.
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2a

x1

x2

σ0 

σ0 r
θ 

z

Figure 3.3: Crack in an Infinite Plate

3.4 Crack, (Westergaard, 1939)

29 Just as both Kolosoff (1910) and Inglis (1913) independently solved the problem of an elliptical hole, there are two classical

solutions for the crack problem. The first one was proposed by Westergaard, and the later by Williams. Whereas the first one

is simpler to follow, the second has the advantage of being extended to cracks at the interface of two different homogeneous

isotropic materials and be applicable for V notches.

30 Let us consider an infinite plate subjected to uniform biaxial stress σ0 with a central crack of length 2a, Fig. 3.3. From Inglis

solution, we know that there would be a theoretically infinite stress at the tip of the crack, however neither the nature of the

singularity nor the stress field can be derived from it.

31 Westergaard’s solution, (Westergaard, 1939b) starts by assuming Φ(z) as a harmonic function (thus satisfying Laplace’s equa-

tion ∇2 (Φ) = 0). Denoting by ϕ′(z) and ϕ′′(z) the first and second derivatives respectively, and ϕ̄(z) and
¯̄ϕ(z) its first and

second integrals respectively of the function ϕ(z).

32 Westergaard has postulated that

Φ = Re
¯̄ϕ(z) + x2Imϕ̄(z) (3.31)

is a solution to the crack problem
1

. ϕ(z) is assumed to be analytic.

33 Let us verify that Φ satisfies the biharmonic equation. Taking the first derivatives, and recalling from from Eq. 2.96-a that

∂
∂x1

f(z) = f ′(z), we have

∂Φ

∂x1
=

∂

∂x1

(
Re

¯̄ϕ
)
+

x2 ∂

∂x1
Imϕ̄(z) + Imϕ̄(z)

∂x2
∂x1︸︷︷︸
0

 (3.32-a)

= Reϕ̄(z) + x2Imϕ(z) (3.32-b)

σ22 =
∂2Φ

∂x21
=

∂

∂x1

(
Reϕ̄(z)

)
+

[
x2

∂

∂x1
Imϕ(z) + Imϕ(z)

∂x2
∂x1

]
(3.32-c)

= Reϕ(z) + x2Imϕ′(z) (3.32-d)

1

Note that we should not confuse the Airy stress function Φ with the complex function ϕ(z).
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Similarly, differentiating with respect to x2, and recalling from Eq. 2.96-b that
∂

∂x2
f(z) = if ′(z), we obtain

∂Φ

∂x2
=

∂

∂x2
(Re

¯̄ϕ(z) + [x2
∂

∂x2

(
Imϕ̄(z)

)
+
∂x2
∂x2

Imϕ̄(z)] (3.33-a)

= −Imϕ̄(z) + x2Reϕ(z) + Imϕ̄(z) (3.33-b)

σ11 =
∂2Φ

∂x22
= x2

∂

∂x2
Reϕ(z) + Reϕ(z)

∂x2
∂x2

(3.33-c)

= −x2Imϕ′(z) + Reϕ(z) (3.33-d)

Similarly, it can be shown that

σ12 = − ∂2Φ

∂x1∂x2
= −x2Reϕ′(z) (3.34)

Having derived expressions for the stresses and the second partial derivatives of Φ, substituting into Eq. 2.93, it can be shown

that the biharmonic equation is satisfied, thus Φ is a valid solution.

34 If we want to convince ourselves that the stresses indeed satisfy both the equilibrium and compatibility equations (which they

do by virtue of Φ satisfying the bi-harmonic equation), we have from Eq. 2.71 in 2D:

1. Equilibrium:

∂σ11

∂x1
+
∂σ12

∂x2
= 0 (3.35-a)

∂σ22

∂x2
+
∂σ12

∂x1
= 0 (3.35-b)

Let us consider the first equation

∂σ11

∂x1
=

∂

∂x1

(
∂2Φ

∂x22

)
=

∂

∂x1
[Reϕ(z)− x2Imϕ′(z)] (3.36-a)

= Reϕ′(z)− x2Imϕ′′(z) (3.36-b)

∂σ12

∂x2
=

∂

∂x2

(
∂2Φ

∂x1∂x2

)
=

∂

∂x2
[−x2Reϕ′(z)] (3.36-c)

= −Reϕ′(z) + x2
∂

∂x1
Imϕ′(z) (3.36-d)

= −Reϕ′(z) + x2Imϕ′′(z) (3.36-e)

If we substitute those two equations into Eq. 3.35-a then we do obtain zero. Similarly, it can be shown that Eq. 3.35-b is

satisfied.

2. Compatibility: In plane strain, displacements are given by

2µu1 = (1− 2ν)Re ϕ̄(z)− x2Imϕ(z) (3.37-a)

2µu2 = 2(1− ν)Imϕ̄(z)− x2Re ϕ(z) (3.37-b)

and are obtained by integration of the strains, which in turn are obtained from the stresses. As a check we compute

2µε11 =
∂u1

∂x1
(3.38-a)

= (1− 2ν)Reϕ(z)− x2Imϕ′(z) (3.38-b)

= (1− ν) [Reϕ(z)− x2Imϕ′(z)]︸ ︷︷ ︸
σ11

−ν [Reϕ(z) + x2Imϕ′(z)]︸ ︷︷ ︸
σ22

(3.38-c)

= (1− ν)σ11 − νσ22 (3.38-d)

Recalling that

µ =
E

2(1 + ν)
(3.39)
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then

Eε11 = (1− ν2)σ11 − ν(1 + ν)σ22 (3.40)

this shows that Eε11 = σ11 − ν(σ22 − σ33), and for plane strain, ε33 = 0 ⇒ σ33 = ν(σ11 + σ22) and Eε11 =
(1− ν2)σ11 − ν(1 + ν)σ22

35 So far Φ was defined independently of the problem, and we simply determined the stresses in terms of it, and verified that the

bi-harmonic equation was satisfied.

36 Next, we must determine ϕ such that the boundary conditions are satisfied. For reasons which will become apparent later, we

generalize our problem to one in which we have a biaxial state of stress applied on the plate. Hence:

1. Along the crack: at x2 = 0 and −a < x1 < a we have σ22 = 0 (traction free crack).

2. At infinity: at x2 = ±∞, σ22 = σ0

We note from Eq. 3.32-d that at x2 = 0, σ22 reduces to

(σ22)x2=0 = Reϕ(z) (3.41)

37 Furthermore, we expect σ22 → σ0 as x1 → ∞, and σ22 to be greater than σ0 when | x1−a |> ϵ (due to anticipated singularity

predicted by Inglis), thus a possible choice for σ22 would be σ22 = σ0
1− a

x1

, for symmetry, this is extended to σ22 = σ0(
1− a2

x2
1

) .

However, we also need to have σ22 = 0 when x2 = 0 and −a < x1 < a, thus the function ϕ(z) should become imaginary along

the crack, and

σ22 = Re

 σ0√
1− a2

x2
1

 (3.42)

38 Thus from Eq. 3.41 we have (note the transition from x1 to z).

ϕ(z) =
σ0√
1− a2

z2

(3.43)

39 If we perform a change of variable and define η = z− a = reiθ and assuming
η
a
≪ 1, and recalling that eiθ = cos θ+ i sin θ,

then the first term of Eq. 3.32-d can be rewritten as

Reϕ(z) = Re

σ0√
η2+2aη

η2+a2+2aη

≈ Re

σ0√
2aη
a2

≈ Reσ0

√
a

2η
≈ Reσ0

√
a

2reiθ
≈ Reσ0

√
a

2r
e−i θ

2 ≈ σ0

√
a

2r
cos

θ

2
(3.44-a)

40 Recalling that sin 2θ = 2 sin θ cos θ and that e−iθ = cos θ − i sin θ, we substitute x2 = r sin θ into the second term

x2Imϕ′ = r sin θIm

σ0

2

√
a

2(reiθ)3
= σ0

√
a

2r
sin

θ

2
cos

θ

2
sin

3θ

2
(3.45)

41 Combining the above equations, with Eq. 3.32-d, 3.33-d, and 3.34 we obtain

σ22 = σ0

√
a
2r

cos θ
2

(
1 + sin θ

2
sin 3θ

2

)
+ · · ·

σ11 = σ0

√
a
2r

cos θ
2

(
1− sin θ

2
sin 3θ

2

)
+ · · ·

σ12 = σ0

√
a
2r

sin θ
2
cos θ

2
cos 3θ

2
+ · · ·

(3.46)

42 Recall that this was the biaxial case, the uniaxial case may be reproduced by superimposing a pressure in the x1 direction equal

to −σ0, however this should not affect the stress field close to the crack tip.
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43 Using a similar approach, we can derive expressions for the stress field around a crack tip in a plate subjected to far field shear

stresses (mode II as defined later) using the following expression of ϕ

ΦII(z) = −x2Reϕ̄II(z) ⇒ ϕII =
τ√

1− a2

z2

(3.47)

and for the same crack but subjected to antiplane shear stresses (mode III)

Φ′
III(z) =

σ13√
1− a2

z2

(3.48)

3.4.1 Stress Intensity Factors (Irwin)

44 Irwin
2

(Irwin, 1957) introduced the concept of stress intensity factor defined as:


KI

KII

KIII

 = lim
r→0,θ=0

√
2πr


σ22

σ12

σ23

 (3.49)

where σij are the near crack tip stresses, and Ki are associated with three independent kinematic movements of the upper and

lower crack surfaces with respect to each other, as shown in Fig. 3.4:

• Opening Mode, I: The two crack surfaces are pulled apart in the y direction, but the deformations are symmetric about the

x− z and x− y planes.

• Shearing Mode, II: The two crack surfaces slide over each other in the x-direction, but the deformations are symmetric about

the x− y plane and skew symmetric about the x− z plane.

• Tearing Mode, III: The crack surfaces slide over each other in the z-direction, but the deformations are skew symmetric

about the x− y and x− z planes.

Opening Sliding TearingIIKIK IIIK

Figure 3.4: Independent Modes of Crack Displacements

45 From Eq. 3.46, 3.46 and 3.46 with θ = 0, we have

KI =
√
2πrσ22

=
√
2πrσ0

√
a

2r

= σ0

√
πa (3.50-a)

2

Irwin was asked by the Office of Naval Research (ONR) to investigate the Liberty ships failure during World War II, just as thirty years earlier Inglis was investigating

the failure of British ships.

43



D
R
A
FT

ELASTICITY BASED SOLUTIONS FOR CRACK PROBLEMS

where r is the length of a small vector extending directly forward from the crack tip.

46 Thus stresses and displacements can all be rewritten in terms of the SIF
σ22

σ12

σ23

 =
1√
2πr

 fI
11(θ) fII

11 (θ) fIII
11 (θ)

fI
22(θ) fII

22 (θ) fIII
22 (θ)

fI
12(θ) fII

12 (θ) fIII
12 (θ)


KI

KII

KIII

 (3.51-a)

i.e.

σ12 =
KII√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2︸ ︷︷ ︸
fII
22

(3.52)

1. Since higher order terms in r were neglected, previous equations are exact in the limit as r → 0

2. Distribution of elastic stress field at tip can be described byKI ,KII andKIII . Note that this polar distribution is identical

for all cases. As we shall see later, for anisotropic cases, the spatial distribution is a function of elastic constants.

3. SIF are additives, i.e.

4. The SIF is the measure of the strength of the singularity (analogous to SCF)

5. K = f(g)σ
√
πa where f(g) is a parameter

3

that depends on the specimen, crack geometry, and loading.

6. Tada “Stress Analysis of Cracks”, (Tada et al., 1973); and Cartwright & Rooke, “Compendium of Stress Intensity Factors”

(Rooke and Cartwright, 1976).

7. One of the underlying principles of FM is that unstable fracture occurs when the SIF reaches a critical value KIc. KIc or

fracture toughness represents the inherent ability of a material to withstand a given stress field intensity at the tip of a

crack and to resist progressive tensile crack extensions.

3.4.2 Near Crack Tip Stresses and Displacements in Isotropic Cracked Solids

47 Using Irwin’s concept of the stress intensity factors, which characterize the strength of the singularity at a crack tip, the near

crack tip (r ≪ a) stresses and displacements are always expressed as:

Pure mode I loading:

σxx =
KI

(2πr)
1
2

cos
θ

2

[
1− sin

θ

2
sin

3θ

2

]
(3.53-a)

σyy =
KI

(2πr)
1
2

cos
θ

2

[
1 + sin

θ

2
sin

3θ

2

]
(3.53-b)

τxy =
KI

(2πr)
1
2

sin
θ

2
cos

θ

2
cos

3θ

2
(3.53-c)

σzz = ν(σx + σy)τxz = τyz = 0 (3.53-d)

u =
KI

2µ

[ r
2π

] 1
2
cos

θ

2

[
κ− 1 + 2 sin2 θ

2

]
(3.53-e)

v =
KI

2µ

[ r
2π

] 1
2
sin

θ

2

[
κ+ 1− 2 cos2

θ

2

]
(3.53-f)

w = 0 (3.53-g)

3

Note that in certain literature, (specially the one of Lehigh University), instead of K = f(g)σ
√
πa, k = f(g)σ

√
a is used.

44



D
R
A
FT

3.4 Crack, (Westergaard, 1939)

Pure mode II loading:

σxx = − KII

(2πr)
1
2

sin
θ

2

[
2 + cos

θ

2
cos

3θ

2

]
(3.54-a)

σyy =
KII

(2πr)
1
2

sin
θ

2
cos

θ

2
cos

3θ

2
(3.54-b)

τxy =
KII

(2πr)
1
2

cos
θ

2

[
1− sin

θ

2
sin

3θ

2

]
(3.54-c)

σzz = ν(σx + σy) (3.54-d)

τxz = τyz = 0 (3.54-e)

u =
KII

2µ

[ r
2π

] 1
2
sin

θ

2

[
κ+ 1 + 2 cos2

θ

2

]
(3.54-f)

v = −KII

2µ

[ r
2π

] 1
2
cos

θ

2

[
κ− 1− 2 sin2 θ

2

]
(3.54-g)

w = 0 (3.54-h)

Pure mode III loading:

τxz = − KIII

(2πr)
1
2

sin
θ

2
(3.55-a)

τyz =
KIII

(2πr)
1
2

cos
θ

2
(3.55-b)

σxx = σy = σz = τxy = 0 (3.55-c)

w =
KIII

µ

[
2r

π

] 1
2

sin
θ

2
(3.55-d)

u = v = 0 (3.55-e)

where κ = 3− 4ν for plane strain, and κ = 3−ν
1+ν

for plane stress.

48 Using Eq. 2.47-a, 2.47-b, and 2.47-c we can write the stresses in polar coordinates

Pure mode I loading:

σrr =
KI√
2πr

cos
θ

2

(
1 + sin2 θ

2

)
(3.56-a)

σθθ =
KI√
2πr

cos
θ

2

(
1− sin2 θ

2

)
(3.56-b)

τrθ =
KI√
2πr

sin
θ

2
cos2

θ

2
(3.56-c)

Pure mode II loading:

σrr =
KII√
2πr

(
−5

4
sin

θ

2
+

3

4
sin

3θ

2

)
(3.57-a)

σθθ =
KII√
2πr

(
−3

4
sin

θ

2
− 3

4
sin

3θ

2

)
(3.57-b)

τrθ =
KII√
2πr

(
1

4
cos

θ

2
+

3

4
cos

3θ

2

)
(3.57-c)
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α 

2γ 
θ r

P

Figure 3.5: Plate with Angular Corners

3.5 V Notch, (Williams, 1952)

49 Using the method of separation of variables in 1952, Williams (Williams, 1952, 1957) proposed the following solution

Φ(r, θ) ≡ rλ+1F (θ, λ) (3.58)

where F (θ, λ) = em(λ)θ
, and m(λ) is yet to be determined, by satisfying the bi-harmonic equation, Eq. 2.94

∇2 (∇2Φ
)
=

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)(
∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2

)
= 0 (3.59)

50 Note that the problem he originally considered was not a crack, but rather a plate under tension with angular corners, Fig. 3.5

making an angle 2γ. For γ = 0 we recover the crack problem of Westergaard.

51 Substituting Eq. 3.58 into the biharmonic equation (Eq. 3.59) gives

∂4F (θ, λ)

∂θ4
+ 2(λ2 + 1)

∂2F (θ, λ)

∂θ2
+ (λ2 − 1)2F (θ, λ) = 0 (3.60)

52 Substituting F (θ, λ) with em(λ)θ
, this equation reduces to

em(λ)θ [(λ− 1)2 +m(λ)2
] [

(1 + λ)2 +m(λ)2
]
= 0 (3.61)

53 The roots of this equation are

m(λ) = ±i (λ− 1) (3.62-a)

m(λ) = ±i (λ+ 1) (3.62-b)

54 Since F (θ, λ) is a real function then the solutions of the differential equation 3.59 are also real functions. Recalling that

eim(λ)θ = cosm(λ)θ + i sinm(λ)θ (3.63)
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we select as solution

F1(θ, λ) = cos(λ− 1)θ
F2(θ, λ) = cos(λ+ 1)θ
F3(θ, λ) = sin(λ− 1)θ
F4(θ, λ) = sin(λ+ 1)θ

(3.64)

and finally F (θ, λ) will be a linear combination of F1, F2, F3 and F4, thus

Φ(r, θ) = rλ+1 [A cos(λ− 1)θ +B cos(λ+ 1)θ + C sin(λ− 1)θ +D sin(λ+ 1)θ]︸ ︷︷ ︸
F (θ,λ)

(3.65)

55 Next, we seek to determine the stresses in polar coordinates in order to apply the boundary conditions. Substituting Eq. 3.58

into Eq. 2.92

σθθ =
∂2Φ

∂r2
(3.66-a)

σrθ = − ∂

∂r

(
1

r

∂Φ

∂θ

)
(3.66-b)

we obtain:

σθθ = rλ−1λ(λ+ 1)F (θ) (3.67-a)

σrθ = rλ−1[−λF ′(θ)] (3.67-b)

Substituting

σθθ = rλ−1λ(λ+ 1)[A cos(λ− 1)θ +B cos(λ+ 1)θ

+ C sin(λ− 1)θ +D sin(λ+ 1)θ] (3.68-a)

σrθ = −λrλ−1[−A(λ− 1) sin(λ− 1)θ −B(λ+ 1) sin(λ+ 1)θ

+ C(λ− 1) cos(λ− 1)θ +D(λ+ 1) cos(λ+ 1)θ] (3.68-b)

56 The boundary conditions are next applied by considering a plate with a central crack, applying the following 4 boundary

conditions along the crack edges

σθθ |θ=±α = 0 (3.69-a)

σrθ |θ=±α = 0 (3.69-b)

where α+ γ = π, which implies that

F (α) = F (−α) = F ′(α) = F ′(−α) = 0 (3.70)


cos(λ− 1)α cos(λ+ 1)α 0 0
ω sin(λ− 1)α sin(λ+ 1)α 0 0

0 0 sin(λ− 1)α sin(λ+ 1)α
0 0 ω cos(λ− 1)α cos(λ+ 1)α




A
B
C
D

 = 0 (3.71)

where ω = λ−1
λ+1

.

57 Note that whereas Eq. 3.67-a and 3.67-b are expressed in terms of the four constants (A,B,C , and D), the above equation is

written in terms of the summation and the differences of the stress equations, thus yielding a block diagonal matrix.

58 It can readily be seen that A and B are independent of C and D, and that for this homogeneous equation a nontrivial solu-

tion would exist if and only if the determinant of the system of linear equations vanishes to zero. This would lead (after some

simplifications) to:

sin 2λα± λ sin 2α = 0 (3.72)

59 We observe from Eq. 3.65 that the coefficientsA andB correspond to symmetric loadings (mode I), andC andD to unsymmetric

loading (mode II).
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60 Let us denote by λn the eigenvalues of λ which are solution of Eq. 3.72 for the symmetrical loading, and ξn solutions for the

antisymmetric loading:

sin 2λnα+ λn sin 2α = 0 (3.73-a)

sin 2ξnα− ξn sin 2α = 0 (3.73-b)

61 For the case of a crack, i.e α = π solution of the characteristic equation
4

is

sin(2πλn) = 0 (3.74-a)

sin(2πξn) = 0 (3.74-b)

which has solutions λn = n
2

with n = 1, 3, 4, · · · (it can be shown that n = 2 gives rise to a rigid body motion contribution).

Substituting into Eq. 3.65

F (θ, λ) = An cos
(n
2
− 1
)
θ +Bn cos

(n
2
+ 1
)
θ

+Cn sin
(n
2
− 1
)
θ +Dn sin

(n
2
+ 1
)
θ (3.75-a)

62 We observe that the previous expression can be simplified by noting that for each eigenvalue λn and ξn there is a relationship

between A and B, and between C and D in Eq. 3.71. For symmetrical loading we have

An cos(λn − 1)α+Bn cos(λn + 1)α = 0 (3.76-a)

Anω sin(λn − 1)α+Bn sin(λn + 1)α = 0 (3.76-b)

and for antisymmetric loading we have

Cn sin(ξn − 1)α+Dn sin(ξn + 1)α = 0 (3.77-a)

Cnω cos(ξn − 1)α+Dn cos(ξn + 1)α = 0 (3.77-b)

63 Thus we can define

an =
An

Bn
= −cos(λn − 1)α

cos(λn + 1)α
= −ω sin(λn − 1)α

sin(λn + 1)α
(3.78-a)

bn =
Cn

Dn
= − sin(λn − 1)α

sin(λn + 1)α
= −ω cos(λn − 1)α

cos(λn + 1)α
(3.78-b)

these ratios are equal to 1/3 and −1 respectively for α = π and λ = 1/2. and

F (θ) =
∑[

an

(
sin

3

2
θ + sin

1

2
θ

)
+ bn

(
1

3
cos

3

2
θ + cos

1

2
θ

)]
(3.79)

64 The stresses are obtained by substituting

σrr =
∑[

bn√
r

(
5

4
cos

θ

2
− 1

4
cos

3θ

2

)
+
an√
r

(
−5

4
sin

θ

2
+

3

4
sin

3θ

2

)]
(3.80-a)

σθθ =
∑[

bn√
r

(
3

4
cos

θ

2
+

1

4
cos

3θ

2

)
+
an√
r

(
−3

4
sin

θ

2
− 3

4
sin

3θ

2

)]
(3.80-b)

σrθ =
∑[

bn√
r

(
1

4
sin

θ

2
+

1

4
sin

3θ

2

)
+
an√
r

(
1

4
cos

θ

2
+

3

4
cos

3θ

2

)]
(3.80-c)

65 These equations can be further simplified into

σrr =
∑[

bn√
r
cos

θ

2

(
1 + sin2 θ

2

)
+
an√
r

(
−5

4
sin

θ

2
+

3

4
sin

3θ

2

)]
(3.81-a)

σθθ =
∑[

bn√
r
cos

θ

2

(
1− sin2 θ

2

)
+
an√
r

(
−3

4
sin

θ

2
− 3

4
sin

3θ

2

)]
(3.81-b)

σrθ =
∑[

bn√
r
sin

θ

2
cos2

θ

2
+
an√
r

(
1

4
cos

θ

2
+

3

4
cos

3θ

2

)]
(3.81-c)

4

Note that the solution for λn and ξn for other angles can not be obtained algebraically, a numerical technique must be used.
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2γ 

E1,ν1  

E2,ν2  

Figure 3.6: Plate with Angular Corners

66 Finally, it can be shown that the displacements will be given by

u =
1

2µ

∑
Re
{
anr

λn [(κ+ λn cos 2α+ cos 2λnα) cosλnθ − λn cos(λn − 2)θ]

−bnrξn [(κ+ ξn cos 2α− cos 2ξnα) sin ξnθ − ξn sin(ξn − 2)θ]
}

(3.82-a)

v =
1

2µ

∑
Re
{
anr

λn [(κ− λn cos 2α− cos 2λnα) sinλnθ + λn sin(λn − 2)θ]

+bnr
ξn [(κ− ξn cos 2α+ cos 2ξnα) cos ξnθ + ξn cos(ξn − 2)θ]

}
(3.82-b)

67 This solution can be compared with Westergaard’s solution by comparing Equations 3.56-a and 3.57-a with Eq. 3.81-a; Eq. 3.56-b

and 3.57-b with Eq. 3.81-b; and Eq. 3.56-c and 3.57-c with Eq. 3.81-c for n = 1. From this we observe that

b1 = KI√
2π

a1 = KII√
2π

(3.83)

3.6 Crack at an Interface between Two Dissimilar Materials (Williams, 1959)

3.6.1 General Function

68 We shall now consider the problem of a crack at the interface between two dissimilar isotropic materials, (Williams, 1959; Zak

and Williams, 1963). Accordingly, we rewrite Eq. 3.58 as

Φi(r, θ) ≡ rλ+1Fi(θ, λ) (3.84)

where the subscript i refers to material 1 and 2, Fig. 3.6

69 Hence:

Fi(θ, λ) = Ai cos(λ− 1)θ +Bi cos(λ+ 1)θ + Ci sin(λ− 1)θ +Di sin(λ+ 1)θ (3.85)

3.6.2 Boundary Conditions

70 Boundary conditions for this problem are:
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• zero stresses, σθθ , on the free edges (at θ = ±π). Thus from Eq. 3.67-a

σθθ|θ=π = rλ−1λ(λ+ 1)[A1 cos(λ− 1)π +B1 cos(λ+ 1)π

+C1 sin(λ− 1)π +D1 sin(λ+ 1)π] = 0 (3.86-a)

σθθ|θ=−π = rλ−1λ(λ+ 1)[A2 cos(λ− 1)π +B2 cos(λ+ 1)π

−C2 sin(λ− 1)π −D2 sin(λ+ 1)π] = 0 (3.86-b)

or F1(π) = F2(−π) = 0

• zero stresses, σrθ , on the free edges (at θ = ±π); From Eq. 3.67-b

σrθ|θ=π = −λrλ−1[−A1(λ− 1) sin(λ− 1)θ −B1(λ+ 1) sin(λ+ 1)θ

+C1(λ− 1) cos(λ− 1)θ +D1(λ+ 1) cos(λ+ 1)θ] = 0 (3.87-a)

σrθ|θ=−π = −λrλ−1F ′(θ) (3.87-b)

= −λrλ−1[+A2(λ− 1) sin(λ− 1)θ +B2(λ+ 1) sin(λ+ 1)θ

−C2(λ− 1) cos(λ− 1)θ −D2(λ+ 1) cos(λ+ 1)θ] = 0 (3.87-c)

or F ′
1(π) = F ′

2(−π) = 0

• Continuity of σθθ at the interface, θ = 0

A1 +B1 = A2 +B2 (3.88)

• Continuity of σrθ at θ = 0 along the interface

(λ− 1)C1 + (λ+ 1)D1 = −(λ− 1)C2 − (λ+ 1)D2 (3.89)

• Continuity of displacements (ur, uθ) at the interface. Using the polar expression of the displacements

ui
r =

1

2µi
rλ{−(λ+ 1)Fi(θ) + 4(1− αi)[Ci sin(λ− 1)θ +Ai cos(λ− 1)θ]} (3.90-a)

ui
θ =

1

2µi
rλ{−F ′

i (θ)− 4(1− αi)[Ci cos(λ− 1)θ −Ai sin(λ− 1)θ]} (3.90-b)

where µ is the shear modulus, and αi ≡ νi
1+νi

we obtain

1

2µ1
[−(λ+ 1)F1(0) + 4A1(1− α1)] =

1

2µ2
[−(λ+ 1)F2(0) + 4A2(1− α2)] (3.91-a)

1

2µ1

[
−F ′

1(0)− 4C1(1− α1)
]

=
1

2µ2

[
−F ′

2(0)− 4C2(1− α2)
]

(3.91-b)

3.6.3 Homogeneous Equations

71 Applying those boundary conditions, will lead to 8 homogeneous linear equations (Eq. 3.86-a, 3.86-b, 3.87-b, 3.87-c, 3.88, 3.89,

3.91-a, 3.91-b) in terms of the 8 unknowns A1, B1, C1, D1, A2, B2, C2 and D2.

72 A nontrivial solution exists if the determinant of the 8 equations is equal to zero. This determinant
5

is equal to

cot2 λπ +

[
2k(1− α2)− 2(1− α1)− (k − 1)

2k(1− α2) + 2(1− α1)

]2
= 0 (3.92)

where k = µ1
µ2

.

73 For the homogeneous case α1 = α2 and k = 1, the previous equation reduces to cot2 λπ = 0 or sin2 λπ = 0 thus we recover

the same solution as the one of Eq. 3.74-b for a crack in one material:

λ =
n

2
n = 1, 2, 3, ... (3.93)

5

The original paper states: … After some algebraic simplification…
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Note that we exclude negative values of n to ensure finite displacements as the origin is approached, and the lowest eigenvalue

controls.

74 Noting that there can not be a real solution to Eq. 3.92, we define

β =
2k(1− α2)− 2(1− α1)− (k − 1)

2k(1− α2) + 2(1− α1)
(3.94)

and thus, Eq. 3.92 leads to cot2 λπ = −β2
, or

cotλπ = ±iβ (3.95)

75 To solve this equation, we use the following trigonometric relations, (Abramowitz and Stegun, 1970)

cot z =
sin 2x− i sinh 2y

cosh 2y − cos 2x
(3.96-a)

sin 2θπ =
2u

1 + u2
(3.96-b)

cos 2θπ =
1− u2

1 + u2
(3.96-c)

sinh 2θπ =
2v

1− v2
(3.96-d)

cosh 2θπ =
1 + v2

1− v2
(3.96-e)

where

u = tanλrπ (3.97-a)

v = tanhλjπ (3.97-b)

where we have assumed a complex value for λ

λ = λr + iλj (3.98)

Then, we obtain

sin 2λrπ =
2u

1 + u2
(3.99-a)

cos 2λrπ =
1− u2

1 + u2
(3.99-b)

sinh 2λjπ =
2v

1− v2
(3.99-c)

cosh 2λjπ =
1 + v2

1− v2
(3.99-d)

76 Substituting in Eq. 3.96-a lead to

cotλπ =
u(1− v2)− iv(1 + u2)

u2 + v2
(3.100-a)

=
tanλrπ(1− tanh2 λjπ)

tan2 λrπ + tanh2 λjπ︸ ︷︷ ︸
Re(cotλπ)=0

−i (tan
2 λrπ + 1) tanhλjπ

tan2 λrπ + tanh2 λjπ︸ ︷︷ ︸
Im(cotλπ)=±β

(3.100-b)

77 Thus, Eq. 3.92 finally leads to

Re(cotλπ) = 0 (3.101-a)

Im(cotλπ) = ±β (3.101-b)

we thus have two equations with two unknowns.
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3.6.4 Solve for λ

78 Let us solve those two equations. Two sets of solutions are possible:

1. If from 3.100-b tanλrπ = 0 then

λr = n = 0, 1, 2, 3, ... (3.102)

and accordingly from Eq. 3.101-b

λj = ± 1

π
coth−1 β (3.103)

2. Alternatively, from Eq. 3.101-a cotλrπ = 0 ⇒ tanλrπ = ∞ and
6

:

λr =
2n+ 1

2
n = 0, 1, 2, 3, ... (3.104-a)

λj = ± 1

π
tanh−1 β (3.104-b)

=
1

2π
log

[
β + 1

β − 1

]
(3.104-c)

We note that for this case, λj → 0 as α1 → α2 and k → 1 in β.

3.6.5 Near Crack Tip Stresses

79 Now that we have solved for λ, we need to derive expressions for the near crack tip stress field. We rewrite Eq. 3.84 as

Φ(r) = rλ+1︸︷︷︸
G(r)

F (θ, λ) (3.105)

we note that we no longer have two sets of functions, as the effect of dissimilar materials has been accounted for and is embedded

in λ.

80 The stresses will be given by Eq. 2.92

σrr =
1

r2
∂2Φ

∂θ2
+

1

r

∂Φ

∂r
= r−2G(r)F ′′(θ) + r−1G′(r)F (θ) (3.106-a)

σθθ =
∂2Φ

∂r2
= G′′(r)F (θ) (3.106-b)

σrθ =
1

r2
∂Φ

∂θ
− 1

r

∂2Φ

∂r∂θ
= r−2G(r)F ′(θ)− r−1G′(r)F ′(θ) (3.106-c)

Therefore, we must solve for F ′(θ), F ′′(θ), G′(r) and G′′(r) in terms of λ = λr + iλj .

81 First we note that

G(r) = rλ+1 = rλr+1+iλj
(3.107-a)

riλj = eiλj log(r)
(3.107-b)

recalling that log(z) = log |z| + i arg z, and since |z| =
√
x2 + y2 =

√
r2 + 0 = r, we have arg z = 2kπ, and k =

0,±1,±2, · · · . Hence,

log(r) = log |r|+ i2kπ (3.108)

and Eq. 3.107-b becomes

riλj = eiλj log(r)
(3.109-a)

= eiλj [log(r)+i2kπ
(3.109-b)

= eiλj log(r)−2kπλj
(3.109-c)

= e−2kπλj eiλj log(r)
(3.109-d)

= e−2kπλj [cos (λj log(r)) + i sin (λj log(r))] (3.109-e)

6

Recall that tanh−1 x = 1
2 log 1+x

1−x
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82 Now, for k = 0, riλj
becomes

riλj = cos(λj log(r)) + i sin(λj log(r)) (3.110)

and accordingly, Eq. 3.107-a becomes

G(r) = rλ+1 = rλr+1riλj
(3.111-a)

= rλr+1 [cos(λj log(r)) + i sin(λj log(r))] (3.111-b)

and for λr = 1/2

G(r) = r
3
2 [cos(λj log(r)) + i sin(λj log(r))] (3.112-a)

ReG(r) = r
3
2 cos(λj log(r)) (3.112-b)

G′(r) = r
1
2

[
3

2
cos(λj log(r)) + λj sin(λj log(r))

]
(3.112-c)

G′′(r) = r−
1
2

[(
3

4
− λ2

j

)
cos(λj log(r)) +

(
3

2
+
λj

2

)
sin(λj log(r))

]
(3.112-d)

83 Back to F (θ), which was defined in Eq. 3.85

F (θ, λ) = A cos(λ− 1)θ +B cos(λ+ 1)θ + C sin(λ− 1)θ +D sin(λ+ 1)θ (3.113)

we need to replace λ by λr + iλj . However, first we recall the following relations, (Abramowitz and Stegun, 1970)

sin(x+ iy) = sin(x) cosh(y)− i cos(x) sinh(y) (3.114-a)

cos(x+ iy) = cos(x) cosh(y) + i sin(x) sinh(y) (3.114-b)

thus,

Re {sin [(λr ± 1) + iλj ] θ} = sin(λr ± 1) cos(θ) coshλjθ (3.115-a)

Re {cos [(λr ± 1) + iλj ] θ} = cos(λr ± 1) cos(θ) coshλjθ (3.115-b)

84 Substituting those relations in Eq. 3.113

Re [F (θ)] = coshλjθ︸ ︷︷ ︸
f(θ)

(3.116-a)

[A cos(λr − 1)θ +B cos(λr + 1)θ + C sin(λr − 1)θ +D sin(λr + 1)θ]︸ ︷︷ ︸
g(θ)

(3.116-b)

Re [Φ(r, θ)] = rλr+1 cos(λj log(r)) coshλjθ

[A cos(λr − 1)θ +B cos(λr + 1)θ

+C sin(λr − 1)θ +D sin(λr + 1)θ] (3.116-c)

85 For λr = 1
2

g(θ) = A cos
θ

2
+B cos

3θ

2
− C sin

θ

2
+D sin

3θ

2
(3.117)

86 Applying the boundary conditions at θ = ±π, σθθ = 0, Eq. 3.106-b F (θ) = 0, that is g1(−π) = g2(π) or

C = −D = −a (3.118)

87 Similarly at θ = ±π, σrθ = 0. Thus, from Eq. 3.106-c F ′(θ) = 0, or g′1(−π) = g′2(π) or

A = 3B = b (3.119)
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88 From those two equations we rewrite Eq. 3.117

g(θ) = a

(
sin

θ

2
+ sin

3θ

2

)
+ b

(
3 cos

θ

2
+ cos

3θ

2

)
(3.120)

89 We now determine the derivatives

f ′(θ) = λj sinhλjθ (3.121-a)

g′(θ) = a

(
3

2
cos

3θ

2
+

1

2
cos

θ

2

)
+ b

(
−3

2
sin

3θ

2
− 3

2
sin

θ

2

)
(3.121-b)

90 Thus, we now can determine

F ′(θ) = f ′(θ)g(θ) + f(θ)g′(θ) (3.122-a)

= a

{
coshλjθ

[
3

2
cos

3θ

2
+

1

2
cos

θ

2

]
+ λj sinhλjθ

[
sin

3θ

2
+ sin

θ

2

]}
+b

{
coshλjθ

[
−3

2
sin

3θ

2
− 3

2
sin

θ

2

]
+ λj sinhλjθ

[
cos

3θ

2
+ 3 cos

θ

2

]}
(3.122-b)

91 Similarly, the second derivative F ′′(θ) is determined

F ′′(θ) = f ′′(θ)g(θ) + 2f ′(θ)g′(θ) + f(θ)g′′(θ) (3.123-a)

= a

{
coshλjθ

[
−9

4
sin

3θ

2
− 1

4
sin

θ

2

]
+ 2λj sinhλjθ

[
3

2
cos

3θ

2
+

1

2
cos

θ

2

]
+λ2

j cosh
2 λjθ

[
sin

3θ

2
+ sin

θ

2

]}
+

b

{
coshλjθ

[
−9

4
cos

3θ

2
− 3

4
cos

θ

2

]
+ 2λj sinhλjθ

[
−3

2
sin

3θ

2
− 3

2
sin

θ

2

]
+λ2

j cosh
2 λjθ

[
cos

3θ

2
+ 3 cos

θ

2

]}
(3.123-b)

92 We can now substitute in Eq. 3.106-b, 3.106-c and 3.106-a to determine the stresses

σrr = r−
1
2 cos(λj log(r))F

′′(θ) + r−
1
2

[
3

2
cos(λj log(r)) + λj sin(λj log(r))

]
F (θ) (3.124-a)

σθθ = r−
1
2

[(
3

4
− λ2

j

)
cos(λj log(r)) +

(
3

2
+
λj

2

)
sin(λj log(r))

]
F (θ) (3.124-b)

σrθ = r−
1
2

{
cos(λj log(r))F

′(θ) +

[
3

2
cos(λj log(r)) + λj sin(λj log(r))

]
F ′(θ)

}
(3.124-c)

3.7 Homogeneous Anisotropic Material (Sih and Paris)

93 To analyze an anisotropic body with with a crack, we need to derive the two stress functions Φ1 and Φ2 in Eq. 2.121 such that

they satisfy the boundary conditions of the problem under consideration.

94 For an infinite plate with a central crack in an anisotropic body the derivation for the stress functions was undertaken by Sih,
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Paris and Irwin, (Sih et al., 1965). This solution is the “counterpart” or generalization of Westergaard’s solutions.

u1 = KI

√
2r

π
Re

{
1

s1 − s2

[
s1p2 (cos θ + s2 sin θ)

1
2 − s2p1 (cos θ + s1 sin θ)

1
2

]}
(3.125-a)

v1 = KI

√
2r

π
Re

{
1

s1 − s2

[
s1q2 (cos θ + s2 sin θ)

1
2 − s2q1 (cos θ + s1 sin θ)

1
2

]}
(3.125-b)

w1 = 0 (3.125-c)

u2 = KII

√
2r

π
Re

{
1

s1 − s2

[
p2 (cos θ + s2 sin θ)

1
2 − p1 (cos θ + s1 sin θ)

1
2

]}
(3.125-d)

v2 = KII

√
2r

π
Re

{
1

s1 − s2

[
q2 (cos θ + s2 sin θ)

1
2 − q1 (cos θ + s1 sin θ)

1
2

]}
(3.125-e)

w2 = 0 (3.125-f)

u3 = 0 (3.125-g)

v3 = 0 (3.125-h)

w3 = KIII

√
2r

π

(
c44c55 − c245

)− 1
2 Im

[
(cos θ + s3 sin θ)

1
2

]
(3.125-i)

95 where s1 and s2 are roots, in general complex, of Eq. 2.124 where sj = αj + iβj for j = 1, 2, and the roots of interests are

taken such that βj > 0, and

pj = a11s
2
j + a12 − a16sj (3.126)

qj = a12sj +
a22
sj

− a26 (3.127)

96 After appropriate substitution, it can be shown that the cartesian stresses at the tip of the crack for symmetric loading are

σx =
KI√
2πr

Re

[
s1s2
s1 − s2

(
s2

(cos θ + s2 sin θ)
1
2

− s1

(cos θ + s1 sin θ)
1
2

)]
(3.128-a)

σy =
KI√
2πr

Re

[
1

s1 − s2

(
s1

(cos θ + s2 sin θ)
1
2

− s2

(cos θ + s1 sin θ)
1
2

)]
(3.128-b)

σxy =
KI√
2πr

Re

[
s1s2
s1 − s2

(
1

(cos θ + s1 sin θ)
1
2

− s1

(cos θ + s2 sin θ)
1
2

)]
(3.128-c)

97 and, for plane skew-symmetric loading:

σx =
KII√
2πr

Re

[
1

s1 − s2

(
s22

(cos θ + s2 sin θ)
1
2

− s21

(cos θ + s1 sin θ)
1
2

)]
(3.129-a)

σy =
KII√
2πr

Re

[
1

s1 − s2

(
1

(cos θ + s2 sin θ)
1
2

− 1

(cos θ + s1 sin θ)
1
2

)]
(3.129-b)

σxy =
KII√
2πr

Re

[
1

s1 − s2

(
s1

(cos θ + s1 sin θ)
1
2

− s2

(cos θ + s2 sin θ)
1
2

)]
(3.129-c)

98 For in-plane loadings, these stresses can be summed to give the stresses at a distance r and an angle θ from the crack tip.

99 An important observation to be made is that the form of the stress singularity r−1/2
is identical to the one found in isotropic

solids.

100 It should be noted that contrarily to the isotropic case where both the stress magnitude and its spatial distribution are con-

trolled by the stress intensity factor only, in the anisotropic case they will also depend on the material elastic properties and the

orientation of the crack with respect to the principal planes of elastic symmetry (through s1 and s2).
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3.8 Assignment

CVEN-6831

FRACTURE MECHANICS

Spring 2000

Victor E. Saouma

Home-Work No. 1

Derivation of SIF

Due Date: Feb. 15, 2000

1. A cylindrical pressure vessel of radius R and thickness t contains a through crack of length 2a oriented at an angle β with

the circumferential direction. When the vessel is subjected to an internal pressure p, determine the stress intensity factors

at the crack tip.

R

t

s y 

s x

y

x

x’

y’

2. The stress function for a crack subjected to splitting forces P, as shown below

x2

x1

P

P
2a

a

is given by:

ϕ =
Pa

πz
√
z2 − a2

(3.130)

where z = x1+ ix2 and P is a load per unit thickness. Calculate the expressions of σ22 at x2 = 0 and derive an expression

for KI . (KP = P√
πa

)

Hint:
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3.8 Assignment

a) At crack tip
η
a
<< 1.

b) η = z − a = z = reiθ

3. The stress intensity factor of the following problem:

x2

x1

P

a a

x

P

is given by:

KA =
P√
πa

√
a+ x

a− x
(3.131)

Kb =
P√
πa

√
a− x

a+ x
(3.132)

Based on those expressions, and results from the previous problem, determine the stress function Φ.

4. Barenblatt’s model assumes a linearly varying closing pressure at the tip of a crack,

x2

x1

c

sy sy

sy
sy

c2a‐c

Using Mathematica and the expressions of KA and KB from the previous problem, determine an expression for the stress

intensity factors for this case.

5. Using Mathematica, program either:

a) Westergaard’s solution for a crack subjected to mode I and mode II loading.

b) Williams solution for a crack along dissimilar materials.
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Chapter 4

LEFM DESIGN EXAMPLES

1 Following the detailed coverage of the derivation of the linear elastic stress field around a crack tip, and the introduction of the

concept of a stress intensity factor in the preceding chapter, we now seek to apply those equations to some (pure mode I) practical

design problems.

2 First we shall examine how is linear elastic fracture mechanics (LEFM) effectively used in design examples, then we shall give

analytical solutions to some simple commonly used test geometries, followed by a tabulation of fracture toughness of commonly

used engineering materials. Finally, this chapter will conclude with some simple design/analysis examples.

4.1 Design Philosophy Based on Linear Elastic Fracture Mechanics

3 One of the underlying principles of fracture mechanics is that unstable fracture occurs when the stress intensity factor (SIF)

reaches a critical value KIc, also called fracture toughness. KIc represents the inherent ability of a material to withstand a given

stress field intensity at the tip of a crack and to resist progressive tensile crack extension.

4 Thus a crack will propagate (under pure mode I), whenever the stress intensity factor KI (which characterizes the strength

of the singularity for a given problem) reaches a material constant KIc. Hence, under the assumptions of linear elastic fracture

mechanics (LEFM), at the point of incipient crack growth:

KIc = βσ
√
πa (4.1)

5 Thus for the design of a cracked, or potentially cracked, structure, the engineer would have to decide what design variables can

be selected, as only, two of these variables can be fixed, and the third must be determined. The design variables are:

Material properties: (such as special steel to resist corrosive liquid) ⇒ Kc is fixed.

Design stress level: (which may be governed by weight considerations) ⇒ σ is fixed.

Flaw size: 1

, a.

6 In assessing the safety of a cracked body, it is essential that the crack length a be properly known. In most cases it is not.

Thus assumptions must be made for its value, and those assumptions are dependent upon the crack detection methodology

adopted. The presence of a crack, equal to the smallest one that can be detected, must be assumed.

7 Thus, a simpler inspection procedure would result in a larger minimum crack size than one detected by expensive non-

destructive techniques. In return, simplified inspection would result in larger crack size assumptions.

Once two parameters are specified, the third one is fixed. Finally, it should be mentioned that whereas in most cases the geometry

is fixed (hence β), occasionally, there is the possibility to alter it in such a way to reduce (or maximize) β.

4.2 Stress Intensity Factors

6 As shown in the preceding chapter, analytic derivation of the stress intensity factors of even the simplest problem can be

quite challenging. This explain the interest developed by some mathematician in solving fracture related problems. Fortunately, a

number of simple problems have been solved and their analytic solution is found in stress intensity factor handbooks. The most

commonly referenced ones are Tada, Paris and Irwin’s (Tada et al., 1973), and Roorke and Cartwright, (Rooke and Cartwright,

1976), and Murakami (Murakami, 1987)

7 In addition, increasingly computer software with pre-programmed analytical solutions are becoming available, specially in

conjunction with fatigue life predictions.

8 Because of their importance, expressions of SIF of commonly encountered geometries will be listed below:
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2
a Ws

Figure 4.1: Middle Tension Panel

a

Ws

Figure 4.2: Single Edge Notch Tension Panel

Middle Tension Panel (MT), Fig. 4.1

KI =

√
sec

πa

W︸ ︷︷ ︸
β

σ
√
πa (4.2)

=

[
1 + 0.256

( a
W

)
− 1.152

( a
W

)2
+ 12.2

( a
W

)3]
︸ ︷︷ ︸

β

σ
√
πa (4.3)

We note that for W very large with respect to a,

√
π sec πa

W
= 1 as anticipated.

Single Edge Notch Tension Panel (SENT) for
L
W

= 2, Fig. 4.2

KI =

[
1.12− 0.23

( a
W

)
+ 10.56

( a
W

)2
− 21.74

( a
W

)3
+ 30.42

( a
W

)4]
︸ ︷︷ ︸

β

σ
√
πa (4.4)

We observe that here the β factor for small crack (
a
W

≪ 1) is grater than one and is approximately 1.12.

Double Edge Notch Tension Panel (DENT), Fig. 4.3

KI =

[
1.12 + 0.43

( a
W

)
− 4.79

( a
W

)2
+ 15.46

( a
W

)3]
︸ ︷︷ ︸

β

σ
√
πa (4.5)

Three Point Bend (TPB), Fig. 4.4

1

In most cases, a refers to half the total crack length.

a

Ws

a

Figure 4.3: Double Edge Notch Tension Panel
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2.1 WB

a

2.1 W

W

S

P

Figure 4.4: Three Point Bend Beam

Figure 4.5: Compact Tension Specimen

KI =
3
√

a
W

[
1.99−

(
a
W

) (
1− a

W

) (
2.15− 3.93 a

W
+ 2.7

(
a
W

)2)]
2
(
1 + 2 a

W

) (
1− a

W

) 3
2

PS

BW
3
2

(4.6)

Compact Tension Specimen (CTS), Fig. 4.5 used in ASTM E-399 (399) Standard Test Method for Plane-Strain Fracture Tough-

ness of Metallic Materials

KI =

[
16.7− 104.6

( a
W

)
+ 370

( a
W

)2
− 574

( a
W

)3
+ 361

( a
W

)4]
︸ ︷︷ ︸

β

P

BW︸ ︷︷ ︸
σ

√
πa (4.7)

We note that this is not exactly the equation found in the ASTM standard, but rather an equivalent one written in the

standard form.

Circular Holes: First let us consider the approximate solution of this problem, Fig. 4.6, then we will present the exact one:

Approximate: For a plate with a far field uniform stress σ, we know that there is a stress concentration factor of 3. for a

crack radiating from this hole, we consider two cases

Short Crack: a
D

→ 0, and thus we have an approximate far field stress of 3σ, and for an edge crack β = 1.12, Fig.

4.6 thus

KI = 1.12(3σ)
√
πa

= 3.36σ
√
πa (4.8)

Long Crack D ≪ 2a+D, in this case, we can for all practical purposes ignore the presence of the hole, and assume

that we have a central crack with an effective length aeff = 2a+D
2

, thus

KI = σ

√
π
2a+D

2

=

√
1 +

D

2a︸ ︷︷ ︸
β

σ
√
πa (4.9)
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Figure 4.6: Approximate Solutions for Two Opposite Short Cracks Radiating from a Circular Hole in an Infinite Plate under Ten-

sion

Figure 4.7: Approximate Solutions for Long Cracks Radiating from a Circular Hole in an Infinite Plate under Tension

Similarly, if we had only one single crack radiating from a hole, for short crack, β remains equal to 3.36, whereas for

long crack, Fig. 4.7 we obtain:

KI = σ

√
π
a+D

2

=

√
1

2
+
D

2a︸ ︷︷ ︸
β

σ
√
πa (4.10)

Exact: Whereas the preceding equations give accurate results for both very short and very large cracks, in the intermediary

stage an exact numerical solution was derived by Newman (Newman, 1971), Fig. 4.8

KI = βσ
√
πa (4.11)

where, using Newman’s solution β is given in Table 4.1

Pressurized Hole with Radiating Cracks: Again we will use Newman’s solution for this problem, and distinguish two cases:

Pressurized Hole Only: or λ = 0, Fig. 4.9

KI = β
2pR√
πa

(4.12)

Pressurized Hole and Crack: or λ = 1

KI = βp
√
πa (4.13)

For both cases, β is given in Table 4.1. We note that for the pressurized hole only, KI decreases with crack length,

hence we would have a stable crack growth. We also note that KI would be the same for a pressurized crack and

borehole, as it would have been for an unpressurized hole but an identical far field stress. (WHY?)
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Figure 4.8: Radiating Cracks from a Circular Hole in an Infinite Plate under Biaxial Stress

a
R

β Biaxial Stress β Pressurized Hole

λ = −1 λ = 1 λ = 0 λ = 1 λ = 0

1.01 0.4325 0.3256 0.2188 .2188 .1725

1.02 .5971 .4514 .3058 .3058 .2319

1.04 .7981 .6082 .4183 .4183 .3334

1.06 .9250 .7104 .4958 .4958 .3979

1.08 1.0135 .7843 .5551 .5551 .4485

1.10 1.0775 .8400 .6025 .6025 .4897

1.15 1.1746 .9322 .6898 .6898 .5688

1.20 1.2208 .9851 .7494 .7494 .6262

1.25 1.2405 1.0168 .7929 .7929 .6701

1.30 1.2457 1.0358 .8259 .8259 .7053

1.40 1.2350 1.0536 .8723 .8723 .7585

1.50 1.2134 1.0582 .9029 .9029 .7971

1.60 1.1899 1.0571 .9242 .9242 .8264

1.80 1.1476 1.0495 .9513 .9513 .8677

2.00 1.1149 1.0409 .9670 .9670 .8957

2.20 1.0904 1.0336 .9768 .9768 .9154

2.50 1.0649 1.0252 .9855 .9855 .9358

3.00 1.0395 1.0161 .99267 .99267 .9566

4.00 1.0178 1.0077 .9976 .9976 .9764

Table 4.1: Newman’s Solution for Circular Hole in an Infinite Plate subjected to Biaxial Loading, and Internal Pressure
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Figure 4.9: Pressurized Hole with Radiating Cracks

P

a a

x

P

B A

Figure 4.10: Two Opposite Point Loads acting on the Surface of an Embedded Crack

Point Load Acting on Crack Surfaces of an Embedded Crack: The solution of this problem, Fig. 4.10 and the subsequent

one, is of great practical importance, as it provides the Green’s function for numerous other ones.

KA
I =

P

πa

√
a+ x

a− x
(4.14)

KB
I =

P

πa

√
a− x

a+ x
(4.15)

Point Load Acting on Crack Surfaces of an Edge Crack: The solution of this problem, Fig. 4.11 is

KI =
2P

πa

C√
1 +

(
x
a

)2
[
−0.4

(x
a

)2
+ 1.3

]
(4.16)

where C is tabulated in Table 4.2

Embedded Elliptical Crack A large number of naturally occurring defects are present as embedded, surface or corner cracks

(such as fillet welding) Irwin, (Irwin, 1962) proposed the following solution for the elliptical crack, with x = a cos θ and
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P
a

x
P

Figure 4.11: Two Opposite Point Loads acting on the Surface of an Edge Crack

x
a

C

< 0.6 1

0.6-0.7 1.01

0.7-0.8 1.03

0.8-0.9 1.07

> 0.9 1.11

Table 4.2: C Factors for Point Load on Edge Crack

Corner CrackEmbedded Crack

Surface Crack

Figure 4.12: Embedded, Corner, and Surface Cracks
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2a

t

b

q

Figure 4.13: Elliptical Crack, and Newman’s Solution

y = b sin θ:

KI (θ) =
1

Φ0

(
sin2 θ +

b2

a2
cos2 θ

) 1
4

σ
√
πb (4.17)

where Φ0 is a complete elliptical integral of the second kind

Φ0 =

∫ π
2

0

√
1− a2 − b2

a2
sin2 θdθ (4.18)

=
√
Q (4.19)

An approximation to Eq. 4.17 was given by Cherepanov (Cherepanov, 1979)

KI =

[
sin2 θ +

(
b

a

)2

cos2 θ

] 1
4

σ
√
πb (4.20)

for 0 ≤ b
a
≤ 1.

This solution calls for the following observations:

1. If a = b then we have a “penny-shape’ circular crack and Eq. 4.17 reduces to

KI =
2

π
σ
√
πa (4.21)

2. If a = ∞ & θ = π
2

then we retrieve the solution KI = σ
√
πa of a through crack.

3. At the end of the minor axes, θ = π
2

the stress intensity factor is maximum:

(KI)θ=π
2
=
σ
√
πb

Φ0
= σ

√
πb

Q
(4.22)

4. At the end of the major axes, θ = 0 the stress intensity factor is minimum

(KI)θ=0 =
σ
√
π b2

a

Φ0
(4.23)

Thus an embedded elliptical crack will propagate into a circular one “penny-shaped”.

Surface Cracks Irwin’s original solution has been extended to semi-elliptical surface flaws, quarter elliptical corner cracks, and

to surface cracks emanating from circular holes. Using the results of three dimensional finite element analysis, Newman

and Raju (Newman and Raju, 1981) developed an empirical SIF equation for semi-elliptical surface cracks, Fig. 4.13. The

equation applies for cracks of arbitrary shape factor in finite size plates for both tension and bending loads. This is perhaps

the most accurate solution and is almost universally used:

K = σ
√
πb

[
M1 +M2

(
b

t

)2

+M3

(
b

t

)4
][

1 + 1.464

(
b

a

)1.65
]− 1

2

[(
b

a

)2

cos2 θ + sin2 θ

] 1
4
{
1 +

[
0.1 + 0.35

(
b

t

)2
]
(1− sin θ)2

}
(4.24)
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4.3 Fracture Properties of Materials

Material KIc

ksi

√
in

Steel, Medium Carbon 49

Steel, Pressure Vessel 190

Hardened Steel 20

Aluminum 20-30

Titanium 70

Copper 100

Lead 18

Glass 0.7

Westerly Granite 16

Cement Paste 0.5

Concrete 1

Nylon 3

Table 4.3: Approximate Fracture Toughness of Common Engineering Materials

M1 = 1.13− 0.09

(
b

a

)
(4.25)

M2 = 0.89

[
0.2 +

(
b

a

)]−1

− 0.54 (4.26)

M3 = 0.5−
[
0.65 +

(
b

a

)]−1

+ 14

[
1.−

(
b

a

)]24
(4.27)

Newman and Raju report that this equation is accurate within ±5 percent, provided 0 < b
a
≤ 1.0 and

b
t
≤ 0.8. For

b
a

approximately equal to 0.25, K is roughly independent of θ. For shallow cracks
b
t
≪ 1, Equation 4.24 reduces to

K = 1.13σ
√
πb

[
1− .08

(
b

a

)][
1 + 1.464

(
b

a

)1.65
]− 1

2

(4.28)

For very long cracks
b
a
≪ 1, Equation 4.24 reduces to

K = 1.13σ
√
πb

[
1 + 3.46

(
b

t

)2

+ 11.5

(
b

t

)4
]

(4.29)

4.3 Fracture Properties of Materials

9 Whereas fracture toughness testing will be the object of a separate chapter, we shall briefly mention the appropriate references

from where fracture toughness values can be determined.

Metallic Alloys: Testing procedures for fracture toughness of metallic alloys are standardized by various codes (see (399) and

(BSI, 1977)). An exhaustive tabulation of fracture toughnesses of numerous alloys can be found in (Hudson and Seward,

1978) and (Hudson and Seward, 1982).

Concrete: Fracture mechanics evolved primarily from mechanical and metallurgical applications, but there has been much recent

interest in its applicability to both concrete and rocks. Although there is not yet a standard for fracture toughness of

concrete, Hillerborg (Anon., 1985) has proposed a standard procedure for determining GF . Furthermore, a subcommittee

of ASTM E399 is currently looking into a proposed testing procedure for concrete.

Rock: Ouchterlony has a comprehensive review of fracture toughnesses of numerous rocks in an appendix of (Ouchterlony,

1986), and a proposed fracture toughness testing procedure can be found in (Ouchterlony, 1982).

Table 4.3 provides an indication of the fracture toughness of common engineering materials. Note that stress intensity factors in

metric units are commonly expressed in Mpa

√
m, and that

1ksi

√
in = 1.099Mpa

√
m (4.30)
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Yield Stress KIc

Ksi ksi

√
in

210 65

220 60

230 40

240 38

290 35

300 30

Table 4.4: Fracture Toughness vs Yield Stress for .45C −Ni − Cr −Mo Steel

4.4 Examples

4.4.1 Example 1

Assume that a component in the shape of a large sheet is to be fabricated from .45C −Ni − Cr −Mo steel, with a decreasing

fracture toughness with increase in yield stress, Table 4.4. The smallest crack size (2a) which can be detected is approximately .12

in. The specified design stress is
σy

2
. To save weight, an increase of tensile strength from 220 ksi to 300 ksi is suggested. Is this

reasonable?

At 220 ksi KIc = 60 ksi

√
in, and at 300 ksi KIc = 30 ksi

√
in. Thus, the design stress will be given by σd =

σy

2
and from

KIc = σd
√
πacr ⇒ acr = 1

π

(
KIc
σy
2

)2

Thus,

Yield Stress Design Stress Fracture Toughness Critical Crack Total Crack

σy σd KIc acr 2acr
220 110 60 .0947 .189

300 150 30 .0127 .0255

We observe that for the first case, the total crack length is larger than the smallest one which can be detected (which is O.K.);

Alternatively, for the second case the total critical crack size is approximately five times smaller than the minimum flaw size

required and approximately eight times smaller than the flaw size tolerated at the 220 ksi level.

Hence, σy should not be raised to 300 ksi.

Finally, if we wanted to use the flaw size found with the 300 ksi alloy, we should have a decrease in design stress (since KIc

and acr are now set) KIc = σd
√
πavis ⇒ σd = KIc√

πavis
= 30ksi

√
in√

0.06π
= 69 ksi, with a potential factor of safety of one against

cracking (we can not be sure 100% that there is no crack of that size or smaller as we can not detect it). We observe that since the

design stress level is approximately half of that of the weaker alloy, there will be a two fold increase in weight.

4.4.2 Example 2

A small beer barrel of diameter 15” and wall thickness of .126” made of aluminum alloy exploded when a pressure reduction valve

malfunctioned and the barrel experienced the 610 psi full pressure of the CO2 cylinder supplying it with gas. Afterwards, cracks

approximately 4.0 inch long by (probably) .07 inch deep were discovered on the inside of the salvaged pieces of the barrel (it was

impossible to measure their depth). Independent tests gave 40. ksi

√
in for KIc of the aluminum alloy. The question is whether

the cracks were critical for the 610 psi pressure?

For a cylinder under internal pressure, the hoop stress is σ = pD
2t

= 610 lb

in
2

15 in

2(.126) in
= 36, 310 psi = 36.3 ksi. This can be

used as the far field stress (neglecting curvature).

First we use the exact solution as given in Eq. 4.24, with a = 2. in, b = .07 in, and t = .126 in. upon substitution we obtain:

M1 = 1.13− 0.09

(
.07

2.

)
= 1.127

M2 = 0.89

[
0.2 +

(
.07

2.

)]−1

− 0.54

= 3.247

M3 = 0.5−
[
0.65 +

(
.07

2

)]−1

+ 14

[
1.−

(
.07

2

)]24
= 4.994
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2c

t

2a=2t

Initially Elliptical crack

Final semi‐circular crack (leak)

Figure 4.14: Growth of Semielliptical surface Flaw into Semicircular Configuration

Substituting

K = 36.3
√
π.07

[
1.127 + 3.247

(
.07

.126

)2

+ 4.994

(
.07

.126

)4
][

1 + 1.464

(
.07

2

)1.65
]− 1

2

[(
.07

2.

)2

0 + 1

] 1
4
{
1 +

[
0.1 + 0.35

(
.07

.126

)2
]
(1− 1)2

}
= 44.2ksi

√
in

This is about equal to the fracture toughness.

Note that if we were to use the approximate equation, for long cracks we would have obtained:

K = (1.13)(36.3)
√
π(.07)

[
1 + 3.46

(
.07

.126

)2

+ 11.5

(
.07

.126

)4
]

= 60.85

> KIc

4.5 Additional Design Considerations

4.5.1 Leak Before Fail

10 As observed from the preceding example, many pressurized vessels are subject to crack growth if internal flaws are present.

Two scenarios may happen, Fig. 4.14

Break-through: In this case critical crack configuration is reached before the crack has “daylighted”, and there is a sudden and

unstable crack growth.

Leak Before Fail: In this case, crack growth occur, and the crack “pierces” through the thickness of the vessel before unstable

crack growth occurs. This in turn will result in a sudden depressurization, and this will stop any further crack growth.

11 Hence, pressurized vessels should be designed to ensure a leak before fail failure scenario, as this would usually be immediately

noticed and corrected (assuming that there is no leak of flammable gas!).

12 Finally, it should be noted that leak before break assessment should be made on the basis of a complete residual strength diagram
for both the part through and the through crack. Various ratios should be considered

4.5.2 Damage Tolerance Assessment

13 Fracture mechanics is not limited to determining the critical crack size, load, or stress combination. It can also be applied to

establish a fracture control plan, or damage tolerance analysis with the following objectives:

1. Determine the effect of cracks on strength. This will result in a plot of crack size versus residual strength, or Residual
Strength Diagram

2. Determine crack growth with time, resulting in Crack Growth Curve.
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Chapter 5

THEORETICAL STRENGTH of SOLIDS; (Griffith I)

1 We recall that Griffith’s involvement with fracture mechanics started as he was exploring the disparity in strength between

glass rods of different sizes, (Griffith, 1921). As such, he had postulated that this can be explained by the presence of internal flaws

(idealized as elliptical) and then used Inglis solution to explain this discrepancy.

2 In this section, we shall develop an expression for the theoretical strength of perfect crystals (theoretically the strongest form

of solid). This derivation, (Kelly, 1974) is fundamentally different than the one of Griffith as it starts at the atomic level.

5.1 Derivation

3 We start by exploring the energy of interaction between two adjacent atoms at equilibrium separated by a distance a0, Fig. 5.1.

The total energy which must be supplied to separate atom C from C’ is

U0 = 2γ (5.1)

where γ is the surface energy
1

, and the factor of 2 is due to the fact that upon separation, we have two distinct surfaces.

5.1.1 Tensile Strength

5.1.1.1 Ideal Strength in Terms of Physical Parameters

4 We shall first derive an expression for the ideal strength in terms of physical parameters, and in the next section the strength

will be expressed in terms of engineering ones.

Force being the derivative of energy, we have F = dU
da

, thus F = 0 at a = a0, Fig. 5.2, and is maximum at the inflection

point of the U0 − a curve. Hence, the slope of the force displacement curve is the stiffness of the atomic spring and should

be related to E. If we let x = a − a0, then the strain would be equal to ε = x
a0

. Furthermore, if we define the stress as

σ = F
a2
0

, then the σ− ε curve will be as shown in Fig. 5.3. From this diagram, it would appear that the sine curve would be

an adequate approximation to this relationship. Hence,

σ = σtheor
max sin 2π

x

λ
(5.2)

and the maximum stress σtheor
max would occur at x = λ

4
. The energy required to separate two atoms is thus given by the

area under the sine curve, and from Eq. 5.1, we would have

2γ = U0 =

∫ λ
2

0

σtheor
max sin

(
2π
x

λ

)
dx (5.3)

=
λ

2π
σtheor
max [− cos (

2πx

λ
)] |

λ
2
0 (5.4)

=
λ

2π
σtheor
max [−

−1︷ ︸︸ ︷
cos (

2πλ

2λ
)+

1︷ ︸︸ ︷
cos(0)] (5.5)

⇒ λ =
2γπ

σtheor
max

(5.6)

Also for very small displacements (small x) sinx ≈ x, thus Eq. 5.2 reduces to

σ ≈ σtheor
max

2πx

λ
≈ E

x

a0
(5.7)

1

From watching raindrops and bubbles it is obvious that liquid water has surface tension. When the surface of a liquid is extended (soap bubble, insect walking

on liquid) work is done against this tension, and energy is stored in the new surface. When insects walk on water it sinks until the surface energy just balances

the decrease in its potential energy. For solids, the chemical bonds are stronger than for liquids, hence the surface energy is stronger. The reason why we do not

notice it is that solids are too rigid to be distorted by it. Surface energy γ is expressed in J/m2
and the surface energies of water, most solids, and diamonds are

approximately .077, 1.0, and 5.14 respectively.
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THEORETICAL STRENGTH of SOLIDS; (Griffith I)

Plane of Rupture

A

B

C

D

A
'

B'

C'

D
'

E'E

a0
c c'

σ σ 

Figure 5.1: Uniformly Stressed Layer of Atoms Separated by a0

Solution I:

Distance of 
Separation

Inflection Point
U0

E
N

E
R

G
Y

 U

Displacement. ax

F
or

ce

a0

Repulsive force (electrons)

Attractive (Cohesive, ions, electrostatic)

Net energy

Equilibrium

Figure 5.2: Energy and Force Binding Two Adjacent Atoms

Young's modulus E

Area=2 γ 

ε = x/a0 0X=λ/4 X=λ/2

Stress

F/a2

σmax
Th.

Figure 5.3: Stress Strain Relation at the Atomic Level
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5.1 Derivation

elliminating x,

σtheor
max ≈ E

a0

λ

2π
(5.8)

Substituting for λ from Eq. 5.6, we get

σtheor
max ≈

√
Eγ

a0
(5.9)

Solution II: For two layers of atoms a0 apart, the strain energy per unit area due to σ (for linear elastic systems) is

U = 1
2
σεao

σ = Eε

}
U =

σ2ao
2E

(5.10)

If γ is the surface energy of the solid per unit area, then the total surface energy of two new fracture surfaces is 2γ.

For our theoretical strength, U = 2γ ⇒ (σtheor
max )2a0

2E
= 2γ or σtheor

max = 2
√

γE
a0

Note that here we have assumed that the material obeys Hooke’s Law up to failure, since this is seldom the case, we can

simplify this approximation to:

σtheor
max =

√
Eγ

a0
(5.11)

which is the same as Equation 5.9

Example: As an example, let us consider steel which has the following properties: γ = 1 J
m2 ; E = 2 × 1011 N

m2 ; and a0 ≈
2× 10−10

m. Thus from Eq. 5.9 we would have:

σtheor
max ≈

√
(2× 1011)(1)

2× 10−10
(5.12)

≈ 3.16× 1010
N

m2
(5.13)

≈ E

6
(5.14)

Thus this would be the ideal theoretical strength of steel.

5.1.1.2 Ideal Strength in Terms of Engineering Parameter

5 We note that the force to separate two atoms drops to zero when the distance between them is a0 + a where a0 corresponds to

the origin and a to
λ
2

. Thus, if we take a = λ
2

or λ = 2a, combined with Eq. 5.8 would yield

σtheor
max ≈ E

a0

a

π
(5.15)

6 Alternatively combining Eq. 5.6 with λ = 2a gives

a ≈ γπ

σtheor
max

(5.16)

7 Combining those two equations

γ ≈ E

a0

( a
π

)2
(5.17)

8 However, since as a first order approximation a ≈ a0 then the surface energy will be

γ ≈ Ea0
10

(5.18)
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THEORETICAL STRENGTH of SOLIDS; (Griffith I)

x

h

Figure 5.4: Influence of Atomic Misfit on Ideal Shear Strength

9 This equation, combined with Eq. 5.9 will finally give

σtheor
max ≈ E√

10
(5.19)

which is an approximate expression for the theoretical maximum strength in terms of E.

5.1.2 Shear Strength

10 Similar derivation can be done for shear. What happen if we slide the top row over the bottom one. Again, we can assume that

the shear stress is

τ = τ theormax sin 2π
x

λ
(5.20)

and from basic elasticity

τ = Gγxy (5.21)

and, Fig. 5.4 γxy = x/h.

11 Because we do have very small displacement, we can elliminate x from

τ theormax sin 2π
x

λ
≃ 2πx

λ
= γG =

x

h
G

⇒ τ theormax =
Gλ

2πh
(5.22-a)

12 If we do also assume that λ = h, and G = E/2(1 + ν), then

τ theormax ≃ E

12(1 + ν)
≃ E

18
(5.23)

5.2 Griffith Theory

13 Around 1920, Griffith was exploring the theoretical strength of solids by performing a series of experiments on glass rods

of various diameters. He observed that the tensile strength (σt) of glass decreased with an increase in diameter, and that for a

diameter ϕ ≈ 1
10,000

in., σt = 500, 000 psi; furthermore, by extrapolation to “zero” diameter he obtained a theoretical maximum

strength of approximately 1,600,000 psi, and on the other hand for very large diameters the asymptotic values was around 25,000

psi.

14 Griffith had thus demonstrated that the theoretical strength could be experimentally approached, he now needed to show why

the great majority of solids fell so far below it.
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5.2 Griffith Theory

5.2.1 Derivation

15 In his quest for an explanation, he came across Inglis’s paper, and his “strike of genius” was to assume that strength is reduced

due to the presence of internal flaws. Griffith postulated that the theoretical strength can only be reached at the point of highest

stress concentration, and accordingly the far-field applied stress will be much smaller.

16 Hence, assuming an elliptical imperfection, and from equation 3.30

σtheor
max = σact

cr

(
1 + 2

√
a

ρ

)
(5.24)

σ is the stress at the tip of the ellipse which is caused by a (lower) far field stress σact
cr .

17 Asssuming ρ ≈ a0 and since 2
√

a
a0

≫ 1, for an ideal plate under tension with only one single elliptical flaw the strength may

be obtained from

σtheor
max︸ ︷︷ ︸

micro

= 2σact
cr

√
a

a0︸ ︷︷ ︸
macro

(5.25)

hence, equating with Eq. 5.9, we obtain

σtheor
max = 2σact

cr

√
a

ao︸ ︷︷ ︸
Macro

=

√
Eγ

a0︸ ︷︷ ︸
Micro

(5.26)

18 From this very important equation, we observe that

1. The left hand side is based on a linear elastic solution of a macroscopic problem solved by Inglis.

2. The right hand side is based on the theoretical strength derived from the sinusoidal stress-strain assumption of the inter-

atomic forces, and finds its roots in micro-physics.

19 Finally, this equation would give (at fracture)

σact
cr =

√
Eγ

4a
(5.27)

20 As an example, let us consider a flaw with a size of 2a = 5, 000a0

σact
cr =

√
Eγ
4a

γ = Ea0
10

}
σact
cr =

√
E2

40
ao
a

a
a0

= 2, 500

}
σact
cr =

√
E2

100,000
= E

100
√
10

(5.28)

21 Thus if we set a flaw size of 2a = 5, 000a0 in γ ≈ Ea0
10

this is enough to lower the theoretical fracture strength from
E√
10

to a

critical value of magnitude
E

100
√
10

, or a factor of 100.

22 Also

σtheor
max = 2σact

cr

√
a
ao

a = 10−6m = 1µm

ao = 1Å = ρ = 10−10m

σtheor
max = 2σact

cr

√
10−6

10−10
= 200σact

cr (5.29)

23 Therefore at failure

σact
cr =

σtheor
max
200

σtheor
max = E

10

}
σact
cr ≈ E

2, 000
(5.30)

which can be attained. For instance for steel
E

2,000
= 30,000

2,000
= 15 ksi
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Chapter 6

ENERGY TRANSFER in CRACK GROWTH; (Griffith II)

1 In the preceding chapters, we have focused on the singular stress field around a crack tip. On this basis, a criteria for crack

propagation, based on the strength of the singularity was first developed and then used in practical problems.

2 An alternative to this approach, is one based on energy transfer (or release), which occurs during crack propagation. This dual

approach will be developed in this chapter.

3 Griffith’s main achievement, in providing a basis for the fracture strengths of bodies containing cracks, was his realization that

it was possible to derive a thermodynamic criterion for fracture by considering the total change in energy of a cracked body as

the crack length increases, (Griffith, 1921).

4 Hence, Griffith showed that material fail not because of a maximum stress, but rather because a certain energy criteria was met.

5 Thus, the Griffith model for elastic solids, and the subsequent one by Irwin and Orowan for elastic-plastic solids, show that

crack propagation is caused by a transfer of energy transfer from external work and/or strain energy to surface energy.

6 It should be noted that this is a global energy approach, which was developed prior to the one of Westergaard which focused

on the stress field surrounding a crack tip. It will be shown later that for linear elastic solids the two approaches are identical.

6.1 Thermodynamics of Crack Growth

6.1.1 General Derivation

7 If we consider a crack in a deformable continuum subjected to arbitrary loading, then the first law of thermodynamics gives:

The change in energy is proportional to the amount of work performed. Since only the change of energy is involved, any datum

can be used as a basis for measure of energy. Hence energy is neither created nor consumed.

8 The first law of thermodynamics states The time-rate of change of the total energy (i.e., sum of the kinetic energy and the internal
energy) is equal to the sum of the rate of work done by the external forces and the change of heat content per unit time:

d

dt
(K + U + Γ) =W +Q (6.1)

whereK is the kinetic energy, U the total internal strain energy (elastic plus plastic), Γ the surface energy,W the external work,

and Q the heat input to the system.

9 Since all changes with respect to time are caused by changes in crack size, we can write

∂

∂t
=
∂A

∂t

∂

∂A
(6.2)

and for an adiabatic system (no heat exchange) and if loads are applied in a quasi static manner (no kinetic energy), then Q
and K are equal to zero, and for a unit thickness we can replace A by a, then we can rewrite the first law as

∂W

∂a︸︷︷︸
External

=

(
∂Ue

∂a
+
∂Up

∂a

)
+
∂Γ

∂a︸ ︷︷ ︸
Internal

(6.3)

10 This equation represents the energy balance during crack growth. It indicates that the work rate supplied to the continuum by

the applied external loads is equal to the rate of strain energy (elastic and plastic) dissipated during crack propagation.

11 Thus

77



D
R
A
FT

ENERGY TRANSFER in CRACK GROWTH; (Griffith II)

Π ≡ Ue −W
∂Π
∂a

= ∂Ue

∂a
− ∂W

∂a

= ∂Ue

∂a
− ∂Ue

∂a
− ∂Up

∂a
− ∂Γ

∂a

(6.4)

or

− ∂Π

∂a
=
∂Up

∂a
+
∂Γ

∂a
(6.5)

that is the rate of potential energy decrease during crack growth is equal to the rate of energy dissipated in plastic deformation

and crack growth.

12 It is very important to observe that the energy scales with a2, whereas surface energy scales with a. It will be shown later that

this can have serious implication on the stability of cracks, and on size effects.

6.1.2 Brittle Material, Griffith’s Model

13 For a perfectly brittle material, potential energy is released to create surface energy, hence we can rewrite Eq. 6.5 as

G
def
= −∂Π

∂a
=
∂Γ

∂a
= 2γ (6.6)

the factor 2 appears because we have two material surfaces upon fracture. The left hand side represents the energy available for

crack growth and is given the symbolG in honor of Griffith. BecauseG is derived from a potential function, it is often referred to

as the crack driving force. The right hand side represents the resistance of the material that must be overcome for crack growth,

and is a material constant (related to the toughness).

14 This equation represents the fracture criterion for crack growth, two limiting cases can be considered. They will be examined in

conjunction with Fig. 6.1 in which we have a crack of length 2a located in an infinite plate subjected to load P . Griffith assumed

2a2a

2(a+da)

P1, u1

P1

P2

u1 u2 u

P

A E

B

O

C F

P2, u2

d
P

du

Figure 6.1: Energy Transfer in a Cracked Plate

that it was possible to produce a macroscopical load displacement (P − u) curve for two different crack lengths a and a+ da.

Two different boundary conditions will be considered, and in each one the change in potential energy as the crack extends

from a to a+ da will be determined:

Fixed Grip: (u2 = u1) loading, an increase in crack length from a to a+ da results in a decrease in stored elastic strain energy,

∆U ,

∆U =
1

2
P2u1 −

1

2
P1u1 (6.7)

=
1

2
(P2 − P1)u1 (6.8)

< 0 (6.9)

Furthermore, under fixed grip there is no external work (u2 = u1), so the decrease in potential energy is the same as the

decrease in stored internal strain energy, hence

Π2 −Π1 = ∆W −∆U (6.10)

= −1

2
(P2 − P1)u1 =

1

2
(P1 − P2)u1 (6.11)
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6.1 Thermodynamics of Crack Growth

Fixed Load: P2 = P1 the situation is slightly more complicated. Here there is both external work

∆W = P1(u2 − u1) (6.12)

and a release of internal strain energy. Thus the net effect is a change in potential energy given by:

Π2 −Π1 = ∆W −∆U (6.13)

= P1 (u2 − u1)−
1

2
P1 (u2 − u1) (6.14)

=
1

2
P1 (u2 − u1) (6.15)

= Γ (6.16)

15 Thus under fixed grip conditions there is a decrease in strain energy of magnitude
1
2
u1(P1 − P2) as the crack extends from a

to (a+∆a), whereas under constant load, there is a net decrease in potential energy of magnitude
1
2
P1(u2 − u1).

16 At the limit as ∆a→ da, we define:

dP = P1 − P2 (6.17)

du = u2 − u1 (6.18)

then as da→ 0, the decrease in strain energy (and potential energy in this case) for the fixed grip would be

dΠ =
1

2
udP (6.19)

and for the constant load case

dΠ =
1

2
Pdu (6.20)

17 Furthermore, defining the compliance as

u = CP (6.21)

du = CdP (6.22)

18 Then the decrease in potential energy for both cases will be given by

dΠ =
1

2
CP dP (6.23)

19 In summary, as the crack extends there is a release of excess energy. Under fixed grip conditions, this energy is released

from the strain energy. Under fixed load condition, external work is produced, half of it is consumed into strain energy, and the

other half released. In either case, the energy released is consumed to form surface energy.

20 Thus a criteria for crack propagation would be

dΠ ≥ 2γda (6.24)

The difference between the two sides of the inequality will appear as kinetic energy at a real crack propagation.

Energy Release Rate per unit crack extension = Surface energy

dΠ

da
= 2γ (6.25)

21 Using Inglis solution, Griffith has shown that for plane stress infinite plates with a central crack of length 2a1

−dΠ

da
=
πaσ2

cr

E
(6.26)

1

This equation will be rederived in Sect. 6.5 using Westergaard’s solution.
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ENERGY TRANSFER in CRACK GROWTH; (Griffith II)
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Figure 6.2: Determination of Gc From Load Displacement Curves

note that the negative sign is due to the decrease in energy during crack growth. Combining with Eq. 6.25, and for incipient crack

growth, this reduces to

σ2
crπada

E′ = 2γda (6.27)

or

σcr =

√
2E′γ

πa
(6.28)

This equation derived on the basis of global fracture should be compared with Eq. 5.11 derived from local stress analysis.

6.2 Energy Release Rate; Global

6.2.1 From Load-Displacement

22 With reference to Fig. 6.2 The energy released, for unit crack surface, from increment i to increment i+ 1 is given by

G =
∑
i=1,n

OAiAi+1

ai+1 − ai
(6.29)

where

OAiAi+1 = (OAiBi) + (AiBiBi+1Ai+1)− (OAi+1Bi+1) (6.30-a)

=
1

2
Piui +

1

2
(Pi + Pi+1)(ui+1 − ui)−

1

2
Pi+1ui+1 (6.30-b)

=
1

2
(Piui+1 − Pi+1ui) (6.30-c)

Thus, the total energy release rate will be given by

G =
∑
i=1,n

1

2B

Piui+1 − Pi+1ui

ai+1 − ai
(6.31)

where B is the thickness.

6.2.2 From Compliance

23 Under constant load we found the energy release needed to extend a crack by da was
1
2
Pdu. If G is the energy release rate, B

is the thickness, and u = CP , (where u, C and P are the point load displacement, compliance and the load respectively), then

GBda =
1

2
Pd(CP ) =

1

2
P 2

dC (6.32)

at the limit as da→ 0, then we would have:

G =
1

2

P 2

B

(
dC

da

)
(6.33)
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Figure 6.3: Experimental Determination of KI from Compliance Curve
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24 Thus we can use an experimental technique to obtain G and from G =
K2

I
E′ (to be derived later) to get KI , Fig. 6.3

25 With regard to accuracy since we are after K which does not depend on E, a low modulus plate material (i.e. high strength

aluminum) can be used to increase observed displacement.

26 As an example, let us consider the double cantilever beam problem, Fig. 6.4. From strength of materials:

a

h

B

Figure 6.4: KI for DCB using the Compliance Method

C =
24

EB

∫ a

0

x2

h3
dx︸ ︷︷ ︸

flexural

+
6(1 + ν)

EB

∫ a

0

1

h
dx︸ ︷︷ ︸

shear

(6.34)

Taking ν = 1
3

we obtain

C =
8

EB

∫ a

0

(
3x2

h3
+

1

h

)
dx (6.35)

dC

da
=

8

EB

(
3a2

h3
+

1

h

)
(6.36)

Substituting in Eq. 6.33

G =
1

2

P 2

B

(
dc

da

)
(6.37)

=
1

2

P 28

EB2

(
3a2

h3
+

1

h

)
(6.38)

=
4P 2

EB2h3

(
3a2 + h2)

(6.39)

Thus the stress intensity factor will be

K =
√
GE =

2P

B

(
3a2

h3
+

1

h

) 1
2

(6.40)

27 Had we kept G in terms of ν

G =
4P 2

EB2h3

[
3a2 +

3

4
h2(1 + ν)

]
(6.41)

28 We observe that in this caseK increases with a, hence we would have an unstable crack growth. Had we had a beam in which

B increases with a, Fig. 6.5, such that

3a2

h3
+

1

h
= m = Cst (6.42)
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a

4.33

1.0

1.0

3a2/h3 + 1/h =4

Figure 6.5: Variable Depth Double Cantilever Beam

then

K =
2P

B
m

1
2 (6.43)

Such a specimen, in which K remains constant as a increases was proposed by Mostovoy (Mostovoy, 1967) for fatigue testing.

6.3 Energy Release Rate; Local

29 We showed in the previous section that a transfer of energy has to occur for crack propagation. Energy is needed to create new

surfaces, and this energy is provided by either release of strain energy only, or a combination of strain energy and external work.

It remains to quantify energy in terms of the stress intensity factors.

30 In his original derivation, Eq. 6.26, Griffith used Inglis solution to determine the energy released. His original solution was

erroneous, however he subsequently corrected it.

31 Our derivation instead will be based on Westergaard’s solution. Thus, the energy released during a colinear unit crack extension

can be determined by calculating the work done by the surface forces acting across the length da when the crack is closed from

length (a+ da) to length a, Fig. 6.6.

32 This energy change is given by:

G =
2

∆a

∫ a+∆a

a

1

2
σyy(x)v(x− da)dx (6.44)

33 We note that the 2 in the numerator is caused by the two crack surfaces (upper and lower), whereas the 2 in the denominator

is due to the linear elastic assumption.

34 Upon substitution for σyy and v (with θ = π) from the Westergaard equations (Eq. 3.53-b and 3.53-f)

σyy =
KI√
2πr

cos
θ

2

[
1 + sin

θ

2
sin

3θ

2

]
(6.45)

v =
KI

2µ

√
r

2π
sin

θ

2

[
κ+ 1− 2 cos2

θ

2

]
(6.46)

(where µ is the shear modulus); Setting θ = π, and after and simplifying, this results in:

G =
K2

I

E′
(6.47)
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y,v

x,u

a da

σ 

σ 

Figure 6.6: Graphical Representation of the Energy Release Rate G

where

E′ = E plane stress (6.48)

and

E′ =
E

1− ν2
plane strain (6.49)

35 Substituting K = σ
√
πa we obtain the energy release rate in terms of the far field stress

G =
σ2πa

E′
(6.50)

we note that this is identical to Eq. 6.26 derived earlier by Griffith.

36 Finally, the total energy consumed over the crack extension will be:

dΠ =

∫
da

0

Gdx =

∫
da

0

σ2πa

E′ dx =
σ2πada

E′ (6.51)

37 Sih, Paris and Irwin, (Sih et al., 1965), developed a counterpar to Equation 6.47 for anisotropic materials as

G =

√(a11a22
2

)(√a11
a22

+
2a12 + a66

2a22

)
K2

(6.52)

84



D
R
A
FT

6.4 Theoretical Basis

6.4 Theoretical Basis

38 Revisiting Eq. 6.3

∂W

∂a
=

(
∂Ue

∂a
+
∂Up

∂a

)
+
∂Γ

∂a
(6.53)

we can rewrite it as

∂W

∂a
− ∂Ue

∂a︸ ︷︷ ︸
G

=
∂Up

∂a
+
∂Γ

∂a︸ ︷︷ ︸
R

(6.54)

where R represents the rate of energy dissipation during stable crack growth. The first part corresponds to plastic deformation,

and the second to energy consumed during crack propagation.

6.4.1 R vs KIc

39 Back to Eq. 6.51, crack instability will occur when for an infinitesimal crack extension da, the rate of energy released is just

equal to surface energy absorbed.

σ2
crπada

E′︸ ︷︷ ︸
dΠ

= 2γda (6.55)

or

σcr =

√
2E′γ

πa
(6.56)

Which is Eq. 6.28 as originally derived by Griffith (Griffith, 1921).

40 This equation can be rewritten as

σ2
crπa

E′︸ ︷︷ ︸
Gcr

≡ R︸︷︷︸
2γ

(6.57)

and as

σcr

√
πa =

√
2E′γ = KIc (6.58)

thus

Gcr = R =
K2

Ic

E′
(6.59)

41 In general, the critical energy release rate is defined as R (for Resistance) and is only equal to a constant (Gcr) under plane

strain conditions.

42 Critical energy release rate for plane stress is found not to be constant, thus KIc is not constant, and we will instead use K1c

and G1c. Alternatively, KIc, and GIc correspond to plane strain in mode I which is constant. Hence, the shape of the R-curve

depends on the plate thickness, where plane strain is approached for thick plates, and is constant; and for thin plates we do not

have constant R due to plane stress conditions.

43 Using this energetic approach, we observe that contrarily to the Westergaard/Irwin criteria where we zoomed on the crack tip,

a global energy change can predict a local event (crack growth).

44 The duality between energy and stress approach G > Gcr = R, or K > KIc, should also be noted.

45 Whereas the Westergaard/Irwin criteria can be generalized to mixed mode loading (in chapter 7), the energy release rate for

mixed mode loading (where crack extension is not necessarily collinear with the crack axis) was not derived until 1974 by Hussain

et al. (Hussain et al., 1974). However, should we assume a collinear crack extension under mixed mode loading, then

G = GI +GII +GIII =
1− ν2

E
(K2

I +K2
II +

K2
III

1− ν
) (6.60)
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46 From above, we have the energy release rate given by

G =
σ2πa

E′ (6.61)

and the critical energy release rate is

R = Gcr =
dΠ

da
= 2γ =

K2
Ic

E′ (6.62)

47 Criteria for crack growth can best be understood through a graphical representation of those curves under plane strain and

plane stress conditions.

6.5 Crack Stability

48 Crack stability depends on both the geometry, and on the material resistance.

6.5.1 Effect of Geometry; Π Curve

49 From Eq. 6.6, crack growth is considered unstable when the energy at equilibrium is a maximum, and stable when it is a

minimum. Hence, a sufficient condition for crack stability is, (Gdoutos, 1993)

∂2(Π + Γ)

∂A2


< 0 unstable fracture

> 0 stable fracture

= 0 neutral equilibrium

&G > R (6.63)

and the potential energy is Π = U −W .

50 If we consider a line crack in an infinite plate subjected to uniform stress, Fig. 6.7, then the potential energy of the system is

Π = Ue
where Eq. 6.6 yields

KI = σ
√
πa (6.64-a)

G =
K2

I

E′ (6.64-b)

=
σ2πa

E′ (6.64-c)

Π = Ue =

∫
Gda (6.64-d)

= −1

2

σ2πa2

E′ (6.64-e)

and Γ = 4a (crack length is 2a). Note that Ue
is negative because there is a decrease in strain energy during crack propagation.

If we plot Γ, Π and Γ + Π, Fig. 6.7, then we observe that the total potential energy of the system (Π + Γ) is maximum at the

critical crack length which corresponds to unstable equilibrium.

51 If we now consider the cleavage of mica, a wedge of thickness h is inserted under a flake of mica which is detached from a mica

block along a length a. The energy of the system is determined by considering the mica flake as a cantilever beam with depth d.

From beam theory

Ue =
Ed3h2

8a3
(6.65)

(note that Ue
is positive because there is an increase in strain energy as a increases) and the surface energy is Γ = 2γa. From

Eq. 6.63, the equilibrium crack is

ac =

(
3Ed3h2

16γ

)1/4

(6.66)

Again, we observe from Fig. 6.7 that the total potential energy of the system at ac is a minimum, which corresponds to stable

equilibrium.
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Figure 6.7: Effect of Geometry and Load on Crack Stability, (Gdoutos, 1993)

6.5.2 Effect of Material; R Curve

52 As shown earlier, a crack in a linear elastic flawed structure may be characterized by its:

1. Stress intensity factor determined from the near crack tip stress field

2. Energy release rate determined from its global transfer of energy accompanying crack growth

53 Thus for a crack to extend, two criteria are possible:

1. Compare the stress intensity factor K with a material property called the critical stress intensity factor KIc, or fracture

toughness.

2. Compare the energy release rate G with a material property called the critical energy release rate GIc.

6.5.2.1 Plane Strain

54 For plane strain conditions, the R curve is constant and is equal to GIc. Using Fig. 6.8 From Eq. 6.61, G = σ2πa
E′ , G is always

a1a2 Da

R=G1c

s2 s1

G, R

s2

K
N

F

H

M L
Oa

G, R

R=G1c

Daa

Fixed Grip

a1 a2 a

R=G1c

s1

s2

G, R

A C

B

  12
2

1
a

G
E

     22
2

1
a

G
E

  

σ2
σ1

Figure 6.8: R Curve for Plane Strain

a linear function of a, thus must be a straight line.

55 For plane strain problems, if the crack size is a1, the energy release rate at a stress σ2 is represented by point B. If we increase

the stress from σ2 to σ1, we raise the G value from B to A. At A, the crack will extend. Had we had a longer crack a2, it would

have extended at σ2.
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56 Alternatively, we can plot to the right ∆a, and to the left the original crack length ai. At a stress σ2, the G line is given by LF

(really only point F). So by loading the crack from 0 to σ2, G increases from O to F, further increase of the stress to σ1 raises G
from F to H, and then fracture occurs, and the crack goes from H to K. On the other hand, had we had a crack of length a2 loaded

from 0 to σ2, its G value increases from O to H (note that LF and MH are parallel). At H crack extension occurs along HN.

57 Finally, it should be noted that depending on the boundary conditions, G may increase linearly (constant load) or as a polyno-

mial (fixed grips).

6.5.2.2 Plane Stress

58 Under plane strainRwas independent of the crack length. However, under plane stressR is found to be an increasing function

of a, Fig. 6.9

G, R

Daai

R=G1c

H

A

B

ac

Da3

C

D

F

R (Plane Strain)
s1

s2

s3

sc

Figure 6.9: R Curve for Plane Stress

59 If we examine an initial crack of length ai:

1. under σ1 at point A, G < R, thus there is no crack extension.

2. If we increase σ1 to σ2, point B, then G = R and the crack propagates by a small increment ∆a and will immediately stop

as G becomes smaller than R.

3. if we now increase σ1 to σ3, (point C) then G > R and the crack extends to a + ∆a. G increases to H , however, this

increase is at a lower rate than the increase in R

dG

da
<

dR

da
(6.67)

thus the crack will stabilize and we would have had a stable crack growth.

4. Finally, if we increase σ1 to σc, then not only is G equal to R, but it grows faster than R thus we would have an unstable

crack growth.

60 From this simple illustrative example we conclude that

Stable Crack Growth: G > R dG

da
< dR

da

Unstable Crack Growth: G > R dG

da
> dR

da

(6.68)

we also observe that for unstable crack growth, excess energy is transformed into kinetic energy.

61 Finally, we note that these equations are equivalent to Eq. 6.63 where the potential energy has been expressed in terms of G,

and the surface energy expressed in terms of R.

62 Some materials exhibit a flat R curve, while other have an ascending one. The shape of the R curve is a material property. For

ideally brittle material, R is flat since the surface energy γ is constant. Nonlinear material would have a small plastic zone at

the tip of the crack. The driving force in this case must increase. If the plastic zone is small compared to the crack (as would be

eventually the case for sufficiently long crack in a large body), then R would approach a constant value.
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of stress
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Y

X

Z

a rp

Plastic zone

Crack

Figure 6.10: Plastic Zone Ahead of a Crack Tip Through the Thickness

63 The thickness of the cracked body can also play an important role. For thin sheets, the load is predominantly plane stress, Fig.

6.10.

64 Alternatively, for a thick plate it would be predominantly plane strain. Hence a plane stress configuration would have a steeper

R curve.
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Chapter 7

MIXED MODE CRACK PROPAGATION

1 Practical engineering cracked structures are subjected to mixed mode loading, thus in generalKI andKII are both nonzero, yet

we usually measure only mode I fracture toughnessKIc (KIIc concept is seldom used). Thus, so far the only fracture propagation

criterion we have is for mode I only (KI vs KIc, and GI vs R).

2 Whereas under pure mode I in homogeneous isotropic material, crack propagation is collinear, in all other cases the propagation

will be curvilinear and at an angle θ0 with respect to the crack axis. Thus, for the general mixed mode case, we seek to formulate

a criterion that will determine:

1. The angle of incipient propagation, θ0, with respect to the crack axis.

2. If the stress intensity factors are in such a critical combination as to render the crack locally unstable and force it to

propagate.

3 Once again, for pure mode I problems, fracture initiation occurs if:

KI ≥ KIc (7.1)

4 The determination of a fracture initiation criterion for an existing crack in mode I and II would require a relationship between

KI,KII, and KIc of the form

F (KI,KII,KIc) = 0 (7.2)

and would be analogous to the one between the two principal stresses and a yield stress, Fig. 7.1

σ1 

σ1 

KI

σ1 

σ1 

σ1 

σ1 

KI ,KII

σ1 

σ1 

σ2 σ2 

Figure 7.1: Mixed Mode Crack Propagation and Biaxial Failure Modes

Fyld(σ1, σ2, σy) = 0 (7.3)

Such an equation may be the familiar von Mises criterion.

5 In the absence of a widely accepted criterion for mixed mode crack growth, three of the most widely used criterion are discussed

below.

7.1 Analytical Models for Isotropic Solids

6 First four models for the mixed mode crack propagation will be presented, three for isotropic materials, and one for anisotropic

ones. Subsequently the actual algorithmic implementation of those models will be presented.
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7.1.1 Maximum Circumferential Tensile Stress.

7 Erdogan and Sih (1963) presented the first mixed-mode fracture initiation theory, the maximum circumferential tensile stress

theory. It is based on the knowledge of the stress state near the tip of a crack, written in polar coordinates.

8 The maximum circumferential stress theory states that the crack extension starts:

1. At its tip in a radial direction

2. In the plane perpendicular to the direction of greatest tension, i.e at an angle θ0 such that τrθ = 0

3. When σθmax reaches a critical material constant

9 It can be easily shown that σθ reaches its maximum value when τrθ = 0. Replacing τrθ for mode I and II by their expressions

given in Eq. 3.56-c and 3.57-c

τrθ =
KI√
2πr

sin
θ

2
cos2

θ

2
+

KII√
2πr

(
1

4
cos

θ

2
+

3

4
cos

3θ

2

)
(7.4)

⇒ cos
θ0
2

[KI sin θ0 +KII (3 cos θ0 − 1)] = 0 (7.5)

this equation has two solutions:

θ0 = ±π trivial (7.6)

KI sin θ0 +KII (3 cos θ0 − 1) = 0 (7.7)

Solution of the second equation yields the angle of crack extension θ0

tan
θ0
2

=
1

4

KI

KII
± 1

4

√(
KI

KII

)2

+ 8 (7.8)

10 For the crack to extend, the maximum circumferential tensile stress, σθ (from Eq. 3.56-b and 3.57-b)

σθ =
KI√
2πr

cos
θ0
2

(
1− sin2 θ0

2

)
+

KII√
2πr

(
−3

4
sin

θ0
2

− 3

4
sin

3θ0
2

)
(7.9)

must reach a critical value which is obtained by rearranging the previous equation

σθmax

√
2πr = KIc = cos

θ0
2

[
KI cos

2 θ0
2

− 3

2
KII sin θ0

]
(7.10)

which can be normalized as

KI

KIc
cos3

θ0
2

− 3

2

KII

KIc
cos

θ0
2

sin θ0 = 1 (7.11)

11 This equation can be used to define an equivalent stress intensity factor Keq for mixed mode problems

Keq = KI cos
3 θ0
2

− 3

2
KII cos

θ0
2

sin θ0 (7.12)

7.1.2 Maximum Energy Release Rate

12 In their original model, Erdogan and Sih (1963) noted that:

“If we accept Griffith (energy) theory as the valid criteria which explains crack growth, then the crack will grow in

the direction along which the elastic energy release per unit crack extension will be maximum and the crack will start

to grow when this energy reaches a critical value (or G = G(δ, θ)). Evaluation of G(δ, θ) poses insurmountable

mathematical difficulties.”
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13 Finding G(δ, θ) will establish for the general mixed mode case the duality which is the basis of fracture mechanics: the

equivalence in viewing fracture initiation from either a global energy balance or a local stress intensity point of view.

14 This (insurmountable) problem was solved in 1974, by Hussain et al. (1974). Fundamentally, Hussain et al. (1974) have solved

for the stress intensity factor of a major crack with an infinitesimal “kink” at an angle θ,KI(θ) andKII(θ) in terms of the stress

intensity factors of the original crack KI and KII , Fig. 7.2:

KI(θ), KII(θ)

θ

KI, KII

Figure 7.2: Crack with an Infinitesimal “kink” at Angle θ

{
KI(θ)
KII(θ)

}
=

(
4

3 + cos2 θ

)(
1− θ

π

1 + θ
π

) θ
2π {

KI cos θ +
3
2
KII sin θ

KII cos θ − 1
2
KI sin θ

}
(7.13)

15 Those expressions of KI(θ) and KII(θ) were then substituted into Irwin’s generalized expression for the energy release rate

(assuming collinear crack growth), Eq. 6.60

G(θ) =
1

E′

(
K2

I (θ) +K2
II(θ)

)
(7.14)

yielding

G(θ) =
4

E′

(
1

3 + cos2 θ

)2
(
1− θ

π

1 + θ
π

) θ
π

[(1 + 3 cos2 θ)K2
I + 8 sin θ cos θKIKII + (9− 5 cos2 θ)K2

II ] (7.15)

16 The angle of crack propagation θ0 is found by maximizing G(θ);

∂G(θ)

∂θ
= 0 (7.16)

∂2G(θ)

∂θ2
< 0 (7.17)

For pure mode II (KI = 0), it is found that θ0 = 75.2o

17 If crack extension occurs whenG reaches a critical value which is the same scalar quantity for all cases, then this critical value

can be determined by setting KII = 0 and Gcr =
K2

Icr
E

; thus, substituting in Eq. 7.15

4

(
1

3 + cos2 θ0

)2
(
1− θ0

π

1 + θ0
π

) θ0
π

[(
1 + 3 cos2 θ0

)( KI

KIc

)2

+ 8 sin θ0 cos θ0

(
KIKII

K2
Ic

)
+
(
9− 5 cos2 θ0

)(KII

KIc

)2
]
= 1

7.1.3 Minimum Strain Energy Density Criteria.

18 The minimum strain energy density theory, formulated by Sih (1974), postulates that a fracture initiates from the crack tip

in a direction θ0, along which the strain energy density at a critical distance is a minimum (i.e. crack propagates along path of

minimum resistance), when this minimum reaches a critical value.

19 The strain energy density dW per unit volume dV is

dW

dV
=

1

2E
(σ2

xx + σ2
yy + σ2

zz)−
ν

E
(σxxσyy + σyyσzz + σzzσxx) +

1

2µ
(τ2xy + τ2yz + τ2zx) (7.18)
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where µ is the shear modulus (often referred to as G).

20 In two dimensional problems, this equation reduces to:

dW

dV
=

1

4µ

[
κ+ 1

4
(σxx + σyy)

2 − 2(σxxσyy − τ2xy)

]
(7.19)

where κ = 3− 4ν plane strain, and κ = 3−ν
1+ν

for plane stress.

21 Using Westergaard’s solution for a cracked infinite plate and substituting the stress into Eq. 7.29, dW

dV
, we obtain

∂W

∂V
=

1

r0π

(
a11K

2
I + 2a12KIKII + a22K

2
II

)
=
S(θ)

r0
(7.20)

where

a11 =
1

16µ
[(1 + cos θ) (κ− cos θ)] (7.21)

a12 =
sin θ

16µ
[2 cos θ − (κ− 1)] (7.22)

a22 =
1

16µ
[(κ+ 1) (1− cos θ) + (1 + cos θ) (3 cos θ − 1)] (7.23)

where

κ = 3−ν
1+ν

(plane stress) (7.24)

κ = 3− 4ν (plane strain) (7.25)

and µ is the shear modulus.

22 This model is based on the following assumptions:

1. Direction of fracture initiation (in 3-D) is toward the point of minimum strain energy density factor Smin as compared to

other points on the same spherical surface surrounding that point

∂S

∂θ
= 0 (7.26)

∂2S

∂θ2
> 0 (7.27)

2. Fracture initiation is assumed to occur when Sθmin reaches the maximum critical value Scr .

23 We note that it is also possible to decompose the strain energy density into two components a volumetric one and a dilational

one:

dU

dV
=

(
dU

dV

)
D

+

(
dU

dV

)
V

(7.28)

where the dilational part is given by(
dU

dV

)
D

=
1 + ν

6E

[
(σxx − σyy)

2 + (σyy − σzz)
2 + (σzz − σxx)

2 + 6(τ2xy + τ2yz + τ2xz)
]

(7.29)

and the volumetric by(
dU

dV

)
V

=
1− 2ν

6E
(σxx + σyy + σzz)

2
(7.30)

24 We note that Smin is associated with brittle fracture, and Smax is associated with yielding. Its direction coincides with the

direction of maximum distortion while Smin coincides with maximum dilation, Fig. 7.3

25 If we set KII = 0, thus θ0 = 0 and Scr = (S(θ))min = S(θ = 0) = a11KIc

Scr =
2(κ− 1)K2

Icr

16µπ

=
(κ− 1)

8πµ
K2

Icr (7.31)

94



D
R
A
FT

7.1 Analytical Models for Isotropic Solids

dilation

distortion

yi
el

di
ng

Figure 7.3: Sθ Distribution ahead of a Crack Tip

26 Thus, the fracture locus predicted by this theory is given by:

8µ

(κ− 1)

[
a11

(
KI

KIc

)2

+ 2a12

(
KIKII

K2
Ic

)
+ a22

(
KII

KIc

)2
]
= 1 (7.32)

7.1.4 Observations
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Figure 7.4: Angle of Crack Propagation Under Mixed Mode Loading

27 With reference to Fig. 7.4 and 7.5, we note the following

1. Algorithmically, the angle of crack propagation θ0 is first obtained, and then the criteria are assessed for local fracture

stability.

2. In applying σθmax , we need to define another material characteristic r0 where to evaluate σθ . Whereas this may raise some

fundamental questions with regard to the model, results are independent of the choice for r0.

3. Sθmin theory depends on ν

4. Sθmin & σθmax depend both on a field variable that is singular at the crack tip thus we must arbitrarily specify ro (which

cancels out).

5. It can be argued whether all materials must propagate in directions of maximum energy release rate.

6. There is a scale effect in determining the tensile strength ⇒ σθmax

7. Near the crack tip we have a near state of biaxial stress

8. For each model we can obtain a KIeq in terms of KI & KII and compare it with KIc

9. All models can be represented by a normalized fracture locus.
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Figure 7.5: Locus of Fracture Diagram Under Mixed Mode Loading

10. For all practical purposes, all three theories give identical results for small ratios of
KII
KI

and diverge slightly as this ratio

increases.

11. A crack will always extend in the direction which minimizes
KII
KI

. That is, a crack under mixed-mode loading will tend to

reorient itself so thatKII is minimized. Thus during its trajectory a crack will most often be in that portion of the normalized

KI
KIc

− KII
KIc

space where the three theories are in close agreement.

12. If the pair of SIF is inside the fracture loci, then that crack cannot propagate without sufficient increase in stress intensity

factors. If outside, then the crack is locally unstable and will continue to propagate in either of the following ways:

a) With an increase in the SIF (and the energy release rateG), thus resulting in a global instability, failure of the structure

(crack reaching a free surface) will occur.

b) With a decrease in the SIF (and the energy release rate G), due to a stress redistribution, the SIF pair will return to

within the locus.

7.2 Empirical Models for Rocks

28 Many researchers have proposed empirical relations for the mixed mode crack propagation of cracks.

29 Advani and Lee (1979) proposed the following(
KII

2KIc

)2

+

(
KI

KIc

)
= 1 (7.33)

30 Awaji and Sato (1978) proposed(
KI

KIc

)u

+

(
KII

KIIc

)u

= 1 (7.34)

where u ≈ 1.6 is a material constant

31 Many other empirical relations have been derived, specially for composite materials.

7.3 Extensions to Anisotropic Solids

32 The maximum circumferential tensile stress theory, originally developed for isotropic solids, has been extended to the

anisotropic case by Saouma et al. (1987).

33 The fracture toughness, as the elastic modulus, is uniquely defined for an isotropic material. However, for a homogeneous

transversely isotropic solid with elastic constantsE1, E2, G12, and µ12, two values are needed to characterize the brittle behavior

of the crack, K1
Ic and K2

Ic, as shown in Fig. 7.6 along the principal planes of elastic symmetry.
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Figure 7.6: Fracture Toughnesses for Homogeneous Anisotropic Solids

34 If the applied load and material properties are aligned symmetrically with reference to the crack, a pure mode I displacement

occurs in isotropic materials, whereas a parasitic crack sliding displacement occurs in anisotropic materials. This can be readily

seen from Eq. 3.128-c where a nonzero σxy may result from a pure mode I loading at θ = 0.

35 However, if the material is orthotropic and the crack is aligned with one of the principal planes of elastic-symmetry, then it

can be shown (Lekhnitskii, 1981) that the roots of Eq. 2.124,

si = αi + iβi (7.35)

fall into one of three categories:

1. Case I:

α1 = α2 = 0 (7.36)

β1 ̸= β2 (7.37)

2. Case II:

α1 = α2 = 0 (7.38)

β1 = β2 (7.39)

3. Case III:

α1 = −α2 = 0 (7.40)

β1 = β2 (7.41)

resulting in zero values of KII.

36 Finally, for a crack arbitrarily oriented with respect to direction 1,Kβ
Ic would be a function ofK1

Ic andK2
Ic. Recalling the stress

intensity factor definition from Eq. 3.49, it can be readily seen that the spatial variation of Kβ
Ic in terms of K1

Ic and K2
Ic will be

the same as the one for a tensor of order two, thus:

Kβ
Ic = K1

Ic cos
2 θ +K2

Ic sin
2 θ (7.42)
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37 This is equivalent to a scalar and vectorial characterization of the fracture toughness for isotropic and anisotropic solids,

respectively. It should be noted that a possible remedy to the need of performing two separate fracture toughness tests is to

conduct only one for the determination of K1
Ic and then postulate that the ratio of the fracture toughness in both directions is

equal to the ratio of the elastic modulii:

K2
Ic = K1

Ic
E1

E2
(7.43)

38 The maximum circumferential stress is expressed in terms of σθmax where:

σθ = σx sin
2 θ + σy cos

2 θ − 2σxy sin θ cos θ (7.44)

and σx, σy, σxy are the cartesian stresses at a point at which polar coordinates are r and θ with respect to the crack tip. This

theory assumes that crack growth will start from the crack tip in the direction along which the tangential stress σθ is maximum

and the shear stress is zero.

39 This model could be readily extended to anisotropic bodies by first combining equations 3.129-c, and 7.44. After some algebraic

manipulation this yields:

σθ =
KI√
2πr

Re [A (s1B − s2C)] +
KII√
2πr

Re [A (B − C)] (7.45)

where

A =
1

s1 − s2
(7.46)

B = (s2 sin θ + cos θ)
3
2 (7.47)

C = (s1 sin θ + cos θ)
3
2 (7.48)

40 For the isotropic case the angle of crack propagation θ0 is obtained by simply maximizing σθmax but a different approach should

be followed for the anisotropic case where the angular variation of the fracture toughness (and thus critical tensile strength) is not

constant. In this case one should maximize
σθ

σmax
θ

where σmax
θ is obtained by setting θ = 0 and equating KI to Kθ

Ic in equation

7.45:

σθ

σmax
θ

=
KIRe [A (s1B − s2C)] +KIIRe [A (B − C)]

K1
Ic cos

2 θ +K2
Ic sin

2 θ
= 1 (7.49)

41 Thus, algorithmically the angle of crack propagation θ0 is found by maximizing 7.49 or its normalized equivalent:

Max

Re [As1B − s2C] + KII

KIRe[A(B−C)]

cos2 θ +
K1

Ic

K2
Ic
sin2 θ

(7.50)

when θ0 is determined from Eq. 7.50, it is then substituted for θ in equation 7.49 along with the proper values for KI and KII. If

the left hand side of Eq. 7.49 is greater than 1, then the crack will propagate along the direction θ0.

42 Finally, note that an attempt to recover the isotropic case from this model would result in a singularity in evaluating A from

Eq. 7.46. This singularity occurs because for the isotropic case the roots of the characteristic equation 2-a are known to be all

identical and equal to i (Lekhnitskii, 1981). Appendix I of (Saouma et al., 1987) shows that by applying Hospital’s rule, Erdogan

and Sih’s original formulation (Erdogan and Sih, 1963) can be recovered from this extension.

43 In an attempt to evaluate and compare the above model for a wide range of E1/E2 a computer program was developed and a

graphical representation of a parametric study was generated.

44 In this study the following assumptions were made:

1. The crack is aligned with direction 1 assumed to correspond to one of the two major planes of elastic symmetry (corre-

sponding to an orthotropic case).

2. The crack tip is subjected to a mixed mode loading.

98



D
R
A
FT

7.4 Interface Cracks

45 Furthermore, to simplify the performance of a non-dimensionalized analysis, it was assumed:

K1
Ic

K2
Ic

=
E2

E1
(7.51)

46 Finally, in order to remove the dependency on µ12, and in light of the potential application of these models to fracture of

anisotropic rocks it was assumed:

G12 =
E1E2

E1 + E2 + 2µ12E2
(7.52)

47 This approximation of G12 (which reduces the number of independent elastic properties to three) was observed by Batugin

and Nirenburg (1972) in conjunction with their tabulation of elastic properties of 15 different anisotropic rocks.

48 In this parametric study, E1/E2 was varied from 0.25 to 4 and KII/KI from 0 to 10.

49 First the angles of crack propagations were determined. Those angles, Fig. 7.7, call for the following observations:

1. For E1 less than E2, the angle of crack propagation is greater than the one predicted for the isotropic case.

2. Noncolinear crack propagation can take place under pure mode I if E1/E2 is less than 0.6.

3. For E1 greater than E2, the angle of crack propagation is smaller than the one predicted for the isotropic case.

4. The angle of crack propagation predicted by the original isotropic theory is recovered by this generalization.

5. For predominantly mode II cases, and E1 smaller than E2, the angle of crack propagation surface is nearly flat, and it

approaches 85 degrees for the most extreme case.

6. For E1 greater than E2, and almost pure mode II cases (KII/KI = 10), the angle of crack propagation is about 20 degrees,

as opposed to 67 degrees for the isotropic case.

50 Then the normalized crack failure surface with respect to K1
Ic is plotted with respect to E1/E2, Fig. 7.8 and we note that:

1. The isotropic case is recovered for E1 = E2.

2. For E1 smaller than E2 anisotropy accelerates the crack extension.

3. For E1 greater than E2, anisotropy retards the crack extension.

7.4 Interface Cracks

51 Interface crack propagation is rapidly gaining wide attention. Such crack growth is exceedingly important for composite ma-

terials, and can be extended to concrete/rock crack interfaces
1

.

52 A crack once initiated within an interface can either be stable or propagate in an unstable manner. The unstable crack can

propagate along the interface or kink into one of the materials. It can also branch out, that is, it can propagate along the interface

and then kink. Whether a crack is forced to remain inside an interface or branch out, depends on the relative toughnesses of the

interface and the ones of the adjacent materials. The criteria for an unstable crack to propagate or kink is described in this section.

Also, if the crack has to kink, the angle of kink with respect to the interface will be considered.

53 The method presented is very similar to the one used for by the Maximum Energy Release rate. We determine the energy

release rateG0 if the crack were to propagate along the interface, the energy release rateG if the crack was to kink, and compare

those two values with G0c and Gc (material properties) respectively.

54 This section is introduced with the crack tip stresses at the bimaterial interface. As mentioned earlier, the stress intensity

factor for a bimaterial interface is complex, its physical dimensions are briefly explained. These dimensions are used to obtain a

relationship between the homogeneous and the bimaterial stress intensity factors. With these relations, an analytical expression

for the energy release rate of the crack kinked into one of the materials is then derived in terms of the energy release rate of the

crack advance in the interface.
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Figure 7.7: Angles of Crack Propagation in Anisotropic Solids
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Figure 7.8: Failure Surfaces for Cracked Anisotropic Solids
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Figure 7.9: Geometry and conventions of an interface crack, (Hutchinson and Suo, 1992)

7.4.1 Crack Tip Fields

55 Considering the bimaterial interface crack in Fig. 7.9 for traction-free plane problems the near-tip normal and shear stresses

σyy and τxy , may conveniently be expressed in complex form (Hutchinson and Suo, 1992)

σyy + iτxy =
(K1 + iK2)r

iε√
(2πr)

(7.53)

where i =
√
−1,K1 and K2 are components of the complex stress intensity factor K = K1 + iK2

2

, and ε is the oscillation

index given by

ε =
1

2π
ln[

1− β

1 + β
] (7.54)

where β is one of Dunders’ elastic mismatch parameters (Dunders, 1969), which for plane strain is given by

β =
µ1(1− 2ν2)− µ2(1− 2ν1)

2[µ1(1− ν2) + µ2(1− ν1)]
(7.55)

in which µ and ν are the shear modulus and Poisson’s ratio, respectively, and subscripts 1 and 2 refer to the materials above and

below the interface, respectively. Dunders defines an additional mismatch parameter α:

α =
Ē1 − Ē2

Ē1 + Ē2
(7.56)

where Ē is the plane strain Young’s modulus, Ē = E/(1−ν2).We note that β, α and ε vanish when the materials above and below

the interface are identical. When ε ̸= 0, Equation 7.53 shows that the stresses oscillate
3

heavily as the crack tip is approached

(r → 0). Furthermore, the relative proportion of interfacial normal and shear stresses varies slowly with distance from the crack

tip because of the factor riε. Thus K1 and K2 cannot be decoupled to represent the intensities of interfacial normal and shear

stresses as in homogeneous fracture.

56 The crack flank displacements, for plane strain are given by (Hutchinson and Suo, 1992; Carlsson and Prasad, 1993)

δy + iδx =
4√
2π

(1/Ē1 + 1/Ē2)(K1 + iK2)

(1 + 2iε) cosh(πε)

√
rriε (7.57)

where δy and δx are the opening and sliding displacements of two initially coincident points on the crack surfaces behind the

crack tip, as shown in Fig. 7.9. It may be noted from Eqn. 7.57 that crack face interpenetration is implied when ε ̸= 0, as ε is an

oscillatory term as shown in Eqn. 7.54. The zone of contact, however, is generally exceedingly small compared to the crack tip

plastic zone and may therefore be neglected (Hutchinson and Suo, 1992).

57 The energy release rate, G, for extension of the crack along the interface, for plane strain is given by (Carlsson and Prasad,

1993)

G =
(1/Ē1 + 1/Ē2)(K

2
1 +K2

2 )

2 cosh2(πε)
(7.58)

58 The complications associated with nonzero ε andβmay be circumvented by the approach to bimaterial interface crack problems

proposed by He and Hutchinson (1989). They have proposed to systematically take β = 0 in the analysis of fracture specimens

and subsequent application of experimental data in failure predictions. Usually ε is very small and the effect of nonzero β is of

secondary importance. This will be discussed later in more detail.

1

This section was written by Kishen Chandra.

2

Note that for interface cracks, it is customary to replace KI and KII by K1 and K2 .

3

Recall Eq. ?? riλj = cos(λj log(r)) + i sin(λj log(r)).
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7.4.2 Dimensions of Bimaterial Stress Intensity Factors

59 The tractions ahead of the crack tip, on the interface are given by Eqn. 7.53. Therefore K will necessarily have the dimensional

form

K = K1 + iK2 =
σ
√
L

Liε
(7.59)

where L is a length quantity such as crack length or ligament length, which would be discussed later.

60 Alternatively for a homogeneous material, the dimensions of the stress intensity factor are

K = KI + iKII = σ
√
L (7.60)

Thus it is clear that dimensionally, the homogeneous and bimaterial stress intensity factors differ by L−iε
.

61 Considering the kinked crack of length a as shown in Fig. 7.10, the singular stress field at its tip is the classical field with the

conventional stress intensity factors, KI and KII such that,

σy′y′ + iτx′y′ =
KI + iKII√

2πx′
(7.61)

ahead of the tip (x′ > 0, y′ = 0).
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Figure 7.10: Geometry of kinked Crack, (Hutchinson and Suo, 1992)

62 From dimensional considerations, for the equality betweenKI ,KII andK1,K2, a length quantity must be used to relate those

two sets of stress intensity factors (Hutchinson and Suo, 1992).

63 A relation between the intensity factors of the kinked crack in the homogeneous material and the ones at the interface, was

proposed by Hutchinson and Suo (1992), as
4

KI + iKII = c(ω, α, β)Kaiε + d(̄ω, α, β)K̄a−iε
(7.62)

where ()̄ denotes complex conjugation for convenience, and c and d are complex valued functions of ω, α, β. The coefficients c
and d values are tabulated in He and Hutchinson (1989). An approximations of these coefficients (He and Hutchinson, 1989), is

c =
1

2
(exp−iω/2 +exp−i3ω/2) (7.63)

d =
1

4
(exp−iω/2 − expi3ω/2) (7.64)

7.4.3 Interface Fracture Toughness

64 In plane strain, the energy release rate Go of the interface crack advancing in the interface is related to K as shown in Eqn.

7.58, and may be rewritten in the form (Malyshew and Salganik, 1965)

Go = [
(1− ν1)

µ1
+

(1− ν2)

µ2
]

KK̄

4 cosh2(πε)
(7.65)

4

Note the analogy between this expression and Eq. 7.13 for the SIF at the tip of a kinked crack as developed by Hussain et al. (1974) for the Maximum Energy Release

Rate criterion.
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where K̄ denotes the complex conjugate of K.

65 The energy release rate G of the kinked crack (a > 0) is given by,

G = [
(1− ν2)

2µ2
](K2

I +K2
II) (7.66)

66 Combining this equation with Eqn. 7.62 gives

G = [
(1− ν2)

2µ2
][(|c|2 + |d|2)KK̄ + 2Re(cdK2a2iε)] (7.67)

67 This expression can be reduced further by witting K as (He and Hutchinson, 1989),

K = K1 + iK2 = |K|eiεL−iε
(7.68)

where by 7.59, L is the in-plane length quantity characterizing the specific interface crack problem when a = 0. From Equations

7.65, 7.67 and 7.68 and using the real angular quantity γ as the measure of the loading combination,

G = q−2Go[|c|2 + |d|2 + 2Re(cd exp2iγ̄)] (7.69)

where

q = [
(1− β2)

(1 + α)
]1/2 (7.70)

γ̄ = γ + ε ln (a/L) (7.71)

γ = tan−1(K2/K1) (7.72)

68 When ε = 0, the stress intensity factors, KI and KII and G are independent of a. This is the case of similar moduli across the

interface (α = β = 0).

69 From Eqn. 7.54, ε is zero when β = 0 regardless the value of α. The oscillatory behavior of the interface crack fields and the

a-dependence ofG only appear when β ̸= 0. According to He and Hutchinson (He and Hutchinson, 1989), a sensible approach to

gaining insight into interfacial fracture behavior, while avoiding complications associated with the oscillatory singularity, would

be to focus on material combinations with β = 0.

70 The interface crack with a = 0, suffers contact between the crack faces within some small distance from the tip, when β ̸= 0,

therefore ε ̸= 0, as predicted by the elastic solutions of the crack fields (Comninou, 1977; Rice, 1988). Contact between crack faces

is less likely for the kinked crack (a > 0;ω > 0) loaded such that KI and KII are positive, since this will open up the crack

at the kink. Nevertheless, contact will inevitably occur if ε ̸= 0 when a is sufficiently small compared to L (He and Hutchinson,

1989).

a

L

G

G

G

G

L

U

*

Figure 7.11: Schematic variation of energy release rate with length of kinked segment of crack for β ̸= 0, (Hutchinson and Suo,

1992)

71 The dependence of G on a for a given kink angle is shown qualitatively in Fig. 7.11 as predicted by Eqn. 7.69 when ε ̸= 0. (He

and Hutchinson, 1989). When a/L becomes sufficiently small, G oscillates between a maximum GU and a minimum GL, which

are found to be (He and Hutchinson, 1989)

GU = q−2Go[|c|+ |d|]2 (7.73)

GL = q−2Go[|c| − |d|]2 (7.74)
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and which depend on K1 and K2 only through Go. For values of a/L outside the oscillatory range G approaches G⋆
, given by

Eqn. 7.69, with γ̄ = γ, i.e.,

G⋆ = q−2Go[|c|2 + |d|2 + 2Re(cd exp2iγ)] (7.75)

G⋆
coincides with G given by Eqn. 7.69, when ε = 0. Contact between the crack faces will invalidate the prediction for G from

Eqn. 7.69 when a/L is in the range where oscillatory behavior occurs.

72 From a physical standpoint, G⋆
should be relevant if there exists crack-like flaws emanating from the interface whose lengths

are greater than the zone of contact. That is, G⋆
should be relevant in testing for kinking if the fracture process zone on the

interface is large compared to the contact zone of the idealized elastic solution. If it is not, then more attention must be paid

to the a-dependence of G and to the consideration of the contact. In any case G⋆
should play a prominent role in necessary

conditions for a crack kinking out of an interface, because once nucleated, the kinked crack has an energy release rate which

rapidly approaches G⋆
as it lengthens (He and Hutchinson, 1989).

7.4.3.1 Interface Fracture Toughness when β = 0

73 When β = 0 (and thus ε = 0) Eqns. 7.53, 7.57 and 7.58, respectively become:

(σyy, τxy) =
(K1,K2)√

(2πr)
(7.76)

(δy, δx) =
4√
2π

[
1

Ē1
+

1

Ē2
]
√
r(K1,K2) (7.77)

G =
1

2
[
1

Ē1
+

1

Ē2
](K2

1 +K2
2 ) (7.78)

74 The interface stress intensity factorsK1 andK2 play precisely the same role as their counterparts in elastic fracture mechanics

for homogeneous, isotropic solids. The mode 1 component K1 is the amplitude of the singularity of the normal stresses ahead of

the tip and the associated normal separation of the crack flanks, while the mode 2 component, K2, governs the shear stress on

the interface and the relative shearing displacement of the flanks.

75 When β = 0, the measure of the relative amount of mode 2 to mode 1 at the crack tip is taken as (Hutchinson and Suo, 1992)

γ = tan−1(K2/K1) (7.79)

76 For the case of a finite crack in an infinite plane,

γ = tan−1(τ∞xy/σ
∞
yy) (7.80)

77 The criteria for initiation of crack propagation along the interface when the crack tip is loaded in mixed mode by γ is

G = Γ(γ) (7.81)

78 Where Γ(γ) is the toughness of the interface and can be thought of as an effective surface energy that depends on the mode

of loading.

7.4.3.2 Interface Fracture Toughness when β ̸= 0

79 When β ̸= 0, the decoupling of the normal and shear components of stress on the interface and associated displacements

behind the crack tip within the zone dominated by the singularity, does not occur. When β ̸= 0, the definitions of mode 1 and

mode 2 require some modification. In addition, the traction-free line crack solution for the displacements implies that the crack

faces interpenetrate at some point behind the tip. Both of these features have caused conceptual difficulties in the development

of a mechanics of interfaces.

80 As noted by Rice (1988), a generalized interpretation of the mode measure is the most important complication raised by the

oscillatory singularity, and the approach explained here is along the lines of one of his proposals (Hutchinson and Suo, 1992).

First, a definition of a measure of the combination of mode is made that generalizes Eqn. 7.79.

81 Let L be a reference length whose choice will be discussed later. Noting the stress distribution (7.53) on the interface from the

K-field, define γ as

γ = tan−1[
Im(KLiε)

Re(KLiε)
] (7.82)

105



D
R
A
FT

MIXED MODE CRACK PROPAGATION

where K = K1 + iK2 is the complex stress intensity factor.

82 For a choice of L within the zone of dominance of the K-field, Eqn. 7.82 is equivalent to

γ = tan−1[(
τxy
σyy

)r=L] (7.83)

83 Moreover, the definition reduces to Eqn. 7.79 when β = 0, since Liε = 1 when ε = 0. When ε ̸= 0, a mode 1 crack is one

with zero shear traction on the interface a distance L ahead of the tip, and a mode 2 crack has zero normal traction at that point.

The measure of the proportion of ”mode 2” to ”mode 1” in the vicinity of the crack tip requires the specification of some length

quantity since the ratio of the shear traction to normal traction varies (very slowly) with distance to the tip when β ̸= 0.

84 The choice of the reference lengthL is somewhat arbitrary, as explained by Hutchinson and Suo (1992). It is useful to distinguish

between a choice based on an in-plane length L of the specimen geometry, such as crack length, and a choice based on a material

length scale, such as the size of the fracture process zone or a plastic zone at fracture. The former is useful for discussing the

mixed mode character of a bimaterial crack solution, independent of material fracture behavior, while the latter is advantageous

in interpreting mixed mode fracture data.

7.4.4 Crack Kinking Analysis

x

y

1

2a

ω

G
t

Figure 7.12: Conventions for a Crack Kinking out of an Interface, (Hutchinson and Suo, 1992)

85 Fig. 7.12 shows a semi-infinite crack lying along the interface with its tip at the origin. Prior to kinking (a = 0), the parent

crack is loaded with a complex interface stress intensity factorK = K1+K2 with mixity γ defined by Eqn. 7.82 relative to some

reference length L. For definiteness, γ is taken to be positive with kinking down into material 2 as shown in Fig. 7.12. Negative

γ-loadings with upward kinking can be analyzed by exchanging the materials, i.e., switching the signs on α and β. Roughly

speaking, α > 0 implies that material 1 is stiffer than material 2 and vice versa.

7.4.4.1 Numerical Results from He and Hutchinson

86 In their paper (He and Hutchinson, 1989), the authors have carried out analysis of a crack kinking out of an interface with

the aim of providing the crack mechanics needed to assess whether an interface crack will tend to propagate in the interface or

whether it will advance by kinking out of the interface. The analysis provides the relationships amongKI andKII for the kinked

crack and K1 and K2 for the interface crack as dependent on the kink angle ω and the material moduli, as shown in Eqn. 7.62.

The energy release rate of the kinked crack G is also related to the energy release rate of the interface crack, Go, as shown in

Eqn. 7.69. A parametric study is conducted using these relations and the qualitative features which emerge are listed below.

• Bimaterial Problem with β = 0

1. The more compliant is the material into which the crack kinks, i.e. the larger is α, the larger is the energy release rate,

with all factors being equal. Conversely, if the lower material into which the crack kinks is relatively stiffer (α < 0),

then the energy release rate is reduced.

2. If the difference in the elastic moduli of the two materials are relatively large, the energy release rate for a crack

kinking into the stiff material can be less than the interface release rate Go, for all combinations of loading. This

suggests that under conditions when the compliant material is tough and the stiff material and the interface are each

relatively brittle with comparable toughnesses (as measured by a critical value of energy release rate), the crack will

tend to be trapped in the interface for all loading combinations.
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3. If the stiff material is even less tough than the interface, the crack may leave the interface, but not necessarily by

kinking. For example, when α = −0.75 (He and Hutchinson, 1989), the largest energy release rates occur when ω
is small approaching zero, suggesting that the crack may smoothly curve out of the interface. Such a path, however,

would not necessarily satisfy KII = 0.

4. From the plots (He and Hutchinson, 1989) showing the direction ω̂ corresponding to the maximum energy release rate

(i.e. where dG/dω = 0 or at ω = 0, whichever gives the larger G) as a function of the loading angle γ for various

values of α, it is seen that for positive α i.e. for the crack kinking into the more compliant material, ω̂ increases

smoothly as γ increases from 0 to 90 deg.

5. When γ = 0, meaning K2 = 0, the direction of maximum energy release rate is greater than zero for α > 0. This

shows that the crack kinks into more compliant material 2 with finite angle for γ = 0.

6. When α is negative, i.e. when material 2 is more stiffer than material 1, there exists a range of γ in the vicinity of

γ = 0 for which the maximum occurs at ω = 0

7. For sufficiently negative α, the maximum of G also occurs at ω = 0 where γ is in the vicinity of 90 deg.

8. For α, more negative than -0.67, the maximum occurs at ω = 0 for all γ.

9. The direction ω̄ corresponding to KII = 0 is sometimes suggested as an alternative to ω̂ as the kink direction. A

comparison between ω̄ and ω̂ is shown in He and Hutchinson (1989), for α = 0 and α = ±0.5. In the homogeneous

case when α = 0, the difference between ω̄ and ω̂ is less than 1 deg. for nearly all γ except near γ = π/2 where it

becomes about 2 deg.

10. The difference between the two directions is also very minor for α = ±0.5.

11. For more negative values of α than -0.5, the range of γ in which Gmax occurs at ω̂ = 0 becomes significant, while

KII = 0 at values of ω near the local maximum of G which occurs for ω between 45 deg. and 60 deg. depending on

γ. In this range of γ, ω̄ and ω̂ are significantly different.

• Bimaterial Problems with β ̸= 0

87 As discussed in connection with Eqn. 7.69, G is not independent of a when ε ̸= 0, but G approaches G⋆
for all but

very small a. Plots of G⋆/Go as a function of ω are found in (He and Hutchinson, 1989) for (α = 0.5, β = 0.25) and

(α = −0.5, β = −0.25). Although the β values in these examples are quite large, the curves are quite similar to thwe

curves obtained with the same values of α and with β = 0. Curves of ω̂ associated with the maximum value of G⋆
versus

γ are also shown in (He and Hutchinson, 1989), which indicate that the effect of β on ω̂ is relatively weak.

7.4.4.2 Numerical Results Using Merlin

87 Merlin is a three dimensional finite element program having the capabilities of performing fracture mechanics based analysis.

The Stern and Becker integral method has been implemented in it to determine the stress intensity factors for bimaterials. In

order to check the accuracy of the numerical results with those of the analytical ones, the following analysis is performed.

88 A square centre-cracked plate of dimensions 20 X 20 inches, consisting of two isotropic materials is analyzed. The plate is

subjected to tensile stresses in all directions. The crack, of length 2 inches, is on the interface between the two materials. The

geometry and the natural boundary conditions are shown in Fig. 7.13, and the finite element mesh is shown in Fig. 7.14. This

mesh was generated using the pre-processor developed for Merlin. Since the analytical results for this problem were available for

plane stress condition in (Lin and Mar, 1976), seven different cases with varying moduli ratios were considered in this analyses.

The material in the upper portion of the plate is identified as material 1 and the material in the lower portion is identified as

material 2. The elastic modulus E2 for material 2 was kept fixed at 1 psi and the poisson’s ratio of material 1 was fixed at 0.3. The

tensile stress in the y-direction, σyy in all the cases was 1 psi and in the x-direction, the tensile stress σxx for material 1 was fixed

at 1 psi. σxx for material 2 was varied for different cases as tabulated in Table 7.1. Symmetry of the plate about the centreline

perpendicular to the crack and the material interface is considered in the finite element model.

89 It is worth mentioning at this point that the modulus of elasticity of concrete is in the range 2 × 106 − 4 × 106psi and for

rock 5 × 105 − 10 × 106psi. Generally in the case of dams the ratio of the modulus of elasticity of concrete to that of rock is

somewhere around 3.

90 The stress intensity factors K1 and K2
5

was obtained in (Lin and Mar, 1976) using the expressions derived by Rice and Sih

5K1 and K2 as explained earlier are the real and imaginary parts of the complex stress intensity factor K = K1 +K2 , used for bimaterial interfaces as compared

to the conventional stress intensity factors KI and KII used in the case of homogeneous interface.
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Material # 1

Material # 2

σ

σ

σ

σ

xx1

xx2

yy

yy

10"

20"

1"

Notch

Figure 7.13: Geometry and Boundary Conditions of the Plate Analyzed

,

Figure 7.14: Finite Element Mesh of the Plate Analyzed

,
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Case E1/E2 ν2 σxx2 α β ε

1 1.000 0.30 1.00 0.00 0.000 0.0

2 3.000 0.30 0.53 0.50 0.143 -4.579 E-02

3 10.000 0.30 0.37 0.82 0.234 -7.581 E-02

4 22.244 0.35 0.38 0.91 0.208 -6.711 E-02

5 100.000 0.30 0.31 0.98 0.280 -9.159 E-02

6 123.600 0.35 0.36 0.99 0.227 -7.352 E-02

7 1000.000 0.30 0.30 0.98 0.285 -9.335 E-02

Table 7.1: Material Properties and Loads for Different Cases

Case Analytical Numerical % difference

K1 K2 K1 K2 K1 K2

1 1.773 0.00 1.841 0.15 4.01 —

2 1.770 0.13 1.872 0.16 5.76 20.77

3 1.765 0.21 1.872 0.22 5.76 0.0

4 1.750 0.22 1.869 0.23 6.80 0.0

5 1.760 0.27 1.875 0.26 6.82 0.0

6 1.747 0.24 1.871 0.24 6.86 0.0

7 1.761 0.26 1.873 0.26 6.25 0.0

Table 7.2: Analytical and Numerical Results

(1965), which are as follows:

K1 =
σ[cos(ε log 2a) + 2ε sin(ε log 2a)] + [τ [sin(ε log 2a)− 2ε cos(ε log 2a)]

coshπε

√
a (7.84)

K2 =
τ [cos(ε log 2a) + 2ε sin(ε log 2a)]− [σ[sin(ε log 2a)− 2ε cos(ε log 2a)]

coshπε

√
a (7.85)

91 To have a consistent definition ofK1 andK2 as defined in earlier chapters, the above expressions have to be multiplied by the

factor

√
π coshπε. Using the modified values ofK1 andK2, the fracture energyG is calculated using Eqn. 7.58. These analytical

results along with the numerical results obtained using Merlin is tabulated in Table 7.2. It is seen that the differences between the

analytical and numerical results are very small.

92 The results of the stress intensity factors obtained by the S-integral method and without the use of the bimaterial model, which

is used in the case of homogeneous interface is shown in Table 7.3. The stress intensity factors obtained in this case are the

conventional ones KI and KII . It is seen that the percentage difference between these values and the theoretical stress intensity

factorsK1 andK2 are quite high. This implies that the use of the conventional S-integral to obtain the bimaterial stress intensity

factors may lead to erroneous results.

93 Plots showing the variation of G/Go versus kink angle ω for the loading angle considered in the analyses are shown in Figs.

Case Analytical Numerical % difference

K1 K2 KI KII K1 K2

1 1.773 0.00 1.386 0.2408 22.00 —

2 1.770 0.13 1.525 0.0047 13.70 96

3 1.765 0.21 1.352 0.0158 23.40 93

4 1.750 0.22 1.312 0.0083 25.02 96

5 1.760 0.27 1.275 0.0072 27.60 97

6 1.747 0.24 1.281 0.0041 26.70 98

7 1.761 0.26 1.265 0.0057 28.10 98

Table 7.3: Numerical Results using S-integral without the bimaterial model
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7.15. These plots are obtained using Eqn. 7.69 along with the approximate expressions of c and d given by Eqns. 7.63 and 7.64. The

loading parameter γ in the case of the analytical solution is obtained from Eqn. 7.79 and in the case of the numerical solution γ is

obtained using the relation γ = tan−1(τ/σyy), where τ and σyy are the shear and normal stresses at the crack tip, respectively.
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Figure 7.15: Variation of G/Go with Kink Angle ω
,

7.4.5 Summary

94 The results for the kinked crack can be used to access whether an interface crack will propagate in the interface or whether it

will kink out of the interface.

Let

Goc = critical fracture energy of the interface,

Gic = critical fracture energy of material i,
Gmax = maximum energy release rate in material i

1. The condition for propagation in the interface is Go = Goc and that for propagating in any one of the two materials is

G = Gic.

2. Conditions for crack kinking and propagation:

•

(
Gmax < Gic

Go < Goc

)
no crack propagation.

•

(
Gmax ≥ Gic

Go < Goc

)
crack kinks in material i .

•

(
Gmax < Gic

Go ≥ Goc

)
crack propagates along the interface.

•

(
Gmax ≥ Gic

Go ≥ Goc

)
crack kinks and propagates i.e. the crack branches.

3. If Gic is sufficiently large when compared to Goc, the crack will never kink into material i.
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4. When Gic is comparable to Goc, there will still be a loading range, i.e. 0 ≤ γ ≤ γmax, such that the crack stays in the

interface, while for γ > γmax, the interface crack will kink into material i.

5. When the fractured interface has some roughness, Goc might depend on the loading parameter γ. Hence the level of Gic

required to prevent kinking out of the interface will depend on the interface toughness Goc at the loading angle γ applied.

6. When there is no dissimilarity in the elastic properties of the materials across the interface, the direction of kinking asso-

ciated with the maximum energy release rate and with KII = 0 are virtually the same.

7. When the crack has penetrated well into material i, a criterion based on KII = 0 is expected to hold.

8. Crack deflection analysis based on the crack kinking and maximum principal stress theories indicate that global mode I

loading generally favors interfacial crack propagation. For global mode II loading, crack deflection into the core is a likely

scenario because of favorable conditions and large crack driving force.

9. A choice of criterion for the initial kinking step will have to be guided by experiment.
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Chapter 8

PLASTIC ZONE SIZES

1 it was shown in chapter 3 that, under linear elastic fracture mechanics assumptions, the stress at the crack tip is theoretically

infinite. Clearly, all materials have a finite strength, thus there will always be a small plastified zone around the crack tip.

2 If this zone is small compared to the crack size, then our linear elastic assumptions are correct; if not, LEFM is not applicable

(thus it would be incorrect to use a K or G criterion) and a nonlinear model must be used. This “damaged” zone is referred to as

a plastic zone for metals, and a fracture process zone for cementitious materials and ceramics.

3 Thus there are two important issues associated with nonlinear fracture:

1. What is the size of the plastic or process zone?

2. What are the criteria for crack growth?

4 This chapter will answer the first question by focusing on metals
1

, whereas the next chapter will develop criterions for crack

growth.

5 The evaluation of the plastic zone for plastified materials can be determined through various levels of approximations:

1. Uniaxial stress criteria

a) first order approximation

b) second order approximation (Irwin)

c) Dugdale’s model

2. Multiaxial yield criteria

Each one of them will be separately reviewed.

8.1 Uniaxial Stress Criteria

6 First we shall examine criteria in which only the uniaxial stress state (σyy normal to thee crack axis) and we shall consider three

models of increasing complexities.

8.1.1 First-Order Approximation.

7 The simplest estimate of the size of a process zone is obtained by equating σy (Eq. 3.53-b)

σyy =
KI

(2πr)
1
2

cos
θ

2

[
1 + sin

θ

2
sin

3θ

2

]
(8.1)

to the yield stress σyld for θ = 0, Fig. 8.1

σyy =
KI√
2πr∗p

= σyld (8.2)

or

r∗p =
1

2π

K2
I

σ2
yld

=
a

2

(
σ

σyld

)2

(8.3)

1

Due to the intrinsically different behavior of concrete compared to metals, estimates of the fracture process zone will be separately discussed.
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σ 

σyld 

r*
p

Figure 8.1: First-Order Approximation of the Plastic Zone

8.1.2 Second-Order Approximation (Irwin)

8 In 1960, Irwin (Irwin, 1960) developed a second-order approximation for the plastic zone based on the stress redistribution

occurring at the crack tip. In the first model, we started with a stress distribution which satisfied equilibrium, and “cut down” all

stresses exceeding σyld. As a result equilibrium was no longer satisfied. In this model the force (area under the stress curve) which

was “eliminated” is simply redistributed to satisfy equilibrium requirements. Hence, with reference to Fig. 8.2, we have:

σyld
A

B

rp
* a

aeff
δ +rp

* 

rp

Crack tip blunted

Figure 8.2: Second-Order Approximation of the Plastic Zone

B = σyldδ (8.4)

A =

∫ r∗p

0

σdr − σyldr
∗
p

=

∫ r∗p

0

K√
2πr

dr − σyldr
∗
p

=

∫ r∗p

0

σ
√
πa√

2πr
dr − σyldr

∗
p

=

∫ r∗p

0

σ

√
a

2
r−

1
2 dr − σyldr

∗
p

= σ

√
a

2
2r

1
2 |r

∗
p

0 −σyldr
∗
p

= σ
√

2ar∗p − σyldr
∗
p (8.5)

9 Equating A to B we obtain:

σ
√

2ar∗p − σyldr
∗
p = σyldδ

σyld(δ + r∗p) = σ
√

2ar∗p

(δ + r∗p)
2 =

2aσ2

σ2
yld

r∗p (8.6)
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10 From Eq. 8.3, r∗p = a
2

(
σ

σ
yld

)2
, thus this simplifies into

δ + r∗p = 2r∗p ⇒ δ = r∗p (8.7)

rp = 2r∗p (8.8)

rp =
1

π

K2
I

σ2
yld

=

(
σ

σyld

)2

a (8.9)

11 Note that rp = 2r∗p and that we can still use r∗p but with aeff = a + r∗p ; thus we can consider an effective crack length of

a+ r∗p which would result in:

Keff = f(g)σ
√
π(a+ r∗p) = f(g)σ

√
π(a+

K2

2πσ2
yld

) (8.10)

12 For linear elastic fracture mechanics to be applicable, we must have:

LEFM ⇔ K ≈ Keff (8.11)

8.1.2.1 Example

13 Considering an infinite with central crack of size 2a = 16 mm, a far field applied stress σapp = 350 MPa, and the plate has a

yield stress σyld = 1, 400 MPa.

14 First we seek to determine the size of the plastic zone and the effective SIF.

Using the 1st order approximation:

r∗p =
σ2a

2σ2
yld

=
(350)2(.008)

2(1, 400)2
≈ .00025 m = .25 mm (8.12)

Since
rp
a

is very small, K
eff

≈ K
applied

K
eff

= σ
√
π(a+ r∗p) = 350

√
π(.008 + .00025) = 56.4MPa

√
m (8.13)

Kapp = σ
√
πa = 350

√
π(.008) = 55.5MPa

√
m (8.14)

15 We note that there is only 2 percent difference between those two solutions, hence LEFM is applicable.

16 If yield stress was decreased by heat treatment to 385 MPa, then

r∗p =
(350)2(.008)

2(385)2
= .0033m = 3.3mm. (8.15)

and

Keff = 350
√
π(.008 + .0033) = 66MPa

√
m (8.16)

and in this case LEFM may no longer be applicable.
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ρ ρ

Figure 8.3: Dugdale’s Model

8.1.3 Dugdale’s Model.

17 Dugdale (Dugdale, 1960) assumed that the actual physical crack of length 2a is replaced by a total effective crack of length 2c,
where c = a+ ρ, Fig. 8.3, such that:

1. A constant stress σyld is applied over ρ where a < x < c causing (a negative) Kρ.

2. c is selected in such a manner that

∑
K = 0 or Kremote = −Kρ.

18 The solution to this model is found by first considering a point load P applied at a distance x from the crack center, as in Fig.

8.4, where the stress intensity factors are given by:

KA = P√
πa

√
a+x
a−x

KB = P√
πa

√
a−x
a+x

(8.17)

x2

x1

P

a a

x

P

Figure 8.4: Point Load on a Crack

19 Assuming dP = σylddx, and replacing in the above equations, we obtain:

Kρ =
σyld√
πa

∫ c

a

{√
a+ x

a− x
+

√
a− x

a+ x

}
dx (8.18)

20 Integration of this equation results in

Kρ = 2σy

√
c

π
arccos

a

c
(8.19)
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21 On the other hand, the stress intensity caused by the remote far field stress is given by:

Kremote = σ
√
πc (8.20)

Equating Eq. 8.20 with Eq. 8.19 and solving, we obtain:

a

c
= cos

(
π

2

σ

σyld

)
(8.21)

22 From Eq. 8.21, we observe

1. As σ → σyld,
a
c
→ 0, or ρ→ ∞, Fig. 8.5

Figure 8.5: Effect of Plastic Zone Size on Dugdale’s Model

2. Using the Cosine Taylor’s expansion on Eq. 8.21, as
σ

σ
yld

→ 0, we can rewrite:

a

c
=

a

a+ ρ
= 1− 1

2!

(
πσ

2σyld

)2

+
1

4!

(
πσ

2σyld

)4

− 1

6!

(
πσ

2σyld

)6

(8.22)

Neglecting all but the first two terms and solving for ρ

ρ =
π2

8

(
σ

σyld

)2

a =
π

8

K2
I

σ2
yld

(8.23)

Eq. 8.23 should be compared with Eq. 8.9 (rp =
(

σ
σ

yld

)2
a) previously obtained.

23 Finally it should be mentioned that similar equations have been derived by Barenblatt (Barenblatt, 1962) on the basis of a linear

stress distribution, see Fig. 8.6.

x
2a

2c

y

ρ ρ

σyld

σyld

σyld

σyld

Figure 8.6: Barenblatt’s Model
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8.2 Multiaxial Yield Criteria

24 All the previous models have restricted themselves to θ = 0 and have used uniaxial yield criteria, but the size of the plastic

zone can be similarly derived from a multi-axial yield criterion.

25 The principal stresses at a point with respect to the crack tip are given by:

σ1,2 =
σx + σy

2
±
√(σx − σy

2

)2
+ τ2xy (8.24)

where the stresses were obtained in Eq. 3.53-a, 3.53-b, and 3.53-c

σ1 =
KI√
2πr

cos
θ

2

[
1 + sin

θ

2

]
(8.25)

σ2 =
KI√
2πr

cos
θ

2

[
1− sin

θ

2

]
(8.26)

σ3 = ν(σ1 + σ2) (8.27)

for plane strain, or

σ3 = 0 (8.28)

for plane stress.

26 With those stress expressions, any yield criteria could be used. Using the von Mises criteria, we would obtain:

σe =
1√
2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2] 1
2

(8.29)

and yielding would occur when σe reaches σyld. Substituting the principal stresses (with r = rp) into this equation and solving

for rp yields

• For plane strain:

rp(θ) =
1

4π

KI

σ2
yld

[
3

2
sin2 θ + (1− 2ν)2(1 + cos θ)

]
(8.30)

• For plane stress:

rp(θ) =
1

4π

KI

σ2
yld

[
1 +

3

2
sin2 θ + cos θ

]
(8.31)

27 For the Drucker-Prager model, and for different mixed mode ratios, the expected plastic (or more appropriately process) zones

are shown in Fig. 8.7.

28 In general, for the plastic zone sizes:

1. Different sizes would be obtained from alternative models (Tresca’s would be larger than von Mises’s).

2. The plastic zone for plane strain is much smaller than the one for plane stress (by a factor of (1− 2ν)2).

3. Similar shapes could be derived if both KI and KII expressions were used.

4. This is only a first-order approximation, as no stress redistribution has been accounted for.

8.3 Plane Strain vs. Plane Stress

29 Irrespective of a plate thickness, there is a gradual decrease in size of the plastic zone from the plate surface (plane stress) to

the interior (plane strain), Fig. 8.8.

30 The ratio of the plastic zone size to the plate thickness
rp
B

must be much smaller than unity for plane strain to prevail. It has

been experimentally shown that this ratio should be less than 0.025.

Plane Strain KIc ⇔ rp < .025B (8.32)
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Figure 8.7: Normalized Mode I Plastic Zone (von Myses)
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Figure 8.8: Plastic Zone Size Across Plate Thickness
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31 We also observe that since rp is proportional to

(
KI
σ

yld

)2
, the plate thickness should increase as either the SIF increase or the

yield stress decrease.

32 Furthermore, the different stress fields present at the tip of the crack under plane stress and plane strain will result in different

deformation patterns. This is best explained in terms of the orientation of the planes of maximum shear stress for both cases, Fig.

8.9.

Plane stress

Plane strain

x

x

y

y

z

z

σz σ

σ

σ

σ

σ

σ

τ 

τ 

τmax 

45o

45o

τmax 

Out of plane shear bands

In plane shear bands

Stress triaxiality induces geometric 
confinement

Energy release induces 
geometric confinement

σ(2)
σ(1)

σ(1)σ(2) σz

Figure 8.9: Plastic Zone Size in Comparison with Plate Thickness; Plane Stress and Plane Strain

Plane Stress: σz = 0, and the maximum shear stress τmax is equal to
σx
2

. Slip is on planes through the X axis and at 45
o

to

the plate surface in the 45
o

shear type of deformation typical of plane stress.

Plane Strain: In this case we have σy < σz < σx, and the maximum shear stress is equal to
σx−σy

2
which is not only much

smaller than
σx
2

but occurs on different planes. The slip is on planes through the Z axis and gives rise to the hinge type of

deformation typical of plane strain.

33 Finally, it should be noted, once again, that fracture toughness KIc can only be measured under plane strain conditions, Fig.

8.10

Kc

Plane Strain Plane Stress

Ry/t

transition

thickness

KIc

Plane StrainPlane Stress

T
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gh
ne

ss
 K

Ic

Figure 8.10: Plate Thickness Effect on Fracture Toughness
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Chapter 9

FATIGUE CRACK PROPAGATION

1 When a subcritical crack (a crack whose stress intensity factor is below the critical value) is subjected to either repeated or

fatigue load, or is subjected to a corrosive environment, crack propagation will occur.

2 As in many structures one has to assume the presence of minute flaws (as large as the smallest one which can be detected). The

application of repeated loading will cause crack growth. The loading is usually caused by vibrations.

3 Thus an important question that arises is “how long would it be before this subcritical crack grows to reach a critical size that

would trigger failure?” To predict the minimum fatigue life of metallic structures, and to establish safe inspection intervals, an

understanding of the rate of fatigue crack propagation is required.

Historically, fatigue life prediction was based on S −N curves, Fig. 9.1 (or Goodman’s Diagram) using a Strength of Material

S

n

Endurance Limit

Figure 9.1: S-N Curve and Endurance Limit

Approach which did NOT assume the presence of a crack.

9.1 Experimental Observation

4 If we start with a plate that has no crack and subject it to a series of repeated loading, Fig. 9.2 between σmin and σmax, we

t

σ 

σmin 

σmax 

σ 

Figure 9.2: Repeated Load on a Plate

would observe three distinct stages, Fig. 9.3

1. Stage 1 : Micro coalescence of voids and formation of microcracks. This stage is difficult to capture and is most appropriately

investigated by metallurgists or material scientists, and compared to stage II and III it is by far the longest.

2. Stage II : Now a micro crack of finite size was formed, its SIF’well belowKIc, (K << KIc), and crack growth occurs after

each cycle of loading.
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da/dN

I

II

III

a

Figure 9.3: Stages of Fatigue Crack Growth

3. Stage III : Crack has reached a size a such that a = ac, thus rapid unstable crack growth occurs.

5 Thus we shall primarily be concerned by stage II.

9.2 Fatigue Laws Under Constant Amplitude Loading

6 On the basis of the above it is evident that we shall be concerned with stage II only. Furthermore, fatigue crack growth can take

place under:

1. Constant amplitude loading (good for testing)

2. Variable amplitude loading (in practice)

7 Empirical mathematical relationships which require the knowledge of the stress intensity factors (SIF), have been established

to describe the crack growth rate. Models of increasing complexity have been proposed.

8 All of these relationships indicate that the number of cycles N required to extend a crack by a given length is proportional to

the effective stress intensity factor range ∆K raised to a power n (typically varying between 2 and 9).

9.2.1 Paris Model

9 The first fracture mechanics-based model for fatigue crack growth was presented by Paris (Paris and Erdogan, 1963) in the early

’60s. It is important to recognize that it is an empirical law based on experimental observations. Most other empirical fatigue laws

can be considered as direct extensions, or refinements of this one, given by

da

dN
= C (∆K)n (9.1)

which is a straight line on a log-log plot of
da

dN
vs ∆K , and

∆K = Kmax −Kmin = (σmax − σmin)f(g)
√
πa (9.2)

a is the crack length; N the number of load cycles; C the intercept of line along
da

dN
and is of the order of 10−6

and has units of

m/cycle/(MPa

√
m)

n
; and n is the slope of the line and ranges from 2 to 10. C and n are experimentally determined.

10 Equation 9.1 can be rewritten as :

∆N =
∆a

C [∆K(a)]n
(9.3)
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or

N =

∫
dN =

∫ af

ai

da

C [∆K(a)]n
(9.4)

11 Thus it is apparent that a small error in the SIF calculations would be magnified greatly as n ranges from 2 to 6. Because of the

sensitivity of N upon ∆K , it is essential to properly determine the numerical values of the stress intensity factors.

12 However, in most practical cases, the crack shape, boundary conditions, and load are in such a combination that an analytical

solution for the SIF does not exist and large approximation errors have to be accepted. Unfortunately, analytical expressions for

K are available for only few simple cases. Thus the stress analyst has to use handbook formulas for them (Tada et al., 1973). A

remedy to this problem is the usage of numerical methods, of which the finite element method has achieved greatest success.

9.2.2 Foreman’s Model

13 When compared with experimental data, it is evident that Paris law does not account for:

1. Increase in crack growth rate as Kmax approaches KIc

2. Slow increase in crack growth at Kmin ≈ Kth

thus it was modified by Foreman (Foreman et al., 1967), Fig. 9.4

da/dN

ΔKKIc

Forman

Paris

Figure 9.4: Forman’s Fatigue Model

da

dN
=

C(∆K)n

(1−R)Kc −∆K
(9.5)

9.2.3 Modified Walker’s Model

14 Walker’s (Walker, 1970) model is yet another variation of Paris Law which accounts for the stress ratio R = Kmin
Kmax

= σmin
σmax

da

dN
= C

[
∆K

(1−R)(1−m)

]n
(9.6)

9.2.4 Table Look-Up

15 Whereas most methods attempt to obtain numerical coefficients for empirical models which best approximate experimental

data, the table look-up method extracts directly from the experimental data base the appropriate coefficients. In a “round-robin”

contest on fatigue life predictions, this model was found to be most satisfactory (Miller and Gallagher, 1981).

16 This method is based on the availability of the information in the following table:
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da

dN
∆K

R =-1 R = .1 R = .3 R = .4

17 For a given
da

dN
and R, ∆K is directly read (or rather interpolated) for available data.

9.2.5 Effective Stress Intensity Factor Range

18 All the empirical fatigue laws are written in terms of ∆KI; however, in general a crack will be subjected to a mixed-mode

loading resulting in both ∆KI and ∆KII. Thus to properly use a fatigue law, an effective stress intensity factor is sought.

19 One approach, consists in determining an effective stress intensity factor ∆Keff in terms of ∆KI and ∆KII, and the angle of

crack growth θ0. In principle each of the above discussed mixed-mode theories could yield a separate expression for the effective

stress intensity factor.

20 For the case of maximum circumferential stress theory, an effective stress intensity factor is given by (Broek, 1986):

∆KIeff = ∆KI cos
3 θ0
2

− 3

2
∆KII cos

θ0
2

sin θ0 (9.7)

9.2.6 Examples

9.2.6.1 Example 1

An aircraft flight produces 10 gusts per flight (between take-off and landing). It has two flights per day. Each gust has aσmax = 200
MPa and σmin = 50 MPa. The aircraft is made up of aluminum which has R = 15 kJ/m

2 E = 70 GPa C = 5× 10−11
m/cycle,

and n = 3. The smallest detectable flaw is 4 mm. How long would it be before the crack will propagate to its critical length?

Assuming K = σ
√
πa and KIc =

√
ER, then ac =

K2
c

σ2
maxπ

= ER
σ2
maxπ

or

ac =
(70× 109)(15× 103)

(200× 106)2π
= 0.0084 m = 8.4 mm (9.8)

⇒ N =

∫ af

ai

da

C[∆K(a)]n
=

∫ af

ai

da

C (σmax − σmin)
n︸ ︷︷ ︸

(∆σ)n

((πa)
1
2 )n

=

∫ 8.4×10−3

4×10−3

da

(5× 10−11)︸ ︷︷ ︸
C

(200− 50)3︸ ︷︷ ︸
(∆σ)3

(πa)1.5︸ ︷︷ ︸
((πa).5)3

= 1064

∫ .0084

.004

a−1.5
da

= −2128a−.5 |.0084.004 = 2128[− 1√
.0084

+ 1√
.004

]

= 10, 428 cycles

(9.9)

thus the time t will be: t = (10,428) cycles × 1
10

flight

cycle
× 1

2

day

flight
× 1

30
month

day
≈ 17.38 month ≈ 1.5 years.

If a longer lifetime is desired, then we can:

1. Employ a different material with higher KIc, so as to increase the critical crack length ac at instability.

2. Reduce the maximum value of the stress σmax.

3. Reduce the stress range ∆σ.

4. Improve the inspection so as to reduce the assumed initial crack length amin.

9.2.6.2 Example 2

21 Repeat the previous problem except that more sophisticated (and expensive) NDT equipment is available with a resolution of

.1 mm thus ai = .1mm

t = 2128[− 1√
.0084

+ 1√
.0001

] = 184, 583 cycles

t = 1738
10,428

(189, 583) = 316 months ≈ 26 years!
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9.2.6.3 Example 3

Rolfe and Barsoum p.261-263.

9.3 Variable Amplitude Loading

9.3.1 No Load Interaction

22 Most Engineering structures are subjected to variable amplitude repeated loading, however, most experimental data is based

on constant amplitude load test. Thus, the following questions arise:

1. How do we put the two together?

2. Is there an interaction between high and low amplitude loading?

1. Root Mean Square Model (Barsoum)

da

dN
= C(∆Krms)

n
(9.10)

∆Krms =

√∑k
i=1 ∆K

2
i

n
(9.11)

where ∆Krms is the square root of the mean of the squares of the individual stress intensity factors cycles in a spectrum.

2. Accurate “block by block” numerical integration of the fatigue law

∆a = C(∆K)n∆N (9.12)

solve for a instead of N .

9.3.2 Load Interaction

9.3.2.1 Observation

23 Under aircraft flight simulation involving random load spectrum:

• High wind related gust load, NH

• Without high wind related gust load, NL

NH > NL, thus “Aircraft that logged some bad weather flight time could be expected to possess a longer service life than a plane

having a better flight weather history.”

24 Is this correct? Why? Under which condition overload is damaging!

9.3.2.2 Retardation Models

25 Baseline fatigue data are derived under constant amplitude loading conditions, but many structural components are subjected

to variable amplitude loading. If interaction effects of high and low loads did not exist in the sequence, it would be relatively

easy to establish a crack growth curve by means of a cycle-by-cycle integration. However crack growth under variable amplitude

cycling is largely complicated by interaction effects of high and low loads.

26 A high level load occurring in a sequence of low amplitude cycles significantly reduces the rate of crack growth during the

cycles applied subsequent to the overload. This phenomena is called Retardation, Fig. 9.5.

27 During loading, the material at the crack tip is plastically deformed and a tensile plastic zone is formed. Upon load release, the

surrounding material is elastically unloaded and a part of the plastic zone experiences compressive stresses.

28 The larger the load, the larger the zone of compressive stresses. If the load is repeated in a constant amplitude sense, there is

no observable direct effect of the residual stresses on the crack growth behavior; in essence, the process of growth is steady state.

29 Measurements have indicated, however, that the plastic deformations occurring at the crack tip remain as the crack propagates

so that the crack surfaces open and close at non-zero (positive) levels.
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a

N

A B

B

A

Figure 9.5: Retardation Effects on Fatigue Life

30 When the load history contains a mix of constant amplitude loads and discretely applied higher level loads, the patterns of

residual stress and plastic deformation are perturbed. As the crack propagates through this perturbed zone under the constant

amplitude loading cycles, it grows slower (the crack is retarded) than it would have if the perturbation had not occurred. After

the crack has propagated through the perturbed zone, the crack growth rate returns to its typical steady-state level, Fig. 9.6.

A
B

σy

σy

r r

σyield

Figure 9.6: Cause of Retardation in Fatigue Crack Growth

9.3.2.2.1 Wheeler’s Model

31 Wheeler (Wheeler, 1972) defined a crack-growth retardation factor Cp:

da

dN retarded
= Cp

(
da

dN

)
linear

(9.13)

Cp =

(
rpi

aoL + rpoL − ai

)m

(9.14)

in which rpi is the current plastic zone size in the ith cycle under consideration, ai is the current crack size, rpoL is the plastic

size generated by a previous higher load excursion, aoL is the crack size at which the higher load excursion occurred, and m is

an empirical constant, Fig. 9.7.

32 Thus there is retardation as long as the current plastic zone is contained within the previously generated one.

9.3.2.2.2 Generalized Willenborg’s Model

33 In the generalized Willenborg model (Willenborg et al., 1971), the stress intensity factor KI is replaced by an effective one:

Keff
I = KI −KR (9.15)

in which KR is equal to:

KR = ϕKw
R (9.16)

ϕ =
1− Kmax,th

Kmax,i

soL − 1
(9.17)
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rp0

λ ai

rpi

λ ai

rpi

Current “plastic 
enclave”

“Plastic enclave” 
due to overload

Current “plastic 
enclave”

“Plastic enclave” 
due to overload

Figure 9.7: Yield Zone Due to Overload

KR = Kw
R = KoL

max

√
1− ai − aoL

rpoL
−Kmax,i (9.18)

and ai is the current crack size, aoL is the crack size at the occurrence of the overload, rpoL is the yield zone produced by the

overload, KoL
max is the maximum stress intensity of the overload, and Kmax,i is the maximum stress intensity for the current

cycle.

34 This equation shows that retardation will occur until the crack has generated a plastic zone size that reaches the boundary of

the overload yield zone. At that time, ai − aoL = rpoL and the reduction becomes zero.

35 Equation 9.15 indicates that the complete stress-intensity factor cycle, and therefore its maximum and minimum levels (Kmax,i

and Kmin,i), are reduced by the same amount (KR). Thus, the retardation effect is sensed by the change in the effective stress

ratio calculated from:

Reff =
Keff

min,i

Keff
max,i

=
Kmin,i −KR

Kmax,i −KR
(9.19)

because the range in stress intensity factor is unchanged by the uniform reduction.

36 Thus, for the ith load cycle, the crack growth increment ∆ai is:

∆ai =
da

dN
= f(∆K,Reff) (9.20)

37 In this model there are two empirical constants: Kmax,th, which is the threshold stress intensity factor level associated with

zero fatigue crack growth rate, and SoL
, which is the overload (shut-off) ratio required to cause crack arrest for the given material.
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Chapter 10

CRACK TIP OPENING DISPLACEMENTS

1 Within the assumptions and limitations of LEFM we have two valid (and equivalent) criteria for crack propagation: 1) K vs

KIc which is a local criteria based on the strength of the stress singularity at the tip of the crack; and 2) G vs GIc (or R) which

is a global criteria based on the amount of energy released (or consumed) during a unit surface crack’s propagations.

2 In many cases it is found that LEFM based criteria is either: too conservative and expensive as it does not account for plastifi-

cation at the crack tip, and/or invalid based on calculations of r∗p where LEFM assumptions are checked.

3 Thus, in those cases where LEFM is not applicable, an alternative criteria for crack growth in Elasto Plastic Fracture Mechanics

(EPFM) is sought.

4 But first let us note the various stages of ductile fracture:

1. Blunting of an initially sharp crack. Under LEFM assumptions, the crack tip opening displacement (CTOD) is zero, however

in elasto-plastic material due to blunting it is different from zero, Fig. 10.1.

CTOD

Figure 10.1: Crack Tip Opening Displacement, (Anderson, 1995)

2. Crack initiation

3. Slow (stable) crack growth

4. Unstable crack growth

5 Again two approaches are currently in use, Table 10.1

1. a local criterion based on the crack tip opening displacement (CTOD).

2. a global criterion based on the quasi-strain energy release rate (J integral), JIC.

6 Historically the CTOD was first proposed as a valid criteria for crack propagation on the basis of Cotterell and Wells work in

the early 60’s at the British Welding Institute. This has formed the basis of current “R-6” specifications for ductile failure in the

U.K.

7 Under LEFM the crack tip opening displacement is clearly zero. However, when the material is allowed to yield, then the crack

tip will blunt resulting in a non-zero crack tip opening displacement (CTOD).
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Local Vector Global Scalar

LEFM K G
EPFM CTOD J

Table 10.1: Comparison of Various Models in LEFM and EPFM

8 References (Cottrell, 1963) and (Wells, 1963) have introduced the concept of the crack tip opening displacement to character-

ize elasto-plastic fracture. This criterion is still the one primarily used in the United Kingdom, whereas the J integral is more

commonly used in the United States.

9 There are two approaches to determine the CTOD:

1. First-order approximation based on a fictitious crack.

2. Second-order approximation based on Dugdale’s model.

10.1 Derivation of CTOD

10.1.1 Irwin’s Solution

10 The vertical displacement of a point next to the crack tip due to mode I loading is given by Eq. 3.53-f, Fig. 10.2

Plastic Zone

v

ry

Figure 10.2: Estimate of the Crack Tip Opening Displacement, (Anderson, 1995)

v =
KI

2µ

[ r
2π

] 1
2
sin

θ

2

[
κ+ 1− 2 cos2

θ

2

]
(10.1)

11 If we substitute θ = ±π we obtain the upper and lower displacements of the crack face, and due to symmetry their sum

corresponds to the crack opening displacement. Hence the crack opening is given by

COD = 2v =
κ+ 1

µ
KI

√
r

2π
(10.2)

12 If we substitute the crack tip opening displacement a distance r∗p away from the crack tip using Irwin’s plastic zone correction

from Eq. 8.9

r∗p =
1

2π

K2
I

σ2
yld

(10.3)

into Eq. 10.2 and using κ = 3−ν
1+ν

for plane stress, and recall that µ = E/2(1 + ν), we obtain

CTOD =
4

π

K2
I

Eσyld

(10.4)
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10.2 G-CTOD Relations

10.1.2 Dugdale’s Solution

13 Using Dugdale’s solution, Kanninen (Kanninen, 1984) has shown that the crack opening along the crack is given by
1

:

v(x) =
2

π

aσyld

E

{
log

∣∣∣∣√c2 − a2 +
√
c2 − x2√

c2 − a2 −
√
c2 − x2

∣∣∣∣+ x

a
log

∣∣∣∣x√c2 − a2 + a
√
c2 − x2

x
√
c2 − a2 − a

√
c2 − x2

∣∣∣∣} (10.5)

for 0 ≤ x ≤ c. For x = a this reduces to

v(a) =
4

π

aσyld

E
log

c

a
(10.6)

14 Combining this equation with Dugdale’s solution for c from Eq. 8.21,

a

c
= cos

π

2

σ

σyld

(10.7)

we would then obtain

CTOD = 2v =
8

π

aσyld

E
log

[
sec

π

2

σ

σyld

]
(10.8)

15 using the series expansion of log sec:

CTOD =
8

π

aσyld

E

[
1

2

(
π

2

σ

σyld

)2

+
1

12

(
π

2

σ

σyld

)4

+ · · ·

]
(10.9)

or

CTOD =
K2

Eσyld

[
1 +

π2

24

σ2

σ2
yld

+ . . .

]
(10.10)

note that for small
σ

σ
yld

, the CTOD can be approximated by CTOD = K2

Eσ
yld

.

10.2 G-CTOD Relations

16 Recalling also that the energy release rate G is given by G = K2

E′ , we obtain the following approximate equation

CTOD =
G

σyld

(10.11)

and its counterpart

CTODcr =
R

σyld

(10.12)

1

Derivation of this equation can be found on p. 203 of (Anderson, 1995)
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Chapter 11

J INTEGRAL

11.1 Genesis

1 Eshelby (Eshelby, 1974) has defined a number of contour integrals that are path independent by virtue of the theorem of energy

conservation. The two-dimensional form of one of these integrals can be written as:

J =

∮
Γ

(
wdy − t

∂u

∂x
dΓ

)
= 0 (11.1)

with

w =

∫ ε

0

σijdεij (11.2)

where w is the strain energy density; Γ is a closed contour followed counter-clockwise, as shown in Fig. 11.1; t is the traction

vector on a plane defined by the outward drawn normal n and t = σn; u the displacement vector, and dΓ is the element of the

arc along the path Γ.

 Ω 

Γ 

x

y

u

tdΓ 

Figure 11.1: J Integral Definition Around a Crack

2 Whereas Eshelby had defined a number of similar path independent contour integrals, he had not assigned them with a particular

physical meaning.

11.2 Proof of Path Independence

3 Before we establish the connection between Eshelby’s expression for J , and the energy release rate J , we need to show that

the former is indeed equal to zero for a closed path.

J =

∮
Γ

(
wdy − ti

∂ui

∂x
dΓ

)
(11.3)

and assuming Γ to be defined counterclockwise, then dx = −nydΓ, and dy = nxdΓ and ti = njσij where nx, ny and nj are

direction cosines. Substituting

J =

∮
Γ

(
wnx − njσij

∂ui

∂x

)
dΓ (11.4)
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4 Invoking Green’s theorem∮
Γ

vinidΓ =

∫
Ω

vi,idΩ (11.5)

we obtain

J =

∫
Ω

[
∂w

∂x
− ∂

∂xj

(
σij

∂ui

∂x

)]
dxdy (11.6)

5 Applying the chain rule, the first term in the square bracket becomes

∂w

∂x
=

∂w

∂εij

∂εij
∂x

= σij
∂εij
∂x

(11.7)

where the strain is given by Eq. ??

εij =
1

2
(ui,j + uj,i) (11.8)

6 Substituting for the first term

∂w

∂x
=

1

2
σij

[
∂

∂x

(
∂ui

∂xj

)
+

∂

∂x

(
∂uj

∂xi

)]
(11.9-a)

= σij
∂

∂xj

(
∂ui

∂x

)
(11.9-b)

7 On the other hand, we have for the second term

∂

∂xj

(
σij

∂ui

∂x

)
= σij

∂

∂xj

(
∂ui

∂x

)
+
∂σij

∂xj︸ ︷︷ ︸
0

∂ui

∂x
(11.10-a)

8 Hence,

∂w

∂x
= σij

∂

∂xj

(
∂ui

∂x

)
(11.11)

which is identical to the second term of Eq. 11.6.

9 Thus the integrand of Eq. 11.3 vanishes and J = 0 for any closed contour.

10 Having shown that indeed J = 0, we will now exploit this to proove that around a crack, J is non-zero and is independent of

the path.

11 With reference to Fig. 11.2 if we consider the closed path Γ = Γ1 + Γ2 + Γ3 + Γ4 in which Γ1 and Γ3 are arbitrarily chosen

contours. Obviously J = 0 over Γ in order to satisfy compatibility conditions, provided that the stresses and displacement

gradients are continuous. Along paths Γ2 and Γ4, the traction vector ti = 0 and also dy = 0. Consequently, the contributions

to J from Γ2 and Γ4 vanish. Taking into account the difference sense of integration along paths Γ1 and Γ3 we arrive at the

conclusion that the values of J integrated over paths Γ1 and Γ3 are identical. Because these two paths were arbitrarily chosen,

the path independence of J is assured.

11.3 Nonlinear Elastic Energy Release Rate

12 Let us now establish the connection between the two previous interpretations of J , the one mathematically defined by Eshelby,

and the one associated with the energy release rate (yet to be proven). We shall prove that when J is applied along a contour

around a crack tip, it represents the change in potential energy for a virtual crack extension da. Two slightly different derivations

are presented.
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Γ1 

x

y

Γ3 Γ2 

Γ4 

Figure 11.2: Closed Contour for Proof of J Path Independence

11.3.1 Virtual Line Crack Extension

13 Considering a two-dimensional crack surrounded by a line Γ which encompasses an area Ω. Under quasi-static conditions, and

in the absence of body forces, the potential energy is given by

Π =

∫
Ω

wdΩ︸ ︷︷ ︸
U

−
∮
Γ

tiuidΓ︸ ︷︷ ︸
W

(11.12)

14 For a virtual crack extension, the change in potential energy is

dΠ

da
=

∫
Ω

dw

da
dΩ−

∮
Γ

[
ti

dui

da
+ ui

dti
da

]
dΓ (11.13-a)

=

∫
Ω

dw

da
dΩ−

∮
Γu︸︷︷︸
0

[
ti

dui

da
+ ui

dti
da

]
dΓ−

∮
Γt

ti dui

da
+ ui

dti
da︸ ︷︷ ︸
0

 dΓ (11.13-b)

15 We have decomposed the contour path into two parts, the first one with prescribed displacement (Γu) and a second one with

prescribed traction (Γt). Since Γu is zero along the path, we maintain a closed contour integral along Γt.

16 Furthermore, the second term inside the square bracket will be zero along Γt because the traction is constant during crack

growth.

17 For a crack extension, the coordinate axis also moves, Fig. 11.3. Thus we can write

d

da
=

∂

∂a
+

∂

∂x

∂x

∂a
=

∂

∂a
− ∂

∂x
(11.14)

for a crack extension along a (
∂x
∂a

= −1) with respect to the new coordinate system.

18 Substituting into Eq. 11.13-b

dΠ

da
=

∫
Ω

[
∂w

∂a
− ∂w

∂x

]
dΩ−

∮
Γt

ti

(
∂ui

∂a
− ∂ui

∂x

)
dΓ (11.15)

19 We can also rewrite:

∂w

∂a
=

∂w

∂εij

∂εij
∂a︸ ︷︷ ︸

Eq. 11.7

= σij
∂

∂xj

(
∂ui

∂a

)
︸ ︷︷ ︸

Eq. 11.9-b

(11.16)
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Figure 11.3: Virtual Crack Extension Definition of J

20 But from the divergence theorem∮
Γt

ti
∂ui

∂a
dΓ =

∫
Ω

σij
∂

∂xj

(
∂ui

∂a

)
dΩ (11.17-a)

=

∫
Ω

∂w

∂a
(11.17-b)

Hence, from this Equation and Eq. 11.16, the first terms in each of the two integrals in Eq. 11.15 cancel out, and we are left with

dΠ

da
=

∮
Γt

ti
∂ui

∂x
dΓ−

∫
Ω

∂w

∂x
dΩ (11.18)

21 We now apply the divergence theorem, multiply both sides by −1 and recalling that nxdΓ = dy

−dΠ

da
=

∮
Γt

(
wnx − ti

∂ui
∂x

)
dΓ

=
∮
Γt

(
wdy − ti

∂ui
∂x

dΓ
) (11.19)

which is the same as Eq. 11.1. Henceforth, the J integral is equal to the energy release rate for linear and nonlinear elastic material

under quasi-static conditions.

11.3.2 †Virtual Volume Expansion

22 Following the brief preamble, let us thoroughly derive the expression for the J integral. We will derive an expression for the

energy released during a unit surface crack extension based on the following assumptions:

1. Homogeneous body

2. Linear or non-linear elastic solid

3. No inertia, or body forces; no initial stresses

4. No thermal loading

5. 2-D stress and deformation field

6. Plane stress or plane strain

7. Mode I loading

8. Stress free crack
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t

t  , u

v

σ  , ε

Γ

ΓΔ ΔΓ

ij ij

u

t

i i
* *

o o

o

t

Figure 11.4: Arbitrary Solid with Internal Inclusion

23 Considering an arbitrary solid with both traction and displacement boundary conditions and an internal inclusion, Fig. 11.4

Γ = Γt + Γu (11.20)

1. We define the initial boundary conditions as such

Surface initial boundary conditions:

a) Displacements u0
i on Γu

b) Tractions t0i on Γt;

Internal stress and strain: σ0
ij and ε0ij

2. Due to ti and ui, the hole will grow and will have a new boundary, ∆Γ and volume ∆Ω.

3. However to prevent growth we will apply t∗i = σ0
ijnj on ∆Γ in order to maintain initial εij0 and σ0

ij (Recall Irwin’s

derivation of G).

4. Holding the loading on Γu and Γt constant, we reduce t∗i on ∆Γ to zero. Thus we go from{
t∗i ̸= 0
u∗
i = 0

to

{
t∗i = 0
u∗
i ̸= 0

(11.21)

This will result in a new internal state{
σ0
ij +∆σij

ε0ij +∆εij
(11.22)

5. The total reduction in potential energy during this process was

−∆Π =

∫
∆Ω

w
(
ε0
)

dΩ︸ ︷︷ ︸
U

−
∫

∆Γ

t∗i du∗
i dΓ︸ ︷︷ ︸

W

(11.23)

=

∫
∆Ω

w
(
ε0
)

dΩ−
∫ t∗i =0;u∗

i =ui+∆ui

t∗i =t0i ;u
∗
i =u0

i

t∗i du∗
i dΓ (11.24)

=
1

2

∫
∆Ω

σ0
ijε

0
ijdΩ− 1

2

∫
∆Γ

t0i du∗
i dΓ (11.25)

for the case of linear elasticity
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6. For a sharp crack and linear elastic systems during crack extension ∆Ω = 0 and during crack extension and t∗i = t0i , thus

−∆Π =

∫
∆Ω

σ0
ijε

0
ijdΩ︸ ︷︷ ︸
0

−1

2

∫
∆Γ

t0i∆uidΓ︸ ︷︷ ︸
Energy Release Rate G

(11.26)

7. For linear elastic systems, we can write

−dΠ

dA
= − d

dA

(∫
dΩ

wdΩ−
∫

dΓ

t∗du∗
dΓ

)
(11.27)

For unit thickness dΩ = dxdy and dA = dx

dΠ

dA
=

∫
dΓ

wdy −
∫

dΓ

t
∂u

∂x
dΓ (11.28)

8. Let us now define

J =

∮
Γ

(
wdy − t

∂u

∂x
dΓ

)
(11.29)

It is identical to the previous expression but we do not restrict ourselves to go around ∆Ω, but around any closed path. This

is indeed Eshelby’s integral.

9. We can decompose Γ = Γ1 + Γ2 where Γ1 is any external contour away from the crack tip and Γ2 to be identified with

dΓ (increase in volume).

J = −∂Π
∂a

=

∮
r

(
wdy −T

∂u

∂x
dΓ

)
(11.30)

J = −∂Π
∂a

(11.31)

where Π is the potential energy. So for a linear elastic material − ∂Π
∂a

= G, which implies

J = G (11.32)

24 Allowing Γ1 in Fig. 11.2 to shrink to an arbitrarily small contour Γc surrounding the crack tip, then the second term of Eq. 11.1

vanishes and

J =

∫
Γc

wdy (11.33)

so that J is an averaged measure of the strain on the crack tip.

25 An arbitrarily small curve Γ may then be chosen surrounding the tip, so the integral may be made to depend only on the crack

tip singularity in the deformation field. The utility of the method rests in the fact that alternate choices of integration paths often

permit a direct evaluation of J .

26 In linear elastic analysis, and under pure mode I, Rice’s J can be used for the computation of stress intensity factor KI , as Eq.

11.1 yields

KI =
√
EJ1 (plane stress) (11.34)

=
√
EJ1/(1− ν2) (plane strain) (11.35)
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Elastic-Plastic

Nonlinear Elastic

ε

σ

Figure 11.5: Elastic-Plastic versus Nonlinear Elastic Materials

11.4 Nonlinear Energy Release Rate

27 Whereas LEFM is restricted to linear elastic materials, most metals have a nonlinear stress-strain curve. Fig. 11.5 illustrates the

uniaxial stress-strain behavior of elastic-plastic and nonlinear elastic materials. Whereas the loading behavior of both materials is

identical, they differ when they are unloaded. Thus, as long as there is no unloading, we can assume a nonlinear elastic behavior,

and the deformation theory of plasticity, which relates the total strains to stresses, is applicable.

28 For nonlinear elastic solids, we have already shown that J is the energy release rate in nonlinear elastic materials:

J = −dΠ

da
(11.36)

for a unit thickness crack extension.

29 Following a similar approach to the one of sect. 6.1.2, we consider the load displacement curves curve of a notched specimen

made of nonlinear elastic material for two different conditions, Fig. 11.6 during crack extension from a to a+ da:
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Δ

Figure 11.6: Nonlinear Energy Release Rate, (Anderson, 1995)

Load control we have d∆ = 0 and

Π = U −W = U − P∆ = −U∗
(11.37)
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where

U∗ def
=

∫ P

0

∆dP (11.38)

is the complimentary strain energy. Thus for constant load

JP =

(
dU∗

da

)
P

(11.39)

Constant Displacement, dP = 0, and

J∆ = −
(

dU

da

)
∆

(11.40)

From Fig. 11.6, the difference between JP and J∆ is
1
2

dPd∆ which is vanishingly small compared to dU .

30 Therefore J for load control is equal to J for displacement control and for linear elastic materials J = G = K2

E′ .

11.5 J Testing

31 For linear elastic materials, the evaluation of J is straightforward since it is equal to G, which in turn is directly related to the

stress intensity factor K . Hence, J could be obtained from a single test.

32 For nonlinear material, the principle of superposition does not apply, and hence we can not have a simple relation between J ,

the load, and the crack length. Whereas we could exploit the contour line integral definition of J to determine it from a single

test by attaching an array of strain gages, this is ususally impractical. Hence, we resort to the energy definition of J .

33 This is accomplished by testing a number of identical specimens, but with slightly different crack lengths, Fig. 11.7. The area

a

4
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4
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Δ
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Δ
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Δ

4
Δ

3
Δ

2
Δ

1
a2 a3

a
4Δ

P

Δ

dU/da

U

a

Δ

J

a

P Δ

U

Figure 11.7: Experimental Derivation of J

under each P −∆ curve is U , the energy absorbed by the specimen. We then plot U in terms of a, at various fixed displacements.

Since J = − 1
B

∂U
∂A

∣∣
∆

, thus, J could be determined from the slope of the tangent to the curves.

11.6 Crack Growth Resistance Curves

34 Just as the energy based criteria for crack propagation in LEFM was simply stated as G > R, a similar one applies to the J
integral. However, many materials with high toughness do not necesarily fail catastrophically at a particular value of J . Instead,

these materials display a rising R curve. Hence, in those cases, an LEFM would grossly overestimate the material resistance to

crack growth.

35 Rising R curve is associated with with growth and coalescence of microvoids.

36 The rising R curve is illustrated in Fig. 11.8 where following blunting, crack initiation and propagation occurs. An arbitrary
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J
R

Crack Blunting

Initiation

Crack Extension

Figure 11.8: J Resistance Curve for Ductile Material, (Anderson, 1995)

definition of a critical J , JIc can be specified at the onset of initiation.

37 We define, a tearing modulus as

TR =
E

σ2
yld

dJR
da

(11.41)

and the applied tearing modulus as

Tapp =
E

σ2
yld

dJ

da
(11.42)

38 Hence, crack growth would occur if

J = JR
Tapp ≤ TR Stable crack growth

Tapp > TR Unstable crack growth

(11.43)

11.7 † Load Control versus Displacement Control

39 Crack propagation can occur under either load or displacement control. Whereas in both cases J (and G) is the same, the rate

of change of J depends on the loading condition.

40 Unstable crack propagation will occur if the rate of change of J exceeds the rate of change of R.

41 The crack stability can be discussed within the context of the test stiffness (or its inverse the complinace). The total displacement

is given by

∆T = ∆+ CmP (11.44)

where Cm is the compliance of the system.

42 Differentiating this equation yields

d∆t =

(
∂∆

∂a

)
P

da+

(
∂∆

∂P

)
a

dP + CmdP = 0 (11.45)

43 Similarly, we can take a similar derivative of J(a, P )

dJ =

(
∂J

∂a

)
P

da+

(
∂J

∂P

)
a

dP (11.46)

dividing both sides by da, and keeping ∆T constant(
dJ

da

)
∆T

=

(
∂J

∂a

)
P

+

(
∂J

∂P

)
a

(
dP

da

)
∆T

(11.47)
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44 Substituting

(
∂P
∂a

)
from Eq. 11.45 yields(

dJ

da

)
∆T

=

(
∂J

∂a

)
P

−
(
∂J

∂P

)
a

(
dP

da

)
P

[
Cm +

(
∂∆

∂P

)
a

]−1

(11.48)

45 For load control, Cm = ∞, and thus the second term vanishes, and
dJ

da
is always positive and may thus lead to unstability.

46 Alternatively, for displacement control,Cm = 0 corresponds to an infinitely stiff system, and
dJ

da
is smaller than in the previous

case, Fig. 11.9.

Figure 11.9: J , JR versus Crack Length, (Anderson, 1995)

11.8 Plastic Crack Tip Fields

47 Whereas under LEFM assumptions, we had a
1√
r

stress and strain singularity, we now seek to determine the corresponding

ones, x and y respectively, for EPFM.

48 Starting with

J =

∮
Γ

(
wdy − t

∂u

∂x
dΓ

)
(11.49)

49 Taking the contour around a circle of radius r, Fig. 11.10 we substitute dΓ = rdθ; y = r sin θ; and dy = r cos θdθ

J =

∮ π

−π

(
w cos θ − t

∂u

∂x

)
rdθ (11.50)

but J should be independent of r by virtue of path independence hence both w cos θ and t ∂u
∂x

should be proportional to
1
r

.

50 If we now consider a material with the following (uniaxial) power law hardening model (Ramberg-Osgood) which is often used

to curve-fit stress-strain data:

ε

εyld
=

σ

σyld

+ α

(
σ

σyld

)n

(11.51)

n is the strain hardening exponent, and for n = 1 we have a linear elastic response, and for n = ∞ we would have an elastic

perfectly plastic one, Fig. 11.11. α is a dimensionless constant.

51 In the vicinity of the crack tip, the plastic strain is dominant (the elastic one is negligible) and

ε

εyld
= α

(
σ

σyld

)n

(11.52)
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r

Figure 11.10: J , Around a Circular Path
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Figure 11.11: Normalize Ramberg-Osgood Stress-Strain Relation (α = .01)
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52 Denoting by x and y the order of the stress and strain singularities, we would have

σ =
c1
rx

(11.53)

ε =
c2
ry

(11.54)

53 From Eq. 11.50, we know that the energy w must be proportional to
1
r

σε ∝ 1

r
⇒ x+ y = 1 (11.55)

54 Furthermore, from Eq. 11.51 and 11.52

c2
ryεyld

= α

(
c1

rxσyld

)n

⇒ c3
ry

= c4
1

rnx
⇒ y = nx (11.56)

55 Solving Eq. 11.55 and 11.56, we obtain

x =
1

1 + n
(11.57)

y =
n

1 + n
(11.58)

56 Thus in general we would have

ε(r) = C

r
n

1+n

σ(r) = D

r
1

1+n

(11.59)

57 For linear elastic solids n = 1 and these equations reduce to the familiar

ε(r) =
C

r
1
2

(11.60)

σ =
D

r
1
2

(11.61)

58 For elastic perfectly plastic material n = ∞ and the stress field is non-singular a expected while the strain field has a singularity

of the form r−1
.

59 Those singularities
n

1+n
and

1
1+n

are often referred to as the HRR singularities after Hutchinson, Rice, and Rosengren, (Hutchin-

son, 1968).

60 It can be shown that there is a relationship between J and the crack tip σ − ε field:

σij = σyld

(
EJ

ασ2
yld
Inr

) 1
1+n

σ̃ij (θ, n) (11.62)

εij =
ασyld

E

(
EJ

ασ2
yld
Inr

) n
1+n

ε̃ij(θ, n) (11.63)

where In is an integration constant which depends on the σ−ε curve, and σ̃ & ε̃ are dimensionless functions ofn and θ (analogous

to fI
ij in LEFM which also depend on the stress state (plane stress/strain)

61 Thus, J also characterizes the σ and ε singularities in EPFM just as K did in LEFM (σij = K√
2πr

.

62 Finally, we should note that at the crack tip we have two stress singularities, the first one
1√
r

in the elastic region, and the later

1

r
1

1+n
. From Fig. 11.12, we observe that material behind a propagating crack unload elastically (as opposed to nonlinear elastic).

The material directly in front of the crack also violates our assumption of of proportional loading, i.e. the stress components

increase or decrease at different rates. For the crack to be J controlled, those two zones must be embedded within a zone of J
dominance. If the crack grows outside it, then the measured R curve is no longer uniquely characterized by J .

63 Fig. 11.13, and table 11.1 schematically illustrate the effect of plasticity on crack tip stresses, whereL represents a characteristic

dimension of the structure.
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Elastic 
Unloading

Nonproportional Plastic 
Loading

 J Dominated 
Zone

da

Figure 11.12: HRR Singularity, (Anderson, 1995)

a Large Strain Region    b: J-dominated zone;     c: Kdominated zone

a

ba

cba

Figure 11.13: Effect of Plasticity on the Crack Tip Stress Fields, (Anderson, 1995)

Large Strain J Dominated K Dominated

Small scale yielding Y Y Y

Elastic Plastic Conditions Y Y N

Large Scale Yileding Y N N

Table 11.1: Effect of Plasticity on the Crack Tip Stress Field, (Anderson, 1995)
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Small Scale Yielding: In this zone both K and J characterize this zone. At a short distance from the crack tip (relative to

L), the stress is proportional to
1√
r

and this area is called the K-dominated region. If we have monotonic loading, a J
dominated region occurs in the plastic zone where the elastic singularity is no longer valid. Inside the plastic zone, the

HRR is approximately valid. Finally, finite strain region occurs within approximately 2δ from the crack tip where the large

deformation invalidates HRR.

Elastic-Plastic: J is still valid, but K no longer.

Large Scale Yielding: here the size of the finite strain zone becomes significant relative to L and there is no longer a region

uniquely characterized by J . J becomes size and geometry dependent.

11.9 Engineering Approach to Fracture

64 The solution of a plastic problem involves the determination of the J integral. This usually involves a finite element analysis.

65 If such a capability is not available, and a first order approximation of J is required, then a simplified engineering approach

can be followed, (Kumar et al., 1981).

General Solution: For Ramberg-Osgood material, we can write

J = Je(ae) + JP (a, n) (11.64-a)

δ = δe(ae) + δP (a, n) (11.64-b)

∆c = ∆ec(ae) + ∆Pc(a, n) (11.64-c)

where: J , δ, and ∆ are the J integral, the crack tip opening displacement, and point load displacement respectively, and

ae = a+ ϕry (11.65-a)

ry =
1

βπ

n− 1

n+ 1

(
KI

σy

)2

(11.65-b)

ϕ =
1

1 + (P/Po)
2 (11.65-c)

for plane stress β = 2 and for plane strain β = 6.

Jp(a, n), δp(a, n), and ∆pc(a, n) are the plastic contributions based on the material hardening exponent n.

We note that P is the generalized load per unit thickness, ∆ is the load-point displacement, and that δ is the crack opening

displacement.

Elastic Solution: The elastic solution can be written as

Je = f1
( a
W

) P 2

E′ =
K2

I

E′ (11.66-a)

δe = f2
( a
W

) P

E′ (11.66-b)

∆ce = f3
( a
W

) P

E′ (11.66-c)

We note that P is the generalized load per unit thickness, and that δ is the crack opening displacement.

Fully Plastic Solution: Considering a fully plastic incompressible cracked body, εe ≪ εp. Consider a nonlinear or fully plastic

incompressible body and with εe ≪ εp, furthermore, if the plastic deformation can be described by J2, deformation

plasticity theory with power law and isotropic hardening, then the small strain constitutive relation is given by

εij
εyld

=
3

2
α(

σ̄

σyld
)n−1 Sij

σyld
(11.67)

where Sij and σe = 3
2

√
SijSij are the stress deviator and the von-Mises effective stress, respectively.

For such a material Ilyushin (Il’yushin, 1946) has shown that the solution of the boundary value problems based on the

above equation, and involving a single load or displacement parameter which is increasing monotonically has two important

properties:
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1. The field quantities increase in direct proportion to the load or displacement parameter raised to some power depen-

dent on n. For example if the traction is Ti = PT ′
i and P is a loading parameter, then

σij = Pσ′
ij(xi, n) (11.68-a)

εij = αεy

(
P

σy

)n

ε′ij(xi, n) (11.68-b)

ui = αεy

(
P

σy

)n

u′
i(xi, n) (11.68-c)

where σ′
ij(xi, n), ε

′
ij(xi, n) and u′

i(xi, n) are functions of xi and n and are independent of P .

2. Since σ and ε increase in the same proportion, fully plastic solution based on deformation plasticity is also the exact

solution to the same problem posed for incremental or flow theory.

66 Since the integrand of J involves the product of σ and u gradients, then the fully plastic J will be proportional to Pn+1

and we can write:

Jp = αεyσybg1(a/W )h1(a/W, n)(P/P0)
n+1

(11.69-a)

δp = αεyag2(a/W )h2(a/W, n)(P/P0)
n

(11.69-b)

∆cp = αεyag3(a/W )h3(a/W, n)(P/P0)
n

(11.69-c)

δtp = αεybg4(a/W )h4(a/W, n)(P/P0)
n+1

(11.69-d)

where P0 coresponds to the limit load based on σy and b is the ligament length (W − a). α is from Eq. 11.52 ε/εyld =
α(σ/σyld)

n
.

67 The dimensionless functions (h1 − h4) depend upon a/W and n and possibly other geometric parameters, but are

independent of P . Those functions can be obtained from F.E. analysis and are tabulated (±5%) in (Kumar et al., 1981).

11.9.1 Compilation of Fully Plastic Solutions
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Compact Tension Specimen: Table 11.2, Fig. 11.14.

1.2 W

1.25 W

P

P
a

W

b

Figure 11.14: Compact tension Specimen

Plane Strain P0 = 1.455βbσy (11.70)

Plane Stress P0 = 1.071βbσy (11.71)

β =

√(
2
a

b

)2
+ 4

a

b
+ 2− 2

a

b
− 1 (11.72)

gi = 1 (11.73)

∆ corresponds to the crack opening displacement at the load line and δ is the crack mouth opening displacement.

Center Cracked Panel: Table 11.3, Fig. 11.15

Plane Strain P0 = 4bσy/
√
3 (11.74)

Plane Stress P0 = 2bσy (11.75)

g1 = g4 = a/W (11.76)

g2 = g3 = 1 (11.77)

∆ corresponds to the average load-point displacement defined by

∆ =
1

2W

∫ W

W

[u2(x1, L)− u2(x1, L)]dx1 (11.78)

δ is the crack opening displacement at the center of the crack.

Single Edge Notched Specimen: Table 11.4, Fig. 11.16.

Plane Strain P0 = 1.455βbσy (11.79)

Plane Stress P0 = 1.072βbσy (11.80)

β =

√
1 +

(a
b

)2
− a

b
(11.81)

g1 = g4 = a/W (11.82)

g2 = g3 = 1 (11.83)

∆ is the load-point displacement at the centerline of the specimen, and δ is the crack mouth opening displacement.
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n = 1 n = 2 n = 3 n = 5 n = 7 n = 10 n = 13 n = 16 n = 20
Plane Strain

h1 2.23 2.05 1.78 1.48 1.33 1.26 1.25 1.32 1.57

a
W = 1

4 h2 17.9 12.5 11.7 10.9 10.5 10.7 11.5 12.6 14.6

h3 9.85 8.51 8.17 7.77 7.71 7.92 8.52 9.31 10.9

h1 2.15 1.72 1.39 0.97 0.69 0.443 0.28 0.176 0.098

a
W = 3

8 h2 12.60 8.18 6.52 4.32 2.97 1.79 1.10 0.686 0.370

h3 7.94 5.76 4.64 3.10 2.14 1.29 0.793 0.494 0.266

h1 1.94 1.51 1.24 0.919 0.68 0.461 0.314 0.216 0.132

a
W = 1

2 h2 9.33 5.85 4.30 2.75 1.91 1.20 0.788 0.530 0.370

h3 6.41 4.27 3.16 2.02 1.41 0.998 0.585 0.393 0.236

h1 1.76 1.45 1.24 0.97 0.75 0.602 0.459 0.347 0.248

a
W = 5

8 h2 7.61 4.57 3.42 2.36 1.51 1.32 0.983 0.749 0.485

h3 5.52 3.43 2.58 1.79 1.37 1.00 0.746 0.568 0.368

h1 1.71 1.42 1.26 1.03 0.86 0.717 0.575 0.448 0.345

a
W = 3

4 h2 6.37 3.95 3.18 2.34 1.89 1.440 1.120 0.887 0.665

h3 4.86 3.05 2.46 1.81 1.45 1.110 0.869 0.686 0.514

h1 1.57 1.45 1.35 1.18 1.08 0.95 0.85 0.73 0.63

a
W ≈ 1 h2 5.39 3.74 3.09 2.43 2.12 1.80 1.57 1.33 1.14

h3 4.31 2.99 2.47 1.95 1.79 1.44 1.26 1.07 0.909

Plane Stress
h1 1.61 1.460 1.28 1.06 0.90 0.729 0.601 0.511 0.395

a
W = 1

4 h2 17.60 12.00 10.70 8.74 7.32 5.74 4.63 3.75 2.92

h3 9.67 8.00 7.21 5.94 5.00 3.95 3.19 2.59 2.023

h1 1.55 1.25 1.050 0.801 0.64 0.484 0.377 0.284 0.22

a
W = 3

8 h2 12.40 8.20 6.540 4.56 3.45 2.44 1.83 1.36 1.02

h3 7.80 5.73 4.620 3.250 2.48 1.77 1.33 0.99 0.746

h1 1.40 1.08 0.901 0.686 0.55 0.436 0.356 0.298 0.238

a
W = 1

2 h2 9.16 5.67 4.21 2.80 2.12 1.57 1.25 1.03 0.814

h3 6.29 4.15 3.11 2.09 1.59 1.18 0.938 0.774 0.614

h1 1.27 1.03 0.875 0.695 0.59 0.494 0.423 0.37 0.310

a
W = 5

8 h2 7.470 4.48 3.35 2.37 1.92 1.540 1.29 1.12 0.928

h3 5.42 3.38 2.54 1.80 1.47 1.180 0.988 0.853 0.710

h1 1.23 0.977 0.833 0.683 0.59 0.506 0.431 0.373 0.314

a
W = 3

4 h2 6.25 3.78 2.89 2.14 1.78 1.440 1.20 1.03 0.857

h3 4.77 2.92 2.24 1.66 1.38 1.120 0.936 0.80 0.666

h1 1.130 1.01 0.775 0.68 0.65 0.620 0.490 0.47 0.42

a
W ≈ 1 h2 5.29 3.54 2.41 1.91 1.73 1.59 1.23 1.17 1.03

h3 4.23 2.83 1.93 1.52 1.39 1.270 0.985 0.933 0.824

Table 11.2: h-Functions for Standard ASTM Compact Tension Specimen, (Kumar et al., 1981)
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Figure 11.15: Center Cracked Panel

L L

W

a

b Δ

σ

/2Δ /2

Figure 11.16: Single Edge Notched Specimen
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n = 1 n = 2 n = 3 n = 5 n = 7 n = 10 n = 13 n = 16 n = 20
Plane Strain

h1 2.80 3.61 4.06 4.35 4.33 4.02 3.56 3.06 2.46

a
W = 1

8 h2 3.05 3.62 3.91 4.06 3.93 3.54 3.07 2.60 2.06

h3 0.303 0.574 0.84 1.30 1.63 1.95 2.03 1.96 1.77

h1 2.54 3.01 3.21 3.29 3.18 2.92 2.63 2.34 2.03

a
W = 1

4 h2 2.68 2.99 3.01 2.85 2.61 2.30 1.00 1.71 1.45

h3 0.536 0.911 1.22 1.64 1.84 1.85 1.80 1.64 1.43

h1 2.340 2.62 2.65 2.51 2.28 1.97 1.71 1.46 1.19

a
W = 3

8 h2 2.350 2.39 2.23 1.88 1.58 1.28 1.07 0.89 0.715

h3 0.699 1.06 1.28 1.44 1.40 1.23 1.05 0.888 0.719

h1 2.21 2.29 2.20 1.97 1.76 1.52 1.32 1.16 0.978

a
W = 1

2 h2 2.030 1.860 1.60 1.23 1.00 0.799 0.664 0.564 0.466

h3 0.803 1.07 1.16 1.10 0.96 0.796 0.665 0.565 0.469

h1 2.12 1.96 1.76 1.43 1.17 0.863 0.628 0.458 0.300

a
W = 5

8 h2 1.71 1.320 1.04 0.707 0.52 0.358 0.250 0.178 0.114

h3 0.844 0.937 0.879 0.701 0.52 0.361 0.251 0.178 0.115

h1 2.070 1.73 1.47 1.11 0.89 0.642 0.461 0.337 0.216

a
W = 3

4 h2 1.350 0.857 0.596 0.361 0.25 0.167 0.114 0.081 0.0511

h3 805 0.70 0.555 0.359 0.25 0.168 0.114 0.081 0.052

h1 2.08 1.64 1.40 1.14 0.98 0.814 0.688 0.573 0.461

a
W = 7

8 h2 0.889 0.428 0.287 0.181 0.13 0.105 0.084 0.068 0.0533

h3 0.632 0.400 0.291 0.182 0.14 0.106 0.084 0.068 0.054

Plane Stress
h1 2.80 3.57 4.01 4.47 4.65 4.62 4.41 4.13 3.72

a
W = 1

8 h2 3.530 4.09 4.43 4.74 4.79 4.63 4.33 4.00 3.55

h3 0.350 0.661 1.00 1.55 2.05 2.56 2.83 2.95 2.92

h1 2.54 2.97 3.14 3.20 3.11 2.86 2.65 2.47 2.20

a
W = 1

4 h2 3.100 3.29 3.30 3.15 2.93 2.56 2.29 2.08 1.81

h3 0.619 1.01 1.35 1.83 2.08 2.19 2.12 2.01 1.79

h1 2.340 2.53 2.52 2.35 2.17 1.95 1.77 1.61 1.43

a
W = 3

8 h2 2.710 2.62 2.41 2.03 1.75 1.47 1.28 1.13 0.988

h3 0.807 1.20 1.43 1.59 1.57 1.43 1.27 1.13 0.994

h1 2.210 2.20 2.06 1.81 1.63 1.43 1.30 1.17 1.00

a
W = 1

2 h2 2.340 2.01 1.70 1.30 1.07 0.871 0.757 0.666 0.557

h3 0.927 1.19 1.26 1.18 1.04 0.867 0.758 0.668 0.560

h1 2.12 1.91 1.69 1.41 1.22 1.01 0.853 0.712 0.573

a
W = 5

8 h2 1.970 1.46 1.13 0.785 0.61 0.474 0.383 0.313 0.256

h3 0.975 1.05 0.97 0.763 0.62 0.478 0.386 0.318 0.273

h1 2.07 1.71 1.46 1.21 1.08 0.867 0.745 0.646 0.532

a
W = 3

4 h2 1.550 0.97 0.685 0.452 0.36 0.262 0.216 0.183 0.148

h3 0.929 0.802 0.642 0.45 0.36 0.263 0.216 0.183 0.149

h1 2.08 1.57 1.31 1.08 0.97 0.862 0.778 0.715 0.630

a
W = 7

8 h2 1.030 0.485 0.31 0.196 0.15 0.127 0.109 0.0971 0.0842

h3 0.730 0.452 0.313 0.198 0.15 0.127 0.109 0.0973 0.0842

Table 11.3: Plane Stress h-Functions for a Center-Cracked Panel, (Kumar et al., 1981)
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n = 1 n = 2 n = 3 n = 5 n = 7 n= 10 n = 13 n = 16 n = 20
Plane Strain

h1 4.95 6.93 8.57 11.50 13.5 16.1 18.1 19.9 21.2

a
W = 1

8 h2 5.250 6.47 7.56 9.46 11.1 12.9 14.4 15.7 16.8

h3 26.60 25.80 25.20 24.20 23.6 23.2 23.2 23.5 23.7

h1 4.34 4.77 4.64 3.82 3.06 2.170 1.55 1.11 0.712

a
W = 1

4 h2 4.760 4.56 4.28 3.39 2.64 1.910 1.25 0.875 0.552

h3 10.30 7.64 5.87 3.70 2.48 1.500 0.97 0.654 0.404

h1 3.88 3.25 2.63 1.68 1.06 0.539 0.276 0.142 0.060

a
W = 3

8 h2 4.540 3.49 2.67 1.57 0.94 0.458 0.229 0.116 0.048

h3 5.14 2.99 1.90 0.923 0.51 0.240 0.119 0.060 0.025

h1 3.40 2.30 1.69 0.928 0.51 0.213 0.090 0.039 0.012

a
W = 1

2 h2 4.450 2.77 1.89 0.954 0.50 0.204 0.085 0.036 0.011

h3 3.15 1.54 0.91 0.417 0.21 0.085 0.036 0.015 0.004

h1 2.86 1.80 1.30 0.697 0.37 0.153 0.064 0.026 0.008

a
W = 5

8 h2 4.370 2.44 1.62 0.081 0.42 0.167 0.067 0.027 0.008

h3 2.31 1.08 0.68 0.329 0.17 0.067 0.027 0.011 0.003

h1 2.34 1.61 1.25 0.769 0.47 0.233 0.116 0.059 0.022

a
W = 3

4 h2 4.320 2.52 1.79 1.03 0.69 0.296 0.146 0.074 0.027

h3 2.02 1.10 0.765 0.435 0.26 0.125 0.062 0.031 0.011

h1 1.91 1.57 1.37 1.10 0.92 0.702

a
W = 7

8 h2 4.29 2.75 2.14 1.55 1.23 0.921

h3 2.01 1.27 0.988 0.713 0.56 0.424

Plane Stress
h1 3.58 4.55 5.06 5.30 4.96 4.14 3.29 2.60 1.92

a
W = 1

8 h2 5.15 5.43 6.05 6.01 5.47 4.46 3.48 2.74 2.02

h3 26.10 21.60 18.00 12.70 9.24 5.98 3.94 2.72 2.00

h1 3.14 3.26 2.920 2.120 1.53 0.96 0.615 0.40 0.23

a
W = 1

4 h2 4.67 4.30 3.700 2.530 1.76 1.05 0.656 0.419 0.237

h3 10.10 6.49 4.360 2.190 1.24 0.63 0.362 0.224 0.123

h1 2.81 2.37 1.940 1.370 1.01 0.677 0.474 0.342 0.226

a
W = 3

8 h2 4.47 3.43 2.630 1.690 1.18 0.762 0.524 0.372 0.244

h3 5.05 2.65 1.600 0.812 0.525 0.328 0.223 0.157 0.102

h1 2.46 1.67 1.250 0.776 0.510 0.286 0.164 0.0956 0.0469

a
W = 1

2 h2 4.37 2.73 1.91 1.09 0.694 0.380 0.216 0.124 0.0607

h3 3.10 1.43 0.871 0.461 0.286 0.155 0.088 0.0506 0.0247

h1 2.07 1.41 1.105 0.755 0.551 0.363 0.248 0.172 0.107

a
W = 5

8 h2 4.30 2.55 1.840 1.160 0.816 0.523 0.353 0.242 0.150

h3 2.27 1.13 0.771 0.478 0.336 0.215 0.146 0.100 0.062

h1 1.70 1.14 0.910 0.624 0.447 0.280 0.181 0.118 0.067

a
W = 3

4 h2 4.24 2.47 1.81 1.150 0.798 0.490 0.314 0.203 0.115

h3 1.98 1.09 0.784 0.494 0.344 0.211 0.136 0.0581 0.0496

h1 1.38 1.11 0.962 0.792 0.677 0.574

a
W = 7

8 h2 4.22 2.68 2.08 1.54 1.27 1.04

h3 1.97 1.25 0.969 0.716 0.592 0.483

Table 11.4: h-Functions for Single Edge Notched Specimen, (Kumar et al., 1981)
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Double Edge Notched Specimen: Table 11.5, Fig. 11.17.

P,

x

x

L

L

W

b a

Δ/2

P, Δ/2

2

1

Figure 11.17: Double Edge Notched Specimen

Plane Strain P0 = (0.72W + 1.82b)σy (11.84)

Plane Stress P0 = 4bσy/
√
3 (11.85)

β =

√
1 +

(a
b

)2
− a

b
(11.86)

g1 = g4 = 1 (11.87)

g2 = g3 = W/a− 1 (11.88)

∆ is the load-point displacement at the centerline of the specimen, and δ is the crack mouth opening displacement.

Axially Cracked Pressurized Cylinder: Table ??, Fig. 11.18.

p0 =
2bσy√
3Rc

(11.89)

Rc = Ri + a (11.90)

g1 =
a

W
(11.91)

g2 = 1 (11.92)

δ is the crack mouth opening displacement. Note that in the elastic range:

KI =
2pR2

0

√
πa

R2
0 −R2

i

F

(
a

W
,
Ri

R0

)
(11.93)

δe =
8pR2

0a

(R2
0 −R2

i )E
′ V

(
a

W
,
Ri

R0

)
(11.94)

where the dimensionless functions F and V are tabulated in Table 11.7.
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n = 1 n = 2 n = 3 n = 5 n = 7 n = 10 n = 13 n = 16 n = 20
Plane Strain

h1 0.572 0.772 0.922 1.13 1.35 1.61 1.86 2.09 2.44

a
W = 1

8 h2 0.732 0.852 0.961 1.14 1.29 1.50 1.70 1.94 2.17

h3 0.063 0.126 0.200 0.372 0.57 0.911 1.30 1.74 2.29

h1 1.10 1.320 1.38 1.65 1.75 1.82 1.86 1.89 1.92

a
W = 1

4 h2 1.56 1.63 1.70 1.79 1.80 1.81 1.79 1.78 1.76

h3 0.267 0.479 0.698 1.11 1.47 1.92 2.25 2.49 2.73

h1 1.61 1.83 1.92 1.92 1.84 1.68 1.49 1.32 1.12

a
W = 3

8 h2 2.51 2.41 2.35 2.15 1.94 1.68 1.44 1.25 1.05

h3 0.637 1.05 1.40 1.87 2.11 2.20 2.09 1.92 1.67

h1 2.22 2.43 2.49 2.43 2.32 2.12 1.91 1.60 1.51

a
W = 1

2 h2 3.73 3.40 3.15 2.70 2.37 2.01 1.72 1.40 1.38

h3 1.26 1.92 2.37 2.79 2.85 2.68 2.40 1.99 1.94

h1 3.16 3.38 3.45 3.42 3.28 3.00 2.54 2.36 2.27

a
W = 5

8 h2 5.57 4.76 4.23 3.46 2.97 2.48 2.02 1.82 1.66

h3 2.36 3.29 3.74 3.90 3.68 3.23 2.66 2.40 2.19

h1 5.24 6.29 7.17 8.44 9.46 10.90 119.0 11.3 17.4

a
W = 3

4 h2 9.10 7.76 7.14 6.64 6.83 7.48 7.790 7.14 11.0

h3 4.73 6.26 7.03 7.63 8.14 9.04 9.4 8.58 13.5

h1 14.2 24.8 39.0 78.4 140. 341.0 777.0 1570.0 3820.0

a
W = 7

8 h2 20.1 19.4 22.7 36.1 58.9 133.0 294.0 585.0 1400.0

h3 12.7 18.2 24.1 40.4 65.9 149.0 327.0 650.0 1560.0

Plane Stress
h1 0.583 0.825 1.02 1.37 1.71 2.24 2.84 3.54 4.62

a
W = 1

8 h2 0.853 1.050 1.23 1.55 1.87 2.38 2.96 3.65 4.70

h3 0.0729 0.159 0.26 0.504 0.82 1.41 2.18 3.16 4.73

h1 1.01 1.23 1.36 1.48 1.54 1.58 1.59 1.59 1.59

a
W = 1

4 h2 1.73 1.82 1.89 1.92 1.91 1.85 1.80 1.75 1.70

h3 0.296 0.537 0.77 1.17 1.49 1.82 2.02 2.12 2.20

h1 1.29 1.42 1.43 1.34 1.24 1.09 0.97 0.873 0.674

a
W = 3

8 h2 2.59 2.39 2.22 1.86 1.59 1.28 1.07 0.922 0.709

h3 658 1.04 1.30 1.52 1.55 1.41 1.23 1.07 0.830

h1 1.48 1.47 1.38 1.17 1.01 0.845 0.732 0.625 0.208

a
W = 1

2 h2 3.51 2.82 2.34 1.67 1.28 0.944 0.762 0.630 0.232

h3 1.18 1.58 1.69 1.56 1.32 1.01 0.809 0.662 0.266

h1 1.59 1.45 1.29 1.04 0.88 0.737 0.649 0.466 0.020

a
W = 5

8 h2 4.56 3.15 2.32 1.45 1.06 0.790 0.657 0.473 0.028

h3 1.93 2.14 1.95 1.44 1.09 0.809 0.665 0.487 0.032

h1 1.65 1.43 1.22 0.979 0.83 0.701 0.630 0.297

a
W = 3

4 h2 5.90 3.37 2.22 1.30 0.96 0.741 0.636 0.312

h3 3.06 2.67 2.06 1.31 0.97 0.747 0.638 0.318

h1 1.69 1.43 1.22 0.979 0.84 0.738 0.664 0.614 0.562

a
W = 7

8 h2 8.02 3.51 2.14 1.27 0.97 0.775 0.663 0.596 0.535

h3 5.07 3.180 2.16 1.30 0.98 0.779 0.665 0.597 0.538

Table 11.5: h-Functions for Double Edge Notched Specimen, (Kumar et al., 1981)
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R

R

o

i

p

p

a b

W

Figure 11.18: Axially Cracked Pressurized Cylinder

n = 1 n = 2 n = 3 n = 5 n = 7 n = 10
W
Ri

= 1
5

a
W = 1

8 h1 6.32 7.93 9.32 11.50 13.1 14.94

h2 5.83 7.01 7.96 9.49 10.6 11.96

a
W = 1

4 h1 7.00 9.34 9.03 9.59 9.71 9.45

h2 5.92 8.72 7.07 7.26 7.14 6.71

a
W = 1

2 h1 9.79 10.37 9.07 5.61 3.52 2.11

h2 7.05 6.97 6.01 3.70 2.28 1.25

a
W = 3

4 h1 11.00 5.54 2.84 1.24 0.83 0.493

h2 7.35 3.86 1.86 0.56 0.26 0.129

W
Ri

= 1
10

a
W = 1

8 h1 5.22 6.64 7.59 8.76 9.34 9.55

h2 5.31 6.25 6.88 7.65 8.02 8.09

a
W = 1

4 h1 6.16 7.49 7.96 8.08 7.78 6.98

h2 5.56 6.31 6.52 6.40 6.01 5.27

a
W = 1

2 h1 10.5 11.6 10.7 6.47 3.95 2.27

h2 7.48 7.72 7.01 4.29 2.58 1.37

a
W = 3

4 h1 16.10 8.19 3.87 1.46 1.05 0.787

h2 9.57 5.40 2.57 0.71 0.37 0.232

W
Ri

= 1
20

a
W = 1

8 h1 4.50 5.79 6.62 7.65 8.07 7.75

h2 4.96 5.71 6.20 6.82 7.02 6.66

a
W = 1

4 h1 5.57 6.91 7.37 7.47 7.21 6.53

h2 5.29 5.98 6.16 6.01 5.63 4.93

a
W = 1

2 h1 10.80 12.80 12.80 8.16 4.88 2.62

h2 7.66 8.33 8.13 5.33 3.20 1.65

a
W = 3

4 h1 23.10 13.10 5.87 1.90 1.23 0.883

h2 12.10 7.88 3.84 1.01 0.45 0.24

Table 11.6: h-Functions for an Internally Pressurized, Axially Cracked Cylinder, (Kumar et al., 1981)
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a
W = 1

8
a
W = 1

4
a
W = 1

2
a
W = 3

4
W
RI

= 1
5 F 1.19 1.38 2.10 3.30

V1 1.51 1.83 3.44 7.50

W
RI

= 1
10 F 1.20 1.44 2.36 4.23

V1 1.54 1.91 3.96 10.40

W
RI

= 1
20 F 1.20 1.45 2.51 5.25

V1 1.54 1.92 4.23 13.50

Table 11.7: F and V1 for Internally Pressurized, Axially Cracked Cylinder, (Kumar et al., 1981)

Circumferentially Cracked Cylinder: Table 11.8, Fig. 11.19.

R

R

a b

i

o

σσ

σ σ

W

Figure 11.19: Circumferentially Cracked Cylinder

P0 =
2πσy(R

2
0 −R2

i )√
3

(11.95)

Rc = Ri + a (11.96)

g1 = g4 =
a

W
(11.97)

g2 = g3 = 1 (11.98)

δ is the crack mouth opening displacement.
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11.9 Engineering Approach to Fracture

In the elastic range

KI = σ
√
πaF

(
a

W
,
Ri

R0

)
(11.99)

δe =
4σaV1

(
a
W
, Ri
R0

)
E′ (11.100)

∆ce =
4σaV2

(
a
W
, Ri
R0

)
E′ (11.101)

where the functions F , V1, and V2 are tabulated in Table 11.9.

n = 1 n = 2 n = 3 n = 5 n = 7 n = 10
W
Ri

= 1
5

h1 3.78 5.00 5.94 7.54 8.99 11.1

a
W = 1

8 h2 4.560 5.55 6.37 7.79 9.10 11.0

h3 0.369 0.70 1.07 1.96 3.04 4.94

h1 3.88 4.95 5.64 6.49 6.94 7.22

a
W = 1

4 h2 4.40 5.12 5.57 6.07 6.28 6.30

h3 0.673 1.25 1.79 2.79 3.61 4.52

h1 4.40 4.78 4.59 3.79 3.07 2.34

a
W = 1

2 h2 4.36 4.30 3.91 3.00 2.26 1.55

h3 1.33 1.93 2.21 2.23 1.94 1.46

h1 4.12 3.03 2.23 1.546 1.30 1.110

a
W = 3

4 h2 3.46 2.19 1.36 0.638 0.43 0.325

h3 1.54 1.39 1.04 0.686 0.50 0.366

W
Ri

= 1
10

h1 4.00 5.13 6.09 7.69 9.09 11.1

a
W = 1

8 h2 4.71 5.63 6.45 7.85 9.09 10.9

h3 0.548 0.733 1.13 2.07 3.16 5.07

h1 4.17 5.35 6.09 6.93 7.30 7.41

a
W = 1

4 h2 4.58 5.36 5.84 6.31 6.44 6.31

h3 757 1.35 1.93 2.96 3.78 4.60

h1 5.40 5.90 5.63 4.51 3.49 2.47

a
W = 1

2 h2 4.99 5.01 4.59 3.48 2.56 1.67

h3 1,555 2.26 2.59 2.57 2.18 1.56

h1 5.18 3.78 2.57 1.59 1.31 1.10

a
W = 3

4 h2 4.22 2.79 1.67 0.725 0.48 0.30

h3 1.86 1.73 1.26 0.775 0.56 0.36

W
Ri

= 1
20

h1 4.04 5.23 6.22 7.82 9.19 11.1

a
W = 1

8 h2 4.82 5.69 6.52 7.90 9.11 10.8

h3 0.68 0.76 1.17 2.13 3.23 5.12

h1 4.39 5.68 6.45 7.29 7.62 7.65

a
W = 1

4 h2 4.71 5.56 6.05 6.51 6.59 6.39

h3 0.82 1.43 2.03 3.10 3.91 4.69

h1 6.55 7.17 6.89 5.46 4.13 2.77

a
W = 1

2 h2 5.67 5.77 5.36 4.08 2.97 1.88

h3 1.80 2.59 2.99 2.98 2.50 1.74

h1 6.64 4.87 3.08 1.68 1.30 1.07

a
W = 3

4 h2 5.18 3.57 2.07 0.808 0.47 0.316

h3 2.36 2.18 1.53 0.772 0.49 0.330

Table 11.8: h-Functions for a Circumferentially Cracked Cylinder in Tension, (Kumar et al., 1981)

11.9.2 Numerical Example

From (Anderson, 1995), Consider a single edge notched panel with W = 1 m, a = 125 mm. Determine J in terms of the applied

load assuming plane stress conditions, neglect plastic zone correction.

Assume: σyld = 414 MPa, n = 10, α = 1.0, E = 207, 000 MPa, εyld = σyld/E = 0.002.
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a
W = 1

8
a
W = 1

4
a
W = 1

2
a
W = 3

4
F 1.16 1.26 1.61 2.15

W
RI

= 1
5 V1 1.49 1.67 2.43 3.76

V2 0.117 0.255 0.743 1.67

F 1.19 1.32 1.82 2.49

W
RI

= 1
10 V1 1.55 1.76 2.84 4.72

V2 0.18 0.29 0.885 2.09

F 1.22 1.36 2.03 2.89

W
RI

= 1
20 V1 1.59 1.81 3.26 5.99

V2 0.22 0.32 1.04 2.74

Table 11.9: F , V1, and V2 for a Circumferentially Cracked Cylinder in Tension, (Kumar et al., 1981)

1. From Eq. 11.80

b = W − a = 1000− 125 = 875 mm (11.102-a)

a

b
=

125

875
= 0.143 (11.102-b)

β =

√
1 +

(a
b

)2
− a

b
(11.102-c)

=
√

1 + (0.143)2 − 0.143 = 0.867 (11.102-d)

P0 = 1.072βbσy (11.102-e)

= (1.072)(0.867)(414) MPa(875) mm(25) mm = 8.42 MN (11.102-f)

2. From Table 11.4, for a/W = 0.125, and n = 10, h1=4.14. Thus the fully plastic J is given by Eq. 11.69-a

Jp = αεyσybg1(a/W )h1(a/W, n)(P/P0)
n+1

(11.103-a)

= (1.0)(0.002)(414, 000) kPa(0.875) m

125

1000
(4.14)

(
P

8.42 MN

)10+1

(11.103-b)

= 2.486× 10−8P 11
(11.103-c)

where P in in MN, and Jpl in in kJ/m
2
.

3. KI is given by Eq. 4.4, and the Elastic J is given by

KI =

[
1.12− 0.23

( a
W

)
+ 10.56

( a
W

)2
−21.74

( a
W

)3
+ 30.42

( a
W

)4]
σ
√
πa (11.104-a)

Jel =
K2

I

E
= G (11.104-b)

=
1, 000P 2(0.770)2

(0.025)2 m
2(1.0) m(207, 000) MPa

= 4.584P 2
(11.104-c)

where P in in MN, and Jel in in kJ/m
2
.

4. The total J is

J = Jel + Jpl (11.105-a)

= 4.584P 2 + 2.486× 10−8P 11
(11.105-b)

11.10 J1 and J2 Generalization.

66 Rice has shown that in linear elastic fracture, and in terms of the stress intensity factors, J can be written as:

(1− ν2)(K2
I +K2

II) + (1 + ν)K2
III = EJ1 (11.106)

158



D
R
A
FT

11.11 Dynamic Energy Release Rate

where J1 is expressed in indicial notation by:

J1 =

∫
Γ

(
wdy − t

∂u

∂x
dΓ

)
(11.107)

=

∫
Γ

(
wn1 − ti

∂ui

∂x1
dΓ

)
(11.108)

where w is the strain energy density, ni are the direction cosines of the normal to the contour, the Ti are the components of

traction, and the contour of integration is around the tip.

67 Knowles and Stenberg (1972) noted that this can be considered as the first component of a vector

Jk =

∫
{wnk − ti

∂ui

∂xk
}dΓ (11.109)

which is also path independent. When written in vector form, this gives

J1 =
∫
Γ

(
wdy − t ∂u

∂x
dΓ
)

J2 =
∫
Γ

(
wdx− t ∂u

∂y
dΓ
)

(11.110)

68 Hellen and Blackburn (1975a) showed that

J = J1 − iJ2 (11.111)

=
(1 + ν)(1 + κ)

4E
(K2

I +K2
II + 2iKIKII) (11.112)

69 Thus the values of energy release rates (J1 and J2) for crack extensions parallel and perpendicular to the crack, respectively,

will be given by:

J1 =
K2

I+K2
II

H

J2 = −2KIKII
H

(11.113)

where

H =

{
E plane strain

E
1−ν2 plane stress

(11.114)

Note that solution of Eq. 11.113 and 11.113 is the intersection of a circle and a hyperbola. Hence, there exists more than one pair

of stress intensity factors (or none).

11.11 Dynamic Energy Release Rate

70 If we consider a body containing a propagating crack, (Kanninen, 1984), Fig. 11.20

71 We seek to determine the energy released to the crack tip and thus consider a vanishingly small loop Γ0 surrounding the crack

tip
1

. Whereas the loop can have any shape, it must remain fixed relative to a coordinate system attached to the crack tip. We

consider the area A bounded by the outer boundary Γ, the traction free crack faces, and the inner loop Γ0.

72 The rate of work P done by the tractions on Γ is equal to the rate of increase of the strain energy U̇ and kinetic energy Ṫ in

region A and the flux F of energy into the crack tip region:

P = U̇ + Ṫ + F (11.115)

where

P =

∫
Γ

tiuidΓ (11.116-a)

U = lim
Γ0→0

∫
A

W (εij)dA (11.116-b)

T = lim
Γ0→0

∫
A

1

2
ρu̇iu̇idA (11.116-c)

1

in contrast to the static case, the energy release rate can not be expressed by a path-independent contour integral because if a wave front intercepts one contour,

but not the second one, then two different values would be represented by only the contour integral.
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1

a(t)

Ω

X

V

0Γ

2

Γ

X

Figure 11.20: Dynamic Crack Propagation in a Plane Body, (Kanninen, 1984)

73 Since the loop Γ0 moves with the crack tip, regionA is time dependent. Therefore, the time rate of change of the strain energy

equals the integral overA of the time rate of change of the strain energy densityW (εij) less the flow of this density through the

loop Γ0. Hence,

U̇ = lim
Γ0→0

∫
A

Ẇ (εij)dA− lim
Γ0→0

∫
Γ0

W (εij)VndΓ (11.117)

where Vn = V n1 = V cos θ is the component of the crack-tip velocity normal to Γ0 and θ is the angle that the outward unit

normal to Γ0 makes with the x1 direction.

74 Thus,

dw = σijdεij (11.118-a)

Ẇ = σij ε̇ij = σij u̇i,j (11.118-b)

U̇ = lim
Γ0→0

∫
A

σij u̇i,jdA− lim
Γ0→0

∫
Γ0

W (εij)VndΓ (11.118-c)

Ṫ = lim
Γ0→0

∫
A

ρüiu̇idA− lim
Γ0→0

∫
Γ0

1

2
ρu̇iu̇iVndΓ (11.118-d)

75 Substituting into Eq. 11.115 we obtain

F = lim
Γ0→0

∫
Γ0

(
W +

1

2
ρu̇iu̇i

)
VndΓ +

∫
Γ

tiu̇idΓ− lim
Γ0→0

∫
A

(σij u̇i,j + ρüiu̇i)dA (11.119)

76 We then use

σij u̇i,j = (σij u̇i),j − σij,j u̇i (11.120)

and the equation of motion

σij,j = ρüi (11.121)

and the divergence theorem, then Eq. 11.119 reduces to

F = lim
Γ0→0

∫
Γ0

[(
W +

1

2
ρu̇iu̇i

)
Vn + tiu̇i

]
dΓ (11.122)
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11.12 Effect of Other Loading

77 This is the rate at which energy is lost from the body due to flux through Γ0. This last equation can be rewritten in terms of

the strain energy density w, and the kinetic energy density t (not to be confused with the traction),

F = lim
Γ0→0

∫
Γ0

[(w + t)V δ1j + σjiu̇i]njdΓ (11.123)

78 In an increment of time dt, the crack extends by da = V dt and the energy expended is Fdt. Thus the energy release rate is

J =
F

V
(11.124)

79 If we have a moving coordinate system x− y attached to the crack tip where x = X − a(t) and y = Y , then

u̇i = −V ∂ui

∂x
+
∂ui

∂t
(11.125)

under steady condition, the second term is equal to zero. On the other hand, close to the crack tip the displacement changes

rapidly with position (at a fixed time) and the first term dominates in all cases, ?? thus

J = lim
Γ0→0

∫
Γ0

[
(w + t)δ1j − σji

∂ui

∂x

]
njdΓ (11.126)

or

J = lim
Γ0→0

∫
Γ0

[
(w + t)dy − σjinj

∂ui

∂x
dΓ

]
(11.127)

This equation applies to all types of material.

11.12 Effect of Other Loading

This section is taken from (Reich, 1993)

11.12.1 Surface Tractions on Crack Surfaces

80 J integral was first extended by (Karlsson and Bäcklund, 1978) to account for the effect of surface tractions on the crack surfaces

involves simply extending the definition of the contour path to include the crack surfaces. The resulting form of the J integral

was then given as

J =

∫
Γ

(W dx2 − tj uj,1 dΓ) −
∫
Γt

t̂j uj,1 dΓ (11.128)

where Γt is that portion of the upper and lower crack surfaces between the points where Γ ends and begins and t̂i is the applied

surface traction vector.

81 The strain energy densityW is absent from the integral overΓt since the crack surfaces are coincident with the negative x1-axis

and there is no need to integrate in the x2-direction. Unfortunately, (Karlsson and Bäcklund, 1978) offered no proof showing that

path independence was maintained and a significant portion of their discussion was devoted to the finite element implementation

of this procedure.

82 Proof of path independence for this procedure was later provided by (Atluri, 1982) using the contour paths shown in Figure

21.1. The proof was given for the Ji integral, therefore, the strain energy density W is retained in the integrand of the integral

accounting for the applied surface tractions t̂i

Ji =

∫
Γ

(W ni − tj uj,i) dΓ +

∫
Γt

(W ni − t̂j uj,i) dΓ (11.129)

where Γt = Γ+
t ∪ Γ−

t .

161



D
R
A
FT

J INTEGRAL

11.12.2 Body Forces

83 The most straightforward method to account for body forces in the J integral is to add correction terms in the form of volume

integrals such that path independence is maintained. When body forces are presentσij,j = −bi andW,i ̸= (σjkuj,i),k . Therefore,

the integrand of volume form of the standard Ji integral (i.e. Equation ??) does not vanish, but instead is

Ji =

∫
Ω

(bj uj,i) dΩ ̸= 0 (11.130)

where bj is the body force vector. This means that the strain energy density W is a function of position and that (W,i)exp ̸= 0,

where (W,i)exp is the gradient of that portion of W that depends explicitly on xi.

84 For path independence to be maintained in the presence of body forces the volume integral shown above must be subtracted

from the standard line integral form of the Ji integral

Ji =

∫
Γ

(W ni − tj uj,i) dΓ −
∫
Ω

(bj uj,i) dΩ (11.131)

which corresponds to the form proposed by (Atluri, 1982).

11.12.3 Initial Strains Corresponding to Thermal Loading

85 In order to apply the Ji integral to problems in thermo-elasticity the strain energy density W must first be redefined. Looking

forward to the presentation of the extension in which thermal strains and pore pressures will be considered in combination, W
will be defined in terms of the net strains ε̄ij and the net effective stresses σ̄′

ij as

W =

∫ ε̄ij

0

σ̄′
ij dε̄ij (11.132)

and the net effective stresses σ̄′
ij being defined as

σ̄′
ij =

∂W

∂ε̄ij
(11.133)

86 It must be noted that in the absence of initial stresses σ0
ij that σij = σ̄′

ij , where σij are the total stresses. Therefore, σ̄′
ij can be

replaced by σij throughout this discussion. For a linear elastic material W is defined as

W =
1

2
Cijkl ε̄ij ε̄kl (11.134)

and the resulting constitutive law is

σ̄′
ij = Cijkl ε̄kl = Cijkl (εkl − α T δkl) (11.135)

which is identical to Equation 21.53.

87 Since the definition of the strain energy density W is now in terms of the net effective stresses σ̄′
ij , the Ji integral must also

be defined in terms of σ̄′
ij rather than the total stresses σij . The appropriate form of the Ji integral is

Ji =

∫
Γ

(W ni − t̄′j uj,i) dΓ (11.136)

where t̄′i = σ̄′
ijnj are the net effective surface tractions. On application of Green’s theorem to the line integral form of Ji the

resulting volume integral form is

Ji =

∫
Ω

[W,i − (σ̄′
jk uj,i),k] dΩ (11.137)

88 Some changes are also required in the definition of W,i due to the change in the definition of W . The chain rule is still applied

to obtain

W,i =
∂W

∂ε̄jk

∂ε̄jk
∂xi

(11.138)
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but ∂ε̄jk/∂xi is defined as

∂ε̄jk
∂xi

=
∂εjk
∂xi

−
∂ε0jk
∂xi

(11.139)

reflecting the contributions of the total and thermal strains, εjk and ε0jk , respectively. ∂εjk/∂xi is defined as

∂εjk
∂xi

=
1

2
[(uj,k),i + (uk,j),i] =

1

2
[(uj,i),k + (uk,i),j ] (11.140)

and ∂ε0jk/∂xi is defined as

∂ε0jk
∂xi

= α T,i δjk (11.141)

89 Recalling that σjk = σkj and substituting the above expressions for ∂εjk/∂xi and ∂ε0jk/∂xi into Equation 11.138 the expres-

sion for W,i can be rewritten as

W,i = σ̄′
jk [(uj,i),k − α T,i δjk] (11.142)

and inserted into Equation 11.137, the volume integral form of Ji. The expression for W,i clearly includes the σ̄′
jk(uj,i),k term

that also results from (σ̄′
jkuj,i),k . Therefore, in the absence of body forces σ̄′

jk,k = 0 and W,i ̸= (σ̄′
jkuj,i),k , leaving only a term

involving T,i in the integrand of the volume form of the Ji integral

Ji = −
∫
Ω

(α σ̄′
jj T,i) dΩ ̸= 0 (11.143)

where σ̄′
jj is the trace of the net effective stress tensor.

90 This means that W is function of position due to the presence of the thermal strains ε0jk and that (W,i)exp ̸= 0. To maintain

path independence the volume integral shown above must be subtracted from the standard line integral form of Ji yielding

Ji =

∫
Γ

(W ni − t̄′j uj,i) dΓ +

∫
Ω

(α σ̄′
jj T,i) dΩ (11.144)

which corresponds to the form proposed by (Shih et al., 1986) if the net effective stresses are replaced by the total stresses.

91 Including body forces along with the thermal strains at this point is actually quite simple. Recalling that σ̄′
jk,k = −b′j in the

presence of body forces the integrand of the volume form of the Ji integral will also include a term involving bj

Ji = −
∫
Ω

(α σ̄′
jj T,i − b′j uj,i) dΩ ̸= 0 (11.145)

92 To maintain path independence this volume integral must be subtracted from the standard line integral form of Ji to obtain

Ji =

∫
Γ

(W ni − t̄′j uj,i) dΓ +

∫
Ω

(α σ̄′
jj T,i − b′j uj,i) dΩ (11.146)

which is quite clearly a simple combination of Equations 11.144 and 11.130.

11.12.4 Initial Stresses Corresponding to Pore Pressures

93 As was the case when the Ji integral was applied to problems in thermo-elasticity, the strain energy density W must also be

redefined for problems in poro-elasticity. However, in this case the redefinition is more cosmetic in nature, withW being defined

in terms of the total strains εij and the effective stresses σ′
ij as

W =

∫ εij

0

σ′
ij dεij (11.147)

and the effective stresses σ′
ij are defined as

σ′
ij =

∂W

∂εij
(11.148)
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94 It must be noted that this definition of W is identical to the one given in Equation ??, where σij was used in lieu of σ′
ij .

However, since initial strains and stresses were not considered in Equation ??, σij = σ′
ij and this notation was valid, albeit

slightly misleading. For a linear elastic material W is defined as

W =
1

2
Cijkl εij εkl (11.149)

resulting in the following constitutive law

σ′
ij = Cijkl εkl (11.150)

95 The stress-strain relationship defining the total stresses σij is obtained by simply adding expressions for the initial stresses σ0
ij

and the effective stresses σ′
ij , as is dictated by the principle of effective stress

σij = Cijkl εkl + σ0
ij = Cijkl εkl − p δij (11.151)

which is identical to Equation 21.62.

96 Since the definition of the strain energy density W is now in terms of the effective stresses σ′
ij , the Ji integral must also be

defined in terms ofσ′
ij rather than the total stressesσij . This would also seem to be in agreement with of the classical interpretation

of the effective stresses (Terzaghi and Peck, 1967), where σ′
ij are the only stresses acting on the skeleton of the porous material,

which is in fact what is being fractured. The appropriate form of the Ji integral is

Ji =

∫
Γ

(W ni − t′j uj,i) dΓ (11.152)

where t′i = σ′
ijnj are the effective surface tractions.

97 This form of the Ji integral is valid so long as the only source of applied surface tractions t̂i on the crack surfaces is from fluid

in the crack, since in this case σ′
ij = 0 and t̂′i = 0, where t̂′i are the applied effective surface tractions. On application of Green’s

theorem to the line integral form of Ji the resulting volume integral form is

Ji =

∫
Ω

[W,i − (σ′
jkuj,i),k] dΩ (11.153)

98 Based on the expression for W given in Equation 11.147 and the previous proofs W,i can immediately be written as

W,i =
∂W

∂εij

∂εij
∂xi

= σ′
jk (uj,i),k (11.154)

and inserted in Equation 11.153, the volume integral form of Ji. In the absence of body forces σ′
jk,k = p,kδjk and W,i ̸=

(σ′
jkuj,i),k , leaving only the term involving p,k in the integrand of the volume form of Ji integral

Ji = −
∫
Ω

p,k δjk uj,i dΩ = −
∫
Ω

p,j uj,i dΩ ̸= 0 (11.155)

where p,j is the gradient of the pore pressures. This means thatW is a function of position due the presence of the pore pressures

and that (W,i)exp = 0.

99 To maintain path independence the volume integral shown above must be subtracted from the standard line integral form of

Ji yielding

Ji =

∫
Γ

(W ni − t′j uj,i) dΓ +

∫
Ω

p,j uj,i dΩ (11.156)

which is analogous to the form proposed by (Shih et al., 1986) for problems in thermo-elasticity.

100 Including body forces along with the pore pressures, which is typically the case for problems in poro-elasticity, is actually quite

simple at this point. Recalling that σ′
jk,k = −b′j in the presence of body forces, where the effective body forces b′j are defined in

Equation 21.64, the integrand of the volume form of the Ji integral can be written in one of two ways

Ji = −
∫
Ω

b′j uj,i dΩ = −
∫
Ω

(bj − p,j)uj,i dΩ ̸= 0 (11.157)

with the latter form being somewhat more illuminating than the former.

101 To maintain path independence this volume integral must be subtracted from the standard line integral form of Ji to obtain

Ji =

∫
Γ

(W ni − t′j uj,i) dΓ −
∫
Ω

(bj − p,j)uj,i dΩ (11.158)

which is quite clearly a simple combination of Equations 11.156 and 11.130.
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11.12.5 Combined Thermal Strains and Pore Pressures

102 In the presence of both thermal strains and pore pressures the strain energy density W is defined in terms of the net strain

tensor ε̄ij and the net effective stress tensor σ̄′
ij , just as it was in Equation 11.132 for problems in thermo-elasticity. The result-

ing constitutive law, as defined by Equation 11.135, is substituted into the principle of effective stress to obtain a stress-strain

relationship defining the total stresses σij

σij = Cijkl ε̄kl + σ0
ij = Cijkl (εkl − α T δkl) − p δij (11.159)

which is identical to Equation 21.66. Of course, this stress-strain relationship is valid only so long as all initial stresses correspond

to pore pressures.

103 Since the definition of the strain energy density W corresponds to that given for problems in thermo-elasticity the form of

the Ji integral and the gradient of the strain energy density W,i will also correspond to those for problems in thermo-elasticity.

Therefore, when thermal strains and pore pressures are considered in combination the line integral form of Ji is given by Equation

11.136; the volume integral form of Ji is given by Equation 11.137; and the expression for W,i is given by Equation 11.138.

104 However, in the absence of body forces σ̄′
jk,k = p,kδjk rather than σ̄′

jk,k = 0, as it was in the same situation for problems

in thermo-elasticity, and W,i ̸= (σ̄′
jkuj,i),k , leaving terms involving both T,i and p,j in the integrand of the volume form of Ji

integral

Ji = −
∫
Ω

(α σ̄′
jj T,i + p,j uj,i) dΩ ̸= 0 (11.160)

where T,i is the gradient of the temperatures and p,j is the gradient of the pore pressures. This means that W is a function of

position due the presence of the pore pressures and that (W,i)exp = 0. To maintain path independence the volume integral

shown above must be subtracted from the standard line integral form of Ji yielding

Ji =

∫
Γ

(W ni − t̄′j uj,i) dΓ +

∫
Ω

(α σ̄′
jj T,i + p,j uj,i) dΩ (11.161)

which is a simple combination of the extensions for thermal strains and pore pressures.

105 Including body forces along with the thermal strains and pore pressures is again a simple procedure at this point. Recalling

that σ̄′
jk,k = −b′j in the presence of body forces, where the effective body forces b′j are defined in Equation 21.64, the integrand

of the volume form of the Ji integral can be written as

Ji = −
∫
Ω

(α σ̄′
jj T,i − b′j uj,i) dΩ = −

∫
Ω

[α σ̄′
jj T,i − (bj − p,j)uj,i] dΩ ̸= 0 (11.162)

With the latter form again being the more illuminating of the two forms shown.

106 To maintain path independence this volume integral must be subtracted from the standard line integral form of Ji to obtain

Ji =

∫
Γ

(W ni − t̄′j uj,i) dΓ +

∫
Ω

[α σ̄jj T,i − (bj − p,j)uj,i] dΩ (11.163)

which is quite clearly a simple combination of Equations 11.161 and 11.130. If surface tractions are applied in the crack the contour

path for Ji integral must be expanded to include the upper and lower crack surfaces, Γ+
t and Γ−

t , respectively,

Ji =

∫
Γ

(W ni − t̄′j uj,i) dΓ +

∫
Γt

(W ni − t̂′j uj,i) dΓ +

∫
Ω

[α σ̄jj T,i − (bj − p,j)uj,i] dΩ (11.164)

where Γt = Γ+
t ∪ Γ−

t and t̂′j are the applied effective surface tractions, as defined in Equation 21.65.

11.13 Epilogue

107 Finally, as an epilogue we note

1. When Rice derived the J integral in 1968 he did not propose it as a criteria for crack growth, this was done in 1971 by

Brobery.
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2. J is valid for non-linear elastic systems. Many problems in plasticity can be treated as such using deformation theory of

plasticity (i.e. non-linear elastic systems). In general, however, if unloading occurs (during crack growth for instance), then

incremental theory of plasticity should be used

3. Several attempts are continuously made to extend J while still retaining its essential features: a) Energy release rate; and b)

contour integral; One of them, citepjextension:

ĴK = JKe + JKd + JKt + JKp + JKb (11.165)

for elastic, dynamic, thermal, plastic, and body forces respectively. ∗ An Elasto Plastic Finite Element Investigation of Crack

Initiations Under Mined Mode Static and Dynamic Loading by Ahmad, Barnes, and Kanninen, in Elasto Plastic Fracture

ASTM STP 803, 1983.
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Chapter 12

FRACTURE DETERIORATION ANALYSIS OF CONCRETE

12.1 Introduction

1 It is ironic that although the foundation for fracture mechanics was laid by Griffith in the early thirties for brittle materials (such

as concrete) (Griffith, 1921), it has been mostly applied to metallic materials. Although there have been some pioneering efforts

to apply fracture mechanics to concrete (Kaplan, 1961), it was not until the mid-seventies that a number of researchers from the

academic community focused their attention on various aspects of this application.

2 In applying fracture mechanics to concrete, much was initially borrowed from the wealth of information and research previously

undertaken in conjunction with metals by metallurgists or mechanical engineers. However, it quickly became evident that by its

very heterogeneous nature concrete has some unique fracture characteristics, which required the alteration of existing models.

3 By now fracture mechanics is universally acknowledged as a viable tool of analysis for investigation of concrete cracking. And

after many years of development on numerous (plasticity based) constitutive models for concrete, tensile cracking remains its

undisputed “Achille’s heel”. For the most part, even the simplest constitutive models appear to perform reasonably well under

compressive regimes, however their capabilities are seriously challenged under tensile stresses. This apparent inability to properly

model tensile cracking is of minor importance in reinforced concrete structures in which the steel “takes over” the tensile stresses.

4 However for unreinforced structures, such as dams, the apparent inability of the constitutive models to properly and efficiently

model tensile cracking is a major handicap. As such for unreinforced concrete structures prone to tensile cracking, a fracture

mechanics based model (rather than a plasticity based one) should be used.

5 Whereas an inappropriately large number of papers have been published on computational models for concrete (some of which

will be discussed in a separate chapter), relatively few research has been undertaken to properly understand and characterize

fracture models. Hence, this chapter will exclusively focus on the phenomenological aspects of concrete fracture from a material

point of view.

6 For additional information, the reader is directed to the proceedings of the international conferences/workshops on Fracture of

Concrete: Lausanne (Wittmann, 1983), Houston (Shah and Swartz, 1989), Evanston (Shah, 1984), Vienna (vie, 1988), Breckenridge

(fra, 1992), Zurich (Whitman, 1993); to RILEM reports, (Carpinteri and Ingraffea, 1984), and (Sih and DiTommaso, 1984); special

ACI publications (ACI 446.1R-91, 2002). More specialized coverage of dam fracture can be found in the proceedings of the Boulder

(Saouma et al., 1991b) and Cahmberry (Bourdarot et al., 1994) conferences.

7 Finally, whereas we shall focus exclusively on concrete, most of the presentation in this chapter applies also to ceramics and

fiber reinforced ceramic.

12.2 Phenomenological Observations

8 We start by discussing some of the general phenomenological aspects associated with fracture testing and response of concrete.

12.2.1 Load, Displacement, and Strain Control Tests

9 Before proceeding with the coverage of linear and non-linear fracture mechanics of concrete, it is essential that the reader

understand the difference in material and structural response when a specimen is subjected to uniform tensile load, displacement

or strain control during testing. Modern testing equipment can be programmed to apply a pre-determined rate of load (as measured

by a load cell), of displacement (as measured by an internal displacement transducer), or of strain (measured by a strain/clip gage

or other instruments), Fig. 12.1

Load Control: the cross-head applies an increasing load irrespective of the specimen deformation or response. For all materials,

when the tensile strength is reached, there is a sudden and abrupt brittle failure. The strain energy accumulated in the

specimen is suddenly released once the ultimate load of the specimen is reached, thus the sudden failure can be explosive.
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Figure 12.1: Test Controls

Displacement/Stroke Control: the cross-head applies an increasing displacement to the specimen. For softening material there

will be a post-peak response with a gradual decrease in stress accompanying an increase in displacement. In this case, there

is a gradual release of strain energy which is then transferred to surface energy during crack formation.

Strain Control: is analogous to displacement control, except that the feedback is provided by (“strategically positioned”) strain

gage or a clip gage or an arbitrary specimen deformation (not necessarily corresponding to the loading direction). To

accomplish this test a clip gage or a strain gage has to provide the feedback signal to the testing equipment in order to

accordingly adjust the stroke.

10 Most concrete fracture tests are conducted under strain control with a gage located at the mouth of the crack providing the

specimen response.

11 Both stroke and strain controlled tests require a closed-loop experimental set up, which is usually expensive and was not widely

available until very recently.

12.2.2 Pre/Post-Peak Material Response of Steel and Concrete

12 As an introduction to concrete fracture, let us compare the pre- and post-peak response of metals and concrete, as illustrated

in Fig.12.2, both obtained in a strain-controlled test of an uncracked or un-notched specimen.

ε

σ σ

ε ε

Steel Concrete

.1% .01%.2% 25%

f’

.6f’c

c

Figure 12.2: Stress-Strain Curves of Metals and Concrete

1. Pre-peak:

a) Metal exhibits a linear elastic response up to the yield stress σyld, and an approximate strain of 0.1%. Subsequently,

due to internal dislocation plastic deformation with strain up to 25% may result to be followed by strain hardening.

b) Concrete exhibits a linear response up to approximately 0.6f ′
t . Subsequently, internal microcracking induces a non-

linear response up to a peak stress f ′
t and a corresponding strain of approximately 0.01%.

Under load control only the pre-peak response can be measured.

2. Post-peak:

a) Metals response in the post-peak zone is not yet well understood. Not only is it not of practical usefulness, but also it

is largely overshadowed by necking.

b) Concrete response in the post-peak zone is most interesting, as it can exhibit additional strains. The descending branch

of the concrete response in Fig. 12.2 is an idealization of the average material response. A more accurate description

should account for the localization of the induced cracks. Thus away from the localized crack there is an elastic

unloading, and at the crack, since a strain cannot be properly defined, a stress-crack opening displacement is a more

appropriate model. This will be discussed in the subsequent section.

Post-peak responses can be obtained only under displacement or strain controlled tests.
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13 In either case, the area under the stress-strain curve represents the energy that can be absorbed by a unit fracture surface and

thus concrete will exhibit a more brittle response than metals.

14 Having experimentally observed that the macroscopic response of concrete exhibits a softening response, and having attributed

the ductile response of metals to internal dislocation, we pose the next question, Why is concrete softening?

12.3 Localisation of Deformation

12.3.1 Experimental Evidence

15 If we consider a concrete specimen, loaded uniaxially by a tensile load F , we can record elongation by an LVDT (linearly

variable displacement transducer) mounted as in configuration 1, 2 or 3, Fig. 12.3.

F

u

FF

u

3

u

Elastic Unloading Elastic Softening Snap-back

21

F, u

1

1

2
3

Figure 12.3: Caputring Experimentally Localization in Uniaxially Loaded Concrete Specimens

16 Once the peak load is reached, and cracking is initiated, transducer 1 will record elastic unloading, 2 strain softening, and 3

snap-back.

17 If we were to homogeneize by taking σ = F/A, and ε = u/L, it is clear that we can not provide a unique definition of the

strain across the crack. At this location, the strain can no longer be defined, and instead we should characterize the crack by its

crack opening displacement COD which will then be plotted along with the stress (σ-COD).

18 This capability of transmitting stresses across a crack under controlled displacement is a characteristic of softening materials.

12.3.1.1 σ-COD Diagram, Hillerborg’s Model

19 From the previous discussion, it is clear that concrete softening is characterized by a stress-crack opening width curve (and not

stress-strain). The exact charachterization of the softening response should ideally be obtained from a uniaxial test of an uncracked

specimen. However, it has been found (Li and Liang, 1986; Hordijk et al., 1989) that not only are those tests extremely sensitive,

but drastically different results can be obtained from different geometries, sizes, and testing machines. Hence, the softening curve

is often indirectly determined by testing notched specimens.

20 In what is probably the most referenced work in the nonlinear fracture of concrete literature, Hillerborg (Hillerborg et al.,

1976a) presented in 1976 a very simple and elegant model which has been previously described qualitatively. In this model, the

crack is composed of two parts, Fig. 12.4:

1. True or physical crack across which no stresses can be transmitted. Along this zone we have both displacement and stress

discontinuities.

2. Fictitious crack, or Fracture Process Zone (FPZ) ahead of the previous one, characterized by:

a) peak stress at its tip equal to the tensile strength of concrete

b) decreasing stress distribution from f ′
t at the tip of the fictitious crack to zero at the tip of the physical crack

It should be noted that along the FPZ, we have displacement discontinuity and stress continuity.

21 This model is among the most widely used in non-linear fracture mechanics finite element analysis, however due to the com-

putational complexity, few “engineering” structures have been analyzed. In addition,

1. There is an inflection point in the descending branch.

a) The first part has been associated with (unconnected) microcracking ahead of the stress-free crack

b) The second part with bridging of the crack by aggregates
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Figure 12.4: Hillerborg’s Fictitious Crack Model

2. The area under the curve, termed the fracture energy GF (not to be confused with Gc or critical energy release rate), is a

measure of the energy that needs to be spent to generate a unit surface of crack.

3. By analyzing numerous test data, Bažant and Oh (Bažant, 1984) found that GF may be predicted (with a coefficient of

variation of about 16%) from the following empirical equation:

GF = 0.0214(f ′
t + 127)f

′2
t
da
Ec

(12.1)

where Ec and f ′
t are in pounds per square inch, da is the aggregate size in inches.

4. GF : or fracture energy. For gravity dams, a value of 1.35 × 10−3
kip/in. is recommended, (Saouma et al., 1991a). Note

that for arch dams, this value could probably be increased on the basis of laboratory tests. Also, laboratory tests could be

performed on recovered cores to obtain a better indication of GF , (Brühwiler, E., 1988).

5. Shape of the softening diagram (σ−COD), and in general a bi-linear model for the strain softening should be used. With

reference to Fig. 12.5, A topic of much research lately has been the experimental determination of the fracture energy GF ,

and the resulting shape of the softening diagram (Cedolin et al., 1987; Petersson, 1981; Whitman et al., 1988; Jeang and

Hawkins, 1985; Gopalaratnam and Shah, 1985; Duda, 1990; Giuriani and Rosati, 1986). In order to assess the relevance of

the exact value of GF and the softening curve shape on numerical simulations, three different set of fracture experiments

are analysed using the average reported fracture energy. The shape of the softening diagram is assumed to be the bilinear

one proposed in (Whitman et al., 1988), Fig. 12.5. This simple model can be uniquely defined in terms of the tensile strength

f ′
t , and the fracture energyGF . In (Brühwiler and Whitman, 1990a), it was found that the optimal points for concrete with

1” maximum size aggregate are:

s1 = 0.4f ′
t (12.2)

w1 = 0.8
GF

f ′
t

(12.3)

w2 = 3
GF

f ′
t

(12.4)

whereas for structural concrete, (Whitman et al., 1988), the corresponding values are:

s1 =
f ′
t

4
(12.5)

w1 = 0.75
GF

f ′
t

(12.6)

w2 = 5
GF

f ′
t

(12.7)
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Figure 12.5: Concrete Strain Softening Models
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Figure 12.6: Strain-Softening Bar Subjected to Uniaxial Load

where f ′
t is the uniaxial tensile strength. Within the context of a nonlinear fracture mechanics analysis, this tensile strength

can not be taken as zero, otherwise there will be no fracture process zone. As f ′
t is seldom determined experimentally, it is

assumed to be 9% of f ′
c, (Mindess and Young, 1981).

6. In lieu of a direct tension test, a flexural test can be performed under strain control, and the fracture energy GF could still

be determined from the area under the load and corresponding displacement curve.

7. For dynamic analysis, the fracture properties of dam concrete depend on both rate of loading and preloadings. Test results

(Brühwiler and Whitman, 1990a) show that the fracture properties generally increase with increasing loading rate. However,

dynamic compressive preloading leads to a reduction of the fracture properties at both quasi-static and high loading rates.

12.3.2 Theoretical Evidence

12.3.2.1 Static Loading

22 Let us consider a simple bar subjected to a uniform displacement (not load) and made up of m elements, Fig. 12.6.

23 Prior to reaching the peak stress ft, we have a linear stress strain relationship σ = Eε.

24 Once the peak load is reached, the concrete softens and the peak strain is εu. At that point the load carrying capacity of the

bar is exhausted.

25 The post-peak stress is given by

σ = ft + h(ε− ε0) (12.8)
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for degrading (softening) material h (softening modulus) is less than zero, and for linear softening

h = − ft
εu − ε0

(12.9)

where ε0 = ft/E.

26 We next assume that one of the elements is weaker than the otherm− 1 ones. Thus, when this element reaches its own tensile

strength (lower than ft), it fails. Upon failure of this element, the other ones will simply unload elastically. Thus, in the post-peak

zone the displacement will be

u =
L

m
εf + (m− 1)

L

m
εe (12.10-a)

εf =
ft
E

+
σ − ft
h

(12.10-b)

εe =
σ

E
(12.10-c)

ε =
u

L
(12.10-d)

⇒ ε =
σ

E
+
E − h

Eh

σ − ft
m

(12.10-e)

27 If we define

n =
εu
ε0

(12.11)

then h = −E/(n− 1) and Eq. 12.10-e reduces to

ε =
σ

E
+
n(ft − σ)

mE
(12.12)

and the post-peak slope is

ε̇

σ̇
=

1

E
− n

mE
(12.13)

28 From Fig. 12.6, we note that depending on the number of element used (m), there is a wide range of possible responses. For

m = 1 we have the softening curve reproduced, however form = nwe do have a brittle failure. Form = 2 half the bar localizes,

and for m > n we would have a strain decrease, i.e. snap-back behavior. This is impossible to achieve experimentally. Physically,

that implies that the localization zone can not absorb the elastic energy released by the elastic part of the bar.

29 If we use an infinite number of elements (m → ∞), then from Eq. 12.12 and 12.13 we note that we would have an elastic

unloading. Physically, this is impossible as it would imply failure occured without dissipation of energy. As a result we would

have:

• Loss of local material stability

• Loss of structural stability

• Loss of ellipticity

• Mesh dependence

30 To illustrate this, let us consider a concrete member subjected to uniaxial displacement with the following properties: f ′
t = 3

MPa; E =30 GPa; wmax=.02 cm; GF = 1
2
(3 × 106)(2 × 10−4) = 300 N/m. From these properties, the peak elastic strain is

ε0 = 3×106

3×1010
= 10−4

. Hence, the maximum elastic displacement is 10−4L. Let us now consider the load displacement curve

(P − u) of this member for various lengths L.

31 In all cases the peak load will be Pmax = 3A where A is the cross sectional area (since results are independent of A we shall

assume A=1). The corresponding displacement will be given by u = ε0 × L.

32 Similarly, in all cases the maximum displacement will be umax = wmax = .02 cm and the corresponding load will obviously

be equal to zero.

33 The displacement corresponding to the peak load will be equal to wmax if L = wmax
ϵ0

= 2×104

10−4 = 2 m. Fig. 12.7 illustrates the

load displacement curves in terms of the length L. This figure calls for the following observations:
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Figure 12.7: Load Displacement Curve in terms of Element Size
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Table 12.1: Strain Energy versus Fracture Energy for uniaxial Concrete Specimen

1. Specimens less than 2 m long do exhibit a softening branch which can be experimentally obtained only through displace-

ment controlled tests.

2. For a 2 m specimen, we do have a perfectly brittle response.

3. For specimens larger than 2 m, there is a snapback, which can only be hypothesized but not experimentally obtained.

4. Large specimens could still be tested, however rather than using the entire specimen length as “gage length” (or displace-

ment/stroke control test), we would have to use a smaller gage length (through strain control tests) across a potential crack.

Thus a notched specimen should be used.

34 In summary, the load displacement curve of this simple test is clearly size dependent. The larger the specimen, the larger the

stored strain energy which would be released to form surface energy.

35 An energetic interpretation of this figure would lead us to compare the elastic energy U = 1
2
f ′
tϵuAL = 1

2
(3 ×

106)(10−4)AL = 150AL at peak load with the fracture energy GF = 300 N/m. As long as the strain energy is smaller than

the fracture energy, then we do have structural softening; if the two energies are equal, then we would have a perfectly brittle

response; finally, if the elastic energy exceeds the fracture energy, then we would have a sudden failure with snap-back. Table

12.1 tabulates those energy values.

36 Again we observe that
U
A

= GF for L = 2 m. Thus, as long as the energy released can be transformed into fracture energy,

we do have a stable configuration. However if the accumulated strain energy being released (including not only the one stored

in the specimen, but also in the experimental set-up) is greater than the one which can be absorbed to create new surface energy

(cracks), then we do have instability.

37 This simple exercise can be generalized to the analysis of simple tensile structures in which elements are either perfectly brittle

and/or softening.

38 Finally, and as a minor remark, for a successful post-peak experiment the total strain energy (of the specimen and of the testing

frame) should be less than the fracture energy. Hence, to avoid snap-backs the testing frame should be as stiff as possible.

12.3.2.2 Dynamic Loading

Adapted from (Sluys, 1992)

12.3.2.2.1 Loss of Hyperbolicity

39 We can write the dynamic equilibrium of a system along the x axis as

ρ
∂2u

∂t2
=
∂σxx

∂x
+
∂σxy

∂y
+
∂σxz

∂z
(12.14)
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For a uniaxial state of stress, and with σxx = f(εxx), this equation reduces to

c2
∂2u

∂x2
=
∂2u

∂t2
(12.15)

where c2 = 1/ρ ∂f
∂ε

and is the square of the speed of the wave propagation. Equation 12.15 is the classical wave equation of

motion (hyperbolic equation). D’alembert’s solution of this equation is of the form

u = f(x+ ct) + g(x− ct) (12.16)

and a real solution exists as long as ∂f/∂ε ≥ 0. Thus, in a softening regime where ∂f/∂ε < 0, the speed of wave propagation

becomes complex and the problem is thus ill-posed. We thus have a loss of hyperbolicity.

12.3.2.2.2 Wave Equation for Softening Maerials

40 Considering

Equation of Motion: ρ
∂2u

∂t2
=

∂σ̇

∂x
(12.17-a)

Kinematic Equation: ε̇ =
∂u̇

∂x
(12.17-b)

Constitutive Equation: σ = fε (12.17-c)

where u̇ is the velocity v, and the strain can be decomposed into an elastic and inelastic component.

ε = εe + εi (12.18)

and thus

σ̇ = f ′ε̇i (12.19)

where f ′
denotes differentiation with respect to the inelastic strain,

41 Taking ε̇e = σ̇/E, the x derivative of the preceding equation yields

∂σ̇

∂x
= f ′ ∂ε̇i

∂x
(12.20-a)

= f ′[
∂ε̇

∂x
− ∂ε̇e
∂x

] (12.20-b)

= f ′[
∂2u̇

∂x2
− 1

E

∂σ̇

∂x
] (12.20-c)

⇒ ∂σ̇

∂x
=

f ′E

E + f ′
∂2v

∂x2
(12.20-d)

42 Substituting this equation into Eq. 12.17-a we obtain the wave equation for a one-dimensional strain-softening element

f ′ + E

c2e

∂2v

∂t2
− f ′ ∂

2v

∂x2
= 0 (12.21)

where ce =
√
E/ρ is the linear elastic longitudinal wave velocity. This equation should be contrasted with Eq. 12.15 for the

elastic solids.

43 One way to solve this second order partial differential equation (linear only if f ′
is constant) is to consider the variation of the

first derivative of the velocity v with respect to both x and t

d

(
∂v

∂t

)
=

∂2v

∂t2
dt+

∂2v

∂x∂t
dx = 0 (12.22-a)

d

(
∂v

∂x

)
=

∂2v

∂x2
dx+

∂2v

∂x∂t
dt = 0 (12.22-b)
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12.4 Griffith Criterion and FPZ

44 Combining the last three equations together yields a system of three second order differential equations (E + f ′)/c2e 0 −f ′

dt dx 0
0 dt dx




∂2v
∂t2
∂2v
∂x∂t
∂2v
∂x2

 = 0 (12.23)

45 The characteristic determinant is∣∣∣∣∣∣
(E + f ′)/c2e 0 −f ′

dt dx 0
0 dt dx

∣∣∣∣∣∣ = E + f ′

c2e
dx2 − f ′

dt2 = 0 (12.24)

If the determinant is equal to zero, then a solution for the curve in the x − u − t plane should coincide with the characteristic

direction.

dx

dt
= ±ce

√
f ′

E + f ′ (12.25)

46 In a wave equation, the characteristic (±dx/dt) coincides with the wave speed (±c). In case of softening (f ′ < 0) and if we

have snap-through (f ′ > −E), then the characteristics and therefore the wave speeds are imaginary. This results in a loss of

hyperbolicity into ellipticity whenever softening occurs.

47 We thus have a domain governed by hyperbolicity, and another one by ellipticity where the wave can not propagate. Spatial

interaction between the two is impossible, and we have an ill-posed problem.

48 A strain-softening material is thus non-dispersive. In a dispersive media, harmonic waves with different frequency propagate

with different wave speeds.

49 Assuming that we have a single linear harmonic wave propagation

v(x, t) = Aei(kx−ωt)
(12.26)

where ω is the angular frequency, k = 2π/λ the wave number. Substituting Eq. 12.26 into 12.21 we obtain

ω = ce

√
f ′

E + f ′ k (12.27)

The wave velocity being equal to

cf =
ω

k
(12.28)

it is now apparent that in a softening material c = cf is independent of k and is therefore non-dissipitative, thus all the waves

would have the same imaginary speed.

50 For proper description of localisation, wave propagation must be dispersive.

12.3.3 Conclusion

In summary, Fig. 12.8 illustrates the localization of strain in a plate subjected to uniform tensile deformation.

12.4 Griffith Criterion and FPZ

51 Let us consider a cohesive crack with both normal and tangential tractions in a thin plate subjected to far field stresses, and let

us assume the crack is to be under general mixed mode conditions, Figure 23.16.

52 To verify if the non-linear model satisfies Griffith criterion, it is necessary to compute the energy released by a unit crack

propagation. The J-integral provides a method to evaluate the energy release rate. The J-integral is a path independent integral

and in two-dimensional is given by:

J =

∮
Γ

(Wnx − t̂
∂u

∂x
)dΓ (12.29)
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Figure 12.9: Griffith criterion in NLFM.

176



D
R
A
FT

12.4 Griffith Criterion and FPZ

53 Due to its path independent character it is possible to evaluate the J-integral along the crack surfaces where nx = 0.

J(Γo) = −
∫
Γo

t̂
∂u

∂x
ds =

∫
FPZ

(
τ
∂u

∂x
+ σ

∂v

∂x

)
dx (12.30)

54 Applying Leibnitz rule for the differentiation of definite integrals
1

the J-integral is equivalent to:

J(Γo) =

∫
FPZ

[
d

dx

(∫ u

0

τ du

)]
dx +

∫
FPZ

[
d

dx

(∫ v

0

σ dv

)]
dx (12.31)

55 The expressions in parentheses represent the surface energies dissipated in mode I and II at every point along the fracture

process zone normalized with respect to crack surface.

56 Hence, we define:∫ u

0

τ du = qII(x),

∫ v

0

σ dv = qI(x) (12.32)

J(Γo) =

∫
FPZ

dqII(x)

dx
dx +

∫
FPZ

dqI(x)

dx
dx = GII

c +GI
c = Gc (12.33)

where GII
c and GI

c is the energy dissipated by a unit propagation of the cohesive crack in mode II and I respectively.

57 It should be noted that in general, GII
c and GI

c are not equivalent to GII
F and GI

F , but are rather functions of these and the

stress state along the interface. However, it is possible to consider two special cases for pure mode I and II cracks.

58 In the case of pure mode I crack, the J-integral is equal to:

J(Γo) =

∫
FPZ

[
d

dx

(∫ v

0

σ dv

)]
dx =

∫ wσ

0

σ(v) dv = GI
F (12.34)

59 Similarly, in the case of pure mode II crack, the J-integral is equal to:

J(Γo) =

∫
FPZ

[
d

dx

(∫ u

0

τ du

)]
dx =

∫ wτ

0

τ(u) du = GII
F (12.35)

where wσ and wτ is the critical crack opening and sliding respectively for which normal and tangent stresses can no longer be

transferred across the crack.

60 The following conclusion, can be drawn based on the basis of the previous discussion:

1. It was shown that a unit extension of a cohesive crack model dissipates energy whose amount depends on the softening

laws used by the model. The amount of dissipated energy also depends on the loading conditions in FPZ. In pure mode

I and mode II loading, specific fracture energies GI
F and GII

F are dissipated respectively. If the structural system cannot

provide these energies, the crack would not propagate.

2. In the limiting case, when the dimensions of the analyzed problem increase, the cohesive crack gives identical results as

LEFM.

3. In finite element implementation, errors are introduced due to discretization errors. In large structures, fine mesh would

be necessary at the crack tip to model the fracture process zone. If the FPZ is not modeled adequately, the Griffith criterion

for crack propagation is violated, and erroneous results will be obtained.

1 d

dt

∫ b
a
f(x, t)dx =

∫ b
a

∂f
∂t (x, t)dx; In other words, differentiation and integration can be interchanged.
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Chapter 13

FRACTURE MECHANICS of CONCRETE

13.1 Fracture Toughness Testing of Concrete: a Historical Perspective

Section adapted from ACI Committee 446 (2009)

1 ACI 446.1R-91 (2002) describes various methods for fracture toughness testing of concrete, summarized and extended briefly

here.

2 Kaplan (1961), assuming LEFM conditions prevail, was the first to attempt to determine the fracture toughness of concrete.

Subsequent analysis in the 1970s and early 1980s showed that LEFM was not an appropriate model for fracture of concrete

(Walsh, 1972), (Walsh, 1976), and (Swartz et al., 1982)). In retrospect, now knowing that the fracture process zone may be very

long, we understand why LEFM is inapplicable.

3 Many attempts have been made to measure the fracture toughness of concrete using beams, assuming the existence of an

effective LEFM crack. These include various compliance calibration methods applied to beams (Swartz et al., 1978), (Swartz and

Go, 1984), (Swartz and Refai, 1989) (Jenq and Shah, 1985).

4 Wedge splitting tests on various compact tension specimens have also been proposed (Linsbauer and Tschegg, 1986), (Brühwiler,

E., 1988), (Brühwiler and Whitman, 1990b), (Brühwiler et al., 1991), (Brühwiler, E. and Saouma, V.E., 1990). The apparent fracture

toughness,KIc, or more properly,KQ, is obtained by the same method as described in for notched beam tests. The effective crack

length, which accounts for the fracture process zone, is determined by the compliance method, based on finite element calibration.

For that purpose, unload-reload cycles are performed during the test. Other methods such as the evaluation of fracture energy

from the area under the load-displacement diagram and the size effect method are more applicable, as described next.

5 An effective LEFM crack method based on the work of Nallathambi and Karihaloo (1986) has been proposed to RILEM as a

standard, (Karihaloo and Nallathambi, 1987).

6 The work of fracture method, originally developed for ceramics (Nakayama, 1965), (Tattersall and Tappin, 1966), is the first

method of testing for fracture properties of concrete to be proposed as a standard (RILEM Committee on Fracture Mechanics of

Concrete - Test Methods, 1985). The basis for applying this method to concrete was developed by Hillerborg and his co-workers,

(Hillerborg, 1985b). Their method is based upon the cohesive crack model. The method can be applied to a variety of test specimen

geometries but the proposed standard uses a beam specimen loaded in three-point bending with a central edge notch.

7 In summary, the RILEM work-of-fracture method is a practical approach, which is suitable for use in laboratories that do

not have very elaborate equipment. The method incorporates a number of compromises in order to simplify testing while still

obtaining useful results (Hillerborg, 1985b). The method is based on a theory that has gained wide acceptance, the cohesive crack

model (Hillerborg et al., 1976b). The fracture energy method is conceptually simple, requiring no LEFM assumptions.

8 Round-robin tests from 14 laboratories incorporating about 700 beams were reported by Hillerborg (1985a). With regard to

variation of results within a given tests series, the coefficient of variation ranged from about 2.5% to 25% with most results around

10 to 15%.

9 There are, however, certain aspects in which the RILEM work-of-fracture method requires improvement. The size dependence

of fracture energy GRf obtained according to the existing RILEM recommendation on the work of fracture method has been

investigated by Planas and Elices (1988b) and Planas and Elices (1988a) on the basis of solution of an integral equation and by

Bažant and Kazemi (1990a) on the basis of the size effect law.

10 The RILEM work-of-fracture method does not give results independent of the size of the cracked area for a given beam depth,

and thus the value ofGRf is only an approximation of the true energy parameter which characterizes the surface energy and the

energy of process zone formation. Furthermore, the work-of-fracture method gives only one parameter, GRf , which is a lower

bound on the true fracture energy of the concrete. Also, the true fracture energy, GF , may not be the most important parameter

in design; rather Gf (the area under the initial portion of the cohesive -COD curve may be more important).

11 The size effect method has also been proposed as the basis for a fracture toughness test standard, (Bažant and Kazemi, 1990b),

(Bažant and Pfeiffer, 1987), (Karihaloo and Nallathambi, 1987). This method is appealing in that only peak loads need be deter-

mined; no displacement measurements are required. However, after some testing and analysis, it has been determined that to
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develop a fracture toughness test method based upon the size effect would (arguably) require an unreasonably wide range of

specimen sizes, with required specimen sizes too large to be practical.

12 A stiff direct tension test performed on a standard 6 inch diameter by 12 inch long cylinder to obtain the cohesive crack ( -COD)

relationship has been proposed by Lenke and Gerstle (2001), who have proposed a test standard based upon their work.

13.2 Nonlinear Fracture Models

13.2.1 Models

13.2.1.1 Cohesive Crack Model

13 The cohesive crack model of Hillerborg, is by far the most important and widely used model. It has already been discussed in

Sect. ??sect:hillerborg-model.

13.2.1.2 Jenq and Shah Two Parameters Model

14 To circumvent the problems associated with nonlinear fracture, and combing the effective crack length proposed by Irwin (one

which takes into account the plastic zone) with the CTOD criteria, Jenq and Shah (1985) have introduced a two-parameter-model.

To introduce this model, let us first consider the load CMOD (crack mouth opening displacement) of a notched specimen. From

this diagram the following three stages can be identified:

1. Linear elastic response up to a load corresponding approximately to
Pcr
2.

. That is, the induced LEFM KI is less than
KIc
2.

.

During this stage the CTOD (crack tip opening displacement) is zero as predicted by LEFM.

2. During the second stage, significant inelastic deformation takes place. This is caused by the formation of the process zone

ahead of the crack tip (the existing crack being prenotched or precast, and not the result of some prior crack nucleation/ex-

tension, for which a process zone first has to be developed). This process zone formation has also been referred to as slow

crack growth. As a result of this microcracking the crack tip starts to open in a fashion similar to the blunting of sharp

cracks in metals due to yielding.

3. At the peak load, and for unstable geometries (i.e., increasing KI with increasing crack length a), we have two conditions

that are simultaneously satisfied:

KI = KS
Ic (13.1)

CTOD = CTODc (13.2)

where the right hand side values are now considered material properties, and the CTOD refers to the notch opening (and

not crack) opening.

15 Thus in this simple, clear, and elegant model we implicitly account for softening by introducing a second parameter (CTOD),

whereas in Hillerborg’s approach the SIF concept is entirely discarded and replaced by a fictitious load, the distribution of which

requires at least two parameters.

16 This model has been shown to yield results that are specimen size insensitive. A minor drawback of this model is that it requires

an analytical expression of the COD andKI along the crack for the geometry considered. In most cases this entails a finite element

calibration.

17 This model requires an analytical expression for KI and the CTOD along the crack for each geometry considered, which in

most cases can only be obtained through a finite element calibration. The model distinguishes between notch and crack length,

and CTODc is evaluated at the notch, thus the nonzero value for CTODc. Based on an extensive test program, the critical

values, KS
Ic and CTODc, were found to be size-independent material properties.

13.2.2 Characteristic Lengths

13.2.2.1 Hillerborg

18 Associated with this model is the characteristic length, lch, also proposed by Hillerborg et al. (1976a) in 1976 and which is a

material property which gives an indication of the material brittleness, and is defined as:

lch =
EGF

f
′2
t

(13.3)
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where,E is Young’s Modulus, f ′
t is the tensile strength, andGF is the specific fracture energy. This equation should be compared

with Irwin’s plastic zone size Eq. 8.9

rp =
1

π

K2
I

σ2
yld

=
GE

σ2
yld

(13.4)

19 Hillerborg et al. (1976a) and Hillerborg, A. (1983) have shown that the ratio of structural dimension, d, to characteristic length,

lch, is the dominant parameter for describing size effects using the Fictitious Crack Model (FCM). LEFM is considered to be

applicable for large values of
d

lch
. Analysis of three point bending beams, where d is the beam depth, (Hillerborg, A., 1985) and of

compact tension specimens, where d is the specimen height, (Brühwiler, E. and Roelfstra, P.E., 1989) showed that LEFM may not

be valid for d/lch < 25, and that a ratio of
d

lch
= 25 would result in a 5% difference between the load carrying capacities predicted

by LEFM and FCM.

13.2.2.2 Jenq and Shah

20 Finally, when combined with Young’s Modulus, E, a single fracture parameter describing the material, termed the critical

material length, Q, was derived:

Q =

(
E · CTODc

KS
Ic

)2

(13.5)

The Q-value is related to the brittleness of the specimen. For large Q-values the material exhibits a high brittleness.

13.2.2.3 Carpinteri Brittleness Number

21 In fracture testing, failure may be caused by different mechanisms: (1) ultimate strength collapse (SOM), and, (2) fracture

collapse in terms of LEFM. The dimensionless brittleness number, s, was developed by Carpinteri to assess the existence of either

one of the two failure mechanisms (Carpinteri, 1982a), (Carpinteri, 1982b), (Carpinteri, 1986). This parameter depends on the

fracture toughness, KIc, the tensile strength, f ′
t , and on a dimension d characteristic of the specimen (or structure) geometry

being considered:

s =
KIc

f ′
t

√
d

(13.6)

22 For large brittleness numbers, i.e., small specimen dimension d, SOM governs, and the interpretation of tests through Fracture

Mechanics (FM) is not valid. Conversely, for small brittleness numbers, fracture mechanics is applicable since the specimen is

more brittle. The boundary between SOM and FM applicability, is defined by the critical brittleness number, s0, which is obtained

from the nominal stress at failure.

13.2.3 Comparison of the Fracture Models

This section is taken from (Brühwiler et al., 1991)

23 All models considered in this chapter are used to assess the brittleness and by consequence the applicability of LEFM. Because

the models originate from different, but related, formulations describing identical physical phenomena, i.e., tensile softening of

concrete and its size effects, this section will analytically show the similarity between them. Similar studies have been reported

by Planas and Elices (Planas and Elices, 1988b).

24 They showed in a numerical analysis that, over limited ranges, existing fracture models may be thought as approximations

of one another in a mathematical sense and experimentally indistinguishable, based on size effect alone. First the relationship

between Hillerborg’s model and Griffith’s LEFM model is rederived, and then all subsequent ones are found to be a variation of

this model.

13.2.3.1 Hillerborg Characteristic Length, lch

25 Hillerborg’s characteristic length, lch, can be traced back to the fundamental equation governing linear elastic fracture me-

chanics (Hillerborg 1985a):

KIc = β · σcr
√
πacr (13.7)
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where σcr and acr are critical stress and crack length, respectively, and β is a correction factor accounting for specimen geometry,

boundary, and loading conditions. The fracture toughness KIc in turn can then be related to the critical energy release rate Gc

as derived by Irwin (1957),

Gc =
K2

Ic

E′ (13.8)

where,

E′ =

{
E : for plane stress

E
(1−ν2)

: for plane strain
(13.9)

26 Since concrete has a low Poisson’s ratio ν, plane stress is primarily considered, and for “large” concrete structures in which

LEFM is applicable, the strain energy release rate Gc becomes equal to GF . Thus Eqs. 13.7 and 13.8 can be rewritten as:

EGF = β2σ2
crπacr (13.10)

27 Hillerborg’s characteristic length is then obtained with σcr = f ′
t , or:

EGF

f ′
t
2 = β2πacr = lch (13.11)

Eq. 13.11 shows that the critical crack size is of the same order of magnitude as the characteristic length lch, which, for a given

specimen geometry, may be approximately proportional to the length of the fracture process zone.

13.2.3.2 Bažant Brittleness Number, β

28 The intersection between the SOM and LEFM approaches in the size effect diagram (Fig. 14.10) where

σLEFM
N = σSOM

N (13.12)

defines the point where the brittleness number, β is equal to 1, or d = λ0da = d0. From

KIc = D
Pmax

t · d
√
d (13.13)

Pmax

td
=

KIc

D
√
d0

(13.14)

and combining with

Pmax

t · d =
σN

C
(13.15)

we obtain

Pmax

td
=
Bf ′

t

C
(13.16)

Eqs. 13.14 and 13.16 are combined into one equation, yielding:

f ′
t
2
d0

K2
Ic

=

(
C

BD

)2

= K2
(13.17)

29 Because LEFM is assumed valid, substituting K2
Ic with GF · E (Eq. 13.8), leads to:

f ′
t
2
d0

GFE
=
d0
lch

= K2
(13.18)

30 Thus, the brittleness number β used to assess the applicability of LEFM in the Size Effect Law can be related to Hillerborg’s

characteristic length, lch. Eq. 13.18 indicates that d/lch has a similar significance to the ratio between structural dimension d
and maximum aggregate size da in the Size Effect Law. Since lch is a comprehensive parameter to describe material fracture, the

d/da ratio in the Size Effect Law may be replaced by d/lch (Brühwiler, E., 1988). Comparison between the Size Effect Law and the

Fictitious Crack Model showed that both models yield good agreement in the prediction of the size effect (Hillerborg, A., 1985)

and (?).
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13.2.3.3 Carpinteri Brittleness Number, s

31 Squaring the expression s of the brittleness number (Eq. 13.6), and assuming that K2
Ic = E · GF , when LEFM is valid, the

following expression is obtained:

s2 =
EGF

f ′
t
2d

=
lch
d

(13.19)

or

s =

√
lch
d

(13.20)

13.2.3.4 Jenq and Shah’s Critical Material Length, Q

32 In the Fictitious Crack Model, the area under the softening law, relating the tensile stress, σ, to fictitious crack width, w, is

defined as the specific fracture energy, GF , or:

GF = Cf ′
t · wc (13.21)

where, C is a constant characterizing the σ vs. w curve, and wc is the crack width for which σ = 0. At the tip of the real crack (or

notch) in the FCM,wc can be interpreted as the critical crack tip opening displacement,CTODc, according to the Two-Parameter

Model. Therefore, CTODc is set equal to wc, and Eq. 13.21 can be rewritten as:

CTODc =
GF

Cf ′
t

(13.22)

Combining Q (Eq. 13.5) with Eq. 13.22:

Q =
E2G2

F

KIc
2C2f ′

t
2 (13.23)

With K2
Ic = GFE, Q is finally related to lch:

Q =
EGF

C2f ′
t
2 =

lch
C2

(13.24)

13.2.3.5 Discussion

33 Table 13.1 summarizes the preceding analysis of models and indicates that all models are related to Hillerborg’s characteristic

Table 13.1: Summary relations for the concrete fracture models.

Author Hillerborg Carpinteri Jenq & Shah Bažant

Year 1976 1982 1985 1984

Parameter lch s Q d0

Relation lch = EGF

f ′
t
2 s =

√
lch
d

Q = lch
C2 d0 = K2lch

length, and thus related to Griffith’s model. Although relations among all the models have been demonstrated, differences in

experimental results are due to the initial assumptions of very large concrete structures, where LEFM is valid, i.e., Gc =
K2

Ic
E′

andGc = GF . Yet, the results of the comparisons indicate a unified approach could possibly be postulated. Validation of such an

approach in the laboratory would prove difficult due to specimen size considerations.
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13.2.4 Model Selection

34 In light of the diversity of models, Engineers should exercise great care in selecting an appropriate model. Model selection

should account for:

1. Crack size: In a “large” crack, the effect of the process zone is smaller than for a “short” one. Thus LEFM is more applicable

for the large ones.

2. Type of loading: If a structure is subjected to a load rather than imposed displacements (such as foundation settlements),

than only a pre-peak response is of importance. Under those conditions non-linear effects may be negligible compared to

the ones induced by LEFM.

3. Stability
1

: In a structure subjected to imposed load rather than imposed displacement non-linear effects are not be as

negligible in a stable structure as they are in an unstable one.

Thus Table 13.2 provides some guidance for model selection. Accordingly we should select:

1. An NLFM for an arch dam which cracking is caused by foundation settlement.

2. An LEFM model for a dam in which cracking is caused by flooding, no matter how small or large the crack is.

Loading “Small” Crack “Large” Crack

Load Control, Unstable LEFM LEFM

Load Control, Stable NLFM LEFM

Displacement Control NLFM LEFM

Table 13.2: When to Use LEFM or NLFM Fracture Models

35 In all cases, it should be emphasized that ideally a non-linear analysis is to be undertaken, however in many (but not all) cases

the complexity and expenses associated with such an analysis yield results very close to the ones obtained from a linear elastic

ones. Thus ultimately the type of analysis to be undertaken hinges on both technical and economical considerations.

36 Amongst the competing models for NLFM, the one recommended, and by far the most widely used, is the one based on the

Cohesive Crack Model (CHM).

13.3 Fracture Energies Gf and GF

Section adapted from (Bažant et al., 2002)

37 One essential parameter of the cohesive (or fictitious) crack model is the tensile strength of the material, f ′
t . The softening

stress-separation curve of the cohesive crack model (Hillerborg et al. 1976, Petersson 1981, Hillerborg 1983, 1985a,b), is usually

characterized by two parameters. They can be chosen as either

1. f ′
t and fracture energy GF , representing the area under the complete curve (Rice 1969, Hillerborg et al. 1976, Petersson

1991, Hillerborg 1983, 1985a,b), or

2. f ′
t and fracture energy Gf , representing the area under the initial tangent of the softening curve, (Elices et al., 1992).

38 The fracture energies Gf and GF are two different material characteristics which are only partially correlated. GF can be

estimated from Gf and vice versa, but not accurately. Ideally, both Gf and GF should be measured and used for calibrating the

initial slope and the tail of the softening curve of the cohesive crack model (or crack band model), which are both needed for

fracture analysis of structures.

39 For concrete, as a rough approximation

GF ≈ 2.5Gf (13.25)

as reported by Planas and Elices (1992) and further verified by Bažant and Becq-Giraudon (2001). Knowing this ratio, one can

calibrate a bilinear softening curve, provided that the relative height of the knee (point of slope change, Fig. 13.1) is also known.

The value GF =Gf = 2.5, however, is doubtless a rather crude estimate. Properly, it should be regarded as a random quantity. The

coefficient of variation of the ratio GF =Gf may be roughly guessed as perhaps ωFf ≈ 40%.

1

A stable structure is one in which KI decreases with crack length, in an unstable one the stress intensity factor KI increases with crack length.
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ft'

σ1

0 w1 wf w

Gf

GF

Figure 13.1: GF vs Gf

13.3.1 Maximum Load is Controlled by Gf , Postpeak by GF

40 The maximum loads of structures depend mainly on the initial tangent of the softening stress- separation curve, which is fully

characterized by Gf . They are almost independent of the tail of this curve, which depends mainly of GF .

41 The prediction of the entire postpeak softening load-deflection curve of a structure, which is often of secondary interest for

design, depends mainly on the tail of the stress- separation curve of the cohesive crack model, and thus on GF .

13.3.2 Statistical Scatter of Gf and GF

42 An important consideration for the choice of fracture test is the statistical scatter of the measured quantity. As is well known,

for estimating the mean, one can usually do with only about 6 tests. However, for a meaningful determination of the standard

deviation, the number of tests must be of the order of 100. There is no test data set of that scale in the literature, for neither Gf

nor GF . Besides, even if such a data set were available, its usefulness would be limited because it would be difficult to infer from

it the standard deviations for concretes of a different composition, curing, age and hygrothermal history.

43 Thus, if any statistical information should be gained, it is inevitable to study the fracture test data for all concretes. Here the

situation has become rosy: While a dozen years ago only about a dozen test series were available in the literature, Bažant and

Becq-Giraudon (2001) collected from the literature 238 test series from different laboratories throughout the world, conducted on

different concretes. Of these, 77 test series concerned Gf (or the related fracture toughness Kc), and 161 GF . However, to be able

to extract any statistics from these data, the basic deterministic trends must somehow be filtered out first, at least approximately.

44 One must, therefore, first establish formulae that approximately describe the deterministic (mean) dependence of Gf and

GF on the basic characteristics of concrete. Using extensive nonlinear optimization studies based on the Levenberg-Marquardt

algorithm, Bažant and Becq-Giraudon (2001) obtained two simple approximate formulae for the means ofGf andGF as functions

of the compressive strength f ′
c, maximum aggregate size da, water-cement ratio w/c, and shape of aggregate (crushed or river);

Gf = α0

(
f ′
c

0.051

)0.46 (
1 + da

11.27

)0.22 (w
c

)−0.30
ωGf = 17.8%

GF = 2.5α0

(
f ′
c

0.051

)0.46 (
1 + da

11.27

)0.22 (w
c

)−0.30
ωGF = 29.9%

cf = exp

[
γ0
(

f ′
c

0.022

)−0.019 (
1 + da

15.05

)0.72 (w
c

)0.2]
ωcf = 47.6%

(13.26)

45 Here α0 = γ0 = 1 for rounded aggregates, while α0 = 1.44 and γ0 = 1.12 for crushed or angular aggregates; ωGf and ωGF

are the coefficients of variation of the ratiosGtest
f /Gf andGtest

F /GF , for which a normal distribution may be assumed, and ωcf

is the coefficient of variation of ctestf /cf , for which a lognormal distribution should be assumed (ωcf is approximately equal to

the standard deviation of ln cf ).

46 The fracture toughness and the mean critical crack tip opening displacement, used in the Jenq-Shah two-parameter method,

are then predicted as

Kc =
√
E′Gf δCTOD =

√
32

π

Gfcf
E′ (13.27)

47 In addition, they obtained a mean prediction formula for cf , the effective length of the fracture process zone, from which

δCTOD , the critical crack-tip opening displacement can be easily determined as well. The optimization studies confirmed that

the optimum value of the ratio GF =Gf is about 2.5, and did not reveal any systematic dependence of this ratio on the basic

parameters f ′
c, da and w/c.
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48 Based on these mean predictions formulae, plots of the measured versus predicted values of Gf and GF (as well as cf ) were

constructed; see Fig. 13.2. The coefficients of variation of the vertical deviations of the data points from the the straight line of
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Figure 13.2: Gpred
F Based on …..

slope 1 (i.e., the line representing the case of perfect prediction by the deterministic formula), were found to be

ωGf = 18.5% for Gf

ωGf = 8.6% for GF
(13.28)

The large difference between these two values has significant implications for the choice of the testing standard, which we discuss

next.

49 It must, of course, be admitted that the errors of the prediction formulae for Gf and GF , which are owed to limitations

in the understanding of the effect of the differences in concrete composition, etc., make doubtless large contributions to the

aforementioned coefficients of variations. However, there is no reason why these contributions to scatter should be biased in favor

one or the other fracture energy. Eliminating the mean trend by an imperfect prediction formula is inevitable if any statistical

comparisons at all should be made at the present level of experimental evidence. Therefore, we must accept that the difference

between these two coefficients of variation characterizes the difference in the random scatter of either Gf and GF , or their

measurement methods, or (more likely) both.

50 Why the data onGF (Fig. 13.2 right) exhibit a much higher scatter than those onGf ? The reasons appear to be: (1) An inherently

higher randomness of the tail compared to the initial portion of the softening curve; (2) uncertainty in extrapolating the tail to

zero stress; and (3) difficulties in eliminating energy dissipation not caused by fracture and in achieving independence of the

results from the specimen size (Planas et al., 1992).

51 The fracture parameters measured by the size effect method have the advantage that they are, by definition, size and shape

independent if the correct size effect law for the given size range is known.

13.3.3 Level I and Level II Testing

52 At the (pre-FraMCoS-2) workshop of European and American specialists in Cardiff in 1995, organized by B.I.G. Barr and S.E.

Swartz, it was agreed that the testing standard should specify two levels of testing:

• At level I, acceptable for structures of not too high fracture sensitivity, one needs to measure only one of the two fracture

energies, either GF or Gf (a consensus at that workshop was to use measurements confined to the maximum load region

and ignoring the tail).

• At level II, appropriate for structures of high sensitivity to fracture and size effect, both GF and Gf (or Kc instead of Gf )

should be directly measured.

53 If the cohesive crack model is calibrated by a level I test, one must of course assume in advance the shape of the softening-stress

separation curve, i.e., fix the ratios GF =Gf and σknee/f
′
t based on prior knowledge. Therefore,

• If GF is measured, one must estimate Gf ≈ 0.4GF , and from that determine the initial slope of the softening curve.

• If Gf is measured, and if the tail of the softening curve is needed, one must estimate GF ≈ 2.5Gf .
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13.4 Proposed ACI/ASCE Test Methods

13.4.1 Test 1: Determination of Jenq & Shah Parameters (KIc(tp) And CTODc(tp))

Section adapted from ACI Committee 446 (2009)

54 This test method determines indices of fracture toughness, KIc(tp), critical crack tip opening displacement, CTODc(tp) of

hardened concrete with maximum aggregate size of 1.33” (3.39 cm) or less.

55 The values of KIc(tp), and CTODc(tp) stated in SI units, are to be regarded as the standard.

56 Supporting references: (Jenq and Shah, 1985) (RILEM Committee on Fracture Mechanics of Concrete-Test Methods, 1990)

(Guinea et al., 1998).

13.4.1.1 Terminology

13.4.1.1.1 Definitions

linear elastic fracture mechanics (LEFM) : a theory of fracture mechanics crucial to the understanding of this test standard.

LEFM assumes linear elastic material behavior together with a perfectly sharp crack with traction-free surfaces.

critical effective crack: a conceptual LEFM crack whose length, ac, is selected to provide the same compliance as the observed

unloading compliance at or above 95% of peak load.

critical stress intensity factor (KIc(tp)) the stress intensity factor of the critical effective crack, calculated using the measured

maximum load, Pmax, according to this test standard.

critical crack tip opening displacement (CTODc(tp)) the crack opening displacement calculated using LEFM at the original

notch tip of the specimen, using the measured maximum load Pmax and the critical effective crack length, ac, according to

this test standard.

13.4.1.1.2 Abbreviations

ao initial notch length

ac length of critical effective crack

b width of specimen

Ci initial compliance of specimen

Cu unloading compliance of the specimen

CMOD crack mouth opening displacement

CTODc(tp) critical crack tip opening displacement, according to this test standard

d depth of specimen

Dmax maximum size of coarse aggregate

g acceleration of gravity

HO thickness of clip gage

KIc(tp) critical stress intensity factor, also called fracture toughness, according to this test standard

L length of specimen

P load on specimen

Pmax peak load on specimen

S test span of the specimen

Wo self-weight of specimen

W weight of the specimen between supports = WoS/L
TPFM two-parameter fracture model

13.4.1.2 Summary of Test Method

57 This test method uses center-point loading of notched-beam specimens of fixed size to determine three standard fracture

parameters of concrete.

58 The test employs a closed-loop-testing machine to simultaneously measure applied load, and crack mouth opening displace-

ment, under crack mouth opening displacement control, Fig. ??.

59 The method provides for computation of two fracture parameters: the critical stress intensity factor KIc(tp), and the critical

crack tip opening displacement CTODc(tp).
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Figure 13.3: Servo-Controlled Test Setup for Concrete KIc and GF

13.4.1.3 Apparatus

60 The loading apparatus shall confirm to the requirements of the section on Loading Apparatus in C 293.

61 The loading fixture shall designed to minimize the unwanted force contributions. A diagram of an apparatus that accomplishes

this purpose is shown in Fig. 13.4.

Bed of testing 
machine

Rigid loading structure or 
if it is a loading 
accessory, steel plate or 
channel

Load-applying and 
support-blocks

Steel rod Steel ball

specimen

Head of testing machine Steel rod may be omitted when a 
spherical seating bearing is used

S/2 S/2

d

Specimen length, L>4d

ao

Span length, S

b
CMOD gage

CMOD

aoHO

CMOD

aoHO

Figure 13.4: Test Apparatus for Two Parameter Model

62 The testing machine shall provide closed-loop control, with the crack mouth opening displacement (CMOD) as the feedback

signal. The testing machine shall be of a type having sufficient load capacity and stiffness. In addition, the testing machine shall

conform to the requirements of the section on Basis of Verification, Corrections, and Time Interval Between Verifications, of

Practices for Verification of Testing Machines, E4.

63 A displacement-measuring gage shall be used to measure the opening of the mouth of the notch during testing. A clip gage,

LVDT, or strain gage based extensometer is recommended to measure the CMOD. If a clip gage is used it shall be attached by

using holders, as shown in Figure 1. The holders should be firmly attached to the lower concrete surface, within 0.5 in (1.29 cm) of

the axial vertical center plane of the beam, using glue or epoxy to ensure that they do not move during the test. If an extensometer

is used, it shall be attached to the surface of concrete either directly or by using holders. If the extensometer is attached directly

to the concrete surface care must be taken to ensure that the extensometer does not move relative to the concrete surface.

64 The displacement gage output shall indicate relative displacement of two accurately located gage positions spanning the notch

mouth. Accurate positioning of the gage is essential.

65 Working range of the gage used for measuring CMOD shall not exceed +0.02in (+0.508mm).

66 The clip gage or extensometer shall be checked for linearity, preferably using an extensometer calibrator or other suitable

device. The gage shall be calibrated to within 1% of the working range.

67 The percentage of error for the loads within the proposed range of use of the testing machine shall not exceed +1% of the

indicated load.

13.4.1.4 Specimens

68 The specimens shall conform to all requirements of Practice C 31, Practice C 192, and Test Method C 293 applicable to beam

and prism specimens with the following exceptions. The span, S, shall be within 0.2 in. (0.508 cm) of 18 in. (45.72 cm). The width,
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b, and depth, d, shall both be within 0.1 in. (0.254 cm) of 6 in. (15.24 cm). The beam length, L, shall be within 0.5 in. (1.27 cm) of

21 in. (53.34 cm).

69 The top and the bottom faces of the specimen shall be within 2 degrees of parallel. The side faces of the specimen shall be

within 2 degrees of perpendicular with the bottom face. All surfaces within d/2 of the beam centerline shall be smooth and free

of indentations or holes.

13.4.1.5 Procedure

70 Fracture tests of moist cured specimens shall be made as soon as practical after removal from moist storage. A notch shall be

introduced within 0.25 in. (6.35 mm) of the mid-length of the beam using a band saw or diamond tipped saw such that the width

of the cut is no wider than 3 mm. The notch shall be introduced as soon as possible prior to testing. The specimen shall be kept

moist at all times and shall be protected from moisture loss by wrapping it in a plastic or wet burlap sheet at the time of test.

71 The notch shall be cut within one degree of perpendicular to the longitudinal axis of the specimen. The notch depth, ao, shall

satisfy the inequality 0.25d < ao < 0.33d.

72 The length of the notch, ao, shall be measured from the bottom of the beam, on both faces, using a ruler with an accuracy of

0.5 mm. Each measurement shall be made three times on each face. The measured notch depth on each side shall not differ by

more than 5 percent. The notch length shall equal the average of the six measurements.

13.4.1.6 Specimen Testing

73 The specimen shall be placed in a testing machine in a center-point loading configuration as shown in Fig. 13.4. Use a closed-

loop test machine with CMOD as the feedback. Continuously monitor both CMOD and the applied load, P , during the test.

74 Apply load using a constant rate of increment of CMOD such that the peak load, Pmax, is reached in between 1 and 10 minutes.

75 When the load has passed the maximum load and decreased to no more than 95% of the peak load, reduce the applied load to

between 1% and 5% of the peak load. Unloading can be performed in CMOD or load control, and shall be accomplished in no less

than 1 minute and no more than 10 minutes. Reload using the same loading rate until the load has passed the maximum load. A

typical loading and unloading curve for concrete is shown in Fig. 13.5.

 

Lo
ad

, P

Cu

Ci

Pmax

0.4 Pmax

0.1 Pmax

0.7 Pmax

CMOD

Figure 13.5: Typical response for a notched beam in CMOD control using the center-point loading method

13.4.1.7 Measured Values

76 The following measured values shall be reported for each test: the dimensionsL, S, b, and d; the mass,m0; and the initial notch

length, a0. Report also the P-CMOD response of the specimen, including the one cycle of loading and unloading in the post-peak.

13.4.1.8 Calculation

77 Calculation of fracture parameters, KIc(tp) and CTODc(tp), using the two-parameter fracture method (TPFM).

78 The TPFM is used to determine KIc(tp) and CTODc(tp) from the measured compliance change in the load-CMOD response

of a beam with a given initial notch length.
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79 Estimate modulus of elasticity, E:

E =
6Sa0V (α0)

Cibd2
(13.29-a)

V (α) = 0.8− 1.7α+ 2.4α2 +
0.66

(1− α)2
+

4

S/d

(
−0.04− 0.58α+ 1.47α2 − 2.04α3)

(13.29-b)

where Ci is the loading compliance (the inverse of the initial slope of the load-CMOD curve), α0 = (a0 +HO)/(d+HO), d
is the depth of the beam, S is the specimen loading spa.

80 To determineCi a straight line shall be fit to the P-CMOD response between 10% and 40% of the peak load. Inverse of the slope

of this line is Ci.

81 Determine the critical effective crack length, ac (ao + stable crack growth at peak load) from the following equation:

E =
6sacV (αc)

Cubd2
(13.30)

whereCu is the inverse of the slope of the load-CMOD unloading curve, αc = (ac+HO)/(d+HO), andE is obtained from Eq.

13.29-a. Cu shall be determined from the P-CMOD curve obtained when unloading the specimen as described above. A straight

line shall be fit to the unloading P-CMOD curve between 70% and 40% of the maximum load, Pmax. Inverse of the slope of this

line is Cu.

82 Calculate the critical stress intensity factor index, KIc(tp):

KIc(tp) = 3(Pmax + 0.5W )
S
√
πacF (α)

2bd2
(13.31-a)

F (α) =
f1(α) +

4
S/d

(f2(α)− f1(α)
√
π(1 + 3α)(1− α)3/2

(13.31-b)

f1(α) = 1.99 + 0.83α− 0.31α2 + 0.14α3
(13.31-c)

f2(α) = 1.9 + 0.41α+ 0.51α2 − 0.17α3
(13.31-d)

where Pmax is the maximum load, α = ac/d.

83 Calculate the critical crack tip opening displacement index, CTODc(tp):

CTODc(tp) =
6PmaxSacV (α)

Ebd2
[
(1− β)2 + (1.081− 1.149α)(β − β2)

]1/2
(13.32-a)

V (α) = 0.76− 2.28α+ 3.87α2 − 2.04α3 +
0.66

(1− α)2
(13.32-b)

where α = ac/d, and β = ao/ac.

13.4.2 Test 2: Cohesive Crack Model Parameters; Level 1 (Gf )

84 This standard provides a quantitative test method for determining fracture parameters of hardened concrete. It assumes that the

essential aspects of fracture of concrete can be described by a cohesive or fictitious crack model, which is completely described by

the cohesive stress versus crack opening curve, (Hillerborg, A., 1985). This method covers the determination of the initial linear

portion of this curve for concrete using a combination of simple tests which require measuring peak loads only. The determination

of a bilinear approximation of the full cohesive stress versus crack opening curve will be covered in a different standard.

85 This standard covers only mortars and concrete with maximum aggregate size of up to 25 mm.

86 The values stated in SI units are to be regarded as the standard.

13.4.2.1 Terminology

13.4.2.1.1 Definitions

Stress versus crack opening curve or softening curve the relationship between the stress (σ) transferred between the faces

of a cohesive crack and the crack opening (w), Fig. 13.6.

Tensile strength (f ′
t) , the maximum cohesive stress or stress at zero crack opening.
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σ
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σ=f(w)

c

Figure 13.6: Softening Curve and Initial Linear Portion

Linear initial portion of the softening curve the linear approximation to the initial part of the softening curve as shown by

the dashed line in Fig. 1. It is defined by the tensile strength (ft) and the horizontal intercept (w1) (Planas et al., 1999).

Brittleness length (l1) defined as (Refer to Eq. 13.11)

l1 =
Ew1

2f ′
t

(13.33)

Net plastic flexural strength (fp) the tensile strength of an ideal material rigid-perfectly plastic in tension and rigid in com-

pression that would give the same peak load as the actual specimen for a beam of identical dimensions.

13.4.2.1.2 Notation and Abbreviations

a0 notch length (initial crack length)

b ligament length = D − a0
B thickness of specimen

da maximum aggregate size

D depth of specimen

E elastic modulus

Em mean elastic modulus

f ′
t tensile strength

fp net plastic flexural strength

g specific gravity = 9.81 m s
−2

l1 brittleness length

L length of specimen

m mass of the specimen

N notch width

Pmax corrected peak load of a specimen

P ′
max measured peak load of a specimen

S test span of the specimen

T splitting tensile strength

Tm mean splitting tensile strength

w cohesive crack opening

w1 horizontal intercept of the linear initial portion of the softening curve

α0 relative notch length

13.4.2.2 Summary of Test Method

87 In this test method, notched beams and cylindrical concrete specimens are tested to determine fracture parameters of concrete.

88 The cohesive tensile strength (f ′
t ) is approximated by the splitting tensile strength of cylindrical concrete specimens tested

according 496 (2000) (so-called Brazilian Test, as illustrated in Fig. 13.7), with minor modifications.
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Figure 13.7: “Brazilian Test, (?)”

89 Center-point loading tests are run up to peak load on notched concrete beams and the net plastic flexural strength (fp) is

determined from the peak load.

90 From the results of tensile strength (ft) and net plastic flexural strength (fp), the brittleness length (l1) is determined.

91 The elastic modulus (E) is determined according to ASTM C 469 test method.

92 The horizontal intercept (w1) is determined from the brittleness length (l1), the elastic modulus (E) and the tensile strength

(f ′
t ) solving from Eq. 13.33.

13.4.2.3 Significance and Use

93 This test method is used to determine the initial linear portion of the softening curve for the cohesive crack model.

94 The cohesive crack model describes in a simplified manner the cracking of concrete keeping a good balance between accuracy

and complexity.

95 Knowledge of only the linear initial portion of the softening curve is enough to solve some practical problems such as the

determination of structural peak loads (Planas et al., 1999) or the description of the initial stages of cracking.

96 Care must be exercised in the interpretation and use of the material properties obtained by this test method, because they are

sensitive to any of the factors affecting concrete behavior such as batching and mixing procedures, the methods of sampling,

molding and fabrication and the age, and temperature and moisture conditions during curing.

13.4.2.4 Specimens

97 Cylindrical specimens shall be used to determine the splitting tensile strength and the static elastic modulus. The geometry and

manufacture of these specimens shall conform to the general provisions of Practices C 31(field specimens) or C 192 (laboratory

specimens).

98 Cylindrical specimens for splitting tensile strength shall further conform to any special provisions in Test Method C 496.

99 Cylindrical specimens for static elastic modulus shall further conform to any special provisions in Test Method C 469.

100 Beam specimens shall be used to determine the net plastic flexural strength. The geometry and manufacture of these specimens

shall conform to the general provisions of Practices C 31 (field specimens) or C 192 (laboratory specimens) applicable to beam

and prism specimens.

101 A minimum of six cylindrical specimens and three beam specimens shall be cast. Whenever practical, all the specimens must

be cast from the same concrete batch. If this is not possible, a number of cylinder specimens twice the number of beam specimens

must be obtained from each batch. A minimum of three split cylinders, three cylinders for elastic modulus and three beams must

be tested.

102 The beam specimens shall be prismatic beams of rectangular cross section with a sawn central notch Fig. 13.8. The beams
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Figure 13.8: Specimen Geometry and Dimensions

defined in this standard are not to be used for materials with a maximum aggregate size da larger than 25 mm.

1. The beam thickness (B) must be 150± 5 mm.

2. The beam depth (D) must be 150± 5 mm.

3. The loading span (S) must be equal to three times the beam depth (3D), within ±5 mm.

4. The total length (L) of the specimen shall be 50 mm longer than three times the beam depth (3D+50 mm) within ±5 mm.

5. The nominal notch depth (a0) shall be equal D/3. Deviations up to 10% of the nominal value may be accepted for a whole

test series (0.30 ≤ a0/D ≤ 0.37). But, within a series, notch depths of individual specimens must not deviate from the

mean more than 2%.

6. The notch width (N ) must be no larger than 3 mm.

13.4.2.5 Casting, Curing and Conservation

103 After demolding, cure and conserve the specimens in a lime saturated bath at 23 ±2o C until testing time.

104 After the removal of the specimen from the bath, and until the end of the test, drying of the surface of the specimen must be

prevented.

13.4.2.6 Procedure

105 The procedure for splitting tensile tests shall be as described in the Test Method C 496, except that the loading rate shall be

within the range 500 to 1000 kPa/min all the way up to the peak load. Provisions shall be taken for measuring and recording the

loading rate up to the peak.

106 The procedure for static elastic modulus tests shall be as described in the Test Method C 469.

107 Beam Specimen Preparation: The preparation of the beam specimens for testing may include grinding of the load bearing

areas, and notching.

108 Gently place the specimen on the loading device. At this stage the rolling supports may be clamped to ease the placement.

Carefully center the specimen so that the notch is at mid position between the supports within 1 mm, and the mid-vertical-

longitudinal plane of the specimen coincides with the loading plane defined by the shafts b and h in Fig. 13.9 (within 1 mm). An

external frame with centering screws may prove useful to facilitate this task.

Figure 13.9: Sketch of a Loading Apparatus
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109 Verify that the load channel is zeroed, and slowly pre-load the specimen up to a load of between 5 and 10 % of the estimated

maximum load. After the test, this pre-load must be checked not to have exceed 15% of the actual peak load. If this limit had been

exceeded, the test must be considered invalid. During the pre-load, the spherical or cylindrical seatings must be free (and even

helped) to accommodate any initial geometrical misfit.

110 Unclamp the rollers and run the test at constant crosshead rate. The rate must be selected so that the peak load is reached

within 3 to 5 min.

111 The test can be stopped after peak load is reached.

13.4.2.7 Calculations

13.4.2.7.1 Tensile strength, f ′
t 112 Calculate the splitting tensile strength (T ) of each cylinder specimen according to ASTM

C 496, in SI units (kPa).

113 Determine the mean splitting tensile strength (Tm) by averaging over all the specimens.

114 Determine the tensile strength of concrete (for the cohesive crack model) as

ft =
Tm

1000
(13.34)

where Tm = mean splitting tensile strength, kPa, f ′
t = tensile strength, MPa.

13.4.2.7.2 Elastic modulus,E 115 Calculate the modulus of elasticity (E) of each cylinder specimen according to ASTM C 469,

in SI units (MPa).

116 Determine the mean elastic modulus (Em) by averaging over all the specimens.

13.4.2.7.3 Net plastic flexural strength, fp 117 Calculate the net plastic flexural strength of each notched beam according to

the following procedure:

1. From the test record or machine memory, determine the maximum load P ′
max measured by the load cell.

2. Determine the self-weight equivalent load P0 as

P0 = mg

(
1− L

2S

)
(13.35)

where P0 = self-weight equivalent load, N.m = specimen mass, kg. g = specific gravity = 9.80 m s
−2

, L = specimen length,

mm. S = loading span, mm.

3. Determine the maximum load corrected to take into account the weight of the specimen as

Pmax = P ′
max + P0 (13.36)

where Pmax = corrected peak load, N; P ′
max= measured peak load, N; P0 = self-weight equivalent load, N.

4. Determine the net plastic flexural strength of the beam as:

fp =
PmaxS

2Bb2
(13.37)

where fp = net plastic flexural strength, MPa; Pmax = corrected peak load, N; B = beam thickness, mm; b = D − a0 =

beam ligament, mm; D = depth of specimen, mm; a0 = notch length, mm; S = loading span, mm.
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13.4.2.7.4 Brittleness length, l1, and horizontal intercept, w1 118 For each specimen, determine the brittleness length l1

l1 = κD

[
11.2

(x2 − 1)2
+

2.365

x2

]
(13.38)

where l1 = brittleness length, mm; κ = 1 − α1.7
0 ; α0 = a0/D = notch-to-depth ratio; D = beam depth, mm; a0 = notch length,

mm; x = ft/fp; fp = net plastic flexural strength, MPa; ft = tensile strength, MPa.

119 Determine the average brittleness length l1m as the mean of the determinations for individual specimens.

120 Determine the horizontal intercept of the softening curve (w1) as

w1 = 1000
2ft
Em

l1m (13.39)

where w1 = horizontal intercept, µm (microns); ft = tensile strength, MPa; Em = mean elastic modulus, MPa; l1m = brittleness

length, mm.

121 Finally we obtain the fracture energy from Gf = ftw−1
2

.

13.4.3 Test 3: Cohesive Crack Model Parameters; Level 2 (GF )

122 This standard provides a quantitative test method for determining fracture parameters of hardened concrete. It assumes that

the essential aspects of fracture of concrete can be described by a cohesive or fictitious crack model, which is completely described

by the cohesive stress versus crack opening curve (Hillerborg, A., 1985).

123 This method covers the determination of a bilinear approximation of this curve for concrete using a combination of split

cylinder tests and bending tests on notched beams.

124 This standard covers only mortars an concrete with maximum aggregate size of up to 25 mm.

125 The values stated in SI units are to be regarded as the standard.

13.4.3.1 Terminology

13.4.3.1.1 Definitions

Stress versus crack opening curve or softening curve: the relationship between the stress (σ) transferred between the faces

of a cohesive crack and the crack opening (w), Fig. 13.10.

σ

WW1

ft

GF

σ=f(w)

c

Figure 13.10: Softening Curve and Initial Linear Portion

Tensile strength (ft), the maximum cohesive stress or stress at zero crack opening

Linear initial portion of the softening curve the linear approximation to the initial part of the softening curve as shown by

the dashed line in Fig. 1. It is defined by the tensile strength (ft) and the horizontal intercept (w1).
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Brittleness length (l1) , defined as

l1 =
Ew1

2ft
(13.40)

Bilinear approximation of the softening curve a bilinear function that approximates the actual softening curve of concrete

by a bilinear curve as shown in Fig. 13.11. The bilinear curve is defined by 4 parameters, usually taken to be the tensile

Softening curve

Stress, 

ft

w1

wK

wc

Bilinear approximation
Kσ

σ

Figure 13.11: Softening curve and bilinear approximation

strength (ft), the critical crack opening (wc), and the crack opening and cohesive stress at the kink point (wk, σk).

Net plastic flexural strength (fp), the tensile strength of an ideal material rigid-perfectly plastic in tension and rigid in com-

pression that would give the same peak load as the actual specimen for a beam of identical dimensions.

13.4.3.1.2 Notation and Abbreviations
a0 notch length (initial crack length)

A far tail constant

b ligament length = D − a0
B thickness of specimen

Ci initial compliance of beam specimen

CMOD crack mouth opening displacement

da maximum aggregate size

D depth of specimen

E elastic modulus

Em mean elastic modulus

ft tensile strength

fp net plastic flexural strength

g specific gravity = 9.81 ms
−2

GF mean fracture energy

GFm fracture energy, area below the softening curve

h distance from the CMOD measuring line to the specimen surface

K tail fitting parameter

l1 brittleness length

l1m mean brittleness length

L length of specimen

m mass of the specimen

N notch width

P total load on specimen

P1 corrected load on specimen = P ′ − P ′
R

P ′
R residual measured load at the end of test

Pmax effective peak load of a specimen

P1max corrected peak load of a specimen = P ′
max − P ′

R

P ′
max effective peak load of a specimen

r distance from the measuring line of the displacement extensometers to the center plane of the spec-

imen
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S test span of the specimen

T splitting tensile strength

Tm mean splitting tensile strength

w cohesive crack opening

w1 horizontal intercept of the linear initial portion of the softening curve

wc critical crack opening (crack opening at which the cohesive stress vanishes)

wch characteristic crack opening

wG center of gravity of the softening curve

wGm mean center of gravity of the softening curve

wk crack opening at the kink point of the bilinear approximation

wMA CMOD at zero P1

wMR CMOD at the end of the test

WF total work of fracture

WFm measured work of fracture

X auxiliary variable for far tail fitting

x inverse relative plastic strength = ft/fp
Y auxiliary variable for far tail fitting

α0 relative notch length = a0/D
δ load point displacement

δA load point displacement at zero P1

δR load point displacement at the end of test

δk cohesive stress at the kink point of the bilinear approximation

13.4.3.2 Summary of Test Method

126 In this test method, notched beams and cylindrical concrete specimens are tested to determine fracture parameters of concrete.

The bilinear approximation is derived by forcing it 1) to give same peak loads as the actual softening curve for both the splitting

cylinders and the notched beams, 2) to have same fracture energy as the actual softening curve, and 3) to have same center of

gravity position as the actual softening curve.

127 The cohesive tensile strength (ft) is approximated by the splitting tensile strength of cylindrical concrete specimens tested

according ASTM C496 standard, with minor modifications.

128 Center-point loading tests are run under closed loop CMOD control on notched concrete beams (with compensation for the

self-weight), and the curves of load versus load-point displacement and of load versus CMOD are recorded.

129 The net plastic flexural strength (fp) is determined from the peak load.

130 From the results of tensile strength (ft) and net plastic flexural strength (fp), the brittleness length (l1) is determined.

131 The elastic modulus (E) is determined from the initial slope of the load-CMOD curve.

132 The horizontal intercept (w1) is determined from the mean brittleness length (l1m), the mean elastic modulus (Em) and the

tensile strength (ft) solving from Eq. 13.40.

133 The fracture energy (GF ) is determined from the area under the load versus load-point displacement curve.

134 The center of gravity of the area below the softening curve (wG) is computed by curve fitting of the far end of the load vs.

CMOD curve.

135 The critical crack opening (wc) and the coordinates of the kink point (wk, σk) are finally computed from simple geometrical

relations from the set of values (ft, w1, GF , wg).

13.4.3.3 Significance and Use

136 This test method is used to determine a bilinear approximation of the softening curve for the cohesive crack model.

137 The cohesive crack model describes in a simplified manner the cracking of concrete keeping a good balance between accuracy

and complexity.
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138 The actual softening curve of concrete can be approximated by a bilinear softening curve to get reasonable prediction of the

overall cracking behavior, including peak load estimates, post-peak load-displacement response and energy dissipation.

139 Care must be exercised in the interpretation and use of the material properties obtained by this test method, because they

are sensitive to any of the factors affecting concrete behavior such as batching and mixing procedures, the methods of sampling,

molding and fabrication and the age, temperature and moisture conditions during curing.

13.4.3.4 Specimens

140 Cylindrical specimens shall be used to determine the splitting tensile strength. The geometry and manufacture of these speci-

mens shall conform to the general provisions of Practices C 31 (field specimens) or C 192 (laboratory specimens).

141 Cylindrical specimens for splitting tensile strength shall further conform to any special provisions in Test Method C 496.

142 Beam specimens shall be used to determine the load vs. load-point displacement curve and the load vs. CMOD curve. The

geometry and manufacture of these specimens shall conform to the general provisions of Practices C 31(field specimens) or C 192

(laboratory specimens) applicable to beam and prism specimens.

143 A minimum of three cylindrical specimens and three beam specimens shall be cast. Whenever practical, all the specimens

must be cast from the same concrete batch. If this is not possible, a number of cylinder specimens twice the number of beam

specimens must be obtained from each batch. A minimum of three split cylinders and three beams must be tested.

144 The beam specimens shall be prismatic beams of rectangular cross section with a sawn central notch, Fig. 13.12. The beams

Figure 13.12: Specimen Geometry and Dimensions

defined in this standard are not to be used for materials with a maximum aggregate size da larger than 25 mm. The beam thickness

(B) must be 150± 5 mm. The beam depth (D) must be 150± 5 mm. The loading span (S) must be equal to three times the beam

depth (3D), within ± 5 mm. The total length (L) of the specimen shall be 50 mm longer than three times the beam depth (3D+50
mm) within ±5 mm. The nominal notch depth (a0) shall be equalD/3. Deviations up to 10% of the nominal value may be accepted

for a whole test series (0.30 ≤ a0/D ≤ 0.37). But, within a series, notch depths of individual specimens must not deviate from

the mean more than 2%. The notch width (N ) must be no larger than 3 mm.

145 After demolding, cure and conserve the specimens in a lime saturated bath at 23± 2oC until testing time.

146 After the removal of the specimen from the bath, and until the end of the test, drying of the surface of the specimen must be

prevented.

13.4.3.5 Apparatus

147 Apparatus for splitting tensile strength shall conform to the provisions of Test Method C 496, except that the bearing strips

shall be 10 mm wide.

148 Servohydraulic or electromechanical testing machines, Fig. 13.3 shall be used that provide closed-loop control with the crack

mouth opening displacement (CMOD) as the feedback signal. High machine stiffness is recommended. In addition, the testing

machine shall conform to the requirements of the Sections on Basis of Verification, Corrections, and Time Interval Between

Verifications of Practices E 4.

149 The load cell installed on the machine for these specific tests must give load readings accurate within 1% of the recorded peak

load.

150 The CMOD must be measured with a clip-on gage or similar extensometer giving readings accurate within 5 µm (five micron)

over a range of 2 mm.
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151 The gage length of the extensometer must be centered on the notch; The gage length must be less than 0.2D.

152 To avoid measuring the inelastic deformation originated at the supports, the displacement must be determined relative to the

points directly above and below the loading points by means of a reference frame.

153 For this method to give accurate results, the frame for measuring the displacement shall be stiff enough. At the worse situation,

a maximum frame deflection of 2 µm (two microns) is allowed. The frame must stay on two ground hardened steel plates at the

vertical of the lateral supports.

154 Two extensometers shall be symmetrically placed at both sides of the notch, at the bottom face of the specimen. The distance

(r) from the measuring line to the center plane of the specimen shall be as small as possible. The load point displacement signal

(δ) shall be computed as the average of the measuring signal of both extensometers.

155 The extensometers shall give readings accurate within 10 µm (ten microns) over a range of 5 mm.

156 The loading apparatus for the bending tests will provide two supports and a central loading block suitably mounted to minimize

eccentricities (torsion), to keep the loading span within the specified tolerances, and to minimize friction at the supports.

157 Weight compensation by using specimens longer than twice the loading span (L = 2S + 50 mm) is very effective, although

the weight of the specimen is very much increased and handling more difficult.

13.4.3.6 Test Record

158 Record of the load-CMOD curve must be performed so that there is no loss of resolution.

159 The time-delay between readings must be selected in such a way as to comply the following conditions: (1) a minimum of 20

well spaced readings must be performed in the load interval spanning from 0.15 to 0.55 of the final peak load; (2) the reading

interval in the peak zone of the test must be low enough for the three load readings immediately before and after the peak be

within 1% of the peak; (3) at least 20 well spaced readings must be recorded in the post peak region when the load decreases from

the peak to 0.15 of the peak, (4) a minimum of 150 well spaced readings must be recorded in the post peak region up to the end

of the test (conventionally considered to occur when the CMOD reaches 2 mm).

13.4.3.7 Procedure

160 The procedure for splitting tensile tests shall be as described in the Test Method C 496, except that the loading rate shall be

within the range 500 to 1000 kPa/min all the way up to the peak load. Provisions shall be taken for measuring and recording the

loading rate up to the peak.

161 The preparation of the specimen for testing may include grinding of the load bearing areas, preparation of attachment for

clip-on gage, and notching.

1. Immediately after removing the specimen from the bath, mark the central section and the loading lines of the lateral

supports (use pencil, not scaring instruments). Protect the surface to avoid drying, by coatings, wet clothes and water-

spraying so that drying is completely avoided.

2. Verify that the load-bearing areas and the contact zones with the vertical extensometers are plane using a ground steel

rod and leaf-type feeler gages of 0.1 mm. If any gaps larger than 0.1 mm are detected, grind the surface of the specimen to

eliminate the gap.

3. Drill any hole that may be required to fasten the knife edges for the clip gage. Gluing of knife edges on the moist surface

is not recommended.

4. Cut the notch so that the notch front is perpendicular to planes that were horizontal during casting. Use a diamond saw

with water refrigeration and keep the load as small as possible to avoid damaging the concrete.

5. Handling of the specimen after notching must be very gentle to avoid damage. Lifting of the specimen must be performed

by means of two attachments located at 1/4 from the ends of the specimens. Shocks must be avoided at all times.

6. Attach the elements to hold the clip-on gage.

7. Attach the hardened steel plates at the locations of the rolling supports.

162 Beam Test:
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1. Gently place the specimen on the loading device. At this stage the rolling supports may be clamped to ease the placement.

Attach the clip-on gage and set its output to zero (or record the initial reading). Carefully center the specimen so that the

notch is at mid position between the supports within 1 mm or 0.25% of the span (whichever is the less), and the mid-vertical-

longitudinal plane of the specimen coincides with the loading plane defined by the shafts b and h (within 0.5 mm or 0.5 %

of the beam thickness). An external frame with centering screws may prove useful to facilitate this task.

163 Place the hardened steel plates at the vertical of the lateral supports and the reference frame and the transducers for

measuring the load point displacement, and set its output to zero (or record the initial reading). The supports of the frame

must be placed on the vertical of the lateral supports of the specimen within 1 mm or 0.25% of the span (whichever is the

less).

2. Verify that the load channel is zeroed, and slowly pre-load the specimen up to a load of between 5 and 10% of the estimated

maximum load. After the test, this pre-load must be checked not to have exceeded 15% of the actual peak load. If this limit

was exceeded, the test must be considered invalid. During the pre-load, the spherical or cylindrical seatings must be free

(and even helped) to accommodate any initial geometrical misfit.

3. Unclamp the rollers and run the test under at constant CMOD rate. The rate must be selected so that the peak load is

reached within 3 to 5 min. 8.4. Specimen Dimensions:

4. Measure the dimensions of the cross section to the nearest 0.1 mm. Measure the beam depth (D) at the central cross section

at the two surfaces of each half of the specimen, and take the mean of the four measurements. Measure the notch depth (a0)

at the central cross section at the two surfaces of each half of the specimen and take the mean of the four measurements.

Measure the beam thickness (B) at the front of the notch and at the top of the beam for the two halves of the specimen and

take the mean of the four measurements.

13.4.3.8 Calculations

13.4.3.8.1 Tensile strength, ft 163 Calculate the splitting tensile strength (T ) of each cylinder specimen according to point 7.1

of ASTM C 496, in SI units (kPa).

164 Determine the mean splitting tensile strength (Tm) by averaging over all the specimens.

165 Determine the tensile strength of concrete (for the cohesive crack model) as

ft =
Tm

1000
(13.41)

where Tm = mean splitting tensile strength, kPa; ft = tensile strength, MPa.

13.4.3.8.2 Elastic modulus, E 166 Calculate the elastic modulus of each notched beam according the following procedure:

1. From the load-CMOD record, select a linear segment with measured loads between 15% and 55% of the peak load

(0.15P ′
max ≤ P ′ ≤ 0.55P ′

max).

2. Fit a straight line to this segment with all the data available. Use linear regression of CMOD vs. P . to determine the slope

of the segment, which is taken to coincide with the initial compliance of the specimen:

Ci =
∆(CMOD)

∆P ′ (13.42)

where Ci = initial compliance, µm N
−1

; ∆(CMOD) = variation of CMOD, µm; P ′
= variation of measured load, N;

3. Determine the elastic modulus as

E =
24

CiBD
[a0V1(α0) + hW1(α0)] (13.43)

where E = elastic modulus, GPa; Ci = initial compliance, µm N
−1

; B = beam thickness, mm; D= beam depth, mm; a0 =

notch length, mm; α0 = relative notch length = a0/D; h = Distance of the knife edges to specimen surface, mm; and

V1(α) = 0.76− 2.28α0 + 3.87α2
0 − 2.04α3

0 +
0.66

(1− α0)2
(13.44-a)

W1(α) = 20.184− 82.790α0 + 121.64α2
0 (13.44-b)

4. Determine the mean elastic modulus (Em) by averaging over all the specimens.
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13.4.3.8.3 Far tail constant, A 167 Determine the residual load P ′
R measured by the load cell at the end of the test, for CMOD

= 2 mm or nearest point on the record. Determine the corresponding CMOD (wMR). Delete the recorded points with CMOD

larger than wMR.

168 Compute, for all the record points, the corrected loadP1 by subtracting from the measured load the residual load:P1 = P ′−P ′
R

169 Plot the curve of corrected load P1 versus CMOD. Determine the value wMA of the intersection of the rising part of the curve

with the CMOD axis (Fig. 13.13).

Figure 13.13: Plot of corrected load P1 versus CMOD.

170 For the points in the record past the peak for which the corrected load is less than or equal to 5% of the corrected peak load,

compute the quantity X defined as

X =
1

(wM − wMA)2
− 1

(wMR − wMA)2
(13.45)

where wM = recorded CMOD, mm; wMR = CMOD at the end of test, mm; wMA = CMOD at zero P1 for the rising part of curve,

mm.

171 Plot P1 versus x and perform a least-squares fit of the quadratic equation

P1 = X(A+KX) (13.46)

Find A and K by least-squares fitting and give A in N mm
2

with three significant digits (K is not needeed).

NOTE. Most computer packages for curve plotting will be able to perform the foregoing nonlinear fit. However, if such a

program is not available, a linear regression of Y = P1/X versus X will solve the problem.

13.4.3.9 Net plastic flexural strength, fp

172 Calculate the net plastic flexural strength of each notched beam according to the following procedure:

1. Determine the effective peak load taking into account the finite length of the tail of the record as

Pmax = P1max +
A

(wMR − wMA)2
(13.47)

where Pmax = effective peak load, N; P1max = corrected peak load, N. A = far tail constant, Nmm
2
; wMR = CMOD at the

end of test, mm; wMA = CMOD at zero P1 for the raising part of curve, mm;

2. Determine the net plastic flexural strength of the beam as:

fp =
PmaxS

2Bd2
(13.48)

where fp = net plastic flexural strength, MPa; Pmax = effective peak load, N; B = beam thickness, mm; b = D − a0 =

ligament length, mm; D = depth of specimen, mm; a0 = notch length, mm; S = test span of the specimen, mm.
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13.4.3.10 Brittleness length, l1, and horizontal intercept, w1

173 For each specimen, determine the brittleness length l1

l1 = κD

[
11.2

(x2 − 1)2
+

2.365

x2

]
(13.49)

where l1 = brittleness length, mm; κ = 1 − α1.7
0 ; α0 = a0/D = notch-to-depth ratio; D = beam depth, mm; a0 = notch length,

mm; x = ft/fp = inverse relative plastic strength; fp = net plastic flexural strength, MPa; ft = tensile strength, MPa.

174 Determine the mean brittleness length l1m as the average of the determinations for individual specimens.

175 Determine the horizontal intercept of the softening curve (w1) as

w1 = 1000
2ft
Em

l1m (13.50)

where w1 = horizontal intercept, µm (microns); ft = tensile strength, MPa; Em = mean elastic modulus, MPa; l1m = mean

brittleness length, mm.

13.4.3.11 Fracture energy GF

176 For each specimen, plot the curve of corrected load P1 versus load-point displacement δ. Determine the value δA of the

intersection of the raising part of the curve with the δ-axis, Fig. 13.14.

177 For each specimen, determine the load-point displacement δR of the last point of the test record

For each specimen, compute the measured work of fracture WFm as the area enclosed between the positive part of the P1 vs.

δ curve and the δ axis. Express it in N mm (mJ) to the nearest 5 N mm.

178 For each specimen, compute the total work of fracture WF as

WF =WFm +
2A

δR − δA
(13.51)

where WF = total work of fracture, N mm (mJ); WFm = measured work of fracture, N mm (mJ); A = far tail constant N mm
2
; δR

= load-point at the end of test, mm; δA = CMOD at zero P1 for the raising part of curve, mm.

179 For each specimen, compute the fracture energy GF as

GF = 1000
WF

Bb
(13.52)

where GF = fracture energy, N/m (J/m
2
); WF = total work of fracture, N mm (mJ); B = beam thickness, mm; b = D − a0 =

ligament length, mm.

180 Determine the mean fracture energy GFm as the average of the determinations for individual specimens.

Figure 13.14: Plot of corrected load P1 versus load-point displacement δ
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13.4.3.12 Center of gravity of the softening curve, wG

181 For each specimen, compute the abscissa of the center of gravity of the area under the softening curve as

wG =
4A

BSGF
× 10−6

(13.53)

where wG =center of gravity of the area under the softening curve, µm (microns); A = far tail constant, N mm
2
; B = beam

thickness, mm; S = loading span, mm; GF = fracture energy of the specimen, N/m.

182 Determine the mean center of gravity wGm as the average of the determinations for individual specimens.

13.4.3.13 Critical crack opening, wc

183 Compute the characteristic crack opening defined as

wch =
GFm

ft
(13.54)

where wch = characteristic crack opening, µm (microns); GFm = mean fracture energy, N/m; ft = tensile strength, MPa.

184 Compute the critical crack opening of the bilinear approximation as

wc = wch
3wGm − w1

2wch − w1

[
1 +

√
1− 2w1(3wGm − 2wch)(2wch − w1)

wch(3wGm−w1)2

]
(13.55)

where wc =critical crack opening, µm (microns); wch = characteristic crack opening, µm (microns); wGm = mean center of

gravity of the area under the stress versus crack opening curve, µm (microns) w1 = horizontal intercept, µm (microns).

13.4.3.14 Coordinates at the kink point (σk, wk)

185 Compute the stress at the kink point of the bilinear approximation as

σk = ft
2wch − w1

wc − w1
(13.56)

where σk = stress at the kink point, MPa; ft = tensile strength, MPa; wch = characteristic crack opening, µm (microns); w1 =

horizontal intercept, µm (microns); wc =critical crack opening, µm (microns).

186 Compute the crack opening at the kink point of the bilinear approximation as

wk = w1
wc − 2wch

wc − w1
(13.57)

where wk = crack opening at the kink point, µm (microns); wc = critical crack opening, µm (microns); wch = characteristic crack

opening, µm (microns); w1 = horizontal intercept, µm (microns).

13.5 Wedge Splitting Test; Saouma et. al.

This paper proposes consideration of the wedge splitting test configuration to determine both the fracture toughness and the

fracture energy of rock.

The test method introduces, through a wedge, a controlled lateral opening displacement to induce stable crack growth in

a prismatic or cylindrical specimen, Fig. 13.15. From the splitting force - average crack opening displacement response of the

specimen, the specific fracture energy is determined. For fracture toughness evaluation, a series of unload-reload is necessary.

This test method provides a means of measuring rock’s resistance to crack propagation through linear elastic fracture mechanics

(KIc) or nonlinear fracture mechanics (GF ). Results of this method may be used in numerical simulations as well as in comparative

studies of the fracture properties of different rocks.
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Figure 13.15: Principle of the Wedge Splitting Test Set-up

13.5.1 Apparatus

Testing System - The testing system consists of frame, actuator, force cell, controller, and data acquisition equipment as a minimum.

Whereas it is preferable to have a closed-loop servo-controlled machine, this is not essential if the testing machine is rigid enough.

1. Force Cell - The force-measuring device shall have sufficient capacity and shall be accurate to within 1.0 % of the peak force

measured in the test.

2. Displacement Measurement Devices - Two displacement measuring devices shall be used for measuring the displacements

in the axis of the horizontal splitting force, one on each side of the specimen (COD1 on side 1, COD2 on side 2). The

displacement measurement devices shall be of a type having sufficient capacity to enable the complete splitting of the

specimen in two halves, and shall be accurate to within 1.0 % of the displacement measured while the specimen is at peak

force.

Test Set-up - The principle of the wedge splitting test set-up, Fig. 13.15, with the successive steps, from 1 to 3, of mounting of

the test for a prismatic specimen. The test set-up between the actuator or force cell and the specimen consists of a beam with

wedges (A), plates equipped with roller bearings (B), and a rounded support (C).

13.5.2 Test Specimens

Specimen Configuration and Dimensions - The wedge splitting test specimen can be either prismatic or cylindrical, cast in moulds

or taken as cores from the structure. Dimensions are shown below on Fig. 13.16 (all dimensions in mm). The following ligament

lengths are recommended to obtain a stable crack propagation and to avoid unintentional mixed mode crack propagation:

Closed-loop control of COD: h1 = 130 mm.

Stroke control: h1 = 85 mm.

It should be noted that these are recommended values for “stiff” rock. For “soft” rock (defined by a relatively low fracture energy

GF ), it is recommended to use a ligamnet length of 85 mm in conjunction with a closed-loop COD control.

Specimen Preparation - The groove and notch shall be cut into the specimen. In order to force a straight path of the crack

propagation, a 5 mm deep groove can be cut on both sides of the specimen, on the surface following the plane of the ligament.

13.5.3 Procedure

1. Place displacement measuring systems on both sides of the specimen.

2. Place specimen on a suitable rounded support.

3. Carefully insert the wedge between the roller bearings.

4. Bring the wedges in contact with the roller bearings and perform the test, in either one of two test control modes:

a) Under COD control in a closed loop, servo-controlled test system, at a COD rate of 0.005 to 0.01 mm/min.

b) Under stroke control, at a stroke (cross-head) displacement rate of of =0.01 to 0.02 mm/min.
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Figure 13.16: Dimensions of the specimens for the Wedge Splitting Test (all dimensions in mm)

The actual speed of the test should be commensurate with the ultimate application. Fracture energy determination for blast

loading will undoubtedly require a much faster load rate than the one for long term “creep” cracking, and the values can

be quite different as shown by Bažant and Xi (1993).

5. For fracture toughness test, perform an unload/reload at the same rate as loading, Fig. 13.17:
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Figure 13.17: Representative Experimental Load-COD Curve

a) Close to the peak load.

b) At least 4 times in the post-peak zone.

Fig. 13.18 illustrates the test set-up with a (prismatic) specimen with the forces induced by the imposed COD or crosshead dis-

placement. The resultant splitting force acts at 10 mm below the top side of the specimen.

13.5.4 Measured Values

Measured values are: 1) Vertical force FV as a function of time; and 2)Crack Opening Displacements COD1 and COD2 on both

sides of the specimen, as a function of time.

13.5.5 Calculation

13.5.5.1 Fracture Toughness

The determination of the fracture toughness requires not only the maximum load but also the corresponding crack size. However,

in rock, as in concrete, the tip of the crack may not be easily identifiable due to the heterogeneity introduced by the fine grains.

Hence, the concept of an elastic equivalent crack length has to be used to determine the fracture toughness. This is determined

through the compliance method which combines finite element calibration with analysis of experimental data.

This Finite (or boundary) element analysis of the geometry, with E = 1, is conducted in two parts. First a unit horizontal load

is applied at the location of the wedges, and the initial normalized compliance is determined. In this case C0
n is simply equal to

the CODFS measured along a unit splitting force FS .
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Figure 13.18: Test set-up and acting forces, for a prismatic specimen

187 Subsequently, geometries with increasing crack lengths (again with E = 1) are also subjected to a unit FS and analyzed. For

each analysis (crack length, a) we compute: the fracture toughness, and the compliance. These analyses results are then tabulated,

and a least square best fit is performed to determine aeff = aeff (Cn), and KIc = KIc(aeff ), where aeff is the effective crack

length.

188 Fig. 13.19, and 13.20 show representative normalized and actual compliance and stress intensity factor curves.
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Figure 13.19: Normalized Compliance and Stress Intensity Factors in Terms of Crack Length a

At this point, test interpretation proceeds as follows:

1. From the first unload-reload cycle, determine the effective elastic modulus from

Eeff =
C0

n

C0
exp

(13.58)

Where C0
n is the normalized compliance (obtained from the pre-test calibration) and C0

exp is the initial experimental com-

pliance given by

C0
exp =

CODFS

FS
(13.59)

where CODFS is the crack mouth opening displacement measured along the splitting force FS .

206



D
R
A
FT

13.5 Wedge Splitting Test; Saouma et. al.

Crack Compliance vs crack lenght
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Figure 13.20: Compliance and Stress Intensity Factors in Terms of Crack Length a

2. Having determined the effective elastic modulus, the normalized compliance is determined from Cn = EeffCexp.

3. For each of the subsequent post-peak response determine:

a) The experimental compliance, Cexp.

b) The corresponding elastic equivalent (or effective) crack length from

aeff = aeff (Cn) (13.60)

c) The fracture toughness for this particular crack length

KIc = KIc(aeff ) (13.61)

4. Plot the determine fracture toughnesses in terms of effective crack length, and determine the average value. It should be

noted that as aeff approaches the ligament length (distance from tip of the notch to the bottom of the specimen), there

will be a small decrease in KIc.

13.5.5.2 Fracture Energy

1. Determine the (horizontal) splitting force acting on the roller bearing, FS from:

FS =
1

2 tanα
FV =

1

2 tan 15o
FV = 1.866FV (13.62)

2. Determine the average of the two displacements measured:

COD =
COD1 + COD2

2
(13.63)

3. Plot FS in terms of average COD and, if necessary, extrapolate curve to zero FS .

4. Determine the ligament area ALig corresponding to the projected area of the crack on the ligament.

5. Determine the work of fracture WF as the area under the FS − COD curve (Fig. 13.21).

6. Determine the specific fracture energy GF :

GF =
WF

ALig
(13.64)

13.5.6 Report

Report the following information:

1. Specimen dimensions

2. Test control method (stroke displacement or COD control, and displacement rate).

3. Description of the fracture surface, especially any unusual appearance or significant deviation from a vertical plane centered

on the pre-notch tip.

4. Splitting force - average COD curve.

5. Work of Fracture WF and Specific Fracture Energy GF .
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Fs

Average COD

WF

GF = WF/Alig  (J/m2)

Figure 13.21: Definition of the work of fracture and specific fracture energy

13.5.7 Observations

Major advantages of the proposed test include:

1. Can be run on usual mechanical testing machines in compression mode (albeit with a longer relative notch length), or on

a servo-controlled one.

2. Can be performed on specimens, prismatic or cylindrical cores extracted from the rock.

3. Has a substantially longer ligament length per unit weight of concrete as compared to other tests (and in particular com-

pared to the Three-Point-Bending-Beam Test), and a smaller amount of elastic strain energy is stored in the specimen during

cracking. This is a particularly important characteristic which facilitates stable tests without risks of snap-backs.

4. Self-weight effect can be neglected for usual sizes (20 x 20 x 10 cm prismatic specimen) (Denarié, E. and Saouma, V.E. and

Iocco, A. and Varelas, D., 1999).

5. Test set-up and specimen geometry can be easily adapted for bigger or smaller specimen sizes, (Trunk, 2000).

6. Has been for now 15 years extensively used by researchers, and practitioners in the US, Europe and Japan with specimens

ranging from 5 cm up to 3.2 m in size, on various types of concretes, mortars, advanced cementitious materials and rock.

Moreover, the interpretation of the tests results for the determination ofGF as well as the tensile softening diagram is straight-

forward and requires only very simple calculations. In a first approximation, the derivation of the tensile softening diagram can be

based on the regressions performed on extensive data sets, for different types of concretes, at quasi-static imposed displacement

rates, (Brühwiler, E., 1992). The uniaxial tensile strength ft should be preferably determined experimentally by means of a uniaxial

tensile test. If adequate software modules are available, ft and the tensile softening diagram can also be indirectly determined by

means of an inverse analysis using a FEM simulation of the experimental specimen response, (Bolzon et al., 2002).

Finally, this test has been used by one of the author to test limestone, (Brühwiler, E. and Saouma, V.E., 1990) and limestone

concrete interfaces, (Chandra and Saouma, 2004).
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SIZE EFFECT

Paper in print

1 Crack bridging occurs when cohesive stresses join the opposite faces of a crack, shielding the tip from the full effect of the applied

load and thus giving rise to increased fracture resistance. Cohesive stresses are present both in elasto-plastic materials such as

metals (through crack tip yielding), (Dugdale, 1960), (Barenblatt, 1962) and in quasi-brittle ones. In the later, they are present not

only in cementitious materials, but also in ceramics, (Saouma et al., 2002) and are caused by reinforcing fibers, particles (such as

aggregates or inclusions), or simply regions of microscopically irregular crack surfaces causing topological interference.

2 Cohesive stress models were first suggested by Dugdale (1960) using a constant stress, then Barenblatt (1962) generalized this

concept to a more general stress distribution, one which causes the crack faces to close smoothly. It should be noted that those

two pioneering studies attributed different causes to the cohesive stresses. For Dugdale it was caused by macroscopic plasticity

(and can be of any size) while for Barenblatt it was caused by molecular cohesion (and must be restricted to a relatively very small

zone), (Kanninen and Popelar, 1985). Finally, most recently Hillerborg et al. (1976a) assumed a nonlinear model where the stress

is a function of the crack opening. The first two models are most appropriate for metals to account for the presence of a plastic

zone, whereas Hillerborg’s model is more suited for cementitious material with a fracture process zone.

3 In both Dugdale and Barenblatt solution, the stress intensity factors caused by the far field load, and the cohesive stresses are

assumed to cancel each other. Hence, implicit in this assumption is a zero material fracture toughness.

4 Finally, Hillerborg does not consider any singularity at the tip of the crack. Implicit in his approach is that there can not be a

stress singularity at the crack tip since the criterion for crack propagation is based on the crack tip stress. This assumption was

recently challenged by Xu and Reinhardt (1998) who developed the double-K criterion where KR(∆a) = Kini
Ic + KC(∆a)

and KC(∆a) = F (ft, f(σ),∆a). In this model, developed for concrete, the resistance to crack growth (right hand side) is first

set to the inherent toughness, and then to a cohesive term. Hence, contrarily to Hillerborg’s model, a cohesive stress does not

necessarily eliminate the stress singularity, and as such crack propagation is no longer governed by a stress criteria, but rather by

a modified linear elastic fracture mechanics one. This model enables us to distinguish between initial crack growth (in the absence

of a fracture process zone) governed by Kini
Ic and subsequent unstable crack growth in terms of Kini

Ic + KC(∆a). Despite its

appeal, this model has not yet been widely embraced by the concrete research community which continues to use (for the most

part) Hillerborg’s model.

5 In this chapter, we shall closely examine the role played by the cohesive stresses in inducing a size effect. This has already been

suggested by Karihaloo (1996) “… the origin of the size effect is in the non-sigular stress distribution ahead of the notch/crack”.

6 Hence, keeping with the original spirit of the derivations of Dugdale, Barenblatt and Hillerborg we will assume the (net) fracture

toughness to be zero.

14.0.1 Original Derivation

7 Bažant and Planas (1998) presented a unified model for the nominal strength of quasi-brittle material. This simple and elegant

equation is asymptotic to plasticity and linear elastic fracture mechanics, while capturing the intermediary quasi-brittle response.

8 Considering the energy exchanged during an infinitesimal crack extension in a plate of width D, Fig. 14.1, the energy released

can be approximated by b2k(a0 + cf )∆aσ
2
n/2E, which must be equal to the energy consumed during crack growth: bGF∆a,

hence

b2k(a0 + cf )∆aσ
2
n/2E = bGF∆a (14.1)

yielding

σn =
Bf ′

t√
1 + D

D0

(14.2)
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Figure 14.1: Energy Transfer During Infinitesimal Crack Extension

where

Bf ′
t =

√
GFE

kcf
and

D

D0
=
a0
cf

= β (14.3)

9 In his original paper, Bažant (1984) noted that the analytical or numerical derivation of B and β is too difficult, and they are

best obtained through statistical regression analysis of test data.

10 This derivation would be characterized as semi-analytical, since it combines an analytical derivation (albeit with some simpli-

fying assumptions), and experimental derivation of constants too complicated to be derived analytically. Finally, this derivation

does not explicitly reference a plasticity and/or a linear elastic fracture mechanics solution. Yet, those two solutions are ultimately

asymptotic to the derived size effect law.

14.1 Analytical Derivation

11 In this section, an alternate derivation of the size effect law is presented. Whereas it hinges (for simplifying reasons) on Dug-

dale’s or Barenblatt’s model for the cohesive stresses (in lieu of Hillerborg’s fracture energy), it will be shown that a purely

analytical expression could be derived, hence problem specific numerical values of B can be obtained.

12 This approach is based on classical elasto-plastic fracture mechanics, (Broek, 1986), where in its simplest form the stress intensity

factors caused by the cohesive stresses (in a plastic zone or process zone), are assumed to cancel the ones caused by the far field

load. Hence, contrarily to the original derivation by Bažant, the size effect law will be shown to have explicit roots in plasticity

and linear elastic fracture mechanics theories. As a result, it will be shown that not only quasi-brittle materials exhibit a size

effect, but elasto-plastic ones as well.

14.1.1 Constant Cohesive Stresses

14.1.1.1 Central Crack

13 Starting with a general case, we consider an infinite plate subjected to a far field uniform tensile stress σ and a crack of length

2a, at the tip of which we have a uniform cohesive compressive stress (Dugdale type) equal to the tensile strength f ′
t , Fig. 14.2.
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Figure 14.2: Central Crack With Constant Cohesive Stresses
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14 The stress intensity factors due to the far field and cohesive stresses are:

Ka = σ
√
πa (14.4)

Kb = f ′
t

√
πa

(
1− 2

π
arcsin

a− cf
a

)
(14.5)

respectively, (Cherepanov, 1979).

15 Equating those two stress intensity factors, we obtain the nominal strength

σn = f ′
t

[
1− 2

π
arcsin

(
1− cf

a

)]
(14.6)

16 In the limit, for small sizes when a ≃ cf , σn approaches asymptotically f ′
t . On the other hand, for large sizes, cf ≃ 0, σn will

asymptotically approach zero.

17 Whereas the expression of σn appears to have the same limits as the Size Effect Law, it is not mathematically similar to it. This

will only become apparent if one takes a series expansion of the ArcSin function, and substituting cf/a by s:

σn = σn = f ′
t

[
1− 2

π
arcsin(1− s)

]
(14.7)

≃ 2
√
2f ′

t

π
s1/2 +

f ′
t

3
√
2π
s3/2 +

3f ′
t

40
√
2π
s5/2 +O[s]7/2 (14.8)

Neglecting the terms of power greater than 1 (since s is at most equal to 1), and substituting s = 1/(1 + r) where r = a0/cf ,

we obtain

σn =
2
√
2

π︸ ︷︷ ︸
B

f ′
t

√√√√√ 1

1 + r︸︷︷︸
β

(14.9)

18 We have thus recovered the size effect law as originally derived by Bažant as expressed by Eq. 14.2, with the additional benefit

that B is quantified for this combination of geometry and cohesive stresses, Fig. 14.3.
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Figure 14.3: Nominal Strength in Terms of Size for a Center Crack Plate with Constant Cohesive Stresses

14.1.1.2 Edge Crack

19 We next consider an arbitrary geometry of a cracked structure whose stress intensity factor due to the far field stress can be

expressed as

Ka = ασ
√
πa (14.10)

where α is a coefficient which accounts for geometry, boundary conditions, and load.
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20 On the other hand, the stress intensity factor corresponding to a constant stress, Fig. 14.4 is given by Stevens and Guiu (1994)

as

Kb = −f ′
t

√
πafb (14.11)

where

a

f’t

cfa0

Figure 14.4: Dugdale’s Model

fb = 0.903s1/2 +
1

3
0.4406s3/2 +

1

5
0.4997s5/2 − 1

7
0.1438s7/2

−1

9
0.04578s9/2 (14.12)

and s = cf/a. Since at most s = 1, we keep only the first term which has an exponent lower than one.

21 Equating Ka to Kb, we solve for the far field nominal stress σn which would result in a zero net stress intensity factor at the

tip of the crack. For this problem, we obtain

σn =
0.903

α
f ′
t

√
s (14.13)

Expressed in terms of r = a0/cf , s = 1/(1 + r), the far field nominal stress will be

σn =
0.903

α︸ ︷︷ ︸
B

f ′
t

√√√√√ 1

1 + r︸︷︷︸
β

(14.14)

22 For an infinite plate with an edge crack, α = 1.1215 (Tada et al., 1973), and the resulting nominal stress will be

σn = 0.805︸ ︷︷ ︸
B

f ′
t

√√√√√ 1

1 + r︸︷︷︸
β

(14.15)

This equation is shown in Fig. 14.5.

14.1.2 Linear Cohesive Stresses

14.1.2.1 Edge Crack

23 The stress intensity factor for an edge crack subjected to a pair of point forces on opposite faces at a distance x from the crack

mouth, Fig. 14.6 is given by Gdoutos (1993) as

KP
b =

2√
π

1 + F (x/a)√
a2 − x2

P
√
a or dKP

b =
2√
π

1 + F (x/a)√
a2 − x2

dP
√
a (14.16)
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Figure 14.5: Size Effect Law for an Edge Crack with Constant Cohesive Stresses
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Figure 14.6: Linear Cohesive Stress Model

where

F (x/a) = [1− (x/a)2][0.2945− 0.3912(x/a)2 + 0.7685(x/a)4

−0.9942(x/a)6 + 0.5094(x/a)8] (14.17)

24 The stress intensity factor for a linearly varying stress distribution (analogous to, but not exactly, Barenblatt’s model) is simply

obtained by replacing dP by
dx
cf
f ′
t in Eq. 14.16 and integrating

Kb =

∫ a

a0

KP
b dx =

2√
π

∫ a

a0

1 + F (x/a)√
a2 − x2

x

cf
f ′
t

√
adx (14.18)

25 Equating this stress intensity factor caused by local plastification, to the far field stress intensity factor given by Eq. 14.10 (with

α = 1.1215) we solve for the nominal stress σn which would cause the net stress intensity factor to be equal to zero. Using

s = (a− a0)/a, and expanding in terms of s about s = 0, we obtain

σn

f ′
t

=
0.000124102

s
− 0.0000668046√

s
− 0.000124102 + 0.535096

√
s

+0.0675175s3/2 − 0.388195s5/2 + 0.19108s7/2 − 0.411846s9/2

+O[s]5 (14.19)

26 Even though s is very small, we can drop the first three terms which are negligibly small compared to the others. This is

first confirmed by replacing s with 1/(1 + r), and plotting Eq. 14.19 with all the terms up to s3/2, and the very same equation

with the first three terms omitted, Fig. 14.7. We observe that those two graphs (plotted on a linear scale to enhance the potential

discrepancies) are practically identical, with a small deviation in the high range of r.
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Figure 14.7: Energy Transfer During Infinitesimal Crack Extension

Hence, we may now justifiably drop the first three terms in Eq. 14.19, and rewrite this equation as:

σn =
0.5351f ′

t√
1 + r

(
1 +

0.126182

1 + r

)
+O[s]2 (14.20)

=
0.5351f ′

t√
1 + r

[
−0.0728836

(
−4.66957 +

1

1 + r

)(
2.93828 +

1

1 + r

)]
+O[s]3 (14.21)

=
0.5351f ′

t√
1 + r

[
0.357092

(
2.21298 +

1

(1 + r)2
− 1.46954

1 + r

)
(
1.26544 +

1

1 + r

)]
+O[s]4 (14.22)

=
0.5351f ′

t√
1 + r

[
−0.769662

(
1.16279 +

1

(1 + r)2 − 0.164699
1+r

)
(
−1.21723 +

1

1 + r

)(
0.917969 +

1

1 + r

)]
+O[s]5 (14.23)

27 We note that the derived size effect law contains higher order terms than those originally derived by Bažant through Eq. 14.2.

28 Bažant size effect law is recovered through Eq. 14.20 by dropping the second term in the parenthesis. As to Eq. 14.21-14.23 they

definitely contain even higher order terms, Fig. 14.8.

14.1.2.2 Three-Point Bend Specimen

29 We then turn our attention to a slightly more complex geometry, a three point bend specimen, Fig. 14.9, for which the stress

intensity factor is now given by Gdoutos (1993) as:

Ka =
PS

BW 3/2

[
2.9(a/W )1/2 − 4.6(a/W )3/2 + 21.8(a/W )5/2

−37.6(a/W )7/2 + 38.7(a/W )9/2
]

(14.24)

30 The stress intensity factor for an edge crack subjected to a linearly varying cohesive stress (Barenblatt’s type)Kb, Fig. 14.6 was

given by Equation 14.18.
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Figure 14.9: Three Point Bend Specimen with Linear Cohesive Stresses

As before, equating the two stress intensity factors, solving for σ, substituting s = (a − a0)/a, and expanding in terms of s
about s = 0, we obtain

σ

f ′
t

= −0.000067298

s
+

0.0000597828√
s

+ 0.000067298 + 1.06378
√
s

+8.32667× 10−17s+ 0.132783s3/2 +O[s]2 (14.25)

As for Eq. 14.19, it can be shown that we can retaining the terms in s1/2 and s3/2 without loss of accuracy, and thus obtain

σn =
1.06738f ′

t√
1 + r

(
1 +

0.124401

1 + r

)
+O[s]2 (14.26)

31 Again, this newly derived size effect law for a three point bend beam with a linearly varying cohesive stress along the fracture

process zone is to be contrasted with Eq. 14.2. Should we drop the second term within the parenthesis, then and only then we

will recover an equation analogous to Eq. 14.2.

14.2 Discussion

14.2.1 Comparison with Experimental Data

32 In order to assess the results, we closely examine experimental size effects tests on three point bending concrete specimens as

reported in Table 1.5.2 of Bažant and Planas (1998).

Table 14.1 gives the compressive strength and Bf ′
t . For the sake of simplification, we assume f ′

t = 0.1f ′
c, and thus determine

the experimental value of the B coefficient.

The average experimentally determined value is 1.39 (with a standard deviation of 0.61), and compares relatively well (given the

assumption of a Barenblatt cohesive stress model) with the analytically derived value of 1.07 in Eq. 14.26. Interestingly enough,

we note that the experimentally determined B value is clearly inversely proportional to the nominal specimen size D0.
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Series f ′
c Bf ′

t B D0 Reference

MPa MPa mm

A5 46.8 2.9 0.62 212. (Walsh, 1972)

A2 35.4 2.8 0.79 157. (Walsh, 1972)

A4 15.6 1.7 1.09 126. (Walsh, 1972)

B1 34.1 6.0 1.76 60. (Bažant and Pfeiffer, 1987)

A6 32.7 4.1 1.25 55. (Walsh, 1972)

A1 23.1 4.5 1.95 36. (Walsh, 1972)

A3 14.3 3.2 2.24 34. (Walsh, 1972)

Table 14.1: Experimentally Determined Values of Bf ′
t , (Bažant and Planas, 1998)

14.2.2 Implications

33 We can rewrite Eq. 14.2 as

f∗
t =

f ′
t√

1 + β
=
σN

B
, (14.27)

where f∗
t is termed the size-reduced-strength and is a characteristic of the entire structure and not only of the material.

34 Undoubtedly the size effect law is a very elegant generalized model for concrete fracture. It attempts to provide a unified

mathematical model for concrete cracking by merging two different approaches. Furthermore, it has been experimentally validated

with numerous tests, many of which involved uncracked (initial) structures.

35 Despite its general appeal, this model calls for the following comments:

1. The size effect law can be plotted on a log-log scale, as shown in Fig. 14.10, with σn versus size d.

log σN

log d

Plasticity

LEFM

2
1

d
d

d

?

Small scale laboratory 
experiment

Actual structure

?



NLFM

Figure 14.10: Size Effect Law

2. For structures of a small size relative to the size of aggregate, i.e for small λ, the value of
λ
λ0

in Eq. 14.27 may be neglected

in comparison to 1, yielding f∗
t ≃ f ′

t , and the classical strength criterion governs.

3. Again for small structures (small β), B = σN
f ′
t

and can be determined from plastic limit analysis.

4. For structures with very large size compared to aggregate size,
λ
λ0

≫ 1. Thus Eq. 14.27 reduces to f∗
t ≃ f ′

t

√
λ0
λ

, and we

see that “For very large concrete structures, such as dams (or large rock masses), Eq. 14.27 asymptotically approaches the

size effect of linear elastic fracture mechanics”.
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SIZE EFFECT

Column Buckling Size Effect

Euler Equation LEFM

Slenderness ratio Size

Plastic failure Plastic failure

Inelastic stresses Cohesive stresses

Inelastic Buckling NLFM

Column Equation (SSRC) Size Effect law (Bažant)

σcr = σy

[
1− σy

4π2E

(
KL
rmin

)2]
σn =

Bf ′
t√

1+β

Table 14.2: Size Effect Law vs Column Curve

5. In general, Eq. 14.27 represents a gradual transition from the strength criterion for small structures to linear elastic fracture

mechanics for large structures.

6. To assess the size effect law, geometrically identical specimens, but with different sizes must be tested. Then Eq. 14.27 can

be cast in the form:

Y = a+ bλ =
1

σ2
N

, (14.28)

where a = 1
B2 and b = 1

B2λ0
. From statistical regression analysis, the intercept a, and the slope b can be determined, and

then B = 1√
a

and λ0 = a
b

7. If
λ
λ0

= β is less than 0.1, then a strength criterion must be used, and if β is greater than 10, then a LEFM criterion is to

be used. Note that those are arbitrary guidelines.

8. The point of intersection of the two asymptotes corresponds to β = 1.

9. At no stage did we have to introduce (explicitly or implicitly) any LEFM equation (in the sense of a stress singularity at the

crack tip).

10. The square root relationship between f∗
t and d (through λ) comes from:

• an appropriate choice of the normalizing parameter for the crack length a in defining α1 and α2.

• expression for GF in terms of the square of f ′
t in Eq. ??. Although it is correct to directly relate GF to the area under

the uniaxial stress strain curve (a measure of the energy required to produce a unit surface), the square component

is again not linked to LEFM.

11. It can be shown, (Bažant and Cedolin, 1991) that the fracture energy GF can be recovered from the Size Effect Law

12. There is a strong analogy between the size effect and column buckling, Fig. 14.11, Table 14.2.

yd
σ

yd
σ

kL
r

kL
r

2σ = π E

( )2

E T < E

ε

σ

rσ

σ Euler Buckling (Linear Elastic)

Gross Yielding

Inelastic
Buckling

Proportional Limit Proportional Limit

E

Effect of Residual Stresses

Figure 14.11: Inelastic Buckling
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14.3 Conclusion

14.2.3 LEFM vs NLFM Analyses

36 Ideally, we should extend the analytical solution to encompass Hillerborg’s model as applied to a three point bending concrete

specimen. To the best of the author’s knowledge only two researchers addressed this complex nonlinear problem. Xu and Rein-

hardt (2000) developed a closed form solution, albeit an empirical one (as termed by its authors). Another solution was presented

by Karihaloo (1999) who again indirectly solved this problem, but with some rather restricting assumptions by enforcing a zero

net stress intensity factor at the tip of the FPZ. Because of the restrictions imposed to those two solutions, the authors have not

considered them in this study.

37 In a nonlinear fracture mechanics analysis the crack growth criteria is stress based, i.e the crack tip maximum tensile stress

can not exceed the (non-zero) concrete tensile strength. Alternatively, in an LEFM analysis, we can set as a criteria a zero fracture

toughness.

38 Whereas both criteria are readily accepted by the research community, practicing engineers have difficulties in accepting a non-

zero tensile strength (hence rendering a NLFM analysis impossible), but can accept a small (preferably zero) fracture toughness,

(FERC, 2016) (in this context, the double-K method might be more acceptable to practicing engineers than solutions based onGF

and a non-zero f ′
t ). By the same token, a NLFM analysis should extend the fracture process zone to the point where the stress

singularity no longer exists.

39 In order to highlight the duality between a zero fracture toughness criteria in an LEFM analysis, and a non-zero tensile strength

criteria in a NLFM analysis a series of numerical analysis were performed. Considering a three point bend specimen, withGF =100

N/m, f ′
t=2 MPa, S/W = 8, a/W = 0.6, s0=100 mm, beams with s0, 10s0, 50s0 and 100s0 were analyzed using the code Merlin

(Saouma et al., 2010). Through those analyses, the two stress intensity factorsKa (caused by the external load) andKb (caused by

the cohesive Hillerborg’s stress) were determined. Whereas contour integral techniques should be favored, one should be careful

to leave a small zone at the tip of the crack traction free, otherwise the J integral will be equal to zero. Hence, in the context of

this analysis (with surface traction on the crack faces) we used singular elements.

40 In each analysis, Pmax corresponded to the onset of unstable crack growth (based on tensile stress at the crack tip), and the

corresponding stress intensity factor Ka+b were determined. It should be noted that in our implementation of the interface

element (based on the extended Hillerborg’s model) pre-peak crack opening can occur. This results in a nonlinear pre-peak load-

cod curve.

41 Whereas the variation of Pmax with respect to s was indeed according to Bažant’s size effect law, the net stress intensity

factors at Pmax ranged between 0.05 and 1.5 MPa

√
mm. Given that a representative value for the fracture toughness of concrete

is about 1 MPa

√
m or 31 MPa

√
mm, the net stress intensity factor can be considered as essentially zero. These values should be

independent of the tensile strength, as a higher f ′
t would result in a larger external load, and a higher Ka, but also in a higher

(negative) Kb caused by the cohesive stresses. Indeed, when the tensile strength was increased from 2 MPa to 4 MPa, Pmax was

about twice the original values, however there was no discernable variation in Ka+b.

42 Thus, we conclude that for all practical purposes a NLFM analysis yields a very small non-zero stress intensity factor in com-

parison with fracture toughness. Hence, practicing engineers who accept a zero fracture toughness LEFM analysis should be

reassured that a non-zero tensile strength in the context of a NLFM is, for all practical purposes, identical.

14.3 Conclusion

43 The size effect law is rederived through a balancing of far-field induced stress intensity factors with those caused by the cohesive

stresses. Hence, a direct relationship between plasticity and LEFM to the size effect law is presented. It is shown that the shape of

the cohesive stresses is irrelevant, that the B coefficient can, albeit with some restriction, be analytically derived. Furthermore,

in the context of the reported derivation, it is shown that not only quasi-brittle materials exhibit a size effect, but elasto-plastic

ones (such as metals) too.

44 Finally, it was also shown that a NLFM analysis with a non-zero tensile strength is practically identical to a LEFM analysis with

zero fracture toughness.
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Chapter 15

FRACTALS, FRACTURES and SIZE EFFECTS

Adapted from (?)

15.1 Introduction

15.1.1 Fracture of Concrete

There is not yet a standard for concrete fracture testing although several have been proposed Anon. (1985) Concrete fracture

properties include fracture toughnessKIc, characteristic length lch, brittleness number β, fracture energyGF , crack-tip opening

displacement CTOD, and at least three additional parameters that characterize the concrete strain softening curve.

This chapter addresses a technique that uses fractal geometry to determine whether there is any surface indication of the

direction of crack propagation in concrete and whether there is a correlation between fracture properties (KIc and GF , which

characterize the material resistance to cracking) and the roughness of the fracture surface as characterized by the fractal dimension

D. The implications of the fractal nature of the cracked surface on the “true” fracture or surface energy are then discussed.

15.1.2 Fractal Geometry

Although most manmade objects have linear or smoothly curvilinear shapes, natural objects (such as rivers, mountains, clouds,

and fractures) are commonly rough, fragmented, or discontinuous. The apparent randomness of these irregularities, coupled with

our bias toward Euclidian geometry, handicapped us in studying and properly modeling such objects until the advent of fractal

geometry (Mandelbrot, 1983).

By definition, an inherent property of fractal objects is the statistical replication of patterns at different scales; a magnified part

of a fractal object is statistically identical to the whole. Hence, Fig. 15.1-A illustrates the generation of a self-similar synthetic

fractal curve, the triadic Koch curve.. First, an initiator, which represents an initial geometric form, is defined, then a generator,
which describes a transformation on the initiator, is applied. As the transformation operation is repeatedly applied to the figure, a

fractal curve is generated. For the triadic Koch curve, we note that at each step the number of line segments is increased by a factor

of 4 and that the length of each new line segment generated is one third the length of line segments in the previous generation.

This increases the total length of the fractal curve by four thirds at each step. Thus, as the number of iterations increases, the

number of subdivisionsN will vary from 1, 4, 16; s = 1
S

where S is the scaling factor from 1, 3, 9; and the corresponding lengths

will be 1,
4
3

, and
16
9

. The total length will eventually tend to infinity. The results of this operation are tabulated in Table 15.1. The

fractal dimension D is defined as

D =
lnN

ln s
, (15.1)

An alternative form of this equation is

N = sD. (15.2)

Note that the Euclidian definition of dimension, that is the topological dimension, is recovered if a line is subdivided into equal

parts without changing its length. Since N = S in this case, D = 1.

In our previous example, we subdivided line segments into four parts, thus N = 4 and we used S = 1/3 or s = 3. This gives

a fractal dimension of D = ln 4
ln 3

= 1.2619 for the curve shown in Fig. 15.1-A.

Mandelbrot (1983) offered the following tentative definition of a fractal. A fractal is a set for which the Hausdorf-Besicovitch
dimension (D) strictly exceeds the topological dimension (DT ). For the curve shown in Fig. 15.1-A the topological dimension is 1,

whereas the Hausdorf-Besicovitch dimension is 1.2619.

Step N S s Length

1 1 1 1 1

2 4
1
3

3
4
3

3 16
1
9

9
16
9

Table 15.1: Fractal dimension definition
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Figure 15.1: (A) Straight line initiator, fractal generator, and triadic Koch curve; (B) Quadratic Koch curve; (C) Modified Koch

curve.
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Hence, fractal surfaces haveDT = 2 and fractal dimensionsD > 2. Mandelbrot (1983) showed that, as a rule of thumb, for a set

S that is the product of two independent fractal sets S1 and S2 the fractal dimension of S equals the sum of the fractal dimensions

of S1 and S2. Hence, if the triadic Koch surface is uniformly extruded along the z direction, the fractal dimension of the surface

is S = S1 + S2 = 1.2619 + 1 = 2.2619 (Feder, 1988) provided that we have two independent fractal sets. Alternatively, if the

extrusion is fractal, then D is greater than 2.2619.

15.1.3 Numerical Determination of Fractal Dimension

Although the fractal dimension D of synthetic curves can be readily determined analytically, the dimension of arbitrary curves

requires the use of numerical methods. Three of the most commonly used methods for measuring the fractal dimension of surface

roughness are reviewed here.

Ruler Method: In the ruler method, (Aviles and Scholz, 1987; Mandelbrot, 1983) a divider (that is ruler) of given length S is used

to determine the total length of the curve. Note that no fractional lengths can be taken. Thus, for a given ruler length, the

curve length L is given by SN where N is an integer. This operation is repeated for a ruler of smaller and smaller length

S, and the fractal dimension is given by

N = (
1

S
)D

= sD, (15.3)

S ·N︸ ︷︷ ︸
L

= S · ( 1
S
)D︸ ︷︷ ︸

S1−D

lnL = (1−D) lnS. (15.4)

Box Method: The box method is used in this study to measure the fractal dimension of the fracture roughness profiles. In

principal, the method is simple; a sequence of grids, each having a different cell size, is placed over maps of the fracture traces

and the number of cells intersected by fracture traces counted, (Barton et al., 1989). The number of grid cells intersected by

the profileN is then plotted on a log-log scale with respect to the inverse of the grid cell size s = 1
S

. If a linear relationship

is found, then the object is said to be fractal within the specified range of cell sizes and the fractal dimension is the slope

of the line.

The box method, as well as the ruler method, is strictly applicable to self-similar data sets. Fracture roughness profiles in

rock have been shown to be self-affine (Brown, 1987, 1988). Brown’s analysis shows that application of the ruler method

to self-affine data sets yields the correct fractal dimension only when the maximum ruler length used is less than the

crossover length, which is defined as the ruler length beyond which the ruler method will always yield a fractal dimension

of approximately one. Brown (1987) and Brown (1988) showed that the crossover is the length where the standard deviation

of amplitude is equal to the wavelength, which for our profiles is approximately 8×10−2
meters. We expect the box method

to exhibit a crossover length when applied to self-affine data sets such as our fracture surface profiles. Therefore, in this

study we limited the largest box size to 8× 10−2
m.

Slit Island Method: Whereas the preceding two methods measure the fractal dimension of fracture profiles (1 < D < 2), the

Slit Island method is applicable to fractal surfaces (2 < D < 3). For each contour line of different elevation over the fracture

surface, the perimeter L and the area A are determined and then plotted on a log-log scale. The fractal dimension is then

be obtained from (Feder, 1988)

A = L
2

D−1 . (15.5)

15.1.4 Correlation of Fractal Dimensions With Fracture Properties

Fractal analysis is a simple and powerful tool for quantifying complex physical quantities. It has been used in numerous fields,

ranging from clustering of co-citations in scientific papers (Van Raan, 1990) to earthquake prediction (Levi, 1990).

The roughness and irregularities of fractured surfaces make them ideal candidates for a fractal analysis. Indeed, as pointed

out by Cahn (1989) fracture and fraction (fractals have fractional dimensions) have the same latin root fractus, which means to

break and to create irregular fragments. This potential correlation has been the subject of numerous studies, which have yielded

conflicting conclusions.

In the first study of fracture surfaces, Mandelbrot et al. (1984) showed that not only are cracked metallic surfaces (300-grade

maraging steel) fractal but their fractal dimension is inversely proportional to the impact energy determined by the Charpy impact

test (itself proportional to fracture toughness). Through simulation of a numerical model for fracture based failure of a polymeric,

Termonia and Meakin (1986) showed that the synthetic fracture surfaces are also fractal and that the fractal dimension has a

universal value of D = 1.27± 0.02. More recently Peng and D. (1990) showed through a simple theoretical kinetic model which
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Contents Maximum size aggregate

1.5 in. 3.0 in.

Water (lbs/yd
3
) 280 208

Cement (lbs/yd
3
) 424 315

Water/Cement ratio 0.66 0.66

Sand (lbs/yd
3
) 1,318 1,171

Gravel (lbs/yd
3
) 2,054 2,481

Table 15.2: Concrete mix design

simulates crack propagation, that the resulting fracture surface is fractal and that its dimension depends on the material’s elastic

constants.

Although most researchers have found that fractured surfaces are fractal, Underwood and Banerji (1986) using AISI4340 steel

specimens, did not detect a linear fractal curve and constant D but rather a reverse sigmoidal curve and variable D.

Mecholsky et al. (1989) concluded that the toughness increases with the roughness for six different alumina materials and

five glass-ceramics having different microstructures and that the fracture toughness is directly related to the fractal dimension

KIc = Ea
1
2
0 D

∗ 1
2 , where D∗

is the fractional part of D, E is the elastic modulus, and a0 a parameter having the units of length.

Similar results were subsequently obtained for single crystal silicon(Tsai and Mecholsky, 1991) and for polystyrene fracture

surfaces (Chen and Runt, 1989). More recently, Mecholsky and Freiman (1991) showed that there is a spatial variation of D along

the length of the crack reflecting crack initiation and, later on, microbranching.

Discrepancy between results was recently pointed out by Cahn (1989) who noted that the relationship between fracture rough-

ness as quantified by fractal dimension and fracture toughness is diametrically opposite for ductile fracture (maraging steel) and

for brittle fracture (chert, and polycristalline ceramics).

Recently, a fractal approach was applied to the fracture of rocks and soil. Heping (1987) postulated that the surface area of a

crack for which the critical energy release rate Gc = dU
dA

is determined, should be adjusted to reflect the rough nature of the

surface rather than the flat nominal surface. This would then systematically result in fracture toughness values (KIc =
√
GcE′

)

that would increase with fractal dimension. Similarly, Mosolov (1991) has shown that for fractal cracks, the J integral ceases to

be an invariant. Mecholsky and Mackin (1988) correlated the fracture toughness of Ocala chert (flint) with the fractal dimension

and determined that one increased with the other. Chelidze and Gueguen (1990) showed that the fractal dimension increases with

the surface energy (and hence the fracture toughness) of rocks. For fractures in soils, Young and Crawford (1992) determined that

fracture profiles are fractal, with fractal dimensions very close to one.

Winslow (1985) showed through X-ray scattering techniques that, on the microscopic level, hydrated cement paste is fractal

and has a fractal dimension of about 3.

All of the reported studies concern themselves with metals, polymers, rocks, or cement pastes, and only limited research has

been reported in the fractal analyses of cracked concrete surfaces. Saouma et al. (1990) showed that cracked concrete surfaces

are fractal. Issa et al. (1993) based on two-dimensional surface studies, found that the fractal dimension D varies from 2.1 to 2.22

and increases with aggregate sizes. Most recently, Lange et al. (1993) investigated the correlation between fracture roughness and

fracture toughness, fractal dimensions and other physical properties. They report a fractal dimension of 2.087 for cement paste

and 2.117 for fine mortar, and an increase between fractal dimension and fracture toughness.

Finally, it should be pointed out that it has been recently hypothesized that there is a universal value (2.1 < D < 2.3) for the

fractal dimension of fractured surfaces (Bouchaud et al., 1990). This hypothesis was more recently strengthened by the finding of

Måløy et al. (1992), (Måløy et al., 1992) who tested both ductile and brittle materials and reported a universal fractal dimension of

D = 2.11± 0.006.

15.2 Experimental Procedure

15.2.1 Fracture Testing

As part of a study on the applicability of fracture mechanics to the failure analysis of concrete dams by Saouma et al. (1991a),

a series of wedge splitting (WS) tests was performed on specimens 3 and 5 ft long (Fig. 15.2), 16 in. thick and with maximum

aggregate sizes up to three inches
1

. as given in Table 15.2.

The effects of both aggregate size and the type of aggregate (crushed subangular as opposed to river rounded) were studied, as

well as the effect of cold-joints.

In the WS experiments, the primary deformation measured was the crack–mouth opening displacement (CMOD), which also

provided the feedback control to achieve a constant rate of 1.0-µm/sec for the CMOD. Through this configuration, stable crack

1

Since all experiments and data reduction were performed using U.S. customary units, the following conversions factors should be considered: 1 in.=2.54 cm; 1ft=30.48

cm; 1 psi=689.48 Pa; 1 ksi

√
in=0.910 Mpa

√
m; 1 lb/in.=175.44 N/m.
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Figure 15.2: Frontal view of wedge-splitting-test specimen showing forces applied to specimen by lateral wedge loading (FS )

between two circular pins located near top of specimen on either side of the vertical starting notch. Crack Mouth

Opening Displacement (CMOD) gage straddles the initial notch.

Range Precision

X 24 .0021

Y 60 .0013

Z 5 .005

Table 15.3: Range and resolution of the profilometer (inches)

growth with structural post-peak response was achieved. During the test both vertical load and CMOD were monitored and

recorded. Finally, unload/reload cycles were performed to monitor change in specimen compliance from which the effective

crack length aeff was then calculated.

15.2.2 Profile Measurements

A fully automated profilometer Saouma et al. (1990), which scans the surface by means of a motorized computer-controlled

placement of a linear variable differential transformer (LVDT), was used to determine crack profile with an average resolution of

0.001 in. the precision shown in Table 15.4. The LVDT is seated on a composite bushing that slides along two parallel, ground-

steel rods which are rigidly attached to a second bushing. The second bushing traverses a second pair of rods, which, in turn, are

mounted at right angles with respect to the first set of rods. The entire system is placed on a rigid steel base over the specimen.

Movements of the two bushing sets are controlled by two-worm gear and stepped-motor assemblies such that the LVDT can travel

along any preprogrammed path in theX−Y plane. Two separate computers are used, the first to control positioning of the LVDT,

the second to record and store its reading (following reception of a signal from the first one). Finally, for each specimen profile,

measurements along the four principal orientations (at 45◦ increments) were recorded in order to assess potential geometric

anisotropy in fractal dimensions as shown in Fig. 15.3.

15.2.3 Computation of Fractal Dimension

Following preliminary tests, it was determined that the box method yielded more consistent results than the ruler method, and

hence it was adopted. The box method can be applied to both self-affine and self-similar profiles with the limitations stated above.

Although the implementation of the box method may a priori appear to be quite simple, that is a count of the number of cells

intersected by the profile, three factors influence its reliability: (1) orientation of the grid with respect to the profile; (2) distribution
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SPECIMEN SIZE 3 ft 5 ft

Profile 0◦ 16.0 in. 26.67 in.

length 90◦ 15.0 in. 15.0 in.

±45◦ 17.0 in. 20.0 in.

Resolution 0◦ 160 /in. 160/in.

of 90◦ 192/ in. 192/in.

readings ±45◦ 175/ in. 175/in.

Spacing 0◦ 4.0 in. 4.0 in.

between 90◦ 4.0 in. 4.0 in.

profiles ±45◦ 2.0 in. 4.0 in.

Table 15.4: CHECK Mapped profile spacing, orientation, and resolution for the two specimen sizes investigated
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Figure 15.3: Orientations of measured profiles over the fractured surface, horizontally, vertically, and diagonally.
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Figure 15.4: Typical grid overlying an object. Dashed lines indicate adjustable sidFixed grid boundaries; B, Flexible grid boundaries.

Angle of Grid size

inclination 40 points 300 points 1000 points

0◦ 1.000 1.000 1.000

5.0◦ 1.030 1.013 1.006

10.0◦ 1.048 1.017 1.008

15.0◦ 1.057 1.017 1.008

20.0◦ 1.062 1.017 1.008

25.0◦ 1.078 1.020 1.009

30.0◦ 1.062 1.017 1.007

35.0◦ 1.068 1.017 1.007

40.0◦ 1.080 1.019 1.008

45.0◦ 1.000 1.000 1.000

Table 15.5: Computed fractal dimensions of a straight line with various inclinations

and number of grid sizes; and (3) tolerance used in determining the number of intersected cells.

In our implementation, a reference base line was first defined by simply connecting the first and last profile points, then grids

with a logarithmic size distribution ranging from 2 × 10−4
to 10−1

(from four times the profile precision to the profile length

divided by four) were defined.

With regard to the initial grid definition, two strategies were considered -fixed and flexible grid boundaries, (Fig 15.4). In the

method of fixed grid boundaries the two end points are fixed, whereas in the flexible grid method only the first one is fixed.

The resolution of the two algorithms was determined by testing against synthetic fractal curves. The curves included straight

lines at different orientations to the box grid; 5th, 6th, and 8th generation triadic Koch curves (Fig. 15.1-A), 4th and 5th generations

of the quadratic Koch curves (Fig. 15.1-B, and 5th and 6th generation modified Koch curves (Fig. 15.1-B-C).

Based on the results shown in Tables 15.5 and 15.6, it was concluded that fractal dimensions can at best be determined with an

accuracy of ±0.025.

These test problems underscore the complexities in determining fractal dimensions of stochastic curves.

15.3 Fractals and Fracture

The fracture surfaces of our specimens are fractal for grid sizes ranging from 2 × 10−3.2
to 10−2.1

m (Fig. 15.5). The average

fractal dimension of approximately 1.1 compares exactly with the one determined experimentally for concrete by Issa et al.,
(1992), (D = 2.2

2
= 1.1, assuming that we do have two independent and orthogonal fractal sets as partially supported by Table

15.7 and by Long et al. (1991)) and with the universal value of 2.11 proposed for fracture surfaces by Måløy et al. (1992). The

division by two to obtain the profile fractal dimension from a surface fractal dimension was discussed previously, and is justified

by the fractal nature of orthogonal profiles having almost identical fractal dimensions (as will be discussed following).

Having confirmed the fractal nature of the cracked surfaces, three important questions arise: (1) what is the spatial variation
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Fixed grids Flexible grids

Koch curve Generation D Grid D Grid Theoretical

type size size Value

Triadic 5th 1.377 15 1.305 500

Triadic 6th 1.313 64 1.307 500 1.262

Triadic 8th 1.285 647 1.296 500

Quadratic 4th 1.410 17 1.477 500 1.500

Quadratic 5th 1.477 93 1.486 500

Modified 5th 1.188 93 1.190 500 1.161

Modified 6th 1.177 401 1.186 500

Table 15.6: Computed fractal dimensions for various synthetic curves
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Figure 15.5: Plot of box counting method applied to the profile of a typical fractured concrete specimen. Number of occupied

boxes (N ) is plotted versus box size. Slope of line fit to data is the fractal dimension (D).
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Specimen Profile Profile Distance from Centerline Average σD%

direction 1 in. 3 in. 5 in. 7 in.

3-ft specimens of 1.5-in. MSA

0◦ 1.096 1.118 1.098 1.113 1.106 1.1

A 90◦ 1.087 1.115 1.101 1.088 1.098 1.1

+45◦ 1.096 1.100 1.104 1.123 1.106 1.1

−45◦ 1.073 1.109 1.090 1.097 1.092 1.1

0◦ 1.096 1.118 1.064 1.112 1.097 2.2

B 90◦ 1.109 1.100 1.088 1.133 1.107 1.7

+45◦ 1.112 1.111 1.073 1.125 1.105 2.0

−45◦ 1.094 1.085 1.096 1.085 1.090 0.5

0◦ 1.130 1.128 1.094 1.115 1.117 1.5

C 90◦ 1.092 1.098 1.126 1.106 1.105 1.3

+45◦ 1.108 1.087 1.122 1.105 1.105 1.3

−45◦ 1.113 1.127 1.101 1.102 1.111 1.1

3-ft specimens of 3.0-in. MSA

0◦ 1.099 1.107 1.084 1.097 1.097 0.9

A 90◦ 1.123 1.107 1.087 1.129 1.111 1.7

+45◦ 1.084 1.071 1.089 1.114 1.089 1.7

−45◦ 1.148 1.115 1.094 1.123 1.120 2.0

0◦ 1.147 1.096 1.123 1.069 1.109 3.0

B 90◦ 1.116 1.127 1.100 1.165 1.127 2.5

+45◦ 1.104 1.111 1.083 1.110 1.102 1.2

−45◦ 1.094 1.087 1.107 1.115 1.101 1.1

0◦ 1.118 1.098 1.113 1.106 1.109 0.8

C 90◦ 1.115 1.101 1.088 1.098 1.100 1.0

+45◦ 1.100 1.104 1.123 1.106 1.108 0.9

−45◦ 1.109 1.090 1.097 1.092 1.097 0.8

Table 15.7: Fractal dimension D versus profile orientations
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Distance from Zone of analysis

specimen First Second Third Fourth First Second

centerline quarter quarter quarter quarter half half

1 in. 1.118 1.120 1.073 1.083 1.126 1.093

3 in. 1.128 1.106 1.111 1.150 1.121 1.119

5 in. 1.118 1.080 1.082 1.082 1.084 1.075

7 in. 1.110 1.099 1.113 1.119 1.100 1.124

Table 15.8: Fractal dimension for various profile segments and distances from centerline in specimen S33A

of the fractal dimension; (2) is there a correlation between fractal dimension and fracture properties for concrete; and (3) how do

the results for concrete compare with other materials?

15.3.1 Spatial Variation of the Fractal Dimension

The spatial variation of the fractal dimension was investigated with particular attention to the (1) location and length of the profile

within the width of the crack front; (2) the orientation of the profile with respect to the direction of crack propagation; and (3)

specimen and aggregate sizes and aggregate angularity.

D versus Profile Location and Length: Variation in fractal dimension as a function of profile location and profile length was

studied for a series of profiles oriented parallel to the direction of fracture propagation on a single fracture specimen because

it was postulated that:

1. Different D values across the thickness might be obtained due to the near plane stress condition on the edge of the

specimen and the near plane strain condition at the center.

2. Different D values along the length may be obtained due to the lack of a fully developed process zone in the early

part of the crack surface.

Assuming a linear relationship between fractal dimension D and the profile’s distance x from the centerline,

D = a+ bx (15.6)

it was observed that in most cases b is negative, implying a reduction in fractal dimension D as the profile moves from the

centerline to the edge. This was confirmed by visual inspection of the cracked surfaces, which showed that the center of

the cracked surface appears to be rougher than the edge.

When the fractal dimensions of the same specimen were determined over different parts of the length (Table 15.8), it was

observed that in most cases D is greater over the first half than over the second half. In most cases D is greater in the first

quarter than in the fourth one. Even though the difference is quite small (more supporting experimental data is needed to

fully address this point), it may be caused by the presence of a fully developed process zone in the first half as opposed to

the second one.

D versus Orientation of Profile: It has been speculated that the direction of crack propagation might affect the value of D. If

this is correct, then it should be possible through postmortem investigation of a cracked surface to determine the direction

of fracture propagation.

We concluded by examination of the results (Table 15.7), that there is no apparent correlation between the fractal dimension

and the profile orientation. It should be noted that Long et al. (1991) found that there is such a correlation for metals.

D versus Specimen Size, Aggregate Size, and Aggregate Type: Comparing the fractal dimension D obtained from 3- and

5-ft-long specimens (Table 15.9), there is a clear indication that the longer the specimen size, the lower the fractal dimension

everywhere on the fracture surface. This may result from the correlation betweenD andKIc (discussed in the next section),

that shows bigger specimens yield slightly higher fracture toughness and smaller D values than smaller specimens.

We find no correlation between D and the aggregate size. This confirms two earlier findings: (1) fracture toughness values

are independent from aggregate sizes (Saouma et al., 1991a) and (2) the size-effect law (Bažant, 1984) is not dependent on

aggregate sizes as reported in Saouma et al. (1991).

Table 15.9 shows that for 3-ft-long specimens having 1.5-in. maximum size aggregate (MSA), subangular aggregates yielded

smaller D values than rounded ones. This correlates with our observation that during fracture, the crack circumvented

rounded aggregates while breaking subangular ones. The former would yield rougher surfaces whereas the latter would

yield tougher ones.
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Distance from centerline Fractal dimension GF , KIc [psi

√
in]

Specimen 1 in. 3 in. 5 in. 7 in. Average σD% [lb/in] Average σK%

3-ft specimens of rounded 1.5-in. MSA

S32A 1.096 1.094 1.096 1.112 1.100 0.8 1.28 812. 10.0

S32B 1.096 1.118 1.064 1.112 1.098 2.2 1.17 909. 5.5

S32C 1.130 1.128 1.094 1.115 1.117 1.5 1.36 1,004. 11.3

Average 1.107 1.113 1.085 1.113 1.105 1.27 908

3-ft specimens of rounded 3.0-in. MSA

S33A 1.099 1.107 1.084 1.097 1.097 0.9 1.21 901. 6.3

S33B 1.147 1.096 1.123 1.069 1.109 3.0 1.26 862. 6.4

S33C 1.118 1.098 1.113 1.081 1.103 1.5 1.40 1,166. 7.7

Average 1.121 1.100 1.107 1.082 1.103 1.29 976

3-ft specimens of 1.5-in. MSA (subangular basalt aggregate)

SS32A 1.084 1.089 1.096 1.052 1.080 1.8 1.73 1,274. 9.6

SS32B 1.090 1.077 1.096 1.076 1.085 0.9 1.42 1,137. 12.3

Average 1.087 1.083 1.096 1.064 1.083 1.57 1,206.

5-ft specimens of rounded 1.5-in. MSA

S52A 1.085 1.074 1.064 1.069 1.073 0.8 1.17 1,058. 6.9

S52B 1.066 1.070 1.072 1.050 1.065 0.9 1.63 1,164. 6.1

S52C 1.082 1.067 1.082 1.059 1.073 1.1 1.64 1,138. 3.5

Average 1.078 1.070 1.073 1.059 1.070 1.48 1,120.

5-ft specimens of rounded 3.0-in. MSA

S53A 1.091 1.077 1.088 1.073 1.082 0.8 1.35 893. 13.7

S53B 1.037 1.049 1.060 1.048 1.049 0.9 Not applicable

Average 1.064 1.063 1.074 1.061 1.065

5-ft cold joint specimens

CJ52B 1.050 1.045 1.051 1.027 1.043 1.1 0.46 457. 3.3

CJ53A 1.051 1.064 1.056 1.050 1.055 0.6 0.76 643. 3.9

CJ53C 1.073 1.087 1.070 1.062 1.073 1.0 0.56 567. 2.6

Average 1.058 1.065 1.059 1.046 1.057 0.59 494

Table 15.9: Comparison between D, KIc, and GF for all specimens (MSA, Maximum size aggregate)
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Profile distance a b χ2 Sx.y%

from centerline

GF = a+ bD

1.0 in. 5.34 -3.605 0.183 12.4

3.0 in. 6.31 -4.511 0.212 12.2

5.0 in. 0.26 1.029 0.009 13.7

7.0 in. 7.26 -5.440 0.447 10.2

Average 7.87 -5.953 0.258 11.8

KIc = a+ bD

1.0 in. 4066 -2766 0.174 13.2

3.0 in. 4396 -3087 0.160 13.4

5.0 in. 1510 -444 0.003 14.6

7.0 in. 5507 -4147 0.419 11.1

Average 6220 -4766 0.267 12.5

Table 15.10: Linear regression coefficients between GF and KIc with D

15.3.2 Correlation Between Fracture Toughness and Fractal Dimensions

We now turn our attention to the possible correlation between fractal dimension D and fracture properties (Table 15.9). This

analysis is possible because the specimens were originally tested for both fracture toughnessKIc and fracture energyGF as part

of a different research study of Saouma et al. (1991).

If a correlation could be found, one could determine post mortem important fracture properties, KIc and GF , by measuring

roughness of the fracture surface in a forensic study. Table 15.9 summarizes fractal and fracture analyses for all specimens, as well

as their respective averages and standard deviations, and Figs. 15.6-A and 15.6-B illustrate the variations of GF and KIc versus

D, respectively.

It should be noted that D, GF , and KIc tested higher for concrete than for the cold-jointed specimens (Table 15.9). This is

because of the weak bond between the two layers of concrete that results in relatively smooth surfaces.

Specimens prepared with subangular basalt aggregate had generally higherGF andKIc and lowerD. This can be explained by

the nature of the fracture surfaces. The fracture plane went through this subangular strong aggregate leaving a relatively smooth

surface. The fracture plane went around rounded aggregate, debonding the aggregate from the mortar and yielding a rougher

surface obtained through less energy. If cold-joint specimens are excluded,D increases with a decrease in fracture toughness and

energy.

Linear regression betweenD and both the specific fracture energyGF and the fracture toughnessKIc resulted in the following

expressions:

GF = 7.87− 5.95D lb/in; χ2 = 0.258 (15.7)

KIc = 6, 220− 4, 766D psi

√
in; χ2 = 0.267 (15.8)

Because of the low goodness of fit, great care should be exercised in using the above equations. Table 15.10 summarizes this

correlation between fracture properties and fractal dimensions. Excluded are the results obtained from cold joints because these

yield both lower fractal dimensions and lower fracture toughness due to the poor interface bond in those specimens. Alternatively,

in regular specimens, a lower fractal dimension is synonymous with a higher fracture toughness because there is mostly aggregate

rather than bond failure.

15.3.3 Macro-Scale Correlation Analysis

Noting that the range of variation for both D and KIc is indeed small, a comparison with ceramics and alumina was performed.

Mecholsky and Freiman (1991) reported a much wider range of values, and those values are plotted along with the ones obtained

from the present investigation (Fig. 15.6-).

There is no sharp discontinuity between the concrete and ceramic results; overall, D increases with KIc. This observation

on the mesoscale clearly contradicts our earlier finding on the microscale, and may be explained by the different nature of the

fracturing process in concrete aggregate.

A comparison of the fractal dimension and the fracture toughness in concrete determined in our investigation, as well as the

same characteristics in other materials reported in the literature, is plotted in Fig. 15.6-D. From this figure, we note that only

concrete has a negative slope (decrease in fracture toughness with increase in fractal dimension); all others have a positive slope.

As indicated earlier, we conclude that this is caused by the heterogeneous nature of concrete and, more specifically, by the nature

of the aggregate cement bond.
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Figure 15.6: A-B)GF andKIc versusD; C)GF versusD for concrete (this study), ceramics, and alumina (Mecholsky and Freiman,

1991); D) KIc versus D for concrete (this study); ceramics, and alumina (Mecholsky and Frieman, 1991); Flint (Me-

cholsky and Mackin, 1988); polystyrene (Chen and Runt, 1989); and silicon (Tsai and Mecholsky (1991)
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Figure 15.7: GF versus D for concrete (this study), ceramics, and alumina (Mecholsky and Freiman, 1991)
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15.4 Fractals and Size Effects

The size effect law (Bažant, 1984) and a fractal analysis bear many similarities:

Log-Log plot: In both cases the experimental investigation must be carried over at least two orders of magnitude of size (even

though this is rarely done in size effect studies).

Size/Scale dependency: Neither a fractal investigation nor a size effect study yield a unique value for length/area or strength;

however, these quantities depend on either the size of the specimen or of the ruler used.

Singularity of results is achieved for very small ruler or very large specimen sizes. In a fractal analysis, an infinitesimally small

ruler should yield an infinite profile length, and the order of the singularity is 1−D. Alternatively, for very large specimens

the order of singularity of stress is − 1
2

. As an example, consider the synthetic fractal curve of Fig. 15.1-A; the total length

of the profile goes from 1, to
4
3

, to
16
9

as the ruler length decreases from 1, to
1
3

, to
1
9

. Rewriting Eq. 15.4 we obtain the

following relationship between the ruler length S and the total length L(S) in terms of the fractal dimension D,

L(S) = aS1−D. (15.9)

For the 3-ft-long specimens where L was measured with a ruler of length (S) approximately equal to 0.1 in., a fractal

dimension (D) of 1.103 was determined. Hence, a = L
S1−D = 36

.11−1.103 = 28.40 and the variation of L(S) is shown in Fig.

15.9. Also shown areL(S) for various hypothetical fractal dimensions of 1.2, 1.4, and 1.6. From this figure it is apparent that

practically any profile length (hence surface area) can be obtained by choosing the appropriate ruler length
2

. This figure

also illustrates how a small variation in fractal dimension D results in substantially larger L(S).

In determining the correct surface area, reference is made to the surface area obtained through measurements with a ruler

of size S0. From Eq. 15.9, the correct profile length LD
is given by

L∗ = (
S∗

S0
)(1−D)L0, (15.10)

where L0 is the length measured with S0.

We hypothesize that

lim
d→∞

PSEL = lim
S→′

PF, (15.11)

2

Ironically, this singularity is reminiscent of the one associated with the recovery of (singular) crack tip stresses in terms of the finite element mesh size used; the

smaller the crack tip element size, the larger the computed stress.
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S0 S∗

“Macro”: sand “Micro”: C-S-H

#100 # 200 20µm 10µm

.0059 in. .0029 in. .0008 in. .0004 in.

1. 2.79 3.22 4.18 4.78

.25 2.12 2.44 3.16 3.62

.1 1.76 2.03 2.63 3.02

Table 15.11: Amplification factors for fractal surface areas with D = 1.1

.

where PSEL
and PF

are selected properties obtained from the size effect law and from a fractal analysis, respectively. In the

former, this entails testing of various similar specimens with subsequent extrapolation to infinity through the size effect law; in

the latter it entails careful analysis of just one specimen using various rulers lengths.

In order to validate the former hypothesis we consider the fracture energy GF for which the following relation holds

lim
d→∞

GF = Gc =
K2

Ic

E
. (15.12)

For 1.5-in. maximum size aggregates in 3-ft-long specimens, the following overall average values were determined (Saouma

et al. 1991): GF =1.37 lb/in., KIc=.929 Ksi

√
in and E= 2,460 Ksi. Using Eq. 15.12 we determine Gc = .9292

2,460
1, 000 = 0.35 lb/in.

which is much lower than GF .

To explain this discrepancy through fractal interpretation, recall that GF is defined as the energy required to create a unit

surface area. The total energy experimentally consumed is determined from the area under the load-displacement curve, but how

do we define the cracked surface area?

Traditionally, the nominal surface area has been used (RILEM 1985), and this approach, although justified within the context

of a finite element analysis where the roughness of the cracked surface is not accounted for, however may not yield the correct

material GF . As pointed out by Heping (1987) the roughness of the surface should be accounted for, which would increase the

surface area and thus reduce GF . For a surface area, Eq. 15.10 becomes

A∗ =

(
S∗ × S∗

S0 × S0

)(1−D)

A0

=

(
S∗

S0

)2(1−D)

A0. (15.13)

Recall that S0 is the size of the ruler with whichL0 was determined (in our case 0.1 in.) and that S∗
is a threshold or characteristic

smallest length scale such as the size of an atom, molecule, or crystal. This quantity is referred to as a monomers by Feder (1988)

and is associated with the physical structure of the surface.

For concrete S∗
can be determined either “macroscopically” as the size of#100 or #200 ASTM sieves, with respective sizes of

0.0059 and 0.0029 in. Alternatively,S∗
can be determined on the basis of a “microscopic” scale associated with the approximate size

of the calcium silicate hydrate (C-S-H), which is approximately 10-20µm (0.0004-0.0008 in). Table 15.11 illustrates the amplification

factor for a surface area on the basis of Eq. 15.13. Hence, fracture energy GF should be decreased such that

G∗
F = (

S0

S∗ )
2(1−D)GF (15.14)

= (
.1

.0004
)2(1−1.1)1.37 = 0.45 lb/in

Note that G∗
F is closer to Gc than GF is.

As an additional evaluation of this approach, we re-examine tests results of Swartz and Kan (1992) who investigated the influ-

ence of aggregate/paste bonding on the mode I fracture strength. Using the same correction factor as the one employed above((
.1

.0004

)2(1−1.1)
= 0.331

)
, we obtained the results shown in Table 15.12.

Finally, it should be mentioned that whereasG∗
F is quite sensitive to the assumed S∗

values, the choices of this later parameter

is entirely justified from a purely material point of view.

Using the proposed approach in which the cross sectional area is adjusted by the fractal dimension, a fracture parameter was

approximated from a single specimen size through fractal analysis. This approach is to be contrasted with the Euclidian analysis

of multiple specimen sizes through the size effect law.
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Specimen Aggregate type Water/cement Ec KIc GF Gc G∗
F

psi × 106 psi

√
in lb/in. lb/in. lb/in.

NC-.64 Crushed Limestone 0.64 4.5 922 0.565 0.19 0.187

HC-.64 Crushed Quartzite 0.64 5.08 1,206 0.824 0.286 0.273

NP-.64 Crushed & Polished Limestone 0.64 4.74 980 0.570 0.203 0.189

NP-.30 Crushed & Polished Limestone 0.30 5.46 1,266 0.727 0.293 0.241

HC-.30 Crushed Quartzite 0.30 5.54 1,523 0.952 0.419 0.315

NC-.30 Crushed Limestone 0.30 6.03 1,308 0.679 0.280 0.225

Table 15.12: Comparison between “corrected” G∗
F and Gc values based on Swartz Tests (1992).

15.5 Conclusions

Wedge splitting tests on 3- and 5-ft-long specimens having a maximum size aggregate of 3 in. were first tested for fracture

toughness KIc and fracture energy GF . Subsequently, profile measurements along the cracked surfaces (with different lengths

and orientations) were performed and their respective fractal dimensions D determined.

From this investigation, it was concluded that

1. Fractal dimensions numerically determined by the box method have a resolution of ±.025.

2. Fracture surface profiles in concrete are fractal.

3. The fractal dimension of the monotonically cast specimens is in the narrow range of 1.06 to 1.12. These values are close to

one independently measured by Issa et al. (1992), who used a different fractal analysis technique.

4. The fractal dimension of cracked concrete is insensitive to the orientation of the roughness profile.

5. Fractal dimensions near the center of the fracture surface are slightly larger than those computed on the sides of the same

surface.

6. For the concrete studied here, fracture toughness increases with a decrease in fractal dimension in concrete; however, great

care should be exercised in generalizing this finding, and the physical nature of the fracturing process should be closely

examined.

7. There appears to be a linear relationship between fracture surface roughness as defined by fractal dimension and fracture

energy for concrete and ceramics.

8. There are strong analogies between the fractal analysis and the size effect law.

9. Some fracture mechanics parameters can potentially be recovered from a fractal analysis of a single small specimen without

resorting to increasingly large specimen sizes as is required by the size effect law.
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Chapter 16

On Fractals and Size Effects

16.1 Introduction

In recent years, two opposing theories have emerged, the Size Effect Law (SEL) of Bažant, and the Multi-Fractal Size Law (MFSL)

of Carpinteri. By now the debate on those two models has spilled out of the ivory towers of universities and there are strong

indications that this duality of contradictory models is becoming an impediment to modernization of the ACI code.

Henceforth, this paper will re-examine scaling laws, size effects, and fractal theories in both historical and scientific context

and with sufficient details to subsequently: 1) assess the MFSL; and 2) extend Bažant’s SEL to cohesive fractal cracks.

16.1.1 Fractals

16.1.1.1 Definition

A fractal object of fractal dimensionD, embedded in a Euclidian space of dimensionE is defined first by an initiator of Euclidian

dimensionE and linear size L which can be divided into n equal smaller replicates of linear size rL covering the whole object so

that n(rL)E = LE
. The similarity ratio is enforced by nrE = 1. Than, a generator which replaces the n small replicates of the

initiator byN identical parts which are then replaced by the generator scaled by a factor r. This process is repeated in a recursive

manner ad infinitum. The fractal dimension D (also known as the Hausdorff dimension) is then defined by

D =
logN

log 1
r

(16.1)

or equivalently by NrD = 1.

The quintessential fractal is the von von koch curve, (Koch, 1904), shown in Fig. 16.1. Per our definition, N = 4, r = 3, and

    

Figure 16.1: Triadic von-Koch Curve; Example of a a Self Similar Invasive Fractal

thus the fractal dimension is D = ln4/ln1/3 = 1.2619.

Another well known example is the Sierpinsky carpet, (Sierpinski, 1912), Fig. 16.2. Here, N = 8, r = 3, E = 2 and thus the

Figure 16.2: Sierpinski Carpet; Example of a Self Similar Lacunar Factal

fractal dimension is D = ln8/ln1/3 = 1.8927.

Indeed in both examples we do have fractal objects as the Hausdorf-Besicovitch dimension D strictly exceeds the topological

dimension DT = 1., (Mandelbrot, 1983).

16.1.1.2 Lacunar versus Invasive Fractals

Fractals can be characterized as lacunar or invasive. Lacunar fractals are obtained by creating at each stage a number N of

replicates which is smaller than n. Hence, N ≤ n and thus D ≤ D. Otherwise, the fractal is invasive. The area of lacunar fractal

tends to zero, whereas the one of the invasive fractal surface tends to infinity. With reference to the previous two examples, the

Sierpinski Carpet is lacunar since 1.8927 < 2, whereas the von-Koch curve is invasive (1.2618 > 1).
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http://library.wolfram.com/infocenter/MathSource/4197/

Figure 16.3: Example of a Self-Affine Fractal

16.1.1.3 Self-Similar and Self-Affine Fractals

In general scaling transformations can be expressed as f(λxx, λyy) ∼ f(x, y), or x → λxx and y → λyy. If λx = λy , then we

have a statistically isotropic fractal known as self-similar.

On the other hand, if we have rescaling by different factors in the x − y plane, λx ̸= λy , then we would have a self-affine

transformation. Turcotte (1992) defines a self affine fractal in two-dimensional x − y space if f(λxx, λ
H
x y) is statistically self-

similar to f(x, y).

H =
lnλy

lnλx
is called the Hurst exponent, (Hurst, 1951)

1

. There is an ongoing debate (Balankin, 1997) as to whether H has a

universal value ∼ 0.8, or whether it is material dependant.

Both Earth topology and crack surfaces are perfect examples of self-affine fractal. The “elevation” perpendicular to the average

crack plane, and the one which defines the “roughness” of the fracture surface, are statistically related to the crack plane coordi-

nates but have a consistently smaller magnitude, (Weiss, 2001). Fig. 16.3 illustrates a self-affine fractal surface which could be a

landscape or a crack surface.

16.1.1.4 Multifractals

Many physical quantities are better modeled by multiple scaling schemes rather than by a single fractal. The term multifractal

is applied when many fractal subsets with different scaling properties coexist simultaneously. In general, a multifractal field

corresponds to an infinite hierarchy of fractal sets which are obtained by a cascade process described by an infinite number of

parameters. Nevertheless, in some theories - as the Universal Multifractal theory by Schertzer and Lovejoy (1997) - the number

of parameters can be reduced to three due to the simplifying assumption that the multifractal measure is the result of a special

type of multiplicative process.

Multifractal processes are generally represented as multiplicative cascades. Fig. 16.4 illustrates the construction of a multiplica-

tive cascade in a one-dimensional space. In this example, the field ϕ0 is uniformly distributed over the length L at step 0. L is

first partitioned into several parts and positive random weights i are generated for each part. In the simplest case, the scale ratio

λ = L/l (where L is the external scale of the cascade and l the scale of observation) takes discrete values: λ = λn
1 (λ1, usually

equals 2, is the scale ratio for a discrete elementary step of the cascade). Each field in a corresponding sub-segment is multiplied

by a random weight. At each cascade level the weights are selected such that their average is equal to 1. If the cascade preserves

the measure of the initial set, it is called a deterministic cascade. Iterating the process indefinitely, the resulting field is a statistical

multifractal.

ϕλ=2n(x) =

n∏
i=1

µi (16.2)

which corresponds to the multiplication of independently distributed random densities µi, and the cusps indicate the times where

singularities occur.

1

Hurst was a “Nilologist” who studied the variation of the river Nile discharge and was seeking the design of an ideal reservoir (one which would release a volume

each year equal to the mean influx for the period τ ), (Feder, 1988). He defined X(t, τ) as the accumulated departure of the influx from the mean, R(τ) as the

difference between the maximum and minimum amount of storage water, and S(t, τ) as the standard deviation of the influx. Hurst found that the observed

rescaled range for many records in time is very well described by the empirical relation R/S = (τ/2)H .
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Figure 16.4: Example of an iteratively defined MultiFractal

16.1.1.5 Fractality of Cracks and Concrete

Inspired by the earlier work of Mandelbrot et al. (1984), Saouma et al. (1990) were among the first to conclusively show that

cracked concrete surfaces are indeed fractal (within the range of measurements), that the fractal dimension varied between 2.1

and 2.22 and that it tended to increase with aggregate sizes. Subsequently, Saouma and Barton (1994) have attempted to correlate

the fractal dimension with fracture energy and direction of crack propagation. It was found that there was no such correlation.

In addition, a fractal fracture energy was defined as

G∗
F =

(
L0

L∗

)2(1−D)

GF (16.3)

where L0 is the size of the “ruler” used to determine the crack surface and corresponding fracture energy GF , and L∗
is a

macroscopic length associated with the physical properties of the constituent. It was shown that the statistical variation of G∗
F

was indeed much smaller than the one of GF , and approached the critical energy release rate Gc (which would be the case for

GF only for very large specimen sizes.

16.1.2 Size Effect

Every now and then, even Engineers are confronted with fundamental questions which may not (yet) have immediate practical

applications to their professions, but which are nevertheless of basic essential and fundamental nature. The question, first (indi-

rectly) posed by Galileo, is why is strength of some solids size dependant? Whereas historical notes are discussed later, one is

compelled to note that at present there are two contradicting (and opposing) major theories. The size effect law of Bažant (1976),

and the Multifractal model of Carpinteri and Chiaia (1994). Because of their importance, each will be reviewed separately.

16.1.2.1 Bažant

Bažant (1976) presented a model for the nominal strength of quasi-brittle material. It postulated that for quasi-brittle materials
2

and small sizes strength is driven by Plasticity and is thus size insensitive. On the other hand, for large sizes strength is driven

by linear elastic fracture mechanics and thus has a d−1/2
size dependency. Hence, the Size Effect Law, provides us with a simple

and elegant equation for the strength-size relation which is asymptotic to plasticity for small size, and to linear elastic fracture

mechanics for large ones.

Derivation of the size effect law is quite simple and elegant, (Bažant, 1984). If one considers the energy exchanged during an

infinitesimal crack extension in a plate of widthD, Fig. 16.5, the energy released can be approximated by b2k(a0+cf )∆aσ
2
n/2E,

which must be equal to the energy consumed during crack growth: bGF∆a, hence

b2k(a0 + cf )∆aσ
2
n/2E = bGF∆a (16.4)

yielding

σn =
Bf ′

t√
1 + D

D0

(16.5)

2

Quasi-brittle materials are characterized by cohesive stresses in cementitious materials in the spirit of Hillerborg et al. (1976a), or by plastic zones around the crack

tip in the spirit of Dugdale (1960).
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Figure 16.5: Energy Transfer During Infinitesimal Crack Extension

where

Bf ′
t =

√
GFE

kcf
and

D

D0
=
a0
cf

= β (16.6)

This original derivation has been followed by numerous refinements and generalizations. The simplicity and the power of this

law are by now universally recognized, and was indeed the subject of Prof. Bažant inaugural article at the National Academy of

Sciences, (Bažant, 2005).

Saouma et al. (2003) proposed an alternative derivation of only Bažant’s original size effect law. Contrarily to the original

Lagrangian derivation based in energy transfer, a Newtonian one based on local stress intensity factors was proposed. The stress

intensity factors due to the far field (constant traction on an infinite plate) and cohesive stresses are:

Ka = σ
√
πa (16.7)

Kb = f ′
t

√
πa

(
1− 2

π
arcsin

a− cf
a

)
(16.8)

respectively, (Cherepanov, 1979). Equating those two stress intensity factors, we obtain the nominal strength

σn = f ′
t

[
1− 2

π
arcsin

(
1− cf

a

)]
(16.9)

In the limit, for small sizes when a ≃ cf , σn approaches asymptotically f ′
t . On the other hand, for large sizes, cf ≃ 0, σn

will asymptotically approach zero. Whereas the expression of σn appears to have the same limits as the Size Effect Law, it is

not mathematically similar to it. This will only become apparent if one takes a series expansion of the ArcSin function, and

substituting cf/a by s:

σn = σn = f ′
t

[
1− 2

π
arcsin(1− s)

]
(16.10)

≃ 2
√
2f ′

t

π
s1/2 +

f ′
t

3
√
2π
s3/2 +

3f ′
t

40
√
2π
s5/2 +O[s]7/2 (16.11)

Neglecting the terms of power greater than 1 (since s is at most equal to 1), and substituting s = 1/(1 + r) where r = a0/cf ,

we obtain

σn =
2
√
2

π︸ ︷︷ ︸
B

f ′
t

√√√√√ 1

1 + r︸︷︷︸
β

(16.12)
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Interestingly, this equation, Fig. 16.6 was derived on the basis of a simplified fixed cohesive stress profile, and not through the

generally accepted fixed stress-displacement law of Hillerborg (similar analytical derivation was given in Sec. 9.4.1 of (Bažant,

2002). Furthermore, this derivation has the advantage of establishing a direct relationship between fracture mechanics and size

effect (though an earlier link, albeit through a radically different approach, was established by Bažant and Kazemi (1990a)). Finally,

constants B and β are explicitly derived.
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Figure 16.6: Bažant’s original size effect law

16.1.2.2 Carpinteri

In one of his earliest publications, Carpinteri et al. (1995) presented a radically different model for the scale variation of strength.

It was assumed that “the effect of microstructural disorder on mechanical behavior becomes progressively less important for larger
scales, whereas it represents the fundamental feature for smaller scales”. The disorder being expressed through a fractality, it is

postulated that the fractal dimension approaches the topological one asymptotically with increased observation scale length. At

the other extreme, for very small dimensions, it is postulated that linear elastic fracture mechanics is supposed to govern the

collapse mechanism of an unnotched material (‘the Griffith’s mode of collapse governed by 0.5 stress singularity becomes the main
failure mechanism”). This purely speculative and qualitative model is called multifractal scaling law (MFSL) and is expressed as,

Fig. 16.7.

σu(b) = ft

[
1 +

lch
b

]1/2
(16.13)

Indeed for “large” dimensions, a constant stress, unburdened by fractals or disorder, is reached. Whereas, for “small” sizes, the
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Figure 16.7: Multifractal Scaling Laws (Carpinteri)

bilogarithmic diagram tends to -0.5.

This model calls for the following observations:

1. Conceptually it is hard to refer to a stress singularity when there is no crack (for very small sizes), and should there be

one, we are at a scale where it is well established that (in either elasto-plastic metals, or in cementitious material) there

are cohesive stresses which defeat the applicability of LEFM as was well established by Irwin (1960) (elasto-plastic fracture

mechanics), and Hillerborg et al. (1976a) (cohesive crack model). Furthermore, and most surprisingly, this model makes

absolutely no reference to the geometry of the structure where the fractal crack is embedded. Surely, this should have to

be accounted for somewhat.

2. Whereas Bažant’s asymptotic analysis, (Bažant, 1997) yields a non zero strength for large sizes Carpinteri’s model can be

criticized for not having an upper bound to the strength as size is reduced. It is well known that the theoretical strength,

based on inter-atomic forces, will have to be an upper bound as size is reduced (such as in nano-tubes), (Kelly, 1974).

σtheor
max =

√
Eγ

a0
(16.14)
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where E, γ and a0 are the elastic modulus, surface energy, and distance separating two atoms respectively.

3. This model, first based on speculative assumptions (multifractal) is mathematically defined by an empirical relationship

which happens to satisfactory fit reported experimental data (just as the empirical fatigue model of ? and contrarily to the

analytically derived size effect law of Bažant).

4. There are no indications that this model is restricted to cementitious materials, and there is no explicit reference to cohesive

stresses.

Hence, the mere fact that it adequately fits some experimental data, is of no scientific relevance.

The most recent formal derivation of the multifractal model was presented in a recent (survey) paper, by Carpinteri et al. (2003).

Hence transforming a previously presented empirical law into a semi-analytical one. This derivation was itself a restatement of

an earlier one by Carpinteri (1994) which was recently shown in the Appendix of (Bažant and Yavari, 2005) to be mathematically

flawed.

Without going through the details, we note that the fracture energy GF is now shown to be also size dependant, or more

specifically multifractal. Furthermore, the −1/2 exponent, previously attributed to LEFM for small size, is now attributed/justified

by Brownian disorder which (according to the authors) should correspond to fractal scaling of +1/2 and -1/2 for invasive (strength)

and lacunar (fracture energy) morphologies.

Starting from
3

W = GFA0 = G∗
FAo (16.15)

where G∗
F is a true scale invariant material parameter, whereas GF is subjected to a scale effect described by a positive power

law, the authors go on in defining:

GF (b) ∼ G∗
F b

DG
(16.16)

σu(b) ∼ σ∗
ub

−Dσ
(16.17)

ϵc(b) ∼ ϵ∗cb
1−Dϵ

(16.18)

1 = DG +Dσ +Dϵ (16.19)

which ultimately yields:

GF (b) = G∞
F

[
1 +

lch
b

]−1/2

(16.20)

wc(b) = w∞
c

[
1 +

lch
b

]−1

(16.21)

where lch is a characteristic length, b a representative dimension. Again, it should be noted that whereas in his original publication

Carpinteri associates the +1/2 exponent to LEFM, in this more recent ones, the fractal scaling of +1/2 and -1/2 now correspond

to the highest possible (Brownian) disorder. This is at best a convenient (and yet unproven) conjecture as it is not clear what

exactly is meant by Brownian movement
4

. Einstein’s work on Brownian movement (in liquid and gas, and not in solids) is at a

scale much smaller than the one of Engineering interest. At this scale Newtonian physics is certainly no longer applicable, and

should be replaced by Quantum Physics. Hence, it is at best difficult to reconcile physical models at such different scales without a

rigorous explicit justification. To the best of the authors knowledge, no model spanning those two realms has even been proposed

by theoretical physicists.

16.1.3 Historical Notes

It is commonly stated that size effect phenomenon was first highlighted by ?, on the basis of his famous etchings of different sizes

of animal bones, Fig. 16.8. Galileo was indeed the first to notice that smaller objects in nature are not just scaled replicas of similar

big objects. In the Dialogues concerning two new sciences, Proposition IX (on the second day), Salviati states:

…I once drew the shape of a bone, lengthened three times, and then thickened in such proportion that it could function in its
large animal relatively as the smaller bone serves the smaller animal: here are the pictures; You see how disproportionate
the shape becomes in the enlarged bone. From this it is manifest that if one wished to maintain in an enormous giant
those proportions of members that exist in an ordinary man, it would be necessary to either find much harder and more
resistant material to form his bones, or else to allow his robustness to be proportionately weaker than in men of average
stature; otherwise growing to unreasonable height, he would be seen crushed by his own weight and fallen.

3

Incidentally, this equation is identical to Eq. 16.3.

4

Brownian motion was discovered in the 19
th

century by R. Brown who observed through a microscope the random swarming motion of pollen grains in water

(now understood to be due to molecular bombardment). The theory of Brownian motion was later developed by Einstein (1905) to estimate the size of molecules.
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Figure 16.8: The Scaling of Bones, ?

Evidently, Galileo lacked the algebraic notation to do dimensional analysis in the way Vashy (1892) later on introduced it through

the fundamental length parameter L. Hence, cast in the current context, Galileo’s statement would simply read as follows: the

weight a bone carries is proportional to the animal volume (L3
) whereas the strength of this same bone is proportional to its

cross section area L2
. A simple dimensional analysis shows that if an animal is, for example, three times larger, Its bone would

be three times longer but should be 33/2 ∼= 5 times wider in order to carry the weight. This explains why a giant animal cannot

have the same proportions as its smaller model. Hence, again Galileo’s “paternality” of the Size effect law can not be attributed

to this observation, which again has more to do with mere dimensional analysis.

Hence, for a superficial observer (or a modern day Simplicio), Galileo would be the father of scaling (or dimensional) theory,

and not of size effect theory. However, if we can (with all due respects) paraphrase Galileo we would simply say that weight

increases with L3
and load carrying capacity (constant strength, variable cross-section) increases with L2

. This is exactly what

the Size Effect law is all about: energy is released from a volume ∝ L3
and absorbed by a surface crack ∝ L2

. As is well known

by now, there are many experimental evidences supporting both Galileo and Bažant, (RILEM TC QFS, 2004).

To that far-reaching statement, the incredulous Simplicio states:

But the immense bulks that we encounter among fishes give me grave reason to doubt whether this is so. From what I
hear, a whale is as large as ten elephants; yet whales hold together.

This questioning by Simplicio is not different than the incredulity of many skeptical modern time engineers, regarding the Size

Effect law. But again, Salviati wisely replies:

Your doubt, Simplicio, enables me to deduce something that I did not mention before, a condition capable of making
giants and other vast animals hold together and move around as well as smaller ones. That would follow if, but not only
if, strength was added to the bones and other parts whose function is to sustain their own weight and that which rests on
them.

Now, Galileo is implying that nominal strength (and not anymore mere load carrying capacity) can increase at times and that

strength does not necessarily diminishes with size. In modern days terminology, Galileo is stating that strength does not nec-

essarily drop to zero, which is a common feature of both Carpinteri’s multi-fractal model, and Bažant’s revised size effect law,

(Bažant and Novák, 2000).

In more recent times, Weibul size effect was early on examined by Griffith (1921) who was seeking for an explanation of the

increased strength with the reduction in glass filament diameter. His genius was to explain the strength reduction through the

stress concentration around an elliptical crack as derived by Inglis (1913), and in postulating the energy transfer from strain to

surface. However, it should be kept in mind that this model is applicable only for perfectly brittle solids, and not for quasi-brittle

ones.

Finally, the size effect law provides us with a unified model for small scale plasticity to large scale fracture (linear elastic). In

that context, it can be viewed as an analogy to the column curve which provides for a unified model of strength across a wide

spectrum of slenderness ratios. At one end, failure is through yielding, and at the other through instability (Euler buckling). The

first semiempirical column formula was developed by the second theory of elastic-plastic buckling of Engesser (1895) as cited in

Bažant and Cedolin (1991).

16.2 Fractal Stress Intensity Factors

Yavari et al. (2002) investigated the stress and strain singularity at the tip of a fractal crack. It was shown that for modes I, the

fractal crack stresses have the following asymptotic distribution

σF
ij(r, θ) = KF

I r
−α(θ,D|H) + higher-order terms (16.22)
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For self similar cracks,

α =
2−DF

2
1 ≤ DF ≤ 2 (16.23)

where Df varies from 1 to 2, the lower bound corresponds to the case of a smooth crack, while the upper limit represents an

infinitely irregular fractal curve that “fills the plane”, and can be envisioned as a void contained within the plane. For self-affine

cracks,

α =

{
2H−1
2H

1/2 ≤ H ≤ 1
0 0 ≤ H ≤ 1/2

Self-affine (16.24)

where H is the Hurst exponent and varies from 0 to 1; however stresses and strains are singular at the crack tip only if 1/2 ≤
H ≤ 1, for very rough cracks (H ≤ 1/2), there is no singularity. Hence a fractal crack has a weaker singularity than an Euclidian

one.

16.2.1 Far Field Stress

The stress intensity factor for a fractal crack of length 2a and characterized by a fractal singularity α (or roughness H) in an

infinite plate subjected to a uniform far field stress σ was derived by Wnuk and Yavari (2003)(Eq. A14 in which s = x/a) as

KF
σ =

σ

παaα−1

1∫
0

(1 + s)2α + (1− s)2α

(1− s2)α
ds

︸ ︷︷ ︸
χ(α)

(16.25)

For the Euclidian crack, α = 1/2, χ(1/2) = π, and Kσ = σ
√
πa.

16.2.2 Cohesive Crack

The cohesive crack model is illustrated by Fig. 16.2.2 where a crack of length 2a has cohesive stresses, applied over cf at the crack

tip. Introducing the nondimensional distance

λ =
x− a0
a− a0

=
s−m

1−m
(16.26)

Where m = a0/a, Wnuk and Legat (2002) defined a generalized cohesive stress distribution

G(λ, ω, n) = λn exp[ω(1− λ)] (16.27)

For ω = n = 0, we would have a constant cohesive stress as defined by Dugdale (1960), and for ω = 0, n = 1 we recover

the linear cohesive stress distribution of Barenblatt (1962), Fig. 16.10. Using this representation of the cohesive stress, Wnuk and

Yavari (2003) gave an expression of the non-fractal cohesive stress intensity factor (Eq. 16) which can be rewritten as

Kcoh =
2f ′

t

π

√
πa

∫ 1

0

G(λ, ω, n)(1−m)√
1− [(1−m)λ−m]2

dλ (16.28)

Following an approach similar to the authors, it can be shown that the fractal counterpart of this equation is

KF
coh =

2f ′
t

π
(πa)1−α(1−m)1−α

∫ 1

0

G(λ, ω, n)

{(1− λ) [1 + (1−m)λ+m]}α dλ︸ ︷︷ ︸
Γ(ω,n,α,m)

(16.29)

For small scale yielding, m→ 1, then the preceding equation simplifies to the one given in Eq. 25 by Wnuk and Yavari (2003)

KF
coh =

[
2ft
π

(πa)1−α

]
(1−m)1−α

2α

1∫
0

G(λ, ω, n)

(1− λ)α
dλ

︸ ︷︷ ︸
Γ(ω,n,α)

(16.30)

which, for an Euclidian crack (α = 1/2), is further simplified to

Kcoh =

[√
2ft
π

√
πa

]√
1−m · Γ(ω, n, 1

2
) (16.31)
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Figure 16.9: Cohesive Stress Distribution Along a Fractal Crack
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Figure 16.10: Generalized Cohesive Stress Distribution
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16.3 Fractal Size Effect

Following the same approach developed by (Saouma et al., 2003) to rederive (all operations were performed with the help of

Mathematica) the size effect law, we seek to remove the stress singularity by setting

KF
σ +KF

coh = 0 (16.32)

and solving for σ.

First we attempt to obtain the generalized fractal size effect law by considering the general expression of KF
coh (Eq. 16.29) and

KF
σ (Eq. 16.25), this yields

σ

f ′
t

= −2

(
1

1 + r

)1−α
Γ(ω, n, α,m)

χ(α)
(16.33)

We note that we recover Bažant’s original size effect law for α = 1/2, and that the size effect law is clearly independent of the

cohesive stress distribution Γ(ω, n, α,m).
On the other hand, if we make the assumption of small scale yielding m→ 1 we obtain

σ

f ′
t

= −21−α

(
1

1 + r

)1−α
Γ(ω, n, α)

χ(α)
(16.34)

Because of its complex form, χ(α) can not be explicitly evaluated, hence, we take a series expansion with respect to s = 0, i.e.

for cf ≪ a

χ(α) = 2 +O[s]2 (16.35)

Substituting the first series expansion of χ(α) and the general expression of Γ(ω, n, α,m) from Eq. 16.29 (with G(λ, 0, 0) = 1
for Dugdale’s cohesive stress distribution) into Eq. 16.33 we obtain

σ

ft
= −

2−2α(−1− r)
(

1
1+r

)2α [
22α

√
πΓ(1− α)− 2B 2r+1

2(r+1)
(1− α, 1− α)Γ(3/2− α)

]
Γ(3/2− α)

(16.36)

where

Γ(z) =

∫ ∞

0

tz−1e−t
dt (16.37)

Br(z, w) =

∫ r

0

tz−1(1− t)w−1
dt (16.38)

are the Gamma and Beta functions. Fig. 16.11 shows the size effect law for fractal cracks. We note that the strength of a fractal

crack is always larger than the one of an Euclidian one. This is consistent with Eq. 16.22 derived by Yavari et al. (2002).

The analytical expression of the slope as r → ∞ in terms of α, was derived but was exceedingly complex and could not be

reduced to a simpler expression. However, when this expression is plotted, Fig. 16.12 it is exceedingly simple, and it would appear

that the slope is simply equal to α. Indeed the -1/2 asymptotic slope of Bažant’s original size effect law is recovered, and the

strength of the size effect law is reduced for fractal cracks.

Similarly, if we one examine the asymptotic value of σ/f ′
t as r → 0, we obtain, Fig. 16.13

σ

ft

∣∣∣∣
r−→0

=

√
πΓ(1− α)

2Γ
[
3
2
− α

] (16.39)

which for α = 1/2 is equal to
π
2

. Evidently, this limit value is problematic, as one would have expected to retrieve the value of

1. This discrepancy may be attributed to the approximation of χ(α) in Eq. 16.35; nevertheless this discrepancy requires further

investigation.

16.4 Cellular Automata

When Fractals were first introduced in the early 80’s it rapidly spread in multiple disciplines of science and engineering. To the

best of the author’s knowledge, one of the first application in engineering was in fracture mechanics, when Mandelbrot et al.

(1984) showed that metallic fracture surfaces are fractals. This was one key paper which subsequently inspired many others,

including this one. Similarly, we recently witnessed the development of a “New Kind of Science” by Wolfram (2002). Again, just

as Mandlebrot did in 1984, Wolfram asserts that his Cellular Automata can model the roughness of cracks. Given the inherent

similarity between cellular automata and fractals, the authors conclude by examining what may become yet another fracture

representation and its role in fracture mechanics.
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Figure 16.11: Fractal Size Effect Laws (Dugdale)
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Crack models need not only be based on continuum (even if fractal) models, but can be based on discontinuous ones too.

Whereas the lattice model is by now making great strides toward its acceptability, (Cusatis et al., 2003), a new model based on

cellular automata was recently proposed by Wolfram (2002) (A New Kind of Science (NKS)). This model is worth mentioning for

two reasons. First it provides a simple algorithm to define complex objects, which at time are exact replicas of fractals. Secondly,

the author claims that his rules 150 (shown below), 22, and 122 can be used to model a random crack, which in the context of this

paper does indeed appear to be fractal.

Hence, using simple rules, Wolfram’s cellular automata operations can indeed generate fractal objects. In particular, Rule 150

generates a Sierpinski’s like surface, Fig. 16.14 which bears great resemblance to Fig. 16.2. Rule 150 (Weisstein, 2004) is identified

1 0 101 010

Rule 150

2150 10010110= 1 0 101 010

Rule 150

2150 10010110=

Figure 16.14: Cellular Automata Definition of Rule 150 Along WIth Potential Crack Path

by Wolfram (2002) (pg. 375) as a possible fracture and “at each step, the color of each cell, which roughly represents the displacement
of an element of the solid, is updated according to the cellular automation rule. (The line), representing the location of a crack, moves
from one cell to another based on the displacements of the neighboring cells, at each step setting the cell it reaches to be white.”.

Hence, whereas fractals constitute a static way to mathematically catalog the points that make up the object, cellular automata

are a dynamic way to create the object via a growth process.

Yet, despite the ability to replicate a fractal surface, which can greatly reassemble a cracked fractal surface, the NKS fails

to provide any mathematical or physical parameters which can be exploited to further investigate the problem beyond a mere

graphical representation. Nevertheless, it is somehow the intuition of the authors that this model could be further investigated

through the prism of the size effect law, and may very well lead to some interesting (albeit qualitative) results.

16.5 Conclusion

Both Bažant’s size effect law (SEL) and Carpinteri’s multifractal scaling law (MFSL) are thoroughly reviewed. Serious reservations

on the second model are cast, while the first one is extended to include fractal cracks. Historical notes pertaining to these models

are also discussed. Finally, speculative remarks on the applicability of cellular automata on size effects and fractals are made.

The derived fractal size effect law does account for the geometry of the structure, is consistent with Bažant’s original derivation.

However, it should be noted that there is still a discrepancy in the plastic asymptote, and this model does not extend Bažant’s

subsequent refinements of his model. It is shown that as the fractal dimension increases (i.e. α decreasing from 1/2), the nominal

strength does also increase. In the limiting case of α = 0 (essentially a plate with a hole), then no longer is the strength dependant

on the size, i.e plasticity reigns.

Accepting the cohesive crack model, the proposed Fractal Size Effect Law (FSEL) in no ways resembles MFSL (which still lacks

a rigorous mathematical derivation).

Based on the comprehensive, historical and rigorous discussion presented in this paper, it is hoped that the controversy sur-

rounding the discrepancy between SEL and MFSL is laid to rest, and that code writers should have no qualm in embracing Bažant’s

Size Effect Law. Paraphrasing (Izquierdo-Encarnación, 2003), we can definitely conclude that Effectus amplitudinis fractae rimae
satisfaciendus est. (Fractal cracks must obey Size Effects).
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Chapter 17

FRACTURE MECHANICS PROPERTIES OF CONCRETE

Adapted from (Saouma et al., 1991a)

17.1 Introduction

Concrete dams are often referenced as a potential application of Fracture Mechanics, yet, little work has been performed to

evaluate fracture properties of dam concrete. Most of the research undertaken on the fracture of concrete has concentrated on

laboratory testing of small specimens constructed of structural concrete. Based on these test results, a basic understanding of the

fracture processes occurring in concrete has been developed. However, since the fracture parameters often appear to be size and

aggregate dependent, the experimentally determined values cannot be reasonably extrapolated to mass concrete structures such

as dams.

The fracture properties obtained from small concrete specimens may be size and geometry dependent because the fracture

ligament of the specimens is too short to achieve a steady crack propagation regime. Several experimental investigations have

been performed on large concrete members to determine both “objective” fracture properties and minimum dimensions for test

specimens. Large scale double cantilever beams with a length of 350-cm (138-in.) have been used at the “Laboratoire Central des

Ponts et Chaussées” in Paris since 1976 (Chhuy et al. 1979, Rossi et al. 1984) for fracture testing of concrete. An investigation

using four different specimen geometries ranging in size from 100-cm (39.4-in.) to 144-cm (56.7-in.) is presented in Wittmann &

Metzener-Gheorghita (1985). Other large concrete fracture specimens include three–point bend (TPB) beams with a depth of 80-

cm (31.5-in) (Hilsdorf & Brameshuber 1985), compact tension (CT) specimens with heights ranging from 30-cm (12-in.) to 150-cm

(59-in.) (Wittmann et al. 1988), and tapered double cantilever beams with a height of 210-cm (83-in.) (Rossi et al. 1990).

In this chapter, testing and data evaluation procedures developed for relatively small specimens are extended to a series of

large concrete Wedge Splitting (WS) specimens with heights of 31-cm (12-in.), 91-cm (36-in.) and 152-cm (60-in.). Three different

concretes with maximum aggregate sizes, 19-mm (0.75-in.), 38-mm (1.5-in.) and 76-mm (3.0-in.), representative of mass concrete

used in dams are examined. A test series of WS specimens used to study the fracture behavior of the cold–joint between lifts in

a dam is also presented. From each set of experiments, values for fracture toughness, KIc, and specific fracture energy, GF , are

determined and discussed. The influence of aggregate shape and geological origin on the fracture properties are also considered.

17.2 Experiments

17.2.1 Concrete Mix Design and Specimen Preparation

Unlike structural concrete, in which the maximum size aggregate (MSA) typically does not exceed 38-mm (1.5-in.) in diameter,

in dam concrete mixes the MSA is, in general, equal to or larger than 76-mm (3.0-in.) in diameter. Based on the presence of such

large aggregates in a dam concrete mix, three MSAs were selected for testing: 19-mm (0.75-in.), 38-mm (1.5-in.), and 76-mm (3-

in.). For each aggregate size, a concrete mix similar to those used in actual gravity dams was obtained from the U.S. Bureau of

Reclamation, which is the agency responsible for the design, construction, and maintenance of many federally owned dams in the

western United States. The majority of the mixes were batched with rounded river aggregates, except for a batch of the 38-mm

(1.5-in.) MSA mix, which consisted of quarried subangular aggregates. Details of the mix designs used for the construction of all

specimens are shown in Table 17.1.

Ten standard 15-cm (6.0-in.) × 30-cm (12.0-in.) cylinders for the 19-mm and 38-mm MSA mixes, and ten 30-cm (12.0-in.) ×
60-cm (24.0-in.) cylinders for the 76-mm mix were used for the determination of the concrete material properties. The compressive

strength, f ′
c, and tensile splitting strength, f ′

t,sp, of each concrete mix were obtained prior to performing each wedge-splitting

(WS) specimen test. The mean values obtained from unconfined compression tests, performed according to ASTM C39 (Anon.

1983), and the splitting tension test (Brazilian) described in ASTM C496-85 (Anon. 1985), are summarized in Table 17.2.

The test specimen shape used for the experimental program was the wedge-splitting geometry, shown in Fig. 17.1, which had

been previously used in research programs for the testing of small concrete specimens (Hillemeier & Hilsdorf 1976, Linsbauer &

Tschegg 1986, Brühwiler 1988, Brühwiler & Wittmann 1990). The WS specimen has a large fracture area compared to the concrete

volume, approximately 4.6 times greater than a commonly used three-point bend (TPB) beam geometry (RILEM 1985) of equal

volume. The large fracture area compared to the aggregate size and specimen volume makes the WS geometry well suited for

testing large MSA and specimens under laboratory conditions.

The dimensions of the WS specimens tested in the experimental program are summarized in Table 17.3. The specimen di-

mensions and aggregate sizes were selected to enable a comparison with results previously obtained by other researchers in
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Table 17.1: Concrete mix design.

CONCRETE MIX DESIGN
(no entrained air, w/c ratio= 0.55)

maximum aggregate size mix

19-mm (0.75-in.) 38-mm (1.5-in.) 76-mm (3.0-in.)

Weight Weight Weight

kg/m3(lb/yd3) kg/m3(lb/yd3) kg/m3(lb/yd3)
water 163 139 102

(275) (233) (174)

cement 297 252 187

(500) (424) (315)

sand 918 782 695

(1,550) (1,320) (1,170)

19-mm MSA 978 609 491

(0.75-in.) (1,650) (1,030) (827)

38-mm MSA 0 609 491

(1.5-in.) (1,030) (827)

76-mm MSA 0 0 491

(3.0-in.) (827)

total 2,390 2,420 2,480

(4,030) (4,080) (4,180)

Table 17.2: Experimentally obtained material properties of the concrete mixes used.

MSA f ′
c, MPa (psi) f ′

t,sp, MPa(psi) Eeff , MPa (ksi)

19-mm (0.75-in.) 25.6 (3,710) 2.81 (407) 18,000 (2,610)

38-mm (1.5-in.) 24.8 (3,600) 2.67 (388) 16,900 (2,460)

38-mm (1.5-in.) sub-angular 36.6 (5,317) 3.96 (574) 23,200 (3,360)

76-mm (3.0-in.) 18.9 (2,740) 2.41 (349) 16,500 (2,400)

Figure 17.1: *Wedge-splitting specimen geometry.

Table 17.3: Wedge-splitting specimen dimensions.

Specimen Dimensions, cm (in.)

Specimen Type H w t s D a0 h

“Small” 31 (12.0) 31 (12.0) 23 (9.0) 6 (2.25) 3 (1.0) 4.5(1.75) 20 (8.0)

“Medium” 91 (36.0) 91 (36.0) 41 (16.0) 15 (6.0) 8 (3) 15.2 (6.0) 61 (24.0)

“Large” 152 (60.0) 152 (60.0) 41 (16.0) 15 (6.0) 8 (3) 30.5 (12.0) 107 (42.0)
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the academic community, and to predict fracture properties of dam concrete with intermediary values to ensure a continuity of

results.

Specimen construction consisted of wooden formwork built for the placing of the concrete, a sharpened 3.2-mm (0.125-in.) thick

steel plate mounted inside each form to obtain the vertical notch normal to the load line, and two hollow steel sleeves flanking

the plate. Two different ready–mix suppliers delivered the concrete. The first provided the 19-mm and 38-mm MSA mixes and the

other the 76-mm MSA concrete mix. In all specimens, with the exception of the cold-joint (CJ) specimens, the concrete was placed

with the notch in the vertical direction, and cured at room temperature in the laboratory for at least 28 days prior to testing.

For the CJ specimens, the concrete was placed in two separate lifts, with the notch plate initially in a horizontal orientation. The

tendency of the crack to propagate into the cold-joint, which is a region of inherent weakness, was studied through a slight offset

between the initial notch and the level of the concrete in the first lift. Three days after the first lift was placed, the surface was

sand-blasted to remove surface laitance and ensure a good bond along the joint. Grade 16 silica sand, driven by an air pressure of

100 psi, was used in the blasting process. After sandblasting, the surface was continuously water cured but was saturated surface

dry (SSD) when the second lift was placed. The sand-blasting operation and the placing of the second lift were performed on the

same day. The 38-mm and 76-mm MSA concrete mixes used for the CJ specimens were identical to the mix designs used during

the standard WS testing program. After curing for 28 days, the specimens were turned upright, such that the notch was in a

vertical orientation, and tested using a procedure identical to the standard WS specimens experiments without the cold-joint. The

concrete mixes associated with each specimen size and the number of specimens in each series are presented in the test matrix

of Table 17.4.

Table 17.4: Test matrix.

Number of Tests

Specimen Type Aggregate maximum aggregate size mix

Shape 19-mm (0.75-in.) 38-mm (1.5-in.) 76-mm (3.0-in.)

“Small” rounded 3 3 -

“Medium” rounded 3 3 3

“Large” rounded - 3 3

“Medium” subangular - 3 -

“Large” (cold-joint) rounded - 3 3

17.2.2 Loading Fixtures

For testing, the WS specimens were centered on a steel rod, shown in Fig. 17.2, which acts as a line support along the bottom face

Figure 17.2: *Wedge fixture and line support.

of the specimen. The line support fixture was mounted to the actuator of a closed-loop servo-hydraulic materials testing system.

Two steel rods were inserted through steel sleeves in the specimen, and needle bearing rings were mounted on the protruding

ends. The wedge-loading apparatus, also shown in Fig. 17.2, was then fixed and the WS specimen was raised by the actuator such

that the wedges were forced between the bearing rings on each side, imposing a horizontal displacement on the specimen at the

point of contact. A flexible connection between the wedge-loading fixture and the testing machine load cell was used to account

for any small misalignments and evenly distribute the induced load. As a result of the horizontal displacement imposed by the

wedges, the specimen was subjected to a pure Mode I loading condition.

17.2.3 Testing Procedure

The experimental setup of the electronic controller, the data acquisition system, and the testing machine for the WS specimen tests

are shown in a simplified block diagram in Fig. 17.3. In the WS specimen experiments, the primary deformation monitored was the

crack–mouth opening displacement (CMOD). The CMOD was measured on the top surface of the specimen by a clip gage mounted

over the mouth of the initial notch. The closed-loop servo-hydraulic test machine used a programmed constant rate of CMOD
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Figure 17.3: *Block diagram of the experimental system.

(1.0-µm/sec, or 40-µin/sec) as the feedback control to obtain stable crack growth with structural post-peak response. During

the test, the vertical load and the CMOD were monitored and recorded using a standard data acquisition system. Unload/reload

cycles, which were used to monitor the change in the specimen compliance, or flexibility, were performed. The experiment was

performed until the specimen was split into two halves.

The vertical force induced by the wedge fixture, PV , was directly obtained from the load cell of the testing machine. The wedge

fixture is a statically determinate beam, and therefore, the splitting force is given by PSP = PV
2·tanα , where the wedge angle, α,

is equal to 15o. (Frictional forces were neglected; they were reduced by using hardened steel inserts along the inclined wedge

surface and needle bearings with a low coefficient of friction.) A typical PSP vs. CMOD curve representative of the WS specimens

is presented in Fig. 17.4. In the PSP vs. CMOD curve, both linear and nonlinear responses in the ascending prepeak branch and

Figure 17.4: *Typical PSP vs. CMOD curve for a “Large” specimen.

a descending postpeak branch can be observed.

17.2.4 Acoustic Emissions Monitoring

In several WS tests, the microcracking associated with fracture process zone (FPZ) formation and with transient releases of elastic

energy due to localized aggregate fracture and bond failure were monitored with an acoustic emission (AE) sensor mounted on

the surface of the specimen. Inside the sensor, a piezoelectric crystal is stimulated by the stress waves and produces electrical

signals. The signals are then amplified, filtered, processed, and related to the behavior of the material throughout the experiment.

The AE sensor was mounted on the face of the specimen in a direction such that the sensor was normal to the predicted fracture

plane. The sensor used during testing was sensitive in the 30 kHz range, and the signal was filtered by a bandpass filter with a

bandwidth of 45–135 kHz. The electrical signal was then amplified, converted into a DC voltage by the processing unit, and fed

into a true-RMS (root-mean-square) voltmeter to eliminate the effects of constant background noise. With each AE burst, a rise in

the RMS signal was recorded with an X-Y plotter. Based on the observed readings, the material response was evaluated as (1) large

AE bursts or continuous activity, interpreted as crack extension or aggregate/matrix/bond failure, and (2) little or low AE activity,

indicating microcracking associated with the formation of the process zone. The AE monitoring and evaluation techniques were

used only as a qualitative aid to the test.

A typical record of the AE-RMS voltage signal for each corresponding load step vs. testing time is shown in Fig 17.5. The data

Figure 17.5: *Typical AE record for a “Large” WS specimen test.

shown in the curve can be divided essentially into three sections:
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17.3 Fracture Toughness Results

Section I: The specimen is in the ascending branch of the PSP vs. CMOD curve, the observed low AE activity and lift-off of the

RMS signal from a baseline value indicates microcracking and the formation of the process zone at the notch tip.

Section II: The peak load is reached and large AE spikes resulting from crack extension can be observed.

Section III: The AE bursts increase in amplitude and number, indicating continuous crack formation and growth during the

descending branch.

The Kaiser Effect which is characterized by the absence of detectable acoustic emissions until previously applied stress levels

are exceeded, is observed in AE testing of composite materials. This effect occurs primarily in the low CMOD regime, and is not

visible in Section III. The lack of the Kaiser Effect in Section III during the unload/reload cycles may have been caused by crushed

small concrete particles, and improper fit of the specimen halves. Further applications of this nondestructive evaluation method

were performed in the field testing program as presented in Saouma et al. (1990).

17.2.5 Evaluation of Fracture Toughness by the Compliance Method

The fracture toughness, KIc, was determined using the compliance method. A finite element calibration analysis was first per-

formed to determine a relationship between crack length and compliance, a = a(C), and for the stress intensity factor, KI in

terms of crack length:

KI =
PSP

H · t
√
πaeff · f(β) (17.1)

where β =
aeff

H
and f(β) is the geometry function for the WS specimens (Saouma et al. 1989a, Broz 1989). In the analysis, both

the splitting load and Young’s Modulus E were taken as unity, vertical load components induced by the wedge fixture on the

specimen were included, and singular elements were used for SIF determination.

The following general procedure was then followed to interpret the experimental data:

1. From the initial ascending branch of the PSP vs. CMOD record, determine the experimental initial specimen compliance

Ci
exp, and compare with the normalized (numerical) complianceCn corresponding to a0. From those two values, determine

the effective Young’s Modulus Eeff = Cn
Ci

exp
(Fig. 17.4).

2. For each successive post-peak unload/reload cycle:

a) Determine the experimental compliance, Ci
exp, as the slope of the line obtained by connecting the initial unloading

point to the final reloading point of each cycle (Fig. 17.4).

b) Normalize Ci
exp with respect to Eeff and then determine aeff .

c) From aeff and the Pcr corresponding to the unload point, determine the fracture toughness, KIc, from Eq. 17.1.

17.3 Fracture Toughness Results

Reduction of the experimental data resulted in aKIc vs. aeff curve that typically exhibited three stages (Fig. 17.6). In Stage I, pre-

Figure 17.6: *The three stages of the fracture toughness vs. effective crack length curve.

peak unload/reload cycles are performed, and the section of the curve is included for reference only. Since this stage corresponds

to the formation of the FPZ, the stress intensity factor, KI , values increase monotonically up to a plateau. Stage II is obtained

from the post peak data falling within a plateau. The plateau is synonymous with steady crack propagation and was also observed

by Rossi et al. (1990). Stage III demonstrates a sudden decrease in the KIc values. A possible explanation for this phenomena is

based on the inherent assumptions of the data reduction method. A perfectly linear elastic system was assumed in the finite

element calibration (resulting in zero residual CMOD upon unloading), but the assumption was increasingly violated as the test

progressed. As the effective crack length increased, larger residual CMOD (caused by the inability of the crack to perfectly close)

was observed. This effect, at first negligible, eventually becomes predominant as the crack grew down the ligament.

Only the fracture toughness values associated with Stage II were considered in the statistical analysis. The mean values with

the respective relative standard deviations are plotted in Fig. 17.7 and summarized in Tables 17.5 and 17.6. From the analysis of

the experimental data the following observations are made:
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Figure 17.7: *Mean fracture toughness values obtained from the rounded MSA WS specimen tests.

Table 17.5: Summary of fracture toughness data obtained from the WS tests.

Fracture Toughness, KIc, MN/m3/2 (psi
√
in)

Type 19-mm (0.75-in.) 38-mm (1.5-in.) 76-mm (3.0-in.) Summary

“Small” Mean 1.05 (953) 0.86 (783) - 0.93 (843)

rel. σ (%) 5.9 13.4 - 13.9

“Medium” Mean 1.01 (923) 0.99 (909) 1.09 (991) 1.03 (941)

rel. σ (%) 20.3 12.7 15.1 16.0

“Large” Mean - 1.23 (1,120) 0.98 (893) 1.16 (1,060)

rel. σ (%) - 6.3 12.7 12.8

Summary Mean 1.03 (941) 1.02 (929) 1.05 (957) 1.03 (941)

rel. σ (%) 13.5 16.9 15.3 15.2

“Medium” Mean - 1.34 (1,220) - -

(subangular) rel. σ (%) - 12.3 - -

Table 17.6: Fracture toughness values obtained from the CJ-WS specimens.

Fracture Toughness, KIc, MN/m3/2 (psi
√
in)

specimen no.

MSA A B C

38-mm Mean 0.64 (582) 0.50 (457) 0.72 (656)

(1.5-in.) rel. σ (%) 9.8 3.3 12.1

76-mm Mean 0.71 (643) 0.52 (476) 0.62 (567)

(3.0-in.) rel. σ (%) 4.0 2.2 2.7
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17.4 Specific Fracture Energy Results

1. Since the relative standard deviations in the vertical columns of Table 17.5 are all within 20%, “objective” values, i.e. inde-

pendent of specimen size, for the fracture toughness were determined.

2. Based on the relative standard deviation of the horizontal rows, the fracture toughness values also appear to be independent

of aggregate sizes.

3. The previous observation was further evaluated through a test series of medium-size specimens constructed with suban-

gular andesite aggregates (as opposed to the rounded aggregates used in all previous specimens). The trends in the results

of the test series can be summarized as follows:

a) The experiments yielded a fracture toughness value of 1.34 MN/m3/2
(1,220 psi

√
in), which is 30% higher than the

value obtained from the rounded aggregate specimens.

b) Aggregate debonding was prevalent in fracture surface of the rounded specimens, however, aggregate failures were

more predominant in the subangular specimens.

c) At peak load, the effective crack length of the subangular MSA specimens was found to be smaller than the aeff of

the rounded MSA specimens, indicating the presence of a smaller process zone.

4. The CJ specimens, which were used to quantify the response of lift-joints found in dams, had:

a) Peak loads 50% lower than comparable specimens constructed with no “lift” joint.

b) Fracture toughness values approximately 30-60% lower than for specimens without lift joints.

c) Smaller residual crack opening displacements following each cycle of unload/reload, and no descending portions of

the fracture toughness curve (as illustrated in Fig. 17.6).

5. A fractal analysis (Gamal-El-Din et al. 1990) of the concrete surfaces yielded a constant fractal dimension for all the rounded

aggregate specimens. In the analysis of CJ fracture surfaces, a relationship between the fractal dimension and fracture

toughness was observed.

6. The experiments reported here were conducted in the laboratory environment under unconfined conditions, the effects of

confining stresses on the apparent fracture toughness are presented in Saouma et al. (1990).

17.4 Specific Fracture Energy Results

The specific fracture energy, GF , is defined as the total energy required to break a specimen into halves, normalized by the

projected fracture area. GF is ideally obtained from the area underneath the load-deformation curve in a direct tension test.

Alternatively, specific fracture energy can also be obtained directly from flexural-based specimen geometries, such as the WS

specimen. In the WS specimens, GF was calculated as the area under the curve of PSP vs. corresponding CMOD, divided by the

ligament area (Brühwiler 1988, Brühwiler & Wittmann 1990). Thus, each test specimen yields one single value of GF . The GF

values determined from the experiments are shown Tables 17.7 and 17.8 and plotted in Fig. 17.8. Based on the analysis of the

Figure 17.8: *Mean specific fracture energy values obtained from the rounded MSA WS specimen tests.

experimental results the following comments can be made:

1. The 38-mm and 76-mm rounded MSA specimens yielded approximately equal values ofGF , which are 10-20 % higher than

the values obtained for the 19-mm MSA concrete mix.

2. A similar size dependency for GF for relatively small specimens with ligament lengths of less than 20-cm was observed

by Rossi et al. (1990).

3. The experiments performed on the specimens constructed with the subangular aggregate mix indicated:

a) GF values were 25% higher than the values obtained from the specimens constructed from the rounded aggregate

mixes.
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Table 17.7: Summary of specific fracture energy values obtained from the WS tests.

Specific Fracture Energy, GF , N/m(kip/in)
Type 19-mm (0.75-in.) 38-mm (1.5-in.) 76-mm (3.0-in.) Summary

“Small” Mean 206 (1.18× 10−3
) 238 (1.36× 10−3

) - 226 (1.29× 10−3)
rel. σ (%) 9.0 11.2 - 12.2

“Medium” Mean 173 (9.88× 10−4
) 223 (1.27× 10−3

) 226 (1.29× 10−3
) 211 (1.21× 10−3

)

rel. σ (%) 29.1 7.5 15.1 15.5

“Large” Mean - 259 (1.48× 10−3) 237 (1.35× 10−3
) 254 (1.45× 10−3

)

rel. σ (%) - 18.1 - 15.7

Summary Mean 189 (1.08× 10−3
) 240 (1.37× 10−3

) 230 (1.31× 10−3
) 226 (1.29× 10−3

)

rel. σ (%) 19.1 13.5 6.5 15.7

“Medium” Mean - 277 (1.58× 10−3
) - -

(subangular) rel. σ (%) - 13.8 - -

Table 17.8: Fracture energy values obtained from the CJ-WS specimens.

Specific Fracture Energy, GF , N/m(kip/in)
specimen no.

MSA A B C

38-mm 99.7 80.6 138.4

(1.5-in.) (5.70× 10−4
) (4.55× 10−4

) (7.85× 10−4
)

76-mm 133.0 85.8 98.1

(3.0-in.) (7.59× 10−4
) (4.90× 10−4

) (5.60× 10−4
)

b) The subangular aggregate shape inhibitted debonding, and more energy was required to break the sub-angular ag-

gregate than to debond rounded aggregate.

4. For the cold-joint specimens:

a) TheGF values were approximately 40-70 % lower than the standard WS specimens. The lower fracture energy values

were attributed to the inherent weakness of the cold-joint between specimen halves.

b) The higher GF values were correlated to visibly rougher surfaces at the cold-joint.

17.5 Conclusions

1. Based on the concrete mixes tested, which were obtained from two separate local ready-mix suppliers, and using the

compliance method for fracture toughness evaluation, the unconfined KIc of concrete is a material constant, equal to 1.04

MN/m3/2
(941 psi

√
in).

2. The evaluated fracture parameters, KIc and GF , are independent of specimen size and are “objective” only if certain

minimum dimensions are exceeded.

3. The fracture parameters,KIc andGF , are practically independent of aggregate size and depend on the angularity, or shape,

as well as, the aggregate’s strength.

4. For the two types of aggregates used in this experimental program, more energy was required to fracture the subangular

aggregates than to debond the rounded ones.

5. Debonding of rounded aggregates may result in a FPZ which is larger than the process zone caused by the fracture of

subangular aggregates.

6. The fracture properties for CJ-WS specimens exhibited higher variations in results, and were lower than for specimens

without cold-joints.
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17.6 Size Effect Law Assessment

Table 17.9: Size Effect Law model assessment from the WS test program (average values)(Brühwiler et al., 1991)

Specimen Size d da a0 a0/d Fmax
sp σN

mm mm mm kN MPa

(in.) (in.) (in.) (kip) (psi)

“Small” 248 19 44.45 0.18 24.1 3.05

“Small” 248 38 17.5 2.21

“Medium” 762 19 152.4 0.20 64.0 1.68

“Medium” 762 38 69.1 1.81

“Medium” 762 76 63.1 1.65

“Large” 1,372 38 304.8 0.22 123.9 1.68

“Large” 1,372 76 113.5 1.54

17.6 Size Effect Law Assessment

More specifically, an assessment of the size effect law in terms of: 1) testing three concrete mixes (with different aggregate sizes)

in identical specimen sizes; 2) The same concrete mix on three different specimen sizes; and finally 3) determination of the fracture

toughness through an extrapolation of the size effect law, (Brühwiler et al., 1991).

In its original formulation, the Size Effect Law assumes avariation of the nominal strength in terms of the maximum aggregate

size. To assess this dependency, the test data for specimens of “Medium” size, but different da, were analyzed. From Table 17.9 it

appeared that aggregate size does not play a dominant role in assessing the nominal strength of a concrete structure. However,

we determined that the shape and geological composition of the aggregates are far more important parameters.

Alternatively, when geometrically similar specimens with identical concrete mix were considered then indeed the size effect

law proved to be a valid tool to determine structure’s nominal strength, Fig. 17.9.

Figure 17.9: Size effect for WS specimens for da=38 mm (1.5 in) (Brühwiler et al., 1991)

Finally, the Size Effect Law can be re-arranged in a formulation to predict the fracture toughnessKSEL
Ic , from “small” laboratory

test values of a geometrically identical “infinitly large” one. It can be shown, (Brühwiler et al., 1991) that as d → ∞ KSEL
Ic =

Y Bf ′
t

√
d0

Using this equation, the fracture toughness for the WS specimens for d0 = 1570 mm is found to be KSEL
Ic = 1.54 MN/m3/2

(1.40 ksi
√
in), which is 51% higher than the value ofKCM

Ic = 1.02 MN/m3/2
(0.93 ksi

√
in) obtained using the compliance method

(CM) (Saouma et al., 1991a). The difference betweenKSEL
Ic andKCM

Ic appears to be large a priori however it can be explained by

the two different approaches used to evaluate fracture toughness from experimental data. Also, the SEL covers a range of sizes of

about 1:20, and therefore, extrapolation to infinite size may not be valid.

17.7 Notation and Abbreviations

a Crack Length

a0 Initial Notch Length

aeff Effective Crack Length

Cexpi Initial Experimental Compliance

Cexp Experimental Compliance

Cn Normalized Compliance

D Diameter of Loading Rods

E Young’s Modulus

Eeff Effective Young’s Modulus

f ′
c Concrete Compressive Strength

f ′
t Concrete Uniaxial Tensile Strength

f ′
t,sp Concrete Splitting Tensile Strength

GF Specific Fracture Energy
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H Specimen Height

h Specimen Ligament Length

KI Stress Intensity Factor

KIc Fracture Toughness (Critical Stress Intensity Factor)

KAPP
Ic Apparent Fracture Toughness

PV Vertical Force

PCR Splitting Force Corresponding to Unload/reload Cycle

PSP Splitting Force

s Distance from Top of Specimen to Point of Load Application

t Specimen Thickness

w Specimen Width

AE Acoustic Emission

ASTM American Society of Materials Testing

CJ Cold-Joint

CMOD Crack Mouth Opening Displacement

CT Compact Tension

FPZ Fracture Process Zone

LEFM Linear Elastic Fracture Mechanics

LVDT Linear Variable Differential Transformer

MSA Maximum Aggregate Size

NLFM Non-Linear Fracture Mechanics

RMS Root Mean Square

SOM Strength of Materials

SSD Saturated Surface Dry

TPB Three Point Bending

WS Wedge Splitting
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Chapter 18

SINGULAR ELEMENT

18.1 Introduction

1 For most practical problems, either there is no analytical solution, or the handbook ((Tada et al., 1973)) ones are only crude

approximation. Hence numerical techniques should be used. Whereas Boundary Element Methods are increasingly being used,

(Aliabadi and Rooke, 1991), they are far behind in sophistication the Finite Element Methods which will be exclusively covered in

this chapter. For an overview of early finite element techniques in finite elements the reader should consult (Owen and Fawkes,

1983), some of the more recent methods are partially covered in (Anderson, 1995). Finally, the Ph.D. thesis of Reich (1993) and of

? contain some of the major extensions of modern techniques to include thermal load, body forces, surface tractions in 2D and

3D respectively.

2 Numerical methods for fracture mechanics can be categorized in many different ways, in this chapter we shall use three criteria:

1. Those in which the singularity is modelled, that is the r−
1
2 stress field at the tip of the crack is properly represented.

2. Techniques in which the SIF are directly evaluated as part of the augmented global stiffness matrix.

3. Techniques through which the SIF can be computed a post priori following a standard finite element analysis via a special

purpose post-processor.

18.2 Displacement Extrapolation

3 This technique was the predominant one prior to the serendipitous discovery of the quarter point singular element.

4 In early finite element studies of LEFM, it was recognized that unless singular elements could be used, it would necessitate to

have a very fine mesh at the crack tip to approximate the stress singularity with non-singular elements.

5 Following a liner elastic analysis, the stress intensity factors were determined by equating the numerically obtained displace-

ments with their analytical expression in terms of the SIF. Such a correlation will be performed along a radial line emanating

from the crack tip, and then the following equations would be used:

4G

√
2π

r

{
u
v

}
= KI

{
(2κ− 1) cos θ

2
− cos 3θ

2

(2κ+ 1) sin θ
2
+ sin 3θ

2

}
(18.1)

4G

√
2π

r

{
u
v

}
= KII

{
−(2κ+ 3) sin θ

2
− sin 3θ

2

(2κ− 3) cos θ
2
+ cos 3θ

2

}
(18.2)

6 After the SIF would have been determined for each point, they would be plotted with respect to their distance from the crack

tip, and the predicted SIF values should be the one extrapolated from the crack tip, Fig. 18.1

7 Usually, θ is taken to be equal to π. A similar approach could be used using stresses rather than displacements. However this is

likely to yield less accurate predictions.

18.3 Quarter Point Singular Elements

8 This section discusses the easiest and most powerful technique used in finite elements to model a stress singularity.

9 Barsoum (1974) and Henshell and Shaw (1975) independently demonstrated that the inverse square root singularity character-

istic of linear elastic fracture mechanics can be obtained in the 2D 8-noded isoparametric element (Q8) when the mid-side nodes

near the crack tip are placed at the quarter point.

10 Thus, in order to model a stress singularity without altering the finite element code, the mid-side nodes adjacent to the crack

tip must be shifted to their quarter-point position. Since then this element became known as the quarter-point element.

11 In light of the simplicity and accuracy achieved by this element, this section will:
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Figure 18.1: Stress Intensity Factor Using Extrapolation Technique

1. cover a brief review of the isoparametric element formulation

2. show how the element can be distorted in order to achieve a stress singularity

3. determine the order of the stress singularity

4. provide a brief review of all the historical developments surrounding this element

5. discuss the effect on numerical accuracy of element size, order of integration, and local meshing around the crack tip

6. briefly mention references to other singular elements

18.4 Review of Isoparametric Finite Elements

12 In the isoparametric finite element representation, both the internal displacement and coordinates are related to their nodal

values through the shape functions:

1 2 3

4

567

8

Y,v

X, u

1
2 3

4

567

11 1

1
1

1

ξ

η 

Figure 18.2: Isoparametric Quadratic Finite Element: Global and Parent Element

{
x
y

}
=

8∑
i=1

[
Ni 0
0 Ni

]{
xi
yi

}
(18.3)

{d} =

{
u
v

}
=

8∑
i=1

[
Ni 0
0 Ni

]{
ui

vi

}
(18.4)

where the Ni are the assumed shape functions.

13 The shape functions are obtained by mere inspection (i.e. serependitiously),

Ni = 1
4
(1 + ξξi) (1 + ηηi) (ξξi + ηηi − 1) i = 1, 2, 3, 4

Ni = 1
2

(
1− ξ2

)
(1 + ηηi) i = 5, 7

Ni = 1
2
(1 + ξξi)

(
1 + η2

)
i = 6, 8

(18.5)
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18.4 Review of Isoparametric Finite Elements

i Ni Ni,ξ Ni,η

1
1
4
(1− ξ)(1− η)(−ξ − η − 1) 1

4
(2ξ + η)(1− η) 1

4
(1− ξ)(2η + ξ)

2
1
4
(1 + ξ)(1− η)(ξ − η − 1) 1

4
(2ξ − η)(1− η) 1

4
(1 + ξ)(2η − ξ)

3
1
4
(1 + ξ)(1 + η)(ξ + η − 1) 1

4
(2ξ + η)(1 + η) 1

4
(1 + ξ)(2η + ξ)

4
1
4
(1− ξ)(1 + η)(−ξ − η − 1) 1

4
(2ξ − η)(1 + η) 1

4
(1− ξ)(2η − ξ)

5
1
2
(1− ξ2)(1− η) −ξ(1− η) − 1

2
(1− ξ2)

6
1
2
(1 + ξ)(1− η2) 1

2
(1− η2) −(1 + ξ)η

7
1
2
(1− ξ2)(1 + η) −ξ(1 + η) 1

2
(1− ξ2)

8
1
2
(1− ξ)(1− η2) − 1

2
(1− η2) −(1− ξ)η

Table 18.1: Shape Functions, and Natural Derivatives for Q8 Element

and are tabulated in Table 18.1.

14 As the strain is the derivative of the displacement, we will need later to define
∂N
∂x

and
∂N
∂y

. N has been defined in Eq. 18.5

in terms of the natural coordinates ξ and η. Thus the chain rule will have to be invoked and the inverse of the jacobian will be

needed.

15 In this case, the jacobian matrix is:

[J ] =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
(18.6)

=

[ ∑8
i=1

∂Ni
∂ξ
xi

∑8
i=1

∂Ni
∂ξ
yi∑8

i=1
∂Ni
∂η

xi
∑8

i=1
∂Ni
∂η

yi

]
(18.7)

16 The inverse jacobian is then evaluated from:

[J ]−1 =

[ ∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

]
(18.8)

=
1

DetJ

[
∂y
∂η

− ∂y
∂ξ

− ∂x
∂η

∂x
∂ξ

]
(18.9)

17 The strain displacement relationship is:

{ϵ} =

8∑
i=1

[Bi]
[
di
]

(18.10)

where [Bi] is the strain matrix given by:

[Bi] =


∂Ni
∂x

0

0 ∂Ni
∂y

∂Ni
∂y

∂Ni
∂x

 (18.11)

where the following chain rule is invoked to determine the coefficients of [B]:
∂N
∂x

∂N
∂y

 = [J ]−1


∂N
∂ξ

∂N
∂η

 (18.12)

18 Finally, it can be shown that the element stiffness matrix of an element is given by (Gallagher, 1975), (Zienkiewicz, 1967):

[K] =

∫ 1

−1

∫ 1

−1

[B (ξ, η)] [D] [B (ξ, η)] detJdξdη (18.13)
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where the natural coordinates ξ and η are shown in Fig. 18.2 and [D] is the stress-strain or constitutive matrix.

19 The stress is given by:

{σ} = [D] [B]

{
ui

vi

}
(18.14)

18.5 How to Distort the Element to Model the Singularity

20 In Eq. 18.14, if the stresses are to be singular, then [B] has to be singular as the two other components are constants. Conse-

quently, if [B] is to be singular then the determinant of J must vanish to zero (Eq. 18.6) at the crack tip.

21 Now considering a rectangular element of length L along its first side (1-5-2, in Fig. 18.2), we can readily see that both off-

diagonal terms (
∂y
∂ξ

and
∂x
∂η

) in J (Eq. 18.6) are zero. Thus, for the determinant of the jacobian to be zero we must have either one

of the diagonal terms equal to zero.

22 It will suffice to force
∂x
∂ξ

to be zero. Making the proper substitution for
∂x
∂ξ

at η = −1 we have:

∂x

∂ξ

∣∣∣∣
η=−1

=

8∑
i=1

∂Ni

∂ξ
xi

=
1

4
[−1 + 2ξ + 2ξ − 1] (0)

+
1

4
[1 + 2ξ + 2ξ + 1] (L)

+
1

4
[−1 + 2ξ − 2ξ + 1] (L)

+
1

4
[1− 2ξ + 2ξ − 1] (0)

−2ξ (x5)

+
1

2
(1− 1)L

+
1

2
(1− 1) (L)

+
1

2
(1− 1)

(
L

2

)
=

1

4
(2 + 4ξ)L− 2ξx5 (18.15)

23 After simplification, and considering the first corner node (where η = ξ = −1), we would have:

∂x

∂ξ

∣∣∣∣ξ=−1
η=−1

= 0 ⇔ (1− 2)
L

2
+ 2x5 = 0 (18.16)

x5 =
L

4
(18.17)

24 Thus all the terms in the jacobian vanish if and only if the second node is located at
L
4

instead of
L
2

, and subsequently both the

stresses and strains at the first node will become singular.

25 Thus singularity at the crack tip is achieved by shifting the mid-side node to its quarter-point position, see Fig. 18.3.

26 We should observe that instead of enforcing
∂x
∂ξ

along edge 1-2 to vanish at the crack tip, we could have enforced
∂y
∂η

along

edge 1-7 to be zero at the crack tip.

27 A similar approach will show that if node 8 is shifted to its quarter-point position the same radial strain variation would be

obtained along sides 1-4. However, along rays within the element emanating from node 1 the strain variation is not singular. The

next section will discuss this issue and other variation of this distorted element in more detail.
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Figure 18.3: Singular Element (Quarter-Point Quadratic Isoparametric Element)

18.6 Order of Singularity

28 Having shown that the stresses at the first node are singular, the obvious question is what is the degree of singularity.

29 First let us solve for ξ in terms of x and L at η = −1 (that is, alongside 1-5-2):

x =

8∑
i=1

Nixi

=
1

2

(
1− ξ2

)
(1 + 1)

L

4
+

1

4
(1 + ξ) (1 + 1) (ξ)L

=
1

2
ξ (1 + ξ)L+

(
1− ξ2

) L
4

(18.18)

⇒ ξ = −1 + 2

√
x

L
(18.19)

30 Recalling that in isoparametric elements the displacement field along η = −1 is given by:

u = −1

2
ξ (1− ξ)u1 +

1

2
ξ (1 + ξ)u5 +

(
1− ξ2

)
u2 (18.20)

31 we can rewrite Eq. 18.20 by replacing ξ with the previously derived expression, Eq. 18.19):

u = −1

2

(
−1 + 2

√
x

L

)(
2− 2

√
x

L

)
u1

+
1

2

(
−1 + 2

√
x

L

)(
2

√
x

L

)
u5

+

(
4

√
x

L
− 4

x

L

)
u2 (18.21)

32 This complex equation can be rewritten in the form:

u = A+Bx+ C

√
x

L
(18.22)

33 We thus note that the displacement field has had its quadratic term replaced by x
1
2 , which means that when the derivative of

the displacement is taken, the strain (and stresses) are of the form:

ϵx = −1

2

(
3√
xL

− 4

L

)
u1 +

1

2

(
−1√
xL

+
4

L

)
u5 +

(
2√
xL

− 4

L

)
u2 (18.23)

34 Thus the strength of the singularity is of order
1
2

, just as we wanted it to be for linear elastic fracture mechanics !
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18.7 Stress Intensity Factors Extraction

35 A number of techniques (including the ones discussed in the subsequent section) can be used to determine the SIF when quarter-

point elements are used, Fig. 18.4 but by far the simplest one to use and implement is the one based on the nodal displacement

Figure 18.4: Finite Element Discretization of the Crack Tip Using Singular Elements

correlation technique.

36 This technique, first introduced by Shih et al. (1976), equates the displacement field in the quarter-point singular element with

the theoretical one. This method was subsequently refined by Lynn and Ingraffea (1977) who introduced the transition elements,

and extended Ingraffea and Manu (1980) to three-dimensional isotropic problems.

37 This method was finally extended to full three-dimensional anisotropic cases by Saouma and Sikiotis (1986).

18.7.1 Isotropic Case

38 For the quarter-point singular element, in two dimensions, and with reference to Fig. 18.5, the displacement field is given by,

AB

C
D

E
L

x'
y'

L/4

θ 

Figure 18.5: Displacement Correlation Method to Extract SIF from Quarter Point Singular Elements

Eq. 18.23:

u′ = u
′
A +

(
−3u

′
A + 4u

′
B − u

′
C

)√
r
L
+
(
2u

′
A + 2u

′
C − 4u

′
B

)
r
L

(18.24)

v′ = v
′
A +

(
−3v

′
A + 4v

′
B − v

′
C

)√
r
L
+
(
2v

′
A + 2v

′
C − 4v

′
B

)
r
L

(18.25)

where u′
and v′ are the local displacements (with x′ aligned with the crack axis) of the nodes along the crack in the singular

elements.

266



D
R
A
FT

18.8 Numerical Evaluation

39 On the other hand, the analytical expression for v is given by Eq. 3.53-f with θ = 180, yielding:

v = KI
κ+ 1

2G

√
r

2π
(18.26)

40 Equating the terms of equal power (
1
2

) in the preceding two equations, the

√
r term vanishes, and we obtain:

KI =
2G

κ+ 1

√
2π

L

(
−3v

′
A + 4v

′
B − v

′
C

)
(18.27)

41 If this approach is generalized to mixed mode problems, then the two stress intensity factors are given by:

{
KI

KII

}
=

1

2

2G

κ+ 1

√
2π

L

[
0 1
1 0

] −3u
′
A + 4

(
u

′
B − u

′
D

)
−
(
u

′
C − u

′
E

)
−3v

′
A + 4

(
v
′
B − v

′
D

)
−
(
v
′
C − v

′
E

)  (18.28)

42 Thus it can be readily seen that the extraction of the SIF can be accomplished through a “post-processing” routine following a

conventional finite element analysis in which the quarter-point elements have been used.

18.7.2 Anisotropic Case

43 Following a similar procedure to the one previously described, for the anisotropic case,
1

Saouma and Sikiotis (1986) have shown

that the three stress intensity factors can be evaluated from:
KI

KII

KIII

 = [B]−1 [A]

√
2π

L
(18.29)

where [A] is obtained from the displacements of those nodes along the crack in the singular quarter-point wedge element, as

shown in Fig. 18.6:

[A] =


2uB − uC + 2uE − uF + uD + 1

2η (−4uB + uC + 4uE − uF ) + 1
2η

2 (uF + uC − 2uD)

2vB − vC + 2vE − vF + vD + 1
2η (−4vB + vC + 4vE − vF ) + 1

2η
2 (vF + vC − 2vD)

2wB − wC + 2wE − wF + wD + 1
2η (−4wB + wC + 4wE − wF ) + 1

2η
2 (wF + wC − 2wD)

 (18.30)

and [B] is obtained from the analytical solution to the displacements around the crack tip in homogeneous anisotropic solids:

[B]−1 =



Re
[

i
s1−s2

(q2 − q1)
]

1
D

Re
[

−i
s1−s2

(p2 − p1)
]

1
D

0

Re
[

−i
s1−s2

(s1q2 − s2q1)
]

1
D

Re
[

i
s1−s2

(s1p2 − s2p1)
]

1
D

0

0 0 1

(c44c55−c245)


(18.31)

18.8 Numerical Evaluation

44 Based on an extensive parametric study, Saouma and Schwemmer (1984), have formulated the following recommendations for

the use of the singular quarter point element:

1. Use a 2× 2 (reduced) integration scheme.

2. Use at least four (in pure mode I problems), or eight (in mixed mode problems) singular elements around a crack tip.

3. Have the internal angles of all the singular elements around the crack tip approximately equal to 45 degrees.

1

Anisotropic modelling is important for either roller compacted concrete dams or layered rock foundations.
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Figure 18.6: Nodal Definition for FE 3D SIF Determination

4. Unless an excessively small l/a ratio is used, little improvement is achieved by using transition elements.

5. For problems with uniform non-singular stress distribution, little improvement is achieved by using a small l/a.

6. For problems where a non-singular, stress gradient is expected, l/a should be less than 0.5.

45 Note that the above recommendations remain valid in mixed mode crack propagation studies. Although initially they cannot

be directly extended to cases with high
KII
KI

, it is well known that the crack tends to propagate in a direction that minimizes (but

not completely eliminates) KII where the above recommendations would be valid.

18.9 Historical Overview

46 Because quarter point have been so popular (and still are) in light of their simplicity, this section will provide an overview of

the major extensions to this simple method to determine SIF.

47 Barsoum (1974) and Henshell and Shaw (1975) independently demonstrated that the inverse square root singularity character-

istic of linear elastic fracture mechanics can be obtained in the 2D 8-noded isoparametric element (Q8) when the mid-side nodes

near the crack tip are placed at the quarter point. This concept was subsequently extended to plate bending and shell fractures

by Barsoum (1975) andBarsoum (1976a).

48 Barsoum (1976b) then showed that the triangular element formed by collapsing one side of the Q8 led to far better results

than the rectangular element. Freese and Tracy (1976) showed that the natural isoparametric triangle (NIT) and the collapsed

quadrilateral perform equally well. If the side opposite to the crack tip is curved, than there is a substantial deterioration in the

SIF calculation from the collapsed quadrilateral, and no change in the NIT. Such a discrepancy is caused by the fact that a collapsed

8-node quadrilateral does not actually degenerate into an NIT (Newton, 1973).

49 The extension of the quadratic isoparametric quarter-point element to cubic isoparametric was proposed by Pu et al. (1977).

Yamada et al. (1979) extended the concept of the 8-node isoparametric element to the variable numbering element.

50 Hibbitt (1977) proved that the singular rectangular element has a singular stiffness whereas the triangular one does not, and

that in the collapsed quadrilateral element the singularity prevails along the two sides only, whereas it is omnipresent inside the

triangular element. He attributed this difference to the better results achieved by the triangular element as reported by Barsoum.

He also demonstrated that a variety of stress singularities (1/n) can be achieved by isoparametric elements with a polynomial

approximation of order n. In a recent paper, Ying (1982) showed that in his investigation Hibbitt erroneously concluded that the

strain energy of a rectangular quarter-point element is singular, but that, as previously known, the singularity is along the edges

and diagonal only. Also discussed by Ying is the error associated with the location of the quarter-point of a singular element. This

was further elaborated on by Barsoum’s discussion of the previous work (Barsoum, 1982), in which he has shown that the error

268



D
R
A
FT

18.10 Other Singular Elements

in estimating the SIF is one order of magnitude smaller than the discretization error in locating the quarter-point. Hence the exact

location of the mid-side node is not crucial as long as the discretization error is small. Also by having multiple independent nodes

(of a collapsed Q8), Barsoum (1977) showed that small-scale yielding (characterized by 1/r stress singularity) could be modelled.

51 Lynn and Ingraffea (1977) generalized the concept of the quarter-point singular element and showed that by varying the

placement of the side node, between quarter- and mid-point, one can control the point where singularity is to occur (between

the corner node and infinity, respectively). This led to the introduction of the transition element, which, when inserted around

the singular elements, resulted in improved SIF calculations as the l/a (element length over total crack length) ratio decreased.

Again Hussain et al. (1981) extended the concept of quadratic transition elements to cubic transition elements.

52 In his dissertation, Ingraffea (1977) investigated both the effect of the l/a and aspect ratio of the singular elements. An optimum

ratio of l/a=0.25 was reported, and it was found that the aspect ratio effect was relatively unimportant. This dependency of the

SIF on the l/a ratio was subsequently further described by Lynn and Ingraffea. Another detailed investigation of the optimum

quarter point-element size was carried out by Ingraffea and Manu (1980), where l/a was varied from 0.2 to 0.03 in both two- and

three-dimensional analyses. The errors in the two-dimensional results varied from -8 percent for l/a = 0.20 to -1 percent for l/a
= 0.03.

53 An assessment of the quarter-point elements (in pressure vessel fracture analysis) was offered by Barsoum (1981) for both two-

and three-dimensional analysis. Three sources of modelling errors associated with the quarter-point elements were discussed: (a)

those associated with the type of quarter-point element, triangular or rectangular; (b) those associated with the configuration of

the element boundary, straight or curved; and (c) those associated with the location of the quarter-point node. Barsoum indicated

that (a) triangular elements are to be preferred over the quadrilateral ones (whether collapsed or not); (b) the sides of the element

should not be curved; and (c) perturbation of the quarter-point node by e leads to an error in calculating the stress intensity factor

of ge2 where g is the ratio of the crack tip element to crack length.

54 In a recent paper, Harrop (1982) qualitatively discussed the optimum size of quarter-point crack tip elements. He indicated that

the singular element can represent the stress singularity and a constant finite stress term only. Thus any singular element that

is too large cannot represent a structure non-linear (and non-singular) stress variation. On the other hand, by using a singular

element that is too small, the error in representing the finite stress term decreases, but the region of the mesh representing the

stress singularity also decreases. This source of error would still hold even if transition elements were used. He thus pointed out

that some crack tip element size has to be optimum, and concluded that “it is clearly impossible to recommend a particular crack

tip element size suitable for all situations.”

55 An assessment of various crack tip singular elements for use with isoparametric elements was discussed by Fawkes et al. (1979).

In this study, elements based on the use of distorted shape functions, standard shape functions, analytical solutions, superposition

process, and hybrid techniques were evaluated using a test problem of both single and combined mode fracture. This study revealed

that the best results were achieved by the analytic element, and the next best group was the one using the distorted shape function.

56 Few of the above papers discussed the numerical accuracy achieved by the quarter-point element in any detail or attempted to

provide recommendations for its best usage. At best there have been conflicting indications, usually based on few analyses, on the

appropriate l/a ratio to be used. Also one of the major arguments expressed against the use of this element is the SIF dependency

on l/a. Furthermore, in light of a new generation of computer programs (Saouma and Zatz, 1984), which simulates the discrete

crack propagation inside a finite element mesh with automatic remeshing, it is important to quantify the discretization error

associated with the quarter-point singular element.

57 It is clear that such a numerical evaluation of this increasingly popular element is long overdue. It should provide the stress

analyst (who could be using a general purpose finite element program) with guidelines for the mesh preparation around the crack

tip and some idea about the level of accuracy to be expected from the analysis.

58 In the present study, two problems with known analytical stress intensity factors are considered. A number of parameters will

be varied during the executions, and numerical values of the stress intensity factors will be compared to the exact ones. From

the numerous analyses, a data base will be created and graphically represented. It is anticipated that, through appropriate and

careful interpretation of those results, guidelines for the mesh preparation around the crack tip could be achieved along with an

approximate evaluation of the resulting accuracy.

18.10 Other Singular Elements

59 For the most part this section discussed only the quarter point element, but one should be aware of the following alternative

formulations:

1. exact field modelling (Rao et al., 1971), (Apostal, 1974)
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2. hybrid elements by Atluri et al. (1979)

3. enriched elements by Benzley (1974), in which the shape functions are enriched with additional terms, which account for

the singular terms:

ui =

4∑
k=1

fkūik +KI

(
Q1i

4∑
k=1

fkQ̄1ik

)
+KII

(
Q2i

4∑
k=1

fkQ̄2ik

)
(18.32)

Qij =
uij

ki
(18.33)

u′ =

(
1 +

2x

L
− 3

√
x

L

)
u

′
1 +

(
4

√
x

L
− 4

x

L

)
u

′
2 +

(
2x

L
−
√
x

L

)
u

′
3 (18.34)

60 In this method the stress intensity factors are treated as primary unknowns, and are thus obtained during the global

stiffness matrix decomposition. Although this method has yielded some very good results, its main drawback is that the

finite element program has to be altered in order to implement it. This method was first proposed by Benzley when the

quarter-point element (discussed in the next chapter) was not yet known.
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Chapter 19

ENERGY RELEASE BASED METHODS

1 In this class of solutions, we will exploit the definition of the energy release rate G to derive a simple method of determining

the stress intensity factors. We shall distinguish between mode I and mixed mode cases. The former one, although of academic

relevance only, is a simple introduction to the second.

19.1 Mode I Only

19.1.1 Energy Release Rate

2 Recalling that the strain energy release rate G is given by:

G = −∂Π
∂a

=
K2

I

E′ ≃ ∆U

∆a
(19.1)

a simple algorithm for the SIF calculation emerges:

1. For an initial crack length a, determine the total strain energy from either one of the following approaches:

a) U = utKu where u is nodal displacement, and K is the global structural stiffness matrix.

b) U = utP where P and u are the externally applied nodal load and displacement, respectively.

2. Increase the crack length from a to a+∆a, Fig. 19.1, and reanalyze.

Figure 19.1: Crack Extension ∆a

3. Determine G from G ≃ (U+∆U)−U
(a+∆a)−a

= ∆U
∆a

=
K2

I
E′

3 Note that:

1. This procedure requires two complete separate analyses.

2. The stress singularity need not be modelled.
1

3. This technique is restricted to mode I only.

4. Usage of an over-relaxation solver (such as the Gauss-Seidel) can reduce computational time for the second analysis in

which the global stiffness matrix is only slightly altered.

1

It has nevertheless been shown that slightly improved results can be obtained if quarter-point elements are used.
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19.1.2 Virtual Crack Extension.

4 As previously noted, the stiffness matrix is only slightly perturbed in the second analysis (associated with a+∆a); thus both

Parks (1974) and Hellen (1975) have independently proposed a modification of the preceding approach
2

.

5 The potential energy Π is given by:

Π =
1

2
⌊u⌋[K]{u} − ⌊u⌋{p} (19.2)

and

−G =
∂Π

∂a
= ∂⌊u⌋

∂a
[K]{u}+ 1

2
⌊u⌋ ∂[K]

∂a
{u} − ∂⌊u⌋

∂a
{P} − ⌊u⌋ ∂{P}

∂a

= − ∂⌊u⌋
∂a

([K]{u} − {P})︸ ︷︷ ︸
0

+ 1
2
⌊u⌋ ∂[K]

∂a
{u} − ⌊u⌋ ∂{P}

∂a
(19.3)

6 Noting that the first term in the last equation is zero, we obtain:

G = −1

2
⌊u⌋∂[K]

∂a
{u}+ ⌊u⌋∂{P}

∂a
(19.4)

7 Thus if the load is unaltered during the crack extension, than the energy release rate is directly related to the derivative of the

stiffness.

8 Finally, we note that:

1. Only the portion of the stiffness matrix associated with the elements surrounding the crack tip needs to be perturbed.

2. Better results are obtained if singular elements are used.

3. The method can easily be generalized to three-dimensional problems.

4. It can be shown (Parks, 1974) that this technique is equivalent to the determination of the J integral.

5. This method is restricted to mode I loading only.

19.2 Mixed Mode Cases

9 Having presented two simple techniques for the SIF extraction for pure mode I cases, we now generalize them to mixed mode

loading.

19.2.1 Two Virtual Crack Extensions.

10 A major limitation of the preceding methods is that in its present form it does not distinguish the mode I from the mode II

components in the energy release rate. Such a “discrimination” is possible if we take into account the expressions of the energy

release rate obtained by Hellen and Blackburn (1975b) in which:

J1 = G1 =
K2

I +K2
II

E′ +
K2

III

2µ
(19.5)

J2 = G2 =
−2KIKII

E′ (19.6)

whereE′ = E for plane stress, andE′ = E
1−ν2 for plane strain.G1 andG2 are associated with virtual crack extensions at θ = 0

and θ = π
2

respectively.

11 Based on this decomposition of G, the algorithm for SIF extractions in mixed mode problems using virtual crack extensions is

as follows:

1. For an initial crack length a, determine the total strain energy U .

2

This same technique is now given two different names: stiffness derivative (Park) and virtual crack extension (Hellen).
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2. Extend the crack length from a to a+∆a:

a) Along θ = 0, and determine G1.

b) Along θ = π
2

, and determine G2.

3. Solve for the two SIF from:

KI =
s±

√
s2 + 8G2

α

2

KII =
s∓

√
s2 + 8G2

α

2

(19.7)

where s = 2
√

G1−G2
α

and α = (1+ν)(1+κ)
E

12 An alternative to this technique is to use G(θ) = G1 cos(θ) + G2 sin(θ), and use two distinct values of θ, which are not

necessarily 0 or
π
2

.

19.2.2 Single Virtual Crack Extension, Displacement Decomposition

13 A major disadvantage of the preceding techniques is that at least one complete finite element analysis is required, followed by

either two separate ones or two virtual crack extensions. In the single solution displacement decomposition method of Sha (1984)

and Ishikawa (1980), we have a technique in which only one analysis is required.

14 With reference to Fig. 19.2, we can decompose the nodal displacements into two local components:

∆ = ∆1 +∆2
(19.8)

where

Figure 19.2: Displacement Decomposition for SIF Determination

{∆1} =

{
u1

v1

}
=

1

2

{
u+ u′

v − v′

}
{∆2} =

{
u2

v2

}
= 1

2

{
u− u′

v + v′

} (19.9)
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15 Noting that better results are achieved if singular elements are used around the crack tip, we can determine (following one

single analysis):

G1 = −1

2
⌊∆1⌋∂[K]

∂a
{∆1}+ ⌊∆1⌋∂{P

1}
∂a

(19.10)

G2 = −1

2
⌊∆2⌋∂[K]

∂a
{∆2}+ ⌊∆2⌋∂{P

2}
∂a

(19.11)

16 Because propagation is now assumed to be colinear, we can determine the two stress intensity factors from

KI =
√
E′G1 (19.12)

KII =
√
E′GII (19.13)

17 We emphasize that the saving of one analysis (or virtual crack extension) is made possible through the constraint of having a

symmetrical local mesh around the crack tip.
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J INTEGRAL BASED METHODS

20.1 Numerical Evaluation

1 Within linear elastic fracture mechanics, the J integral is equivalent to G and we have:

G = J = −∂Π
∂a

=

∫
r

(wdy − t · ∂d
∂x

ds) (20.1)

2 Thus it is evident that we do have two methods of evaluating J : the first one stems from its equivalence to the energy released

rate, and the second one from its definition as an integral along a closed contour. Evaluation of J according to the first approach

is identical to the one of G and has been previously presented.

3 In this chapter we shall present the algorithm to evaluate J on the basis of its contour line integral definition. Whereas derivation

will be for J integral only, its extension to Ji is quite straightforward.

4 If the stresses were to be determined at the nodes, than the numerical evaluation of J will be relatively simple. However, most

standard finite element codes only provide Gauss point stresses, and hence care must be exercised in properly determining the J
integral along a path passing through them.

5 The algorithm for the J calculation closely follows the method presented in (Owen and Fawkes, 1983), and is as follows:

1. First let us restrict ourselves to the more general case in which isoparametric elements are used. Because the stresses are

most accurately evaluated at the gauss points, the path can be conveniently chosen to coincide with ξ = ξcst and/or

η = ηcst. For the sake of discussion, let us assume that the element connectivity is such that the path is along ξ = ξcst, as

in Fig. 20.1. We note that for corner elements the integration will have to be performed twice along the two directions.

1
2

3
4

5
6

7

8
9

η
ζ 

Ζ=ζcst 

Gauss Points 
Numbering Sequence

Figure 20.1: Numerical Extraction of the J Integral (Owen and Fawkes, 1983)

2. Now let us start from the basic definition of J :

J =

∫
Γ

wdy − t · ∂d
∂x

ds (20.2)

where t is the traction vector along n, which is normal to the path; d is the displacement vector; ds is the element of arc

along path Γ; and w is the strain energy density. We note that the crack is assumed to be along the x axis. If it is not,

stresses and displacements would first have to be rotated. Let us now determine each term of Eq. 20.2.
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3. The traction vector is given by:

ti = σijnj ⇒ t =

{
σxxn1 + τxyn2

τxyn1 + σyyn2

}
(20.3)

4. The displacement vector is:

d =

{
u
v

}
(20.4)

5. The strain energy density w is:

w =
1

2
(σxxεxx + 2τxyγxy + σyyεyy)

=
1

2
[σxx

∂u

∂x
+ τxy(

∂u

∂y
+
∂v

∂x
) + σyy

∂v

∂y
] (20.5)

6. The arc length ds and dy are given by:

ds =
√

dx2 + dy2 =

√(
∂x

∂η

)2

+

(
∂y

∂η

)2

dη (20.6)

=
∂y

∂η
dη (20.7)

7. Next we can evaluate part of the second term of J :

t · ∂d
∂x

= (σxn1 + τxyn2)
∂u

∂x
+ (τxyn1 + σyn2)

∂v

∂x
(20.8)

where n1 and n2 are the components of n, which is a unit vector normal to the contour line at the Gauss point under

consideration.

8. Having defined all the terms of J , we substitute in Eq. 20.2 to obtain the contribution to J from a particular Gauss point

within an element.

Je =

∫ 1

−1


1

2

[
σx
∂u

∂x
+ τxy

(
∂u

∂y
+
∂v

∂x

)
+ σy

∂v

∂y

]
︸ ︷︷ ︸

w

∂y

∂η︸︷︷︸
dy

−
[
(σxn1 + τxyn2)

∂u

∂x
+ (τxyn1 + σyn2)

∂v

∂x

]
︸ ︷︷ ︸

t· ∂d
∂x

√(
∂x

∂η

)2

+

(
∂y

∂η

)2

︸ ︷︷ ︸
ds

 dη (20.9)

=

∫ 1

−1

Idη

9. Since the integration is to be carried out numerically along the path (using the same integration points used for the element

stiffness matrix), we have:

Je =

NGAUS∑
q=1

I(ξp, ηq)Wq (20.10)

where Wq is the weighting factor corresponding to ηq and NGAUS is the order of integration (2 or 3).
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10. Stresses σx, σy, τxy are readily available at the Gauss points.

11.
∂u
∂x

,
∂u
∂y

,
∂v
∂x

, and
∂v
∂y

are obtained through the shape function. For instance
∂u
∂x

= ⌊ ∂Ni
∂x

⌋{ui} where the ui are the nodal

displacements and
∂Ni
∂x

is the cartesian derivative of the shape function stored in the [B] matrix:

[B] =


∂Ni
∂x

0

0 ∂Ni
∂y

∂Ni
∂y

∂Ni
∂x

 (20.11)

where i ranges from 1 to 8 for quadrilateral elements.

12. Another term not yet defined in Eq. 20.9 is
∂y
∂η

. This term is actually stored already in the Gauss point Jacobian matrix:

[J ] =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
(20.12)

13. Finally we are left to determine n1 and n2 (components of n). Since there is an infinite number of vectors normal to ξ, and

we want the one which is in the ξ − η plane. It should be noted that if we had a rectangular element, then η is orthogonal

to ξ in the physical space, but in general we have a distorted element, and thus η and ξ are not necessarily orthogonal to

each others in the physical space. Hence, we determine the normal is determined as follows:

a) Define two arbitrary vectors: A along ξ = ξcst and B along η = ηcst such that:

At = ⌊ ∂x
∂η
, ∂y

∂η
, 0 ⌋ (20.13)

Bt = ⌊ ∂x
∂ξ
, ∂y

∂ξ
, 0 ⌋ (20.14)

Note that we have defined the three-dimensional components of those two vectors.

b) Now we define a third vector, which is normal to the plane defined by the preceding two: C = A×B, or: i j k
∂x
∂η

∂y
∂η

0
∂x
∂ξ

∂y
∂ξ

0

 (20.15)

This leads to:

C = ⌊ 0, 0, ∂x
∂η

∂y
∂ξ

− ∂y
∂η

∂x
∂ξ ⌋ (20.16)

c) With C defined, we can now return to the original plane and define

D = C×A ⇒ D = ⌊
∂y

∂η
(
∂y

∂η

∂x

∂ξ
− ∂x

∂η

∂y

∂ξ
)︸ ︷︷ ︸

D1

,
∂x

∂η
(
∂x

∂η

∂y

∂ξ
− ∂y

∂η

∂x

∂ξ
)︸ ︷︷ ︸

D2

, 0
⌋ (20.17)

d) The unit normal vector is now given by:

n =


n1

n2

0

 =


D1
N
D2
N

0

 (20.18)

where N =
√
D2

1 +D2
2 and all terms are taken from the Jacobian matrix.

20.2 Mixed Mode SIF Evaluation

6 In subsection 20.1 we have outlined two procedures to extract the J integral from a finite element analysis. Based on this

technique, at best only KI may be determined. In this section, we shall generalize the algorithm to extract both J1 and J2
through a postprocessing for our finite element analysis, and subsequently determine KI and KII from Eq. 19.7. Once again the

outlined procedure is based on the method outlined in (Owen and Fawkes, 1983).

7 First let us redefine the two contour integrals according to (Knowles and Sternberg, 1972) as:

Jk =

∫
{wnk − t · ∂d

∂xk
}ds (20.19)

277



D
R
A
FT

J INTEGRAL BASED METHODS

combining with Eq. 11.113 and 11.113we obtain

J1 =

∫
{wdy − t · ∂d

∂x
}ds =

K2
I +K2

II

H
+
K2

III

µ
(20.20)

J2 =

∫
{wdx− t · ∂d

∂y
}ds =

−2KIKII

H
(20.21)

where

H =

{
E plane strain

E
1−ν2 plane stress

(20.22)

8 We note that the original definition of J is recovered from J1.

9 The procedure to determine J1 and J2 will be identical to the one outlined in 20.1 and previously presented with the addition

of the following equations:

dx = −n2ds (20.23)

dx = −∂x
∂η

dη (20.24)

20.3 Equivalent Domain Integral (EDI) Method

10 In this section, we shall derive an alternative expression for the energy release rate. Contrarily to the virtual crack extension

method where two analyses (or a stiffness derivative) had to be evaluated, in this method, we have to perform only one analysis.

The method is really based on Rice’s J integral. However, it is recognized that evaluation of J in 2D involves a line integral only

and a line integral plus a volume integral if body forces are present, (deLorenzi, H.G., 1985). For 3D problems, the line integral is

replaced by a surface integral (and a volume integral for body forces).

11 Recognizing that surface integrals may not be easily evaluated in 3D, Green’s theorem is invoked, and J will be evaluated

through a volume integral in 3D and a surface integral in 2D. Thus computationally, this method is quite attractive.

12 Again as for the previous case, we will start by evaluating the energy release rate, and only subsequently we shall derive

expressions for the SIF.

13 The essence of the method consists in replacing the contour integral, by a closed integral (outer and inner) while multiplying

the expression of J by a function q equal to zero on the outer surface and unity on the inner one. We adopt the expression of

J derived for a propagating crack (thus determined around a path close to the crack tip). Having defined a closed path, we then

apply Green’s theorem, and replace a contour integral by a surface integral.

20.3.1 Energy Release Rate J

20.3.1.1 2D case

14 Recalling the expression for the energy release rate of a propagating crack, Eq. 11.127

J = lim
Γ0→0

∫
Γ0

[
(w + T ) δ1i − σij

∂uj

∂x1

]
nidΓ (20.25)

where w is the strain energy density, T is the kinetic energy

T =
1

2
ρ
∂ui

∂t

∂ui

∂t
(20.26)

and δ the Kronecker delta.

15 An alternative form of this equation (Anderson, 1995) is

J = lim
Γ0→0

∫
Γ0

[
(w + T ) dy − σijni

∂uj

∂x
dΓ

]
(20.27)

Unlike the conventional J integral, the contour path for this equation can not be arbitrarily selected.
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16 This equation is derived from an energy balance approach, and is thus applicable to all types of material models. However,

this J integral is path independent only if Γ is within an elastic zone; if it is taken within the plastic zone than it will be path

dependent.

17 This equation is not well suited for numerical evaluation as the path would have to be along a vanishingly small one where the

stresses and strains could not be determined. As such, (Li et al., 1985), we will be rewriting an alternative form of this equation,

by considering the contour shown in Fig. 20.2 where Γ1, is the outer finite contour, Γ0 is the inner vanishingly small contour,

Γ 0

Γ 1

Γ +

Γ -

x2

x1

1
q

Figure 20.2: Simply connected Region A∗ Enclosed by Contours Γ1, Γ0, Γ+, and Γ−, (Anderson, 1995)

and Γ+, and Γ− are respectively the upper and lower crack surfaces along the contour.

18 For quasi-static cases (T = 0), let us construct a closed contour by connecting inner and outer ones. The outer one Γ1 is finite,

while the inner one Γ0 is vanishingly small. For linear (or nonlinear) elastic material J can be evaluated along either one of

those two contours, but only the inner one gives the exact solution in the general case. Thus, we can rewrite Eq. 20.25 around the

following closed contour

Γ∗ = Γ1 + Γ+ + Γ− − Γ0 (20.28)

yielding (and assuming that the crack faces are traction free)

J =

∫
Γ∗

[
σij

∂uj

∂x1
− wδ1i

]
qmidΓ−

∫
Γ+∪Γ−

σ2j
∂uj

∂x1
qdΓ (20.29)

where mi is the outward normal to Γ∗
(thus mi = ni on Γ1, and mi = −ni on Γ0, m1 = 0 and m2 = ±1 on Γ+ and Γ−), and

q is an arbitrary but smooth function which is equal to unity on Γ0 and zero on Γ1.

19 Note that since the integral is taken along the contours, by explicitly specifying q = 0 on the outer one, and q = 1 on the inner

one, Eq. 20.25 and 20.29 are identical. Furthermore, in the absence of crack surface tractions, the second term is equal to zero.

20 Applying the divergence theorem to Eq. 20.29∮
Γ

v.n =

∫
A

(
∂vx
∂x

+
∂vy
∂y

)
dxdy (20.30)

we obtain

J =

∫
A∗

∂

∂xi

{[
σij

∂uj

∂x1
− wδ1i

]
q

}
dA (20.31)

=

∫
A∗

[(
σij

∂uj

∂x1
− wδ1i

)
∂q

∂xi
+

(
∂

∂xi

(
σij

∂uj

∂x1

)
− ∂w

∂x1

)
q

]
dA (20.32)

where A∗
is the area enclosed by Γ∗

.

21 Let us show that the second term is equal to zero:

∂

∂xi

(
σij

∂uj

∂x1

)
= σij

∂

∂xi

(
∂uj

∂x1

)
︸ ︷︷ ︸

∂w
∂x

+
∂σij

∂xi︸ ︷︷ ︸
0

∂ui

∂x1
(20.33)
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however from equilibrium we have

∂σij

∂xi
= 0 (20.34)

22 Furthermore, the derivative of the strain energy density is

∂w

∂x
=

∂w

∂εij

∂εij
∂x

= σij
∂εij
∂x

(20.35)

substituting

εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
(20.36)

we obtain

∂w

∂x
=

1

2
σij

[
∂

∂x

(
∂ui

∂xj

)
+

∂

∂x

(
∂uj

∂xi

)]
= σij

∂

∂xj

(
∂ui

∂x

)
(20.37)

23 Hence, it is evident that the second term of Eq. 20.32 vanishes and that we are left with

J =

∫
A∗

[
σij

∂ui

∂x1
− wδ1i

]
∂q

∂xi
dA (20.38)

This expression, is analogous to the one proposed by Babuska for a surface integral based method to evaluate stress intensity

factors, (Babuska and Miller, 1984).

24 We note that deLorenzi (deLorenzi, H.G., 1985) has shown that the energy release rate is given by

G =
1

∆A

∫ (
σij

∂uj

∂x1
− wδi1

)
∂∆x1
∂xi

dA (20.39)

for a unit crack growth extension along x1. Thus comparing Eq. 20.38 with 20.39, we observe that the two expressions are identical

for q = ∆x1
∆a

, and thus q can be interpreted as a normalized virtual displacement. In this context it was merely a mathematical

device.

25 In summary, we have replace a contour integral by an equivalent area integral to determine J .

20.3.1.2 3D Generalization

26 In this section, we shall generalize to 3D our previous derivation, (Anderson, 1995). From Fig. 20.3 we define a local coordinate

system such that x1 is normal to the crack front, x2 normal to the crack plane, and x3 tangent to the crack front.

27 For an arbitrary point, the J integral is given by Eq. 20.25. We now consider a tube of length ∆L and radius r0 that surrounds

the segment of the crack front under consideration. We now define a weighted average J over the crack front segment of length

∆L as

J̄∆L =

∫
∆L

J(η)qdη (20.40)

= lim
r0→0

∫
S0

[
wδ1i − σij

∂uj

∂x1

]
qnids (20.41)

where J(η) is the point-wise value of J , S0 is the vanishingly small surface area of the tube, q is the weight function previously

introduced. q can be again interpreted as a virtual crack advance and Fig. 20.4 illustrates an incremental crack advance over ∆L
where q is defined as

∆a(η) = q(η)∆amax (20.42)

and the corresponding incremental area of the virtual crack is

∆Ac = ∆amax

∫
∆L

q(η)dη (20.43)
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S0

x2

x3

x1η 
Γ0 

r0

Figure 20.3: Surface Enclosing a Tube along a Three Dimensional Crack Front, (Anderson, 1995)

qΔamax

ΔL

Δamax

Figure 20.4: Interpretation of q in terms of a Virtual Crack Advance along ∆L, (Anderson, 1995)

28 As in the previous case, this expression of J can not be numerically determined for a vanishingly small radius r0, as such and

as in the previous 2D case, we define a second tube of radius r1 around the crack front, Fig. 20.5.

J̄∆L =

∮
S∗

[
σij

∂ui

∂x1
− wδ1i

]
qmidS −

∮
S−∪S+

σ2j
∂uj

∂x1
qds (20.44)

where

S∗ = S1 + S+ + S− − S0 (20.45)

and S+ and S− are the upper and lower crack surfaces respectively, S0 and S1 the inner and outer tube surfaces. Note that this

equation is the 3D counterpart of Eq. 20.29 which was written in 2D.

29 Applying the divergence theorem, this equation reduces to a volume integral

J̄∆L =

∫
V ∗

{[
σij

∂uj

∂x1
− wδ1i

]
∂q

∂xi
+

[
− ∂w

∂x1
+

∂

∂xj

(
σij

∂ui

∂x1

)]
q

}
dV

+

∫
A1∪A2

(
wδ1i − σij

∂ui

∂x1
δ1i

)
qdA

(20.46)

and q must be equal to zero at either end of ∆L that is on A1 and A2. In (Nikishkov and Atluri, 1987) it is shown that in the

absence of non-elastic (thermal and plastic) deformations the second term would be equal to zero. The third term will also be

equal to zero because q is arbitrarily selected to be zero at each end.
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S0 S1

r0
r1

S+

S-

Figure 20.5: Inner and Outer Surfaces Enclosing a Tube along a Three Dimensional Crack Front

20.3.2 Extraction of SIF

30 From Eq. 20.46 it is impossible to extract the 3 distinct stress intensity factors. Hence we shall generalize this equation and

write it as (Nikishkov and Atluri, 1987) (ignoring the second and third terms)

J̄k∆L =

∫
V ∗

(
σij

∂ui

∂xk

∂q

∂xj
− w

∂q

∂xk

)
dV (20.47)

31 Note that k = 1, 2 only thus defining G1 = J1 and G2 = J2. However, (Nikishkov and Atluri, 1987) have shown that G3 has

a similar form and is equal to

GIII =

∫
V ∗

(
σ3j

∂u3

∂x1

∂q

∂xj
− wIII ∂q

∂x1

)
dV (20.48)

32 With G1, G2 and G3 known we need to extract the three stress intensity factors KI , KII and KIII . Again there are two

approaches.

20.3.2.1 J Components

33 Based on the solution by Nikishkov, (Nikishkov and Vainshtok, 1980)

KI = 1
2

√
E∗
(√

(J1 − J2 −G3) +
√

(J1 + J2 −G3)
)

KII = 1
2

√
E∗
(√

(J1 − J2 −G3)−
√

(J1 + J2 −G3)
)

KIII =
√
2µG3

(20.49)

where, (Nikishkov and Atluri, 1987)

E∗ = E

[
1

1− ν2
+

(
ν

1 + ν

)
ε33

ε11 + ε22

]
(20.50)

which is a weighted value of E such that we retrieve E∗ = E
1−ν2 for plane strain and E∗ = E for plane stress.
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20.3.2.2 σ and u Decomposition

34 As for the solution by Shah, we can decompose the displacement field as

{u} =
{
uI
}
+
{
uII
}
+
{
uIII

}
= 1

2


u1 + u′

1

u2 − u′
2

u3 + u′
3

+ 1
2


u1 − u′

1

u2 + u′
2

0

+ 1
2


0
0

u3 − u′
3


(20.51)

similarly the stresses are decomposed as

{σ} =
{
σI
}
+
{
σII
}
+
{
σIII

}

= 1
2



σ11 + σ′
11

σ22 + σ′
22

σ33 + σ′
33

σ12 − σ′
12

σ23 − σ′
23

σ31 − σ′
31


+ 1

2



σ11 − σ′
11

σ22 − σ′
22

0
σ12 + σ′

12

0
0


+ 1

2



0
0

σ33 − σ′
33

0
σ23 + σ′

23

σ31 + σ′
31


(20.52)

where

u′
i(x1, x2, x3) = ui(x1,−x2, x3) (20.53)

σ′
ij(x1, x2, x3) = σij(x1,−x2, x3) (20.54)

and the stress intensity factors are then determined from

KI =
√
E′GI KII =

√
E′GII KIII =

√
2µGIII (20.55)

where

Gk =

∫
V ∗

(
σkj

∂uk

∂x1

∂q

∂xj
− wk ∂q

∂x1

)
dV (20.56)

35 Whereas this method may be difficult to use in conjunction with a 3D finite element mesh generated by triangularization (due

to the lack of symmetry around the crack front), it has been succesfully used by Cervenka (1994) in conjunction with a unit

volume integration in the FE code MERLIN (Saouma et al., 2010).
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Chapter 21

RECIPROCAL WORK INTEGRALS

Chapter adapted from (Reich, 1993)

21.1 General Formulation

1 In addition to conservation laws, a form of Betti’s reciprocal work theorem (Sokolnikoff, 1956) can also be exploited to directly

compute stress intensity factors (Stern, 1973). The reciprocal work theorem defines the relationship between two equilibrium

states for a solid.

2 For a solid free of body forces and initial strains and stresses the reciprocal work theorem is defined as

∮
Γ

ti ũi dΓ =

∮
Γ

t̃i ui dΓ (21.1)

where Ω is any simply connected region within the solid and Γ is the contour of that region; ui and ti are the displacements and

surface tractions, respectively, associated with one equilibrium state and ũi; and t̃i are the displacements and surface tractions,

respectively, associated with another equilibrium state.

3 The equilibrium state defined by ui and ti is called the primary state and the equilibrium state defined by ũi and t̃i is called the

complementary or auxiliary state.

4 To apply the reciprocal work theorem to a cracked solid the simply connected region Ω must be defined such that the singularity

at the crack tip is avoided. This is accomplished by defining a pair of surfaces, Γ and Γϵ, that begin on one crack surface and end

on the other.

5 Γ is an arbitrary surface defined in the counter-clockwise direction around the crack tip but far away from it.

6 Γϵ is a circle of radius ϵ centered on the crack tip that is defined in the clockwise direction around the crack tip completely

inside Γ.

7 Another pair of surfaces, Γ+
t and Γ−

t , corresponding to the crack surfaces complete the definition of Γ, as is shown in Figure

21.1. Γ+
t is defined on the upper crack surface between Γ and Γϵ and Γ−

t is defined on the lower crack surface bewteen Γϵ and Γ.

8 Naturally, Ω is the region inside this closed path through the solid. Since the material inside Γϵ is not included in the definition

of Ω the singularity at the crack tip has been excluded.

9 Assuming that Γ+
t and Γ−

t are traction free the definition of the reciprocal work theorem can be rewritten as∮
Γ

ti ũi dΓ =

∫
Γ

ti ũi dΓ +

∫
Γϵ

ti ũi dΓ =

∫
Γ

t̃i ui dΓ +

∫
Γϵ

t̃i ui dΓ (21.2)

in which the contributions from Γ and Γϵ are clearly separated.

10 This expanded expression is then rewritten in the form of Somigliana’s identity to obtain∫
Γ

(ti ũi − t̃i ui) dΓ +

∫
Γϵ

(ti ũi − t̃i ui) dΓ = 0 (21.3)

11 The displacements ui and the stresses σij for the primary state can be decomposed into

ui = us
i + ue

i + u0
i

σij = σs
ij + σe

ij
(21.4)

where us
i and σs

ij are the displacements and stresses, respectively, for the singular elastic state at the crack tip; ue
i and σe

ij are

the displacements and stresses, respectively, for the elastic state required to insure that boundary conditions on ui and σij are

satisfied; and u0
i are the displacements of the crack tip.
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Figure 21.1: Contour integral paths around crack tip for recipcoal work integral

12 Recognizing that the product u0
i t̃i has no contribution to the integral since the tractions t̃i are self equilibrating due to the

lack of body forces and taking into account the orders of the displacements and stresses in the various elastic states, (Stern, 1973)

determined that∫
Γϵ

(ti ũi − t̃i ui) dΓ = −
∫
Γϵ

(tsi ũi − t̃i u
s
i ) dΓ + o(1) (21.5)

13 As ϵ is decreased the elastic singular state us
i and tsi becomes more dominant and the o(1) terms can be ignored allowing the

integrals over Γϵ and Γ to be related in the following manner

Iϵ = lim
ϵ→0

∫
Γϵ

(tsi ũi − t̃i u
s
i ) dΓ = −

∫
Γ

(ti ũi − t̃i ui) dΓ (21.6)

14 Based on this relationship a singular elastic state us
i and tsi can be assumed; an auxiliary singular state ũi and t̃i can be

constructed from the assumed singular elastic state; and the value Iϵ can be determined from the auxiliary singular state and far

field displacements and tractions, ui and ti, computed using a suitable numerical method.

15 Perhaps the most attractive feature of this approach is that the singularity at the crack tip need not be rigorously modeled in

the numerical method used to obtain ui and ti.

16 Auxiliary singular states have been constructed for a crack in a homogeneous isotropic medium (Stern et al., 1976), a crack in a

homogeneous orthotropic medium (Stern and M.L., 1975), and a crack on the interface between dissimilar isotropic media (Hong

and Stern, 1978).

17 The procedure for constructing an auxiliary singular state will be outlined here using the homogeneous isotropic medium for

this discussion. Once the singular elastic state has been assumed, the auxiliary singular state is constructed by taking λ as the

negative of the value used in the singular elastic state, λ = − 1
2

in this case. This of course means that the strain energy for the

auxiliary singular state is unbounded at the crack tip, but since the integral is evaluated well away from the crack tip this is of no

concern (Stern, 1973).

18 The value of the complex constant A for the auxiliary singular state is determined to be

A =
2µ

(2π)
1
2 (1 + κ)

(c1 + i c2) (21.7)

where c1 and c2 are arbitrary constants.

19 This choice for A normalizes the integrand for Γϵ involving the singular elastic state and the auxiliary singular state (Stern

et al., 1976).

20 Having determined A, the product of this integral is

Iϵ = c1KI + c2KII + o(1) (21.8)
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with the o(1) term going to zero as ϵ is decreased.

21 The stress intensity factors, KI and KII , can therefore be directly related to the integral over Γ

c1KI + c2KII =

∫
Γ

[
(ui − u0

i ) t̃i + ũi ti
]

dΓ (21.9)

as was shown in Equation 21.6. When the integral is evaluated using ui and ti obtained from the numerical method the constants

associated with the coefficients c1 and c2 are the stress intensity factors.

22 For the isotropic case, in the neighborhood of the crack tip, the displacements and the stresses, in polar coordinate system, are

given by Westergaard as:

ur − u0
r =

1

4µ

( r

2π

) 1
2

{[
(2κ− 1) cos

θ

2
− cos

3θ

2

]
KI

−
[
(2κ− 1) sin

θ

2
− 3 sin

3θ

2

]
KII

}
+O

(
r

1
2

)
(21.10)

uθ − u0
θ =

1

4µ

( r

2π

) 1
2

{[
−(2κ+ 1) sin

θ

2
+ sin

3θ

2

]
KI

−
[
(2κ+ 1) cos

θ

2
− 3 cos

3θ

2

]
KII

}
+O

(
r

1
2

)
(21.11)

σr =
1

4(2πr)
1
2

{(
5 cos

θ

2
− cos

3θ

2

)
KI −

(
5 sin

θ

2
− 3 sin

3θ

2

)
KII

}
+O

(
r−

1
2

)
(21.12)

σθ =
1

4(2πr)
1
2

{(
3 cos

θ

2
+ cos

3θ

2

)
KI −

(
3 sin

θ

2
+ 3 sin

3θ

2

)
KII

}
+O

(
r−

1
2

)
(21.13)

σrθ =
1

4(2πr)
1
2

{(
sin

θ

2
+ sin

3θ

2

)
KI +

(
cos

θ

2
+ 3 cos

3θ

2

)
KII

}
+O

(
r−

1
2

)
(21.14)

where u0
r and u0

θ are the radial and tangential components, respectively, of the displacements u0
of the crack tip, and

KI = lim
r→0

(2πr)
1
2 σθ|θ=0 (21.15)

KII = lim
r→0

(2πr)
1
2 σrθ|θ=0 (21.16)

are the usual stress intensity factors.

The auxiliary solution to be used in the reciprocal work relation is based on Williams solution (Stern et al., 1976):

ũr =
1

2(2πr)
1
2 (1 + κ){[

(2κ+ 1) cos
3θ

2
− 3 cos

θ

2

]
c1 +

[
(2κ+ 1) sin

3θ

2
− sin

θ

2

]
c2

}
(21.17)

ũθ =
1

2(2πr)
1
2 (1 + κ){[

−(2κ− 1) sin
3θ

2
+ 3 sin

θ

2

]
c1 +

[
(2κ− 1) cos

3θ

2
− cos

θ

2

]
c2

}
(21.18)

σ̃r = − µ

2(2πr3)
1
2 (1 + κ)

{[
7 cos

3θ

2
− 3 cos

θ

2

]
c1 +

[
7 sin

3θ

2
− sin

θ

2

]
c2

}
(21.19)

σ̃θ = − µ

2(2πr3)
1
2 (1 + κ)

{[
cos

3θ

2
+ 3 cos

θ

2

]
c1 +

[
sin

3θ

2
+ sin

θ

2

]
c2

}
(21.20)

σ̃rθ = − µ

2(2πr3)
1
2 (1 + κ)

{
3

[
sin

3θ

2
+ sin

θ

2

]
c1 −

[
3 cos

3θ

2
− cos

θ

2

]
c2

}
(21.21)
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where c1 and c2 are arbitrary constants.

23 Now, on the inner circular boundary, the evaluation of the contour integral in terms of traction and displacement takes the

form:

Iϵ = −
∫
Cϵ

((u− u0) · t̃)− ũ · t)ds

=

∫ π

−π

[σ̃r(ur − u0
r)σ̃rθ(uθ − u0

θ)− σrũr + σrθũθ]rdθ (21.22)

24 When the two solutions are substituted into the preceding equation, we obtain:

Iϵ = c1KI − c2KII (21.23)

25 Thus, it can be readily seen that Eq. ?? now reduces to:

c1KI − c2KII =

∫
C

[(
u− u0) · t̃− ũ · t

]
ds (21.24)

26 From this equation an algorithm for the SIF determination emerges:

1. Perform a linear elastic finite element analysis.

2. Extract u and t (displacements and traction) from the analysis.

3. Substitute into Eq. 21.24 along with the auxiliary solution.

4. The components of c1 in Eq. 21.24 yield KI .

5. The components of c2 in Eq. 21.24 yield KII .

27 In addition to demonstrating the reciprocal work integral for cracks in homogeneous isotropic (Stern et al., 1976), homogeneous

orthotropic (Stern and M.L., 1975), and on the interface between dissimilar isotropic materials (Hong and Stern, 1978), Stern also

proposed extensions for treating body forces (Stern et al., 1976) and thermal strains (Stern, 1979). Unfortunately, the description

of the extension for body forces was rather superficial, being limited to a footnote, and no example problems were presented for

either of these extensions. However, for the case of thermal strains it was clearly shown that there is no need to consider thermal

loading in the auxiliary state, meaning that the reciprocal work integral can also be extended include initial stresses without

modifiying the auxiliary solution. More recent developments include the treatment of dynamic crack propagation (Atkinson et al.,

1986; Bastero et al., 1989), sharp notches (Atkinson et al., 1988; Atkinson and Bastero, 1991), and cracks in coupled poro-elastic

media (Atkinson and Craster, 1992).

21.2 Volume Form of the Reciprocal Work Integral

28 The first step to be taken when formulating extensions to the reciprocal work integral is the definition of the reciprocal work

theorem accounting for the applied loads in the two equilibrium states. Unfortunately, it is not always obvious how the reciprocal

work theorem should be defined to account for the applied loads, particularly when they are the result of initial strains or stresses.

29 It will be shown here that the line integrals in the reciprocal work theorem can be converted to volume integrals using Green’s

theorem and that the form of the integrand for the volume integrals is such that the appropriate form of the reciprocal work

theorem can be determined quite simply.

30 (Sokolnikoff, 1956) defined the reciprocal work theorem relating two separate equilibrium states for a solid, both including

body forces, as∫
Γ

ti ũi dΓ +

∫
Ω

bi ũi dΩ =

∫
Γ

t̃i ui dΓ +

∫
Ω

b̃i ui dΩ (21.25)

where ui, ti, and bi are the displacements, surface tractions, and body forces, respectively, for one equilibrium state; ũi, t̃i, and

b̃i are the displacements, surface tractions, and body forces, respectively, for the other equilibruim state; Ω corresponds to the

volume of the solid; and Γ corresponds to the entire surface of the solid.
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31 The equilibrium state defined by ui, ti, and bi is referred to as the primary state and the equilibrium state defined by ũi, t̃i, and

b̃i is referred to as the auxiliary state. Recalling from the equilibrium equation that bi = −σij,j and b̃i = −σ̃ij,j the reciprocal

work theorem can be rewritten as∫
Γ

ti ũi dΓ −
∫
Ω

σij,j ũi dΩ =

∫
Γ

t̃i ui dΓ −
∫
Ω

σ̃ij,j ui dΩ (21.26)

where σij and σ̃ij are the stress tensors for the two equilibrium states.

32 Adopting a counter-clockwise path around Γ the expressions relating dΓ to dx1 and dx2 given in Equation ?? are still valid,

allowing the line integrals to be written in a form compatible with Green’s theorem∫
Γ

ti ũi dΓ =

∫
Γ

(−σi2 ũi dx1 + σi1 ũi dx2)∫
Γ

t̃i ui dΓ =

∫
Γ

(−σ̃i2 ui dx1 + σ̃i1 ui dx2)
(21.27)

by expanding ti and t̃i in terms of σij , σ̃ij , and ni and collecting terms.

33 Applying Green’s theorem (Kreyszig, 1979) to convert the line integrals to volume integrals yields∫
Γ

ti ũi dΓ =

∫
Ω

σij,j ũi dΩ +

∫
Ω

σij ũi,j dΩ∫
Γ

t̃i ui dΓ =

∫
Ω

σ̃ij,j ui dΩ +

∫
Ω

σ̃ij ui,j dΩ
(21.28)

and the reciprocal work theorem clearly simplifies to∫
Ω

σij ũi,j dΩ =

∫
Ω

σ̃ij ui,j dΩ (21.29)

34 In the absence of body forces the volume integrals are not included in the definition of the reciprocal work theorem and the

expression shown above is still valid since σij,j = 0 and σ̃ij,j = 0. Knowing that the line integral form of the reciprocal work

theorem can be rewritten in the volume integral form shown in Equation 21.29, the appropriate definition of the reciprocal work

theorem to account for initial strains and stresses in the primary state can be obtained quite easily. This is accomplished by

simply writing the volume form of the reciprocal work theorem such that there is a direct relationship between the stresses and

displacements in the primary state.

21.3 Surface Tractions on Crack Surfaces

35 The extension to the reciprocal work integral to include the effect of surface tractions on the crack surfaces in the primary state

parallels the approach proposed by (Karlsson and Bäcklund, 1978) for the J integral.

36 For a primary state free of body forces with surface tractions on the crack surfaces the reciprocal work theorem is defined as∫
Γ

ti ũi dΓ =

∫
Γ

t̃i ui dΓ (21.30)

37 This expression can be rewritten such that a separate integral is given for each portion of the contour path∫
Γ

ti ũi dΓ +

∫
Γϵ

ti ũi dΓ +

∫
Γt

t̂i ũi dΓ =

∫
Γ

t̃i ui dΓ +

∫
Γϵ

t̃i ui dΓ (21.31)

where Γt = Γ+
t ∪ Γ−

t and t̂i is the applied surface traction vector on the crack surfaces in the primary state.

38 This expression for the reciprocal work theorem can be rewritten in the form of Somigliana’s identity as∫
Γ

(ti ũi − t̃i ui) dΓ +

∫
Γt

t̂i ũi dΓ +

∫
Γϵ

(ti ũi − t̃i ui) dΓ = 0 (21.32)

39 Clearly, the integrand of the integral over Γϵ is identical to that for the case of a primary state free of surface tractions on the

crack surfaces, which means that Equation 21.5 still holds and the solution for the auxiliary singular state is still valid.
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40 The value Iϵ is then defined as

Iϵ = −
∫
Γ

(ti ũi − t̃i ui) dΓ − lim
ϵ→0

∫
Γt

t̂i ũi dΓ (21.33)

41 Provided that t̂i is not expressed in powers of r less than − 1
2

, the limit exists and the stress intensity factors are defined as

c1KI + c2KII =

∫
Γ

[ t̃i (ui − u0
i ) − ti ũi] dΓ −

∫
Γt

t̂i ũi dΓ (21.34)

where u0
i are the displacements of the crack tip. However, when the integral over Γt is evaluated using numerical integration

techniques, quadratures based on sampling points that coincide with the nodal locations should be avoided since ũi is singular

at the crack tip.

21.4 Body Forces

42 For a primary state with body forces but free surface tractions on the crack surfaces and initial strains and stresses the reciprocal

work theorem is defined as∫
Γ

ti ũi dΓ +

∫
Ω

bi ũi dΩ =

∫
Γ

t̃i ui dΓ (21.35)

where bi is the body force vector. It should be noted that since the line integrals are defined over Γ this form of the reciprocal

work integral could also account for surface tractions on the crack surfaces.

43 The expression for the reciprocal work theorem can be rewritten such that a separate integral is given for each portion of the

contour path∫
Γ

ti ũi dΓ +

∫
Γϵ

ti ũi dΓ +

∫
Ω

bi ũi dΩ =

∫
Γ

t̃i ui dΓ +

∫
Γϵ

t̃i ui dΓ (21.36)

44 This expression can be rewritten in the form of Somigliana’s identity as∫
Γ

(ti ũi − t̃i ui) dΓ +

∫
Ω

bi ũi dΩ +

∫
Γϵ

(ti ũi − t̃i ui) dΓ = 0 (21.37)

45 Clearly, the integrand of the integral over Γϵ is identical to that for the case of a primary state free of body forces, which means

that Equation 21.5 still holds and the solution for the auxiliary singular state described is still valid.

46 The value Iϵ is then defined as

Iϵ = −
∫
Γ

(ti ũi − t̃i ui) dΓ − lim
ϵ→0

∫
Ω

bi ũi dΩ (21.38)

Provided that bi is not expressed in powers of r less than − 1
2

, the limit exists and the stress intensity factors are defined as

c1KI + c2KII =

∫
Γ

[ t̃i (ui − u0
i ) − ti ũi] dΓ −

∫
Ω

bi ũi dΩ (21.39)

where u0
i are the displacements of the crack tip. However, when the integral over Ω is evaluated using numerical integration

techniques, quadratures based on sampling points that coincide with the nodal locations should be avoided since ũi is singular

at the crack tip.

21.5 Initial Strains Corresponding to Thermal Loading

47 For problems in thermo-elasticity the constitutive law defines net effective stresses σ̄′
ij in terms of the total strains εij and the

thermal strains ε0ij , as is shown in Equation 21.53.

48 σ̄′
ij can be decomposed into effective stresses σ′

ij and thermal stresses σ′′
ij . σ′

ij are the result of εij , which are, in turn, is defined

by the displacements ui. Therefore, the effective stresses σ′
ij are then directly related to the displacements ui and should be used

in the definition of the reciprocal work theorem rather than the net effective stresses σ̄′
ij .
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49 The volume form of the reciprocal work theorem for a primary state that includes thermal strains is∫
Ω

σ′
ij ũi,j dΩ =

∫
Ω

σ̃ij ui,j dΩ (21.40)

50 The relationship between the line and volume integral forms of the reciprocal work theorem can be readily obtained by applying

Green’s theorem to the volume integral with σ′
ij in the integrand∫

Γ

t′i ũi dΓ =

∫
Ω

σ′
ij,j ũi dΩ +

∫
Ω

σ′
ij ũi,j dΩ (21.41)

where t′i = σ′
ijnj is the effective surface traction vector.

51 Recalling from the equilibrium equation that σ′
ij,j = αCijklT,jδkl in the absence of body forces, it is clearly evident that a

volume integral is required to complete the definition of the reciprocal work theorem.

52 Therefore, the appropriate form of the reciprocal work theorem for a primary state with thermal strains but no body forces is∫
Γ

t′i ũi dΓ −
∫
Ω

α (Cijkl T,i δkl)ũi dΩ =

∫
Γ

t̃i ui dΓ (21.42)

where T,i is the gradient of the temperatures.

53 A more general form of the reciprocal work theorem would be∫
Γ

t′i ũi dΓ +

∫
Ω

b′i ũi dΩ =

∫
Γ

t̃i ui dΓ (21.43)

where b′i is the effective body force vector, as defined in Equation 21.58, which in this particular case does not include a true body

force vector bi.

54 Recalling that the natural boundary conditions are defined in terms of the total stresses, t′i ̸= 0 on the crack surfaces. Therefore,

the form of the reciprocal work theorem in which the line integrals on Γ have been separated is∫
Γ

t′i ũi dΓ +

∫
Γϵ

t′i ũi dΓ +

∫
Γt

t̂′i ũi dΓ +

∫
Ω

b′i ũi dΩ =

∫
Γ

t̃i ui dΓ +

∫
Γϵ

t̃i ui dΓ (21.44)

where t̂′i is the applied effective surface traction vector, as defined in Equation 21.60, which, much like the effective body force

vector b′i, does not include a true applied surface traction vector in this case.

55 This expression for the reciprocal work theorem can be rewritten in the form of Somigliana’s identity as∫
Γ

(t′i ũi − t̃i ui) dΓ +

∫
Γt

t̂′i ũi dΓ +

∫
Ω

b′i ũi dΩ +

∫
Γϵ

(t′i ũi − t̃i ui) dΓ = 0 (21.45)

56 Clearly, the integrand of the integral over Γϵ is identical to that for the case of a primary state free of initial strains, which

means that Equation 21.5 still holds and the solution for the auxiliary singular state described in Section ?? is still valid.

57 The value Iϵ is then defined as

Iϵ = −
∫
Γ

(t′i ũi − t̃i ui) dΓ − lim
ϵ→0

∫
Γt

t̂′i ũi dΓ − lim
ϵ→0

∫
Ω

b′i ũi dΩ (21.46)

Provided that the temperature T is not expressed in powers of r less than
1
2

, the limit exists and the stress intensity factors are

defined as

c1KI + c2KII =

∫
Γ

[ t̃i (ui − u0
i ) − t′i ũi] dΓ −

∫
Γt

t̂′i ũi dΓ −
∫
Ω

b′i ũi dΩ (21.47)

where u0
i are the displacements of the crack tip.

58 However, when the integrals over Γt and Ω are evaluated using numerical integration techniques, quadratures based on sam-

pling points that coincide with the nodal locations should be avoided since ũi is singular at the crack tip.

291



D
R
A
FT

RECIPROCAL WORK INTEGRALS

21.6 Initial Stresses Corresponding to Pore Pressures

59 The stress-strain relationship for poro-elasticity, which is obtained by substituting the constitutive law defining the effective

stresses σ′
ij into the principle of effective stress, defines the total stresses σij in terms of the total strains εij and the pore pressures

p, as was shown in Equation 21.62.

60 As was the case for problems in thermo-elasticity, σij can again be decomposed, but in this instance the constituent stresses

are σ′
ij and the initial stresses σ0

ij corresponding to the pore pressures. Since εij is defined in terms of the displacements ui, the

effective stresses σ′
ij are then directly related to the displacements ui and the reciprocal work theorem is again defined in terms

of the effective stresses in the primary state.

61 Therefore, Equations 21.40 and 21.41 also apply when the primary state includes initial stresses. Recalling from the equilibrium

equation that σ′
ij,j = p,jδij in the absence of body forces, it is clearly evident that a volume integral is required to complete the

definition of the reciprocal work theorem.

62 Therefore, the appropriate form of the reciprocal work theorem for a primary state with pore pressures but no body forces is∫
Γ

t′i ũi dΓ −
∫
Ω

p,i ũi dΩ =

∫
Γ

t̃i ui dΓ (21.48)

where p,i is the gradient of the pore pressures.

63 A more general form of the reciprocal work integral is∫
Γ

t′i ũi dΓ +

∫
Ω

b′i ũi dΩ =

∫
Γ

t̃i ui dΓ (21.49)

where b′i is the effective body force vector, as defined in Equation 21.64, which does not include a true body force vector bi in this

case.

64 Recognizing that the general form of the reciprocal work theorem accounting for initial stresses is identical to that accounting

for initial strains (i.e. Equation 21.43), Equations 21.44 through 21.47 apply for initial stresses as well. However, the applied effective

surface traction vector is defined by Equation 21.65 and the pore pressure p rather than the temperature T must be expressed in

a power of r greater than
1
2

in order for the limits in Equation 21.46 to exist. Naturally, the restrictions on the choice of numerical

integration techniques are also still in effect.

21.7 Combined Thermal Strains and Pore Pressures

65 Recalling that in the absence of initial strains and stresses that the total stresses σij and the effective stresses σ′
ij are equivalent,

it is quite clear that Equation 21.43 also defines the reciprocal work theorem for solids that are free of initial strains and stresses.

66 Due to the general definitions of the applied effective surface traction vector t̂′i and the effective body force vector b′i, the cases

of a primary state with true surface tractions t̂i on the crack surfaces and true body forces bi are also addressed by Equation 21.43.

67 Therefore, the stress intensity factors for a primary state which includes any combination of surface tractions on the crack

surfaces, body forces, and initial strains and stresses are defined by Equation 21.47. The relationship between the stress intensity

factors and the reciprocal work theorem is obtained by substituting the expressions for t̂′i and b′i defined by Equation 21.69 into

Equation 21.47

c1KI + c2KII =

∫
Γ

[ t̃i (ui − u0
i ) − (ti + p ni + α T Cijkl ni δkl) ũi] dΓ

−
∫
Γt

(t̂i + p ni + α T Cijkl ni δkl) ũi dΓ

−
∫
Ω

(bi − p,i − αCijkl Ti δkl) ũi dΩ (21.50)

68 Naturally, the restrictions imposed on the power of r for t̂i, bi, T , and p are still in effect, as are the restrictions on the choice

of numerical integration techniques.
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21.8 Field Equations for Thermo- and Poro-Elasticity

69 In thermo or poro-elasticity the thermal strains and pore pressures are usually treated as initial strains and initial stresses,

respectively.

70 The general stress-strain relationship obtained by substituting the constutive law into the effective stress principle is

σij = Cijkl (εkl − ε0kl) + σ0
ij (21.51)

71 Clearly, in the absence of initial stresses σij = σ̄′
ij and in the absence of both initial strains and stresses σij = σ′

ij .

72 The thermal strains for an isotropic material are defined in terms of the temperature T and the coefficient of thermal expansion

α as

ε0ij = α T δij (21.52)

where δij is the Kronecker delta. Substituting this expression for the thermal strains into Equation 21.51, the resulting constitutive

law for thermo-elasticity is

σ̄′
ij = Cijkl (εkl − α T δkl) (21.53)

73 The thermal stresses σ′′
ij are defined as

σ′′
ij = α T Cijkl δkl (21.54)

and the net strains Ēij are defined as

Ēij = εkl − α T δkl (21.55)

74 Adopting the standard form of the effective stress principle the equilibrium equation and natural boundary conditions, respec-

tively, can be rewritten in terms of the effective stresses

σ′
ij,j + b′i = 0

σ′
ij nj − t̂′i = 0

(21.56)

where b′i is the effective body force vector and t̂′i is the applied effective surface traction vector.

75 The effective body force vector b′i is defined as

b′i = bi − σ′′
ij,j (21.57)

and may be rewritten in terms of the temperature gradient vector T,i

b′i = bi − αCijkl T,i δkl (21.58)

based on the definition of the thermal stresses given in Equation 21.54 and the assumption of a homogeneous material.

76 The applied effective surface traction vector t̂′i is defined as

t̂′i = t̂i + σ′′
ij nj (21.59)

and may be rewritten in terms of the temperature T

t̂′i = t̂i + α T Cijkl ni δkl (21.60)

based on the definition of the thermal stresses given in Equation 21.54.

77 Pore pressures are typically defined using the sign convention for soil mechanics in which compression is positive, but in the

sign convention for standard solid mechanics tension is considered to be positive. Therefore, the initial stresses corresponding to

a pore pressure are defined as

σ0
ij = −p δij (21.61)

where p is the pore pressure defined using the compression positive sign convention; the minus sign corrects the discrepancy in

the sign conventions; and δij is the Kronecker delta. In the classical interpretation of the behavior of a porous material (Terzaghi
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and Peck, 1967), the pore pressures p act only in the voids of the material and the effective stresses act only on the skeleton of the

material.

78 It must be noted that the pore pressures p being considered in this discussion and throughout the remainder of this chapter

are the steady state pore pressures; excess pore pressures resulting from dilatant behavior in the skeleton of the material are not

considered.

79 The stress-strain relationship for poro-elasticity

σij = Cijkl εkl − p δij (21.62)

is obtained by substituting the expression for the initial stresses into Equation 21.51.

80 Adopting the standard form of the principle of effective stress the equilibrium equation and the natural boundary conditions,

respectively, can be rewritten in terms of the effective stresses

σ′
ij,j + b′i = 0

σ′
ij nj − t̂′i = 0

(21.63)

where b′i is the effective body force vector and t̂′i is the applied effective surface traction vector.

81 The effective body force vector b′i is defined as

b′i = bi − p,i (21.64)

where p,i is the pore pressure gradient vector. The applied effective surface traction vector t̂′i is defined as

t̂′i = t̂i + p ni (21.65)

82 Since σ′
ij = 0 on surfaces exposed to hydrostatic pressures but no other surface tractions, t̂i = −p ni on these surfaces.

83 When thermal strains and pore pressures are considered in combination the constitutive law is defined as a simple combination

of Equations 21.53 and 21.62

σij = Cijkl (εkl − α T δkl) − p δij (21.66)

84 The equilibrium equation and natural boundary conditions, respectively, can be rewritten in terms of either the effective stresses

σ′
ij

σ′
ij,j + b′i = 0

σ′
ij nj − t̂′i = 0

(21.67)

or the net effective stresses σ̄′
ij

σ̄′
ij,j + b′i = 0

σ̄′
ij nj − t̂′i = 0

(21.68)

85 The field equations defined in terms of σ′
ij are obtained by adopting the standard form of the principle effective stress and the

field equations defined in terms of σ̄′
ij are obtained by adopting the alternate form of the principle effective stress.

86 When the equilibrium equation and natural boundary conditions are written in terms of σ′
ij the effective body forces b′i and

applied effective surface tractions t̂′i are defined as

b′i = bi − p,i − αCijkl T,i δkl
t̂′i = t̂i + p ni + α T Cijkl ni δkl

(21.69)

87 However, when the equilibrium equation and natural boundary conditions are written in terms of σ̄′
ij the effective body forces

b′i and applied effective surface tractions t̂′i are identical to those for poro-elasticity (i.e. Equations 21.64 and 21.65, respectively).
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Chapter 22

FICTITIOUS CRACK MODEL

Originally published as:
Implementation and Validation of a nonlinear fracture model in a 2D/3D finite element code by Reich, Plizzari, Cervenka and

Saouma; in Numerical Models in Fracture of Concrete; Wittman Ed., Balkema (1993).

1 An incremental formulation for the Fictitious Crack Model (FCM) will be presented. The computational algorithm treats the

structure as a set of sub-domains bonded along assumed crack paths. The crack paths are defined by interface elements that

initially act as constraints enforcing the bond between adjacent sub-domains, but change state to function as standard interface

elements as the crack propagates. Constraints are enforced on the global system of equations using a penalty approach.

2 A load scaling strategy, which allows for load controlled analyses in the post-peak regime, is used to enforce stress continuity

at the tip of the Fracture Process Zone (FPZ).

3 To demonstrate the accuracy of the computational algorithm, a series of three wedge-splitting (WS) test specimens are analyzed.

Specimen sizes are 31, 91, and 152 cm (1, 3, and 5 ft). Material properties for the concrete are taken as the mean values of the

observed experimental results for all specimen sizes. The computed results are compared to the envelopes of the experimental

response for each specimen size.

22.1 Introduction

4 The most commonly implemented nonlinear fracture model for concrete using the discrete crack approach is the FCM (Hiller-

borg et al., 1976a). In the FCM the zone of micro-cracking and debonding ahead of the crack front is modeled as a cohesive stress

that acts to close the crack. The magnitude of the cohesive stresses on the crack surface are determined by a softening law that

relates the stress to the relative displacement of the crack surfaces through the fracture energy.

5 Many implementations of the FCM have been reported (Ingraffea and Gerstle, 1984; Roelfstra and Sadouki, 1986; Dahlblom and

Ottosen, 1990; Bocca et al., 1990; Gopalaratnam and Ye, 1991; Gerstle and Xie, 1992), but none of the implementations based on a

discrete crack approach claim to be based on the standard incremental formulation normally associated with nonlinear analyses.

Only the implementation by Dahlbom and Ottosen (Dahlblom and Ottosen, 1990), which is based on a smeared crack approach,

uses an incremental formulation.

6 In this chapter, an incremental solution algorithm for the FCM based in the discrete crack approach will be presented and its

performance evaluated by comparing the computed response of WS test specimens against known experimental results.

22.2 Computational Algorithm

7 Treatment of the structure as a set of bonded sub-domains results in a system of mixed equations with the unknowns being

displacements and surface tractions on the interface between the sub-domains. The weak form of the system of mixed equations

will be derived from the Principle of Virtual Work. The weak form equations will then be discretized for solution using the finite

element method. The penalty method solution for the mixed system of equations will be discussed; particularly the automatic

selection of the penalty number. Finally, an incremental-iterative solution strategy based on the modified-Newton algorithm that

includes load scaling and allows for load control in the post-peak regime will be discussed.

22.2.1 Weak Form of Governing Equations

8 Figure 22.1 shows a body consisting of two sub-domains, Ω1 and Ω2 that intersect on a surface ΓI without penetration. Each

sub-domain may be subject to body forces bm or to prescribed surface tractions t̂m on Γtm . Defining the volume of the body as

Ω = Ω1 ∪ Ω2 (22.1)
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and the surface of the body subject to prescribed surface tractions as

Γt = Γt1 ∪ Γt2 , (22.2)

the Principle of Virtual Work for the body is∫
Ω

δϵTσdΩ−
∫
Ω

δuTbdΩ−
∫
Γt

δuT t̂dΓ = 0 (22.3)

where

δϵ = Lδu (22.4-a)

ϵ = Lu (22.4-b)

σ = Dϵ (22.4-c)

Γt1Ω1

Ω2

Γu1

Γu2

Γt2
t1
ʌ 

t2
ʌ 

tb1
tb2

tc1
tc2

Figure 22.1: Body Consisting of Two Sub-domains

9 Within each sub-domain of the body Ωm the Principle of Virtual Work must also hold, but additional integrals are required to

account for the work performed by the surface tractions tIm on the interface ΓI . Surface tractions on the interface are due to

bonding of the sub-domains tbm or to cohesive stresses in the FPZ tcm . In either case, stress continuity on ΓI requires that

tb2 = −tb1 (22.5-a)

tc2 = −tc1 (22.5-b)

10 Defining the interface surface as

ΓI = ΓIb ∪ ΓIc , (22.6)

where ΓIb is the bonded interface surface and ΓIc is the interface surface subject to cohesive stresses, the external work on the

interface is written as∫
ΓI

δuT
1 tI1dΓ =

∫
ΓIb

δuT
1 tbdΓ +

∫
ΓIc

δuT
1 tcdΓ (22.7-a)∫

ΓI

δuT
2 tI2dΓ = −

∫
ΓIb

δuT
2 tbdΓ−

∫
ΓIc

δuT
2 tcdΓ (22.7-b)

Both tb and tc are unknown, but as tb acts on the bonded, or constrained, interface it will be treated as a Lagrange multiplier

λ = tb (22.8)
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11 Substituting λ into Equations 22.3 and 22.4-a-22.4-c and including the external work performed by the surface tractions on the

interface surface, the Principle of Virtual Work for sub-domains Ω1 and Ω2 is written as∫
Ω1

δϵT1 σ1dΩ−
∫
Ω1

δuT
1 b1dΩ−

∫
Γt1

δuT
1 t̂1dΓ−

∫
ΓIb

δuT
1 λdΓ−

∫
ΓIc

δuT
1 tcdΓ = 0∫

Ω2

δϵT2 σ2dΩ−
∫
Ω2

δuT
2 b2dΩ−

∫
Γt2

δuT
2 t̂2dΓ +

∫
ΓIb

δuT
2 λdΓ +

∫
ΓIc

δuT
2 tcdΓ = 0

(22.9)

12 On ΓIb the displacements for the two sub-domains, u1 |ΓIb
and u2 |ΓIb

, must be equal. This condition can be written as a

constraint in the strong form

u2 |ΓIb
−u1 |ΓIb

= 0, (22.10)

but a weak form is required to be compatible with Equation 22.5-a-22.5-b. The following weak form

∫
Γi

δλT (u2 − u1)dΓ = 0 (22.11)

was chosen for the constraint equation as it makes the system of mixed equations symmetric.

22.2.2 Discretization of Governing Equations

13 Discretization of Equations 22.9-22.9 and 22.11 will be presented as if each sub-domain were an element (?); the extension to

multi-element sub-domains is straightforward and will be omitted from this discussion. Each sub-domain Ωm is discretized for

displacements um such that nodes on Γtm and ΓI are included in the vector of discrete displacements um. The number of nodes

on ΓI in Ω1 is equal to the number of nodes on ΓI in Ω2. For each node on ΓI in Ω1 there is a node on ΓI in Ω2 with the same

coordinates. The nodes at which the surface tractions due to bonding λ on ΓIb are discretized are at the same locations as those

for the displacements.

14 Displacements um within the sub-domains Ωm and the surface tractions λ on the bonded interface ΓIb are defined in terms

of their discretized counterparts using shape functions

um = Numum (22.12-a)

λ = Nλλ (22.12-b)

δum = Numδum (22.12-c)

δλ = Nλδλ (22.12-d)

Num and Nλ are standard shape functions in that for each node there is a corresponding shape function whose value is one at

that node and zero at all other nodes.

15 To discretize the integral defining the virtual strain energy, the stresses and the virtual strains defined in Equation 22.4-a-

22.4-c must be expressed in terms of the discrete displacements and virtual displacements using Equations 22.12-a-22.12-b and

22.12-c-22.12-d

δϵm = LNumδum (22.13-a)

σm = DmLNumum (22.13-b)

16 Defining the discrete strain-displacement operator Bm as

Bm = LNum , (22.14)

the virtual strain energy can be written as∫
Ωm

δϵTmσmdΩ = δuT
m

∫
Ωm

BT
mDmBmdΩum (22.15)

17 Recognizing that

Km =

∫
Ωm

BT
mDmBmdΩ (22.16)
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is the standard stiffness matrix for the finite element method, Equation 22.15 can be rewritten as∫
Ωm

δϵTmσmdΩ = δuT
mKmum (22.17)

18 Discretization of the integrals for the internal virtual work due to body forces and the external virtual work due to prescribed

surface tractions simply involves expressing the virtual displacements in terms of the discrete virtual displacements using Equa-

tion 22.12-c-22.12-d∫
Ωm

δuT
mbmdΩ = δuT

m

∫
Ωm

NT
um

bmdΩ (22.18-a)∫
Γtm

δuT
mt̂mdΓ = δuT

m

∫
Γtm

NT
um

t̂mdΓ (22.18-b)

19 Recognizing that

fm =

∫
Ωm

NT
um

bmdΩ+

∫
Γtm

NT
um

t̂mdΓ (22.19)

is the standard applied load vector for the finite element method, the sum of the internal virtual work and the external virtual

work is∫
Ωm

δuT
mbmdΩ+

∫
Γtm

δuT
mt̂mdΓ = δuT

mfm (22.20)

20 To discretize the external virtual work due to surface tractions on the interface, the surface tractions and the virtual displace-

ments must be expressed in terms of the discrete surface tractions and virtual displacements using Equations 22.12-a-22.12-b and

22.12-c-22.12-d∫
ΓIb

δuT
mλdΓ = δuT

m

∫
ΓIb

NT
um

NλdΓλ (22.21-a)∫
Γtc

δuT
mtcdΓ = δuT

m

∫
Γtc

NT
um

tcdΓ (22.21-b)

21 Defining the operator matrix for the load vector due to surface tractions on the bonded interface as

Qm =

∫
ΓIb

NT
um

NλdΓ (22.22)

and the load vector for the cohesive stresses as

fcm =

∫
Γtc

NT
um

tcdΓ (22.23)

the external work due to surface tractions on the interface is∫
ΓIb

δuT
mλdΓ +

∫
Γtc

δuT
mtcdΓ = δuT

m(Qmλ+ fcm) (22.24)

22 To discretize the weak constraint equation, the displacements and the virtual surface tractions must be expressed in terms of

the discrete displacements and the discrete virtual surface tractions using Equations 22.12-a-22.12-b and 22.12-c-22.12-d∫
ΓIb

δλTu1dΓ = δλ
T
∫
ΓIb

NT
λNu1dΓu1 (22.25-a)∫

ΓIb

δλTu2dΓ = δλ
T
∫
ΓIb

NT
λNu2dΓu2 (22.25-b)

23 Recognizing that

QT
m =

∫
ΓIb

NT
λNumdΓ (22.26)
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is the transpose of the operator matrix for the load vector due to surface tractions on the bonded interface defined in Equa-

tion 22.23, the weak constraint equation can be rewritten as∫
ΓIb

δλT (u2 − u1)dΓ = δλ
T
(QT

2 u2 −QT
1 u1) = 0 (22.27)

24 Having defined the discretized form of all integrals in the governing equations, it is now possible to define the discrete system

of mixed equations. Substituting Equations 22.17, 22.20, and 22.24 into Equation 22.9-22.9 and rearranging terms, the discrete

Principle of Virtual Work is written as

δuT
1 (K1u1 −Q1λ) = δuT

1 (f1 + fc1) (22.28-a)

δuT
2 (K2u2 +Q2λ) = δuT

2 (f2 − fc2) (22.28-b)

25 As δuT
m appears in both sides of Equation 22.28-a-22.28-b, it can be eliminated, leaving

K1u1 −Q1λ = f1 + fc1 (22.29-a)

K2u2 +Q2λ = f2 − fc2 (22.29-b)

26 In a similar fashion, δλ
T

can be eliminated from Equation 22.27, leaving

QT
2 u2 −QT

1 u1 = 0 (22.30)

as the discrete constraint equation. The discrete system of mixed equations is defined by Equations 22.29-a-22.29-b and 22.30,

which can be written in matrix form as K1 0 −Q1

0 K2 Q2

−QT
1 QT

2 0


u1

u2

λ

 =


f1 + fc1
f2 − fc2

0

 (22.31)

22.2.3 Penalty Method Solution

27 The penalty method (?) was chosen for the solution of the discrete system of mixed equations because it reduces the problem

to that of a single-field. Reducing the system of mixed equations to a single-field equation decreases the number of unknowns

that must be solved for and simplifies the use of direct solution methods.

28 Direct solution methods can be used with the system of mixed equations, but interlacing of the equations is required to avoid

singularities (Wiberg, 1974). Another troublesome aspect related to the use of direct solution methods with the system of mixed

equations is that since crack propagation is simulated by the release of constraints on the interface, the total number of unknowns

would change as the crack propagates. Interlacing a system of mixed equations with an ever changing number of unknowns would

certainly create major bookkeeping problems in a finite element code.

29 To obtain the penalty form of the system of mixed equations, Equation 22.31 is rewritten as K1 0 −Q1

0 K2 Q2

−QT
1 QT

2 − 1
α
I


u1

u2

λ

 =


f1 + fc1
f2 − fc2

0

 (22.32)

where α is the penalty number. α should be sufficiently large that
1
α
I is close to zero. It is now possible to express λ in terms of

u1 and u2

λ = α(Q2u2 −Q1u1) (22.33)

30 Substituting Equation 22.33 into Equation 22.32, a single-field penalized stiffness matrix equation is obtained

[
(K1 + αQ1Q

T
1 ) −αQ1Q

T
2

−αQ2Q
T
1 (K2 + αQ2Q

T
2 )

]{
u1

u2

}
=

{
f1 + fc1
f2 − fc2

}
(22.34)
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31 The selection of a good penalty number is a rather difficult task. If the penalty number is too small the computed displacements

will yield a substantial error when inserted into the constraint equation

Q2u2 −Q1u1 = ϵ≫ 0 (22.35)

32 As the penalty number is increased the error ϵ approaches zero, but the character of the system of equations changes as the

effect of K1 and K2 is diminished. When the effect of K1 and K2 is significantly diminished the computed displacements away

from the interface, which are not included in the constraint equation, will lose accuracy due to round off errors. The goal is to

select a penalty number that yields an acceptable error when the computed displacements are inserted in the constraint equation

without sacrificing the accuracy of the displacements away from the interface. The author’s experience is that a penalty number

selected using

α =
max(diag(Km))

max(diag(QmQT
m))

× 106 (22.36)

yields very good results for the class of problems being considered.

33 Penalty numbers selected in this fashion result in computed values of u1 and u2 on the interface that tend to be identical for

the first five or six digits when the penalized stiffness matrix is assembled in double precision.

22.2.4 Incremental-Iterative Solution Strategy

34 An incremental-iterative solution strategy is used to obtain the equilibrium configuration for each crack length. At zero load,

the entire interface is constrained (i.e., fully bonded). As load is applied, surface tractions on the constrained interface violate a

strength criteria and the corresponding constraints are released. On that portion of the interface where constraints have been

released, cohesive stresses act until the relative displacements of the unconstrained interface surfaces become large enough to

dictate otherwise.

35 In this solution strategy crack propagation occurs after every increment.

36 The use of a strength criteria to detect the onset of crack propagation requires that the magnitude of the applied loads be such

that the surface tractions at a node on the constrained interface are precisely equal to the maximum allowable stress. In this

case, equality is required between the normal surface traction and the uniaxial tensile strength. However, as the magnitude of the

applied loads that causes the strength criteria to be satisfied exactly is not known a priori, some form of automatic load scaling

must be included in the solution strategy.

37 Assuming that the applied loads are proportional, a load factor β can be used to scale an arbitrary set of applied load vector f
of some arbitrary magnitude. At the beginning of each load increment i, the load factor is βi and the applied load vector is

βif = βi

{
f1
f2

}
(22.37)

The value of βi is zero at the beginning of the first increment. The incremental load factor for increment i is ∆βi and the applied

incremental load vector is

∆βif = ∆βi

{
f1
f2

}
(22.38)

The load factor at the end of increment i is

βi+1 = βi +∆βi (22.39)

38 The modified-Newton algorithm (Zienkiewicz et al., 2005) is used to solve for incremental displacements due to the applied

incremental loads. The incremental displacements for a generic increment are defined as

∆un+1 = ∆un + δun
(22.40)

where

u =

{
u1

u2

}
(22.41)

and ∆un
is the incremental displacement vector at the beginning of iteration n and δun

is the correction to the incremental

displacement vector for iteration n.
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39 In a similar fashion, the incremental load factor is defined as

∆βn+1 = ∆βn + δβn
(22.42)

where ∆βn
is the incremental load factor at the beginning of iteration n and δβn

is the correction to the incremental load factor

for iteration n. At the beginning of the first iteration both ∆un
and ∆βn

are zero.

40 Displacement corrections are computed by solving

Kαdu
n = (βf +∆βnf + dβnf + fnc − pn) (22.43)

where

Kα =

[
(K1 + αQ1Q

T
1 ) −αQ1Q

T
2

−αQ2Q
T
1 (K2 + αQ2Q

T
2 )

]
(22.44)

is the penalized stiffness matrix;

fnc =

{
fnc1

−fnc2

}
(22.45)

is the load vector due to cohesive stresses on the interface at the beginning of iteration n; and

pn =

nelem∑
i=1

∫
Ωei

BTD(ϵ+∆ϵn)dΩ (22.46)

is the reaction vector for the state of stress at iteration n.

41 Recognizing that

rn = βf +∆βnf + fnc − pn
(22.47)

is the residual force vector at the beginning of iteration n, Equation 22.43 can be written in a more compact fashion as

dun = K−1
α (δβnf + rn) (22.48)

42 Since the K−1
α f term does not change throughout the course of the iterative process it can be defined as a constant value for

the increment

δuT = K−1
α f (22.49)

43 The displacement vector δuT is commonly called the tangent displacement vector (Crisfield, M.A., 1981). At this point, the

iterative displacement correction can be defined as

δun = δβnδuT +K−1
α rn (22.50)

44 Having shown how the load factor is implemented within the incremental-iterative solution strategy, the last detail left to

explain is the procedure for computing δβn
such that the strength criteria is exactly satisfied. Since the surface tractions on the

constrained interface are used to determine the magnitude of the applied load, the total surface tractions for iteration n must be

expressed in terms of its various contributions

λ
n+1

= λ+∆λ
n
+ δλ

n
r + δβnδλT (22.51)

where λ is the surface traction vector at the beginning of the increment; ∆λ
n

is the incremental surface traction vector at the

beginning of iterationn; δλ
n
r is correction to the incremental surface traction vector due to the residual load vector rn for iteration

n; and δλT is the surface traction vector due to the tangent displacement vector δuT . δλ
n
r and δλT are defined as

δλ
n
r = α(QT

2 δu
n
r2 −QT

1 δu
n
r1) (22.52-a)

δλT = α(QT
2 δuT −QT

1 δuT ) (22.52-b)
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45 The strength criteria is applied to λ
n+1

on a node-by-node basis such that

max((λ
n+1

)i(n)i) = ft (22.53)

where (n)i is the normal vector at node i and ft is the uniaxial tensile strength.

46 Recognizing that λ, ∆λ
n

, and δλ
n
r are fixed for iteration n, the iterative load factor correction is defined as

δβn = min

ft −
[
(λ)i + (∆λ

n
)i + (δλ

n
r )i
]
(n)i

(δλT )i(n)i

 (22.54)

Provided that the cohesive stresses on the interface are treated as forces and no stiffness matrix is assembled for those interface

elements, this solution strategy allows for load control in the post peak regime.

47 The use of stiffness matrices for the interface elements subject to softening is avoided because their presence in the global

stiffness matrix will eventually cause it to become non-positive definite.

22.3 Validation

48 In order to assess the algorithm just presented, analysis of previously tested wedge-splitting test specimens was undertaken,

Fig. 22.2. In those tests, described in (Saouma et al., 1991a), wedge-splitting specimens of 31, 91, and 152 cm (1, 3, and 5 ft) with

Figure 22.2: Wedge Splitting Test, and FE Discretization

maximum aggregate sizes ranging from 19, 38, and 76 mm (0.75, 1.5, and 3 in) were tested under crack mouth opening displacement

control.

22.3.1 Load-CMOD

49 The selected material properties were the average values reported in (Saouma et al., 1991a) for the three specimen sizes with the

38 mm maximum aggregate size concrete. In order to facilitate the use of Merlin (Saouma et al., 2010) by practicing engineers, input
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prameters were intentionally kept to a minimum, and included: 1) Young’s modulus E, 2) Poisson’s ratio ν, 3) tensile strength

f ′
t ; and 3) fracture energy GF . The tensile strength f ′

t was taken as 0.9f ′
c, and a bilinear curve for the softening behavior was

systematically used with the inflection point defined by s1 =
f ′
t
4

, w1 = 0.75GF
f ′
t

, and w2 = 5GF
f ′
t

as recommended in (Whitman

et al., 1988).

50 For each analysis, numerical predictions are shown in comparison with the range of experimental results, Figure 22.3.
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Figure 22.3: Numerical Predictions vs Experimental Results for Wedge Splitting Tests

51 From these figures, it can be readily observed that very good engineering comparaison is achieved between numerical predic-

tions and experimental results.

52 Also shown are the results of an analysis of a hypothetical 50 ft specimen, which is a scaled up version of the 5 ft specimen.

Material properties are the same as used for the preceding analyses.

22.3.2 Real, Fictitious, and Effective Crack Lengths

53 For each of the preceding analysis, the lengths of the real, fictitious and effective cracks were determined. Whereas the first two

are directly obtained from the nonlinear finite element analysis, the third one was obtained by a separate procedure. Following

the nonlinear analysis, a series of linear elastic analyses with increasing crack lengths were performed using a unit load. For each

crack length, the normalized stress intensity factor and the compliance (
CMOD

P
) were recorded. Finally, using the two analyses,

the effective crack length was determined as the crack length in the linear elastic analysis which would yield the same compliance

as the one obtained from the nonlinear analysis.

54 Observing those three diagrams, Figure 22.4 we observe that as the specimen size increases the relative size of the fracture

process zone (difference between the total crack and the true crack length) decreases as anticipated. From the 5 ft and 50 ft

specimens, it may be inferred that the size of the process zone tends to remain constant. Finally, we note that the effective length

approximation appears to be a valid engineering assumption for the larger specimen sizes.

22.3.3 Parametric Studies

55 Finally, some basic parametric studies were undertaken to assess the effect of certain parameters.

Effect of GF : First the effect of GF on the response of the 50 ft specimen was investigated. This size was selected as it best

approximates what may be perceived as “large” structures such as dams. From Figure 22.5 we observe that despite the
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Figure 22.4: Real, Fictitious, and Effective Crack Lengths for Wedge Splitting Tests
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Figure 22.5: Effect of GF on 50 ft Specimen
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range of GF , the load-cmod curves, as well as crack lengths are practically identical. Hence, this confirms what has long

been known that is the relative importance of f ′
t is much greater than that of GF .

Softening Law: WhereasGF for dam concrete was found not to exceed 300 N/m, it was speculated that the large aggregate sizes

may result in larger wc or critical crack opening displacement beyond which no tensile stresses can be transmitted across

the crack. Hence a series of analyses in which wc was varied from 0.54 to 1.6 mm, while w1 and GF were kept constant,

were undertaken. The results of these analyses are shown in Figure 22.6. Interestingly we note that the peak load decreased
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Figure 22.6: Effect of wc on 50 ft Specimen

with the increase in wc. These results may be attributed to the substantial drop of s1 (from
f ′
t
4

) required to maintain a

constant GF or area under the softening curve. Furthermore, as wc increases, there is a slight increase in both total crack

and true crack. However, we note that for large wC values, the effective crack length becomes smaller than even the true

crack. We currently have no explanation for these results.

Effect of s1: Whereas in the original analysis s1 was taken as
f ′
t
4

, the effect of its variation was investigated through Figure 22.7,

which indicates that this parameter has practically no effect on the peak load, and a very limited one on the post-peak

response. Similarly, it was found that it also has limited effect on the crack length.

22.4 Conclusions

56 In summary, a new framework for linear/nonlinear fracture mechanics analysis of concrete was presented. Robustness of the

algorithm was, to some extent, validated by the numerical duplication of experimental results with standard material properties

and no parametric optimization.

57 This model is currently being extended to include the effect of a pressurized true crack and FPZ and to perform mixed mode

analysis and 3D analyses. Future analyses will focus on its application for the nonlinear analysis of cracked concrete dams.

22.5 Notation

m = Sub-domain index; either 1 or 2

Ωm = Sub-domain m
Ω = Domain of body

b = Body force vector

bm = Body force vector for sub-domain m
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Γtm = Surface of sub-domain m subject to prescribed surface tractions

Γt = Surface of body subject to prescribed surface tractions

t̂ = Prescribed surface traction vector

t̂m = Prescribed surface traction vector for sub-domain m
u = Displacement vector

um = Displacement vector for sub-domain m
δu = Virtual displacement vector

δum = Virtual displacement vector for sub-domain m
L = Differential operator to obtain strain vector from displacement vector

ϵ = Strain vector

ϵm = Strain vector for sub-domain m
δϵ = Virtual strain vector

δϵm = Virtual strain vector for sub-domain m
D = Elastic stress strain matrix

σ = Stress vector

σm = Stress vector for sub-domain m
ΓI = Interface surface

ΓIb = Bonded interface surface

ΓIc = Interface surface subject to cohesive stresses

tIm = Surface tractions on interface surface

tbm = Surface tractions due to bonding on interface surface of sub-domain m
tcm = Surface tractions due to cohesive stresses on interface surface of sub-domain m
tb = Surface tractions due to bonding on interface surface

tc = Surface tractions due to cohesive stresses on interface surface

λ = Lagrange multiplier vector

Num = Shape functions for displacements in sub-domain m
um = Nodal displacement vector for sub-domain m
Nλ = Shape functions for Lagrange multipliers on bonded interface

λ = Nodal Lagrange multiplier vector; total nodal Lagrange multiplier vector at

beginning of increment

Bm = Strain-displacement matrix for sub-domain m
Km = Stiffness matrix for sub-domain m
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fm = Applied load vector for sub-domain m
Qm = Operator matrix for load vector due to Lagrange multipliers on bonded interface

surface of sub-domain m
fcm = Load vector due to cohesive stresses on interface surface of sub-domain m
I = Identity matrix

α = Penalty number

f = Arbitrary applied load vector

i = Increment number, element number, or node number

βi = Total load factor at beginning of increment i
∆βi = Incremental load factor for increment i
n = Iteration number

∆un
= Incremental nodal displacement vector at beginning of iteration n

δun
= Correction to incremental nodal displacement vector for iteration n

∆un+1
= Incremental nodal displacement vector at end of iteration n

∆βn
= Incremental load factor at beginning of iteration n

δβn
= Correction to incremental load factor for iteration n

∆βn+1
= Incremental load factor at end of iteration n

u = Nodal displacement vector at beginning of increment

Kα = Penalized stiffness matrix

β = Load factor at beginning of iteraction n
fnc = Load vector due to cohesive stresses on interface at beginning of iteration n
pn

= Reaction vector at beginning of iteration n
rn = Residual load vector at beginning of iteration n
δuT = Nodal tangent displacement vector for increment

δun
r = Correction to incremental nodal displacement vector due to residual loads

for iteration n

∆λ
n

= Incremental nodal Lagrange multiplier vector at beginning of iteration n

δλ
n
r = Correction to incremental nodal Lagrange multiplier vector due to residual

loads for iteration n

δλT = Nodal Lagrange multiplier vector due to tangent displacement for increment

∆λ
n+1

= Incremental nodal Lagrange multiplier vector at end of iteration n
n = Normal vector

ft = Uniaxial tensile strength
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Chapter 23

INTERFACE CRACK MODEL

This chapter was chapter 6 of the PhD thesis of Cervenka

1 This chapter discusses the nonlinear modeling of concrete using a discrete crack fracture mechanics based model. It addresses

two important issues: mixed mode fracture in homogeneous materials and interface fracture. A new three-dimensional interface

crack model is derived. The model is a generalization of classical Hillerborg’s fictitious crack model, which can be recovered if

shear displacements are set to zero. Several examples are used to validate the applicability of the proposed interface crack model.

First, direct shear tests on mortar joints are used to test the model performance in the shear-compression regime. The more

complicated combination of shear-tension is investigated using large biaxial tests of concrete-rock interfaces. The applicability to

mixed mode cracking in homogeneous concrete is tested using experiments on modified Iosipescu’s shear beam and anchor bolt

pull-out tests.

23.1 Introduction

2 The assumption of singular stresses at the crack tip is mathematically correct only within the framework of linear elastic fracture

mechanics, but physically unrealistic.

3 In concrete materials, a fracture process zone (Section ??) exists ahead of the crack tip. The most popular model simulating

this behavior is Hillerborg’s fictitious crack model (FCM) described in Section ?? and Figure ??. In a previous work, the classical

FCM model was implemented by (Reich, 1993) for mode I crack propagation, and extended to account for the influence of water

pressure inside the crack.

4 The classical FCM model, Chapter 22, defines a relationship between normal crack opening and normal cohesive stresses, and

assumes that there are no sliding displacements nor shear stresses along the process zone. This assumption is only partially valid

for concrete materials. Based on experimental observations, it is indeed correct that a crack is usually initiated in pure mode I

(i.e. opening mode) in concrete, even for mixed mode loading. However, during crack propagation, the crack may curve due to

stress redistribution or non-proportional loading, and significant sliding displacements develop along the crack as schematically

shown in Figure 23.1. Therefore, it is desirable to incorporate these shear effects into the proposed crack model.

τ
σ

u

t

Figure 23.1: Mixed mode crack propagation.

5 Finally for concrete dams, it is well accepted that the weakest part of the structure is the dam-foundation interface, which is

also the location of highest tensile stresses and lowest tensile strength. Given the scope of this work, as described in Chapter ??,

it is necessary to address this problem.
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Figure 23.2: Wedge splitting tests for different materials, (Saouma et al., 1994)

6 Hence, the two major objectives of this chapter are:

(1) Modification of the FCM model to account for shear effects along both the fracture process zone and the true crack.

(2) Development of an interface model based on fracture mechanics to simulate cracking along rock-concrete interfaces.

7 The FCM model, within the framework of a discrete crack implementation, can be visualized as an interface between two

identical materials. Therefore, we can develop a general model which addresses both objectives.

8 Interface elements were first proposed by (Goodman et al., 1968) to model non-linear behavior of rock joints. Since then, nu-

merous interface constitutive models have been proposed for a wide range of applications such as rock-joints (Goodman et al.,

1968) masonry structures (Lotfi, 1992) and concrete fracture (Stankowski, 1990) (Feenstra et al., 1991) and (Carol et al., 1992).

9 In the following section an interface crack model will first be proposed, and then it will be used to simulate cracking both in

homogeneous concrete and along a rock-concrete interface. The presented model is a modification of the one first proposed by

(Carol et al., 1992).

23.2 Interface Crack Model

10 The objective is to develop a physically sound model, yet simple enough so that all its parameters can be easily derived from

laboratory tests. The model should be capable of simulating the behavior of rock-concrete and concrete-concrete interfaces.

11 Experimental data (Saouma et al., 1994) on rock-concrete interfaces show (Figure 23.2) that the decrease in tensile strength is

not abrupt, but is rather gradual. This is caused by the presence of the fracture process zone, along which the energy of the system

is gradually dissipated.

12 In the present model, the rock-concrete contact is idealized as an interface between two dissimilar materials with zero thickness.

Thus, the objective is to define relationships between normal and tangential stresses with opening and sliding displacements. The

notation used in the interface model is illustrated in Figure 23.2.

13 The major premises upon which the model is developed are:

(1) Shear strength depends on the normal stress.

(2) Softening is present both in shear and tension.

(3) There is a residual shear strength due to the friction along the interface, which depends on the compressive normal stress.

(4) Reduction in strength, i.e. softening, is caused by crack formation.

(5) There is a zero normal and shear stiffness when the interface is totally destroyed.

(6) Under compressive normal stresses neither the shear and nor the normal stiffnesses decrease to zero. In addition, should

a compressive stress be introduced in the normal direction following a full crack opening, two faces of the interface come to

contact, and both tangential and normal stiffnesses become nonzero.

(7) Irreversible relative displacements are caused by broken segments of the interface material and by friction between the two

crack surfaces.

(8) Roughness of the interface causes opening displacements (i.e. dilatancy) when subjected to sliding displacements.

(9) The dilatancy vanishes with increasing sliding or opening displacements.

14 Figure 23.4 illustrates the probable character of the fracturing process along an interface.
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Figure 23.3: Interface idealization and notations.

Fracture Process Zone InterfaceTrue Crack

τ

σ

Intact

Figure 23.4: Interface fracture.
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15 In the proposed model the strength of an interface is described by a hyperbolic failure function:

F = (τ21 + τ22 )− 2 c tan(ϕf )(σt − σ)− tan2(ϕf )(σ
2 − σ2

t ) = 0 (23.1)

where:

• c is the cohesion.

• ϕf is the angle of friction.

• σt is the tensile strength of the interface.

• τ1 and τ2 are the two tangential components of the interface traction vector.

• σ is the normal traction component.

16 The shape of the failure function in two-dimensional case is shown in Figure 23.5, and it corresponds to the failure criteria first

proposed by (Carol et al., 1992). The general three-dimensional failure function is obtained by mere rotation around the σ-axis.

φ

tan(     )φf

Final Failure
Function

Initial Failure
Function

σ

τ

c

σ

tan(     )
f

t

1

1

Figure 23.5: Failure function.

17 The evolution of the failure function is based on a softening parameter uieff

which is the norm of the inelastic displacement

vector ui
. The inelastic displacement vector is obtained by decomposition of the displacement vector u into an elastic part ue

and an inelastic part ui
. The inelastic part can subsequently be decomposed into plastic (i.e. irreversible) displacements up

and

fracturing displacements uf
. The plastic displacements are assumed to be caused by friction between crack surfaces and the

fracturing displacements by the formation of microcracks.

F = F (c, σt, ϕf ), c = c(uieff), σt = σt(u
ieff)

u = ue + ui, ui = up + uf

uieff = ||ui|| = (ui
x
2
+ ui

y
2
+ ui

z
2
)1/2

(23.2)

18 In this work both linear and bilinear relationship are used for c(uieff) and σt(u
ieff).

c(uieff) = c0(1− uieff

wc
) ∀ uieff < wc

c(uieff) = 0 ∀ uieff ≥ wc

wc =
2GIIa

F
c0

 linear for cohesion

c(uieff) = c0 + uieff s1c−c0
w1c

∀ uieff < w1c

c(uieff) = sc(1− uieff−w1c
wc−w1c

) ∀ uieff ∈ ⟨w1c, wc⟩
c(uieff) = 0 ∀ uieff > wc

wc =
2GIIa

F −(s1c+c0)w1c

s1c

 bi-linear for cohesion

(23.3)
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σt(u
ieff) = σt0(1− uieff

wσ
) ∀ uieff < wσ

σt(u
ieff) = 0 ∀ uieff ≥ wσt

wσ =
2GI

F
σt0

 linear for tensile strength

σt(u
ieff) = σt0 + uieff s1σ−σt0

w1σ
∀ uieff < w1σ

σt(u
ieff) = s1σ(1− uieff−w1σ

wσt−w1σ
) ∀ uieff ∈ ⟨w1σ, wσ⟩

σt(u
ieff) = 0 ∀ uieff > wσ

wσ =
2GI

F−(s1σ+σt0)w1σ

s1σ


bi-linear for

tensile strength

(23.4)

where GI
F and GIIa

F are mode I and II fracture energies. s1c, w1c and s1σ , w1σ are the coordinates of the breakpoint in the

bi-linear softening laws for cohesion and tensile strength respectively.

19 The critical opening and sliding corresponding to zero cohesion and tensile strength are denoted by wσ and wc respectively,

and they are determined from the condition that the area under the linear or bilinear softening law must be equal to GI
F and

GIIa
F respectively. The significance of these symbols can be best explained through Figure 23.6.

w1σ wσ uieff

S1σ 

σt0 

σt 

GF
1 

w1c wc uieff

S1c 

c0 

c 

GF
IIa 

Figure 23.6: Bi-linear softening laws.

20 It should be noted that GIIa
F is not the pure mode II fracture energy (i.e. the area under a τ -ux curve), but rather is the

energy dissipated during a shear test with high confining normal stress. This parameter was first introduced by (Carol et al.,

1992) in their microplane model. This representation seems to be more favorable to the pure mode II fracture energy GII
F . The

determination ofGII
F would require a pure shear test without confinement, which is extremely difficult to perform. Alternatively,

a GIIa
F test requires a large normal confinement, and is therefore easier to accomplish. Furthermore, if GII

F is used, the whole

shear-compression region of the interface model would be an extrapolation from the observed behavior, whereas the second

approach represents an interpolation between the upper bound GIIa
F and the lower bound GI

F .

21 The residual shear strength is obtained from the failure function by setting both c and σt equal to 0, which corresponds to the

final shape of the failure function in Figure 23.5 and is given by:

τ21 + τ22 = tan2(ϕf ) σ
2

(23.5)

22 Stiffness degradation is modeled through a damage parameter,D ∈ ⟨0, 1⟩, which is a relative measure of the fractured surface.

Thus, D is related to the secant of the normal stiffness Kns in the uniaxial case:

D =
Af

Ao
= 1 − Kns

Kno
(23.6)

whereKno is the initial normal stiffness of the interface;Ao andAf are the total interface area and the fractured area respectively.

23 It is assumed, that the damage parameter D can be determined by converting the mixed mode problem into an equivalent

uniaxial one (Figure 23.7). In the equivalent uniaxial problem the normal inelastic displacement is set equal to uieff

. Then, the

secant normal stiffness can be determined from:

Kns =
σ

u− up
=

σt(u
ieff)

ue + up + uf − up
=

σt(u
ieff)

σt(uieff)/Kno + (1− γ)uieff

(23.7)

where γ is the ratio of irreversible inelastic normal displacement to the total value of inelastic displacement.

24 Experimentally, γ can be determined from a pure mode I test through:

γ =
up

ui
(23.8)
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u  = ui ieff
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Figure 23.7: Stiffness degradation in the equivalent uniaxial case.

where up
is the residual displacement after unloading and ui

is the inelastic displacement before unloading. (Figure 23.7).

25 For concrete, γ is usually assumed equal to 0.2 (Dahlblom and Ottosen, 1990) or 0.3 (Alvaredo and Whitman, 1992). Then, the

evolution of the damage parameter D is defined by formula:

D = 1 − σt(u
ieff)

σt(uieff) + (1− γ)uieffKno
(23.9)

which is obtained by substituting Equation 23.7 into Eq. 23.6.

26 The stress-displacement relationship of the interface is expressed as:

σ = αE(u− up) (23.10)

where: (a) σ is the vector of tangential and normal stress at the interface.

σ = {τ1, τ2, σ}T (23.11)

(b) α is the integrity parameter defining the relative active area of the interface, and it is related to the damage parameter D.

α = 1− |σ|+ σ

2|σ| D (23.12)

It should be noted that α can be different from 1 only if the normal stress σ is positive (i.e. the interface is in tension). In other

words, the damage parameter D is activated only if the interface is in tension. In compression, the crack is assumed to be closed,

and there is full contact between the two crack surface. The activation of D is controlled through the fraction
|σ|+σ
2|σ| , which is

equal to one if σ is positive, and is zero otherwise.

(c) E is the elastic stiffness matrix of the interface.

E =

 Kto 0 0
0 Kto 0
0 0 Kno

 (23.13)

27 It should be noted, that the off-diagonal terms in the elastic stiffness matrixE of the interface are all equal to zero, which implies

that no dilatancy is considered in the elastic range. The dilatancy is introduced later after the failure limit has been reached through

the iterative solution process. The dilatancy of the interface is given by dilatancy angle ϕd, which is again assumed to be a function

of uieff

. In the proposed model, a linear relationship is assumed:

ϕd(u
ieff) = ϕd0(1− uieff

udil
) ∀uieff ≤ udil

ϕd(u
ieff) = 0 ∀uieff > udil

(23.14)

where udil is the critical relative displacement after which, the interface does not exhibit the dilatancy effect any more, and ϕd0

is the initial value of the dilatancy angle.

23.2.1 Relation to fictitious crack model.

28 It is possible to prove that the proposed interface crack model (ICM) reduces to Hillerborg’s fictitious crack model in the case

of zero sliding displacements.
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FCM a special case of ICM. We assume that all shear displacements are zero. Then, the interface stresses develop only along

the σ-axis in the σ × τ1 × τ2 space (Figure 23.5). After the tensile strength σt is reached, softening starts, and the stress in the

interface is given by:

σ = σ(ui
z) (23.15)

Normal traction σ is now a function of the normal inelastic displacement ui
z only, since for zero sliding displacements, uieff

is

equivalent to ui
z . The total opening uz of the interface is given by:

uz =
σ(ui

z)

Kno
+ ui

z

If the limiting case ofKno equal to infinity is considered, thenui
z becomes equivalent touz , and the normal stress in Equation 23.15

becomes a function of the interface opening only:

lim
Kno→∞

σ = σ(ui
z) = σ(uz) = σ(COD) (23.16)

which is precisely the definition of Hillerborg’s fictitious crack model.

23.3 Finite Element Implementation

29 The finite element implementation of the interface crack model previously presented will be discussed in this section. The

implementation of a nonlinear model into a finite element code consists of three major subtasks:

1. Interface element formulation.

2. Constitutive driver for the computation of internal forces.

3. Non-linear solution algorithm on the structural level.

23.3.1 Interface element formulation.

30 Standard interface elements are used in this work. The element stiffness matrix is computed using the well known relation:

Ke =

∫
Ae

BTEB dA (23.17)

where E is the interface material stiffness matrix, given by Equation 23.13, and B is the matrix relating element nodal displace-

ments ue to slidings and openings along the interface:

u =

1/2Nen∑
i

Ni(ū
+
i − ū−

i ) = Bue (23.18)

where ū+
i and ū−

i denote the element nodal displacements in the local coordinate system of the interface on the upper and lower

interface surface respectively. Given this definition, matrix B is equal to:

B =
[
−B1T , · · · , −Bp+1T , +B1T , · · · , +Bp+1T

]
(23.19)

where submatrix Bi is a diagonal matrix of shape functions Ni(ζ, η) corresponding to node i. In three-dimensional case it has

the form:

Bi =

 Ni(ζ, η) 0 0
0 Ni(ζ, η) 0
0 0 Ni(ζ, η)

 (23.20)

and in two-dimensional case it is given by:

Bi =

[
Ni(ζ) 0
0 Ni(ζ)

]
(23.21)

Subscript i is a node numbering index on one element surface ranging from 1 to
Nen
2

, where Nen is the total number of element

nodes, p is the order of the interface element, and is equal to (Nen
2

−1). Finally, ζ and η are the natural coordinates of the interface

element.
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Figure 23.8: Interface element numbering.

31 This definition of matrix B corresponds to the element numbering shown in Figure 23.8 for several two- and three-dimensional

interface elements.

32 The transformation from global to local coordinate system of the interface element is accomplished through the transformation

matrix T , which in general three-dimensional case is:

T =

 vT
1

vT
2

vT
3

 (23.22)

The rows of the transformation matrix T are formed by vectors vi defined by following formulas:

v1 =

∂x
∂ζ

|| ∂x
∂ζ

||
, v3 =

∂x
∂ζ

× ∂x
∂η

|| ∂x
∂ζ

× ∂x
∂η

||
v2 = v3 × v1, (23.23)

33 The two-dimensional case can be recovered from the two preceding formulas by deleting the last row in matrix T and consid-

ering the following definition of vectors vi.

v1 =

∂x
∂ζ

|| ∂x
∂ζ

||
, v2 = {−v1y, v1x} (23.24)

Local coordinate systems defined by these transformations are shown in Figure 23.9.

y’

x’

y’
z’

x’

ζ

η

ζ

Figure 23.9: Local coordinate system of the interface element.

23.3.2 Constitutive driver.

34 The mathematical theory of plasticity is used in the development of the constitutive driver for the interface crack model. On

the constitutive level in the sense of finite element implementation, the problem can be stated as follows:

35 For a given stress state σn, softening parameter uieff

n and displacement increment ∆un, determine a new stress state σn+1 and

corresponding value of softening parameter uieff

n+1. In both states n and n+ 1, the failure criterion must be satisfied:

Fn(σn, u
ieff

n ) = 0 ∧ Fn+1(σn+1, u
ieff

n+1) = 0 (23.25)
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These two conditions are equivalent to an incremental form of the consistency condition (Equation ??):

∆F = Fn+1 − Fn = 0 (23.26)

36 Because the failure function is assumed to be satisfied for state n, it is necessary to also ensure the satisfaction of the failure

function at state n+ 1.

37 In this work, plasticity theory is used to describe the evolution of the failure function based on the softening parameter uieff

,

which is the euclidean norm of the inelastic displacement vector. The inelastic displacements are subsequently decomposed ac-

cording to Equation 23.8. Thus, plastic and fracturing effects can be separated.

38 The elastic predictor is given by:

σe = σn + E∆un (23.27)

where σe are the trial tractions outside the failure surface if a totally elastic behavior is considered. The inelastic corrector returns

the trial stress state back to the failure surface:

σn+1 = σe − ∆λEm (23.28)

where ∆λ is the inelastic multiplier and m is the direction of the inelastic displacements. Inelastic multiplier ∆λ is determined

from the failure condition at state n+ 1.

Fn+1(σe − ∆λEm, uieff

n+1) = 0 (23.29)

39 In the three dimensional spaceσ×τ1×τ2, the geometrical interpretation of this condition is the determination of an intersection

of a line emanating from point σe in the direction Em with the moving failure surface (Figure 23.10).

40 The failure surface, F = 0, expands or shrinks depending on the softening introduced through uieff

. This is schematically shown

in Figure 23.10 for a two-dimensional case.

tan(    )φd
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Kt

c

σ

σ

0

σ

F  = 0

F  = 0

Q  = 0

0

0

1

1

1

τ

σ

c
1

Q  = 00

σ1 0
ttσ

e

0

l = E m

1

l
i i

l
1

Figure 23.10: Algorithm for interface constitutive model.

41 The increment of the plastic multiplier ∆λ is computed by solving a quadratic equation obtained by considering the particular

form of the failure function 23.1 in Equation 23.29.

42 For this case, the failure function is equal to:

F = (τ21 n+1 + τ22 n+1)− 2 c tan(ϕf )(σt − σn+1)− tan2(ϕf )(σ
2
n+1 − σ2

t ) = 0 (23.30)

43 To this equation, we substitute the expression for the new stress state σn+1, which are equal to (Equation 23.28):

τ1n+1 = τ1e −∆λKtom1 = τ1e −∆λl1
τ2n+1 = τ2e −∆λKtom2 = τ2e −∆λl2
σn+1 = σe −∆λKnom3 = σe −∆λl3

(23.31)
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44 The result of this substitution is a quadratic equation with roots:

∆λ1,2 =
−B ±

√
B2 − 4AC

2A
(23.32)

where

A = l21 + l22 − µ2l23
B = 2µ2σel3 − 2l1τ1e − 2l2τ2e − 2cµl3
C = τ21 e + τ22 e − 2cµσt + µ2σ2

e + µ2σt

45 The required solution must satisfy the following conditions.

∆λ > 0 ∧ ∆λ = min(∆λ1,∆λ2) (23.33)

46 In the previous equations, l1, l2 and l3 are components of vector l indicating the direction of inelastic return in the stress space,

and they are related to the direction of inelastic displacements m through the stiffness matrix E.

l = Em (23.34)

47 The direction of inelastic displacements m is defined as the normal vector to the plastic potential Q (Figure 23.10), which is

defined using the dilatancy angle ϕd(u
ieff) as:

Q = τ21 + τ21 − (
Kn

Kt
tanϕd)

2σ2 = 0 (23.35)

48 For the definition of m, we must distinguish between the case, when the return direction m can be determined on the basis

of Q, and the pathological case of the apex of Q, when the normal m cannot be constructed. For this case, m is defined by

connecting the trial tractions σe with the origin of the σ × τ1 × τ2 space (Figure 23.11):

m =


τ1/Kto

τ2/Kto

σ/Kno

 if
||τ ||
σ

≤ 1
tanϕd

Kto
Kno

∧ σ > 0

m =


τ1
τ2√

τ21 + τ22 tanϕd

 otherwise

(23.36)

tan(    )φd
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Kt

c

F  = 0
τ

σ

1

σt

Case (2)

Case (1)
σ

σe

e

Q  = 0

l = E m

l = E m

Figure 23.11: Definition of inelastic return direction.

49 At this stage, we can identify three major steps to the proposed algorithm:

318



D
R
A
FT

23.3 Finite Element Implementation

1. Elastic predictor:

σe = σn + E∆un (23.37)

2. Inelastic corrector simultaneously satisfying the following two equations:

Fn+1(σe − ∆λEm, uieff

n+1) = 0
uieff

n+1 = uieff

n + ||∆λm|| (23.38)

3. Fracturing corrector:

Es = αE
up = u−E−1

s σn+1
(23.39)

50 In the fracturing corrector, the inelastic displacements due to friction and microcracks development are separated. This sepa-

ration is controlled by the damage parameter D defined by Equation 23.9. The evolution of damage parameter D is defined by

converting the mixed mode problem into an equivalent uniaxial case as described in Section 23.2.

51 The complete algorithm of the interface constitutive driver is described in Algorithm 23.3.2 and is shown schematically on

Figure 23.10.

ICM constitutive driver.
• Input: σn, uieff

n and ∆un

• σn+1 = σn + αE∆un

• if F (σn+1, u
ieff

n ) > 0

– Update σn, and ∆un such that F (σn, u
ieff

n ) = 0.

– Elastic predictor: σn+1 = σn + E∆un

– Inelastic corrector:

∗ uieff

n+1 = uieff

n

∗ Do

· Evaluate return direction m

· Determine dλ such that F (σn+1 − dλEm, uieff

n+1) = 0

· uieff

n+1 = uieff

n+1 + ||dλm||
· σn+1 = σn+1 − dλEm

∗ While dλ < ε

– Fracturing corrector:

α = 1− |σ|+σ
2|σ| D(uieff

n+1)

Es = αE
up = u−E−1

s σn+1

• Output: σn+1, uieff

n+1

52 Figure 23.12 illustrates a simple example of direct tension test with the proposed interface crack model. It demonstrates the

accuracy of the proposed algorithm as the normal stresses are always correctly evaluated for the given displacements, and there

is no loss of accuracy when larger increment steps are used. This is a direct consequence of the geometrical approach during the

inelastic corrector phase of the algorithm and the displacement based softening. This example also illustrates the ability of the

proposed model to simulate Hillerborg’s fictitious crack model.

53 The robustness of the interface constitutive driver can also be tested by analyzing an example of shear under fixed tension in

the normal direction. This is clearly an unstable problem on the structural level, since following certain sliding displacement the

tensile strength is lower than the originally applied normal stress, and the specimen fails in an unstable manner. This implies
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Figure 23.12: Influence of increment size.

that on the structural level the solution cannot converge. However, the algorithm should not fail on the constitutive level, which

could occur in some plasticity based models in which the consistency condition is used to determine the increment of the plastic

multiplier dλ. In these formulations, due to the snap-back on the constitutive level, a negative value of dλ is obtained, and the

second Kuhn-Tucker condition (Equation ??) is not satisfied causing the model to fail on the constitutive level. This is clearly an

undesirable feature since a snap-back on the constitutive level could occur even in otherwise stable problems. To investigate the

behavior of the proposed interface model in the shear-tension regime, a simple example of two quadrilateral elements connected

by an interface element is analyzed. In the first increment tensile tractions are applied on the upper element, and in the subsequent

increments horizontal displacements are prescribed for the upper element. The resulting load-displacement curve is shown in

Figure 23.13.
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Figure 23.13: Shear-tension example.

54 We observe the tendency for snap-back behavior when CSD ≈ 0.0245 mm. After this point, due to the unstable nature of

the problem, convergence on the structural level could no longer be achieved, however no problems on the constitutive level are

observed.

23.3.3 Non-linear solver.

55 The proposed interface crack model is clearly a nonlinear material formulation, and therefore, a finite analysis including this

material formulation involves a system of nonlinear equations. Such system can be solved, for instance, by the Newton-Raphson

method. To exploit the full Newton-Raphson method a tangent stiffness matrix would have to be computed at each iteration.

The incremental tangent stiffness matrix for the proposed material formulation can be computed from the incremental stress-

displacement relationship:

∆σn = E∆un − ∆λEm (23.40)

when multiply the last term by a fraction which is equal to unity:

∆σn = E∆un − ∆λEm
nTE∆un

nTE∆un
(23.41)
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where n is the normal vector to the failure surface passing through the trial stress state σe (Equation 23.27).

56 From this equation it is possible to derive a formula for an incremental tangent material stiffness matrix ET :

∆σn = ET∆un (23.42)

where:

ET = E

(
I −∆λ

EmnTE

nTE∆un

)
(23.43)

57 In this particular case, the new stress state is computed using the iterative process described in Algorithm 23.3.2. Therefore,

the incremental stress-displacement is given by a sum:

∆σn = E∆un −
Niter∑
i=1

(∆λiEmi) (23.44)

where Niter is the number of iterations in the inelastic corrector part of Algorithm 23.3.2. Following similar arguments leading

to equation 23.43, the incremental tangent stiffness is computed by the following expression:

ET = E

[
I −

Niter∑
i=1

(
∆λi

Emin
T
i E

nT
i E∆un

)]
(23.45)

58 During softening, the tangent matrix ET becomes negative. In addition, the matrix becomes also unsymmetric due to the

dilatancy, which is introduced in the softening regime of the interface model. This would imply the need to store the full stiffness

matrix on the structural level, and a method for solving unsymmetric and non-positive system of equations would have to be

adopted. This is clearly not an efficient approach, since only few elements will be affected by the non-linear behavior (i.e. interface

elements), and therefore, only small portions of the structural stiffness matrix will be unsymmetric.

59 On the other hand, it can be expected that the initial stiffnesses of the interface elements are very large, and in some cases,

they represent penalty numbers modeling a rigid contact. This means that it is not possible to use the initial structural stiffness

throughout the whole iterative process, as it would result in an excessive number of iterations.

60 In this work two approaches are suggested to mitigate this problem:

(1) Use of secant-Newton method to accelerate the convergence on the structural level.

(2) Use of secant interface stiffness on the element level while preserving its positiveness and symmetry.

Both methods are supplemented with the line-search technique of (Crisfield, 1991).

23.3.4 Secant-Newton method.

61 The secant-Newton method is described in detail in (Crisfield, 1991). In this method, it is not necessary to recompute the

structural stiffness matrix at each iteration, but rather the vector of iterative displacement corrections is updated to satisfy the

secant relationship.

du∗
i

ri
=

du∗
i−1

ri − ri−1
(23.46)

62 For one-dimensional case, the meaning of this formula is illustrated by Figure 23.14.

63 In this work, (Davidon, W.C., 1968) rank-one quasi-Newton update is used, and the corrected iterative update of the displace-

ment vector in iteration i is equal to:

du∗
i = Adui + Bdu∗

i−1 + Cdui−1 (23.47)

where dui is the iterative update of the displacement vector computed in iteration i by solving:

dui = K−1ri (23.48)

where K is the structural stiffness matrix, and ri are residual forces at iteration i. The stared symbols, u∗
i and u∗

i−1, represent

the displacement vector updates based on the secant-Newton corrections (Equation 23.47), and coefficientsA,B and C are given

by (Davidon, W.C., 1968):

C =
(du∗

i−1+dui−dui−1)
Tri

(du∗
i−1+dui−dui−1)T (ri−ri−1)

A = 1− C, B = −C
(23.49)
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Figure 23.14: Secant relationship.

23.3.5 Element secant stiffness.

64 It is also possible to employ the secant formula (Eq. 23.46) on the element level. Considering the diagonal form of the material

stiffness matrix E, it is possible to determine its secant form from the stress and displacement corrections in each iteration.

Ki
t1 =

τi
1n+1−τi−1

1 n+1

∆ui
xn+1

−∆ui−1
x n+1

Ki
t2 =

τi
2n+1

−τi−1
2 n+1

∆ui
yn+1

−∆ui−1
y n+1

Ki
n =

σi
n+1−σi−1

n+1

∆ui
zn+1

−∆ui−1
z n+1

(23.50)

65 To preserve the positiveness of the material stiffness matrix a minimal value for shear and normal stiffnesses must be specified.

In this work the shear and normal stiffnesses cannot be less than 10−8
times their original value. This number is based on the

assumption that the ratio of the lowest elastic modulus to the largest interface stiffness is below 10−4
. This ratio should be

sufficient in most practical problems, since the interface stiffness can be estimated from:

Kn =
E

t
(23.51)

where t is the interface thickness. Thus, the ratio
E

Kinterface ≈ 10−4
corresponds to the assumption of interface thickness being

equal to 10−4
times a unit length of the problem. This should be adequate for the types of of problems under consideration in

this work. Alternatively, we consider an extreme case of Kinterface
of the same order as E (i.e. t ≈ problem unit). Then after

cracking, the interface stiffness will be is reduced to 10−8
times its original value, and it is possible to estimate the condition

number of the system using the elastic modulus, maximal and minimal element sizes.

κ ≈ Kelem
max

Kinterface
min

≈ Ehmax

(Eh2
min)/t × 10−8

≈ 1014 (23.52)

In the formula, the element sizes were assumed to be in the range of the order ⟨10−2, 102⟩.

66 The loss of accuracy due to finite precision arithmetic is given by:

s = p− log(κ) (23.53)

where p is the number of significant digits in the computer representation of real numbers and s is the accuracy of the solution.

The system will become ill-conditioned when:

s ≤ 0 (23.54)

67 A real number f is internally represented in a computer memory by three integers m, β and e.

f = .m × βe
(23.55)

322



D
R
A
FT

23.3 Finite Element Implementation

The mantissa m gives the number of significant digits. For double precision data type, m is usually stored in 52 bits, which

corresponds to approximately 16 significant digits. Therefore, the accuracy after decomposition is in the worst possible scenario

equal to 2 (Equation 23.53), which is of course an unacceptable level of accuracy. However, it should be kept in mind that this is a

worst case scenario, and it would be unrealistic to have a ratio of largest to smallest element of the order of 104, as was assumed

in Equation 23.52.

23.3.6 Line search method.

68 Numerical experiments showed, that often the diagonal approximation of the secant stiffness underestimates the true stiffness

of the interface and allows for excessive interface sliding. The excessive sliding in turn introduces large dilatancy effects and

high compressive stresses in the normal direction in the subsequent iteration. These high compressive stresses and the frictional

properties of the interface combined with the excessive slidings will cause large shear stresses, which may not be in equilibrium

with the rest of the finite element mesh. Due to this, the resulting high residual forces attempt to slide the interface backwards,

but since the stiffness of the interface is underestimated, the backward sliding is too large, and the iteration process diverges. This

problem can be solved by combining the previously discussed secant-methods with line searches.

69 The fundamental principle behind the line search method (Crisfield, 1991) is to determine a scaling factor ω, for the current

iterative displacement correction, such that the functional of total potential energy is stationary.

Π(ω) = Π(ui−1 + ωdui) = Π(ω) +
∂Π(ω)

∂u(ω)

∂u(ω)

∂ω
δω (23.56)

The functional Π(ω) would be stationary if the last term is equal to zero. It can be shown, (Crisfield, 1991), that the partial

derivative of total potential energy Π(ω) with respect to displacements u(ω) is equal to the vector of residual forces r(u). Thus,

the last term of Equation 23.56 is equivalent to:

∂Π(ω)

∂u(ω)

∂u(ω)

∂ω
δω = r(ω)dui δω = 0 (23.57)

70 If we introduce a new symbol s(ω) representing the scalar product of vectors r(ω) and dui, then the objective is to find a

scalar multiplier ω such that s(ω) is equal to zero. Such ω can be approximately computed from s(ω) for ω equal to zero and one.

s(0) = r(ui−1)dui, s(1) = r(ui−1 + dui)dui (23.58)

71 Then an approximation of ω can be evaluated using the following formulas based on the linear interpolation between s(0) and

s(1).

ω =
−s(0)

s(1)− s(0)
(23.59)

A more accurate value of ω can be determined through recursive applications of this formula.

ωi+1 = ωi
−s(0)

s(ωi)− s(0)
(23.60)

72 Graphically, the line search is illustrated in Figure 23.15.

73 We observe that it corresponds exactly to the divergence problem previously described. Originally, the residual forces acted

along the same direction as the iterative displacement correction, and their scalar product s(0) was positive. However, after the

iterative correction is considered, the residuals have opposite orientation with respect to the iterative displacement update dui,

and s(1) is negative. This indicates that the displacements should be smaller, and this is exactly, what the line search method is

able to recognize and correct.

74 The line search method can be implemented in the context of various load control techniques. The implementation of line

searches in the context of the arc-length method is discussed in (Crisfield, 1991). (Reich, 1993) implemented the line search

method with an indirect displacement control technique, which is based on crack step control mechanism, and can be therefore

easily used for non-linear fracture mechanics analyzes using the FCM model.
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s(1)

s(   )ω
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Figure 23.15: Line search method.

23.4 Mixed Mode Crack Propagation

75 In most engineering problems, the crack path is not known a priory, and therefore, must be determined during an analysis. In the

context of discrete crack analysis, this is accomplished by modifications of the initial mesh. It is, therefore, necessary to establish

appropriate criteria for crack initiation and propagation. The criteria for LEFM analysis were discussed in Section ?? of Chapter ??.

In the non-linear fracture mechanics analysis, a crack initiation criterion can be based on tensile stresses, and energy control is

conducted through an appropriate softening diagram. This is to be contrasted with LEFM, where the stress based criteria are not

applicable, as they are infinite at the crack ti. It can be readily verified that the Griffith energy based criterion is also satisfied in

the non-linear fracture mechanics through an appropriate softening law.

23.4.1 Griffith criterion and ICM.

76 Let us consider a cohesive crack with both normal and tangential tractions in a thin plate subjected to far field stresses, and

let us assume the crack is to be under general mixed mode conditions, Figure 23.16. To verify if the non-linear model satisfies

Griffith criterion, it is necessary to compute the energy released by a unit crack propagation.

77 The J-integral provides a method to evaluate the energy release rate. The J-integral is a path independent integral and in two-

dimensional is given by:

J =

∮
Γ

(Wnx − t̂
∂u

∂x
)dΓ (23.61)

78 Due to its path independent character it is possible to evaluate the J-integral along the crack surfaces.

J(Γo) = −
∫
Γo

t̂
∂u

∂x
ds =

∫
FPZ

(
τ
∂∆x

∂x
+ σ

∂∆y

∂x

)
dx (23.62)

79 Applying Leibnitz rule for the differentiation of definite integrals the J-integral is equivalent to:

J(Γo) =

∫
FPZ

[
d

dx

(∫ ∆x

0

τ d∆x

)]
dx +

∫
FPZ

[
d

dx

(∫ ∆y

0

σ d∆x

)]
dx (23.63)

80 The expressions in parentheses represent the surface energies dissipated in mode I and II at every point along the fracture

process zone normalized with respect to crack surface. Hence, we define:∫ ∆x

0

τ d∆x = qII(x),

∫ ∆x

0

σ d∆y = qI(x) (23.64)

J(Γo) =

∫
FPZ

dqII(x)

dx
dx +

∫
FPZ

dqI(x)

dx
dx = GII

c +GI
c = Gc (23.65)

324



D
R
A
FT

23.4 Mixed Mode Crack Propagation

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������ Γ

σ

τ

σ
τ

Γ0

σ
τ

Figure 23.16: Griffith criterion in NLFM.

where GII
c and GI

c is the energy dissipated by a unit propagation of the cohesive crack in mode II and I respectively. It should be

noted that in general, GII
c and GI

c are not equivalent to GII
F and GI

F , but are rather functions of these and the stress state along

the interface. However, it is possible to consider two special cases for pure mode I and II cracks.

81 In the case of pure mode I crack, the J-integral is equal to:

J(Γo) =

∫
FPZ

[
d

dx

(∫ ∆y

0

σ d∆y

)]
dx =

∫ wσ

0

σ(∆y) d∆y = GI
F (23.66)

82 Similarly, in the case of pure mode II crack, the J-integral is equal to:

J(Γo) =

∫
FPZ

[
d

dx

(∫ ∆x

0

τ d∆x

)]
dx =

∫ wτ

0

τ(∆x) d∆x = GII
F (23.67)

where wσ and wτ is the critical crack opening and sliding respectively for which normal and tangent stresses can no longer be

transferred across the crack.

83 The following conclusion can be drawn based on the basis of the previous discussion:

(1) It was shown that a unit extension of a cohesive crack model dissipates energy whose amount depends on the softening

laws used by the model. The amount of dissipated energy also depends on the loading conditions in FPZ. In pure mode I and

mode II loading, specific fracture energies GI
F and GII

F are dissipated respectively. If the structural system cannot provide these

energies, the crack would not propagate.

(2) In the limiting case, when the dimensions of the analyzed problem increase, the cohesive crack gives identical results as

LEFM.

(3) In finite element implementation, errors are introduced due to discretization errors. In large structures, fine mesh would be

necessary at the crack tip to model the fracture process zone. If the FPZ is not modeled adequately, the Griffith criterion for crack

propagation is violated, and erroneous results will be obtained.

23.4.2 Criterion for crack propagation.

84 In this work a stress based criterion is used for crack initiation and propagation. A crack is initiated when a maximal principal

stress σ1 exceeds the tensile strength of the material. A crack of certain length ∆a is inserted into the boundary representation

of the model in the direction perpendicular to the direction of the maximal principal stress, and the length of the new crack ∆a
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is arbitrarily selected by the user. The exact solution is approached as this length tends to zero, this is however not feasible, and

from author’s experience, the crack step size should be:

∆a ≤ L

10
(23.68)

where L is maximal dimension of the problem. From the updated boundary representation, a new mesh is generated, in which

interface elements are placed along the crack.

85 Then, a non-linear analysis is performed, and the maximal principal stresses at crack tips are monitored. When they are found

to exceed the tensile strength of the material, the analysis is interrupted, and new crack surfaces are inserted into the boundary

representation of the problem. Then, a new mesh is again generated and the problem is reanalyzed from the beginning. In this

manner the finite element model is adaptively modified until the structure is fully cracked or the prescribed loading level is

reached. This process is described by Algorithm 23.4.2, and is shown graphically in Figure 23.17.

Mixed mode crack propagation.
(1) Input: Boundary representation.

(2) Generate finite element model.

(3) Do

(3.1) Non-linear finite element analysis.

(4) While: maximal principal stresses < f ′
t .

(5) If maximal principal stress exceed f ′
t .

(4.1) Add new crack surfaces of length ∆a to

the boundary representation in the direction perpendicular to σ1.

(4.2) Goto Step 2.

(6) Output: Boundary representation, Finite element model.

Initial Boundary Rep.

FE Model

higher then tensile strength
Principal Stresses

Updated Boundary Rep.

Figure 23.17: Mixed mode crack propagation.

23.5 Examples and validation

86 Number of problems with known experimental or analytical results are analyzed in this section to validate the proposed inter-

face mode for simulating discrete fracturing along interfaces and in homogeneous concrete.
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23.5.1 Direct shear test of mortar joints.

σ

F
u

2.25"

2.25"

16.86"

Figure 23.18: Schematics of the direct shear test setup.

87 In this section, a nonlinear analyzes of a direct shear test with various levels of normal confinement are presented. The exper-

iments were performed at the University of Colorado in Boulder (Shing et al., 1994) . In these experiments, a mortar interface

between two brick was tested at three different levels of compressive confinement (150, 100 and 50 psi). Analyses are performed

for these confinement values and also for zero value, which corresponds to a pure shear test.

88 Table 23.1 summarizes the selected material properties. Interface stiffnesses Kt and Kn were determined by data fitting in the

elastic region. The remaining interface parameters were obtained from the experimental load-displacement curves.

89 Figure 23.19 shows a good correlation between the experimental and analytical load-displacement curves.

Table 23.1: Material properties for direct shear test.

Material Parameter Values

Brick

Modulus of elasticity E 800 ksi

Poisson’s ratio ν 0.2

Mortar Interface

Shear stiffness Kt 600 ksi/in

Normal stiffness Kn 200 ksi/in

Tensile strength f ′
t 50 psi

Cohesion c 80 psi

Friction angle ϕf 45.0 deg

Dilatancy angle ϕD 20.0 deg

Specific mode I fracture energy GI
F 0.3 lbf/in

Specific mode II fracture energy GIIa
F 3.0 lbf/in

Stress at break point of bilinear softening law s1 12.5 psi

Crack opening at break point of bilinear softening law sw1 0.0045 in

Cohesion at break point of bilinear softening law c1 40.0 psi

Crack sliding at break point of bilinear softening law cw1 0.025 in

Maximal dilatant displacement udil 0.2 in

23.5.2 Biaxial interface test.

90 The interface constitutive model described above is used to analyze the biaxial test specimen in Figure 23.20. These specimens

were tested at the University of Colorado by (Saouma et al., 1994).

91 In this first study, the material properties were optimized to yield comparable results with the experimental ones (σt = 0.68
[MPa], c = 0.68 [MPa], ϕf = 30 [deg], ϕd = 40 [deg], GI

F = 61 [N/m], GII
F = 400 [N/m]).
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Figure 23.19: Direct shear test on mortar joint.
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Figure 23.20: Experimental set-up for the large scale mixed mode test.
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92 We observe that GI
F is comparable with the GF measured in wedge splitting tests on concrete, limestone and concrete-

limestone in Figure 23.2. The comparison of the numerical results with experimental observations are shown in Figure 23.21.

The numerical results show a good agreement with the experimental ones in the peak and post-peak region.

93 In the pre-peak region, however, the initial stiffness of the specimen is overestimated. More analysis and experiments are

necessary to determine the reason for this discrepancy.

Table 23.2: Material properties for direct shear test.

Material Parameter Values

Concrete 1

Modulus of elasticity E 5.55 106 [Psi]

Poisson’s ratio ν 0.18

Concrete 2

Modulus of elasticity E 3.36 106 [Psi]

Poisson’s ratio ν 0.18

Interface

Shear stiffness Kt 1.887 106 [Psi/in]

Normal stiffness Kn 4.453 106 [Psi/in]

Tensile strength f ′
t 120 psi

Cohesion c 220 psi

Friction angle ϕf 60.0 deg

Dilatancy angle ϕD 45.0 deg

Specific mode I fracture energy GI
F 0.35 lbf/in

Specific mode II fracture energy GIIa
F 1.05 lbf/in

Ratio of irreversible displacement γ 0.15

Maximal dilatant displacement udil 0.5 in

Softening law for tensile strength linear

Softening law for cohesion linear

0
10

0
20

0
30

0
40

0
50

0

0 1 2
Crack opening displacement [mm]

V
er

ti
ca

l L
o

ad
 [

kN
]

-100 0 100
[µstrain]

top

notch

-100 0 100
[µstrain]

top

notch

-100 0 100
[µstrain]

top

notch

-100 0 100
[µstrain]

top

notch

-100 0 100
[µstrain]

top

notch

-100 0 100
[µstrain]

top

notch

Figure 23.21: Nonlinear analysis of the mixed mode test.

23.5.3 Modified Iosipescu’s beam.

94 The presented interface crack model (ICM) can also be used to model discrete cracks in homogeneous material. This is doc-

umented on an analysis of the modified Iosipescu’s beam from Section ??. The geometry, boundary conditions and material

properties of the problem were discused in detail in Section ??, and hence only the aspects of the analysis directly related to the

use of interface crack model are discussed in this section. The material properties are listed in Table 23.3.

95 The label ICM indicates the material properties for the interface crack model, which is used to simulate the fracture process

zone.

96 The model is supported at the two top plates and tractions are applied on the two bottom plates. The magnitude of the tractions

is such that the total force on the left bottom steel plate is equal to 1/11 F and on the right bottom plate is 10/11 F, where F is

the total force applied in the vertical direction. The analysis is controlled by the relative sliding at the notch mouth. This means,

that at each increment a unit vertical force F is applied. The applied forces are scaled to satisfy a prescribed value of the relative

sliding. This displacement control scheme is described in detail in (Reich, 1993).
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Table 23.3: Material properties for ICM for Iosipescu’s test.

Material Parameter Values

Concrete

Young’s modulus E 35 GPa

Poisson’s ratio ν 0.15

Steel plates

Young’s modulus E 200 GPa

Poisson’s ratio ν 0.22

ICM

Shear stiffness Kt 15.2 GPa/m

Normal stiffness Kn 20.0 GPa/m

Tensile strength f ′
t 2.8 MPa

Cohesion c 5.0 MPa

Friction angle ϕf 50.0 deg.

Dilatancy angle ϕD 45.0 deg.

Specific mode I fracture energy GI
F 70.0 N/m

Specific mode II fracture energy GIIa
F 700.0 N/m

Ratio of irreversible displacement γ 0.3
Maximal dilatant displacement udil 0.01 m

Softening law for tensile strength bilinear (Wittmann & Brühwiler)

Softening law for cohesion linear

97 Two analysis were performed. In the first one, a single crack was propagated starting at the notch. However, during this

analysis, tensile principal stresses were observed along the bottom edge between the two bottom supports that were higher than

the tensile strength. Therefore, a second analysis was performed, in which totally five cracks were considered.

Single crack analysis:

Initially, there are no interface elements in the finite element mesh. They are inserted into the model after the maximal principal

stresses at the notch reach the tensile strength. Then new crack faces are inserted into the boundary representation of the problem

in the direction perpendicular to the direction of the maximal principal stress. A new finite element mesh is generated, and the

analysis is restarted from the beginning. The analysis is stopped when the maximal principal stress at the crack tip is larger then

the tensile strength. Then, again new crack faces are inserted into the boundary representation, and a new mesh is generated.

This process is repeated until the whole beam is cracked. Six different finite element meshes were necessary in this analysis,

and three of them are shown in Figures 23.22 and 23.23: the initial one, the mesh corresponding to the third step (i.e. third mesh

regeneration) and the final mesh when the crack reached the bottom edge. The crack was initiated at the notch at an angle equal

to −37.3 degrees with respect to the horizontal axis. Later it curved down, and reached the bottom edge of the beam exactly

at the right corner of the right bottom plate. Figures 23.22 and 23.23 also show the positions on the load-displacement curve

corresponding to each step and the normal and shear stresses along the crack.

Multiple cracks analysis:

This analysis was performed in an analogous way to the single crack one, but in the second step (i.e. after second remeshing),

tensile stresses larger then tensile stress were observed along the bottom edge of the beam, therefore four additional cracks

were inserted into the boundary representation at each node where the stress criterion was violated. In the subsequent step (i.e.

step 4), two cracks were found to violate the stress criterion: the notch crack and the right bottom crack. In the following non-

linear analysis, however, due to the stress redistribution, the bottom cracks were unloaded, and only the notch crack propagated.

Altogether, five remeshing steps were necessary in this analysis, and some of them are shown in Figures 23.24 and 23.25. This

figures show the shaded contour areas of maximal principal stresses on the deformed shapes at steps 3,4 and 5. The finite element

meshes that were used at steps 1,3,4 and 5 are illustrated in Figure 23.26.

98 The final load-displacement curves from both analyzes are shown in Figure 23.27, and can be compared to experimental data

and classical fictitious crack analysis.

99 In this figure, the label ICM indicates the results from this analysis, when the interface crack model was used, and the crack

path was determined automatically during the analysis. The FCM label means that the classical Hillerborg fictitious model, as it

was implemented by (Reich, 1993) was used. In this case, the crack patch must be known or assumed, therefore, the crack path,

which was determined previously by the linear elastic fracture mechanics analysis was used. In other words, for the case of ICM

the crack path was determined automatically during the nonlinear analysis, but for FCM the crack path was determined by a

previous LEFM analysis (Section ??).

330



D
R
A
FT

23.5 Examples and validation

0.0 1.0 2.0 3.0 4.0
Distance from crack mouth [mm]

-1.0

0.0

1.0

2.0

3.0

σ/
τ 

[M
Pa

] σ
τ

0.00 0.05 0.10 0.15 0.20
CSD [mm]

0

10

20

30

40

50

F 
[k

N
]

0.0 10.0 20.0 30.0
Distance from crack mouth [mm]

-1.0

0.0

1.0

2.0

3.0

σ/
τ 

[M
Pa

] σ
τ

0.00 0.05 0.10 0.15 0.20
CSD [mm]

0

10

20

30

40

50

F 
[k

N
]

Figure 23.22: Crack propagation in Iosipescu’s beam, (Steps 1 & 3).
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Figure 23.23: Crack propagation in Iosipescu’s beam, (Increment 11 & 39 in Step 6).
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Figure 23.24: Multiple crack propagation in Iosipescu’s beam (Steps 3,4).
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Figure 23.25: Multiple crack propagation in Iosipescu’s beam (Step 5).
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Figure 23.26: Meshes for crack propagation in Iosipescu’s beam (Steps 1,3,4,5).
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Figure 23.27: Iosipescu’s beam with ICM model.

100 The crack paths determined by LEFM and ICM analyzes are compared in Figure 23.28. Clearly, there is almost no difference

between the different crack paths, which implies that although LEFM is not applicable for this problem size, it can still be used
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Figure 23.28: Crack paths for Iosipescu’s beam.

for crack pattern prediction. The unsuitability of LEFM for this problem size is clearly demonstrated by the load-displacement

curves in Figure ??, where the maximal peak load of about 40 kN is overestimated by almost 100 %.

101 Theoretically, as the problem size increases, the two approaches (i.e. LEFM and ICM) should become equivalent. This is demon-

strated in Figure 23.29, which shows the load displacement curves for a specimen fifty times larger than the original one. Clearly,

the two load-displacement curves are almost identical. This example can also be considered as a proof that the ICM model ap-
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Figure 23.29: Large Iosipescu’s beam, h = 50 x 100 mm.

proaches LEFM as the structural size encreases.
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23.5.4 Anchor bolt pull-out test.

102 In Section ?? the anchor bolt pull-out experiments were analyzed using the linear elastic fracture mechanics (LEFM). LEFM is

not applicable for this problem size as is documented on the resulting load-displacement curves (Figure ??). For both geometries

the loads were overestimated if LEFM was used. In this section, same problem is reanalyzed, but nonlinear fracture mechanics is

used. The fracture process zone is modeled using the interface crack model developed in this chapter.

103 The problem geometry is shown in Figure ??, and material properties are listed in Table ??.

104 The finite element meshes and crack patterns for specimen type I are illustrated in Figure 23.30.

Figure 23.30: Crack propagation for anchor bolt pull out test I.

105 This analysis exhibits a “zig-zag” crack pattern, which indicates that the selected crack increment ∆a of 50 mm was too large,

and the crack tip “oscilates” around the correct path. Originally the crack propagated at an angle of about 20 degrees, but when

the crack approached the support, it sharply curved down, and continued at about -55 degrees. Subsequently a secondary vertical

crack developed below the vertical support causing the final failure. Eight remeshing steps were necessary in this analysis.

106 The results for specimen type II are shown in Figure 23.31, which shows the crack patterns and shaded areas of maximal

principal stresses at remeshing steps 2,6,9 and 10. Altogether, ten different finite element meshes were used.

107 Two cracks were considered in this analysis. One started at the top edge of the anchor head, and second at the bottom edge.

The first crack proved to be the dominant one, and as for specimen I, it first propagated in an almost horizontal direction (10-20

deg.), but below the support, the crack again sharply turned downward, and continued at the angle of approximately -45 degrees.

Again, a secondary vertical crack eventually developed under the support.
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Figure 23.31: Crack propagation for anchor bolt pull out test II.
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108 The crack paths for both specimens are plotted in Figure 23.32, and they show a good agreement with the experimentally

observed ones. It should be noted however that the experimental crack patterns in this figure are only approximate, since no

quantitative data about the exact crack patterns are reported in the literature.
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Figure 23.32: Crack patterns.

109 The load-displacement curves are shown in Figure 23.33 and 23.34 for specimen I and II respectively. These figures show com-

parison of this analysis with experiments and numerical simulations by other researchers. The experimental curves are adopted

from (Shirai, 1993) and (Slowik, 1993) and the numerical curves correspond to the best results reported by (Shirai, 1993).
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Figure 23.33: Load displacement curve for test I.

23.6 Conclusions

110 In this chapter, an interface crack model was developed and applied to modeling of discrete fracture of concrete, rock-concrete

interfaces and masonry joints.

111 The proposed model is an extension of Hillerborg’s fictitious crack model into a more general case of mixed mode fracture,

when shear effects must be considered.

112 The robustness of the interface constitutive algorithm is ensured by fully exploiting the geometrical meaning of the predictor-

corrector algorithm.
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Figure 23.34: Load displacement curve for test II.

113 Due to the generality of the proposed model, it can be used for nonlinear fracture mechanics of both homogeneous materials

and interfaces.

114 To model mixed mode crack propagation, the model was combined with the automated mesh generation to adaptively modify

the finite element mesh to capture curve crack trajectories.

115 It was showed, that for large structures, the model approaches the linear elastic fracture mechanics solution, which implies

the satisfaction of Griffith’s criterion for crack propagation, and the capability to capture size effect.

340



D
R
A
FT

Appendix A

INTEGRAL THEOREMS

1 Some useful integral theorems are presented here without proofs. Schey’s textbook div grad curl and all that provides an excellent

informal presentation of related material.

A.1 Integration by Parts

The integration by part formula is

∫ b

a

u(x)v′(x)dx = u(x)v(x)|ba −
∫ b

a

v(x)u′(x)dx (A.1)

or

∫ b

a

udv = uv|ba −
∫ b

a

vdu (A.2)

A.2 Green-Gradient Theorem

Green’s theorem is

∮
(Rdx+ Sdy) =

∫
Γ

(
∂S

∂x
− ∂R

∂y

)
dxdy (A.3)

A.3 Gauss-Divergence Theorem

2 The general form of the Gauss’ integral theorem is

∫
Γ

v.ndΓ =

∫
Ω

divvdΩ (A.4)

or

∫
Γ

vinidΓ =

∫
Ω

vi,idΩ (A.5)

3 In 2D-3D Gauss’ integral theorem is

∫ ∫ ∫
V

div qdV =

∫ ∫
S

qT .ndS (A.6)

or

∫ ∫ ∫
V

vi,idV =

∫ ∫
S

vinidS (A.7)
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4 Alternatively

∫ ∫ ∫
V

ϕdiv qdV =

∫ ∫
S

ϕqT .ndS −
∫ ∫ ∫

V

(∇ϕ)TqdV (A.8)

5 For 2D-1D transformations, we have

∫ ∫
A

div qdA =

∮
s

qTnds (A.9)

or

∫ ∫
A

ϕdiv qdA =

∮
s

ϕqTnds−
∫ ∫

A

(∇ϕ)TqdA (A.10)
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Brühwiler, E. (1988). Fracture Mechanics of Dam Concrete Subjected to Quasi-Static and Seismic Loading Conditions. Doctoral Thesis

No 739, Swiss Federal Institute of Technology, Lausanne. (in German).
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Karihaloo, B. L. and Nallathambi, P. (1987). Notched beam test: Mode i fracture toughness. Technical report, draft report to RILEM

Committee 89-FMT, Fract. Mech. of Concrete: Test Method.
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Saouma, V., Červenka, J., Slowik, V., and Chandra, J. (1994). Mixed mode fracture of rock-concrete interfaces. In Bažant, Ž., editor,
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