Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title: 718th Meeting of the ACRS

Location: Rockville, Maryland

Date: 09-04-24

Work Order No.: NRC-0025

Pages 1-184

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1716 14th Street, N.W. Washington, D.C. 20009 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	718TH MEETING
5	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
6	(ACRS)
7	+ + + +
8	WEDNESDAY
9	SEPTEMBER 4, 2024
10	+ + + + +
11	The Advisory Committee met via Video-
12	Teleconference, at 8:30 a.m. EDT, Walter L. Kirchner,
13	Chairman, presiding.
14	COMMITTEE MEMBERS:
15	WALTER L. KIRCHNER, Chairman
16	GREGORY H. HALNON, Vice Chairman
17	DAVID A. PETTI, Member-at-Large
18	RONALD G. BALLINGER, Member
19	VICKI M. BIER, Member
20	VESNA B. DIMITRIJEVIC, Member
21	CRAIG D. HARRINGTON, Member
22	ROBERT P. MARTIN, Member
23	SCOTT P. PALMTAG, Member
24	THOMAS E. ROBERTS, Member
25	MATTHEW W. SUNSERI, Member
I	1

		2
1	ACRS CONSULTANT:	
2	DENNIS BLEY	
3	STEPHEN SCHULTZ	
4		
5	DESIGNATED FEDERAL OFFICIALS:	
6	KENT HOWARD	
7	QUYNH NGUYEN	
8	DEREK WIDMAYER	
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
Į	1	

ĺ	3
1	TABLE OF CONTENTS
2	
3	Opening Remarks by the ACRS Chair 4
4	X-energy Principle Design Criteria Topical
5	Report
6	Committee Deliberation on X-energy Principle
7	Design Criteria
8	Seabrook Alkali-Silica Reaction (ASR) Update 61
9	Public Comment
10	Committee Discussion
11	Adjourn
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
	I

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:31 a.m.)
3	CHAIR KIRCHNER: Okay, good morning.
4	The meeting will now come to order.
5	This is the first day of the 718th meeting
6	of the Advisory Committee on Reactor Safeguards, ACRS.
7	I'm Walt Kirchner, Chair of the ACRS.
8	ACRS Members in attendance today are <mark>Ron</mark>
9	Ballinger, Vickie Bier, Greg Halnon, Craig Harrington,
10	Robert Martin, Scott Palmtag, Dave Petti, Thomas
11	Roberts, and Matt Sunseri is there, there you are.
12	I was looking for you over here.
13	MEMBER SUNSERI: Oh, yes.
14	CHAIR KIRCHNER: And also joining us
15	virtually is Vesna Dimitrijevic.
16	Consultants with us today are Dennis Bley,
17	Myron Hecht, and Stephen Schultz.
18	If I've missed anyone, please speak up.
19	Quynh Nguyen and Derek Widmayer are the
20	ACRS staff Designated Federal Officers for this
21	morning's full committee meeting.
22	Member Sunseri has recused himself from
23	this afternoon's discussions due to a potential
24	conflict of interest.
25	I note that we have a quorum for today's
I	I

(202) 234-4433

	5
1	meeting.
2	The ACRS was established by statute and is
3	governed under Federal Advisory Committee Act, or
4	FACA.
5	I think we have a live mic out there
6	somewhere. So, if you would silence your mic.
7	Thank you.
8	The ACRS was established by statue and is
9	governed by the Federal Advisory Committee Act, or
10	FACA.
11	The NRC implements FACA in accordance with
12	its regulations found in Title 10, Part 7 of the Code
13	of Federal Regulations.
14	In these regulations and the committee's
15	bylaws, the ACRS speaks only through its publish
16	letter reports.
17	Member comments should be, therefore,
18	regarded as only the individual opinion of that
19	member, not a committee position.
20	All relevant information related to ACRS
21	activities such as letters, rules for meeting
22	participation, and transcripts are located on the NRC
23	public website and can be easily found by typing About
24	Us ACRS in the search field on the NRC's home page.
25	The ACRS, consistent with the agency, is
I	I

(202) 234-4433

	6
1	valued of public transparency and regulation of
2	nuclear facilities, provides opportunity for public
3	input and comment during our proceedings.
4	We have received no written statements or
5	requests to make an oral statement from the public,
6	although later this afternoon, we will have C-10, a
7	public interest group, providing us an informational
8	presentation.
9	We have also set aside time at the end of
10	this meeting for public comments.
11	The ACRS will gather information, analyze
12	relevant issues and facts, and formulate proposed
13	conclusions and recommendations as appropriate for
14	deliberation by the full committee.
15	A transcript of the meeting is being kept
16	and will be posted on our website.
17	When addressing the committee, the
18	participants should first identify themselves and
19	speak with sufficient clarity and volume so that they
20	may be readily heard.
21	If you are not speaking, please mute your
22	computer microphones, if you're using Teams or your
23	phone, by pressing star six.
24	Please do not use the Teams chat feature
25	to conduct sidebar discussions related to

(202) 234-4433

	7
1	presentations, rather limit the use of the meeting
2	chat function to report IT problems.
3	For everyone in the room, please put all
4	your electronic devices in silent mode and mute your
5	laptop microphone and speakers.
6	In addition, as previously said, please
7	keep sidebar discussions in the room to a minimum
8	since the ceiling microphones are live.
9	With that, I'll just remind everyone that
10	the table microphones are unidirectional and you'll
11	need to speak directly in front of the microphones to
12	be heard on the line.
13	Finally, if you have any feedback for the
14	ACRS about today's meeting, we encourage you fill out
15	the public meeting feedback from on the NRC's website.
16	During today's meeting, the committee will
17	consider two topics.
18	In this morning session, we are going to
19	discuss the X-energy principle design criteria topical
20	report.
21	And then, this afternoon at 1:00, we will
22	discuss the Seabrook Station alkali-silica reaction
23	informational updates.
24	During this morning session, we will
25	deliberate on the topical report and the staff's draft
ļ	I

(202) 234-4433

	8
1	safety evaluation for the X-energy's principle design
2	criteria for the Xe-100 small modular reactor.
3	Regarding principle design criteria, we'll
4	refer to these as PDC.
5	And we expect to focus today's discussion
6	on X-energy's process in developing these criteria for
7	their high temperature gas cooled reactor design.
8	And with that, I am going to turn to our
9	lead for the X-energy design center subcommittee, Bob
10	Martin.
11	You have the floor.
12	MEMBER MARTIN: All right, thanks.
13	So, this is a little bit different kind of
14	meeting of the full committee.
15	A few weeks ago, we had, of course, X-
16	energy here to present their PDCs. Of course, the
17	staff was here, too, to present their SE.
18	We came out of that meeting basically
19	recommending that a letter was not necessary. And we
20	were fairly content, satisfied with two presentations
21	of which, being pretty thorough, X-energy had abided
22	by the Reg Guide 1232, which is the guidance on
23	developing principle design criteria for non-light
24	water reactors.
25	And I think it's relevant to note that, in
	I

(202) 234-4433

	9
1	the afternoon, we also had Westinghouse also
2	presenting on PDCs.
3	So, we had a very interesting day of
4	looking at PDC presentations from two different
5	perspectives.
6	In fact, this is the fourth time we have
7	seen a PDC topical. We've also seen from Atomics last
8	summer and we saw TerraPower not too long a few
9	months ago. And I think having seen four different
10	topical reports on this topic, we get to see kind of
11	an interesting variety and interesting contrast
12	between how the different design centers have
13	approached, you know, the different criteria.
14	Now, that's not to say that they're all
15	people. Right? So, subsequent to our meeting two
16	weeks ago where there was a kind of a small dialogue,
17	you know, between mostly, you know, Tom Roberts and I
18	and Walt and some of the staff addressing two PDCs in
19	particular.
20	This is sort of related to PDC 16, 26, 615
21	being emulsion containment and the 26 being reactivity
22	is the reactivity control systems. What I thought I
23	would do was kind of read in my summary.
24	So, that was the recommendation, that we
25	would just have a summary report. And if it's okay
I	I

(202) 234-4433

	10
1	with everyone, it's a page long, so you're going to
2	hear me ramble a little bit, I thought I'd also bring
3	it up so y'all can follow along. I think I can do
4	this.
5	It's big enough to read and there we go,
6	perfect. All right, I'd just like to read this in for
7	the record.
8	Our X-energy Subcommittee met on August
9	21st, 2024 to discuss X-energy's Xe-100 topical
10	report, Principle Design Criteria Revision 3, and the
11	associated NRC staff safety evaluation.
12	During these meetings, we had kind of a
13	discussion what staff, representatives of X-energy as
14	well as documents cited in X-energy's topical report
15	and the staff SE.
16	X-energy plans to pursue the risk informed
17	performance based licensing approach described in NEI
18	1804, NEI 2107. These industry documents have been
19	endorsed by the NRC and Regulatory Guides 1.233 and
20	1.253.
21	The NEI Reg Guide documents emphasize the
22	risk informed approach to the selection of licensing
23	basis events, classification of systems, structures
24	and components and the evaluation of defense in depth.
25	They also include expectations for the
ļ	I

(202) 234-4433

	11
1	preparation of PDC that begin with the application of
2	Reg Guide 1232, Guidance of Developing Principle
3	Design Criteria for Non-light Water Reactors.
4	Reg Guide 1.232 provides reactor designers
5	the guidance on how to establish PDC that ensure
6	safety while accommodating the innovative features and
7	advance reactor designs. Relevant to the Xe-100, this
8	includes generic modular high temperature gas cool
9	reactor design criteria, MHTGR-DC.
10	X-energy developed the Xe-100 PDC
11	primarily by adapting these MHTGR-DC with changes
12	reflecting design specific details and the licensing
13	process described in Reg Guide 1.233 and Reg Guide
14	1.253.
15	Most of these changes were vernacular in
16	nature. For example, per NEI 1804, safety related and
17	non-safety related with special treatment functions
18	and structure systems components are referred to as
19	safety significant. As such, wherever important to
20	safety appeared in the MHTGR-DC was replaced with
21	safety significant.
22	Another artifact applying to Reg Guide
23	1.253 is that X-energy presented PDCH required
24	functional design criteria and complimentary design
25	criteria.

(202) 234-4433

	12
1	RDC and CDC are distinguished as
2	addressing the functional functions provided by safety
3	related and non-safety related with special treatment
4	perspectives.
5	I also, just kind of a side note, say that
6	X-energy is the first design center to implement this
7	through this Reg Guide 1.253.
8	So, this concept of required functional
9	design criteria and design is, at this moment, kind of
10	unique to their PDC topical report.
11	Okay, and to finish the paragraph, in
12	addition, they introduce owner-controlled design
13	criteria, or non-safety-related with no special
14	treatment and functions, NSSEs.
15	Another frequent departure from Reg Guide
16	1.232 was deletion of single failure in favor of
17	liability criteria, an option mentioned in Reg Guide
18	1.233, I say, I wonder if I meant 232 with that one,
19	but I'll go back to that.
20	A concern raised regarding this change was
21	that the applicant may find reliability
22	characteristics, particularly of concern is difficulty
23	to quantify for SSEs for limited industrial
24	application.
25	As such, application of single failure

(202) 234-4433

	13
1	criteria might be an acceptable alternative.
2	Reg Guide 232 specifies that the MHTGR-DC
3	applied when certain design characteristics were met.
4	These are the use of TRISO fuel graphite as primary
5	structural material for the core and reflector and the
6	same gas as primary coolant, all of which are credited
7	in the Xe-100.
8	In addition, Reg Guide 1.232 states that
9	designs applying the MHTGR-DC should have operational
10	characteristics addressing anticipated operational
11	occurrences, AOOs, and design basis events, DPEs,
12	applied to MHTGRs.
13	While specific details regarding
14	operational characteristics and the Xe-100's response
15	to AOOs and DPEs will be an outcome of X-energy's
16	limitation of NEI 1804, NRC staff acknowledged the
17	preliminary information provided by X-energy has been
18	sufficient to support X-energy's claim in the context
19	of their review.
20	X-energy's PDC 16 functional containment
21	design departed from Reg Guide 1.232 language by
22	replacing, quote, multiple barriers with a required
23	functional design criteria specific to fuel particle
24	and pebble barriers and a complimentary design
25	criteria specific to the helium pressure boundary.
	I

(202) 234-4433

	14
1	The necessity of the word multiple was
2	debated at our meeting, considering it appears in the
3	definition of functional containment used in 8/28/18
4	ACRS letter on functional containment and in SECY 18-
5	296.
6	However, it is not present, as one
7	example, in definition for functional containment
8	appearing in Reg Guide 1.232 rationale for MHTGR-DC.
9	But regardless, between X-energy's RDC and
10	CDC 16, multiple barriers are identified.
11	The identified set of barriers does not
12	mention an external barrier such as are in
13	containment.
14	Rather, prior agency's deliberation on
15	HTGR licensings have deferred to require for external
16	barriers to be determined by specified acceptable
17	radiological release design limits, SARRDLs in RFDC
18	CDC 16 for Xe-100, X-energy substituted the mention of
19	SARRDL with functional containment design limits which
20	was understood to include SARRDLs as well as
21	additional criteria such as fuel temperature.
22	Related to PCD 16, X-energy plans to use
23	a proprietary TRISO partial fuel referred to as TRISO-
24	X from prior engagement between X-energy and the staff
25	on X-energy's fuel qualification methodology, X-energy

(202) 234-4433

will evaluate any discrepancies between their fuel and 1 the TRISO fuel specification's performance data from 2 3 the U.S. Department of Energy's advanced gas reactor 4 DGR program as presented in DPR -- or excuse me, EPRI-AR-1 topical report. I think that was published in 5 6 2020, 2021, it might have been a Rev or something like 7 that, anyway, to confirm its capability as а 8 functional containment. 9 The other one, other PDC that got some attention was the PDC 26, reactivity control system 10 segregated the PDC into RFDC, DCN, and under control 11

design criteria, the concern was expressed that the

language suggested a departure of the defense in depth

philosophy that safety will not be wholly dependent on

maintenance, or operation of a different facility.

the

17 X-energy provided assurances that the set
18 of RFDCs, CDC, and other OCDC could collectively serve
19 to meet that standard.

single element of

The staff's limitations and conditions provide final closure for X-energy -- excuse me -- Xe-100 PDCs.

However, these limitations and conditions incorporate language expectant that subsequent development of the Xe-100 safety case engagement with

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

12

13

14

15

16

any

www.nealrgross.com

design construction,

	16
1	the staff will result in their removal potentially
2	requiring a revision to Xe-100 PDC TR.
3	The regulatory precedent of a clean set of
4	design criteria established by general design criteria
5	for LWRs should be a strong motivator for the subject
6	of such well-articulated PDCs provide the best
7	assurance of the building and efficiency of staff
8	design for units.
9	The opinion of the committee is that the
10	staff's SE report is sufficiently complete to
11	recommend that it be issued.
12	It is also recommended that this write up
13	serve as a record of the subcommittee meeting and an
14	ACRS letter report will not be prepared.
15	Again, recommendation only and, obviously,
16	we can proceed specific or general and any manner that
17	would be otherwise.
18	The main issue that came out of the
19	meeting, as I mentioned before, was related to the
20	functional containment.
21	And while, of course, this is a meeting on
22	X-energy, not necessarily the four, obviously, we
23	should kind of focus on, you know, exactly that.
24	At the same time, maybe more actions that
25	come out, we can talk about maybe alternative letter,
ļ	I

(202) 234-4433

	17
1	maybe on our observations on functional containment
2	PDCs in general.
3	And maybe well, I don't know how much
4	interest in, you know, in that particular one, there
5	might be, but certainly, PDC 16 caught our attention.
6	And given that we've seen the four design
7	centers now, we may want to write something.
8	But I wanted to open it up at this point.
9	My personal impression was this, I felt
10	like the application of Reg Guide 1.253 which brought
11	in the NEI 2107 framework which is just a kind of
12	attached on to the NEI 1803, you know, kind of
13	provided the kind of the anchor to beating the
14	expectations in Reg Guide 232 which is related to the
15	multiple barriers.
16	I thought they were very specific. You
17	know, they mentioned the fuel, you know, the particles
18	and the fuel, the pressure boundary specifically, I
19	think, in the tradition of MHTGRs.
20	They kind of covered the bases.
21	They did depart from the word multiple,
22	but in doing so, I felt their the specificity of
23	identifying the barriers was adequate.
24	You know, this staff in their SE, I could
25	read that, too, also acknowledged it and maybe even

(202) 234-4433

1 whether they were sensitive or not, kind of acknowledge the fact that multiple was missing, 2 but that they were satisfied that, indeed, it met the 3 4 multiple barrier standard. 5 So, with that, I'll open it up and maybe Tom wants to chime in since Tom, Walt, and I were 6 members, at least initially, on this little email and 7 8 _ _ I'd also ask Dave if he 9 CHAIR KIRCHNER: 10 would -- because Dave went through the NGMP experience which was really the basis for the SARRDLs concept as 11 functional containment as was eventually well as 12 embodied in the Reg Guides. 13 14 Maybe we could turn to Dave first --15 MEMBER MARTIN: Okay. CHAIR KIRCHNER: -- for the background. 16 17 MEMBER PETTI: So, the multiple thing doesn't bother me so much because I see multiple 18 19 values here. Saying the particle is somewhat short 20 From the NGMP days, we just say the particle 21 hand. had at least three barriers, depending on how you 22 count them. 23 24 CHAIR KIRCHNER: Right. 25 MEMBER PETTI: Right?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

18

19 1 Each of the coating layers and the kernel itself. 2 3 The kernel itself is a ceramic, is a 4 pretty darn good barrier for some of the fission 5 products. And then, you have the graphite. X-energy 6 7 says the pebble. It's a little different than 8 structural graphite. But there's diffusion coefficients for 9 10 both of them, so you can model it. It's not, you know, that big a deal. 11 And then, they have the coolant system 12 pressure boundary. 13 14 What they don't have is the building. 15 But NGMP was a 600 megawatt, a large 16 reactor. These are small reactors. 17 And so, yes, do you need that to take 18 credit for that? 19 20 Probably not. As you shrink the size, you know, this 21 whole functional containment study sits around with 22 the source term is at the site boundary. 23 24 And as you shrink the size, you should -the main new cladding, and that gets you some, you 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

```
www.nealrgross.com
```

	20
1	know, you can maybe get rid of the one barrier.
2	But the most that it was ever credited
3	for, it's not credited heavily.
4	And in NGMP, in fact, there was lots of
5	concern about how much to credit it. It had, you
6	know, was declared.
7	Furthermore, when you look at Xe-100,
8	which we haven't looked at in detail, but given its
9	size, it probably has peak temperatures and accidents
10	that are not as severe as an MHTGR.
11	So, that, you know, there's also the
12	details in the accident space that will influence what
13	that source term is.
14	So, you know, I don't, you know, they felt
15	they wanted to clarify, I mean, what multiple meant,
16	I guess.
17	VICE CHAIR HALNON: Dave, just one quick
18	question.
19	When I compare what you just said about
20	three barriers in the TRISO fuel and compare that to
21	what we're traditionally used to, which is the clad
22	RCS and containment building.
23	I have the question, is and what people
24	are used to seeing is three very distinct, separate
25	different manufacturing processes. You've got the
ļ	

(202) 234-4433

```
www.nealrgross.com
```

21 1 fuel plant in one area of the country, you have an RCS, different code, different material, then you had 2 3 a containment, same thing, different code, different 4 material. 5 Is the TRISO fuel manufacturing process such that you can't get a pebble or defects such that 6 7 all three of those barriers could have a single defect 8 problem with that that couldn't be -- may not be 9 detected? 10 MEMBER PETTI: Oh, no, I mean it is detected. I mean, that's --11 Yes, we have -- they have limits on the 12 defects, silicon carbide defect being probably the 13 14 most important. 15 But there are other defects and they all 16 characterize -- they all have limits and they're down 17 in the, you know, usually the 10 to the minus 5 rage. So, in your opinion, VICE CHAIR HALNON: 18 19 three barriers an equivalent level of is those containment, if you will, as the three barriers that 20 we're traditionally used to seeing because on the 21 different diversity that we have there? 22 MEMBER PETTI: It's at least two of them 23 24 to the -- compared to the traditional. VICE CHAIR HALNON: I'd hate to make it 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	22
1	simplistic
2	MEMBER PETTI: Yes.
3	VICE CHAIR HALNON: case out of it.
4	MEMBER PETTI: Yes.
5	VICE CHAIR HALNON: But that means that if
6	you reduce one barrier, now you're down to just one
7	barrier
8	MEMBER PETTI: Right, right.
9	VICE CHAIR HALNON: for the
10	containment.
11	MEMBER PETTI: And that's not I mean,
12	it's there's multiple barriers.
13	And this, you know, because there's a
14	functional containment, and I believe there will be a
15	mechanistic source term.
16	The hold up for the different isotopes is
17	different.
18	VICE CHAIR HALNON: You have to take into
19	consideration the different technology
20	MEMBER PETTI: Right.
21	And then, you know, silicon carbide is,
22	you know, critical for almost all of the
23	radionuclides.
24	And graphite is very important for cesium
25	and stratum which are strong dose contributors.
I	I

(202) 234-4433

```
www.nealrgross.com
```

	23
1	Right?
2	But iodine, which is the other big that
3	graphite until they just go through.
4	So, it's not a barrier there, so you get
5	all these caveats which, when the study gets put
6	together, they should be okay.
7	If we turn to Kairos, right, they had the
8	fuel as one barrier and then, they had their coolant.
9	Their coolant is an amazing barrier.
10	So, what they did was they went and was
11	were what gas reactor guys would describe as somewhat
12	cavalier, allowed for a tremendous amount of defects
13	and failures of their fuel in the reactor because they
14	have the strength of the second barrier.
15	And these things trade off in design
16	space.
17	And so, it's not surprising that we'll see
18	differences, you know, as they come in.
19	But the real question is, you know, it's
20	more complex than just that. It has to do a lot with
21	the source term which has to do with the size and the
22	site boundary and all of that stuff happening
23	together.
24	MEMBER BURKHART: Excuse me for
25	interrupting, the court reporter just has a message.
I	

(202) 234-4433

	24
1	I think he's new and if you could state
2	your name before you speak, at least for a little
3	while.
4	And please, get closer to the microphone.
5	It's when you sit back, it's difficult for him to
6	hear.
7	VICE CHAIR HALNON: Yes, this was Greg
8	Halnon was the questioning and Dave Petti was the
9	responder.
10	MEMBER MARTIN: And I will add, you know,
11	you start pulling the thread now, and this probably
12	comes as no surprise, but you know, as I was kind of
13	preparing for the meeting a couple weeks ago, and you
14	know, pulling the thread on the history, yes, it goes
15	back to the '80s. Right?
16	And the language that's even used in the
17	Reg Guides that were not so old go back, you know,
18	that these conversations have been done time and again
19	since the mid, late '80s, maybe farther back with per
20	se brain, you know.
21	But it's not a new topic, you know,
22	containment versus confinement debate, you know,
23	within
24	(Simultaneous speaking.)
25	MEMBER PETTI: did have a containment.
I	

(202) 234-4433

	25
1	And the fuel they had 10 to the minus 3 fuel quality,
2	so a tenth of a percent of the fuel had defects, you
3	know, but that's not the fuel
4	MEMBER MARTIN: Was that bi-cell, though?
5	Was that
6	MEMBER PETTI: No, that was tri-cell.
7	MEMBER MARTIN: It was an early version of
8	tri-sell?
9	MEMBER PETTI: It was carbide fuel. It
10	was highly enriched, but also it's a different means
11	and not made necessarily the same way.
12	So, the other thing, though, that's
13	important is that we always said in NGMP, GA would
14	always say, you cannot take credit just for the powder
15	cladding.
16	For at least a 600 megawatt thermal image
17	TGF, you will never meet the pads at 400 meters if you
18	only account for the particles, that even at what we
19	think is incredibly high quality, the dose is too high
20	and it's all driven by iodine.
21	So, you needed to take credit somewhere
22	else.
23	Again, 600 megawatts as you make them
24	smaller, the story will change and that's why it's
25	going to be really important to understand what the
	I

(202) 234-4433

	26
1	source term is as you move forward.
2	But similarly, any of the technologies,
3	whether it be, you know, TerraPower, I mean, there's
4	certain isotopes that you know that you've got to make
5	sure that they understood that's all understood.
6	MEMBER ROBERTS: This is Tom Roberts.
7	To some degree, the question on X-energy
8	is more philosophic than technical because what
9	they've done is, they've taken a principle with is
10	currently in the Reg Guide that you shall have
11	multiple barriers for functional containment and
12	define the approach they will take to meet that
13	requirement.
14	So, instead of stating the principle,
15	they're stating an approach that will meet the
16	principle which seems fine, except you wonder, now
17	that the principle is gone, whether there's some, you
18	know, downstream consequence of either somebody
19	leveraging this document, some other, you know,
20	applicant or X-energy themselves say, well, the
21	requirement was to have this fuel, not to meet the
22	multiple barriers criteria.
23	Like Bob said, we've seen four of these
24	PDC topical reports, two of them did not change the
25	language for the multiple barriers.

(202) 234-4433

27 1 The one we're talking about now, they changed the language, but they require, essentially, 2 3 what the underlying basis was for the multiple 4 barriers. 5 Then, we'll talk about it tomorrow which is, eventually, they took the language out to say, 6 7 yes, we're going to do whatever the LNP process tells that we need to do which is now even more general in 8 9 terms of not talking about any sort of deterministic barriers, but whatever the probabilistic approach 10 tells you you need. 11 And they will, in effect, have the same 12 architecture as very similar as X-energy with their 13 14 fuel choices. But it's just what's stated in the PDC is 15 the question of whether it should be stated as a 16 17 matter of principle or as a matter of this is exactly what we're going to do and not to state the principle. 18 19 So, that's the question I'd leave out 20 there. We -- this committee wrote a letter in 21 2018, as Bob alluded to in his comments, that had a 22 recommendation to always have some degree of, you 23 24 know, redundancy, independence, whatever with the containment barriers, that you should never be down to 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	28
1	just counting on one thing as your containment barrier
2	which is a deterministic type of criteria.
3	And whether you would allow a
4	probabilistic assessment to convince you that that's
5	not necessary.
6	I mean, it is a different question.
7	And that's a question that is not
8	currently on the table with the approaches intended by
9	these applicants, but it is, you know, on the path to
10	get there without stating the requirement for
11	redundance or multiple barriers and the PSC.
12	So, that's the issue I'd like to discuss,
13	whether that applies better for this one or tomorrow's
14	discussion we talked about, but it's something that's
15	what we're pursuing as a committee, whether the
16	statement of principle, you know, we think should
17	remain in the PDC regardless of the implementation.
18	MEMBER MARTIN: But maybe someone I
19	have had a question on this for some time, but the use
20	of general versus principle design criteria, what was
21	the intent of these two words?
22	I mean, I can see back in Appendix A, in
23	the '60s it provided for maybe a lot of design types,
24	you know, under the umbrella of light water reactors.
25	And the, here, for advanced reactors, we
I	I

(202) 234-4433

	29
1	have a different word here.
2	And I wonder maybe related to the question
3	of where, you know, how functional the criteria are
4	expressed, whether there is a nuance between the use
5	of the word general versus principle where we intended
6	to be more specific.
7	MEMBER PETTI: No, I just always saw it as
8	sort of a synonym, without because GDCs mean
9	something in an LWR context.
10	The advanced reactor guys wanted a
11	different terminology.
12	I may mean the same thing at the deck
13	point, right? But it looks different and it flows
14	different because they're very into top down.
15	That's how you make it technology neutral
16	and you go with the functional code.
17	So, that I never thought that there was a
18	difference there.
19	VICE CHAIR HALNON: I think they needed to
20	distinguish between the old way and new way of doing
21	things.
22	But there's also another new way which
23	comes back to the philosophical issue, they're seeing
24	the designs
25	In the past, you had a very distinct set
ļ	

(202) 234-4433

	30
1	of general design criteria. You designed your plant
2	to those to make sure that you had the redundancy and
3	single failure proofs and everything else you needed.
4	Today, what we're seeing is sort of an
5	upside down approach where the PDCs are being modified
6	to meet the design rather than the design being met to
7	meet the PDC.
8	And that's
9	MEMBER PETTI: or at least iterated.
10	VICE CHAIR HALNON: Iterated.
11	And it's I don't think that's wrong.
12	I think that's kind of the way it's been the construct
13	is driving the folks to do this.
14	Paradigm in our mind, we've got to get
15	straight that that's not wrong, but we have to make
16	sure that it's effectively meets the need for the
17	safety of the plant now.
18	In this case, and I think since Larry just
19	walked out, Rob, could you guys take PDC 16 and 26 for
20	the four design criterias? Put them next to each
21	other for us and show us the deviations and see let
22	us just take a look at those to see all together
23	whether or not we see a philosophical trend or a
24	physical trend that we need to continue to talk about.
25	I think that would be useful for us.
	1

(202) 234-4433

	31
1	MEMBER MARTIN: I mean, I can pull it up.
2	I have it on my scree here.
3	VICE CHAIR HALNON: All four design
4	centers?
5	MEMBER MARTIN: You're not
6	VICE CHAIR HALNON: Oh, not all four, no
7	just no, I'd like to see all four next to each
8	other just so that we can see how these are trending
9	one way or the other, fewer barriers, changing
10	language.
11	Just, you said, Tom, there's a couple of
12	them had not changed.
13	So, I'd like to see it in a chronological
14	way, which one was first, second, third, as we're
15	iterating through these things.
16	Because I think what we'll see is, you
17	know, it's the world of positive plagiarism, you know,
18	what's been accepted before is something where you
19	start with and then, you work from there on these
20	designs.
21	So, that would be useful for us to see
22	that and I think as we go forward, keeping that up to
23	date.
24	And we may expand it to more of the PDC,
25	but those two are right now the ones we're talking
	1

(202) 234-4433

	32
1	about.
2	MEMBER MARTIN: Well, I would say what X-
3	energy did on 16, it's different.
4	Like I mean, in the sense, you know, I
5	think their main goal was to adapt the Reg Guide, you
6	know, the recent 253 Reg Guide, which the others have
7	not done.
8	And so, in doing so, they got a little
9	more specificity than the so, I throw it up there
10	real quick.
11	So, you can see the specificity in their
12	statement, which I think is unique among the four that
13	we have seen.
14	And to the point of uniqueness, it's the
15	combination of the required functional design criteria
16	and the complementary which they said to my question
17	as a really in practice, any difference with how you
18	approach demonstrating these criteria is no, not
19	really, they're segregated a little bit by the events
20	that they'll use to basically demonstrate the
21	criteria.
22	MEMBER ROBERTS: I want to take a shot at
23	answering Bob's question to see if I got it right.
24	My understanding is that the PDCs have
25	always existed and the requirement for light water
l	I

(202) 234-4433

	33
1	reactors to start with the GDCs.
2	And you had to meet the GDCs and
3	incorporate them into your PDCs for your design. That
4	may be a super set of them and may be identical, it
5	depends on the details of the reactor.
6	And then, when the advanced reactors came
7	about, the NRC, I wrote that Reg Guide 1.232, which
8	was the rough equivalent of the GDCs, but there was
9	still an expectation that the individual applicants
10	would take the ARDCs, the SFRDCs and the CRGRDCs were
11	the three kind of pick lists of substitute for general
12	design criteria.
13	And then, tailor them to their plan to be
14	the PDCs.
15	I don't think anything's materially
16	changed, you know, over the years, I've always had to
17	start with some set of criteria and show how you met
18	them and add them, add whatever you needed to to fully
19	cover your design.
20	I got that right? I see some heads
21	nodding.
22	MEMBER MARTIN: Well, I was hoping, you
23	know, a response kind of like that because there's,
24	you know, they're not just, you know, GDC or PDC,
25	there's always a tier of criteria at the top levels is
ļ	I

(202) 234-4433

	34
1	what the conversation is between the design center and
2	the staff.
3	And then, when you get into the weeds on
4	other topicals, these other criteria that support the
5	GDC or, in this case, the PDC, you know, are more
6	specific and, you know, and collectively.
7	Then they rise up to address the more
8	general or principle design criteria.
9	We will, you know, we will see criteria or
10	requirements in other topical reports that ultimately
11	percolate up to these high level ones.
12	I think what we might be seeing with the
13	new reactors is that maybe a step down because they
14	know, you know, they know what their design is and
15	they can be more specific.
16	And so, they're highest level design
17	criteria is going to be more specific than we're used
18	to seeing with, say, a GDC or maybe even some of the
19	other designs, you know, that came prior to.
20	But this Reg Guide, the Reg Guide 1.253.
21	MEMBER PETTI: Some of the reorganization
22	in the X-energy stuff sort of made sense.
23	You know, when there was inspection stuff
24	in five different places, they pulled it all into one.
25	I mean, some of that stuff, you can
1	1

(202) 234-4433

	35
1	imagine, down the road from an efficiency perspective,
2	demonstrating compliance with it, it'll just make the
3	story easier than, you know, having to pick at five
4	different GDCs.
5	So, you know, but when I went through
6	that, I went I mean, it made me wonder why that
7	wasn't kind of the Reg Guide at that stage.
8	You know, I mean, there was a lot of time
9	to develop.
10	MEMBER MARTIN: They put a lot into that.
11	MEMBER PETRI: Yes, they did and, yet
12	MEMBER SUNSERI: This is Matt Sunseri.
13	I guess, interesting discussion we're
14	having. I've lost focus on what we're trying to
15	achieve, though, here.
16	What are what's our purpose?
17	MEMBER MARTIN: Well, I think our purpose
18	is to decide whether we, you know, kind of accept,
19	basically, the recommendation from the subcommittee
20	that the summary was sufficient or do we consider
21	further action, I think, on the subject of functional
22	containment.
23	And, you know, maybe with the tone of
24	informing the staff that maybe we there should be
25	more specificity or maybe certain guardrails that need
	I

(202) 234-4433

	36
1	to be highlighted.
2	I don't know, but I think that's up to the
3	committee to decide whether we look at functional
4	containment in a very specific sense.
5	Obviously, in doing so, I think we have to
6	look at four designs centers that we've seen and kind
7	of, you know, pull lessons learned from the four.
8	I think would be being a little careful
9	because this is X-energy, right, fundamentally and
10	that we should stay focused a bit on that, but
11	bringing insights from the other experiences is
12	worthwhile.
13	MEMBER SUNSERI: So, I guess I would
14	that I thought our whole objective of the organization
15	or the way the licensing process works is to be able
16	to tailor this to your specific technology and be
17	inclusive of everything.
18	And we had a good discussion at the
19	subcommittee meeting and I thought we were satisfied
20	that this applicant had met the criteria at that
21	point.
22	So, I thought we were ready to move on
23	despite the fact that there may be some language
24	complexities here, technically, what you're doing is
25	right.
ļ	I

(202) 234-4433

	37
1	MEMBER MARTIN: Yes.
2	MEMBER SUNSERI: Is that an actual
3	statement?
4	MEMBER MARTIN: Yes, I guess, to kind of
5	move this slightly in a different topic, but still be
6	on functional containment, one issue I kind of had was
7	the deviation from SARRDL to something more kind of,
8	you know, not defined so well, and that was just the
9	functional containment design limits.
10	I thought it had ambiguity that you needed
11	need to be rectified.
12	I just didn't like, you know, and SARRDLs,
13	I guess now, you know, I think we all kind of
14	understand what that's trying to do.
15	And when you kind of use a new term there
16	without, you know, I think good definition, it doesn't
17	help the conversation or it leaves the kind of an open
18	item, you know, to be resolved and, you know, other
19	engagement.
20	And maybe at this state, it's fine. But
21	SARRDLs pops up, you know, time and again in the Reg
22	Guide and it just wasn't in this PDC as such.
23	You know, except, of course, we talked
24	about this, well, okay, because could SARRDL, but it
25	might include other design limits, which is fine, but
Į	1

(202) 234-4433

	38
1	ultimately, SARRDLs kind of go back to all those
2	SAFDLs or whatever you want to consider.
3	MEMBER PETTI: So, this is Dave.
4	Did they not commit to SARRDLs, thinking
5	it is a lower level issue?
6	Or did you push the SARRDLs in the
7	subcommittee?
8	CHAIR KIRCHNER: Can you show the
9	MEMBER MARTIN: So, they used, okay, not
10	limits
11	CHAIR KIRCHNER: Could you go to I think
12	it's PDC Number 10 of the SARRDLs?
13	MEMBER MARTIN: Like I said, the point I
14	was making here is that, you know, I mean, this goes
15	back to the Reg Guides.
16	And they used limits instead of
17	conditions, so I'm not sure if there's any, but the
18	subtlety is there.
19	I don't know why it does that, I can't
20	seem to
21	PARTICIPANT: We can't see it now.
22	MEMBER MARTIN: Yes, exactly.
23	There we go, that's a little better just
24	so you can see the words.
25	So, yes, SARRDLs are there, but I just,

(202) 234-4433

	39
1	you know, the conversation where on and maybe this
2	is just me, but on 16, you know, we don't have
3	SARRDLs, we have just something kind of
4	And I'm not sure what the subtlety of
5	conditions versus limits are.
6	It seems in practice and I have little
7	experience on practice.
8	It's the SARRDL that we focus on for
9	functional temperature and functional containment and
10	criteria related to meeting SARRDLs goes back to also
11	some say traditional SAFDLs.
12	CHAIR KIRCHNER: So, Dave, when you
13	this is Walt Kirchner.
14	Dave, when you when NGMP first was
15	developing these, then I presume you mentioned, you
16	know, mechanistic source term.
17	So, behind this then, the test really was
18	the dose at the boundary was within the 10 CFR 50 or
19	52 limits.
20	MEMBER PETTI: Well, usually that was
21	easily met. It was usually the pads, the EPA pads on
22	rem at the I mean, we certainly had flat as the
23	most stringent dose requirement.
24	But here, I mean, SARRDLs are SARRDLs
25	have less have to do with knowing that your
ļ	

(202) 234-4433

```
www.nealrgross.com
```

	40
1	functional containment is intact.
2	CHAIR KIRCHNER: Intact, right.
3	MEMBER PETTI: Right?
4	You're measuring radionuclides in the
5	helium, and that tells you how good the fuel is,
6	whether something has failed or not above what you
7	assumed in your SARRDL.
8	CHAIR KIRCHNER: But then, in
9	implementation, then there was a tech spec limit
10	MEMBER PETTI: Correct, it will be tech
11	specs, absolutely.
12	CHAIR KIRCHNER: that you worked
13	against and then
14	MEMBER PETTI: Right.
15	And in
16	CHAIR KIRCHNER: if you passed that
17	threshold, then you
18	MEMBER PETTI: Right.
19	CHAIR KIRCHNER: effectively had to
20	some remedial action
21	MEMBER PETTI: Right.
22	CHAIR KIRCHNER: on some documents.
23	MEMBER ROBERTS: Yes, Bob, let me try
24	this.
25	This confused me, too.
I	I

	41
1	The SARRDLs are tied to ALOs and normal
2	operation and the PDCs.
3	Containment is not there for ALOs or
4	normal operations, they're for accident conditions.
5	But what Dave said earlier is, the key
6	parameter is dose at the whatever boundary you're
7	calculating dose at.
8	So, I think there's an either unstated or
9	implied limit in PDC 16 which is the dose of the
10	boundary, but the SARRDL concept wasn't intended to
11	apply to containment type of assessments.
12	Is that right, Dave?
13	MEMBER PETTI: Yes, I think you're right.
14	MEMBER ROBERTS: So, I think that's where
15	the SARRDL was there to come up with a way to estimate
16	ALO consequences for a fuel type that doesn't really
17	have, you know, fuel limits that are challenged by
18	ALOs.
19	And so, it gave you something meaningful
20	to calculate for ALOs, at least that's my
21	understanding.
22	MEMBER MARTIN: So, you feel that the
23	functional containment design conditions or limits are
24	kind of more restrictive, covering a broader set of
25	events, not necessarily beyond design basis as the
I	1

(202) 234-4433

	42
1	focus, the tradition of GDCs kind of stopped at
2	design.
3	CHAIR KIRCHNER: If I could this is
4	Walt Kirchner.
5	Just enter in here to Matt, at a higher
6	level, I think one of the important things as we look
7	at these submittals, these TRs on NMPDC, is to
8	remember the important role that
9	Let me go back to GDCs, and if you think
10	through how the agency the staff goes through
11	reaching a reasonable assurance conclusion, it's by
12	and large, it's not limited just to the GDCs, but one
13	of the important steps in making that finding is to
14	test the design against the GDCs to determine adequacy
15	of the design.
16	So, the ensemble of the GDCs is an
17	important aspect in reaching the reasonable assurance
18	that there's no undue risk to the health and safety of
19	the public.
20	So, but it's the entire set of GDCs and,
21	hence, you will what we see, we take it for
22	granted, but it actually provides structure for the
23	staff's review and they systematically go and make an
24	assessment.
25	In 0800, the standard review plan or a, I
Į	1

(202) 234-4433

43 1 think it's a tailored review plan, essentially, systematically used the GDCs as the basis for making 2 a determination of adequacy of the safety systems, et 3 4 cetera. 5 So, in the course of reviewing these, what I have been looking at is, are they -- this is perhaps 6 7 not the best word -- but are -- when you come down 8 from, as Tom said earlier, from the higher set of 9 criteria to tailoring to the specific design, do you 10 still fully meet the intent that was there in the Reg Guide to being with for that particular safety 11 function? 12 And that's the -- so, I'm looking at these 13 14 and you say what's in a word? If you strike the plural from barriers, so 15 you -- if there aren't multiple barriers for a 16 functional containment, that would be of concern 17 because the whole idea is to provide a robust system 18 19 -- a containment system that isn't reliant on just one single barrier to accomplish the function. 20 And we were pretty explicit about this in 21 our letter report back in 2018. 22 And if I -- if you'll indulge me, I'll 23 24 just read this. functional 25 Item Number Four, that а

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	44
1	containment should include multiple barriers as a
2	defense in depth feature that and that they should
3	be minimally dependent on each other and diverse in
4	nature.
5	And I think the latter clause was you
6	didn't want to have consequential failure of the
7	barriers.
8	So, there that introduces some
9	diversity and the concept of multiple barriers.
10	MEMBER MARTIN: Right.
11	And I think and maybe I'm not
12	remembering this correctly, but the whole concept of
13	the TRISO fuel enables the concept of a functional
14	containment because of the multiple inherent barriers
15	in the design of those particles.
16	And then, when you combine that with
17	energy that's available to distribute the
18	radionuclides much different than a PWR at 1,000
19	pounds pressure and 500-something degrees.
20	Then, you know, these are reasonable
21	expectations.
22	And I thought we had come, you know, back
23	to this specific example how we could come to the
24	conclusion that this design met that criteria.
25	That's all I was saying. So, I'm not
	I

(202) 234-4433

	45
1	disagreeing with your little optical umbrella that you
2	painted here.
3	I think it is our responsibility to make
4	sure that we've done this review.
5	But it seems to me that we have done that
6	review, that's all I'm saying.
7	MEMBER PETTI: I think the issue gets much
8	foggier as we move away from the concepts for which
9	functional containment were developed which is gas
10	reactor, right, eVinci, there's some real uniqueness
11	there.
12	Let's talk about a dissolved fuel system.
13	We know the multiple barriers, you know,
14	I mean, then things get much, much cloudier on the
15	spectrum.
16	MEMBER MARTIN: I think everyone would
17	agree that this should be the easy one. The four
18	we've seen, this should be an easy one.
19	MEMBER ROBERTS: Yes, Tom Roberts.
20	I don't know if we'll get to the
21	comparison of the four topical reports, that cracking,
22	that's about a while ago. We can talk about that
23	tomorrow.
24	But I think it's more of a general
25	question of looking at any of the trend and the types

(202) 234-4433

1 of language and how it's potentially setting precedent for the next one that may be, like Dave said, 2 is 3 considerably different from it was when it was 4 evaluated before, but out of the precedent is well, you just go, use LMP and LMP tells you, you know, 5 what's good enough in terms of containment, which is 6 7 certainly a part of it. But that doesn't -- it doesn't seem like 8 9 all of it. But I agree with you, Matt, that the X-10 energy, they've simply described how they're going to 11 meet the requirement in place of the requirement. 12 It's, from a technical perspective, kind 13 14 of hard to argue, but the adequacy because whether we 15 say have multiple barriers to the exact language of, you know, MHTGR 16 or what they've written, they'll 16 17 get to the same place. So, it's really kind of setting up the 18 19 discussion for your expectation in general. The other technical question was 26. 20 You know, you want to go to that one, Bob? 21 I wasn't sure I understood the issue in 22 26. 23 recollection from the subcommittee 24 Mv meeting was that there was a staff slide that implied 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

46

	47
1	that the natural temperature feedback was the backup
2	means. And I think staff agreed that that slide was
3	wrong.
4	(Simultaneous speaking.)
5	MEMBER ROBERTS: And you see in the slide
6	
7	MEMBER MARTIN: So, let's just recall that
8	some of this was in closed session, right? So, just
9	
10	MEMBER ROBERTS: Okay.
11	If you assume the slide is wrong and it
12	seems like the text of the of their recommended PDC
13	is just fine.
14	So, I'm wondering if there's any if
15	you're seeing any remaining issue.
16	MEMBER MARTIN: Oh, absolutely not.
17	You know, we got the clarification of
18	there's specific design and strategy in the closed
19	session.
20	And I think that that might have been
21	where we got the acknowledgment that maybe that the
22	slide was incorrect, the staff slide or not specific
23	enough.
24	MEMBER PETTI: Well, being that, you may
25	not be able to answer the question.
ļ	l

(202) 234-4433

	48
1	The second diverse means of shutdown is
2	not the inherent temperature coefficient?
3	MEMBER MARTIN: Yes, that's correct.
4	MEMBER PETTI: Yes, that would be
5	additional defense in depth.
6	MEMBER MARTIN: Right.
7	And that was, you know, the inherent
8	really what addresses is 11 PDC 11 I believe that's
9	
10	MEMBER PETTI: That's a big I mean,
11	it's been an issue with gas reactors for a very long
12	time, whether they could do that and not need a second
13	system.
14	MHTGR always had a second system.
15	MR. MOORE: To the members, this is Scott
16	Moore, the Executive Director.
17	We can prepare the side by side comparison
18	of the four PDCs for tomorrow morning, I think.
19	We're not going to have that during
20	today's discussion.
21	CHAIR KIRCHNER: Thank you, Scott.
22	MEMBER PETTI: And again, I would just,
23	you know, say again that this is all iterative, right?
24	I mean, if you look at NEI 1804, you look
25	at LMP, you go through and you may have to come back,
	I

(202) 234-4433

	49
1	that once you've done your PLA and you have to adjust
2	things and change things.
3	I mean, designs go through iterations, we
4	just tend not to see them.
5	MEMBER MARTIN: Right, right.
6	MEMBER PETTI: Right here at ACRS, that's
7	all in the background.
8	While here, all this stuff is looped with
9	it so
10	VICE CHAIR HALNON: And I think that
11	this is Greg that's part of the issue is the
12	design's iterative, but the PDC should not be because
13	they set the design criteria.
14	MEMBER PETTI: But it's hard to see what
15	the right propagate
16	(Simultaneous speaking.)
17	VICE CHAIR HALNON: And that was my point
18	earlier, is that as we come through the designs, that
19	might have a better way of doing it to change this
20	language in the PDC, which means I have to go back
21	through it.
22	So, that whole aspect is we have to be
23	nimble enough to be able to accept that when it makes
24	sense and it's good for safety and not fall back on
25	our old ways of thinking on some of these.
l	I

(202) 234-4433

1	But so, on the table right now is a
2	question. Do we stay with the subcommittee
3	recommendation to enter and we can play with the
4	words if you want to, with the summary that Bob read
5	or do you think we need to write a letter that
6	encompasses the bigger question?
7	I would offer up, there's another option
8	which is to accept the subcommittee's recommendation

9 at this point and open up a topic based on the action 10 to continue to watch these critical PDCs that are 11 changing in time and having a potential meeting down 12 the road where we have determined that there is now a 13 bigger question that is erupting that may cause us a 14 safety concern.

15 At this point, I haven't heard a safety 16 concern. I've heard a lot of questions and a lot of 17 concerns from the standpoint of trends and whatnot.

But until we get the data in front of us, we don't really know we see maybe a couple more PDCs, we may not see a trend.

I think it's a fruitful discussion to have philosophically, but, at this point, my recommendation, and I'll put the motion, you know, I guess Walt has to put the motion, but I would say, make a motion that we accept the subcommittee write-up

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	51
1	and trend and track and maybe, Bob, you and Tom,
2	since you've taken an interest in this, kind of take
3	the lead on looking at these two PDCs and how they are
4	trending down the road. And then, also make decide
5	whether or not we need to expand it to other things as
6	well.
7	That would be my motion to accept it and
8	then open up the top kind of a small task with you two
9	guys watching the trend in the PDCs.
10	CHAIR KIRCHNER: So, we have a motion on
11	the table.
12	Do we have a second?
13	MEMBER SUNSERI: Yes, I would second that.
14	CHAIR KIRCHNER: Someone seconds?
15	MEMBER PETTI: Matt did.
16	MEMBER SUNSERI: Matt Sunseri, second.
17	CHAIR KIRCHNER: So, discussion?
18	Vicki, you raised your hand?
19	MEMBER BIER: Yes, I agree with Greg's
20	recommendation.
21	It seems to me that there are not a lot of
22	serious issues with the PDCs that we just reviewed in
23	subcommittee, but that the general trend of whether we
24	are on a slippery slope of accepting things that
25	might, you know, reduce safety margin, you know,
ļ	I

(202) 234-4433

	52
1	deserves some awareness going forward.
2	So, I think that's a sensible manner in
3	which to handle this.
4	CHAIR KIRCHNER: Any other
5	MEMBER SUNSERI: Yes, this is Matt again.
6	I would just following up with Greg's point, I
7	agree with, you know, trending the lessons we learned
8	from the various applications we're reviewing.
9	And I just want to be cautious not to undo
10	all the good work that was done to create the PDCs for
11	the advanced designs because the idea was to move away
12	from a reactor specific set of GDCs like the PWR ones.
13	And if we try to force the language back
14	to make them all look the same, then we will have the
15	same problem as we had with the light water reactors,
16	is that you have to have all the, you know, take all
17	these exceptions to the GDCs when the new things come
18	around.
19	So, I just want to be mindful that, you
20	know, we don't inadvertently through wanting to retain
21	institutional knowledge or our decisions that we, you
22	know, create a bad situation going forward.
23	That's all.
24	CHAIR KIRCHNER: Well, one thing that I
25	think we should be looking at, though, is the
	I

(202) 234-4433

53 1 perception that there was a lot of work put into developing those appendices to that Reg Guide. 2 3 And there was a lot of thought and there 4 was a lot of experience behind those, particularly for 5 the MHTGR, but also for the sodium fast reactors that codified a lot of experience that the agency had in 6 7 reviewing earlier designs. And so, when the applicant has -- it's 8 9 just quidance that's understood -- but if there is a 10 deviation to accommodate the specifics of a design, one should be asking some hard questions in terms of 11 justification for why there is this variance from, 12 let's just pick Appendix A of 1.232 to start with, 13 14 which was meant to be just what you said, Matt, 15 technology kind of neutral or inclusive. And by codify -- but experience had, you 16 17 know, have been accumulated over time looking at the development of surrogate general design criteria for 18 19 advanced reactors. And what I've seen is that, yes, 20 the changes appear to be justified. 21 Of course, we're in the early part, 22 we haven't reviewed the details of the design. So, we're 23 24 kind of a little bit under informed, I would say. we're looking at these, 25 So, so, I'm

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

54 1 thinking, does the ensemble, the totality of these 2 PDCs provide a level of safety, if you will, that is is required of 3 comparable to what the current 4 generation of LWRs? 5 The advanced reactor policy statement is pretty explicit on some of these things. 6 7 It said, regarding advanced reactors, the Commission expects, as a minimum, at least the same 8 9 degree of protection of the environment and public 10 health and safety and the common defense and security that is required at the current generation light water 11 12 reactors now. So, from my perspective, the PDCs are an 13 14 important first step and demonstrating that the concept is going to provide and comparable or, what is 15 the worry again that I just -- the same degree of 16 protection as is provided with the LWR fleet. 17 And that's primarily derivative of -- it's 18 19 not just the general design criteria, it's a lot of other things. 20 But its' very important first step. 21 So, that's my concern at a high level that 22 23 in the tailoring, Matt, that there's not a dilution of 24 the fundamental objection of that particular 25 requirement.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	55
1	You know, and 26 is and there are a few
2	key ones, 10, 16, and 26 because they get at the
3	basic, the three basic safety functions, essentially.
4	When you think about it, it's, you know,
5	we've got 26, is controlled reactivity.
6	And you know, the fuel 10 and 16 bear on
7	the fission product barriers.
8	And then, the others, and one way or
9	other, of course, need to be tailored, but it's
10	control of decay heat.
11	MEMBER MARTIN: I mean, I know we're in
12	theory in discussion from the motion, maybe I should
13	ask this as a question rather than an observation.
14	So, with light water reactors, you, of
15	course, you have the general design criteria, they
16	have a hole, you know, regulatory framework that would
17	just establish for LWRs and ultimately, you know,
18	people fall back to NUREG 0800 as, if we follow NUREG
19	0800, we meet all the GDCs.
20	But you don't have, at least in my
21	experience as someone just explicitly tracing work,
22	you know, from, all right, I do this analysis. It's
23	addressing this particular GDC and you see it map all,
24	you know, you see how it maps back to, you know,
25	Appendix A.
	1

(202) 234-4433

	56
1	There's a lot of similarity and there's a
2	lot of differences between the new reactors and light
3	water reactors.
4	What I wonder may be missing in regard to
5	PDCs is some, you know, and maybe in other Reg Guides
6	where it says, you really need to have that
7	traceability in all the documentation so it doesn't
8	get lost because we don't have a NUREG going on. We
9	don't have settled law on everything that is X-energy
10	or TerraPower or, you know, et cetera, et cetera.
11	Some effort needs to be made by the
12	applicant to say, I do this work to meet these
13	criteria. And you can trace it all our documents.
14	VICE CHAIR HALNON: Just real quick, Bob,
15	and all due respect, the PSARs in each of the sections
16	have this satisfies PDC, empty spot, empty spot, empty
17	spot.
18	So, if you in each of the sections of
19	the PSAR does map.
20	Now, it may not be directly as direct as
21	what you're saying, but it is there is a conscious
22	effort to show PDC and this what meets it.
23	MEMBER MARTIN: For LWRs.
24	VICE CHAIR HALNON: No, for the for
25	what we've been looking at.
Į	I

(202) 234-4433

	57
1	MEMBER MARTIN: You mean like in the Regs?
2	So, Reg Guide the 233 that
3	VICE CHAIR HALNON: Well, I may go back
4	and forth, didn't Kairos, you won't have this, does
5	this satisfy PDC something.
6	MEMBER MARTIN: So, they were sensitive,
7	you know, but are they doing it because they know
8	that's how you that's the best way to present the
9	information or are they doing it because, you know,
10	somewhere they a seasoned licensing manager will
11	know to do these things. Right?
12	So, there's a difference between, you
13	know, being good at your job and, you know, following
14	instructions. Right?
15	And that's what I'm saying is that, do you
16	need to have the specificity in the Reg Guides to say
17	that you, you know, we expect that this kind of thing
18	because before it was kind of understood if you're
19	following NUREG, you know, 0800, that you were
20	meeting, you know, all the GDCs.
21	That's my point is that it's not in black
22	and white.
23	Someone that's done this over and over
24	again I snot going to know to do that.
25	New reactors, you're going to have a
I	1

(202) 234-4433

	58
1	different maybe different path to get to show
2	that traceability.
3	MEMBER ROBERTS: Okay, if I could comment
4	on the motion?
5	I agree with Greg. I agree with Matt.
6	I think both of them are expressed, you
7	know, important concerns that shouldn't be tied to the
8	language that's in the current Reg Guide DCs of the
9	Appendix A for technology that doesn't apply to it.
10	But it all starts with the principle and
11	then, deriving from that principle and whatever the
12	language that derives from the principle ought to be
13	clear to, you know, trace to the principle is, which
14	I think we get there with this one.
15	So, I'm not very concerned with the E-
16	energy PDC document.
17	So, you know, I'm going to agree with the
18	motion.
19	The only caveat is, I think there's some
20	parts of the summary report that probably ought to be
21	tweaked. I don't know what your right is in terms of
22	making comments to Bob and then coming up with some
23	mutually agreed upon version to present tomorrow or
24	what
25	CHAIR KIRCHNER: Yes, yes, can you
I	I

(202) 234-4433

59 1 MEMBER ROBERTS: But I would, I'd like the chance to, you know, have some input into the write 2 3 up. 4 CHAIR KIRCHNER: Sure, can you --5 MEMBER MARTIN: We'll do that tomorrow 6 anyway. 7 CHAIR KIRCHNER: Yes. 8 Can you distribute that to everyone? If there's no --9 10 Are there any -- we've already showed that so there's no proprietary restrictions. Okay. 11 So, all right, we have a motion on the 12 table and we've had discussion. 13 14 All those in favor? 15 Vesna, are you with us? 16 MEMBER DIMITRIJEVIC: Yes, and I am in favor. 17 Thank you very much. CHAIR KIRCHNER: 18 19 Okay, with that, I think we are finished with the morning session. 20 Any other comments? 21 (No response.) 22 23 CHAIR KIRCHNER: We will be engaged at 1:00 and we will have the Seabrook informational 24 presentations at that time. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

```
www.nealrgross.com
```

	60
1	Okay, thank you, everyone.
2	For the court reporter, we will sign off
3	now and come back on at 1:00 Eastern Time.
4	(Whereupon, the above-entitled matter went
5	off the record at 9:40 a.m. and resumed at 1:00 p.m.)
6	CHAIR KIRCHNER: This is the afternoon
7	session of the first day of the 718th Meeting of the
8	Advisory Committee on Reactor Safeguards. I'm Walt
9	Kirchner, Chair of the ACRS.
10	The ACRS members in attendance in person
11	are Ron Ballinger, Vicki Bier, Greg Halnon, Craig
12	Harrington, Robert Martin, Scott Palmtag, Dave Petti,
13	and Thomas Roberts. Matthew Sunseri has recused
14	himself from these discussions due to a potential
15	conflict of interest.
16	We also have Vesna Dimitrijevic online
17	with us.
18	Good afternoon, Vesna.
19	Consultants attending, I believe
20	MEMBER DIMITRIJEVIC: Good afternoon.
21	CHAIR KIRCHNER: thank you are
22	Dennis Bley and Stephen Schultz.
23	If I've missed anyone, please speak up
24	now.
25	Kent Howard of the ACRS staff is the
	I

61 1 Designated Federal Officer for the full Committee 2 meeting this afternoon. And I note that we have a quorum for our meeting. 3 4 During this second session today, the 5 Committee will receive an informational briefing and update from Region I staff on the status of the NRC's 6 7 oversight of the alkali-silica reaction, commonly 8 referred to as ASR, at the Seabrook Station. 9 And now I'll just go on to make the 10 following note that the ACRS was established by statute and is governed by the Federal Advisory 11 The NRC implements FACA in 12 Committee Act, FACA. accordance with its regulations found in Title 10 Part 13 14 7 of the Code of Federal Regulations. 15 Per these regulations and the Committee's Bylaws, the ACRS only speaks through its published 16 17 letter reports. Therefore, note that all member comments should be regarded as only the individual 18 19 opinion of that member and not a Committee position. All relevant information related to ACRS 20 activities, such as letters, rules for meeting 21 participation, and transcripts, are located on the NRC 22 public website and can be easily found by typing About 23 24 Us ACRS in the search field on NRC's homepage. The ACRS, consistent with the Agency's 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	62
1	value of public transparency in regulation of nuclear
2	facilities, provides opportunity for public input and
3	comment during our proceedings.
4	<mark>I note today we have</mark> C-10, a public
5	interest group, with us to make a presentation later
6	in the session. Other than C-10, we have received no
7	written statements, comments, or requests to make an
8	oral statement from the public, but we will set aside
9	time at the end of this meeting for that purpose.
10	The ACRS will gather information, analyze
11	relevant issues and facts, and formulate proposed
12	conclusions and recommendations, as appropriate. A
13	transcript of the meeting is being kept and will be
14	posted on our website.
15	When addressing the Committee,
16	participants should first identify themselves and
17	speak with sufficient clarity and volume so that they
18	may be readily heard. If you're not speaking, please
19	mute your computer on Teams or your phone by pressing
20	star-6.
21	Please do not use the Teams chat feature
22	to conduct sidebar discussions related to the
23	presentations. That is limited to the use of
24	reporting IT problems.
25	I go on to ask everyone to mute any
ļ	I

	63
1	electronic devices, put them in silent mode, and point
2	out for our presenters today that these microphones
3	that we're using are rather unidirectional. So you'll
4	need to speak directly into the front of the
5	microphone to be heard online and as well by our court
6	reporter.
7	With that, I am now going to turn the
8	Committee's deliberations over to our Plant Operations
9	Subcommittee Chair, Greg Halnon, and Co-Chair Ron
10	Ballinger.
11	Greg, go ahead.
12	VICE CHAIR HALNON: Thank you, Chair
13	Kirchner. The ACRS has been involved with this topic,
14	which is unique to this nuclear plant, since 2018.
15	After being briefed on multiple occasions
16	by members of the NRC staff and the Seabrook licensee
17	staff, all with ASR expertise, the ACRS issued letters
18	to the Commission regarding the ASR-related license
19	amendment and issuance of a renewed license for
20	Seabrook with two separate letters.
21	Most recently, the ACRS last met with the
22	staff on April 27, 2022, when they provided an update
23	on the status of ASR at Seabrook and on the Seabrook
24	licensee's implementation of its ASR Monitoring
25	Program since that program's establishment by the
Į	

(202) 234-4433

www.nealrgross.com

	64
1	license amendment in 2019.
2	As an independent advisory committee, the
3	ACRS continues to engage the NRC staff and others with
4	ASR expertise on this issue as appropriate, with the
5	goal of advising the Commission accordingly.
6	Today the Committee will hear from the NRC
7	staff, including Region I staff and inspectors, to
8	discuss the most recent staff evaluation of the
9	progression and impacts of the ASR phenomenon at
10	Seabrook.
11	We will also hear, as Chair Kirchner
12	mentioned, from C-10, a public interest group that has
13	been following this issue very closely for many years.
14	The committee are focused on the overall safety in
15	Seabrook Station and how the ASR situation is being
16	managed.
17	At this time, the Committee will hear from
18	the staff and others, and it will discuss how to
19	proceed in the future.
20	This could include the Committee writing
21	a letter report on this topic with any relevant
22	recommendations to the Commission. There is not yet
23	any schedule for such a letter report. The Committee
24	will discuss next steps at the conclusion of this
25	meeting.
ļ	1

(202) 234-4433

	65
1	I'll ask Member Ballinger, do you have any
2	other opening remarks?
3	MEMBER BALLINGER: No, that's fine. Thank
4	you.
5	VICE CHAIR HALNON: With that, I would
6	like to turn over the presentation to the NRC staff,
7	specifically <mark>Mel Gray,</mark> Branch Chief, Engineering
8	Branch 1, Region I.
9	Mel?
10	MR. GRAY: Thank you.
11	Thank you, Chair Kirchner and members of
12	ACRS for this opportunity to be here today on behalf
13	of the folks who have traveled from Region I Office of
14	the NRC with me, and our partners in the NRR Office
15	that are here today also.
16	My name is Mel Gray. I'm Branch Chief in
17	the NRC Region I Office in the Division of Operating
18	Reactor Safety. I have oversight of the region-based
19	engineering inspectors, the specialists who go
20	periodically to Seabrook Station and perform
21	ASR-related inspections.
22	Also here today is my branch chief
23	counterpart, Matt Young, who oversees the resident
24	inspectors. We work very closely together on
25	oversight of specifically the Seabrook Station, which
Į	I

(202) 234-4433

	66
1	the licensee and owner is NextEra Energy Corporation.
2	Our slides will simply refer to them as NextEra, for
3	your information.
4	Our presentation will pick up where we
5	left off with ACRS from April 2022. We are looking to
6	be responsive to your requests. And so to that end,
7	we intend to move sufficiently through our oversight,
8	some history of ASR at the Seabrook Station and what
9	the NRC has concluded there.
10	And then we will move on to our inspection
11	results with a focus on the containment internal
12	structure, trying to be responsive to your lines of
13	questioning and interest at our last meeting.
14	Next slide, please.
15	Here with me are the actual folks who do
16	the inspections day to day. Nik Floyd is to my left
17	over here. He joined the NRC in 2010 as a reactor
18	engineer in our Region I Office as part of the Nuclear
19	Safety Professional Development Program right out of
20	school.
21	Upon completion of that program, he was a
22	reactor inspector in Region I Division of Reactor
23	Safety, conducting a full range of inspections with a
24	focus on in-service inspection and design reviews. In
25	2018, he was promoted to a senior reactor inspector.
I	I

(202) 234-4433

He's also served the Agency at Indian Point in 2020 and 2021, in its last year of operation, as a senior resident inspector. He holds a bachelor's and master's degree in materials science and engineering for Virginia Polytech Institute and State University.

7 I have next to me Travis Daun. He's the 8 Senior Resident Inspector at Seabrook, there every 9 day. He's been there since June 2023, every workday. 10 Prior to his current role, he served as a resident 11 inspector at Seabrook Station since June 2019, and 12 prior to that at Susquehanna Station in Pennsylvania. 13 Travis joined the NRC in 2012 as a reactor

engineer in our Region III office. He previously served for 11 years in the Navy as a submarine officer.

He has a bachelor's degree in electrical engineering from Marquette University, a master's degree in cybersecurity from Syracuse University, and a master's in business management from American InterContinental University. It's good to have staff who are smarter than you.

Finally, George Thomas is with us. He has been with us on inspections from NRR office on-site about every six months. George Thomas is a senior

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

1

2

3

4

5

6

	68
1	civil structural engineer and a reactor technical
2	reviewer in the Division of Engineering and External
3	Hazards, Office of Nuclear Reactor Regulation.
4	He has been with the NRC since 2006, and
5	worked in the US nuclear power industry with Bechtel
6	for over ten years prior to that. He was one of the
7	technical reviewers for the Seabrook License Amendment
8	Request and License Renewal Programs related to ASR
9	and building deformation.
10	He has also supported Region I, as I've
11	said, since 2011 in our inspections. He holds a PhD
12	degree in civil engineering from Texas Tech University
13	and is a Registered Professional engineer in the State
14	of Maryland.
15	Next slide, please.
16	I'll go over our agenda briefly.
17	Considering that maybe some stakeholders here may not
18	be as familiar with ASR and the Seabrook plant and the
19	phenomena, we intend to go through just sprightly
20	quickly the background, and then move through what our
21	inspection and assessment of ASR is.
22	Travis Daun will provide the background
23	and describe the requirements we've placed on the
24	facility. Then Nick Floyd will pick up with our
25	inspection and assessment results. Finally, he'll
	I

(202) 234-4433

	69
1	focus on the containment internal structure. And I'll
2	close there with thoughts and next steps.
3	So with that, I will turn it over. Next
4	slide, please, and turn it over to Travis. Thank you.
5	MR. DAUN: All right. Thanks, Mel.
6	As Mel mentioned, I am Travis Daun. I'm
7	the Senior Resident Inspector at Seabrook. I'm going
8	to just cover a brief background on ASR, the history
9	of ASR at Seabrook, and then how Seabrook monitors ASR
10	progression and building deformation, as well as the
11	licensing actions taken to date.
12	First and foremost, resident inspectors
13	must be cognizant of the ASR degradation mechanisms
14	present at the site and how the effects manifest
15	throughout the structures. This gets factored into
16	our daily and quarterly inspection planning for
17	ASR-specific samples or integrated into normal
18	quarterly samples with an ASR flavor.
19	So a background on ASR. If anyone has
20	additional questions, please feel free to stop me
21	while we're going through them. I'm going to hit the
22	highlights at a fairly high level, but if you need
23	more detail.
24	First of all, ASR is a slow, expansive
25	chemical reaction in hardened concrete, which occurs

(202) 234-4433

	70
1	in the presence of water. That chemical reaction is
2	between the alkaline cement and the reactive silica
3	found in some aggregates. The expansion can cause
4	various material impacts, which we'll look at on the
5	next slide.
6	Next slide, please.
7	Okay. Here are some of the visual
8	indications of ASR that the residents see throughout
9	the plant. The gel expansion starts off as micro-
10	cracking and can later be observed as macro-cracking
11	on the surface.
12	The visual appearance is typically in the
13	form of what is known as pattern cracking, which you
14	can see on the image to the right, where you see the
15	deposits in the cracks and gel staining around the
16	cracks.
17	I just want to make a note, <mark>ASR is not</mark>
18	new. While Seabrook may be the only known nuclear
19	power plant in the United States where ASR is
20	impacting safety-related Category I structures, there
21	is a lot of experience with ASR in other industries,
22	such as Department of Transportation.
23	The Federal Highway and Transportation
24	Authority has extensive experience with ASR in the
25	transportation infrastructure, but the design is not
	I

(202) 234-4433

	71
1	a one-for-one. Bridges are not designed the same way
2	that nuclear power plants are, and there are
3	significant differences.
4	The expansion and cracking of concrete
5	from ASR can potentially impact both structural
6	capacities, so the load carrying capacity of the
7	structure, and the demand, i.e. the load put on that
8	structure. So it can affect both sides of that
9	demand-to-capacity ratio on that structure.
10	VICE CHAIR HALNON: Travis?
11	MR. DAUN: Go ahead.
12	VICE CHAIR HALNON: This is Greg Halnon.
13	Since it's not new and it is elsewhere, how does it
14	fail? What does the failure look like when we say,
15	it's done, it's failing?
16	MR. DAUN: Do you want to take that, Nik?
17	MR. FLOYD: Yes, I can. Can you hear me
18	okay?
19	VICE CHAIR HALNON: Yes.
20	MR. FLOYD: So based on our discussions
21	with our Office of NR Research, there aren't really a
22	lot of data points on what failure looks like because
23	structures are either remediated or taken out of
24	service prior to failure.
25	A lot of the failures that have been seen

(202) 234-4433

	72
1	are in unreinforced concrete. Essentially, you get
2	expansion, you get the microcracks, and it will fall
3	apart.
4	It's a lot different when you throw in the
5	reinforcement. Once it's reinforced, it behaves
6	significantly different. Right now, this is why
7	Seabrook went through the test program, just to see,
8	hey, what is the capacity that the concrete can
9	handle?
10	As far as that ultimate limit state, what
11	we consider unacceptable is, you shall remain under
12	the demand-to-capacity ratio of 1. Beyond that, it's
13	unanalyzed, and that's unacceptable. So what failure
14	actually looks like, we have not seen it.
15	VICE CHAIR HALNON: Okay. So we haven't
16	seen in these other applications a catastrophic
17	failure, even in unreinforced, because it's either
18	remediated in time because it's visible and noticeable
19	so we know we have to remediate it, or it's reinforced
20	and hasn't gotten to that failure point; is that
21	correct?
22	MR. FLOYD: That's our understanding.
23	Correct.
24	VICE CHAIR HALNON: Okay. Thank you.
25	MR. DAUN: Okay. Next slide, please.
I	1

(202) 234-4433

Okay. So here's a brief history of ASR at Seabrook. In 2009, in preparation for NextEra's submission of their license renewal application, it was identified that the aggressiveness of the groundwater chemistry on Seabrook concrete structures that were in contact with groundwater needed to be determined.

8 Therefore, testing was performed. In 9 August 2010, NextEra confirmed through a petrographic 10 analysis the presence of ASR in concrete and 11 below-grade walls of several Category I structures.

12 NextEra then initiated а prompt operability determination 13 to assess the safety 14 significance of the issue and the basis for continued operation. NextEra identified several causes for the 15 16 ASR issue and several reasons for why it was not identified until the license renewal review. 17

One cause was that concrete mix for 18 19 initial construction unknowingly utilized an ASR-susceptible aggregate. ASTM standard screening 20 tests at the time have been determined to have limited 21 ability to screen very slow-reactive aggregates for 22 23 ASR.

24 Because of this, NextEra mistakenly 25 assumed that the original cement and aggregate

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

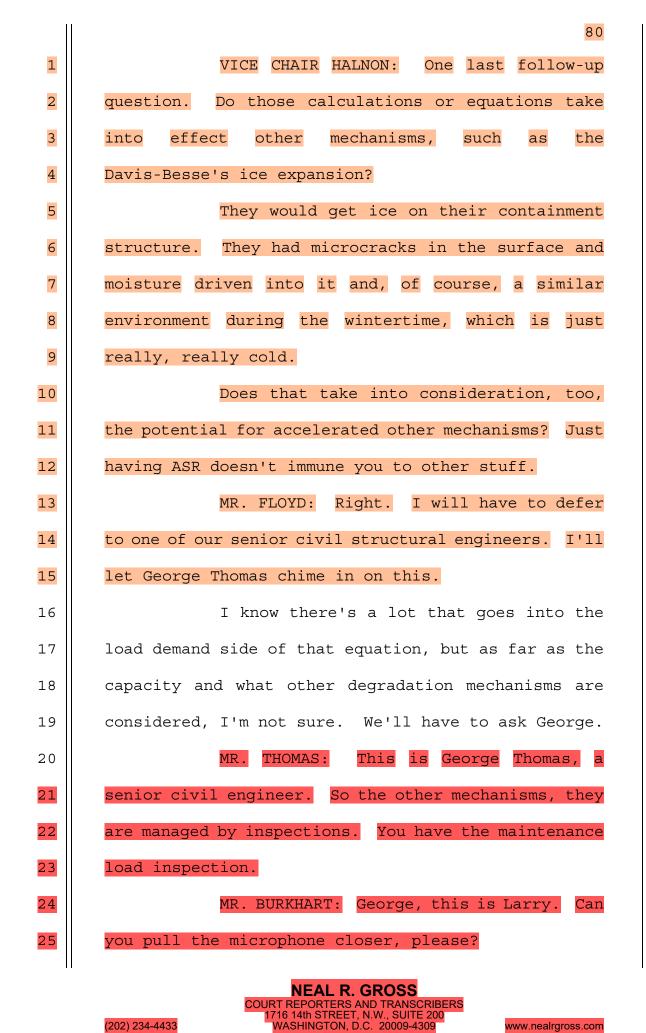
5

6

7

	74
1	selection would preclude ASR development, and
2	therefore did not initially consider that the observed
3	cracking could be caused from ASR. So initially,
4	NextEra characterized the cracking as shrinkage
5	cracking.
6	Just a note, new ASTM test standards have
7	since been developed this is since the early to
8	mid-80s that now better detect this type of slow-
9	reacting aggregate.
10	And then the NRC did issue an information
11	notice in 2011 it's 2011-20 on the operating
12	experience identified at Seabrook with ASR
13	identification and ASR confirmation.
14	Next slide, please.
15	Okay. NextEra performed an extent-of-
16	condition review and prompt operability determination,
17	as I said on the previous slide, and concluded that
18	from a regulatory standpoint, the affected structures
19	were operable, but degraded and non-conforming,
20	because ASR was not initially taken into account in
21	the current licensing basis.
22	The prompt operability determinations were
23	based on the material properties and the margins that
24	were seen. Regional inspectors and Headquarters
25	experts Mel has mentioned a lot of those
ļ	I

(202) 234-4433


	75
1	reviewed the operability determinations and concluded
2	that ASR-affected structures remained capable of
3	performing their safety functions.
4	In 2012, the NRC increased oversight to
5	ensure structures remained functional while NextEra
6	developed their corrective actions.
7	Next slide, please.
8	Okay. To resolve the open operability
9	determinations related to ASR, <mark>NextEra</mark> chose to
10	perform a large-scale test program at Ferguson
11	Structural Engineering Laboratory at the University of
12	Texas at Austin to better understand ASR's impact on
13	the structural performance of ASR-affected structures.
14	The concrete test specimens were designed
15	to replicate the reinforced concrete walls at
16	Seabrook, and then the ASR growth was accelerated to
17	allow testing in a reasonable time frame.
18	Basically, the test was designed to
19	determine how much ASR could occur in a concrete
20	structure before impacting its structural strength,
21	and determine the best way to measure and track ASR
22	progression in a structure similar to the walls at
23	Seabrook.
24	During the test program, the NRC conducted
0.5	
25	several audits and inspections with NRR and Region I

	76
1	staff at the test facility, which were focused really
2	on ensuring quality test standards were followed
3	during the testing. This was especially important
4	knowing that the test results would be used to update
5	Seabrook's current licensing basis as part of future
6	license amendments.
7	Next slide, please.
8	Okay, the large-scale testing program
9	results. They showed no reduction in structural
10	capacity at the expansion levels tested, and the code
11	equations can be used to the tested levels.
12	The test results were used to develop
13	expansion limits and monitoring techniques which were
14	incorporated into Seabrook's current licensing basis
15	via a license amendment.
16	As long as Seabrook stays between the
17	identified expansion limits, they can continue to use
18	the original design equations and material properties
19	to determine the capacity of the impacted concrete.
20	If they go outside these limits, it does
21	not mean that they have a firm safety limit, but they
22	have gone outside the boundaries of the test program
23	and would need to reanalyze the structures and
24	demonstrate operability.
25	So basically, the Texas test program, as

	77
1	we refer to it, put guardrails on this is how much
2	ASR expansion you can see and confirm the structural
3	capacity of the structures.
4	Based on the licensee's ASR expansion rate
5	evaluations for September 2022 and March 2023, several
6	of the extensometer locations were projected to exceed
7	the licensed through-thickness expansion limit before
8	the expiration of a renewed Seabrook operating license
9	in 2050. Based on the rates at the time, the
10	projected time to exceed was greater than ten years.
11	The NRC has tools available to ensure
12	appropriate oversight as they continue that monitoring
13	program to ensure that they're still within those
14	guardrails that we discussed.
15	VICE CHAIR HALNON: Travis?
16	MR. DAUN: Yes.
17	VICE CHAIR HALNON: This is Greg again.
18	Relative to the guardrails of the testing, there is
19	obviously a margin on the upper side from what would
20	be completely unacceptable even by an analysis.
21	📮 Is there a magnitude that you can
22	articulate about how much margin? Is it a lot, a
23	little? Is it tight? Have they had trouble
24	evaluating cracks a little bit bigger than the
25	guardrails, or is there still a lot of margin there?
I	1

	78
1	MR. DAUN: The guardrails are really set
2	for ASR expansion limits.
3	So I'll probably either kick that Nik,
4	do you want to take it, or George, just on the margin
5	from the Texas testing program that's there?
6	MR. FLOYD: One of the things we look for
7	when we go on-site is always looking at the monitoring
8	data. We want to see what are the current expansion
9	levels.
10	It's not consistent across all structures.
11	Some structures have what I'll call moderate
12	expansion. Some have little to no expansion. If you
13	looked at a graph, it would look almost flat. So it's
14	hard to put an exact margin number that's universal to
15	the site. It's really dependent on each structure.
16	There is still substantial margin for
17	these expansion rates or these expansion limits
18	established for the Texas test program. We looked at
19	it in detail back during our November well, not
20	November, but our 2023 inspections.
21	And what we did see is that the expansion
22	trends, if they stayed constant you can only draw
23	a line through so many points, and it's seasonal
24	fluctuations. Depending on humidity and temperature,
25	crack sizes open and close just slightly, and so you

	79
1	get a little bit of scatter on the curve.
2	The best fit was at, I think, four or five
3	locations. They were projected to exceed that upper
4	limit by, basically, ten years at that point, so 2034-
5	2035.
6	VICE CHAIR HALNON: Okay. And when they
7	exceed that, that's not necessarily saying they're
8	going to fail in 2034 or 2035; it's just that's where
9	your calculation is pushing it to this point?
10	MR. FLOYD: Correct. Their testing
11	program has analyzed up to that expansion limit. Now,
12	there is certainly margin past that, but to put a
13	number on it, you can't do it without supporting test
14	programs.
15	VICE CHAIR HALNON: I was looking for more
16	magnitude of
17	MR. FLOYD: Yes.
18	VICE CHAIR HALNON: okay or not.
19	MR. FLOYD: The one positive was through
20	the test program, there was no reduction in capacity
21	up to those limits tested. That tells you there is
22	still more margin and expansion in load demand that
23	that structure can withstand. So that's the positive
24	piece, but the magnitude beyond that, it's hard to
25	say.
I	

81 1 MR. THOMAS: So the inspections look at 2 any other mechanisms. If any degradation related to other mechanisms are found, then it's evaluated 3 to 4 make sure that it's still within the current licensing 5 basis. 6 VICE CHAIR HALNON: So George, can they 7 distinguish between freeze-thaw cracking and ASR 8 cracking? Are they additive or are they 9 complementary? How do you deal with two, three 10 mechanisms when you're doing a operability evaluation that says I'm good out to 2034 if that's only taking 11 into effect ASR and not other mechanisms? 12 In that respect, the 13 MR. THOMAS: Yes. 14 primary monitoring mechanism is crack indexing at 15 specific locations. There may be cracks due to other mechanisms, too, but they do consider it all due to 16 ASR. 17 VICE CHAIR HALNON: So you're assuming 18 19 it's all ASR --20 MR. THOMAS: Yes. VICE CHAIR which is 21 HALNON: - -Well, it's not aggressive. 22 aggressive? It's slow, but comparable to other mechanisms; is that what 23 24 you're saying? THOMAS: It's correlated. And if 25 MR.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

	82
1	there's something out of the ordinary, then they will
2	further evaluate the mechanisms.
3	VICE CHAIR HALNON: Okay. Thank you.
4	MR. FLOYD: And just to add to that real
5	quick, some of the locations in question that do have
6	these higher expansion rates, the ones specific to
7	this trend, they're in below-grade structures.
8	So there really aren't a lot of other
9	damage freeze-thaw wouldn't be applicable because
10	you're in indoor, underground structures. The driving
11	mechanism there is ASR.
12	As far as other damage mechanisms, the
13	visual inspections would support that as far as
14	determining is there something else going on. If you
15	have groundwater coming through, is that leaching, is
16	that just groundwater, or is that just ASR deposits?
17	So there are ways they would have to
18	disposition that, and we would verify, but yes. That
19	is correct, but just to that.
20	VICE CHAIR HALNON: Thank you.
21	MR. GRAY: I guess I can't help but add
22	here. Your first question is meeting the limits might
23	not mean the structures are unsafe. You're correct,
24	but as inspectors, we're given a standard to inspect
25	to.
l	I

	83
1	This is the license conditions and the
2	program that we've approved, so we're keenly focused
3	on the limits of that and to engage in a timely manner
4	to make sure they stay within that. If they see
5	they're not, they're taking action. It's their plan
6	to handle that appropriately.
7	VICE CHAIR HALNON: Thank you, Mel.
8	MR. GRAY: Yes.
9	VICE CHAIR HALNON: I appreciate you
10	bringing it back to the reality of the fact that
11	you're not inspecting up to a design-basis limit.
12	You're inspecting so that you can raise a flag and
13	start a process.
14	MR. GRAY: Right.
15	VICE CHAIR HALNON: So I get that. I
16	appreciate that. Thank you.
17	MR. GRAY: And the second piece, as I
18	understand, maintenance rule is we're looking for if
19	the licensee is responsible to do exams to understand
20	the degradation mechanisms, whether they be
21	freeze-thaw, ASR, or something else.
22	We do look at that regularly. And Nik is
23	all over that. He's right. It's not freeze-thaw down
24	there. Thank you.
25	MEMBER PALMTAG: This is Scott Palmtag.

(202) 234-4433

	84
1	I just have a quick question. I'm new to this. Can
2	you tell me a little bit about the Texas tests? Did
3	you accelerate ASR, and then you put it under
4	load-bearing until it failed? Is that how it went?
5	You said there was no load-bearing cracks from ASR?
6	MR. FLOYD: Right. As far as the test
7	program went, they sourced aggregate that was highly
8	reactive, so both the sand and the coarse aggregate.
9	And then after they placed the beams, they
10	put them into essentially, you could call them
11	large greenhouses. You want to have higher
12	temperatures and a moist environment to help
13	accelerate the ASR.
14	They just did the limits because they were
15	looking for results. They did that in an accelerated
16	time frame. You could let it go indefinitely and let
17	ASR continue, but they needed results. So they
18	stopped it just shy of the two-and-a-half-year mark so
19	that they could compile the test report.
20	The testing that was done, they did a
21	combination of, basically, a bending moment, a shear
22	beam test well, not shear. And they also looked at
23	shear test. George could probably again add to this
24	since he was the technical reviewer.
25	As far as the loading, there was code
	1

(202) 234-4433

85 1 equations and load limits that they took it up to, and 2 there was no failures observed. As far as did they 3 take it to failure, I'll have to ask George if they 4 actually went beyond their established load values. 5 MR. GRAY: This is George Thomas. The specimens that were used, 6 they were subject to 7 accelerated expansion. And at some point, they were 8 subject to load tests to failure. 9 load tests to failure were also The 10 compared. There were also control specimens that they used, which they tested with no ASR. 11 12 load capacity between control the So specimens with no ASR and the load tests to failure, 13 14 there was no reduction in load carrying capacity. It 15 of expansion was fine to the level that was up The 16 achieved. expansions are measured in three 17 directions, two in-plane and through-thickness. MEMBER PALMTAG: This is a question. This 18 19 might be more for NextEra instead of NRC, but are 20 there any plans to do more testing? MR. GRAY: That is a question for NextEra, 21 but we remain cognizant of what they share with us. 22 Our footnote in red on this slide was our 23 24 attempt to let the ACRS be aware that we're closely 25 monitoring that situation. They are doing some

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

Í	<mark>86</mark>
1	exploratory aggregate testing and thinking about what
2	would be needed to support continued plant operation
3	if they choose to do that.
4	So they are laying the groundwork for
5	that, but they're very early and haven't made a
6	decision on that. Whatever they do, we'll follow
7	closely. We would look at any regulatory-related
8	document or process that they identify.
9	They would certainly need to apply the
10	Code of Federal Regulations' 10 CFR 5059 process. We
11	would look at that closely to determine whether that
12	warranted prior NRC approval. And if that's the case,
13	we would engage. If it was otherwise, we still would
14	look at that closely and decide what to do.
15	I'm answering from our purview and our
16	thought, what we're thinking about. We would use the
17	flexibilities in both the inspection product line and
18	the oversight product line to do what's needed for
19	safety.
20	MEMBER PALMTAG: Currently, the way I
21	understand it, there's guardrails in place. And it's
22	possible they could expand those guardrails, but as of
23	right now, we don't know.
24	MR. GRAY: That's correct. They would
25	need to provide the technical basis for that, and we
	I

(202) 234-4433

	87
1	would scrutinize that.
2	VICE CHAIR HALNON: All right. Thank you.
3	MEMBER BALLINGER: This is Ron Ballinger.
4	It's later in your slides, but they've already taken
5	mitigated measures in reinforcing things as part of
6	the process.
7	Where there was expansion that was going
8	to violate rules, they've buttressed things up and
9	provided reinforcement already. So there is a
10	solution to that part.
11	VICE CHAIR HALNON: Thank you. That's
12	helpful.
13	MR. DAUN: Okay. Next slide, please.
14	So that was the ASR expansion portion.
15	Now, effects of ASR. We'll move into the building
16	deformation.
17	The previous two slides covered how
18	Seabrook addressed ASR's impact on material properties
19	of concrete or ASR's impact on the capacity of the
20	concrete. The next two discuss building deformation
21	due to ASR and how it impacts the demand or loads on
22	the structures.
23	There's a few pictures here I'll talk
24	about. During routine walk-downs in 2014 and 2015,
25	the NRC resident inspectors observed degraded seismic
I	I

(202) 234-4433

	88
1	and fire seals that appeared to have been caused by
2	differential movement between adjoining concrete
3	buildings.
4	It was determined that ASR had caused this
5	additional aging effect through cumulative expansion
6	in ASR-affected structures and from expanding
7	structures pushing on adjacent structures.
8	Many structures at Seabrook are surrounded
9	by concrete backfill, which may also expand and apply
10	additional loads to structures, even if the structures
11	themselves are not experiencing ASR. These effects
12	were not anticipated and were identified as a
13	different consequence of ASR.
14	The large-scale test program did not
15	address how building deformation would affect the
16	ability for the structures to perform their intended
17	functions. Therefore, NextEra subsequently developed
18	an additional program called the Building Deformation
19	Monitoring Program to manage this effect.
20	This program includes a methodology for
21	evaluating ASR-affected structures. The methodology
22	was incorporated into NextEra's license amendment
23	request.
24	Bulk building deformation adds additional
25	loads to impacted structures. You can see in these
I	I

(202) 234-4433

	89
1	photos attached equipment. This is equipment spanning
2	two different Category I structures and the different
3	movement between those two structures.
4	The top right one is flexible conduit
5	couplings that had moved at different rates, or one
6	moved and the other didn't. And then the bottom photo
7	is lines that became crimped because of the different
8	movement between the two structures.
9	As resident inspectors, these are the
10	types of things that we're out in the field looking
11	for all the time. Any equipment impacts from building
12	deformation, we're keen to looking for those things,
13	knowing where the structures are, looking at how the
14	structures are impacting each other.
15	Next slide, please.
16	Okay. NextEra developed a three-stage
17	analysis methodology to address ASR loads and
18	associated building deformation along with the
19	original design loads. The methodology uses field
20	measurements to estimate the ASR loads both in the
21	structure itself and in surrounding concrete backfill,
22	and then applies the load to the structure as if it
23	were a design load.
24	The measure becomes more detailed in order
25	to better capture the ASR load as the analysis stages
I	

(202) 234-4433

90 1 progress. And I'll talk about the three stages here 2 in a second. identifies quantitative 3 The analysis 4 acceptance criteria in the form of monitoring 5 parameters and limits that demonstrate the capacity is greater than or equal to the demand, including the ASR 6 7 loads. These parameters are monitored against the 8 corresponding limits going forward. 9 If a structure approaches or exceeds the acceptance criteria, it is entered into the Corrective 10 Action Program and may be re-evaluated with a higher 11 stage analysis, or a structural modification may be 12 implemented to add additional margin. 13 14 So the three stages is, Stage 1, you use the original code equations, plus you add an ASR load 15 factor based on those monitoring results. 16 17 A Stage 2 evaluation, you do some finite element modeling and then add those original code 18 19 equations with ASR load. 20 And then a Stage 3, which is the most accurate, there you do a full finite element model. 21 And then you take additional field measurements to try 22 to better quantify that ASR impact. 23 24 Next slide, please. Here's a methodology life cycle overview 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1 for the Structures Monitoring Program or the Building Deformation Program. We already talked about the 2 3 three stages. The first thing they do, they determine 4 5 which stage that structure falls within. Is it a They always 6 Stage 1, Stage 2, Stage 3 structure? 7 start at Stage 1 and do original calculations, and 8 then they'll move on to Stage 2 and Stage 3 as 9 appropriate. 10 Then a structural analysis and evaluation of the structure is performed. From these analyses, 11 areas critical based available marqin 12 on are identified for additional monitoring. 13 14 After analyzing the structure, you apply 15 threshold factor for each structure, which а quantifies the remaining margin between the factored 16 17 loads, which includes the ASR loads, and the capacity of the design acceptance limit. 18 19 of monitoring parameters Α set with corresponding threshold limits are also determined for 20 each structure. Any deviations are then entered into 21 the Corrective Action Program for disposition and 22 Then the life cycle starts over again. 23 resolution. This will continue for the life of the 24 25 structure. And structures can move from a lower stage

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

91

	92
1	to a higher stage, but they continue within even
2	after remediation, they'll stay within this life cycle
3	and continue to be monitored and evaluated.
4	Next slide, please.
5	VICE CHAIR HALNON: Travis, the three
6	phases, I assume you enter into the phase 1 because of
7	an observation or inspection that looks like there
8	could be an effect.
9	MR. DAUN: All structures enter as Stage
10	1. And Nik may
11	VICE CHAIR HALNON: Okay. So all the
12	structures
13	MR. FLOYD: Just a quick correction there.
14	As far as when you kick into this, this is all part of
15	the Building Deformation because this is when you
16	start recalculating the building load demands to
17	include ASR. You don't enter this process really
18	until you visually see ASR or some other indirect
19	observations of ASR in the structure.
20	I can tell you every single structure at
21	the site, seismic Category I structure, has been
22	evaluated using this process, except for one service
23	water access vault where they determined it does not
24	have ASR.
25	Every other structure, they've gone
I	I

(202) 234-4433

1 through this process and determined there's visual 2 indications of ASR, or there's cracking that suggests 3 there's backfill expanding and they've had to go 4 through this process.

5 VICE CHAIR HALNON: Over time, all the 6 structures of concern that have been put in here, how 7 many evaluations do they do? I don't know if you can 8 give a ballpark. In a quarter or a year or whatever, 9 how many evaluations are actually ongoing?

10 MR. FLOYD: They've completed all the initial evaluations. point, the 11 At this only evaluations they're doing are when they have to do a 12 reanalysis for structures that they've determined were 13 14 outside the revised licensing basis.

So those are ones that are still in prompt operability determination space. I'm going to go over that in more detail in a subsequent slide.

18 VICE CHAIR HALNON: Okay. I'm interested 19 in how many are progressing through this. One of the 20 things that hit my mind was we see the headlines.

We see a finding, a non-cited violation, or a minor violation in inspection reports, but we don't know how many is a sample. If it's 100 percent of what they do, then that's a problem. If it's one of 10,000, then that's not a problem. We only see the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	94
1	peaks of it.
2	So I'm interested in just how many
3	evaluations are done and whether or not the Corrective
4	Action Program is serving where it's supposed to be
5	serving, which is to maintain continuous monitoring
6	and evaluation.
7	MR. FLOYD: Just to give you a ballpark,
8	in the program itself, it's either 28 or 29 structures
9	that they evaluated as a structure. Some of those are
10	grouped together.
11	There's certain groupings for manholes.
12	Rather than just say each manhole is an individual
13	structure, they say, hey, there's a set of manholes
14	here, and here's another set of manholes there. So
15	that's one structure, and that's a second structure.
16	The Diesel Generator Building, albeit two
17	separate structures that share a wall, they evaluate
18	it as a single structure. I've got it on a subsequent
19	slide. It's either 28 or 29. They've completed all
20	those initial evaluations, though.
21	And so now, what we've been looking at is
22	when they're doing monitoring and they approach their
23	established threshold limits those are some of
24	those areas they identified to have low margin before
25	they hit that demand-to-capacity ratio.
I	1

(202) 234-4433

	95
1	Once they hit that, they have to reanalyze
2	and say, okay, are you exceeding it? And if you
3	exceed it, put in new limits. And now you have to
4	reduce some conservatism.
5	So maybe reduce a load factor here or take
6	some additional things, like crack section properties,
7	load redistribution, but then you're in operability
8	determination space. You're no longer in conformance
9	with this revised licensing basis. And there's six
10	total structures out of that 28 or 29 that we're
11	monitoring currently.
12	VICE CHAIR HALNON: That are in prompt
13	operability space?
14	MR. FLOYD: Correct.
15	VICE CHAIR HALNON: And corrective actions
16	are in place to
17	MR. FLOYD: Correct.
18	VICE CHAIR HALNON: get those out
19	eventually?
20	MR. FLOYD: Yes.
21	VICE CHAIR HALNON: Thanks.
22	MR. FLOYD: And the only other correction
23	there is not every structure enters through a Stage 1.
24	The Stage 1 is the most basic. <mark>You just take the</mark>
25	original design load calculations, and then you just
I	1

(202) 234-4433

```
www.nealrgross.com
```

	96
1	add in an ASR load.
2	So for some structures, for example, the
3	one we're going to discuss today, the containment
4	internal structure, they skipped past Stage 1. They
5	went straight to a Stage 2.
6	That's because they wanted to develop the
7	finite element models to more accurately represent and
8	calculate the ASR loads. They weren't sure what the
9	ASR loads were, so they had to go through that
10	progression and process. So they just skipped right
11	past Stage 1.
12	VICE CHAIR HALNON: Okay. Thanks.
13	MEMBER BALLINGER: This is Ron Ballinger
14	again. This was a two-unit site at one time. And a
15	lot of that concrete is in Unit 2. It's been
16	partially constructed.
17	Did anybody take a look and see what's
18	going on over there, just for grins and chuckles, I
19	guess, for information?
20	MR. GRAY: Having been here the longest,
21	maybe George would know, but I recollect that that was
22	discussed by the licensee, whether they would take
23	sections of material out of the canceled Unit 2.
24	MEMBER BALLINGER: Yes.
25	MR. GRAY: It was the weather that was
I	1

(202) 234-4433

97 1 uncontrolled for that, exposed continuously. And I think there were industrial concerns with access. 2 So 3 I'm just sharing with you. 4 MEMBER BALLINGER: Okay. 5 MR. GRAY: It was thought about and not acted on for their part. 6 7 MEMBER BALLINGER: Okay. 8 MR. DAUN: Okay. Next slide, please. 9 just summarizes This slide licensing 10 actions associated with ASR at Seabrook. As stated earlier, ASR degradation was not previously addressed 11 in the Seabrook licensing basis because irrelevant 12 design codes of record did not consider loads 13 resulting from the effects of ASR. 14 Therefore, NextEra submitted a license 15 amendment request to incorporate the expansion limits 16 17 and to get approval of a methodology to analyze structures affected by ASR. 18 19 NextEra also updated their license renewal application to include activities to manage 20 the effects of ASR-related aging on structures. 21 Our and 22 revisions were based test results ASR on 23 methodology provided in the license amendment request. 24 Following an extensive review, the NRC approved the license amendment request in March of 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	98
1	2019. This review included peer reviews from other
2	offices in the NRC, use of expert contractors from a
3	national lab, as well as reviews by the ACRS, and
4	adjudicated by the Atomic Licensing and Safety Board.
5	Next slide.
6	Here are several examples of various
7	monitoring parameters used at Seabrook and the tools
8	used to measure them. The picture on the left is an
9	example of a pin the top left is a pin-to-pin
10	measurement location, where a licensee tracks in-plane
11	expansion.
12	The picture on the right shows a seismic
13	gap that could be monitored based on the output of the
14	analysis so they know where the seismic gap initially
15	was and how that changes.
16	The bottom left is a typical example of an
17	extensometer. I'll note this is just the cover of the
18	extensometer. The extensometer is anchored into the
19	wall. Core bore, anchor the extensometer, and there
20	you can measure through-plane expansion or
21	through-wall expansion.
22	And then the bottom right is a crack gauge
23	used to monitor a specific crack location.
24	VICE CHAIR HALNON: If you have a
25	question, Dennis, go ahead.
I	1

(202) 234-4433

	99
1	DR. BLEY: Yes, Dennis Bley. I hadn't
2	thought about the seismic gaps. Have any of those
3	narrowed to the point that they invalidate the
4	existing calculations for seismic and you had to
5	somehow mitigate that?
6	MR. FLOYD: Yes. There was one location
7	in the CEVA. That's the Containment Enclosure
8	Ventilation Area annulus region.
9	So between the Containment Enclosure
10	Building and the Primary Containment Building, they
11	have missile shield blocks. They were installed to
12	shield equipment and other things located underneath
13	them, pretty large. They're essentially slabs
14	connected to the CEB.
15	That gap, because of deformation bulk
16	building deformation of the CEB actually resulted in
17	contact in some areas and reduced gaps in others of
18	those missile shield blocks. And the licensee,
19	NextEra, went through corrective actions to restore
20	those gaps, which is essentially chipping away in
21	their case, they used a hole saw to help restore that
22	gap.
23	DR. BLEY: Okay. So it's always been
24	opening up the gaps again rather than putting in some
25	kind of cushioning material between them?

(202) 234-4433

100 1 MR. FLOYD: No, not necessarily. It just 2 depends on where you're at in the structure. In some 3 cases, the gaps widen. In the case of the CEB and the 4 Containment Building, the gap had closed. So it just 5 depends on the relative movement of the two structures. 6 7 In all cases, those seismic gaps are established as threshold monitoring limits in their 8 9 Structures Monitoring Program. And they are monitored 10 on a periodic basis. I have looked at that data many times. 11 12 DR. BLEY: Okay. Thank you. MR. FLOYD: 13 Yes. 14 MR. DAUN: Okay. Next slide, please. 15 So here is a summary of ASR license conditions. I'm not going to go through each one, but 16 the NRC inspectors verify licensee performance 17 to these conditions. So this is what was added into 18 19 their operating license. 20 Several conditions ensure that test applicable 21 program results remain to Seabrook, including the licensee to verify that the actual 22

23 measured expansion at Seabrook aligns with the 24 predicted expansion based on the developed 25 correlation.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	101
1	Seabrook will complete an initial study no
2	later than 2025 and a follow-up study ten years later
3	to validate that the data that came out of their Texas
4	test program is still valid.
5	I'll note NextEra will be taking cores as
6	part of License Condition B, and those will be subject
7	to petrographic examination. I know that they've
8	already started taking those core bores. It's a large
9	number of core bores. They started that a few months
10	ago.
11	Next slide, please.
12	Okay, and then NRC inspection and
13	assessment of ASR. NRC resident inspectors perform
14	daily on-site oversight of the plant status. That's
15	reviewing corrective action reports, walk-downs. We
16	go through all the accessible areas of the plant,
17	looking at those building deformation signs and ASR
18	signs which are not as obvious as some of the building
19	deformation.
20	Inspectors select risk-informed and
21	performance-based samples, including Maintenance Rule
22	operability determinations, modifications when they do
23	retrofits, and then focused Problem Identification and
24	Resolution samples.
25	Regional specialists at NRR and Research
	l

(202) 234-4433

	102
1	technical staff have performed focused inspections and
2	continue to perform focused inspections. The results
3	have been documented in their inspection report.
4	Even if there's no finding, we tend to put
5	a lot more information into those inspection reports
6	just for continuity. And then results and oversight
7	plans are discussed with Region I senior managers
8	during the end-of-cycle reviews.
9	Resident inspectors do provide real-time
10	feedback on potential ASR issues, such as when we're
11	going through condition reports. It's very easy for
12	me to reach out to Nik, get his thoughts on that. And
13	he can send those condition reports all the way up to
14	George at NRR, if needed.
15	Next slide, please. And I will turn it
16	over to Nik. You're done hearing from me.
17	MR. FLOYD: Thank you, Travis.
18	So since we last met with you all in April
19	of 2022, we have conducted five weeks of on-site
20	inspections. These are inspections with a team of NRC
21	inspectors, including myself. Oftentimes actually,
22	every time, I also rely on George Thomas at NRR.
23	We also utilize other technical expertise
24	from other offices. One in particular was from the
25	Office of Research. For those five weeks, we
ļ	I

(202) 234-4433

ormed 11 total inspection samples. Again, these nspection samples dedicated specific to ASR. And while these numbers seem maybe they
And while these numbers seem maybe they
low or maybe they seem high, but they don't
ect the total number of hours spent by the
lent inspectors at the site. They're really out
e looking at this stuff on a daily basis.
And then the same thing with the
ective Action Program when they're reviewing
tion reports. If they see anything that jumps
they're sharing that information with us.
So even though we're only getting five
s it's approximately every six months, so it's
ally a pretty good touch point we're still
ng direct feedback as far as the licensee's
vities at the site.
While I do spend my time at Seabrook
ewing ASR almost exclusively, there are other team
ections that visit the site, two in particular
One was the Biennial Problem Identification and
ution Inspection Team. A second one was one of
ocused engineering inspections, the Age-Related
adation.
They're aware of ASR at the site,
imes through their sampling. In this case, in
ewing ASR almost exclusively, there are other tea ections that visit the site, two in particula One was the Biennial Problem Identification ar ution Inspection Team. A second one was one of focused engineering inspections, the Age-Relate adation. They're aware of ASR at the site

(202) 234-4433

	104
1	their sampling during the two team inspections, they
2	did review samples related to ASR. And in one of
3	those cases, they identified a corrective action
4	finding, which I'll discuss in a subsequent slide.
5	Next slide, please.
6	So I just want to highlight two things for
7	you. We continue to conduct inspections focused on
8	ASR. I just discussed that on the last slide. Based
9	on those inspections, <mark>we</mark> have determined that the
10	Seabrook structures remain capable of performing their
11	intended safety functions.
12	What I mean by that is NextEra, they're
13	monitoring the ASR in the structures, and they're
14	updating those structural calculations as necessary to
15	ensure adequate capacity remains in those structures.
16	And the second item here is out of those
17	inspections, we did identify three inspection
18	findings. We documented those in our inspection
19	reports. They were all related to ASR.
20	We did find them to be of very low safety
21	significance. So when you go through the NRC's
22	Significance Determination Process, that would screen
23	out as a green inspection finding.
24	In each case, NextEra has addressed it in
25	their Corrective Action Program. And I am going to go
ļ	I

(202) 234-4433

	105
1	through those three findings in a subsequent slide.
2	Two other things I wanted to highlight
3	here is there's two photos down below. The photo at
4	the bottom left, that's our inspection team from March
5	of 2024. No, it does not look that interesting, but
6	sometimes you get out in the site and sometimes you
7	have to review the detailed design calcs.
8	The other thing I wanted to highlight is
9	there are two staff in there that are there for
10	knowledge transfer purposes. One of the questions
11	that the NRC has received is, how are you going to
12	maintain oversight of ASR at Seabrook? What happens
13	when you move on to your next employment opportunity,
14	whether it's a promotion or otherwise?
15	Well, this is how we do it. They just
16	joined that Civil and Structural Engineering Branch
17	with George. So we brought them at the site to
18	knowledge transfer, knowledge management, and bring
19	them up to speed on ASR.
20	The picture at the bottom right, that was
21	from later in the month that year. And that was a
22	Commissioner Crowell visit to the site.
23	So we do get a series of NRC management
24	that visits the site, including commissioners, and we
25	do tour them around the site. We show them the ASR
	I

(202) 234-4433

	106
1	areas that are affected just to highlight that, yes,
2	this is a damage and degradation mechanism, it's real,
3	and here's what it looks like.
4	Next slide.
5	So to follow up on one of the questions
6	from earlier I think this came from you, Greg. You
7	were asking about the total number of structures in
8	the program. Here is just a summary of that.
9	There are 28 total structures. And again,
10	that number can be slightly deceiving because
11	sometimes there are, some could say, two or three
12	structures within one of those numbers. And that's
13	just how the licensee chose to evaluate that.
14	Out of the 28, though, there are six
15	structures that are currently outside the licensing
16	basis. What I mean by that is that when we look at
17	the licensing basis, that's the original concrete
18	design code equations that have been revised in
19	accordance with that license amendment to include ASR
20	loads. And that also includes all the load factors,
21	plus a margin for additional ASR expansion.
22	So you can't put a planned expansion of
23	one for ASR. You have to include ten percent, 20
24	percent, 30 percent. And you have to include margin
25	for that structure to continue to expand because we
Į	I

(202) 234-4433

107 1 know ASR is not static. We have reviewed all six of those prompt 2 3 operability determinations. Several of those 4 structures, yes, several of them we have re-reviewed. So they established operability limits. 5 Those are new limits that they increase their margin 6 7 just slightly. They don't take all the margin away. 8 And maybe, hey, you can tolerate ten 9 percent more expansion, but they still remained well 10 below the demand-to-capacity ratio of 1 even with that margin reduction, and they reanalyzed because they had 11 continued expansion. 12 Well, we wanted to go back and see, how 13 14 are you managing that? Are you actually approaching 15 your ultimate limit, or do you still have substantial 16 margin for expansion? So that's one of the things 17 we've done when we've looked at some of those reanalyses. 18 19 We did determine in each one of those cases that they did perform detailed evaluations to 20 confirm that they're able to perform their design 21 functions. 22 And one of the things I wanted to point 23 24 out here is specifically in our Third Quarter 2023 Inspection Report, we tried -- well, we didn't try --25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	108
1	we did document the technical approaches used by the
2	NextEra staff for how they demonstrate that continued
3	functionality.
4	So we wanted to highlight, hey, here are
5	those, because again, this was a question we were
6	asked. Now you're outside your code and design
7	equations, what are those technical approaches?
8	Well, many of them are consistent with
9	existing engineering consensus standards. Going back
10	to ACI or the American Society of Civil Engineers,
11	yes, they are consistent.
12	And the last piece of this is when you're
13	in prompt operability determination, how do you
14	continue to monitor that? Well, in many cases,
15	there's supplemental monitoring that's established in
16	conjunction with the existing monitoring.
17	And they're done at an increased
18	frequency. In this case and many of them, they're
19	every two months. In some cases, it's every one
20	month.
21	And then the last piece here is we've
22	looked at the evaluation, but what are they going to
23	do with the structure now? Now we're into the
24	corrective action space. So we look at how the
25	licensee is managing that in their Corrective Action
Į	I

(202) 234-4433

109 Program to bring them back into conformance with the 1 licensing basis. 2 And there's really two options there. 3 You 4 either physically modify the structure to strengthen 5 it or you reanalyze it. In some cases, reanalysis is have 6 not an option. You to do а physical 7 modification. Two structures in particular that have 8 9 ongoing modifications are the Control and Diesel 10 Generator Building and then the Emergency Feedwater Those two are planned for physical 11 Pumphouse. modification. The other four structures are still up 12 for potential reanalysis. 13 14 Next slide, please. 15 CHAIR KIRCHNER: For the record, could you 16 just enumerate what the other four structures are? 17 MR. FLOYD: Yes, I can. The other four structures are the Primary Auxiliary Building, the 18 19 Service Water Cooling Tower, the Containment Enclosure Building, and the Residual Heat Removal Vault. 20 Next slide. 21 22 VICE CHAIR HALNON: We've got a guestion from one of our consultants. 23 24 Steve, do you want to go on? 25 DR. SCHULTZ: Yes. Thank you.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

	110
1	The question is, you mentioned four of the
2	structures are in consideration for analysis,
3	improvement, and evaluation. What's the time scale of
4	what's being proposed and what will be done there?
5	In other words, <mark>if we meet a year from</mark>
6	now, are there still going to be six or will there be
7	what will happen going forward? Can you provide
8	some detail about what that means in terms of analysis
9	time frame?
10	MR. FLOYD: Yes. One of the items of
11	consideration that we've had from our oversight is
12	timeliness of corrective actions.
13	Defined in our process, or even if you use
14	the licensee's procedure, usually they try to do
15	corrective actions commensurate with safety
16	significance, which is usually on the order of a
17	single operating cycle.
18	For Seabrook, that would be <mark>18 months</mark> . I
19	put long-term here because these are not one-year
20	projects. These are on the order of years.
21	The last time that was communicated to us
22	when we reviewed Seabrook's projections for the two
23	structures that are undergoing modifications right
24	now, they were projecting out to 2026 for planned
25	completion of the physical modification with the

(202) 234-4433

1

2

3

4

5

6

Once you complete the modification, you have to ensure that you meet those as-built drawings and it meets your reanalyzed condition for that additional capacity. So for those two structures, again, that was the projected time line. It was 2026.

7 For the other four, when we look at the 8 expansion data -- we're always trying to risk-inform 9 our inspection process. The licensee is trying to do the same thing. It was one of the items when we were 10 saying, what do your expansion trends look like? 11 Can you support operability or functionality for the 12 duration of your corrective actions? 13

14 In the case of the other four structures, 15 the answer to that is yes. I don't have a specific 16 time line for those structures. They're constantly 17 prioritizing what's the next one to come up. They're using a structural contractor for this, so they have 18 19 to send that out to the contractor. The contractor is 20 also supporting the modifications.

It would be difficult for them to do all six structures at once, so they have to prioritize which structures to do first. So they have the two in progress. They'll probably have a third one coming up.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

	112
1	Essentially, in the future we're going
2	to have a meeting soon. And we're going to have to
3	discuss their next time lines because we are moving
4	forward, I would say, the focus from evaluations.
5	That's where we initially had it. And now we're
6	moving forward to looking at the modifications
7	themselves; or if they reanalyze, we'll look at that.
8	So I don't have a specific time line.
9	That was a very long-winded response to your question,
10	but just kind of wanted to cover it from the start to
11	end there.
12	DR. SCHULTZ: When you say you're going to
13	get together soon to have another meeting to discuss
14	time lines and so forth, does that tie into the
15	six-month evaluation that is in the license
16	conditions?
17	MR. GRAY: Let me take that.
18	MR. FLOYD: I think Mel wants to comment.
19	MR. GRAY: It does not. This is our
20	internal plans for inspecting at Seabrook, and we are
21	there about every six months by our own choice. We
22	think that's appropriate for the situation right now.
23	There is a license condition, but it wasn't driven by
24	that.
25	I would add that the focus of our
ļ	I

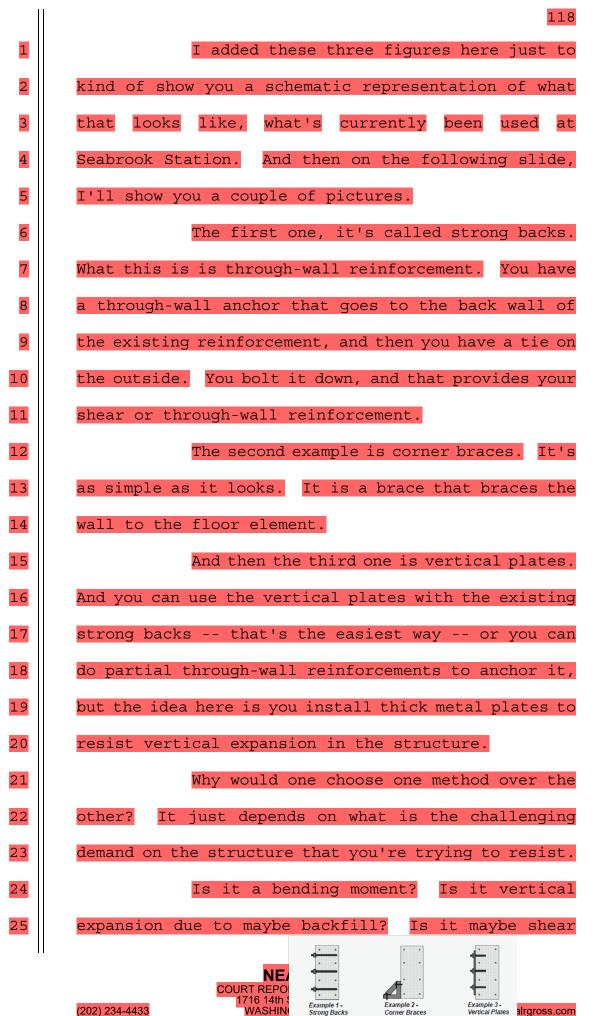
	113
1	inspections, as Nik has stated, is that the licensee
2	maintains margin for these six structures that informs
3	the pace of corrective actions. And we expect them to
4	have a technical basis for the timing of their
5	corrective actions.
6	The two structures that you mentioned have
7	a rather firm 2026 date. The information we've seen
8	on-site is not that much longer than that. It's not
9	many years. It's a few.
10	So we are looking for the licensee's
11	performance to move all of these structures within
12	their licensing basis, and then just demonstrate
13	continued monitoring and corrective actions prior to
14	getting in POD space. That's where we are looking to
15	transition towards. Our oversight would then beyond
16	the safe modifications that restore and increase
17	margin going forward.
18	So I think that was some of the underlying
19	thought processes behind the questions. I'll go back
20	to Nik or open it back to ACRS.
21	DR. SCHULTZ: Thank you. Both the
22	responses are very helpful. Thank you.
23	VICE CHAIR HALNON: One last follow-up.
24	So there's two ways of fixing things: you modify it to
25	get back within the licensing basis or you change the

	114
1	licensing basis.
2	If that's the case, will these require
3	license amendments if the reanalysis shows that I
4	don't want to modify, but I can safely expand my
5	limits?
6	MR. FLOYD: No. There's been no
7	indication to go outside of the current licensing
8	basis.
9	Reanalysis in some cases just to give
10	an example, for the Service Water Cooling Tower, there
11	was a couple areas where it was difficult to get
12	access to monitor the ASR. We're talking very far
13	down. In some cases, it's below water level.
14	And so they made a conservative assumption
15	on the ASR expansion level. Well, because of that,
16	that drives up the load demand in the structure. If
17	and when they're able to actually take that data, the
18	consideration is you can reduce that load demand and
19	then bring it back into conformance. That's one
20	example.
21	It's just getting additional monitoring
22	data to support their underlying assumptions in the
23	original load calcs, but in no case have they
24	indicated to go outside or do something different than
25	that modified code equation that includes ASR.

(202) 234-4433

	115
1	So there's no process in place right now,
2	or at least no actions in place, by the licensee to go
3	outside of that and submit a license amendment action.
4	VICE CHAIR HALNON: Okay, but it would be
5	subject to your approval if they do go outside?
6	MR. FLOYD: If they deviated from the
7	methodology and declared victory and said, this
8	structure is operable and in conformance, we would
9	differ there. And that would be a full engagement.
10	VICE CHAIR HALNON: Thank you.
11	MR. FLOYD: Yes.
12	MEMBER BALLINGER: I have a clarifying
13	question. We're talking about margin, load demand,
14	and the like.
15	These structures are all designed in
16	accordance with a code of some kind, ACI or something
17	like that. I know the ASME Code that if it's designed
18	in accordance with the code, there's already a factor
19	of 3 margin there.
20	I'm not sure about what it's like for the
21	concrete codes. Is there a built-in margin when you
22	use a code which is not accounted for here, but is
23	present?
24	MR. FLOYD: Yes, that's correct. For each
25	load, there is a load factor applied. So inherently,

(202) 234-4433


	116
1	there is margin when you add those up.
2	George, I don't know if you want to add
3	anything to this specific to Seabrook.
4	MR. THOMAS: Yes. There are design
5	margins incorporated into the coding in terms of load
6	factors, best estimate loads for expansion and
7	capacity reduction factors.
8	MEMBER BALLINGER: I didn't hear
9	everything, but you're saying that there's code-
10	built-in margin
11	MR. THOMAS: Yes.
12	MEMBER BALLINGER: which is always
13	there, which doesn't factor into any of this? It's
14	just there because you've designed in accordance with
15	the code?
16	MR. THOMAS: Yes.
17	MEMBER BALLINGER: Thank you.
18	MR. DAUN: One thing that was brought up
19	a little bit earlier was we were talking about when
20	they would exceed their ASR expansion limits. And I
21	think
22	MR. BURKHART: Just for people out there,
23	please do not mute Sandra Walker's mic as that is the
24	mic for this room.
25	CHAIR KIRCHNER: For the Teams mic.

(202) 234-4433

```
www.nealrgross.com
```

	117
1	MR. DAUN: Nik, I don't know if you want
2	to add in more.
3	Once they hit that expansion limit,
4	they're outside the guardrails. Even if you do
5	modifications to address the building defamation and
6	load-to-capacity ratios, you're still outside the
7	structural bounds of the expansion limits. That was
8	brought up a little bit earlier. I wanted to find a
9	good time to bring it up.
10	MR. FLOYD: This is a perfect segue to the
11	next slide because my next two are going to cover some
12	of these corrective actions, which are really the
13	physical modifications.
14	As we've been describing, there's two
15	options. The physical modification and I want to
16	correct something that Travis said. It's not
17	remediation. You can't remediate ASR.
18	Remediate would insinuate that you're
19	removing the ASR and that process for expansion stops.
20	You can't do that unless you completely remove an
21	entire wall or entire floor. You'd have to remove the
22	old concrete and put new concrete in its place.
23	So really, what's happening is it's a
24	retrofit. You're adding a physical modification to
25	the existing structure. So that's option 1.

(202) 234-4433

	119
1	reinforcement that you need at the bottom of the wall,
2	again, due to the bending moment in the wall? So it
3	just depends on the application.
4	And then as far as the reanalysis, I gave
5	one example. Maybe it's to verify an assumption.
6	Another case would be, let's say, the structure starts
7	off at Stage 1. It's the simplest way to do it. You
8	take your original design code equations, and you just
9	add ASR load.
10	Well, what's the next step? Stage 2 or 3,
11	you develop a finite element model and then calculate
12	the ASR loads. And then in Stage 3, you're redefining
13	some of those original design loads.
14	So now you're actually using in-situ
15	comparisons to formulate those. That takes a lot more
16	effort and a lot more time. And again, that's why you
17	have to prioritize which structure to go after first.
18	So there are those other options that
19	reanalysis will provide for the licensee. And it is
20	all laid out in the NRC-approved methodology, so it's
21	nothing new that they're doing outside the licensing
22	basis. It's all within that approved methodology.
23	Next slide.
24	So real quick, I just wanted to show a
25	couple pictures because these are completed now within
	I

(202) 234-4433

	120
1	the plant. The first one are an example of the
2	vertical plates. That is the Fuel Storage Building.
3	Now, this was not a building that was in
4	prompt operability determination space. This was a
5	proactive reinforcement. And you might ask, why be
6	proactive? Well, two reasons.
7	One, it was for this is according to
8	the licensee this was for proficiency of their
9	maintenance technicians to perform that work. And
10	it's easy to access. This is right on the outside of
11	the building. You can walk right up to it and not
12	have to be around existing operating plant equipment.
13	You can also see here I just wanted to
14	illustrate this. You can see the existing monitoring
15	equipment still in the photo. There's an extensometer
16	just outside the plates and then one right in the
17	bottom left of the plates.
18	So again, they're not remediating ASR.
19	They're retrofitting it. You still have to continue
20	to monitor for ASR expansion because that's what the
21	program requires.
22	Just to the right of that is the ASR grid.
23	There's little slots. It's kind of hard to see in
24	this photo, but again, they've retained the ability to
25	continue to monitor the structure.
Į	

(202) 234-4433

	121
1	The figure on the
2	MEMBER HARRINGTON: This is Craig
3	Harrington.
4	MR. FLOYD: Yes.
5	MEMBER HARRINGTON: Before you move to
6	that, can you explain why the top of those plates is
7	bolted and the bottom seems to be just free?
8	MR. FLOYD: Yes. I apologize. I should
9	have went into the background on this a little bit.
10	It's actually excavated down about five or six feet.
11	I don't have the exact dimensions.
12	So where you see the black there, that's
13	been backfilled and then tarmacked on top. They're
14	bolted below-grade into the wall. You're only seeing
15	the top, essentially, the top two-thirds.
16	MEMBER HARRINGTON: Thanks.
17	MR. FLOYD: Yes, you're welcome.
18	And then the picture on the right here
19	actually, that's me in the photo with the scrubs and
20	the hard hat this is an example of the corner
21	braces. And then you also see the strong backs. So
22	this was, I want to say, reactive, the opposite of
23	proactive.
24	This was a modification done on the
25	Mechanical Penetration Area to bring that structure
ļ	I

(202) 234-4433

	122
1	back into conformance. So there was a couple of load
2	demands that they needed to resist, and these were the
3	two retrofit options that were chosen by the licensee
4	to be installed there.
5	That structure, last time we spoke in
6	2022, was in POD space. It has now been pulled out
7	because it has been restored to conformance in
8	accordance with their licensing basis.
9	VICE CHAIR HALNON: Are those strong backs
10	in addition to
11	MR. FLOYD: Say that again?
12	VICE CHAIR HALNON: Are those strong backs
13	on the wall in addition to a buttress?
14	MR. FLOYD: Yes. They are separate.
15	VICE CHAIR HALNON: Okay, so we shouldn't
16	take those as isolated. These are obviously working
17	together to bring it back into
18	MR. FLOYD: They are working in unison.
19	And as you can see this is an example it's not
20	going to be one or two of the strong backs. There's
21	going to be a number of those as part of that
22	through-wall reinforcement.
23	MR. DAUN: And then on the opposite wall,
24	you've got even other things. We just didn't include
25	it all.

(202) 234-4433

	123
1	VICE CHAIR HALNON: You're squeezing it.
2	MR. FLOYD: Next slide, please.
3	Based on a combination of inspections
4	so this is our ASR-focused inspections, and in one
5	case which I'll point out, it was from our Biennial
6	PI&R Team inspection the NRC has identified three
7	findings, all of which were of very low safety
8	significance.
9	In each one of these cases, they were
10	unique performance issues. They were all related to
11	ASR, but for different reasons for why we documented
12	the findings. This does highlight the fact that
13	continued focus is warranted, continued focus by the
14	licensee on implementing their programs as well as
15	continued focus via oversight by the NRC.
16	We did review the three findings at the
17	time and made sure that they were entered in the
18	NextEra Corrective Action Program. I'm going to cover
19	the three of these in more details on the next slide,
20	but just wanted to provide you the summary really
21	quick.
22	Next slide.
23	I'll start with the picture on the right.
24	This was from our Second Quarter 2022 inspection.
25	This was a failure of NextEra to install extensometers
	1

(202) 234-4433

	124
1	in seven ASR Tier III locations.
2	What I mean by Tier III we briefly
3	covered it in the ASR background, but they developed
4	three tiers for ASR. The third tier is when you reach
5	one millimeter per meter in-plane expansion. At that
6	point, an extensometer is required to be installed to
7	monitor through-wall expansion.
8	Why that's important is through the test
9	program, what was identified is that in-plane will
10	essentially plateau. And then the remainder of the
11	expansion, because it's only two-way reinforced, will
12	be expansion in the through-wall direction. So it's
13	essential for multiple license conditions to have
14	these extensometers installed in the plant.
15	What we identified going through the
16	program is that there were seven Tier III locations
17	that were identified by the licensee, and they had not
18	installed extensometers. And it had been that way for
19	a number of years.
20	When you review the license conditions, in
21	one instance, they require the through-wall expansion
22	to be monitored on a six-month basis. Well, if you go
23	years, not every six months, that's not timely, hence
24	why we wrote the violation.
25	And I can tell you, to date, all seven
1	

(202) 234-4433

125 1 have been installed. We followed up on that on a subsequent ASR inspection, so that finding has been 2 3 corrected. Any questions on that finding before I 4 5 move to the next one? Okay. this 6 DR. SCHULTZ: Sorry, is Steve 7 Schultz. What was the root cause associated with 8 that? 9 That was -- and I would be MR. FLOYD: 10 speaking on the licensee's behalf for this, but based on discussions and based on the inspection, they had 11 12 work orders in place for when areas reached the Tier III threshold to install extensometers. 13 At some of 14 the seven locations, they had a work order in place. 15 Somehow they got lost in translation. I don't know. 16 That would be a good question for NextEra. 17 I never did get a good answer on how they got left out. Not so much that they got left out, but the fact 18 19 that they have a proper tracking mechanism in place. One of the observations I did provide to 20 them at the time is in the Structures Monitoring 21 they have tables which track all their 22 Program, monitoring locations. Well, they had separate tables 23 24 for the extensometers, and then a second table for their Tier II and Tier III locations. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

I provided the observation that it would 1 be useful to have, basically, a cross-reference for 2 3 the Tier III and extensometer install locations. So 4 they actually did implement that as a corrective 5 action. I feel certain that will help going into the future, but it doesn't answer your question on why 6 7 this happened in the past. DR. SCHULTZ: It somewhat identifies the 8 9 root cause. And what you're sayinq is that 10 programmatically, they've corrected their approaches so that reoccurrence is not likely? 11 I would feel confident in yes MR. FLOYD: 12 13 to that response. 14 DR. SCHULTZ: Thank you. 15 VICE CHAIR HALNON: Just a quick time 16 check. It's ten minutes until the end, but we do have 17 some discretion towards the end. A prompt for members to maybe hold your questions to the end unless there's 18 19 something burning that you need to ask. I can speak pretty Okay. 20 MR. FLOYD: So if I go too fast, just slow me down. 21 quick. VICE CHAIR HALNON: 22 Put on your running shoes and go for it. 23 24 MR. FLOYD: In the top right, this was a 25 finding identified this year by the Problem

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	127
1	Identification and Resolution Inspection Team. In
2	fact, they contacted me when they identified this. I
3	provided them technical assistance.
4	What you see here is, this is in their
5	Emergency Feedwater Pumphouse. Circled in blue is the
6	support for the instrumentation tubing. You can see
7	the tube right above the blue circle.
8	Well, due to fault deformation again,
9	here we're getting to why that Deformation Program is
10	important. That's the CEB. That's the Containment
11	Enclosure Building.
12	That building had shifted or deformed
13	towards the Emergency Feedwater Pumphouse and resulted
14	in contact with that tube support. Well, you can't
15	have two structures contacting one another. You have
16	to retain a seismic gap. So what we did is we the
17	team identified that.
18	The second piece is circled in red. Based
19	on that impact, there are resulting stresses imparted
20	on that square tube support that's welded to the
21	column. You actually see a crack in that tube support
22	piece. It partially cracked down the length there,
23	hence, again, why it's important to monitor these
24	items.
25	When we did a backwards look at this, we
ļ	I

(202) 234-4433

128 1 saw in the Structures Monitoring Program they had previously -- they being the licensee -- previously 2 3 identified it and had not taken corrective action in 4 a timely manner. And this was over the order of 5 vears. This was what I would consider a relatively 6 easy action to take to restore conformance. 7 So we wrote the corrective action 8 violation. It has since been restored. And the 9 inspection team did look at other supports in that 10 room, just seeing was there any other supports contacting the structure. 11 This is something that does get looked at 12 They actually had documented it in 13 by the licensee. 14 their inspections of the structure as part of the 15 Structures Monitoring Program. They just failed to take corrective actions. 16 17 And in the bottom right, that was а finding from our First Quarter 2024 Report. This is 18 19 specific to the containment internal structure. I'm going to save that discussion for a subsequent slide 20 because I have more details on it, but we will circle 21 back to that. 22 Next slide. 23 24 So here's just a brief time line of the containment internal structure issue. This initially 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	129
1	started going back to 2021 during Seabrook's fall
2	refueling outage. The NRC inspectors became aware of
3	cracking and spalling in the reactor cavity pit area
4	of the containment internal structure.
5	Note this is normally an inaccessible area
6	during operation. It's a high-rad area. Actually,
7	it's a locked high-rad area. It's even higher than
8	that. Simply, it just provides an access point for
9	personnel and serves as a support for some reactor
10	ventilation duct work, as well as it provides a
11	pathway for the in-core instrumentation that goes to
12	the vessel.
13	I am going to cover some pictures of those
14	conditions that we observed, and that will be on a
15	subsequent slide. I just wanted to highlight here
16	that, yes, we did document a finding on that. That's
17	actually how we got to where we're sitting right now.
18	The licensee had visual indications of ASR
19	that we considered as possible or likely. We did not
20	see your typical ASR in the concrete itself, but what
21	we did see is that there was potential that what was
22	on the other side of the wall again, be it backfill
23	or the containment foundation mat something was
24	externally acting or potentially externally acting on
25	the structure that potentially resulted in that
	1

(202) 234-4433

	130
1	cracking.
2	As a result of that, the licensee should
3	have entered that into their program and evaluated it
4	for ASR. Therefore, we documented the finding.
5	In response to that, the licensee
6	documented a prompt operability determination. Again,
7	this is in 2021. We reviewed that.
8	And this was a margin argument where they
9	applied reasonable ASR loads and said, yes, the
10	structure is still able to withhold ASR. That's not
11	the Stage 2 evaluation, though, so it was good for the
12	interim.
13	Fast forward, licensee completed root
14	cause studies I'm going to cover those in a lot
15	more detail in the next slides performed root cause
16	studies to best estimate the amount of ASR in the
17	structure. Since you didn't have your typical ASR in
18	the concrete, it was difficult for them to approximate
19	it, so they had to develop finite element models.
20	They also took a substantial amount of
21	measurements in that area and inputted it into the
22	model to best estimate and understand why they were
23	seeing these structural distresses. They completed
24	that in April 2023, used the results of that root
25	cause study in their official structural evaluations,
ļ	

(202) 234-4433

	131
1	and completed those in November of 2023.
2	And then in March of this year, we were
3	able to go on-site and review those root cause studies
4	as well as the completed structural evaluations. As
5	a result, we did identify one finding, which I will
6	discuss.
7	I know there's going to be questions, but
8	let's just cover a quick overview of the CIS. And
9	then we'll go through each step of that process.
10	So here's the containment internal
11	structures layout. I realize now it's kind of
12	difficult to read on the screen. I apologize for
13	that.
14	In blue at the bottom is the reactor pit
15	area. That is the area that's below the negative-30
16	feet. There's also a four-inch-thick concrete fill
17	mat that begins at elevation 26.
18	And then the superstructure is above that.
19	That is the slab walls, columns, including the primary
20	and secondary shield walls; basically, everything you
21	see in this picture. What is not part of the
22	containment internal structure is the concrete
23	Containment Building foundation.
24	That's that 12-foot thick it's ten feet
25	thick. It ranges down to six feet underneath the
ļ	I

(202) 234-4433

	132
1	reactor cavity pit area. That's that pink-reddish
2	crosshatch. It does not include that, and it does not
3	include the cylinder or the containment dome. So it's
4	everything else inside of containment.
5	Next slide.
6	NextEra approached this issue with
7	multiple steps. They wanted to understand why they
8	were seeing the distresses that they were seeing in
9	the containment internal structures.
10	It wasn't just in that reactor cavity pit
11	area. What they did see was spalling, cracking in the
12	reactor cavity pit, but there were distresses observed
13	in other areas of the containment internal structure.
<mark>13</mark> 14	in other areas of the containment internal structure. If you ever walk around a containment,
14	If you ever walk around a containment,
14 15	If you ever walk around a containment, typically on the fill mat, sometimes you'll see cracks
14 15 16	If you ever walk around a containment, typically on the fill mat, sometimes you'll see cracks in the fill mat slab. Sometimes you'll see cracks in
14 15 16 17	If you ever walk around a containment, typically on the fill mat, sometimes you'll see cracks in the fill mat slab. Sometimes you'll see cracks in walls. They wanted to understand what was the cause
14 15 16 17 18	If you ever walk around a containment, typically on the fill mat, sometimes you'll see cracks in the fill mat slab. Sometimes you'll see cracks in walls. They wanted to understand what was the cause of all the cracking observed throughout the structure.
14 15 16 17 18 19	If you ever walk around a containment, typically on the fill mat, sometimes you'll see cracks in the fill mat slab. Sometimes you'll see cracks in walls. They wanted to understand what was the cause of all the cracking observed throughout the structure. So the first step was to collect data
14 15 16 17 18 19 20	If you ever walk around a containment, typically on the fill mat, sometimes you'll see cracks in the fill mat slab. Sometimes you'll see cracks in walls. They wanted to understand what was the cause of all the cracking observed throughout the structure. So the first step was to collect data through field measurements. That was locating all the
14 15 16 17 18 19 20 21	If you ever walk around a containment, typically on the fill mat, sometimes you'll see cracks in the fill mat slab. Sometimes you'll see cracks in walls. They wanted to understand what was the cause of all the cracking observed throughout the structure. So the first step was to collect data through field measurements. That was locating all the cracks, crack locations, collecting temperature, going
14 15 16 17 18 19 20 21 22	If you ever walk around a containment, typically on the fill mat, sometimes you'll see cracks in the fill mat slab. Sometimes you'll see cracks in walls. They wanted to understand what was the cause of all the cracking observed throughout the structure. So the first step was to collect data through field measurements. That was locating all the cracks, crack locations, collecting temperature, going back and looking at history of the spalling, really

(202) 234-4433

1 finite element models. One was specific for heat transfer because the original design calc just had an 2 assumed design temperature. They wanted to better 3 4 understand the in-situ loads from operating And then the second finite element 5 temperatures. model was an actual stress model. 6 7 As a result of the models, they performed 8 parametric studies. So what I mean by that -- I'll 9 have a graphical picture as well as a summary table --10 essentially, they were varying the amount of differential loads throughout 11 temperature the structure, trying to understand. 12 Could it be 100 percent temperature; could 13 14 it be no temperature? Could it be 100 percent ASR; 15 And then varying the amounts of could it be no ASR? the two in combination to understand, okay, here's the 16 17 inputs; what's the results? And then compare that to the field 18 19 measurements that they obtained from their walk-downs. Did it make sense that this amount of thermal and ASR 20 load resulted in this cracking or this spalling? 21 completed 22 Once they with the were parametric studies, they documented the results in 23 24 root cause reports. There were three specifically. And then they utilized those results as the input to 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

133

	134
1	the Stage 2 structural evaluations.
2	So now, let's go through some of the
3	details here. This is going back to the reactor
4	cavity pit area that caught our attention in 2021.
5	This is step one, the field observations.
6	This goes through a review of the past monitoring
7	program walk-downs. They also did additional walk-
8	downs in 2021, 2023, and then used field observations
9	for the remainder of the CIS.
10	Some of the conditions and I'll show a
11	couple more in the next slides there was cracking,
12	horizontal cracking along the walls. There was
13	spalling on the pit slab, which is the reddened area.
14	And there was also cracking and bulking of some of the
15	other structures. The next slides will be a little
16	bit more helpful.
17	So again, this goes to 2021, the area that
18	caught our attention. If you look, the left picture
19	is just a schematic. Then there's arrows that point
20	to what was actually observed.
21	So in 2021, we saw that this area had
22	spalled. Licensee discovered and captured it in the
23	CAP. That's what brought our attention.
24	This area was previously repaired due to
25	spalling in 2012. That seems pretty unusual for any
I	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 (202) 234-4433 WASHINGTON, D.C. 20009-4309 www.nealrgross.com

	135
1	concrete structure at a nuclear power plant, that
2	repeat spalling, which was just one of the indicators
3	that caught our attention.
4	The second item here is the steel grating.
5	That was actually buckled and you can see it in the
6	picture on the right due to what is some type of
7	deformation. There's something going on specific to
8	this area. So those are some of the observations we
9	were seeing.
10	I do want to note here, this area that
11	spalled, the licensee has installed well, one, they
12	repaired the spalled area. They chipped away the old
13	concrete and put new concrete back, but they've
14	installed an encapsulation device on this area, this
15	perforated steel panel that encapsulates it. So if it
16	does respall again, it will catch any of that spalled
17	concrete.
18	One of the items and I'm kind of
19	jumping ahead here that was identified in the root
20	cause in addition to thermal loads is that this is a
21	high-stress concentration area. To the right there is
22	a cutaway for the cooling ductwork.
23	Well, you have a one-inch-thick slab in
24	between two large concrete walls. It produced a very
25	high-stress concentration in this area. So that was

(202) 234-4433

www.nealrgross.com

	136
1	one of the items that they identified in the root
2	cause study, hence why they installed the
3	encapsulation device, because there is a chance in the
4	future it could spall again. And that's not good.
5	Next slide.
6	Other observations observed was this
7	horizontal cracking along the reactor cavity pit
8	walls. This is typical not just in the area
9	highlighted to the left in green, but throughout the
10	bulk of the structure.
11	One of the items that we wanted to know
12	is, is ASR actually a contributor or is it stagnant?
13	What's happening? Normally, ASR would result in
14	continued crack changes.
15	The reason it's important, there have been
16	no apparent changes to date going back to 2017, '21,
17	or '23. Similarly, there was a one-eighth-inch crack
18	in the keyway opening that we documented in our
19	inspection report. That crack has also remained the
20	same, going back to the same time frame.
21	So we're not seeing changes in those crack
22	profiles, which is good for ASR, but it still needed
23	to be explained on why those cracks were occurring.
24	Next slide.
25	So after the compilation of the field
	l

(202) 234-4433

walk-downs and the crack data, the licensee developed finite element models. In particular Ι mentioned this before _ _ there was models two developed. One was for heat transfer, and this was determined in thermal loads. If you have differential thermal, that's going to create a load on structure, and then that's computed as a stress. For the global stress model, that utilized all in-situ and design loads, including ASR The attempt here was to input different ASR thermal. and thermal loads to see what the effects were on the structure. And not just loads, but the licensee also considered in some localized modeling what are the

effects of cycling fatigue, particularly for that 16 17 slab. As you heat up and cool down, what does that fatique, look like for concrete the 18 stress 19 concentration in the slab due to the cutout, as well 20 as concrete creep?

So they approached this from multiple 21 angles to really understand what could be affecting 22 and causing those distresses. And then when they ran 23 24 the model, they compared it back to what they saw. One of the things I just wanted to bring 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

www.nealrgross.com

had

the

and

	138
1	up was demands were due this was a Stage 2
2	evaluation, so the bulk of the demands came from their
3	original design loads. They were obtained from the
4	original design calculations.
5	Some demands were unavailable, so they had
6	to calculate those with this model consistent with the
7	original design calcs. Those demands were from ASR
8	expansion, and then for the reactor cavity pit area,
9	they were for thermal. Again, that was the purpose of
10	these two models.
11	Specific for this review, and this is for
12	the entire containment internal structure, it wasn't
13	just Region I that performed this review. We had
14	assistance from our technical experts from our Office
15	of NRR. That would be George Thomas.
16	And <mark>we also had assistance from Jose</mark>
17	Perez, who's a senior technical advisor out of our
18	Office of Research. And then as I pointed out in that
19	picture, we had two observers for knowledge transfer
20	purposes.
21	So once the finite element models were
22	done, then the licensee transitioned into what they
23	discussed as a parametric study.
24	Next slide.
	Next Silde.
25	And what this parametric study is, this is

(202) 234-4433

	139
1	just a single example. They did parametric studies
2	for each of the root causes that they performed.
3	Above is thermal, below is ASR, and then there's
4	various scenarios for each. I'll quickly walk through
5	this.
6	The temperature in the reactor cavity pit,
7	as well as the rest of the containment internal
8	structures, that was determined from a steady-state
9	heat transfer analysis.
10	If you look in scenario 1, that's the
11	design-basis temperature input. That's assuming 120
12	degrees design temperature. This came straight from
13	the original design temperature calc.
14	Scenario 2, look at no thermal load. What
15	is the impact on the structure if no thermal loads are
16	considered?
17	And then scenario 3 is the more accurate
18	representation. This is the operating temperature
19	loads to best estimate what the structure was actually
20	seeing.
21	There are some assumptions made for this
22	scenario. The licensee has an understanding of what
23	they believe to be the temperature in the reactor
24	annulus, the reactor cavity pit, the walls, and the
25	slab.
I	I

(202) 234-4433

1 This is one of the things that is considered an assumption right now that they're going 2 3 to have to verify based on installed temperature 4 monitoring equipment that they put in last outage. So 5 during this upcoming fall refueling outage, they will collect the temperature data via data loggers that 6 7 they installed and verify those assumptions.

8 And then for ASR, again, there was 9 multiple scenarios performed here. In scenario 1, 10 this is ASR considered just in the Containment 11 Building, so the Containment Building foundation mat.

Scenario 2 is a combination of the building foundation, the reactor pit area, the pit slab. And then 3, it's a variation of just the foundation and the reactor pit.

What's not shown here are the relative amounts of ASR variation. It's looked at anywhere from zero ASR up to high amounts of ASR. And again, the idea here is really just to understand what was the impact on the structure.

Next slide.

22 So here's a table that summarizes some of 23 the scenarios, the thermal variations, and then 24 whether or not it actually compared to what was 25 observed during the walk-downs. And this is really

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

21

	141
1	considered a cause-and-effect table. Does this
2	explain what was observed? I will note this is
3	specific just to the reactor cavity pit area and slab
4	at that elevation negative-44.
5	In red, this is the comparable
6	representative scenarios for the CIS that were
7	determined to be most applicable. That's scenario 3
8	with thermal variation echo.
9	This assumed 0.2 millimeters per meter ASR
10	expansion in the Containment Building foundation.
11	This provided the best estimate and explanation of the
12	spalling that was observed in the slab, as well as the
13	cracking that was observed in the various other areas
14	of the reactor pit walls.
15	Licensee did run a variation of this where
16	they assumed ASR in the Containment Building
17	foundation as well as the reactor pit area walls, but
18	it didn't correlate as well as ASR in just the
19	Containment Building foundation.
20	They did, as part of the conclusion of
21	this and the root cause, determine that the distress
22	in that pit area was primarily attributed to thermal
23	loading and cycling fatigue, as well as stress
24	concentrations.
25	The conclusion was a possible contribution

	142
1	of combined ASR expansion in the foundation of up to
2	0.2 millimeters per meter in each direction. If you
3	add that up volumetrically, that would be 0.6
4	millimeters per meter. And this was the upper bound
5	estimate for ASR expansion that they utilized in the
6	Stage 2 structural evaluation.
7	Now, you might ask, why not higher levels
8	of ASR? Well, they did consider that in their
9	studies. It was one of the questions we had.
10	It did show, when they used ASR expansions
11	beyond that estimate, it would have produced more
12	severe cracking in those reactor pit walls.
13	Considering the in-situ temperature conditions in the
14	CIS, it was determined to be unlikely.
15	Next slide.
16	In addition to the reactor pit area, there
17	were two other parametric studies performed. These
18	were of other distress areas in the CIS.
19	One of the areas was the fill mat and
20	sump. This was a combination of circumferential and
21	radial surface cracking in the fill mat slab and
22	cracking in the adjacent walls.
23	They also looked at some indications of
24	the distress adjacent to the personnel elevator. This
25	is specific to the enclosure plate, some slight

(202) 234-4433

	143
1	buckling and cracking of the grout for the supporting
2	structure.
3	So like the reactor cavity pit area, they
4	did analyze these areas. They performed and utilized
5	the finite element models. In some cases, they
6	utilized localized ASR expansion to study whether or
7	not it was ASR throughout the structure or just ASR
8	occurring locally, and then they compared it to the
9	distress in the plant.
10	The conclusions were, based on the results
11	of this study, that ASR was likely not the cause. It
12	did not explain the conditions that they were
13	observing.
14	Particularly for the fill mat slab at
15	elevation 26, they determined the likely cause of that
16	was concrete shrinkage. And then for the personnel
17	elevator, they determined that it was due to a
18	combination of effects potentially, which could have
19	been inefficient anchor bolts, grout shrinkage,
20	vibration, or even imbalanced loads during ASR
21	operation.
22	In order for ASR similar to the reactor
23	cavity pit walls to be the cause, you'd have to
24	have very high amounts, which would present prominent
25	signs of ASR cracking in the fill mat slab. There
I	I

(202) 234-4433

	144
1	would have been visual indications typical throughout
2	the plant that were just not observed.
3	Now, the ASR so far determined has been
4	concluded, as best the licensee can estimate, to be in
5	the Containment Building foundation mat and not in the
6	fill mat slab itself, but they have implemented
7	monitoring throughout the containment structure in the
8	fill mat to confirm that conclusion of those areas.
9	I'll cover this on the next slide.
10	Those areas are outside the secondary
11	shield wall, otherwise called the bioshield wall.
12	They are accessed quarterly while the reactor is
13	operating. And so they are getting quarterly data to
14	monitor that the effects of ASR are not occurring in
15	that structure, specifically the fill mat slab.
16	One of the things and I briefly touched
17	on this is that they previously installed data
18	loggers via thermocouples in the reactor pit area to
19	confirm their assumption for the in-situ temperature
20	conditions of that area.
21	They will collect that data during the
22	upcoming refueling outage and confirm those
23	temperature profiles. And this is also to compare
24	against the root cause analysis to determine their
25	judgment that thermal really was the most significant
	I

(202) 234-4433

	145
1	load demand.
2	Next slide.
3	During the NRC review, we did verify that
4	NextEra completed their structural evaluations using
5	the Stage 2 methodology via the NRC-approved
6	methodology document. They developed the finite
7	element models to estimate those ASR loads and
8	recalculated the structural demands using the original
9	design inputs.
10	We did determine that the CIS meets the
11	evaluation criteria for all factored load combinations
12	with ASR loads. And this does include an ASR
13	threshold of 1.3, so that's 30 percent additional
14	expansion in the Containment Building foundation mat.
15	I will caution, even though we said they
16	meet all factored load combinations, the one area
17	and this was identified in our violation was that
18	they didn't include or evaluate the effects for the
19	reactor pit slabs at that elevation in the revised
20	evaluation.
21	It was excluded from their analysis. It
22	was not taken for any credit in the analysis, but it
23	was excluded from the analysis. And I will go into
24	why, but it's safe to say the remainder of the
25	structure did meet their Stage 2 analysis.
ļ	I

(202) 234-4433

	146
1	We did review the root cause studies in
2	detail and found they were of appropriate technical
3	details for the licensee to develop those insights as
4	far as what was causing the distresses. It also
5	provided sufficient detail to provide for that upper
6	bound estimate for ASR.
7	And we did verify that they have plans in
8	place and this is what we'll verify in subsequent
9	inspections to monitor ASR in that structure to
10	verify whether or not they are experiencing any ASR
11	effects.
12	Next slide, please.
13	So circling back, this is the violation
14	that was identified for that reactor pit slab. It is
15	shown in red in the diagram on the right.
16	What we found is that this slab, it is
17	credited for the attached ductwork. And located
18	directly underneath this slab is the in-core
19	instrumentation that goes to the reactor vessel.
20	The licensee failed to verify the adequacy
21	of this pit slab in their revised structural
22	calculations. Although not taking credit for it, they
23	still need to evaluate the effects and loads impacted
24	on that structure because if it were to fail, it could
25	impact the equipment located underneath of it.

(202) 234-4433

5 NextEra, when this was brought up during the inspection, they did perform a prompt operability 6 7 determination of that reactor pit slab. This was really just to confirm the integrity of the slab 8 during the unusual load combination of a safe-shutdown 9 earthquake to ensure that if an earthquake were to 10 occur, would the slab stay in place. And the answer 11 12 was yes.

far corrective qoinq 13 As as actions 14 further, they do have an engineering change in 15 to reclassify this slab as non-seismic progress 16 Category I, which will include the necessary analysis 17 to look at the seismic Category II-over-I impacts. Basically, that just means for something that's non-18 19 seismic, what failure or what failures could occur to impact safety-related equipment. 20

That change is in progress. There are some additional items as far as measurements and runs that they want to do, including verification of the temperature in the area, that they need to have prior to completing that engineering change. So this is an

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

148 action that will be completed during or post this 1 upcoming refueling outage. 2 3 And then the last piece here is the slab, 4 right now, if you move it to non-seismic category, 5 you've got to look at the results of any failures. We're talking potential spalling or otherwise impacts 6 7 of degradation of that structure. Licensee has an analysis out right now 8 9 where they're analyzing the potential impacts of the 10 failure of this slab on the underlying equipment. Pending the results of that analysis, if it's no good, 11 12 they will move forward with preventative а conceptually of modification, which will consist 13 14 plates installed above the in-core instrumentation to 15 protect it from falling debris. They have not chosen 16 either option to date. 17 CHAIR KIRCHNER: Is there a time estimate for when that would be effected, the corrective 18 19 action? MR. analysis 20 FLOYD: The for the 21 reclassification to non-seismic, that will be 22 performed shortly after the refueling outage. analysis for the 23 The impact to the 24 equipment from falling debris, I do not have a time

frame. I would assume it would go in concert with the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

	149
1	non-seismic Category I analysis because it's part of
2	the steps that they have to do.
3	There are plans to obtain measurements
4	during this refueling outage for the future retrofit.
5	If they were to install that modification, it would
6	not occur during this outage. It would occur in the
7	subsequent outage 18 months from now. Well, when's
8	the outage? October 1st, so 19 months from now.
9	I would not anticipate any repeat spalling
10	right now. There's been no spalling from this
11	structure. Going back to their calculation, when you
12	look at fatigue, there is substantial margin there,
13	but you still need to protect it in the event. So
14	that's why this is important.
15	Are there any questions on the containment
16	internal structure? This is my last slide before I
17	wrap it up and turn it over to Mel.
18	MEMBER BIER: This is really a comment,
19	not a question. I'll keep it brief because I'm not
20	really disagreeing with any of the conclusions, but I
21	just think it makes sense to be careful about using
22	the word cause.
23	The analysis that was done may be
24	consistent with the hypothesis that such and such was
25	the cause, but hasn't really demonstrated that. There
I	I

(202) 234-4433

	150
1	may be interactions between multiple phenomena or
2	whatever that haven't been modeled accurately or
3	completely.
4	It's a good working hypothesis. It
5	doesn't mean we know it. That was my only
6	observation. Thanks.
7	MR. FLOYD: Thank you.
8	MR. GRAY: All right. Thank you. I'll
9	close succinctly.
10	Our focus has been the capability of
11	structures, that the licensee maintains those. We've
12	done independent inspections which lead us to our
13	conclusions here that the structures are sufficient to
14	perform their safety functions under the most limiting
15	conditions.
16	We did identify three findings of very low
17	safety significance. And really, the first feeds to
18	the second. They are very low safety significance.
19	I think one of the questions was asked in
20	getting at, is that a lot in context for what's
21	required in this situation? I guess I would say that
22	this particular plan has a unique challenge that takes
23	a lot of resources and ongoing attention, where
24	they've had to graft into the normal operating
25	practices and procedures structural activity.
I	1

(202) 234-4433

	151
1	And three, in my view, very discrete items
2	doesn't make us change our oversight or think we need
3	to focus more on this licensee than what they're doing
4	right now. That's the best I can say as the
5	regulator.
6	And that's a good place to be, actually.
7	They're in column 1 of the action matrix. For this
8	issue, they've maintained their position in that
9	column. So that's a good place to be.
10	Next slide.
11	Next steps; we're going to continue to use
12	the baseline to focus on ASR-related activities at
13	NextEra and their performance.
13 <mark>14</mark>	NextEra and their performance. And really, the first bullet, I'm looking
14	And really, the first bullet, I'm looking
14 15	And really, the first bullet, I'm looking for them to bring their structures into the licensing
14 15 16	And really, the first bullet, I'm looking for them to bring their structures into the licensing basis in the next several years and move on. Monitor
14 15 16 17	And really, the first bullet, I'm looking for them to bring their structures into the licensing basis in the next several years and move on. Monitor your ASR for ASR expansion on the one side and
14 15 16 17 18	And really, the first bullet, I'm looking for them to bring their structures into the licensing basis in the next several years and move on. Monitor your ASR for ASR expansion on the one side and building deformation just to have a handle on that,
14 15 16 17 18 19	And really, the first bullet, I'm looking for them to bring their structures into the licensing basis in the next several years and move on. Monitor your ASR for ASR expansion on the one side and building deformation just to have a handle on that, and take corrective actions in a time frame to keep
14 15 16 17 18 19 20	And really, the first bullet, I'm looking for them to bring their structures into the licensing basis in the next several years and move on. Monitor your ASR for ASR expansion on the one side and building deformation just to have a handle on that, and take corrective actions in a time frame to keep all of your structures within the licensing basis.
 14 15 16 17 18 19 20 21 	And really, the first bullet, I'm looking for them to bring their structures into the licensing basis in the next several years and move on. Monitor your ASR for ASR expansion on the one side and building deformation just to have a handle on that, and take corrective actions in a time frame to keep all of your structures within the licensing basis. Going back to what was brought up, their
14 15 16 17 18 19 20 21 22	And really, the first bullet, I'm looking for them to bring their structures into the licensing basis in the next several years and move on. Monitor your ASR for ASR expansion on the one side and building deformation just to have a handle on that, and take corrective actions in a time frame to keep all of your structures within the licensing basis. Going back to what was brought up, their conclusions regarding containment internal structures
 14 15 16 17 18 19 20 21 22 23 	And really, the first bullet, I'm looking for them to bring their structures into the licensing basis in the next several years and move on. Monitor your ASR for ASR expansion on the one side and building deformation just to have a handle on that, and take corrective actions in a time frame to keep all of your structures within the licensing basis. Going back to what was brought up, their conclusions regarding containment internal structures are only a parametric study. They are open to further

(202) 234-4433

	152
1	Finally, we're focused on licensee
2	performance to show they meet the license conditions.
3	And that feeds into giving us insights on what they
4	may choose to do with their plant that we need to be
5	aware of so we can form our own inspection plans and
6	oversight, whether they choose to perform large-scale
7	testing in the future.
8	So I would just leave that closed and give
9	it back to the ACRS. I'm here for any questions.
10	CHAIR KIRCHNER: Thank you, Mel, Travis,
11	Niklas, George. I appreciate the information. We are
12	well behind schedule, but I thought it was important
13	to make sure we had the entire story that you all
14	wanted to tell.
15	We will take a ten-minute break or
16	thereabouts. We will reconvene at five minutes after
17	3:00.
18	We'll give the C-10 folks time to get
19	their computers up and presentation up, and we'll give
20	them their full time. After that, we'll take public
21	comments and then have some time to talk as a
22	Committee.
23	So at this point, we'll reconvene at five
24	minutes after 3:00 Eastern Time. Thank you.
25	(Whereupon, the above-entitled matter went
ļ	I

(202) 234-4433

	153
1	off the record at 2:53 p.m. and resumed at 3:04 p.m.)
2	CHAIR KIRCHNER: Okay, we're online.
3	VICE CHAIR HALNON: Okay, we're just about
4	at 3:05. If we can get back into session, I'm going
5	to turn the microphones over to Sarah Abramson and Dr.
6	Saouma from C-10.
7	Sarah, if you're ready to go, you have the
8	floor.
9	MS. ABRAMSON: Thank you. And what I will
10	do is I'll take about eight or nine minutes to present
11	the first four slides, and then I will stop sharing,
12	and Victor will pick up sharing and present the
13	remaining slides.
14	VICE CHAIR HALNON: Okay, good. We intend
15	to give you your full time, so please don't worry
16	about the schedule at this point, but certainly take
17	your 30 minutes.
18	MS. ABRAMSON: Okay, great. Can you hear
19	me okay and see the presentation okay?
20	VICE CHAIR HALNON: Yes.
21	MS. ABRAMSON: Excellent. Firstly, I want
22	to thank the NRC and the ACRS for inviting us to
23	present today. It's a really great opportunity to
24	weigh in as the public stakeholder living near the
25	plant and to let you know what our concerns are.
Į	I

(202) 234-4433

```
www.nealrgross.com
```

C-10 Research and Education Foundation stands for citizens within the 10-mile radius, which is the evacuation pathway emergency planning zone of the Seabrook Nuclear Plant. We are a citizen-led organization that is apolitical and totally agnostic on energy policy.

We run three programs that support our communities, and that includes real-time radiological 8 9 monitoring under contract with the Massachusetts State Department of Public Health.

We offer public outreach and education on 11 radiological emergency preparedness, and then our 12 third program is research and advocacy work, which is 13 under this category, in pursuit of public and 14 environmental safety relative to Seabrook Station's 15 ongoing operations, so not dissimilar to the NRC's 16 mission. 17

T'm Sarah Abramson. I'm Executive 18 19 Director of C-10. I have an academic background in environmental science and policy. I've worked with 20 federal regulators in aviation 21 and state and transportation in previous professional roles. 22

I live about eight miles from the plant 23 24 with my family, and I'm one of about 180,000 people who live inside that 10-mile radius. This ASR issue 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

10

1	is of particular concern to C-10, and we have been
2	very lucky to understand this issue better with help
3	from Dr. Victor Saouma, who is an expert in ASR
4	specifically.

5 We come to this meeting with two overarching questions for the NRC in general and for 6 7 the ACRS to consider when they look at the ASR issue. 8 Firstly, we're interested in what does the NRC and 9 NextEra plan to do to both expand and preserve their technical understanding of the ASR issue. 10

Understanding that NextEra's initial 11 12 analyses of ASR were overly simplistic, as determined by the Atomic Safety Licensing Board in its ruling, we 13 14 are remiss to see continued examples of the licensee 15 oversimplifying their analyses, such as their failure to properly analyze the reactor cavity pit force lab, 16 17 and such shortcomings lead to an underestimation of the public health and 18 risks, and thus safety a 19 concern.

20 We also see just a small group of very 21 smart, but very few NRC employees who are fluent in 22 the ASR issue. They're basically the three gentlemen 23 you just heard from, but realistically they could lead 24 the NRC tomorrow, and we're left wondering what 25 additional internal and external resources can the NRC

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

155

incorporate into its oversight of the ASR issue to ensure adequate oversight.

Secondly, we have examples from many other inspection reports, both pre-dating and since the last 2022 ACRS meeting on ASR, that show a pattern of violations on the part of NextEra relative to ASR license amendments and license conditions.

8 That repetition of noncompliance and a 9 pattern of dragging out corrective actions leaves us 10 concerned that the regulatory instruments being used to enforce these ASR license conditions are not 11 compelling enouqh ongoing 12 to prevent this mismanagement of ASR. 13

14 Thus, our question is, what can be done to improve the effectiveness of ASR-related regulation 15 16 and enforcement? We understand and respect the role 17 of the ACRS as an advisory board, it's the A in the name, and primarily informing the commissioners on 18 19 you as scientific experts what see as relevant information to regulatory decisions. 20 ASR does not have any specific regulation that is applicable to all 21 commercial nuclear plants. 22

C-10 did petition for rulemaking for ASR in 2014, but it was denied in 2019. Instead, we're left with only the specific license conditions at

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

1 Seabrook Station that are static and relatively unchangeable because they're packaged with their 2 3 license renewal. This is not dynamic enough to allow 4 the NRC to respond to changes in what becomes known 5 about ASR at the plant, and we believe that more robust regulatory instruments are necessary. 6 7 Of some history with C-10 and our interactions with the ACRS. We did attend the last 8 9 I didn't, but other C-10 members did. meeting. And 10 in that meeting, we learned a lot from the NRC 11 inspector's presentation, and we were really appreciative of ACRS's probing questions. 12 You zeroed in on a lot of the same things that 13 14 we had been concerned about. 15 After reading the transcript, in addition 16 attending, we formulated a list of pressing to 17 questions that we thought were really pertinent to public health and safety, and those questions were 18 19 submitted by C-10 in June of 2022. And I've had a lot of interaction with a 20 lot of different people at the NRC trying to get 21 answers to those questions with little success, but I 22 have had the benefit of meeting with NRC inspectors 23 24 almost quarterly, in addition to a lot of sporadic phone calls with them as questions come up. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

157

So the NRC inspectors have helped fill our knowledge gaps, but it does remain to be seen what the specific responses were from NextEra that the NRC inspectors collected, I believe, to answer those technical questions that were asked by ACRS and C-10 last time around in 2022.

7 One example on this slide is the seismic 8 considerations and how ASR may impact the 9 assessment related to seismic probabilistic risk 10 activity. We're left wondering where is the visibility for the public about what questions did the 11 inspector, Mr. Newport, then bring back 12 NRC to What was NextEra's response? 13 NextEra? How was that 14 delivered to ACRS? So we're just hoping for a little 15 more transparency on that.

Hopefully it wasn't just an IOU for this 16 17 next meeting, because two years has passed and there's lots of different faces on the ACRS. 18 Hopefully the 19 information flow is more frequent. We also view our 20 role today to offer robust outside subject matter expertise on ASR. 21

We are confident in the ACRS and that you take your role seriously to review this information and advise NRC leadership on how to better regulate the ASR problem. Quite frankly, to ensure that while

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

159 1 Seabrook Station is in operation, that someone like me who lives near the plant can feel safe. 2 3 With that, I will pass it off to Dr. 4 Victor Saouma, who comes to this topic with a lot of 5 extensive experience with ASR and structural engineering. There's a saying that they wrote the 6 7 book on it, and in this case, he wrote not just one, 8 but two books on ASR. So we feel very grateful that Dr. Saouma 9 10 continues to provide consultation to C-10 on this issue. So I'm going to pass it off to Victor by, I'll 11 stop my sharing, and then hopefully that will enable 12 Victor to pick up his sharing. 13 VICE CHAIR HALNON: We do see your slides, 14 15 but you're muted, so if you're speaking, we can't hear 16 you. 17 DR. SAOUMA: Okay, can you hear me? VICE CHAIR HALNON: Yes, we hear you now. 18 19 DR. SAOUMA: Yeah, my apologies. So my name is Victor Saouma, and I'm a C-10 consultant. 20 It's my pleasure to share with you my thoughts 21 reqarding Seabrook. I'd like to walk you through the 22 chronological evolution of ASR's impact on Seabrook's 23 24 safety. This exploration will cover some landmark 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

160 1 decisions and allow me to highlight key concerns raised by C-10. The stakes are incredibly high, and 2 3 while my suggestion may sometime differ from those of 4 NextEra, it is because in this case, and for the sake 5 of public safety, science must take precedence over 6 convoluted engineering. Ιt all began with the 7 unexpected and accidental discovery of ASR at Tunnel 8 Bravo in 2009. 9 This discovery caught everyone at the NRC 10 off guard, as they had not anticipated such a problem occurring in a containment building, despite the 11 existence of hundreds of ASR cases in concrete dams, 12 much more so than in bridges, I may add. 13 14 Fast forward to 2016, when NextEra filed a license amendment request, along with a request to 15 modify the timetable for the 10-year mandated air 16 17 leakage test. My critical review of this request has been published, but today I want to focus on some of 18 the underlying assumptions and justifications put 19 forth by NextEra, which are at best questionable. 20 Therefore, I will address two critical 21 aspects; the operational basis earthquake OBE and the 22 safe shutdown earthquake SSE. 23 These are not merely 24 technical details, they are foundational to the safety of the entire facility. NextEra's assertion that this 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

ĺ	161
1	parameter did not require modification, despite the
2	presence of ASR, is not only wrong, but potentially
3	dangerous. Such claims demand scrutiny and must be
4	supported by irrefutable evidence.
5	As a structural engineer, I look at safety
6	in terms of demand and capacity. For a structure to
7	be deemed safe, its capacity must unquestionably
8	exceed the demand. The numerical modeling,
9	specifically the finite element analysis employed by
10	NextEra, is grossly inadequate and sophomoric.
11	This analysis is supposed to be the
12	cornerstone of structural safety evaluation, yet what
13	has been used lacks credibility to anyone with even a
14	basic understanding of modern finite element analysis.
15	Keep in mind that we are not bound to 1930
16	technology for this. I will add emphatically that the
17	absence of review by an independent panel of external
18	experts further erodes confidence in this finding.
19	NextEra's second filing also contains an
20	argument that the potential for leakage should not be
21	of concern. This position is quite frankly baffling.
22	Micro cracks are known consequences of ASR, and these
23	cracks compromise the integrity of the structure,
24	allowing for leakage that could have serious
25	implications.
I	

(202) 234-4433

The idea that reinforcement alone, given that it is three-dimensional only around the base, could mitigate this risk is dangerously optimistic. It is essential to understand that ASR is not just a surface-level issue. It is primarily internal where the moisture is highest.

7 For ASR to progress, we have to have moisture, and moisture is highest inside the walls. 8 9 By the time we observe surface cracks, we are simply 10 looking at the tip of the iceberg. And let me repeat it. By the time we see surface cracks, we are simply 11 looking at the tip of the iceberg. 12 My stance on NextEra's understanding of ASR has been clear and was 13 14 largely validated by the Atomic Safety Licensing Board 15 2019 ruling.

It's worth noting that 50 percent of the 16 17 license conditions imposed by the ASLB were the direct result of C-10 intervention. So when I presented the 18 19 case on behalf of C-10, it was evident that NextEra's 20 grasp of ASR implications was at best superficial. 21 The mirrored board concern my own, highlighting 22 significant in NextEra's approach. qap This ruling is a critical acknowledgement of the 23 24 complexities involved and the need for a more rigorous 25 approach to ASR management.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

1

2

3

4

5

6

	163
1	Chronologically speaking, the NRC
2	understanding and appreciation of ASR complexity have
3	significantly improved since 2016. Indeed, the NRC
4	has funded three major projects at Northwestern, my
5	university, University of Colorado in Boulder, and at
6	NIST. Yet, indications are that the NRC has ignored
7	some of the major findings that two of them
8	determined.
9	That is the negative impact of ASR on the
10	shear strength of concrete, which is opposite to what
11	was determined in the Texas test. I will develop this
12	in a future report. This progression is crucial, yet
13	it coincides with the troubling spread of ASR beyond
14	the tunnel when it all started. Now to the
15	containment enclosure building itself.
16	A development I personally observed during
17	my visit. It was clear by then when I visited
18	Seabrook, we had crack all around the base of the CEB.
19	By now, as here, we hear that the projected expansion
20	is likely to exceed the limit set for the license.
21	And yet, we continue to hear that the expansion is
22	slow, a term that does not mean anything unless it is
23	substantiated and based on physical tests.
24	So, C-10 strongly advocates also for the
25	reassessment of the OBE and SSE parameters. This
ļ	I

(202) 234-4433

	164
1	critical factor that determines the facility's ability
2	to withstand seismic events.
3	In my professional opinion, the
4	mathematical modeling of ASR, whether in static or
5	dynamic analysis, <mark>is fundamentally flawed</mark> . Obsolete
6	models are being used for dynamic analysis. And the
7	modeling of ASR is not just flawed, but dangerously
8	so.
9	Furthermore, the computer programs used
10	have not been, to the rest of my knowledge, validated
11	independently or in compliance with Regulatory Guide
12	1.168, which is Verification, Validation, Review, and
13	Audits for Digital Computer Software used in safety
13 14	Audits for Digital Computer Software used in safety systems of nuclear power plants.
14	systems of nuclear power plants.
<mark>14</mark> 15	systems of nuclear power plants. It is also worth noting that to the best
14 15 16	systems of nuclear power plants. It is also worth noting that to the best of my understanding, these critical components for the
14 15 16 17	systems of nuclear power plants. It is also worth noting that to the best of my understanding, these critical components for the safety assessment have not been subjected to
14 15 16 17 18	systems of nuclear power plants. It is also worth noting that to the best of my understanding, these critical components for the safety assessment have not been subjected to independent peer review by external experts. The
 14 15 16 17 18 19 	systems of nuclear power plants. It is also worth noting that to the best of my understanding, these critical components for the safety assessment have not been subjected to independent peer review by external experts. The assumption that there is no reduction in shear
14 15 16 17 18 19 20	systems of nuclear power plants. It is also worth noting that to the best of my understanding, these critical components for the safety assessment have not been subjected to independent peer review by external experts. The assumption that there is no reduction in shear strength due to ASR is not just a misconception, it is
 14 15 16 17 18 19 20 21 	systems of nuclear power plants. It is also worth noting that to the best of my understanding, these critical components for the safety assessment have not been subjected to independent peer review by external experts. The assumption that there is no reduction in shear strength due to ASR is not just a misconception, it is a potentially catastrophic error.
 14 15 16 17 18 19 20 21 22 	systems of nuclear power plants. It is also worth noting that to the best of my understanding, these critical components for the safety assessment have not been subjected to independent peer review by external experts. The assumption that there is no reduction in shear strength due to ASR is not just a misconception, it is a potentially catastrophic error. Multiple researchers, including two funded
 14 15 16 17 18 19 20 21 22 23 	systems of nuclear power plants. It is also worth noting that to the best of my understanding, these critical components for the safety assessment have not been subjected to independent peer review by external experts. The assumption that there is no reduction in shear strength due to ASR is not just a misconception, it is a potentially catastrophic error. Multiple researchers, including two funded by the NRC, have debunked this myth, providing ample

(202) 234-4433

	165
1	to provide the resistance to seismic load, lateral
2	seismic load. Not only was the wrong large-scale test
3	conducted in Texas, but the specimen had cracked and
4	was damaged even before the shear tests were
5	conducted.
6	Ignoring this evidence puts the entire
7	structure at risk. So we must insist on a
8	comprehensive re-evaluation of all the safety
9	parameters considering this reality. The safety of
10	Seabrook facilities depends on it.
11	Revisiting the capacity and demand
12	paradigm, this figure, before you synthesize the case
13	for thorough revision of the parameter, we can follow
14	the sequence of events. First, there is a
15	deterioration of the concrete with time. This has
16	been observed in Seabrook. This would result in a
17	decrease in the concrete capacity.
18	Moving to the next curve, now going to the
19	vulnerability curve, which is this one, and given that
20	the capacity and demand must be at least equal, we
21	will have a decrease in the earthquake magnitude that
22	can be sustained.
23	So if you have a decrease in the magnitude
24	of the earthquake which can be sustained, for
25	illustrative purposes, let's say from 0.7 to 0.55 G,
	I

(202) 234-4433

166 1 then going to the hazard curve, it means that such a decrease in earthquake magnitude will result in an 2 3 increase in the return period. So all of the above 4 says unequivocally that Seabrook is more vulnerable to 5 earthquake than we are led to believe. 6 I will turn now my attention to the air 7 leakage test issue. I have previously mentioned the 8 prevalence of internal and undetected crack as 9 mentioned by the FHWA. 10 I have also mentioned that above the base, about five feet, longer have 11 we no shear reinforcement. Those are present only close to the 12 surface. So once again, with shear reinforcement only 13 14 close to the base, three-dimensional reinforcement, but as we move above at a certain elevation, we only 15 have skin reinforcement. 16 17 Furthermore, the Atomic Safety Licensing Board has implicitly criticized NextEra for its poor 18 19 questionable understanding of ASR's and internal 20 microcracking. Hence, considering this consideration, C-10 recommends shortening the air tightness test 21 schedule from the current 15-year interval to a 22 performance-based schedule. 23 24 This recommendation is not made lightly. It is based on the recognition that ASR is an evolving 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1 threat that cannot be adequately monitored under the existing schedule. Now the key question here is how 2 performance is defined and who gets to define it. 3 4 This must be а transparent process involving 5 independent experts.

definition 6 The of performance must 7 prioritize safety above all else. I now turn to a 8 related but equally important concern. C-10 advocates 9 here for public rights to know. The safety of the 10 public is not just a matter of engineering. It's a matter of democratic transparency. 11

In an open society, there should be 12 no confidential or proprietary data when it comes 13 to 14 public safety. All relevant information about ASR and its implications should be made public. 15 This is not It's a practical necessity. 16 just a moral imperative. 17 Hence, we assert that through measurement data should be treated as public domain. 18 Yet, we 19 that NextEra modeling should recognize remain The comparison may not be perfect, but 20 proprietary. it is similar to a public utility sharing water 21

22 quality measurement results with the public.

I was specifically referring to crack indices recorded by NextEra which have not been adequately disclosed to the public. These indices are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	168
1	critical for understanding the extent of ASR damage.
2	Yet, they remain shrouded in secrecy. This lack of
3	transparency is unacceptable.
4	C-10 is specifically asking that the NRC
5	makes public the date, tier level, crack index value,
6	location, and the reference value of the core
7	compressive strength closer to the location cast to
8	reconstruction. This last indicator is particularly
9	crucial because it is essential to determine the
10	out-of-plane ASR expansion using the method advocated
11	by NextEra once the crack index reaches critical
12	values.
13	Without this data, any assessment of ASR's
14	impact is incomplete and potentially misleading. The
15	public has the right to access this information, and
16	the NRC has the duty to provide it. But having access
17	to data is only the first step.
18	We must also be able to visualize this
19	data in a meaningful way that allows us to quantify
20	its impact on the overall health of the structure.
21	Raw data is not enough. It must be analyzed and
22	presented in a way that reveals the true extent of the
23	risk.
24	This is not just about number, it's about
25	understanding what those numbers mean for the safety

(202) 234-4433

1 of the people within 10 miles radius of Seabrook. C-10 is already fully prepared to collaborate with the 2 3 NRC in this endeavor. We found that NextEra tool, 4 unless it has changed since then, the one on the upper 5 left, is inadequate, misleading, and confusing, and in the end practically useless. 6 7 So it's not enough to criticize, we must 8 be proactive. And proactive we have been at C-10 by 9 developing advanced software that can display the 10 spatial and temporal variation of ASR or any other measurement in a containment building, such as shown 11 in here. 12 In this figure, it's easy to visualize the 13 14 extent of ASR evolution in structure, and the temporal variation and this are shown in the lower two slides. 15 16 Of course this is for illustrative purposes. The one 17 on the left is at 21. The one at times on the right is at time 22. 18 Finally, one can hover the mouse over any 19 point and get the relevant data, or clip out all the 20 region with an ASR expected to be below a certain 21 threshold, or simply slice the structure to look into 22 the internal expansion. But as I said, this is hard 23 24 to visualize, we have to be able to have some sort of

an analysis approach, that is to take to determine the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

www.nealrgross.com

169

	170
1	health of the whole structure.
2	So at any given time, based on this data,
3	we can take a snapshot and plot histogram of ASR
4	expansion. These are the number of locations of the
5	surface, which has an expansion below a certain value,
6	and again each one of those bars corresponds to a
7	certain range. So the total area under this histogram
8	serves as a global measurement of the structural
9	health, S times T. This is step 3 and index is 11.3.
10	Finally, we can plot the time evolution of
11	this index, providing decision makers, such as the
12	NRC, with the data they need to make informed choices.
13	This approach also reassures the public about the
14	structural integrity of the facility that provides the
15	electricity.
16	So these last two slides are the
17	references substantiating my assertion, along with
18	hyperlink to key documents. C-10 will always welcome
19	questions and provide further scientific evidence of
20	our assertion.
21	I would like to conclude by saying that
22	this is a particularly complex, very complex problem,
23	unprecedented and not covered by any existing codes.
24	When I heard mention about ACI code and ASCE, none of
25	this code addresses ASR. Once again, none of the
I	I

(202) 234-4433

	171
1	existing code covers ASR. We have tweaked this code
2	to, forgive me for the term, pretend that we can model
3	ASR through a simplistic approach.
4	Therefore, we must first rely on sound,
5	science-based principles. I repeat, science-based
6	principles, and then and only then develop engineering
7	solutions that are directly informed by the scientific
8	foundation.
9	Thank you for attention, and of course,
10	I'd be happy to answer any question.
11	VICE CHAIR HALNON: Thank you, Dr. Saouma.
12	I appreciate that. And I'll look to the members and
13	our consultants if there's any questions for either
14	Sarah or Dr. Saouma.
15	MEMBER MARTIN: Dr. Saouma, this is Bob
16	Martin. And I'm new to this topic, I must admit. But
17	I have to believe that there is some, not necessarily
18	nuclear industry experience, but in structures like
19	bridges and overpasses where this has come up.
20	And that maybe, in fact, they would lead
21	as far as understanding not only the phenomena, but
22	how to address it in a public safety sense. Can you
23	provide a little insight on what others do on this
24	subject?
25	DR. SAOUMA: Yes. ASR was first
I	I

discovered in the 1940s in the context of dams, concrete dams. We have had hundreds of dams worldwide which have been suffering from ASR. And their safety has been addressed by different means. And by the way, some of them have been decommissioned because it was too dangerous.

7 I recently was involved in a major project 8 with the Bureau of Reclamation to assess the safety of 9 seminal dam which suffered ASR in Wyoming. So, again, 10 there is what I would call the traditional approach 11 and the more modern approach which has been espoused 12 by few, mostly in Canada and in Europe, but very few 13 in the U.S.

14 So, for instance, we have to perform 15 expansion accelerated test which NextEra has 16 absolutely refused to undertake. Accelerated 17 expansion test is when we take a core, we put it in a certain condition, heat it, and monitor the expansion 18 19 and try to determine how much is going to be the future expansion. And that's an approach that, to the 20 best of my understanding, NextEra refused to do. 21

We can have also to perform certain specific microscopic tests, and that doesn't mean a regular petrographic test that is commonly done, but for instance what is done in Japan to determine what

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

173 1 was the past expansion. So, in the area of concrete bridges and dams, the modern approach is to use a 2 3 numerical modeling where, first of all, the computer 4 program has to be validated. 5 It has to be validated and to prove that it can capture some of the unique features of ASR; 6 7 that is, three-dimensional expansion, expansion under 8 constraint condition, expansion which depends on 9 temperature, and on moisture. I would say that in 10 Canada, for instance, Hydro-Quebec has done а marvelous study for Gentilly-2 on addressing 11 а modeling ASR. 12 So, I don't know if I was able to properly 13 14 answer your question here, but the idea of modeling 15 ASR as a temperature load and as a volumetric strain is completely wrong, and erroneous and debunked. 16 It's 17 MEMBER MARTIN: pretty general а statement, not to say it's wrong or right. So, if I'm 18 19 interpreting what you said correctly, you're saying 20 that generally the maturity of modeling that would be 21 otherwise used to evaluate structures is just immature 22 the board? Are you saying that there across are 23 proven methods that, you know, --24 DR. SAOUMA: It is mature. MEMBER MARTIN: -- are preferable that are 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

	174
1	there today that have been validated?
2	DR. SAOUMA: Sorry to interrupt you. It
3	is mature. It has been validated, and some people who
4	have been using it. I give the example of for the
5	reactor, I give the example of Gentilly-2 in Canada.
6	I give Hydro-Quebec, which is also for other dams,
7	have been using this modern method.
8	I can give multiple examples in Europe
9	where the approaches are essentially variation on the
10	team. You have to have a finite element model which
11	can capture the unique feature of ASR, and this has to
12	be validated. No doubt about that.
13	MEMBER MARTIN: Appreciate that. Thanks.
14	VICE CHAIR HALNON: Others?
14 15	
	VICE CHAIR HALNON: Others?
15	VICE CHAIR HALNON: Others? I just had one clarification. This is Greg. I
15 16	VICE CHAIR HALNON: Others? I just had one clarification. This is Greg. I got confused on the air test issue. It was my
15 16 17	VICE CHAIR HALNON: Others? I just had one clarification. This is Greg. I got confused on the air test issue. It was my understanding from my previous experience that the air
15 16 17 18	VICE CHAIR HALNON: Others? I just had one clarification. This is Greg. I got confused on the air test issue. It was my understanding from my previous experience that the air test was for a vacancy in the containment vessel. Can
15 16 17 18 19	VICE CHAIR HALNON: Others? I just had one clarification. This is Greg. I got confused on the air test issue. It was my understanding from my previous experience that the air test was for a vacancy in the containment vessel. Can you explain?
15 16 17 18 19 20	VICE CHAIR HALNON: Others? I just had one clarification. This is Greg. I got confused on the air test issue. It was my understanding from my previous experience that the air test was for a vacancy in the containment vessel. Can you explain? Maybe I'm just got a different model in my
 15 16 17 18 19 20 21 	VICE CHAIR HALNON: Others? I just had one clarification. This is Greg. I got confused on the air test issue. It was my understanding from my previous experience that the air test was for a vacancy in the containment vessel. Can you explain? Maybe I'm just got a different model in my head about what this containment looks like. Is the
 15 16 17 18 19 20 21 22 	VICE CHAIR HALNON: Others? I just had one clarification. This is Greg. I got confused on the air test issue. It was my understanding from my previous experience that the air test was for a vacancy in the containment vessel. Can you explain? Maybe I'm just got a different model in my head about what this containment looks like. Is the pressure vessel metal, and then the concrete that
 15 16 17 18 19 20 21 22 23 	VICE CHAIR HALNON: Others? I just had one clarification. This is Greg. I got confused on the air test issue. It was my understanding from my previous experience that the air test was for a vacancy in the containment vessel. Can you explain? Maybe I'm just got a different model in my head about what this containment looks like. Is the pressure vessel metal, and then the concrete that you're concerned about, is a shield building around

(202) 234-4433

	175
1	We don't know whether at some point the anchorage has
2	been affected by ASR, and we might lose tightness. We
3	know that ASR is going to cause micro-cracks.
4	We know that the ASR is going to manifest
5	primarily inside the wall because this is where the
6	moisture is highest. In many cases, we do not see yet
7	manifestation on the surface, yet we have internal
8	micro-cracks. Those micro-cracks can coalesce and
9	eventually cause potential macro-cracks, which would
10	cause leakage.
11	VICE CHAIR HALNON: Through the vessel
12	itself through the metal liner?
13	DR. SAOUMA: Of course.
14	The metal liner, if we assume that it's
15	100 percent perfect, no, there won't be leakage. But
16	do we know what is the impact of ASR on the anchorage
17	of the liner, where we have hundreds of those? I
18	don't know.
19	VICE CHAIR HALNON: I understand now.
20	You're talking about the anchorage from the vessel to
21	the concrete itself.
22	DR. SAOUMA: For instance, related to that
23	question about micro-cracks, when I see the slide
24	number 19 by NRC, where they placed a plate to
25	mitigate the effect of ASR, well, I don't know if it's

	176
1	time for me to make a comment on that, but let's not
2	forget that what they are doing is mitigating on the
3	surface, and then simply throwing up the expansion to
4	be through the wall, because ASR is a volumetric
5	expansion.
6	You constrain it in one plane, it's going
7	to go back and expand in the out-of-plane. Expand out
8	of the out-of-plane. You already have micro-cracks.
9	What happens? You have internal delamination. And
10	internal delamination is a brittle failure, and you'll
11	get exactly what happened at Crystal River, all of a
12	sudden.
13	VICE CHAIR HALNON: I understand about
14	that.
15	Another question. Dave Lockbaum, are you
16	representing C-10? Are you part of that organization?
17	Is that why you raised your hand?
18	MR. LOCHBAUM: I'm an advisor for C-10,
19	but my question was as a member of the public.
20	VICE CHAIR HALNON: Okay, we haven't
21	opened up for public comment yet, so hang in there.
22	MR. LOCHBAUM: Okay, I will.
23	Thank you.
24	VICE CHAIR HALNON: Any other questions
25	from members or consultants?
	1

	177
1	Okay, then at this point, I will open it
2	up for public comments. I think Mr. Lockbaum probably
3	has the first hand up, and others, if you raise your
4	hand and or get my attention somehow by unmuting, I
5	will acknowledge it. Please state your name and
6	affiliation as appropriate. Dave, go ahead.
7	MR. LOCHBAUM: Yeah, this is Dave
8	Lockbaum. I appreciate that. On the issue of the ASR
9	effect on containment integrity and the need for air
10	tests, the slide that the NRC showed of ASR expansion
11	causing a metal grid to buckle, leads me to question
12	whether containment penetrations would be equally
13	vulnerable to ASR expansion causing the penetrate,
14	because it's not a leak right there.
15	So my concern would be about containment
16	penetrations failing due to ASR expansion in that
17	direction, and the less frequent air tests not picking
18	up on those containment penetration failures. That's
19	all. Thank you.
20	VICE CHAIR HALNON: Yeah, I understand.
21	Thanks, Dave.
22	Any other members of the public would like
23	to make a comment? Okay, not hearing any, we will
24	close the public comment session, and now we're into
25	our committee discussion. Any members or consultants
Į	I

(202) 234-4433

	178
1	have a comment or a question or anything you'd like to
2	say during the deliberations?
3	DR. SAOUMA: Well, if I may ask a
4	question?
5	VICE CHAIR HALNON: Yes.
6	DR. SAOUMA: Victor Saouma.
7	VICE CHAIR HALNON: Yeah, go ahead,
8	please.
9	DR. SAOUMA: Yes, again, my question goes
10	back to the slide I've seen, number 19, I believe, or
11	20 21, sorry. And I'm very concerned by what I
12	saw, because what was presented was an external plate
13	reinforcement aimed at mitigating ASR expansion.
14	In my opinion, and so to use a term, it's
15	nothing else than a band-aid approach, conceptually
16	dangerous, because if you manage to limit the in-plane
17	expansion, ASR being a volumetric phenomenon, it's
18	going to be redirected out of plane and through the
19	thickness, and this can eventually lead to internal
20	and sudden brittle delamination crack. So, I would
21	urge the NRC to look very carefully at this remedy.
22	VICE CHAIR HALNON: I see that they're
23	acknowledging you and they're writing it down, so,
24	yes, thank you.
25	Sarah, I see you raised your hand. I want
I	I construction of the second se

	179
1	to give you time, go ahead.
2	MS. ABRAMSON: Thank you. I had a
3	question that came up during the NRC's presentation.
4	It was around slide nine, and a member of the ACRS
5	asked Nik Floyd, or made a comment that the structural
6	modifications are the solution to those five
7	structures that are going to be outside the
8	unacceptable zone, and I was just hoping that maybe
9	Nik could clarify on that.
10	Are there structures that, even with
11	physical modification, are on track to be outside the
12	acceptable zone in that 10-year-ish time frame?
13	VICE CHAIR HALNON: Nik, did you want to
14	clarify?
15	MR. FLOYD: This is Nik Floyd. I don't
16	have the structures as far as the expansion data in
17	front of me. I can't tell you the specific ones. I
18	know at least one of the areas, to the best of my
19	mind, was in the controller diesel generator building.
20	That is one of the structures on track to be modified
21	currently.
22	As far as the other structures that are in
23	POD space, I don't have that data. I'd have to get
24	back to you on that, Sarah.
25	MS. ABRAMSON: Thanks, Nik. And I guess
Į	I

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

	180
1	the core of my question is, just to clarify my own
2	understanding, when you talked about that 10-year time
3	frame, and next you're considering doing another
4	large-scale testing program, what would be the trigger
5	for that? Is that when structures that are already
6	modified are outside the zone?
7	VICE CHAIR HALNON: Talking about the
8	licensee's retesting program? Is that what you're
9	talking about?
10	MS. ABRAMSON: Yes.
11	MR. GRAY: Sarah, Mel Gray. I think your
12	first question was regarding retrofits. They are
13	intended to bring these structures into conformance
14	with the licensing basis in those 10 years. So,
15	that's their intended purpose. Is that responsive?
16	What was the second part of that?
17	MS. ABRAMSON: Yeah, I might have to get
18	some additional clarification offline from
19	MR. GRAY: Any additional large-scale
20	testing by the licensee would be in their estimate.
21	Their current licensing basis only allows for it
22	shows that the large-scale testing they did is only
23	valid to a certain level of volumetric expansion.
24	They would need to elect to do more
25	testing if they felt that that expansion was occurring
ļ	

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

181 1 that would require action on their part for further operation of the plant. That's their decision to 2 3 make. 4 MS. ABRAMSON: Thank you. I think that 5 was the clarity I was looking for because I thought I heard someone jump in and assert that the structural 6 7 modifications were sort of the cure to that expansion 8 being beyond what the original testing program showed. 9 So, I think I understand better now. Thank you. 10 VICE CHAIR HALNON: Thank you, Sarah. Dr. Saouma:? 11 Yes, I'm curious about the DR. SAOUMA: 12 course extracted from the Seabrook. 13 14 PARTICIPANT: I mistakenly muted Victor. I'm sorry about that. I meant to lower his hand. 15 16 So, Victor, can you unmute yourself and 17 restart? Sorry, I forgot. 18 DR. SAOUMA: Can you 19 hear me now? VICE CHAIR HALNON: 20 Yes. DR. SAOUMA: Yes, I'm curious about those 21 locations 22 where NextEra has installed the through-thickness extensometer. 23 So, presumably, of 24 course, core had to be removed. And according to the protocol that it has advocated, their first step was 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

www.nealrgross.com

	182
1	to determine the past expansion by determining the
2	Young's modulus of that core and compare it with the
3	Young's modulus of concrete cast in the 70s.
4	How many of those correlations have you
5	made? How many attempts to determine the past
6	expansion have been made so far?
7	MR. FLOYD: Nik Floyd. Victor, I don't
8	have an exact number for you. There has been a
9	numerous amount of cores extracted from Seabrook. For
10	each extensometer that has been removed for the
11	program, they had to perform testing on that core to
12	establish the through-thickness expansion to date and
13	any cores going into the future.
14	Specifically, for those seven tier three
15	areas I mentioned earlier where they need to install
16	extensometers, they removed cores for those as well.
17	So, there will be additional cores removed.
18	DR. SAOUMA: I'm sorry, you're not
19	answering my question. Once you remove the core, you
20	are supposed to measure the Young's modulus of that
21	core and compare it with the Young's modulus of the
22	concrete when it was cast. The difference in the
23	elastic modulus would give you the ASR expansion
24	according to the curve which was determined by the
25	University of Texas.
I	1

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

	183
1	Have you performed any of those
2	determinations? This is in the license agreement, the
3	new one, that you extract the core, you measure the
4	compressive, you measure the elastic modulus, you
5	compare it with the elastic modulus of the concrete
6	when it was cast.
7	The decrease in elastic modulus is on the
8	x-axis. On the y-axis, you get the past ASR
9	expansion. Again, that's in the license amendment
10	request. Have you done any of that?
11	VICE CHAIR HALNON: Ron, would you take
12	this and go back and look at your data and provide
13	some information that may be able to be publicly
14	released at that point.
15	Thank you, Dr. Saouma. They're going to
16	work on that to make sure you get the data. I just
17	didn't want to get an incomplete answer on the record.
18	DR. SAOUMA: Thank you.
19	VICE CHAIR HALNON: So, okay, I'm going to
20	close. No more questions. We're in committee
21	deliberation, but I wanted to since additional
22	information was put out, make sure that there was
23	still no public comment.
24	So, I'm just going to quickly open up for
25	other public comments. Okay, given none, in fact, the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

```
www.nealrgross.com
```

	184
1	committee is now in deliberation, so everyone will
2	stay muted other than the committee members and
3	consultants. Is there any other comments?
4	Yes, Scott.
5	MEMBER PALMTAG: Do you want the court
6	reporter to continue?
7	VICE CHAIR HALNON: No, I guess that's it.
8	Thank you.
9	Eric, you're released for the rest of the
10	day. I think for the rest of the meeting, isn't it?
11	Well, did you want to make that statement?
12	CHAIR KIRCHNER: Yes, thank you, Eric. I
13	will not need your services tomorrow for our planning
14	and procedures meeting so I think we're done with your
15	recording for this meeting. Thank you very much.
16	(Whereupon, the above-entitled matter went
17	off the record at 3:48 p.m.)
18	
19	
20	
21	
22	
23	
24	
25	
I	I

CERTIFICATE

This is to certify that the foregoing transcript

In the matter of: 718th ACRS Meeting

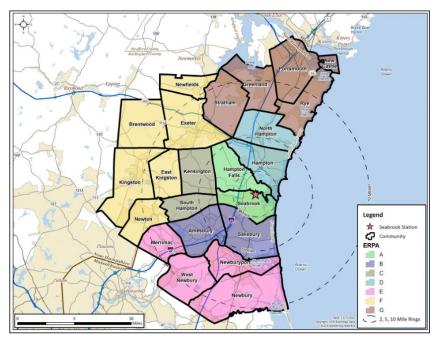
Before: NRC

Date: 09-04-24

Place: Rockville, Maryland

was duly recorded and accurately transcribed under my direction; further, that said transcript is a true and accurate complete record of the proceedings.

near A Guis 8


Court Reporter

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1716 14TH ST., N.W., STE. 200 WASHINGTON, D.C. 20009-7831 185

10 RESEARCH & EDUCATION FOUNDATION

Protecting people and the environment across the communities surrounding Seabrook Station

Presentation to:

US Nuclear Regulatory Commission (NRC) Advisory Committee on Reactor Safeguards (ACRS)

Presented by:

- Sarah Abramson: <u>C-10</u> Executive Director
- Victor E. Saouma: Professor Emeritus, Department of Civil Engineering, University of Colorado-Boulder

Representing the 180,000 \underline{C} itizens within the $\underline{10}$ -mile Radius of the Seabrook Nuclear Power Plant.

We Have Two Overarching Public Safety Questions

Learn from the past, prepare for the future, live in the present. - Thomas S. Monson

- What does NRC & NextEra plan to do to improve their understanding of the ASR issue?
- 2. Will NRC continue to find acceptable NextEra's late and incomplete analyses of ASR-impacted areas, especially those in the containment structure?

C-10 Views ACRS Role as Critical in Addressing NextEra's Mismanagement of ASR

- April 27, 2022: Last ACRS meeting on ASR
- June 29, 2022: C-10 reviews meeting transcript by ACRS members (e.g. seismic PRA), C-10 submits own list of questions to ACRS
- As of Today, Sept. 4, 2024: No public record of NRC responses to ACRS or C-10 questions from 2022 meeting
- C-10 Goals Today: Offer robust subject-matter expertise to inform on the ASR issue; confident in ACRS to <u>review</u> & <u>advise</u> NRC Commissioners and staff on how to better regulate the ASR problem at Seabrook Station

13	MEMBER BLEY: Just for reference, the
14	design earthquake is never a big contributor to risk,
15	because we design that out. It's the earthquakes that
16	go beyond the design earthquakes that lead to
17	significant damage. And it's kind of disappointing,
18	do we know for sure that Seabrook has not included
19	that in their Seismic PRA?
20	MR. NEWPORT: Let me we can verify
21	that, and we can get that back to you for sure.
22	MEMBER BLEY: Okay, it's kind of
23	disappointing that they haven't looked at that,

Excerpt from 2022, April 27 meeting transcript <u>ML22136A319</u>). NRC Advisory Committee on Reactor Safeguards Fuels, Materials, and Structures and Plant Operations, Radiation Protection, and Fire Protection Joint Subcommittees.

Victor E. Saouma, Professor Emeritus, Dept of Civil Engineering, University of Colorado/Boulder

- Conducted theoretical, experimental, numerical, engineering research on ASR (11 major funded projects, two books, 9 major reports, 9 short courses, 15 peer-reviewed publications.
- Past President and Fellow of the <u>International Association of Fracture Mechanics for</u> <u>Concrete and Concrete Structures</u>.
- Past Chair of an International Committee focusing on the <u>diagnosis and prognosis of</u> <u>structures affected by ASR</u>
- Research on ASR funded by the ORNL, NRC, Burau of Reclamation, Tokyo Electric Power Company.
- Past member of the Materials Aging and Degradation (MAaD) External Review Committee (ORNL, Light Water Reactor Sustainability R&D Program) and of the Expanded Proactive Materials Degradation Analysis Expert Panel (PMDA) for concrete in nuclear reactors; Nuclear Regulatory Commission.
- Published extensively:

https://ceae.colorado.edu/~saouma/index.php/alkali-aggregate-reactions/

Springer

RILEM State-of-the-Art Repor

Victor F. Saouma Fditor

Diagnosis & Prognosis

Structures

Victor E. Saouma M. Amin Hariri-Ardebili

of AAR Affected

State-of-the-Art Report of the RILEM Technical Committee 259-ISR

Aging, Shaking,

and Cracking of Infrastructures

From Mechanics to Concrete Dams and Nuclear Structures 🖄 Springer

Q1: Revisit Operating Basis Earthquake (OBE) & Safe Shutdown Earthquake (SSE); Correct Analysis Model

Q2: Air Leakage Test; Revisit Testing Frequency

Q3: Crack Indices (CI), Public Right to Know

- **2009** ASR discovered in Tunnel (Bravo-1) at Seabrook.
- 2010 Seabrook placed under <u>special NRC oversight</u>.
- **2012** <u>Nuclear Energy Institute</u> suggests an (up to) 15 years intervals (in lieu of 10) for type A performance leakage rate tests of CBE.
- **2016** NextEra files a <u>License Amendment Request</u> (LAR)16-03. Regarding seismic analysis, we note the following:

Earthquake levels: No change of OBE & SSE

[W]hen ASR loads are amplified by a threshold factor of 1.2 to account for future ASR expansion[, t]he as deformed condition does not significantly impact the dynamic properties of the structure, and therefore the maximum seismic acceleration profiles for OBE and SSE excitation used in original design of the CEB remain valid.

<u>Seabrook, License Amendment Request 16-03 - Revise Current Licensing Basis to Adopt a Methodology for the</u> <u>Analysis of Seismic Category I Structures with Concrete Affected by Alkali-Silica Reaction.</u>

NextEra-ML16216A240 (2016)

. . .

Oversimplified Analysis

Seismic loads are applied using a static equivalent method utilizing the designbasis maximum acceleration profiles, which were computed during original design from response spectra analysis. Amplify ASR loads by a threshold factor to account for potential future ASR expansion.

Response spectra analysis was performed using a simplified "stick" model.

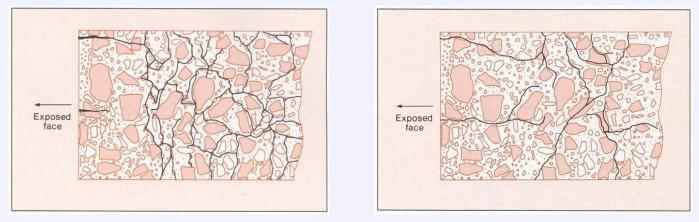
Evaluation and Design Confirmation of As-Deformed CEB. 150252CA-02." Revision 0. July 2016 (Seabrook FP#100985)

Simpson Gumpertz & Heger-ML16279A049 (2016)

Comments Below

2016 NextEra files a <u>Request to Extend to 15 years</u> leakage test of CBE. It alleges that

NextEra's justification


- Containment's three directional steel reinforcement arrangements, which inhibits ASR expansion,
- The very limited localized areas of ASR detected on the containment surface, and
 - Previous UT inspections of the containment liner local to areas of ASR in which no anomalies or corrosion were identified

Supplement to License Amendment Request 16-01 Request to Extend Containment Leakage Test Frequency

NextEra Energy (2016)

C-10 Comments

- ASR causes cracks and microcracks, which not always visible. These may coalesce and create a continuous pathway for gas release.
- There is three-directional reinforcement only around the base, while "skin" reinforcement is applied only on the intrados and extrados.

<u>Report on the Diagnostis. Prognosis. and Mitigation of Alkali-Silica Reaction (ASR) in Transportation</u> <u>Structures</u> FHWA (2010)

- 2019 Professor Saouma visits Seabrook.
- 2019 <u>Consolidated documents</u> filed by Dr. Victor Saouma
- **2019** Proposed Findings of Fact and Conclusions of Law: <u>C-10</u>, <u>NRC</u>, and <u>NextEra</u>.

2020 Atomic Safety Licensing Board (ASLB) Ruling (includes):

... NextEra has not persuaded us that it is properly accounting for the possibility of delamination. The Board finds that NextEra does not have an adequate screening procedure to detect internal cracking and delamination in Seabrook's concrete."(pg 184)

...[t]he Board is concerned about the potential for sudden significant, localized damage due to shear failure, given that all parties agreed that there may be localized excursions of Seabrook Unit 1 into the nonlinear structure plastifica- tion regime."(pg 184)

Thus, the Board finds that NextEra has not shown, by a preponderance of the evidence, that there is reasonable assurance that the continued operation of Seabrook Unit 1 will not endanger the health and safety of the public with regard to this particular issue of delamination." (pg 185)

In the Matter of NEXTERA ENERGY SEABROOK. LLC (Seabrook Station. Unit 1): Initial Decision

Atomic Safety License Board (2020)

Observations

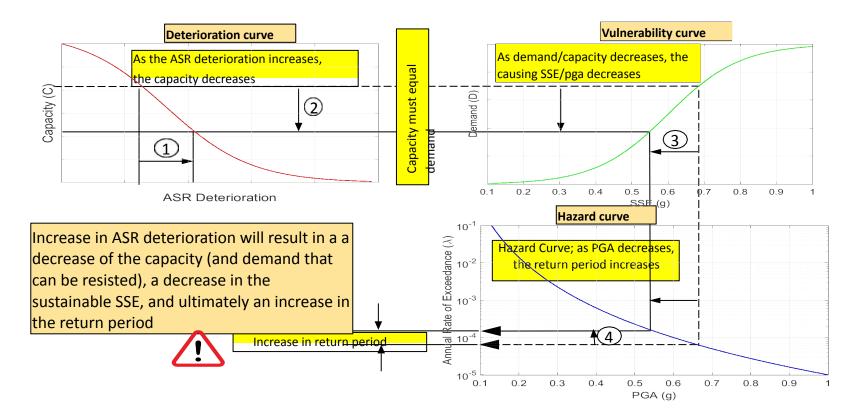
- In 2010, knowledge about ASR was insufficient, but significant advancements were made by 2020.
- Some premises that initially supported the license renewal were
 later shown to be incorrect.
- The ASLB comments partially validated this assertion.
 - Given the stakes, it is urgent to reconsider two key issues.
 - OBE & OSE

Air leakage test

Explanation follows

QI:Revisit Operating Basis Earthquake (OBE) & Safe Shutdown Earthquake (SSE); **Correct Analysis Model**

- We have reviewed the dynamic analysis procedure performed by SGH and found it dangerously simplistic.
- The term *significantly* is too vague given the potential impact on the safety of the CEB.
- The reliance on the stick model, a method from the 1970s, is not only outdated but also inadequate; In the 21st century the NRC must demand the adoption of a more accurate model.
- The ASR modeling blatantly disregards well-established principles, directly conflicting with what is universally accepted in the field of modeling.
- Program to simulate ASR not validated.
- The **Capacity** is grossly miscalculated.


The Myth of No Shear Strength Loss from AAR

Results from the Shear Test Program indicate that there is no reduction of shear capacity in ASR-affected concrete with through-thickness expansion levels up to % or volumetric expansion levels %, which are the maximum expansion levels exhibited by the test specimens.

<u>Seabrook Station - Approach for Determining Through-Thickness Expansion from Alkali-Silica Reaction</u> NextEra-ML18141A785 (2016)

- The persistent myth that there is no shear reduction due to AAR in the CEB has been conclusively disproven by findings from two separate NRC-funded research programs.
- AAR will lead to significant shear reduction, critically undermining resistance to earthquake excitation.
- The **Demand** is grossly underestimated

Why the SSE should be updated

610 RESEARCH & EDUCATION FOUNDATION

Q2: Air Leakage Test; Revisit Testing Frequency

Air Leakage Test

- The ASLB firmly asserts that NextEra has no reliable control over where and when cracking will occur.
- This directly undermines NextEra's claim that 15 years cycles for leakage testing are sufficient.
- By 2020, ASR has not only been identified as a critical threat to Seabrook, with hidden cracks often going undetected, but NextEra has also demonstrated a consistently poor record in managing ASR.
- As the years pass areas known to have ASR, and countless unknown areas are experiencing ASR degradation.
- Consequently, we strongly recommend that the full air tightness test schedule be drastically shortened from the current 15 years to a performance-based schedule.

Q3:Crack Indices (CI), Public Right to Know

Public Right to Know Some Data

- The public has a fundamental right to access information that affects their safety and well-being.
- Transparency in sharing data helps build trust between the reactor operator, regulatory agencies, and the public. When data is openly available, it demonstrates that the operator is committed to safety and is accountable for maintaining the highest standards.
- Public access to safety data enables independent experts, researchers, and advocacy groups to analyze the information, potentially identifying issues that may be overlooked by the operator or regulators.
- We understand that NextEra may consider the data confidential; however, we assert that we assert that raw measurement data should be treated as public domain, however we recognize that NextEra's modeling is proprietary.

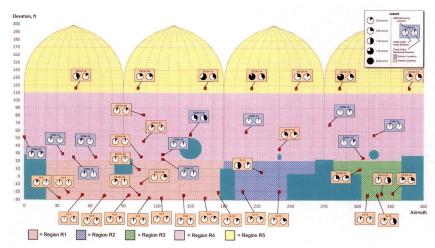
What Data?

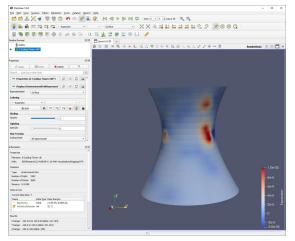
Acceptance criteria for CI measurements

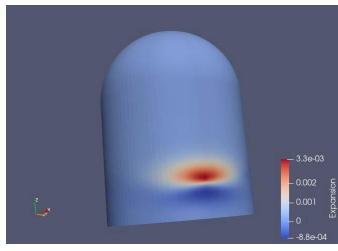
Tier	Structures monitoring program	Recommendation for individual concrete components	Criteria
3	Unacceptable (requires further evaluation)	 Structural evaluation Implement enhanced ASR monitoring such as through-wall expansion monitoring using Extensometers 	1.0 mm/m (0.1%) or greater strain measurement (CCI or pin-pin)
2	Acceptable with deficiencies	Quantitative monitoring and trending	 0.5 mm/m (0.05%) or greater strain measurement (CCI or pin-pin) CI or pin-pin measurement of greater than 0.5 mm/m (0.05%) in the vertical and horizontal direction
		Qualitative monitoring	Any area with visual presence of ASR (as defined in [930] accompanied by a Cl of less than 0.5 mm/m (0.05%) in the vertical and horizontal directions
1	Acceptable	Routine inspection as prescribed by the Structural Monitoring Program	Area has no indication of pattern cracking or water ingress; No visual symptoms of ASR

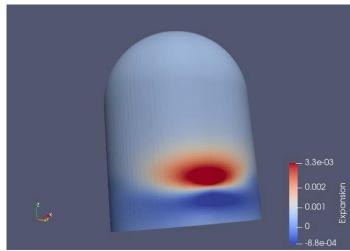
<u>Seabrook Station - Approach for Determining Through-Thickness Expansion from Alkali-Silica Reaction</u> NextEra-ML18141A785 (<u>2016</u>)

Need to Communicate with the Public

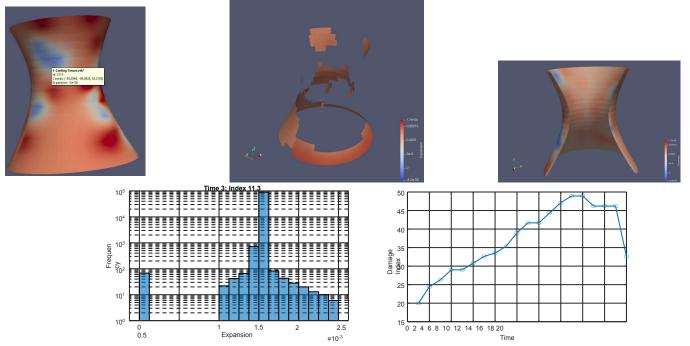

• We ask the NRC to obtain from NextEra and share with the public all measurements related to the crack index


Date Tier CI Location Ref Values


Ref Value: Location of the closest concrete sample cast during construction with known compressive strength f_c'


- C-10 has built a data visualizer that we would like to share with the NRC. It is based on the premises that
- ASR has both a spatial and temporal variation.
- It is measured pointwise, yet its impact is spread over volumes
- We only have limited point measurements at discrete times.
- Need to
 - Map
 - Visualize
 - Analyze (and Predict)

Visualize



Analyze

Can Quantify structural damage over time.

- Atomic Safety License Board (2020). In the Matter of NEXTERA ENERGY SEABROOK, LLC (Seabrook Station, Unit 1); Initial Decision. Docket No. 50-443-LA-2, ASLB No 17-953-02-LA-BD01.
- FHWA (2010). <u>Report on the Diagnostis, Prognosis, and Mitigation of Alkali-Silica Reaction (ASR) in Transportation Structures</u>. Tech. rep. FHWA-HIF-09-004. Federal Highway Administration.
- NextEra Energy (May 2016). Supplement to License Amendment Request 16-01 Request to Extend Containment Leakage Test Frequency.
- NextEra-ML16216A240 (2016). <u>Seabrook, License Amendment Request</u> <u>16-03 - Revise Current Licensing Basis to Adopt a Methodology for the</u> <u>Analysis of Seismic Category I Structures with Concrete Affected by</u> <u>Alkali-Silica Reaction.</u> ADAMS access number ML16216A250.

NextEra-ML18141A785 (2016). <u>Seabrook Station - Approach for</u> <u>Determining Through-Thickness Expansion from</u>

Alkali-Silica Reaction. Redacted Document.

Simpson Gumpertz & Heger-ML16279A049 (2016). <u>Evaluation</u> <u>and</u> <u>Design Confirmation of As-Deformed CEB, 150252CA-02,</u>" <u>Revision</u> <u>0, July 2016 (Seabrook FP#100985)</u>. Online; accessed 2024-07-16.

Advisory Committee on Reactor Safeguards Full Committee Meeting

Seabrook Alkali Silica Reaction (ASR) Update / Information Briefing

Division of Operating Reactor Safety

U.S. NRC Region I

September 4, 2024

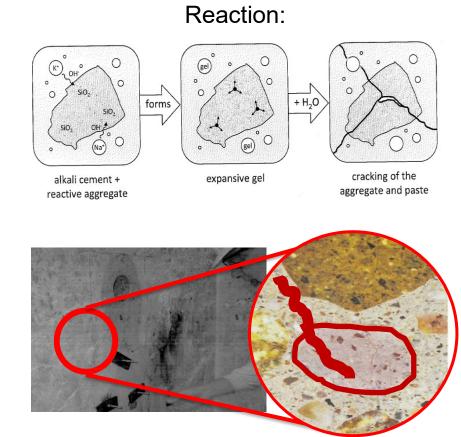
NRC Staff Presenters

Niklas Floyd

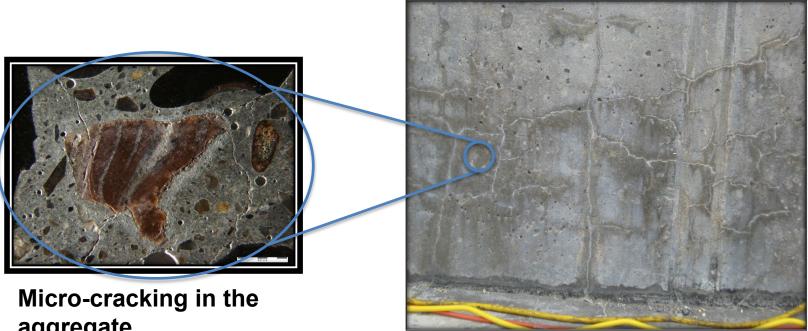
Senior Reactor Inspector Region I

Travis Daun

Senior Resident Inspector, Seabrook Region I


Agenda

- Alkali-Silica Reaction (ASR) Background
- NRC Inspection and Assessment of ASR
- Review of Containment Internal Structures
- Summary



ASR Background

- ASR is a slow, expansive chemical reaction in hardened concrete which occurs in the presence of water, between the alkaline cement and reactive silica found in some aggregates
- The expansion can cause various material impacts
- ASR is a very slowmoving phenomenon

Visual signs of cracking on the surface of the concrete

aggregate

- 2009 2010: Degradation in Seabrook concrete exposed to groundwater identified during license renewal audit walkdowns
 - Testing confirmed the presence of ASR
 - Codes of record in the Seabrook current licensing basis did not account for ASR
 - NextEra initiated prompt operability determination (POD) and extent-of-condition (early 2011)
- Why ASR occurred and was not identified earlier:
 - Seabrook unknowingly used a slow-reactive aggregate in the concrete
 - Ineffective ASTM Standards at the time of construction
 - ASR development was not expected
 - Inspections were not looking for ASR

- NextEra concluded that ASR-affected structures were operable but degraded and non-conforming
- NRC regional inspectors and headquarters staff reviewed operability determinations and concluded that ASRaffected structures remained capable of performing their safety functions
- 2012: NRC increased oversight to ensure structures remained functional while NextEra developed corrective actions

Large-Scale Testing Program:

- NextEra test program at The University of Texas at Austin
- 2013 2016: NRC conducted inspections at the test facility to ensure NRC requirements for quality test standards were met

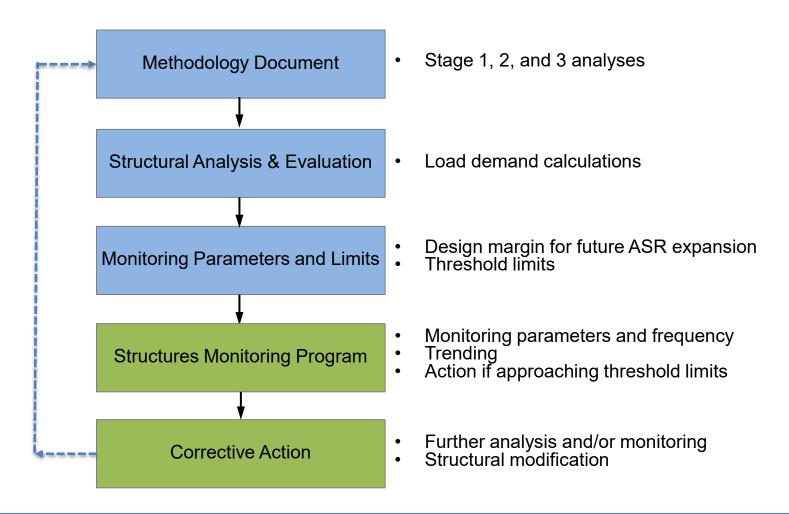
Large-Scale Testing Program Results:

- Showed no reduction in structural capacity up to the expansion levels tested, and code equations can be used up to the tested limits
- Determined through-wall expansion was best way to track ASR progression after in-plane expansion plateaus
- Data was used to develop a correlation between measured modulusof-elasticity and through-wall expansion; used to estimate expansion until extensometer installation
- Expansion levels* from the testing were added to Seabrook's CLB as expansion limits for capacity limit states

*During 1Q2023, NextEra communicated to inspectors that expansion trends were projected to exceed the limits prior to license expiration and would likely require additional large-scale testing to support increased expansion levels (ML23129A193)

Building Deformation Program:

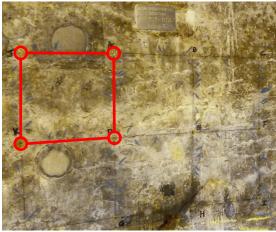
- 2014 2015: NRC identified bulk structural deformation in the following Seismic Category 1 structures on site:
 - Containment Enclosure Building
 - Residual Heat Removal vaults
 - Spent Fuel Building
- Bulk deformation results in additional loading and can impact equipment
- Building deformation was incorporated into NextEra's license amendment request

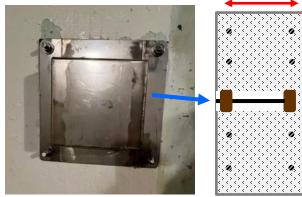


Building Deformation Program:

- 3-stage analysis methodology to address ASR loads
 - More detailed and accurate as stages progress from 1 to 3
- Estimates ASR loads based on field measurements
 - Also accounts for future ASR progression
- Demonstrates Capacity ≥ Demand (including ASR)
- Identifies quantitative acceptance criteria (threshold monitoring parameters, limits) for each structure based on analysis; triggers corrective action when approached or exceeded
- Allows for structural modifications or further evaluation
- Methodology described in the license amendment and incorporated into Seabrook's Structures Monitoring Program

Methodology Overview:




- License Amendment Request:
 - Incorporated test program expansion limits for capacity
 - Detailed methodology for evaluating the effects of ASR on Seabrook structures (incorporates ASR load/demand, acceptance criteria)
 - Monitoring provides for timely corrective action
- License Renewal Application:
 - Aging management programs (AMPs) identify and manage future effects of aging
 - License renewal application supplemented to include ASR monitoring and evaluation programs as AMPs
- NRC approved and issued both the license amendment and renewed license in March 2019.
 - ACRS meetings and ASLB hearing completed

Examples of Monitoring ASR at Seabrook:

Combined crack indexing (CCI) and pin-to-pin distance

Extensometers

Seismic gap widths between buildings

Crack gauges

Summary of ASR License Conditions:

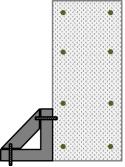
- a) Assess expansion behavior to confirm it is comparable to the large-scale test program and check margin for future expansion.
- b) Corroborate, using Seabrook field data, the concrete modulus to expansion correlation used to calculate pre-instrument through-thickness expansion.
- c) Conduct a volumetric expansion check for control extensometers every six months.
- d) Develop a monitoring program to ensure that rebar failure or yielding does not occur, or is detected if it has already occurred, if the structural evaluations indicate rebar stress may exceed yield.
- e) If the ASR expansion rate significantly exceeds 0.2 mm/m (0.02%) throughthickness expansion per year, NextEra will perform an engineering evaluation focused on the continued suitability of the six-month monitoring interval.
- f) Each core extracted from Seabrook Unit 1 will be subjected to a petrographic analysis to detect internal microcracking and delamination.

- NRC resident inspectors performed daily onsite oversight via plant status (corrective action report review and walk downs)
- Inspectors selected risk-informed and performance-based samples, including maintenance rule, operability determinations, modifications, and focused PI&R samples
- Regional specialists and NRR / RES technical staff performed focused inspections
- Results documented in inspection reports
- Results and oversight plans discussed with Region I senior managers and during end-of-cycle reviews

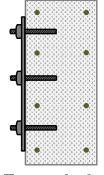
- Oversight of ASR since last ACRS update in April 2022:
 - 5 weeks of on-site inspections by team of regional inspectors and NRR/RES technical staff
 - 11 total inspection samples focused specifically on ASR related activities
- Two other team inspections reviewed ASR-related items during baseline ROP inspections. These included the Biennial Problem Identification and Resolution and the Age-Related Degradation team inspections.

- NRC inspections determined Seabrook structures remained capable of performing their intended safety functions
- NRC inspectors identified three findings involving ASR activities since 2022. The violations were found to be of very low safety significance and have been addressed in NextEra's corrective action program

- Determined NextEra reviewed Seismic Category I structures using approved Methodology Document
 - -28 total structures in program
 - -6 structures remained outside of the licensing basis
- Determined functionality of six structures is documented in Prompt Operability Determination with supporting analyses
 - Additional monitoring/trending (typically every 2 months)
 - Long-term corrective actions via modification and/or reanalysis



Corrective Actions Planned for Structures Approaching or Outside of Licensing Basis Limits:


- Physical Modification and/or Re-analysis
- Physical modification process described in the NRC-approved methodology to evaluate and manage the effects of ASR

Example 1 -Strong Backs

Example 2 -Corner Braces

Example 3 -Vertical Plates

Examples of Modifications:

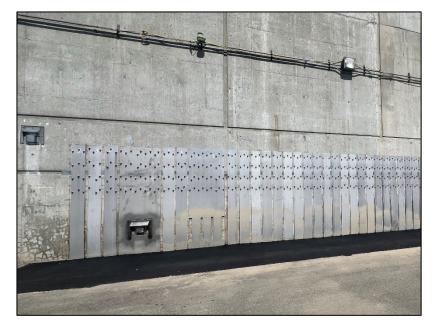
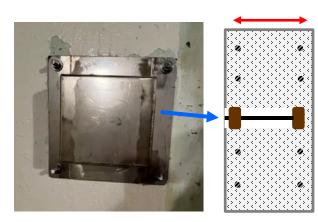
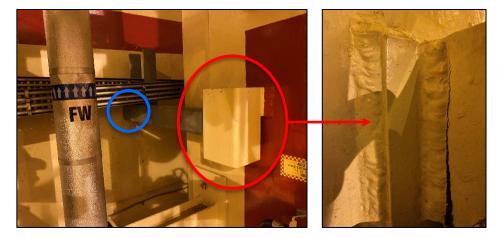


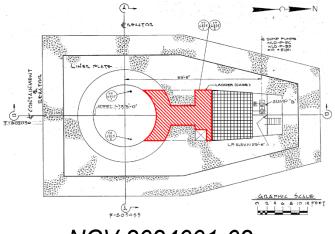
Figure 1. Vertical plates

Figure 2. Corner braces and strong backs



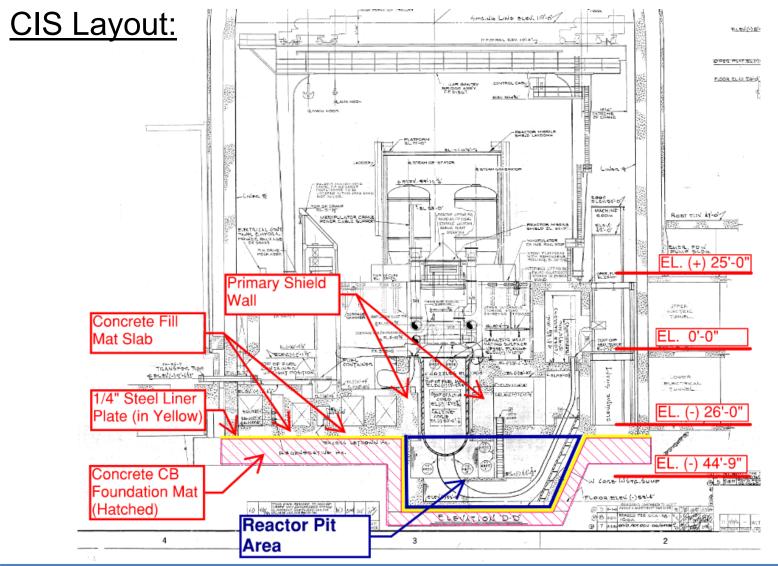
Inspection Findings:


- NRC inspectors identified 3 findings of very low safety significance involving NextEra's performance and ASR
 - NCV 2022002-01 Did not install extensioneters in 7 ASR Tier 3 locations
 - NCV 2024010-02 Did not correct an adverse condition associated with a tubing support from ASR deformation
 - NCV 2024001-02 Did not analyze the reactor cavity pit slab in the revised CIS structural evaluation
- Determined the 3 findings were addressed in NextEra's corrective action program


Inspection Findings:

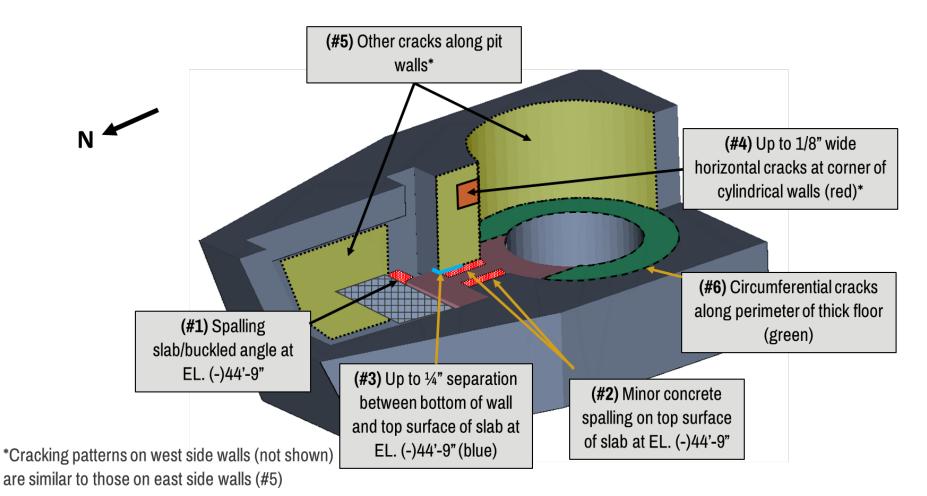
NCV 2022002-01

NCV 2024010-02



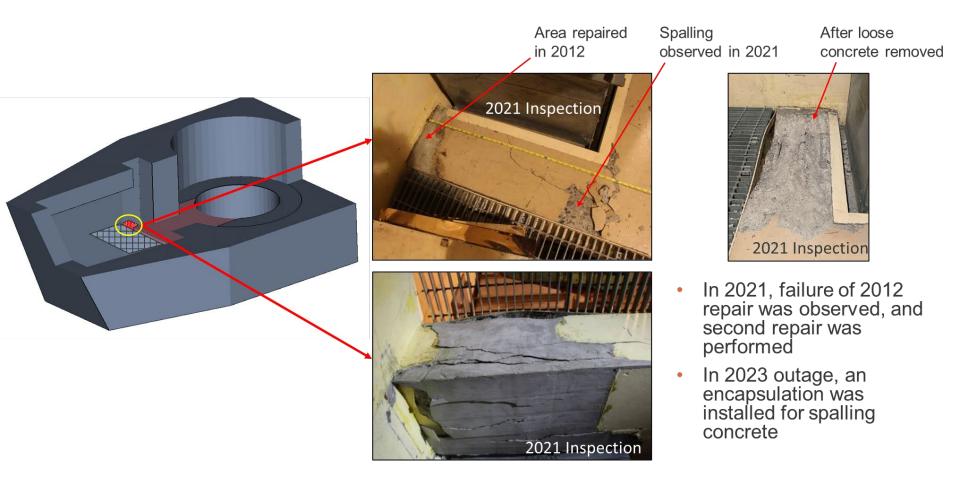
NCV 2024001-02

- Nov 2021: NRC identification of possible ASR cracking in reactor cavity pit of the containment internal structures (CIS) documented as Green finding in 4Q2021.
- **April 2023**: NextEra completed root cause studies to best estimate the amount and location of ASR based on observed distress (cracks and spalling).
- **Nov 2023**: NextEra completed the "stage 2" structural evaluations in accordance with NRC-approved methodology.
- Mar 2024: NRC reviewed the CIS root causes and structural evaluations. NRC identified one finding because NextEra staff did not analyze a particular element in the reactor pit slab in their CIS structural evaluation.



NextEra's Approach for Analysis:

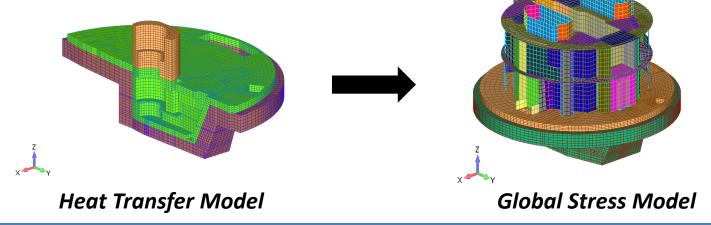
- Collected data from field measurements (crack sizes, crack locations, temperatures, spalling) inside the CIS
- Developed finite element models for heat transfer and stress from "in situ" loads
- Performed parametric studies varying the amount of ASR expansion and thermal loads to understand the observed distresses
- Documented the results in root cause reports
- Utilized the results as an input into the CIS stage 2 structural evaluations:
 - Reactor cavity pit area
 - Superstructure (areas above the reactor cavity pit, including the fill mat)



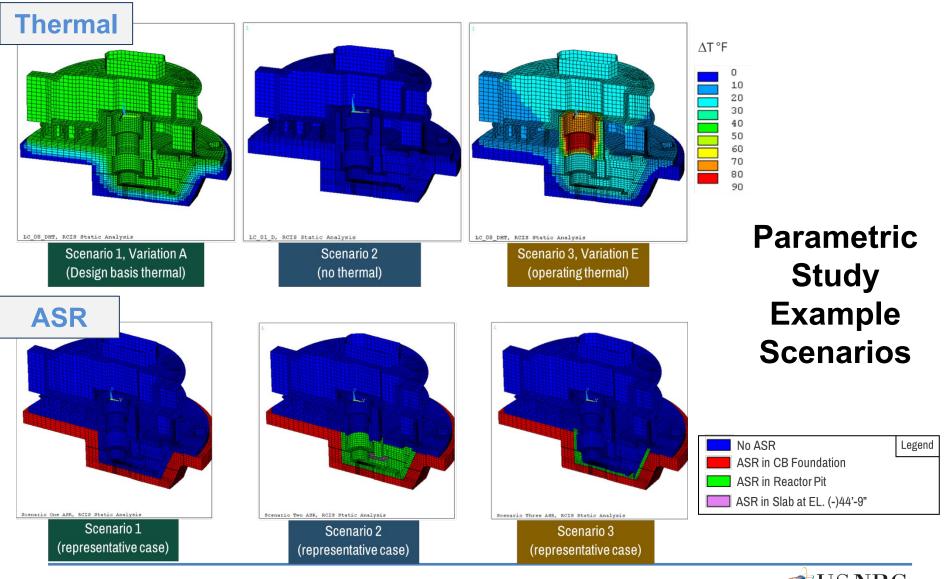
CIS Field Observations:

CIS Field Observations:

CIS Field Observations:


No apparent changes in 2017, 2021, or 2023 inspections

Typical Cracking Patterns Along Pit Walls



Finite Element Models:

- NextEra developed models and completed parametric studies to identify the likely causes of observed structural conditions in CIS:
 - Scenarios analyzed concrete expansion due to thermal, ASR, and varying combinations
 - Other effects analyzed such as cycling fatigue, stress concentrations, and creep
- The studies used best estimated actual loads (in-situ loads) to simulate the observed conditions

United States Nuclear Regulatory Commission Protecting People and the Environment

Parametric Study Example:

		Thermal Load Boundary Conditions							0
	Thermal Variation	Steady-State Operation		Shutdown		Reference		ASR	Compare to Observed
		Inside CIS	Bedrock Interface	Inside CIS	Bedrock Interface	Inside CIS	Bedrock Interface		Conditions?
Scenario One	А	120 °F	40 °F	80 ºF	40 °F	70 ºF	40 °F	CB foundation only	No
	В	110 °F	40 °F						
	С	120 °F	40 °F			60 ºF	40 °F		
	D	110 °F	40 °F						
Scenario Two	NO							CB foundation only	No
	Thermal	N/A		N/A		N/A		CB foundation and reactor pit	No
	Load	_						CB foundation, reactor pit, and slab at EL. (-) 44'	No
Scenario Three	E	 90°F inside CIS reactor pit 150°F on the inside face of the primary shield wall 90°F on the outside face of the primary shield wall 77°F on the top surface of the fill mat slab at EL. (-) 26' 40°F at bedrock interface 		80 ºF	40 °F	60 ºF	40 °F	CB foundation only	Yes
								CB foundation and fill mat slab at EL. (-) 26'	No
								CB foundation and reactor pit	Yes
	F					70 ºF	40 °F	CB foundation only	No

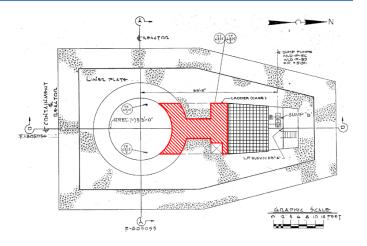
Additional Parametric Studies:

- NextEra reviewed conditions in other areas of the CIS to determine the cause of the observed distress:
 - El. (-) 26ft fill mat slab and adjacent to the sump at azimuth 80°
 - Personnel elevator with base at El. (-) 26 ft azimuth 335°
- Studies analyzed combinations of in-situ load conditions (thermal and ASR) with results documented in two root cause reports
- NextEra concluded the conditions were likely due to effects other than ASR

Ongoing Monitoring

- Continued monitoring inside the CIS to see whether any ASR expansion is occurring:
 - Fill Mat Slab at EL (-) 26 ft
 - Secondary Shield Wall at EL (-) 26 ft
 - Walls adjacent to Sump at AZ 80° on EL(-) 26 ft
 - Elevator at AZ 335° on EL (-) 26 ft and 0 ft
 - Reactor Cavity Pit Area
- Retrieve reactor pit temperature data during the upcoming fall 2024 refueling outage

NRC Review:


- Inspectors verified that NextEra completed the CIS structural evaluation in accordance with their revised licensing basis and the Stage 2 analysis process in the NRC-approved methodology document
- The inspectors concluded that root cause studies were of appropriate technical detail to develop insights and provide for upper limit estimates of possible ASR/swelling expansion that reasonably correlated with CIS field observations. Plans were in place to continue to monitor and refine results.
- Inspectors noted there was an upper limit of ASR expansion of 0.2mm/m in foundation mat with 30% margin for expansion
- NRC identified one violation because NextEra did not evaluate the reactor pit slab in the revised structural evaluation

Violation:

NextEra did not verify the adequacy of the reactor pit slab at el. (-) 44'-9" for the applicable design loads, including ASR, in the revised structural evaluation for the CIS.

Corrective Actions:

- NextEra performed a prompt operability determination to confirm the integrity of the reactor pit slab for the unusual load combination with a safe shutdown earthquake
- Engineering change in-progress to reclassify the slab as non-Seismic Category I and perform the necessary analysis for SC II over I
- Designed a preventative modification as contingency for protection of components below the slab in the event of concrete spalling

Summary

- NRC inspections determined Seabrook structures remained capable of performing their safety functions as intended, including under limiting conditions
- NRC inspections identified some findings and violations of very low safety significance which have been addressed in the corrective action program

Summary

Next Steps:

- NRC will continue inspections under the Reactor Oversight Process that includes NextEra's ASR-related activities to:
 - Bring structures into compliance with licensing basis
 - Monitor ASR and building deformation
 - Complete modifications (physical and/or reanalyze) on affected structures.
 - Validate thermal and ASR loads in CIS
 - Implement ASR related license conditions

 Monitor NextEra's plans that may potentially involve large-scale testing

Summary

Public References:

NRC Webpage on Concrete Degradation at Seabrook https://www.nrc.gov/reactors/operating/ops-experience.html

NRC Webpage on Seabrook License Renewal

https://www.nrc.gov/reactors/operating/licensing/renewal/applications.html

Documents Available are at https://adams.nrc.gov/wba/:

- ASR license amendment request
 - NRC staff safety evaluation: <u>ML18204A291</u>
 - ACRS letter: <u>ML18348A951</u>
- License renewal application
 - NRC staff safety evaluation report: <u>ML18362A370</u>
 - ACRS letter: <u>ML18353A954</u>

End of Staff Presentation

