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18.6 Failure Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
18.7 Plastic Potential of Model 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
18.8 Exponential Crack Opening Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
18.9 Compressive Hardening/Softening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
18.10Shear Retention Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
18.11Compressive Strength Reduction of Cracked Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
18.12Comparison between analytical and experimental results for normal concrete under triaxial compression and various confinem
18.13Comparison between analytical and experimental results for high-strength concrete under triaxial compression and various co
18.14Laterally Confined Cube (in x and y while monotonically Loaded in the z Direction . . . . . . . . . . 221
18.15Stress-strain response of the triaxial test for different confinement lateral stresses (0, 4.2, 8.4 MPa) . . 222
18.16Geometry of the Leonhardt Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
18.17Analysis of Leonhardt Shear Beam with Model 18 and 19 . . . . . . . . . . . . . . . . . . . . . . . . . 223
18.18Comparison of the Responses of a Three Point Beand Beam Analysis with Models 18 and 19 . . . . . 223
18.19In figura sono mostrate da sinistra verso destra le immagini della mesh “Coarse” e “Medium” . . . . . 224
18.20Curva carico spostamento per la mesh ”Coarse” e ”Medium” . . . . . . . . . . . . . . . . . . . . . . . 225
18.21Mesh del cubo di calcestruzzo artificialmente indebolito prima e dopo la prova uniassiale di trazione. La resistenza a trazione
18.22Curve carico spostamento per il cubo senza imperfezioni e per il cubo artificialmente indebolito . . . . 227
18.23Curve carico spostamento relative alla prove di trazione uniassiale con differenti valori dell’energia di frattura227
18.24Curve carico-spostamento relative ad una prova di compressione ottenute per la mesh “Coarse” e “Medium”228
18.25Mesh deformate al termine delle prove di espansione termica in assenza di vincoli di contenimento (immagine a sinistra) o in
18.26Curva forza spostamenti della prova di carico ciclico . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
18.27Particolare della curva presente in Figura 18.26 carico e scarico del provino a trazione . . . . . . . . . 230

19.1 Kawamoto Model, all input parameters are shown in red . . . . . . . . . . . . . . . . . . . . . . . . . . 233
19.2 Kawamoto Model, Compression Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
19.3 Kawamoto Model, Compression Test with Unloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
19.4 Kawamoto Model, Tension Test with Unloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
19.5 Kawamoto Model, Shear Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
19.6 Kawamoto Model, Shear Test Cyclic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

20.1 Uplift Pressures in a Dam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
20.2 Uplift Pressures for Permeable and Impermeable Rock . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
20.3 Concrete Strain Softening Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
20.4 Forces Acting on an Element at the Foundation Surface Subjected to Internal Pressure and Normal Surface Tractions249
20.5 Uplift Model with Impervious Rock, Concrete, and Uncracked Interface . . . . . . . . . . . . . . . . . 251
20.6 Uplift Model with Impervious Rock and Concrete and Pervious Uncracked Interface . . . . . . . . . . 252
20.7 Pipe Analogy for Flow Along a Pervious Uncracked Interface . . . . . . . . . . . . . . . . . . . . . . . 253
20.8 Uplift Model with Impervious Concrete and Pervious Rock and Uncracked Interface . . . . . . . . . . 254
20.9 Boundary Conditions for Thermal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
20.10Boundary Conditions for Seepage Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Merlin Theory Manual



16 List of Figures

21.1 Program Memory with Three Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Merlin Theory Manual



List of Tables

2.1 System Identification for Multon’s Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2 Triaxial Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Elastic Properties of Steel, Concrete and Water, (Aslam, Wilson, Button and Ahlgren 2002) . . . . . . 61

7.1 Functionals in Linear Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 Comparison Between Total Potential Energy and Hu-Washizu Formulations . . . . . . . . . . . . . . . 85
7.3 Polynomial orders of the shape functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.4 Table of α coefficients and spectral radii for CS technique. . . . . . . . . . . . . . . . . . . . . . . . . . 91

17.1 Parameters for the analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

18.1 Caratteristiche del calcestruzzo utilizzato durante le prove di validazione del legame costitutivo . . . . 224
18.2 Caratteristiche delle mesh utilizzate nelle prove sul cubo di calcestruzzo . . . . . . . . . . . . . . . . . 224
18.3 Descrizione della prova uniassiale di trazione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
18.4 Energia di frattura teorica e calcolata in base alle prove di trazione simulate con il programma MERLIN226
18.5 Descrizione della prova uniassiale di compressione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
18.6 Descrizione della prima prova di carico ciclico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

20.1 Fixed Water Elevation Fracture and Uplift Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
20.2 Required Material Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
20.3 Heat of Hydration for Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
20.4 Summary of three cases for uplift on uncracked ligament . . . . . . . . . . . . . . . . . . . . . . . . . . 250
20.5 Required Material Properties for Seepage Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
20.6 Material Parameters Required for a Thermal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

21.1 File Open Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
21.2 State Variables for FCM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
21.3 State Variables for ICM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
21.4 Interface Element Information Table (INTELM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
21.5 Nodal Attribute Table (nodatr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
21.6 Nodal ID Table (id) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
21.7 Crack Front Attribute Table (cfatr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
21.8 Crack Front List (cflist) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
21.9 Crack Surface Attribute Table (csatr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
21.10Crack Surface Information (csinfo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
21.11Uplift function limits (fnclim) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
21.12Uplift function coefficient (fncoef) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284





Part I

THEORY





List of Tables 21

Nonlinear analysis
The analysis based on nonlinear material behavior represents
the greatest possible refinement and it produces the most ac-
curate results.
However, it is also the most complex and the most costly. It
requires time-history ground motion input, direct integration
solution, a large main frame computer, specialized computer
programs, and a considerable amount of computer time.
As such, it is the last recourse in the attribute refining process.
The nonlinear analysis should only be undertaken under the
guidance of an expert in the field of fracture mechanics and
finite element methods.

Engineering and Design - Seismic Design Provisions for Roller Com-
pacted Concrete Dams, EP 1110-2-12, US Army Corps of Engineers,
1995.
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Chapter 1

OVERVIEW of SEISMIC EVALUATION

Seismic design and evaluation of hydraulic structures generally consist of the following steps:

• Selection of design/or evaluation earthquakes.

• Selection of method of analysis.

• Development of acceleration time-histories.
item Definition of load combinations.

• Development of structural models.

• Definition of material properties and damping.

• Selection of numerical analysis procedures.

• Determination of performance and probable level of damage, if any.

1.1 Design earthquake criteria

Design and safety evaluation earthquakes for concrete hydraulic structures are the operating basis earthquake (OBE)
and the maximum design earthquake (MDE) as required by ER 1110-2-1806.

Operating Basis Earthquake (OBE). The OBE is defined in ER 1110-2-1806 as an earthquake that can reasonably
be expected to occur within the service life of the project, that is, with a 50 percent probability of exceedance
during the service life. This corresponds to a return period of 144 years for a project with a service life of 100
years. The associated performance requirement is that the project function with little or no damage, and without
interruption of function. The purpose of the OBE is to protect against economic losses from damage or loss of
service; therefore, alternative choices of return period for the OBE may be based on economic considerations.
The OBE is determined by probabilistic seismic hazard analysis (PSHA). The response spectrum method of
analysis is usually adequate for the OBE excitation, except for the severe OBE ground motions capable of
inducing damage. In these situations, the time-history analysis described in this manual may be required.

Maximum Design Earthquake (MDE). The MDE is defined in ER 1110-2-1806 as the maximum level of ground
motion for which a structure is designed or evaluated. The associated performance requirement is that the
project performs without catastrophic failure, such as uncontrolled release of a reservoir, although severe damage
or economic loss may be tolerated.

1.2 Method of analysis

Seismic analysis of concrete hydraulic structures, whenever possible, should start with simplified methods and progress
to a more refined analysis as needed. A simplified analysis establishes a baseline for comparison with the refined
analyses, as well as providing a practical method to determine if seismic loading controls the design, and thereby offers
useful information for making decisions about how to allocate resources. In some cases, it may also provide a pre-
liminary indication of the parameters significant to the structural response. The simplified methods for computation
of stresses and section forces consist of the pseudo-static or single-mode response-spectrum analysis. The simplified
method for sliding and rotational stability during earthquake excitation is usually based on the seismic coefficient
method. The permanent sliding displacements may be computed using Newmarks rigid block model or its numerous
variants. The response-spectrum mode superposition described in EM 1110-2-6050 is the next level in the progressive
method of dynamic analysis. The response-spectrum mode superposition fully accounts for the multimode dynamic
behavior of the structure, but it is limited to the linear-elastic range of behavior and provides only the maximum val-
ues of the response quantities. Finally, the time-history method of analysis is used to compute deformations, stresses,
and section forces more accurately by considering the time-dependent nature of the dynamic response to earthquake
ground motion. This method also better represents the foundation-structure and fluid-structure interaction effects.
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1.2.1 Simplified procedures

Simplified procedures are used for preliminary estimates of stresses and section forces and sliding and rotational
stability due to earthquake loading. The traditional seismic coefficient is one such procedure employed primarily for
the analysis of rigid or nearly rigid hydraulic structures. In this procedure the inertia forces of the structures and
the added mass of water due to the earthquake shaking are represented by the equivalent static forces applied at
the structure center of gravity and at the resultant location of the hydrodynamic pressures. The inertia forces are
simply computed from the product of the structural mass or the added mass of water times an appropriate seismic
coefficient in accordance with ER 1110-2-1806. The static equilibrium analysis of the resulting inertia forces together
with the customary static forces will then provide an estimate of the stresses and section forces.

The sliding stability is determined on the basis of the limit equilibrium analysis. The sliding factor of safety is
computed from the ratio of the resisting to driving forces along a potential failure surface and compared against the
allowable values given in ER 1110-2-1806. The resisting forces are obtained from the cohesion and frictional forces
and driving forces from the resultant of static and seismic forces in the tangential direction of the sliding surface.
When the factor of safety against sliding is not attainable, the sliding may occur as the ground acceleration exceeds
a critical acceleration ac and diminish as the acceleration falls below ac. If a hydraulic structure is treated as a
rigid block, the critical acceleration ac is estimated from the seismic inertia forces necessary to initiate sliding. The
upper bound estimate of permanent sliding displacement may be obtained using Newmarks charts (Figure 2-11 of
EM 1110-2-6050).

1.2.2 Response-spectrum modal analysis

The maximum linear elastic response of concrete hydraulic structures can be estimated using the response-spectrum
mode superposition method described in EM 1110-2- 6050. The procedure is suitable for the design, but it can also
be used for the evaluation of hydraulic structures subjected to low or moderate ground motions that are expected to
produce linear elastic response. In responsespectrum analysis, the maximum values of displacements, stresses, and
section forces are first computed separately for each individual mode and then combined for all significant modes and
multicomponent earthquake input. The modal responses due to each component of ground motion are combined using
either the square root of the sum of the squares (SRSS) or the complete quadratic combination (CQC) method. The
SRSS combination method is adequate if the vibration modes are well separated. Otherwise the CQC method may
be required to account for the correlation of the closely spaced modes. Finally the maximum response values for each
component of ground motion are combined using the SRSS or percentage methods in order to obtain the maximum
response values due to multicomponent earthquake excitation. The response-spectrum method of analysis, however,
has certain limitations that should be considered in the evaluation of results. All computed maximum response values
including displacements, stresses, forces, and moments are positive and generally nonconcurrent. Therefore, a plot
of deformed shapes and static equilibrium checks cannot be performed to validate the results. For computation of
section forces from element stresses, appropriate signs should be assigned to the stresses by careful examination of
deflected shapes of the predominant response modes. Alternatively, section forces may be computed first for each
individual mode and then combined for the selected modes and multicomponent earthquake input, a capability that
may not exist in most finite-element computer programs. Other limitations of the response-spectrum method are
that the structure-foundation and structure-water interaction effects can be represented only approximately and that
the time-dependent characteristics of the ground motion and structural response are ignored.

1.2.3 Time-history analysis

Time-history earthquake analysis is conducted to avoid many limitations of the response-spectrum method and to
account for the time-dependent response of the structure and better representation of the foundation-structure and
fluid-structure interaction effects. The earthquake input for timehistory analysis is usually in the form of acceleration
time-histories that more accurately characterize many aspects of earthquake ground motion such as the duration,
number of cycles, presence of high-energy pulse, and pulse sequencing. Time-history analysis is also the only ap-
propriate method for estimation of the level of damage as described in 1-7h and Chapter 4. Response history is
computed in the time domain using a step-bystep numerical integration or in the frequency domain by applying
Fourier transformation described in 1-7g.

In the standard finite element approach, the complete system consisting of the structure, the water, and the
foundation region is modeled and analyzed as a single composite structural system (Figure 2-3b). Similar to the
substructure approach, the structure is modeled as an assemblage of beams or finite elements. The water and the
foundation are generally represented by simplified models that only approximately account for their interactions with
the structure. In most cases the water is modeled by an equivalent added hydrodynamic mass, and the foundation
rock region is represented by a finite element system accounting for the flexibility of the foundation only. Based on
these assumptions the equations of motion for the complete system become
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The added hydrodynamic mass generally includes nonzero terms for x-, y- and z-DOFs, because they arise from
the hydrodynamic pressures acting normal to the structure-water interface. For the structure-water interface with
simple geometry, the added hydrodynamic mass terms associated with certain DOFs may be zero. For example, only
the added hydrodynamic mass terms corresponding to the x-DOFs (horizontal direction) are nonzero for a gravity
dam having vertical upstream face.

1.2.3.1 Concrete Gravity Dams

Conventional concrete gravity dams are constructed as monoliths (blocks) separated by transverse contraction joints.
Oriented normal to the dam axis, these vertical joints extend from the foundation to the top of the dam and from the
upstream face to the downstream face. For the amplitude of motion expected during strong earthquakes, the shear
forces transmitted through the contraction joints are small compared with the inertia forces of the monoliths. For
this condition, the monoliths in a long and straight gravity dam tend to vibrate independently, and their responses to
earthquakes can be evaluated on the basis of a 2-D model. However, curved gravity dams and those built in narrow
canyons need to be analyzed using a 3-D model.

1.2.3.1.1 2-D gravity dam model A 2-D model of a gravity dam for the time-history earthquake analysis consists
of a monolith section supported on the flexible foundation rock and impounding a reservoir of water. The tallest
monolith or dam cross section is usually selected and modeled using plane stress finite elements. The 2-D model of
the selected monolith and the associated foundation rock and the impounded water may be developed as separate
systems using the substructure method (Figure 2-3a), or as a complete structural system employing the standard
finite element procedures (Figure 2-3b).

The viscoelastic half plane model discussed in (1) above is applicable to a homogeneous foundation where identical
rock properties are assumed to exist for the entire unbounded foundation region. In general, foundation rock properties
vary with depth and along the footprint of the dam. The effective modulus of the jointed rock within the shallow
depths may significantly differ from that at greater depths. In these situations the viscoelastic half plane model is
not appropriate and needs to be replaced by a finite element foundation model that can account for the variation of
rock properties. The standard procedure is to develop a complete finite element model, which consists of the dam
and an appropriate portion of the foundation region, as shown in Figure 2-3b. The foundation model, however, is
assumed to be massless in order to simplify the application of the seismic input and avoid the use of large foundation
models (paragraph 2-24a). The foundation mesh needs to be extended a distance at least equal to the dam height in
the upstream, downstream, and downward directions. The nodal points at the base of the foundation mesh are fixed
both in the vertical and horizontal directions. The side nodes, however, are attached to horizontal roller supports
for the horizontal excitation and to vertical roller supports for the vertical excitation of the dam. The earthquake
ground motions recorded at the ground surface are directly used as the seismic input and are applied at the base of
the foundation model. The impounded water is also assumed to be incompressible so that the dam-water interaction
effects can be represented by the equivalent added-mass concept. The added mass is obtained using either the
simplified procedure developed by Fenves and Chopra (1986) or the generalized Westergaard method described in
paragraph 2-19b.

1.2.3.1.2 3-D gravity dam model Sometimes monolith joints are keyed to interlock two adjacent blocks, or the
dam is built in narrow canyons or is curved in plan to accommodate the site topography and to transfer part of the
water load to the abutments. In these situations, the dam behaves as a 3-D structure and its response especially to
earthquake loading should be evaluated using 3-D idealization similar to that described for arch dams in paragraph
2-13.

1.2.3.2 Arch Dams

Because concrete arch dams are 3-D structures, their responses to earthquake loading must be evaluated using a 3-D
model. The 3-D model for an arch dam is developed using the finite element procedures and includes the concrete
arch, the foundation rock, and the impounded water (Ghanaat 1993a, 1993b). The arch damwater- foundation system
may be analyzed using the substructure method or the standard finite element procedures. Both methods use the
same mathematical model to represent the concrete arch, except that the substructure method permits more rigorous
analysis of the dam-foundation and the dam-water interaction effects (Tan and Chopra 1995). The standard method
employs a massless foundation rock with an incompressible finite element model for the impounded water (Ghanaat
1993a, 1993b). The substructure method considers not only the foundation flexibility but also the damping and
inertial effects of the foundation rock, and also includes a reservoir water model that accounts for the effects of water
compressibility and the reservoir boundary absorption.
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1.2.3.2.1 Dam model Concrete arch dams are usually idealized as an assemblage of finite elements, as shown in
Figures 2-4 and 2-5. The finite element model of the dam should closely match the dam geometry and be suitable for
application of the various loads and presentation of the stress results. To the extent possible, the finite element model
of an arch dam should be developed using a regular mesh with elements being arranged on a grid of vertical and
horizontal lines (Figure 2-4). This way the gravity loads can easily be applied to the individual cantilever units, and
the stresses computed with respect to local axes of the element surfaces would directly relate to the familiar arch and
cantilever stresses. The finite elements appropriate for modeling an arch dam include 3-D solid and shell elements
available in the computer program GDAP (Ghanaat 1993a) or a general 3-D solid element with 8 to 21 nodes (Bathe
and Wilson 1976). A thin or medium-thick arch dam can be modeled adequately using a single layer of shell elements
through the dam thickness. A thick arch dam may require three or more layers of solid elements through the dam
thickness to better represent its dynamic behavior. The level of finite element mesh refinement depends on the type
of elements used. In general, a finite element mesh using the linear 8-node solid elements needs to be finer than that
employing shell elements whose displacements and geometry are represented by quadratic functions.

1.2.3.2.2 Foundation model The standard foundation model for analysis of arch dams is the massless foundation
discussed in paragraph 2-24a, in which only the effects of foundation flexibility are considered. Such a foundation
model should extend to a distance beyond which its effects on deflections, stresses, and natural frequencies of the
dam become negligible. The size of the foundation model should be determined based on the modulus ratio of the
foundation to the concrete Ef /Ec. For a competent foundation rock with Ef /Ec 1, a foundation mesh extending
one dam height in the upstream, downstream, and downward directions is adequate. For a more flexible foundation
rock with Ef /Ec in the range of 1/2 to 1/4, the foundation model should extend at least twice the dam height in
all directions and include more elements. In general, the foundation model can be developed to match the natural
topography of the foundation rock region. Such a refined model, however, is not usually required in practice. Instead,
a prismatic model employed in the GDAP program (Ghanaat 1993a) and shown in Figure 2-5 may be used. The
seismic input for the massless foundation model includes three-component ground acceleration time-histories applied
at the fixed boundary nodes of the foundation mesh. Since no wave propagation takes place in the massless foundation
model, the seismic input is obtained from the earthquake motions recorded on the ground surface using scaling or
spectrum-matching procedures described in Chapter 5.

1.2.3.2.3 Reservoir water The standard dam-water interaction analysis for arch dams is based on the finite element
added hydrodynamic mass model described in paragraph 2-20a (Ghanaat 1993a). Assuming the water is incompress-
ible, the hydrodynamic pressures acting on the dam-water interface are first obtained from the finite element solution
of wave equation and then converted into equivalent added-mass terms. The resulting addedmass terms are subse-
quently combined with the mass of concrete nodal points on the dam-water interface. In most cases a prismatic finite
element fluid mesh similar to that shown in Figure 2-22 (paragraph 2-20) is adequate for computation of the added
hydrodynamic mass. However, for reservoirs with irregular topography and shape, a fluid mesh that matches the
actual reservoir topography is recommended (Figure 2-6). A rigorous analysis of the dam-water interaction may be
required when the fundamental frequency of the reservoir water is relatively close to fundamental frequency of the
dam. Such an analysis, which includes the effects of water compressibility and reservoir boundary absorption on the
response of the dam, is performed as described in paragraph 2-21.

1.3 Load combinations

Concrete hydraulic structures should be designed and evaluated for three basic usual, unusual, and extreme loading
combinations in accordance with EM 1110-2-2100 and the referenced guidance for specific structures. In general, the
usual loading combinations are formulated based on the effects of all applicable static loads that may exist during
the normal operation of the structure such as the usual concrete temperatures and the most probable water level,
with dead loads, tailwater, ice, uplift, and silt. The unusual static loading combinations refer to all applicable static
loads at the floodwater pool elevation with the effects of mean concrete temperatures, dead loads, and silt. For other
unusual static loading combinations, refer to EM 1110-2-2100. The unusual dynamic loading combination includes
the OBE loading plus any of the usual loading combinations. Extreme loading combinations consist of the effects of
the MDE loading plus any of the usual loading combinations.

1. Combination with usual static loads. Time-history dynamic analysis is conducted mainly for the MDE loading
conditions but also for the OBE if seismic demand is severe. At each time-step, results of such analyses should
be combined with results of any of the usual loading combinations in order to obtain total displacements,
stresses, and section forces needed for design or evaluation of structures.

2. Combination for multicomponent earthquake input. Modeled as two- or three-dimensional (2-D or 3-D) struc-
tural systems, time-history analysis of concrete hydraulic structures should consider two or three orthogonal
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components of acceleration time-histories of earthquake ground motions. At each time-step, response quanti-
ties of interest are first computed for each component of the earthquake input and then combined algebraically
to obtain the total responses due to two or all three components. Only scalar and similarly oriented response
quantities are combined algebraically. After the initial algebraic combination, the resulting displacements, shear
forces, and moments in orthogonal directions need to be combined vectorially if the absolute maximum values
of such response quantities are required.

3. Combination for earthquake input direction (phase relation). Seismic waves of identical amplitudes, but trav-
elling in two opposite directions, could lead to different structural response. The opposite of acceleration
time-histories (i.e., all values multiplied by minus one) should also be considered as a simple way to account for
some directional effects. In general, a complete permutation of all three components with positive and negative
signs may be required to obtain the most critical directions that would cause the largest structural response.

1.3.1 Deconvolution

Whereas the recorded earthquake signal is on the free-field (surface), and yet the excitation must be applied at the
base of the rock, we need to perform a deconvolution analysis.

In such an analysis free-field surface motions are deconvolved to determine the motions at the rigid base boundary.
The deconvolution analysis is performed on a horizontally uniform layer of deformable rock using the one-dimensional
wave propagation theory. The resulting rigid base motion is then applied at the base of the 3-D foundation structure
system, in which the foundation model is assumed to have its normal mass as well as stiffness properties. This
procedure permits the wave propagation in the foundation rock, but requires an extensive model for the foundation
rock, which computationally is inefficient.

1.4 Development of structural models

Meaningful time-history analysis of probable seismic behavior of a concrete hydraulic structure for design and eval-
uation requires thorough understanding of the system components, their interaction, and their material properties.
Modeling of the structural system and its interaction with the foundation and water are summarized in this sec-
tion. The required material properties for the analysis are specified in f below. In general, structural models for the
time-history analysis should be developed to capture the main dynamic characteristics of the structure and represent
the effects of fluidstructure interaction and foundation-structure interaction accurately. Depending on the geometry
and mass and stiffness distributions, a particular hydraulic structure may be idealized using a simple beam, a 2-D
finite element, or a 3-D finite element model. The structural model should provide an accurate representation of the
mass and stiffness distributions, and in the case of existing structures it should account for the effects of any existing
cracks, deteriorated concrete, or any deficiency that might affect the stiffness. The fluid-structure interaction effects
may be adequately represented by simple added hydrodynamic mass coefficients, or may require a finite element (or
boundary element) solution with or without the effects of water compressibility and boundary absorption. Modeling
of the foundation-structure effects may range from a simplified massless finite element mesh to more elaborate for-
mulations involving soil-structure or soil-pile-structure interaction analyses. For embedded structures, the effects of
dynamic backfill pressures on the structure can also be significant and should be considered.

1.4.1 Dam Models

1.4.1.1 Concrete gravity dams

Relatively long and straight concrete gravity dams built as independent monoliths separated by transverse joints
may be idealized using a 2-D finite element model including the foundation rock and the impounded water. The 2-D
dam-water-foundation model, usually of the tallest cross section, may be analyzed as three separate systems in the
frequency domain using the substructure method (2-12a(1)) or as a single complete system in the time domain using
the standard finite element procedures (2-12a(2)). The substructure method may be employed if the assumption of
homogeneous material properties for the foundation region can be judged reasonable and a more rigorous formulation
of the dam-water interaction including water compressibility and reservoir bottom absorption is desirable. Otherwise
the standard finite element method with much simpler added-mass representation of the dam-water interaction should
be used in order to account for variation of the foundation rock properties.

Curved concrete gravity dams and those built in narrow canyons should be analyzed using 3-D finite element
models similar to those described for arch dams in (2) below.
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1.4.1.2 Concrete arch dams

The complicated 3-D geometry of an arch dam requires a rather refined 3-D model of the dam, its foundation, and
the impounded water for evaluation of its response to all three components of seismic input (2-13). The arch dam-
water-foundation system may be formulated in the time domain using the standard finite element procedures or in
the frequency domain using the substructure method. The standard method employs a massless foundation rock
included as part of the dam finite element model in conjunction with an incompressible liquid mesh representing the
impounded water. Treating each system separately, the substructure method considers the same dam model as the
standard method, but employs the flexibility as well as the damping and inertial effects of the foundation rock, with a
reservoir water that accounts for the effects of water compressibility and the reservoir boundary absorption. In both
methods the seismic input consists of three components of the free-field acceleration time-histories applied uniformly
along the dam-foundation interface in the substructure method and at the fixed boundary of the massless foundation
in the standard method. The standard method provides reasonable results for small dams and those built on a
competent foundation rock having a deformation modulus at least equal that of the concrete and with impounded
water whose fundamental resonance frequency is at least twice that of the arch dam. Otherwise, the more rigorous
formulation of the dam-water and dam-foundation interaction effects offered by the substructure method might be
required.

1.4.2 Fluid Structure interaction

A hydraulic structure and water interact through hydrodynamic pressures at the structure-water interface. In the case
of concrete dams, the hydrodynamic pressures are affected by the energy loss at the reservoir boundary. Generated by
the motions of the structure and the ground, hydrodynamic pressures affect deformations of the structure, which in
turn influence the pressures. The complete formulation of the fluidstructure interaction produces frequency-dependent
hydrodynamic pressures that can be interpreted as an added force, an added mass, and an added damping (Chopra
1987). The added hydrodynamic mass influences the structure response by lengthening the period of vibration, which
in turn changes the response spectrum ordinate and thus the earthquake forces. The added hydrodynamic damping
arises from the radiation of pressure waves and, for dams, also from the refraction or absorption of pressure waves at
the reservoir bottom. The added damping reduces the amplitude of the structure response especially at the higher
modes.

1.4.2.1 Simplified Added Hydrodynamic Mass Model

If the water is assumed to be incompressible, the fluid-structure interaction for a hydraulic structure can be repre-
sented by an equivalent added mass of water. This assumption is generally valid in cases where the fluid responses
are at frequencies much greater than the fundamental frequency of the structure. Following sections describe the
simplified added-mass procedures including original and generalized Westergaard methods, velocity potential method
for Housner’s water sloshing model, and Chopras procedure for intake-outlet towers and submerged piers and shafts.

1.4.2.1.1 Westergaard added mass According to Westergaard (1933) the hydrodynamic forces exerted on a gravity
dam due to earthquake ground motion are equivalent to inertia forces of a volume of water attached to the dam and
moving back and forth with the dam while the rest of the reservoir water remains inactive. For analysis of gravity
dams idealized as a 2-D rigid monolith with vertical upstream face, Westergaard proposed a parabolic shape for this
body of water as shown in Figure 2-15. The added mass of water at location mai is therefore obtained by multiplying
the mass density of water w by the volume of water tributary to point i: i i w ai A z H H m ) ( 8 7 . = (2-6) where
H = depth of water zi = height above the base of the dam Ai = tributary surface area at point i

1.4.2.1.2 Generalized Westergaard added mass Westergaards original added-mass concept described in a above is
directly applicable to the earthquake analysis of gravity dams and other hydraulic structures having a planar vertical
contact surface with the water. For structures having sloped or curved contact surfaces, a generalized formulation
of the added mass should be employed. The generalized formulation assumes that the pressure is still expressed by
Westergaards original parabolic shape, but the fact that the orientation of the pressure is normal to the face of the
structure and its magnitude is proportional to the total normal acceleration at that point is recognized. In general,
the orientation of pressures on a 3-D surface varies from point to point; and if expressed in Cartesian coordinate
components, it would produce added-mass terms associated with all three orthogonal axes. Following this description
the generalized Westergaard added mass at any point i on the face of a 3-D structure is expressed (Kuo 1982) by

INCOMPLETE CUT
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1.4.2.2 Finite Element Added Hydrodynamic Mass Model

The simplified added hydrodynamic mass concept described in paragraph 2-19 is generally not appropriate for refined
analysis of hydraulic structures having complex geometry such as arch dams and irregular intake/outlet towers. For
such structures a finite element idealization of the fluid domain permits a more realistic treatment of the complicated
geometry of the structure-water interface as well as the reservoir bottom. Assuming water is incompressible, inviscid,
and irrotational, the small-amplitude motion of water is governed by the wave equation

(2-16)
where p(x,y,z) is hydrodynamic pressure in excess of the static pressure generated by acceleration of the structure-

water contact surface and acceleration of the reservoir bottom. The hydrodynamic pressures acting on the structure-
water interface are obtained by solving Equation 2-16 using appropriate boundary conditions. Neglecting the effects
of surface waves, which are known to be small, the boundary condition at the free surface is:

( ) 0 = z , y , x p (2-17)
On the structure-water contact surface, where the normal acceleration und (Figure 2-22) is prescribed, the boundary

condition becomes:
Arch dams. For arch dams the solution of Equation 2-16 for hydrodynamic pressures is obtained numerically using

the finite element method (Kuo 1982; Ghanaat 1993b), but the reservoir bottom and a truncating vertical plane at
the upstream end are assumed to be rigid. This means that the ground motion g u is not applied to the reservoir
bottom (i.e., unb = 0 in Equation 2-19) and that the radiation damping due to propagation of pressure waves in the
upstream direction is not considered. The analysis involves development of a finite element discretization of the fluid
domain with the truncating upstream plane located a distance at least three times the water depth from the face of
the dam. At such distance, parameter studies show that the acceleration at the truncated plane has a small effect on
the hydrodynamic pressures at the face of the dam and, thus, can be assumed zero in practical applications (Clough
et al. 1984a, 1984b). In most cases a prismatic fluid mesh generated by translating the dam-water interface nodes in
the upstream direction is adequate for practical purposes (Figure 2-22). However, if the actual reservoir topography
is substantially different from a prismatic model, a fluid mesh that closely matches the reservoir topography may be
required. In either case, the distance between the successive surfaces or planes arranged approximately parallel to the
dam axis should be such that the fluid layers closer to the dam face contain finer elements. The finite element solution
of Equation 2-16 results in nodal pressures on the upstream face of the dam, which after conversion into nodal forces
gives the added hydrodynamic mass matrix for earthquake analysis of the dam. The resulting addedmass matrix is
a full square matrix with a dimension equal to the number of degrees of freedom on the damwater interface nodes.

1.4.2.3 Compressible Water with Absorptive Boundary Model

a. The added-mass representation of hydrodynamic pressure previously described ignores the effects of water com-
pressibility and water-foundation interaction. Refined dam-water interaction analysis including these factors (Hall
and Chopra 1980; Fenves and Chopra 1984b; Fok and Chopra 1985) indicates that water compressibility and the
water-foundation interaction can significantly affect the hydrodynamic pressures and hence the response of concrete
dams to earthquakes. The effects of water compressibility are generally significant when the fundamental frequency
of the dam without the water is relatively close to the fundamental resonant frequency of the impounded water, ) 4
( 1 H C f r = , where C is the velocity of sound in water and H is the water depth. The water compressibility and
the water-foundation interaction effects can be considered by solving the wave equation for compressible water

+ + = (2-20)
subjected to the boundary conditions given in Equations 2-17 to 2-19. The water-foundation interaction, as

indicated by Equation 2-19, can be considered by using finite elements to represent the flexible foundation or modeling
the foundation material as a viscoelastic half space. This effect has also been accounted for in an approximate manner
by using a simplified boundary condition that models the energy dissipated at the waterfoundation interface, as
described in paragraph 2-22. The most extensive study of concrete dams with compressible reservoir water has been
carried out by Chopra and his co-workers (Hall and Chopra 1980; Fenves and Chopra 1984b; Fok and Chopra 1985)
using the substructure method of analysis. Assuming the reservoir water can be idealized as a fluid domain with
constant depth and infinite length in the upstream direction, the hydrodynamic pressures for 2-D analysis of gravity
dams is obtained from a continuum solution (Fenves and Chopra 1984b). For irregular reservoir boundaries, the fluid
domain is usually assumed to consist of an irregular portion adjacent to the dam and a uniform section of infinite
length in the upstream direction (Figure 2-25). The irregular portion is represented by a finite element discretization
(Hall and Chopra 1980) or boundary element method (Humar and Jablonski 1988), whereas the uniform portion is
analyzed by a continuum solution. The equal pressure conditions at the interface then enforce the coupling between
the two regions. Such formulation of the hydrodynamic pressure results in frequency-dependent hydrodynamic terms
that are best treated in the frequency domain. This procedure has been implemented in the computer program
EACD-3D (Fok, Hall, and Chopra 1986) for the earthquake analysis of arch dams. b. The hydrodynamic pressure in
the reservoir, as given by Equation 2-20, is generated by the acceleration of the upstream face of the dam and vertical
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accelerations of the reservoir bottom. The solution in frequency domain produces the frequency response functions
for the hydrodynamic pressures in the impounded water. The computed pressure frequency response functions at the
face of the dam and at the reservoir bottom are then converted into statically equivalent nodal forces ( ) Rh l and (
) Qh and are substituted into the system equations of motion (Equation 2-1).

1.4.2.4 Reservoir Boundary Absorption

a. The energy loss capability of the reservoir bottom materials is approximately modeled by a boundary that partially
absorbs (refracts) the incident pressure waves (Hall and Chopra 1980). In the boundary condition for the reservoir
bottom, this energy loss is represented by the damping coefficient q, which is related to the wave reflection coefficient
by

(2-21)
where and C are the density and sound velocity for water, respectively, and s and Cs are the density and sound

velocity for the bottom materials, respectively. The reflection coefficient provides a measure of the level of absorption
of the reservoir bottom materials. It is defined as the ratio of the amplitude of the reflected pressure wave to the
amplitude of incident pressure wave impinging on the reservoir bottom. The values of vary between 1 and -1 where
= 1 represents a nonabsorptive rigid boundary with 100 percent reflection, = 0 corresponds to a complete absorption
with no reflection, and = -1 characterizes 100 percent reflection from a free surface with an attendant phase reversal
(water surface). Recent field investigations have indicated that the average values of for the reservoir bottom
materials measured at several concrete damsites varied over a range from -0.55 to 0.66 (Ghanaat and Redpath 1995).
Three of the measured values were negative and the largest (0.66) was much less than 1.the value corresponding
to a rigid boundary. The results also showed that some sites had thick layers of soft and muddy sediments with
propagation velocities less than that of water, thus leading to negative values of , a situation never before considered
analytically. b. All hydrodynamic pressure terms (i.e., added mass, added damping, and added force) are affected
by the reservoir bottom absorption. Previous studies (Hall and Chopra 1980; Fenves and Chopra 1984b; Fok and
Chopra 1985) indicate that the reservoir bottom absorption increases the effective damping, hence reduces the dam
response to earthquake loading. The reduction of dam response due to reservoir bottom absorption, however, is much
larger for the response to vertical ground motion than to horizontal. Considering that the dam responses due to
the vertical and horizontal components of the ground motion are not usually in phase, the effect of reservoir bottom
absorption on the total response of the dam is less than that for the vertical ground motion.

1.4.3 Foundation Structure Interaction

Foundation-structure interaction introduces flexibility at the base of the structure and provides additional damping
mechanisms through material damping and radiation. The interaction with the flexible foundation affects the earth-
quake response of the structure by lengthening the period of vibration and increasing the effective damping of the
system. The increase in the damping arises from the energy radiation and material damping in the foundation region.
However, interaction with the flexible foundation also tends to reduce the structural damping that the structure would
have had in the case of a rigid foundation (Novak and El Hifnawy 1983). For lightly damped hydraulic structures
(less than 10 percent damping) the reduction in structural damping is usually more than compensated for by the
added damping of the flexible foundation. Such interaction effects introduce frequency-dependent interacting forces
at the structure-foundation interface, which are represented by the dynamic stiffness (or impedance) matrix for the
foundation rock region, as described previously.

1.4.3.1 Massless finite element foundation model

The effects of dam-foundation interaction can most simply be represented by including, in the finite element ideal-
ization, foundation rock or soil region above a rigid horizontal boundary. The response to the earthquake excitation
applied at the rigid base (bedrock) is then computed by the standard procedures. Such an approach, however, can
lead to enormous foundation models where similar materials extend to large depths and there is no obvious ”rigid”
boundary to select as a fixed base. Although the size of foundation model can be reduced by employing viscous or
transmitting boundaries to absorb the wave energy radiating away from the dam (Lysmer and Kuhlemeyer 1969),
such viscous boundaries are not standard features of the general-purpose structural analysis programs.

These difficulties can be overcome by employing a simplified massless foundation model, in which only the flexi-
bility of the foundation rock is considered while its inertia and damping effects are neglected. The size of a massless
foundation model need not be very large so long as it provides a reasonable estimate of the flexibility of the foun-
dation rock region. A foundation model that extends one dam height in the upstream, downstream, and downward
directions usually suffices in most cases. Unlike the homogeneous viscoelastic half plane model described previously,
this approach permits different rock properties to be assigned to different elements, so that the variation of rock
characteristics with depth can be considered. The massless foundation model also permits the earthquake motions
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recorded on the ground surface to be applied directly at the fixed boundaries of the foundation model. This is
because in the absence of wave propagation, the motions of the fixed boundaries are transmitted to the base of the
dam without any changes.

1.4.3.2 Viscoelastic foundation rock model

The stiffness and damping characteristics of foundation-structure interaction in a viscoelastic halfplane (2-D) or half
space (3-D) model are described by the impedance function. Mathematically, an impedance function is a matrix that
relates the forces (i.e., shear, thrust, and moment) at the base of the structure to the displacements and rotations of
the foundation relative to the free field. The terms in an impedance function are complex and frequency dependent
with the real component representing the stiffness and inertia of the foundation and the imaginary component
characterizing the radiation and material damping.

Viscoelastic half plane model. For sites where essentially similar rocks extend to large depths, the foundation
rock for 2D analyses may be idealized as a viscoelastic half plane. In other situations where soft or fractured rock
overlies harder rock at shallow depth, a finite element idealization (a above) that permits for material nonhomogeneity
and structural embedment would be more appropriate. In viscoelastic half plane idealization, foundation-structure
interaction is represented by a complex valued impedance or dynamic stiffness matrix (Sf ( ) in Equation 2-2).
Assuming that the structure is supported on a horizontal ground surface with homogeneous material properties, the
dynamic stiffness matrix Sf ( ) is evaluated using the approach by Dasgupta and Chopra (1979) or other approaches
that use boundary element and Green’s functions to analyze the problem (Wolf and Darbre 1984; Alarcon, Dominguez,
and Del Cano 1980).

Viscoelastic half space model. The foundation rock for 3-D analyses of concrete hydraulic structures supported
on essentially similar rocks with homogeneous material properties may be represented by viscoelastic half space.
Employed in the substructure method of analysis, the half space model leads to an impedance matrix for the founda-
tion rock region defined at the structure-foundation interface. A variety of boundary element methods using different
Green’s functions, finite element techniques in frequency domain using transmitting boundaries, finite element method
in time domain, infinite elements, and hybrid methods are available to compute impedance matrices for surface and
embedded foundations. Without certain simplifying assumptions, these techniques are computationally demanding
and are usually unsuitable for practical applications. One such assumption applied to the analysis of arch dams is to
assume that the dam is supported in an infinitely long canyon of arbitrary but uniform cross section and thus break
down the problem into a series of two-dimensional boundary problems (Zhang and Chopra 1991). In situations where
soft or fractured rock overlies harder rock at shallow depth, a finite element idealization accounting for the material
nonhomogeneity should be used.

1.5 Material properties

Concrete hydraulic structures are built using both plain and lightly reinforced forms of concrete construction and may
be supported by rock, soil, or pile foundations. Concrete condition, function, age, and properties for existing structures
and concrete mix and properties for new designs usually vary widely from structure to structure. These factors and
geotechnical information of the subsurface conditions have potentially significant influence on the seismic performance
of concrete hydraulic structures. It is essential that the time-history seismic evaluation effort conform to guidelines
for determination of material properties and assessment of physical condition described in other references. The
primary material properties relevant to time-history dynamic analysis are summarized in the following paragraphs.

1.5.1 Concrete properties

The primary material properties of interest in a concrete structure are those that affect prediction of the structural
response and those that are required for evaluation of the structural performance. The structural response is predicted
on the basis of unit weight and elastic properties of the concrete including modulus of elasticity and Poisson’s ratio.
Many laboratory and field measurements have shown that modulus of elasticity is affected by the rate of loading and
generally is higher for the dynamic than it is for the static loading. Under the sustained static loading conditions, the
effects of creep on the mass concrete may be important and generally can be considered by determining a sustained
modulus of elasticity taken as 60 to 70 percent of the laboratory value of the instantaneous modulus of elasticity.
For seismic analyses the measured or estimated dynamic modulus is more appropriate and should be used. In the
absence of measured data, dynamic modulus of elasticity should be obtained by increasing the laboratory value of
the instantaneous modulus by 20 to 30 percent. Compressive and tensile strengths of concrete are properties used
to evaluate acceptability of new designs or seismic performance of the existing structures. Like modulus of elasticity,
concrete strength parameters are also affected by the rate of loading. Seismic design and performance evaluation of
concrete hydraulic structures should therefore be based on the measured or estimated dynamic strength of concrete.
Other material properties such as shear strength of concrete, tensile and shear strengths of construction joints, yield
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strength and modulus of elasticity of reinforcing steel, and reinforcing steel bond strength and ductility may also be
required. In general tensile strength across the deteriorated or poorly constructed joints could significantly be lower
than that of the parent concrete. Determination of tensile and shear strengths across such joints may be warranted
under severe earthquake loading.

1.5.2 Foundation rock properties

Foundation rock properties for use in structural analyses include shear strength and rock mass modulus of deformation.
Procedures for estimating shear strength and modulus of deformation are described in Chapter 10 of EM 1110-2-2201.
Shear strength parameters provide a measure of shearing resistance to sliding at the structure-rock interface or within
the foundation and abutments, when potential sliding wedges or planes of rock that could cause instability have been
identified. The modulus of deformation is a measure of foundation deformations for the rock mass as a whole including
the effects of its discontinuities. In contrast, modulus of elasticity is determined for an intact specimen of the rock.

1.5.3 Reservoir bottom absorption

Studies of the dam-water interaction indicate that the earthquake response of concrete dams is sensitive to the water
energy loss at the reservoir boundaries. If the reservoir boundary materials are relatively soft, an important fraction
of the reservoir water energy can be absorbed, leading to a major reduction in the dynamic response of the dam.
An earthquake-generated hydrodynamic pressure wave impinging on the reservoir boundary is partly reflected in
the water, and partly refracted (absorbed) into the boundary materials. The energy loss or partial absorption at
the reservoir boundary is approximately represented by a reflection coefficient , which is the ratio of reflected to
incident wave amplitudes (Hall and Chopra, 1980; Fenves and Chopra 1984b). The reflection coefficient varies
between 1 and -1, where = 1 corresponds to a total reflection (nonabsorptive or rigid boundary), = 0 represents
a complete absorption or transmission into the boundary materials, and = -1 characterizes 100 percent reflection
from a boundary with an attendant phase reversal. The in situ values of for the seismic safety evaluation of concrete
dams can be measured using three independent approaches developed and employed at several dams in the United
States and abroad. These include the seismic reflection and refraction techniques (Ghanaat and Redpath 1995) and
a technique based on the acoustic reverberation (Ghanaat et al. 1999).

1.5.4 Damping

In practice, damping characteristics of typical structures are generally expressed in terms of equivalent viscous
damping ratios. The velocity-proportional viscous damping is commonly used because it leads to convenient forms
of equations of motion. The energy-loss mechanism for the viscous damping, however, depends on the frequency
of excitation, a phenomenon that has not been observed experimentally. As a result it is desirable to remove this
frequency dependency by using the so-called hysteretic form of damping. The hysteretic damping is defined as
a damping force proportional to the strain or deflection amplitudes but in phase with the velocity. The structural
response provided by hysteretic damping can be made identical to that with viscous damping if the hysteretic damping
factor is selected as

= 2 (1-1) where = hysteretic damping factor = viscous damping ratio = ratio of the excitation frequency
to the natural free-vibration frequency To remove the frequency dependency term from Equation 1-1, the value of
hysteretic damping is computed at resonance by setting = 1. The hysteretic damping computed in this manner
provides identical response to that of the viscous damping at the resonance and nearly identical response at all other
frequencies for ¡ 0.2.

Viscous damping is commonly used in the time-domain solution, whereas the hysteretic damping factor taken as
twice the viscous damping ratio is usually employed in the frequency domain solution. Linear time-history analysis
of concrete hydraulic structures should employ a damping equivalent to a 5 percent viscous damping ratio. However,
in situations where a moderate level of nonlinear behavior such as joint opening and cracking is predicted by a linear
analysis, a higher damping ratio in the range of 7 to 10 percent could be used to account somewhat for the energy
loss due to nonlinear behavior.

1.6 Numerical analysis procedures

Computation of earthquake response history for typical concrete hydraulic structures involves solution of coupled sets
of equations of motion that include large numbers of equations or degrees of freedom. In linear response analyses
the system equations of motion can be formulated either in the time domain or in the frequency domain. Only time
domain formulation is suited to analysis of nonlinear response. These formulations and the corresponding response
analysis procedures are described in Chapters 2 and 3, respectively. Following is a brief summary to provide a general
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idea of how these techniques are applied in the solution of the earthquake response behavior of concrete hydraulic
structures.

1.6.1 Analysis in the time domain

In practice, time-domain response analyses are generally based on some forms of step-by-step methods using numerical
integration procedures to satisfy the equations of motion. In all the step-by-step methods the loading and the response
history are divided into a sequence of time intervals or steps. The response during each step is computed from the
initial conditions (displacement and velocity) at the beginning of the step and from history of loading during the step.
The structural properties within each step are assumed to remain constant, but could vary from one step to another
(nonlinear behavior) or remain the same during all time-steps (linear behavior). The step-by-step methods may be
classified as explicit or implicit. In an explicit method, the new response values calculated in each step depend only on
the response quantities available at the beginning of the step. The analysis therefore proceeds directly from one step
to the next. In an implicit method, on the other hand, the new response values for a given step include one or more
values pertaining to the same step, so that trial values and successive iterations are necessary. The iteration within
a step makes implicit formulations inconvenient and in some cases even prohibitive. Only explicit methods such as
those described in Chapter 3 may be considered. The primary factors to be considered in selecting a step-by-step
method include efficiency, round-off and truncation errors, instability, phase shift or apparent change of frequency,
and artificial damping in accordance with Chapter 3.

(a) Mode superposition method. In linear response analysis, the mode superposition techniques can be used to
uncouple the system equations of motion, so that the dynamic response can be obtained separately for each mode
of vibration and then superimposed for all significant modes to obtain the total response. This way the step-by-step
integration discussed in (1) above is applied separately to a number of independent SDOF equations and then the
resulting modal response histories are superimposed to compute the total response of the structure. The main effort
in this method includes computation of eigenvalue problems followed by modal coordinate transformation to uncouple
the MDOF dynamic analysis to the solution of a series of SDOF systems. It is important to note that the equations
of motion will be uncoupled only if the damping can be represented by a mass proportional and stiffness proportional
damping matrix known as Rayleigh damping. The Rayleigh damping is suitable when the damping mechanism is
distributed rather uniformly throughout the structure.

(b) Direct step-by-step method. In this method, the step-by-step integration is applied directly to the original
equations of motion with no need for modal coordinate transformation to uncouple them. Thus there is no need to
obtain natural mode shapes and frequencies or to limit damping to the proportional type. The method can be used
for both the linear and nonlinear response analyses.

1.6.2 Analysis in the frequency domain

An alternative approach to solving the modal equations of motion for linear systems is to perform the analysis in
the frequency domain. In particular, when the equation of motion contains frequency-dependent parameters such as
foundation stiffness and damping, the frequency domain approach is much superior to the time domain approach.
In simple terms the frequency domain solution involves expressing the ground motion in terms of its harmonic
components; evaluating the response of the structure to each harmonic component; and superposing the harmonic
responses to obtain total structural response. In this process, the harmonic amplitudes of the ground motion in the
first step and superposition of harmonic responses in the third step are obtained using the Fast Fourier Transform
(FFT) algorithm.

1.7 Structural performance and damage criteria

Chapter 4 describes methodologies and procedures for evaluation of earthquake performance and qualitative estima-
tion of the probable level of damage using the results from linear time-history analyses. The overall process involves
describing the results in terms of the demand-capacity ratios, cumulative inelastic duration of excessive stresses or
forces, and spatial extent and distribution of high-stress or high-force regions, and then comparing them with a set
of acceptance criteria set forth for each type of structure. Another important factor in the evaluation process is
consideration of probable nonlinear mechanisms and modes of failure that might develop in a concrete hydraulic
structure. The damage in a particular structure is considered to be minor and the linear time-history analysis will
suffice if estimated level of damage meets the acceptance requirements established for that structure. Otherwise the
damage is considered to be severe, in which case a nonlinear time-history analysis would be required to estimate
damage more accurately.
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1.7.1 Gravity dams

The dam response to the MDE is considered to be within the linear elastic range of behavior if the computed stress
demand-capacity ratios are less than or equal to 1.0. The level of nonlinear response or cracking is considered
acceptable if demand-capacity ratios are less than 2, overstressed regions are limited to 15 percent of the dam surface
area, and the cumulative duration of stress excursions beyond the tensile strength of the concrete falls below the
performance curve shown in Figure 4-2.

1.7.2 Arch dams

The dam response to the MDE is considered to be nearly within the linear elastic range if the computed stress
demand-capacity ratios are less than or equal to 1.0. The dam is considered to exhibit nonlinear response in the form
of opening and closing of contraction joints and cracking of lift lines if the estimate demand-capacity ratios exceed
1.0. The amount of joint opening and cracking is considered acceptable if demand-capacity ratios are less than 2,
overstressed regions are limited to 20 percent of the dam surface area, and the cumulative inelastic duration falls
below the performance curve given in Figure 4-18.
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Chapter 2

CONSTITUTIVE MODEL FOR ALKALI AGGREGATE REACTIONS

This chapter will address the important problem of AAR in dams and how to model this phenomenon in a nonlinear
analysis. We will not address the multitude of tests which can be performed to assess the xxxxx

2.1 INTRODUCTION

As massive concrete structures are ageing, some of them are showing troublesome signs of structural degradation
preceded by excessive wrinkles in the form of random cracks. This internal degradation of concrete with time is
most often attributed to Alkali Aggregate Reactions (AAR) which is the cause of internal cracks similar to bone
osteoporosis. Hence, it is not surprising that only recently has this problem acquired major importance, as structures
built over twenty years ago were not properly screened to avoid the fatal combination of reactive aggregates with
cement.

AAR problems have been reported all over the world, and no country seems to be immune from this disease
(though structures in relatively colder climates have been slower to develop this reaction). Hence, much research has
been undertaken recently, and there is an explosion of publications related to AAR. Broadly speaking they can be
categorized in three types: a) Chemical reaction description; b) Effect on mechanical properties; and c) Symptoms
or effects on structures. What is missing is remedy. Unfortunately, there is not yet known proven remedy to this
slow evolving and irrevocable process, other than addressing the symptoms through cutting the structures to relieve
the build-up of compressive stresses. On the comforting side, there is strong indication that the reaction does not
proceed indefinitely, and that at some point all the reactive aggregates would have been consumed. Hence, structural
monitoring, and future expansion prevision are of paramount importance. This is crucial, as the internal stress
redistribution caused by the AAR (and possibly the cutting) may in turn cause major structural cracks which could
jeopardize the structural integrity.

Dams, by their very size, the role they play in modern society, and the damage which can be caused by even a
partial failure, are to be particularly monitored for AAR.

This report presents a literature survey on AAR. It is certainly not an exhaustive one, yet it attempts to present
the major findings that an Engineer confronted with AAR should be concerned with. To some extent, it reflects the
background, biases and opinions of its authors, yet it could constitute a first reading which could lead to other more
detailed work.

2.2 Chemical Reactions

Alkali Aggregate Reaction (AAR), which includes Alkali Silica Reaction (ASR) is the leading cause of dam concrete
deterioration. This slow evolving internal concrete damage is causing millions of dollars in damage worldwide, and
whereas there is no (economically) feasible method to stop the reaction, it can to some extent be mitigated. This
has been accomplished primarily through an expensive slicing of the dam to relieve the reaction induced compressive
stresses. Hence, given the need to plan this complex mitigation procedure, and keeping in mind that in some drastic
cases the dam may have to be decommissioned, there is an urgent need to provide the Engineering profession with
solid, sound and practical predictive tools for the dam structural response evolution.

Alkali-silica reaction (ASR) in concrete is a chemical reaction involving alkali cations and hydroxyl ions from
concrete pore solutions, and certain metastable or strained forms of silica present within aggregate particles. This
chemical reaction will produce ASR gel which swells with the absorption of moisture. Hence, in a simplified manner,
ASR can be described as a two-step reaction between alkalis (sodium and potassium) in concrete and silica reactive
aggregates. The first step is the chemical reaction between the reactive silica in the aggregate with the alkali present
in concrete to produce alkali-silica gel:

Reactive silica in aggregate + Alkali in concrete → Alkali-silica gel
xSiO2 yNa(K)OH Na(K)ySixOzaqueous

(2.1)

The second step is the expansion of the alkali-silica gel when it comes in contact with moisture:

Alkali-silica gel + Moisture →Expanded alkali-silica gel
Na(K)ySixOz aqueous H2O Na(K)ySixOz wH2O

(2.2)
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It is precisely this second reaction which causes the well known swelling of the concrete resulting in a major internal
stress redistribution inside the dam which manifests itself either through large compressive stresses, and/or more
dramatically through the formation of structural cracks or the sliding across critical joints. Hence the structural
integrity of the structure can certainly be seriously jeopardized by the pernicious and slow evolution of the reaction.

2.3 LITERATURE SURVEY

AAR was first identified by Stanton (1940) as a cause for concrete deterioration. Whereas there were few initial
related papers, and probably triggered by an ever increasing manifestation of the reaction in major structures, there
has been recently numerous investigations on AAR. In the context of the presented work, only few related work will
be examined. More information can be found in (Saouma and Xi 2004).

One of the most extensive and rigorous investigation of AAR has been conducted by Larive (1998) who tested more
than 600 specimens with various mixes, ambiental and mechanical conditions. Not only did the author conduct this
extensive experimental investigation, but a numerical model has also been proposed for the time expansion of the
concrete. In particular, a thermodynamical based model for the expansion evolution is developed, and then calibrated
with the experimental data, Fig. 2.1.
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where τl and τc are the latency and characteristic times respectively. The first corresponds to the inflexion point,
and the second is defined in terms of the intersection of the tangent at τL with the asymptotic unit value of ξ. In a
subsequent work, Ulm, Coussy, Kefei and Larive (2000) have shown the thermal dependency of those two coefficients:

τl(θ) = τl(θ0) exp
[
Ul

(
1
θ
− 1

θ0

)]
τc(θ) = τc(θ0) exp

[
Uc

(
1
θ
− 1

θ0

)] (2.4)

expressed in terms of the absolute temperature (θoK = 273 + T oC) and the corresponding activation energies. Ul

and Uc are the activation energies minimum energy required to trigger the reaction for the latency and characteristic
times respectively, and were determined (for Larive’s test) to be

Ul = 9, 400± 500K (2.5)

Uc = 5, 400± 500K (2.6)
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To the best of the authors knowledge, the only other tests for these values were performed by Scrivener (2005) who
obtained values within 20% of Larive’s, and dependency on types of aggregates and alkali content of the cement has
not been investigated. Hence, in the absence of other tests, those values can be reasonably considered as representative
of dam concrete also. The temperature dependance is highlighted by Fig. 2.2 where the expansion curve determined
in the laboratory at 38oC is compared with the corresponding one at a dam average temperature of 7oC
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Figure 2.2: Effect of Temperature on AAR Expansion

Beside temperature, other parameters strongly affecting AAR expansion are humidity and confining stresses.
Most recently, Multon (2004) tested AAR expansion under triaxial constraint. Axial traction was applied along

one direction of concrete cylinders constrained in the radial directions by steel cylinders. As reported first by Larive
(1998) (uniaxial confinement) and later confirmed by Multon, Leclainche, Bourdarot and Toutlemonde (2004) (for
triaxial confinement), there is strong evidence of an expansion transfer such that the total volumetric AAR induced
strain is almost constant irrespective of the confinement. In other word, the expansion is largest in the direction of
“least resistance”. In uniaxially or biaxially loaded cylinders, this results in substantially reduced expansion in the
loaded directions, and increased expansion in the unconstrained ones. On the other hand, under compressive triaxial
confinement, there is nearly equal expansion in all three directions, however the total volumetric expansion is slightly
reduced. Final, there are strong indications that high compressive hydrostatic stresses retard the reaction.

Accompanying AAR expansion, there is often a degradation in tensile strength and elastic modulus, (Swamy and
Al-Asali 1988). However, one should exercise some caution as the degradation observed in laboratory specimens is
often much higher than the one recorded in the field.

Whereas a good model for AAR should start with the gel induced pressure, this is a notoriously complex problem
(due to scale), and in that context the work of Struble and Diamond (1981a) and Struble and Diamond (1981b)
remains most pertinent.

Modelling of AAR expansion has been undertaken by various researchers. Broadly speaking, this modelling falls
into one of three categories:

Micro Models: in which aggregate and cement paste are separately modelled and the transport equation is used
to model gel formation through a two stage process, (Suwito, Jin, Xi and Meyer 2002) and (Lemarchand and
Dormieux 2000). While essential to properly understand the underlying phenomenon causing AAR, this level of
modelling, is of little relevance to structural analysis of AAR affected structures as emphasis is on the transport
equation for the reactants.

Meso Models: Where emphasis is on the determination of pessimum size effect, (Furusawa, Ohga and Uomoto 1994)
and (Bažant, Z.P and Steffens, A. 2000).
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Macro Models: Where one stay clears from the transport modelling, and emphasis is on a global numerical model for
the analysis of a structure. Some of the models fully decouple structural modelling from the reaction kinetics,
others couple those two effects (and some ignore all together the kinetics).

One of the earliest model is the one of Charlwood, Solymar and Curtis (1992) and Thompson, Charlwood,
Steele and Curtis (1994) who identified critical issues related to AAR, namely the stress dependency, that is
there is no AAR expansion under a compressive stress of around 8 MPa, and that the expansion is akin of a
thermal one. Subsequently more refined models have been proposed by Léger, Côte and Tinawi (1996) and
Huang and Pietruszczak (1999) which focus on the kinetics of the reaction, albeit through empirical models.
Models which address both the kinetics and the mechanical model of AAR have been proposed by Bournazel
and Moranville (1997), Capra and Bournazel (1998), Capra and Sellier (2003), Ulm et al. (2000) and Li and
Coussy (2002). It is worth noting that the kinetics model (built into a coupled thermo-chemo-mechanical one)
of Ulm et al. (2000) (based on the work of Larive (1998)) departs from other empirical models and is probably
the most scientifically correct one. It is the one adopted in this work. Bangert, D. and Meschken (2004) recently
proposed a coupled model applied to reinforced concrete, and finally, Farage, Alves and Fairbairn (2004) seems
to have finally bridged the gap between scientific rigor and practical applicability to real structures.

Numerous dams worldwide have suffered from AAR, in particular as reported by, Wagner and Newell (1995)
(Fontana dam, United States), Gilks and Curtis (2003) (Mactaquac dam, Canada), Shayan, Wark and Moulds (2000)
(Canning dam, Australia), (Peyras, Royet and Laleu 2003) (Chambon dam, France), Jabarooti and Golabtoonchi
(2003) (Iran), Bon, Chille, Masarati and Massaro (2001) (Pian Telessio dam, Italy), Portugese National Committee
on Large Dams (2003) (Pracana dam, Portugal), Malla and Wieland (1999) (a Swiss dam). A comprehensive list of
dams suffering from AAR can be found in (Acres 2004).

It is worth noting that dams built in general, dams built in (relatively) hot climate appear to suffer from AAR at
an earlier age than those built in high altitudes and colder temperatures. Furthermore, when dam rehabilitation did
occur it included one or more of the following: cutting (to relieve the compressive stresses, though accelerating the
expansion rate), post-tensioning, or placing an impermeable membrane (which benefits are not yet well proven).

2.4 MODEL

Two different aspects of mathematical modelling of ASR in concrete may be distinguished: 1) The kinetics of the
chemical reactions and diffusion processes involved, and 2) The mechanics of fracture that affects volume expansion
and causes loss of strength, with possible disintegration of the material, (Bažant, Z.P. and Zi, G. and Meyer, C. 2000).

The proposed model, (Saouma and Perotti 2004c) is driven by the following considerations:

1. AAR is a volumetric expansion, and as such can not be addressed individually along a principal direction
without due regard to what may occur along the other two orthogonal ones.

2. Kinetics component is taken from the work of Larive (1998) and Ulm et al. (2000).

3. AAR is sufficiently influenced by temperature to account its temporal variation in an analysis.

4. AAR expansion is constrained by compression, and is redirected in other less constrained principal direc-
tions.This will be accomplished by assigning ”weights” to each of the three principal directions.

5. Relatively high compressive or tensile stresses inhibit AAR expansion due to the formation of micro or macro
cracks which absorb the expanding gel.

6. High compressive hydrostatic stresses slow down the reaction.

7. Triaxial compressive state of stress reduces but does not eliminate expansion.

8. Accompanying AAR expansion is a reduction in tensile strength and elastic modulus.

Hence, the general (uncoupled) equation for the incremental free volumetric AAR strain is given by

ε̇AAR
V (t) = Γt(f

′
t|wc, σI |CODmax)Γc(σ, f

′
c)g(h)ξ̇(t, θ) ε

∞|θ=θ0
(2.7)

where COD is the crack opening displacement, ξ(t, θ) is a sigmoid curve expressing the volumetric expansion in time
as a function of temperature and is given by Eq. 2.3, ε∞ is the laboratory determined (or predicted) maximum free
volumetric expansion at the reference temperature θ0, Fig. 2.1.

The retardation effect of the hydrostatic compressive stress manifests itself through τl. Hence, Eq. 2.4 is expanded
as follows

τl(θ, θ0, Iσ, f
′
c) = f(Iσ, f

′
c)τl(θ0) exp

[
Ul

(
1

θ
− 1

θ0

)]
(2.8)
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where

f(Iσ, f
′
c) =

{
1 if Iσ ≥ 0.
1 + α Iσ

3f ′
c

if Iσ < 0.
(2.9)

and Iσ is the first invariant of the stress tensor, and f ′
c the compressive strength. Based on a careful analysis of

Multon (2004), it was determined that α = 4/3. It should be noted, that the stress dependency (through Iσ) of the
kinetic parameter τl makes the model a truly coupled one between the chemical and mechanical phases. Coupling
with the thermal component, is a loose one (hence a thermal analysis can be separately run),

0 < g(h) ≤ 1 is a reduction function to account for humidity given by

g(h) = hm (2.10)

where h is the relative humidity, (Capra and Bournazel 1998). However, one can reasonably assume that (contrarily
to bridges) inside a dam g(h) = 1 for all temperatures.

Γt(f
′
t|wc, σI |CODmax) accounts for AAR reduction due to tensile cracking (in which case gel is absorbed by macro-

cracks), Fig. 2.3. A hyperbolic decay, with a non-zero residual value is adopted, Fig. 2.4:

Figure 2.3: Stress Induced Cracks with Potential Gel Absorption, (Scrivener 2003)
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Figure 2.4: Graphical Representation of Γc and Γt
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No Γt =
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t

Γr + (1− Γr)γt
f ′
t
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if γtf

′
t < σI

Yes Γt =

{
1 if CODmax ≤ γtwc

Γr + (1− Γr)γt
wc

CODmax
if γtwc < CODmax

(2.11)

where γt is the fraction of the tensile strength beyond which gel is absorbed by the crack, Γr is a residual AAR
retention factor for AAR under tension. If an elastic model is used, then f ′

t is the the tensile strength, σI the
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maximum principal tensile stress. On the other hand, if a smeared crack model is adopted, then CODmax is the
maximum crack opening displacement at the current Gauss point, and wc the maximum crack opening displacement
in the tensile softening curve, (Wittmann, Rokugo, Brühwiler, E., Mihashi and Simonin 1988). Concrete pores being
seldom interconnected, and the gel viscosity relatively high, gel absorption by the pores is not explicitly accounted
for. Furthermore, gel absorption by the pores is accounted for by the kinetic equation through the latency time which
depends on concrete porosity. The higher the porosity, the larger the latency time.

Γc in turns accounts for the reduction in AAR volumetric expansion under compressive stresses (in which case gel
is absorbed by diffused micro-cracks), (Multon 2004):

Γc =

{
1 if σ ≤ 0. Tension

1− eβσ
1+(eβ−1.)σ

if σ > 0. Compression
(2.12)

σ =
σI + σII + σIII

3f ′
c

(2.13)

Whereas this expression will also reduce expansion under uniaxial or biaxial confinement, Fig. 2.4, these conditions
are more directly accounted for below through the assignment of weights.

The third major premise of the model, is that the volumetric AAR strain must be redistributed to the three
principal directions according to their relative propensity for expansion on the basis of a weight which is a function
of the respective stresses. Whereas the determination of the weight is relatively straightforward for triaxial AAR
expansion under uniaxial confinement (for which some experimental data is available), it is more problematic for
biaxially or triaxially confined concrete.

Given principal stress vector defined by σk, σl, σm, we need to assign a weight to each of those three principal
directions. These weights will control AAR volumetric expansion distribution. For instance, with reference to Fig.
2.5, we consider three scenarios.
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Figure 2.5: Weight of Volumetric AAR Redistribution in Selected Cases

Uniaxial State of stress, where we distinguish the following three cases:
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1. In the first case, we have uniaxial tension, and hence, the volumetric AAR strain is equally redistributed
in all three directions.

2. Under a compressive stress greater than the limiting one (σu), the weight in the corresponding (k) direction
should be less than one third. The remaining AAR has to be equally redistributed in the other two
directions.

3. If the compressive stress is lower than σu, than AAR expansion in the corresponding direction is prevented
(weight equal zero), and thus the other two weights must be equal to one half.

Biaxial state of stress in which we have a compressive stress equal to σu in one of the three principal directions. In
this case, the corresponding weight will always be equal to zero. As to the possible three combinations:

1. Tension in one direction, equal weights of one half.

2. Compression greater than σu in one direction, then the corresponding weight must be less than one half,
and the remaining weight is assigned to the third direction.

3. Compression less to σu, then the corresponding weight is again zero, and a unit weight is assigned to the
third direction.

Triaxial state of stress in which we have σu acting on two of the three principle directions. We identify the following
five cases:

1. Tension along direction k, then all the expansion is along k.

2. Compressive stress greater than σu, then we have a triaxial state of compressive stress, and the corre-
sponding weight will be between one and one third. The remaining complement of the weight is equally
distributed in the other two directions.

3. Compression equal to σu, hence we have a perfect triaxial state of compressive stress. In this case we have
equal weights of one third. It should be noted that the overall expansion is reduced through Γc.

4. Compression less than σu but greater than the compressive strength. In this case, the weight along k
should be less than one third, and the remaining equally distributed along the other two directions.

5. Compression equal to the compressive strength. In this case, the corresponding weight is reduced to zero,
and the other two weights are equal to one half each.

Based on the preceding discussion, we generalize this weight allocation scheme along direction k as follows

1. Given σk, identify the quadrant encompassing σl and σm, Fig. 2.61. Weight will be determined through a
bilinear interpolation for those four neighboring nodes.

2. Determine the weights of the neighboring nodes from Table 2.2 through proper linear interpolation of σk.

3. Compute the weight from:

Wk(σk, σl, σm) =
∑4

i=1
Ni(σl, σm)Wi(σk) (2.14)

where Ni is the usual two bilinear shape function used in finite element and is given by

N(σl, σm) =
1

ab
� (a− σl)(b− σm) σl(b− σm) σlσm (a− σl)σm � (2.15)

W(k) = � W1(σk) W2(σk) W3(σk) W4(σk) �t (2.16)

a = (a1|a2|a3) b = (b1|b2|b3) (2.17)

σl = (σl|f ′
c − σl) σm = (σm|f ′

c − σm) (2.18)

The i − j stress space is decomposed into nine distinct regions, Fig. 2.6, where σu is the upper (signed)
compressive stress below which no AAR expansion can occur along the corresponding direction (except in
triaxially loaded cases). Hence, a and b are the dimensions of the quadrant inside which σi and σj reside.

1 Since compressive stresses are quite low compared to the compressive strength, we ignore the strength gained through the biaxiality
or triaxiality of the stress tensor (Kupfer and Gerstle 1973). Furthermore, the strength gain is only about 14% for equibiaxial
compressive stresses, (CEB 1983).
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Weights of the individual nodes are in turn interpolated according to the principal stress component in the third
direction σk, Table 2.2. It should be noted that those weights are for the most part based on the work of Larive
(1998) and Multon (2004), but in some cases due to lack of sufficient experimental data, based on simple “engineering
common sense”. A simple example for the evaluation of the weight is shown in the appendix.

Based on the earlier work of Struble and Diamond (1981a), in which it was reported that no gel expansion can
occur at pressures above 11 MPa (though for a synthetic gel), σu is taken as -10 MPa. This value was also confirmed
by Larive (1998). f ′

t and f ′
c are the concrete tensile and compressive strengths respectively.

Individual strain is given by

ε̇AAR
i =Wiε̇

AAR
V (2.19)

and the resulting relative weights are shown in Fig. 2.7.

Figure 2.7: Relative Weights

It should be noted that the proposed model will indeed result in an anisotropic AAR expansion. While not explicitly
expressed in tensorial form, the anisotropy stems from the different weights assigned to each of the three principal
directions.

This deterioration being time dependent, the following time dependent nonlinear model is considered, Fig. 2.8.

E(t, θ) = E0 [1− (1− βE) ξ(t, θ)] (2.20)

f ′
t(t, θ) = f ′

t,0 [1− (1− βf ) ξ(t, θ)] (2.21)

where E0 and f ′
t,0 are the original elastic modulus and tensile strength, βE and βf are the corresponding residual

fractional values when εAAR tends to ε∞AAR.
Finally, the possible decrease in compressive strength with AAR was ignored. Most of the literature dwelling on

the mechanical properties of concrete subjected to AAR show little evidence of a decrease in compressive strength
(as one would expect since the stresses will be essentially closing the AAR induced cracks). Furthermore, in dams
(gravity and arch) compressive stresses are well below the compressive strength, which is quite different from the
tensile stresses.
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Time (days) ε∞ Iterations
Characteristic Latency

Longitudinal Expansion

Initial 100.0 100.0 1.00e-03 -
Final 82.9 146.5 3.63e-03 8

Transversal Expansion

Initial 100.0 100.0 1.00e-03 -
Final 68.9 111.0 2.62e-3 7

Table 2.1: System Identification for Multon’s Tests

2.5 VALIDATION

Validation and parameter identification was accomplished by analyzing tests of Multon (2004). In those tests, 130
by 240 mm concrete was cast inside a steel cylinder with 3 or 5 mm thickness and subjected to 0, 10 or 20 MPa
compressive stress.

Fig. 2.9 shows the 3D finite element mesh adopted (in addition to an axisymmetric one) along with the results
of the parameter identification study under free expansion for τl, τc, and ε

∞. Starting and final parameters are also
shown in Table 2.1. Having determined this initial set of kinetic parameters, another parameter identifications for
the parameter β in Eq. 2.12 for the constrained specimens yielded a value of 0.5, Fig. 2.10.

Finally the parameter β was used in the subsequent dam analysis. Other kinetic parameters were determined
through laboratory experiments of concrete specimens recovered from the dam.

2.6 APPLICATION

2.6.1 Dam Analysis Data Preparation

Finally, a typical application to a 2D analysis of an arch gravity dam is presented. The model has been used in the 3D
nonlinear predictive analysis of an actual arch gravity dam, and it was shown that 50 years after dam construction,
the reaction will be exhausted, (Saouma and Perotti 2004b).

The comprehensive incremental AAR analysis of a concrete dam is relatively complex, irrespective of the selected
AAR model, as data preparation for the load can be cumbersome.

First the seasonal pool elevation variation (for both thermal and stress analysis), and the stress free temperature,
Tref (typically either the grouting temperature, or the average yearly temperature) must be identified, along with
the external temperature, Figs. 2.11.

Then, a transient thermal analysis is performed since the reaction is thermodynamically activated, and the total
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Figure 2.9: Multon’s Test Parameter Identification Results for Free Expansion; Longitudinal and Corresponding
Transversal Strains. Initial Curve corresponds to Initial Guess in System identification
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Figure 2.11: Yearly Variation of Hydrostatic and Thermal Load
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temperature is hence part of the constitutive model. Heat transfer by conduction only is accounted for. Convection
and radiation are approximated through an additional temperature, (Malla and Wieland 1999).

The selected incremental time was two weeks, and the initial reference temperature set to zero. Given the external
air temperature, the pool elevation, and the water temperature boundary conditions were set to this initial boundary
value problem. Analysis is performed with Merlin, and temperature fields examined. It was determined that after
four years the temperature field is harmonic with a one year frequency. At that point, the analysis is interrupted and
Tthermal(x, y, t) saved.

Following the thermal analysis, Tthermal(x, y, t) must be transferred to Tstress(x, y, t) as in general we do not have
the same finite element mesh (foundations, joints and cracks are typically not modelled in the thermal analysis).
Following this, a comprehensive input data file must be prepared for the stress analysis. It includes:

1. Gravity load (first increment only).

2. ΔṪ (x, y, t) = Ṫstress(x, y, t)−Tref in an incremental format. This is a delicate step which can not be overlooked.
In particular the stress analysis is based on the difference between actual and stress free temperature. In addition
an incremental analysis, requires this set of data to be given in an incremental form.

3. Stress free referenced temperature which will be added to the temperature data to determine the total absolute
temperature needed for AAR.

4. Cantilever and dam/foundation joint characteristics. The first must be accounted for in an arch dam, as the
expansion may lead to upstream joint opening. The second must be accounted for as the AAR induced swelling
may result in separation of the dam from the foundation in the central portion of the foundation.

5. Uplift load characteristics (typically in accordance with the upstream hydrostatic load).

6. AAR data as described above It should be noted that a first order approximation of the AAR kinetics pa-
rameters may be recovered from laboratory tests of dam cores or through an inverse analysis of the dam crest
displacement.

Finally, the assembled set of data must be looped over at least fifty years to provide a complete and correct set of
natural and essential boundary conditions. For a 2D problem, this will result in files approximately 45 MB.

2.6.2 Dam Analysis Results

For this preliminary plane strain analysis, a 2D central section of an arch gravity dam is selected. Results based on
the proposed model will be contrasted with those obtained using current State of the Practice model, (Charlwood
et al. 1992) with a linear kinetics expansion. In this analysis, creep is not accounted for, and the laboratory determined
Young’s modulus is retained throughout both analyses (Whereas Charlowood tends to substantially reduce E to
account for the creep, which in turn may yield potentially lower stresses.

In order to compare both analysis, final volumetric expansion has been calibrated to yield identical vertical crest
displacement after 50 years, Fig. 2.12, where the proposed model nonlinearity in the crest displacement is caused by
the kinetics model, and its latency time in particular. Despite equal final crest displacements, internal field stresses
are drastically different as those determined from Charlwood’s model are substantially lower than those predicted
by the proposed model, Fig. 2.13. It should be noted that the large discrepancy in stresses is, partially, caused by
the plane strain (which inhibits redistribution in the third direction) assumption of the authors model. However,
undoubtedly the lack of stress redistribution in Charlwood’s model will lead to an underestimation of the stress field.

Furthermore, due to the influence of the thermal load, the proposed model causes tensile stresses inside the concrete
dam, and a lift off along the central portion of the dam-foundation interface, Fig. 2.14. These internal tensile stresses
can possibly explain the formation of the crack observed inside the gallery in the analyzed dam. More details can be
found in (Saouma and Perotti 2004a).

Finally, no attempt is made to correlate computed crest displacements with the (available) field measurements.
The two-dimensional plane strain analysis conducted preclude such a realistic comparison which is performed in a
separate publication, (?). Furthermore, it should be noted that any model, irrespective of its scientific merits, can
be calibrated with field measurements. However, only those models solidly based on the chemistry, physics and
mechanics of AAR are likely to yield realistic stress field which is what ultimately Engineers worry about.

2.7 CONCLUSIONS

A new constitutive model for AAR expansion is presented.
This thermo-chemo-mechanical model is rooted in the chemistry (kinetic of the reaction), physics (crack gel ab-

sorption, effect of compression), and mechanics of concrete. The major premises of the model is the assumption of a
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Figure 2.14: Dam/Foundation Interface Joint Characteristics;Uplift; tangential and normal stresses; Crack sliding
and opening displacements along the joint.

volumetric expansion, redistribution on the basis of weights related to the stress tensor, and contrarily to previous
models the stress field affects reaction kinetics which is a slight modification of the model of Larive (1998).

The model has been used, in conjunction with a formal parameter identification paradigm, to analyze the three
dimensional tests of (Multon 2004). Detailed 2D analysis of an arch gravity dam is presented.

2.8 Appendices

2.8.1 Example of Weight Determination

A simple example for weight determination is shown here. Assuming that the principal stresses are given by
� σl σm σk � = � −5.0 −8.0 −5.0 � MPa, and that fc, f

′
t and σu are equal to -30.0, 2.0, and -10.0 MPa

respectively, we seek to determine Wk.
The stress tensors places us inside the quadrant defined by nodes 1-2-3-4 whose respective weights are equal to:

W1 = 1
2

(
1
3

)
= 1

6
, W2 = 1

2

(
1
2

)
= 1

4
, W3 = 1

3
+ 1

2

(
1.0 − 1

3

)
= 2

3
, and W4 = 1

2

(
1
2

)
= 1

4
a and b are both equal

to -10 MPa, and the “shape factors” will be N1 = 1
100

[(−10 + 5)(−10 + 8)] = 1
10
, N2 = 1

100
[−5(−10 + 8)] = 1

10
,

N3 = 1
100

[(−5)(−8)] = 4
10
, N4 = 1

100
[−8(−10 + 5)] = 4

10
, and finallyWk = 1

10
× 1

6
+ 1

10
× 1

4
+ 4

10
× 2

3
+ 4

10
× 1

4
= 0.40833

2.8.2 Derivation of Kinetics Relation

Following is the derivation of the kinetics law by Larive (1998).
For a closed isotropic and isothermal system under constant pressure, the free energy is defined as

Ψ(ε, θ0, ξ) =
1

2
KεV

2 − αKεVξ −A0ξ +
1

2
Lξ2 (2.22)

Next we derive the state equations, starting with the stress.

σ ≡ ∂Ψ

∂ε
⇒ σ = Kε−K αξ︸︷︷︸

εch

⇒ σ = K(ε− εch) (2.23)

hence K corresponds to the bulk modulus, and α to a coefficient of chemical expansion.
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Node Weights

No. σl σm σk ≥ 0 σk = σu σk = f ′
c

1 0. 0. 1/3 0. 0.
2 σu 0. 1/2 0. 0.
3 σu σu 1. 1/3 0.
4 0. σu 1/2 0. 0.
5 f ′

c 0. 1/2 0. 0.
6 f ′

c σu 1. 1/2 0.
7 f ′

c f ′
c 1. 1. 1/3

8 σu f ′
c 1. 1/2 0.

9 0. f ′
c 1/2 0. 0.

10 f ′
t f ′

c 1/2 0. 0.
11 f ′

t σu 1/2 0. 0.
12 f ′

t 0. 1/3 0. 0.
13 f ′

t f ′
t 1/3 0. 0.

14 0. f ′
t 1/3 0. 0.

15 σu f ′
t 1/2 0. 0.

16 f ′
c f ′

t 1/2 0. 0.

Table 2.2: Triaxial Weights

Next, we compute the thermodynamic force

F ≡ −∂Ψ
∂ξ
⇒ F ≡ A = A0 + αKε − Lξ (2.24)

where A is the affinity of the reaction and is assumed to be linearly proportional to the reaction velocity ξ̇. Since
there is ample experimental evidence that the reaction is thermodynamically activated, we consider Arrhenius law

A = kdexp

(
Ea

RT

)
ξ̇ (2.25)

which combined with the previous equation yields

A
α

=

(
σ +
A0

α

)
− κεch = ηε̇ch (2.26)

where κ = L
α2 − K, and η = kd

α2 exp
(

Ea
RT

)
This equation highlight the chemical-mechanical coupling present in an

AAR reaction. However, if σ 	 A0
α
, we can uncouple the two equations. Hence, for constant σ, and η, we obtain

ε =
σ

K
+ ε∞

(
1− exp

(
− t
τ

))
(2.27)

where

ε∞ =
σ

K
+
A0

ακ
(2.28)

τ =
η

κ
(2.29)

Next, assuming free expansion, we have the following relation

ε = εch = αξ
A = A0 − ακεch = αηε̇ch
ε∞ ≡ A0

ακ

η = kd
α2 exp

(
Ea
RT

)
⎫⎪⎪⎬⎪⎪⎭ ε∞ − εch = αλε̇ch (2.30)

The reaction rate must decrease as εch increases (based on laboratory experiments, and the fact that there is a limited
supply of reactive agents). Hence, η (and thus λ) must also decrease in terms of the chemical reaction strain εch, we
assume

λ(εch) =
a

b+ εch
(2.31)
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thus

ε∞ − εch = λ(εch)ε̇ch
λ(εch) =

a
b+εch

}
⇒ εch(t) =

1− e−
t

τcar

1 + ε∞
b
e
− t

τcar

ε∞ (2.32)

where

τcar ≡
a

b+ ε∞
(2.33)

Defining

τlat = τcar ln

(
ε∞

b

)
(2.34)

we finally obtain, Fig. 2.15.

εch(t) =
1− e−

t
τcar

1 + e
− t−τlat

τcar

ε∞ (2.35)

Note: this equation is a generalization of the well known sigmoid curve P = 1
1+e−t , which is the solution of the
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Figure 2.15: Expansion Curve

differential equation dP
dt

= kP (C − P ), where k is a proportionality constant, C is a carrying capacity, and expresses
the fact that a population growth is jointly proportional to the present population size and the amount by which
that size falls short of the carrying capacity.

In our problem, the “population” is the affinity of the reaction A.
Reexamining Eq. 2.35, the equation being thermodynamically activated, we can rewrite it as

ε(t) =
1− exp(−t/τcar(θ))

1 + exp(−t/τcar(θ) + τlat(θ)/τcar(θ))
ε∞ (2.36)

where θ is the absolute temperature. Hence, again, from Arrhenius law (Eq. 2.25) we can write

τ = AeU/θ (2.37)

where a positive exponent is given since θ ↗ ,τ ↘ hence, ln(τ ) = ln(A)+U
θ
or τ = τ0 exp

[
U
(

1
θ
− 1

θ0

)]
Thus,

τl = τl0 exp

[
Ul

(
1

θ
− 1

θ0

)]
(2.38)

τc = τc0 exp

[
Uc

(
1

θ
− 1

θ0

)]
(2.39)

Activation energies can then be obtained by determining the characteristic or latency time (τc, τl) for different
temperatures, and then plotting their log values in terms of the inverse of the absolute temperature, Fig. 2.16.
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Figure 2.16: Determination of the Activation Energies
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Chapter 3

PSEUDO-HYDRODYNAMIC FORCES

3.1 Westergaard

3.1.1 Static Analysis; Pseudo Hydrodynamic Forces

During an earthquake, the interaction between the gravity dam and the reservoir creates additional pressures on the
upstream face of the dam. These hydrodynamic pressures may be approximated by the Westergaard (1933) formula,
which uses a parabolic approximation for the additional pressures due to earthquake motion. Fig. 3.1 illustrates
the forces due to the total water pressures during an earthquake. Note that the hydrodynamic forces act in both

h
y

Hydrodynamic Hydrostatic

Figure 3.1: Hydrostatic and hydrodynamic forces during earthquake excitation

directions.
Westergaard defines the hydrodynamic pressure p and force q at depth y below the reservoir surface, with total

reservoir height h, as

p = Ceα
√
hy (3.1)

q =
2

3
Ceαy

√
hy (3.2)

where α measures the intensity of the earthquake by the relation a = αg, where a is the maximum horizontal
acceleration and g the acceleration of gravity. At the bottom of the reservoir, the maximum hydrodynamic pressure
po is

po = Ceαh (3.3)

and the total resultant force, qo is

qo =
2

3
Ceαh

2 (3.4)

These parameters are illustrated in Fig. 3.2.
The coefficient Ce is a correction factor to account for water compressibility. ? define this parameter for both SI

and English units as

SI: Ce =
(
0.543
0.583

) (
7
8

) (
9.81kNm3

)
Cc = 7.99Cc Cc =

1√
1− 7.75

(
h

1000T

)2 (3.5-a)

English: Ce =
(
0.543
0.583

) (
7
8

) (
0.0624

kip
ft3

)
Cc = 0.051Cc Cc =

1√
1− 0.72

(
h

1000T

)2 (3.5-b)
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p ,qo o

p,q

h

y

Figure 3.2: Hydrodynamic water pressure and force

where T is the period to characterize the ground seismic acceleration imposed on the dam, in seconds. The SI
expression expects units of kilonewton, meter, and seconds, while the English expression uses kips, feet, and seconds.

If the upstream face of the dam is sloped, as in Fig. 3.3, a correction factor Kθ is applied to the p and q relations
in Eqs. 3.1 and 3.2. For an angle of slope θ from the vertical, the correction factor is simply Kθ = cos2 θ. The final

θ

Figure 3.3: Sloped upstream dam face - definition of θ angle

expressions for the hydrodynamic pressure and force are then

p = CeαKθ

√
hy [force/length2] (3.6)

q =
2

3
CeαKθy

√
hy [force/length] (3.7)

3.1.2 Dynamic Analysis; Added Masses

According to Westergaard (1933) one can visualize the dynamic action of water on the upstream face of a dam, by
thinking of a certain body of water in the reservoir as moving with the dam while the remainder of the reservoir
remains inactive, Fig. 3.4. Westergaard has shown that the shape of this body of water is parabolic, with the vertex
of the parabola located at the reservoir surface.

Fig. 3.4 shows the parabolic shape of the water that may be considered as contributing to the mass of the dam
during earthquake excitation. In the figure, h is the reservoir depth, y is the distance from the reservoir surface to a
point under the water, and b is the distance from the dam face to the parabola at the depth y. Westergaard states
that at the depth y, the corresponding added mass per unit area of the upstream face of the dam is

γlump =
bρw
g

(3.8)
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h

y

b

Figure 3.4: Westergaard’s Added Mass concept

where ρw is the weight per unit volume of water, and g is the acceleration of gravity. b is defined as

b =
p

αρw
(3.9)

where p is the hydrodynamic pressure of the dam (Eq. 3.6), and α is the ratio measuring the intensity of the
earthquake (a fraction of g). This hydrodynamic pressure (which also assumes a parabolic distribution on the dam
face) is defined by

p = Cα
√
hy (3.10)

where C is a constant defined by

C =
K√

1− 16ρwh2

gkT2

(3.11)

where K is a constant defined by Westergaard as K = 51 lb/ft3 (8,011.4 N/m3), k is the elastic modulus of water,
and T is the period of ground horizontal vibration.

Combining these relations and canceling when possible results in the final relation to determine the lumped mass
per unit area of the upstream dam face due to dynamic action of the water on the dam

γlump =
K
√
hy

g

1√
1− 16ρwh2

gkT2

(3.12)

It should be noted that in his original paper, Westergaard did go through an additional simplification of the
preceding equation (removing the dependency on T ) yielding:

γlump =
7

8
ρw
√
hy (3.13)

which is most often referenced in the literature, yet it is less exact than Eq. 3.12.
The following Matlab code highlights the difference between those two equations.
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%==== Westergaard

clear all
clc
figure (1)
clf
figure (2)
clf
figure (3)
clf
%==== Water data
w=9.8E3;
k=2.068E9;

g=9.8;

K=8011.4;
%==== Approximate formula
hh=100;
yy=[0:1:hh];
TT=8;
west_app1=7*w*sqrt(hh*(hh-yy))/(8*g);
mm=K*sqrt(hh*(hh-yy))*(1/sqrt(1-16*w*hh^2/(g*k*TT^2)))/g;
figure (1)
plot(west_app1,yy,’green’)
hold on
plot(mm,yy,’red’)
%==== C formula

T=[0.3:0.1:2]’;
h=sqrt(g*k*T.^2/(16*w));
s=size(T);
s=s(1,1);

for i=1:s
y=[0:1:100]’;
ss=size(y);
ss=ss(1,1);
for j=1:ss

m(i,j)=K*sqrt(y(ss)*(y(ss)-y(j)))*(1/sqrt(1-16*w*y(ss)^2/(g*k*T(i)^2)))/g;
TT(i,j)=T(i);
west_app(i,j)=7*w*sqrt(y(ss)*(y(ss)-y(j)))/(8*g);

end
M(i)=m(i,ss-1);
W(i)=west_app(i,ss-1);
figure (2)
hold on
plot3(m(i,:),TT(i,:),y,’red’)
plot3(west_app(i,:),TT(i,:),y,’green’)

xlabel(’added mass (kg)’)
ylabel(’Period T’)
zlabel(’Elevation’)
legend(’Kumo’,’Westergaard Approximation’)
grid

end
%hold on
%plot3(zeros(s),T,h,’blue’)
figure (3)
plot(M,T,’red’)
hold on
plot(W,T,’green’)
legend(’Kumo’,’Westergaard Approximation’)
xlabel(’Added mass’)
ylabel(’T’)
title(’h constant, added mass at the bottom of the dam’)
grid

3.2 Zangar

Using an electric analog, Fig. 3.5, Zangar (1953) determined experimentally the hydrodynamic effect of horizontal
earthquake action on dams having upstream faces with either constant or compound slopes.

The pressure is given by

PHyd = Cαwh (3.14)

where PHyd is the increase in pressure (F/L2 or M/LT 2), α is the intensity of the horizontal earthquake (a/g), w is
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Figure 3.5: Electric Analog Tray Model used by Zangar (1953)

the mass density of water (M/L3), h (L) is the height of the water reservoir, and C is a coefficient given by

C =
Cm

2

[
y

h

(
2− y

h

)
+

√
y

h

(
2− y

h

)]
(3.15)

and Cm is the maximum value of C given by Fig. 3.6.
Finally, the lumped mass will be given by

γlump =
Cαwh

αg
(3.16)

Fig. 3.7 shows the comparison between experimental and empirical curves.
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Figure 3.6: Increase Pressure Coefficients for Constant Sloping Faces (Zangar 1953)

Figure 3.7: Pressure Coefficient Distribution Comparison of Experimental and Empirical Curves (Zangar 1953)
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Chapter 4

NEARLY INCOMPRESSIBLE ELEMENTS

4.1 Consequences of Material Incompressibility

From elasticity we have the following fundamental relations

εV =
dV

V
= εxx + εyy + εzz (4.1)

B =
E

3(1− 2ν)
(4.2)

p = −BεV = −σxx + σyy + σzz

3
(4.3)

The stress strain relation is given by

σij = λuk,k + 2Gε′ij (4.4)

where ε′ij is the deviatoric strain

ε′ij = εij −
εV
3
δij (4.5)

As ν approaches 0.5,resistance to volume change greatly increases assuming that the shear resistance remains
constant

B

G
=

2(1 + ν)

3(1− 2ν)
(4.6)

also since

λ =
2νG

1− 2ν
(4.7)

it is clear that that as ν approaches 0.5, the stress becomes unbounded and we need to use an alternative formulation

σij = −BεV︸ ︷︷ ︸
−p

δij + 2Gε′ij (4.8)

and now p becomes part of the solution as an additional unknown leading to a mixed formulation.
Table 4.1 gives the elastic properties of water an other engineering materials. It should be noted that shear

Material E ν G B
GPa GPa GPa

Steel 207 0.25 82.8 138
Concrete 27.6 0.20 11.5 15.3
Water 0 0.50 0 2.1

“Water” 6.0 ×10−4 0.49995 2.1×10−4 2.1

Table 4.1: Elastic Properties of Steel, Concrete and Water, (Aslam et al. 2002)

modulus is zero, however under dynamic loading viscosity and boundary layer effects allow fluids to resist shear
(Aslam et al. 2002).
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4.2 Displacement Based Formulation

The stiffness matrix is given by

K =

∫
Ω

BTDBdΩ (4.9)

in terms of G and B, the constitutive matrix is given by

D = B

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

DB

+G

⎡⎢⎢⎢⎢⎢⎢⎣

4/3 −2/3 −2/3 0 0 0
−2/3 4/3 −2/3 0 0 0
−2/3 −2/3 4/3 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

DG

(4.10)

where the first term corresponds to the volumetric state, and the second to the deviatoric one. Hence, we can rewrite

K = B

∫
Ω

BTDBBdΩ +G

∫
Ω

BTDGBdΩ (4.11)

or

(GKG +BKB)u = p (4.12)

as ν approaches 0.5, the bulk modulus B approaches infinity, and therefore BKB acts as a penalty matrix that
enforces the constraint of incompressibility, we will have numerical problems, and finally the mesh “locks” unless KB

is singular.
KB is made singular by reducing the order of numerical quadrature employed to evaluate KB below that “normal”

used.
Hence a selective reduced numerical integration is performed, regular one for KG, and reduced for KB .
Note: Because the linear triangular element uses a one point numerical integration scheme, it can not be used for

fluid element.
Finally, we can have a viscous damping matrix C

C =

∫
Ω

BTDGBμdΩ (4.13)

where μ is the dynamic coefficient of viscosity.
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Chapter 5

FOUNDATION MODELLING

5.1 Wave Equation

Considering an infinitesimal element at rest, with elastic modulus E, and mass density ρ, we
we seek to determine the governing differential equation under dynamic condition.

1. Thinking in terms of equilibrium of forces, it is more appealing to invoke D’Alembert’s principle of dynamic
equilibrium rather than Newton’s second law of motion. This principle is based on the notion of a fictitious
inertia force, equal to the product of mass times acceleration and acting in a direction opposite to the
acceleration. Hence, the element force equilibrium requirements of a typical differential element are, using
d’Alembert’s principle. which states that with inertia forces included, a system is in equilibrium at each time
instant.

∂σxx

∂x
dx− ρ∂

2ux

∂t2
dx = 0 (5.1)

Since σxx = λεxx = λ ∂u
∂x

, substituting, we obtain

∂2u

∂t2
− V 2

p
∂2ux

∂x2
= 0 (5.2)

where Vp =
√

λ
ρ

The solution of this equation, for harmonic wave propagation in the positive x-direction, is

u(t, x) = U

[
sin(ωt− ωx

Vp
) + cos(ωt− ωx

Vp
)

]
(5.3)

where ω is the arbitrary frequency of the harmonic motion. The velocity, ∂u
∂t

of a particle at location x is

u̇(t, x) = Uω

[
cos(ωt− ωx

Vp
)− sin(ωt− ωx

Vp
)

]
(5.4)

and the strain in the x direction is

ε(x, t) =
∂u

∂x
= − u̇(x, t)

Vp
(5.5)

The corresponding stress is now

σ(x, t) = λε(x, t) = −Vpρu̇(x, t) (5.6)

Thus the compressive stress is equal to the force on a viscous damper with constant damping coefficient equal to Vpρ
per unit area of boundary.

It can be easily shown that the shear wave radiation boundary condition parallel to a free boundary, is satisfied if
damping value is equal to Vsρ.

x

2
t

u
ρ

dx

x
dx+ σ

x
σ

x

σ
x

Figure 5.1: Infinitesimal Element Subjected to Elastic Wave
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5.2 Viscous Boundary Conditions; Lysmer Model

When modelling a dynamic problem involving soil structure interaction, particular attention must be given to the
soil boundary conditions. Ideally, infinite boundary conditions should be surrounding the excited zone, Fig. 5.2.
Propagation of energy will occur from the interior to the exterior region. Since the exterior region is nonreflecting,
it absorbs all the incoming energy. Yet, in a finite element analysis, we are constrained into applying finite size
boundaries for the foundations. Those boundaries in turn will reflect the elastic waves which is contrary to the
physics of the problem.

σ ρ=a   V w
P

.

ρ
.

τ =b   V u
S

σ ρ=a   V w
P

.

ρ
.

τ =b   V u
S
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Figure 5.2: Elastic Waves in an Infinite Medium

Lysmer and Kuhlemeyer (1969) was the first to investigate this problem, and he proposed a model through which
the boundary of a finite element mesh is surrounding by (energy absorbent) dashpots where

σ = aρVP ẇ (5.7-a)

τ = bρVSu̇ (5.7-b)

where σ and τ are the normal and shear stresses respectively; ẇ and u̇ are the normal and tangential velocities; ρ
is the mass density; VS and VP are the shear and pressure waves respectively given by

VS =

√
G

ρ
(5.8-a)

VP =
1

s
VS where s2 =

1− 2ν

2(1− ν) (5.8-b)

where G and ν are the shear modulus and the Poisson ratio respectively.
The directions of the incident and reflected waves are related through Snell’s Law

cos β = s cosα (5.9)

Lysmer determined the ratio of the reflected energy to incident energy (of the P waves per unit time per unit area)
as

Er

Ei
= A2 + s

sinβ

sinα
B2 (5.10)

where a unit ratio corresponds to a perfect reflection (undesired), while a zero ratio corresponds to complete absorption
(desired). A similar equation was determined for S waves.

In both cases, it was found that a viscous boundary defined by a = b = 1 is: a) 95% effective in absorbing S waves;
and b) absorbs nearly all waves for α > 30o (some reflection occurs at smaller angles).

Hence, in general dashpots should be placed around the boundary, Fig. 5.3.

5.3 Finite Element Implementation

5.3.1 Passive/Rigid Boundary; Lysmer

In this first approach, we indeed assume the boundaries of the foudations to be rigid, and applying Lysmer’s model
we adopt the discretization shown in Fig. 5.4.

where the spring stiffnesses are set equal to

Kspring =
EA

h
(5.11)
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Figure 5.3: Dashpot Boundary Conditions
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Figure 5.4: Foundation Model, Radiating Fixed Foundation
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Figure 5.5: Equivalent Spring Stiffness
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where E is the Young’s modulus of the foundation, A the tributary area of the node connected to the spring, and h
is a representative equivalent depth of the foundation, Fig. 5.5.

The analysis proceeds as follows:

1. Perform static analysis with all the body forces and hydrostatic one.

2. Through a restart, initiate a dynamic analysis form the preceding static one. We again apply all the loads for
each time increment, in addition to the ground acceleration in the horizontal direction.

Kumo/Merlin are set up to greatly facilitate this analysis in both 2D and 3D.

5.3.1.1 Modeling

Apply excitation on red nodes; Fix the blue nodes in the x and y directions; 
MUST have two dashpots in the bottom IDE

Blue dashpot: P wave
Red Dashpot: S wave

Apply excitation on red nodes; Fix the blue nodes in the x and y directions; 
MUST have two dashpots in the bottom IDE

Blue dashpot: P wave
Red Dashpot: S wave

Figure 5.6: Lysmer Modeling, 2D, Modeling for Lateral and Vertical Excitation

5.3.1.2 Reservoir Model

5.3.2 Active/Flexible Boundary; Miura

Recognizing that in practice we do not have a rigid support for the foundation, but rather a flexible one, we need to
account for this added variability, Fig. 5.10.

The methodology here adopted here is based on the work of (Miura and Toki 1987).
The governing equation for a dam foundation system in an infinite flexible medium is given by

[M] {ẍ}+ ([C] + [CB] + [CL] + [CR]) {ẋ}+ [K] {x}
= {f}+ [CL] {ẋL}+ [CR] {ẋR}+ [GCL] {ẋL}+ [GCR] {ẋR}+ [GL] {xL}+ [GR] {xR} (5.12)

This equation can be rewritten as

⎡
⎢⎢⎣

MII MIB MIL MIR
MBI MBB MBL MBR
MLI MLB MLL 0

MRI MRB 0 MRR

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ẍ
ẍB
ẍL
ẍR

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣

CII CIB CIL CIR
CBI CBB CBL CBR
CLI CLB CLL 0

CRI CRB 0 CRR

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ẋ
ẋB
ẋL
ẋR

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣

KII KIB KIL KIR
KBI KBB KBL KBR
KLI KLB KLL 0

KRI KRB 0 KRR

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

x
xB
xL
xR

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

f
fB
fL
fR

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣

0
0

CLL + GCL
CRR + GCR

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ẋI
ẋB
ẋL
ẋR

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣

0
0

GL
GR

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

x
xB
xL
xR

⎫⎪⎪⎬
⎪⎪⎭

where [M] is the mass matrix, [C] damping matrix, [K] stiffness matrix and subscripts I,B, L, R refer to interior,
bottom, left and right nodes; {x} , {ẋ} , {ẍ} are the nodal displacements, velocities and accelerations.

Merlin Theory Manual



5.3 Finite Element Implementation 67

Apply horizontal excitation on red nodes (bottom of IDE);
direction. Fix the blue nodes in the x and y directions; 

Lateral Excitation; Im
Kumo; worki

Blue dashpot: P wave
Red Dashpot: S wave

Figure 5.7: Lysmer Modeling, 2D, Modeling for Lateral Excitation

Apply horizontal excitation on red nodes (bottom of IDE); fix red nodes in the y direction. Fix 
the blue nodes in the x and y directions; No need to fix internal nodes if there is a vertical 
dashpot.

Blue dashpot: P wave
Red Dashpot: S wave

Figure 5.8: Lysmer Modeling, 2D, Alternative Modeling for Lateral Excitation
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dx viscous boundary condition in direction x.
dy viscous boundary condition in direction y.

dx: damp pressure wave
dy: damp shear wave

dx: damp pressure wave
dy: damp shear wave

ux=0
dy: damp shear wave

WATER
ELEMENT

ux=0; uy=0 (Static analysis)
uy=0;          (Dynamic analysis)

dx: damp shear wave

I erased this node from the boundary 
conditions list in the input file. Any node 
of the rock has to be free in x direction.

Figure 5.9: Reservoir Model Boundary Conditions
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Figure 5.10: Foundation Model, Radiating Flexible Foundation
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[CB ] is Lysmer (dashpot) viscous boundary conditions at the bottom (tuned to shear wave for lateral excitation
and to pressure waves for vertical excitation.

[CB ] =
ρL

2

⎡⎢⎢⎣
VH 0 0 0
0 VV 0 0
0 0 VH 0
0 0 0 VV

⎤⎥⎥⎦ (5.13-a)

{
VH = VS cos θ + VP sin θ
VV = VP cos θ + VS sin θ

(5.13-b)

[CL], [CR] are Lysmer (dashpot) left and right boundary conditions, tuned to pressure wave for lateral excitation and
shear waves for vertical excitation. [GL], [GR] are the boundary stiffness matrices associated with the displacement
of the free field.

[G] =
1

2

⎡⎢⎢⎣
0 −λ 0 λ
−μ 0 μ 0
0 −λ 0 λ
−μ 0 μ0

⎤⎥⎥⎦ (5.14)

where λ and μ are the Lame parameters, λ = νE
(1−2ν)(1+ν)

= K− 2
3
G, and μ = E

2(1+ν)
= G. For symmetric foundation

(xL = −xR) we can ignore this term. [GCL], [GCR] are the boundary damping matrices associated with the free
field. Their effect do also cancel out for symmetric cases.

Hence, for symmetric boundary conditions, we can ignore [GR], [GL], [GCR], [GCL],xR,xL, and the resulting
governing partial differential equation to be solved is reduced to:

[M] {ẍ}+ ([C] + [Cb] + [CL] + [CR]) {ẋ}+ [K] {x} = {f}+ [CL] {ẋL}+ [CR] {ẋR} (5.15)

or
⎡
⎢⎢⎣

MII MIB MIL MIR
MBI MBB MBL MBR
MLI MLB MLL 0

MRI MRB 0 MRR

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ẍ
ẍB
ẍL
ẍR

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣

CII CIB CIL CIR
CBI CBB CBL CBR
CLI CLB CLL 0

CRI CRB 0 CRR

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ẋ
ẋB
ẋL
ẋR

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣

KII KIB KIL KIR
KBI KBB KBL KBR
KLI KLB KLL 0

KRI KRB 0 KRR

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

x
xB
xL
xR

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

f
fB
fL
fR

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣

0
0

CLL
CRR

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ẋI
ẋB
ẋL
ẋR

⎫⎪⎪⎬
⎪⎪⎭

In order to solve this equation, we still need some quantities on the right hand side of the equation, namely ẋL and
ẋR. These can be obtained from two separate (one if we take advantage of symmetry) analyses of the free field which
can be discretized as shown in Fig. 5.11. We note the vertical restraint for lateral excitation, and the lateral restraint

Figure 5.11: Finite Element Discretization of the free field

for vertical excitation in order to respect the far field boundary conditions. Thus the governing differential equations
for these analyses are

[ML] {ẍL?}+ [CL] {ẋL?}+ [KL] {xL?} = {fL�} (5.16-a)

[MR] {ẍR?}+ [CR] {ẋR?}+ [KR] {xR?} = {fR�} (5.16-b)

from which we solve for ẋL and ẋR.
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Blue dashpot: P wave 
Red Dashpot: S wave 

Seismic Excitation (Lateral and Vertical) 

{ } { },R Rx x�  

 
{ } { },L Lx x�  

2D (plane Strain) model 
equivalent to 1D model 
(Shear truss) 

Figure 5.12: Finite Element Discretization of Dam Foundation in Account of Free Field Velocities

Once the free field velocities have been obtained, they can in turn be used in the full 2D analysis of the dam/foun-
dation discretization shown in 5.12.

⎡
⎢⎢⎣

MII MIB MIL MIR
MBI MBB MBL MBR
MLI MLB MLL 0

MRI MRB 0 MRR

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ẍ?
ẍB?
ẍL?
ẍR?

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣

CII CIB CIL CIR
CBI CBB CBL CBR
CLI CLB CLL 0

CRI CRB 0 CRR

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ẋ?
ẋB?
ẋL?
ẋR?

⎫⎪⎪⎬
⎪⎪⎭
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⎤
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⎧⎪⎪⎨
⎪⎪⎩
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xB?
xL?
xR?

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

f�
fB�
fL�
fR�

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣

0
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CLL
CRR

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ẋI
ẋB?
ẋL�
ẋR�

⎫⎪⎪⎬
⎪⎪⎭

5.3.2.1 Finite Element Implementation
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Figure 5.13: Finite Element Discretization of the free field
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Figure 5.14: Finite Element Discretization of the Corner free field
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Figure 5.15: Finite Element Discretization of the Side free field
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Figure 5.16: Finite Element Discretization of the Side free field, X Acceleration
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Figure 5.17: Finite Element Discretization of the Side free field, Y Acceleration
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Figure 5.18: Finite Element Discretization of the Side free field, Z Accelreation
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Figure 5.19: Finite Element Discretization of the free field; Transfer of Velocities
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Figure 5.20: Finite Element Discretization of the free field; Rock Foundation
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Figure 5.21: Finite Element Discretization of the free field; Outline of Procedure
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Chapter 6

DECONVOLUTION

6.1 Introduction

Seismic events originate through tectonic slips and elastic waves (p and s) traveling through rock/soil foundation up
to the surface. Hence, the seismographs (usually installed at the foot of the dam) record only the manifestation of
the event.

On the other hand, modelling the foundation is essential for proper and comprehensive analysis of the dam, and
as such the seismic excitation will have to be applied at the base of the foundation.

However, Fig. 6.1, if we were to apply at the base the accelerogram recorded on the surface I(t), the output signal
A(t) at the surface will be different than the one originally recorded (unless we have rigid foundation).

Hence, the accelerogram recorded on the surface must be deconvoluted into a new one I ′(t), such that when the
new signal is applied at the base of the foundation, the computed signal at the dam base matches the one recorded
by the accelerogram.

6.2 Fourrier Transform

Fourrier transforms enables us to transfer a signal from the time domain to the frequency domain.
Hence, the FFT takes us from the time domain to the frequency domain through the following eqaution:

X(ω) =

∞∫
−∞

x(t)e−i2πωtdt (6.1)

x(t)
FFT−→ X(ω) (6.2)

while the inverse FFT takes us back from the frequency domain to the time domain through:

x(t) =

∞∫
−∞

X(ω)ei2πωtdω (6.3)

X(ω)
FFT−1

−→ x(t) (6.4)

i(t)

a(t)

E, ν

Figure 6.1: Deconvolution
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Figure 6.2: Low Pass (25); High Pass (50); Band Pass (25-50); Band Stop (25-50) Filters, N = 4

6.3 Butterworth Filter

Spider has the following filters implemented in its Deconvolution feature, Fig. 6.2-6.3.

|H(jω)|2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Low pass 1

1+
(

ω
ωL

)2n

High pass 1

1+(ωU
ω )2n

Band pass 1

1+
(

ω
ωL

)2n
1

1+( omegaU
ω )2n

Band stop 1

1+(ωL
ω )2n

1

1+
(

omega
ωU

)2n

(6.5)

where ω, ωL, ωU and n are the frequency, the lower and upper filter frequency, and the order of the filter respectively.

6.4 Transfer Function

In dynamic event, we can define an input record i(t) which is amplified by h(t) resulting in an output signal o(t), Fig.
6.4. Similarly, the operation can be defined in the frequency domain. This output to input relationship is of major
importance in many disciplines.

The transfer function is the Laplace transform of the output divided by the Laplace transform of the input.
Hence, in 1D, we can determine the transfer function as follows:

1. i(t)
FFT−→ I(ω)

2. o(t)
FFT−→ O(ω)

3. Transfer Function is TFI−O = O(ω)/I(ω)

6.5 Deconvolution

6.5.1 1-D

Extending our discussion one step further, we introduce the concept of deconvolution which addresses the dilemma
posed above, and will now require one (or more) finite element analyses.
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Figure 6.3: Low Pass (25) Filter; N = 2, 4 6, 8, 10, 12
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Figure 6.4: Transfer Function
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a’(t)

i(t)
i’(t)=a’(t)

Numerical Model
Physical Model

a(t)

Figure 6.5: Deconvolution

With reference to Fig. 6.5

1. We record the earthquake induced acceleration on the surface a′(t). and apply it as i′(t) at the base of the
foundation.

2. Perform a transient finite element analysis.

3. Determine the surface acceleration a(t) (which is obviously different from i(t).

4. Compute:

i′(t) FFT−→ I ′(ω) = A′(ω) (6.6-a)

a(t)
FFT−→ A(ω) (6.6-b)

5. Compute transfer function from base to surface as TFI′−A = A(ω)/I ′(ω).

6. Compute the inverse transfer function TF−1
I′−A.

7. Determine the updated excitation record in the frequency domain

I(ω) = TF−1
I′−AA

′(ω) =
I ′(ω)
A(ω)

A′(ω) (6.6-c)

8. Determine the updated excitation in the time domain

i(t)
FFT−1

−→ I(ω) (6.6-d)

6.5.2 3-D

In 3-D applications, the transfer function is a 3x3 matrix, each row corresponds to the response to an excitation in
a given direction, and each column corresponds to the response in a given direction. Hence, three separate analysis
must be performed � I ′x I ′y I ′z � and for each excitation, we must determine the three components of the surface
acceleration. Then we will compute the 3D transfer function:

[TF ] =

⎡⎣ TFxx TFxy TFxz

TFyx TFyy TFyz

TFzx TFzy TFzz

⎤⎦
︸ ︷︷ ︸

TFI′−A

=

⎡⎢⎢⎣
Axx(ω)
I′x(ω)

Axy(ω)

I′x(ω)
Axz(ω)
I′x(ω)

Ayx(ω)

I′y(ω)

Ayy(ω)

I′y(ω)

Ayz(ω)

I′y(ω)

Azx(ω)
I′z(ω)

Azy(ω)

I′z(ω)
Azz(ω)
I′z(ω)

⎤⎥⎥⎦ (6.5)

Hence, the excitation to be applied in the frequency domain is given by:⎧⎨⎩
Ix(ω)
Iy(ω)
Iz(ω)

⎫⎬⎭ = [TF ]−1

⎧⎨⎩
A′

x(ω)
A′

y(ω)
A′

z(ω)

⎫⎬⎭ (6.6)
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Figure 6.6: Finite Element Mesh Example for Deconvolution

while in the time domain it is⎧⎨⎩
Ix(ω)
Iy(ω)
Iz(ω)

⎫⎬⎭ FFT−1

−→

⎧⎨⎩
Ix(t)
Iy(t)
Iz(t)

⎫⎬⎭ (6.7)

6.5.2.1 Simplification

The preceding 3D generalized procedure can be simplified if we were to ignore the off diagonal terms

[TF ] =

⎡⎣ TFxx 0 0
0 TFyy 0
0 0 TFzz

⎤⎦ =

⎡⎢⎢⎣
Axx(ω)
I′x(ω)

0 0

0
Ayy(ω)

I′y(ω)
0

0 0 Azz(ω)
I′z(ω)

⎤⎥⎥⎦ (6.8)

which will greatly simplify the inversion of the transfer function.⎧⎨⎩
Ix(ω)
Iy(ω)
Iz(ω)

⎫⎬⎭ = [TFI′−A]
−1

⎧⎨⎩
A′

x(ω)
A′

y(ω)
A′

z(ω)

⎫⎬⎭ (6.9)

⎧⎨⎩
Ix(ω)
Iy(ω)
Iz(ω)

⎫⎬⎭ FFT−1

−→

⎧⎨⎩
Ix(t)
Iy(t)
Iz(t)

⎫⎬⎭ (6.10)

6.5.3 Example

Considering the dam model shown in Fig. 6.6 The recorded ground excitation (at the base of the dam) is first
applied at the base of the foundation and analyzed, Fig. 6.7 The Transfer functions and their inverse are shown
in Fig. 6.9 The deconvoluted signals are then computed, Fig. ?? The Input signal and the deconvoluted ones are
then compared, Fig. ?? Finally, we reanalyze the dam subjected to the deconvoluted signal, and we compare the
computed accelerations at the base of the dam with those recorded, Fig. 6.11.
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Figure 6.9: Deconvoluted Signals
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Figure 6.10: Comparison between Original and Deconvoluted Signals
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Figure 6.11: Results of Deconvolution Analysis
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Chapter 7

HU-WASHIZU; MIXED ITERATIVE METHODS

7.1 Multifield Variational Principles

A Multifield variational principle is one that has more than one master field (or state variable), that is more than
one unknown field is subject to independent variations. In linear elastostatics, we can have displacement, u, strains
ε, or stress σ as potential candidates for master fields. Hence seven combinations are possible, (Felippa 2000), Table
7.1.

7.2 General Hu-Washizu Variational Principle

Adapted from (Reich 1993)

The Hu-Washizu (HW) variational principle is a three-field variational principle in which the displacements,
strains, and stresses are treated as independent fields (as opposed to only the displacement in the total potential
energy principle). Naturally, the two additional field variables, with respect to the TPE variational principle, appear
not only in the functional, but also in the discretized system of equations. Consequently, for a domain with a given
discretization the discrete system of equations derived from the HW variational principle will be much larger than
the discrete system of equations derived from the TPE variational principle. With the increased number of equations,
significant improvements in accuracy can be observed for the solution obtained from the discrete form of the HW
variational principle compared to the solution obtained from the discrete form of the TPE variational principle for the
same discretization. This means that coarse discretizations can be used with the discrete form of the HW variational
principle to obtain the same degree of accuracy that would be observed with much finer discretizations using the
TPE variational principle. The functional for the HW variational principle is derived from the functional for the TPE
variational principle by imposing the strain-displacement equation as a finite subsidiary condition using the method
of Lagrange multipliers. The finite subsidiary condition or constraint is written in residual form as

Lu− ε = 0 (7.1)

and enforced in an average sense over the entire body Ω. By imposing the strain-displacement equation as a constraint
C0 continuous strains and stresses are obtained in the discrete form of the varitional statements, as opposed to the
discontiuous strains and stresses obtained in the discrete form of the varitional statement for the TPE variational
principle. The constrained functional is written as

ΠHW = ΠTPE +

∫
Ω

λT (Lu− ε) dΩ (7.2)

Where λ is the Lagrange multiplier and to be consistent with the integrals in the TPE functional (i.e. Equation
??) the Lagrange multiplier must have the units of stress. Since this is the case, σ will be used for the Lagrange

u ε σ Name

Single Field

Y Total Potential Energy
Y Total Complementary Potential Energy

Y No name

Two Fields

Y Y Hellinger-Reissner
Y Y de Veubeke

Y Y No name

Three Fields

Y Y Y Hu-Washizu

Table 7.1: Functionals in Linear Elasticity
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multiplier instead of the more typical λ such that the physical meaning of the Lagrange multiplier is more apparent.
The functional for the HW variational principle thus becomes

ΠHW =
1

2

∫
Ω

εTD ε dΩ−
∫
Ω

εTD ε0 dΩ +

∫
Ω

εTσ0 dΩ︸ ︷︷ ︸
U

−
∫
Ω

uTb dΩ−
∫
Γt

uT t̂dΓ︸ ︷︷ ︸
−We

+

∫
Ω

σT (Lu − ε) dΩ︸ ︷︷ ︸
Constraint

(7.3)

A variational statement is obtained by taking the first variation of the functional and setting this scalar quantity
equal to zero. The first variation of the HW functional, with terms arranged according to which field variable is
varied, is

δΠHW =

∫
Ω

δ(Lu)Tσ dΩ−
∫

Ω

δuTb dΩ−
∫

Γt

δuT t̂dΓ

+

∫
Ω

δεTD ε dΩ−
∫

Ω

δεTD ε0 dΩ +

∫
Ω

δεTσ0 dΩ−
∫

Ω

δεTσ dΩ

+

∫
Ω

δσT (Lu− ε) dΩ = 0

(7.4)

Note that the 4th and 7th term were added and cancell each others, and that we are not using Eq. ?? in this
formulation. Since u, ε, and σ are independent field variables, terms involving δu, δε, and δσ must add up to
zero individually and are, therefore grouped together to form three separate variational statements (analogous to the
method of separation of variables in the solution of partial differential equations)∫

Ω

δ(Lu)Tσ dΩ−
∫
Ω

δuTb dΩ−
∫
Γt

δuT t̂dΓ = 0 (7.5-a)∫
Ω

δεT [D(ε − ε0) + σ0 − σ] dΩ = 0 (7.5-b)∫
Ω

δσT (Lu− ε) dΩ = 0 (7.5-c)

To obtain the corresponding Euler equations for the general form of the HW variational principle the volume
integral in Equation 7.5-a containing the variation of the strains δ(Lu) defined in terms of the displacements u must
be integrated by parts using Green’s theorem in order to obtain a form of the variational statement in terms of the
variation of the displacements δu. Integration by parts (Eq. ??) of this integral yields∫

Ω

δ(Lu)Tσ dΩ =

∮
Γ

δuTGσ dΓ−
∫
Ω

δuTLTσ dΩ (7.6)

where G is a transformation matrix containing the direction cosines for a unit normal vector such that the surface
tractions t are defined as t = Gσ and the surface integral is over the entire surface of the body Γ. Substituting
Equation 7.6 into Equation 7.5-a, the first variational statement becomes

−
∫
Ω

δuT (LTσ + b) dΩ +

∫
Γt

δuT (Gσ − t̂) dΓ = 0 (7.7)

Since δu is arbitrary the expressions in the integrands within the parentheses must both be equal to zero for the sum
of the integrals to be equal to zero. Likewise, δε and δσ are also arbitrary and the expressions within the braces in
the second variational statement (i.e. Equation 7.5-b) and within the parentheses in the third variational statement
(i.e. Equation 7.5-c) must both be equal to zero for the integral to be equal to zero. The Euler equations for the HW
functional are

(BE): Equilibrium LTσ + b = 0 on Ω
(CE): Stress-Strain D (ε − ε0) + σ0 − σ = 0 on Ω

(KE): Strain-Displacement Lu− ε = 0 on Ω

(NBC): Natural B.C. Gσ − t̂ = 0 on Γt

(7.8)

where the first Euler equation is the equilibrium equation; the second Euler equation is the stress-strain relationship;
the third Euler equation is the strain-displacement equation; and the fourth Euler equation defines the natural
boundary conditions. The natural boundary conditions are defined on Γt rather than Γ because both the applied
surface tractions t̂ and the matrix-vector product Gσ are identically zero outside Γt. Starting from the Euler
equations, it is possible to derive the HW functional by performing the operations just presented in reverse order.
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Figure 7.1: Tonti Diagram for Hu-Washizu, (Červenka, J. 1994)

This last set of four Euler equations, should be compared with the two (Eq. ?? and ??) obtained from the original
TPE. The additional two equations bring into play stress-strain and strain displacement. Also, whereas the original
formulation (Eq. ?? and ??) was in terms of the displacement only (u), the Hu-Washizu formulation is in terms of
three independent variables (u,σ and ε), Table 7.2.

TPE HW

Euler Equations

Equilibrium LTσ + b = 0 Ω Y Y
Stress-Strain D (ε − ε0) + σ0 − σ = 0 Ω N Y

Strain-Displacement Lu− ε = 0 Ω N Y

Natural B.C. Gσ − t̂ = 0 Γt Y Y

Variables

Displacement u Y Y
Strain ε N Y
Stress σ N Y

Table 7.2: Comparison Between Total Potential Energy and Hu-Washizu Formulations

The Tonti diagram for the HW is shown in Fig. ??.

7.3 Discretization of the Variational Statement for the HW Variational Principle

Adapted from (Reich 1993)

The discretization of the three variational statements defined in Equation ?? will be performed on an element
domain Ωe using the procedures described in Chapter 2 of (?) assembly of the discrete element equations into a
discrete global system of equations is straightforward and will be omitted from this discussion.

The surface of the element subjected to surface tractions Γt comprises one or more surfaces of the element boundary
Γe. For the present time this discussion will be kept on a very general level with no mention of the dimensionality of
the elements; the number of nodes defining the elements; or the nature of constitutive law.

The first step in the discretization process is to define the displacements u, strains ε, and stresses σ at a point
inside the element in terms of the shape functions Nu, Nε, and Nσ, respectively, and the element nodal displacements
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ue, strains εe, and stresses σe

u = Nu ue

ε = Nε εe
σ = Nσ σe

(7.9)

We note that contrarily to the previous case (Eq. ??) we now have three discretizations (instead of just one). The
virtual displacements δu, virtual strains δε, and virtual stresses δσ at a point inside the element can also be defined
in terms of the shape functions Nu, Nε, and Nσ, respectively, and the nodal virtual displacements δue, virtual strains
δεe, and virtual stresses δσe for the element

δu = Nu δue (7.10-a)

δε = Nε δεe (7.10-b)

δσ = Nσ δσe (7.10-c)

We now need to discretize each one of the corresponding Euler equations:
In order to discretize the volume integral in the first variational statement (i.e. Equ. 7.5-a) defining the virtual

strain energy for the element, Equation 7.10-a is substituted into the virtual strain-displacement relationship (i.e.
Equation ??) to define the virtual strains δε at a point inside the element in terms of the nodal virtual displacements
δue

δ(Lu) = L δu = LNu δue (7.11)

Defining the discrete strain-displacement operator Bu as

Bu = LNu (7.12)

and substituting Equation 7.9 into the integrand, the virtual strain energy for an element is written as∫
Ωe

δ(Lu)Tσ dΩ = δuT
e

∫
Ωe

BT
uNσ dΩσe (7.13)

Defining an element operator matrix Fe as

FT
e =

∫
Ωe

BT
uNσ dΩ (7.14)

Equation 7.13 can be rewritten as∫
Ωe

δ(Lu)Tσ dΩ = δuT
e FT

e σe (7.15)

In order to discretize the volume integral defining the work done by the body forces and the surface integral defining
the work done by the surface tractions in the first variational statement (i.e. the first equation in Equation ??),
Equation 7.10-a is substituted into the integrands∫

Ωe

δuTb dΩ = δuT
e

∫
Ωe

NT
ub dΩ (7.16)

∫
Γt

δuT t̂ dΓ = δuT
e

∫
Γt

NT
u t̂dΓ (7.17)

Defining the applied force vector fe as

fe =

∫
Ωe

NT
ub dΩ +

∫
Γt

NT
u t̂ dΓ (7.18)

the sum of the internal and external virtual work is∫
Ωe

δuTb dΩ +

∫
Γt

δuT t̂dΓ = δuT
e fe (7.19)

Having defined the discretization of the various integrals in the first variational statement for the HW variational
principle (i.e. Equ. 7.5-a), it is now possible to define the discrete system of equations. Substituting Equations 7.15
and 7.19 into the variational statement and rearranging terms, the discretized Principle of Virtual Work is

δuT
e FT

e σe = δuT
e fe (7.20)
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where the left-hand side is the virtual strain energy and the right-hand side is the internal and external virtual work.
Since δue is an arbitrary (i.e. non-zero) vector appearing on both sides of Equation 7.20, the discrete system of
equations can be simplified into

FT
e σe = fe (7.21)

as the discrete system of equations for an element.
In order to discretize the second variational statement (i.e. Equ. 7.5-b), Equations 7.9, 7.9, and 7.10-b are

substituted into the integrand∫
Ω

δεT [D(ε − ε0) + σ0 − σ] dΩ = δεTe

∫
Ωe

NT
ε DNε dΩ εe − δεTe

∫
Ωe

NT
ε D ε0 dΩ

+ δεTe

∫
Ωe

NT
ε σ0 dΩ − δεTe

∫
Ωe

NT
ε Nσ dΩ σe = 0 (7.22)

Defining a pair of element operator matrices Ae and Ce as

Ae =

∫
Ωe

NT
ε DNε dΩ (7.23)

Ce =

∫
Ωe

NT
ε Nσ dΩ (7.24)

and the initial strain/stress vector ge as

ge =

∫
Ωe

NT
ε D ε0 dΩ −

∫
Ωe

NT
ε σ0 dΩ (7.25)

Equation 7.22 can be rewritten as∫
Ω

δεT [D(ε − ε0) + σ0 − σ] dΩ = δεTe Ae εe − δεTe ge − δεTe Ce σe = 0 (7.26)

Since the nodal virtual strains δε are arbitrary they can be eliminated from Equation 7.26 yielding

Ae εe −Ce σe = ge (7.27)

as the discretized form of the second variational statement.
In order to discretize the third variational statement (i.e. Eq. 7.5-c), Equations 7.9, 7.9, and 7.10-c are substituted

into the integrand∫
Ωe

δσT (Lu − ε) dΩ = δσT
e

∫
Ωe

NT
σ Bu dΩue − δσT

e

∫
Ωe

NT
σ Nε dΩ εe = 0 (7.28)

Recognizing that∫
Ωe

NT
σBu dΩ = Fe (7.29)

∫
Ωe

NT
σ Nε dΩ = CT

e (7.30)

Equation 7.28 can be rewritten as∫
Ωe

δσT (Lu − ε) dΩ = δσT
e Fe ue − δσT

e CT
e εe = 0 (7.31)

Since the nodal virtual stresses δσe are arbitrary they can be eliminated from Equation 7.31 yielding

Fe ue − CT
e εe = 0 (7.32)
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as the discretized form of the third variational statement.
Having defined the discretized form of all three variational statements, it is now possible to define the discrete

mixed system of equations for an element. Assembling Equations 7.21, 7.27, and 7.32 in matrix form adopting the
classic arrangement for a constrained system of equations⎡⎣ Ae −Ce 0

−CT
e 0 Fe

0 FT
e 0

⎤⎦⎧⎨⎩
εe
σe

ue

⎫⎬⎭ =

⎧⎨⎩
ge

0
fe

⎫⎬⎭ (7.33)

yields a symmetric system of equations. Although ε is technically an intermediate variable in the field equations
indirectly relating σ to u, εe is the primary variable and σe to ue are constraint variables in Equation 7.33.

Since it would be computationally expensive to solve the system of equations in Eq. 7.33 using direct method, an
indirect or iterative procedure (i.e. Gauss-Seidel instead of Gauss-Jordan) is often selected, (?).

Step 1: uk+1
n = uk

n +K−1rkn
Step 2: εk+1

n = C−TFuk+1
n

Step 3: σk+1
n = C−1Aεk+1

n

Step 4: rk+1
n = f −FTσk+1

n

(7.34)

for k = 0, 1, 2, · · · , where k is an iteration index and rk+1
n is the residual force vector. It should be noted that this

procedure is solved on the structural level, meaning that steps 1 to 3 require a solution of a system of linear equations.
Step 1, K corresponds to the classical standard displacement stiffness matrix, and this step is used as a pre-

conditioner. This implies that at the beginning of the first iteration, when u0
n = 0 and r0n =, step corresponds

to the standard displacement-based formulation of the finite element method. Steps 1, 2, and 3 above require the
solution of simultaneous linear equations. Step 3, however, may be reduced by nodal quadrature and assuming same
interpolation functions for strains and stresses to

σi = Dεi (7.35)

In this equation, σi and εi are the stresses at node i, respectively, and D is the stress-strain constitutive matrix.
Then, Step 3 is nothing else but direct computation of nodal stresses from nodal strains using the constitutive matrix
D. Finally, the uniqueness and the existence of a solution has been addressed by the so-called Babuška-Brezzi (BB)
condition (Babuška 1973, Brezzi 1974). Details of the algotithmic implementation will be covered in a later chapter.

7.4 Element Formulation

Taken from (Červenka, J. 1994)

It is necessary to select appropriate interpolation functions for all three elastic fields (i.e. u, ε and σ). The choice
of these shape functions must be such that the BB condition is satisfied (Appendix ??). In this work, the same
interpolation functions are used for all three fields (i.e. displacements, strains and stresses), which implies that there
is a full number of unknowns in each node.

dim(un) = N × dim − R, dim(εn) = dim(σn) = N × dim(σ) (7.36)

where N denotes the number of nodes, dim is the problem dimension and R is the number of rigid body modes. In
Section 7.6, it will be shown that this formulation guarantees the satisfaction of the BB condition.

The polynomial orders of the field approximations are given in Table 7.3.

Table 7.3: Polynomial orders of the shape functions.

field 2D 3D
T3 T6 T4 T10

displacement u linear quadratic linear quadratic
strain ε linear quadratic linear quadratic
stress σ linear quadratic linear quadratic

In general case a variable x is interpolated over a finite element using the expression:

x =

Nen∑
i

Φixi (7.37)
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where Nen is the number of element nodes, Φi is an interpolation function associated with node i, and xi is the value
of variable x at element node i. For the linear triangular element (T3) the interpolation functions are:

Φi = li, i = 1, 2, 3 (7.38)

and for the six noded triangular element (T6) with three corner nodes and three mid-side nodes the interpolation
functions are:

Φi = li(2li − 1) i = 1, 2, 3, Φ4 = 4l1l2, Φ5 = 4l2l3, Φ6 = 4l3l1, (7.39)

where element nodes 1 to 3 indicate the element corner nodes and 4 to 6 are the mid-side nodes. Symbols li denote
the natural area coordinates of the element, which are related to the element natural coordinates ξ and η by relations:

l1 = ξ, l2 = η, l3 = 1− ξ − η (7.40)

For three-dimensional finite elements, the interpolation functions are similar. For the linear tetrahedron T4 element
they are:

Φi = li, i = 1, 2, 3, 4 (7.41)

and for the T10 element with four corner nodes and six mid-edge nodes they are defined analogically to the six noded
triangular T6 element as:

Φi = li(2li − 1), i = 1, 2, 3, 4, Φ5 = 4l1l2, Φ6 = 4l2l3,
Φ7 = 4l3l1, Φ8 = 4l1l4, Φ9 = 4l2l4, Φ10 = 4l3l4

(7.42)

Similarly to the two-dimensional elements, symbols li denotes the volumetric natural coordinates, which are again
related to the element natural coordinates by relations:

l1 = ξ, l2 = η, l3 = ζ, l4 = 1− ξ − η − ζ (7.43)

7.5 Strain Recovery

Taken from (Červenka, J. 1994)

In Equation ??, Step 2 is essentially an expression for the computation of nodal strains from nodal displacements.
It involves the inversion of a symmetric matrix CT , or in other words the solution of a system of linear simultaneous
equations. Three strain recovery techniques, described below, represent an attempt to avoid the direct solution of a
large linear system of equations in this step, as its assembly and factorization is computationally expensive.

Three algorithms are discussed and compared: (1) C-lumping (CL), (2) Strain smoothing (SS) and (3) C-splitting
(CS). The CL as the simplest algorithm, in which a lumped form of matrix C is constructed, and the inversion of the
resulting diagonal matrix is trivial. The other two algorithms are different iterative techniques to solve the system of
equations. Between them, the CS method is tailored for the fastest convergence for linear elements.

In the sequel, the MIM iteration index k is omitted as it focuses on faster solution techniques for the Step 2 only.

7.5.1 C-lumping.

The inversion of C for the C-lumping (CL) technique is simplified by forming a diagonalized C matrix. This lumped
C matrix 1 is evaluated by the following expression:

CL =

∫
V

(I Φ)dV (7.44)

where I is the identity matrix and Φ is the shape function matrix. Since identical shape functions are used for all
three primary fields, the subscript at Φ is no longer necessary. Replacing C by CL Step 2 of Equation ?? reduces to:

εn = C−1
L Eun (7.45)

At the element level, the lumped C matrix for the four node linear tetrahedron (T4) is:

Ce
L =

⎡⎢⎢⎣
5 0 0 0
0 5 0 0
0 0 5 0
0 0 0 5

⎤⎥⎥⎦ψ (7.46)

where ψ is a constant based on the element volume.
CL is by far the simplest strain recovery method since no iterations are required to compute the nodal strains.

However, the numerical experiments reported in Section ?? indicate that the displacement solution converges to an
erroneous value. Hence, the C-lumping technique is kinematically inconsistent.
1Note: The diagonalized matrix CL and the consistent matrix C described in Section 7.5.2 and 7.5.3 are determined in an analogous

way as the standard lumped and consistent mass matrices in dynamics. The only difference is the exclusion of the weight density
of the material which is replaced by unity.
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7.5.2 Strain smoothing.

Strain Smoothing (Zienkiewicz, Vilotte, Toyoshima and Nakazawa 1985) (SS) is an indirect procedure within Step 2
that avoids the direct decomposition of the C matrix. Nodal strains are iteratively evaluated until the ratio of the
Euclidean norms of strain correction to total strains satisfies a prescribed limit.

This technique exploits the diagonal matrix CL previously described and the consistent matrix C defined below.
Iteratively the nodal strains are evaluated by:

εj+1
n = εjn +C−1

L (Eun −Cεjn). (7.47)

where j = 0, 1, 2 . . . is the strain-iteration count. Note that this represents an internal iteration, not to be confused
with the MIM iteration of (??). The iteration process involves the nodal strains in the whole mesh since Step 2 is
equivalent to the least square fit of the nodal based strain field to the strain field derived from the displacement field
(?).

For a four noded linear tetrahedral element (T4), the consistent matrix C is given at the element level by:

Ce =

∫
Ve

ΦΦT dV =

⎡⎢⎢⎣
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

⎤⎥⎥⎦ψ (7.48)

where ψ is again a constant based on the element volume.
The correction of nodal strain Δεjn during one iteration is:

Δεjn = εj+1
n − εjn = A(ρ)Δεj−1

n , (j ≥ 1) (7.49)

where:

A(ρ) = I −C−1
L C (7.50)

where A(ρ) is a fixed amplification matrix having a spectral radius ρ = 4
5
. The spectral radius ρ is defined as the

largest eigenvalue of amplification matrix A(ρ). Since Equation 7.50 involves a product of C and inverse of CL, the
constants ψ are cancelled out. By Banach’s fixed point theorem (Haser and Sullivan 1991) it is necessary for the
spectral radius ρ to be less than 1 to ensure convergence of the iterative process given by Equation 7.47. Thus, this
value of the spectral radius indicates an error decay of 1

5
.

7.5.3 C-splitting.

A new iterative process was recently developed by (Červenka, Keating and Felippa 1993) to solve Step 2. This new
technique guarantees faster convergence for linear triangular and tetrahedral elements (T3 and T4). This technique
is referred to as C-splitting (CS). This method “splits” the consistent matrix C of Equation 7.48 into two matrices.
One matrix is diagonalized and the second is formed such that their algebraic sum is equivalent to the original C
matrix:

C = CD +CR (7.51)

where:

CD = α diag(C) CR = C − CD (7.52)

α is a “splitting” coefficient controlling the splitting of the matrix C. Using this method Step 2 in Equation ?? is
modified to:

εj+1
n = C−1

D (Eun −CRε
j
n). (7.53)

For the C-splitting method, the per-iteration strain correction is:

Δεjn = εj+1
n − εjn = A(ρ)Δεj−1

n , (j ≥ 1) (7.54)

where the amplification matrix A(ρ) is given by:

A(ρ) = −C−1
D CR, (7.55)
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Table 7.4: Table of α coefficients and spectral radii for CS technique.

Element type splitting coef. spectral radius
α ρ

three node linear triangle T3 5/4 3/5
four node
quadrilateral Q4 5/4 4/5
four node
tetrahedral element T4 3/2 2/3
eight node brick element B8 7/4 0.929

It is possible to select the coefficient α such that the spectral radius of the amplification matrix is minimal. For four-
node tetrahedron elements using α = 3

2
, which as shown below minimizes the spectral radius of the amplification

matrix, C splits at the element level into the following matrices:

Ce
D =

⎡⎢⎢⎣
3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3

⎤⎥⎥⎦ψ (7.56)

and

Ce
R =

⎡⎢⎢⎣
−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎤⎥⎥⎦ψ (7.57)

Then the spectral radius ρ is equal to 2
3
. Thus, CS has an error decay rate of 1

3
allowing for a faster convergence

than the SS method. For example, 10 steps of CS can be expected to reduce the initial strain errors by ( 2
3
)
10 ≈ 0.0173

whereas 10 steps of SS would reduce those errors by only ( 4
5
)
10 ≈ 0.1074.

This technique was investigated also for other low order element types. The best splitting coefficients α and
resulting spectral radii of the operator A(ρ) (Eq. 7.55) for other element types are summarized in Table 7.4. The
coefficients α for four node quadrilateral and eight node brick element are however valid only for elements with parallel
or almost parallel sides. Therefore, the (SS) technique would be probably more reliable for these element types.

7.6 Uniqueness and Existence of a Solution

The BB condition for uniqueness and existence of a solution of the three-field variational principle is stated in
Appendix ??. This condition was derived by (Babuška 1971), (Babuška 1973) and (Brezzi 1974). Xue and Atluri
(1985) extended the condition to a general three-field problem, and derived its discrete form. The continuous and
discrete forms of the BB conditions are again described in Appendix ??, and it is shown that they are equivalent to
the following three conditions:

rank(E) = nu ≤ nσ

rank(C) = nσ ≤ nε + nu

A is positive definite
(7.58)

where matrices E, C and A are derived in Appendix ?? and are given by the following integrals:

E =

∫
V

ΦBdV, C =

∫
V

ΦΦT dV, A =

∫
V

ΦDΦTdV (7.59)

The third condition is satisfied as long as the material does not exhibit softening. This is always guaranteed in the
discrete crack approach, since softening is modeled only along the interface elements which are not included in the
mixed iterative solution.

If identical shape functions are used for all three fields, then the number of unknowns for each field is given by
Equation 7.36, and the inequalities in the first and second condition of Equation 7.58 are always satisfied.

nu = N × dim − R ≤ nσ = N × dim(σ)
nσ = N × dim(σ) ≤ nε + nu = N × dim(σ) +N × dim − R

(7.60)
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We note that the rank condition of matrix C is also satisfied, as it is analogous to the consistent mass matrix of
isoparametric elements, which has always full rank, as can be seen from Equation 7.48.

More complex is the verification of the rank condition of matrix E. In Equation 7.59, E is given by the integral:

E =

∫
V

ΦB dV (7.61)

where matrix B is the matrix relating strains at a certain point to the nodal displacements and Φ is the matrix of
shape functions relating strains or stresses at a certain point to their nodal counterparts. Matrix E will have a rank
equal to nu if the following two conditions are satisfied.

∀un �= 0, ∃x ∈ V : B(x)un �= 0
∀εn, ∃ε(x) = ΦT (x)εn : ε(x) is unique

(7.62)

The first condition is equivalent to the requirement that a nonzero vector of nodal displacements must cause non-zero
strain field. It should be noted that the rigid body modes are excluded from vector un. They would be the only
modes allowed to produce a zero strain field. In this case, matrix B corresponds to that of a standard isoparametric
triangular or tetrahedral element, and will therefore satisfy this condition.

The second condition is also satisfied, since the shape functions in matrix Φ are those of a standard isoparametric
element, and the uniqueness of the interpolation is guaranteed.

For higher order triangular and tetrahedral elements (i.e. 6 noded triangle and 10 noded tetrahedron), it would
seem preferable to select interpolation functions for strains and stresses, which are one order lower than those for
the displacements. This would correspond to the mathematical relation between strains and displacements, since the
strains are determined by differentiation of the displacement field. For this formulation, there would be unknown
displacements, strains and stresses at each element corner node, but only displacement unknowns at the midside
element nodes. The strains and stresses would be interpolated using linear shape functions and displacement using
quadratic shape functions. Now, it is possible to show that this formulation would not guarantee the satisfaction of
the inequality in the first condition of Equation 7.58.

We consider a patch of two six-noded triangular element as shown in Figure 7.2. From the previous assumptions

σ, εu, 

u

Figure 7.2: Patch test.

of linear stress and strain interpolation and quadratic displacement interpolation, the unknown stresses and strains
are only at the element corner nodes, while all nodes have unknown displacements. The total number of stress and
displacement unknowns is then given by:

nu = 9× 2 − 3 = 15 > nσ = 4× 3 = 12 (7.63)

and clearly the important inequality nu ≤ nσ is not satisfied and the existence and uniqueness of a solution cannot
be guaranteed. This should be contrasted by the previous formulation, in which the same interpolation functions are
used for all three fields, and the satisfaction of the BB is guaranteed by Equation 7.60 and 7.62.
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Chapter 8

MATERIAL NONLINEARITIES

8.1 Introduction

8.1.1 Linearization

We define a constitutive operator as

σ = σ̃(ε) (8.1)

where σ̃ denotes the constitutive operator (analogous to the L).
Given a strain state ε̄, the corresponding stress will be σ̄ = σ̃(ε̃). The constitutive operator σ̃ can be expanded

into a Taylor series with respect to ε̄

σ̃(ε+ δε) = σ̃(ε) +
∂σ̃

∂ε

∣∣∣∣
ε=ε

δε+ · · · (8.2)

Neglecting quadratic and higher order terms leads to a linearized constitutive law

σ ≈ σ̃(ε) +D(ε)δε (8.3)

which approximates Eq. 8.1 for strains in the neighborhood of ε, and

D ≡ ∂σ̃

∂ε
(8.4)

is the tangent stiffness matrix which is a function of the current strain.
We rewrite Eq. ??, ?? and ?? in terms of the newly defined constitutive operator∫

Ωe

BT σ̃(Bu)dΩ︸ ︷︷ ︸
f
int

=

∫
Ωe

BTDε0dΩ−
∫
Ωt

BTσ0dΩ︸ ︷︷ ︸
f0e

+

∫
Ωe

NTbdΩ +

∫
Γt

NT t̂dΓ︸ ︷︷ ︸
fe︸ ︷︷ ︸

f
ext

(8.5)

or

f
int

(u) = f
ext (8.6)

We now develop a linearized expression for the internal forces. Given u as nodal displacements yielding strain field
ε = Bu, and the stress field σ = σ̃(ε) = σ̃(Bu). Then, the Taylor expansion of the internal forces around u yields

f
int

(u+Δu) = f
int

(u) +
∂f

int

∂u

∣∣∣∣∣
u=u

Δu+ · · · (8.7)

We again neglect the quadratic and higher order terms, leading to

f
int

(u+Δu) ≈ f
int

(u) +KT (u)Δu (8.8)

where

KT ≡
∂f

int

∂u
(8.9)

is the tangent stiffness matrix of the structure Differentiating Eq. 8.5

KT =
∂f

int

∂u
=

∂

∂u

∫
Ω

BT σ̃dΩ =

∫
Ω

BT ∂σ̃

∂u
dΩ =

∫
Ω

BT ∂σ̃

∂ε

∂ε

∂u
dΩ =

∫
Ω

BTDBdΩ (8.10)

which is the well known formula for the stiffness matrix, however Del is now replaced by the tangent moduli D
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8.1.2 Solution Strategies

Before we discuss solution strategies, it may be helpful to point out the parallelism which exists between (numerical)
solution strategies, and (experimental) testing methods. Modern testing equipment can be programmed to apply
a pre-determined rate of load (as measured by a load cell), of displacement (as measured by an internal displace-
ment transducer), or of strain (or relative displacement such as crack mouth opening displacement) measured by a
strain/clip gage or other instruments, Fig. 8.1
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���� ���� ���� ����

CMOD
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O
D

Actual
Programmed

Figure 8.1: Test Controls

Load Control: the cross-head applies an increasing load irrespective of the specimen deformation or response. For all
materials, when the tensile strength is reached, there is a sudden and abrupt brittle failure. The strain energy
accumulated in the specimen is suddenly released once the ultimate load of the specimen is reached, thus the
sudden failure can be explosive.

Displacement/Stroke Control: the cross-head applies an increasing displacement to the specimen. For softening
material there will be a post-peak response with a gradual decrease in stress accompanying an increase in
displacement. In this case, there is a gradual release of strain energy which is then transferred to surface energy
during crack formation.

Strain Control: is analogous to displacement control, except that the feedback is provided by (“strategically posi-
tioned”) strain gage or a clip gage or an arbitrary specimen deformation (not necessarily corresponding to the
loading direction). To accomplish this test a clip gage or a strain gage has to provide the feedback signal to the
testing equipment in order to accordingly adjust the stroke.

Similarly, the objective of a nonlinear finite element analysis is to trace the (nonlinear) response of a structure
subjected a given load history. This is best done in an incremental-iterative procedure where the load (or the
displacement) is applied through several increments, and within each increment we seek to satisfy equilibrium through
an iterative procedure (caused by the nonlinearity of the problem). The incremental analysis can be performed under

1. Load control; Load is incrementally applied on the structure.

2. Direct displacement control; An imposed displacement is applied.

3. Indirect displacement control (such as relative displacements between two degrees of freedom)

4. Arc-Length control

Alternatively, iterative techniques include

1. Newton-Raphson

2. Modified Newton-Raphson

3. Initial Stiffness

4. Secant Newton
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Finally, an essential ingredient of an incremental-iterative solution strategy are

1. Convergence Criteria

2. Convergence Accelerators (such as line-search or step-size adjustments).

8.2 Load Control

8.2.1 Newton-Raphson

For the sake of discussion, we will assume in the following sections that the incremental analysis is under load control,

with increments of loads Δf
ext

. At the end of each load increment, internal forces must be in equilibrium with the
external ones. Hence, we define the vector of residual forces R as

Rn+1 ≡ R(un+1) = f
int

(un+1)− f
ext

= 0 (8.11)

where f
int

is the vector of internal forces, also commonly known as reaction vector. For equilibrium to be satisfied,

the vector of reactions internal forces f
int

must be equal to the one of external ones f
ext

. This is automatically
satisfied in linear elastic analysis, but not necessarily so in nonlinear analyses. We start the analysis from an
equilibrium configuration, at the end of increment n such that

u = un, Rn = 0 (8.12)

and apply an increment of load Δf
ext
n such that

f
ext
n+1 = f

ext
n +Δf

ext
n (8.13)

and we seek to determine the corresponding change in displacement

un+1 = un +Δun (8.14)

We will keep Δf
ext
n reasonably small to capture the full nonlinear response.

8.2.1.1 Newton-Raphson/Tangent Stiffness Method

This is the most rapidly convergent process (albeit computationally expensive) of non-linear problems. At the
beginning of each step n + 1, we start from the displacement un that were computed in the previous step through

equilibrium Rn ≈ 0 or f
int
n ≈ f

ext
n . The external forces are now increased from f

ext
n to f

ext
n+1 = f

ext
n+1 + Δf

ext
, and

we seek to determine the corresponding displacements un+1 through equilibrium Rn+1 ≈ 0 or f
int
n+1 ≈ f

ext
n+1. Within

the current step (identified through the subscript n), we will be iterating (through superscript k) in order to achieve
equilibrium. As initial guess for u0

n+1 we take it to be un and based on the linearization around this initial state we
have

f int(u
0
n+1) +KT (u

0
n+1)Δu1

n+1 = f
ext
n+1 (8.15)

where Δu1
n+1 is the first approximation for the unknown displacement increment Δun+1 = un+1 − un.

Alternatively, we begin from a linearization of Eq. 8.11, Fig. 8.2

R(ui+1
n+1) ≈ R(ui

n+1) +

(
∂R
∂u

)i

n+1

δui
n = 0 (8.16)

where i is a counter starting from u1
n+1 = un. Observing that

∂R
∂u

=
∂f

int

∂u
= KT (8.17)

assuming that f
ext

is constant, and KT is the tangent stiffness matrix. Thus, Eq. 8.16 yields

Ki
T δu

i
n = −Ri

n+1 (8.18)

or

δui
n = −(Ki

T )
−1Ri

n+1 (8.19)
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Figure 8.2: Newton-Raphson Method

Thus, a series of successive approximations yields

ui+1
n+1 = un +Δui

n = ui
n+1 + δui

n (8.20)

with

Δui
n =

∑
k≤i

δuk
n (8.21)

very rapidly. It should be noted that each iteration involves three computationally expensive steps:

1. Evaluation of internal forces f
int

(or reactions)

2. Evaluation of the global tangent stiffness matrix KT

3. Solution of a system of linear equations

8.2.1.2 Modified Newton-Raphson

This method is essentially the same as the Newton-Raphson however in Eq. 8.23 (Ki
T ) is replaced by KT which is

the tangent stiffness matrix of the first iteration of either 1) the first increment KT = K1
T,0, Fig. 8.4, or 2) current

increment, Fig. 8.3 KT = K1
T,n Fig. 8.3

δui
n = −(KT )

−1Ri
n+1 (8.22)

In general the cpu time required for the extra iterations required by this method is less than the one saved by
the assembly and decomposition of the stiffness matrix for each iteration. It should be mentioned that the tangent
stiffness matrix does not necessarily have to be the true tangent stiffness matrix; an approximation of the true tangent
stiffness matrix or even the initial stiffness matrix will generally produce satisfactory results, albeit at the cost of
additional iterations.
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Figure 8.3: Modified Newton-Raphson Method, Initial Tangent in Increment
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Figure 8.4: Modified Newton-Raphson Method, Initial Problem Tangent
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8.2.1.3 Secant Newton

This method is a compromise between the first two. First we seek two displacements by two cycles of modified
Newton-Raphson, then a secant to the curve is established between those two points, and a step taken along it, Fig.
8.5.

δui
n = −(KT )

−1Ri
n+1

(8.23)
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Figure 8.5: Incremental Secant, Quasi-Newton Method

Subsequently, each step will be taken along a secant connecting the previous two points. Hence, starting with

δu1
n = −K−1

T R
1
n+1 (8.24)

the secant slope can be determined

(K2
S)

−1 = − δu1
n

(R1
n+1 −R

2
n+1)

(8.25)

and then

δu2
n = −(K2

S)
−1R2

n+1 (8.26)

This process can be generalized to

δui
n = −(Ki

S)
−1Ri

n+1

(Ki
S)

−1 = − δui
n

(Ri−1
n+1−Ri

n+1)

(8.27)

8.2.2 Acceleration of Convergence, Line Search Method

Adapted from (Reich 1993)

The line search is an iterative technique for automatically under- or over-relaxing the displacement corrections
δuj so as to accelerate the convergence of nonlinear solution algorithms. The amount of under- or over-relaxation
is determined by enforcing an orthogonality condition between the displacement corrections δuj and the residual

loads Rj+1
, which amounts to forcing the iterative change in energy to be zero. The displacement corrections are
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multiplied by a scalar value sk defining the amount of under- or over-relaxation such that the total displacements
uj+1,k are defined as

uj+1,k = uj + skδuj (8.28)

For k = 0 and k = 1, the values of sk are 0.0 and 1.0, respectively. Therefore, uj+1,0 = uj and uj+1,1 = uj+1. The
orthogonality condition is quantified by a scalar value gk representing the iterative change in energy, which is defined
as

gk = δuj · Rj+1,k
(8.29)

where

Rj+1,k
= f

ext − f
int

(uj+1,k) (8.30)

are the residual loads at the end of solution iteration j and line search iteration k. gk can be expressed as a function
of sk (see Figure 8.6) and the object of the line search is to find sk such that gk is zero. An estimate of sk+1 such
that gk+1 is zero can be computed using a simple extrapolation procedure based on similar triangles

sk+1

g0
=

sk

g0 − gk
(8.31)

On rearranging terms, sk+1 is defined as

sk+1 = sk
(

g0

g0 − gk

)
(8.32)

As a preventative measure, sk+1 is assigned a value of 5.0 for all sk+1 > 5.0 so that unrestrained over-relaxation is

inhibited. Once sk+1 is estimated, uj+1,k+1, f
int
j+1,k+1, and Rj+1,k+1 are computed for the next line search iteration,

Fig. 8.6. The line search terminates after three iterations or when

g

g0

g1

s1 s2
s

Figure 8.6: Schematic of Line Search, (Reich 1993)

| g0 |
| gk | ≤ 0.8 (8.33)

and g0 gk ≤ 0.001 | g0 |. Smaller tolerances may be used to determine if the line search has converged, ? prefer to
use 0.6, but Crisfield, M.A. (1979) concluded that there was little advantange to be gained by doing such.

The flowchart illustrating the Line Search algorithm is shown in Fig. 8.7.

8.2.3 Convergence Criteria

In all preceding methods, iterations are performed until one or all of a variety of convergence criteria are satisfied.
Relative convergence criteria are optionally enforced on the displacements, loads, and/or incremental energy to define
the termination conditions. The relative displacement criteria is defined in terms of the displacement corrections δuj

and the updated incremental displacements δuj+1 as

εu =
‖ δuj ‖2
‖ Δuj+1 ‖2

(8.34)
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Figure 8.7: Flowchart for Line Search Algorithm, (Reich 1993)

where ‖ . . . ‖2 is the Euclidean norm. The Euclidean norm, which is also known as the L2 norm, of a vector v is
defined as

‖ v ‖2=
[

N∑
i=1

v2i

]1/2

(8.35)

where N is the size of v. The relative load criteria is defined in terms of the updated residual loads Rj+1
and the

reactions f
int
j+1 as either

εr =
‖ Rj+1 ‖2
‖ f int

j+1 ‖2
(8.36)

or

εr =
‖ Rj+1 ‖∞
‖ f int

j+1 ‖∞
(8.37)

where ‖ . . . ‖∞ is the infinity norm. The infinity norm of a vector v is defined as

‖ v ‖∞ = max

(
N∑
i=1

|vi|
)

(8.38)

where N is the size of v. The relative incremental energy criteria is defined in terms of displacement corrections δuj ,

the updated residual loads Rj+1
, the updated incremental displacements Δuj+1, and the updated reactions f

int
j+1 as

εW =
δuj · Rj+1

Δuj+1 · f int
j+1

(8.39)

where the numerator is the change in the incremental energy for iteration j and denominator is the incremental
energy.
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8.3 Direct Displacement Control

Adapted from (Jirasek and Bažant 2001)

Independently of the choice of iterative algorithm, any solution strategy using load control fails if the prescribed
external loads cannot be maintained in equilibrium by the internal forces. This would typically occur if the load is
monotonically increased until the load-carrying capacity of the structure is exhausted, Fig. 8.8 In most engineering

u

fext

Figure 8.8: Divergence of Load-Controled Algorithms

analyses, it is simply required to determine the maximum load carrying capacity, and the corresponding displacements.
As such, divergence of the iterative process is often taken as an indicator of structural failure, and the last converged
step provides information on the state prior to collapse. However, finite element simulations of complex engineering
problems can diverge for a number of other reasons, many of which are purely numerical and have nothing to do with
the real structural failure.

If the load-displacement diagram is to be followed beyond the peak, i.e post-peak response is required, then
alternative solution strategy to the load-control one must be devised. Post-peak response may be of interest not only
in problems in structures with imposed displacements (such as initial settlements), but also to assess the ductility of
the structure (specially when cracks are present).

To outline the displacement controlled algorithm, we divide the displacements into two groups: one with unknown
displacements at nodes that are left “free”, and the second with prescribed displacements at nodes that are controlled.
Accordingly, we partition the displacement vector into {uf ,up}T and the internal and external force vectors into
{f int,f , f int,p}T and {f ext,f , f ext,p}T , respectively. External forces fext,f (corresponding to the unknown displacements
uf ) are prescribed, and for simplicity we will assume that they are equal to zero. All external forces acting on the
structure are represented by reactions fext,p at the supports with prescribed displacements up. Hence, the equilibrium
equations are partitioned as

f int,f (uf ,up) = 0 (8.40-a)

f int,p(uf ,up) = f ext,p (8.40-b)

For given up, the unknown displacements uf can be computed by solving Eq. 8.40-a. After that, the reactions
fext,p are obtained by simple evaluation of the left-hand side in (8.40-b).

In a typical incremental step number n, we start from the converged displacements u
(n−1)
f and u

(n−1)
p from the

previous step, and we replace Eq. 8.40-a by the linearized equations

f
(n−1)
f +K

(n−1)
11 Δu

(n,1)
f +K

(n−1)
12 Δu(n,1)

p = 0 (8.41)

where K11 ≡ ∂fint,f

∂uf
and K12 ≡ ∂ ∂fint,f

∂up
are blocks of the global tangent stiffness matrix

K ≡ ∂f int

∂u
=

⎡⎢⎢⎣
∂f int,f

∂uf

∂f int,f

∂up

∂f int,p

∂uf

∂f int,p

∂up

⎤⎥⎥⎦ =

[
K11 K12

K21 K22

]
(8.42)

The increment of the prescribed displacements up is known in advance, and so we set Δu
(n,1)
p = Δu

(n)
p = u

(n)
p −u(n−1)

p

and rewrite (8.41) as

K
(n−1)
11 Δu

(n,1)
f = −f (n−1)

int,f −K
(n−1)
12 Δu(n)

p
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Having solved for Δu
(n,1)
f , we construct the first approximation u

(n,1)
f = u

(n−1)
f + Δu

(n,1)
f and u

(n,1)
p = u

(n−1)
p +

Δu
(n,1)
p = u

(n)
p . Equations (8.40-a) are then linearized around (u

(n,1)
f ,u

(n,1)
p ), corrections of displacements uf are

computed, and the procedure is repeated until the convergence criteria are satisfied. The iterative process can be
described by recursive formulas

K
(n,i−1)
11 δu

(n,i)
f = −f (n,i−1)

int −K
(n,i−1)
12 δu

(n,i)
p

u
(n,i)
f = u

(n,i−1)
f + δu

(n,i)
f

}
i = 1, 2, 3, . . .

where

u
(n,0)
f = u

(n−1)
f (8.43-a)

u(n,0)
p = u(n−1)

p (8.43-b)

δu(n,1)
p = u(n)

p − u(n−1)
p (8.43-c)

δu(n,i)
p = 0 for i = 2, 3, . . . (8.43-d)

Note that, starting from the second iteration, the correction δup is zero, and so the term with K12 on the right-hand
side of (??) vanishes. This term is present only in the first iteration. It might seem that one could start immediately

from u
(n,0)
p = u

(n)
p instead of u

(n,0)
p = u

(n−1)
p , and then the correction δup would be zero already in the first iteration

and the matrix K12 would never have to be evaluated. However, this is in general not a good idea because such an
initial approximation would be too far from the equilibrium path and the process might diverge.

8.4 Indirect Displacement Control

Direct displacement control can be applied only on structures loaded only at one point, or when the load is transmitted
by a stiff platen so that all points on the loaded surface exhibit the same displacements. However, this is not always
the case. As an example, consider a dam loaded by hydrostatic pressure due to reservoir overflow; see Fig. 8.9. Here,

Figure 8.9: Hydrostatically Loaded Gravity Dam

the load is applied along a large portion of the boundary, and the shape of the corresponding displacement profile is
not known in advance. Another case in which direct displacement control fails is very brittle failure characterized by
a load-displacement diagram with a snapback, Fig. 8.10.

Advanced incrementation control techniques abandon the assumption that the values of external loads and/or
displacements at supports after each incremental step are prescribed in advance. Instead, the loading program is
parameterized by a scalar load multiplier.

8.4.1 Partitioning of the Displacement Corrections

Adapted from (Reich 1993)

Restricting the applied loading to be proportional, a scalar load parameter β can be used to scale an arbitrary set

of applied loads f
ext

. The applied loads at the start of increment i are defined as the scalar-vector product βi f
ext

,
where βi is the load parameter at the start of increment i. βi is zero at the start of the first increment. The applied
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Figure 8.10: Load-Displacement Diagrams with Snapback

incremental loads for increment i are defined as the scalar-vector product Δβi f
ext

, where Δβi is the incremental load
parameter for increment i. The updated load parameter βi+1 at the end of increment i is

βi+1 = βi + Δβi (8.44)

The incremental displacements due to the applied incremental loads are obtained using the standard modified-
Newton algorithm, as described in Zienkiewicz & Taylor (1991). The incremental displacements Δuj+1 at the end of
iteration j for a generic increment are defined as

Duj+1 = Δuj + δuj (8.45)

where Δuj are the incremental displacements at the start of iteration j and δuj are the incremental displacement
corrections for iteration j. The incremental load parameter Δβj+1 at the end of iteration j is defined in an analogous
manner as

Δβj+1 = Δβj + δβj (8.46)

where Δβj is the incremental load parameter at the start of iteration j and δβj is the incremental load parameter
correction for iteration j. At the start of the first iteration Δuj and Δβj are identically zero. Incremental displacement
corrections are determined by solving

K δuj = (βf
ext

+ Δβjf
ext

+ δβjf
ext − f

j
int) (8.47)

where K is the global stiffness matrix and

f
j
int =

Nelem∑
e=1

∫
Ωe

BT D (ε + Δεj) δΩ (8.48)

are the reactions for the state of stress at the start of iteration j. Defining the residual forces Rj
at the start of

iteration j as

Rj
= βf

ext
+ Δβjf

ext − f
j
int (8.49)

Equation 8.47 can be written more simply as

δuj = K−1 (δβjf
ext

+ Rj
) (8.50)

The matrix-vector product K−1 f
ext

is invariant for the increment and, therefore, can be treated as a vector constant
δuT , which Crisfield (1981) referred to as the tangent displacements

δuT = K−1 f
ext

(8.51)

The matrix-vector product K−1Rj
defines the displacement corrections δuj

r due to the residual forces

δuj
r = K−1Rj

(8.52)

but they are obviously not invariant for the increment. The displacement corrections for iteration j are then defined
as

δuj = δβjδuT + δuj
r (8.53)

Figure 8.11 shows a flowchart for an incremental nonlinear finite element program based on the modified-Newton
algorithm with indirect displacement control capabilities. The numbers in the boxes in Figure 8.11 correspond to
those appearing in Figure ??.
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Figure 8.11: Flowchart for an incremental nonlinear finite element program with indirect displacement control
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Figure 8.12: Two points on the load-displacement curve satisfying the arc-length constraint

8.4.2 Arc-Length

Adapted from (Jirasek and Bažant 2001)

The basic idea of a flexible incrementation control technique is that the step size is specified by a constraint equation
that involves the unknown displacements as well as the load multiplier. The original motivation was provided by the
requirement that the size of the step measured as the geometric distance between the initial and final state in the
load-displacement space should be equal to a prescribed constant, Fig. 8.10.

Despite the apparent simplicity of the condition of a constant arc length, it must be used with caution. First of all,
it is important to realize that forces and displacements have completely different units, and so the purely geometrical
measure of length in the load-displacement space does not make a good sense. It is necessary to introduce at
least one scaling factor, denoted as c, that multiplies the load parameter and converts it into a quantity with the
physical dimension of displacement. The length of a step during which the load parameter changes by Δμ and the
displacements change by Δu is then defined as

Δl =
√

ΔuTΔu+ (cΔμ)2 (8.54)

By adjusting the scaling factor we can amplify or suppress the relative contribution of loads and displacements. One
reasonable choice is derived from the condition that the contributions should be equal as long as the response remains
linear elastic, which leads to c =

√
uT
e ue where ue is the solution of Keue = f . In some cases, e.g., for frame, plate,

and shell models that use both translational and rotational degrees of freedom, the components of the generalized
displacement vector u do not have the same physical dimension. It is then necessary to apply scaling also to the
vector Δu.

Consider an incremental solution process controled by the arc-length method. In a typical step number n, we start
with displacements u(n−1) and load parameter μ(n−1) computed in the previous step, and we search for displacements
u(n) and load parameter μ(n). The state at the end of the step must satisfy the equations of equilibrium between the
internal forces f int(u

(n)) and external forces f ext(μ
(n)). Compared to the load control or direct displacement control,

the load parameter is an additional unknown. The corresponding additional equation is provided by the constraint
that fixes the size of the step. For example, we can require that the length of the step evaluated from formula (8.54)
be equal to a prescribed value, Δ̄l. We could treat the problem as a system of Ndf +1 nonlinear equations, where Ndf

is the number of unknown displacement components (degrees of freedom), and solve it by Newton-Raphson iteration.
However, a more elegant and computationally more efficient procedure treats the equilibrium equations and the
constraint equation to a certain extent separately. Assume for simplicity that the loading program is described by
(??). The linearized equations of equilibrium in the i-th iteration read

K(n,i−1)δu(n,i) = f0 + μ(n,i−1)f − f
(n,i−1)
int + δμ(n,i)f (8.55)

where δu(n,i) is the unknown displacement correction, and δμ(n,i) is the unknown correction of the load parameter.
The first three terms on the right-hand side are known, and the last term is an unknown scalar multiple of a given
vector f . We can therefore separately solve equations

K(n,i−1)δu0 = f0 + μ(n,i−1)f − f
(n,i−1)
int (8.56-a)

K(n,i−1)δuf = f (8.56-b)

and then express the displacement correction as

δu(n,i) = δu0 + δμ(n,i) δuf (8.57)

When this expression is substituted into the constraint condition,

(Δu(n,i−1) + δu(n,i))T (Δu(n,i−1) + δu(n,i)) + c2(Δμ(n,i−1) + δμ(n,i))2 = (Δ̄l)2 (8.58)

we obtain a quadratic equation for a single unknown, δμ(n,i). This equation usually has two real roots, corresponding
to the two points of the equilibrium path that have the prescribed distance from point (u(n−1), μ(n−1)); see Fig. 8.12.
The correct root is selected depending on the sense in which we march on the equilibrium path (Crisfield, M.A. 1981),
and the displacement correction is determined from (8.57). After standard updates of the displacement vector and
the load parameter, the iteration cycle is repeated until the convergence criteria are satisfied.
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8.4.3 Relative Displacement Criterion

Adapted from (Reich 1993)

The standard arc-length control performs well if the entire structure or its large portion participates in the failure
mechanism. In cases when the failure pattern is highly localized, robustness of the technique may deteriorate. The
remedy is to adapt the constraint equation to the particular problem and control the incrementation process by a few
carefully selected displacement components. Motivation is again provided by the physical background. If the load-
displacement diagram of a brittle structure exhibits snapback, direct displacement control applied in an experiment
leads to sudden catastrophic failure. When the displacement imposed by the loading device reaches a critical value,
fracture starts propagating even though the imposed displacement at the load point is kept fixed. However, opening
of the crack monotonically increases during the entire failure process, and so it can be used as a control variable. If
the experimental setup is arranged such that the applied force is continuously adjusted depending on the currently
measured value of the crack opening, the response can be traced in a stable manner even after the point at which
the load-displacement diagram snaps back. The same idea can be exploited by a numerical simulation. It suffices
to select a suitable linear combination of displacement components that increases monotonically during the entire
failure process, and to use this combination as the control variable.

de Borst (1985,1986) concluded that arc-length methods (Riks 1979, Ramm 1981, Crisfield 1981), which were the
original IDC methods, were not satisfactory for analyses involving cracking accompanied by softening. The main
problem with the arc-length methods, when used in this context, was that the constraint involved all displacement
components equally when, in fact, only a few displacement components were dominant. The dominant displacement
components were typically those for nodes at or near the crack mouth. This being the case, de Borst proposed using
a transformed relative displacement component between two nodes as the constraint. The transformed relative dis-
placement component can define the crack mouth opening displacement (CMOD), crack mouth sliding displacement
(CMSD), or some arbitrary displacement Δu between two points on a structure. The arbitrary displacement Δu
may correspond to a relative displacement measured during an experiment such as the relative vertical displacement
between a point on the neutral axis of a 3-point bend beam over a support and the bottom of the beam at mid-span.

As it is the most general case, the relative displacement criterion will be described in terms of the arbitrary relative
displacement Δu. A pair of nodes, m and n, are selected to define Δu, with their total displacements being (u)m
and (u)n, respectively. The direction associated with Δu is defined by a unit vector v. Δu is thereby defined as

Δu = vT [(u)n − (u)m] (8.59)

If m and n are nodes on opposite sides of a discrete crack Δu ≡ CMOD if v is normal to the crack surface and
Δu ≡ CMSD if v is tangent to the crack surface. The value for Δu is prescribed for an increment and the applied
loads are scaled such that the total displacements at the end of each iteration reflect that value. Recalling that the
total displacements uj+1 at the end of iteration j are defined as

uj+1 = uj + δβjδuT + δuj
r (8.60)

the load parameter correction δβj for iteration j is

δβj =
Δu − vT

[
(uj)n − (uj)m

]
− vT

[
(δuj

r)n − (δuj
r)m

]
vT [(δuT )n − (δuT )m]

(8.61)

8.4.4 IDC Methods with Approximate Line Searches

Employing a procedure proposed by Crisfield (1983) for use with the arc-length method, the convergence of the
solution alogrithm can be accelerated by performing approximate line searches; approximate line searches under fixed
(i.e. non-scalable) loads are described in Section ??. This procedure requires an extra iterative loop at the beginning
of the line search loop in which a combination of δβj and sk+1 satisifying the constraint conditions (i.e. Equations ??
and 8.59) is computed. As δβj is initially computed for s1 = 1.0, any change in sk requires a corresponding change in
δβj for the IDC constraint to remain satisfied. Consequently, an iterative loop, in which δβj is recomputed based on
the estimated value of sk+1, is required to obtain a compatible combination of δβj and sk+1. After recomputing δβj ,

the values of g0 and gk are also recomputed using Equation 8.29 to reflect the change in the residual loads Rj+1,k

caused by the new value of δβj . f
j+1,k
int is not updated to reflect the changes in sk+1 when recomputing Rj+1,k

, which
is strictly not correct, but it does significantly reduce the number of computations without causing any difficulties
(Crisfield 1983). Finally, from the new values of g0 and gk, sk+1 is re-estimated using Equation 8.32. The loop is
terminated when

| sk+1
new − sk+1 |
| sk+1

new |
≤ 0.05 (8.62)
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Figure 8.13: Flow chart for line search with IDC methods
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which generally requires only a few iterations. A flow chart of this procedure is shown in Figure 8.13.
Since the total displacements uj+1,k are now defined as

uj+1,k = uj + sk (δuj
r + δβj δuT ) (8.63)

reflecting the introduction of the relaxation parameter sk, the IDC constraint equations must be modified accordingly.
δβj for the stress criterion is now defined as

δβj = min

⎧⎨⎩ft −
[
(λ

j
)n + sk (δλ

j
r)n

]
(n)n

sk (δλT )n (n)n

⎫⎬⎭ (8.64)

and δβj for the relative displacement criterion is now defined as

δβj =
Δu − vT

[
(uj)n − (uj)m

]
− sk vT

[
(δuj

r)n − (δuj
r)m

]
sk vT [(δuT )n − (δuT )m]

(8.65)

It is these general forms of the constraint equations that are implemented in MERLIN.
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Chapter 9

TRANSIENT ANALYSIS; Direct Integration Schemes

9.1 Implicit

9.1.1 Newmark’s β Method

Consider the Taylor series expansions of the displacement and velocity terms about the values at t

ut+Δt = ut +
∂ut

∂t
Δt+

∂2ut

∂t2
Δt2

2!
+
∂3ut+Δt

∂t3
Δt3

3!
(9.1)

u̇
t+Δt

= u̇
t
+
∂2ut

∂t2
Δt+

∂3ut+Δt

∂t3
Δt2

2!
(9.2)

The above two equations represent the approximate displacement and velocity ( ut+Δt and u̇
t+Δt

) by a truncated
Taylor series. Looking at the remainder term (last term above),

R1 =
∂3ut+Δt

∂t3
Δt3

3!
�

∂2ut+Δt

∂t2
− ∂2ut

∂t2

Δt

Δt3

3!

� (ü
t+Δt − ü

t
)
Δt2

3!

� β(ü
t+Δt − ü

t
)Δt2 (9.3)

Similarly,

R2 =
∂3ut+Δt

∂t3
Δt2

2!
�

∂2ut+Δt

∂t2
− ∂2ut

∂t2

Δt

Δt2

2!

� γ(ü
t+Δt − ü

t
)Δt (9.4)

β and γ are parameters representing numerical approximations. Those paramters will account for R1 and R2 plus
additional terms which were dropped from our Taylor series approximation. Substituting Equations 9.3 and 9.4 into
Equations ?? and ?? respectively, we obtain,

ut+Δt = ut + u̇
t
Δt+ ü

tΔt2

2
+ β(ü

t+Δt − ü
t
)Δt2 (9.5)

u̇
t+Δt

= u̇
t
+ ü

t
Δt+ γ(ü

t+Δt − ü
t
)Δt (9.6)

By rearrangement, we obtain,

u̇
t+Δt

= u̇
t
+ [(1− γ)üt

+ γü
t+Δt

]Δt

ut+Δt = ut + u̇
t
Δt+ [(1/2− β)üt

+ βü
t+Δt

]Δt2

f t+Δt
e = Mü

t+Δt
+Cu̇

t+Δt
+Kut+Δt

(9.7)

Where the last equation is the equation of equilibrium, Eq. ?? expressed at time t + Δt. It can be shown that
Newmark’s forward difference assumes constant average acceleration over the time step. β and γ are parameters that
can be determined to obtain integration accuracy and stability.

If γ = 1/2 and β = 1/6, corresponds to a linear acceleration, and γ = 1/2 and β = 1/4, correspond to a constant
acceleration during the time increment. The scheme is explicit when β is 0. When γ is 1/2, this explicit form has
the same numerical properties as the central difference method.

It can be shown that the Newmark method is

1. unconditionally stable if

γ ≥ 1

2
(9.8)

β ≥ γ

2
(9.9)
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2. conditionally stable if

γ ≥ 1

2
(9.10)

β <
γ

2
(9.11)

with the following stability limit:

ωΔtcrit =
ξ(γ − 1/2) + [γ/2 − β + ξ2(γ − 1/2)2]1/2

(γ/2− β) (9.12)

where ξ is the damping parameter.
Or, a constant acceleration is always stable, however for a linear acceleration to be stable

Δt

Tn
≤ 1

π
√
2

1√
γ − 2β

(9.13-a)

≤ 0.551 (9.13-b)

Solving from Eq. 9.7 for ü
t+Δt

in terms of ut+Δt and then substituting for ü
t+Δt

into Eq. 9.7, we obtain equations

for ü
t+Δt

and u̇
t+Δt

each in terms of the unknown displacements ut+Δt only. These two equations for u̇
t+Δt

and

ü
t+Δt

are then substituted in Eq. 9.7 to solve for ut+Δt, after which, using Eq. 9.7 and 9.7, ü
t+Δt

, and u̇
t+Δt

can
be determined. This leads to the following algorithm:

1. Form the stiffness matrix K, mass matrix M, and damping matrix C.

2. Initialise u0, u̇
0
, ü

0
at time t = 0

3. Select the time step Δt and parameters β and γ.

4. Determine the constants a0 = 1
βΔt2

, a1 = γ
βΔt

, a2 = 1
βΔt

, a3 = 1
2β
− 1, a4 = γ

β
− 1, a5 = Δt

2

(
γ
β
− 2

)
,

a6 = Δt(1− γ), a7 = γΔt.

5. Form the effective stiffness matrix K̂: K̂ = K+ a0M+ a1C

6. Triangularize K̂ = LDLT

7. For each time step:

a) Determine the effective load at time t+Δt

f̂ t+Δt
e = f t+Δt

e +M(a0u
t + a2u̇

t
+ a3ü

t
) +C(a1u

t + a4u̇
t
+ a5ü

t
) (9.14)

b) Solve for the displacement at time t+Δt

LDLTut+Δt = f̂ t+Δt
e (9.15)

c) Compute the accelerations and velocities

ü
t+Δt

= a0(u
t+Δt − ut)− a2u̇

t − a3ü
t

(9.16-a)

u̇
t+Δt

= u̇
t
+ a6ü

t
+ a7ü

t+Δt
(9.16-b)

d) If necessary solve for the stresses

σt+Δt = f(ut+Δt) (9.17)

e) Increase time step t = t+Δt
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9.1.2 Hughes α Method

A major drawback of the Newmark β method is the tendency for high frequency noise to persist in the solution. On
the other hand, when linear damping or artificial viscosity is added via the parameter γ, the accuracy is markedly
degraded. The α method, (Hilber, Hughes and Taylor 1977) improves numerical dissipation for high frequency
without degrading the accuracy as much, (Belytschko, Liu and Moran 2000).

Hughes α method (Hilber et al. 1977) is an implicit method in which the equation of motion (ignoring damping
for now) is written at time t+Δt (forward difference):

Müt+Δt +Kut+Δt = f t+Δt
e (9.18)

Seeking an approximate solution of this equation by one-step difference, we write

Müt+Δt + (1 + α)Kut+Δt − αKut = f t+Δt
e (9.19)

with

ut+Δt = ut +Δtu̇t +Δt2
[(

1

2
− β

)
üt + βüt+Δt

]
(9.20-a)

u̇t+Δt = u̇t +Δt
[
(1− γ) üt + γüt+Δt

]
(9.20-b)

We note that the α method introduces αK(ut+Δt − ut) which is akin of stiffness proportional damping.
If the above equation is expanded, (Hughes 1983) effect of damping introduced, and possible material nonlinearity

introduced, we obtain:

Müt+Δt + (1 + α)Cu̇t+Δt − αCu̇t + (1 + α)f t+Δt
i − αf ti = (1 + α)f t+Δt

e − αf te (9.21-a)

ut+Δt = ũt+Δt + βΔt2üt+Δt (9.21-b)

u̇t+Δt = ˜̇ut+Δt + γΔtüt+Δt (9.21-c)

where

ũt+Δt = ut +Δtu̇t +Δt2
(
1

2
− β

)
üt (9.22-a)

˜̇ut+Δt = u̇t +Δt(1− γ)üt (9.22-b)

and fi, is the internal restoring force, and fe the external driving force.
Hence, the 3 equations, and the (possibly nonlinear) constitutive equation must all be simultaneously satisfied

through an iterative method.
Assuming that we have obtained the response at time t, i.e. ut, u̇t and üt which satisfy the equation of motion, we

now seek to determine the solution at time t +Δt by iteration (since f t+Δt
i = K(ut+Δt)ut+Δt. Given iteration step

k, the trial solution is ut+Δt
k , u̇t+Δt

k and üt+Δt
k , it does not yet satisfy the equation of motion, Eq. 9.21-a. Hence, for

this particular step we can write:

Müt+Δt
k + (1 + α)Cu̇t+Δt

k − αCu̇t + (1 + α)f t+Δt
i,k − αf ti = (1 + α)f t+Δt

e − αf te −Rt+Δt
k (9.23)

where f t+Δt
i,k is evaluated from the trial displacement ut+Δt

k and Rt+Δt
k is the residual force error. If we subtract this

equation from the exact equilibrium equation (Eq. 9.21-a), we have:

Rt+Δt
k = MΔüt+Δt

k + (1 + α)CΔu̇t+Δt + (1 + α)Δf t+Δt
i,k (9.24)

where

Δüt+Δt
k = üt+Δt − üt+Δt

k (9.25-a)

Δu̇t+Δt
k = u̇t+Δt − u̇t+Δt

k (9.25-b)

Δut+Δt
k = ut+Δt − ut+Δt

k (9.25-c)

Δf t+Δt
i,k = f t+Δt

i − f t+Δt
i,k (9.25-d)

Hence, if we know the exact secant stiffness Kt+Δt
k,sec we can solve for ut+Δt, u̇t+Δt and üt+Δt directly. However, in

the context of a nonlinear model, the secant stiffness will have to be determined at each time step, Fig. 9.3. The
solution process can now proceed as follows:from Fig. 9.3 we have

Δf t+Δt
i,k = Kt+Δt

k,secΔut+Δt
k (9.26)
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Δt+     t

Figure 9.1: Secant and Tangent Stiffnesses for α Method

however from Eq. 9.21-b and 9.21-c

ut+Δt
k = ũt+Δt + βΔt2üt+Δt

k (9.27-a)

u̇t+Δt
k = ˜̇ut+Δt + γΔtüt+Δt

k (9.27-b)

Subtracting the above equations from the corresponding exact ones

Δüt+Δt
k =

Δut+Δt
k

βΔt2
(9.28-a)

Δu̇t+Δt
k = γΔtΔüt+Δt

k =
γ

βΔt
Δut+Δt

k (9.28-b)

Substituting the above equation into the residual equation (Eq. 9.24), we obtain

Rt+Δt
k =

Δut+Δt
k

βΔt2
M+ (1 + α)

γ

βΔt
Δut+Δt

k C+ (1 + α)Kt+Δt
k,secΔut+Δt

k (9.29)

which can be rearranged as

K̃t+Δt
k Δut+Δt

k = Rt+Δt
k (9.30)

where the effective stiffness matrix is given by

K̃t+Δt
k,sec =

1

βΔt2
M+

γ(1 + α)

βΔt
C+ (1 + α)Kt+Δt

k,sec (9.31)

It should be noted that Eq. 9.30 is analogous to the simple static equilibrium equation, and we can directly evaluate
Δut+Δt

k and obtain the exact solution. However, since we do not know ut+Δt a priori, we can not evaluate the secant
stiffness matrix Kt+Δt

k,sec . This can be numerically estimated from Fig. 9.3 by the tangent stiffness matrix if need be.
In this later case, we will need to iterate to converge to the exact solution.

Finally, we note that:

1. Alpha introduces a damping that grows with the ratio of time increment to the period of vibration of a node.

2. Negative values of α provide damping.

3. If α = 0, we have no artificial damping (energy preserving) and is exactly the trapezoidal rule (Newmark’s
method if β = 1/4 and γ = 1/2).

4. Maximum value is α = −1/3 which provides the maximum artificial damping. This results in a damping ratio
of about 6% when the time increment is 40% of the period of oscillation of the mode being studied and smaller
if the oscillation period increases.

5. This artificial damping is not very substantial for realistic time increment and low frequencies, but is non-
negligible for high frequencies.

6. A default value of -0.05 is recommended.

7.
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9.1.2.1 Algorithm

Adapted from (Hughes 1983).

Initialization:

1. Initialize at time t = 0: u0, u̇0, f0i and ü0.

2. Evaluate

ũt+Δt = ut +Δtu̇t +Δt2
(
1

2
− β

)
üt (9.32-a)

˜̇ut+Δt = u̇t +Δt(1− γ)üt (9.32-b)

3. Set k = 0, and select a trial solution

ut+Δt
k = ũt+Δt (9.33-a)

u̇t+Δt
k = ˜̇ut+Δt (9.33-b)

f t+Δt
i,k = fi(u

t+Δt
k ) (9.33-c)

üt+Δt
k = 0 (9.33-d)

Inner Loops

A Current increment t, set k = 0

1. Evaluate the tangent stiffness matrix and then the effective stiffness

K̃t+Δt
k =

1

βΔt2
M+

γ(1 + α)

βΔt
C+ (1 + α)Kt+Δt

k,tan (9.34)

2. Evaluate the residual error

Rt+Δt
k = (1 + α)f t+Δt

e − αf te −Müt+Δt
k − (1 + α)Cu̇t+Δt

k + αCu̇t − (1 + α)f t+Δt
i,k + αf ti (9.35)

3. Solve for Δut+Δt
k

K̃t+Δt
k Δut+Δt

k = Rt+Δt
k (9.36)

4. Evaluate the new trial displacements

ut+Δt
k+1 = ut+Δt

k +Δut+Δt
k (9.37)

5. Solve for f t+Δt
i,k+1

6. Evaluate the new trial acceleration and velocity

üt+Δt
k+1 =

1

βΔt2
(ut+Δt

k+1 − ũt+Δt) (9.38-a)

u̇t+Δt
k+1 = ˜̇ut+Δt + γΔtüt+Δt

k+1 (9.38-b)

7. If |Δut+Δt
k | > ε, set k = k + 1 and go to step 1.

B Update the displacement, velocity and accelerations

ut+Δt = ut+Δt
k+1 (9.39-a)

u̇t+Δt = u̇t+Δt
k+1 (9.39-b)

üt+Δt = üt+Δt
k+1 (9.39-c)

C Set t = t+Δt and go to step A.

It can be shown that the method is unconditionally stable if

α ∈
[
−1

3
, 0

]
; γ =

(1− 2α)

2
; β =

(1− α)2
4

(9.40)

Merlin Theory Manual



114 TRANSIENT ANALYSIS; Direct Integration Schemes

9.2 Explicit

Adapted from Belytschko et al. (2000)

9.2.1 Preliminaries

Time step definitions, Fig. 9.2:

Δtn+1/2 = tn+1 − tn (9.41-a)

tn+1/2 =
1

2
(tn+1 + tn) (9.41-b)

Δtn = tn+1/2 − tn−1/2 (9.41-c)

The central difference formulae for velocity is

ḋn+1/2 def
= vn+1/2 =

dn+1 − dn

tn+1 − tn =
1

Δtn+1/2
(dn+1 − dn) (9.42)

This difference formula can be converted into an integration formula by rearranging terms

dn+1 = dn +Δtn+1/2vn+1/2 (9.43)

Similarly, the acceleration and the corresponding integration formula are

d̈n def
= an = vn+1/2−vn−1/2

tn+1/2−tn−1/2

vn+1/2 = vn−1/2 +Δtnan
(9.44)

Hence, velocities are defined at at the midpoints of the time steps.
Substituting Eq. 10.2 (expressed at tn+1/2 and tn−1/2) into Eq. 10.4, the acceleration can be expressed directly in

terms of the displacements

d̈n def
= an =

Δtn−1/2(dn+1 − dn)−Δtn+1/2(dn − dn−1)

Δtn+1/2ΔtnΔtn−1/2
(9.45)

For equal time steps, this reduces to

d̈n def
= an =

(dn+1 − 2dn + dn−1)

(Δtn)2
(9.46)

which is the well known central difference formula for the second derivative of a function.
We now consider the time integration of the motion equation at time step n

Man = fn = f ext(dn, tn)− f int(dn, tn) (9.47)

subjected to the essential boundary condition

gI(v
n) = 0 I = 1 to nc onΓv (9.48)

which is an ordinary differential equation of second order in time.
The internal forces are functions of the nodal displacements (and thus on time), the external forces are function

both of time and displacement (uplift forces). and time.
Substituting Eq. 10.7 into 10.4 gives

vn+1/2 = vn−1/2 +ΔtnM−1fn (9.49)

Energy balance must be satisfied, as numerical instability in nonlinear problems may only manifests itself in a
pernicious and subtle manner which will lead uncorrect results. It may also cause exponential growth which may
cause localized premature failures.

Hence Energy must be computed as follows:

W n+1
int =W n

int +
Δtn+1/2

2

(
vn+1/2

)T (
fnint + fn+1

int

)
= W n

int +
1

2
ΔdT

(
fnint + fn+1

int

)
(9.50-a)

W n+1
ext =W n

ext +
Δtn+1/2

2

(
vn+1/2

)T (
fnext + fn+1

ext

)
= W n

int +
1

2
ΔdT

(
fnint + fn+1

int

)
(9.50-b)
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Figure 9.2: Central Difference Scheme (Explicit Method); Basic Definitions
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The kinetic energy is given by

W n
kin =

1

2
(vn)TMvn (9.51)

where Δd = dn+1 − dn

Energy conservation requires that

|Wkin +Wint −Wext| ≤ εmax (Wkin,Wint,Wext) (9.52)

where ε is a tolerance of the order of 10−2

9.2.2 Algorithm

1. Initialization Loop over elements and determine

a) Eternal load vectors fext (includes gravity, hydrostatic, uplift, etc...)

b) a0, v0, σ0 and other state variables.

c) Compute lumped mass matrix M (vector stored)

d) Compute damping matrix C = αM (vector stored)

e) Set f ext,0 = Ma0

f) If a0 is prescribed, set v0 = C−1
(
f ext,0 − f int,0 −Ma0

)
g) d0 = 0; n = 0, t = 0.

2. Get Forces

3. Compute accelerations an = M−1
(
f ext,n − f int,n −Cdampvn−1/2

)
4. Update time tn+1 = tn +Δtn+1/2, and tn+1/2 = 1

2
(tn + tn+1).

5. First partial update of the velocities vn+1/2 = vn +
(
tn+1/2 − tn

)
an

6. Enforce velocity boundary conditions on Γv vn+1/2 =
tn+1 − tn−1/2

tn+1 − tn ṽn +
tn+1/2 − tn
tn+1 − tn ṽn+1

7. Update nodal displacements dn+1 = dn +Δtn+1/2vn+1/2

8. Enforce displacement boundary condition over Γd : dn+1 = d̃n+1

9. Get Force

10. Compute an+1 = M−1
(
f ext,n+1 − f int,n+1 −Cdampvn+1/2

)
11. Enforce acceleration boundary conditions over Γa : an+1 = ãn+1

12. Second partial update of nodal velocities vn+1 = vn+1/2 +
(
tn+1 − tn+1/2

)
an+1

13. Enforce velocity boundary conditions on Γv ṽn+1 =
tn+1/2 − tn−1/2

tn+1 − tn ṽn +
tn+1/2 − tn
tn+1 − tn ṽn+1

14. Check energy balance every k time steps where k �?? Wn+1
int = W n

int +
1
2
ΔdT

(
fnint + fn+1

int

)
, W n+1

ext = W n
int +

1
2
ΔdT

(
fnint + fn+1

int

)
, W n+1

kin = 1
2
(vn+1)TMvn+1, and |Wkin +Wint −Wext| ≤ εmax (Wkin,Wint,Wext) where

ε � 10−2

15. Update counter n← n+ 1

16. Output or go to 4

Algorithm Get Forces

1. Initialize fn = 0;

2. Set Δtcrit =∞
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3. Compute global external nodal forces fnext (includes uplift)

4. Loop over elements (e).

a) Gather element nodal displacements and velocities from global array

b) Set f int,n(e) = 0

c) Loop over Gauss points ξQ

i. If n = 0 go to 3(c)ii

ii. Compute stresses σn(ξQ) through the constitutive equation.

iii. f int,n(e) ← f int,n(e) +BTwQJ |Q

d) Compute Rayleigh damping stiffness proportional terms f int,n(e,dc) = −β
Δf

int,n
(e)

Δt

e) Update internal forces f int,n
(e)
← f int,n

(e)
+ f int,n

(e,dc)

f) Compute external nodal forces f ext,n(e)

g) fn(e) = f ext,n
(e)

− f int,n
(e)

h) Compute Δt
(e)
crit = αmin

L(e)

c
= αmin

L(e)√
E
ρ

i) If Δt
(e)
crit < Δtcrit, then Δtcrit = Δt

(e)
crit

j) Scatter fn(e) back to global fn

5. Δt = αΔtcrit

a

Compute an+1

a

nn−1 n+1

n−1/2 n+1/2

Δ

Δ

n

n+1/2

Time Definition

Compute Initial Acceleration

v

a

a

v

Velocity Update; Step 2

v

d
Update Nodal Displacement

Velocity Update; Step 1

Enforce Velocity BC

Compute Internal and External Forces

Check Energy Balance

Initialization

Figure 9.3: Algorithm for Central Difference Scheme (Explicit Method)

9.2.3 Dynamic Relaxation

Adapted from (Pandolfi 2003)
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9.3 Rayleigh Damping

Rayleigh damping, is the most widely used (but not only) model for damping. It assumes that

C = aM+ bK (9.53)

where the coefficients a and b are calculated based upon two circular frequencies (ω1 and ω2), radians/sec.) to be
damped at ξ1 and ξ2 respectively.

We recall that the damping ratio for a single degree of freedom (SDF) for mode n is given by

ζn =
Cn

2Mnωn
(9.54)

Thus for mass proportional damping of multi degree of freedom (MDF) system, with Cn = aMn, this would lead to

ζn =
a

2

1

ωn
(9.55)

The damping ratio is thus inversely proportional to the natural frequency and a can be selected to obtain a specified
damping ratio in any one mode i or

a = 2ζiωi (9.56)

Similarly, and recalling that Kφn = ω2
nMφn, a stiffness proportional damping Cn = bKn combined with Eq. 9.54

will lead to

ζn =
b

2
ωn (9.57)

In this case the damping ratio is proportional to the natural frequency and b can be selected to obtain a specified
damping ratio in any one mode j or

b =
2ζj
ωj

(9.58)

Combining Eq. 9.56 and 9.58leads to the following linear equations

1

2

[
1
ωi

ωi
1
ωj

ωj

]{
a
b

}
=

{
ζ1
ζ2

}
(9.59)

If one assumes the same damping ratio ζ for both modes (reasonable practical assumption), then{
a = ζ

2ωiωj

ωi+ωj

b = ζ 2
ωi+ωj

(9.60)
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Figure 9.4: Rayleigh Damping
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Chapter 10

EXPLICIT PARALLEL

10.1 Introduction

Parallel computing is nowadays considered a very efficient tool to overcome bottlenecks of traditional serial computing.
These bottlenecks relate to both lack of resources (memory, disk space, etc.) and long computational times. Typical
parallel application decreases the demands on memory and other resources by spreading the task over several mutually
interconnected computers and speeds up the response of the application by distributing the computation to individual
processors. Note however that parallel computing is worth also for applications that require almost no resources but
consume an excessive amount of time and for applications that cannot be performed on a single (even well equipped)
computer regardless of the computational time. It is important to realize that from engineering point of view the
scalability of the algorithm is not the only criterion to judge efficiency of parallel application. In many cases, the
ability to analyze extremely large problems not solvable on single machine is of primary interest.

The solution of complex sophisticated problems to model various phenomena with sufficiently high accuracy and in
reasonable time makes the parallel processing attractive for a large family of applications, including structural analysis.
However it is important to realize that most of traditional algorithms are inherently not suitable for parallelization
because of their development for sequential processing. The most natural way for parallelization is the decomposition
of the problem being solved in time or space. The individual domains are then mapped on individual processors and
are solved separately ensuring the proper response of the whole system by appropriate communication between the
domains. An efficient parallel algorithm requires a balance of the work (performed on individual domains) between
the processors while maintaining the interprocessor communication (typical bottleneck of parallel computation) at a
minimum.

Since the last decade the parallel computation has become quite feasible due to the following three aspects. Firstly,
a lot of new algorithms, suitable for parallel processing, have been developed (including efficient algorithms for domain
decomposition). Secondly, the parallel computation ceased to be limited to parallel supercomputers (equipped with
high technology for even higher price) but can be performed on ordinary computers interconnected by network into
computer cluster. Such a parallel cluster can even outperform the supercomputers (as IBM SP2, SGI Origin etc) while
keeping the investment and maintenance costs substantially lower ! And thirdly, several message passing libraries
(typically MPI, PVM), portable to various hardware and operating system platforms, have been developed, which
allows to port the parallel applications almost to any platform (including multiplatform parallel computing cluster).

10.1.1 Parallel Computational Models

There are several parallel computational models available depending on whether the memory is physically shared or
distributed, or whether it is virtually shared if physically distributed. In this view, one possible classification1 of
parallel computational models is

• data parallelism
In this model, the parallelism comes entirely from implicit data independence, the program itself looks very
much like a sequential program. The early application of this approach is the vectorization of a code using
a vector machine. More recent applications perform the partitioning of data by the compiler (e.g. HPF –
High Performance Fortran). This model is typical representative of SIMD (Single Instruction Multiple Data)
applications. The efficiency of this model is strongly dependent on the problem without the possibility to be
too influenced by the programmer.

• shared memory
On shared memory architecture, each processor has access to all of a single shared address space. However,
the parallelism in this case must be explicitly specified by the programmer. Coordination of access to memory
by multiple processes is done by some form of locking (that might be hidden in high level languages). Shared
memory model is also sometimes known as SMP (Symmetric Multiprocessing). The thread technology, based on
fast switching between individual threads of a single process with a separate address space, can be also classified
into this model. Note that shared memory parallel computational model can accommodate both paradigms
SIMD and MIMD (Multiple Instruction Multiple Data).
The shared memory machines with high number of processor are quite difficult (and expensive) to build. Since

1Note that are other classifications based on other criteria are available.
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the capacity of the communication bus is shared between all the processors, the memory access time increases
with the number of processors. To make the memory access more effective, each processor has fast cache
memory (very expensive, mostly more then processor itself) which, if properly used, significantly reduces the
memory access time.

• message passing
In this model, the memory is physically distributed and each processor has access only to its local memory. The
off-processor data are accessed via communication with other processors using sending and receiving messages
over a network. It is a defining feature of the message passing that data transfer from the local memory of
one process to the local memory of another one requires operations to be performed by both processes. This
model enables besides SIMD and MIMD also to process MPMD (Multiple Program Multiple Data) applications.
Note, that most of the MPMD applications can be converted to MIMD applications (that can be much easily
debugged) by simply branching the code using if–then–else construction. The way in which the individual
processors are interconnected defines the topology of the model. For some common topologies as grid, torus,
or hypercube, there might be a significant support in the particular message passing.
The communication network can be a special high-speed network (e.g. high performance switch in IBM SP2
machine) or general purpose network as fast Ethernet or even in near future the Internet (so called P2P
– pier to pier architecture). The performance of the network communication is given by the latency and the
bandwidth. The latency is the time necessary to start an interaction between two processors and the bandwidth
is the number of bytes that can be transfered via the network within one second. Since a distributed memory
computer has no shared resources like a bus, the number of processors is virtually unlimited.
The advantage of message passing model consists in the fact that it gives to the programmer full control over
the parallelism. It is well suited to the adaptive, self-scheduling algorithms and to programs that are to be made
tolerant of the imbalance in process speed on shared networks. The message passing paradigm is attractive
because of its wide portability and scalability. It is easily compatible with both distributed memory computers
and shared memory multiprocessors, and their combination. The most common message passing libraries are
PVM (Parallel Virtual Machine) and MPI (Message Passing Interface), but there are many others.

• combined model
This model is based on combination of shared memory and message passing models. A typical example is a
cluster (distributed memory) of shared memory multiprocessor workstations. Because of the memory distri-
bution, the message passing concept is typically used. However, the overall performance can be improved by
the fact that the message passing can take take advantage of hardware services for accessing shared memory
without explicitly communicating the messages.

• virtual shared memory model
In this architecture, the physical distribution of the memory (either on memory distributed or combined model)
is hidden to the user and all the memory is accessible as a (virtually) shared memory. It is the responsibility of
the system to make the access to the remote memory transparent as it would be local.

10.1.2 Solution Strategies Based on Message Passing

As described above, message passing is parallel paradigm applicable especially on memory distributed computing
platforms. In this view, the problem to be solved needs to be distributed accordingly. Then each processor is working
with its local data and the requests of remote data are resolved using the message passing. Most of the distribution
strategies are based on the decomposition of spatial domain over which the solution is searched for. To achieve high
level of parallelism, the domain decomposition should satisfy the following conditions:

• the individual subdomains should be approximately of the same complexity

• the interface between the subdomains should be minimized.

While the first condition is related to the load balancing of the parallel analysis in order to minimize the idle time
(during which the processor is waiting for remote data, that are not yet available), the second condition takes into
account that the data transfer between the processors is usually on much lower performance level than the CPU
performance of the processor itself.

The load balancing can be either static, where the actual domain decomposition is persistent through the whole
solution process (taking into account the heterogeneity of the computing cluster and the heterogeneity of the compu-
tational domain), or dynamic, in which the domains are changing during the solution to maintain the load balance
during the whole analysis. The load balance can be disturbed for example by the analysis itself (e.g. change of the
constitutive law from linear to nonlinear in part of the computational domain) or by the computing environment (if
the analysis is run on non-dedicated computers). Dynamic load balancing strategy, involving large data migration
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and complex changes in the data management, is however very difficult to implement. This is why the dynamic
load balancing is sometimes replaced by pseudo-dynamic load balancing concept. In this strategy, the static domain
partitioning into much higher number of partitions than number of available processors is performed. The individual
domains are then assigned to the processors whenever the processor has completed its job.

10.1.2.1 Domain Partitioning

The domain partitioning is depending on the dimension and regularity of the domain and on the way in which the
discretization of the spatial domain is accomplished. Different strategies may be used for 1D and multidimensional
problems, for regular and irregular or even noncontinuous domains, and for domains discretized by finite differences
and finite elements (volumes) or or discretizations based on element free concept. In the following it is assumed that
the computational domain is represented by a 2D or 3D mesh of finite elements.

A mesh decomposer should distribute the mesh across the individual processors so that the computational load is
evenly balanced and the amount of interprocessor communication is minimized. However, the numerical experience
has shown that several other issues, as the subdomain shape and connectivity, in addition to load balancing and
communication costs, need to be addressed. In recent years, a considerable attention has been focused on developing
suitable techniques to solve the mesh partitioning problem and several powerful methods have been devised. The
greedy algorithm is based on a successive expansion of a subdomain, initially formed by one appropriately chosen
element, until it comprises a sufficiently large number of elements. The expansion is usually driven by neighbourhood
search schemes using the depth-first or breadth-first search. The basic disadvantage of this very fast technique resides
in the fact that the final partitioning is often very far from the “optimal” one. However, the speed makes this technique
very suitable for an initial decomposition subjected to further optimization based, for example, on the relative gain
concept or simulated annealing. The recursive bisection methods utilize the spatial distribution of a mesh. While the
coordinate recursive bisection (Cartesian, polar, or spherical) exploits only the dimensional properties of the mesh
with respect to a given coordinate system, the inertial recursive bisection accounts for principal inertial properties
of the mesh which are invariant with respect to the coordinate system. The spectral recursive bisection is based on
the finding that the second largest eigenvalue of the Laplacian matrix of an undirected graph associated with a mesh
provides a good measure of the connectivity of the mesh and that the components of the corresponding eigenvector
can be conveniently used for the mesh bisection. Although this approach provides decomposition of a high quality,
computationally complexity makes its use problematic when large meshes are under consideration. This deficiency
was partially eliminated by a multilevel implementation of this technique.

Note that the obtained domain partitioning must be sometimes further processed to allow for overlapping of
individual subdomains for example when dealing with nonlocal material models based on nonlocal averaging, or
when using solution methods based on domain overlapping (e.g. Schwartz additive methods).

10.1.3 Parallelization of the Solution Method

The complexity related to the parallelization of a particular solution method is strongly depending on the properties
of a global system of linear algebraic equations that has to be solved. If the system has a canonical form (e.g. in
explicit integration methods using lumped mass matrix and Rayleigh form of damping), the actual parallelization is
very straightforward. Since each of the equations can be solved independently and locally, on the partition owning
the corresponding mesh node, the communication via the message passing is more or less needed only for assembling
contributions to the particular equation if these contributions originate on different partitions. This is usually the
case if the equation is related to a mesh node being shared by several partitions. Then the exchange of values
corresponding to contributions to the (lumped) mass matrix and vectors of internal and external forces is needed.
To ensure synchronization of the integration of the equilibrium equations in time, all partitions have to use the same
time increment. Therefore any change in time step must be communicated between all subdomain in order to agree
on the common value still ensuring stability of the method.

If the global system of linear algebraic equations is coupled (implicit methods, or explicit methods with full mass
matrix), the most crucial step is the parallelization of the linear equation solver. This depends on many aspects,
for example on the solver itself (iterative, direct, sparse direct), on the matrix storage format (skyline, compressed
row, symmetric compressed row), etc. Some of the methods are based on the solution of a reduced system that
is assembled from partially eliminated matrices corresponding to individual subdomains. This elimination can be
typically performed in parallel without any communication. The final reduced system is then solved either on one
dedicated processor using a sequential solver or in parallel based on message passing. Typical representatives of this
approach is the Schur complement method and FETI (Finite Element Tearing and Interconnection). Note that the
physical meaning of the unknowns in the reduced system may be different from the physical meaning of unknowns
in the original system of equations. For example, in dual FETI method, the unknowns of the final reduced problem
are Lagrange multipliers representing the forces used to ensure compatibility between adjacent subdomains.
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There are several packages available for parallel solution of system of equations, for example PETSc, Spooles,
SuperLU, BlockSolve and others.

10.2 MPI – Message Passing Interface

MPI is a portable message passing standard that facilitates the development of parallel applications and libraries.
MPI itself is a library, not a language. It is used to specify the communication between a set of processes forming a
concurrent program that is efficient and highly functional and that is portable to different computing platforms includ-
ing heterogeneous networks of computers that have different lengths and formats for various fundamental datatypes.

The current MPI standards includes (except others) the following:

• Point to point communications: messages between pairs of processes.

• Collective communications: messages and synchronization operations that involve entire groups of processes.

• Process groups: manipulation of groups of processes.

• Communicators: a mechanism for providing separate communication scope for modules or libraries.

• Process topologies: functions that allow the convenient manipulation of processes forming a particular topology.

• Datatypes: a mechanism for handling existing and user defined data types.

• Bindings for C and Fortran 77: specifications of names, calling sequences and results of subroutines calls from
Fortran 77 and functions called from C programs.

The following aspects (except others) are not covered by the current standard:

• shared memory operations

• thread support

• process and task management

• input and output functions

• debugging support

MPI is a rich library offering over 100 functions. But many parallel programs can be written using just 6 basic
functions:

• MPI INIT – initialize MPI

• MPI COMM SIZE – find how many processes there are

• MPI COMM RANK – find out which process I am

• MPI SEND – Send a message

• MPI RECV – Receive a message

• MPI FINALIZE – Terminate MPI

The other functions all add flexibility, robustness, efficiency, modularity, and convenience.

10.2.1 Point to Point Communication

MPI provides send and receive functions that allow the communication of typed data with an associated tag. Typing
of the message contents is necessary for heterogeneous support – the type informations is needed so that correct
data representation conversions can be performed as data is sent from one architecture to another. The tag allows
selectivity of messages at the receiving end; one can receive on a particular tag, or one can use wildcard tag allowing
reception of messages with any tag. Both the send and receive message contains the address of the buffer from/to
which the data is communicated. The amount of data is represented by number of elements of given type (not number
of bytes). While the send message specifies the destination process, the receive message specifies the source process,
that can be also used for message selectivity. The processes must belong to the same communicator, that is also
parameter of both calls. The receive message has one more argument, which is the status of the message, from which
the tag and source of the received message can be obtained (if wildcards has been used in the call to it).

MPI provides a whole set of send and receive functions for different communications modes. The basic mode is
the standard blocking mode. In this mode, the send call does not return until the message data are safely stored
and user can reuse the send buffer. It is the choice of MPI whether it will copy the message to a local buffer (which
causes some overhead) or whether it will wait for the matching receive call (which causes idle time). Similarly the
receive function blocks until the receive buffer actually contains the contents of the message There are 3 additional
communication blocking modes. In the buffered mode (prefix B), MPI always copies the send data to its or user
supplied buffer, and immediately returns from the send call. In the synchronous mode (prefix S), the send call does
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not return until the matching receive call was posted. And finally, in the ready mode (prefix R) the send can be
called only if the matching receive has already been called, otherwise error occurs. Note that the ready mode results
in improved performance and can be also used for synchronization of the code.

For all 4 above communication modes there exist also their non-blocking variant (prefix I). Since the send call
in non-blocking communication returns immediately this type of communications is appropriate for overlapping of
computation and communication. A separate calls to MPI wait and test functions are needed to complete the send
and receive calls, in other words to be sure that the buffers for message data can be safely reused. Note that the
non-blocking send can be matched with blocking receive and vice versa.

10.2.2 Collective Communication

Collective communications transmit data among all the processes specified by a communicator object. The only
exceptions is the barrier function, that serves to synchronize processes without passing data. Generally these function
can be classified as

• collective synchronization – barrier

• collective data movement – broadcast, gather, scatter, allgather, alltoall (see below)

• collective computation – sum, max, min, logical and bitwise and, or, xor, and user defined function

P0 A
P1
P2
P3

broadcast
=⇒

P0 A
P1 A
P2 A
P3 A

P0 A B C D
P1
P2
P3

scatter
=⇒

gather
⇐=

P0 A
P1 B
P2 C
P3 D

P0 A
P1 B
P2 C
P3 D

all gather
=⇒

P0 A B C D
P1 A B C D
P2 A B C D
P3 A B C D

P0 A B C D
P1 a b c d
P2 E F G H
P3 e f g h

all to all
=⇒

P0 A a E e
P1 B b F f
P2 C c G g
P3 D d H h

Some of the collective function come in the variable variant (suffix V), whereby different amount of data can be sent
to or received from different processes. Keeps in mind however that in contrast to point to point communication the
amount of data sent must exactly match the amount the data specified by the receiver. A major simplification is that
collective functions come in blocking versions only in the communication mode that can be regarded as analogous to
the standard mode of point to point communication. Thus, a collective communication (except the barrier) may, or
may not, have the effect of synchronizing all calling processes.

10.2.3 Groups, Contexts, and Communicators

A key feature needed to support the creation of robust, parallel libraries is to guarantee that communication within
a library routine does not conflict with communication extraneous to the routine. Clearly, taging the messages is
not enough to ensure that. Therefore MPI introduces a communicator, a data object that specifies the scope of
communication operation in terms of the group of processes involved and the communication context. A message
sent in one context cannot be received in another context. Process ranks are interpreted with respect to the process
group associated with a communicator. MPI applications begin with a default communicator MPI COMM WORD,
which has as process group the entire set of processes. New communicators are created from existing communicators
and the creation of a communicator is a collective operation.
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10.2.4 Datatypes

All MPI communication functions take a datatype argument. In the simplest case this will be a basic primitive type,
such as an integer or floating-point number. The basic datatypes and their equivalent in Fortran (if available) are

• MPI INTEGER – INTEGER

• MPI REAL – REAL

• MPI DOUBLE PRECISION – DOUBLE PRECISION

• MPI COMPLEX – COMPLEX

• MPI CHARACTER – CHARACTER(1)

• MPI BYTE

• MPI PACKED

An important feature of MPI is that it allows to create user-defined types consisting of basic primitive types. Through
user-defined types, MPI supports the communication of complex data structures such as array sections (noncontiguous
data) and structures containing combinations of primitive datatypes (e.g. an integer count, followed by a sequence
of real numbers) without the necessity to pack them in advance in a local buffer.

10.2.5 Binding to Fortran 77

An example of binding MPI send are receive functions to Fortran code is given by

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, IERROR

INTEGER STATUS(MPI_STATUS_SIZE)

10.2.6 Example of Parallel Fortran Program

In this example, the value of π is calculated by numerical integration of∫ 1

0

4

1 + x2
dx = 4(arctan(1)− arctan(0)) = 4

π

4
= π

c**********************************************************************

c pi.f - compute pi by integrating f(x) = 4/(1 + x**2)

c

c Each node:

c 1) receives the number of rectangles used in the approximation.

c 2) calculates the areas of it’s rectangles.

c 3) Synchronizes for a global summation.

c Node 0 prints the result.

c

c Variables:

c

c pi the calculated result

c n number of points of integration.

c x midpoint of each rectangle’s interval

c f function to integrate

c sum,pi area of rectangles

c tmp temporary scratch space for global summation

c i do loop index

c**********************************************************************

program main

include ’mpif.h’
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double precision PI25DT

parameter (PI25DT = 3.141592653589793238462643d0)

double precision mypi, pi, h, sum, x, f, a

integer n, myid, numprocs, i, rc

c function to integrate

f(a) = 4.d0 / (1.d0 + a*a)

call MPI_INIT( ierr )

call MPI_COMM_RANK( MPI_COMM_WORLD, myid, ierr )

call MPI_COMM_SIZE( MPI_COMM_WORLD, numprocs, ierr )

print *, "Process ", myid, " of ", numprocs, " is alive"

sizetype = 1

sumtype = 2

10 if ( myid .eq. 0 ) then

write(6,98)

98 format(’Enter the number of intervals: (0 quits)’)

read(5,99) n

99 format(i10)

endif

call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

c check for quit signal

if ( n .le. 0 ) goto 30

c calculate the interval size

h = 1.0d0/n

sum = 0.0d0

do 20 i = myid+1, n, numprocs

x = h * (dble(i) - 0.5d0)

sum = sum + f(x)

20 continue

mypi = h * sum

c collect all the partial sums

call MPI_REDUCE(mypi,pi,1,MPI_DOUBLE_PRECISION,MPI_SUM,0,

+ MPI_COMM_WORLD,ierr)

c node 0 prints the answer.

if (myid .eq. 0) then

write(6, 97) pi, abs(pi - PI25DT)

97 format(’ pi is approximately: ’, F18.16,

+ ’ Error is: ’, F18.16)

endif

goto 10

30 call MPI_FINALIZE(rc)

stop

end
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10.3 Explicit

10.3.1 Preliminaries

Time step definitions, Fig. 9.2:

Δtn+1/2 = tn+1 − tn (10.1-a)

tn+1/2 =
1

2
(tn+1 + tn) (10.1-b)

Δtn = tn+1/2 − tn−1/2 (10.1-c)

The central difference formulae for velocity is

ḋn+1/2 def
= vn+1/2 =

dn+1 − dn

tn+1 − tn =
1

Δtn+1/2
(dn+1 − dn) (10.2)

This difference formula can be converted into an integration formula by rearranging terms

dn+1 = dn +Δtn+1/2vn+1/2 (10.3)

Similarly, the acceleration and the corresponding integration formula are

d̈n def
= an = vn+1/2−vn−1/2

tn+1/2−tn−1/2

vn+1/2 = vn−1/2 +Δtnan
(10.4)

Hence, velocities are defined at the midpoints of the time steps.
Substituting Eq. 10.2 (expressed at tn+1/2 and tn−1/2) into Eq. 10.4, the acceleration can be expressed directly in

terms of the displacements

d̈n def
= an =

Δtn−1/2(dn+1 − dn)−Δtn+1/2(dn − dn−1)

Δtn+1/2ΔtnΔtn−1/2
(10.5)

For equal time steps, this reduces to

d̈n def
= an =

(dn+1 − 2dn + dn−1)

(Δtn)2
(10.6)

which is the well known central difference formula for the second derivative of a function.
We now consider the time integration of the motion equation at time step n

Man = fn = f ext(dn, tn)− f int(dn, tn) (10.7)

subjected to the essential boundary condition

gI(v
n) = 0 I = 1 to nc onΓv (10.8)

which is an ordinary differential equation of second order in time.
The internal forces are functions of the nodal displacements (and thus on time), the external forces are function

both of time and displacement (uplift forces).
Substituting Eq. 10.7 into 10.4 gives

vn+1/2 = vn−1/2 +ΔtnM−1fn (10.9)

Energy balance must be satisfied, as numerical instability in nonlinear problems may only manifests itself in a
pernicious and subtle manner which will lead uncorrect results. It may also cause exponential growth which may
cause localized premature failures.

Hence Energy must be computed as follows:

W n+1
int =W n

int +
Δtn+1/2

2

(
vn+1/2

)T (
fnint + fn+1

int

)
= W n

int +
1

2
ΔdT (fnint + fn+1

int

)
(10.10-a)

W n+1
ext =W n

ext +
Δtn+1/2

2

(
vn+1/2

)T (
fnext + fn+1

ext

)
= W n

ext +
1

2
ΔdT

(
fnext + fn+1

ext

)
(10.10-b)

The kinetic energy is given by

W n
kin =

1

2
(vn)TMvn (10.11)

where Δd = dn+1 − dn .
Energy conservation requires that

|Wkin +Wint −Wext| ≤ εmax (Wkin,Wint,Wext) (10.12)

where ε is a tolerance of the order of 10−2
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10.3.2 Parallelization Concept based on Node-Cut Mesh
Partitioning

In the node-cut mesh partitioning, the cut runs through element sides and corresponding nodes. The nodes lying
on partition boundaries are marked as shared nodes. These nodes are shared by all adjacent partitions. On each
partition, the shared nodes have assigned unique local code (equation) numbers. The elements are uniquely assigned
to particular partitions. In order to guarantee the correctness of the solution of the partitioned problem, a modification
of the single processor algorithm is necessary. The equilibrium equations at local partition nodes are solved without
any change. However, at shared nodes, one is confronted with the necessity to assemble contributions from two or
more adjacent partitions. The correctness has to be enforced by exchange of contributions of shared node internal
and external forces between partitions. Each partition has to add the contributions received from neighbouring
partitions to the locally assembled shared node internal and external force and to send its shared node contributions
to neighbouring partitions. Since the partitioned domains contain only the local elements, the correct mass matrix
has to be established by an analogous data exchange operation before the time-stepping algorithm starts. As far as
the damping is assummed in the Rayleigh form, there is no need for transfer of contributions to the correct damping
matrix.

The process of mutual exchange of internal nodal force contributions must be repeated for each time step to
guarantee the correctness of the solution. In order to efficiently handle this exchange, each partition assembles its
send and receive communication maps for all partitions. While the send map contains the shared node numbers,
for which the exchange, in terms of sending the local contributions to a particular remote partition, is required, the
receive map contains the shared node numbers, for which the exchange, in terms of receiving the contributions from
a particular remote partition, is required. The nice property of node-cut approach is that the send and receive maps
are identical.

10.3.3 Algorithm

0. MPI: Build communication maps (note that this step can be done without communication if in each input file
will be for each shared node list of partitions sharing it)

a) get the maximum number of shared nodes on each partition using MPI ALLREDUCE function

b) broadcast (MPI BCAST) the list of global ids of shared nodes to other partitions

c) receive the broadcasted list (MPI BCAST) from other partitions

d) setup the communication map for each remote partition (array of shared node local ids sorted by their
global id)

1. Initial allocation of work arrays, a0, v0, σ0 and other state variables.

2. Assemble lumped diagonal mass matrix M (vector stored).

3. MPI: Appropriate distribution of mass matrix M to individual nodes and the summation of individual contri-
butions (MPI ISEND, MPI IRECV)

4. Assemble the first part (mass proportional) of the damping matrix C = a1M.

5. Assemble initial external load vectors f ext.0 (includes gravity, hydrostatic, uplift, etc...)

6. MPI: Communicate the local contributions to f ext,0 to other partitions (MPI ISEND, MPI IRECV)

7. Calculate internal force vector f int,0 and critical time step Δtcrit = αmin le√
E/ρ

8. MPI: Appropriate distribution of internal forces f int,0 to individual nodes and their summation, plus distribution
of Δtcrit.

9. Initialization of

a) d0 based on input data

b) If a0 is prescribed: v0 = C−1
(
f ext,0 −Ma0 − f int,0

)
c) If v0 is prescribed: a0 = M

(
f ext,0 −Cv0 − f int,0

)
10. Start loop over time steps tk+1 = tk +Δt̂.

11. Read loading and prescribed ãk+1, ṽk+1, and d̃k+1
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12. Assemble external load vector f ext,k+1

13. MPI: Appropriate distribution of external forces f ext,k+1 to individual nodes and the summation of individual
contributions.

14. Initialize load, displacement, velocity and acceleration vectors⎧⎪⎪⎨⎪⎪⎩
f ext,n = f ext,k

dn = dk

vn = vk

an = ak

(10.13)

Note: k refers to the user defined time stepping, whereas n (defined below) refers to the substeps necessary to
satisfy Δt ≤ Δtcrit.

a) Start loop over substeps

Δt = min
(
Δt̂,Δtcrit

)
(10.14-a)

Δt̂ = Δt̂−Δt (10.14-b)

i. Time update

tn+1 = tn +Δt, tn+1/2 =
1

2
(tn + tn+1) (10.15)

ii. Partial velocity update

vn+1/2 = vn +
(
tn+1/2 − tn

)
an (10.16)

iii. Enforce prescribed velocities on Γv

vn+1/2 =
tk+1 − tn+1/2

tk+1 − tn vn +
tn+1/2 − tn
tk+1 − tn ṽk+1 (10.17)

iv. Update nodal displacements

dn+1 = dn +Δtvn+1/2 (10.18)

v. Enforce prescribed displacements on Γd

dn+1 =
tk+1 − tn+1

tk+1 − tn dn +
tn+1 − tn
tk+1 − tn d̃k+1 (10.19)

vi. GET FORCES (Calculate internal force vector f int,n+1 and critical time Δtcrit).

vii. MPI: Appropriate distribution of internal forces f int,n+1 to individual nodes and their summation,
plus distribution of Δtcrit.

viii. Interpolate external loads for step n+ 1

f ext,n+1 =
tk+1 − tn+1

tk+1 − tn f ext,n +
tn+1 − tn
tk+1 − tn f ext,k+1 (10.20)

ix. Compute acceleration

an+1 = M−1

(
f ext,n+1 − f int,n+1 − a2

f int
n+1 − f int

n

Δt
−Cvn+1/2

)
(10.21)

Note third term is the stiffness proportional damping factor.

x. Enforce prescribed acceleration on Γa

an+1 =
tk+1 − tn+1

tk+1 − tn an +
tn+1 − tn
tk+1 − tn ãk+1 (10.22)
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xi. Update velocities

vn+1 = vn+1/2 + (tn+1 − tn+1/2)an+1 (10.23)

xii. Enforce prescribed velocities on Γv

vn+1 =
tk+1 − tn+1

tk+1 − tn+1/2
vn+1/2 +

tn+1 − tn+1/2

tk+1 − tn+1/2
ṽk+1 (10.24)

xiii. Check energy balance every m time steps where m � XX
A. Compute

W n+1
int = W n

int +
1

2
ΔdT

(
fnint + fn+1

int

)
(10.25-a)

W n+1
ext = W n

ext +
1

2
ΔdT (fnext + fn+1

ext

)
(10.25-b)

W n+1
kin =

1

2
(vn+1)TMvn+1 (10.25-c)

B. MPI: Sum the contributions to W n+1
int , W n+1

ext , and W n+1
kin from all partitions using MPI ALLREDUCE

(every k time steps)

C. Check if

|Wkin +Wint −Wext| ≤ εmax (Wkin,Wint,Wext) (10.26)

where ε � 10−2

b) End loop over substeps, end loop if Δt̂ ≤ 0.

15. Update incremental data plu other stuff to be done at the end of increments.

16. End loop over time steps

Algorithm Get Forces

1. Initialize fn = 0;

2. Set Δtcrit =∞

3. Loop over elements (e).

a) Gather element nodal displacements and velocities from global array

b) Set f int,n
(e)

= 0

c) Loop over Gauss points ξQ

i. Compute stresses σn(ξQ) through the constitutive equation.

ii. f int,n(e) ← f int,n(e) +BTσn(ξQ)wQJ |Q

d) Update internal forces f int,n(e) ← f int,n(e) + f int,n(e,dc)

e) Compute Δt
(e)
crit = αmin

L(e)

c
= αmin

L(e)√
E/ρ

(We can ignore zero thickness interface elements with cohesive

stresses because these are zero mass elements).

f) If Δt
(e)
crit < Δtcrit, then Δtcrit = Δt

(e)
crit

g) Element internal force vector is added to global internal force vector
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10.3.3.1 Note About Interface Elements

The evaluation of the Δtcr is of paramount importance in the explicit method. Δtcr corresponding to the time it
takes a seismic wave to cross an element can be estimated by

Δtcr = αmin
L(e)√

E
ρ

(10.27)

where α < 1.0.
We recall that zero thickness interface elements are

1. Formulated in terms of the relative displacements (Δu).

2. Have zero thickness.

3. Are assigned a normal thickness

Kn =
E

t
(10.28)

where E is the elastic modulus of the adjacent material, and t is an estimate of the actual physical thickness of
the interface in the prototype.

Hence, for the evaluation of Δtcr, we should consider this physical thickness of the prototype t in lieu of L(e).
Furthermore, we can define

ρ =
ρi
t

(10.29)

where ρ is the actual mass density, and ρi is the interface mass density. Substituting in Eq. 10.27, explicit reference
to the thickness t cancels out

Δtcr = α
t√
Knt
ρi
t

= α

√
ρi
Kn

(10.30)

where ρi and Kn are material properties assigned for the interface element
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HOURGLASS STABILIZATION

Adapted from (Belytschko et al. 2000)

In order to accelerate explicit analysis, it is beneficial to reduce the element order of integration. However, it is
well known that underintegration will result in hourglass modes (specially for linear elements) and mesh locking.
To mitigate this unpleasant effect, special measures must be taken to eliminate this effect. One such approach,
implemented in Merlin, is the so-called Perturbation Hourglass Stabilization procedure, (Belytschko et al. 2000).

In this method, (Belytschko, Ong, Liu and Kennedy 1984), a small correction is added to the discretization in order
to restore the (lost through the reduced integration) rank of the element stiffness matrix. However, it is important
to augment the rank without disturbing the linear completeness of the isoparametric element. Hence, one approach
is to augment the one point quadrature (linear) element by two rows which are orthogonal to the other three. This
orthogonalization ensures that the additional rows are linearly independent of the first three and that the correction
does not affect the response to linear fields.

The additional rows of the B matrix are the γ vector given by

γ =
1

4

[
h− (hTx)bx − (hTy)by

]
(11.1)

where h =
[
1 −1 1 −1

]
and

B =

⎡⎣ bT
x 0
0 bT

y

bT
y bT

x

⎤⎦ (11.2)

for the Q4 element.
Hence, the B matrix is augmented as follows

B̃ =

⎡⎢⎢⎢⎢⎣
bT
x 0

0 bT
y

bT
y bT

x

γT 0
0 γT

⎤⎥⎥⎥⎥⎦ (11.3)

and the corresponding stress vectors are now given by

{σ} =
[
σx σy σxy Qx Qy

]T
(11.4)

The constitutive matrix is also correspondingly augmented:

Ẽ =

⎡⎢⎢⎢⎢⎣
E11 E12 E13 0 0
E21 E22 E23 0 0
E31 E32 E33 0 0
0 0 0 EQ 0
0 0 0 0 EQ

⎤⎥⎥⎥⎥⎦ (11.5)

Finally, using this stabilization procedure, the linear stiffness matrix is given by

K(e) = K1pt
(e) +EQA

[
γγT γγT

γγT γγT

]
(11.6)

where A is the element area (to be replaced by V for brick elements) and the rank of the element stiffness matrix is
again 5 which is the correct one for the Q4 element.
EQ is given by

EQ =
1

2
αsc

2ρAbT
i bi (11.7)

where αs is a scaling parameter, and it is recommended that it be about equal to 0.1, αs the elastic dilational wave
speed, and ρ the specific mass density.

In Merlin four elements incorporate this hourglass control:
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a) Element 71: 4 noded quadrilateral for plane stress 2D analysis.

b) Element 72: 4 noded quadrilateral for plane strain 2D analysis.

c) Element 73: 4 noded quadritaleral for axisymmetric 2D analysis.

d) Element 74: 8 noded brick element for 3D analysis Literature.
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Chapter 12

EMBEDDED REINFORCEMENT

The stiffness matrix of a rod element is given by the classical equation

K =

∫
Ω

BTDBdΩ (12.1)

where B is really composed of two parts,

B︸︷︷︸
1×4

= B1︸︷︷︸
1×2

B2︸︷︷︸
2×4

(12.2)

where B2 transforms the displacements from global to local coordinates, and B1 determines the derivative for the
strain.

The stiffness matrix is a 4 × 4 matrix in 2D, and 6 × 6 in 3D for an arbitrarily oriented element in space. The
embedded reinforcement is going to intersect edges of continuum solid elements. At each one of those points, we can
relate the (bar) displacements to those of the element through the shape functions. Considering a 3 noded triangle,{

u1

u2

}
=

[
N(ξ1)
N(ξ2)

]
us = B∗︸︷︷︸

4×6

us (12.3)

where us is the nodal displacement vector of the solid element, ui are the nodal displacements of the bar node i, and
N(ξi) are shape functions values of the solid element that are evaluated at bar node i with natural coordinates ξi.

The stiffness matrix of the embedded element is thus added to the one of the solid element

Ktotal = Ksolid +Kbar (12.4)

where

Kbar︸ ︷︷ ︸
6×6

=

∫
Ω

B′TDB′dΩ (12.5)

where

B′︸︷︷︸
1×6

= B︸︷︷︸
1×4

B∗︸︷︷︸
4×6

(12.6-a)

D =
AE

L
(12.6-b)

When an embedded reinforcement crosses a crack, Fig. 12.1, then

B
A

1

34

6

7

1 2 5 6

34 8 7

2 5

8

α
β

α
β

Figure 12.1: Embedded Reinforcement Across a Crack/Joint

1. The element stiffness matrices of the two adjacent elements are computed and added to the global stiffness
matrix.
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2. A virtual super element, obtained by adding the connectivity vectors of the two elements α and β (1-2-3 and
5-6-8 or 1-2-3-4 and 5-6-7-8) is created. The B∗ matrix is now given by{

u1

u2

}
=

[
N(ξα) 0

0 N(ξβ)

]
︸ ︷︷ ︸

B∗︸︷︷︸
4×12

{
uα

uβ

}
(12.7)

where ξα are the natural coordinates of the first bar node in the first element, and ξβ the natural coordinates
of the second bar node in the second element (the first bar node (1) contributes to the stiffness of element α,
and the second node (2) contributes to the adjacent element β); uα and uβ are the nodal displacements of the
two virtual elements.

3. Hence, the size of B′ is

B′︸︷︷︸
1×12

= B︸︷︷︸
1×4

B∗︸︷︷︸
4×12

(12.8)

and

Kbar︸ ︷︷ ︸
12×12

=

∫
Ω

B′TDB′dΩ (12.9)

4. If the two elements have identical nodes (i.e. are not intersected by a crack), then we essentially recover Eq.
12.3 since the stiffness terms of the second bar node will contribute to the same stiffness term in the global
stiffness matrix (and the second bar node does not contribute to the stiffness terms corresponding to node 6).
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Chapter 13

SINGULAR ELEMENT

Theoretical background for determination of SIF in Merlin using singular elements

13.1 Introduction

For most practical problems, either there is no analytical solution, or the handbook ((Tada, Paris and Irwin 1973)) ones
are only crude approximation. Hence numerical techniques should be used. Whereas Boundary Element Methods
are increasingly being used, (Aliabadi and Rooke 1991), they are far behind in sophistication the Finite Element
Methods which will be exclusively covered in this chapter. For an overview of early finite element techniques in finite
elements the reader should consult (Owen and Fawkes 1983), some of the more recent methods are partially covered
in (Anderson 1995). Finally, the Ph.D. thesis of Reich (1993) and of Červenka, J. (1994) contain some of the major
extensions of modern techniques to include thermal load, body forces, surface tractions in 2D and 3D respectively.

Numerical methods for fracture mechanics can be categorized in many different ways, in this chapter we shall use
three criteria:

1. Those in which the singularity is modelled, that is the r−
1
2 stress field at the tip of the crack is properly

represented.

2. Techniques in which the SIF are directly evaluated as part of the augmented global stiffness matrix.

3. Techniques through which the SIF can be computed a post priori following a standard finite element analysis
via a special purpose post-processor.

13.2 Quarter Point Singular Elements

This section discusses the easiest and most powerful technique used in finite elements to model a stress singularity.
Barsoum (Barsoum 1974) and Henshell and Shaw (Henshell and Shaw 1975) independently demonstrated that the

inverse square root singularity characteristic of linear elastic fracture mechanics can be obtained in the 2D 8-noded
isoparametric element (Q8) when the mid-side nodes near the crack tip are placed at the quarter point. Thus, in order
to model a stress singularity without altering the finite element code, the mid-side nodes adjacent to the crack tip
must be shifted to their quarter-point position. Since then this element became known as the quarter-point element.
In light of the simplicity and accuracy achieved by this element, this section will:

1. cover a brief review of the isoparametric element formulation

2. show how the element can be distorted in order to achieve a stress singularity

3. determine the order of the stress singularity

4. provide a brief review of all the historical developments surrounding this element

5. discuss the effect on numerical accuracy of element size, order of integration, and local meshing around the
crack tip

6. briefly mention references to other singular elements

13.3 Review of Isoparametric Finite Elements

In the isoparametric finite element representation, both the internal displacement and coordinates are related to their
nodal values through the shape functions:{

x
y

}
=

8∑
i=1

[
Ni 0
0 Ni

]{
xi

yi

}
(13.1)

{d} =
{
u
v

}
=

8∑
i=1

[
Ni 0
0 Ni

]{
ui

vi

}
(13.2)
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Figure 13.1: Isoparametric Quadratic Finite Element: Global and Parent Element

where the Ni are the assumed shape functions. For quadratic isoparametric serendipity elements (Fig. 13.1) the
shape functions are given by:

Ni =
1

4
(1 + ξξi) (1 + ηηi) (ξξi + ηηi − 1) , i = 1, 3, 5, 7 (13.3)

Ni =
1

2

(
1− ξ2

)
(1 + ηηi) , i = 2, 6 (13.4)

Ni =
1

2
(1 + ξξi)

(
1− η2

)
, i = 4, 8 (13.5)

In Fig. 13.1, xi, yi are the nodal coordinates, ui, vi are the nodal displacements.
As the strain is the derivative of the displacement, we will need later to define ∂N

∂x
and ∂N

∂y
. N has been defined

in Eq. 13.3 - 13.5 in terms of the natural coordinates ξ and η. Thus the chain rule will have to be invoked and the
inverse of the jacobian will be needed. In this case, the jacobian matrix is:

[J ] =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
(13.6)

=

[ ∑8
i=1

∂Ni
∂ξ
xi

∑8
i=1

∂Ni
∂ξ
yi∑8

i=1
∂Ni
∂η

xi

∑8
i=1

∂Ni
∂η
yi

]
(13.7)

The inverse jacobian is then evaluated from:

[J ]−1 =

[ ∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

]
(13.8)

=
1

DetJ

[
∂y
∂η

− ∂y
∂ξ

− ∂x
∂η

∂x
∂ξ

]
(13.9)

The strain displacement relationship is:

{ε} =
8∑

i=1

[Bi]
[
di
]

(13.10)

where [Bi] is the strain matrix given by:

[Bi] =

⎡⎢⎣
∂Ni
∂x

0

0 ∂Ni
∂y

∂Ni
∂y

∂Ni
∂x

⎤⎥⎦ (13.11)

where the following chain rule is invoked to determine the coefficients of [B]:⎧⎨⎩
∂N
∂x

∂N
∂y

⎫⎬⎭ = [J ]−1

⎧⎨⎩
∂N
∂ξ

∂N
∂η

⎫⎬⎭ (13.12)
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Finally, it can be shown that the element stiffness matrix of an element is given by (Gallagher 1975), (Zienkiewicz
1967):

[K] =

∫ 1

−1

∫ 1

−1

[B (ξ, η)] [D] [B (ξ, η)] detJdξdη (13.13)

where the natural coordinates ξ and η are shown in Fig. 13.1 and [D] is the stress-strain or constitutive matrix.
The stress is given by:

{σ} = [D] [B]

{
ui

vi

}
(13.14)

13.4 How to Distort the Element to Model the Singularity

In Eq. 13.14, if the stresses are to be singular, then [B] has to be singular as the two other components are constants.
Consequently, if [B] is to be singular then the determinant of J must vanish to zero (Eq. 13.6) at the crack tip.

Now considering a rectangular element of length L along its first side (1-2-3, in Fig. 13.1), we can readily see that
both off-diagonal terms ( ∂y

∂ξ
and ∂x

∂η
) are zero. Thus, for the determinant of the jacobian to be zero we must have

either one of the diagonal terms equal to zero. It will suffice to force ∂x
∂ξ

to be zero. Making the proper substitution

for ∂x
∂ξ

at η = −1 we have:

∂x

∂ξ

∣∣∣∣
η=−1

=
8∑

i=1

Nixi

=
1

4
[−1 + 2ξ + 2ξ + 1] (0)

+
1

4
[1 + 2ξ + 2ξ + 1] (L)

+
1

4
[−1 + 2ξ − 2ξ + 1] (L)

+
1

4
[1− 2ξ + 2ξ − 1] (0)

+
1

2
(−2ξ − 2ξ) (x2)

+
1

2
(−2ξ + 2ξ)

(
L

2

)
+
1

2
(1− 1) (L)

+
1

2
(−1 + 1) (0)

=
1

4
(2 + 4ξ)L+

1

2
(−4ξ)x2 (13.15)

After simplification, and considering the first corner node (where η = ξ = −1), we would have:

∂x

∂ξ

∣∣∣∣ξ=−1
η=−1

= 0⇔ (1− 2)
L

2
+ 2x2 = 0 (13.16)

x2 =
L

4
(13.17)

Thus all the terms in the jacobian vanish if and only if the second node is located at L
4
instead of L

2
, and subsequently

both the stresses and strains at the first node will become singular.
Thus singularity at the crack tip is achieved by shifting the mid-side node to its quarter-point position, see Fig.

13.2.
We should observe that instead of enforcing ∂x

∂ξ
along edge 1-3 to vanish at the crack tip, we could have enforced

∂y
∂η

along edge 1-7 to be zero at the crack tip.
A similar approach will show that if node 8 is shifted to its quarter-point position the same radial strain variation

would be obtained along sides 1-7. However, along rays within the element emanating from node 1 the strain variation
is not singular. The next section will discuss this issue and other variation of this distorted element in more detail.
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Figure 13.2: Singular Element (Quarter-Point Quadratic Isoparametric Element)

13.5 Order of Singularity

Having shown that the stresses at the first node are singular, the obvious question is what is the degree of singularity.
First let us solve for ξ in terms of x and L at η = −1 (that is, alongside 1-2-3):

x =
8∑

i=1

Nixi

=
1

2

(
1− ξ2

)
(1 + 1)

L

4
+

1

4
(1 + ξ) (1 + 1) (ξ)L

=
1

2
ξ (1 + ξ)L+

(
1− ξ2

) L
4

(13.18)

⇒ ξ = −1 + 2

√
x

L
(13.19)

Recalling that in isoparametric elements the displacement field along η = −1 is given by:

u = −1

2
ξ (1− ξ)u1 +

1

2
ξ (1 + ξ)u2 +

(
1− ξ2

)
u3 (13.20)

we can rewrite Eq. 13.20 by replacing ξ with the previously derived expression, Eq. 13.19):

u = −1

2

(
−1 + 2

√
x

L

)(
2− 2

√
x

L

)
u1

+
1

2

(
−1 + 2

√
x

L

)(
2

√
x

L

)
u2

+

(
4

√
x

L
− 4

x

L

)
u3 (13.21)

This complex equation can be rewritten in the form:

u = A+Bx+ C

√
x

L
(13.22)

We thus note that the displacement field has had its quadratic term replaced by x
1
2 , which means that when the

derivative of the displacement is taken, the strain (and stresses) are of the form:

εx = −1

2

(
3√
xL
− 4

L

)
u1 +

1

2

(
−1√
xL

+
4

L

)
u2 +

(
2√
xL
− 4

L

)
u3 (13.23)

Thus the strength of the singularity is of order 1
2
, just as we wanted it to be for linear elastic fracture mechanics !

13.6 Stress Intensity Factors Extraction

A number of techniques (including the ones discussed in the subsequent section) can be used to determine the SIF
when quarter-point elements are used, Fig. 13.3 but by far the simplest one to use and implement is the one based
on the nodal displacement correlation technique.
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Figure 13.3: Finite Element Discretization of the Crack Tip Using Singular Elements

This technique, first introduced by Shih et al. (Shih, de Lorenzi and German 1976), equates the displacement field
in the quarter-point singular element with the theoretical one. This method was subsequently refined by Lynn and
Ingraffea (Lynn and Ingraffea 1977) who introduced the transition elements, and extended by Manu and Ingraffea to
three-dimensional isotropic problems (Ingraffea and Manu 1980).

This method was finally extended to full three-dimensional anisotropic cases by Saouma and Sikiotis (Saouma and
Sikiotis 1986).

13.6.1 Isotropic Case

For the quarter-point singular element, in two dimensions, and with reference to Fig. 13.4, the displacement field is

Figure 13.4: Displacement Correlation Method to Extract SIF from Quarter Point Singular Elements

given by:

u′ = u
′
A +

(
−3u′

A + 4u
′
B − u

′
C

)√
r
L
+
(
2u

′
A + 2u

′
C − 4u

′
B

)
r
L

(13.24)

v′ = v
′
A +

(
−3v′

A + 4v
′
B − v

′
C

)√
r
L
+
(
2v

′
A + 2v

′
C − 4v

′
B

)
r
L

(13.25)

where u′ and v′ are the local displacements (with x′ aligned with the crack axis) of the nodes along the crack in the
singular elements.

On the other hand, the analytical expression for v is given by Eq. ?? with θ = 180, yielding:

v = KI
κ+ 1

2G

√
r

2π
(13.26)

Equating the terms of equal power ( 1
2
) in the preceding two equations, the

√
r term vanishes, and we obtain:

KI =
2G

κ+ 1

√
2π

L

(
−3v

′
A + 4v

′
B − v

′
C

)
(13.27)
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If this approach is generalized to mixed mode problems, then the two stress intensity factors are given by:

{
KI

KII

}
=

1

2

2G

κ+ 1

√
2π

L

[
0 1
1 0

]⎡⎣ −3u′
A + 4

(
u

′
B − u

′
D

)
−
(
u

′
C − u

′
E

)
−3v′

A + 4
(
v
′
B − v

′
D

)
−
(
v
′
C − v

′
E

) ⎤⎦ (13.28)

Thus it can be readily seen that the extraction of the SIF can be accomplished through a “post-processing” routine
following a conventional finite element analysis in which the quarter-point elements have been used.

13.6.2 Anisotropic Case

Following a similar procedure to the one previously described, for the anisotropic case,1 Saouma and Sikiotis (Saouma
and Sikiotis 1986) have shown that the three stress intensity factors can be evaluated from:⎧⎨⎩

KI

KII

KIII

⎫⎬⎭ = [B]−1 [A]

√
2π

L
(13.29)

where [A] is obtained from the displacements of those nodes along the crack in the singular quarter-point wedge
element, as shown in Fig. 13.5:

[A] =

⎡
⎢⎢⎢⎢⎣

2uB − uC + 2uE − uF + uD + 1
2 η (−4uB + uC + 4uE − uF ) + 1

2η
2 (uF + uC − 2uD)

2vB − vC + 2vE − vF + vD + 1
2η (−4vB + vC + 4vE − vF ) + 1

2η
2 (vF + vC − 2vD)

2wB − wC + 2wE − wF + wD + 1
2η (−4wB + wC + 4wE − wF ) + 1

2η
2 (wF + wC − 2wD)

⎤
⎥⎥⎥⎥⎦

(13.30)

and [B] is obtained from the analytical solution to the displacements around the crack tip in homogeneous anisotropic
solids:

[B]−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re
[

i
s1−s2

(q2 − q1)
]

1
D

Re
[

−i
s1−s2

(p2 − p1)
]

1
D

0

Re
[

−i
s1−s2

(s1q2 − s2q1)
]

1
D

Re
[

i
s1−s2

(s1p2 − s2p1)
]

1
D

0

0 0 1

(c44c55−c245)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.31)

1Anisotropic modeling is important for either roller compacted concrete dams or layered rock foundations.
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Figure 13.5: Nodal Definition for FE 3D SIF Determination
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Chapter 14

RECIPROCAL WORK INTEGRALS

Theoretical background for evaluation of SIF in 2D using the S Integral in Merlin

Chapter adapted from (Reich 1993)

14.1 General Formulation

In addition to conservation laws, a form of Betti’s reciprocal work theorem (Sokolnikoff 1956) can also be exploited to
directly compute stress intensity factors (Stern 1973). The reciprocal work theorem defines the relationship between
two equilibrium states for a solid. For a solid free of body forces and initial strains and stresses the reciprocal work
theorem is defined as∮

Γ

ti ũi dΓ =

∮
Γ

t̃i ui dΓ (14.1)

where Ω is any simply connected region within the solid and Γ is the contour of that region; ui and ti are the displace-
ments and surface tractions, respectively, associated with one equilibrium state and ũi; and t̃i are the displacements
and surface tractions, respectively, associated with another equilibrium state. The equilibrium state defined by ui

and ti is called the primary state and the equilibrium state defined by ũi and t̃i is called the complementary or
auxiliary state.

To apply the reciprocal work theorem to a cracked solid the simply connected region Ω must be defined such that
the singularity at the crack tip is avoided. This is accomplished by defining a pair of surfaces, Γ and Γε, that begin
on one crack surface and end on the other. Γ is an arbitrary surface defined in the counter-clockwise direction around
the crack tip but far away from it. Γε is a circle of radius ε centered on the crack tip that is defined in the clockwise
direction around the crack tip completely inside Γ. Another pair of surfaces, Γ+

t and Γ−
t , corresponding to the crack

surfaces complete the definition of Γ, as is shown in Figure 14.1. Γ+
t is defined on the upper crack surface between Γ

and Γε and Γ−
t is defined on the lower crack surface bewteen Γε and Γ. Naturally, Ω is the region inside this closed

path through the solid. Since the material inside Γε is not included in the definition of Ω the singularity at the crack
tip has been excluded.

Ω

crack
tipcrack

x

y

surfaces

n

Γ

Γ

ε

Γ +

-Γ

t

t

ε
n

Figure 14.1: Contour integral paths around crack tip for recipcoal work integral
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Assuming that Γ+
t and Γ−

t are traction free the definition of the reciprocal work theorem can be rewritten as∫
Γ

ti ũi dΓ +

∫
Γε

ti ũi dΓ =

∫
Γ

t̃i ui dΓ +

∫
Γε

t̃i ui dΓ (14.2)

in which the contributions from Γ and Γε are clearly separated. This expanded expression is then rewritten in the
form of Somigliana’s identity to obtain∫

Γ

(ti ũi − t̃i ui) dΓ +

∫
Γε

(ti ũi − t̃i ui) dΓ = 0 (14.3)

The displacements ui and the stresses σij for the primary state can be decomposed into

ui = us
i + ue

i + u0
i

σij = σs
ij + σe

ij
(14.4)

where us
i and σs

ij are the displacements and stresses, respectively, for the singular elastic state at the crack tip; ue
i and

σe
ij are the displacements and stresses, respectively, for the elastic state required to insure that boundary conditions

on ui and σij are satisfied; and u0
i are the displacements of the crack tip.

Recognizing that the product u0
i t̃i has no contribution to the integral since the tractions t̃i are self equilibrating

due to the lack of body forces and taking into account the orders of the displacements and stresses in the various
elastic states, (Stern 1973) determined that∫

Γε

(ti ũi − t̃i ui) dΓ =

∫
Γε

(tsi ũi − t̃i u
s
i ) dΓ + o(1) (14.5)

As ε is decreased the elastic singular state us
i and tsi becomes more dominant and the o(1) terms can be ignored

allowing the integrals over Γε and Γ to be related in the following manner

Iε = lim
ε→0

∫
Γε

(tsi ũi − t̃i u
s
i ) dΓ = −

∫
Γ

(ti ũi − t̃i ui) dΓ (14.6)

Based on this relationship a singular elastic state us
i and tsi can be assumed; an auxiliary singular state ũi and t̃i can

be constructed from the assumed singular elastic state; and the value Iε can be determined from the auxiliary singular
state and far field displacements and tractions, ui and ti, computed using a suitable numerical method. Perhaps the
most attractive feature of this approach is that the singularity at the crack tip need not be rigorously modeled in the
numerical method used to obtain ui and ti.

Auxiliary singular states have been constructed for a crack in a homogeneous isotropic medium (Stern, Becker and
Dunham 1976), a crack in a homogeneous orthotropic medium (Stern and M.L. 1975), and a crack on the interface
between dissimilar isotropic media (Hong and Stern 1978). The procedure for constructing an auxiliary singular state
will be outlined here using the homogeneous isotropic medium for this discussion. Once the singular elastic state has
been assumed, the auxiliary singular state is constructed by taking λ as the negative of the value used in the singular
elastic state, λ = − 1

2
in this case. This of course means that the strain energy for the auxiliary singular state is

unbounded at the crack tip, but since the integral is evaluated well away from the crack tip this is of no concern
(Stern 1973). The value of the complex constant A for the auxiliary singular state is determined to be

A =
2μ

(2π)
1
2 (1 + κ)

(c1 + i c2) (14.7)

where c1 and c2 are arbitrary constants. This choice for A normalizes the integrand for Γε involving the singular
elastic state and the auxiliary singular state (Stern et al. 1976). Having determined A, the product of this integral is

Iε = c1KI + c2KII + o(1) (14.8)

with the o(1) term going to zero as ε is decreased. The stress intensity factors, KI and KII , can therefore be directly
related to the integral over Γ

c1KI + c2KII =

∫
Γ

[
(ui − u0

i ) t̃i + ũi ti
]
dΓ (14.9)

as was shown in Equation 14.6. When the integral is evaluated using ui and ti obtained from the numerical method
the constants associated with the coefficients c1 and c2 are the stress intensity factors.
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For the isotropic case, in the neighborhood of the crack tip, the displacements and the stresses, in polar coordinate
system, are given by Westergaard as:

ur − u0
r =

1

4μ

( r

2π

) 1
2

{[
(2κ− 1) cos

θ

2
− cos

3θ

2

]
KI

−
[
(2κ− 1) sin

θ

2
− 3 sin

3θ

2

]
KII

}
+O

(
r

1
2

)
(14.10)

uθ − u0
θ =

1

4μ

( r

2π

) 1
2

{[
−(2κ+ 1) sin

θ

2
+ sin

3θ

2

]
KI

−
[
(2κ+ 1) cos

θ

2
− 3 cos

3θ

2

]
KII

}
+O

(
r

1
2

)
(14.11)

σr =
1

4(2πr)
1
2

{(
5 cos

θ

2
− cos

3θ

2

)
KI −

(
5 sin

θ

2
− 3 sin

3θ

2

)
KII

}
+O

(
r−

1
2

)
(14.12)

σθ =
1

4(2πr)
1
2

{(
3 cos

θ

2
+ cos

3θ

2

)
KI −

(
3 sin

θ

2
+ 3 sin

3θ

2

)
KII

}
+O

(
r−

1
2

)
(14.13)

σrθ =
1

4(2πr)
1
2

{(
sin

θ

2
+ sin

3θ

2

)
KI +

(
cos

θ

2
+ 3 cos

3θ

2

)
KII

}
+O

(
r−

1
2

)
(14.14)

where u0
r and u0

θ are the radial and tangential components, respectively, of the displacements u0 of the crack tip, and

KI = lim
r→0

(2πr)
1
2 σθ|θ=0 (14.15)

KII = lim
r→0

(2πr)
1
2 σrθ|θ=0 (14.16)

are the usual stress intensity factors.
The auxiliary solution to be used in the reciprocal work relation is based on Williams solution (Stern et al. 1976):

ũr =
1

2(2πr)
1
2 (1 + κ){[

(2κ+ 1) cos
3θ

2
− 3 cos

θ

2

]
c1 +

[
(2κ+ 1) sin

3θ

2
− sin

θ

2

]
c2

}
(14.17)

ũθ =
1

2(2πr)
1
2 (1 + κ){[

−(2κ− 1) sin
3θ

2
+ 3 sin

θ

2

]
c1 +

[
(2κ− 1) cos

3θ

2
− cos

θ

2

]
c2

}
(14.18)

σ̃r = − μ

2(2πr3)
1
2 (1 + κ)

{[
7 cos

3θ

2
− 3 cos

θ

2

]
c1 +

[
7 sin

3θ

2
− sin

θ

2

]
c2

}
(14.19)

σ̃θ = − μ

2(2πr3)
1
2 (1 + κ)

{[
cos

3θ

2
+ 3 cos

θ

2

]
c1 +

[
sin

3θ

2
+ sin

θ

2

]
c2

}
(14.20)

σ̃rθ = − μ

2(2πr3)
1
2 (1 + κ)

{
3

[
sin

3θ

2
+ sin

θ

2

]
c1 −

[
3 cos

3θ

2
− cos

θ

2

]
c2

}
(14.21)

where c1 and c2 are arbitrary constants. Now, on the inner circular boundary, the evaluation of the contour integral
in terms of traction and displacement takes the form:

Iε = −
∫
Cε

((u− u0) · t̃)− ũ · t)ds

=

∫ π

−π

[σ̃r(ur − u0
r)σ̃rθ(uθ − u0

θ)− σrũr + σrθũθ]rdθ (14.22)

When the two solutions are substituted into the preceding equation, we obtain:

Iε = c1KI − c2KII (14.23)
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Thus it can be readily seen that Eq. ?? now reduces to:

c1KI − c2KII =

∫
C

[(
u− u0

)
· t̃− ũ · t

]
ds (14.24)

From this equation an algorithm for the SIF determination emerges:

1. Perform a linear elastic finite element analysis.

2. Extract u and t (displacements and traction) from the analysis.

3. Substitute into Eq. 14.24 along with the auxiliary solution.

4. The components of c1 in Eq. 14.24 yield KI .

5. The components of c2 in Eq. 14.24 yield KII .

In addition to demonstrating the reciprocal work integral for cracks in homogeneous isotropic (Stern et al. 1976),
homogeneous orthotropic (Stern and M.L. 1975), and on the interface between dissimilar isotropic materials (Hong
and Stern 1978), Stern also proposed extensions for treating body forces (Stern et al. 1976) and thermal strains
(Stern 1979). Unfortunately, the description of the extension for body forces was rather superficial, being limited to
a footnote, and no example problems were presented for either of these extensions. However, for the case of thermal
strains it was clearly shown that there is no need to consider thermal loading in the auxiliary state, meaning that
the reciprocal work integral can also be extended include initial stresses without modifiying the auxiliary solution.
More recent developments include the treatment of dynamic crack propagation (Atkinson, Bastero and Miranda
1986, Bastero, Atkinson and Martinez-Esnaola 1989), sharp notches (Atkinson, Bastero and Martinez-Esnaola 1988,
Atkinson and Bastero 1991), and cracks in coupled poro-elastic media (Atkinson and Craster 1992).

14.2 Volume Form of the Reciprocal Work Integral

The first step to be taken when formulating extensions to the reciprocal work integral is the definition of the reciprocal
work theorem accounting for the applied loads in the two equilibrium states. Unfortunately, it is not always obvious
how the reciprocal work theorem should be defined to account for the applied loads, particularly when they are the
result of initial strains or stresses. It will be shown here that the line integrals in the reciprocal work theorem can be
converted to volume integrals using Green’s theorem and that the form of the integrand for the volume integrals is
such that the appropriate form of the reciprocal work theorem can be determined quite simply.

(Sokolnikoff 1956) defined the reciprocal work theorem relating two separate equilibrium states for a solid, both
including body forces, as∫

Γ

ti ũi dΓ +

∫
Ω

bi ũi dΩ =

∫
Γ

t̃i ui dΓ +

∫
Ω

b̃i ui dΩ (14.25)

where ui, ti, and bi are the displacements, surface tractions, and body forces, respectively, for one equilibrium state;
ũi, t̃i, and b̃i are the displacements, surface tractions, and body forces, respectively, for the other equilibruim state;
Ω corresponds to the volume of the solid; and Γ corresponds to the entire surface of the solid. The equilibrium
state defined by ui, ti, and bi is referred to as the primary state and the equilibrium state defined by ũi, t̃i, and b̃i
is referred to as the auxiliary state. Recalling from the equilibrium equation that bi = −σij,j and b̃i = −σ̃ij,j the
reciprocal work theorem can be rewritten as∫

Γ

ti ũi dΓ −
∫
Ω

σij,j ũi dΩ =

∫
Γ

t̃i ui dΓ −
∫
Ω

σ̃ij,j ui dΩ (14.26)

where σij and σ̃ij are the stress tensors for the two equilibrium states. Adopting a counter-clockwise path around
Γ the expressions relating dΓ to dx1 and dx2 given in Equation ?? are still valid, allowing the line integrals to be
written in a form compatible with Green’s theorem∫

Γ

ti ũi dΓ =

∫
Γ

(−σi2 ũi dx1 + σi1 ũi dx2)∫
Γ

t̃i ui dΓ =

∫
Γ

(−σ̃i2 ui dx1 + σ̃i1 ui dx2)
(14.27)

by expanding ti and t̃i in terms of σij , σ̃ij , and ni and collecting terms. Applying Green’s theorem (Kreyszig 1979)
to convert the line integrals to volume integrals yields∫

Γ

ti ũi dΓ =

∫
Ω

σij,j ũi dΩ +

∫
Ω

σij ũi,j dΩ∫
Γ

t̃i ui dΓ =

∫
Ω

σ̃ij,j ui dΩ +

∫
Ω

σ̃ij ui,j dΩ
(14.28)
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and the reciprocal work theorem clearly simplifies to∫
Ω

σij ũi,j dΩ =

∫
Ω

σ̃ij ui,j dΩ (14.29)

In the absence of body forces the volume integrals are not included in the definition of the reciprocal work theorem
and the expression shown above is still valid since σij,j = 0 and σ̃ij,j = 0. Knowing that the line integral form of
the reciprocal work theorem can be rewritten in the volume integral form shown in Equation 14.29, the appropriate
definition of the reciprocal work theorem to account for initial strains and stresses in the primary state can be obtained
quite easily. This is accomplished by simply writing the volume form of the reciprocal work theorem such that there
is a direct relationship between the stresses and displacements in the primary state.

14.3 Surface Tractions on Crack Surfaces

The extension to the reciprocal work integral to include the effect of surface tractions on the crack surfaces in the
primary state parallels the approach proposed by (Karlsson and Bäcklund 1978) for the J integral. For a primary
state free of body forces with surface tractions on the crack surfaces the reciprocal work theorem is defined as∫

Γ

ti ũi dΓ =

∫
Γ

t̃i ui dΓ (14.30)

This expression can be rewritten such that a separate integral is given for each portion of the contour path∫
Γ

ti ũi dΓ +

∫
Γε

ti ũi dΓ +

∫
Γt

t̂i ũi dΓ =

∫
Γ

t̃i ui dΓ +

∫
Γε

t̃i ui dΓ (14.31)

where Γt = Γ+
t ∪ Γ−

t and t̂i is the applied surface traction vector on the crack surfaces in the primary state. This
expression for the reciprocal work theorem can be rewritten in the form of Somigliana’s identity as∫

Γ

(ti ũi − t̃i ui) dΓ +

∫
Γt

t̂i ũi dΓ +

∫
Γε

(ti ũi − t̃i ui) dΓ = 0 (14.32)

Clearly, the integrand of the integral over Γε is identical to that for the case of a primary state free of surface tractions
on the crack surfaces, which means that Equation 14.5 still holds and the solution for the auxiliary singular state is
still valid. The value Iε is then defined as

Iε = −
∫
Γ

(ti ũi − t̃i ui) dΓ − lim
ε→0

∫
Γt

t̂i ũi dΓ (14.33)

Provided that t̂i is not expressed in powers of r less than − 1
2
, the limit exists and the stress intensity factors are

defined as

c1KI + c2KII =

∫
Γ

[ t̃i (ui − u0
i ) − ti ũi] dΓ −

∫
Γt

t̂i ũi dΓ (14.34)

where u0
i are the displacements of the crack tip. However, when the integral over Γt is evaluated using numerical

integration techniques, quadratures based on sampling points that coincide with the nodal locations should be avoided
since ũi is singular at the crack tip.

14.4 Body Forces

For a primary state with body forces but free surface tractions on the crack surfaces and initial strains and stresses
the reciprocal work theorem is defined as∫

Γ

ti ũi dΓ +

∫
Ω

bi ũi dΩ =

∫
Γ

t̃i ui dΓ (14.35)

where bi is the body force vector. It should be noted that since the line integrals are defined over Γ this form of
the reciprocal work integral could also account for surface tractions on the crack surfaces. The expression for the
reciprocal work theorem can be rewritten such that a separate integral is given for each portion of the contour path∫

Γ

ti ũi dΓ +

∫
Γε

ti ũi dΓ +

∫
Ω

bi ũi dΩ =

∫
Γ

t̃i ui dΓ +

∫
Γε

t̃i ui dΓ (14.36)
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This expression can be rewritten in the form of Somigliana’s identity as∫
Γ

(ti ũi − t̃i ui) dΓ +

∫
Ω

bi ũi dΩ +

∫
Γε

(ti ũi − t̃i ui) dΓ = 0 (14.37)

Clearly, the integrand of the integral over Γε is identical to that for the case of a primary state free of body forces,
which means that Equation 14.5 still holds and the solution for the auxiliary singular state described is still valid.
The value Iε is then defined as

Iε = −
∫
Γ

(ti ũi − t̃i ui) dΓ − lim
ε→0

∫
Ω

bi ũi dΩ (14.38)

Provided that bi is not expressed in powers of r less than − 1
2
, the limit exists and the stress intensity factors are

defined as

c1KI + c2KII =

∫
Γ

[ t̃i (ui − u0
i ) − ti ũi] dΓ −

∫
Ω

bi ũi dΩ (14.39)

where u0
i are the displacements of the crack tip. However, when the integral over Ω is evaluated using numerical

integration techniques, quadratures based on sampling points that coincide with the nodal locations should be avoided
since ũi is singular at the crack tip.

14.5 Initial Strains Corresponding to Thermal Loading

For problems in thermo-elasticity the constitutive law defines net effective stresses σ̄′
ij in terms of the total strains

εij and the thermal strains ε0ij , as is shown in Equation 14.53. σ̄′
ij can be decomposed into effective stresses σ′

ij and
thermal stresses σ′′

ij . σ
′
ij are the result of εij , which are, in turn, is defined by the displacements ui. Therefore, the

effective stresses σ′
ij are then directly related to the displacements ui and should be used in the definition of the

reciprocal work theorem rather than the net effective stresses σ̄′
ij . The volume form of the reciprocal work theorem

for a primary state that includes thermal strains is∫
Ω

σ′
ij ũi,j dΩ =

∫
Ω

σ̃ij ui,j dΩ (14.40)

The relationship between the line and volume integral forms of the reciprocal work theorem can be readily obtained
by applying Green’s theorem to the volume integral with σ′

ij in the integrand∫
Γ

t′i ũi dΓ =

∫
Ω

σ′
ij,j ũi dΩ +

∫
Ω

σ′
ij ũi,j dΩ (14.41)

where t′i = σ′
ijnj is the effective surface traction vector. Recalling from the equilibrium equation that σ′

ij,j =
αCijklT,jδkl in the absence of body forces, it is clearly evident that a volume integral is required to complete the
definition of the reciprocal work theorem. Therefore, the appropriate form of the reciprocal work theorem for a
primary state with thermal strains but no body forces is∫

Γ

t′i ũi dΓ −
∫
Ω

α (Cijkl T,i δkl)ũi dΩ =

∫
Γ

t̃i ui dΓ (14.42)

where T,i is the gradient of the temperatures. A more general form of the reciprocal work theorem would be∫
Γ

t′i ũi dΓ +

∫
Ω

b′i ũi dΩ =

∫
Γ

t̃i ui dΓ (14.43)

where b′i is the effective body force vector, as defined in Equation 14.58, which in this particular case does not include
a true body force vector bi.

Recalling that the natural boundary conditions are defined in terms of the total stresses, t′i �= 0 on the crack
surfaces. Therefore, the form of the reciprocal work theorem in which the line integrals on Γ have been separated is∫

Γ

t′i ũi dΓ +

∫
Γε

t′i ũi dΓ +

∫
Γt

t̂′i ũi dΓ +

∫
Ω

b′i ũi dΩ =

∫
Γ

t̃i ui dΓ +

∫
Γε

t̃i ui dΓ (14.44)

where t̂′i is the applied effective surface traction vector, as defined in Equation 14.60, which, much like the effective
body force vector b′i, does not include a true applied surface traction vector in this case. This expression for the
reciprocal work theorem can be rewritten in the form of Somigliana’s identity as∫

Γ

(t′i ũi − t̃i ui) dΓ +

∫
Γt

t̂′i ũi dΓ +

∫
Ω

b′i ũi dΩ +

∫
Γε

(t′i ũi − t̃i ui) dΓ = 0 (14.45)
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Clearly, the integrand of the integral over Γε is identical to that for the case of a primary state free of initial strains,
which means that Equation 14.5 still holds and the solution for the auxiliary singular state described in Section ??
is still valid. The value Iε is then defined as

Iε = −
∫
Γ

(t′i ũi − t̃i ui) dΓ − lim
ε→0

∫
Γt

t̂′i ũi dΓ − lim
ε→0

∫
Ω

b′i ũi dΩ (14.46)

Provided that the temperature T is not expressed in powers of r less than 1
2
, the limit exists and the stress intensity

factors are defined as

c1KI + c2KII =

∫
Γ

[ t̃i (ui − u0
i ) − t′i ũi] dΓ −

∫
Γt

t̂′i ũi dΓ −
∫
Ω

b′i ũi dΩ (14.47)

where u0
i are the displacements of the crack tip. However, when the integrals over Γt and Ω are evaluated using

numerical integration techniques, quadratures based on sampling points that coincide with the nodal locations should
be avoided since ũi is singular at the crack tip.

14.6 Initial Stresses Corresponding to Pore Pressures

The stress-strain relationship for poro-elasticity, which is obtained by substituting the constitutive law defining the
effective stresses σ′

ij into the principle of effective stress, defines the total stresses σij in terms of the total strains εij
and the pore pressures p, as was shown in Equation 14.62. As was the case for problems in thermo-elasticity, σij can
again be decomposed, but in this instance the constituent stresses are σ′

ij and the initial stresses σ0
ij corresponding

to the pore pressures. Since εij is defined in terms of the displacements ui, the effective stresses σ′
ij are then directly

related to the displacements ui and the reciprocal work theorem is again defined in terms of the effective stresses in
the primary state. Therefore, Equations 14.40 and 14.41 also apply when the primary state includes initial stresses.
Recalling from the equilibrium equation that σ′

ij,j = p,jδij in the absence of body forces, it is clearly evident that
a volume integral is required to complete the definition of the reciprocal work theorem. Therefore, the appropriate
form of the reciprocal work theorem for a primary state with pore pressures but no body forces is∫

Γ

t′i ũi dΓ −
∫
Ω

p,i ũi dΩ =

∫
Γ

t̃i ui dΓ (14.48)

where p,i is the gradient of the pore pressures. A more general form of the reciprocal work integral is∫
Γ

t′i ũi dΓ +

∫
Ω

b′i ũi dΩ =

∫
Γ

t̃i ui dΓ (14.49)

where b′i is the effective body force vector, as defined in Equation 14.64, which does not include a true body force
vector bi in this case. Recognizing that the general form of the reciprocal work theorem accounting for initial stresses
is identical to that accounting for initial strains (i.e. Equation 14.43), Equations 14.44 through 14.47 apply for initial
stresses as well. However, the applied effective surface traction vector is defined by Equation 14.65 and the pore
pressure p rather than the temperature T must be expressed in a power of r greater than 1

2
in order for the limits in

Equation 14.46 to exist. Naturally, the restrictions on the choice of numerical integration techniques are also still in
effect.

14.7 Combined Thermal Strains and Pore Pressures

Recalling that in the absence of initial strains and stresses that the total stresses σij and the effective stresses σ′
ij

are equivalent, it is quite clear that Equation 14.43 also defines the reciprocal work theorem for solids that are free
of initial strains and stresses. Due to the general definitions of the applied effective surface traction vector t̂′i and
the effective body force vector b′i, the cases of a primary state with true surface tractions t̂i on the crack surfaces
and true body forces bi are also addressed by Equation 14.43. Therefore, the stress intensity factors for a primary
state which includes any combination of surface tractions on the crack surfaces, body forces, and initial strains and
stresses are defined by Equation 14.47. The relationship between the stress intensity factors and the reciprocal work
theorem is obtained by substituting the expressions for t̂′i and b

′
i defined by Equation 14.69 into Equation 14.47

c1KI + c2KII =

∫
Γ

[ t̃i (ui − u0
i ) − (ti + pni + α T Cijkl ni δkl) ũi] dΓ

−
∫
Γt

(t̂i + pni + α T Cijkl ni δkl) ũi dΓ
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−
∫
Ω

(bi − p,i − αCijkl Ti δkl) ũi dΩ (14.50)

Naturally, the restrictions imposed on the power of r for t̂i, bi, T , and p are still in effect, as are the restrictions on
the choice of numerical integration techniques.

14.8 Field Equations for Thermo- and Poro-Elasticity

In thermo or poro-elasticity the thermal strains and pore pressures are usually treated as initial strains and initial
stresses, respectively. The general stress-strain relationship obtained by substituting the constutive law into the
effective stress principle is

σij = Cijkl (εkl − ε0kl) + σ0
ij (14.51)

Clearly, in the absence of initial stresses σij = σ̄′
ij and in the absence of both initial strains and stresses σij = σ′

ij .
The thermal strains for an isotropic material are defined in terms of the temperature T and the coefficient of

thermal expansion α as

ε0ij = α T δij (14.52)

where δij is the Kronecker delta. Substituting this expression for the thermal strains into Equation 14.51, the resulting
constitutive law for thermo-elasticity is

σ̄′
ij = Cijkl (εkl − α T δkl) (14.53)

The thermal stresses σ′′
ij are defined as

σ′′
ij = α T Cijkl δkl (14.54)

and the net strains Ēij are defined as

Ēij = εkl − α T δkl (14.55)

Adopting the standard form of the effective stress principle the equilibrium equation and natural boundary conditions,
respectively, can be rewritten in terms of the effective stresses

σ′
ij,j + b′i = 0

σ′
ij nj − t̂′i = 0

(14.56)

where b′i is the effective body force vector and t̂′i is the applied effective surface traction vector. The effective body
force vector b′i is defined as

b′i = bi − σ′′
ij,j (14.57)

and may be rewritten in terms of the temperature gradient vector T,i

b′i = bi − αCijkl T,i δkl (14.58)

based on the definition of the thermal stresses given in Equation 14.54 and the assumption of a homogeneous material.
The applied effective surface traction vector t̂′i is defined as

t̂′i = t̂i + σ′′
ij nj (14.59)

and may be rewritten in terms of the temperature T

t̂′i = t̂i + α T Cijkl ni δkl (14.60)

based on the definition of the thermal stresses given in Equation 14.54.
Pore pressures are typically defined using the sign convention for soil mechanics in which compression is positive,

but in the sign convention for standard solid mechanics tension is considered to be positive. Therefore, the initial
stresses corresponding to a pore pressure are defined as

σ0
ij = −p δij (14.61)

where p is the pore pressure defined using the compression positive sign convention; the minus sign corrects the
discrepancy in the sign conventions; and δij is the Kronecker delta. In the classical interpretation of the behavior of a
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porous material (Terzaghi and Peck 1967), the pore pressures p act only in the voids of the material and the effective
stresses act only on the skeleton of the material. It must be noted that the pore pressures p being considered in this
discussion and throughout the remainder of this chapter are the steady state pore pressures; excess pore pressures
resulting from dilatant behavior in the skeleton of the material are not considered. The stress-strain relationship for
poro-elasticity

σij = Cijkl εkl − p δij (14.62)

is obtained by substituting the expression for the initial stresses into Equation 14.51. Adopting the standard form
of the principle of effective stress the equilibrium equation and the natural boundary conditions, respectively, can be
rewritten in terms of the effective stresses

σ′
ij,j + b′i = 0

σ′
ij nj − t̂′i = 0

(14.63)

where b′i is the effective body force vector and t̂′i is the applied effective surface traction vector. The effective body
force vector b′i is defined as

b′i = bi − p,i (14.64)

where p,i is the pore pressure gradient vector. The applied effective surface traction vector t̂′i is defined as

t̂′i = t̂i + pni (14.65)

Since σ′
ij = 0 on surfaces exposed to hydrostatic pressures but no other surface tractions, t̂i = −pni on these surfaces.

When thermal strains and pore pressures are considered in combination the constitutive law is defined as a simple
combination of Equations 14.53 and 14.62

σij = Cijkl (εkl − α T δkl) − p δij (14.66)

The equilibrium equation and natural boundary conditions, respectively, can be rewritten in terms of either the
effective stresses σ′

ij

σ′
ij,j + b′i = 0

σ′
ij nj − t̂′i = 0

(14.67)

or the net effective stresses σ̄′
ij

σ̄′
ij,j + b′i = 0

σ̄′
ij nj − t̂′i = 0

(14.68)

The field equations defined in terms of σ′
ij are obtained by adopting the standard form of the principle effective stress

and the field equations defined in terms of σ̄′
ij are obtained by adopting the alternate form of the principle effective

stress.
When the equilibrium equation and natural boundary conditions are written in terms of σ′

ij the effective body
forces b′i and applied effective surface tractions t̂′i are defined as

b′i = bi − p,i − αCijkl T,i δkl
t̂′i = t̂i + pni + α T Cijkl ni δkl

(14.69)

However, when the equilibrium equation and natural boundary conditions are written in terms of σ̄′
ij the effective

body forces b′i and applied effective surface tractions t̂′i are identical to those for poro-elasticity (i.e. Equations 14.64
and 14.65, respectively).
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Chapter 15

J INTEGRAL BASED METHODS

Theoretical background for J integral evaluation, and 3D SIF calculations in MERLIN

15.1 Numerical Evaluation

Within linear elastic fracture mechanics, the J integral is equivalent to G and we have:

G = J = −∂Π
∂a

=

∫
r

(wdy − t · ∂d
∂x

ds) (15.1)

Thus it is evident that we do have two methods of evaluating J : the first one stems from its equivalence to the
energy released rate, and the second one from its definition as an integral along a closed contour. Evaluation of J
according to the first approach is identical to the one of G and has been previously presented.

In this chapter we shall present the algorithm to evaluate J on the basis of its contour line integral definition.
Whereas derivation will be for J integral only, its extension to Ji is quite straightforward.

If the stresses were to be determined at the nodes, than the numerical evaluation of J will be relatively simple.
However, most standard finite element codes only provide Gauss point stresses, and hence care must be exercised in
properly determining the J integral along a path passing through them.

The algorithm for the J calculation closely follows the method presented in (Owen and Fawkes 1983), and is as
follows:

1. First let us restrict ourselves to the more general case in which isoparametric elements are used. Because the
stresses are most accurately evaluated at the gauss points, the path can be conveniently chosen to coincide with
ξ = ξcst and/or η = ηcst. For the sake of discussion, let us assume that the element connectivity is such that
the path is along ξ = ξcst, as in Fig. 15.1. We note that for corner elements the integration will have to be
performed twice along the two directions.

ξ=ξ

x

y

n
Gauss Point
Numbering
Sequence

cst

x
x x

xx
x x

1
4 7

53
6 9

x

x
2

8

η
ξ

Figure 15.1: Numerical Extraction of the J Integral (Owen and Fawkes 1983)

2. Now let us start from the basic definition of J :

J =

∫
Γ

wdy − t · ∂d
∂x

ds (15.2)
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where t is the traction vector along n, which is normal to the path; d is the displacement vector; ds is the
element of arc along path Γ; and w is the strain energy density. We note that the crack is assumed to be along
the x axis. If it is not, stresses and displacements would first have to be rotated. Let us now determine each
term of Eq. 15.2.

3. The traction vector is given by:

ti = σijnj ⇒ t =

{
σxn1 + τxyn2

τxyn1 + σyn2

}
(15.3)

4. The displacement vector is:

d =

{
u
v

}
(15.4)

5. The strain energy density w is:

w =
1

2
(σxεx + 2τxyγxy + σyεy)

=
1

2
[σx

∂u

∂x
+ τxy(

∂u

∂y
+
∂v

∂x
) + σy

∂v

∂y
] (15.5)

6. The arc length ds and dy are given by:

ds =
√
dx2 + dy2 =

√(
∂x

∂η

)2

+

(
∂y

∂η

)2

dη (15.6)

dy =
∂y

∂η
dη (15.7)

7. Next we can evaluate part of the second term of J :

t · ∂d
∂x

= (σxn1 + τxyn2)
∂u

∂x
+ (τxyn1 + σyn2)

∂v

∂x
(15.8)

where n1 and n2 are the components of n, which is a unit vector normal to the contour line at the Gauss point
under consideration.

8. Having defined all the terms of J , we substitute in Eq. 15.2 to obtain the contribution to J from a particular
Gauss point within an element.

Je =

∫ 1

−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2

[
σx
∂u

∂x
+ τxy

(
∂u

∂y
+
∂v

∂x

)
+ σy

∂v

∂y

]
︸ ︷︷ ︸

w

∂y

∂η︸︷︷︸
dy

−
[
(σxn1 + τxyn2)

∂u

∂x
+ (τxyn1 + σyn2)

∂v

∂x

]
︸ ︷︷ ︸

t· ∂d
∂x√(

∂x

∂η

)2

+

(
∂y

∂η

)2

︸ ︷︷ ︸
ds

⎫⎪⎪⎪⎬⎪⎪⎪⎭ dη (15.9)

=

∫ 1

−1

Idη

9. Since the integration is to be carried out numerically along the path (using the same integration points used
for the element stiffness matrix), we have:

Je =
NGAUS∑

q=1

I(ξp, ηq)Wq (15.10)

where Wq is the weighting factor corresponding to ηq and NGAUS is the order of integration (2 or 3).
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10. Stresses σx, σy, τxy are readily available at the Gauss points.

11. ∂u
∂x

, ∂u
∂y

, ∂v
∂x

, and ∂v
∂y

are obtained through the shape function. For instance ∂u
∂x

= � ∂Ni
∂x
�{ui} where the ui are

the nodal displacements and ∂Ni
∂x

is the cartesian derivative of the shape function stored in the [B] matrix:

[B] =

⎡⎢⎣
∂Ni
∂x

0

0 ∂Ni
∂y

∂Ni
∂y

∂Ni
∂x

⎤⎥⎦ (15.11)

where i ranges from 1 to 8 for quadrilateral elements.

12. Another term not yet defined in Eq. 15.9 is ∂y
∂η

. This term is actually stored already in the Gauss point Jacobian
matrix:

[J ] =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
(15.12)

13. Finally we are left to determine n1 and n2 (components of n).

a) Define two arbitrary vectors: A along ξ = ξcst and B along η = ηcst such that:

At = � ∂x
∂η
, ∂y

∂η
, 0 � (15.13)

Bt = � ∂x
∂ξ
, ∂y

∂ξ
, 0 � (15.14)

Note that we have defined the three-dimensional components of those two vectors.

b) Now we define a third vector, which is normal to the plane defined by the preceding two: C = A×B, or:⎡⎣ i j k
∂x
∂η

∂y
∂η

0
∂x
∂ξ

∂y
∂ξ

0

⎤⎦ (15.15)

This leads to:

C = � 0, 0, ∂x
∂η

∂y
∂ξ
− ∂y

∂η
∂x
∂ξ � (15.16)

c) With C defined, we can now return to the original plane and define

D = C×A⇒ D = �
∂y

∂η
(
∂y

∂η

∂x

∂ξ
− ∂x

∂η

∂y

∂ξ
)︸ ︷︷ ︸

D1

,
∂x

∂η
(
∂x

∂η

∂y

∂ξ
− ∂y

∂η

∂x

∂ξ
)︸ ︷︷ ︸

D2

, 0
� (15.17)

d) The unit normal vector is now given by:

n =

⎧⎨⎩
n1

n2

0

⎫⎬⎭ =

⎧⎨⎩
D1
N
D2
N

0

⎫⎬⎭ (15.18)

where N =
√
D2

1 +D2
2 and all terms are taken from the Jacobian matrix.

15.2 Mixed Mode SIF Evaluation

In subsection 15.1 we have outlined two procedures to extract the J integral from a finite element analysis. Based
on this technique, at best only KI may be determined. In this section, we shall generalize the algorithm to extract
both J1 and J2 through a postprocessing for our finite element analysis, and subsequently determine KI and KII

from Eq. ??. Once again the outlined procedure is based on the method outlined in (Owen and Fawkes 1983). First
let us redefine the two contour integrals according to (Knowles and Sternberg 1972) as:

Jk =

∫
{wnk − t · ∂d

∂xk
}ds (15.19)
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combining with Eq. ?? we obtain

J1 =

∫
{wdy − t · ∂d

∂x
}ds = K2

I +K2
II

H
+
K2

III

μ
(15.20)

J2 =

∫
{wdx− t · ∂d

∂y
}ds = −2KIKII

H
(15.21)

where

H =

{
E plane strain

E
1−ν2 plane stress

(15.22)

We note that the original definition of J is recovered from J1.
The procedure to determine J1 and J2 will be identical to the one outlined in 15.1 and previously presented with

the addition of the following equations:

dx = −n2ds (15.23)

dx = −∂x
∂η
dη (15.24)

15.3 Equivalent Domain Integral (EDI) Method

In this section, we shall derive an alternative expression for the energy release rate. Contrarily to the virtual crack
extension method where two analyses (or a stiffness derivative) had to be evaluated, in this method, we have to
perform only one analysis. The method is really based on Rice’s J integral. However, it is recognized that evaluation
of J in 2D involves a line integral only and a line integral plus a volume integral if body forces are present, (deLorenzi,
H.G. 1985). For 3D problems, the line integral is replaced by a surface integral (and a volume integral for body forces).

Recognizing that surface integrals may not be easily evaluated in 3D, Green’s theorem is invoked, and J will be
evaluated through a volume integral in 3D and a surface integral in 2D. Thus computationally, this method is quite
attractive.

Again as for the previous case, we will start by evaluating the energy release rate, and only subsequently we shall
derive expressions for the SIF.

The essence of the method consists in replacing the contour integral, by a closed integral (outer and inner) while
multiplying the expression of J by a function q equal to zero on the outer surface and unity on the inner one. We
adopt the expression of J derived for a propagating crack (thus determined around a path close to the crack tip).
Having defined a closed path, we then apply Green’s theorem, and replace a contour integral by a surface integral.

15.3.1 Energy Release Rate J

15.3.1.1 2D case

Recalling the expression for the energy release rate of a propagating crack, Eq. ??

J = lim
Γ0→0

∫
Γ0

[
(w + T ) δ1i − σij

∂uj

∂x1

]
nidΓ (15.25)

where w is the strain energy density, T is the kinetic energy

T =
1

2
ρ
∂ui

∂t

∂ui

∂t
(15.26)

and δ the Kronecker delta. An alternative form of this equation (Anderson 1995) is

J = lim
Γ0→0

∫
Γ0

[
(w + T ) dy − σijni

∂uj

∂x
dΓ

]
(15.27)

Unlike the conventional J integral, the contour path for this equation can not be arbitrarily selected.
This equation is derived from an energy balance approach, and is thus applicable to all types of material models.

However, this J integral is path independent only if Γ is within an elastic zone; if it is taken within the plastic zone
than it will be path dependent.

This equation is not well suited for numerical evaluation as the path would have to be along a vanishingly small
one where the stresses and strains could not be determined. As such, (Li, F. Z. and Shih, C. F. and Needleman,
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Figure 15.2: Simply connected Region A Enclosed by Contours Γ1, Γ0, Γ+, and Γ−, (Anderson 1995)

A. 1985), we will be rewriting an alternative form of this equation, by considering the contour shown in Fig. 15.2
where Γ1, is the outer finite contour, Γ0 is the inner vanishingly small contour, and Γ+, and Γ− are respectively the
upper and lower crack surfaces along the contour. For quasi-static cases (T = 0), let us construct a closed contour by
connecting inner and outer ones. The outer one Γ1 is finite, while the inner one Γ0 is vanishingly small. For linear
(or nonlinear) elastic material J can be evaluated along either one of those two contours, but only the inner one gives
the exact solution in the general case. Thus, we can rewrite Eq. 15.25 around the following closed contour

Γ∗ = Γ1 + Γ+ + Γ− − Γ0 (15.28)

yielding (and assuming that the crack faces are traction free)

J =

∫
Γ∗

[
σij

∂uj

∂x1
− wδ1i

]
qmidΓ−

∫
Γ+∪Γ−

σ2j
∂uj

∂x1
qdΓ (15.29)

where mi is the outward normal to Γ∗ (thus mi = ni on Γ1, and mi = −ni on Γ0, m1 = 0 and m2 = ±1 on Γ+

and Γ−), and q is an arbitrary but smooth function which is equal to unity on Γ0 and zero on Γ1. Note that since
the integral is taken along the contours, by explicitly specifying q = 0 on the outer one, and q = 1 on the inner one,
Eq. 15.25 and 15.29 are identical. Furthermore, in the absence of crack surface tractions, the second term is equal
to zero.

Applying the divergence theorem to Eq. 15.29∮
Γ

v.n =

∫
A

(
∂vx
∂x

+
∂vy
∂y

)
dxdy (15.30)

we obtain

J =

∫
A∗

∂

∂xi

{[
σij

∂uj

∂x1
− wδ1i

]
q

}
dA (15.31)

=

∫
A∗

[(
σij

∂uj

∂x1
− wδ1i

)
∂q

∂xi
+

(
∂

∂xi

(
σij

∂uj

∂x1

)
− ∂w

∂x1

)
q

]
dA (15.32)

where A∗ is the area enclosed by Γ∗.
Let us show that the second term is equal to zero:

∂

∂xi

(
σij

∂uj

∂x1

)
= σij

∂

∂xi

(
∂uj

∂x1

)
︸ ︷︷ ︸

∂w
∂x

+
∂σij

∂xi︸ ︷︷ ︸
0

∂ui

∂x1
(15.33)

however from equilibrium we have

∂σij

∂xi
= 0 (15.34)

Furthermore, the derivative of the strain energy density is

∂w

∂x
=

∂w

∂εij

∂εij
∂x

= σij
∂εij
∂x

(15.35)
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substituting

εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
(15.36)

we obtain

∂w

∂x
=

1

2
σij

[
∂

∂x

(
∂ui

∂xj

)
+

∂

∂x

(
∂uj

∂xi

)]
= σij

∂

∂xj

(
∂ui

∂x

)
(15.37)

Hence, it is evident that the second term of Eq. 15.32 vanishes and that we are left with

J =

∫
A∗

[
σij

∂ui

∂x1
− wδ1i

]
∂q

∂xi
dA (15.38)

This expression, is analogous to the one proposed by Babuska for a surface integral based method to evaluate stress
intensity factors, (Babuska and Miller 1984).

We note that deLorenzi (deLorenzi, H.G. 1985) has shown that the energy release rate is given by

G =
1

ΔA

∫ (
σij

∂uj

∂x1
− wδi1

)
∂Δx1

∂xi
dA (15.39)

for a unit crack growth extension along x1. Thus comparing Eq. 15.38 with 15.39, we observe that the two expressions
are identical for q = Δx1

Δa
, and thus q can be interpreted as a normalized virtual displacement. In this context it was

merely a mathematical device.
In summary, we have replace a contour integral by an equivalent area integral to determine J .

15.3.1.2 3D Generalization

In this section, we shall generalize to 3D our previous derivation, (Anderson 1995). From Fig. 15.3 we define a local
coordinate system such that x1 is normal to the crack front, x2 normal to the crack plane, and x3 tangent to the
crack front. For an arbitrary point, the J integral is given by Eq. 15.25. We now consider a tube of length ΔL and

Figure 15.3: Surface Enclosing a Tube along a Three Dimensional Crack Front, (Anderson 1995)

radius r0 that surrounds the segment of the crack front under consideration. We now define a weighted average J
over the crack front segment of length ΔL as

J̄ΔL =

∫
ΔL

J(η)qdη (15.40)

= lim
r0→0

∫
S0

[
wδ1i − σij

∂uj

∂x1

]
qnidS (15.41)
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where J(η) is the point-wise value of J , S0 is the vanishingly small surface area of the tube, q is the weight function
previously introduced. q can be again interpreted as a virtual crack advance and Fig. 15.4 illustrates an incremental
crack advance over ΔL where q is defined as

aΔ max aΔ maxq

LΔ

Figure 15.4: Interpretation of q in terms of a Virtual Crack Advance along ΔL, (Anderson 1995)

Δa(η) = q(η)Δamax (15.42)

and the corresponding incremental area of the virtual crack is

ΔAc = Δamax

∫
ΔL

q(η)dη (15.43)

As in the previous case, this expression of J can not be numerically determined for a vanishingly small radius r0,
as such and as in the previous 2D case, we define a second tube of radius r1 around the crack front, Fig. 15.5.

Figure 15.5: Inner and Outer Surfaces Enclosing a Tube along a Three Dimensional Crack Front

J̄ΔL =

∮
S∗

[
σij

∂ui

∂x1
− wδ1i

]
qmidS −

∮
S−∪S+

σ2j
∂uj

∂x1
qdS (15.44)

where

S∗ = S1 + S+ + S− − S0 (15.45)
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and S+ and S− are the upper and lower crack surfaces respectively, S0 and S1 the inner and outer tube surfaces.
Note that this equation is the 3D counterpart of Eq. 15.29 which was written in 2D.

Applying the divergence theorem, this equation reduces to a volume integral

J̄ΔL =

∫
V ∗

{[
σij

∂uj

∂x1
− wδ1i

]
∂q

∂xi
+

[
− ∂w
∂x1

+
∂

∂xj

(
σij

∂ui

∂x1

)]
q

}
dV

+

∫
A1∪A2

(
wδ1i − σij

∂ui

∂x1
δ1i

)
qdA

(15.46)

and q must be equal to zero at either end of ΔL that is on A1 and A2. In (Nikishkov, G. P. and Atluri, S. N. 1987)
it is shown that in the absence of non-elastic (thermal and plastic) deformations the second term would be equal to
zero. The third term will also be equal to zero because q is arbitrarily selected to be zero at each end.

15.3.2 Extraction of SIF

From Eq. 15.46 it is impossible to extract the 3 distinct stress intensity factors. Hence we shall generalize this
equation and write it as (Nikishkov, G. P. and Atluri, S. N. 1987) (ignoring the second and third terms)

J̄kΔL =

∫
V ∗

(
σij

∂ui

∂xk

∂q

∂xj
− w ∂q

∂xk

)
dV (15.47)

Note that k = 1, 2 only thus defining G1 = J1 and G2 = J2. However, (Nikishkov, G. P. and Atluri, S. N. 1987) have
shown that G3 has a similar form and is equal to

GIII =

∫
V ∗

(
σ3j

∂u3

∂x1

∂q

∂xj
− wIII ∂q

∂x1

)
dV (15.48)

With G1, G2 and G3 known we need to extract the three stress intensity factors KI , KII and KIII . Again there
are two approaches.

15.3.2.1 J Components

Based on the solution by Nikishkov, (Nikishkov and Vainshtok 1980)

KI = 1
2

√
E∗

(√
(J1 − J2 −G3) +

√
(J1 + J2 −G3)

)
KII = 1

2

√
E∗

(√
(J1 − J2 −G3)−

√
(J1 + J2 −G3)

)
KIII =

√
2μG3

(15.49)

where, (Nikishkov, G. P. and Atluri, S. N. 1987)

E∗ = E

[
1

1− ν2 +

(
ν

1 + ν

)
ε33

ε11 + ε22

]
(15.50)

which is a weighted value of E such that we retrieve E∗ = E
1−ν2 for plane strain and E∗ = E for plane stress.

15.3.2.2 σ and u Decomposition

As for the solution by Shah, we can decompose the displacement field as

{u} =
{
uI
}
+
{
uII

}
+
{
uIII

}
= 1

2

⎧⎨⎩
u1 + u′

1

u2 − u′
2

u3 + u′
3

⎫⎬⎭+ 1
2

⎧⎨⎩
u1 − u′

1

u2 + u′
2

0

⎫⎬⎭+ 1
2

⎧⎨⎩
0
0

u3 − u′
3

⎫⎬⎭
(15.51)

Merlin Theory Manual



15.3 Equivalent Domain Integral (EDI) Method 163

similarly the stresses are decomposed as

{σ} =
{
σI
}
+
{
σII

}
+
{
σIII

}

= 1
2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ11 + σ′
11

σ22 + σ′
22

σ33 + σ′
33

σ12 − σ′
12

σ23 − σ′
23

σ31 − σ′
31

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+ 1

2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ11 − σ′
11

σ22 − σ′
22

0
σ12 + σ′

12

0
0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+ 1

2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0
0

σ33 − σ′
33

0
σ23 + σ′

23

σ31 + σ′
31

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(15.52)

where

u′
i(x1, x2, x3) = ui(x1,−x2, x3) (15.53)

σ′
ij(x1, x2, x3) = σij(x1,−x2, x3) (15.54)

and the stress intensity factors are then determined from

KI =
√
E′GI KII =

√
E′GII KIII =

√
2μGIII (15.55)

where

Gk =

∫
V ∗

(
σkj

∂uk

∂x1

∂q

∂xj
− wk ∂q

∂x1

)
dV (15.56)

Whereas this method may be difficult to use in conjunction with a 3D finite element mesh generated by triangu-
larization (due to the lack of symmetry around the crack front), it has been succesfully used by Cervenka (1994) in
conjunction with a unit volume integration in the FE code MERLIN (Saouma, Červenka and Reich 2008).
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Chapter 16

HILLERBORG’S MODEL

From the previous discussion, it is clear that concrete softening is characterized by a stress-crack opening width
curve (and not stress-strain). The exact charachterization of the softening response should ideally be obtained from
a uniaxial test of an uncracked specimen. However, it has been found (Li and Liang 1986, Hordijk, Reinhardt and
Cornelissen 1989) that not only are those tests extremely sensitive, but drastically different results can be obtained
from different geometries, sizes, and testing machines. Hence, the softening curve is often indirectly determined by
testing notched specimens.

In what is probably the most referenced work in the nonlinear fracture of concrete literature, Hillerborg (Hillerborg,
Modéer and Petersson 1976) presented in 1976 a very simple and elegant model which has been previously described
qualitatively. In this model, the crack is composed of two parts, Fig. 16.1:

Figure 16.1: Hillerborg’s Fictitious Crack Model

1. True or physical crack across which no stresses can be transmitted. Along this zone we have both displacement
and stress discontinuities.

2. Fictitious crack, or Fracture Process Zone (FPZ) ahead of the previous one, characterized by:

a) peak stress at its tip equal to the tensile strength of concrete

b) decreasing stress distribution from f ′
t at the tip of the fictitious crack to zero at the tip of the physical

crack

It should be noted that along the FPZ, we have displacement discontinuity and stress continuity.

This model is among the most widely used in non-linear fracture mechanics finite element analysis, however due
to the computational complexity, few “engineering” structures have been analyzed. In addition,

1. There is an inflection point in the descending branch.

a) The first part has been associated with (unconnected) microcracking ahead of the stress-free crack

b) The second part with bridging of the crack by aggregates
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2. The area under the curve, termed the fracture energy GF (not to be confused with Gc or critical energy release
rate), is a measure of the energy that needs to be spent to generate a unit surface of crack.

3. By analyzing numerous test data, Bažant and Oh (Bažant, Z.P. 1984) found that GF may be predicted (with
a coefficient of variation of about 16%) from the following empirical equation:

GF = 0.0214(f ′
t + 127)f

′2
t
da
Ec

(16.1)

where Ec and f ′
t are in pounds per square inch, da is the aggregate size in inches.

Using extensive nonlinear optimization studies based on the Levenberg-Marquardt algorithm, Bažant and Becq-
Giraudon (2001) obtained two simple approximate formulae for the means of Gf and GF as functions of the
compressive strength f ′

c, maximum aggregate size da, water-cement ratio /c, and shape of aggregate (crushed
or river);

Gf = α0

(
f ′
c

0.051

)0.46 (
1 + da

11.27

)0.22 (w
c

)−0.30
ωGf = 17.8%

GF = 2.5α0

(
f ′
c

0.051

)0.46 (
1 + da

11.27

)0.22 (w
c

)−0.30
ωGF = 29.9%

cf = exp

[
γ0
(

f ′
c

0.022

)−0.019 (
1 + da

15.05

)0.72 (w
c

)0.2]
ωcf = 47.6%

(16.2)

Here α0 = γ0 = 1 for rounded aggregates, while α0 = 1.44 and γ0 = 1.12 for crushed or angular aggregates; ωGf

and ωGF are the coefficients of variation of the ratios Gtest
f /Gf and Gtest

F /GF , for which a normal distribution
may be assumed, and ωcf is the coefficient of variation of ctestf /cf , for which a lognormal distribution should
be assumed (ωcf is approximately equal to the standard deviation of ln cf ).

4. GF : or fracture energy. For gravity dams, a value of 1.35 × 10−3 kip/in. is recommended, (Saouma, Broz,
Brühwiler and Boggs 1991). Note that for arch dams, this value could probably be increased on the basis of
laboratory tests. Also, laboratory tests could be performed on recovered cores to obtain a better indication of
GF , (Brühwiler, E. 1988).

5. Shape of the softening diagram (σ −COD), and in general a bi-linear model for the strain softening should be
used. With reference to Fig. 20.3, A topic of much research lately has been the experimental determination of the

f’_t

w

G_F

w_1

s_1

w_2
Crack Opening

Stress

Figure 16.2: Concrete Strain Softening Models

fracture energy GF , and the resulting shape of the softening diagram (Cedolin, Dei Poli and Iori 1987, Petersson
1981, Wittmann et al. 1988, Jeang and Hawkins 1985, Gopalaratnam and Shah 1985, Duda 1990, Giuriani and
Rosati 1986). In order to assess the relevance of the exact value of GF and the softening curve shape on numerical
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simulations, three different set of fracture experiments are analysed using the average reported fracture energy.
The shape of the softening diagram is assumed to be the bilinear one proposed in (Wittmann et al. 1988), Fig.
20.3. This simple model can be uniquely defined in terms of the tensile strength f ′

t , and the fracture energy
GF . In (Brühwiler and Wittmann 1990), it was found that the optimal points for concrete with 1” maximum
size aggregate are:

s1 = 0.4f ′
t (16.3)

w1 = 0.8
GF

f ′
t

(16.4)

w2 = 3
GF

f ′
t

(16.5)

whereas for structural concrete, (Wittmann et al. 1988), the corresponding values are:

s1 =
f ′
t

4
(16.6)

w1 = 0.75
GF

f ′
t

(16.7)

w2 = 5
GF

f ′
t

(16.8)

where f ′
t is the uniaxial tensile strength. Within the context of a nonlinear fracture mechanics analysis, this

tensile strength can not be taken as zero, otherwise there will be no fracture process zone. As f ′
t is seldom

determined experimentally, it is assumed to be 9% of f ′
c, (Mindess and Young 1981).

6. In lieu of a direct tension test, a flexural test can be performed under strain control, and the fracture energy
GF could still be determined from the area under the load and corresponding displacement curve.

7. For dynamic analysis, the fracture properties of dam concrete depend on both rate of loading and preloadings.
Test results (Brühwiler and Wittmann 1990) show that the fracture properties generally increase with increasing
loading rate. However, dynamic compressive preloading leads to a reduction of the fracture properties at both
quasi-static and high loading rates.
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Chapter 17

LOCALIZED FAILURE

17.1 Fictitious Crack Model; FCM (MM: 7)

Originally published as:

Implementation and Validation of a nonlinear fracture model in a 2D/3D finite element code by Reich, Plizzari,
Cervenka and Saouma; in Numerical Models in Fracture of Concrete; Wittman Ed., Balkema (1993).

17.1.1 Introduction

An incremental formulation for the Fictitious Crack Model (FCM) will be presented. The computational algorithm
treats the structure as a set of sub-domains bonded along assumed crack paths. The crack paths are defined by
interface elements that initially act as constraints enforcing the bond between adjacent sub-domains, but change
state to function as standard interface elements as the crack propagates. Constraints are enforced on the global
system of equations using a penalty approach. A load scaling strategy, which allows for load controlled analyses
in the post-peak regime, is used to enforce stress continuity at the tip of the Fracture Process Zone (FPZ). To
demonstrate the accuracy of the computational algorithm, a series of three wedge-splitting (WS) test specimens are
analyzed. Specimen sizes are 31, 91, and 152 cm (1, 3, and 5 ft). Material properties for the concrete are taken as
the mean values of the observed experimental results for all specimen sizes. The computed results are compared to
the envelopes of the experimental response for each specimen size.

The most commonly implemented nonlinear fracture model for concrete using the discrete crack approach is the
FCM (Hillerborg et al. 1976). In the FCM the zone of micro-cracking and debonding ahead of the crack front is
modeled as a cohesive stress that acts to close the crack. The magnitude of the cohesive stresses on the crack surface
are determined by a softening law that relates the stress to the relative displacement of the crack surfaces through the
fracture energy. Many implementations of the FCM have been reported (Ingraffea and Gerstle 1984, Roelfstra and
Sadouki 1986, Dahlblom and Ottosen 1990, Bocca, Carpinteri and Valente 1990, Gopalaratnam and Ye 1991, Gerstle
and Xie 1992), but none of the implementations based on a discrete crack approach claim to be based on the standard
incremental formulation normally associated with nonlinear analyses. Only the implementation by Dahlbom and
Ottosen (Dahlblom and Ottosen 1990), which is based on a smeared crack approach, uses an incremental formulation.

In this chapter, an incremental solution algorithm for the FCM based in the discrete crack approach will be
presented and its performance evaluated by comparing the computed response of WS test specimens against known
experimental results.

Treatment of the structure as a set of bonded sub-domains results in a system of mixed equations with the unknowns
being displacements and surface tractions on the interface between the sub-domains. The weak form of the system of
mixed equations will be derived from the Principle of Virtual Work. The weak form equations will then be discretized
for solution using the finite element method. The penalty method solution for the mixed system of equations will
be discussed; particularly the automatic selection of the penalty number. Finally, an incremental-iterative solution
strategy based on the modified-Newton algorithm that includes load scaling and allows for load control in the post-
peak regime will be discussed.

17.1.2 Weak Form of Governing Equations

Figure 17.1 shows a body consisting of two sub-domains, Ω1 and Ω2 that intersect on a surface ΓI without penetration.
Each sub-domain may be subject to body forces bm or to prescribed surface tractions t̂m on Γtm . Defining the volume
of the body as

Ω = Ω1 ∪ Ω2 (17.1)

and the surface of the body subject to prescribed surface tractions as

Γt = Γt1 ∪ Γt2 , (17.2)

the Principle of Virtual Work for the body is∫
Ω

δεTσdΩ−
∫
Ω

δuTbdΩ−
∫
Γt

δuT t̂dΓ = 0 (17.3)
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where

δε = Lδu (17.4-a)

ε = Lu (17.4-b)

σ = Dε (17.4-c)

Ω

Ω

Γ

Γ

Γ

Γ

Γ

Γ
t

u

t

u

I

I

1

2

t

t

b

c

1

1

2

2

2

1

Figure 17.1: Body Consisting of Two Sub-domains

Within each sub-domain of the body Ωm the Principle of Virtual Work must also hold, but additional integrals
are required to account for the work performed by the surface tractions tIm on the interface ΓI . Surface tractions on
the interface are due to bonding of the sub-domains tbm or to cohesive stresses in the FPZ tcm . In either case, stress
continuity on ΓI requires that

tb2 = −tb1 (17.5-a)

tc2 = −tc1 (17.5-b)

Defining the interface surface as

ΓI = ΓIb ∪ ΓIc , (17.6)

where ΓIb is the bonded interface surface and ΓIc is the interface surface subject to cohesive stresses, the external
work on the interface is written as∫

ΓI

δuT
1 tI1dΓ =

∫
ΓIb

δuT
1 tbdΓ+

∫
ΓIc

δuT
1 tcdΓ (17.7-a)∫

ΓI

δuT
2 tI2dΓ = −

∫
ΓIb

δuT
2 tbdΓ−

∫
ΓIc

δuT
2 tcdΓ (17.7-b)

Both tb and tc are unknown, but as tb acts on the bonded, or constrained, interface it will be treated as a Lagrange
multiplier

λ = tb (17.8)

Substituting λ into Equations 17.3 and 17.4-a-17.4-c and including the external work performed by the surface
tractions on the interface surface, the Principle of Virtual Work for sub-domains Ω1 and Ω2 is written as∫

Ω1

δεT1 σ1dΩ−
∫
Ω1

δuT
1 b1dΩ−

∫
Γt1

δuT
1 t̂1dΓ−

∫
ΓIb

δuT
1 λdΓ−

∫
ΓIc

δuT
1 tcdΓ = 0∫

Ω2

δεT2 σ2dΩ−
∫
Ω2

δuT
2 b2dΩ−

∫
Γt2

δuT
2 t̂2dΓ +

∫
ΓIb

δuT
2 λdΓ +

∫
ΓIc

δuT
2 tcdΓ = 0

(17.9)
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On ΓIb the displacements for the two sub-domains, u1 |ΓIb
and u2 |ΓIb

, must be equal. This condition can be written
as a constraint in the strong form

u2 |ΓIb
−u1 |ΓIb

= 0, (17.10)

but a weak form is required to be compatible with Equation 17.5-a-17.5-b. The following weak form

∫
Γi

δλT (u2 − u1)dΓ = 0 (17.11)

was chosen for the constraint equation as it makes the system of mixed equations symmetric.

17.1.3 Discretization of Governing Equations

Discretization of Equations 17.9-17.9 and 17.11 will be presented as if each sub-domain were an element (?); the
extension to multi-element sub-domains is straightforward and will be omitted from this discussion. Each sub-
domain Ωm is discretized for displacements um such that nodes on Γtm and ΓI are included in the vector of discrete
displacements um. The number of nodes on ΓI in Ω1 is equal to the number of nodes on ΓI in Ω2. For each node
on ΓI in Ω1 there is a node on ΓI in Ω2 with the same coordinates. The nodes at which the surface tractions due to
bonding λ on ΓIb are discretized are at the same locations as those for the displacements.

Displacements um within the sub-domains Ωm and the surface tractions λ on the bonded interface ΓIb are defined
in terms of their discretized counterparts using shape functions

um = Numum (17.12-a)

λ = Nλλ (17.12-b)

δum = Numδum (17.12-c)

δλ = Nλδλ (17.12-d)

Num and Nλ are standard shape functions in that for each node there is a corresponding shape function whose
value is one at that node and zero at all other nodes.

To discretize the integral defining the virtual strain energy, the stresses and the virtual strains defined in Equa-
tion 17.4-a-17.4-c must be expressed in terms of the discrete displacements and virtual displacements using Equa-
tions 17.12-a-17.12-b and 17.12-c-17.12-d

δεm = LNumδum (17.13-a)

σm = DmLNumum (17.13-b)

Defining the discrete strain-displacement operator Bm as

Bm = LNum , (17.14)

the virtual strain energy can be written as∫
Ωm

δεTmσmdΩ = δuT
m

∫
Ωm

BT
mDmBmdΩum (17.15)

Recognizing that

Km =

∫
Ωm

BT
mDmBmdΩ (17.16)

is the standard stiffness matrix for the finite element method, Equation 17.15 can be rewritten as∫
Ωm

δεTmσmdΩ = δuT
mKmum (17.17)

Discretization of the integrals for the internal virtual work due to body forces and the external virtual work due
to prescribed surface tractions simply involves expressing the virtual displacements in terms of the discrete virtual
displacements using Equation 17.12-c-17.12-d∫

Ωm

δuT
mbmdΩ = δuT

m

∫
Ωm

NT
um

bmdΩ (17.18-a)∫
Γtm

δuT
mt̂mdΓ = δuT

m

∫
Γtm

NT
um

t̂mdΓ (17.18-b)
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Recognizing that

fm =

∫
Ωm

NT
um

bmdΩ+

∫
Γtm

NT
um

t̂mdΓ (17.19)

is the standard applied load vector for the finite element method, the sum of the internal virtual work and the external
virtual work is∫

Ωm

δuT
mbmdΩ +

∫
Γtm

δuT
mt̂mdΓ = δuT

mfm (17.20)

To discretize the external virtual work due to surface tractions on the interface, the surface tractions and the
virtual displacements must be expressed in terms of the discrete surface tractions and virtual displacements using
Equations 17.12-a-17.12-b and 17.12-c-17.12-d∫

ΓIb

δuT
mλdΓ = δuT

m

∫
ΓIb

NT
um

NλdΓλ (17.21-a)∫
Γtc

δuT
mtcdΓ = δuT

m

∫
Γtc

NT
um

tcdΓ (17.21-b)

Defining the operator matrix for the load vector due to surface tractions on the bonded interface as

Qm =

∫
ΓIb

NT
um

NλdΓ (17.22)

and the load vector for the cohesive stresses as

fcm =

∫
Γtc

NT
um

tcdΓ (17.23)

the external work due to surface tractions on the interface is∫
ΓIb

δuT
mλdΓ +

∫
Γtc

δuT
mtcdΓ = δuT

m(Qmλ+ fcm) (17.24)

To discretize the weak constraint equation, the displacements and the virtual surface tractions must be expressed
in terms of the discrete displacements and the discrete virtual surface tractions using Equations 17.12-a-17.12-b and
17.12-c-17.12-d∫

ΓIb

δλTu1dΓ = δλ
T
∫
ΓIb

NT
λNu1dΓu1 (17.25-a)∫

ΓIb

δλTu2dΓ = δλ
T
∫
ΓIb

NT
λNu2dΓu2 (17.25-b)

Recognizing that

QT
m =

∫
ΓIb

NT
λNumdΓ (17.26)

is the transpose of the operator matrix for the load vector due to surface tractions on the bonded interface defined
in Equation 17.23, the weak constraint equation can be rewritten as∫

ΓIb

δλT (u2 − u1)dΓ = δλ
T
(QT

2 u2 −QT
1 u1) = 0 (17.27)

Having defined the discretized form of all integrals in the governing equations, it is now possible to define the
discrete system of mixed equations. Substituting Equations 17.17, 17.20, and 17.24 into Equation 17.9-17.9 and
rearranging terms, the discrete Principle of Virtual Work is written as

δuT
1 (K1u1 −Q1λ) = δuT

1 (f1 + fc1) (17.28-a)

δuT
2 (K2u2 +Q2λ) = δuT

2 (f2 − fc2) (17.28-b)

As δuT
m appears in both sides of Equation 17.28-a-17.28-b, it can be eliminated, leaving

K1u1 −Q1λ = f1 + fc1 (17.29-a)

K2u2 +Q2λ = f2 − fc2 (17.29-b)
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In a similar fashion, δλ
T
can be eliminated from Equation 17.27, leaving

QT
2 u2 −QT

1 u1 = 0 (17.30)

as the discrete constraint equation. The discrete system of mixed equations is defined by Equations 17.29-a-17.29-b
and 17.30, which can be written in matrix form as⎡⎣ K1 0 −Q1

0 K2 Q2

−QT
1 QT

2 0

⎤⎦⎧⎨⎩
u1

u2

λ

⎫⎬⎭ =

⎧⎨⎩
f1 + fc1
f2 − fc2

0

⎫⎬⎭ (17.31)

17.1.4 Penalty Method Solution

The penalty method (?) was chosen for the solution of the discrete system of mixed equations because it reduces
the problem to that of a single-field. Reducing the system of mixed equations to a single-field equation decreases
the number of unknowns that must be solved for and simplifies the use of direct solution methods. Direct solution
methods can be used with the system of mixed equations, but interlacing of the equations is required to avoid
singularities (Wiberg 1974). Another troublesome aspect related to the use of direct solution methods with the
system of mixed equations is that since crack propagation is simulated by the release of constraints on the interface,
the total number of unknowns would change as the crack propagates. Interlacing a system of mixed equations with
an ever changing number of unknowns would certainly create major bookkeeping problems in a finite element code.

To obtain the penalty form of the system of mixed equations, Equation 17.31 is rewritten as⎡⎣ K1 0 −Q1

0 K2 Q2

−QT
1 QT

2 − 1
α
I

⎤⎦⎧⎨⎩
u1

u2

λ

⎫⎬⎭ =

⎧⎨⎩
f1 + fc1
f2 − fc2

0

⎫⎬⎭ (17.32)

where α is the penalty number. α should be sufficiently large that 1
α
I is close to zero. It is now possible to express

λ in terms of u1 and u2

λ = α(Q2u2 −Q1u1) (17.33)

Substituting Equation 17.33 into Equation 17.32, a single-field penalized stiffness matrix equation is obtained

[
(K1 + αQ1Q

T
1 ) −αQ1Q

T
2

−αQ2Q
T
1 (K2 + αQ2Q

T
2 )

]{
u1

u2

}
=

{
f1 + fc1
f2 − fc2

}
(17.34)

The selection of a good penalty number is a rather difficult task. If the penalty number is too small the computed
displacements will yield a substantial error when inserted into the constraint equation

Q2u2 −Q1u1 = ε� 0 (17.35)

As the penalty number is increased the error ε approaches zero, but the character of the system of equations changes
as the effect of K1 and K2 is diminished. When the effect of K1 and K2 is significantly diminished the computed
displacements away from the interface, which are not included in the constraint equation, will lose accuracy due
to round off errors. The goal is to select a penalty number that yields an acceptable error when the computed
displacements are inserted in the constraint equation without sacrificing the accuracy of the displacements away from
the interface. The author’s experience is that a penalty number selected using

α =
max(diag(Km))

max(diag(QmQT
m))
× 106 (17.36)

yields very good results for the class of problems being considered. Penalty numbers selected in this fashion result
in computed values of u1 and u2 on the interface that tend to be identical for the first five or six digits when the
penalized stiffness matrix is assembled in double precision.
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17.1.5 Incremental-Iterative Solution Strategy

An incremental-iterative solution strategy is used to obtain the equilibrium configuration for each crack length. At
zero load, the entire interface is constrained (i.e., fully bonded). As load is applied, surface tractions on the constrained
interface violate a strength criteria and the corresponding constraints are released. On that portion of the interface
where constraints have been released, cohesive stresses act until the relative displacements of the unconstrained
interface surfaces become large enough to dictate otherwise. In this solution strategy crack propagation occurs after
every increment.

The use of a strength criteria to detect the onset of crack propagation requires that the magnitude of the applied
loads be such that the surface tractions at a node on the constrained interface are precisely equal to the maximum
allowable stress. In this case, equality is required between the normal surface traction and the uniaxial tensile
strength. However, as the magnitude of the applied loads that causes the strength criteria to be satisfied exactly is
not known a priori, some form of automatic load scaling must be included in the solution strategy. Assuming that
the applied loads are proportional, a load factor β can be used to scale an arbitrary set of applied load vector f of
some arbitrary magnitude. At the beginning of each load increment i, the load factor is βi and the applied load
vector is

βif = βi

{
f1
f2

}
(17.37)

The value of βi is zero at the beginning of the first increment. The incremental load factor for increment i is Δβi
and the applied incremental load vector is

Δβif = Δβi

{
f1
f2

}
(17.38)

The load factor at the end of increment i is

βi+1 = βi +Δβi (17.39)

The modified-Newton algorithm (Zienkiewicz, Taylor and Nithiarasu 2005) is used to solve for incremental dis-
placements due to the applied incremental loads. The incremental displacements for a generic increment are defined
as

Δun+1 = Δun + δun (17.40)

where

u =

{
u1

u2

}
(17.41)

and Δun is the incremental displacement vector at the beginning of iteration n and δun is the correction to the
incremental displacement vector for iteration n. In a similar fashion, the incremental load factor is defined as

Δβn+1 = Δβn + δβn (17.42)

where Δβn is the incremental load factor at the beginning of iteration n and δβn is the correction to the incremental
load factor for iteration n. At the beginning of the first iteration both Δun and Δβn are zero. Displacement
corrections are computed by solving

Kαdu
n = (βf +Δβnf + dβnf + fnc − pn) (17.43)

where

Kα =

[
(K1 + αQ1Q

T
1 ) −αQ1Q

T
2

−αQ2Q
T
1 (K2 + αQ2Q

T
2 )

]
(17.44)

is the penalized stiffness matrix;

fnc =

{
fnc1
−fnc2

}
(17.45)
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is the load vector due to cohesive stresses on the interface at the beginning of iteration n; and

pn =
nelem∑
i=1

∫
Ωei

BTD(ε+Δεn)dΩ (17.46)

is the reaction vector for the state of stress at iteration n. Recognizing that

rn = βf +Δβnf + fnc − pn (17.47)

is the residual force vector at the beginning of iteration n, Equation 17.43 can be written in a more compact fashion
as

dun = K−1
α (δβnf + rn) (17.48)

Since the K−1
α f term does not change throughout the course of the iterative process it can be defined as a constant

value for the increment

δuT = K−1
α f (17.49)

The displacement vector δuT is commonly called the tangent displacement vector (Crisfield, M.A. 1981). At this
point, the iterative displacement correction can be defined as

δun = δβnδuT +K−1
α rn (17.50)

Having shown how the load factor is implemented within the incremental-iterative solution strategy, the last detail
left to explain is the procedure for computing δβn such that the strength criteria is exactly satisfied. Since the
surface tractions on the constrained interface are used to determine the magnitude of the applied load, the total
surface tractions for iteration n must be expressed in terms of its various contributions

λ
n+1

= λ+Δλ
n
+ δλ

n
r + δβnδλT (17.51)

where λ is the surface traction vector at the beginning of the increment; Δλ
n
is the incremental surface traction

vector at the beginning of iteration n; δλ
n
r is correction to the incremental surface traction vector due to the residual

load vector rn for iteration n; and δλT is the surface traction vector due to the tangent displacement vector δuT .
δλ

n
r and δλT are defined as

δλ
n
r = α(QT

2 δu
n
r2 −QT

1 δu
n
r1) (17.52-a)

δλT = α(QT
2 δuT −QT

1 δuT ) (17.52-b)

The strength criteria is applied to λ
n+1

on a node-by-node basis such that

max((λ
n+1

)i(n)i) = ft (17.53)

where (n)i is the normal vector at node i and ft is the uniaxial tensile strength. Recognizing that λ, Δλ
n
, and δλ

n
r

are fixed for iteration n, the iterative load factor correction is defined as

δβn = min

⎧⎨⎩ft −
[
(λ)i + (Δλ

n
)i + (δλ

n
r )i
]
(n)i

(δλT )i(n)i

⎫⎬⎭ (17.54)

Provided that the cohesive stresses on the interface are treated as forces and no stiffness matrix is assembled for those
interface elements, this solution strategy allows for load control in the post peak regime. The use of stiffness matrices
for the interface elements subject to softening is avoided because their presence in the global stiffness matrix will
eventually cause it to become non-positive definite.
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17.2 Interface Crack Model; ICM-1 Original (MM: 8)

Chapter 6 of (Červenka, J. 1994)

This section discusses the nonlinear modeling of concrete using a discrete crack fracture mechanics based model.
It addresses two important issues: mixed mode fracture in homogeneous materials and interface fracture. A new
three-dimensional interface crack model is derived. The model is a generalization of classical Hillerborg’s fictitious
crack model, which can be recovered if shear displacements are set to zero. Several examples are used to validate the
applicability of the proposed interface crack model. First, direct shear tests on mortar joints are used to test the model
performance in the shear-compression regime. The more complicated combination of shear-tension is investigated
using large biaxial tests of concrete-rock interfaces. The applicability to mixed mode cracking in homogeneous
concrete is tested using experiments on modified Iosipescu’s shear beam and anchor bolt pull-out tests.

17.2.1 Introduction

The assumption of singular stresses at the crack tip is mathematically correct only within the framework of linear
elastic fracture mechanics, but physically unrealistic.

In concrete materials, a fracture process zone (Section ??) exists ahead of the crack tip. The most popular model
simulating this behavior is Hillerborg’s fictitious crack model (FCM) described in Section ?? and Figure ??. In a
previous work, the classical FCM model was implemented by (Reich 1993) for mode I crack propagation, and extended
to account for the influence of water pressure inside the crack.

The classical FCM model, Chapter 17.1, defines a relationship between normal crack opening and normal cohesive
stresses, and assumes that there are no sliding displacements nor shear stresses along the process zone. This assump-
tion is only partially valid for concrete materials. Based on experimental observations, it is indeed correct that a
crack is usually initiated in pure mode I (i.e. opening mode) in concrete, even for mixed mode loading. However,
during crack propagation, the crack may curve due to stress redistribution or non-proportional loading, and signifi-
cant sliding displacements develop along the crack as schematically shown in Figure 17.2. Therefore, it is desirable

τ
σ

u

t

Figure 17.2: Mixed mode crack propagation.

to incorporate these shear effects into the proposed crack model.
Finally for concrete dams, it is well accepted that the weakest part of the structure is the dam-foundation interface,

which is also the location of highest tensile stresses and lowest tensile strength. Given the scope of this work, as
described in Chapter ??, it is necessary to address this problem.

Hence, the two major objectives of this chapter are:
(1) Modification of the FCM model to account for shear effects along both the fracture process zone and the true

crack.
(2) Development of an interface model based on fracture mechanics to simulate cracking along rock-concrete

interfaces.
The FCM model, within the framework of a discrete crack implementation, can be visualized as an interface between

two identical materials. Therefore, we can develop a general model which addresses both objectives.
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Figure 17.3: Wedge splitting tests for different materials, (V.E. et al. 1994)

Interface elements were first proposed by (Goodman, R.E. and Taylor, R.C. and Brekke, T.C. 1968) to model
non-linear behavior of rock joints. Since then, numerous interface constitutive models have been proposed for a
wide range of applications such as rock-joints (Goodman, R.E. and Taylor, R.C. and Brekke, T.C. 1968) masonry
structures (Lotfi 1992) and concrete fracture (Stankowski 1990) (Feenstra, de Borst and Rots 1991) and (Carol, I.
and Bažant, Z.P. and Prat, P.C. 1992).

In the following section an interface crack model will first be proposed, and then it will be used to simulate cracking
both in homogeneous concrete and along a rock-concrete interface. The presented model is a modification of the one
first proposed by (Carol, I. and Bažant, Z.P. and Prat, P.C. 1992).

17.2.2 Interface Crack Model

The objective is to develop a physically sound model, yet simple enough so that all its parameters can be easily derived
from laboratory tests. The model should be capable of simulating the behavior of rock-concrete and concrete-concrete
interfaces.

Experimental data (V.E. et al. 1994) on rock-concrete interfaces show (Figure 17.3) that the decrease in tensile
strength is not abrupt, but is rather gradual. This is caused by the presence of the fracture process zone, along which
the energy of the system is gradually dissipated.

In the present model, the rock-concrete contact is idealized as an interface between two dissimilar materials with
zero thickness. Thus, the objective is to define relationships between normal and tangential stresses with opening and
sliding displacements. The notation used in the interface model is illustrated in Figure 17.2.2. The major premises
upon which the model is developed are:

(1) Shear strength depends on the normal stress.
(2) Softening is present both in shear and tension.
(3) There is a residual shear strength due to the friction along the interface, which depends on the compressive

normal stress.
(4) Reduction in strength, i.e. softening, is caused by crack formation.
(5) There is a zero normal and shear stiffness when the interface is totally destroyed.
(6) Under compressive normal stresses neither the shear and nor the normal stiffnesses decrease to zero. In addition,

should a compressive stress be introduced in the normal direction following a full crack opening, two faces of the
interface come to contact, and both tangential and normal stiffnesses become nonzero.

(7) Irreversible relative displacements are caused by broken segments of the interface material and by friction
between the two crack surfaces.

(8) Roughness of the interface causes opening displacements (i.e. dilatancy) when subjected to sliding displace-
ments.

(9) The dilatancy vanishes with increasing sliding or opening displacements.
Figure 17.5 illustrates the probable character of the fracturing process along an interface.
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Figure 17.4: Interface idealization and notations.
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Figure 17.5: Interface fracture.
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In the proposed model the strength of an interface is described by a failure function:

F = (τ 21 + τ 22 )− 2 c tan(φf )(σt − σ)− tan2(φf )(σ
2 − σ2

t ) = 0 (17.55)

where:

• c is the cohesion.

• φf is the angle of friction.

• σt is the tensile strength of the interface.

• τ1 and τ2 are the two tangential components of the interface traction vector.

• σ is the normal traction component.

The shape of the failure function in two-dimensional case is shown in Figure 17.6, and it corresponds to the failure
criteria first proposed by (Carol, I. and Bažant, Z.P. and Prat, P.C. 1992). The general three-dimensional failure
function is obtained by mere rotation around the σ-axis.

φ

tan(     )φf

Final Failure
Function

Initial Failure
Function

σ

τ

c

σ

tan(     )
f

t

1

1

Figure 17.6: Failure function.

The evolution of the failure function is based on a softening parameter uieff which is the norm of the inelastic
displacement vector ui. The inelastic displacement vector is obtained by decomposition of the displacement vector u
into an elastic part ue and an inelastic part ui. The inelastic part can subsequently be decomposed into plastic (i.e.
irreversible) displacements up and fracturing displacements uf . The plastic displacements are assumed to be caused
by friction between crack surfaces and the fracturing displacements by the formation of microcracks.

F = F (c, σt, φf ), c = c(uieff), σt = σt(u
ieff)

u = ue + ui, ui = up + uf

uieff = ||ui|| = (ui
x
2
+ ui

y
2
+ ui

z
2
)1/2

(17.56)

In this work both linear and bilinear relationship are used for c(uieff) and σt(u
ieff).

c(uieff) = c0(1− uieff

wc
) ∀ uieff < wc

c(uieff) = 0 ∀ uieff ≥ wc

wc =
2GIIa

F
c0

⎫⎪⎬⎪⎭ linear for cohesion

c(uieff) = c0 + uieff s1c−c0
w1c

∀ uieff < w1c

c(uieff) = sc(1− uieff−w1c
wc−w1c

) ∀ uieff ∈ 〈w1c, wc〉
c(uieff) = 0 ∀ uieff > wc

wc =
2GIIa

F −c0w1c

s1c

⎫⎪⎪⎪⎬⎪⎪⎪⎭ bi-linear for cohesion

(17.57)
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σt(u
ieff) = σt0(1− uieff

wσ
) ∀ uieff < wσ

σt(u
ieff) = 0 ∀ uieff ≥ wσt

wσ =
2GI

F
σt0

⎫⎪⎬⎪⎭ linear for tensile strength

σt(u
ieff) = σt0 + uieff s1σ−σt0

w1σ
∀ uieff < w1σ

σt(u
ieff) = s1σ(1− uieff−w1σ

wσt−w1σ
) ∀ uieff ∈ 〈w1σ, wσ〉

σt(u
ieff) = 0 ∀ uieff > wσ

wσ =
2GI

F −σt0w1σ

s1σ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
bi-linear for
tensile strength

(17.58)

where GI
F and GIIa

F are mode I and II fracture energies. s1c, w1c and s1σ, w1σ are the coordinates of the breakpoint
in the bi-linear softening laws for cohesion and tensile strength respectively. The critical opening and sliding corre-
sponding to zero cohesion and tensile strength are denoted by wσ and wc respectively, and they are determined from
the condition that the area under the linear or bilinear softening law must be equal to GI

F and GIIa
F respectively.

The significance of these symbols can be best explained through Figure 17.7. It should be noted that GIIa
F is not

GF

I
G

IIa
F

c

ww

s

σt
σt 0 c0

s1c

1cwσ

1σ

1σ
uieff wc

uieff

Figure 17.7: Bi-linear softening laws.

the pure mode II fracture energy (i.e. the area under a τ -ux curve), but rather is the energy dissipated during a
shear test with high confining normal stress. This parameter was first introduced by (Carol, I. and Bažant, Z.P.
and Prat, P.C. 1992) in their microplane model. This representation seems to be more favorable to the pure mode
II fracture energy GII

F . The determination of GII
F would require a pure shear test without confinement, which is

extremely difficult to perform. Alternatively, a GIIa
F test requires a large normal confinement, and is therefore easier

to accomplish. Furthermore, if GII
F is used, the whole shear-compression region of the interface model would be

an extrapolation from the observed behavior, whereas the second approach represents an interpolation between the
upper bound GIIa

F and the lower bound GI
F .

The residual shear strength is obtained from the failure function by setting both c and σt equal to 0, which
corresponds to the final shape of the failure function in Figure 17.6 and is given by:

τ 21 + τ 22 = tan2(φf ) σ
2 (17.59)

Stiffness degradation is modeled through a damage parameter, D ∈ 〈0, 1〉, which is a relative measure of the
fractured surface. Thus, D is related to the secant of the normal stiffness Kns in the uniaxial case:

D =
Af

Ao
= 1 − Kns

Kno
(17.60)

where Kno is the initial normal stiffness of the interface; Ao and Af are the total interface area and the fractured area
respectively. It is assumed, that the damage parameter D can be determined by converting the mixed mode problem
into an equivalent uniaxial one (Figure 17.8). In the equivalent uniaxial problem the normal inelastic displacement
is set equal to uieff. Then, the secant normal stiffness can be determined from:

Kns =
σ

u− up
=

σt(u
ieff)

ue + up + uf − up
=

σt(u
ieff)

σt(uieff)/Kno + (1− γ)uieff
(17.61)
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where γ is the ratio of irreversible inelastic normal displacement to the total value of inelastic displacement. Experi-
mentally, γ can be determined from a pure mode I test through:

γ =
up

ui
(17.62)

where up is the residual displacement after unloading and ui is the inelastic displacement before unloading. (Fig-
ure 17.8). For concrete, γ is usually assumed equal to 0.2 (Dahlblom and Ottosen 1990) or 0.3 (Alvaredo and

σ

u

no
K

K ns

σ i

σ

u =     uγ u

u  = ui ieff

ip i

GF
I

Figure 17.8: Stiffness degradation in the equivalent uniaxial case.

Wittman 1992). Then, the evolution of the damage parameter D is defined by formula:

D = 1 − σt(u
ieff)

σt(uieff) + (1− γ)uieffKno
(17.63)

which is obtained by substituting Equation 17.61 into Eq. 17.60.
The stress-displacement relationship of the interface is expressed as:

σ = αE(u− up) (17.64)

where: (a) σ is the vector of tangential and normal stress at the interface.

σ = {τ1, τ2, σ}T (17.65)

(b) α is the integrity parameter defining the relative active area of the interface, and it is related to the damage
parameter D.

α = 1− |σ|+ σ

2|σ| D (17.66)

It should be noted that α can be different from 1 only if the normal stress σ is positive (i.e. the interface is in tension).
In other words, the damage parameter D is activated only if the interface is in tension. In compression, the crack
is assumed to be closed, and there is full contact between the two crack surface. The activation of D is controlled
through the fraction |σ|+σ

2|σ| , which is equal to one if σ is positive, and is zero otherwise.

(c) E is the elastic stiffness matrix of the interface.

E =

⎡⎣ Kto 0 0
0 Kto 0
0 0 Kno

⎤⎦ (17.67)

It should be noted, that the off-diagonal terms in the elastic stiffness matrix E of the interface are all equal to zero,
which implies that no dilatancy is considered in the elastic range. The dilatancy is introduced later after the failure
limit has been reached through the iterative solution process. The dilatancy of the interface is given by dilatancy
angle φd, which is again assumed to be a function of uieff. In the proposed model, a linear relationship is assumed:

φd(u
ieff) = φd0(1− uieff

udil
) ∀uieff ≤ udil

φd(u
ieff) = 0 ∀uieff > udil

(17.68)

where udil is the critical relative displacement after which, the interface does not exhibit the dilatancy effect any
more, and φd0 is the initial value of the dilatancy angle.
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17.2.2.1 Relation to fictitious crack model.

It is possible to prove that the proposed interface crack model (ICM) reduces to Hillerborg’s fictitious crack model
in the case of zero sliding displacements.

PROOF 17.1 (FCM a special case of ICM.) We assume that all shear displacements are zero. Then, the in-
terface stresses develop only along the σ-axis in the σ × τ1 × τ2 space (Figure 17.6). After the tensile strength σt is
reached, softening starts, and the stress in the interface is given by:

σ = σ(ui
z) (17.69)

Normal traction σ is now a function of the normal inelastic displacement ui
z only, since for zero sliding displacements,

uieff is equivalent to ui
z. The total opening uz of the interface is given by:

uz =
σ(ui

z)

Kno
+ ui

z

If the limiting case of Kno equal to infinity is considered, then ui
z becomes equivalent to uz, and the normal stress in

Equation 17.69 becomes a function of the interface opening only:

lim
Kno→∞

σ = σ(ui
z) = σ(uz) = σ(COD) (17.70)

which is precisely the definition of Hillerborg’s fictitious crack model.

17.2.3 Finite Element Implementation

The finite element implementation of the interface crack model previously presented will be discussed in this section.
The implementation of a nonlinear model into a finite element code consists of three major subtasks:

1. Interface element formulation.

2. Constitutive driver for the computation of internal forces.

3. Non-linear solution algorithm on the structural level.

17.2.3.1 Interface element formulation.

Standard interface elements are used in this work. The element stiffness matrix is computed using the well known
relation:

Ke =

∫
Ae

BTEB dA (17.71)

where E is the interface material stiffness matrix, given by Equation 17.67, and B is the matrix relating element
nodal displacements ue to slidings and openings along the interface:

u =

1/2Nen∑
i

Ni(ū
+
i − ū−

i ) = Bue (17.72)

where ū+
i and ū−

i denote the element nodal displacements in the local coordinate system of the interface on the
upper and lower interface surface respectively. Given this definition, matrix B is equal to:

B =
[
−B1T , · · · , −Bp+1T , +B1T , · · · , +Bp+1T

]
(17.73)

where submatrix Bi is a diagonal matrix of shape functions Ni(ζ, η) corresponding to node i. In three-dimensional
case it has the form:

Bi =

⎡⎣ Ni(ζ, η) 0 0
0 Ni(ζ, η) 0
0 0 Ni(ζ, η)

⎤⎦ (17.74)

and in two-dimensional case it is given by:

Bi =

[
Ni(ζ) 0
0 Ni(ζ)

]
(17.75)
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Figure 17.9: Interface element numbering.

Subscript i is a node numbering index on one element surface ranging from 1 to Nen
2

, where Nen is the total number

of element nodes, p is the order of the interface element, and is equal to (Nen
2
− 1). Finally, ζ and η are the natural

coordinates of the interface element.
This definition of matrix B corresponds to the element numbering shown in Figure 17.9 for several two- and three-

dimensional interface elements. The transformation from global to local coordinate system of the interface element
is accomplished through the transformation matrix T , which in general three-dimensional case is:

T =

⎡⎣ vT
1

vT
2

vT
3

⎤⎦ (17.76)

The rows of the transformation matrix T are formed by vectors vi defined by following formulas:

v1 =

∂x
∂ζ

||∂x
∂ζ
||
, v3 =

∂x
∂ζ
× ∂x

∂η

||∂x
∂ζ
× ∂x

∂η
||

v2 = v3 × v1, (17.77)

The two-dimensional case can be recovered from the two preceding formulas by deleting the last row in matrix T
and considering the following definition of vectors vi.

v1 =

∂x
∂ζ

||∂x
∂ζ
||
, v2 = {−v1y , v1x} (17.78)

Local coordinate systems defined by these transformations are shown in Figure 17.10.

17.2.3.2 Constitutive driver.

The mathematical theory of plasticity is used in the development of the constitutive driver for the interface crack
model. On the constitutive level in the sense of finite element implementation, the problem can be stated as follows:

For a given stress state σn, softening parameter uieff
n and displacement increment Δun, determine a new stress

state σn+1 and corresponding value of softening parameter uieff
n+1. In both states n and n + 1, the failure criterion

must be satisfied:

Fn(σn, u
ieff
n ) = 0 ∧ Fn+1(σn+1, u

ieff
n+1) = 0 (17.79)
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Figure 17.10: Local coordinate system of the interface element.

These two conditions are equivalent to an incremental form of the consistency condition (Equation ??):

ΔF = Fn+1 − Fn = 0 (17.80)

Because the failure function is assumed to be satisfied for state n, it is necessary to also ensure the satisfaction of the
failure function at state n+1. In this work, plasticity theory is used to describe the evolution of the failure function
based on the softening parameter uieff, which is the euclidean norm of the inelastic displacement vector. The inelastic
displacements are subsequently decomposed according to Equation 17.62. Thus, plastic and fracturing effects can be
separated.

The elastic predictor is given by:

σe = σn + EΔun (17.81)

where σe are the trial tractions outside the failure surface if a totally elastic behavior is considered. The inelastic
corrector returns the trial stress state back to the failure surface:

σn+1 = σe − ΔλEm (17.82)

where Δλ is the inelastic multiplier and m is the direction of the inelastic displacements. Inelastic multiplier Δλ is
determined from the failure condition at state n+ 1.

Fn+1(σe − ΔλEm, uieff
n+1) = 0 (17.83)

In the three dimensional space σ× τ1× τ2, the geometrical interpretation of this condition is the determination of an
intersection of a line emanating from point σe in the direction Em with the moving failure surface (Figure 17.11). The
failure surface, F = 0, expands or shrinks depending on the softening introduced through uieff. This is schematically
shown in Figure 17.11 for a two-dimensional case. The increment of the plastic multiplier Δλ is computed by solving
a quadratic equation obtained by considering the particular form of the failure function 17.55 in Equation 17.83.

For this case, the failure function is equal to:

F = (τ 21 n+1 + τ 22 n+1)− 2 c tan(φf )(σt − σn+1)− tan2(φf )(σ
2
n+1 − σ2

t ) = 0 (17.84)

To this equation, we substitute the expression for the new stress state σn+1, which are equal to (Equation 17.82):

τ1n+1 = τ1e −ΔλKtom1 = τ1e −Δλl1
τ2n+1 = τ2e −ΔλKtom2 = τ2e −Δλl2
σn+1 = σe −ΔλKnom3 = σe −Δλl3

(17.85)

The result of this substitution is a quadratic equation with roots:

Δλ1,2 =
−B ±

√
B2 − 4AC

2A
(17.86)

where

A = l21 + l22 − μ2l23
B = 2μ2σel3 − 2l1τ1e − 2l2τ2e − 2cμl3
C = τ 21 e + τ 22 e − 2cμ(σt − σe)− μ2(σ2

e − σ2
t )
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Figure 17.11: Algorithm for interface constitutive model.

The required solution must satisfy the following conditions.

Δλ > 0 ∧ Δλ = min(Δλ1,Δλ2) (17.87)

In the previous equations, l1, l2 and l3 are components of vector l indicating the direction of inelastic return in the
stress space, and they are related to the direction of inelastic displacements m through the stiffness matrix E.

l = Em (17.88)

The direction of inelastic displacements m is defined as the normal vector to the plastic potential Q (Figure 17.11),
which is defined using the dilatancy angle φd(u

ieff) as:

Q = τ 21 + τ 21 − (
Kn

Kt
tanφd)

2σ2 = 0 (17.89)

For the definition of m, we must distinguish between the case, when the return direction m can be determined on
the basis of Q, and the pathological case of the apex of Q, when the normal m cannot be constructed. For this case,
m is defined by connecting the trial tractions σe with the origin of the σ × τ1 × τ2 space (Figure 17.12):

m =

⎧⎨⎩
τ1/Kto

τ2/Kto

σ/Kno

⎫⎬⎭ if ||τ ||
σ
≤ 1

tanφd

Kto
Kno

∧ σ > 0

m =

⎧⎨⎩
τ1
τ2√

τ 21 + τ 22 tanφd

⎫⎬⎭ otherwise

(17.90)

At this stage, we can identify three major steps to the proposed algorithm:

1. Elastic predictor:

σe = σn + EΔun (17.91)

2. Inelastic corrector simultaneously satisfying the following two equations:

Fn+1(σe − ΔλEm, uieff
n+1) = 0

uieff
n+1 = uieff

n + ||Δλm|| (17.92)
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Figure 17.12: Definition of inelastic return direction.

3. Fracturing corrector:

Es = αE
up = u−E−1

s σn+1
(17.93)

In the fracturing corrector, the inelastic displacements due to friction and microcracks development are separated.
This separation is controlled by the damage parameter D defined by Equation 17.63. The evolution of damage
parameter D is defined by converting the mixed mode problem into an equivalent uniaxial case as described in
Section 17.2.2.

The complete algorithm of the interface constitutive driver is described in Algorithm 17.1 and is shown schematically
on Figure 17.11.
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ALGORITHM 17.1 (ICM constitutive driver.)

• Input: σn, u
ieff
n and Δun

• σn+1 = σn + αEΔun

• if F (σn+1, u
ieff
n ) > 0

– Update σn, and Δun such that F (σn, u
ieff
n ) = 0.

– Elastic predictor: σn+1 = σn + EΔun

– Inelastic corrector:

∗ uieff

n+1 = uieff
n

∗ Do

· Evaluate return direction m

· Determine dλ such that F (σn+1 − dλEm, uieff

n+1) = 0

· uieff

n+1 = uieff

n+1 + ||dλm||
· σn+1 = σn+1 − dλEm

∗ While dλ < ε

– Fracturing corrector:

α = 1− |σ|+σ
2|σ| D(uieff

n+1)

Es = αE
up = u−E−1

s σn+1

• Output: σn+1, u
ieff

n+1

17.2.3.3 Non-linear solver.

The proposed interface crack model is clearly a nonlinear material formulation, and therefore, a finite analysis
including this material formulation involves a system of nonlinear equations. Such system can be solved, for instance,
by the Newton-Raphson method. To exploit the full Newton-Raphson method a tangent stiffness matrix would have
to be computed at each iteration. The incremental tangent stiffness matrix for the proposed material formulation
can be computed from the incremental stress-displacement relationship:

Δσn = EΔun − ΔλEm (17.94)

when multiply the last term by a fraction which is equal to unity:

Δσn = EΔun − ΔλEm
nTEΔun

nTEΔun
(17.95)

where n is the normal vector to the failure surface passing through the trial stress state σe (Equation 17.81). From
this equation it is possible to derive a formula for an incremental tangent material stiffness matrix ET :

Δσn = ETΔun (17.96)

where:

ET = E

(
I −Δλ

EmnTE

nTEΔun

)
(17.97)

In this particular case, the new stress state is computed using the iterative process described in Algorithm 17.1.
Therefore, the incremental stress-displacement is given by a sum:

Δσn = EΔun −
Niter∑
i=1

(ΔλiEmi) (17.98)

where Niter is the number of iterations in the inelastic corrector part of Algorithm 17.1. Following similar arguments
leading to equation 17.97, the incremental tangent stiffness is computed by the following expression:

ET = E

[
I −

Niter∑
i=1

(
Δλi

Emin
T
i E

nT
i EΔun

)]
(17.99)
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During softening, the tangent matrix ET becomes negative. In addition, the matrix becomes also unsymmetric
due to the dilatancy, which is introduced in the softening regime of the interface model. This would imply the need
to store the full stiffness matrix on the structural level, and a method for solving unsymmetric and non-positive
system of equations would have to be adopted. This is clearly not an efficient approach, since only few elements will
be affected by the non-linear behavior (i.e. interface elements), and therefore, only small portions of the structural
stiffness matrix will be unsymmetric.

On the other hand, it can be expected that the initial stiffnesses of the interface elements are very large, and
in some cases, they represent penalty numbers modeling a rigid contact. This means that it is not possible to use
the initial structural stiffness throughout the whole iterative process, as it would result in an excessive number of
iterations.

In this work two approaches are suggested to mitigate this problem:
(1) Use of secant-Newton method to accelerate the convergence on the structural level.
(2) Use of secant interface stiffness on the element level while preserving its positiveness and symmetry.
Both methods are supplemented with the line-search technique of (Crisfield 1991).

17.2.3.4 Secant-Newton method.

The secant-Newton method is described in detail in (Crisfield 1991). In this method, it is not necessary to recompute
the structural stiffness matrix at each iteration, but rather the vector of iterative displacement corrections is updated
to satisfy the secant relationship.

du∗
i

ri
=

du∗
i−1

ri − ri−1
(17.100)

For one-dimensional case, the meaning of this formula is illustrated by Figure 17.13. In this work, (Davidon, W.C.

du

r
r

du

K

Ks

or      - r

F

u
(i-1)

(i-1)

(i-1) (i)

(i)

(i)
**

Figure 17.13: Secant relationship.

1968) rank-one quasi-Newton update is used, and the corrected iterative update of the displacement vector in iteration
i is equal to:

du∗
i = Adui + Bdu∗

i−1 + Cdui−1 (17.101)

where dui is the iterative update of the displacement vector computed in iteration i by solving:

dui = K−1ri (17.102)

where K is the structural stiffness matrix, and ri are residual forces at iteration i. The stared symbols, u∗
i and u∗

i−1,
represent the displacement vector updates based on the secant-Newton corrections (Equation 17.101), and coefficients
A, B and C are given by (Davidon, W.C. 1968):

C =
(du∗

i−1+dui−dui−1)
Tri

(du∗
i−1

+dui−dui−1)
T (ri−ri−1)

A = 1− C, B = −C
(17.103)
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17.2.3.5 Element secant stiffness.

It is also possible to employ the secant formula (Eq. 17.100) on the element level. Considering the diagonal form of
the material stiffness matrix E, it is possible to determine its secant form from the stress and displacement corrections
in each iteration.

Ki
t1 =

τi
1n+1

−τi−1
1 n+1

Δui
xn+1−Δui−1

x n+1

Ki
t2 =

τi
2n+1

−τi−1
2 n+1

Δui
yn+1

−Δui−1
y n+1

Ki
n =

σi
n+1−σi−1

n+1

Δui
zn+1

−Δui−1
z n+1

(17.104)

To preserve the positiveness of the material stiffness matrix a minimal value for shear and normal stiffnesses must
be specified. In this work the shear and normal stiffnesses cannot be less than 10−8 times their original value. This
number is based on the assumption that the ratio of the lowest elastic modulus to the largest interface stiffness is
below 10−4. This ratio should be sufficient in most practical problems, since the interface stiffness can be estimated
from:

Kn =
E

t
(17.105)

where t is the interface thickness. Thus, the ratio E
Kinterface ≈ 10−4 corresponds to the assumption of interface

thickness being equal to 10−4 times a unit length of the problem. This should be adequate for the types of of
problems under consideration in this work. Alternatively, we consider an extreme case of Kinterface of the same
order as E (i.e. t ≈ problem unit). Then after cracking, the interface stiffness will be is reduced to 10−8 times its
original value, and it is possible to estimate the condition number of the system using the elastic modulus, maximal
and minimal element sizes.

κ ≈ Kelem
max

Kinterface
min

≈ Ehmax

(Eh2
min)/t × 10−8

≈ 1014 (17.106)

In the formula, the element sizes were assumed to be in the range of the order 〈10−2, 102〉.
The loss of accuracy due to finite precision arithmetic is given by:

s = p− log(κ) (17.107)

where p is the number of significant digits in the computer representation of real numbers and s is the accuracy of
the solution. The system will become ill-conditioned when:

s ≤ 0 (17.108)

A real number f is internally represented in a computer memory by three integers m, β and e.

f = .m × βe (17.109)

The mantissa m gives the number of significant digits. For double precision data type, m is usually stored in 52
bits, which corresponds to approximately 16 significant digits. Therefore, the accuracy after decomposition is in the
worst possible scenario equal to 2 (Equation 17.107), which is of course an unacceptable level of accuracy. However,
it should be kept in mind that this is a worst case scenario, and it would be unrealistic to have a ratio of largest to
smallest element of the order of 104, as was assumed in Equation 17.106.

17.2.3.6 Line search method.

Numerical experiments showed, that often the diagonal approximation of the secant stiffness underestimates the
true stiffness of the interface and allows for excessive interface sliding. The excessive sliding in turn introduces
large dilatancy effects and high compressive stresses in the normal direction in the subsequent iteration. These high
compressive stresses and the frictional properties of the interface combined with the excessive slidings will cause large
shear stresses, which may not be in equilibrium with the rest of the finite element mesh. Due to this, the resulting
high residual forces attempt to slide the interface backwards, but since the stiffness of the interface is underestimated,
the backward sliding is too large, and the iteration process diverges. This problem can be solved by combining the
previously discussed secant-methods with line searches.

The fundamental principle behind the line search method (Crisfield 1991) is to determine a scaling factor ω, for
the current iterative displacement correction, such that the functional of total potential energy is stationary.

Π(ω) = Π(ui−1 + ωdui) = Π(ω) +
∂Π(ω)

∂u(ω)

∂u(ω)

∂ω
δω (17.110)
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The functional Π(ω) would be stationary if the last term is equal to zero. It can be shown, (Crisfield 1991), that the
partial derivative of total potential energy Π(ω) with respect to displacements u(ω) is equal to the vector of residual
forces r(u). Thus, the last term of Equation 17.110 is equivalent to:

∂Π(ω)

∂u(ω)

∂u(ω)

∂ω
δω = r(ω)dui δω = 0 (17.111)

If we introduce a new symbol s(ω) representing the scalar product of vectors r(ω) and dui, then the objective is to
find a scalar multiplier ω such that s(ω) is equal to zero. Such ω can be approximately computed from s(ω) for ω
equal to zero and one.

s(0) = r(ui−1)dui, s(1) = r(ui−1 + dui)dui (17.112)

Then an approximation of ω can be evaluated using the following formulas based on the linear interpolation between
s(0) and s(1).

ω =
−s(0)

s(1)− s(0) (17.113)

A more accurate value of ω can be determined through recursive applications of this formula.

ωi+1 = ωi
−s(0)

s(ωi)− s(0)
(17.114)

Graphically, the line search is illustrated in Figure 17.14. We observe that it corresponds exactly to the divergence

s(0)

s(1)

s(   )ω

ω

Figure 17.14: Line search method.

problem previously described. Originally, the residual forces acted along the same direction as the iterative displace-
ment correction, and their scalar product s(0) was positive. However, after the iterative correction is considered,
the residuals have opposite orientation with respect to the iterative displacement update dui, and s(1) is negative.
This indicates that the displacements should be smaller, and this is exactly, what the line search method is able to
recognize and correct.

The line search method can be implemented in the context of various load control techniques. The implementation
of line searches in the context of the arc-length method is discussed in (Crisfield 1991). (Reich 1993) implemented the
line search method with an indirect displacement control technique, which is based on crack step control mechanism,
and can be therefore easily used for non-linear fracture mechanics analyzes using the FCM model.

17.2.4 Mixed Mode Crack Propagation

In most engineering problems, the crack path is not known a priory, and therefore, must be determined during an
analysis. In the context of discrete crack analysis, this is accomplished by modifications of the initial mesh. It is,
therefore, necessary to establish appropriate criteria for crack initiation and propagation. The criteria for LEFM
analysis were discussed in Section ?? of Chapter ??. In the non-linear fracture mechanics analysis, a crack initiation
criterion can be based on tensile stresses, and energy control is conducted through an appropriate softening diagram.
This is to be contrasted with LEFM, where the stress based criteria are not applicable, as they are infinite at the
crack ti. It can be readily verified that the Griffith energy based criterion is also satisfied in the non-linear fracture
mechanics through an appropriate softening law.
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17.2.4.1 Griffith criterion and ICM.

Let us consider a cohesive crack with both normal and tangential tractions in a thin plate subjected to far field
stresses, and let us assume the crack is to be under general mixed mode conditions, Figure 17.15. To verify if the
non-linear model satisfies Griffith criterion, it is necessary to compute the energy released by a unit crack propagation.
The J-integral provides a method to evaluate the energy release rate. The J-integral is a path independent integral
and in two-dimensional is given by:

J =

∮
Γ

(Wnx − t̂
∂u

∂x
)dΓ (17.115)

Due to its path independent character it is possible to evaluate the J-integral along the crack surfaces.

σ

τ

τ

τ
σ

σ

Γ

Γo

Figure 17.15: Griffith criterion in NLFM.

J(Γo) = −
∫
Γo

t̂
∂u

∂x
ds =

∫
FPZ

(
τ
∂Δx

∂x
+ σ

∂Δy

∂x

)
dx (17.116)

Applying Leibnitz rule for the differentiation of definite integrals the J-integral is equivalent to:

J(Γo) =

∫
FPZ

[
d

dx

(∫ Δx

0

τ dΔx

)]
dx +

∫
FPZ

[
d

dx

(∫ Δy

0

σ dΔx

)]
dx (17.117)

The expressions in parentheses represent the surface energies dissipated in mode I and II at every point along the
fracture process zone normalized with respect to crack surface. Hence, we define:∫ Δx

0

τ dΔx = qII(x),

∫ Δx

0

σ dΔy = qI(x) (17.118)

J(Γo) =

∫
FPZ

dqII(x)

dx
dx +

∫
FPZ

dqI(x)

dx
dx = GII

c +GI
c = Gc (17.119)

where GII
c and GI

c is the energy dissipated by a unit propagation of the cohesive crack in mode II and I respectively.
It should be noted that in general, GII

c and GI
c are not equivalent to GII

F and GI
F , but are rather functions of these

and the stress state along the interface. However, it is possible to consider two special cases for pure mode I and II
cracks.

In the case of pure mode I crack, the J-integral is equal to:

J(Γo) =

∫
FPZ

[
d

dx

(∫ Δy

0

σ dΔy

)]
dx =

∫ wσ

0

σ(Δy) dΔy = GI
F (17.120)

Similarly, in the case of pure mode II crack, the J-integral is equal to:

J(Γo) =

∫
FPZ

[
d

dx

(∫ Δx

0

τ dΔx

)]
dx =

∫ wτ

0

τ (Δx) dΔx = GII
F (17.121)

where wσ and wτ is the critical crack opening and sliding respectively for which normal and tangent stresses can no
longer be transferred across the crack.
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The following conclusion can be drawn based on the basis of the previous discussion:
(1) It was shown that a unit extension of a cohesive crack model dissipates energy whose amount depends on the

softening laws used by the model. The amount of dissipated energy also depends on the loading conditions in FPZ. In
pure mode I and mode II loading, specific fracture energies GI

F and GII
F are dissipated respectively. If the structural

system cannot provide these energies, the crack would not propagate.
(2) In the limiting case, when the dimensions of the analyzed problem increase, the cohesive crack gives identical

results as LEFM.
(3) In finite element implementation, errors are introduced due to discretization errors. In large structures, fine

mesh would be necessary at the crack tip to model the fracture process zone. If the FPZ is not modeled adequately,
the Griffith criterion for crack propagation is violated, and erroneous results will be obtained.

17.2.4.2 Criterion for crack propagation.

In this work a stress based criterion is used for crack initiation and propagation. A crack is initiated when a maximal
principal stress σ1 exceeds the tensile strength of the material. A crack of certain length Δa is inserted into the
boundary representation of the model in the direction perpendicular to the direction of the maximal principal stress,
and the length of the new crack Δa is arbitrarily selected by the user. The exact solution is approached as this length
tends to zero, this is however not feasible, and from author’s experience, the crack step size should be:

Δa ≤ L

10
(17.122)

where L is maximal dimension of the problem. From the updated boundary representation, a new mesh is generated,
in which interface elements are placed along the crack. Then, a non-linear analysis is performed, and the maximal
principal stresses at crack tips are monitored. When they are found to exceed the tensile strength of the material,
the analysis is interrupted, and new crack surfaces are inserted into the boundary representation of the problem.
Then, a new mesh is again generated and the problem is reanalyzed from the beginning. In this manner the finite
element model is adaptively modified until the structure is fully cracked or the prescribed loading level is reached.
This process is described by Algorithm 17.2, and is shown graphically in Figure 17.16.

ALGORITHM 17.2 (Mixed mode crack propagation.)

(1) Input: Boundary representation.

(2) Generate finite element model.

(3) Do

(3.1) Non-linear finite element analysis.

(4) While: maximal principal stresses < f ′
t .

(5) If maximal principal stress exceed f ′
t .

(4.1) Add new crack surfaces of length Δa to
the boundary representation in the direction perpendicular to σ1.

(4.2) Goto Step 2.

(6) Output: Boundary representation, Finite element model.

17.3 Interface Crack Model; ICM-2 Cyclic (MM: 21)

Adapted from ?

17.3.1 Introduction

Joint and interfaces, coupled with cohesive stresses, are present in many structures spanning well over six orders of
magnitudes in size (from metallic polycristals, ceramics to dams and tectonic faults). In all cases, one is confronted
with an actual or potential displacement discontinuity where classical continuum mechanics fails to provide a solution,
and very often these displacement discontinuities are precisely the main source of nonlinearity.

Depending on the field of study, these discontinuities assume different names: interface, crack, joint, fault or even
artificially built joint. A civil engineering application where cracks abound are dams where, let aside AAR, they
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Figure 17.16: Mixed mode crack propagation.
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are the major source of nonlinearity. They are present along the rock/concrete interface, lift joints, cantilever joints
(with or without shear keys), in plain concrete cracks, or rock joints. Yet, irrespective of their origin, all those cracks
can be correctly modelled by the same generalized model provided material parameters are appropriately set. Other
civil structures where joints or cracks can be of particular concern are nuclear containment vessels, (Hansen and
Saouma 2003). Surprisingly, interface elements have also been used, albeit at a much smaller scale, for improved
understanding of ceramics (Saouma, Natekar and Sbaizero 2002), and aluminum (Iesulauro, Ingraffea, Arwade and
Wawrzynek 2002).

Ever since the pioneering work of Goodman, R.E. and Taylor, R.C. and Brekke, T.C. (1968), numerous joint or
interface laws have been proposed for both discrete and smeared crack models in concrete structures, (Hohberg 1992).

Of particular interest to dam engineering are the models of Fenves, Mojtahedi and Reimer (1992), Divoux, Bour-
darot and Boulon (1997), Hall (1998), and Ahmadi, Izadinia and Bachmann (2001). Each of those models indeed
presents an innovative component, but none appears to have been generalized to account for many phenomena associ-
ated with reverse cyclic load, asperity degradation, softening of tensile strength and cohesion, or stiffness degradation.

Some mixed-mode interface models exploit the analogy with the mechanics of irreversible plastic processes to
account for unrecoverable joint opening and sliding; to them belongs the proposal made by Plesha (1987) and several
successive works based on it. The frictional behaviour of the joint under reversed shear in compression is mainly
considered in this approach, widely used in rock mechanics.

Insight and deeper understanding of lower scale surface interactions can be achieved through micro-mechanics based
models such as (Fox, Kana and Hsiung 1998), (Grasselli, Wirth and Egger 2002), Misra (2002). The prediction of the
joint behaviour results from a statistical description of the surface topography, but this kind of information is seldom
available to practical purposes in structural design and overall analysis. In these cases, phenomenologically based
models, unburdened by mechanics, often result in easier modelling of experimental results, (Bažant and Gambarova
1980) (Divoux, Boulon and Bourdarot 1997).

Fracture mechanics based models set in an elasto-plasticity framework seem to be the most general formulation in
terms of the range of problems they can address; see, e.g.: (Lotfi and Shing 1994), (Carol, Prat and López 1997),
(Červenka, Kishen and Saouma 1998), and (Cocchetti, Maier and Shen 2002). In particular, they permit to include
and follow strength deterioration leading to the formation and progressive development of natural joints (i.e., cracks).

To the best of the authors’ knowledge, the only generalized model addressing cyclic load , though in a displacement
based formulation, is the one of Giambanco and Di Gati (1997) based on previous frictional-dilatant models by
Snyman and Martin (1992) and Mróz and Giambanco (1996). The model, intended for the structural analysis of
masonry blocks, introduces a piece-wise linear yield condition governed by two independent internal variables. In the
present model a unique yield function is defined and its evolution in the stress space controlled by a quantity which
has a clear mechanical meaning, namely by a norm of inelastic displacement discontinuities. Moreover the present
proposal is also different in the definition of roughness characteristics, e.g. through dilatant displacement and not
dilatancy angle, and in their connection with the mechanical properties.

In this paper, an existing fracture mechanics based joint model, (Červenka et al. 1998), is extensively modified to
account for cyclic loading (and accompanying surface degradation) in a manner similar to the one proposed by Plesha
(1987). A suitable idealisation of the joint surface geometry is introduced for describing the macroscopic (overall)
behaviour of the joint, more than for reflecting its microscopic structure as in (Fox et al. 1998), (Grasselli et al. 2002),
Misra (2002).

A review of the monotonic interface element being extended is summarized first, then the formulation for cyclic load
is presented. Finally the response of the generalized model at material point level is analyzed through a comparison
with the model of Červenka et al. (1998) and with the cyclic shear experimental results of Kutter and Weissbach
(1980).

The formulation presented herein is restricted to two dimensional situations; extension to 3D cases is conceptually
straightforward only if isotropy is assumed in the joint plane.

17.3.2 Cyclic behavior of quasi brittle interfaces

Experimental studies on the cyclic behavior of quasi-brittle interfaces have been reported for both concrete and rock.
For concrete they are mainly motivated by the investigation of the aggregate interlock phenomenon in which a slightly
opened crack is subjected to reversed cyclic slip at given initial confinement, (Paulay and Loeber 1974), (Tassios and
Vintzēleou 1987) and (Fronteddu, Léger and Tinawi 1998).

Numerous experiments on rock joints have been carried out. Of particular relevance to the present investigation
is the work of Hutson and Dowding (1990), Lee, Park, Cho and You (2001), Homand, Belem and Souley (2001), and
Jafari, Hosseini, Pellet, Boulon and Buzzi (2003). All of these studies contain also proposals of shear strength or
dilatancy degradation laws derived from the tests.

In rock mechanics, a clear distinction is often made between first and second order asperities as those factors have
a strong influence on joint response, (Patton 1966). First order asperities (from here on referred to as “asperities”
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unless otherwise noted) are associated with roughness of larger amplitude and wave-length and thus they tend to
dominate dilatant behavior; second order asperities are associated with smaller amplitude and wave-length surface
variations and are primarily responsible for the frictional forces exchanged along the inclined sliding surfaces.

In the case of a smooth joint, i.e. with no relevant first order asperities effects, the quasi-static response is
characterized by almost no dilatancy and constant shear stress. This behavior can be captured by a relatively simple
non associate Coulomb type frictional law.

On the other hand, in rough joints (characterized by prominent first order asperities) the response depends on the
slip direction (forward or backward). Mathematically, forward and backward slip are respectively defined as having
an increasing or decreasing absolute value of tangential relative displacement.

In forward slip, not only does a rough joint dilate, but its apparent shear strength is also higher. The opposite is
true for backward slip. Furthermore, both of these behaviors are affected by the degradation of the joint surfaces with
progressive cycling: the dilatancy angle and the configurational difference in shear strength decrease as asperities are
worn out.

Several models for rough interfaces have been published. A particularly effective mechanical interpretation was
given by Plesha (1987), who assumed that sliding does not occur parallel to the joint mid-plane but along an inclined
angle characterizing the asperities. Hence, writing the Coulomb slip criterion along the inclined slope, and expressing
it in terms of joint stress vector components, the essential characteristics of backward and forward slip are captured.

The observed degradation of the joint characteristics with cycling loading is usually ascribed to the decrease of
the asperity angle, often exponentially with the tangential work performed. This assumption, herein adopted, has
been followed by Hutson and Dowding (1990), Qiu, Plesha, Huang and Haimson (1993), and Stupkiewicz and Mróz
(2001).

17.3.3 Červenka 1994 hyperbolic model

Following a broad literature survey, (Puntel 2004), it was determined that the most suitable monotonic interface
element for cyclic extension to the present dam-engineering oriented purpose, is the one originally developed by
Červenka (1994) and subsequently published by (Červenka et al. 1998).

The formulation developed herein is two dimensional (2D), nevertheless the extension to the 3D case is straight-
forward provided that isotropy is assumed in the joint plane. Tractions and discontinuities considered are then 2D
vectors with a normal and a single tangential component, referred to by subscript n and t respectively.

The strength (alias yield or activation) criterion of the interface is hyperbolic as also assumed by Carol et al. (1997),
Lotfi and Shing (1994).

ϕ = p2t − (c− pn μ)2 + (c− χμ)2 (17.123)

Three parameters define the interface strength: the two static internal variables, namely tensile strength χ and
cohesion c, and the friction coefficient μ. The former two decrease bi-linearly with the effective inelastic displacement
wieff which is the model’s softening variable.

χ(wieff) =

{
χ0 − χ0−χ1

wχ1
wieff 0 ≤ wieff ≤ wχ1

χ1
wχ0−wieff

wχ0−wχ1
wχ1 ≤ wieff ≤ wχ0

(17.124)

c(wieff) =

{
c0 − c0−c1

wc1
wieff 0 ≤ wieff ≤ wc1

c1
wc0−wieff

wc0−wc1
wc1 ≤ wieff ≤ wc0

(17.125)

wχ0 = (2GI
f − χ0 wχ1)/χ1 (17.126)

wc0 = (2GIIa
f − c0 wc1)/c1 (17.127)

where: χ0, c0, G
I
f , G

IIa
f , wχ1, χ1, wc 1, c1, wχ0, wc0 are the material parameters described in the notation list.

Of these ten parameters, only eight are independent to define the bilinear curves; the other two (wχ0 and wc0) can
be determined from equations 17.126 and 17.127.

The rate of wieff is defined as the norm of the rate of inelastic displacements swi:

ẇieff = || ˙swi|| =
((

ẇi
n

)2

+
(
ẇi

t

)2
)1/2

(17.128)
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The inelastic displacements ˙swi are the sum of plastic (i.e. unrecoverable) and fracture (i.e. recoverable in tension
only) displacements ˙swp and ˙swf respectively; total displacement discontinuities ˙sw are obtained adding the elastic
term ˙swe to the previous ones:

sw = swe + swi

swi = swp + swf

}
⇒ sw = swe + swp + swf (17.129)

The distinction between the two inelastic terms is motivated by the considered deterioration of the elastic stiffness in
tension due to the damage parameter D: swf enters explicitly in the expression of D, while swp does not. The matrix
of initial elastic stiffness coefficients sK0 is diagonal with Kn0 and Kt0 defined as normal and tangential components
respectively. An elastic deterioration coefficient ρ is introduced; ρ is fixed to one in compression, while it ranges from
one to zero in tension according to the level of damage D:

ρ = 1− 〈pn〉|pn|
D (17.130)

where the symbol 〈•〉 indicates the Macaulay brackets:

〈•〉 = (•+ | • |) /2 (17.131)

The traction – displacement discontinuity relationship reads:

ṡp = ρ sK0( ˙sw − ˙swp) (17.132)

Damage D can hence be defined as the complement to one of the ratio between the current normal stiffness Knc and
the initial one Kn0.

D = 1− Knc

Kn0
=
Kn0 −Knc

Kn0
(17.133)

It can be shown, (Červenka et al. 1998), that D is related to the current normal strength χ
(
wieff

)
by the relationship:

D = 1−
χ
(
wieff

)
χ (wieff) + (1− γ) wieff Kn0

(17.134)

where γ, a new parameter, is introduced to define the irrecoverable (plastic) portion of inelastic displacements:

wp
n = γ wi

n (17.135)

Finally, the direction of inelastic displacements is explicitly defined by the gradient of the potential Q:

˙swi = ∂Q
∂sp

λ̇ , λ̇ ≥ 0 (17.136)

∂Q

∂sp
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
pn/Kn0

pt/Kt0

]
if pn

|pt| ≥ μd
Kn0
Kt0[

|pt|μd

pt

]
otherwise

(17.137)

where μd is the dilatancy angle.
Around the origin of the stress space the inelastic return direction is toward the origin if Kn0 = Kt0, otherwise it is
given by the normal to an ellipse with aspect ratio

√
Kt0/Kn0; when the tangent to the ellipse equals the tangent

μd of the dilatancy angle, the direction remains constant for every smaller value of normal traction pn. However, for
wieff ≤ wdil the dilatancy μd is not constant but decreases linearly with wieff from its initial value μd0 to zero:

μd(w
ieff) =

{
μd0 (1− wieff/wdil) wieff ≤ wdil

0 wieff > wdil
(17.138)

Merlin Theory Manual



17.3 Interface Crack Model; ICM-2 Cyclic (MM: 21) 197

17.3.4 Proposed extension to cyclic loading

This section presents an extension of the previously described interface model into a generalized one which can also
capture the essential characteristics of joint cyclic behavior. This is done preserving the inherent capabilities of the
original element, and maintaining its fracture mechanics based origin.

The cyclic model description presented herein is limited to those features that will be added or modified to the
original Červenka model, namely: 1) introduction of an asperity function which characterizes joint roughness and
governs the dilatancy of the model; 2) consideration of an integrity factor which keeps track of the degradation of the
asperities; 3) modification of the yield function, of the friction angle in particular, to account for the sliding along
inclined asperities.

Some other aspects of the response of joints to cyclic loading were not considered here for the following reasons:

1. Joint bulking or seating, that is the increase or decrease of joint thickness with asperity degradation respectively,
was not included due to apparent lack of consistent experimental results.

2. Configuration rearrangements of third body granular layer particles caused by debris inside the joint (Stupkiewicz
and Mróz 2001) is not accounted for due to: its minor relevance in the present context; complexity; paucity of
experimental results.

3. Dilatancy associated to second order asperities has been deemed as not essential for the aims of the present
model, though it would be easy to insert it in the model and despite the fact that Lee et al. (2001) and Jafari
et al. (2003) report their influence on first loading cycles and for tangential relative displacements of small
amplitude.

4. Asperity degradation caused by pure compressive stresses was left since it was preferred to describe permanent
normal deformations by means of the elasto-plastic strains developing in the bulk material.

5. A fully 3D formulation, including effects such as anisotropic wear, has not been dealt with so far, but represents
an important extension and possible subject of future work.

17.3.4.1 Analytical formulation

In what follows, the symbol α refers to quantities related to first order asperities, while β refers to all joint properties
not related to first order asperities (such as tensile strength and cohesion) besides frictional quantities. The term
“basic” will indicate joint properties associated with second order roughness, while “apparent” will refer to both
orders.

17.3.4.1.1 Asperity definition Following the formulation of Plesha (1987), and of Stupkiewicz and Mróz (2001), an
asperity curve characterizing first order joint roughness can be defined as follows:

wi
n = f

(
pn, L

i
t

)
· y

(
wi

t

)
(17.139)

This has to be intended as an average geometry of the joint surface reflecting the macroscopic (overall) behaviour
of the joint rather than its microscopic structure as in (Fox et al. 1998), (Grasselli et al. 2002), Misra (2002). The
asperity curve relates the joint irreversible normal

(
wi

n

)
and tangential

(
wi

t

)
relative displacements, and it is the

product of the geometric curve y defining the initial asperity shape with an integrity parameter f (to be defined
later) which reflects the joint degradation level and ranges from 1 to 0. Integrity (f) is assumed to be a function of
normal traction pn and tangential inelastic shear work Li

t defined as follows in rate form:

L̇i
t = pt · ẇi

t (17.140)

It should be noted that roughness degradation affects the asperity height only, while its wavelength remains un-
changed.

In this work two particular asperity curves are considered, namely a Gaussian and a hyperbolic one:

y
(
wi

t

)
= h0

(
1− exp

(
− 1

2

(
wi

t
s

)2
))

Gaussian (17.141)

y
(
wi

t

)
= μᾱ0

(√
(wi

t)
2
+ (r0 μᾱ0)

2 − r0 μᾱ0

)
hyperbolic (17.142)

The gaussian asperity function reaches a constant value for large sliding displacements, thus implying that asperities
are not periodic so that dilatancy cannot be recovered once sliding has exceeded a characteristic asperity length.
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Figure 17.17: Asperity curves
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Figure 17.18: Cyclic model: yield criterion and plastic potential

Figure 17.17(a) shows the two parameters of the Gaussian asperity curve: asperity height h0 and asperity length �0.
Parameter s in equation 17.141 determines the curve amplitude and is therefore closely connected to �0.

The evolution of the Gaussian asperity curve with progressive degradation is shown in fig. 17.17(a). Again it can
be noted that only the ordinate (asperity height) is affected and not the abscissa (asperity length).

The hyperbolic asperity function, figure 17.17(b), grows indefinitely, even for large sliding displacements; therefore
it is only appropriate for problems in which it is a priori known or assumed that the tangential slip wi

t will be smaller
than a characteristic asperity length. This curve is characterized by two parameters: the inclination angle of the
asymptote of the hyperbola, ᾱ0, and the curvature r0 at the origin. The tangent of ᾱ0 is named μᾱ0, according to
the rule μx = tan (x); ᾱ0 is also the maximum value the asperity angle can attain for hyperbolic asperities. The same
symbol will be used to indicate the maximum angle reachable for gaussian asperities; i.e. , in this case:

ᾱ0 = h0/s · exp (−1/2) (17.143)

Saw-tooth shaped asperities, often adopted in roughness description, were not used for experimental and numerical
reasons. As observed by (Hutson and Dowding 1990) and (Sun, Gerrard and Stephansson 1985), an initial amount of
joint shearing is necessary to induce maximum dilatancy angle and shear strength. Besides, a curve with continuous
derivative is computationally preferable.

Following (Stupkiewicz and Mróz 2001), the dilatancy curve introduced by equation 17.139 is used to explicitly
prescribe the joint dilatant behavior as a function of current normal stress, inelastic tangential work and displacement.

Plesha (1987), Giambanco and Di Gati (1997) and other researchers have preferred to prescribe the dilatancy angle,
instead of the dilatant displacement, as a function of current tractions, relative displacements and internal variables,
but it was realized that this approach can lead to undesirable and uncontrollable joint bulking.

The dilatancy angle αdil, shown in figure 17.17(b), is defined as the total variation of wi
n with respect to wi

t;
therefore, from equation 17.139:

μαdil = tan (αdil) =
dwi

n

dwi
t

=
d (f y)

dwi
t

(17.144)

Finally we have to consider that the effect of the asperity curve requires a modification to Červenka’s flow rule,
which defines the direction of the vector of inelastic displacement discontinuity. This direction is now defined such
that under backward slip the joint does not dilate but contracts, figure 17.18(a). Hence, the gradient of the plastic
potential Q is given by

∂Q

∂sp
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
pn/Kn0

pt/Kt0

]
if pn ≥ μαdil

Kn0
Kt0

pt

[
pt μαdil

pt

]
otherwise

(17.145)

Relationships 17.145 imply that the original formulation is retained under monotonic loading.
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17.3.4.1.2 Asperity degradation The integrity parameter f , introduced in equation 17.139 ranges from 1 to 0 and
governs asperity degradation. The results of the experimental tests carried out by Lee et al. (2001), Homand et al.
(2001), Jafari et al. (2003), Huang, Haimson, Plesha and Qiu (1993) suggest that f will depend not only on the
inelastic shear work Li

t, as proposed by Plesha (1987) and Hutson and Dowding (1990), but also on the normal
traction pn.

In fact:

• a non zero steady state asperity degradation of joints is reached after several shearing cycles at constant
confinement.

• the residual, alias asymptotic, degradation depends on the amount of applied compressive stress.

The incremental expression of f is defined in terms of f̄ (integrity factor in the known configuration), pn (normal
traction in the ensuing state) and ΔLi

t (increment of inelastic shear work between the two configurations) as follows
:

Δf
(
f̄ , pn,ΔL

i
t

)
=
〈
f̄ − fasym (pn)

〉
·
(
1− exp

(
−CΔLi

t

))
(17.146)

fasym (pn) = (−d pn + 1)−1 (17.147)

where, once again, the symbol 〈•〉 indicates the Macaulay brackets (see eq. 17.131).
The asymptotic degradation factor fasym provides a residual value under constant confinement when the increment

of inelastic shear work ΔLi
t tends to infinity.

Under tension the asperities are not worn and fasym is fixed to 1; under increased compressive stress the asymptotic
degradation factor decreases, reaching zero when pn tends to minus infinity. Function fasym (pn) is a hyperbola with
a single parameter, d, which controls the speed rate as the function approaches zero. Its expression is relatively simple
due to its derivation from qualitative, though not quantitative, experimental observations.

Looking at equation 17.146, it can be noted that for ΔLi
t = 0, that is if no tangential inelastic work takes place,

then f is equal to f̄ for any value of pn. Furthermore, asperities do not wear when fasym (pn) is larger than f̄ , that
is when asperities have already degraded more than they would under the current value of normal stress pn for any
value of ΔLi

t.
Conversely, if fasym (pn) is smaller than f̄ and pn is kept constant, the integrity factor f decreases exponentially

for increasing ΔLi
t from f̄ to fasym (pn). The speed of the exponential decay is controlled by C.

The evolution of f is defined by its gradient with respect to Li
t and pn:

∂f

∂Li
t

= −
〈
f̄ − fasym (pn)

〉
· C (17.148)

∂f

∂pn
= 0 (17.149)

where f̄ is again the current value of f .

17.3.4.1.3 Rotated activation function The total variation of w i
n with respect to wi

t reads:

dwi
n

dwi
t

=

(
∂f

∂pn
· ∂pn
∂wi

t

+
∂f

∂Li
t

· pt
)
· y

(
wi

t

)
+ f

∂y

∂wi
t

(17.150)

Substituting equations 17.148 and 17.149 in 17.150, we note that the total derivative is contributed by a compaction
and a friction term:

dwi
n

dwi
t

=
(
−
〈
f̄ − fasym (pn)

〉
· C pt

)
· y

(
wi

t

)
+ f

∂y

∂wi
t

(17.151)

Only the frictional term is retained here to account for inclination of the sliding plane with respect to the joint
mid-plane. Hence, the angle α, shown in figure 17.17(b), by which the yield function is rotated with respect to the
original configuration is given by:

α = arctan (μα) = arctan

(
f
∂y

∂wi
t

)
(17.152)
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For the Gaussian and hyperbolic asperity curves introduced in equations 17.141 and 17.142, the expression of μα

reads:

μα =
f h0

s2
wi

t exp

(
−1

2

(
wi

t

s

)2
)

Gaussian (17.153)

μα = f μᾱ0

⎛⎝ wi
t√

(wi
t)

2
+ (r0 μᾱ0)

2

⎞⎠ hyperbolic (17.154)

The last modification which has to be introduced in Červenka model referd to the expression of the activation
function for the inelastic displacement discontinuities.

In the model of Plesha (1987), the activation function ϕ is written in terms of local tractions transferred along
inclined asperities. Expressing ϕ in the joint reference system corresponds to rotating the activation function by
an angle α. In the current proposal the hyperbolic activation function of Červenka’s model is modified through
the rotation of its asymptotes, thus modifying the current (or apparent) friction angle. In this way an asymmetric
activation function is obtained, composed of two branches of hyperbola with the same vertex (the tensile strength),
but different inclination of the asymptotes.

Recalling that α represents the current slope of the asperity curve and β the basic friction angle (related to second
order asperities), we can define the friction coefficients μβ+α and μβ−α in forward and backward slip, respectively, as
follows:

μβ+α =tan (β + α) (17.155)

μβ−α =tan (β − α) (17.156)

Because of the asymptote rotation, the apparent cohesion is modified:

c =

⎧⎪⎨⎪⎩
cβ
μβ
μβ+α forward slip

cβ
μβ
μβ−α backward slip

(17.157)

Apparent cohesion c depends on basic cohesion cβ and on the asperity angle α. This, often overlooked, dependency
of the cohesion on the asperity angle is recognized in FERC (1999).

On the contrary, the tensile strength is not affected by the presence of first order asperities:

χ = χβ (17.158)

The hyperbolic activation function with rotated asymptotes is shown in figure 17.18(b). Its analytical expression is
given by:

ϕ =

⎧⎪⎪⎨⎪⎪⎩
(

μβ

μβ+α

)2

p2t − (cβ − pn μβ)
2 + (cβ − χβ μβ)

2 ∀pt ≥ 0

(
μβ

μβ−α

)2

p2t − (cβ − pn μβ)
2 + (cβ − χβ μβ)

2 ∀pt < 0

(17.159)

It can be observed that the proposed expression of ϕ has no meaning for α < β. Moreover, if α is larger than β
the inelastic work can have negative increments. Hence, the maximum slope of the asperity curve must satisfy the
condition α < β.

17.3.4.1.4 Remarks In the presented extension of Červenka’s model most terms retain their original meaning (such
as damage D, inelastic effective displacement wieff), the main difference being that the bilinear softening law for
cohesion now applies to cβ rather than to the apparent (or perceived) cohesion c.

Four new independent parameters have been introduced to the original model: two related to the asperity curve
(initial asperity length �0 and initial asperity height h0); two others modelling the asperity degradation (C and d).
At the same time, however, two parameters of the monotonic version of Červenka’s model have been discarded: the
initial dilatancy angle μd0 and the amount of effective inelastic displacement wdil for which dilatancy μd reaches zero.
These are now related to the chosen asperity representation.

17.3.5 Computational tests

The predictive capabilities of the enhanced model introduced in the previous sections are shown here by comparison
with the results of Kutter and Weissbach (1980) experimental test. Comparison with the predictions of the original
Červenka formulation allows to lighten the improvements here proposed.
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17.3.5.1 Comparison with Kutter and Weissbach test

The Kutter and Weissbach (1980) experimental results obtained from the IALAD Network for the Integrity Assess-
ment of Large Dams (2004) web page are considered in which a cyclic slip was imposed under a constant compressive
stress of 2.5 MPa. The test, as described in (Plesha 1987), was performed on a joint in sandstone which was artificially
produced by line loading. The specimen was 495 cm2 in size.

The cyclic model with hyperbolic asperities has been used. Material parameters are selected in order to produce
the best fit. The normal and tangential stiffness Kn0 and Kt0 equal 8.26 and 50 MPa/ mm respectively. The friction
angle β is 34.62 degrees, hence μβ is 0.69. No tensile strength is assumed, while cβ amounts to 1.42 MPa and decreases
linearly with wieff, hence only one additional parameter, namely fracture energy GIIa

f = 15.57 MPamm, is required.
As for the asperities, the curvature radius r0 is 38.86 mm and the angle ᾱ0 is 10.85 degrees, i.e. μᾱ0 = 0.192. The
asymptotic degradation parameter d is given a fairly large value so that complete degradation is possible under the
imposed normal stress. However, since results at only one confinement are taken into account, the role of d is not so
relevant in this analysis. Parameter C governing rate of asperity degradation with inelastic shear work is assumed
to be 1.5m/MN, a rather typical value. The tests of Kutter and Weissbach do not seem to start from an initially
mated position, hence an initial inelastic tangential displacement of −2.5 mm is adopted.

The comparison of the two shear strength responses is in figure 17.19(a). The overall result is good, though
some differences in shear strength degradation can be noticed, especially for positive shear displacements. The main
difference is however in the initial stiffness, which is much lower in the experiment because, as mentioned, the joint
is not fully in contact. This feature is not accounted for by the model.

The comparison between the cyclic model and experimental result’s dilatancy is in figure 17.19(b). As can be seen
the essential features of the response are reasonably well captured, however this figure is also good to highlight some
of the already mentioned limitations of the model. In fact seating is not accounted for, nor is a possible different
inclination of left and right asperities. The rate of first order asperities’ degradation differs from the experimental one
too. Maybe the inclusion of the dilatancy associated to second order asperities could improve the results, especially
in the first cycle.

Anyway the asperity slope and curvature, and the initial offset (first sliding of the joint is accompanied by a slight
contraction) are satisfactorily described by the model.

To summarize, this test well exemplifies capabilities and possible deficiencies of the proposed model. It should be
noted that, though the model extension concerns precisely the cyclic shear behavior, the simulation of all cycles of
Kutter and Weissbach test is a fairly exigent task.

17.3.5.2 Comparison with Červenka’s model

The cyclic model results in Kutter and Weissbach (1980) experiment are now compared with Červenka’s model
response under the same loading conditions. To this end the latter model parameters are aptly chosen. Cohesion c0 =
2.01 MPa includes the contribution of asperities and is thus obtained from the cyclic model parameters multiplying
cβ by the factor tan (β + ᾱ0) / tan (β) = 1.47 similarly to equation 17.157. Fracture energy GIIa

f = 22.93 MPamm

is obtained amplifying GIIa
f of the cyclic model by the same coefficient. Dilatancy μd0 = 0.149 is smaller than μᾱ0

to account for asperity curvature. It is obtained averaging μα between 0 and 29.1 mm, i.e. the shear displacement
at which the first inversion of sliding occurs in Kutter and Weissbach (1980) experiment. Parameter wdil is obtained
imposing that the residual integrity of the asperities is equal for the two models at the end of the test, alias μd/μd0 = f .
Friction coefficient μ equals μβ . All other parameters have the same values of those adopted for the cyclic model.

The shear traction – shear displacement plot is displayed in figure 17.20(a). First of all, it can be noticed how
Červenka’s model reliably conveys the two most important pieces of information: the peak load and the average
shear strength. However, the main feature of Červenka model response is that, once cohesion softening is completed,
shear strength is constant irrespective of amount and direction of sliding displacement, i.e. of the characteristics of
surface roughness and their degradation. Another difference between the models is in the shear displacement at which
peak load is attained: smaller for Červenka that mobilizes instantaneously the maximum dilatancy angle; larger, and
nearer to the experimental value, for the cyclic model in which asperity inclination α grows gradually with sliding
wi

t.
Looking at the dilatancy plot in figure 17.20(b) , a striking discrepancy can be noted in the amount of predicted

joint opening. In fact, despite the apt choice of model parameters, Červenka’s model response is quantitatively
(almost one order of magnitude) and qualitatively incorrect. Unfortunately this overestimation is also unsafe because
it induces a greater normal stress in the surrounding material which in turn allows for larger shear stresses to be
transferred across the joint.

The reason for this wrong prediction is the constant sign of dilatancy as sliding direction is inverted. More deeply
the cause lies in the almost independent description of shear stress and dilatancy phenomena which are in the cyclic
model tightly connected through the asperity description. Indeed the importance of this aspect goes beyond the mere
improvement in the modelling of cyclic shear tests.
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Figure 17.19: Comparison with Kutter-Weissbach test results
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Figure 17.20: Červenka model vs. cyclic model
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Finally it should be remarked how the shortcoming of Červenka’s model in figure 17.20(b) is customarily common
to all mixed mode quasi brittle joint models devised originally for monotonic analysis, and how a close comparison
has been possible in this case due to the similarity of the two models.

17.3.6 Conclusions

A general interface model has been formulated for reproducing the mechanical behavior of joints and cracks in
quasi-brittle concrete-like materials under cyclic loading.

The model combines, and enhances, two existing ones: 1) a fracture mechanics based model proposed by Červenka
et al. (1998) for concrete cracks, which accounts for loss of tensile strength and normal stiffness in mode I, and for
friction and decrease of cohesion in mode II; and 2) an asperity based frictional model proposed by (Plesha 1987) for
rough rock joints, which properly models configuration dependent dilation and shear strength of rough joints under
cyclic loading conditions.

Numerical simulation of Kutter and Weissbach (1980) experimental tests exhibits encouraging results and provides
a useful test to show the model capabilities, while comparison with the (Červenka et al. 1998) model response
highlights the extent of the introduced novelties.

The proposed model, suitable for implementation in finite element codes based on either discrete or smeared
interpretation of crack, integrates coherently a number of different basic mechanical processes as required by its
sought application to dam engineering.
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17.4 Notation

Latin symbols
c (apparent) cohesion
C rate of asperity degradation due to inelastic tangential work
c0 initial cohesion (bilinear softening law)
c1 cohesion at break point (bilinear softening law)
cβ joint cohesion in the absence of first order asperities
d rate of decrease of fasym for increasing compressive stress
D joint damage in tension
f asperity integrity (alias degradation) factor

fasym asymptotic asperity degradation factor (reached for Li
t → ∞)

f̄ current value of asperity degradation factor f

GI
f mode I fracture energy (softening law)

GIIa
f mode II fracture energy at high confinement (softening law)
h asperity height;

h0 initial asperity height
sK0 joint stiffness matrix (diagonal)
Kn0 initial normal stiffness
Knc current normal stiffness (degrades in tension)
Kt0 initial tangential stiffness
�0 initial asperity length
L work
Li

t inelastic tangential work
sp joint stress vector
Q plastic potential
r curvature radius in the origin (hyperbolic asperities)

r0 initial value of curvature radius in the origin (hyperbolic asperities)
s standard deviation (length) of gaussian asperities

sw joint displacement discontinuity vector

wc0 value of wieff at zero cohesion (bilinear softening law)

wc1 value of wieff at cohesion breakpoint (bilinear softening law)

wχ0 value of wieff at zero tensile strength (bilinear softening law)

wχ1 value of wieff at tensile strength breakpoint (bilinear softening law)

wdil value of wieff at zero dilatancy (Červenka model only)

wieff effective inelastic displacement discontinuity (softening variable)
wi

n normal inelastic displacement discontinuity

wi
t tangential inelastic displacement discontinuity

y
(
wi

t

)
function prescribing the initial asperity shape

Greek symbols

Merlin Theory Manual



206 LOCALIZED FAILURE

α first order asperity angle
ᾱ0 maximum asperity angle (gaussian and hyperbolic asperities)

asymptotic asperity angle (hyperbolic asperities)
αdil dilatancy angle

β second order asperity (friction) angle
γ irrecoverable portion of total displacement in tension

χ0 initial tensile strength (bilinear softening law)
χ1 tensile strength at break point (bilinear softening law)
χβ joint tensile strength in the absence of first order asperities
ϕ joint activation (alias yield) function
μ friction coefficient (Červenka model only)

μd tangent of the dilatancy angle (Červenka model only)
μd0 initial tangent of the dilatancy angle (Červenka model only)

ρ stiffness reducing coefficient in tension

Subscripts

0 initial value of a quantity
α quantity related to the first order asperities
β quantity related to the second order asperities
n normal component
t tangential component

Superscripts
a joint state at the beginning of the step (numerical implementation)
b joint state at the end of the elastic portion of the step (numerical implementation)
c converged joint state at the end of the the step (numerical implementation)
e elastic quantity (work, displacement or trial stress)
i inelastic quantity (work or displacement)
p plastic quantity (irrecoverable displacement in tension)
f fracture quantity (recoverable displacement in tension)

Operators
μ• tan (•)
Δ• finite increment of •
〈•〉 Macaulay brackets (• + | • |) /2

One table for each page at the end of the manuscript

Table 17.1: Summary of parameters adopted for the analyses

par. units I II III

Kn0 MPa/mm 3750 3750 375

Kt0 MPa/mm 5000 5000 500

μ — 0.6 —

μβ 0.3640 — 0.3640

γ 0.3 0.3 0.3

χ0 MPa 0.0 0.0 3.0

c0 MPa 1.5144 2.5 3.0287

GI
f MPa mm 0.0 0.0 0.12

GIIa
f MPa mm 1.1358 1.875 0.1514

χ1 MPa 0.0 0.0 0.45

c1 MPa 0.2272 0.375 0.4543

wχ 1 mm 0.05 0.0 0.05

wc 1 mm 0.9375 0.9375 0.0625

d MPa−1 1.0 — 1.0

C J−1 20 — 50.0

μd0 — 0.2 —

wdil mm — 30 —

17.5 Interface Crack Model; ICM-3-Mohr-Coulomb (MM: 22)

This interface model is a subset of the original ICM-1 (MM: 8) with the following differences:

1. The failure envelope is not hyperbolic, but pure Mohr-Coulomb.

2. There is no dilatancy

3. There is no stiffness degradation
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4. There are two different normal stiffnesses for tension and compression

5. There are two different shear stiffnesses for tension and compression

6. There is softening of the tensile strength and cohesion (controlled by GI
F and GII

F which can be set to zero for
perfectly brittle material).

7. Tensile strength can be set to zero.

8. Uplift pressure can be applied along this element.

9. Damping along the crack is possible.
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GfII
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Figure 17.21: ICM-3-Mohr-Coulomb (MM:22)

17.6 Interface Crack Model; ICM-3-Hyperbolic-Light (MM: 23)

This interface model is a subset of the original ICM-1 (MM:8) with the following differences:

1. The failure enveloppe is the hyperbolic one of the original interface crack model (ICM-1). There is no dilatancy

2. There is no stiffness degradation

3. There are two different normal stiffnesses for tension and compression

4. There are two different shear stiffnesses for tension and compression

5. There is softening of the tensile strength and cohesion (controlled by GI
F and GII

F which can be set to zero for
perfectly brittle material).

6. Tensile strength can be set to zero.

7. Uplift pressure can be applied along this element.

8. Damping along the crack is possible.
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Figure 17.22: ICM-3-Mohr-Coulomb (MM:23)
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Chapter 18

DISTRIBUTED FAILURE; Fracture Plastic Model (MM:15, 16, 18, 19)

This chapter covers the implementation of Models 15-16, 18 and 19 in Merlin. It is practically identical to model
CC3D ((Červenka, V. and Jendele, L. and Červenka, Jan 2002) in the ATENA Program available from SBETA,
Prague.

This fracture-plastic model combines constitutive models for tensile (fracturing) and compressive (plastic) behavior.
The fracture model is based on the classical orthotropic smeared crack formulation and crack band model. It employs
Rankine failure criterion, exponential (or user defined) softening, and it can be used as rotated or fixed crack model.
The hardening/softening plasticity model is based on Menétrey and Willam (1995) failure surface. Both models use
return mapping algorithm for the integration of constitutive equations. Special attention is given to the development
of an algorithm for the combination of the two models. The combined algorithm is based on a recursive substitution,
and it allows for the two models to be developed and formulated separately. The algorithm can handle cases when
failure surfaces of both models are active, but also when physical changes such as crack closure occur. The model can
be used to simulate concrete cracking, crushing under high confinement, and crack closure due to crushing in other
material directions.

The method of strain decomposition, as introduced by de Borst (1986), is used to combine fracture and plasticity
models together. Both models are developed within the framework of return mapping algorithm by Wilkins (1964).
This approach guarantees the solution for all magnitudes of strain increment. From an algorithmic point of view the
problem is then transformed into finding an optimal return point on the failure surface. The combined algorithm
must determine the separation of strains into plastic and fracturing components, while it must preserve the stress
equivalence in both models. The proposed algorithm is based on a recursive iterative scheme. It can be shown that
such a recursive algorithm cannot reach convergence in certain cases such as, for instance, softening and dilating
materials. For this reason the recursive algorithm is extended by a variation of the relaxation method to stabilize
convergence.

18.1 Material Model Formulation

The material model formulation is based on the strain decomposition into elastic εeij , plastic εpij and fracturing

components εfij , (de Borst 1986).

εij = εeij + εpij + εfij (18.1)

The new stress state is then computed from:

σn
ij = σn−1

ij +Eijkl(Δεkl −Δεpkl −Deltaε
f
kl (18.2)

where the increments of plastic strain Δεpkl and fracturing strain Δεfkl must be evaluated based on the selected
material model.

18.2 Rankine-Fracturing Model for Concrete Cracking

Rankine criterion is used for concrete cracking

F f
i = σ′t

ii − f ′
ti ≤ 0 (18.3)

where strains and stresses are expressed in material directions. For rotated cracks those correspond to the principal
directions, and for the fixed crack model they correspond to the principal ones at the onset of first cracking. Thus,
σ′t
ii and f

′
ti are the trial stress and tensile strength in the local material direction i. Prime symbol denotes quantities

in the material directions.
Trial stress is determined from the elastic predictor

σ′t
ij = σ′n−1

ij + EijklΔε
′
kl (18.4)

If Equation 18.3 is violated (i.e. cracking occurs) then the incremental fracturing strain in direction i can be evaluated
under the assumption that the final stress state must satisfy

F f
i = σ′n

ii − f ′
ti = σ′t

ii −EiiklΔε
′f
kl − f

′
ti = 0 (18.5)
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This equation can be further simplified under the assumption that the increment of fracturing strain is normal to
the failure surface, and that always only one failure surface is being checked. Then for surface k the incremental
fracturing strain is

Δε′fij = Δλ
∂F f

k

∂σij
= Δλδik (18.6)

substituting into Eq. 18.5, the increment of the fracturing multiplier is recovered as

Δλ =
σ′t
kk − f ′

tk

Ekkkk
=
σ′t
kk − f ′t(wmax

k )

Ekkkk
(18.7)

where f ′t(wmax
k ) is the softening curve in terms of w which is the current crack opening. The softening diagram

adopted in this model is the exponential decay function of Hordijk (1991). The crack opening w is determined from

wmax
k = Lt(ε̂

′f
kk +Δλ) (18.8)

where ε̂′fkk is the total fracturing strain in direction k, and Lt is the characteristic dimension of the element as
introduced by Bažant and Oh (1983), Fig. 18.1. Lt is calculated as a size of the element projected into the
crack direction, it is a satisfactory solution for low order linear elements. Equation 18.7 can be solved by recursive

L T

L T

G

w

f’

F

tc

c

w = ε t

Figure 18.1: Tensile Softening and Characteristic Length, (Červenka, V. and Jendele, L. and Červenka, Jan 2002)

substitution. It can be shown that expanding f ′t(wmax
k ) into a Taylor series, that this iteration scheme converges as

long as∣∣∣∣−∂f ′t(wmax
k )

∂w

∣∣∣∣ < Ekkkk

Lt
(18.9)

This equation is violated for softening materials only when snap-back is observed in the stress-strain relationship,
which can occur if large finite elements are used. Since in the standard finite element based method, the strain
increment is given, therefore, a snap back on the constitutive level can not be captured. Since in the critical region
where snap back occurring on the softening curve will be skipped, then the energy dissipated by the system will be

over estimated. Because this is undesirable, finite elements smaller than L < Ekkkk∣∣∣∣ ∂f′t(0
∂w

∣∣∣∣
should be used, where ∂f ′t(0)

∂w
is

the initial slope of the crack softening curve.
Distinction is made between the total maximum fracturing strain during loading ε̂′fkk and the current fracturing

strain ε′fij which is determined according to Rots and Blaauwendraad (1989)

ε′fkl = (Eijkl +E′f
ijkl)

−1Eklmnε
′
mm (18.10)

σ′
ij = E′cr

ijklε
′f
kl (18.11)

where E′cr
ijkl is the cracking stiffness in the local material (prime) direction. It is assumed that there is no interaction

between normal and shear components thus the crack tensor is given by:

E′cr
ijkl = 0 for i �= k and j �= l (18.12)

The mode I crack stiffness is

E′cr
iiii =

f ′t(wmax
i )

ε̂′fii
(18.13)
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and mode II and III crack stiffnesses are assumed to be equal to

E′cr
ijij =

rijg G

1− rijg
(18.14)

where i �= j, rijg = min(rig, r
j
g) is the minimum shear retention factors on cracks for the directions i and j and are

given by (Kolmar 1986)

rig =
− ln

(
ε′ii
c1

)
c2

(18.15)

c1 = 7 + 333(ρ − 0.005) (18.16)

c2 = 10− 167(ρ − 0.005) (18.17)

where ρ is the reinforcement ratio assuming that it is below 0.002. G is the elastic shear modulus.
For the special cases before the onset of cracking, when the expressions approach infinity. Large penalty numbers

are used for crack stiffness in these cases. The shear retention factor is used only in the case of the fixed crack option.
Finally, the secant constitutive matrix in the material direction is analogous to Eq. 18.10 as presented by (Rots

and Blaauwendraad 1989)

E′s = E−E(E′cr +E)−1E (18.18)

which should then be transformed to the global coordinate system Es = ΓT
ε E

′sΓε where Γε is the strain vector
transformation matrix (i.e. global to local strain transformation matrix).

18.3 Plasticity Model for Concrete Crushing

Starting with the predictor-corrector formula, the stress is determined from

σn
ij = σn−1

ij +Eijkl(Δεkl −Δεpkl) = σt
ij − EijklΔε

p
kl = σt

ij − σp
ij (18.19)

where σt
ij is the total stress, and σp

ij is determined from the yield function via the return mapping algorithm

F p(σt
ij − σp

ij) = F p(σt
ij −Δλlij (18.20)

The critical component of this equation is lij which is the return direction defined by

lij = Eijkl
∂Gp(σt

kl)

∂σkl
(18.21)

⇒ Δεpij = Δλ
∂Gp(σt

ij)

∂σij
(18.22)

where Gp(σij) is the plastic potential function whose derivative is evaluated at the predictor stress state σt
ij to

determine the return direction.
The adopted failure surface is the one of Menétrey and Willam (1995) which affords much flexibility in its formu-

lation

FP
3p =

[√
1.5

ρ

f ′
c

]2
+m

[
ρ√
6f ′

c

r(θ, e) +
ξ√
3f ′

c

]
− c = 0 (18.23)

where

m =
√
3
f ′2
c − f ′2

t

f ′
cf

′
t

e

e+ 1
(18.24)

r(θ, e) =
4(1− e2) cos2 θ + (2e− 1)2

2(1− e2) cos θ + (2e− 1)
√

4(1− e2) cos2 θ + 5e2 − 4e
(18.25)

(ξ, ρ, θ) constitute the Heigh-Westerggard coordinates, f ′
c and f ′

t are the uniaxial compressive and tensile strength
respectively. The curvature of the failure surface is controlled by e ∈ 〈0.5, 1.0〉 (sharp corner for e = 0.5, and circular
for e = 1.0, Fig. 18.2.

The position of the failure surface is not fixed, but rather can move depending on the magnitude of the strain
hardening/softening parameter. The strain hardening is based on the equivalent plastic strain which is calculated
from Δεpeq = min(Δεpij).
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Figure 18.2: Failure Surface
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Figure 18.3: Compressive Hardening and Softening, (van Mier 1986)
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Hardening/softening is controlled by the parameter c ∈ 〈0, 1〉, which evolved during the yielding/crushing process
according to

c =

(
f ′
c(ε

p
eq)

f ′
c

)2

(18.26)

where f ′
c(ε

p
eq) is the hardening/softening law based on uniaxial test, Fig. 18.3. The law shown in Fig. 18.3 has

an elliptical ascending branch and a linear postpeak softening branch after the peak. The elliptical ascending part
depends on strains

σ = fc0 + (fc − fc0

√
1−

(
εc − εpsq
εc

)2

(18.27)

while the descending part is based on relative displacements . In order to introduce mesh objectivity, the descending
branch is based on the work of van Mier (1986) where the equivalent plastic strain is transformed into displacements
through the length scale Lc. This parameter is defined in an analogous manner to the crack band parameter in the
fracture model, Fig. 18.1 and it corresponds to the projection of element size into the direction of minimal principal
stresses. The square in Eq. 18.26 is due to the quadratic nature of the Mentrey-Willam surface.

Return direction is given by the following plastic potential

Gp(σij) = β

√
3

I 1
+
√
2J2 (18.28)

(2.58) where β determines the return direction. If β < 0 material is being compacted during crushing, if β = 0
material volume is preserved, and if β > 0 material is dilating. In general the plastic model is non-associated, since
the plastic flow is not perpendicular to the failure surface The return mapping algorithm for the plastic model is
based on predictor-corrector approach as shown in Fig. 18.4. During the corrector phase of the algorithm the failure
surface moves along the hydrostatic axis to simulate hardening and softening. The final failure surface has the apex
located at the origin of the Haigh-Westergaard coordinate system. Secant method based Algorithm 1 is used to
determine the stress on the surface, which satisfies the yield condition and also the hardening/softening law.

Return Direction

β>0

β=0 β<0

σij

n

σij

n−1

ρ=
sq

rt
(2

J 
) 2

1I  /Sqrt(3)

σij

t

Figure 18.4: Plastic Predictor-Corrector Algorithm, (Červenka, V. and Jendele, L. and Červenka, Jan 2002)

Algorithm 1: Input: σn−1
ij , εp

n−1

ij ,Δεnij

1. Elastic predictor σt
ij = σn−1

ij +EijklΔε
n
kl

2. Evaluate failure criterion: fp
A = F p(σt

ij , ε
pn−1

ij , ΔλA = 0

3. If failure criterion is violated i.e. fp
A > 0

a) Evaluate return direction: mij =
∂Gp(σt

ij)

∂σij

b) Return mapping: F p(σt
ij −ΔλBEmij , ε

pn−1

ij ) = 0⇒ ΔλB

c) Evaluate failure criterion: fp
B = F p(σt

ij −ΔλBEmij , ε
pn−1

ij ) + ΔλBmij
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d) Secant iterations as long as |ΔλA −ΔλB | < e

i. New plastic multiplier increment: Δλ = ΔλA − fp
A

ΔλB−ΔλA

f
p
B

−f
p
A

ii. New return direction: m
(i)
ij =

∂Gp(σt
ij−ΔλEm

(i−1)
ij

∂σij

iii. Evaluate failure criterion: fp = F p(σt
ij −ΔλEm

(i)
ij , ε

p
ij +Δλm

(i)
ij )

iv. New initial values for secant iterations:

∗ f
p
B < 0 ⇒ fp

B = fp, ΔλB = Δλ
fp
B ≥ 0 ⇒ fp

A = fp
B , ΔλA = ΔλB, fp

B = fp, ΔλB = Δλ
(18.29)

e) End of secant iteration loop.

4. End of algorithm update stress and plastic strains. εp
n

ij = εp
n−1

ij +ΔλB mij(i) chsigmanij = σt
ij −ΔλBEm

(i)
ij

18.4 Combination of Plasticity and Fracture model

The objective is to combine the above models into a single model such that plasticity is used for concrete crushing
and the Rankine fracture model for cracking. This problem can be generally stated as a simultaneous solution of the
two following inequalities.

F p(σn−1
ij + Eijkl(Δεkl −Δεfkl −Δεpkl)) ≤ 0 solve for Δεpkl (18.30)

F f (σn−1
ij + Eijkl(Δεkl −Δεpkl −Δεfkl)) ≤ 0 solve for Δεfkl (18.31)

Each inequality depends on the output from the other one, therefore the following iterative scheme is developed.
Algorithm 2:

1. F p(σn−1
ij + Eijkl(Δεkl −Δεf

i−1

kl + bΔεcor
(i−1)

kl −Δεp
(i)

kl )) ≤ 0solve forΔεp
(i)

kl

2. F pf(σn−1
ij +Eijkl(Δεkl −Δεp

i−1

kl −Deltaεf
(i)

kl )) ≤ 0solve forΔεf
(i)

kl

3. Δεcor
(i)

ij = Δεf
(i)

ij −Δεf
(i−1)

ij

4. Iterative correction of the strain norm between two subsequent iterations can be expressed as ‖Δεcor(i)ij ‖ =

(1− b)αfαp‖Δεcor(i−1)

ij ‖ where αf =
‖Δε

f(i)

ij −Δε
f(i−1)

ij

Δε
p(i)

ij
Δε

p(i−1)

ij

and αp =
‖Δε

p(i)

ij −Δε
p(i−1)

ij

Δε
f(i)

ij
Δε

f(i−1)

ij

b is an iteration correction or relaxation factor, which is introduced in order to guarantee convergence. It is to be
determined based on the run-time analysis of αf and αp , such that the convergence of the iterative scheme can be
assured. The parameters αf and αp characterize the mapping properties of each model (i.e. plastic and fracture).
It is possible to consider each model as an operator, which maps strain increment on the input into a fracture or
plastic strain increment on the output. The product of the two mappings must be contractive in order to obtain a
convergence. The necessary condition for the convergence is:

|(1− b)αfαp| < 1 (18.32)

(2.75) If b equals 0, an iterative algorithm based on recursive substitution is obtained. The convergence can be
guaranteed only in two cases:

1. One of the models is not activated (i.e. implies αf or αp = 0

2. There is no softening in either of the two models and dilating material is not used in the plastic part, which for
the plastic potential in this work means β < 0, , (Eq. 18.28). This is a sufficient but not necessary condition to
ensure that αf and αp < 1.

It can be shown that the values of αf and αp are directly proportional to the softening rate in each model. Since
the softening model remains usually constant for a material model and finite element, their values do not change
significantly between iterations. It is possible to select the scalar b such that the inequality Eq. 18.32 is satisfied
always at the end of each iteration based on the current values of αf and αp . There are three possible scenarios,
which must be handled, for the appropriate calculation of b:

1. |alphafαp| ≤ χ, where χ is related to the requested convergence rate. For linear rate it can be set to χ = 1/2.
In this case the convergence is satisfactory and b = −0.
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2. χ < |alphafαp|, then the convergence would be too slow. In this case b can be estimated as b = 1− |alphafαp|
χ

in order to increase the convergence rate.

3. 1 ≤ |alphafαp|, then the algorithm is diverging. In this case b should be calculated as b = 1 − χ
|alphafαp| to

stabilize the iterations.

This approach guarantees convergence as long as the parameters does not change drastically between the iterations,
which should be satisfied for smooth and correctly formulated models. The rate of convergence depends on material
brittleness, dilating parameter β and finite element size. It is advantageous to further stabilize the algorithm by
smoothing the parameter b during the iterative process:

b =
b(i) + b(i−1)

2
(18.33)

where the superscript i denotes values from two subsequent iterations. This will eliminate problems due to the
oscillation of the correction parameter b . Important condition for the convergence of the above Algorithm 2 is that
the failure surfaces of the two models are intersecting each other in all possible positions even during the hardening
or softening. Additional constraints are used in the iterative algorithm. If the stress state at the end of the first step
violates the Rankine criterion, the order of the first two steps in Algorithm 2 is reversed. Also in reality concrete
crushing in one direction has an effect on the cracking in other directions. It is assumed that after the plasticity yield
criterion is violated, the tensile strength in all material directions is set to zero. On the structural level secant matrix
is used in order to achieve a robust convergence during the strain localization process. The proposed algorithm for
the combination of plastic and fracture models is graphically shown in Fig. 18.5. When both surfaces are activated,

Second Projection

1

2

σ

σ

First Projection

Final Return��
��
��
��

Figure 18.5: Schematic Description of the Iterative Process in 2D, (Červenka, V. and Jendele, L. and Červenka,
Jan 2002)

the behavior is quite similar to the multi-surface plasticity (?). Contrary to the multi-surface plasticity algorithm
the proposed method is more general in the sense that it covers all loading regimes including physical changes such
as for instance crack closure. Currently, it is developed only for two interacting models, and its extension to multiple
models is not straightforward.

18.5 Confinement Sensitive Fracture-Plastic Model, MM: 18

Main model features:

Failure Surface of Menétrey and Willam (1995) which affords much flexibility in its formulation

FP
3p =

[√
1.5

ρ

f ′
c

]2
+m

[
ρ√
6f ′

c

r(θ, e) +
ξ√
3f ′

c

]
− c = 0 (18.34)
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where

m =
√
3
f ′2
c − f ′2

t

f ′
cf

′
t

e

e+ 1
(18.35)

r(θ, e) =
4(1− e2) cos2 θ + (2e− 1)2

2(1− e2) cos θ + (2e− 1)
√

4(1− e2) cos2 θ + 5e2 − 4e
(18.36)

(ξ, ρ, θ) constitute the Heigh-Westerggard coordinates, f ′
c and f ′

t are the uniaxial compressive and tensile
strength respectively. The curvature of the failure surface is controlled by e ∈ 〈0.5, 1.0〉 (sharp corner for
e = 0.5, and circular for e = 1.0, Fig. 18.6.
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Figure 18.6: Failure Surface

The position of the failure surface is not fixed, but rather can move depending on the magnitude of the
strain hardening/softening parameter. The strain hardening is based on the equivalent plastic strain which is
calculated from Δεpeq = min(Δεpij).

Plastic Potential is given by, Fig. ??

g = A.

(
ρ

k.
√
c.fc

)n

+

[
C +

1

2
(B −C)(1− cos 3θ)

]
.

ρ

k.
√
c.fc

+
ξ

k.
√
c.fc
− a (18.37)

where n = 3 A, B, and C are constants that can be defined by user. Currently, in the model they are hardcoded
for most typical concrete types to be: A = 5.436;B = −6.563;C = −3.256 These parameters were determined
by fitting the evolution of plastic strains from many experimental results published in the literature. Parameter
α is not needed, since in the model formulation only a derivative of g with respect to ρ and ξ is required.

Tensile softening Exponential Crack Opening Law, Fig. 18.8

The function of crack opening was experimentally derived by (Hordijk 1991)

σ

f
′ef
t

=

{
1 +

(
c1
w

wc

)3
}

exp

(
−c2

w

wc

)
− w

wc

(
1 + c31

)
exp (−c2) (18.38)

where

wc = 5.14
Gf

f
′ef
t

(18.39)

Merlin Theory Manual



18.5 Confinement Sensitive Fracture-Plastic Model, MM: 18 217

Figure 18.7: Plastic Potential of Model 18

Figure 18.8: Exponential Crack Opening Law
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and w is the crack opening, wc is the crack opening at the complete release of stress, σ is the normal stress in
the crack (crack cohesion). Values of the constants are, c1 =3, c2 = 6.93. Gf is the fracture energy needed to

create a unit area of stress-free crack, f
′ef
t is the effective tensile strength based on equation.

f
′ef
t = f

′
t ret (18.40)

where ret is the reduction factor of the tensile strength in the direction 1 due to the compressive stress in the
direction 2. The reduction function has the following form

ret = 1− 0.8
σc2

f ′
c

(18.41)

The crack opening displacement w is derived from strains according to the crack band theory of Bažant, Z.P.
and Oh, B.H. (1983)

Compressive hardening/softening Hardening/softening parameter in the present model is set equal to the plastic
volumetric strain (εpv), suggested by Grassl, Lungren and Gylltoft (2002).

Figure 18.9: Compressive Hardening/Softening

Hardening:

k(εpv) = k0 + (1− k0).

√
1−

(
εpv,p − εpv
εpv,p

)2

(18.42)

where k0 =
f0.885
c
60

based on Com (1990). The value of input parameter εpv,p for typical concrete can be estimated
using the formula:

εpv,p =
fc
Ec

(1− 2ν) (18.43)

Softening:

c(εpv) =

⎛⎜⎝ 1

1 +
(

n−1
n2−1

)2

⎞⎟⎠
2

(18.44)
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where

n =
εpv
εpv,p

(18.45-a)

n2 =
εpv,p + t

εpv,p
(18.45-b)

Shear retention factor When cracking occurs the shear modulus is reduced according to the law derived by (Kolmar
1986) after cracking. The shear modulus is reduced with growing strain normal to the crack, and this represents
a reduction of the shear stiffness due to the crack opening, Fig. 18.10. where

Figure 18.10: Shear Retention Factor

G = rgGc (18.46-a)

rg = c3
− ln

(
1000εu

c1

)
c2

(18.46-b)

c1 = 7 + 333(p − 0.005) (18.46-c)

c2 = 10− 167(p − 0.005) (18.46-d)

0 ≤ p ≤ 0.02 (18.46-e)

where rg is the shear retention factor, G is the reduced shear modulus and Gc is the initial concrete shear
modulus

Gc =
Ec

2(1 + ν)
(18.47)

where Ec is the initial elastic modulus and ν is the Poisson’s ratio. The strain εν is normal to the crack direction
(the crack opening strain), c1 and c2 are parameters depending on the reinforcing crossing the crack direction,
p. The effect of reinforcement ratio is not considered, and p is assumed to be 0.0.

Compressive strength reduction due to cracking A reduction of the compressive strength after cracking in the
direction parallel to the cracks is done by a similar way as found from experiments of Vecchio and Collins
(1986) and formulated in the Compression Field Theory. However, a different function is used for the reduction
of concrete strength here, in order to allow for user’s adjustment of this effect. This function has the form of
the Gauss’s function. The parameters of the function were derived from the experimental data published by
(Kolleger and Mehlhorn 1988) which included also data of Collins and (Vecchio and Collins 1986).

f
′ef
c = rcf

′
c , rc = c+ (1− c)e−(128εu)2 (18.48)

For the zero normal strain, εu there is no strength reduction, and for the large strains, the strength is asymptot-
ically approaching to the minimum value f

′ef
c = cf

′
c The constant c represents the maximal strength reduction
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Figure 18.11: Compressive Strength Reduction of Cracked Model

under the large transverse strain. From the experiments by ?, the value c = 0.45 was derived for the concrete
reinforced with the fine mesh. The other researchers DYNGELAND 1989 found the reductions not less than
c = 0.8. The value of c can be adjusted by input data according to the actual type of reinforcing.

Comparison between analytical and experimental results, (Kotsovos and Newman 1980) for normal concrete under
triaxial compression and various confinement levels is shown in Fig. 18.12.

Figure 18.12: Comparison between analytical and experimental results for normal concrete under triaxial compression
and various confinement levels

Comparison between analytical and experimental results (Candappa, Sanjayan and Setunge 2000) for high-strength
concrete under triaxial compression and various confinement level is shown in Fig. 18.13

18.5.1 Summary of Main Improvements over MM 19

18.5.1.1 Confinement Sensitivity of Stress-Strain response

The previous Model 19 was able to correctly capture the confinement affect on the biaxial or triaxial compressive
strength, however the strains at the compressive strength did not show any effect of confinement levels, which was
in contradiction to experimental evidence. This behavior is improved in the new model, and it enhances significantly
the model behavior in triaxial stress state. This can be demonstrated on an example of a concrete cube. The cube is
loaded in vertical direction by gradually increasing deformation, while the tractions (i.e. confinement) in the lateral
directions x and y are kept constant, Fig. 18.14 Fig. 18.15 shows the stress-strain response for different confinement
levels for a normal concrete with compressive strength 28 MPa. The solid lines show the response of the new model
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Figure 18.13: Comparison between analytical and experimental results for high-strength concrete under triaxial com-
pression and various confinement level

Figure 18.14: Laterally Confined Cube (in x and y while monotonically Loaded in the z Direction
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while the dashed lines represent the behavior of the older model. The graphs clearly show that the peak strength
values for the two models are identical, and correctly capture the confinement effect. On the other hand, in the old
model 19, the strain values when the strength is reached are almost identical for all confinement levels. This can
be contrasted with the behavior of the new model 18, where the peak correctly shifts to higher strain values with
increasing confinement.
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Figure 18.15: Stress-strain response of the triaxial test for different confinement lateral stresses (0, 4.2, 8.4 MPa)

18.5.1.2 Shear retention factor

The new model includes a direct formula for shear retention factor, this means it is possible to directly adjust the
shear stiffness of the cracked concrete.

18.5.1.3 Elements of compression field theory

In shear dominated problems, very often the final failure occurs due the compressive crushing of the shear diagonal.
This behavior has a phenomenological explanation by the so called “compression” field theory (Vecchio and Collins
1986). The basis of this theory is the decrease of concrete compressive strength which depends on the cracking in
perpendicular directions. The new features of the material model such as shear retention factor and compression
field theory improves the model behavior in shear problems. This can be demonstrated on the example of a shear
beam with four point loading. The geometry and material properties correspond to the test setup of Leonhardt and
Walther (1962), Fig. 18.16.

The experiment predicted peak load between 60-70 kN. This is predicted more accurately by the new version of
the model as can be seen from Fig. 18.17.

18.5.1.4 Improved model stability

The model stability has been improved as can be seen from the following results for a three point bend beam test,
Fig. 18.18.
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Figure 18.16: Geometry of the Leonhardt Beam
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Figure 18.17: Analysis of Leonhardt Shear Beam with Model 18 and 19
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Figure 18.18: Comparison of the Responses of a Three Point Beand Beam Analysis with Models 18 and 19

18.6 Validation Test Problems, MM-19

This section is taken from a report submitted by Saouma and Perotti to Edison, Italy

18.6.1 Descrizione del provino

La validazione del legame costitutivo non lineare è stata eseguita tramite delle analisi su un cubetto di calcestruzzo
con lato di 30 cm. Vengono simulate sul provino delle prove di trazione e di compressione uniassiale; le caratteristiche
del calcestruzzo che compone il provino sono indicate nella seguente Tabella 18.1. Si deve notare che le caratteristiche
del calcestruzzo sono identiche a quelle adottate nelle analisi dell’elemento centrale della diga.

Densità di massa 2400 Kg/m3

Coefficiente di espansione termica 10−5 0C−1

Modulo elastico 18000 MPa
Coefficiente di Poisson 0,2
Resistenza a trazione 1,5 MPa
Energia specifica di frattura 140 N/m
Resistenza a compressione -32 MPa
Sforzo a compressione da cui inizia la non linearità -20 MPa

Table 18.1: Caratteristiche del calcestruzzo utilizzato durante le prove di validazione del legame costitutivo

No. Nodi Gradi di liberta No. Elementi
Coarse 46 138 116
Medium 338 1014 1340

Table 18.2: Caratteristiche delle mesh utilizzate nelle prove sul cubo di calcestruzzo

Nel corso delle analisi sul cubetto di calcestruzzo sono stati utilizzati due tipi di mesh, che differiscono per il numero
di elementi. Le due mesh utilizzate sono identificate dai nomi ”Medium” e ”Coarse” e le loro caratteristiche sono
riportate in Tabella 18.2 mentre le loro immagini sono riportate in Figura 18.19
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Figure 18.19: In figura sono mostrate da sinistra verso destra le immagini della mesh “Coarse” e “Medium”

18.6.2 Prova uniassiale di trazione

Viene simulata sul cubo di calcestruzzo una prova uniassiale di trazione in controllo di spostamento. La faccia inferiore
del cubo è vincolata nella direzione di applicazione del carico e lo spostamento verso l’alto è imposto in 50 incrementi
di 0,006 mm ciascuno. In Tabella 18.3 viene descritta nei particolari la prova di trazione a cui è soggetto il cubo di
calcestruzzo.

Numero di incrementi 50
Spostamento per incremento 0.006 mm
Spostamento totale 0.3 mm
Deformazione finale 0.1 %

Table 18.3: Descrizione della prova uniassiale di trazione

18.6.2.1 L’effetto della mesh

L’effetto della densità della mesh è stato analizzato utilizzando nella prova di trazione uniassiale sia la mesh “Medium”,
sia la mesh “Coarse”. Dalle curve in Figura 18.20 si nota che in entrambi i casi si riesce a modellare il comportamento
“softening” del calcestruzzo. I risultati ottenuti con la mesh “Medium” sono meno precisi poich il ramo di “softening”
del calcestruzzo è composto da due parti distinte, fra le quali esiste una discontinuità attribuibile solo all’algoritmo
risolutivo e non al comportamento reale del calcestruzzo.

18.6.2.2 L’effetto della localizzazione del difetto

Il legame costitutivo implementato in MERLIN prevede la nascita di fessure diffuse all’interno del materiale. Questo
fatto implica che l’area sottesa alla curva carico spostamento sia maggiore dell’energia di frattura impostata nelle
analisi. Se si localizza il difetto si ottiene invece un’area sottesa alla curva carico spostamento che meglio stima
l’energia di frattura. Questa approssimazione migliora con il diminuire della zona in cui si inserisce il difetto e quindi
con l’aumentare della localizzazione del difetto stesso. In quest’ultimo caso ci si avvicina ad una frattura localizzata
e non diffusa.

La seguente prova è stata pensata per mostrare l’effetto di localizzazione del difetto. Due cubi di calcestruzzo sono
stati sottoposti alla stessa prova di trazione uniassiale: il primo cubo è composto da un calcestruzzo con proprietà
omogenee, mentre il secondo cubo è composto da tre strati di materiale. Gli strati di materiale differiscono solo
per il valore della resistenza a trazione, che viene artificialmente diminuita di 0,1 MPa nello strato intermedio di
calcestruzzo.

In Figura 18.21 è riportato il confronto fra la mesh del provino con difetto prima e dopo la prova uniassiale di
trazione. Si nota che, utilizzando il provino composto da tre strati di materiale, la deformazione si localizza nello strato
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Figure 18.20: Curva carico spostamento per la mesh ”Coarse” e ”Medium”

 

 

Figure 18.21: Mesh del cubo di calcestruzzo artificialmente indebolito prima e dopo la prova uniassiale di trazione.
La resistenza a trazione viene diminuita di 0,1 MPa all’interno dello strato verde di calcestruzzo.
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pi debole. In questo strato del cubo si localizzano le fessure e l’area sottesa alla curva carico spostamento si avvicina
maggiormente all’energia di frattura imposta nell’analisi. Il grafico in Figura fig:lp-cer-3-11 mostra chiaramente come
la curva relativa al cubo senza imperfezioni sottenda un’area maggiore della curva relativa al cubo artificialmente
indebolito
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Figure 18.22: Curve carico spostamento per il cubo senza imperfezioni e per il cubo artificialmente indebolito

In Tabella 18.4 viene calcolata l’area sottesa alle due curve in Figura 18.22 e si confrontano i dati teorici con quelli
ottenuti dalle prove di trazione simulate in MERLIN. Si nota che l’energia teorica di frattura è sempre inferiore
all’ energia calcolata numericamente dalla prova di trazione ma questo divario diminuisce utilizzando la mesh con
imperfezione.

Tipo di Mesh Energia teorica (GF ∗ 0.3 ∗
0.3)

Energia calcolata numeri-
camente

Mesh regolare 12.6 J 29.89 J
Mesh indebolita artificial-
mente

12.6 J 23.07 J

Table 18.4: Energia di frattura teorica e calcolata in base alle prove di trazione simulate con il programma MERLIN

18.6.2.3 Effetto dell’energia di frattura sui risultati delle prove uniassiali di trazione

La fragilità del materiale dipende dal valore dell’energia di frattura e si ottengono comportamenti pi fragili al diminuire
di Gf.

Le prove di trazione simulate con MERLIN per cogliere l’infragilimento del materiale al diminuire di Gf consistono
nell’utilizzare due tipi differenti di materiale ed entrambe le mesh “Coarse” e “Medium”. Dal grafico in Figura 18.23
notiamo come l’area sottesa alle curve diminuisca passando dal calcestruzzo con Gf uguale a 140 N/m al calcestruzzo
con GF pari a 50 N/m. Inoltre il ramo di “softening” delle diverse curve mostra una diminuzione di resistenza pi
brusca al diminuire dell’energia di frattura.
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Figure 18.23: Curve carico spostamento relative alla prove di trazione uniassiale con differenti valori dell’energia di
frattura

18.6.3 Prova uniassiale di compressione

Viene simulata sul cubo di calcestruzzo una prova di compressione uniassiale in controllo di spostamento. La faccia
inferiore del cubo è vincolata nella direzione di applicazione del carico e lo spostamento verso il basso è imposto
in 50 incrementi di 0,03 mm ciascuno. In Tabella 18.5 viene descritta nei particolari la prova di compressione a

Numero di incrementi 50
Spostamento per incremento 0.03 mm
Spostamento totale 1.5 mm
Deformazione finale 0.5 %

Table 18.5: Descrizione della prova uniassiale di compressione

cui è soggetto il cubo di calcestruzzo. Le prove uniassiali di compressione vogliono mostrare la capacità del legame
costitutivo del calcestruzzo di cogliere due aspetti fondamentali:

1. la non linearità presente nel ramo di carico della curva superato un valore prefissato di sforzo di compressione;

2. il ”softening” dopo il raggiungimento della resistenza massima a compressione.

Le curve in Figura 18.24 mostrano entrambi questi aspetti della legge costitutiva del calcestruzzo. Inoltre si nota
che, al variare della mesh, le due curve carico spostamento seguono lo stesso ramo di carico, ma si differenziano nel
ramo softening post-picco.

18.6.4 Imposizione di un carico termico

L’espansione dovuta alla reazione alcali-aggregati viene simulata nelle analisi applicando una variazione di temper-
atura, tale da riprodurre uno spostamento verticale del coronamento pari a 30mm. Per testare il legame costitutivo
non lineare in presenza di un’espansione termica si sono eseguite due semplici prove:

1. l’espansione libera del cubo di calcestruzzo soggetto ad una crescita progressiva di temperatura per incrementi;

2. l’espansione vincolata del cubo in calcestruzzo soggetto ad una crescita progressiva di temperatura analoga alla
precedente. Il cubo presenta due facce vincolate in direzione normale alle facce stesse; le altre facce sono libere.

Dalle mesh deformate al termine delle due prove (Figura 18.25) si nota il diverso comportamento deformativo in
assenza ed in presenza di un vincolo di contenimento durante l’espansione termica.
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Figure 18.24: Curve carico-spostamento relative ad una prova di compressione ottenute per la mesh “Coarse” e
“Medium”

 
 

Figure 18.25: Mesh deformate al termine delle prove di espansione termica in assenza di vincoli di contenimento
(immagine a sinistra) o in loro presenza (immagine a destra). Nelle precedenti immagini sono riportati
i vettori spostamento relativi alle due mesh deformate.
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18.6.5 Prova di carico ciclico

Le prova di carico ciclico (Figura 18.26 e 18.27) si svolge in controllo di spostamenti ed è composta da 4 fasi successive
(Tabella 18.6:

1. applicazione in 50 incrementi di un allungamento del provino;

2. applicazione in 50 incrementi di uno spostamento opposto al precedente: al termine di questo secondo passo lo
spostamento complessivo applicato al provino è nullo;

3. applicazione in 50 incrementi di un accorciamento del provino;

4. applicazione in 50 incrementi di uno spostamento opposto a quello applicato nel terzo passo: al termine di
questa fase lo spostamento complessivo del provino è nuovamente nullo.

Incrementi Verso dello
spostamento

Spostamento per
incremento [mm]

Spostamento
complessivo [mm]

Prima fase 50 Elongazione 6.00E-03 0.3
Seconda fase 50 Compressione -6.00E-03 0
Terza fase 50 Compressione -3.00E-02 -1,5
Quarta fase 50 Elongazione 3.00E-02 0

Table 18.6: Descrizione della prima prova di carico ciclico

Durane l’esecuzione della prova si percorrono:

1. il ramo elastico di carico ed il ramo di softening a trazione durante la prima fase della prova;

2. lo scarico rettilineo con un modulo elastico ridotto fino all’origine durante la seconda fase. La diminuzione del
modulo elastico è dovuta al danneggiamento del materiale. Al termine dello scarico, con spostamento comp-
lessivo imposto nullo, la forza rilevata è anch’essa nulla (passaggio per l’origine della curva forza-spostamento):
questo fatto implica l’assenza di uno spostamento irreversibile e la richiusura delle fessure al termine del processo
di scarico;

3. il ramo di carico e di softening a compressione durante la terza fase della prova. Il ramo di carico a compressione
è lineare solo nel primo tratto fino ad un limite imposto nelle caratteristiche del materiale (evidenziato da una
linea rossa in Figura 18.26). La resistenza a compressione del provino è di poco superiore a quella uniassiale
dichiarata nelle caratteristiche del materiale per effetto delle condizioni di vincolo che generano localmente uno
stato tensionale biassiale;

4. lo scarico quasi rettilineo del provino con un modulo elastico non deteriorato durante la quarta fase. L’ultimo
tratto sub-orizzontale dello scarico a compressione non deve essere considerato come rappresentativo del com-
portamento del materiale.

18.6.6 Conclusioni

Dai risultati ottenuti con MERLIN, relativi alle prove di validazione sopra esposte, si nota la capacità del codice ad
elementi finiti utilizzato di cogliere in modo soddisfacente la risposta del provino di calcestruzzo sottoposto a prova.
Avendo validato il legame costitutivo di Cervenka all’interno del codice MERLIN si pu procedere allo svolgimento
delle analisi dell’elemento centrale della diga di Poglia utilizzando il suddetto modello costitutivo. I risultati delle
analisi saranno esposti nel prossimo capitolo.
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Figure 18.26: Curva forza spostamenti della prova di carico ciclico
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Figure 18.27: Particolare della curva presente in Figura 18.26 carico e scarico del provino a trazione
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Chapter 19

NONLINEAR ROCK MODELS

19.1 Model

Many sites, particulary in Japan and Iran, have notoriously weak and fissured rock. These peculiarities must be
accounted for in the context of an advanced nonlinear analysis.

The model adopted, (Kawamoto and Ishizuka 1981) is one which proved to be particularly suitable for Japanese
rock, and extensively used.

E

Eo
= a(R)b (19.1)

ν = νf − (νf − ν0)A(R)B (19.2)

where E0, is the initial tangent modulus and nonlinear parameters, ν0 is the initial Poisson ratio, νf is the fracture
Poisson ratio, a, b, A and B are nonlinear parameters. Upon failure E → Ef � E0/10 − 100. R is the so-called
fracture margin and is equal to min(d1/D1, d2/D2).
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Figure 19.1: Kawamoto Model, all input parameters are shown in red

The stress-strain curve in compression exhibits first a linear softening, followed by a residual value; The tensile
response is brittle (if pure tension), while no tension is allowed in biaxial state of stresses.
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User input data:
E0, E1, Ef Initial, softening (-ve) and failure modulus
ν, νf Poisson ratio, initial and failure value
σt Tensile strength
a, b nonlinear parameters for E
A, B nonlinear parameters for ν
Cp, Cr Initial and residual cohesion
Φp, Φr Initial and residual angle of friction
RE , Rν Threshold values for respective values of R

19.2 Test Results

One element tests were conducted to assess the implementation of the model. Figures 19.2 to 19.6 illustrate the
results for: compression, compression/unload, tension, shear, and shear cyclic tests. Reults are consistent with the
theory.
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Figure 19.2: Kawamoto Model, Compression Test
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Figure 19.3: Kawamoto Model, Compression Test with Unloading
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Figure 19.4: Kawamoto Model, Tension Test with Unloading
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Figure 19.5: Kawamoto Model, Shear Test
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Figure 19.6: Kawamoto Model, Shear Test Cyclic
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Chapter 20

GETTING READY

This chapter will cover the preparation of the input data file for a fracture mechanics based analysis. More specifically,
we shall list all parameters required, and provide the reader with guidelines for their selection.

20.1 Preliminary Considerations; Dam Analysis

This section provides some general guideline on which options of MERLIN the user should activate for different types
of analysis.

20.1.1 LEFM

In the LEFM analysis, there must be an initial crack, and the rock concrete interfaces are connected through mas-
ter/slave nodes (RIGID option in preMERLIN). Uplift in the cracked ligament is handled by the HYDROSTATIC option,
and along the uncracked ligament by an uplift only if the rock is permeable.

For impermeable rock, if master/slaves nodes are used and HYDROSTATIC pressures are applied on both faces at the
interfaces, then those forces simply cancel out.

The analysis procedure is as follows

1. Prepare a preMERLIN .bd file with an initial crack which contains as a minimum the following options:
Dimension, Smoothing, LEFM, S-integral, PrintCrack, GeomModel, MatProperties, IELAST, MeshProperties,

IMESHSIZE, Coordinates, Faces, SFACE, Regions, SREGION, BCs, FACE, Loads, HYDROSTATIC, BODYFORCE,

Connectors, RIGID, Cracks, ContourPathRadius, EndGeomModel, and EndInput.

2. Run preMERLIN.

3. Run MERLIN.

4. From MERLIN’s Output (or from Spider), inspect the stress intensity factor KI , if greater than the selected
fracture toughness, KIc, then simply increase the crack length by altering the coordinates of the crack tip node
in the preMERLIN input data file (from step 1), and go to 2.

5. If KI ≤ KIc, then the analysis can be terminated, and the final one corresponds to the final crack length from
an LEFM analysis.

20.1.2 Strength Based

Using preMERLIN a mesh with interface elements must first be generated. We note that there is no need to have an
initial crack, as MERLIN will automatically open the interface crack and propagate it.

Hence, as a minimum the following options should be used in PreMERLIN:
Dimension, Smoothing, NLFM, PrintCrack, PrintStress, GeomModel, MatProperties, IELAST, ICM, MeshProperties,

IMESHSIZE, Coordinates, Faces, SFACE, Regions, SREGION, BCs, FACE, Loads, HYDROSTATIC, UPLIFT, BODYFORCE,

Connectors, RIGID, EndGeomModel, and EndInput.
Note, that in its current version, incremental loads can not be handled by preMERLIN, hence the following incre-

mental load attributes will have to be added to the output file of preMERLIN:
SecantNewton, LineSearch, RelResidErr, DispError, EnergyError, AbsResidErr, in several increments with gradu-
ally increasing water elevation.

As to the material properties, the interface element should have

1. h: is for the third dimension.

2. ρ: should be zero.

3. α: should be zero.

4. Kt: ≈ G/t ≈ E/t where E is the Young’s modulus of an adjacent material, and t is the physical thickness of
the interface. If t is unknown, use ≈ 10E.
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5. Kn: ≈ E/t where E is the Young’s modulus of an adjacent material, and t is the physical thickness of the
interface. If t is unknown, use ≈ 10E.

6. σt: As deemed appropriate. If zero, use instead a very small value to avoid numerical errors (such as 0.1).

7. c: As deemed appropriate. If shear failure is not to be accounted for, use a large value such as 1,000 psi.

8. φf Use a large value, ≈ 700.

9. φD: As deemed appropriate. If shear failure is to be neglected, use 0.

10. GI
F : Should be zero.

11. GII
F : Should be zero.

12. γ: Should be zero.

13. uDmax: As deemed appropriate. If shear failure is to be neglected, use a large value, ≈ 10. in.

14. s1: Should be zero.

15. ws1 : Should be zero.

16. c1: Should be zero.

17. CSDcw1 : Should be zero.

Note that the crack will automatically propagate, and uplift automatically adjusted until equilibrium is reached.
To each crack (element) increment, will correspond a load increment (in the fictitious crack model).

20.1.3 NLFM

MERLIN supports two type of nonlinear fracture mechanics analysis:

20.1.3.1 Incremental NLFM

In this mode of analysis, the load is incrementally specfied. Increment 0 typically corresponds to the gravity load,
and zero water elevation. Subsequent load increment will then correspond to head and or tail water elevation as well
as uplift pressures.

The preMERLIN file should first be prepared and would typicaaly include:
Dimension, Smoothing, NLFM, PrintCrack, PrintStress, GeomModel, MatProperties, IELAST, ICM, MeshProperties,

IMESHSIZE, Coordinates, Faces, SFACE, Regions, SREGION, BCs, FACE, Loads, HYDROSTATIC, Uplift, BODYFORCE,

Connectors, INTERFACE, EndGeomModel, and EndInput. LoadDspCurve may be used to tabulate crest displacements.
Noting that the current version of PreMERLIN generates only one single increment, its output should be manually

edited to add additional load increments. Each block will contain the following:
Iterations, EnergyError, RelResidErr, AbsResidErr, DispError, TangentStiff, DispBCs, Hydrostatic, Uplift,

EndIncrement

It should be noted that in the Hydrostatic option associated with a loaded element, the user defines the water
elevation. If the water elevation is below the element, than the element is not loaded.

It is suggested that the dam be impounded through at least 6 increments. If the IFF (Imminent Failure Flood) is
sought, then the load increments should be reduced as the anticipated IFF is approached. A failure to converge in
an increment is a strong indication of instability/failure.

As to the material properties, the interface element should have

1. h: is for the third dimension.

2. ρ: should be zero.

3. α: should be zero.

4. Kt:

5. Kn:

6. σt: As deemed appropriate.
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7. c: As deemed appropriate.

8. φf As deemed appropriate.

9. φD: As deemed appropriate.

10. GI
F : As deemed appropriate.

11. GII
F : Usually 10 times GI

F .

12. γ: Usually 0.3

13. uDmax: As deemed appropriate

14. s1: Usually 1
4
σt.

15. ws1 : Usually
0.75GI

F
σt

.

16. c1: Usually 1
4
c.

17. CSDcw1 : Usually
0.75GII

F
c

.

20.1.3.2 Failure/Post-Peak

This feature of the program should be exercised only by very experienced users.
Where as in the incremental approach the user specifies increment of water elevation, in this mode of analysis

the user would first define a couple of incremental loads corresponding to gravity and water elevation, and then will
specify a crest displacement of crack mouth opening displacement. This feature will trigger internal algorithms which
will adjust correspondingly the water elevation, and enable MERLIN to automatically seek the IFF. As the failure
flood is reached, MERLIN will then decrease the water elevation to prevent failure yet accommodating the increased
crest displacement.

As with the NLFM analysis, this procedure is fully automated. First a preMERLIN file should be prepared. This file
should contain Dimension, Smoothing, NLFM, PrintCrack, PrintStress, GeomModel, MatProperties, IELAST,

ICM, MeshProperties, IMESHSIZE, Coordinates, Faces, SFACE, Regions, SREGION, BCs, FACE, Loads, HYDROSTATIC,

Uplift, BODYFORCE, Connectors, INTERFACE, EndGeomModel, and EndInput.

1. Increment 0 (self-weight):
Iterations, EnergyError, RelResidErr, AbsResidErr, DispError, TangentStiff, DispBCs, BodyForces,

EndIncrement

2. Increment 1 (arc length):
Iterations, EnergyError, RelResidErr, AbsResidErr, DispError, Arc-Length, TangentStiff, DispBCs,

Hydrostatic, Uplift,

Note that in this increment we specify a unit height of water elevation.

3. Increment 2-i (arc length):
Iterations, EnergyError, RelResidErr, AbsResidErr, DispError, Arc-Length, TangentStiff, Uplift,

EndIncrement

In all the increments, we use the same value for Arc-length, and i is the increment number for which the crest
displacement is positive (i.e. downstream). Once this has been reached, then we can have

4. Increment i+1 where we specify the COD
Iterations, EnergyError, RelResidErr, AbsResidErr, DispError, TangentStiff, SpecifyCOD, Uplift,

EndIncrement

Note that from now on we are specifying the crack opening displacement (which should be guessed) or the crest
displacement, and MERLIN will automatically determine the water elevation which would have to be applied in
order to cause such an imposed displacement. This is in actuality a multiplier of the first Arc-length increment.
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Figure 20.1: Uplift Pressures in a Dam

20.1.4 Uplift Pressures

Whereas the uplift modeling within the context of a gravity concrete dams, Fig 20.1, remains the subject of much
discussion, ??, we identify two possible major models:

Permeable Rock: In which case the rock is fully saturated, and thus the uplift forces are to be applied only upward
on the dam base, Fig. 20.2.

Impermeable Rock: where seepage along the rock/concrete interface takes place, and the uplift forces is applied
both upward on the dam, and downward on the rock, Fig. 20.2.

Figure 20.2: Uplift Pressures for Permeable and Impermeable Rock

Hence, depending on the rock permeability and the selected models, there can be six different combinations of
uplifts and crack models, Table 20.1.

Master Autom. Init. Ligament
Model File Joint Crack Prop. Crack Cracked Uncracked

Permeable Rock
LEFM lp.bd Master/Slave No Yes Hydro. Hydro.
Strength sp.bd Interface Yes No Uplift
NLFM np.bd Interface Yes No Uplift

Impermeable Rock
LEFM li.bd Master/Slave No Yes Hydro. Pore Pressures
Strength si.bd Interface Yes No Uplift
NLFM ni.bd Interface Yes No Uplift

Table 20.1: Fixed Water Elevation Fracture and Uplift Models
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20.1.5 Dynamic Analysis

This feature of MERLIN is currently being revised (streamline input data file, and provide additional features), and
should not be exercised until further revisions of the code.

20.2 Material Properties

Prior to the analysis, material properties for the concrete structure, rock foundations, and rock/concrete interface
must be determined, and Table 20.2 summarizes the ones which must be determined.

Concrete Rock Interface

Basic Properties E, ν, α, γ, f ′
t E, ν, α, γ, f ′

t c, φ, Kn, Kt

LEFM KIc KIc KIc

NLFM/FCM f ′t, GF f ′
t, GF f ′

t, GF

NLFM/ICM

Table 20.2: Required Material Parameters

20.2.1 Concrete

20.2.1.1 Basic Properties

• E: The elastic modulus of concrete can be either directly evaluated from laboratory tests, or simply derived
from ACI-318 equations:

E = 57, 000
√
f ′
c (20.1)

where both E and f ′
c (the uniaxial unconfined compressive strength) are expressed in psi.

In general, results will not be too much affected by small variations of E.

• ν: The Poisson’s ratio for concrete is commonly taken to be in the range of 0.15 to 0.20.

• α: The coefficient of thermal expansion will be needed only if thermal stresses are present, (Army Corps of
Engineers 1990). Those thermal stresses are caused either by an initial stress due to heat of hydration or
due to thermal loading (one face of the dam being at a different temperature than the other). For concrete
α = 5.5 × 10−6 in/in per deg F is generally accepted for calculating stresses and deformations caused by
temperature changes.

• γ: The density of concrete is commonly taken as 150 lb/cu-ft.

• f ′
t : The concrete direct tensile strength can be either determined from laboratory tests, or simply estimated
at 7% of f ′

c, (Mindess and Young 1981). f ′
t will be used to determine whether crack nucleation takes place. .

Finally, f ′
t can also be estimated to be f ′

r/1.8 where f ′
r is the modulus of rupture determined from a flexural

test.

20.2.1.2 Linear Elastic Fracture Properties

The simplest form of fracture mechanics analysis which can be performed is a linear elastic one. In this model, the
stress singularity (infinite theoretical stress at the crack tip) is recognized, and the criteria for crack propagation is
one based on the strengths of the singularity denoted as stress intensity factors.

In this context, the only linear elastic fracture property required is the fracture toughness KIc. As a first approx-
imation, it is recommended that KIc be taken equal to zero. Should the results be unacceptable, then a value of
KIc = 1.0 ksi

√
in (Saouma, Broz, Brühwiler and Boggs 1991) could be used. Note that for subangular aggregates,

this value could be increased up to 1.3.
Finally, should this value again result in unacceptable crack lengths, then laboratory experiments could be per-

formed on recovered core specimens (Brühwiler, E. 1988), or in-situ tests (Saouma, Broz and Boggs 1991) could be
conducted to determine the fracture properties of the dam concrete in question.
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20.2.1.3 Nonlinear Fracture Properties

A more refined fracture mechanics model over the linear elastic one is the nonlinear one based on the presence of a
fictitious crack. In this model it is assumed that the “true” crack is preceded by a so called fracture process zone (or
fictitious crack) along which stresses can be transmitted.

The nonlinear fracture properties are:

• GF : or fracture energy. For gravity dams, a value of 1.35 × 10−3 kip/in. is recommended, (Saouma, Broz,
Brühwiler and Boggs 1991). Note that for arch dams, this value could probably be increased on the basis of
laboratory tests. Also, laboratory tests could be performed on recovered cores to obtain a better indication of
GF , (Brühwiler, E. 1988).

• f ′
t : or tensile strength. Within the context of a nonlinear analysis, this value can not be taken as zero, otherwise
there will be no fracture process zone. Unless it is experimentally determined, f ′

t should be taken as 7% of f ′
c,

(Mindess and Young 1981), or f ′
r/1.8 where f ′

r is the modulus of rupture.

• Shape of the softening diagram (σ −COD), and in general a bi-linear model for the strain softening should be
used. With reference to Fig. 20.3, This simple model can be uniquely defined in terms of the tensile strength

f’_t

w

G_F

w_1

s_1

w_2
Crack Opening

Stress

Figure 20.3: Concrete Strain Softening Models

f ′
t , and the fracture energy GF . In (Brühwiler and Wittmann 1990), it was found that the optimal points for
concrete with 1” maximum size aggregate are:

s1 = 0.4f ′
t (20.2)

w1 = 0.8
GF

f ′
t

(20.3)

w2 = 3
GF

f ′
t

(20.4)

whereas for structural concrete, (Wittmann et al. 1988), the corresponding values are:

s1 =
f ′
t

4
(20.5)

w1 = 0.75
GF

f ′
t

(20.6)

w2 = 5
GF

f ′
t

(20.7)
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• Kn should be 10 times E

• Kt should be 10 times E

• ΦF and ΦD, unless measured, should be taken as 40o and 20o respectively.

• GIIF should be 10 times GIF

• γ, unless measured, should be 0.3 for concrete

• uDmax, unless measured, should be 0.01 m for concrete

20.2.1.4 Dam Concrete

For dam concrete in metric units: ρ=2,400 Kg/m3, E = 36 × 109 Pa, α = 1 × 10−5 m/m/oC, film coefficient for
heat transfer by convection: hair = 34W/m2 oC , hwater = 100W/m2 oC ; Specific heat is about 1,000 J/Kg.K, the
thermal conductivity k is 2.7 J/sec.m.K.

Note that Whittman’s reports f ′
t = 3.75 × 106 Pa, and GIF = 400N/m.

20.2.2 Rock

20.2.2.1 Basic Properties

Basic elastic properties of rocks vary greatly depending on the rock type. Whereas many of those are found in Table
6.1 of (Goodman 1980), field test may be necessary.

It should be noted that those values are strongly affected by the degree of fracturing.
Finally, the engineer should be cautioned about the potentially orthotropic nature of the rock. This orthotropy

can be either:

1. “Micro-scopic” due to the intrinsic rock type

2. “Macro-scopic” due to the presence of numerous faults and joints separating otherwise isotropic (or orthotropic)
rock masses. When the distance separating those faults is too small compared to the dam base, then it may be
easier to model the rock foundation as orthotropic.

20.2.2.2 Linear Elastic Fracture Properties

Two cases should be distinguished:

Fracture of intact rock: In which case a value of zero for the fracture toughness is still recommended for preliminary
analysis. However should this value yield unacceptably large cracks, then actual fracture toughness values could
be used. The best reference to obtain KIc for rock is through the work of Ouchterlony in Sweden, (Ouchterloni,
Takahashi, Matsuki and Hashida 1991). Should tests be necessary, then either the Wedge Splitting test of
Brühwiler and Saouma (Brühwiler, E. and Saouma, V.E. 1990) or the ISRM (International Society of Rock
Mechanics) method, (Ouchterlony 1988) can be used.

Fracture along a joint: In this case the fracture toughness should always be taken as zero.

Given the alternative, a “dipping” crack inside the rock is by far preferable to a horizontal crack within the concrete
or along the concrete/rock interface. Should the crack dip inside the rock then a different type of analysis would have
to be conducted.

Unfortunately, rock foundations are seldom well characterized, and may include numerous joints/faults which make
them far from homogeneous. However should they be assumed to be homogeneous (for analysis purpose), then the
fracture toughness along with the elastic properties should be known.

Finally, in assessing the final crack length, it should be recognized that not only is it dependent on the fracture
toughness but also on the presence of joints/faults, and the presence of in-situ stresses which are usually unaccounted
for in analysis and which may close the numerically simulated crack.

20.2.2.3 Nonlinear Fracture Properties

Within the context of a stability investigation of a concrete dam, a nonlinear fracture model for rock can not be
justified.

Furthermore, and with probable exception of the work of Labuz (Labuz, Shah and Dowding 1985), there has been
very limited data on nonlinear fracture properties of rock.
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20.2.3 Interface

20.2.3.1 Basic Properties

Joint elements can be used to model the rock/concrete interface and account for its finite stiffness and strength. It
should be mentioned that in such an analysis, the criteria for crack opening is based on Mohr-Coulomb, and hence
it would preclude fracture mechanics based ones.

Elastic Properties: such as the normal and tangential stiffnesses, Kn and Kt can only be determined through
recovered cores. As a guideline for either those elastic properties, or for the recommended testing procedure for
interface properties, the reader should consult a recent report published by the EPRI, (Corporation 1992).

Strength Properties: should also be obtained from tests on recovered cores. However, as an indication, the range of
values in (Corporation 1992) are:

• Friction angle Φ: 53 to 63 degrees

• Cohesion c: 15-250 psi

20.2.3.2 Linear Elastic Fracture Properties

In a linear elastic fracture mechanics based analysis of crack propagation along the interface, joint elements should
not be used. Instead, it is assumed that there is a perfect bond between rock and concrete and the criteria for crack
propagation is based on the fracture toughness.

Fracture toughness values along the interface are substantially lower than those found in intact material. Whereas
to the best of our knowledge there is no experimental data, limited tests on concrete/concrete interface, (Saouma,
Broz, Brühwiler and Boggs 1991) have shown that at least a 50% reduction is expected. As such, a zero value of
fracture toughness is recommended for the interface cracks.

20.2.3.3 Nonlinear Fracture Properties

In a nonlinear elastic fracture mechanics based analysis of crack propagation along the interface, joint elements should
not be used. Instead, it is assumed that there is a perfect bond between rock and concrete and the criteria for crack
propagation is based on f ′

t and GF .
As for LEFM properties, there is not yet any experimental data to allow the quantification of either GF or the

softening curve at the rock/concrete interface.

20.3 Load

20.3.1 Gravity

Concrete: Gravity load should always be considered for the concrete. The applied forces due to gravity loads are
specified using the BodyForces option in MERLIN. A typical gravity load specification would appear as
follows:

BodyForces

1.0 0.0 -1.0

The first number in the body force specification is the magnitude of the gravitational acceleration, which in
this case is 1.0. This indicates that the unit weight has been specified in the material properties rather than
the mass density. If the mass density is specified in the material properties, the magnitude of the acceleration
should be the actual value of the gravitational acceleration in the appropriate system of units. The next two
numbers specify the direction of the acceleration. In this case the acceleration is in the negative y-direction.
For 3-D analyses a third component is required for the direction of acceleration.

Rock: In most cases, gravity loads should not be accounted for in the rock, as all deformation caused by them would
have taken place prior to construction. This is accomplished by assigning the unit weight/mass density to be
zero in the material properties for the rock. The gravity of the rock must be considered when the crack is
propagated into the foundation.
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20.3.2 Thermal

Thermal load should be considered when:

1. Initial stresses are caused by the heat of hydration during curing of the concrete. For roller compacted concrete
structures it is imperative that thermal loading be considered. For other structures such a loading might give
an indication of the secondary stresses which may have caused some (limited) initial stresses.

2. The difference in temperature between the downstream face (typically exposed to the sun), and the cooler
upstream face (typically under water) results in significant initial stresses.

The applied loads due to thermal effect are specified using the Temperatures option in MERLIN. A typical
thermal load specification would appear as follows:

Temperatures

9

101 50.0

102 52.5

103 55.0

104 57.5

105 60.0

106 62.5

107 65.0

108 67.5

109 70.0

In this case temperatures are specified at nine different nodes in the mesh; the temperatures for all other nodes are
automatically assigned a value of zero. It should be noted that it is not the absolute value of the temperature which
controls the thermal stresses, but rather the relative difference among them. Specification of nodal temperatures
requires two pieces of information: a node number and the value of the temperature at that node. The nodal tem-
peratures should be obtained through either a separate steady-state or transient heat conduction analysis. MERLIN
converts the specified nodal temperatures to thermal strains and finally to thermal stresses.

Heat of hydration for concrete can be estimated from Table 20.3 for two different cement contents (180 and 280
Kg/m3).

Hb = Hcmz/ρb
Age Hc Hc [J/Kg.day]
[days] [J/g] [J/g.day] mz

180 280

0 0

1.5 85.000 6,375 9,917

3 255

5 20.000 1,500 2,333

7 335

17.5 3.09524 232.14 361.11

28 400

59 0.48387 36.29 56.45

90 430

227.5 0.10909 8.18 12.73

365 460

1,368.5 0.01495 1.12 1.74

2,372 490

Table 20.3: Heat of Hydration for Concrete

20.3.3 Water and Silt Pressures

Water and silt pressures should be accounted for on both the upstream and downstream faces. When a discrete
crack is present and the crack mouth is exposed to water, the water pressure on the crack surfaces should also be
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considered. The applied forces due to water and silt pressures are specified using both the Tractions and UTRACT
options in MERLIN. A typical pressure loading specification would appear as follows:

UTRACT

Tractions

5

101 4 100.0 62.5

102 4 100.0 62.5

103 4 100.0 62.5

104 4 100.0 62.5

105 4 100.0 62.5

The Tractions option allows for the specification of both normal and tangential surface tractions on element surfaces.
A normal surface traction is what most engineers would call a pressure and a tangential surface traction would simply
be called a traction. To specify the element surface on which pressures and/or tractions will be applied an element
number and an element surface number are required; the convention for the numbering of element surfaces is given
in Section 2.8 of the MERLIN User’s Manual (Saouma et al. 2008). In addition to the element surface specification,
magnitudes for the pressure and the traction are required. By default MERLIN assumes constant values of pressure
or traction on the specified element surface, but this limitation can be circumvented by using the UTRACT option.
The presence of the a UTRACT option indicates that the pressures and/or tractions will be defined by the user in
user subroutine utract (see Section 7.2 of the MERLIN User’s Manual (Saouma et al. 2008)). When the magnitudes
of the pressures and/or tractions are defined by user subroutine utract, the values for the pressures and tractions
entered in the input file under the Tractions option are passed to utract as arguments. For the default version
of utract the value that normally specifies the magnitude of the pressure specifies the elevation of the reservoir or
tailwater and the value that normally specifies the magnitude of the traction specifies the unit weight of water. These
two quantities must be defined in units consistent with the rest of the input file. For more elaborate loadings the
user must reprogram utract, compile the source code, and link the object (i.e., the compiled source code) with the
MERLIN libraries. Tools are provided with MERLIN to simplify this task for the user.

20.3.4 Uplift Pressure

In modeling the uplift pressure, one must distinguish between the actual crack and the uncracked ligament. In most
cases, different techniques are used to model uplift pressures acting on the crack surfaces and those acting along the
uncracked ligament. The necessity for these different techniques is due to the assumptions regarding whether or not
a given material (i.e., either rock or concrete) is pervious or impervious. For this discussion, the modeling of uplift
pressures in the crack surfaces and along the uncracked ligament will be treated separately.

20.3.4.1 Cracked Zone

Along the crack, full uplift pressure should be applied on both sides of the crack as a normal surface traction regardless
of the assumptions as to whether the rock or concrete is pervious or impervious. This is necessary because the natural
(i.e., stress) boundary conditions are defined in terms of of the total stresses σ and, with the effective stresses σ′

being identically zero, the presence of a non-zero seepage pressure p at the surface of the material requires an applied
surface traction t̂ for the natural boundary conditions to be satisfied

(σ′ − p I)n − t̂ = 0 ⇒ t̂ = −pn (20.8)

Fig. 20.3.4.1 illustrates how the consistent nodal forces for an element on the foundation surface subjected to internal
(seepage) pressure combine to create a traction free condition. Should full uplift pressure yield an unacceptably long
crack, and should the crack be completely within the concrete rather than along the concrete/rock interface, then
a reduction of the uplift pressure may occur as the crack openings become very small (Brühwiler, E. and Saouma,
V.E. 1991). For very stiff structures, this may provide a substantial reduction in the total uplift force.

The applied forces due to full uplift pressures on the crack surfaces are specified using theTractions andUTRACT
options in MERLIN. These were discussed in some detail in Section 20.3.3, so no additional discussion on there usage
is required here. Specification of the uplift pressures on the crack surfaces must be made within the same invocation
of the Tractions option as the water and silt pressures; invocations of load options are not cumulative within a given
increment. For both the upper and lower surfaces of the crack the specified normal surface traction is compressive
(i.e., the resulting nodal forces act upward on the concrete and downward on the rock).

The applied forces due to an uplift pressure that is a function of the crack opening are specified using the p W0-
COD W0 and Uplift options in MERLIN. The p W0-COD W0 option must be included in the program control
block of the input file to define the relationship between the full uplift pressure pW0 and the crack opening displacement
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Figure 20.4: Forces Acting on an Element at the Foundation Surface Subjected to Internal Pressure and Normal
Surface Tractions

Merlin Theory Manual



250 GETTING READY

CODW0 at above which pW0 acts on the crack surfaces. The input for the p W0-COD W0 option would appear
as follows:

p_W0-COD_W0

3

14.30 0.00395

42.47 0.00206

127.83 0.00064

Obviously, the relationship between pW0 and CODW0 is idealized as piecewise linear. The combinations of pW0 and
CODW0 shown above correspond to those determined experimentally by Brühwiler and Saouma (Brühwiler, E. and
Saouma, V.E. 1991). The Uplift option is used to define the full uplift pressure pW0 acting at the mouth of each
crack. The input for the Uplift option is as follows:

Uplift

1

1 2400.0 0.0361

The full uplift pressure pW0 is defined by head above the crack mouth HW and the unit weight of the water γW . In
the example shown above HW is 2400.0 inches and γW pci. The value of pW0 defined in the Uplift option must be
between the end points of the relationship defined in the p W0-COD W0 option or MERLIN cannot determine the
appropriate value of CODW0.

20.3.4.2 Uncracked Zone

Along the uncracked ligament, uplift should also be modeled in some fashion. The magnitude and distribution of the
uplift pressures should be governed by the following considerations:

1. Unless field data is available, and for rock with isotropic hydraulic conductivity, the uplift pressure is assumed
to vary linearly from the upstream to the downstream value when the interface between the dam and foundation
is pervious.

2. For rock with isotropic hydraulic conductivity, and with field data measurements, the uplift pressure can be
assumed to vary linearly between points where the values of the uplift pressure are known.

3. For rock with a known orthotropic hydraulic conductivity, a steady state seepage analysis should be performed
to determine the uplift pressure distribution.

4. For rock with isotropic hydraulic conductivity, a steady state seepage analysis is be required within the context
of the Case 3 (to be outlined below).

Three different approaches for modeling uplift pressures along the uncracked ligament are described here. They
are based on assumptions as to whether the rock, concrete, and uncracked interface are pervious or impervious. The
combinations for the three cases discussed here are summarized in Table 20.3.4.2.

Case Rock Concrete Uncracked Interface

1 Impervious Impervious Impervious
2 Impervious Impervious Pervious
3 Pervious Impervious Pervious

Table 20.4: Summary of three cases for uplift on uncracked ligament

Case 1: In this model, shown in Fig. 20.3.4.2, the rock, concrete, and uncracked interface are all assumed to be
impervious. This case corresponds to a “no flow” situation and, consequently, no uplift pressures are applied
along the uncracked interface. The only uplift pressures present in this case are those acting on the crack
surfaces.

Case 2: In this model, shown in Fig. 20.3.4.2, the rock and concrete are assumed to be impervious, but the uncracked
interface is assumed to be impervious. The assumed flow regime for this case is represented in Fig. 20.3.4.2.
Uplift pressures are applied upward on the dam and downward on the foundation along the uncracked interface
as normal surface tractions using the Tractions and UTRACT options in MERLIN. This approach requires
that the uplift pressures be prescribed as initial stresses using the Pressures option in MERLIN. Either
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Figure 20.5: Uplift Model with Impervious Rock, Concrete, and Uncracked Interface
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Figure 20.6: Uplift Model with Impervious Rock and Concrete and Pervious Uncracked Interface
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Figure 20.7: Pipe Analogy for Flow Along a Pervious Uncracked Interface
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the uncracked interface must be modeled by interface elements or the continuum elements adjacent to the
dam/foundation interface must be separated from neighboring elements using duplicate nodes. Fig. 20.3.4.2
represents the latter approach. Using duplicate nodes along the uncracked interface and applying normal surface
tractions on the appropriate element surfaces is no acceptable because the equivalent nodal forces corresponding
to the applied uplift pressures will cancel on the uncracked interface. Isolating the “pressurized” elements from
the neighbors effectively confines the pressure to those elements, otherwise the neighboring elements would also
be subjected to a seepage pressure. The mesh construction techniques required to isolate the “pressurized”
elements and the Pressures option will be discussed below, as parts of this discussion will also apply to the
third method of modeling uplift pressures on the uncracked ligament.

Case 3: In this model, shown in Fig. 20.8, the rock and uncracked interface are assumed to be pervious, but the
concrete is assumed to be impervious. The uplift pressure acting on the dam is simply modeled by specifying

Figure 20.8: Uplift Model with Impervious Concrete and Pervious Rock and Uncracked Interface

the pressure at each node in the foundation using the Pressures option in MERLIN. These nodal pressures
are computed in a separate steady-state seepage flow analysis. Using nodal pressures from a transient seepage
flow analysis should be avoided because the flow conditions are coupled to the stress state for time-dependent
poro-elastic problems. Duplicate nodes are used along the uncracked interface to “contain” the effect of the
seepage pressures within the foundation.

Additional approaches may be theoretically valid, but those described above should suffice in most cases.
The modeling of uplift pressures on the uncracked ligament often requires a mesh construction technique commonly

known as double or master/slave nodes, particularly when nodal pressures are specified. In MERLIN, they are called
master/slave nodes, so this terminology will be used in this discussion. Master/Slave nodes are a pair of nodes that
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have identical coordinates and displacements. Typically, the nodes of a master/slave node pair belong to elements
with different material properties or where a discontinuity in stress is expected due to pore water pressure. For all
of the uplift models described above master/slave nodes should be used along the interface between the concrete.
For the second uplift model master/slave nodes should be used along the element boundaries shared by pervious and
impervious elements; this keeps the applied loads due to hydrostatic pressures isolated within the pervious elements.

Hydrostatic pressures within pervious materials are specified using the Pressures option in MERLIN. A internal
hydrostatic pressure load specification would appear as follows:

Pressures

9

101 70.0

102 67.5

103 65.0

104 62.5

105 60.0

106 57.5

107 55.0

108 52.5

109 50.0

In this case internal hydrostatic pressures are specified at nine different nodes in the mesh; the pressures for all
other nodes are automatically assigned a value of zero. Specification of nodal pressures requires two pieces of
information: a node number and the value of the pressure at that node. The nodal pressures can be assumed based
on sound engineering judgement or obtained through a separate steady-state seepage flow analysis. MERLIN treats
the pressures as hydrostatic initial stresses σ0 assembling an consistent nodal force vector feσ0

for each pressurized
element by integrating the gradient of specified nodal pressures over the element domains

feσ0
=

∫
Ωe

BTσ0 dΩ (20.9)

Finally, it should be noted that an internal hydrostatic pressure is the pressure within a pervious medium due to
seepage or pore pressures; it should not be confused with the hydrostatic pressure due to water acting on the exterior
of an impervious medium.

20.4 Finite Element Discretization

20.4.1 Mesh Dimensions

The finite element discretization depends on whether it will be used exclusively for a stress analysis, or for a combi-
nation of (uncoupled) seepage/stress analyses.

In the former, a mesh comprising the rock foundation extending the dam height H on either side and below the
dam is recommended. In the second case, the recommended extension should be at least 2H .

20.4.2 Boundary Conditions

The results should be insensitive to the choice of the boundary conditions around the foundation. Differing results
obtained by placing either rollers or rigid supports around the boundary indicate that the foundation model should
be extended.

20.4.3 Preliminary Cracks

20.4.3.1 Horizontal Crack

In the case of the primary horizontal crack which may cause dam instability, two approaches are possible:

1. Start with a mesh with no cracks, perform a linear elastic analysis, identify the node with highes tensile stress,
and use the remeshing program to initiate a crack at this particular location.

2. Model a discrete crack as a gap between adjacent elements at the anticipated location of an existing or a
potential crack. Unless known, the initial crack length should be no less than three element deep.
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20.4.3.2 Rock Tensile Zone Cracks

In many cases, large horizontal tensile stresses occur in the rock under the dam’s heel. In early analysis, Zienkiewicz
(Zienkiewicz and Cheung 1964, Zienkiewicz and Cheung 1965) recommended the softening of this tensile zone by a
reduced modulus of elasticity (one tenth the original value). Within the context of a discrete crack model, this can
be equivalently replaced by the insertion of an initial crack. The crack would be vertical for homogeneous isotropic
rock, or inclined for orthotropic jointed rock. Its initial length should not exceed H/20. Hence, this initial crack will
typically relieve the tensile stresses at the base.

20.4.4 Element Types, and Mesh Density

The density of the mesh required to obtain accurate results is a function of both the distribution of the stress field in
the structure and the element types used in the mesh. The presence of stress concentrators such as reentrant corners
at the heel or toe will require some degree of mesh refinement or densification in those areas. The use of higher order
elements allows for greater accuracy with fewer elements, but the lower order, high performance elements in MERLIN
may still be computationally more efficient in some cases.

Whereas singular quarter point elements have been very popular to provide a very simple way of modeling the
stress singularity and determining the stress intensity factors, their use is found to be cumbersome for the following
reasons. Special attention must be paid to discretize the mesh around the crack tip with enough singular triangular
elements of a size not exceeding 10% of the total crack length. For crack propagation studies, it was found that a
simpler method would be one based on regular discretization around the crack tip, and use contour line integrals
away from the crack tip to determine the stress intensity factors. Results were found to be quite robust, and mesh
size insensitive.

Accordingly, element type 5 in MERLIN is recommended for 2-D analyses and element type 20 is recommended
for 3-D analyses. These elements are low order, high performance elements which give good coarse mesh accuracy.
These elements have been enhanced to provide improved bending mode behavior (Reich 1993). When using the
mixed-iterative method in MERLIN, these elements also tend to exhibit both better convergence characteristics and
higher accuracy than either the standard lower order or higher order elements.

Finally, it should be mentioned that at least two meshes should be prepared, and results between the “coarse” and
the “fine” one should be within 10% to 15% to be considered satisfactory.

20.5 Stress Analysis

20.5.1 Linear versus Nonlinear Analysis

In a structural analysis, the choice of the appropriate fracture mechanics model is influenced by parameters such
as the uncertainty of loads or material properties, availability of computer codes, computational cost and desired
accuracy.

The advantages of a nonlinear analysis over a linear one are: 1) determination the size of the true crack and of
the process zone in terms of the applied load, 2) capturing of the pre-peak nonlinear response of the structure, and
3) the post-peak response which for dam structures is of importance when deformations are induced by foundation
settlement or temperature change. However, it should be kept in mind that nonlinear analyses are not simple to
perform, and very few computer codes (including MERLIN) are capable of properly performing such an analysis.

Hence the following order of analysis should be followed, keeping in mind that should the results of a particular
analysis prove satisfactory, then there may not be a need to undertake the subsequent one:

1. Two dimensional linear elastic fracture mechanics, with at least two different mesh sizes.

2. Two dimensional non-linear fracture analysis.

3. Three dimensional linear elastic fracture mechanics

4. Three dimensional nonlinear fracture analysis.

Note that the analysis complexity increases almost exponentially from one type to the other.
Furthermore, in a nonlinear fracture model, analysis should be interrupted at different stages depending on the

load type:

1. For structures subjected to directly applied load (such as water pressure and uplift), it could stop once the peak
displacement has been reached as this would be synonymous of collapse or failure. Any post-peak response
would be purely academic.

2. For structures subjected to imposed displacements, such as foundation settlement or thermal stresses, then the
analysis should proceed beyond the peak load.
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20.5.2 Two versus Three-Dimensional Analysis

Two-dimensional analyses normally consider the transverse section only, and the crack is thus assumed to span the
entire dam width from abuttment to abutment. This approach may yield excessive stresses, which would not have
occurred had a three-dimensional been performed. Hence, for narrow canyons and slightly curved dams a three
dimensional analysis should be preferred.

Three-dimensional (3D) fracture mechanics analyses will be able to model not only a partial crack, but also the
side restraining and horizontal beam beneficial effects. The obvious limitation of a 3D analysis is the extensive data
preparation associated with it. With current technology, such an analysis can be undertaken but is likely to be
expensive.

20.5.3 Stress Intensity Factor Extraction

There are numerous techniques to extract the stress intensity factors, and those can be broadly classified under two
categories: The one based on correlation of nodal displacement in singular elements, and those based on contour or
surface integrals.

The former requires the use of higher order elements, and in this case, the crack tip should be surrounded by at
least 6 singular quarter point elements, and the singular element size should not exceed 15% of the crack length,
(Saouma and Schwemmer 1984).

The second category of SIF extraction does not rely on the modeling of the stress singularity, but is based on a
contour/surface integral taken around the crack tip, and results are independent of the selected path. This includes:
the J-integral formulation of Hellen and Blackburn (Hellen and Blackburn 1975); the reciprocal work intergral of Stern,
Becker, and Dunham (Stern et al. 1976); and the surface integral of Babuska and Miller (Babuska and Miller 1984).

Of all methods, the integrals of Stern, Becker, and Dunham and the surface one of Babuska and Miller tend to
give the best results, and are recommended.

20.6 Seepage Analysis

20.6.1 Material Properties

In section 20.3.4 three models for the uplift pressure along the uncracked ligament were discussed. The model
identified as Case 3 requires a steady-state seepage flow analysis prior to the stress analysis. Transient seepage
flow analysis should not be performed because the flow conditions are coupled to the stress state for time-dependent
poro-elastic problems and MERLIN is not capable of performing this type of problem. Whereas a seepage analysis
with isotropic rock conductivity is likely to yield a linear steady state pressure distribution, such an analysis should
be undertaken for orthotropic cases.

Material properties required for a steady-state seepage flow analysis are summarized in Table 20.6.1.

Property Isotropic Orthotropic

Mass density ρ ρ

Permeability k θ, k1, k2

Table 20.5: Required Material Properties for Seepage Analysis

Note that for isotropic hydraulic conductivities the value of the permeability can be arbitrary.
In most cases, individual joints are not modeled, and hence the permeability should be that of a homogeneous

continuum equivalent to the jointed rock system.

20.6.2 Finite Element Discretization

20.7 Thermal Analysis

In section 20.3.2 the application of thermal load was discussed, and shown that it is represented by nodal tempera-
tures.

Nodal temperatures can be obtained through a steady state (time independent), or transient (time dependent)
thermal analysis.

Such an analysis (as implemented in MERLIN), would enable the user to perform a thermal analysis, and then
using the same finite element discretization, and the analysis output (nodal temperatures), perform an uncoupled
stress analysis.
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For transient analysis one must be very careful in the selection of the time step. Computer codes employing explicit
solution techniques yield completely erroneous results when too big time step is used. Program MERLIN (Saouma
et al. 2008) is based on an implicit method, therefore no limits on the size of the time step are necessary. However
too big time step can cause in accurate results. Interested reader should consult the MERLIN’s example manual.

20.7.1 Material Properties

Material properties required for a thermal analysis are summarized in Table 20.7.1

Steady-state Transient

——Material Properties——

mass density ρ
Specific Heat c
conductivity k k

——Boundary Conditions——

Temperature T T
film h h
flux q q

Table 20.6: Material Parameters Required for a Thermal Analysis

Indicative values of concrete and rock conductivities are 1-5 and 1-2 BTU/Hr/Ft/oF; For concrete, the specific
heat can be assumed to be 0.22 BTU/lb/oF, (Townsend n.d.).

It should be noted that in a stress analysis, results would be very sensitive to the selected coefficient of thermal
expansion α.

20.7.2 Heat Transfer

In heat conduction problems, the primary field variable Φ in Eq. ?? is the temperature T , k is the thermal conductivity,
Q (W/m3) is the rate of heat (positive) or sink (negative) generation, and c is the specific heat (J/oC).

There are three fundamental modes of heat transfer:

Conduction: takes place when a temperature gradient exists within a material and is governed by Fourier’s Law

qx = −kx
∂T

∂x
qy = −ky

∂T

∂y
(20.10)

where T = T (x, y) is the temperature field in the medium, qx and qy are the components of the heat flux (W/m2

or Btu/h.ft2), k is the thermal conductivity (W/m.oC or Btu/h.ft.oF) and ∂T
∂x

, ∂T
∂y

are the temperature gradients
along the x and y respectively. The resultant heat flux q = qxi+ qyj is at right angles to an isotherm or a line
of constant temperature. The minus sign indicates that flux is along the direction of decreasing temperature.

Convection: heat transfer takes place when a material is exposed to a moving fluid which is at different temperature.
It is governed by Newton’s Law of Cooling

q = h(Ts − T∞) (20.11)

where q is the convective heat flux (W/m2), h is the convection heat transfer coefficient or film coefficient
(W/m2.oC or Btu/h.ft2.oF). It depends on various factors, such as whether convection is natural or forced,
laminar or turbulent flow, type of fluid, and geometry of the body; Ts and T∞ are the surface and fluid
temperature, respectively.

Radiation: is the energy transferred between two separated bodies at different temperatures by means of electro-
magnetic waves. The fundamental law is the Stefan-Boltman’s Law of Thermal Radiation for black bodies in
which the flux is proportional to the fourth power of the absolute temperature., which causes the problem to
be nonlinear. This mode of heat transfer is not considered by MERLIN.

Note that for steady state problems, c can be ignored.
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Prescribed temperature

Heat flux

    or

Convective heat
exchange

                or

Convective heat
exchange

                or

Prescribed
temperature generation

Heat

Constant temperature

Figure 20.9: Boundary Conditions for Thermal Analysis

20.7.3 Boundary Conditions

The boundary conditions are mainly of three kinds, Fig. 20.9:

1. Specified temperature (T = T0)

2. Specified heat flux (qn = q0), note an insulated surface will have zero flux across it, thus qn = 0.

3. Specified convection (q = h(T − T∞)

20.7.4 Seepage Analysis

In seepage problems, the primary field variable Φ in Eq. ?? is the hydraulic potential (or hydraulic/piezometric head)
h, kx and ky are the permeabilities (m/day), and c the storativity.

The fluid velocity (or fluxes) components are obtained from Darcy’s law as

vx = −kx
∂Φ

∂x
vy = −ky

∂Φ

∂y
(20.12)

Lines of Φ=constant are called equipotential surfaces, across which flow occurs.

20.7.5 Boundary Conditions

Two types of boundary conditions are applicable, Fig. 20.10:

prescribed head :

1. Caused by the known pressure head on the upstream and downstream side.

2. Experimentally measured through piezometer readings.

prescribed flux :

1. Zero flux should be specified around surface of the rock mass.

2. A point flux may be caused by a known flow through a drain.
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Flux from the drain

Pressure heads from
measurements

Pressure heads

Pressure heads
on reservoir
bottom

No boundary condition
is prescribed

on tail-water bottom

(=zero heat flux across
   the boundary )

Figure 20.10: Boundary Conditions for Seepage Analysis

20.8 Units & Conversion Factors

length, m (meter) 1 inch = 0.0254 m; 1 m = 39.37 inch
Force, N (Newton) 1 lb = 4.4482 N; 1 N = 0.22481 lb
Mass, Kg (kilogram) 1 lbm = 0.45359 Kg; 1 Kg=2.2046 lb
Density, Kg/m3 1 lbm/ft3 = 16.018 Kg/m3;1 Kg/m3=0.062428 lbm/ft3

Temperature, T T oF=[(9/5)ToC+32]

Acceleration, m/s2 1 in/s2 = 0.0254 m/s2;
Stiffness, N/m 1 lb/in = 175.1 N/m
Stress, Pa = N/m2 1 psi = 6,894.8 Pa; 1 MPa = 145.04 psi
Work, energy, N-m=Joule 1 ft-lbf= 1.3558 J; 1 J = 0.73756 ft- lbf

Heat Transfer

Convection coefficient, h 1 Btu/h.ft2.oF = 5.6783 W/m2.oC
Heat, J 1 Btu=1055.06 J; 1 Btu = 778.17 ft-lb
Heat Source/Sink, Q W/m3 =
Heat flux (q) 1 Btu/h.ft2 = 3.1546 W/m2

Specific heat, c 1 Btu/oF = 1,899.108 J/oC
Thermal conductivity, k 1 Btu/h.ft.oF = 1.7307 W/m.oC

Seepage Flow

permeability, k

Fracture Mechanics

Stress intensity factor, K 1 MPa
√
m=1.099 ksi

√
in

Fracture energy GF 1 lb/in =.0057 N/m;
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20.9 Metric Prefixes and Multipliers

Prefix Abbreviation Multiplier

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deca da 10
deci d 10−1

centi c 10−2

milli m 10−3

micro μ 10−6

nano n 10−9

pico p 10−12
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Chapter 21

PROGRAMMER’s MANUAL

This appendix contains information which should be relevant only to those who are licensed to modify MERLIN’s
source code.

21.1 Introduction

MERLIN is three-dimensional, linear elastic finite element program based on the mixed-iterative method of Zienkiewicz (Zienkiewicz
et al. 2005). In the mixed-iterative method all stress and strain quantities are nodal and values on the interior of an
element are easily interpolated using shape functions, generally the same shape functions are used for displacements.
Since the mixed-iterative method is an extension of the displacement method, it is also possible to perform analyses
with MERLIN using the displacement method. When using the displacement method, stress and strain quantities
are still projected to the nodes, but the nodal quantities are not used in any subsequent finite element computa-
tions. MERLIN also includes capabilities for performing fracture mechanics analyses using a discrete crack model;
an implementation of Rice’s J-integral (Rice 1968) has been included to compute stress intensity factors for linear
elastic fracture mechanics and Hillerborg’s fictitious crack model (FCM) (Hillerborg et al. 1976) has been included
for nonlinear analysis of cementitious materials.

21.1.1 Scope of Document

This document was written for someone who wishes to modify existing capabilities of MERLIN or add new capa-
bilities to MERLIN. It describes the various components of the program in sufficient detail to allow users to make
their modifications with a minimum amount of effort. Subroutine and function argument lists for utilities that a
programmer may find useful during the course of their modifications are defined and discussed in detail. Program
examples using the utilities are included to clarify these discussions and demonstrate proper usage of the utilities.

21.1.2 Organization of Document

This part is organized in sections which are intended to be relatively independent of one another; in situations where
this is not true, the reader will be alerted as to which sections are not independent. First time readers may want to
browse the entire document to familiarize themselves with the contents of each section for future reference. The file
I/O utilities used for all file handling in the program are described in section 21.2. The memory management utilities
that handle the partitioning of the large array that serves as program are discussed in Csection 21.3. The contents
and organization of the finite element attribute tables, which are used to define element types in the element library
and constitutive models in the material library, are described in section 21.4.

21.1.3 File Naming Conventions For Source Code

The source code for MERLIN is primarily FORTRAN 77 with a few utility routines written in C. File names are
constructed such that there is a root file name and a file extension. The root file name generally indicates the
functionality of the source in the file and the file extension indicates the source code language. Files containing
FORTRAN source code have the extension .f. Files containing C source code have the extension .c.

21.1.4 Creating an Executable

The makefile UNIX utility is used to handle the task of compiling the source code and linking the object modules
into an excutable code. Dependencies for all the “include” files are defined in the makefile so that the programmer
need not be concerned with where a particular include file is referenced. If an include file is modified every source
code file referencing that include file will be recompiled.

21.1.5 Coding Standards

A consistent coding standard throughout code is necessary to allow a developer to become comfortable with the
program more quickly. A short discussion of each point in the MERLIN coding standard is included in the following
subsections so that the developer may better understand how these coding standards actually make their life easier.
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21.1.5.1 Include Files

All common blocks and sub-system control variables defined via PARAMETER statements are defined in include
files. The naming convention for include files is based on their contents; include files containing common blocks have
the extension .cmn and include files containing parameters have the extension .par. The different extensions allow
the developer to determine the contents of an include file without using a text editor.

21.1.5.2 Case Sensitivity

FORTRAN 77 is not a case sensitive language. However, lower case code is allowed on all machines on which MERLIN
is available, so this feature is taken advantage of in the source code. All source code is in lower case with the exception
of the following exceptions:

• Global or common variables begin with an upper case letter; all other characters are lower case.

• Variables defined via PARAMETER statements are all upper case.

This allows the developer to quickly determine where a particular variable comes from.

21.1.5.3 Variable Declarations

All variables are declared; the FORTRAN standard for variable types is ignored. To assure that all variables are
declared, the ‘-u’ option is used when the source code is compiled on the Sun. Explicit declaration of all variables
eliminates typographical errors and the omission of function subroutine type declarations, both of which are fairly
tricky bugs to locate.

21.1.5.4 DO Loops

All DO loops end on separate CONTINUE statements and the code between a DO statement and the corresponding
CONTINUE statement is indented. This is more a matter of readability than anything else, but often comes in very
handy when examining a particularly long DO loop.

21.1.5.5 RETURN Statement

Ideally, a subroutine should have only one RETURN statement. This is particularly true with long subroutines where
multiple RETURN statements make it difficult to follow the logic of the subroutine. It can be especially difficult to
debug a subroutine with multiple RETURN statements and for these reasons the use of one RETURN statement
per subroutine is strongly advocated. If there are multiple conditions that require returning to the calling subroutine
the effect of multiple RETURN statements can be duplicated with one labeled RETURN statement and GOTO
statements using the label corresponding to the RETURN statement. The statement label will appear in a compiled
listing with cross-references easily allowing a programmer to pinpoint the return conditions.

21.1.5.6 Statement Labels

Ideally, the numbers used as statement labels in a given subroutine should appear in increasing order and the
numbers should be evenly spaced. The statement labels found in most subroutines are multiples of ten. When
there is a statement label associated with the RETURN statement this statement label is generally 999. Statement
labels associated with format statements are generally numbers between 7000 and 9990, inclusive. Statement labels
between 7000 and 7990 are associated with debug prints; statement labels between 8000 and 8990 are associated with
echoing input data; and statement labels between 9000 and 9990 are associated with error, warning, and informational
messages written to the formatted output file. Associating a particular number or range of numbers with a certain
type of format statement makes it easy to locate and/or recognize these statements when examining a compiled
listing with cross-references.

21.1.5.7 ANSI Standard Features

The use of extensions to the FORTRAN 77 standard should be avoided at all costs for the sake of portability.
Extensions to the standard are generally identified in some way in the FORTRAN manual for a given compiler. If in
doubt, consult the manual to be sure.
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21.2 File I/O Utilities

The data that defines a finite element model are read from a file and the results of the analysis are written to files.
For the sake of portability, all disk I/O functionality is isolated in utilities that are called in place of the “standard”
FORTRAN I/O library. These utilities are written primarily in FORTRAN callable C, but include a few FORTRAN
subroutines. Functions from the buffered I/O library of C are used as the basis for the file I/O utilities and the
FORTRAN utilities provide additional functionality

21.2.1 I/O Utilities Written In C

Functions from the standard C buffered I/O library are used to open and close files and to read and write information
to and from these files. These utility functions are capable of handling the I/O for a maximum of twenty concurrently
open files. Both formatted and sequential binary I/O are supported. All utility functions written in C are FORTRAN
callable and include internal error handling. The source code for those I/O utilities written in C are in the file ioutil.c.

21.2.1.1 File Attribute Data Structure

An array of data structures is used to store attributes for open files. Access into this array of data structures is
facilitated through the use of file identifiers, which are nothing more than indices into the array of data structures
ranging in value from 0 to 19. Array elements 0, 1, and 2 are used by standard input, output, and error, respectively.
The file identifiers are used so that the various open files can be manipulated through FORTRAN, which does not
include pointers to data structures as a standard data type. These attributes are used extensively throughout the
utility functions. The template for the file attribute data structure is as follows:

typedef struct {

char name[129];

FILE *stream;

FILE *errout;

int last_op;

} FileInfo;

The elements of the file attribute data structure have the following functionality:

• name is the name of the file.

• stream is the stream from which inforamtion is read and to which data is written.

• errout is the stream to which any error messages associated an I/O operation are printed.

• last op is a flag which indicates whether the last operation was a read or a write.

The stream is used for every I/O operation, but the file name and the error output stream are used only when printing
error messages. The default error output stream is stderr. Changing the stream for error output is discussed in
Section 21.2.1.4. The structure element last op is used to automatically synchronize I/O for update or read/write
files.

21.2.1.2 Open Function

The opening of files is handled by the FORTRAN callable function filopn. filopn is of type int and, therefore, is
called as a function subroutine of type INTEGER*4. The value returned by filopn is either a file identifier or an
error indicator. The file error indicator is a -1; any other value is a valid file identifier. The file identifier returned by
filopn is the means by which a particular file is specified to the other I/O utilities.

The function and argument declarations for filopn in FORTRAN are as follows:

integer*4 function filopn( name , mode )

character*(*) name

character*(*) mode

where name is the filename and mode indicates how the file will be opened. Valid values for mode are given in
Table 21.1; appending a ’b’ after these file modes indicates a binary file. Both name and mode must be NULL
terminated strings.

NULL termination of FORTRAN character strings is performed by the function subroutine nulstr. The function
and argument declarations for nulstr are as follows:
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Open Mode Function

’r’ Open text file for reading
’w’ Create text file for writing; discard previous contents if any
’a’ Append; open or create text file for writing at end of file
’r+’ Open text file for update (i.e., reading and writing)
’w+’ Create text file for update; discard previous contents if any
’a+’ Append; open or create text file for update, writing at end

Table 21.1: File Open Modes

character*(*) function nulstr( string )

character*(*) string

The NULL character is added immediately following the last non-blank character in string. Therefore, when nulstr
is declared in the calling subroutine its length must be at least one character greater than that of string or the NULL
character cannot be appended to string.

Before attempting to open a file, an unused element in the array of file attribute data structures must be located.
Failure to locate an unused element will cause filopn to return a value of -1. Once an unused element is located, an
attempt to open the file is made. If the file opening operation is successful, the attributes for the file are stored in
the unused element of the file attribute array and the file identifier, which is the array index corresponding to the
previously unused element, is returned as the function value. Otherwise, a value of -1 is returned. Any type of failure
within filopn is accompanied by an error message written to standard error.

21.2.1.3 Close Function

The closing of files is handled by the FORTRAN callable function filcls. filcls is of type void and, therefore, is
called as a subroutine. The function and argument declarations for filcls in FORTRAN are as follows:

subroutine filcls( fid )

integer*4 fid

where fid is the file identifier for the file to be closed. filcls check the value of fid before actually attempting to
close the file to make sure it is between 3 and 19, inclusive, and that the file corresponding to that file identifier is
indeed open. Upon closing the file, the element in the array of file attribute data structures corresponding to the file
identifier is released for reuse.

21.2.1.4 Error Output

Once a file is open, it is possible to have any subsequent error messages that are the result of an illegal I/O operation
printed to a file opened by filopn rather than to standard error. In MERLIN, all I/O errors associated with read,
write, and seek operations are printed to the formatted output file. Redirection of error messages is handled by the
FORTRAN callable function filerr. filerr is of type void and, therefore, is called as a subroutine. The function and
argument declarations for filerr in FORTRAN are as follows:

subroutine filerr( fid , fiderr )

integer*4 fid

integer*4 fiderr

where fid is the file identifier of file for which error messages are to be redirected and fiderr the file identifier of file
to which the error messages are to be redirected. Both fid and fiderr must be file identifiers for open files or the
attempt to redirect error output will be ignored.

21.2.1.5 Read Functions

The file I/O utilities include a number of FORTRAN callable functions for read operations. Naturally, there are
different functions for reading from both text (i.e., formatted or ASCII) files and binary (i.e., unformatted) files.
There are currently three functions available for reading from text files:

1. rdstr reads a character string,

2. rdlong reads an array of 32-bit integers, and
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3. rddble reads an array of double precision floating points.

However, there is only one function required for reading from binary files, rdbin. Each of these functions is of type
int and, therefore, is called as a function subroutine of type INTEGER*4. The value returned by these functions
indicates how many items were in fact read. Any number less than the specified value can generally be regarded as
an error.

The function and argument declarations for rdstr in FORTRAN are as follows:

integer*4 function rdstr( fid , string )

integer*4 fid

character*(*) string

where fid the file identifier of the file from which to read and string is the character string read from the file. A
character string is considered to be those characters that fall in between two white space characters (i.e., blank,
tab, newline, carriage return, vertical tab, and formfeed). The character string is read into a temporary buffer and
then copied to string. If string is not large enough to accomodate the character string read form file, only those
characters that will fit into string are returned. In any case, the NULL terminator is stripped from the character
string during the copy operation since it is not necessary in FORTRAN. The function value is 1 if the character string
was read successfully, otherwise it is 0. A function value of zero is accompanied by an error message to the error
output file stream.

The function and argument declarations for rdlong in FORTRAN are as follows:

integer*4 function rdlong( fid , count , array )

integer*4 fid

integer*4 count

integer*4 array(count)

where fid the file identifier of the file from which to read, count is the number of integers to read, and array is
the array of integers read from the file. Each integer must be bracketed by white space characters (i.e., blank, tab,
newline, carriage return, vertical tab, and formfeed). The function value is count if the integer array was read
successfully, otherwise it is a value less than count. A function value less than count is accompanied by an error
message to the error output file stream.

The function and argument declarations for rddble in FORTRAN are as follows:

integer*4 function rddble( fid , count , array )

integer*4 fid

integer*4 count

real*8 array(count)

where fid the file identifier of the file from which to read, count is the number of double precision floating points
to read, and array is the array of double precision floating points read from the file. Each floating point must
be bracketed by white space characters (i.e., blank, tab, newline, carriage return, vertical tab, and formfeed). The
function value is count if the double precision floating point array was read successfully, otherwise it is a value less
than count. A function value less than count is accompanied by an error message to the error output file stream.

The function and argument declarations for rdbin in FORTRAN are as follows:

integer*4 function rdbin( fid , count , array )

integer*4 fid

integer*4 count

character array(count)

where fid the file identifier of the file from which to read, count is the number of characters (i.e., bytes) to read,
and array is the array of characters read from the file. In this case, the use of data type CHARACTER is not
entirely appropriate for array, but it is the only FORTRAN data type available that easily translates to bytes and
bytes are the unit of measurement for binary files in Unix. The function value is count if the ‘character’ array was
read successfully, otherwise it is a value less than count. A function value less than count is accompanied by an
error message to the error output file stream.

The number of bytes associated with any FORTRAN data type can be determined using the function subroutine
sizeof. The function and argument declarations for sizeof are as follows:
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integer*4 function sizeof( type )

integer*4 type

where type is data type for which the corresponding number of bytes are required. sizeof returns as its value the
number of bytes corresponding to a given data type. type can be specified using the parameters defined in the
include file pmmkey.par and described in Section 21.3.3.3.

21.2.1.6 Write Functions

The file I/O utilities includes two FORTRAN callable functions for write operations; one for writing to text files,
wrtstr, and one for writing to binary files, wrtbin. Each of these functions is of type int and, therefore, is called as
a function subroutine of type INTEGER*4. The value returned by these functions indicates how many items were
in fact written. Any number less than the specified value can generally be regarded as an error.

The function and argument declarations for wrtstr in FORTRAN are as follows:

integer*4 function wrtstr( fid , string )

integer*4 fid

character*(*) string

where fid the file identifier of the file to write to and string is the character string to be written to the file. Since
all character string operations in C require that the character string be NULL terminated, string is copied into a
temporary buffer and the terminating NULL character is inserted immediately following the last non-blank character
before it is written to the file. A newline character is also written to the file following the character string. The
function value is 1 if the character string was written successfully, otherwise it is 0. A function value of zero is
accompanied by an error message to the error output file stream.

The function and argument declarations for wrtbin in FORTRAN are as follows:

integer*4 function wrtbin( fid , count , array )

integer*4 fid

integer*4 count

character array(count)

where fid the file identifier of the file to write to, count is the number of characters (i.e., bytes) to write, and array
is the array of characters to write to the file. In this case, the use of data type CHARACTER is not entirely
appropriate for array, but it is the only FORTRAN data type available that easily translates to bytes and bytes
are the unit of measurment for binary files in Unix. The function value is count if the ‘character’ array was written
successfully, otherwise it is a value less than count. A function value less than count is accompanied by an error
message to the error output file stream.

21.2.1.7 Seek Function

In binary files it is often advantageous to move the file pointer around the file without actually reading information
into program memory. Manipulation of the file pointer is performed by the FORTRAN callable function filpos.
filpos is of type int and, therefore, is called as a function subroutine of type INTEGER*4. A value is returned
whether or not the operation succeded; the function value is 0 if the operation was successful and non-zero if it was
not.

The function and argument declarations for filpos in FORTRAN are as follows:

integer*4 function filpos( fid , offset )

integer*4 fid

integer*4 offset

where fid is the file identifier of the file for which the file pointer is to be repositioned and offset is the number
of bytes that the pointer is to be moved from the current position. Negative values are valid for offset and they
indicate the file position will be moved backward through the file rather than forward. A non-zero function value is
accompanied by an error message to the error output file stream.
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21.2.1.8 Flush Function

When performing file I/O operations, there will be situations in which it is advantageous to flush the contents of
the I/O buffer before it is filled. Flushing of the I/O buffer is handled by the FORTRAN callable function filclr.
filclr is of type void and, therefore, is called as a subroutine. The function and argument declarations for filclr in
FORTRAN are as follows:

subroutine filclr( fid )

integer*4 fid

where fid is the file identifier for the file for which the I/O buffer is to be flushed. filclr checks the value of fid
before actually attempting to flush the I/O buffer to make sure it is between 3 and 19, inclusive, and that the file
corresponding to that file identifier is indeed open. If fid corresponds to a file that is not open, there is no I/O buffer
to be flushed and the attempt to flush the I/O buffer will be ignored.

21.2.2 I/O Utilities Written In FORTRAN

Currently, there is only one FORTRAN function in the file I/O utilities functions, frmwrt. frmwrt is a function
subroutine of type INTEGER*4 that writes an array of character strings to a text file one element at a time using
wrtstr. The function value returned indicates how many elements of the array were succesfully written to the file.

The function and argument declarations for frmwrt are as follows:

integer*4 function frmwrt( fid , count , array )

integer*4 fid

integer*4 count

character*(*) array(count)

where fid is the file identifier of the file to write to, count is the number of character strings to write, and array is
the array of character strings to write to the file. The function value is count if the character strings were written
successfully, otherwise it is a value less than count. A function value less than count is accompanied by an error
message to the error output file stream.

21.2.3 Usage of the File I/O Utilities

Because the majority of the I/O utilities are written in C and called from FORTRAN there are some idiosyncracies
in these utilities that should be pointed out at this time. A simple program that reads a character string, an array of
integers, and an array of double precision floating points from a text file and copies them to a binary file is used to
identify these idiosyncracies for the programmer. All error messages associated with the I/O utilities are redirected to
a separate text file, which will also contain error messages for any invalid input. Comments in the code will indicate
points of special interest.

program testio

c

c This program illustrates the use of the file I/O utilities in MERLIN.

c

include ’include/pmmkey.par’

c

c Local Variable Type Declarations:

c

character*80 title , string ( 3)

integer*4 buffer ( 20), inpfid , outfid , logfid , nbytes ,

& numint , numflt , nread , ints ( 100), nwrite

real*8 reals ( 100)

c

c Function Type Declarations:

c

character*40 nulstr

integer*4 filopn , rdstr , wrtbin , rdlong , frmwrt , rddble

c

equivalence (buffer ( 1), title)

c

c Open the text file for input
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c

inpfid = filopn( nulstr( ’input.dat’ ) , nulstr( ’r’ ) )

if (inpfid .lt. 0) goto 999

c

c Open the binary file for output

c

outfid = filopn( nulstr( ’output.dat’ ) , nulstr( ’wb’ ) )

if (outfid .lt. 0) goto 30

c

c Open a text file for error output

c

logfid = filopn( nulstr( ’error.dat’ ) , nulstr( ’w’ ) )

if (logfid .lt. 0) goto 20

c

c Redirect all file I/O error messages to ’error.dat’

c

call filerr( inpfid , logfid )

call filerr( outfid , logfid )

c

c NOTE: Error messages for ’error.dat’ were not redirected from

c standard error to ’error.dat’ because chances are if it

c is not possible to write to ’error.dat’ through the

c utility functions it is not possible to write to it at

c all.

c

c Read file title (i.e., a character string with <= 80 characters)

c from the text file

c

if (rdstr( inpfid , title ) .ne. 1) goto 10

c

c Write the title to the binary file; use the integer array that

c has been equivalenced to the character string containing the

c title because rdbin does not include the extra argument in its

c argument list that indicates the length of the character string.

c The extra argument is necessary for cross-language communication

c between FORTRAN and C.

c

nbytes = len( title )

nwrite = wrtbin( outfid , nbytes , buffer )

if (nwrite .ne. nbytes) goto 10

c

c Read the number of integers and floating points to be read

c from the text file

c

if (rdlong( inpfid , 1 , numint ) .ne. 1) goto 10

if (rdlong( inpfid , 1 , numflt ) .ne. 1) goto 10

c

c Check to make sure both numbers are >= 0 and <= 100; print

c an error message if they are not. The error message is first

c written to an array of character strings using an internal

c write (one line of the error message appears in each character

c string) and then it is written to ’error.dat’ using frmwrt.

c

if (numint .lt. 0 .or. numflt .lt. 0) then

write( string , 9000 )

nwrite = frmwrt( logfid , 3 , string )

goto 10

else if (numint .gt. 100 .or. numflt .gt. 100) then

write( string , 9010 )

Merlin Theory Manual



21.2 File I/O Utilities 271

nwrite = frmwrt( logfid , 3 , string )

goto 10

end if

c

c Write the number of integers and floating points to be read

c to the binary file

c

nbytes = sizeof( LONG ) * 2

nwrite = wrtbin( outfid , nbytes , numint )

if (nwrite .ne. nbytes) goto 10

nwrite = wrtbin( outfid , nbytes , numflt )

if (nwrite .ne. nbytes) goto 10

c

if (numint .gt. 0) then

c

c Read the integer array from the text file

c

nread = rdlong( inpfid , numint , ints )

if (nread .ne. numint) goto 10

c

c Write the integer array to the binary file

c

nbytes = sizeof( LONG ) * numint

nwrite = wrtbin( outfid , nbytes , ints )

if (nwrite .ne. nbytes) goto 10

end if

c

if (numflt .gt. 0) then

c

c Read the floating point array from the text file

c

nread = rddble( inpfid , numint , reals )

if (nread .ne. numflt) goto 10

c

c Write the integer array to the binary file

c

nbytes = sizeof( DOUBLE ) * numint

nwrite = wrtbin( outfid , nbytes , reals )

if (nwrite .ne. nbytes) goto 10

end if

c

c All done; close files before exit

c

10 call filcls( logfid )

20 call filcls( outfid )

30 call filcls( inpfid )

c

999 exit( 0 )

c

stop

9000 format(/’Both the number of integers and floating points ’,

& ’to read must be greater than’,

& /’or equal to 0. File copy has failed.’)

9010 format(/’Both the number of integers and floating points ’,

& ’to read must be less than or’,

& /’equal to 100. File copy has failed.’)

end
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21.3 Program Memory Management

All arrays with dimensions dependent on information read from the input file are stored in a partitioned one-
dimensional INTEGER*4 array. Henceforth, this array will be referred to as program memory and the utility
functions that manage program memory are program memory management utilities. Section 21.3.1 includes a
description of the program memory array and how to increase or decrease the size of program memory. Section 21.3.2
is a discussion of the data structures used for the data stored in program memory. Section 21.3.3 includes a discussion
of the memory management subsystem implemented to manage the data stored in program memory.

21.3.1 Program Memory

The program memory array is in common block memory and is named Kmn. This common block can be found in
include file memory.cmn. Both the starting and ending array indices are specified by values set via a PARAMETER
statment in memory.cmn. The starting array index is named BOM and the ending array index is named EOM.
Currently, the values for BOM and EOM are 0 and 1499999, respectively.

Program memory can be resized simply by modifying the value of EOM, recompiling those source code files that
includememory.cmn, and relinking the object files into a new executable. This operation is performed automatically
by the makefile (see Section 21.1.4). In general, the value of BOM should not be changed.

21.3.2 Data Structures

As FORTRAN 77 is the language in which the majority of the MERLIN source code is written, the data structures
are arrays. One-, two-, and three-dimensional arrays partitioned from program memory are used to store data.
Throughout the remainder of this document the third dimension of a three-dimensional array will be referred to as
a page. Since FORTRAN is a column major language (i.e., the data contained within a given column of an array is
stored sequentially in core memory) it is very desirable to store data in arrays such that it is accessed down columns
instead of across rows or pages. In fact, it is inefficient to access data in any other manner.

21.3.3 Memory Management Utilities

The memory management utilities used in MERLIN are based on a package found in the CAL structural analysis
program. As this software was not completely autonomous, modifications were required to implement an ‘easy-to-use’
memory manager in MERLIN. The following subsections will describe the dynamic memory allocation and memory
management utilities implemented in MERLIN.

21.3.3.1 Partioned Program Memory

The number of partions (i.e., data arrays) allowed is limited only by the amount of program memory available. Each
data array seven attributes associated with it that include:

1. A six character mnemonic name (stored one character per word) identifying the array,

2. The type of data stored in the array,

3. The starting address of the array in program memory,

4. The number of rows,

5. The number of columns,

6. The number of pages, and

7. The size of the array in words.

Twelve words are required to store the seven array attributes for each data array. These attributes are stored
contiguously at the end of program memory and the data arrays are stored contiguously at the beginning of program
memory; free program memory resides in the space between the data arrays and their attributes. This storage scheme
is illustrated by Figure 21.1.

Merlin Theory Manual



21.3 Program Memory Management 273

Array #1
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Attributes
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Attributes
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Attributes

Figure 21.1: Program Memory with Three Arrays

21.3.3.2 Memory Management Routines

Six function subroutines are required to allocate and manage memory: one subroutine to allocate program memory
for a data array, alloc8; one subroutine to resize an allocated data array (i.e., reallocate a data array), reallo; one
subroutine to copy the contents of an allocated data array to another allocated data array, copy; one subroutine to
locate a data array in program memory, locate; one subroutine to determine the attributes of a data array, query;
and one subroutine to delete a data array from program memory, delete. An additional subroutine, pmmini, is also
required to initialize the global (i.e. common) variables used by the other six memory management utility subroutines.

The function and argument declarations for function subroutine alloc8 are as follows:

integer*4 function alloc8( name , type , nrow , ncol , npag )

character*6 name

integer*4 type

integer*4 nrow

integer*4 ncol

integer*4 npag

where bf name is the data array name, type is the data type, nrow is the number of rows in the data array, ncol
is the number of columns in the data array, and npag is the number of pages in the data array. Naturally, all array
dimensions should be greater than zero; a one is used to indicate that a specific array dimension is not required.
For example, the number of pages for a two-dimensional array is 1 and the number of columns and pages for a
one-dimensional array is 1. The starting address of the array in program memory (i.e., the array index into Kmn)
is returned as the function value. If there is insufficient free space in program memory to allocate the array an error
indicator, NULL from include file pmmkey.par (see Section 21.3.3.3), is returned as the function value.

The function and argument declarations for function subroutine reallo are as follows:

integer*4 function reallo( name , nrow , ncol , npag )

character*6 name

integer*4 nrow
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integer*4 ncol

integer*4 npag

where bf name is the data array name, nrow is the number of rows in the data array, ncol is the number of columns
in the data array, and npag is the number of pages in the data array. Naturally, all array dimensions should be
greater than zero; a one is used to indicate that a specific array dimension is not required. For example, the number
of pages for a two-dimensional array is 1 and the number of columns and pages for a one-dimensional array is 1.
Currently, the size of an array can only be increased; an attempt to decrease the size on an array will fail. The
starting address of the array in program memory (i.e., the array index into Kmn) is returned as the function value.
If the array name cannot be located in the attributes table or there is insufficient free space in program memory to
reallocate the array an error indicator, NULL from include file pmmkey.par (see Section 21.3.3.3), is returned as
the function value.

The function and argument declarations for function subroutine copy are as follows:

integer*4 function copy( from , to )

character*6 from

character*6 to

where bf from is the data array name from which information is to be copied and to is the data array name to
which information is to be copied. The starting address of the to array in program memory (i.e., the array index
into Kmn) is returned as the function value. If either of the array names cannot be located in the attributes table
or the dimensions of the two data arrays are inconsistant (i.e., the number of rows, columns, and pages must all be
identical) an error indicator, NULL from include file pmmkey.par (see Section 21.3.3.3), is returned as the function
value.

The function and argument declarations for function subroutine delete are as follows:

integer*4 function locate( name )

character*6 name

where bf name is the data array name. The starting address of the array in program memory (i.e., the array index
into Kmn) is returned as the function value. If the array name cannot be located in the attributes table an error
indicator, NULL from include file pmmkey.par (see Section 21.3.3.3), is returned as the function value.

The function and argument declarations for function subroutine query are as follows:

integer*4 function query( name , type , nrow , ncol , npag )

character*6 name

integer*4 type

integer*4 nrow

integer*4 ncol

integer*4 npag

where bf name is the data array name, type is the data type, nrow is the number of rows in the data array, ncol is
the number of columns in the data array, and npag is the number of pages in the data array. For this subroutine,
only name is an input argument; type, nrow, ncol, and npag are all output arguments whose values correspond
to those stored in the file attribute table. The starting address of the array in program memory (i.e., the array index
into Kmn) is returned as the function value. If the array name cannot be located in the attributes table an error
indicator, NULL from include file pmmkey.par (see Section 21.3.3.3), is returned as the function value.

The function and argument declarations for function subroutine delete are as follows:

integer*4 function delete( name )

character*6 name

where bf name is the data array name. When an array is deleted from program memory the contents of program
memory are shifted so the the data arrays and the attribute table are contiguous. This means that the starting
address of any data array that was allocated after the deleted array now starts at a different address and, therefore,
must be located in order to determine what the value of the new address is. The former starting address of the array
in program memory (i.e., the array index into Kmn) is returned as the function value. If the array name cannot
be located in the attributes table an error indicator, NULL from include file pmmkey.par (see Section 21.3.3.3), is
returned as the function value.
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21.3.3.3 MERLIN Implementation

All program memory management utilities return an INTEGER*4 value that may or may not indicate that an error
occured and an INTEGER*4 value is required to specify the type of data to be stored in an array to be allocated.
As it may be difficult for the programmer to remember the values that correspond to the various data types or the
value that indicates the occurrence of an error, an include file containing keys for the memory management routines
is provided to assist the MERLIN programmer. A key is a constant defined via a PARAMETER statement with a
mnemonic name that the programmer can easily remember. This include file is called pmmkey.par. The parameters
contained in this include file and their functionality is as follows:

• SHORT specifies an INTEGER*2 data type,

• LONG specifies an INTEGER*4 data type,

• FLOAT specifies a REAL*4 data type,

• DOUBLE specifies a REAL*8 data type, and

• NULL indicates that an error occurred.

These parameters should not be used as an argument to a subroutine that may be is reset within the subroutine, as
values initialized by the PARAMETER statement cannot be reset. A fatal error resulting in a program crash will
result if this happens.

21.3.3.4 Usage of Memory Management Routines

The memory management subsystem is designed so that data arrays are allocated from program memory one or
more subroutine levels above where they are needed and passed on to those routines as arguments using the starting
address in program memory. The overhead incurred by passing local arrays, such as the element stiffness matrix,
to subroutines called from the analysis driver has been reduced by putting their array addresses in a common
block separate from global addresses and using this common block along with the program memory array in those
subroutines where they are needed.

The following source code example demonstrates the use of the program memory management subsystem and the
coding standards discussed in Sections 21.1.5.1 through 21.1.5.4:

program testmm

c

c This program illustrates the use of the memory management

c utilities in MERLIN.

c

include ’include/pmmkey.par’

include ’include/memory.cmn’

c

c Local Variable Type Declarations:

c

character*40 string ( 5)

integer*4 NUMROW , NUMCOL , NUMPAG , logfid , ptr , type ,

& ptr1 , nrow , ncol , npag , ptr2 , ptr3 ,

& ptr4

c

c Function Type Declarations:

c

character*40 nulstr

integer*4 filopn , alloc8 , query , frmwrt , delete

c

c Define array dimensions

c

parameter (NUMROW = 3 , NUMCOL = 3 , NUMPAG = 1)

c

c Open a text file for error output

c
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logfid = filopn( nulstr( ’error.dat’ ) , nulstr( ’w’ ) )

if (logfid .lt. 0) goto 999

c

c Initialize program memory

c

call pmmini

c

c Allocate one array of each type; the name of the array corresponds

c to data type to be stored in the array

c

ptr = alloc8( ’SHORT ’ , SHORT , NUMROW , NUMCOL , NUMPAG )

if (ptr .eq. NULL) goto 50

ptr = alloc8( ’LONG ’ , LONG , NUMROW , NUMCOL , NUMPAG )

if (ptr .eq. NULL) goto 40

ptr = alloc8( ’FLOAT ’ , FLOAT , NUMROW , NUMCOL , NUMPAG )

if (ptr .eq. NULL) goto 30

ptr = alloc8( ’DOUBLE’ , DOUBLE , NUMROW , NUMCOL , NUMPAG )

if (ptr .eq. NULL) goto 20

c

c Determine where each array is located and print the attributes

c

ptr1 = locate( ’SHORT ’ , type , nrow , ncol , npag )

c

write( string , 9000 )

if (frmwrt( Logfid , 2 , string ) .ne. 2) goto 10

write( string , 9040 ) type,ptr1,nrow,ncol,npag

if (frmwrt( Logfid , 5 , string ) .ne. 5) goto 10

c

ptr2 = locate( ’LONG ’ , type , nrow , ncol , npag )

c

write( string , 9010 )

if (frmwrt( Logfid , 2 , string ) .ne. 2) goto 10

write( string , 9040 ) type,ptr1,nrow,ncol,npag

if (frmwrt( Logfid , 5 , string ) .ne. 5) goto 10

c

ptr3 = locate( ’FLOAT ’ , type , nrow , ncol , npag )

c

write( string , 9020 )

if (frmwrt( Logfid , 2 , string ) .ne. 2) goto 10

write( string , 9040 ) type,ptr1,nrow,ncol,npag

if (frmwrt( Logfid , 5 , string ) .ne. 5) goto 10

c

ptr4 = locate( ’DOUBLE’ , type , nrow , ncol , npag )

c

write( string , 9030 )

if (frmwrt( Logfid , 2 , string ) .ne. 2) goto 10

write( string , 9040 ) type,ptr1,nrow,ncol,npag

if (frmwrt( Logfid , 5 , string ) .ne. 5) goto 10

c

c Pass the data arrays to a subroutine to be zeroed

c

call zero( nrow , ncol , npag ,

& Kmn ( ptr1), Kmn ( ptr2),

& Kmn ( ptr3), Kmn ( ptr4))

c

c Delete the data arrays in the reverse order that they were

c allocated to prevent shifting of data in program memory

c

10 ptr4 = delete(’DOUBLE’)
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20 ptr3 = delete(’FLOAT ’)

30 ptr2 = delete(’LONG ’)

40 ptr1 = delete(’SHORT ’)

c

c All done; close error output file before exit

c

50 call filcls( logfid )

c

call exit( 0 )

c

999 stop

9000 format(/’Data Array SHORT:’)

9010 format(/’Data Array LONG:’)

9020 format(/’Data Array FLOAT:’)

9030 format(/’Data Array DOUBLE:’)

9040 format(’Data type = ’,i1/’Starting Address = ’,i5/

& ’Number of Rows = ’,i5/’Number of Columns = ’,i5/

& ’Number of Pages = ’,i5)

end

c

c

subroutine zero ( ncol , nrow , npag , short , long ,

& float , double )

c

c This subroutine file arrays of all available data types and

c identical dimensions with zeros. Those arguments that are

c array dimensions are defined first so that the compiler will

c know they are integers; the compiler options are such that

c all variables must be defined.

c

c Declare Argument Types:

c

integer*4 nrow , ncol , npag

integer*4 long ( nrow , ncol , npag)

integer*2 short ( nrow , ncol , npag)

real*4 float ( nrow , ncol , npag)

real*8 double ( nrow , ncol , npag)

c

c Declare Local Variable Types:

c

integer*4 i , j , k

c

c Fill all arrays with zeroes; note the order in which the array

c elements are accessed

c

do 30 k = 1, npag

do 20 j = 1, ncol

do 10 i = 1, nrow

short(i,j,k) = 0

long(i,j,k) = 0

float(i,j,k) = 0.0

double(i,j,k) = 0.0d0

10 continue

20 continue

30 continue

c

return

end

Merlin Theory Manual



278 PROGRAMMER’s MANUAL

21.4 Finite Element Attribute Tables

For each element type or constitutive model there are a number of integer values that define their attributes, such as
the number of nodes per element or the number of state variables per constitutive model. These attributes are easily
defined in a tabular format using one-, two-, and three-dimensional arrays. The finite element attribute tables used
in MERLIN include:

• Element type attributes,

• Element class attributes,

• Element surface definitions,

• Element nodal DOF’s,

• Element integration rules,

• Surface integration rules,

• Element constitutive model availability,

• Constitutive model stress components, and

• Constitutive model state variables.

All of these tables are stored in COMMON BLOCK /fematr/, which is located in the include file fematr.cmn
along with the parameters that define the dimensions of these tables. The contents of each of these attribute tables
are discussed in detail, in separate subsections, in the remainder of this section.

21.4.1 Element Type Attribute Table

An element type is defined by its configuration (i.e., the number of nodes and the shape of the element) and various
formulation parameters. The full list of attributes for an element type is as follows:

1. Element class identifier,

2. Isoparametric formulation flag,

3. Number of element shape functions,

4. Number of coordinates per node,

5. Number of DOF for element,

6. Stress-strain law classification, and

7. Strain-displacment matrix transformation flag.

The array name for this attribute table is Elmatr and it is a two-dimensional array. The dimensions of this array
are defined by the parameters NELATR and NELTYP, where NELATR is the number of attributes per element
type and NELTYP is the number of element types in the element library. The number of rows in Elmatr is defined
by NELATR and the number of columns is defined by NELTYP.

The element class identifier indicates the basic configuration of the element type as well as information concerning
the natural coordinate system in which the element is defined; the list of supported element classes is included in
Section 21.4.2. A non-zero value for the isoparametric formulation flag indicates that the element formulation is
indeed isoparametric and a value of zero indicates that some other formulation is used. For an isoparametric element,
the number of nodes and the number of element shape functions are the same. However, for elements that do not use
an isoparmetric formulation, those numbers may differ. The number of coordinates per node is the same for all nodes
defining an element. An attempt to add an element type to the element library that does not fit this criteria would
require the significant modifications be made to the code. The number of DOF’s for an element type is the total
number of DOF’s for an nodes defining the element; DOF’s not associated with a node are not supported. However,
the nodes defining an element type are not required to have the same number of DOF’s. Each element type models
only one type of stress-strain idealization. This was done to elminate IF statements from element matrix formulation
utility subroutines, where speed is critical. The stress-strain formulations supported by MERLIN are as follows:
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• Truss/spring,

• Plane stress,

• Plane strain,

• Axisymmetric, and

• Three-dimensional continuum.

The strain-displacement matrix formulation flag currently is used only with the high performance 4-node quadrilateral
elements, otherwise this value is zero. Perhaps this attribute should be called the element technology or high
perfomance element flag, with the type of element technology technique employed indicated by a unique numeric
value.

21.4.2 Element Class Attributes Table

An element class is defined only by its configuration (i.e., the number of nodes and the shape of the element). The
full list of attributes for an element type is as follows:

1. Number of nodes defining the element,

2. Number of element surfaces (i.e., edges of 2-D continuum elements and faces of 3-D continuum elements),

3. Column index in the element surface definition table and surface integration rule table where the surface
definitions for this element class begin,

4. Number of element natural coordinates, and

5. Natural coordinate system classifaction.

The array name for this attribute table is Elmcls and it is a two-dimensional array. The dimensions of this array
are defined by the parameters NECATR and NELCLS, where NECATR is the number of attributes per element
class and NELTYP is the number of element classes supported by MERLIN. The number of rows in Elmcls is
defined by NECATR and the number of columns is defined by NELCLS.

The number of nodes per element class is not necessarily a unique value. For instance, an 8-node quadrilateral
and an 8-node brick both are defined by eight nodes, but they are clearly assembled in two distinctly different
configurations. The definition of element surfaces, which is dependent on the element topology, for each element
class was done to simplfy user identification of element surfaces for the application of surface tractions and the
definition of discrete cracks and contour paths. The conventions for numbering the nodes defining an element surface
are described in Section 21.4.3. The number of natural coordinates used to define an element class depends on the
element configuration. The element classes supported in MERLIN are defined in one of the following four natural
coordinate systems:

1. One-dimensional,

2. Two-dimensional Cartesian coordinates,

3. Two-dimensional area coordinates, and

4. Three-dimensional Cartesian coordinates.

When adding a new element type to the element library, an element class identifier must be specified. Currently,
MERLIN supports 12 element classes for the programmer to chose from:

1. 2-node line,

2. 3-node line,

3. 3-node triangle,

4. 4-node quadrilateral,

5. 6-node triangle,
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6. 8-node quadrilateral,

7. 9-node quadrilateral,

8. 4-node 2-D interface,

9. 6-node 2-D interface,

10. 8-node brick,

11. 15-node wedge, and

12. 20-node brick.

Should the desired element configuration not be available in the table of supported element classes, the programmer
must add the appropriate element class to the element class attribute table and the corresponding surface definitions
(see Section 21.4.3).

21.4.3 Element Surface Definition Table

An element surface is defined by the number of nodes that constitute the surface and the list of nodes ordered in
some rational manner. In MERLIN, the nodes that constitute a surface for a two-dimensional element are numbered
in a counter-clockwise direction around the element boundary; in a sense, a surface definition in two-dimensions is
nothing more than a simple subset of the connectivity. However, for three-dimensional elements, the surfaces are
numbered counterclockwise as viewed outside of the element in the direction normal to the element surface.

The array name for this attribute table is Elmsrf and it is a two-dimensional array. The dimensions of this array
are defined by the parameters NDPSRF and NUMSRF, where NDPSRF is the maximum number of nodes
defining an element surface and NUMSRF is the number of element surface definitions. The value is the summation
of the number of element surfaces for all element classes. The number of rows in Elmsrf is defined by NDPSRF
and the number of columns is defined by NUMSRF. The range of indices for the rows in Elmsrf has been modified
such that the indices begin at 0 and end at NDPSRF, with the number of nodes defining a surface being stored
in row 0 and the nodes defining the surface stored in rows 1 through NDPSRF. This numbering scheme allows for
direct indexing of the element surface nodes.

21.4.4 Element Nodal DOF Table

This will list the element nodal dof.

21.4.5 Element Integration Rules

This will list the element integration rules.

21.4.6 Surface Integration Rules

Not all operations within the finite element method requiring integration are over the volume of an element. Oc-
casionally, it is necessary to integrate quantities over element surfaces, as is the case with applied surface tractions.
Therefore, a table of integration rules for element surfaces is required. The attributes defining the integration rules
for the element surfaces are stored in the two-dimensional array Srfatt. The dimensions of this array are defined by
the parameters NSRINT and NUMSRF, where NSRINT is the number of integration rule attributes per surface
and NUMSRF is the number of element surface definitions (see Section 21.4.3). The number of rows in Srfatt is
defined by NSRINT and the number of columns is defined by NUMSRF.

Each column of Srfatt contains the integration rule for a surface associated with a particular element class. A one
to one correspondence exists between the columns in arrays Srfatt and Elmsrf (i.e., the integration rule defined in
column 10 of Srfatt corresponds to the element surface defined column 10 of Elmsrf). Therefore, the index into
Elmsrf defined in Elmcls also is an index into Srfatt. The list of attributes for each element surface integration
rule is as follows:

1. Number of the element class for which shape functions will be used for the surface integration. If this number
is zero, surface integration is disabled for this surface. For surface tractions, an attempt to apply tractions on
such a surface will result in a run-time error.

2. Number of shape functions. This should correspond to the number of nodes defining the element.
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3. Number corresponding to the numerical integration scheme (see Section 21.4.5 for the list of numerical integra-
tion schemes).

4. Number of integration points. This number should be sufficient to allow for accurate integration of quantities
that vary on the order of the shape functions for the surface.

21.4.7 Constitutive Model State Variable Table

Element Description

1 Damage number due to uplift pressure, 〈0, 1〉.
2 Crack opening before unloading,

non-zero only after unloading.
3 Normal cohesive stress before unloading

non-zero only after unloading.

Table 21.2: State Variables for FCM Model

Element Description

Table 21.3: State Variables for ICM Model

21.5 Element Information Tables

21.5.1 Interface Element Information Table

Table Element Description

intelm(1,iintel) Interface element ID.
intelm(2,iintel) Constraint status

0 = no constraint
1 = sliding constraint
2 = opening constraint
3 = both sliding and opening constraint

Table 21.4: Interface Element Information Table (INTELM)

21.6 Nodal Tables

21.6.1 Nodal Attribute Table

21.7 Crack Information Tables

In MERLIN each crack is defined by its surfaces and crack tips/fronts.
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Table Element Description

nodatr(1, node) New node number after renumbering
nodatr(2, node) Number of degrees of freedom at the node
nodatr(3, node) Element group id associated to the node
nodatr(4, node) Number of elements using this node
nodatr(5, node) Pointer to array noduse where the list

of elements using this node begins.
nodatr(6, node) Projection flag. Equal to one if strain

projection is to be performed for this node

Table 21.5: Nodal Attribute Table (nodatr)

Table Element Description

id(1, node) Equation number for the first degree of freedom
of this node

id(2, node) Equation number for the second degree of freedom
of this node

... ....
id(Mndof, node) Equation number for the last degree of freedom

of this node

Table 21.6: Nodal ID Table (id)

Table Element Description

cfatr(1,ifront) Number of crack front nodes.
cfatr(2,ifront) Index to array cflist where the crack front

list for this crack starts.

Table 21.7: Crack Front Attribute Table (cfatr)

Table Element Description

cflist(offset + 0) ID of first crack front node.
cflist(offset + 1) ID of second crack front node.
... ...
cflist(offset + lstlen) ID of last crack front node.

lstlen is equal to cfatr(1,ifront).

Table 21.8: Crack Front List (cflist)
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Table Element Description

csatr(1,icrack) Number of crack surface pairs.
csatr(2,icrack) Index to array csinfo where the crack surface

informations for this crack starts.
csatr(3,icrack) Crack uplift pressure status flag.

-1 = decrease in uplift pressure
0 = no uplift
1 = increase in uplift pressure
2 = no change in pressure

csatr(4,icrack) Crack traction status flag
0 = no tractions applied
1 = tractions applied

csatr(5,icrack) Crack hydrostatic load status flag
0 = no hydrostatic load is applied
1 = hydrostatic load is applied

Table 21.9: Crack Surface Attribute Table (csatr)

Table Element Description

Upper Crack Surface

csinfo(1,1,offset) Element ID on the crack surface.
csinfo(2,1,offset) Element surface number on the crack surface.
csinfo(3,1,offset) Number of nodes on the crack surface.
csinfo(4,1,offset) Interface element ID connected to this surface.
csinfo(5,1,offset) Interface surface number connected to this surface.
csinfo(6,1,offset) ID of the traction applied on this crack surface.

Traction ID is an index into the array trcinf.
csinfo(7,1,offset) ID of the hydrostatic load applied on this crack

surface. Hydro ID is an index into the array
hydinf.

csinfo(8,1,offset) First node ID on the upper surface.
... ...
csinfo([9,10,11,15],1,offset) Last node ID on the upper surface.

Depending on the element type there can be
up to 8 nodes on an element surface.

Lower Crack Surface

csinfo(1,2,offset) Element ID on the crack surfac.
csinfo(2,2,offset) Element surface number on the crack surface.
csinfo(3,2,offset) Number of nodes on the crack surface.
csinfo(4,2,offset) Interface element ID connected to this surface.
csinfo(5,2,offset) Interface surface number connected to this surface.
csinfo(6,2,offset) ID of the traction applied on this crack surface.

Traction ID is an index into the array trcinf.
csinfo(7,2,offset) ID of the hydrostatic load applied on this crack

surface. Hydro ID is an index into the array
hydinf.

csinfo(8,2,offset) First node ID on the upper surface.
... ...
csinfo([9,10,11,15],2,offset) Last node ID on the upper surface.

Depending on the element type there can be
up to 8 nodes on an element surface.

Table 21.10: Crack Surface Information (csinfo)
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Table Element Description

fnclim(1) COD after which the uplift becomes non-zero
fnclim(2) COD limit for second uplift pressure function
fnclim(3) COD limit for third uplift pressure function

(Equal to CODw0 for quadratic relationship)
fnclim(4) COD limit for fourth uplift pressure function

(Equal to CODw0 for cubic relationship)

Table 21.11: Uplift function limits (fnclim)

21.7.1 Crack Front Attributes Table

21.7.2 Crack Front List

21.7.3 Crack Surface Attribute Table

21.7.4 Crack Surface Information

21.8 Uplift Information Arrays

Uplift pressure function coefficients are stored in a local array fncoef (Table 21.12), and are used to define the
pressure-cod relationship:

pw
pw0

= a+ b ∗ COD
CODw0

+ c ∗ ( COD
CODw0

)2 For quadratic relationship
pw
pw0

= a+ b ∗ COD
CODw0

+ c ∗ ( COD
CODw0

)2 + d ∗ ( COD
CODw0

)3 For quadratic relationship
(21.1)

Table Element Description

First pressure function

fncoef(1,1) Coefficient a for first pressure function
fncoef(2,1) Coefficient b for first pressure function
fncoef(3,1) Coefficient c for first pressure function
fncoef(4,1) Coefficient d for first pressure function

Second pressure function

fncoef(1,2) Coefficient a for second pressure function
fncoef(2,2) Coefficient b for second pressure function
fncoef(3,2) Coefficient c for second pressure function
fncoef(4,2) Coefficient d for second pressure function

Table 21.12: Uplift function coefficient (fncoef)
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Bažant, Z.P.: 1984, Size effect in blunt fracture: Concrete, rock, metal, J. of Engineering Mechanics, ASCE
110(4), 518–535.
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Carol, I. and Bažant, Z.P. and Prat, P.C.: 1992, Microplane type constitutive models for distributed damage and lo-
calized cracking in concrete structures, Proc. Fracture Mechanics of Concrete Structures, Elsevier, Breckenridge,
CO, pp. 299–304.
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