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EXECUTIVE SUMMARY

Cases of alkali-silica reaction (ASR) in nuclear generating stations have been reported in Japan
(Takatura et al. 2005) and in Canada at Gentilly 2 NPP (Tcherner and Aziz 2009). More recently, in the
United States, the NRC issued Information Notice (IN) 2011-20, “Concrete Degradation by Alkali Silica
Reaction”, on November 18, 2011, to provide the industry with information related to the ASR identified at
Seabrook. Considering that US commercial reactors in operation enter the age within which ASR
degradation can be visually detected and that numerous non nuclear industries (transportation, energy
production) have already experienced ASR in a large majority of the States, the susceptibility and
significance of ASR for nuclear concrete structures must be addressed in the perspective of license renewal
and LTO beyond 60 years.

Because of exposure, dimension and reinforcement ratio differences, the evaluation of the structural
significance of ASR on affected concrete in nuclear power plants can not be fully transposed from the
experience gained on transportation infrastructure or concrete dams. Temperature and moisture content
vary significantly in nuclear plant concrete components: For example, concrete located in the vicinity of
the reactor is affected by relatively high temperature, gamma and neutron irradiation and is or is not
subjected to drying depending on the presence of a liner or a membrane, while below grade retaining
structures are subjected to moderate temperature but may be susceptible to ground water ingress. In
addition, the absence of shear reinforcement (i.e., in the through thickness direction), in class I
safety-related nuclear structures, is permitted by ACI 318 (Building Code Requirements for Reinforced
Concrete). It results in an absence of confinement that favors out-of-plane expansion of ASR-affected
structures. The shear bearing capacity relies primarily on plain concrete. The residual shear capacity
(accidental design scenario) of potentially ASR-affected structures like the biological shield building, the
containment building and the fuel handling building will depend on two competitive mechanisms: (1) the
extent of the micro-cracking easing the propagation of shear fracture and (2) the relative in-plane
confinement-induced compression in the direction of the reinforcement potentially limiting the propagation
of such fracturing. While this question remains unresolved, further investigation is needed to determine the
potential impact of ASR on the structural resistance of nuclear structures. Also, accessibility to the
potential ASR-affected areas in safety-related concrete structures is by essence limited and ASR may
develop primarily in the bulk of the structures because of existing humidity and temperature profiles. The
need to develop reliable condition assessment and subsequent prognosis methodologies is imminent.

This report presents the first steps toward the numerical modeling of ASR affected structures in nuclear
power plant. It is divided in two separate parts.

The first part deals with coupled moisture transport and head transfer in concrete. A fully coupled
scheme is developed following the approach proposed by Bazant and Thonguthai (1978), Bažant and
Thonguthai (1979). The finite difference implementation is described in details, and three validation
problems are presented: In particular, the modeling of CEA concrete mockup MAQBETH (large scale
heated reinforced concrete experiment) is analyzed and modeled.
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The second part is devoted to the modeling of ASR-affected structural under iso-thermal and iso-hygric
conditions. The purpose of the analysis is to study the effects of lateral constraints on the development of
ASR swelling and damage, and subsequently, on the residual bearing capacity of the aged structures.
Linear and nonlinear models developed by Saouma and Perotti (2006) are tested. Two structures of interest
are tested: a reinforced concrete panel similar initially designed by the University of Tennessee at
Knoxville and large-scale bridge girder beam similar to those tested at the University of Texas at Austin.
Different boundary conditions are tested providing insightful results for understanding the behavior of
reinforced concrete structures in nuclear power plants.
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1 COUPLED THERMAL/MOISTURE DIFFUSION

Concrete is a multiphasic materials. Its porous network made of capillary pores is filled partly with an
ionic solution and partly with gas. The degree of saturation in the porosity varies over time. At early age,
water consumption results from the chemical reactions with anhydrous cement to form new hydrates;
Later, the materials interacts with its environment: moisture transport resulting from wetting, drying or
wetting-drying cycles causes the evolution of the internal moisture content. Moisture transport in concrete
being a rather slow process, the moisture content in massive concrete structures is rarely uniform within
such structures.

Concrete mechanical properties (strength, elasticity) and dimensional change (shrinkage, creep,
thermal expansion) are highly dependent on the internal humidity and the temperature of the materials. As
mentioned before, temperature and moisture transient spatial fields are generally not uniform in massive
structures. Moisture transport characteristic time is comparable to the operation duration or the designed
life: i.e. several decades. It takes several years to bring an ordinary concrete standard cylinder to moisture
equilibrium in a controlled environment at 20◦C and 50% relative humidity; A thick wall of about 3-4 feet
thick made of the same material would reach the equilibrium after more than a century. Temperature also
affects concrete properties and influence greatly the kinetics of moisture transport. Hence, any concrete
structural analysis should begin with a correct description of the temperature and moisture content in time
and in space before evaluating the stress-strain fields.

Inside the containment building, temperature is generally above 20◦C and concrete can be exposed to
long-term steady-state temperatures. Irradiation-induced energy deposition can also be a source of heat
generation in concrete. The present American Society of Mechanical Engineers Pressure Vessel and Piping
Code (ASME Code) limits the temperature of 65◦C with local exception up to about 90◦C. Other class-I
safety related structures may be subjected to lower temperatures. Thus, coupled moisture transport and heat
transfer cannot be ignored in nuclear structures. This chapter addresses the part of the project focusing on
the nonlinear coupled heat-moisture diffusion in concrete up to temperatures of about 200oC. It does not
explicitly addresses ASR expansion, it simply seeks to develop a numerical model that will predict both
temperature and moisture, key input parameters for a subsequent ASR expansion.

1.1 MATERIAL FORMULATION

This section addresses the material formulation which forms the underpinning of the developed finite
difference code presented in the next section. Heat transfer and moisture transport are addressed separately
before being coupled.
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1.1.1 HEAT DIFFUSION

1.1.1.1 Governing Differential Equation

The governing 2D-heat transfer differential equation is given by

∂

∂x

(
k(x, y)

∂T
∂x

)
+
∂

∂y

(
k(x, y)

∂T
∂y

)
+ Q = ρ(x, y)C(x, y)

∂T
∂t

(1.1)

where

k thermal conductivity of concrete in W/moC
T temperature in oC
t time in sec
Q rate of heat per unit volume generated within the body W/m3

ρC thermal capacity of concrete
ρ density in kg/m3

C specific heat of concrete in J/kgoC

Given that heat transfers occurs through

1. solar radiation;

2. heat convection caused by wind;

3. heat irradiation between concrete surface and environment;

Each one of them will be separately reviewed for concrete as boundary conditions. in the following,
mathematical relations given by codes or from the literature to calculate the thermal properties of concrete
are reported. These relation shall not replace data obtained from the experimental characterization of a
specific concrete when available.

1.1.1.2 Thermal Conductivity

ASCE The American Society of Civil Engineers has proposed the relationships for concrete thermal
conductivity at high-temperature for normal-strength concrete as follows ASCE (1992); For siliceous
aggregate concrete,

k =

{
−0.000625T + 1.5 for 20oC ≤ T ≤ 800oC
1.0 for T > 800oC

(1.2)

For carbonate aggregate concrete,

k =

{
1.355 for 20oC ≤ T ≤ 293oC
−0.001241T + 1.7162 for T > 293oC

(1.3)

Kodur et al. (2004) The relationship proposed byASCE (1992) has been modified for high-strength
concrete by Kodur et al. (2004). For siliceous aggregate concrete,

k = 0.85(2 − 0.0011T ) for 20oC ≤ T ≤ 1000oC (1.4)

and for carbonate aggregate concrete,

k =

{
0.85(2 − 0.0013T ) for 20oC ≤ T ≤ 300oC
0.85(2.21 − 0.002T ) for T > 300oC

(1.5)
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Eurocode (2004) has developed relationships for both normal- and high-strength concretes, and for all
types of aggregates Eurocode (2004) as follows;

Upper limit :

k = 2 − 0.2451
( T
100

)
+ 0.0107

( T
100

)2
for 20oC ≤ T ≤ 1200oC (1.6)

Lower limit :

k = 1.36 − 0.136
( T
100

)
+ 0.0057

( T
100

)2
for 20oC ≤ T ≤ 1200oC (1.7)

Kim (2003) The thermal conductivity of concrete k adopted is the one of Kim et al. (2003) (in W/moC)

k = λHλS/AλTλAGkre f (1.8)

λH = 0.9 [1.62 − 1.54 (w/c)] + 0.2H (1.9)

λS/A = 0.86 + 0.36 (S/A) (1.10)

λT = 1.05 − 0.0025T (1.11)

λAG = 0.293 + 1.01AG (1.12)

and

H Relative humidity
AG Aggregate volume aggregate
S/A Fine aggregate fraction
w/c Water to cement ratio
T temperature

We can summarize the thermal conductivity of concrete used in Eq.1.51 in Fig. 1.1

1.1.1.3 Thermal Capacity

Thermal capacity of the concrete is the product of specific heat( C) and density of concrete (ρ).

ASCE (1992) The American Society of Civil Engineers has proposed the relationships for concrete
thermal capacity at high-temperature for normal-strength concrete as follows ASCE (1992); For
siliceous aggregate concrete, (ρC in MJ

m3oC )

ρC =



0.005T + 1.7 for 20oC ≤ T ≤ 200oC
2.7 for 200oC ≤ T ≤ 400oC
0.013T − 2.5 for 400oC ≤ T ≤ 500oC
10.5 − 0.013T for 500oC ≤ T ≤ 600oC
2.7 for T > 600oC

(1.13)
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2

2 0.2451 0.0107
100 100
T T       

   
 

Lower limit o o20 1200C T C   

2

1.36 0.136 0.0057
100 100
T T       
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All types:

ComputeThemalConductivity.m

H s a T ag refk k   
 0.86 0.36s a S A  

 0.8 1.62 1.54 0.2H HW C     

1.05 0.0025T T  

0.293 1.01ag AG  

o o20 60C T C 

Constant

Matlab functions are in red.

Fig. 1.1. Thermal Conductivity of Concrete

and for carbonate aggregate concrete, (ρC in MJ
m3oC )

ρC =



2.566 for 20oC ≤ T ≤ 400oC
0.1765T − 68.034 for 400oC ≤ T ≤ 410oC
25.00671 − 0.05043T for 410oC ≤ T ≤ 445oC
2.556 for 445oC ≤ T ≤ 500oC
0.01603T − 5.44881 for 500oC ≤ T ≤ 635oC
0.16635T − 100.90225 for 635oC ≤ T ≤ 715oC
176.07343 − 0.22103T for 715oC ≤ T ≤ 785oC
2.566 for T > 785oC

(1.14)

Kodur et al. (2004) The relationship proposed byASCE (1992) has been modified for high-strength
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concrete by Kodur et al. (2004). For siliceous aggregate concrete, (ρC in MJ
m3oC )

ρC =



0.005T + 1.7 for 20oC ≤ T ≤ 200oC
2.7 for 200oC ≤ T ≤ 400oC
0.013T − 2.5 for 400oC ≤ T ≤ 500oC
10.5 − 0.013T for 500oC ≤ T ≤ 600oC
2.7 for 600oC ≤ T ≤ 635oC

(1.15)

and for carbonate aggregate concrete, (ρC in MJ
m3oC )

ρC =



2.45 for 20oC ≤ T ≤ 400oC
0.026T − 12.85 for 400oC ≤ T ≤ 475oC
0.0143T − 6.295 for 475oC ≤ T ≤ 650oC
0.1894T − 120.11 for 650oC ≤ T ≤ 735oC
−0.263T + 212.4 for 735oC ≤ T ≤ 800oC
2.0 for 800oC ≤ T ≤ 1000oC

(1.16)

Eurocode Eurocode has developed relationships for both normal- and high-strength concretes, and for all
types of aggregates Eurocode (2004)as follows; The equation for density of concrete (ρ( kg

m3 ) ) is
given by

ρ =


ρre f for 20oC ≤ T ≤ 115oC
ρre f

(
1 − 0.02(T−115)

85

)
for 115oC ≤ T ≤ 200oC

ρre f
(
0.98 − 0.03(T−200)

200

)
for 200oC ≤ T ≤ 400oC

ρre f
(
0.95 − 0.07(T−400)

800

)
for 400oC ≤ T ≤ 1200oC

(1.17)

where ρre f is reference concrete density at 20oC and the equation for specific heat of concrete
(C

(
J

kgoC

)
) is given by

C =


900 for 20oC ≤ T ≤ 100oC
900 + (T − 100) for 100oC ≤ T ≤ 200oC
1000 +

(
T−200

2

)
for 200oC ≤ T ≤ 400oC

1100 for 400oC ≤ T ≤ 1200oC

(1.18)

We can summarize the thermal capacity of concrete used in Eq.1.51 as in Fig. 1.2. Finally, we can
summarize the heat transfer analysis used in Eq.1.51 as in Fig. 1.3

1.1.1.4 Boundary Conditions

For the rate of heat transferred by the surrounding air to or from the concrete surface is the sum of the
energy rates due to convection, solar radiation and surface irradiation as the follows:

Conduction: is governed by
qc = qa, at the boundary (1.19)

qc is the rate of heat transfer by conduction which is defined by

qc = −k
(
∂T
∂x

nx +
∂T
∂y

ny

)
(1.20)

where nx and ny are the direction cosine of the unit outward normal to the boundary surface.
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Fig. 1.2. Thermal Capacity of Concrete
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Surface irradiationConvection

HeatTransferAnalysis.m
Heat Transfer Analysis
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Rate of heat transferred by 
conduction at the boundary
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+
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,   0.001a af afC C C C 

 oT C   .oC J kg C  

o o20 100C T C   900  
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ComputeCw.m

ApplyHTBConBoundaryFirstStepADI.m
ApplyHTBConBoundaryFinalStepADI.m

Matlab functions are in red.

TwoDHeatTransferAnalysisFirstStepADI.m
TwoDHeatTransferAnalysisFinalStepADI.m

Fig. 1.3. Heat Transfer Analysis in Concrete

Convection Convection is the heat transfer due to the moving air contacts at the concrete surface at
difference temperature. It is expressed by Newton’s law of cooling as (Kreider and Rabl 1994):

qconv = hc(Ts − Ta) (1.21)

where

hc convection coefficient W/m2oC
Ts temperature of the concrete surface oC
Ta temperature of the surrounding air oC

For the convection over the planes, the convection coefficient is a function of the length of the
surface in the direction of the flow L and the wind speed v. It is given by (Kreider and Rabl 1994):
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1. if vL < 15 f t2/s or 1.4 m2/s

hc = 0.35
( v

L

)1/2
[US unit] (1.22)

hc = 2.0
( v

L

)1/2
[SI unit] (1.23)

2. if vL > 15 f t2/s or 1.4 m2/s

hc = 0.54
(
v4

L

)1/5

[US unit] (1.24)

hc = 6.2
(
v4

L

)1/5

[SI unit] (1.25)

Thermal Irradiation : between the concrete surface and the surrounding air can be given by
Stefan-Boltzman law as

qir = Csε(T 4
s − T 4

a ) (1.26)

where

Cs Stefan-Boltzman constant = 5.677 × 10−8W/m2K4

ε emissivity coefficient of concrete
Ts concrete surface temperature in Kelvin
Ta surrounding air temperature in Kelvin

Fig. 1.4 highlights the heat transfer procedure in the developed Matlab based code.

1.1.2 MOISTURE DIFFUSION

Many properties of concrete depend very strongly on the moisture content in the concrete. The study
for moisture distribution in the concrete is very important, especially for the time-dependent analysis of the
concrete, such as shrinkage, creep, fire resistance, and durability. To study the moisture diffusion, first, the
moisture diffusion equation will be formulated, and then its parameters will be described separately. This
section is adapted from Xi, Bažant and Jennings (1994) and Ababneh et al. (2002). Moisture flux may be
expressed through two alternative formulations:

Gradient of water content:

J = −Dw∇(We) (1.27)
∂W
∂t

=
∂(We + Wn)

∂t
= −div(J) = div(Dw∇We) (1.28)

Gradient of pore relative humidity:

J = −Dh∇(H) (1.29)
∂W
∂t

=
∂W
∂H

∂H
∂t

= −div(J) = div(Dh∇H) (1.30)
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Fig. 1.4. Heat Transfer Analysis in Concrete

where
H = Pore relative humidity
W = Total water content (for unit volume of material)
We = Evaporable water
Wn = Non-evaporable or chemically bound water
Dw = Moisture diffusivity
Dh = Permeability or humidity diffusivity

Two material parameters must first be identified: a) Moisture capacity ∂W
∂H and Diffusivity Dh. Both

parameters are expressed in terms of pore relative humidity H, thus Eq. 1.54 is nonlinear.

1.1.2.1 Moisture Capacity

The moisture capacity, ∂W
∂H is defined as the derivative of the total water content W with respect to the

pore relative humidity H. For concrete, it can be determined based on the multiphase and multiscale model
(Xi et al. 2000) where the concrete is considered to be a two phase material, aggregate representing one
phase and cement paste representing another. It is given by (Ababneh et al. 2002)

∂W
∂H

= fagg

(
∂W
∂H

)
agg

+ fcp

(
∂W
∂H

)
cp

(1.31)

where
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fagg = weight percentages of the aggregate
fcp = weight percentages of the cement paste(
∂W
∂H

)
agg

= moisture capacity of aggregate(
∂W
∂H

)
cp

= moisture capacity of cement paste

The moisture capacity ∂W
∂H is a function of the total water content W and the pore relative humidity H,

which will be defined later in section 1.1.2.1.2. The total water content at the constant temperature is called
adsorption isotherm.

1.1.2.1.1 Adsorption Isotherm

In order to determine the adsorption isotherm we first need to evaluate

W =
CkVmH

(1 − kH)[1 + (C − 1)kH]
(1.32)

where
C = exp

(
C0
T

)
, C0 = 855

H =
p
ps

where ps is the pressure at saturation
T = Absolute temperature
W = Quantity of vapour absorbed at pressure p

(grams of water/gram of cement)
Vm = Monolayer capacity: mass of adsorbate required to cover

the adsorbant with a single molecular layer
k = Constant

which is defined in terms of Vm and k as follows:

Monolayer Capacity Vm has to be separately determined for cement past and aggregates.

Cement Paste is determined from

Vm = Vt(t)Vwc(w/c)Vct(ct)VT (T ) (1.33)

Vt(t) =

{
0.068 − 0.22

t for t > 5 days
Vt(5) if t ≤ 5 days

(1.34)

Vwc(w/c) =

{
0.85 + 0.45 w

c for 0.3 < w/c < 0.7
Vwc(0.3) if w/c ≤ 0.3

(1.35)

and Vct(ct) is given by Table 1.1, VT (T ) = 1 at room temperature.

Table 1.1. Vct and Nct for different type of concrete

Concrete Type
1 2 3 4

Vct 0.9 1.0 0.85 0.6
Nct 1.1 1.0 1.15 1.5

12



Aggregates: (Xi 1995) is determined from

Vm = 0.00647Vag (1.36)

The monolayer capacity of aggregate depends on aggregates used. It can be determined based
on the the pore structure of various aggregates as shown in Table 1.2

Table 1.2. Vag of various pore structure of aggregate

Pore structure of aggregate Vag

dense 0.05-0.1
porous 0.1-0.04

Parameter k can be determined from the number of adsorped layers at the saturated state n. Again, we
differentiate between cement paste and aggregates

Cement Paste from

n = Nt(t)Nwc(w/c)Nct(ct)NT (T ) (1.37)

Nt(t) =

{
2.5 + 15

te
for t > 5 days

5.5 if t ≤ 5 days
(1.38)

Nwc(w/c) =


0.33 + 2.2 w

c for 0.3 < w/c < 0.7
Nwc(0.3) if w/c ≤ 0.3
Nwc(0.7) if w/c ≥ 0.7

(1.39)

Nct(ct) is given by Table 1.1, and NT (T ) = 1 at room temperature.

Aggregate (Xi 1995) from
n = 4.063nag (1.40)

This parameter depends on aggregates used and can be determined based on the the pore
structure of various aggregates as shown in Table 1.3

Table 1.3. nag of various pore structure of aggregate

Pore structure of aggregate nag

dense 1.0-1.5
porous 1.7-2.0

Finally, k is determined from

k =

(
1 − 1

n

)
C − 1

C − 1
(1.41)
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1.1.2.1.2 Moisture Capacity

(Xi, Bažant, Molina and Jennings 1994) is the derivative of the moisture content W in Eq. 1.32 with
respect to the pore relative humidity. As a result, we obtain

∂W
∂H

=
CkVm + Wk[1 + (C − 1)kH] −Wk(1 − kH)(C − 1)

(1 − kH)[1 + (C − 1)kH]
(1.42)

From Fig. 1.5 we identify two points, first the moisture capacity drops, then it remains constant and finally

dW
/d

H

Relative Humudity

Relative Humudity

W
at

er
 C

on
te

nt
 W

Fig. 1.5. Effect of the water to cement ratio on the moisture capacity, (Xi, Bažant, Molina and
Jennings 1994)

it increases. The physical meaning of Fig. 1.5 can be explained as the follows.

1. At first point the adsorbent reaches its monolayer capacity, above which the moisture capacity does
not decrease steeply with increasing H.

2. At the second point, it corresponds to initial point of capillary condensation where moisture capacity
increases.

Cement Paste,
(
∂W
∂H

)
cp

To determine the moisture capacity of cement paste used in eq. 1.31, n, k, Vm, and
W of cement paste in Eq.1.37, 1.41, 1.33 and 1.32, respectively are first determined and then
substitute into Eq. 1.42.

Aggregate,
(
∂W
∂H

)
agg

To determine the moisture capacity of aggregate used in eq. 1.31, n, k, Vm, and W of
aggregate in Eq.1.40, 1.41, 1.36 and 1.32, respectively are first determined and then substitute into
Eq. 1.42.
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1.1.2.2 Moisture Diffusivity

The moisture diffusivity of concrete used in the analysis of moisture diffusion in concrete can be
selected from the following proposed models.

Ababneh (2002) The humidity diffusion coefficient of concrete depends on both the humidity diffusion
coefficients of cement paste and aggregate. It can be evaluated based on composite theory
(Christensen 1979) as follows (Ababneh et al. 2002):

Dh = DHcp

1 +
gi

1−gi
3 + 1

DHagg
DHcp

−1

 (1.43)

where
Dh = humidity diffusion coefficient of concrete
DHcp = humidity diffusion coefficient of cement paste
DHagg = humidity diffusion coefficient of aggregate
gi = the volume fraction of aggregate

Humidity Diffusion Coefficient of Cement Paste DHcp The humidity diffusion coefficient of
cement paste is strongly influenced by the pore structure of the concrete. There are three
distinct transport mechanisms which may occur:

Molecular diffusion (ordinary diffusion). Molecular diffusion process can be shown in Fig.
1.6: From Fig. 1.6, we can explain the behavior of this mechanism as follows.

Adsorption

Low humidity

Condensation Evaporation

High humidity

Fig. 1.6. Molecular Diffusion in terms of Humidity

1. At low relative humidity, field force of pore wall captures water molecules to form the
first layer. Other molecules continue to move, and as the humidity increases, more
layers of water molecules cover the pore walls. Thus space available for vapor inside
the macropore decreases. Force field in the wall weakens and then the mean free path
is reduced.

2. At high humidity, the adsorbed water will form a meniscus at a neck, and the neck is
then completely filled. Then water molecules condense at one end of the neck, while
at the other end they evaporate. This condensation/evaporation strongly accelerate the
diffusion process.

This diffusion process will dominate when the mean free path of the water vapor (800A at
25oC) is small compared to diameter of macropore (usually 50 nm to 10 µm). Pores of this
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size are few in concrete, hence the molecular diffusion or ordinary diffusion occurs only
occasionally in concrete. It is not the dominant mechanism.

Knudsen diffusion Mesopores (25 to 500A) and Micropores (< 25A) comprise the largest
portion of concrete pores. In this case collision between molecules and against pore walls
is the main diffusion mechanism. There is some similarity with molecular diffusion, but in
Knudsen diffusion, the diffusion resistance is related to pore size.

Surface diffusion In parallel pore walls, the water molecule never escape the force field of the
pore surface. The transport involves a thermally activated process with jumps between the
adsorption sites. In general, it is insignificant unless most of the water is adsorbed water.
Hence, it is significant in concrete only at very low humidity.

����������������������������

����������������������������

Fig. 1.7. Surface Diffusion

The developed model will not treat each mechanism separately, but it will predict the general
combined trend. At low humidity, pore volume, surface force field, and mean free path, all
decrease. These effects may offset each others and the effective diffusivity for all mechanisms
becomes constant. At high humidity capilary condensation occurs, and thus diffusion resistance
decreases. An empirical model, which captures those trends is proposed:

DHcp = αh + βh[1 − 2−10γh(H−1)
] (1.44)

αh = 1.05 − 3.8
w
c

+ 3.56
(w

c

)2
(1.45)

βh = −14.4 + 50.4
w
c
− 41.8

(w
c

)2
(1.46)

γh = 31.3 − 136
w
c

+ 162
(w

c

)2
(1.47)

where αh, βh and γh are coefficients calibrated from test data. All of them are strongly affected
by the water to cement ratio w/c. Curing time is negligible.

Humidity Diffusion Coefficient of Aggregates DHagg Since the pores in the aggregates are
discontinuous, the value of the humidity diffusion coefficient of aggregate in eq.1.43 is
negligible compared with the one of cement paste. Therefore, in the computation it can be
neglected (Ababneh et al. 2002).

Mensi The moisture diffusivity of concrete proposed by Mensi et al. (1988) is given by

D(C) = AeBC (1.48)
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where A and B are constants. C is the free water content in l/m3 which is a function of relative
humidity in concrete (H) as given by

C = C0.H (1.49)

where C0 is constant.

Bazant The moisture diffusivity of concrete proposed by Bazant and Thonguthai (1978) is given by

Dh(H) = D1

αD +
1 − αD

1 +
(

1−H
1−0.75

)n

 (1.50)

where D1 = 3.10x10−10 m2/s; αD ∈ [0.025 : 0.1] and n = 6.

1.1.2.3 Final Algorithm for Moisture Diffusion into Concrete

The algorithm for the moisture diffusion into the concrete is summarized in Fig. 1.8.

1.1.3 COUPLED HEAT TRANSFER AND MOISTURE DIFFUSION ANALYSIS

The question of moisture transport - heat transfer coupling was addressed by the pioneer work of
Luikov (1975). Several available published models were derived from his work. In particular, Bažant et al.
(1981) showed that the governing differential equation for heat transfer in concrete could be written as
follows:

ρC
∂T
∂t

= −divq + CwJ.∇T + Ca
∂W
∂H

∂H
∂t

(1.51)

where

ρ Density in kg/m3

T Temperature in oC
W water (moisture) content (for unit volume of material)
H pore relative humidity
C Specific heat of concrete in J/kgoC
Ca heat absorption of free water
Cw mass density and isobaric (constant pressure) heat capacity of liquid water
∂W
∂H Moisture capacity
J Moisture flux, −Dh∇H
q Heat flux, k∇T

The mass density and isobaric (constant pressure) heat capacity of liquid water Cw (106J/kg) is given by

Cw = 350, 000
(
374.15 − TK

TC

) 1
3

(1.52)

where TK is temperature in K and TC is temperature in oC. It has been mentioned in Bažant et al. (1981)
that the heat absorption of free water Ca can be neglected because it contributes much less than C.
However, in this model we assume it to be as follows;

Ca = Ca f C (1.53)

17



( )
1

conc
W W

H

H

∂
=

∂ ∂ ∂

agg cp
conc agg cpH H

W
f f

H

W W∂ ∂ ∂     = +     ∂ ∂ ∂     

( ) ( )( )
( ) ( )

   1 1   1  1  

1  1 1  
mC k V W k C k W k kH CW

k C k

H

H H H

 + + − − − −∂  =
∂  − + − 

( ) ( )
   

1  1 1  
m H

H

C k V
W

k C Hk
=

 − + − 

( )1 1 1

1

n C
k

C

− −
=

−

0
0exp , 855

T

C
C C

 = = 
 

Aggregate

Cement Paste

4.063 agn n=

Pore structure of aggregate agn

dense

porous

1.0-1.5

1.7-2.0

( ) ( ) ( ) ( )t e w c ct Tn N t N w c N ct N T=

( ) 1TN T =

0.00647m agV V= Aggregate

Cement Paste( ) ( ) ( ) ( )m t e w c ct TV V t V w c V ct V T=

( )( )
( )( )

1) Xi's model: 1
1

1 3
1

i
h Hcp

i

agg Hcp

g
D D

g
D D

 
 
 = + 

− + 
−  

( )1101 2
h H

Hcp h hD
γ

α β
−− = + −

 

( ) ( )2
1.05 3.8 3.56h w c w cα = − +

( ) ( )2
14.4 50.4 41.8h w c w cβ = − + −

( ) ( )231.3 136 162h w c w cγ = − +

w c ( )w cV w c

0.3w c <

0.3 0.7w c≤ ≤

0.7w c >

0.985

1.165

( )0.85 0.45w c+

Pore structure of aggregate agV

dense

porous

0.05-0.1

0.1-0.4

w c ( )w cN w c

0.3w c <

0.3 0.7w c≤ ≤

0.7w c >

0.9

1.87

( )0.33 2.2 w c+

( )ctN ct

Type 1 2 3 4

1.1 1 1.15 1.5

( )t eN t( )dayset

5et <

5et ≥

5.5

2.5 15 et+

( )div grad hD
t

H H
H

W

∂ ∂
 =  ∂ ∂

i

MoistureDiffusionAnalysis.m

( )t eV t( )dayset

5et <

5et ≥

0.024

0.068 0.22 et+

( ) 1TV T =

( )ctV ct

Type 1 2 3 4

0.9 1 0.85 0.6

ComputeMoistureCapacityOfConcrete.m

ComputeMoistureDiffusivityOfCementPaste.m

ComputeMoistureDiffusivityAtMidGridPoint.m

agg

W

H

∂ 
 ∂ 

ComputeMoistureCapacityOfAggregate.m
ComputeMoistureCapacityOfCementPaste.m

cp

W

H

∂ 
 ∂ 

Matlab functions are in red.

Apply Relative Humidity B.C.
ApplyRHTBConBoundaryFirstStepADI.m

ApplyRHTBConBoundaryFinalStepADI.m

( ) ( )2) Mensi's model: BC
hD H D C Ae= = 0C CH= ⋅

( ) 1

1
3) Bazant's model: 

1
1

1 0.75

D
h D n

H
H

D D
α

α

 
 

− = +
 − +   −  

[ ]10 2
1 3.10 10  m s;  0.025 : 0.1 ;   6DD nα−= × ∈ =

Fig. 1.8. Algorithm for moisture diffusion analysis
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where Ca f is a constant = 0.001 We note that the second term in Eq. 1.51 accounts for heat convection due
to the movement of water which is significant only for very rapid heating.

The moisture balance equation given by Xi, Bažant and Jennings (1994) and Ababneh et al. (2002) is
modified by accounting for the moisture transfer due to heat gradient (Tariku et al. 2010) and the addition
of the relative humidity due to evaporable water released into the pore by dehydration of the cement paste
Bažant et al. (1981):

∂H
∂t

=
∂H
∂W

[divJ + div (Dht∇T)] +
∂H
∂W

∂Wd

∂t
(1.54)

where

W water (moisture) content (for unit volume of material)
H (Moisture) Pore relative humidity =

Pv
Pvs

Pv Vapour pressure
Pvs Saturation vapour pressure = Patm.e(4871.3 T−100

373.15T ) Benoit et al. (2012)(T is Temperature in K)
Patm Standard atmospheric pressure = 101,325 Pa
Wd Total mass of free evaporable water released into the pore

by dehydration of the cement paste
T Temperature in oC
Dh Permeability or humidity diffusivity
Dht Humidity diffusivity under the influence of a temperature gradient
αD,ht thermal gradient coefficient
J Moisture flux, −Dh∇H

Dh =

{
Dh,0 f1(T ) for T ≤ 95oC
Dh,0 f1(95oC) f2(T ) for T > 95oC

(1.55)

Dh,0 has been given in Sect. 1.1.2.2.
It has been mentioned in Bažant et al. (1981) that the thermal gradient contribution term div (Dht∇T) to

eq. 1.54 is very small. Approximately, Dht ≈ 0. However in this model, it is assumed to be

Dht = αD,htDh (1.56)

where αD,ht is a constant.

f1(T ) = e
Q
R

(
1

Tre f
− 1

T

)
for T ≤ 95oC (1.57)

in which T is absolute temperature (K), Q is activation energy for water migration along the adsorption
layers in the necks, and R is gas constant.

f2(T ) = e
T−95

0.881+0.214(T−95) for T > 95oC (1.58)

and the amount of dehydrate water Wd per m3 of concrete is given by

Wd = W105
H fd(T ) (1.59)

in which W105
H is hydrate water content at 105oC. Dehydration of the hydrate water begins at about 120oC.

fd(T ) is a function of the weight loss of the concrete due to heat. The function of WH is given by

WH(te) = 0.21c
(

te
τe + te

)
, τe = 23 days (1.60)
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where c is mass of (anhydrous) cement per m3 of concrete and te is the equivalent hydration period which is
given by

te =

∫
βHβT dt (1.61)

βH(H) =
1

1 + (3.5 − 3.5H)4 (1.62)

βT (T ) = e
Qh
R

(
1

Tre f
− 1

T

)
(1.63)

where

t actual time
Qh activation energy of hydrationy
Qh
R = 2700oK

We can summarize the moisture diffusivity of concrete used in Eq.1.54 by using moisture diffusivity of
concrete Dh,0 given in Sect. 1.1.2.2 with the effect of temperature given in Eq.1.55 as in Fig. 1.9 The
interaction between the two diffusion models is illustrated by Fig. 1.10.
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Fig. 1.9. Moisture Diffusivity of Concrete
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1.2 FINITE DIFFERENCE IMPLEMENTATION

As shown in the previous chapter, we can summarize all of the governing equations in Table 1.4 and
their diffusion coefficients and boundary conditions in Table 1.5.

Table 1.4. Governing Differential Equations

PrimaryProcess Differential Equations
Variable

Heat Transfer ∂T
∂t = 1

ρC div(k.∇T) + Q T

Moisture Diffusion ∂H
∂t = ∂H

∂W div(Dh.∇H) H

NOTE: T = Temperature inside the concrete (Kelvin), H = Pore Relative Humidity inside the concrete (%),
t = Time, n = Normal direction to the surface, hc = Convection coefficient, Cs = Stefan Boltzman constant,
W = water content in the concrete.

Table 1.5. Diffusion Coefficients and Boundary Conditions in Each Diffusion Process

Process Diffusion Coeff. Binding Capacity Boundary Conditions

1) T = Ta

Heat Transfer k
ρC - 2) ∂T

∂n = 0

3) -k∂T
∂n = hc(T − Ta)

+Csε(T 4 − T 4
a )

1) H = Henv

Moisture Diffusion Dh(H,w/c) ∂H
∂W (T,H,w/c,ct,to) 2)∂H

∂n = 0

We note that all the governing equations are parabolic partial differential equations. To obtain solution
of these problems, a finite difference method is used.

The finite difference method (Rosenburg 1969) is used when the problem cannot be solved analytically
or the analytical solution becomes so involved that numerical computation is very difficult. In this
approach, the problem domain is discretized so that the values of the unknown dependent variable are
considered only at a finite number of nodal points in the region. If the region is discretized into m nodes, m
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algebraic equations are developed by discretizing the governing equation and the boundary conditions for
the problem. As a result, the problem of solving the partial differential equation over the problem domain is
transformed to the problem of setting a group of algebraic equations and solving for the solutions using a
suitable method.

To discretize the derivative of the partial differential equation, there are two approaches:

1. Taylor series expansion

2. Control volume approach

The details of the finite difference discretization (Rosenburg 1969) of each equation in 2D problems,
follows.

1.2.1 DISCRETIZATION

1.2.1.1 Linear Parabolic Differential Equation

The governing partial differential equation for heat transfer is given by

∂T
∂t

=
1
ρC

div(k.∇T) + Q (1.64)

and we examine its discretization in 2D as follows.
For 2D problem, the differential equation is rewritten as

∂T
∂t

=
1

ρ(x, y) ·C(x, y)

[
∂

∂x

(
k(x, y) ·

∂T
∂x

)
+
∂

∂y

(
k(x, y) ·

∂T
∂y

)]
+ Q (1.65)

again, subject to appropriate boundary and initial conditions. We introduce the notation

T (x, y, t) = T (i∆x, j∆y, n∆t) (1.66)

To solve the 2D problem, an alternating direction implicit (ADI) method is used, (Rosenburg 1969).
Given the known primary variables at time n, we seek to determine their values at time n + 1. This is

accomplished in two steps. First, the computations from time level n to n + 1
2 level will be performed

followed by the computations from n + 1
2 to n + 1. For the advancement from n to n + 1

2 , an implicit method
is used in one direction, say x and an explicit method is used in the other direction, i.e., y. As a result, the
finite difference equations for any horizontal row on which the value of j is constant forma tridiagonal
matrix, Fig. 1.11 and their solution can be obtained by using Matlab.

Next, to advance from n + 1
2 to n + 1 we reverse the direction of the implicit and explicit methods. As a

result, the finite difference equations for any vertical column on which the value of i is constant form a
tridiagonal matrix and their solution again can be obtained by Matlab. The computation process is repeated
by alternately changing the directions of the implicit and explicit methods. The ADI method can be
summarized in the Fig. 1.12

1.2.1.2 Nonlinear Parabolic Partial Differential Equation

From Table 1.4, the moisture diffusion problem is governed by nonlinear parabolic partial differential
equations. Their governing equations can be expressed as:

∂u
∂t

= C(u)div(D(u).∇u) (1.67)
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Fig. 1.11. Tridiagonal Matrix

where u is dependent variables, D(u) is diffusion coefficient and C(u) is an additional coefficient involved
in the diffusion process.

The terms of u, C(u), and D(u) for the moisture diffusion process can be summarized in Table 1.6.
Again, we shall examine 2D discretization of this equation.

Table 1.6. Variable and Coefficients of Diffusion Process

Process Variable u C(u) D(u)

Moisture Diffusion H ∂H
∂W Dh

In 2D problem, the ADI method will again be used to discretize the governing equation:

∂u
∂t

= C(u)
[
∂

∂x

(
D(u)

∂u
∂x

)
+
∂

∂y

(
D(u)

∂u
∂y

)]
(1.68)

The discretization procedure is ilustrated by Fig.1.13
The solution of nonlinear parabolic partial differential equation hinges on the determination of old

value (Rosenburg 1969). The concept of this method is as follows. Suppose that the computations are to
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Fig. 1.12. ADI Method

advance from the n time level to the n + 1 time level. For 2D problem, and using the ADI method, the
nonlinear coefficients, C(u), D(u), and E(u) have to be evaluated at time t = n + 1

2 .
The simplest method is to obtain the nonlinear coefficients by evaluating them at old time value(t = n)

and then use them for t = n + 1
2 . For example, we use C(un) for C(un+ 1

2
) and D(un) for D(un+ 1

2
). If the

nonlinear coefficients do not change rapidly with u, then the result of the finite difference equations (un+1)
should be close to the correct values.

The solution can be improved by evaluating the nonlinear coefficients at half time(t = n + 1
2 ) from

C(un+ 1
2
) = C(

un + um=1
n+1

2
) (1.69)

D(un+ 1
2
) = D(

un + um=1
n+1

2
) (1.70)

(1.71)

where m is an iteration index and if m = 1, then u1
i, j,n+1 is obtained from C(un+ 1

2
) and D(un+ 1

2
). The

computations are carried on until the solution converges (um+1
i, j,n+1 = um

i, j,n+1), and then the iteration process
stops and the computation moves to the next time step (t = n + 2).
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ADI Method for 2D Model Nonlinear Parabolic 

Equation (Moisture Diffusion Analysis)
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Fig. 1.13. Discretization of 2D Nonlinear Parabolic Partial Differential Equation using ADI
Method and Iteration Using Old Value Method

The procedure of this iteration method for 2D nonlinear parabolic partial differential equation is
summarized by Fig. 1.13.

1.2.2 BOUNDARY CONDITIONS

From Table 1.4, there are 3 types of boundary conditions which applied to the diffusion problems.
They are:

No flux boundary condition: In this case, the format of the boundary condition equation is

du
dx

= 0 (1.72)

where u is T and H in the heat transfer and moisture diffusion, respectively.

Concentration boundary condition: In this case, the format of the boundary condition equation is

u = uenv (1.73)
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where u is T and H in the heat transfer and moisture diffusion, respectively and uenv represents the
environmental concentration of the variable u.

Nonlinear boundary condition: This type of boundary condition will occur only in the heat transfer
analysis. The format of this boundary condition is

−k
dT
dx

= hc(T − Ta) + Csε(T 4 − T 4
a ). (1.74)

In the next sections, we discuss in details the application of each one of those boundary conditions to 2D
problems.

1.2.2.1 No flux Boundary Condition

At any row j, if we apply Eq.1.72 at one end (node i = 1), then to determine the value of the first
derivative in Eq.1.72 at i = 1, we first introduce a fictitious point, x0 outside the region then the
second-order-correct dialog (Rosenburg 1969) for du

dx |1 is given by

u2, j − u0, j

2∆x
= 0 (1.75)

or
u0, j = −u2, j (1.76)

We then substitute the value of u0, j = −u2, j into the right hand side of the equation in Fig. 1.12 when i = 1.
The final results in Fig. 1.12 still be a tridiagonal matrix and can be solved by using Matlab.

1.2.2.2 Concentration Boundary Condition

At any row j, if we apply this boundary condition to Eq.1.73 at one end (for example, at node i = 1),
then the boundary condition equation will be given by

u1, j = uenv (1.77)

We then substitute the value of u1, j = uenv into the right hand side of the equation in Fig. 1.12 when i = 2.
The final results in Fig. 1.12 will still be a tridiagonal matrix and can be solved by using Matlab.

1.2.2.3 Nonlinear Boundary Condition

Again, considering Eq.1.74, and assuming that the nonlinear boundary condition is applied at one end,
say at i = m, then it will cause the last equation when i = m to assume the following form:

amTm−1,n+1 + bmTm,n+1 = dm = h + gT 4
i,n+1 (1.78)

where am, bm, h, and g are known constants.
This equation becomes system of nonlinear algebraic equation. Then fsolve, the function in Matlab,

is used to solve for the solution of this problem.
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1.2.3 MATERIAL MODELS

To apply the finite difference method to the diffusion problems in a heterogeneous material as concrete,
we have two options:

Homogeneous material: In this model, the material’s properties at every finite difference grid point are
the same and equal to properties of an equivalent homogeneous concrete.

Heterogeneous material: In this model, we discretize the heterogeneity of the concrete by assigning
different properties to cement matrix and concrete aggregates.

Those two material models will be considered in the discretizations of both linear and nonlinear parabolic
partial differential equations.

1.2.3.1 Linear parabolic partial differential equation

As previously mentioned, the diffusivity and other material’s properties depend on the location of the
grid point in the finite difference analysis. Because heterogeneous models are considered only in 2D
problems, the 2D heterogeneous material model will be considered first. The 2D homogeneous models will
be later shown to be a special case of the heterogeneous one, the former model.

Heterogeneous material model To account for the material model, first we consider the 2D finite
difference discretization of Eq. 1.65 using control volume and ADI method as follows.

Going from time t = n to t = n + 1
2 , we write:

∂

∂x

[
k(x, y)

∂T
∂x

]
i, j,n+ 1

2

+
∂

∂y

[
k(x, y)

∂T
∂y

]
i, j,n

=
1

α(x, y)
∂T
∂t
|i, j,n+ 1

2
(1.79)

Assuming that Q = 0 and α(x, y) = ρ(x, y) ·C(x, y), then we rewrite the previous equation as

∂

∂x

[
ki+ 1

2 , j
∂T
∂x
|i+ 1

2 , j
− ki− 1

2 , j
∂T
∂x
|i− 1

2 , j

]
n+ 1

2

+

∂

∂y

[
ki, j+ 1

2

∂T
∂y
|i, j+ 1

2
− ki, j− 1

2

∂T
∂x
|i, j− 1

2

]
n

=
1

αi, j,n+ 1
2

∂T
∂t
|i, j,n+ 1

2
(1.80)

The materials properties in the above finite difference equations are ki+ 1
2 , j

, ki− 1
2 , j

, ki, j+ 1
2
, ki, j− 1

2
and

αi, j. We note from the space index that there is no difficulty to evaluate the value of αi, j. Its value is
computed based on the material’s property at node (i,j). Next, the computation of the variables ki+ 1

2 , j
,

ki− 1
2 , j

, ki, j+ 1
2

and ki, j− 1
2

will be illustrated.

First, the computation of ki+ 1
2 , j

is performed, then the rest of the diffusivity k can be computed using
the same concept.

Suppose the value of k at node i, j is ki, j, Du at node i + 1, j is ki+1, j and their values are not the same
(because of the heterogeneity of the material). From the control volume approach, the material’s
properties from node i, j to node i + 1, j can be shown as follows. From node i, j to node i + 1

2 , j,

k = ki, j, 0 ≤ x ≤
∆x
2
. (1.81)
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And from node i + 1
2 , j to node i + 1, j

k = ki+1, j,
∆x
2
≤ x ≤ ∆x. (1.82)

If the concentration at node i, j is Ti, j and the concentration at node i + 1, j is Ti+1, j, then the system
can be summarized by Fig.1.14.

1

2
i+      , j

∆ x

2

∆ x

2

∆ x

1

2
i +     ,jD

D i,j

D i+1,j

u i+1,ju i,j

i+1,ji,j

Fig. 1.14. The heterogeneous model for computing the diffusivity between two nodes which
have different material’s properties.

The flux of this system can be evaluated from:

q = −k(x)
∂T
∂x

or
∂T
∂x

= −
q

k(x)
(1.83)

Suppose that we have the other system which has the same grid size and same concentration at the
end nodes as the system shown in Fig.1.14 but now the system has only one effective diffusivity
presented at the middle of the node (i + 1

2 , j) and this system produces the same flux as the system
mentioned above. The flux of the new system can be determined from the following equation:

q = −ki+ 1
2 , j

Ti+1, j − Ti, j

∆x
(1.84)

To determine the value of the effective diffusivity ki+ 1
2 , j

, substitute the value of q in Eq.1.84 into
Eq.1.83, resulting in

∂T
∂x

= ki+ 1
2 , j

Ti+1, j − Ti, j

∆x
1

k(x)
(1.85)
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∂T = ki+ 1
2 , j

Ti+1, j − Ti, j

∆x
∂x

k(x)
(1.86)∫ Ti+1, j

Ti, j

∂T = ki+ 1
2 , j

Ti+1, j − Ti, j

∆x

∫ ∆x

0

∂x
k(x)

(1.87)

Ti+1, j − Ti, j = ki+ 1
2 , j

Ti+1, j − Ti, j

∆x

∫ ∆x

0

∂x
k(x)

(1.88)

ki+ 1
2 , j

=
∆x∫ ∆x

2
0

∆x
ki, j

+
∫ ∆x

∆x
2

∆x
ki+1, j

(1.89)

ki+ 1
2 , j

=
2

1
ki, j

+ 1
ki+1, j

(1.90)

ki+ 1
2 , j

=
2ki+1, jki, j

ki+1, j + ki, j
(1.91)

Homogeneous material model From Eq.1.91, for the case where ki, j = ki+1, j = k (homogeneous material
model), we have

ki+ 1
2 , j

=
2

1
k + 1

k
= k (1.92)

1.2.3.2 Nonlinear parabolic partial differential equation

In this case, the diffusivity and the other material’s properties depend on the unknown variables. The
material model can be applied to this problem as follows.

Heterogeneous material model From Eq. 1.91, it can also be applied to the heterogeneous model of this
type of equations. For instance, the value of Dui+ 1

2 , j
can be determined as the following equation:

Dui+ 1
2

=
2 · Du(ui, j) · Du(ui+1, j)
Du(ui, j) + Du(ui+1, j)

(1.93)

Homogeneous material model Suppose that the material is homogeneous and that the diffusivity at each
finite different node is a function of varible u. To evaluate the value of the diffusivity at the node
which is in between two nodes those have different values of variable u, for instance, between node
i, j and i + 1, j, the diffusivity at node i + 1

2 , j has to be computed using the average value of u as

Dui+ 1
2 , j

= Du(
ui, j + ui+1, j

2
) (1.94)

1.2.4 PROBLEM FORMULATION

Problem formulation for the deterioration of reinforced concrete structures will now be presented. In
particular, we shall discuss the formulation for

1. Heat transfer

2. Heat and moisture diffusion

Each formulation will be separately presented.
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1.2.4.1 Heat Transfer Analysis

For the heat transfer analysis alone, the numerical process is summarized by Fig. 1.15.

T = Tini

t = 0 

t < total time

Heat Transfer
Analysis

t = t +∆t

OUTPUT

Finite Difference
Method

Initial Condition

TRUE

FALSE

Fig. 1.15. Algorithms of Heat Transfer Analysis

Discretization The finite different discretization of heat transfer analysis is illustrated by Fig. 1.12 for 2D
problem.

1.2.4.2 Heat Transfer and Moisture Diffusion Analysis

The moisture diffusion into the concrete structure depends strongly on the temperature inside the
concrete. Since the outside temperature always changes, it’s necessary to perform the heat transfer analysis
in the simulation of moisture diffusion into the concrete structure. The numerical process of the moisture
diffusion can be summarized by Fig. 1.16.

Dicretization: The decretization of the governing differential equations of the heat transfer problem using
finite difference method was already discussed in the previous section. For moisture diffusion
equation, the finite difference discretization of the nonlinear parabolic partial differential equation, as
discussed in Section 1.2.1.2, is as follows

2D Problem: By using ADI finite different method, as illustrated in Fig. 1.13, the discretization of
2D moisture diffusion is described by Fig. 1.17.

Material Model: In the moisture diffusion equation concrete ’s properties, i.e. moisture diffusivity Dh and
moisture capacity ∂H

∂W , are functions of relative humidity. The material models can be applied to
compute each concrete’s properties in moisture diffusion analysis as follows.
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t = 0 

t < total time

Heat Transfer
Analysis

Moisture Diffusion
Analysis

t = t +∆t

H = H
T = Tini

ini

Initial Condition

OUTPUT

Finite Difference
Method

FALSE

TRUE

Fig. 1.16. Flowchart of Heat Transfer+Moisture Diffusion Analysis

∂H
∂W (H): The determination of moisture capacity ∂H

∂W (H) in each material model is illustrated by Fig.
1.18.

Moisture Diffusivity Dh(H): The determination of moisture capacity Dh(H) in each material model
is illustrated by Fig. 1.19.

Algorithm: Since the moisture diffusion equation is a nonlinear partial differential equation, to solve for
the solution in the next time step the iteration using old value as shown in Fig. 1.13 is used.

1.2.4.3 Coupled Heat Transfer and Moisture Diffusion Analysis

The numerical finite-difference based solution of this problem is based on the model of Tamsir and
Sivastava (2011) and is illustrated in Fig. 1.20
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Fig. 1.21. Algorithm for Coupled Heat and MoistureDiffusion Analysis using ADI Method
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1.3 PROBLEM VALIDATION

The examples given in (Holman 2010) will be used to validate the results obtained from the simulation
of HTMC as follows.

1.3.1 VALIDATION CASE 1: 2D TRANSIENT HEAT CONDUCTION AND CONVECTION

1.3.1.1 Problem Description

A 1 by 2 cm ceramic strip is embedded in a high-thermal-conductivity material so that the sides are
maintained at a constant temperature of 300 oC. The bottom surface of the ceramic is insulated, and the top
surface is exposed to a convection environment with h = 200 W/m2.oC and ambient convection temperature
on the top surface Ta = 50oC. At time zero, the ceramic is uniform in temperature at 300 oC. This transient
heat transfer validation case can be shown in Fig. 1.22. We want to find the temperature distribution of the
ceramic after a time of 12 s. For the ceramic, ρ = 1,600 kg/m3 and C = 800 J/kg.oC and k = 3 W/moC.
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Fig. 1.22. Validation case 1: 2D Transient Heat Conduction and Convection

1.3.1.2 Numerical Solution

The ceramic strip was modeled using a 41 by 21 finite difference grids. By using a time step of 2
seconds, the temperature distribution at a time 12 seconds obtained from HTMC can be shown in Fig. 1.23.

After 12 seconds, the results of the temperature distribution at a distance of 0.5 cm and 1 cm from left
side boundary of the ceramic obtained from HTMC were then compared with the results given in (Holman
2010) as shown in Table 1.7.
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Fig. 1.23. Temperature distribution of the ceramic strip at a time 12 seconds

1.3.2 VALIDATION CASE 2: 2D TRANSIENT HEAT CONDUCTION, CONVECTION AND SUR-
FACE IRRADIATION

1.3.2.1 Problem Description

A 1 by 2 cm ceramic strip is embedded in a high-thermal-conductivity material so that the sides are
maintained at a constant temperature of 900 K. The bottom surface of the ceramic is insulated, and the top
surface is exposed to a convection environment with h = 50 W/m2.oC and ambient convection temperature
on the top surface Ta = 50oC. At time zero, the ceramic is uniform in temperature at 900 K. This heat
transfer validation case can be shown in Fig. 1.24. We want to find the temperature distribution of the
ceramic at the steady state. For the ceramic, ρ = 1,600 kg/m3 and C = 800 J/kg.oC , k = 3 W/moC and the
emissivity coefficient of the ceramic ε = 0.7. Given: Stefan-Boltzman constant Cs = 5.669x10−8 W/m2K4.

Table 1.7. Validation Summary of Case 1

Position
Grid Temperature (K)

0.5 cm from left boundary 1 cm from left boundary
Ref. HTMC % difference Ref. HTMC % difference

Top surface 243.32 239.42 -1.602 231.97 231.47 -0.216
Center of the strip 279.87 279.29 -0.207 273.95 273.03 -0.336

Bottom surface 289.71 289.96 0.086 286.32 286.26 -0.021

40



����

����

� � �

� � �

	 
 �

�
��� ��

�

��� �� �

��� ��

�������
�

� � �

�� ��� ���

�

�

�

� !"#$%&'( )*#$�+'$, #$ �

����-��.��/�
�

!*0,010 2�+'!""0+0!$ �-�
.3

/



�

�

4

�
565

7 8 9 � 7:9

� ;7: �

�

8 9 <

� �

=

>

?

� @ �

� @

�

A @

�

�

��
� �B 8 9 �� @

�CDEF�G�H

Fig. 1.24. Validation case 2: 2D Transient Heat Conduction, Convection and Surface Irradi-
ation

1.3.2.2 Numerical Solution

The ceramic strip was modeled using a 5 by 3 finite difference grids. By using a time step of 2 seconds
and simulate HTMC until the solution reaches the steady state. At steady state, the temperature distribution
of the ceramic obtained from HTMC were then compared with the results given in (Holman 2010) as
shown in Table 1.8.

Table 1.8. Validation Summary of Case 2

Grid No.
Grid Temperature (K)

% different
Ref. HTMC

1 1020.879 1020.873 -5.88E-6
2 984.313 984.304 -9.14E-6
4 1092.369 1092.366 -2.75E-6
5 1064.212 1064.208 -3.76E-6
7 1111.384 1111.381 -2.70E-6
8 1087.798 1087.794 -3.68E-6

1.3.3 VALIDATION CASE 3: COUPLED HEAT AND MOISTURE DIFFUSION ANALYSIS MODEL

1.3.3.1 Problem Description

In this section, we will verify the developed numerical model (and code) by analyzing the large scale
heated reinforced concrete experiment(MAQBETH) performed by the French Atomic Energy Commission
(CEA Saclay) (Ranc et al. 2003). It models a prototype of a ring enclosing nuclear wastes in a typical
waste disposal concept. This structure is constituted of a hollow cylinder with external diameter of 2.2 m
and height of 3 m, Fig. 1.25 and 1.26, and it has undergone a thermal loading at 200 oC during several
hundreds of hours.
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Fig. 1.25. General view of MAQBETH mock-up (left) and cylindrical steel reinforcement
(right) (Ranc et al. 2003)

1.3.3.2 Numerical Solution

Due to the geometrical and loading symmetry conditions, only half of the structure is modelled in a 2D
axisymmetric model used in the htmc program which is the same way as the one in Benoit et al. (2012).
The initial temperature inside the concrete is 20 oC and initial relative humidity inside the concrete is 0.96.
The boundary conditions imposed in the simulations and the thermal loading applied on the inner surface
are indicated on Fig. 1.27 Benoit et al. (2012). The constant vapour pressure prescribed at both internal and
external surfaces are equal to 2500 Pa. The loading temperature indicated on Fig. 1.27 is directly applied
on the internal surface as constant boundary conditions, while a constant exterior temperature of
Text = 20oC and an equivalent convective (h) condition prescribed at the external one is equal to
10W/m/oC.

After running the simulation, the result shows that the moisture diffusivity of concrete model proposed
by Bazant and Najjar (1972), using the parameters list in Table 1.9, gives the best fit of the experimental
results Ranc et al. (2003) as shown in Fig.1.28 to 1.31.

Table 1.9. Parameter used in the moisture diffusivity of concrete model proposed by Bazant and
Najjar (1972)

Parameter Value
D1 (m2/s) 3x10−10

n 6
Mass of (anhydrous) cement per $m^3% of concrete 388
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Fig. 1.26. Geometrical characteristics of MAQBETH mock-up (concrete hollow cylinder) (a),
schematic description of experimental conditions (b) (Ranc et al. 2003)
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Fig. 1.28. Experimental and numerical profiles of temperature as a function of the distance
from the left concrete surface at different times.
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Fig. 1.29. Experimental and numerical profiles of temperature as a function of the distance
from the left concrete surface at different times.
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Fig. 1.30. Experimental and numerical profiles of relative humidity as a function of the dis-
tance from the left concrete surface at different times.
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Fig. 1.31. Experimental and numerical profiles of relative humidity as a function of the dis-
tance from the left concrete surface at different times.
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1.4 USER’S MANUAL

This manual is for the htmc program (Heat Transfer and Moisture diffusion analysis in Concrete). It is
the matlab code used for performing

1. Heat transfer analysis in concrete

2. Moisture diffusion analysis in concrete

3. Coupled heat transfer and moisture diffusion in concrete

1.4.1 PROGRAM OPERATION

To execute the htmc code, the user must:

1. Copy the folder of the htmc code into the directory where the user wants it to be.

2. Run Matlab program.

3. Set Matlab directory to be the one where the htmc code is located in the first step (Fig.1.32).

4. Open the input.xls which is in the same directory as the code to edit the input data and then save the
input.xls file.

5. Type htmc on the Command Window in the Matlab program as shown in Fig.1.32 to run the
program.

6. Matlab will then call htmc code to run.

7. After finish running the code, the Matlab will show the resulting plot. The user can obtain the results
of the simulation from the output files and also its figures in the same directory where the code is.

1.4.2 INPUT FILE PREPARATION

The input file of the htmc code is an excel file named ’input.xls’ which locates in the same folder
where the htmc is. To edit the input file, first open the input.xls file from Windows Explorer. There are 8
sheets inside this input file. The htmc is coded in the way that Matlab will read each input at specific
location of the cell in the excel file. Therefore, the user should not insert or delete any line in the excel
input file. Table 1.10 shows the list of the m-file which read the specific sheet in the input.xls file.

input.xls is shown in Fig.1.33. From Fig.1.33, there are 4-5 columns in each sheet of the input file. The
first column gives the description of the parameters used in the analysis models. The second column of the
sheet gives the name of the Matlab variable used in the code. The third column is the value of the
parameter used in the analysis model. All cells in this column will be in yellow. This is where the user
needed to edit the value of the parameters used in the models. The forth column shows the unit of each
parameter. Finally, the last column explains the option that the user can edit the value of each parameter.
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Fig. 1.32. How to run htmc code
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Fig. 1.33. Input.xls file
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Table 1.10. List of the m-file which read the specific sheet in the input.xls file

Sheet No. Sheet Name Matlab File
1 Input readInputFromExcelSheet1.m

2 Define b.c. readInputFromExcelSheet2.m

3 Xi’s Model readInputFromExcelSheet3.m

4 Mensi’s Model readInputFromExcelSheet4.m

5 Bazant’s Model readInputFromExcelSheet5.m

6 Experimental Result T readInputFromExcelSheet6.m

7 Experimental Result H readInputFromExcelSheet7.m

8 Output and Plot readInputFromExcelSheet8.m

1.4.2.1 Sheet 1: Input

There are 3 parts that the user can edit;

Finite Different Input: In this part the user must edit the value of each parameter in the yellow area:

1. Analysis Model: There are 3 options to be selected, i.e., 1 is for heat transfer analysis, 2 is for
moisture diffusion analysis and 3 is for coupled heat transfer and moisture diffusion analysis.

2. Geometry of the structure: The user must specify the height and the width of the concrete
structure to be modeled. The unit is in meter.

3. Finite different information: The user must specify the number of grids in horizontal and
vertical, the time step (in seconds), the total number of time step used in the simulation. For
moisture diffusion analysis and coupled problem, the convergence criteria and also the total
number of iteration must be specified since both problems need iteration process.

Heat Transfer Analysis Input

1. Model of Heat Capacity: There are 5 options to be selected, i.e., 0 is for constant heat capacity
(ρC is constant), 1 is for heat capacity of normal strength concrete (NSC, ASCE Manual 1992),
2 is for heat capacity of high strength concrete (Kodur et al. 2004) (ASCE 1992) (HSC, 3 is for
heat capacity of normal strength concrete and high strength concrete (Eurocode 2004) and 4 is
for user ’s defined (Kim et al. 2003) for k).

2. Concrete’s Properties

3. Initial Condition of Temperature Inside The Concrete

4. Boundary Condition: There are 3 types of boundary conditions can be applied as follows;

• No flux b.c.
• Constant b.c.: For constant boundary condition, there are 2 options that the user can select.

1) Constant temperature at the boundary and 2) Varying temperature at the boundary. If
varying temperature at the boundary is selected, the user must prepare the varying
temperature data at each boundary in Sheet2: Define b.c.

• Convection b.c.: For this type of boundary condition, the user can apply 1) convection 2)
irradiation. The user can also, specify 2 options for convection coefficient and temperature
at each boundary to be constant or varying. If either of them is set to be varying, the user
must prepare the varying of that data at each boundary in Sheet2: Define b.c.
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Moisture Diffusion Analysis Input

1. Diffusivity Model: There are 3 options of the moisture diffusivity models to be selected, i.e., 1
is for Xi, Bažant and Jennings (1994), 2 is for Mensi et al. (1988) and 3 is for Bazant ’s
model(1972). User needs to prepare the the input parameters in Sheet 3: Xi’s Model, Sheet 4:
Mensi’s Model, and Sheet 5: Bazant’s Model if the selected model is 1, 2 and 3, respectively.

2. Initial condition of relative humidity inside the concrete

3. Diffusivity factor for high strength concrete: This parameter is used for high strength concrete.
The diffusivity of high strength concrete is equal to this factor multiplied by the diffusivity of
the normal concrete.

4. Coefficient of moisture diffusion due to temperature gradient: This parameter used in the
coupled heat transfer and moisture diffusion in concrete.

5. Boundary Condition: There are 2 types of boundary conditions can be applied as follows;

• No flux b.c.
• Constant b.c.: For constant boundary condition, there are 2 options that the user can select.

1) Constant relative humidity at the boundary and 2) Varying relative humidity at the
boundary. If varying relative humidity at the boundary is selected, the user must prepare
the varying relative humidity data at each boundary in Sheet2: Define b.c.

1.4.2.2 Sheet 2: Define b.c.

When temperature, coefficient of convection and relative humidity is set to be varied at each boundary
of the concrete in Sheet 1: Input, user must prepare the data at each time step to be applied at each
boundary. User must prepare variable data and range of variable data which is the range of the excel cell
containing each variable data at each boundary as shown in Fig.1.34.

1.4.2.3 Sheet 3: Xi’s Model

This sheet contains all parameters used to compute the moisture diffusivity of the concrete using Xi’s
model.

1.4.2.4 Sheet 4: Mensi’s Model

This sheet contains all parameters used to compute the moisture diffusivity of the concrete using
Mensi’s model.

1.4.2.5 Sheet 5: Bazant’s Model

This sheet contains all parameters used to compute the moisture diffusivity of the concrete using
Bazant’s model.

1.4.2.6 Sheet 6: Experimental Result T

This sheet contains all infomation of the experimental data for temperatue at specific location in
concrete and at specified time. User must prepare this experimantal data, location and time. Also, user
must specify range of the cell containing all of those data as shown in Fig.1.35.
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Fig. 1.34. Sheet 2: Define b.c.
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Fig. 1.35. Sheet 6: Experimental Result of Temperature
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1.4.2.7 Sheet 7: Experimental Result H

This sheet contains all infomation of the experimental data for relative humidity at specific location in
concrete and at specified time. User must prepare this experimantal data, location and time. Also, user
must specify range of the cell containing all of those data as shown in Fig.1.36.

1.4.2.8 Sheet 8: Output and Plot

This sheet contains the options for saving the output files, showing the results of the simulation using
Matlab plot and saving the figure of the matlab plot.

1. Output Files: User have an option to save the output file and also can specify the name of the output
files.

2. Record Data: User can specify the time step of where the user want to record the result of simulation
and then verify with the experimental data from Sheet 6 and 7. User must prepare the time step that
the user want to record the result of simulation and also provide the range of excel cell that contain
all of the time steps prepared before as shown in Fig.1.37.

3. Matlab Plot: User can define the program to show or not to show the Matlab figure after the
simulation finished. User can set the size of the Matlab figures, all information of the plot including
title, label on the both axes, minimum and maximum values of both axes and the font size used in the
plot. There are two types of plot can be generated. 1) Multiple plot shows individual plot at each
specified time 2) Summary plot shows all all data at every specified time in one plot.

4. SavePlot: User can save the Matlab plot as figure files. The file extension of the figure can be .pdf,
.bmp, .jpg, .eps and fig. The saving figures will be generated at the end of the simulation and
will be in the same directory where the program locates.

1.4.3 OUTPUT

There are three types of output that htmc code can show as follows;

1.4.3.1 Output files

After finish running htmc code on Matlab, the code will generate the output files in the same folder
where the code locates. The file extension of the output files is .out and they contain the results of the
simulation at each finite different grid point in every time step. The user can later use notepad program to
open them. An example of the output file can be shown in Fig.1.38

1.4.3.2 Matlab plots

User can show Matlab plots after finish running the htmc code by set the value of showing the Matlab
plot to be ’on’ in last excel sheet of the input.xls file. An example of the Matlab plots can be shown in
Fig.1.39
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Fig. 1.36. Sheet 6: Experimental Result of Relative Humidity
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Fig. 1.37. Sheet 6: How to prepare the input for saving the result at specified time step in
Sheet 8: Output and Plot
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Fig. 1.38. Example of the output files generated htmc
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Fig. 1.39. Example of the Matlab plots generated by htmc code
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1.4.3.3 Figure files

User can save the results of the simulation from Matlab plots into files. There are five types of figure’s
file extention which can be saved. There are pdf, bmp, jpg, eps and fig. The figure will be saved in the same
folder where the code locates.
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2 FINITE ELEMENT SIMULATIONS OF ASR EXPANSION

2.1 INTRODUCTION

Alkali-Silica Reaction (ASR) is a deleterious reaction in concrete which causes long term swelling of
the concrete and is very likely to affect the structural integrity of the structure (serviceability/cracking
and/or strength).

While many concrete dams have been reported to be affected by Alkali-Aggregate Reaction (AAR), no
instance of AAR in nuclear power plants has been reported until recently: Ikata No.1, Shihoku Electric
Power, Japan (Murazumi et al., 2005), Gentilly 2, Canada (Orbovic, 2011), and Seabrook, NH (NRC,
2012). Yet, AAR has seldom, if ever, been investigated in connection with the safety of the reactor (as
opposed to dams).

Addressing the complexity of nuclear structures requires a gradual approach. The aim of this report is
to step by step analysis of a reinforcement concrete (RC) panel and a RC beam as part of a nuclear power
plant suffering from ASR as shown in figure 2.1. Different models and assumption are considered for finite
element modeling of the RC beam. In particular, the effects of biaxial confinement resulting from structural
constraint is investigated. The results of the various models are then compared to each other.

Actual NPP

Idealized 

container y

x
z

Fig. 2.1. Schematic view of the actual NPP, its idealized cylinder, and the cutted segment

2.2 CASE STUDY I: RC PANEL

The first case study is a RC panel with the dimensions as shown in figures 2.2 and 2.3. This structural
member corresponds to the preliminary design of a structural mockup developed by the University of
Tennessee in Knoxville. The aim of that mockup is to study the effect of structural confinement on the
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expansion in the unconstrained direction and damage development of a thick reinforced concrete structure.
Two groups of reinforcements are at the top and bottom of the panel in the y- and x-directions. Figure 2.4
shows the plan view of the testing frame. It includes the main specimen (RC panel in this case), concrete
cushion ring, and the steel frame. The steel girder frame is designed to restrain the ASR-induced
deformations in two directions although it cannot not fully prevent them practically. However strictly
speaking, more stringent boundary conditions are applied for the simulation: The RC panel has a degree of
restriction on x-z and y-z planes; but, it is free of external displacement boundary condition on the x-y
plane. On the x-z and y-z planes the main RC panel is surrounded by a concrete cushion ring with the
compressive strength of f ′c=10000 psi (68.948 MPa) as shown in figure 2.5. It should be noted that the
rebars in the main specimen are continuous in the cushion ring.

2,540 mm

2,032

mm

1,016

mm

x

z

y

Fig. 2.2. General view of the RC panel

2,540 mm

1,016 
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76.2 
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254 
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#11
127 

mm

x

z

Fig. 2.3. Elevation view of panel in x-z plane

2.2.1 MATERIAL PROPERTIES

This section explains the material properties which are used in the current research for assessment of
RC panel. In general, material properties and modeling characteristics can be divided into the following
major groups:

• Concrete panel properties

• Cushion ring properties
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x

y

Fig. 2.4. Plane view of the test setup at UTK

Fig. 2.5. Concrete cushion ring for the test at UTK

• Steel rebar properties

• ASR model properties

2.2.1.1 Concrete panel properties

General characteristics of the concrete used for the panel are summarized in table 2.1. Mass density of
the concrete is obtained from the concrete formulation. The mix constituents are listed in table 2.2.

Table 2.1. General characteristics of concrete panel

Characteristics Symbol Unit Mean STD min max
Mass density ρ kg/m3 2,250 225 1,800 2,700
Compressive strength f ′c MPa -31 3.1 24.82 37.24
Tensile strength f ′t MPa 3.2 0.32 2.56 3.84
Elastic modulus E MPa 26,000 2,600 20,800 31,200
Poisson’s ratio ν - 0.2 0.02 0.16 0.24

It is noteworthy that due to uncertainty in the material properties an appropriate range is considered for
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them. It is assumed that the material properties follows the normal distribution. Thus, the properties are
expressed using a mean and associated standard deviation. Also, an upper and lower bounds are limited the
considered distributions. Obviously, sensitivity analysis is required to cover the relative importance of the
parameters and also their property range.

Table 2.2. Concrete mixture for the RC panel.

Component Quantity
Coarse aggregate (SSD) 917kg/m3

Fine aggregate (SSD) 674kg/m3

Cement (Type III) 420kg/m3

Water 231kg/m3

W/C ratio 0.55
NaOH added 2.43kg/m3

Total Na2Oe 5.25kg/m3

The value of the concrete compressive strength is provided as 4500 psi or 31.03 MPa. Using this value,
the elastic modulus of the concrete can be estimated using the approximate formulas proposed by ACI
Building Code 318-83 as follows:

Ec = 4.7 f ′0.5c ⇒ Normal weight concrete (2.1)

Ec = 43ρ1.5 f ′0.5c × 10−6 ⇒ 1500kg/m3 < ρ < 2500kg/m3 (2.2)

Using the above formulations, the modulus elasticity of concrete is estimated around 26,000 MPa
based on ACI method (ACI Building Code 318-83).

There are many equations from the literature which connect the concrete compressive to the tensile
strength. In the present study the relations proposed by Raphael for static and dynamic loading conditions
are used. These relations can be summarized as follows (also shown graphically in figure 2.6):

( f ′t )st = 1.7( f ′c )2/3 (2.3)

( f ′t )app
st = 2.3( f ′c )2/3 (2.4)

( f ′t )dyn = 2.6( f ′c )2/3 (2.5)

( f ′t )app
dyn = 3.4( f ′c )2/3 (2.6)

where both the f ′t and f ′c are represented in psi. We recall that 1 MPa = 145.04 psi. In the present study,
static strengths are assumed.

2.2.1.2 Cushion ring properties

As mentioned before, the cushion ring is used only as a boundary condition for the main RC panel.
The compressive strength of the concrete is f ′c = 68.948 MPa.

2.2.1.3 Steel rebar properties

In the United States, rebar is graded according to its physical characteristics. The higher the grade, the
wider and heavier the rebar is. #11 rebar is among the widest and heaviest of the available standard grades,
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Fig. 2.6. Design chart for tensile strength adopted from Raphael (1984)

and is thus well-suited for use in heavy-duty and demanding construction projects. General characteristics
of #11 rebar are summarized in table 2.3.

Table 2.3. General characteristics of rebar #11

Characteristics Symbol Unit Quantity
Nominal diameter dN mm 35.81
Nominal cross-sectional area AN mm2 1006
Mass per unit length ρl kg/m 7.924
Elastic modulus E MPa 207000
Poisson’s ratio ν - 0.25
Yield stress σY MPa 275

2.2.1.4 ASR model properties

In the present research, the Saouma et al. proposed model for modeling the ASR in concrete material is
used. Detailed formulation of this model can be found in related papers(Saouma and Perotti 2006). The
model requires some parameters to computed the stain due to AAR expansion. Table 2.4 summarizes these
properties for the RC panel.

The ASR free expansion over time is characterized by a sigmoidal curve including a latency time, a
characteristic time and an asymptotical deformation. Determining the values for characteristics and latency
times requires the experimental test on the sample of concrete. In the absence of appropriate field
information, it is still possible to use one of the experiments published already in literature which has the
closed concrete mixture and test condition to the present model. Table 2.2 shows the concrete mixture for
the current RC panel. Table 2.5 presents a summary of well documented concrete mixture used for
ASR/AAR tests. It appears that the mix provided by Multon et al. (Multon et al. 2003, 2005, Multon and
Toutlemonde 2006) has the closest similarities with the mix recommended for the fabrication of the studied
wall panel.

Thus, model 2 and 3 are selected from Table 2.5. Model 2 shows the test on cylindrical specimen,
while model 3 was conducted on prismatic specimen. Figure 2.7 shows the experimental test obtained by
Multon et al. on these two types of specimen. Deformations were measured perpendicularly to the casting
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Table 2.4. General parameters of the ASR model used in RC panel

Characteristics Symbol Unit Mean STD min max
Maximum volumetric strain at temper-
ature T test

0

ε∞AS R - 0.005 - - -

Characteristic time at temperature
θtest

0 =273+T test
0

τC ATU 37.9 3.8 - -

Latency time at temperature
θtest

0 =273+T test
0

τL ATU 88.5 8.8 - -

Activation energy associated with τC UC
oK 5,400 500 4,900 5,900

Activation energy associated with τL UL
oK 9,400 500 8,900 9,900

Residual reduction factor Γr - 0.5 0.1 0.3 0.7
Fraction of εt prior to reduction of
AAR expansion due to macro cracking

γt - 0.5 0.1 0.3 0.7

Compressive strength f ′c MPa -31 - - -
Tensile strength f ′t MPa 3.2 - - -
Shape parameter a - 0 - - -
Reference temperature T0

oC 35 - - -
Upper compressive stress beyond
which there is no more AAR expan-
sion

σU MPa -8 -0.8 -7.2 -8.8

Reduction fraction for Young’s Modu-
lus when AAR reaction ends

βE - 0.5 0.1 0.4 0.6

Reduction faction for tensile strength
when AAR reaction ends

β f - 0.5 0.1 0.4 0.6

direction on the prismatic specimens (Perp-Prisms) and parallel to the casting direction on the cylindrical
ones (Par-Cyl). Some of the measurements were directly performed on the original casting specimens.
Some other measurements were carried out on cylindrical cores (diameter: 110 mm and length: 220 mm)
drilled from the prisms (Perp-Cores) and cylinders (Par-Cores) 28 days after casting. Ninety-eight days
after casting, cores were also drilled from other prisms (R-Perp) and cylinders (R-Par) in order to carry out
and analyze residual expansion tests.

Figure 2.7 shows a set of observations obtained from experimental tests by Multon et al. for the
specimens kept at air in 100% of relative humidity and 38 oC. The mean data for two measurement
methods, i.e. perpendicular to casting and parallel to casting, were digitized and a curve was fitted to each
one using the Larive’s model. Figures 2.8 and 2.9 show the fitted curves and mean data points. Least
square method was used for curve fitting. The computed values of ε∞, τL and τC for the specimens with
measurement in the parallel direction are 0.26%, 67 days, and 31 days, respectively. Similar values can be
obtained for the measurement in the perpendicular direction, i.e., 0.137%, 65 days, and 33 days
respectively.

Based on Figure 2.10 the values of the latency and characteristics times are not sensitive to the
asymptotic strain. Thus, it is possible to use the value of the τL and τC obtained from Multon test for any
other analysis assuming similar concrete mixture and testing conditions.
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Table 2.5. Concrete mixture models used in the literature for AAR and ASR tests

Model no. 1 2 3 4 5 6 7 8 9
Coarse agg. 1050 kg/m3 1120 kg/m3 1120 kg/m3 1071 kg/m3 1067 kg/m3 1047 kg/m3 - - 1078 kg/m3
Coarse agg. Type siliceous lime-

stone
reactive siliceous
limestone

reactive siliceous
limestone

- - - - - Fine gravel

Fine agg. 700 kg/m3 620 kg/m3 620 kg/m3 776 kg/m3 773 kg/m3 759 kg/m3 - - 719 (+53.91)
kg/m3

Fine agg. Type siliceous lime-
stone

non-reactive sand non-reactive sand Sand Sand Sand - - Sand (+Filler)

Cement 410 kg/m3 410 kg/m3 410 kg/m3 475 kg/m3 430 kg/m3 356 kg/m3 - - 410 kg/m3
Cement type Ordinary Port-

land
- - - - - - - Portland cement

CEM I 52.5 CE
PM-CP2

Water 196.8 kg/m3 - - 162 liter 171 liter 166 liter - - 196.8 kg/m3
W/C ratio - - 0.34 0.4 0.47 - - 0.48
Alkali (Initial) 1.13% Na2Oeq 0.92% Na2Oeq 0.92% Na2Oeq - - - - - 0.79% Na2Oeq
Alkali (Total) 1.25% Na2Oeq

(5.125 kg/m3)
1.25% Na2Oeq
(5.125 kg/m3)

1.25% Na2Oeq
(5.125 kg/m3)

- - - - - 1.25% Na2Oeq

Speciman type cylinders cylinders prisms prisms prisms prisms cylinders cylinders cylinders
Speciman dimension 240 mm high,

130 mm diameter
320 mm high,
160 mm diameter

140 x 140 x 280
mm

70 x 70 x 280 mm 70 x 70 x 280 mm 70 x 70 x 280 mm 160 x 320 mm 160 x 320 mm 160 x 320 mm

Cured period - 28 days 28 days - - - - -
RH-storage different (Refer to

explanations)
different (Refer to
explanations)

different (Refer to
explanations)

100% 100% 100% ambient humidity 73%, 87.5%,
92.5%, 100%

Test temp.-Storage 38oC 38oC 38oC 60oC 60oC 60oC 23oC, 38oC,
60oC

38oC 38oC

Explanations (1) immersed in
water (2) in sat-
urated humidity
(100% RH) (3)
in high but not
saturated humid-
ity (RH between
95 and 99%)
(4) wrapped in
aluminium foils
(no or low water
loss)

(1) 100% RH, (2)
totally immersed
in water, (3)
under aluminum
sealing at 30%
RH,

(1) 100% RH, (2)
totally immersed
in water, (3)
under aluminum
sealing at 30%
RH,

- - - - - -

Authors Larive et al. Multon et al. Multon et al. Cyr and Carles-
Gibergues

Cyr and Carles-
Gibergues

Cyr and Carles-
Gibergues

Larive Larive Mohamed et al.

Title THE ROLE
OF WATER
IN ALKALI-
SILICA REAC-
TION

Estimation of the
Residual Expan-
sion of Concrete
Affected by Al-
kali Silica Reac-
tion

Estimation of the
Residual Expan-
sion of Concrete
Affected by Al-
kali Silica Reac-
tion

Normalized age
applied to AAR
occurring in
concretes with or
without mineral
admixtures

Normalized age
applied to AAR
occurring in
concretes with or
without mineral
admixtures

Normalized age
applied to AAR
occurring in
concretes with or
without mineral
admixtures

PhD thesis PhD thesis Influence of com-
posite materials
confinement on
alkali aggregate
expansion

Year 2000 2008 2008 2002 2002 2002 1998 1998 2005
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Fig. 2.7. Experimental test by Multon et al.; specimens kept in air at 100% RH and 38oC
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Fig. 2.8. Fitted curve to the data points based on measurement in parallel direction

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

0.1

0.12

Time (day)

St
ra

in
 (

%
)

 

 

Mean experimental data point
Fitted curve (Larive model)

Fig. 2.9. Fitted curve to the data points based on measurement in perpendicular direction
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Fig. 2.10. Comparison of expansion curves with different asymptotic strains and same latancy
and characteristics times

2.2.2 STRUCTURAL ASSESSMENT OF THE RC PANEL

In this section the RC Panel is analyzed. No expansion is allowed in the directions perpendicular to the
side walls; however, expansion in vertical direction ir permitted. Table 2.6 describes the various models
studied for different boundary conditions and constitutive models. The finite element model performed
using Merlin Finite Element code consists of totally N=1001 node and E=720 quadrilateral elements as
shown in figure 2.11. Two sets of reinforcements are modeled at the top and the bottom of the specimen. In
Merlin, the rebars can be modeled easily by defining the the start and end nodes. Then, Merlin
automatically applies the mesh on the rebars. The finite element mesh of the rebars for the panel is shown
in figure 2.12.

Table 2.6. Different types of the models for the panel

ID Reinf. Loading BC on xz plane BC on yz plane Material model
P1 No ASR x=y=z=0 x=y=z=0 Linear Elastic
P2 No ASR x=y=0 x=y=0 Linear Elastic
P3 Yes ASR x=y=z=0 x=y=z=0 Linear Elastic
P4 Yes ASR x=y=0 x=y=0 Linear Elastic
P5 Yes ASR x=y=z=0 x=y=z=0 Non-Linear
P6 Yes ASR x=y=0 x=y=0 Non-Linear

In all models, the panel is experienced only the ASR expansion and no external load (directly or
indirectly) is applied to the panel. The models are expected to expand only in z direction. Figure 2.13
compares the un-deformed and deformed shape of the panel assuming two different boundary conditions as
explained in table 2.6. Based on figure 2.13 (middle), restricting the side-walls in all three directions leads
to expansion of the panel in the z direction. The maximum deformation is found at the central point of the
upper and lower faces.

When the sides are free form “sliding” vertically (right figure), i.e., side-walls deformations are
restricted in x and y directions (not z), uniform vertical expansion in both +z and -z direction is obtained.

Considering the symmetry of the panel, in both boundary models the panel shows the same responses
along the positive and negative z axis.

In order to investigate the structural responses of the panel, two index points are selected in an attempt
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Fig. 2.11. 3D finite element model of the RC panel

Fig. 2.12. 3D finite element model of the reinforcement for panel
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Fig. 2.13. Comparison of the deformed and un-deformed shapes of the panel

to illustrate the general behavior of the panel. Figure 2.14 shows the spatial location of the index points and
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also different layers of the panel model. Index-1 is located on the middle of the top layer and Index-2 is
located right in the center of the panel. Maximum ASR expansion is observed at Index-1 point.
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Fig. 2.14. Spatial location of index points and layers of the panel

2.2.2.1 Model P1

In this model, the side-walls are restricted in all three directions and thus no expansion is permitted
near the side-walls. The panel is modeled without considering the reinforcements. The concrete is modeled
as linear elastic material. Fine mesh is used in the finite element model to capture all the details.

Figure 2.15 shows the response of the considered specimen for the two index points showed in figure
2.14. The responses are only shown in vertical direction (z-direction), because we are mainly interested in
out-of-plane response of the concrete block. It is noteworthy that the responses in other two directions, i.e.
x- and y-directions are almost the same (considering the dimensions of the panel). Based on this figure, the
maximum vertical displacement of the Index-1 is about 2.62 mm, while Index-2 has no displacement due to
symmetry of the model.

Both the index points show vertical strain (εzz); however, the maximum vertical strain of the Index-1 is
about 5 times of the Index-2. Also, it seems that the curve associated with Index-2 reaches earlier to the flat
position than to the Index-1.

The vertical stress (σzz) plots for both the index points do not follows the conventional sigmoid-like
curves (in spite of the displacement and strain curves). The maximum vertical stress values are very close
in both the index points; however, Index-1 is a bit more. Index-2 shows a considerable initial vertical stress
that can be attributed to the self-weight of the model.

Finally, comparison of the volumetric AAR strain (εvol
AAR) reveals that none of the index points reach the

maximum volumetric strain (ε∞AAR), 0.005, at the end of the analysis. The curves associated with Index-1
and Index-2 have almost the same trend up to Inc = 100; however, for higher increments the Index-1 shows
the higher εvol

AAR.

72



0 100 200 300 400
−2

0

2

4
x 10

−3

 Inc (days)

u z (
m

)

0 100 200 300 400
0

2

4

6
x 10

−4

 Inc (days)

ε zz

0 100 200 300 400
0

1

2

3

 Inc (days)

σ zz
 (

M
P

a)

0 100 200 300 400
0

2

4

6
x 10

−3

 Inc (days)
ε A

A
R

vo
l

Fig. 2.15. Response of model P1 at Index-1 (blue dotted line) and Index-2 (solid red line)

2.2.2.2 Model P2

In this model, the side-walls are restricted only in two directions x=y=0 and the model is permitted to
expand freely in z direction. The panel is modeled without considering the reinforcements. The concrete is
modeled as linear elastic material.

Figure 2.16 shows the response of the considered specimen for the two index points showed in figure
2.14. Based on this figure, the maximum vertical displacement of the Index-1 is about 2.73 mm, while
Index-2 has no displacement due to symmetry of the model. Compared to the model P1, having a free
boundary condition in z direction increases the vertical displacement at the middle of the panel (most
critical location).

In this model, both the index points have exactly the same vertical strain (εzz). The maximum εzz at the
end of analysis reaches to about 0.0053 in the both index points. Comparing to the model P1, this model,
P2, shows the higher strain values. Also, εzz has a uniform distribution along the thickness of the panel.

The vertical stress (σzz) plots for both the index points have a similar trend. The plots do not follow a
specific form. the values of the σzz is negative for all increments which means that the panel is under
compressive stresses. It should be noted that the value of the compressive stress is very negligible. The
maximum absolute value of the vertical stresses reaches to about 0.05 MPa. Therefore, it is possible to
assume that the panel is stress-free in vertical direction under ASR loading. This conclusion is in
agreement with the assumed boundary condition for model P2.

Finally, comparison of the volumetric AAR strain (εvol
AAR) reveals that none of the index points reach the

maximum volumetric strain (ε∞AAR), 0.005, at the end of the analysis. Both the index points have the same
expansion. It means that the panel has a uniform volumetric AAR strain along its thickness.
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Fig. 2.16. Response of model P2 at Index-1 (blue dotted line) and Index-2 (solid red line)

2.2.2.3 Model P3

In this model, the side-walls are restricted in all three directions and thus there will be no expansion in
the side-walls. The panel is modeled considering the reinforcements as shown in figure 2.12. The concrete
is modeled as linear elastic material.

Figure 2.17 shows the response of the considered specimen for the two index points showed in figure
2.14. The responses are only shown in vertical direction (z-direction). Based on this figure, the maximum
vertical displacement of the Index-1 is about 2.61 mm, while Index-2 has no displacement due to symmetry
of the model. The uzmax for this model, P3, is just a bit smaller than model P1 (the same model as P3 but
without reinforcement).

Both the index points show vertical strain (εzz); however, the maximum vertical strain of the Index-1 is
about 5 times of the Index-2. Also, it seems that the curve associated with Index-2 reaches earlier to the flat
position than to the Index-1.

The vertical stress (σzz) plots for both the index points do not follow the conventional sigmoid-like
curves (in spite of the displacement and strain curves). The maximum vertical stress values are close in
both the index points; however, Index-1 is a bit more. Index-2 shows a considerable initial vertical stress
that can be attributed to the self-weight of the model. Compared to the model P1, this model, P3, shows
higher maximum vertical stress at the Index-1; however, it shows less stress at point Index-2.

Finally, comparison of the volumetric AAR strain (εvol
AAR) reveals that none of the index points reach the

maximum volumetric strain (ε∞AAR), 0.005, at the end of the analysis. The curves associated with Index-1
and Index-2 have almost the same trend up to Inc = 100; however, for higher increments the Index-1 shows
the higher εvol

AAR. Comparing to model P1, this model, P3, just has a bit smaller final strain value.
Figure 2.18 shows the non-concurrent maximum and minimum stresses experienced by rebars for all

increments. As seen, at the first increment some of the rebars are under tension (mainly due to weight of
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Fig. 2.17. Response of model P3 at Index-1 (blue dotted line) and Index-2 (solid red line)

concrete and steel) and some other are under compression. As seen, the maximum stress starts at about 7
MPa and increases to about 125 MPa. On the other hand, the minimum stress starts at about -9 MPa and
increase up to -6 MPa, then decrease again to about -48 MPa at the end of analysis. It is noteworthy that
based on table 2.3 the yield stress at the rebars is 275 MPa. Thus the rebars are not failed in this case. It is
important to note that the linear elastic characteristics of the concrete is one of the main reasons that the
rebars remain safe. In the case of nonlinear concrete material with the ability of cracking (based on
smeared crack model, as it will be discussed later) the load carrying capacity of the whole RC panel is
controlled by rebars after concrete cracking. This may leads to failure of the rebars.

Figure 2.19 shows stresses in the two most critical rebars in x and y directions. Based on figure 2.12
the longer rebar in x direction is divided into 12 segments (elements), while the shorter rebar in y direction
is divided into 10 segments.

Based on figure 2.19, the most critical rebar belongs to the x direction (because it is longer). The
maximum and minimum stresses in this case are in agreement with those already obtained in figure 2.18
for whole the panel.

According to figure 2.19, the maximum stresses (in the form of tensile stress) are occurred near the two
ends of the rebar. Also, the minimum stresses (in the form of compressive stress) are occurred in middle of
the rebar. Based on this figure increasing the number of increments (expansion of the panel), leads to
increasing the stresses in vicinity of the ends; however, it has almost negligible effect in middle of the rebar.

2.2.2.4 Model P4

In this model, the side-walls are restricted only in two directions x=y=0 and the model is permitted to
expand freely in z direction. The panel is modeled considering the reinforcements as shown in figure 2.12.
The concrete is modeled as linear elastic material.
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Fig. 2.18. Non-concurrent maximum and minimum stresses in rebars for model P3
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Fig. 2.19. Stress at the most critical rebars in x and y directions for model P3

Figure 2.20 shows the response of the considered specimen for the two index points showed in figure
2.14. Based on this figure, the maximum vertical displacement of the Index-1 is about 2.96 mm, while the
Index-2 shows a maximum displacement about 0.27 mm. Compared to the model P2, modeling the
reinforcement increases the vertical displacement in both the index points. It is noteworthy that none of the
P1, P2, and P3 models had the vertical displacement at the Index-2; however, model P4 shows some
responses in this point.
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In this model, both the index points have exactly the same vertical strain (εzz). The maximum εzz at the
end of analysis reaches to about 0.0053 in the both index points. Comparing to the model P2, this model,
P4, shows exactly the same response.

The vertical stress (σzz) plots for both the index points have a similar trend. The plots do not follow a
specific form. The values of the σzz is negative for all increments which means that the panel is under
negligible compressive stresses. The maximum absolute value of the vertical stresses reaches to about 0.05
MPa. Therefore, it is possible to assume that the panel is stress-free in vertical direction under ASR
loading. This behavior is in agreement with the model P2.

Finally, comparison of the volumetric AAR strain (εvol
AAR) reveals that none of the index points reach the

maximum volumetric strain (ε∞AAR), 0.005, at the end of the analysis. Both the index points have the same
expansion. It means that the panel has a uniform volumetric AAR strain along its thickness.
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Fig. 2.20. Response of model P4 at Index-1 (blue dotted line) and Index-2 (solid red line)

Figure 2.21 shows the non-concurrent maximum and minimum stresses experienced by rebars for all
increments of model P4. Although there is fluctuation in stress response of the rebars, all the values are
very small and negligible. This model proves that the rebars have no effect when the panel is modeled
based on free boundary condition in vertical (z) direction.

2.2.2.5 Summary and Observations

Table 2.7 summarizes the maximum and minimum responses obtained from figures 2.15, 2.16, 2.17
and 2.20. Following are some of the highlighted points when comparing different models:

• Maximum expansion for the models with fixed walls in vertical (z) direction (models P1 and P3) is
occurred at the point Index-1.
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Fig. 2.21. Non-concurrent maximum and minimum stresses in rebars for model P4

Table 2.7. Comparison of the panel models based on linear elastic material

Model Location uzmax (mm) εzz |σzzmax| (MPa) εvol
AAR

P1
Index-1 2.623 4.75e-4 2.223 4.63e-3
Index-2 0 9.32e-5 2.117 4.22e-3

P2
Index-1 2.727 5.29e-3 0.048 4.78e-3
Index-2 0 5.29e-3 0.048 4.78e-3

P3
Index-1 2.613 4.75e-4 2.359 4.62e-3
Index-2 0 9.18e-5 2.063 4.22e-3

P4
Index-1 2.964 5.29e-3 0.048 4.78e-3
Index-2 0.273 5.29e-3 0.048 4.78e-3

• For the models with free walls in vertical direction (models P2 and P4) the expansion is uniform in
thickness.

• In none of the models, the maximum ASR-induced volumetric strain reaches to the limit value,
0.005.

• The stress profile of the models P1 (or P3) and model P2 (or P4) has substantial differences. In the
former one, the stress increases as the strain increase. However, in the later one, there is almost no
stresses in the index points (there is some negligible compressive stresses).

• Based on model P3, the maximum tensile stress in the rebars never reaches to the yield stress of the
steel. This is mainly due to contribution of the concrete even in higher swellings. Modeling the
concrete with smeared crack approach can be provided a realistic vision about the stresses in rebars
at higher expansions.
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2.3 CASE STUDY II: BENDING BEAM

The second case study is a three-point bending beam. The beam is subjected to both ASR expansion
and vertical applied displacement. Figure 2.22 shows the dimensions of the beam and the boundary
conditions. Figures 2.23 and 2.24 show the type and location of the longitudinal and transverse
reinforcements in the beam. It is noteworthy that the information about the longitudinal reinforcements are
provided to the authors, and the transverse reinforcements are computed based on the minimum required
reinforcements recommended by ACI code. Distance between the transverse reinforcements, s, are
computed based on:

s =


Av fy
50b
s < 24′′

s < d/2
(2.7)

where Av is the cross-section of each stirrup, fy is the yield stress, and b and d are the width and the depth
of the beam, respectively. Rebars # 11 are used as longitudinal reinforcements, while rebars # 4 are used as
transverse reinforcements.

332"

36"

24"

x
y

z
Imposed Incremental 

displacement

x Confinement 

y Confinement 

Fig. 2.22. General view, dimensions and boundary condition of the three-point bending beam

2.3.1 MATERIAL PROPERTIES

This section explains the material properties which are used for assessment of three-point bending
beam. Material properties can be divided into the following major groups:

• Concrete properties

• Longitudinal rebar properties

• Transverse rebar properties

• ASR model properties
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Fig. 2.24. Reinforcements in the beam, x-z plan view

2.3.1.1 Concrete properties

General characteristics of the concrete are summarized in table 2.8.

Table 2.8. General characteristics of concrete for beam

Characteristics Symbol Unit Mean STD min max
Mass density ρ kg/m3 2,250 225 1,800 2,700
Compressive strength f ′c MPa -31 3.1 24.82 37.24
Tensile strength f ′t MPa 3.2 0.32 2.56 3.84
Elastic modulus E MPa 26,000 2,600 20,800 31,200
Poisson’s ratio ν - 0.2 0.02 0.16 0.24
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2.3.1.2 Steel properties

Rebar #11 is used as longitudinal reinforcement. General characteristics of this rebar are summarized
already in table 2.3. On the other hand, rebar #4 is used as transverse reinforcement. General
characteristics of this rebar are summarized in table 2.9.

Table 2.9. General characteristics of rebar #4

Characteristics Symbol Unit Mean
Nominal diameter dN mm 12.70
Nominal cross-sectional area AN mm2 109
Mass per unit length ρl kg/m 0.996
Elastic modulus E MPa 207000
Poisson’s ratio ν - 0.25
Yield stress σY MPa 275

2.3.1.3 ASR model properties

Table 2.10 summarizes the properties used for calculation of the ASR expansion in the beam.

Table 2.10. General parameters of the ASR model for beam

Characteristics Symbol Unit Mean STD min max
Maximum volumetric strain at temper-
ature T test

0

ε∞AS R - 0.005 - - -

Characteristic time at temperature
θtest

0 =273+T test
0

τC ATU 37.9 3.8 - -

Latency time at temperature
θtest

0 =273+T test
0

τL ATU 88.5 8.8 - -

Activation energy associated with τC UC
oK 5,400 500 4,900 5,900

Activation energy associated with τL UL
oK 9,400 500 8,900 9,900

Residual reduction factor Γr - 0.5 0.1 0.3 0.7
Fraction of εt prior to reduction of
AAR expansion due to macro cracking

γt - 0.5 0.1 0.3 0.7

Compressive strength f ′c MPa -31 - - -
Tensile strength f ′t MPa 3.2 - - -
Shape parameter a - 0 - - -
Reference temperature T0

oC 35 - - -
Upper compressive stress beyond
which there is no more AAR expan-
sion

σU MPa -8 -0.8 -7.2 -8.8

Reduction fraction for Young’s Modu-
lus when AAR reaction ends

βE - 0.7 0.1 0.6 0.8

Reduction faction for tensile strength
when AAR reaction ends

β f - 0.7 0.1 0.6 0.8
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2.3.2 ASSESSMENT OF BEAM

In this section the three-point bending beam is analyzed. Table 2.11 describes all the models and their
characteristics used for analysis of beam. In the conducted analyses, the side walls of the beam can be
modeled either free or restricted. Linear or nonlinear (based on smeared crack model) material can be
considered for the concrete.

Table 2.11. Different types of the models for the beam

ID Reinf. Loading BC on xz plane BC on yz plane Material model
B1 Yes Displ - - Linear (original prop.)
B2 Yes ASR+Displ y=0 x=0 Linear (original prop.)
B3 Yes ASR+Displ Free Free Linear (original prop.)
B4 Yes Displ - - Nonlinear (original prop.)
B5 Yes Displ - - Nonlinear (reduced prop.)
B6 Yes ASR+Displ y=0 x=0 Nonlinear (degradation)
B7 Yes ASR+Displ Free Free Nonlinear (degradation)

In the case of ‘ASR + Displ’ loading, first the beam is subjected to ASR expansion and, subsequently,
the incremental displacement is applied on top of the beam. In the nonlinear models, the analysis is
terminated at the load step in which the beam is cracked. However, in the linear models, there is no internal
criteria and the responses should be controlled externally by comparing the computed stresses and the
material strength.

Figure 2.25 shows the different steps toward the assessment of the beam affected by ASR expansion.
(1) The specimen is concreting, (2) It is kept under the specific condition and the ASR phenomenon is let
to develop, (3) The beam is rested on the ground (or a stiff material) by the end of ASR expansion. In this
condition, the numerical model of the beam has uniform restrain in vertical direction, (4) The deformed
shape of the beam is monitored at the end of expansion, (5) The shear capacity of the ASR-affected beam is
tested, (6) The shear deformation of the beam is measured.

Figures 2.26 and 2.27 show the finite element model of the beam and reinforcement. Fine mesh is used
in the finite element model to capture all the details. The model consists of totally N=2065 nodes and
E=1392 quadrilateral elements. However, in order to modeling the stress response of the beam as accurate
as possible, the half of it is modeled. Finer mesh is used also. In addition, in order to prevent the stress
concentration at the support point, a rectangular elastic beam with higher elastic modulus than the main
beam (at least 5 times higher) is modeled. Figure 2.28 shows the finite element model of the half-beam and
the support.

In order to investigate the structural responses of the beam, three index points are chosen. Figure 2.29
shows the spatial location of these three points. They are located in the top, middle and bottom of the beam
on the vertical plane at mid-span of the beam. Also this figure shows the location of two index rebars
which are located at the top and bottom of the beam.

2.3.2.1 Model B1

In this model only the incremental displacement is applied to the beam. ASR effect is not considered.
This is a benchmark model for further comparisons.

Before further proceedings, first the accuracy of the finite element mesh is checked. The vertical
displacement response of the beam at the mid-span (maximum displacement) is selected as the demand
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Fig. 2.25. Different steps towards shear test on ASR-affected beam

Fig. 2.26. 3D finite element model of the beam

parameter. Consequently, the finite element solution is compared by the approximate analytical solution.
Figure 2.30 shows the decomposition of the actual beam to two simplified models. In both simplified

models, the maximum deflection occurs at the mid-span. It is easy to derive the deflection at the beam
mid-span based on the double integration method.

For the beam under uniform load:

∆1
max =

wL2

384EI

[
24a2 − 5L2

]
(2.8)

For the beam under concentrated load:

83



Fig. 2.27. 3D finite element model of the rebars in beam
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Fig. 2.28. 3D finite element model of the half beam with extra support beam
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Fig. 2.29. Spatial location of index points and index rebars in the beam model

∆2
max =

PL3

48EI
(2.9)

All the material properties are provided already in tables 2.8 and 2.3. However, it should be noted that
the area moment of inertia (I) of the RC beam deserve special attention. Considering the un-cracked
cross-section for beam, the I parameter can be computed by converting the steel to the equivalent concrete.
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Fig. 2.30. Simplified analytical solution for beam

For this case, the modular ratio n =
Es
Ec

is about 8. Consequently, the equivalent moment of inertia (Ieq) is
about 0.01959 m3.

Two load combinations are taken into account as:

1. Only the beam self-weight is considered. The point load is neglected. Based on analytical solution,
∆1

max = −5.03e − 4 m.

2. Only the unit point load (1 KN) is applied to the beam and the effect of self-weight is neglected.
Based on analytical solution, ∆2

max = −0.01125 m.

Figure 2.31 shows the deformed shape, displacement contour in vertical direction for both cases. As
seen, the extreme displacement in negative z-direction has very good consistency with those obtained from
approximate analytical solution. It should be noted that the beam has some deformations that the analytical
solution is not capable of capture them.

(1) Self_weight (2) Point_load

Fig. 2.31. Finite element response of the beam B1 for two load combinations

Figure 2.32 shows the response of the considered beam at three index points showed in figure 2.29.
The responses are only shown in vertical direction (z-direction). As seen, the vertical displacement (uz)
varies linearly for three index points because of linear assumption model for the material. There is no
differences among all three index points.
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The εzz shows decreasing trend in the bottom and middle points (Index-3 and Index-2); however, it
shows an increasing trend for the top point (Index-1).
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Fig. 2.32. Response of the beam B1 at three index points; Incremental displacement

Figure 2.33 shows the stresses at the two index rebars (as marked in figure 2.29) under the incremental
displacement. Based on this figure applying the incremental displacement increases the tensile stresses in
the bottom rebar (specially near the mid-span). Also, it increases the compressive stresses for the top rebar.
The tensile stress reaches to 275 MPa, steel yield strength, at the increment Inc = 49 in the bottom rebar.
This increment corresponds to the applied vertical displacement of 0.0245 m. This figure clearly shows that
the beam first fails at the bottom rebar. The failure mode of the beam under nonlinear material will be
studied later.
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Fig. 2.33. Stress at the two index longitudinal rebars for half-beam B1; Under incremental
displacement

2.3.2.2 Model B2

In this model, the side-walls are restricted in the direction perpendicular to the face. Thus, there will be
no expansion in these directions. The beam is modeled considering the reinforcements effects. The
concrete is modeled as a continuum linear elastic material.
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Figures 2.34 and 2.35 shows the response of the considered beam at three index points showed in
figure 2.29 under the ASR expansion and subsequently the incremental displacement. The responses are
only shown in vertical direction (z-direction). Based on this figure, the maximum vertical displacement of
the Index-1 is more than Index-2. The Index-3 point has no vertical displacement at the end of ASR
expansion, as the beam is rested on the ground at this point.

Figure 2.35 only shows the response of the ASR-affected beam under the incremental displacement.
As seen, the vertical displacement (uz) varies linearly for three index points because of linear assumption
model for material. Compared to figure 2.32, it can be seen that the different points along the thickness of
the beam does not have a same displacement profile. This can clearly attributed to the ASR effects.

All the index points show almost the similar vertical strain (εzz) under the ASR expansion (Figure 2.34);
however, there is a discontinuity in the time history of the strain curve when the loading type changes from
ASR expansion to incremental displacement (Figure 2.35). The εzz shows decreasing trend in the bottom
and middle points (Index-3 and Index-2); however, it shows an increasing trend for the top point (Index-1).

The vertical stress (σzz) plots for the three index points show negative values (meaning the index points
are under compression) up to the end of ASR expansion. The final value of the vertical compressive stress
for Index-3 is more than Index-2 and both more than Index-1. The value of the vertical stress at the location
of the Index-1 is almost zero (it is on free face). Applying the incremental displacement decreases the
vertical stress at the top and middle index points; however, it leads to a bit increasing at the bottom index
point.

Finally, the volumetric AAR strain (εvol
AAR) reveals that none of the index points reach the maximum

volumetric strain (ε∞AAR), 0.005, at the end of the analysis. The maximum expansion is about 0.00477 in all
cases. The beam shows similar expansion curve in all index points.
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Fig. 2.34. Response of the beam B2 at three index points; Under ASR expansion

Figures 2.36 and 2.37 show the stresses at the two index rebars under the ASR expansion and
incremental displacement, respectively. The plot of rebar stress are only shown for selected increments (for
ASR expansion Inc = 1:50:365 and for incremental displacement Inc = 366:10:415).

Based on figure 2.36 ASR expansion increases the stresses. The half-beam experiences tensile stresses
in the area far from end point and mid-span. However, it has compressive stresses near the left-end and also
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Fig. 2.35. Response of ASR-affected beam B2 at three index points; Under incremental dis-
placement

mid-span. This rule is valid more or less for the both index rebars at the top and bottom. However, the
bottom rebar experiences a bit higher stresses than the top one. It is noteworthy that the value of the
stresses under ASR expansion, [-5.5, +1.5] MPa, are negligible compared to the yield strength of the steel,
+275 MPa.

Based on figure 2.37 applying the incremental displacement increases the tensile stresses in middle
section of the bottom rebar (between the support points). However, it increases the compressive stresses for
the top rebar. The tensile stress reaches to +275 MPa, steel yield strength, at the increment Inc = 400 in the
bottom rebar. This increment corresponds to vertical displacement of 0.0175 m. This figure clearly shows
that the beam first fails at the bottom rebar. The failure mode of the beam under nonlinear material will be
studied later. Compared to the figure 2.33, it can be concluded that the ASR expansion reduce the capacity
of the beam and the bottom rebars fail under the smaller shear load.
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Fig. 2.36. Stress at the two index longitudinal rebars for beam B2; Under ASR expansion

Last but not least, the beam has almost uniform deformed shape under ASR expansion. The beam is
expanded in vertical (z) direction considering that the other two directions are fixed. Figure 2.38 shows the
deformed shape of the beam at the end of the ASR expansion. This figure also shows a close look of the top
face of the beam at the end of the expansion. As seen, there are some small non-uniformity in deformation
along the x-axis of the beam. Also, the top face shows higher deformation in middle than to the edges.
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Fig. 2.37. Stress at the two index longitudinal rebars for beam B2; Under incremental dis-
placement

Max expansion

Fig. 2.38. Deformed shape of the beam at the end of ASR expansion, model B2

2.3.2.3 Model B3

In this model, all the side-walls (x-z plane and y-z plane) are free (see table 2.11). Thus, the expansion
is allowed in perpendicular direction on these planes. The beam is modeled considering the reinforcements
effects. The concrete is modeled as a continuum linear elastic material.

Figures 2.39 and 2.40 shows the response of the considered beam at three index points showed in
figure 2.29 under the ASR expansion and subsequently the incremental displacement. The responses are
only shown in vertical direction (z-direction). Based on this figure, the maximum vertical displacement of
the Index-1 is more than Index-2. The Index-3 point has no vertical displacement at the end of ASR
expansion, as the beam is rested on the ground at this point. Compared to beam Model B2, the beam model
B3 has less vertical displacement (about 50% lower) in both Index-1 and Index-2 points.

Figure 2.40 only shows the response of the ASR-affected beam under the incremental displacement.
As seen, the vertical displacement (uz) varies linearly for three index points because of linear assumption
model for material. Compared to figure 2.32, it can be seen that the different points along the thickness of
the beam does not have a same displacement profile. This can clearly attributed to the ASR effects.

All the index points show almost the similar vertical strain (εzz) under the ASR expansion (Figure
2.39); however, the value of the final εzz in beam Model B3 is half of the Beam Model B2.

The vertical stress (σzz) plots for the index points Index-2 and Index-3 show negative values (meaning
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the index points are under compression) up to the end of ASR expansion. However, the Index-1 shows a bit
tension at the end of ASR expansion. Compared to beam Model B2, the beam Model B3 shows about 70%
reduction in σzz for Index-3.

Finally, the volumetric AAR strain (εvol
AAR) reveals that none of the index points reach the maximum

volumetric strain (ε∞AAR), 0.005, at the end of the analysis. The maximum expansion is about 0.0048 in all
cases. The beam shows similar expansion curve in all index points.
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Fig. 2.39. Response of the beam B3 at three index points; Under ASR expansion
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Fig. 2.40. Response of ASR-affected beam B3 at three index points; Under incremental dis-
placement

Figures 2.41 and 2.42 show the stresses at the two index rebars under the ASR expansion and
incremental displacement, respectively. The plot of rebar stress are only shown for selected increments (for
ASR expansion Inc = 1:50:365 and for incremental displacement Inc = 366:10:415).

Based on figure 2.41 ASR expansion increases the tensile stresses. Considering that the no
confinement is applied in this model and also the fact that there is a full bond between the concrete and
steel rebars, any ASR-induced expansion leads to tension in the longitudinal reinforcements. Based on this
figure, the beam experience considerable tension up to Inc = 200. The rate of the changes from Inc = 200

90



to Inc = 365 is negligible.
There are some localized high tensile stresses in the location of the support points. However, its effect

is much palpable for bottom reinforcement than the top one. Based on figure 2.41, the stress in
reinforcements almost reach to the yield strength of the steel at the end of ASR expansion. The average
tensile stress in the rebars at the end of ASR expansion is about 250 MPa (for stress localized area this value
is about 260 MPa). This means that the ASR-affected beam is highly vulnerable under any external load.

Based on figure 2.42 applying the incremental displacement increases the tensile stresses in middle
section of the bottom rebar (between the support points). However, it decreases the tensile stresses for the
top rebar. Thus, it means that for beam model B3, the incremental displacement plays a favorable role for
the top rebars. The tensile stress reaches to +275 MPa, steel yield strength, at the increment Inc = 370 in
the bottom rebar. This increment corresponds to vertical displacement of 0.0025 m. This figure clearly
shows that the beam first fails at the bottom rebar. Compared to the figure 2.37, it can be concluded that the
neglecting the confinement effect highly reduce the shear capacity of the beam and the bottom rebars fail
under the smaller applied load.
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Fig. 2.41. Stress at the two index longitudinal rebars for beam B3; Under ASR expansion
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Fig. 2.42. Stress at the two index longitudinal rebars for beam B3; Under incremental dis-
placement
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2.3.2.4 Model B4

In this model only the incremental load (traction) is applied to the beam. ASR expansion is not
considered. Both the concrete and steel are modeled with nonlinear behavior. The cracking in the concrete
is modeled by smeared crack model. This is a benchmark model for further nonlinear analyses.

Figure 2.43 shows the response of the considered beam at three index points. The responses are only
shown in vertical direction (z-direction). All the responses are shown up to one increment before failure.
As seen, the vertical displacement (uz) has nonlinear trend for three index points. There is no differences
among all three index points. At the beginning, all the lines have a mild slope and cracking of beam make
the slope very steep specially at the end increments.

The εzz shows also nonlinear behavior. However, it still has decreasing trend in the bottom and middle
points (Index-3 and Index-2) and increasing trend for the top point (Index-1). This is similar to that
observed for the linear model (figure 2.32).
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Fig. 2.43. Response of the beam B4 at three index points; Incremental load (traction)

Figure 2.44 shows the stresses at the two index rebars (as marked in figure 2.29) under the incremental
load (traction). Based on this figure applying the incremental load (traction) increases the tensile stresses in
the bottom rebar (specially near the mid-span). Also, it increases the compressive stresses for the top rebar.
The tensile stress reaches to 275 MPa, steel yield strength, at the increment Inc = 37 in the bottom rebar. At
this increment, the reinforcement yields. It is noteworthy that the elastic-perfectly-plastic model is
considered for the steel in the present report. This figure shows that the beam first fails at the bottom rebar
in mid-span area.

Figure 2.44 shows the progressive failure of the beam model B4 under incremental load (traction). As
seen, the cracking first starts at the Inc = 13 at the bottom of the mid-span. This set of cracks propagate
upwards. Another set of cracks also generates in vicinity of the initial ones and they also propagate
upwards. Under the increasing applied load the cracks also are created far from mid-span. The final crack
profile of the beam is also shown in Inc = 36. At this increment, most of the beam is cracked in the
thickness. The instantaneous opening of the cracks are also shown in this figure.

2.3.2.5 Model B5

This model is exactly like the beam Model B4; however, the reduced material properties are used for
concrete. The original concrete properties are already provided in table 2.8. In the beam Model B5 the
modulus of elasticity and tensile strength of concrete are reduced by 30%. The incremental load (traction)
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Fig. 2.44. Stress at the two index longitudinal rebars for half-beam B4; Under incremental
load (traction)

is applied to the beam with the same protocol of the Model B4. ASR expansion is not considered. Both the
concrete and steel are modeled with nonlinear behavior.

Figure 2.46 shows the response of the considered beam at three index points. The responses are only
shown in vertical direction (z-direction). All the responses are shown up to one increment before failure.
As seen, the vertical displacement (uz) has nonlinear trend for three index points. Compared to the beam
Model B4, the Model B5 fails at least one increments earlier (it means Model B4 fails under lower applied
load (traction). The εzz shows also nonlinear behavior. However, the general trend is the same for beam
Model 4 and Model 5.

Figure 2.47 shows the stresses at the two index rebars (as marked in figure 2.29) under the incremental
load (traction). Based on this figure applying the incremental load (traction) increases the tensile stresses in
the bottom rebar (specially near the mid-span). Also, it increases the compressive stresses for the top rebar.
The tensile stress reaches to 275 MPa, steel yield strength, at the increment Inc = 36 in the bottom rebar. At
this increment, the reinforcement yields. The stress profile in beam Models 4 and 5 are very close to each
other.

The progressive failure of the beam Model 5 is very similar to the Model 4 already shown in figure
2.44. However, as mentioned before, beam Model B5 fails one increment earlier.

2.3.2.6 Model B6

In this model, the side-walls are restricted in the direction perpendicular to the face. Thus, there will be
no expansion in these directions. The beam is modeled considering the effect of yielding in the
reinforcements. The concrete is modeled with the smeared crack model. It is noteworthy that in this model
a 70% reduction fraction is applied for the Young’s modulus and tensile strength at the end of ASR
expansion and reported already in table 2.8 and shows also in figure 2.48.

Figures 2.49 and 2.50 shows the response of the considered beam at three index points showed in
figure 2.29 under the ASR expansion and subsequently the incremental load (traction). The responses are
only shown in vertical direction (z-direction). Based on this figure, the maximum vertical displacement of
the Index-1 is more than Index-2. The Index-3 point has no vertical displacement at the end of ASR
expansion, as the beam is rested on the ground at this point.

Figure 2.50 only shows the response of the ASR-affected beam under the incremental load (traction).
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Fig. 2.45. Progressive failure in beam Model B4 under incremental load (traction)

As seen, the vertical displacement (uz) has nonlinear trend in all three index points and finally it approaches
to large values at the time of beam failure.

All the index points show almost the similar vertical strain (εzz) under the ASR expansion (Figure
2.49); however, there is a discontinuity in the time history of the strain curve when the loading type
changes from ASR expansion to incremental traction (Figure 2.50). The εzz shows decreasing trend in the
bottom and middle points (Index-3 and Index-2); however, it shows a nonlinear increasing trend for the top
point (Index-1).

The vertical stress (σzz) plots for the three index points show negative values (meaning the index points
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Fig. 2.46. Response of the beam B5 at three index points; Incremental load (traction)
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Fig. 2.47. Stress at the two index longitudinal rebars for half-beam B5; Under incremental
load (traction)

t

E
/E

o
 ;
  

f t
/f

to

1.0

0.7

2L C L

 
   

 
   

0

,0

,
1 1 ,

,
1 1 ,

E

t

f

t

E t
t

E

f t
t

f


  


  

  


  



Fig. 2.48. Degradation of Young’s modulus and tensile strength with ASR expansion

are under compression) up to the end of ASR expansion. However, compared to the model B2 with smooth
stress curve (which is linear elastic version of B6) in figure 2.34, the Model B6 experiences extensive stress
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fluctuations.
Finally, the volumetric AAR strain (εvol

AAR) reveals that none of the index points reach the maximum
volumetric strain (ε∞AAR), 0.005, at the end of the analysis. The maximum expansion is about 0.0048 in all
cases.
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Fig. 2.49. Response of the beam B6 at three index points; Under ASR expansion
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Fig. 2.50. Response of ASR-affected beam B6 at three index points; Under incremental load
(traction)

Figures 2.51 and 2.52 show the stresses at the two index rebars under the ASR expansion and
incremental load, respectively. The plot of rebar stress are only shown for selected increments (for ASR
expansion Inc = 1:50:365 and for incremental load Inc = 366:10:405).

Based on figure 2.51 ASR expansion increases the stresses. The half-beam experiences tensile stresses
in the area far from end point and mid-span. However, it has compressive stresses near the left-end and also
mid-span. The value of the stresses under ASR expansion for beam Model B6 is about [-2.2, +0.6] MPa
which is less than the values reported already for linear elastic analysis [-5.5, +1.5] MPa. It means that
gradually degradation of the comcrete material also affects on the steel stress.

Based on figure 2.52 applying the incremental load increases the tensile stresses in middle section of
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the bottom rebar (between the support points). However, it increases the tensile stresses for the top rebar.
Thus, it has a dual effect on the top and bottom rebars. The tensile stress reaches to +275 MPa, steel yield
strength, at the increment Inc = 402 in the bottom rebar.
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Fig. 2.51. Stress at the two index longitudinal rebars for beam B6; Under ASR expansion
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Fig. 2.52. Stress at the two index longitudinal rebars for beam B6; Under incremental load

The cracking pattern for the beam Model B6 is more or less similar to that reported already for the
beam model B4. No direct cracking is generated under the ASR expansion in beam Model B6; however, it
has a indirect effect on the degradation of the concrete material.

2.3.2.7 Model B7

In this model, all the side-walls (x-z plane and y-z plane) are free (see table 2.11). Thus, the expansion
is allowed in perpendicular direction on these planes in addition to the parallel directions.

Figures 2.53 and 2.54 shows the response of the considered beam at three index points showed in
figure 2.29 under the ASR expansion and subsequently the incremental load (traction). Based on this
figure, the maximum vertical displacement of the Index-1 is more than Index-2. The Index-3 point has no
vertical displacement at the end of ASR expansion.
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Figure 2.54 only shows the response of the ASR-affected beam under the incremental load. All the
three curves have a nonlinear trend; however, compared to the 2.50, the vertical displacements (uz) have
close values in the case of beam Model B7.

All the index points show almost the similar vertical strain (εzz) and the volumetric AAR strain (εvol
AAR)

under the ASR expansion.
The vertical stress (σzz) plots for the index points under ASR expansion have extensive fluctuation,

similar to that reported already for the beam Model B6. However, beam Model B7 experiences a bit larger
stresses.
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Fig. 2.53. Response of the beam B7 at three index points; Under ASR expansion
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Fig. 2.54. Response of ASR-affected beam B7 at three index points; Under incremental load
(traction)

Figures 2.55 and 2.56 show the stresses at the two index rebars under the ASR expansion and
incremental load (traction), respectively. The plot of rebar stress are only shown for selected increments
(for ASR expansion Inc = 1:50:365 and for incremental load Inc = 366:10:405).

Based on figure 2.55 ASR expansion increases the tensile stresses. Considering that no confinement is
applied in this model and also the fact that there is a full bond between the concrete and steel rebars, any

98



ASR-induced expansion leads to high tensile stresses in the longitudinal reinforcements. Based on this
figure, the beam experience considerable tension up to Inc = 250. The rate of the changes from Inc = 250
to Inc = 365 is negligible.

There are some localized high tensile stresses in the location of the support points. However, its effect
is much palpable for bottom reinforcement than the top one. Based on figure 2.55, the stress in
reinforcements almost reach to the yield strength of the steel at the end of ASR expansion. The average
tensile stress in the rebars at the end of ASR expansion is about 250 MPa (for stress localized area this value
is about 265 MPa). This means that the ASR-affected beam is highly vulnerable under any external load.

Based on figure 2.56, applying the incremental load increases the tensile stresses in middle section of
the bottom rebar (between the support points). However, it decreases the tensile stresses for the top rebar.
Thus, it means that for beam model B7, the incremental load (traction) plays a favorable role for the top
rebars. The tensile stress reaches to +275 MPa, steel yield strength, at the increment Inc = 369 in the
bottom rebar. For all the next increments the yielding in the bottom rebar propagates from the middle
section toward the support. At the Inc = 404, about half of the half of the longitudinal reinforcements yield.
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Fig. 2.55. Stress at the two index longitudinal rebars for beam B7; Under ASR expansion
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Fig. 2.56. Stress at the two index longitudinal rebars for beam B7; Under incremental load
(traction)
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2.3.2.8 Observations

Seven different models of a reinforcement beam were compared as reported in table 2.11. The aim of
this section is to compare the shear capacity of a RC beam when it is subjected to the ASR expansion.

Linear elastic models were first studied in order to make sure about the accuracy of the finite element
model, method of analysis, and to provide a bench-marking for those researchers that does not have access
to the nonlinear models.

First, the load-displacement curve is compared for four nonlinear models (B4, B5, B6 and B7) and then
the other observations are summarized. It is noteworthy that the load-displacement for the linear elastic
models (B1, B2 and B3) is not provided as they are not capable of providing the beam capacity.

Figure 2.57 shows the load-displacement curves for nonlinear beam models. Let us take the beam
Model B4 (only incremental load and original material properties) as a reference one. As seen, reducing
the material properties (more specifically modulus of elasticity and tensile strength) by 30% in beam
Model B5 leads to decreasing the shear capacity of the beam.

The other options (gradually reducing the material properties as shown already in figure 2.48) are also
tested in this report (Models B6 and B7). Both these models also reduce the shear capacity of the beam.
However, their mechanism is different from Model B5.
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Fig. 2.57. Load-displacement curves for nonlinear beam models

Figure 2.58 shows the stress response of the central bottom rebar (the most critical one) at the first
increment of applied load (traction) and also at the yielding increment respectively. The yielding increment
is refereed to the increments at which the rebar first reaches to the steel yield stress (+275 MPa).

Based on this figure, the beam Models B4 and B5 (those two without initial ASR expansion) has
almost no tension at the first increment; while initial ASR expansion generates considerable tension in the
rebars (Models B6 and B7). In the beam Model B7 (without confinement effect), the stress in the bottom
rebar at the ASR expansion is very close to the steel yield stress. It means that any even small applied load
can lead to rebar yielding in this model.

Also this figure shows that under the same protocol, the rebar in beam Model B7 yields earlier (at Inc =

8). Beam Models B5 and B6 yield at the almost same increment; however, the tensile stress along the rebar
for beam Model B6 is higher than the beam Model B5.
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This figure clearly shows that the assumption of: “reducing material property by 70% instead of
applying the real mechanism of the ASR expansion” in a RC beam, can not be a perfect idea.
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Fig. 2.58. Stress distribution in bottom rebar for nonlinear models

In addition, figure 2.59 shows the same plots of figure 2.58 but for the central top rebar. As seen, the
ASR expansion has inverse effect on the top rebars. It means that it moderates the effect of the later applied
load.
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Fig. 2.59. Stress distribution in top rebar for nonlinear models

101



Bibliography

Ababneh, A., Benboudjema, F. and Xi, Y.: 2002, Chloride penetration in non-saturated concrete, ASCE
Journal of Materials in Civil Engineering (in Press) .

ASCE: 1992, Structural Fire Protection, ASCE Committee on Fire Protection, Structural Division,
American Society of Civil Engineers, New York, NY, USA.

Bažant, Z., Chern, J. and Thonguthai, W.: 1981, Finite element program for moisture and heat transfer in
heated concrete, Nuclear Engineering and Design 68, 61–70.

Bažant, Z. and Thonguthai, W.: 1979, Pore pressure in heated concrete walls: theoretical prediction,
Magazine of Concrete Research 31, 67–76.

Bazant, Z. and Najjar, L.: 1972, Nonlinear water diffusion in nonsaturated concrete, Matériaux et
Constructions 5(25), 3–20.

Bazant, Z. and Thonguthai, W.: 1978, Pore pressures and drying of concrete at high temperature„ Proc.
ASCE 104, 1059–1079.

Benoit, B., Marcus, M., Stephane, P. and Sabine, D.: 2012, Simulations of the thermo-hydro-mechanical
behaviour of an annular reinforced concrete structure heated up to 200 oc, Engineering Structures
36, 302–315.

Christensen, R.: 1979, Mechanics of Composite Materials, Wiley Interscience, New York.

Eurocode: 2004, EN, 1992-1-2: Design of concrete structures. Part 1-2: general rules – structural fire
design, European Committee for Standardization, Brussels, Belgium.

Holman, J.: 2010, Heat Transfer, McGraw-Hill, Inc, New York.

Kim, K., Jeon, S., Kim, J. and Yang, S.: 2003, An experimental study on thermal conductivity of concrete,
Cement and Concrete Research 33, 363–371.

Kodur, V., Wang, T. C. and Cheng, F. P.: 2004, Predicting the fire resistance behaviour of high strength
concrete columns, Cement and Concrete Composites 26(2), 141–153.

Kreider, J. and Rabl, A.: 1994, Heating and Cooling of Buildings, McGraw-Hill, Inc, Hightstown, NJ.

Luikov, A.: 1975, Systems of differential equations of heat and mass transfer in capilary-porous bodies
(review), International Journal of Heat and Mass Transfer 18, 1–14.

Mensi, R., Acker, P. and Attolou, A.: 1988, Séchage du béton : analyse et modélisation, Materials and
structures 21, 3–10.

102



Multon, S., Seignol, J.-F. and Toutlemonde, F.: 2003, Large girders subjected to alkali-silica reaction, ACI
Special Publication 212(20), 299–318.

Multon, S., Seignol, J.-F. and Toutlemonde, F.: 2005, Structural behavior of concrete beams affected by
alkali-silica reaction, ACI Materials Journal 102(2), 67–76.

Multon, S. and Toutlemonde, F.: 2006, Effect of applied stresses on alkali-silica reaction-induced
expansions, Cement and Concrete Research 36, 912–920.

Ranc, G., Sercombe, J. and Rodrigues, S.: 2003, Comportement à haute température du béton de structure,
Revue française de Génie civil 7, 397–424.

Rosenburg, D.: 1969, Methods for Numerical Solutions of Partial Differential Equations, American
Elsevier Publishing Company, Inc, Newyork.

Saouma, V. and Perotti, L.: 2006, Constitutive model for alkali-aggregate reactions, ACI Materials Journal
103(3), 194–2002.

Takatura, T., Ishikawa, T., Matsumoto, N., Mitsuki, S., Takiguchi, K. and Masuda, Y.: 2005, Investigation
of the expanded value of turbine generator foundation affected by alkali-silica reaction, Proceedings of
the 18th International Conference on Structural Mechanics in Reactor Technology (SMIRT18), number
SMIRT18-H03-7, Beijing, China, pp. 2061–2068.

Tamsir, M. and Sivastava, K.: 2011, A semi-implicit finite-difference approach for two-dimensional
coupled burgers equations, International Journal of Scientific & Engineering Research 2(6), 1–6.

Tariku, F., Kumaran, K. and Fazio, P.: 2010, Transient model for coupled heat, air and moisture transfer
through multilayerd porous media, International Journal of Heat and Mass Transfer 53, 3035–3044.

Tcherner, J. and Aziz, T.: 2009, Effects of aar on seismic assessment of nuclear power plants for life
extensions, Proceedings of the 20th International Conference on Structural Mechanics in Reactor
Technology (SMIRT 20), number SMIRT20-Division 7 Paper 1789., Espoo, Finland.

Xi, Y.: 1995, A model for moisture capacities of composite materials - formulation, Computational
Materials Science 4, 65–77.

Xi, Y., Bažant, Z. and Jennings, H.: 1994, Moisture diffusion in cementitious materials; adsorption
isotherms, J. of Advanced Cementitious Material 1, 248–257.

Xi, Y., Bažant, Z., Molina, L. and Jennings, H.: 1994, Moisture diffusion in cementitious materials;
moisture capacity and diffusivity, J. of Advanced Cementitious Material 1, 258–266.

Xi, Y., Willam, K. and Frangopol, D.: 2000, Multiscale modeling of interactive processes in concrete,
ASCE Journal of Engineering Mechanics 126(3), 258–265.

103


	LIST OF FIGURES
	LIST OF TABLES
	COUPLED THERMAL/MOISTURE DIFFUSION
	Material Formulation
	Heat Diffusion
	Governing Differential Equation
	Thermal Conductivity
	Thermal Capacity
	Boundary Conditions

	Moisture Diffusion
	Moisture Capacity
	Adsorption Isotherm
	Moisture Capacity 

	Moisture Diffusivity
	Final Algorithm for Moisture Diffusion into Concrete

	Coupled Heat Transfer and Moisture Diffusion Analysis

	Finite Difference Implementation
	Discretization
	Linear Parabolic Differential Equation
	Nonlinear Parabolic Partial Differential Equation

	Boundary Conditions
	No flux Boundary Condition
	Concentration Boundary Condition
	Nonlinear Boundary Condition

	Material Models
	Linear parabolic partial differential equation
	Nonlinear parabolic partial differential equation

	Problem Formulation
	Heat Transfer Analysis
	Heat Transfer and Moisture Diffusion Analysis
	Coupled Heat Transfer and Moisture Diffusion Analysis


	Problem Validation
	Validation case 1: 2D Transient Heat Conduction and Convection
	Problem Description
	Numerical Solution

	Validation case 2: 2D Transient Heat Conduction, Convection and Surface Irradiation
	Problem Description
	Numerical Solution

	Validation case 3: Coupled Heat and Moisture Diffusion Analysis Model
	Problem Description
	Numerical Solution


	USER'S MANUAL
	Program Operation
	Input File Preparation
	Sheet 1: Input
	Sheet 2: Define b.c.
	Sheet 3: Xi's Model
	Sheet 4: Mensi's Model
	Sheet 5: Bazant's Model
	Sheet 6: Experimental Result T
	Sheet 7: Experimental Result H
	Sheet 8: Output and Plot

	Output
	Output files
	Matlab plots
	Figure files



	FINITE ELEMENT SIMULATIONS OF ASR EXPANSION
	Introduction
	Case Study I: RC Panel
	Material Properties
	Concrete panel properties
	Cushion ring properties
	Steel rebar properties
	ASR model properties

	Structural Assessment of the RC Panel
	Model P1
	Model P2
	Model P3
	Model P4
	Summary and Observations


	Case Study II: Bending Beam
	Material Properties
	Concrete properties
	Steel properties
	ASR model properties

	Assessment of Beam
	Model B1
	Model B2
	Model B3
	Model B4
	Model B5
	Model B6
	Model B7
	Observations




