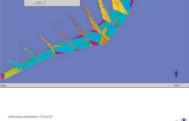
Leader in Advanced and Efficient Finite Element Analysis of Concrete Dams with MERLIN

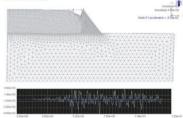
Dynamic Analysis:

Time Integration:	Implicit (Newmark β , Hughes α); Explicit (single CPU/Parallel).
Restart:	from Static (with dynamic elastic properties), Reset displacements to zero.
Rayleigh Damping:	Different coefficients for rock and concrete.
Foundation:	Mass but no gravity.
Radiation Damping:	Without/with interaction with free field (Lysmer/Miura).
Reservoir Modeling:	Added mass (Westergaard, Zanger) or fluid elements.
Uplift Models:	Automatic adjustment with crack propagation; Static (FERC)
"Validated"	or dynamic uplift. with centrifuge dynamic tests.

Nonlinear Analysis:

Algorithms:	Newton-Raphson, Secant Newton, Initial Stiffness, Line	;	
	Search, Arc-Length.		
Cracks/interfaces:	Over 5 different types of interface elements. Smeared crack elements.		
Constitutive Models:	Over 20 different models.		


Other


AAR:	Kinetics model for expansion, 3D AAR strain
	redistribution based on stress tensor, Tensile strength
	and Young's Modulus degradation.
Scalar Field Problems:	Thermal (transient) and uplift linear analysis.
Staged Construction:	approximated.

Supporting tools:

Beaver:	Special purpose code to easily generate FE mesh for double curvature arch dams.
Kumo:	Powerful 3D mesh generator (based on T3D) written
	for dam and fracture analysis.
Spider:	Post Processor for display of incremental nonlinear
	analysis, eigenvectors, and transient analysis results.

www.dam-analysis.com

TEPSCO is an affiliated company of TEPCO (287 billion kWh/year, 28 million customers). It provides consulting services for the electric power industry, employs 634 Engineers and had \$139 million in engineering contracts in 2004.

TEPSCO Tokyo Electric Power Services Co., Ltd. 3-3,HIGASHI-UENO 3-CHOME,TAITO-KU,TOKYO JAPAN

Tel:+81-3-4464-5231 Fax:+81-3-4464-5190 E-Mail:anoguchi@tepsco.co.jp

http://www.tepsco.co.jp/

REPLY SERVICE 8 WP