SUMMARY AND PARTICIPANT LIST

3 DAYS SHORT COURSE ON THE

MANAGEMENT OF ALKALI AGGREGATE AFFECTED STRUCTURES: ANALYSIS, PERFORMANCE & PREDICTION

OCTOBER 27-29, 2025

Instructors

- Jan Cervenka: Executive Director, <u>Cervenka Consulting</u>
- Andreas Leemann: Group Leader Concrete Technology, EMPA
- Jan Lindgård: Senior Research Scientist, SINTEF
- Simon-Nicolas Roth: Head of Dam Structures, Hydro-Quebec
- Victor Saouma; Prof. Emeritus, University of Colorado, Boulder (Organizer)

DAY 1: THEORY

ASR FUNDAMENTALS & MECHANISMS

- Covered characteristic crack patterns, governing parameters (alkalis, reactive minerals, moisture)
- Explained expansion mechanism: solidification pressure from amorphous ASR products (not water uptake), generating 6-13 MPa
- Discussed impact of temperature, humidity, pH, and cement composition on reaction rates

DIAGNOSTIC METHODS

- Non-destructive testing: stiffness damage test (SDT), crack indexing, laser scanning, photogrammetry
- Laboratory analysis: core sampling, petrographic examination, expansion assessment
- Field applications in Norwegian dams with emphasis on moisture content effects

DAY 2: NUMERICAL MODELING

CONSTITUTIVE MODELING & ANALYSIS

- Presented Saouma-Perottis physics-based model for ASR expansion (temperature, time, humidity dependent)
- Covered material property degradation: elastic modulus and tensile strength decrease;
 unexpected shear strength increase due to chemical pre-stressing
- Emphasized importance of thermal analysis, construction stage simulation, and verification/validation

STRUCTURAL ANALYSIS CONSIDERATIONS

- Static and seismic analysis requirements for AAR-affected structures
- Stress redistribution in restrained structures (dams, nuclear containments)

Case studies showing structures passing static checks but failing under seismic loading

DAY 3: APPLICATIONS

SOFTWARE TOOLS

- ATENA software demonstration for ASR modeling in concrete structures
- PADAM Comp (ANSYS-based) for dam analysis with AAR effects
- Fracture-plastic models incorporating orthotropic behavior and safety factor methodologies

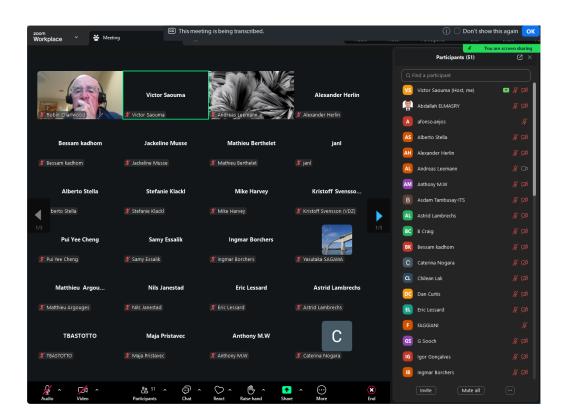
CASE STUDIES

- Building foundations with incorrect aggregates: strength reduction but adequate safety margins
- Hydro-Quebec dams (30% of 600 dams pre-1970): displacement predictions, crack patterns, gate functionality assessments
- Beauharnois powerhouse: successful correlation between model predictions and 90+ years of field data

KEY OUTCOMES

- Mitigation strategies: avoid slot cutting and post-tensioning in refurbishment
- Emphasized digital twins for long-term management
- Highlighted need for collaboration between material scientists and structural engineers
- Identified gaps: moisture transport modeling, thermodynamic modeling data, real-time moisture measurement in large structures

PARTICIPATION


Interest	#
Bridge	10
Containment	1
Dam	25
Other	14

Background	#
B.S.	7
M.S	23
Ph.D.	20

Familiarity with AAR	#
None	2
Minimal	19
Moderate	17
High	12

AUS	BEL	BRA	CAN	CHE	DEU	ESP	GBR	IDN	IND
2	1	2	13	4	4	1	1	1	3

ITA	JPN	PRT	SVN	SWE	USA	ZAF
3	5	1	1	2	4	2

