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1. Introduction

1.1 Description of Problem

Dynamic failure in bound particulate materials is a combaraof physical processes including
grain and matrix deformation, intra-granular crackingfnmacracking, and
inter-granular-matrix/binder cracking/debonding, asmtiluenced by global initial boundary
value problem (IBVP) conditions. Discovering how thesegasses occur by experimental
measurements is difficult because of their dynamic natuddlaminfluence of global boundary
conditions (BCs). Global BCs, such as lateral confinememytindrical compression
specimens, can influence the resulting failure mode, géngra a glass ceramic composite axial
splitting and fragmentation when there is no confinementsrggr fractures with confinement
(4). Thus, we resort to physics-based modeling to help undbese origins dynamically.

Examples of bound particulate materials include, but atéimited to, the following:
polycrystalline ceramics (crystalline grains with amasph grain boundary phases, figure 1(a)),
metal matrix composites (metallic grains with bulk amonphianetallic binder, figure 1(b)),
particulate energetic materials (explosive crystallirergs with polymeric binder, figure 1(c)),
asphalt pavement (stone/rubber aggregate with hardenddrbfigure 1(d)), mortar (sand grains
with cement binder), conventional quasi-brittle concstene aggregate with cement binder),
and sandstones (sand grains with clayey binder). Boundtpkate materials contain grains
(quasi-brittle or ductile) bound by binder material ofiergs called the “matrix.” The
heterogeneous particulate nature of these materials goteeir mechanical behavior at the
grain-to-macro-scales, especially in IBVPs for which lotsd deformation nucleates. Thus,
grain-scale material model resolution is needed in regubhscalized deformation nucleation
(e.g., at a macro-crack tip, or at the high shear strain régface region between a projectile and
target materid). To predict dynamic failure for realistic IBVPs, a modegiapproach will need
to accounsimultaneouslyor the underlying grain-scale physics and macro-scalémwonm

IBVP conditions.

Direct Numerical Simulation (DNS) represents directly ¢inain-scale mechanical behavior
under static®) and dynamic loading condition§+48). Currently, DNS is the best approach to
understanding fundamentally dynamic material failurd,i®deficient in the following ways:

1Both projectile and target material could be modeled witbhsgrain-scale material model resolution at their
interface region where significant fracture and comminutiocurs.
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Figure 1. (a) Microstructure of alumina, composed of graéimsnd by glassy phase (Sandia). (b) SiC rein-
forced 2080 aluminum metal matrix composiig. ( The four large black squares are indents to identify the
region. (c) Cracking in explosive HMX grains and at graintixainterfaces 2). (d) Cracking in asphalt
pavement.



(i) it is limited by current computing power (even massivplrallel computing) to a small
representative volume element (RVE) of the material; andt (isually must assume unrealistic
BCs on the RVE (e.qg., periodic, or prescribed uniform ti@cor displacement). Thus,
multi-scale modeling techniques are needed to predictrdynfailure in bound particulate
materials.

Current multi-scale approaches attempt to do this but falitsby one or more of the following
limitations: (i) not providing proper BCs on the micro-sttural DNS region; (ii) homogenizing
at the macro-scale the underlying micro-structural respan the unit cell and, thus, not
maintaining a computational ‘open window’ to model mictassturally dynamic failur& and

(iif) not making these methods adaptive, i.e., moving a catafonal ‘open window’ with
grain-scale model resolution over regions experiencingadyic failure.

1.2 Proposed Approach

As a precursor to a three-dimensional (3D) finite strain oriworphic plasticity model9) and

finite element (FE) implementatiof@), and overlap coupling with underlying 3D FE or discrete
element (DE) DNS region, we consider a simpler, one dimexdid D) problem: overlap
coupling between a micropolar linear elastic 1D mixed FE etaad a 1D string of Hertzian

(11, 12 nonlinear elastic DE spheres.

To illustrate the application of the micromorphic plagiyanodel (of which micropolar elasticity

is a subset) to the problem of interest, we refer to an ilaigin in figure 2 of a concurrent
multiscale modeling framework for bound particulate matser(target) impacted by a deformable
solid (projectile). The higher order continuum micromaggblasticity model is used in the
overlap region between a continuum finite element (FE) an& D#presentation of the particulate
material. The additional degrees of freedom provided bymi@omorphic model (micro-shear,
micro-dilation/compaction, and micro-rotation) will @l the overlap region to be placed closer
to the region of interest, such as at a projectile-targetiate. Further from this interface region,
standard continuum mechanics and constitutive modelseaséd. The discrete element (DE)
and/or finite element (FE) representation of the partieuaicro-structure is intentionally not
shown in order not to clutter the drawing of the micro-stawet The grains (binder matrix not
shown) of the micro-structure are ‘meshed’ using DEs anéks with cohesive surface elements
(CSEs). The open circles denote continuum FE nodes thatdraseribed degrees of freedom
(dofs)ﬁ based on the underlying grain-scale response, while tid Gatles denote continuum
FE nodes that have free daf3 governed by the micromorphic continuum model. We

2This is a problem especially for modeling fragmentation aachminution micro-structurally.



intentionally leave an ‘open window’ (i.e., DNS) on the peutate micro-structural mesh in order
to model dynamic failure. If the continuum mesh overlayswiele particulate micro-structural
region, as in13) for atomistic-continuum coupling, then the continuum késild eventually
become too deformed by following the micro-structural motiluring fragmentation. The
blue-dashed box at the bottom-center of the illustratiansicromorphic continuum FE region
that can be converted to a DNS region for adaptive high-figdeiaterial modeling as the
projectile penetrates the target.

deformable solid body (projectile)
continuum FE mesh

v bound particulate material (target)
multi-scale computational model

)
particula icro-structural ion
r

IENE S

P—7" >,_/ 7
coupling region E
(micromorphic continuum FE

to particulate micro-structural DNS)

g

Figure 2. 2D illustration of concurrent computational msltale modeling approach in the contact inter-
face region between a bound particulate material (e.gantiertarget) and deformable solid body (e.g.,
refractory metal projectile).

1.3 Focus of Report

Regarding the approach described in section 1.2, thisréparsses on the 1D overlap coupling
between a micropolar linear elastic FE model and a 1D stridpotzian nonlinear elastic DE
spheres. An outline of the report is as follows: section Rrhmarizes the Statement of Work
(SOW) and the Tasks, section 2.2 the 1D micropolar lineatielty derived from the 3D
micropolar theory using Timoshenko beam kinematics witllastretch, section 2.3 the
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nonlinear elastic theory and implementation for spheiifalparticles with Hertzian elastic
contact, section 2.4 the overlap coupling methodology amderical examples, and section 3.
summarizes the results, conclusions, and future work.

The DE-FE coupled implementation is currently limited tolioear quasi-statics, but the
formulation has been provided in general for nonlinear dyica, and will be extended to
dynamics in future work.

1.4 Notation

Index notation will be used wherever needed to clarify thespntation. Cartesian coordinates
are assumed, so all indices are subscripts, and spatiallghativative is the same as covariant
derivative (14). Some symbolic/direct notation is also given, such tad);;, = a;;b;s,

(a ®b);jr = a;;by. Boldface denotes a tensor or vector, where its index rootasi given.
Subscript(e) ; implies a spatial partial derivative. Superposed (@iot = D(0)/Dt denotes
material time derivative. The symbdeczf implies a definition.



2. Technical Discussion

2.1 Statement of Work (SOW) and Specific Tasks

Bound particulate materials are commonly found in indasproducts, construction materials,
and nature (e.g., geological materials). They include @ghtalline ceramics (e.g., crystalline
grains with amorphous grain boundary phases), energeteerialia (high explosives and solid
rocket propellant), hot asphalt, asphalt pavement (affehalt has cured), mortar, conventional
guasi-brittle concrete, ductile fiber composite concredad sandstones, for instance. Bound
particulate materials contain partict€guasi-brittle or ductile) bound by binder material
oftentimes called the “matrix”.

The heterogeneous nature of bound particulate materiaksg® its mechanical behavior at the
particle- to continuum-scales. The particle-scale is tishas the scale at which particle-matrix
mechanical behavior is dominant, thus necessitating #dicfes and matrix material be resolved
explicitly (i.e., meshed directly in a numerical model)¢caanting for their interfaces and
differences in material properties. Currently, there ispproach enabling prediction of
initiation and propagation of dynamic fracture in boundtjgatate materials—for example,
polycrystalline ceramics, particulate energetic makerimortar, and sandstone—accounting for
their underlying particulate microstructure across nplgtiength-scales concurrently.

Traditional continuum methods have provided the basis foleustanding the dynamic fracture of
these materials, but cannot predict the initiation of dymamacture without accounting for the
material’s particulate nature. Direct numerical simaat{DNS) of deformation, intra-particle
cracking, and inter-particle-matrix/binder debondingj&t particle-scale is limited by current
computing power (even massively-parallel computing) toalsrepresentative volume element
(RVE) of the material, and usually must assume overly-i@ste boundary conditions (BCs) on
the RVE (e.qg., fixed normal displacement).

Multiscale modeling techniques are clearly needed to atelyrcapture the response of bound
particulate materials in a way accounting simultaneoust\effects of the microstructure at the
particle-scale and boundary conditions applied to thereseging structure of interest, at the
continuum-scale. The services of a scientist or engineeregyuired to develop the mathematical
theory and numerical methodology for multiscale modelihgaund particulate materials of
interest to the U.S. Army Research Laboratory (ARL).

3We use ‘particle’ and ‘grain’ interchangeably.



The overall objective of the proposed research is to develogncurrent multi-scale
computational modeling approach that couples regionsmtimoum deformation to regions of
particle-matrix deformation, cracking, and debondingilevhridging the particle- to
continuum-scale mechanics to allow numerical adaptivibdeling initiation of dynamic
fracture and degradation in bound particulate materials.

For computational efficiency, the solicited research wskk IDNS only in spatial regions of
interest, such as the initiation site of a crack and its tiprdppropagation, and a micromorphic
continuum approach will be used in the overlap and adjaegions to provide proper BCs on
the DNS region, as well as an overlay continuum to which tggatdhe underlying particle-scale
mechanical response (stress, internal state variablgs))S The micromorphic continuum
constitutive model will account for the inherent lengthlsaa damaged fracture zone at the
particle-scale, and, thus, includes the kinematics tolertak proper coupling with the fractured
DNS particle region. Outside of the DNS region, a microma@xtension of existing
continuum model(s), with the particular model(s) to be dateed based on ARL needs, of
material behavior will be used.

This SOW calls for development of the formulation and finiengent implementation of a finite
strain micromorphic inelastic constitutive model to bedearticle-scale mechanics to the
continuum-scale. The desired result is formulation of smamodel, enabling a more complete
understanding of the role of microstructure-scale physicthe thermomechanical properties and
performance of heterogeneous materials of interest to ARkese materials could include, but
are not limited to, the following: ceramic materials, eregigmaterials, geological materials,
and urban structural materials.

2.1.1 Specific Tasks

What follows is a list of specific tasks, and a summary of whas$ wccomplished for each task.

1. Finite element implementation of finite strain micromorphiessure-sensitive
elasto-plasticity model (Regueiro, J. Eng. Mech., 2009hecontinuum mechanics code
Tahoesour cef or ge. net/ proj ect s/t ahoe.

This implementation is ongoing, but has not been completdidnie for this report.
2. Interact with ARL researchers in order to improve mutual ersianding with regards to

dynamic fracture and material degradation in heterogerseand particulate materials and
associated numerical modeling techniques.



Continue to interact with ARL researchers regarding the&ds for this research problem.

3. Refine formulation of algorithm to couple finite strain mizrorphic continuum finite
elements to DNS finite elements of bound particulate matdriaugh an overlapping
region.

This has been accomplished to some extent through the 1Dapwayupling problem
described in this report in sections 2.2, 2.3, and 2.4.

4. Implement coupling algorithm in using finite element codeoBa(both for micromorphic
continuum and DNS). Extension can be made for coupling micrphic model (Tahoe) to
DNS model (ARL or other finite element, or particle/meshitede).

The coupling algorithm has been implemented in a separatelatone code instead of
Tahoe. Future research will establish the coupling in Tahsgart of currently funded
research projects.

2.2 One-dimensional (1D) Micropolar Linear Isotropic Eladicity

This section (in section 2.2.1) briefly presents the thriegedsional (3D), small strain, linear
isotropic micropolar elasticity model and balance of lin@ad angular momentum equations
based on the work ofl6), and then provides more details on the reduction to a 1D {seution
2.2.2) using Timoshenko beam kinematics with axial str€t@ Finally, in section 2.2.3, the
1D form of the model is expressed in weak and Galerkin formgiiite element implementation,
a mixed 1D element is used to interpolate the fields, and a noahexample is presented to
demonstrate convergence of the FE implementation.

2.2.1 Three-dimensional (3D) Micropolar Linear Isotropic Elasticity and Balance
Equations

The balance of linear and angular momentum, respectivaly micropolar continuum ard%)

Oy + pby — piiy, = 0 (1)
MUk + ClmnOmn + Pl — PBk = 0 (2)

whereoy;, is the unsymmetric Cauchy stress tensor over ®dyis the mass density;. is a body
force per unit massy, is the displacement vectaiy, is the acceleration vectary,;, is the
unsymmetric couple stress,,.,, is the permutation operatdt, is the body couple per unit mass,

8



Br = jr 1S the intrinsic spin per unit masgjs the spin inertia for a spin-isotropic materials,
; is the micro-rotation vector, indicés/,--- = 1,2, 3, and(e) ; = 0(e)/Jz, denotes partial
differentiation with respect to the coordinate

For a linear isotropic elastic micropolar solid, the cansive equations arelp)

O = Nl + (21 + K)er + Kegim (Tm — ©m) (3)
My = POk + BPrt + VPLk 4)

where), u, k, a, 3, and~y are isotropic elastic parameters, and the deformations are

1

€ = §(Uk,l+ul,k) (5)
1

Ty = ieklmum,l (6)
1

T = i(uk,l_ul,k):_eklmrm (7)

wheree,; is the classical small strain tensey,the axial vector, and,,; the rotation tensor.

2.2.2 1D Timoshenko Beam Kinematics with Axial Stretch and BRsulting 1D Micropolar
Linear Elasticity

We consider Timoshenko beam kinematics frdr) ( with superimposed axial stretch for small
deformations. The displacement vectoand micro-rotation vectop are

Uy U — Tl 01
u=|uy | = v =19 | =0 (8)
Uus ¥3

whereu is the stretch in the; direction,d is the rotation of the centroidal axis about thegaxis,

v is the transverse displacement in thedirection, we ignore displacement~ 0 in the z;

direction, and we assume the micro-rotatq'&)dndéf 0.



Taking spatial derivatives, we have the following deformaimeasures:

gt 00 I RO
[ur] = L 00| fed = | 3 (2 -9) 0 0|
0 0 0 0
0
1
[Tk] = 5[6klmum,l] - 0
1 (ﬂ + 9)
2 \ Oz
0 ~1(2+6) 0
) = —[exmrm] = | 3 <§—;’1 + 9) 0 0 (10)
0 0 0
0
[eklmgom] = -6 0 0 (11)
0
The unsymmetric stress tensor components then result as
o = (A+2u+K)en (12)
T = Ay (13)
o33 = Aeqy (14)
ov
019 = (2,u + KZ)€12 — RT12 — K€12mPm — (,U + /ﬁ)(a—xl — 9) = (,U + /ﬁ)’ySh (15)
091 = (2,& + /<G>€21 — RT21 — R€21mPm = /~V75h (16)
00
mis = Y=— (17)
81’1
00
mz = [Bo— (18)
81’1
WherE’}/Sh déf ;—;}1 — 0,093 =039 =013 =031 =0, and

My = Moz = M3z = Mg = Mo = Moz = M3z = 0.

10



The balance of linear and angular momentum equations cawibke be reduced as

oy —pip = 0 (19)
o121 — puz = 0 (20)
mig1 + 012 — 021 — PBS = 0 (21)

wheref; = j35 = j0, assuming spin-inertigis constant at small strains. However, to reach a
form amenable to a 1D mixed FE formulation, we express th&vi@an in terms of the reduced
kinematics. Consider the weak form in 3D as

/pwkilkdv—l—/wk,lalkdv = / wktkda (22)
B B Tt
/ P Brdv + / Nk mupdv — / Mk ChmnOmndV = / nkrrda (23)
B B B r

where the tractiom, = oy,n,;, surface couple stress = my,n;, and the weighting functions are

w1 duq ou — x900
[wg] = wy | = | dug | = ov (24)
| 0 0 0
[ 0 0 0
] = 0| = 0 =10 (25)
| 73 dep3 06

whered(e) is used here as a variational operator. Likewiges i — 250 andii, = 3. We
analyze each term separately, such that the first term otieguz2 is
/ pwiiipdy = / p(wiily 4+ walls)dv (26)
B B
_ / p [ — 20) + S0(B) + 80(~nsii + (22)%6)] dv 27)
B
where we consider that all variables are functions only@lbe 1-D length:; (which we will
simplify asz).

11



Thus, when reducing the integrfl(e)dv = [, [,(e)dadxz, we have

/ pwyiipdy = / [5u(pA1l — pQO) + dv(pAD) + 60(—pQii + p[é)] dz (28)
B L

where, the first moment about the axis() and moment of inertia about axis are defined as

def

Q =

Toda , [déf/(xQ)Zda (29)
A A

Likewise, the stress term is

/wk,lUlkdU = /(w1,1011+w2,1012)dv (30)
B B

_ / [Gua (A + 201+ 1) (At — Q0.) + 0. (jt + 1) (v — )
L
+00 (A4 2u+ k) (—Qu, + 160 ,)] dz (31)

Considering that the traction acts in thedirection on ther; face, then the unit normal o, is
n = [1 OO]T, andt1 = 011, tg = 019. Then,

/wktkda = /(w1t1+w2t2)da (32)
I, A

= /5u011da—/59932011da+/5v012da (33)
A A A

where, if we consider the traction actsiat L, then concentrated axial fordg = fA o da, end
moment—M;, = [, x2011da, and end shear fordé, = [, 012dA, and, thus,

/ witrda = oupFp + 00, My + dv Vi, (34)
Iy

For the balance of angular momentum weak form, we have fomibeo-inertia term

/ by — / 50(pAj6)d (35)
B L

12



and for the couple stress term

/nk,lmlkdv = /n371m13dv:/597z(7A97z)dx
B B L

and the skew part of the stress

—/nkekmnomndv = /59(012—021)0[1):/59 [KA(0 — v )| dx
B B

L

where if the traction couple stress acts onithéace atr = L, then

/ nkrkda = /59m13da:59LM2, Mz:/mlgd&
r A A

Next, we put these equations in Finite Element (FE) matnirifo

2.2.3 Finite Element (FE) Implementation of 1D Micropolar Linear Elasticity
The Galerkin form of the reduced equations may be written as

/ [5uh(pAu'h — pQO") + Sv"(pAT") 4 66" (—pQil" + pIf")
L

5uf;()\ +2u + /{)(Auffv — Q@Z) + 51}7};(u + KJ)A(UZ -6

+00% (A + 20+ 5)(—=Qul, + 16%)] de = dulf Fr, + 607 My, + 6vpV,

/ [59h(ijéh) + 00" (YAB") + 66" [ A(6" — vf;)]] dz = 50" M?
L

13

(36)

(37)

(38)

(39)
(40)



The interpolations, and their spatial derivatives, for aedielement shown in figure 3 are the

following
2 ) de
uh<£) = ZNg(g)d;(a) = Nlu N; :| [ d:(l) ] — Nu,edi
o ' =(2)
2 : dy)
a=1 - .
dy(a)
2 ) de
") = D NIEdga =| N N ] [dz(l) ] _ NPqs
o ' 0(2)
5uh<£) — Nu,ec;
(€)= N"c,
50"(¢) = N"cj
K. pea e[
V(©. = BUdy. B'= | Nj, Ni, N, |
P, = B, B[N, M ]
5uh(§),x = B"‘ct
5Uh(£),:c — Bv,ecz
59h(£),x - BQ’ECZ
h/(?
U3
! T ;
( - 5
o N 3 ) o
— ¢
h(i

Figure 3. Finite element degrees of freedom (dof) for mixecemiulation Timoshenko beam with axial
stretch. The middle node 3 is at the center of the elementaté = 0, where¢ is the natural coordinate

3).
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We assignV?® = N“¢ and B?* = B“¢, and the element dofs are

U}f dia)
uj’ d32)
ol dZ(l) d;
b | =df = dyoy | = d, (41)
v’ dy3) d
o1 dgu)
| 0" ] L da)

Substituting these interpolations into the Galerkin forffb@ance of linear momentum in
equation 39, and grouping terms, we can define element mdssiiness matrices as

A(CZ)T (/ pAe(Nu,e)TNu,edx) di o (/ er(Nu,e)TNG,edx) d;
Le pe

e=1
m"::u,e m"ge,e
+ ( / (A +2u+ m)Ae(B“’e)TB“’edx> d: — < / (A +2u+ m)Qe(B“’e)TBe’edx) d;
£e £e
k%,e k::l:g,e
= I (42)

A ( / pA%N”ve)TNUvde) d,+ ( [+ m>A6<vaE>TB“vde) d,

e=1 o ",

m\'g'u,e k:zq),e
- < / (u+ /—c)Ae(B”’e)TNG’edx) d5 = 5 (43)
Ze
k:?e,e

Mel e e
A" |- ( / er(NGvE)TNde) d, + ( / pIe(Ne’e)TNe’edx) dy
Le Le

e=1 N .,

~~

mQu,e m‘Q’Gl,e
— (/ ()\+2M+H)QG(BG’8)TBU’GCZ{E) d;—}— (/ ()\+2M+/€)]8(BG’8)TB€’GCZ{E) d;
Ze ge

keu,e kGQl,e
= fu] (44)
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whereA is the element assembly operatay, the number of elements, aiti= /¢ the length of
an element, where the equations can be written more concisely in médrir as

Ad(cZ)T _muu,eaz . mu@,eaz + kuu,edz . ku@,ed; _ fi"] (45)
e=1 -

el r e

A" [med, + ked; - kd; = £ (46)
e=1 -

el r e e

A(cz)T _meu,edx + m@@l,ede o k@u,edi + k@@l,edz _ f?w] (47)
e=1 -

Likewise, when substituting the interpolations into thde®idn form of balance of angular
momentum in equation 40, and grouping terms, we have

nCI e
A" | ([ rioveerneeas)dye ([ oam B 4

7

e=1 o

g

m602,e

k@‘@’Q,e

+ ( / /-@AE(NG’G)TNG’edx) dy — ( / KAE(NG’G)TB”’edx) dy = fio (48)
Le pe

- -

vV Vo
k993,e kev,e

where, in summary, we have

Nel

A<cz)T |:m€92,eglz + k9€2,ed§ + k9€3,ed3 i k@v,edz _ f?\/[e (49)

e=1
Adding equations 47 and 49 for the micro-rotation dofs, weeha

Nel .

A<c§>T [_meu,eaz + (mGGLe + m€92,e)dz . k@u,edi + (kGGLe + k€92,e + k€93,e>d§

e=1
—k"Cdy = f5 + Fie] (50)
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Accounting for essential boundary conditions (BCs), arsgaling the global FE matrix
equations ), we arrive at the coupled system of matrix FE equations icedor the unknown
dofs as

MPD + KPD = FP (51)
d, d, Fp
D=|d,|, D=|d, |, F’= Fy
dy dy F+ F o
M 0 _ MO
MP = 0 M 0

_Meu 0 M@@

Kuu 0 _KUG
KD — 0 K _KUG

_Keu _KBU KB@

SinceN’¢ = N“¢, thenM® = M and M" is symmetric, and sincB?* = B™° then
K% = K" butK? is, in general, unsymmetric becayse- 0 which leads tak? + K.

Given the mixed 1D Timoshenko beam micropolar elastic fieiégnent with axial stretch in
figure 3, we can select specific shape functions, with regyfiist spatial derivatives, as follows:

N“ﬂ:%h—g 1+¢ ,B“’e:%[—l 1 (52)
Nve=[Lel-1) dete+n) 1-¢ ] B =2 et e-3 —x] (63)

whereh* is the element length.
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With these element interpolation matricB8 and ‘strain-displacement’ matricd3®, and a bar
with circular cross-section such that the first mom@ht= 0 (see section 2.2.4), we arrive at
specific forms of the element stiffness matrices as

A° —1
kU= 2o (A 2+ k) X ] k=K =0 (54)
7 L _4
vv,e 2A° o 0 i
e =2 | 1 9
_4 _4 8
3 3 3
_5 _1
Ae 3 3 Ae _5 1 4
vhe __ fv,e
K= D(ntw) | 5 5 | ETO=R| T3 _f”é] (56)
4 4 3 3 3
3 3
1° 1 -1 A 1 -1
k@@l,e = () 2 k902,e _ 57
Ache 2 1
2] o

We can similarly derive the element mass matrices, but incsimulations are currently limited
to quasi-static problems, we do not show all details forudeig the inertia terms. This is part of
future work.

2.2.4 Convergence of 1D Micropolar Linear Elastic FE

In this section, we take the FE formulation and implemeatatiom the previous section and test
its convergence with regard to spatial discretization egfiant (i.e.,* — 0). Itis well known

that in the thin limit the Timoshenko beam formulation witl d poor job calculating transverse
displacementX6), because the classical equal interpolatidit'¢ = N "¢, andB*“* = B"¢)
element “locks” as the transverse shear strain approaehesrethe thin limit. Thus, we use the
mixed formulation (N“° # N"¢, andB"““ # B"°) in figure 3 and reduced integration to
alleviate this problerh(16). Figure 4 shows the five-element mesh, and the force versus
displacement results for two-, five-, ten-, and twenty-eaatrmeshes. We can see that for the
axial force and displacement, the result is the same for edlimas (as expected for small strain
theory, where axial and transverse displacements are dischjuwhereas for the five-element

4We note that in our case the reduced integration gives us dedadenefit, as the mixed formulation seems
sufficient to address any potential locking. See resultguré 4.
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mesh, for the transverse force and displacement, the sesgytear convergent. In the overlap
coupling simulations in section 2.4, we will use the fivepadat mesh.

Each mesh id, = 20cm in length, with rod circular cross-section with radids= 0.5cm, as
shown in figure 4. The applied forces a@rg*" = 1kN, F,”*" = 1kN. For the elastic
parameters, we use Young’s modulis= 10GPa, Poisson’s ratio = 0.3 (approximate for
quartz), and approximateandy as

Ev FE

A aEoa=) M aaay

(59)

even though\ andy arenotthe Lamé parameters. We approximate 0.1y, and

v = (0.05)¢%u, with elastic length scalé= 1cm. The cross-sectional arda= 7 R* = 7.85e-5
m?, first moment about the x-ax{@ = 0, and moment of inertia about the x-axis

I = ;mR* = 4.9e-10 nt.

FEXT 20cm !
© © © © @
EXT 1
FL(/
f vsd_of node 1 f vsd of node 1
X X y y
1 ; : ‘ 1
0.8 0.8r
< 06t < 06t
3 3
2 I N O B R 2 elements o 7 2 elements
QOar o S 5 elements Q" 0 I 5 elements
- --10 elements - --10 elements
0.2 ——20 elements 0.2 / ——20 elements
O i i i O i i i i i
0 0.005 0.01 0.015 0.02 0 0.5 1 1.5 2 2.5 3
DISPLACEMENT (cm) DISPLACEMENT (cm)

Figure 4. (top) Five-element mesh. (bottom) Demonstratbreonvergence of thin Timoshenko beam
mixed FE implementation in compression, bending, and shéaial force versus displacement of the left
end node is exact, whereas the two-element mesh may be toseceehile the five-, ten-, and twenty-
element meshes give nearly the same transverse displacaptenan applied transverse forgg X7 .
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2.3 1D String of Hertzian Nonlinear Elastic Discrete Elemen(DE) Spheres

We refer to figure 5 for the kinematics and forces at contéetween two discrete element (DE)
spheresy and5. From Hertz-Mindlin elastic contact theory between stifferes {1, 12, 18,
we have

fi = BB (60)
E
Ey=—+ =R/2, 0 =q¢—q]
0 2<1 — V2) ) RO R/ » Yn qx qx
c dpa .
fy = 50 (61)
E
=g a= (0", 6 = ¢ — ) + R" + )

whereF is the Young’s modulusy is the Poisson’s ratio, anfl is the radius of a spherical
particle (particles are assumed to have edual this case). We can then assemble the internal
force vectorf’"¢ and local consistent tangedf’ " "¢ /0g° associated with dof vecte at
contacte as follows:

[ ] o] [ oof ]
€ a ﬁ
fy qy aqs
€ a INT,e afs
R ¢=" of "t _ | og (62)
—fa @ 0q° o
€ af?j
—Jy q5 — 8-
i — 15 i i w? | _ggi
Of5 o5 D¢ - -
_Jx — 2E € n n — .
dq° 0V RO@aqE " Oq° [ 100 —-100 ] (63)
Ofy _ 4p (1 09, o5\ o5
—_ = n 55 t t _ B 64
Ofs _ o 41 50w +u%)  0f; O +uf)
=B 8 . = 65
oq* 2—VR Iq° +R8qe’ oq° [0 0100 1] (65)
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where the contact momelfif is calculated by factoring a rotational stiffness with dma®nless
scalarB, such that

4
fo = B%Pﬁﬂ(w +u) + R (66)

This is done to avoid a rank deficient local consistent tanggf™ ' /0q¢ because of the linear
dependence ak f; on f;.

Figure 5. Kinematics and forces of two DE sphetiesnd 5 contacting at contact

These internal force and moment vectors are assembled gitdal nonlinear internal force and
moment vectoF’ " (q), that when combined with an external force and moment veefot”,
lead to a residual form of the balance of linear and angulanerdgum to solve using the
Newton-Raphson method,

R(q) = F'"""(q)—-F"" =0 (67)

TNcontacts

FINT(q) _ A fINT,e

e=1

For the external force and moment veckof 7, we will insert the boundary conditions directly
into the corresponding global dofs IR“*”.  Simulations using the DE implementation will be
demonstrated in the context of the overlap coupling metlugyodiscussed in the next section.
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2.4 Overlap Coupling Between 1D Micropolar FEs and a String 6Spherical DEs

An aspect of the computational concurrent multiscale modelpproach is to couple regions of
material represented by particles, Discrete Element (REggions of material represented by
continuum, Finite Element (FE). Another aspect is to brittgeparticle mechanics to a
continuum representation using finite strain micromorghisto-plasticity, whereas the small
strain micropolar continuum is a simple approximation df particles with small frictional
sliding in the overlap region (we consider no sliding in thenerical examples in sections 2.4.3
and 2.4.4). The coupling implementation will allow arbithaoverlapping particle and
continuum regions in a single “hand-shaking” or overlaparegsuch that fictitious forces and
wave reflections are minimized in the overlap region. In tiigior nearly homogeneous
deformation, if the particle and continuum regions shaeestiime region (i.e., are completely
overlapped), the results should be the same as if the ovedggn is a subset of the overall
problem domain (cf. figure 6). This will serve as a benchmadbfem for the numerical
implementation. The coupling implementation extends ttigda mechanics and micropolar
continuum the “bridging scale decomposition” proposed18) and modifications thereof by
(13) (see references therein for further background on thesleaus).

2.4.1 3D Kinematics

Here, a summary of the kinematics of the coupled regions/egior general 3-D kinematics,
following the illustration shown in figure 6. It is assumedtkhe finite element mesh covers the
domain of the problem in which the material is behaving mot&ldike, whereas in regions of
large relative particle motion (fluid-like), a particle namics representation can be used (in this
case, DE). In figure 6, discrete domains are defined, whenautpe background denotes the FE
overlap regiom3” with underlying ghost particles, aqua blue the FE continuegion3” with no
underlying particles, and white background (with brownticées) the free particle region

B" U BPE. In summary, the finite element domai is the union of pure continuum FE domain
B", overlapping FE domain with underlying ghost partic®s and overlapping FE domain with
underlying free particles”, such that3" = B" U B" U B". The pure particle domain with no
overlapping FE domain (i.e., the ‘open-window’) is indiedtoy 3°. The goal is to have the
overlap region3" U B" as close to the region of interest (e.g., penetrator skitt) agnimize the
number of particles, and, thus, computational effort. éwihg some of the same notation
presented inX3), we define a generalized dof vectrfor particle displacements and rotations in
the system as

V]

Q: |:qC|(7qB7'"7q"/7wa7w67"'7w“/:|T7 0[757"'776“4 (68)
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continuum region (FE)

"
Bh( — o o ol o)
Q —e ®

B" s
p o ®

B s
g o o

BDE(
a * "

Q o free particles particle region (DE)

@ e ghost particles (particles whose motion is prescribed
by continuum displacement and rotation fields)

D e finite element nodes whose motion is unprescribed

jj O finite element nodes whose motion is prescribed
by underlying particles

Figure 6. Two-dimensional illustration of the coupling\Wwetn particle and continuum regions.

wheregq,, is the displacement vector of particle w,, its rotation vector, andl is the set of all
particles. Likewise, the finite element nodal displacermantd rotations are written as

D = [ddy,...,d.,0486,,... 65" (69)
a,b,...,cEN, d,e,...,fe./\>l

whered, is the displacement vector of nodgeé, is the rotation vector of nod# N is the set of
all nodes, and\ is the set of finite element nodes with rotational degreeseaffom, where
M c N. Inorder to satisfy the boundary conditions for both regidhe motion of the particles
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in the overlap region (referred to as “ghost particles,figure 6) is prescribed by the continuum
displacement and rotation fields, and written as

@ - [qavqﬁv"'7q~/7wa7wﬁv"'7w’y]T7 a)ﬂv"'vv E "Zl\v "Zl\e Bh (70)
while the unprescribed (or free) particle displacementsratations are
Q=199 .4y ws,we,...,w))", be....neA, AeB"UBPF (71)

whereAU A = AandAN A = (). Likewise, the displacements and rotations of nodes
overlaying the particle region are prescribed by the plartiwotion and written as

D = [dgdy,....d.,04,0,,... 07" (72)
a,b,...,ce./\Af, d,e,...,fe./T/l\
N, MeBuB

while the unprescribed (or free) nodal displacements atadioms are

D = [dm,dn,...,ds,et,eu,...,BU]T (73)
m,n,...,.seN, tu,..,veM
N, MephuB

whereNVUN =N, N NN =0, MUM = M, andM N M = . Referring to figure 6, the
prescribed particle motior@ can be viewed as boundary constraints on the free partigierre
and likewise the prescribed finite element nodal displacesend rotationdD can be viewed as
boundary constraints on the finite element mesh in the qveeigion.

In general, the displacement vector of a particlean be represented by the finite element
interpolation of the continuum macro-displacement figldevaluated at the particle centraid,
such that

v

' (@a,t) = > NA@o)d,(t), a€A (74)
aEN
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whereN* are the shape functions associated with the continuumatispient fields". Recall
that V' have compact support and, thus, are only evaluated forcfggtivith centroids that lie
within an element containing nodsin its domain. In DE, particle dofs (translations and
rotations) are tracked at the particle centroids, as atdtegd forces and moments (from forces
acting at contacts). For example, we can write the prestidsplacement of ghost particteas

q,(t) = ma, ZN“ Ty )d, (1), acA (75)

Likewise, particle rotation vectors can be representedbyfihite element interpolation of the
continuum micro-rotation fielgp” evaluated at the particle centraigl, such that

Mg, t Z NP (x,)0(t), «a€ A (76)
beM

whereN; are the shape functions associated with the micro-rotéiitshe”. For example, we
can write the prescribed rotation of ghost particlas

Wa(t) = @"(x0,t) Z N7 (x4)0(1) acA (77
beM

For all ghost particles (cf. figure 6), the interpolationa b& written as
Q=Ng, D+Ngs D (78)

whereN 5, and N 55 are shape function matrices containing individual nodapghfunctions
N*and N/, but for now these matrices will be kept general to increasdlexibility in choosing
interpolation/projection functions (such as those usadashfree methods). Overall, the particle
displacements and rotations may be written as

Q Nsp Ngp D 0
where@Q’ is introduced 13) as the error (or “fine-scale’1Q)) in the interpolation of the free

particle displacements and rotatia®s whose function space is not rich enough to represent the
true free particle motion. The shape function matridésire, in general, not square because the
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number of free particles are not the same as free nodes asctiperl nodes, and the number of
ghost particles is not the same as prescribed and free nddssalar measure of error in particle
displacements and rotations is defined 3 (

e=Q"Q (80)

which may be minimized with respect to prescribed continunaaal dofsD to solve forD in
terms of free particle and continuum nodal dofs as

D= ME%NQE(Q ~NgpD), Mpp=N ;N

0b (81)
This is known as the “discretizefd, projection” (13) of the free particle motiod® and free nodal
dofs D onto the prescribed nodals da3. Upon substituting equation 81 into equation 78, we
may write the prescribed particle daﬁsin terms of free particl&) and continuum nodab dofs.
In summary, these relations are written as

Q = By,Q+ Bg,D (82)
D = Bp,Q+Bp,D (83)
where
By, = NgpBpg (84)
Bsp = Ngp+NgpBpp (85)
Bp, = MgﬁNgﬁ (86)
Bp, = —~M;;N,5Nap (87)

As shown in figure 6, for a finite element implementation o§ thof coupling, we expect that free
particle dofsQQ will not fall within the support of free continuum nodal daf2, such that it can be
assumed thalVN op = 0 and

Q=By,Q+By,D. D=B;,Q (88)
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where

Boo =NanBoo - Bap = Nap (89)
Bp,=M;:Njs, By, =0 (90)

The assumptioN o # 0 would be valid for a meshfree projection of the particle roo$ to the
FE nodal dofs, as inl@), where we could imagine that the domain of influence of thehfree
projection could encompass a free particle centroid; tiggeseof encompassment would be
controlled by the chosen support size of the meshfree k&unetion. The choice of meshfree
projection in L3) was not necessarily to allo@ be projected tdD (and vice versa), but to
remove the computationally costly calculation of the iIS‘EHWB% in equations 82 and 83.

2.4.2 3D Kinetic and Potential Energy Partitioning and Couping

For the particle DE equations, the kinetic energy'# dissipation functiorf’?, and potential
energyU%, such that

¢ = JQM9Q
F9 = aT? (91)

Q
Q _ INT,Q
UQ) = /O FINTQ(8)4S

whereM¥ is a mass and rotary inertia matrix (not given in section,28)F’~7>< is provided
from equation 67. The dissipation functiéi¥’ is written as a linear function of the kinetic
energyl’® with proportionality coefficient, which falls within the class of damping called
“Rayleigh damping” (pg.130 0f20)). For the micropolar continuum FE equatiofi¥) is the
kinetic energy /" the dissipation function, and” the potential energy, such that

1. .
TP = 5DMDD
FP = 0 (92)

D
UP(D) = /0 FINT.P(§Y4S
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whereM? and F'V"-P(8) = K" S come from equation 51. We assume the total kinetic and
potential energy and dissipation of the coupled partidetiouum system may be written as the
sum of the energies

7(Q.D) = T2Q,Q(Q, D))+ T°(D, D(Q)) (93)
U(Q,D) = U%Q,Q(Q,D))+U"D,D(Q)) (94)
FQ.D) = FQ,Q(Q. D)) (95)

where we have indicated the functional dependence of trsepbed particle motion and nodal
dofs solely upon the free particle motion and nodal d@fand D, respectively. Note that the
dissipation function” = F'? only applies for the particle system, and only for statidgbems
(dynamic relaxation DE simulation). For purely dynamicadgems,F'® = 0, and there is only
dissipation in the particle system if particles are allowedlide frictionally, and the continuum

has plasticity or other inelastic constitutive responsagrange’s equations may then be stated as

d < ar ) OT  OF  0U _ Lpxrg
00 Q" 20 TaQ
d ( oT ) OT | OF U _ ppxrp
oD oD oD * oD

(96)

which lead to a coupled system of governing equations (tined angular momentum) for the
coupled particle-continuum mechanics. The derivatives ar

Q Q D
o _ o g g, T g (97)
0Q 0Q 90 oD oQ

OF OF®@ oT? 8TQ

0Q 00 00 o

oU oU?  oU@ ouP

0Q ~ 0@ "o " Hp e o
oT orr  orP oTe

oD oD oD 0Q

or oF

- I 101
oU our  ouP U<

oD ~ Db " op Pov* g Bav (102)
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If the potential energy/ is nonlinear with regard to particle frictional sliding andcropolar (or
micromorphic) plasticity, then (96) may be integrated meiand linearized for solution by the
Newton-Raphson method. The benefit of this multiscale ntkthas pointed out bylQ), is that
time steps are different for the DE and FE solutions. A meiétis time stepping scheme will
follow an approach similar tal@). To complete (96) and identify an approach to energy
partitioning, the individual derivatives may be written as

Q . Q PSS
T _meq ., 77— Mg (103)
0Q 0Q

D ) D Y
8& =MPD , 52 =MPD (104)
oD oD
5 _a(M Q+BL M Q) (105)

Q Q .
o - TTQ) o = PaQ) (106)
ouP ouP 5,

— FINT,D D S FINT,D D 1 7

where superscriph denotes free particle motion a@ighost particle motion, whereas
superscriptD denotes free nodal dofs aridl prescribed nodal dofs. The energy partitioning will
be introduced through the definition of these terms belowstFsubstitute equations 103—107
into equation 96 to arrive at the coupled nonlinear equatinrterms ofQ and D as

(M9 + BS, ,MBg, + B, M Bj,) Q
+(B5,M By, + BL,MB;,,) D

+ (€9 + BL,C9Byy) Q + BL,C?Bg,D

+FNT9(Q) + BL, FN9[BoyQ + By, D)

+B%QFINT’B[BﬁQQ + By, D] = FFXTQ | BZ?A“QFEXT,@ (108)
(BEDM@B@D + B%DMEBEQ) Q
+(M”+ BS,M°By,, + B M By, ) D

+BL, F'NQ(B5,Q + Bg,D) + BL F'"P[B5 Q + Bj,, D

L FINTD(D) = pEXTD | B%DFEXT’E (109)
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where an expression in brackés$ denotes the functional dependence of the nonlinear iriterna
force and moment vector. Note the projections throughBhmatrices of the corresponding
mass, rotary inertia, and damping matrices, and forcingaoishent vectors. First, starting with
the mass and rotary inertia matrices for the particles, witioa the kinetic energyas follows:

M? = (1-#)AmE acA, z, B (110)

M° — MPPQ L MY (111)

MPPO = Amg, BeA, s B
B

/\Q ~
M =(1-#) AmS,BeA, zz€B"
B

where M@ is the mass and rotary inertia matrix of ghost particle8tnM?*-? the mass and
rotary inertia matrix of free particles iB°%, M ¢ the mass and rotary inertia matrix of free
particles inB3", andr is a weighting factor for the kinetic energy in the overlagiom 5" U B".

For no homogenized continuum contribution to the kinetiergg in the overlap region, = 0,

and for full continuum homogenization of the underlyingtide kinetic energy; = 1. In our
case, we will consider the range< 7 < 1. Given that the proposed multiscale modeling
framework is to be used in an adaptive fashion in the futuaeirty an overlaying continuum
homogenization of the particle response is attractive wiaticle is converted to continuum
representation, and vice versa (in a statistical m&yndfor the mass and rotary inertia matrices
associated with the micropolar continuum, we partitionkimetic energy as follows:

Sand dissipation function through the mass-proportionaipiag for dynamic relaxation of a static DE analysis

Sstatistical, in the sense of generating a particle reptatien from a continuum one, where the underlying par-
ticle system does not exist; converting from particle totocarum representation is straightforward given the binilt-
homogenization that the micropolar continuum possesses
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MP = M +M (112)
b [ M o
M = .
0o M’
M = A (7 (m"™) + Fm"*)
ecBh
M~ = 7 (7 (m#) + F*m#*)
ecBh
b M 0 et I
M =7 o M= A (m) M= A ()
0 M ecBh ecBBh
—~D — D

(113)

, Mu:Am“’e,Msa:AmW

ecBh ecBh

~D . . N . . :
whereM is the continuum mass and rotary inertia matrix associatddprescribed nodal dofs
. s~ D . N : : : .
in B", M the continuum mass and rotary inertia matrix associatell fnee nodal dofs iB",

where M Y and M P are extracted from the total mass and rotary inertia mﬂﬁ? in B", with
superscrip(o)ﬁ denoting the full mass and rotary inertia matrix associatitd elements 3",
(e) is @ homogenization operataf, is the partitioning coefficient of continuum kinetic energy
associated with elemel c B". A simple choice is a volume fractiori = B>” /B¢, where
BeP = Be — BoQ; oD is the non-overlapping continuum part of element volusfe 5", and
B9 is the overlapped ghost particle volume in the element (@iré 6). For kinetic energy
partitioning, a volume fraction that directly relates tossand rotary inertia partitioning seems

an appropriate choice]\/ZD is the homogenized continuum mass and rotary inertia matrix
associated with prescribed nodal dofs3fy where if# = 0, there is no continuum
homogenization ii3" (i.e., all kinetic energy is due to underlying particlesI)ZfD is the
continuum mass and rotary inertia matrix associated wa frodal dofs in the pure continuum
FE domain3".
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For the potential energy (internal force and moment) andrazt force partitioning in the particle
system, we write

FINT.O  _ (1—4) A ngT,Q @, € B (114)
FINT.Q _ RINTDEQ | f;vINT’Q (115)

FINTOEQ _ N FINTQ g e PP
§

~INT,Q . 3
F —1-gAFY zse B
5
FEXTQ _ (1—d) A FEXTQ oy e (116)
FEXTQ _ pBEXTDEQ | AR (117)

FPXTOEQ — N EXTQ g e gPF
§

~EXT,Q ) A
F0— (-4 AFET9, aye B
5

where F/NTQ js the internal force and moment vector associated withtgtensicle contacts in
B, F'NT'PEQ is the internal force and moment vector associated withgegticle contacts in
BPE, #"" s the internal force and moment vector associated withgeeticle contacts i,
FPXTQ s the external force and moment vector associated withtgieoticle contacts i"
FEXT.DEQ jg the external force and moment vector associated withgfagticle contacts 827,
ﬁEXT’Q is the external force and moment vector associated withdfaeticle contacts i8”, and
¢ is a weighting factor for the potential energy in the overiagion3" U B". For no
homogenized continuum contribution to the potential ep@nghe overlap regionj = 0, and for
full continuum homogenization of the underlying particlegntial energyg = 1. In our case,
we will consider the range < ¢ < 1. Note that in 13), they chosg = 0. Their Cauchy-Born
elastic constitutive model acts like a homogenization afperon the underlying atomistic
response, but instead of keeping an overlain Cauchy-Ba@mesentation, the potential energy is
completely represented by the underlying atomistic resppexcept in the overlap regidt
where partitioning occurs. Note that andxs denote positions of particle contacts for
calculating internal force and moment vectors in equatidi®s-118, whereas, andx in
equations 110 and 111 denote particle centroids for cdloglparticle mass and rotary inertia
matrices.
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For the potential energy (internal force) partitioninghe continuum, we write

FINT,D ~INT.D +~INT,D

= F + F ’ (118)
— INT,u
— INT,D F
F = [ FINT,cp ]
INTu e INT
_ A fINT ’ P _ A fINTgo,
ecBh e€Bh
and
FINTD  _ ﬁ,INT,ﬁ_l_ﬁ,INTﬁ (119)
. ﬁ‘INTn:L
~INT,D
F - [ ﬁ‘INT,c/B ]
~INT,i
F — A( <fINTue>+ INTue)
ecBh
<fINT,u,e> :/ (Bu,e)T X <0_> dv
=INT.$ ~ e ~e [
F _ A (q <fINT,<p, >+q fINT,gp, )
ecBh
~INT.D . i
F =q ﬁINT,c/B
AINTu ~INTG

A <fINTue> Ia _ A <fINT,<p,e>

ecBBh eeBh

Wheref‘INT’D is the internal force and moment vector associated withriceal dofs in3",
FINT’ the internal force and moment vector associated with piestnodal dofs |r15’h where
FINTD andﬁ‘INT’ are extracted from the full internal force and moment veﬂ[or np , with
superscrip(o)ﬁ denoting the full internal force and moment vector assediatith elements in
B, ¢ is the partitioning coefficient of continuum potential emeassociated with element

Be c B, and(e) is a homogenization operator (to be defined later). A simiptgae is a volume
fractiong® = 7°. (13) considered a more sophisticated approach using an at@medensity
function solved to reproduce a minimum potential energiedtar homogeneous deformation.
The analogy here for particles would be a particle contagsidg for the potential energy terms
(internal force vectors). This will be considered furthefuture work. For now, we consider a
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volume fraction partitioning througif, and a simple scaling through coefficienté&see 1D
numerical examples)ﬁ’INT’D is the homogenized internal force vector associated with
prescribed nodal dofs i", which has no contribution if = 0, i.e., underlying particle contact
forces and moments provide full contribution. F'"" is the internal force vector
associated with free nodal dofs in the pure continuum dorB4inThe external force and
moment vectors are written as

~EXT,D -
FEXTD _ F 4+ pEATD (120)
—EXTu
—EXT,D F
F = FEXT
—EXTu u EXT u.e
ecBh
—EXT,p EXT,p.e
ecBh
and R N
~ ~EXT,D ~FEXT,D
FEXTD _ REXTD g (121)
) ~EXT,%
~EXT,D
F = [ ~EXT,$ ]
F
~EXT i . EXTu,e ~c pEXT ue
FE o (a (50 )
ecBBh
~EXT,p N EXT,p.e ~e pEXT,p,e
Y MU AT i
ecBBh
~EXT,4
~EXTD [ F ]
=4 | ~EXT¢
F
~EXT,a EXT,ue ~EXT.$ EXT,p,e
— < b > , F = A < A >
ecBh ecBh

~EXT,D . . : .
whereF is the external body force and couple vector associatedfveithnodal dofs i3,

F*" the external body force and couple vector associated withgpibed nodal dofs iB",

~EXT,D ~EXT,D ~EXT,D
whereF andF are extracted fron¥ , the total external body force and couple

)

.~ ~EXTD . .
vector calculated iB". F is the homogenized external body force and couple vector
associated with prescribed nodal dofd3h, which has no contribution if = 0, i.e., underlying
particle body forces and couples provide full contributioms”. F" "7 is the external force

and couple vector associated with free nodal dofs in the poménuum FE domaii”.
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2.4.3 1D Full Overlap Coupling

Starting with equation 108, and referring to figure 7, we dnle & arrive at a simplified set of
nonlinear equations to solve for a fully overlapped pagticbntinuum region.

EXT
1

Figure 7. Domain of full overlap coupling between a 1-D grof twenty-one glued, Hertzian nonlinear
elastic, spherical DEs, and a five-element 1-D micropotedr elastic mesh.

We express the free dofs of a particlen terms of the prescribed nodal dofs of an elemgisuch
that

¢ = N"[¢(z)]d,
¢ = N"[(z*)d,
W = N"e(a®))d,

N 0O 0 0 N 0 0
q° = Ngpd . Nop=1| 0 Ny 0 Ny 0 Ny 0
0 0 N 0 0 0 N

Nparticles

Nop = A1 N%f)

Mpy = NGpNgp
o — T

Bpo = M,,Ngp

where{(z®) = (2/h°)[z* — (25 + 25)/2] , and the resulting nonlinear equations to solve(@or
with D = B;,,Q andF'"""P(D) = K”(B;,Q), are

(1 - )FVQ) + iBh, K (Bp,Q) = FFX10 (122)

The twenty-one 1-cm diameter DE spheres, and overlayingefement micropolar elastic mesh
in figure 7 are used to demonstrate the overlap coupling dioee The parameters are modified
slightly from the Timoshenko beam convergence examgig:*" = 10kN, F;"*" = 10kN,

E =29GPa,v = 0.25, k = 0.1y, andy = 400/%p, £ = 1cm, R = 5mm, B = 50, ¢* = 0.077,

g° = 5.5, ¢ = 1.0. Notice the micropolar couple modulygsis ~ 3 x 400/0.05 = 24, 000 times
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larger than used for the results reported in figure 4. See rd@eussion later. The differentg’s
indicate which equation they influence in the scaling of wpaolar elastic FE stiffness: for
axial, v for transverse, an€for rotation). The axial load’>*" is first applied to DE particle 1
(samexr = 0 position as node 1 of FE mesh) to generate a transverseessffrom the
Hertz-Mindlin nonlinear theory, and then the transversaeﬂngFfXT is applied while the axial
load is held fixed. The end momentat= 0 is zero. Itis cantilevered at= L (zero axial and
transverse displacement, and zero rotation). The resuligure 8 demonstrate how the DE and
FE results can be nearly matched by scaling the micropdatielstiffness with thg’s. The
rotations of the FE and DE do not match closely, and there onpling between DE and FE.
This example demonstrates the scaling thropghthe micropolar elastic FE stiffness. Also,
because of the relatively stiff transverse response of eimimear Hertzian DE spheres in contact
after 1-cm of compression (this is a large strain compredsioa Hertzian theory, which is valid
only for small strains, but we use it to demonstrate the ayetbupling), the value of the
micropolar couple modulug was increased by a factor ef 3 « 400/0.05 = 24, 000, thus the
large transverse displacement observed in figure 4 verawrefgy We keep the parameters of the
Hertzian elastic contact model constant, and vary the mpaes elastic model parameters to
match the Hertzian model. This micropolar elastic parametgation and energy scaling
through thej's take the place, for now, of the homogenization operé&bdiscussed in the
previous section on the overlap coupling method. This véltévisited in future work. Also, in
figure 8 we use 10 times the axial and transverse end fdr¢eéd and ;X" when compared to
figure 4.

Using the same micropolar stiffness scaling coefficigigtsand equation 122, and with energy
factor coefficientg" = 0.65, ¢ = 0.5, ¢ = 0.5, we get the results in figure 9. Notice that the
energy is factored between the DE particles and FE micropoésh. The DE particle rotations
oscillate about the FE nodal rotations. Notice thatphgicle 1axial forcex 6.3kN and the
particle 1 projected from rod nodedxial forcex 3.6kN add up to the"“XT = 10kN through
equation 122. Likewise for the transverse force. This isfifect of the energy factor
coefficients;’s, whereas energy partitioning coefficienbas no effect because there is no partial
overlap region (i.e3" = (), only a full overlap regio3" (see figure 6).

If we set the energy factor coefficients = 0, ¢° = 0, ¢ = 0, we get the results in figure 10.
Notice that the micropolar FE mesh contributes no energldgsystem. The particle DE
simulation provides all the energy, and in the rotationsy thscillate.
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2.4.4 1D Partial Overlap Coupling with Partial Overlay 1D Micropolar FE

Referring to figure 11)N = 0 because there is no overlap between free particle dofs aad fr
continuum dofs. We need the additional interpolation nasifor particlex

«

«
NQD

0000 N 0
0000 0 NV
(0000 0 0
0 N 0 0
N0 N OO
0 0 0 N!

0 (123)

(124)

where we can then relate prescribed dof to free dof througiptbjection operators as

Mparticles
N¢ -
QD
a=1
Mparticles
Ne.
QD
a=1

Nparticles
A Nop
a=1
N,yNop . Bpg =M
NapBpq
Nop
By,Q + BypD
B;,Q

— T
ooV aob

where we solve the coupled system of nonlinear balance iegsadts (simplified from equations

108 and 109)

R%(Q,D)

R”(Q, D)

BL, FINTQ(Q) + FINT'P(D) — FPYTP — o
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FINT,Q(Q) + B%QFINT,@(@) + BTﬁQFINT,f)(f)) _ FEXTQ _

(125)
(126)



Figure 11. Domain of partial overlap coupling between a Tilgtof 11 glued, Hertzian nonlinear elastic,
spherical DEs, and a 4 element 1D micropolar linear elastisim

For volume average energy partitioning in the overlap nedio,

G = (heA® — 2.5(4/3)mR?)/(hc A¢) = 0.583 because there are 2.5 particle volumesin We
illustrate the performance of the overlap coupling aldontin figures 12 and 13. We can see that
with scaling of micropolar elasticity through tigecoefficients, we can achieve a homogeneous
axial displacement gradient across the overlap coupligipne3”, whereas the transverse
component cannot be made homogeneous. This can be obseoasb of the ratcheting of the
DE particle rotations, which the micropolar continuum FI& oaly represent if the element
lengthhc is chosen to be one DE particle diameter, which defeats th@ope of the overall

overlap coupling strategy. We believe that with more phlasicn 2D and 3D, as illustrated in
figure 6, the particle displacements and rotations will beatimed and, thus, the overlap coupling
should work more effectively. In a sense, this 1D examplemass “too discrete” a 1D DE
particle string, that exhibits an oscillation/ratchetbvghavior upon transverse shear loading. The
axial component is handled without trouble.

We set the micropolar scaling coefficiegts= 0.0195, ¢* = 0.8, ¢ = 0.85 in

B = B" U B" U B" for 1D micropolar FE stiffness; energy factor coefficiefits= 0, §* = 0,

¢’ = 0in B" U B"; and energy partitioning coefficiefit= 0.583 in B". The “not scaled” plots
indicate thai* = 1, ¢" = 1, ¢’ = 1. The results are shown in figure 12.

If we set the micropolar scaling coefficients the safhe- 0.0195, ¢* = 0.8, ¢’ = 0.85, and
energy factor coefficient' = 0, ¢ = 0, ¢ = 0.9, then we have the result in figure 13. Notice
how factoring some of the DE rotational energy to the 1D npotar FE mesh reduces the
oscillations of the DE particles in the transition/overtagion.
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3. Summary

3.1 Results

The details of a 1-D overlap coupling between a micropotaadr isotropic elastic finite element
(FE) model and a 1D string of Hertzian (nonlinear) elasticantact discrete element (DE)
spheres were presented. Numerical examples demonsteaieds/overlapping domains: (1)
full overlap coupling with fully-informed upscaled microlar FE response from the underlying
DE response, and (2) partial overlap coupling with pastiaiformed upscaled micropolar FE
response (along partial length of domain) from the undedgy)E response (also along partial
length of domain).

3.2 Conclusions

The simple 1D problem presented in this report provides aassible model problem through
which to better understand how such coupling strategiesldiveork for overlap coupling of
underlying DNS particulate models (in this case, DE), aretlging generalized continuum
models (in this case, micropolar elasticity). What makés¢bupling strategy different than
those for atomistic continuum coupling method8,(19 is the rotational degrees of freedom of
the DE model, the open windoi#”” region, and the additional degrees of freedom inherent in
the generalized continuum models—in this case a micropolatinuum (a subset of
micromorphic continuum).

3.3 Future Work

Future work will first involve extending the 1D formulationdimplementation to include inertia
terms to study wave propagation (axial, transverse, amdiooial) along the 1D domain.
Extending these concepts for the envisioned full 3D overtaypling problem and micromorphic
continuum as outlined in section 1.1 will come next.
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