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1. Introduction

1.1 Description of Problem

Dynamic failure in bound particulate materials is a combination of physical processes including

grain and matrix deformation, intra-granular cracking, matrix cracking, and

inter-granular-matrix/binder cracking/debonding, and is influenced by global initial boundary

value problem (IBVP) conditions. Discovering how these processes occur by experimental

measurements is difficult because of their dynamic nature and the influence of global boundary

conditions (BCs). Global BCs, such as lateral confinement oncylindrical compression

specimens, can influence the resulting failure mode, generating in a glass ceramic composite axial

splitting and fragmentation when there is no confinement andshear fractures with confinement

(4). Thus, we resort to physics-based modeling to help uncoverthese origins dynamically.

Examples of bound particulate materials include, but are not limited to, the following:

polycrystalline ceramics (crystalline grains with amorphous grain boundary phases, figure 1(a)),

metal matrix composites (metallic grains with bulk amorphous metallic binder, figure 1(b)),

particulate energetic materials (explosive crystalline grains with polymeric binder, figure 1(c)),

asphalt pavement (stone/rubber aggregate with hardened binder, figure 1(d)), mortar (sand grains

with cement binder), conventional quasi-brittle concrete(stone aggregate with cement binder),

and sandstones (sand grains with clayey binder). Bound particulate materials contain grains

(quasi-brittle or ductile) bound by binder material oftentimes called the “matrix.” The

heterogeneous particulate nature of these materials governs their mechanical behavior at the

grain-to-macro-scales, especially in IBVPs for which localized deformation nucleates. Thus,

grain-scale material model resolution is needed in regionsof localized deformation nucleation

(e.g., at a macro-crack tip, or at the high shear strain rate interface region between a projectile and

target material1). To predict dynamic failure for realistic IBVPs, a modeling approach will need

to accountsimultaneouslyfor the underlying grain-scale physics and macro-scale continuum

IBVP conditions.

Direct Numerical Simulation (DNS) represents directly thegrain-scale mechanical behavior

under static (5) and dynamic loading conditions (6–8). Currently, DNS is the best approach to

understanding fundamentally dynamic material failure, but is deficient in the following ways:

1Both projectile and target material could be modeled with such grain-scale material model resolution at their
interface region where significant fracture and comminution occurs.
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(a) (b)

(c) (d)

Figure 1. (a) Microstructure of alumina, composed of grainsbound by glassy phase (Sandia). (b) SiC rein-
forced 2080 aluminum metal matrix composite (1). The four large black squares are indents to identify the
region. (c) Cracking in explosive HMX grains and at grain-matrix interfaces (2). (d) Cracking in asphalt
pavement.
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(i) it is limited by current computing power (even massively-parallel computing) to a small

representative volume element (RVE) of the material; and (ii) it usually must assume unrealistic

BCs on the RVE (e.g., periodic, or prescribed uniform traction or displacement). Thus,

multi-scale modeling techniques are needed to predict dynamic failure in bound particulate

materials.

Current multi-scale approaches attempt to do this but fall short by one or more of the following

limitations: (i) not providing proper BCs on the micro-structural DNS region; (ii) homogenizing

at the macro-scale the underlying micro-structural response in the unit cell and, thus, not

maintaining a computational ‘open window’ to model micro-structurally dynamic failure2; and

(iii) not making these methods adaptive, i.e., moving a computational ‘open window’ with

grain-scale model resolution over regions experiencing dynamic failure.

1.2 Proposed Approach

As a precursor to a three-dimensional (3D) finite strain micromorphic plasticity model (9) and

finite element (FE) implementation (10), and overlap coupling with underlying 3D FE or discrete

element (DE) DNS region, we consider a simpler, one dimensional (1D) problem: overlap

coupling between a micropolar linear elastic 1D mixed FE model and a 1D string of Hertzian

(11, 12) nonlinear elastic DE spheres.

To illustrate the application of the micromorphic plasticity model (of which micropolar elasticity

is a subset) to the problem of interest, we refer to an illustration in figure 2 of a concurrent

multiscale modeling framework for bound particulate materials (target) impacted by a deformable

solid (projectile). The higher order continuum micromorphic plasticity model is used in the

overlap region between a continuum finite element (FE) and DNS representation of the particulate

material. The additional degrees of freedom provided by themicromorphic model (micro-shear,

micro-dilation/compaction, and micro-rotation) will allow the overlap region to be placed closer

to the region of interest, such as at a projectile-target interface. Further from this interface region,

standard continuum mechanics and constitutive models can be used. The discrete element (DE)

and/or finite element (FE) representation of the particulate micro-structure is intentionally not

shown in order not to clutter the drawing of the micro-structure. The grains (binder matrix not

shown) of the micro-structure are ‘meshed’ using DEs and/orFEs with cohesive surface elements

(CSEs). The open circles denote continuum FE nodes that haveprescribed degrees of freedom

(dofs)D̂ based on the underlying grain-scale response, while the solid circles denote continuum

FE nodes that have free dofsD governed by the micromorphic continuum model. We

2This is a problem especially for modeling fragmentation andcomminution micro-structurally.
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intentionally leave an ‘open window’ (i.e., DNS) on the particulate micro-structural mesh in order

to model dynamic failure. If the continuum mesh overlays thewhole particulate micro-structural

region, as in (13) for atomistic-continuum coupling, then the continuum FEswould eventually

become too deformed by following the micro-structural motion during fragmentation. The

blue-dashed box at the bottom-center of the illustration isa micromorphic continuum FE region

that can be converted to a DNS region for adaptive high-fidelity material modeling as the

projectile penetrates the target.

particulate micro-structural DNS region 

(DE and/or FE/CSE)

micromorphic continuum FE region

coupling region 

(micromorphic continuum FE 

to particulate micro-structural DNS)

deformable solid body (projectile)

continuum FE mesh

bound particulate material (target)

multi-scale computational model
v

Figure 2. 2D illustration of concurrent computational multi-scale modeling approach in the contact inter-
face region between a bound particulate material (e.g., ceramic target) and deformable solid body (e.g.,
refractory metal projectile).

1.3 Focus of Report

Regarding the approach described in section 1.2, this report focusses on the 1D overlap coupling

between a micropolar linear elastic FE model and a 1D string of Hertzian nonlinear elastic DE

spheres. An outline of the report is as follows: section 2.1 summarizes the Statement of Work

(SOW) and the Tasks, section 2.2 the 1D micropolar linear elasticity derived from the 3D

micropolar theory using Timoshenko beam kinematics with axial stretch, section 2.3 the

4



nonlinear elastic theory and implementation for sphericalDE particles with Hertzian elastic

contact, section 2.4 the overlap coupling methodology and numerical examples, and section 3.

summarizes the results, conclusions, and future work.

The DE-FE coupled implementation is currently limited to nonlinear quasi-statics, but the

formulation has been provided in general for nonlinear dynamics, and will be extended to

dynamics in future work.

1.4 Notation

Index notation will be used wherever needed to clarify the presentation. Cartesian coordinates

are assumed, so all indices are subscripts, and spatial partial derivative is the same as covariant

derivative (14). Some symbolic/direct notation is also given, such that(ab)ik = aijbjk,

(a⊗ b)ijkl = aijbkl. Boldface denotes a tensor or vector, where its index notation is given.

Subscript(•),i implies a spatial partial derivative. Superposed dot˙(�) = D(�)/Dt denotes

material time derivative. The symboldef
= implies a definition.
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2. Technical Discussion

2.1 Statement of Work (SOW) and Specific Tasks

Bound particulate materials are commonly found in industrial products, construction materials,

and nature (e.g., geological materials). They include polycrystalline ceramics (e.g., crystalline

grains with amorphous grain boundary phases), energetic materials (high explosives and solid

rocket propellant), hot asphalt, asphalt pavement (after asphalt has cured), mortar, conventional

quasi-brittle concrete, ductile fiber composite concretes, and sandstones, for instance. Bound

particulate materials contain particles3 (quasi-brittle or ductile) bound by binder material

oftentimes called the “matrix”.

The heterogeneous nature of bound particulate materials governs its mechanical behavior at the

particle- to continuum-scales. The particle-scale is denoted as the scale at which particle-matrix

mechanical behavior is dominant, thus necessitating that particles and matrix material be resolved

explicitly (i.e., meshed directly in a numerical model), accounting for their interfaces and

differences in material properties. Currently, there is noapproach enabling prediction of

initiation and propagation of dynamic fracture in bound particulate materials—for example,

polycrystalline ceramics, particulate energetic materials, mortar, and sandstone—accounting for

their underlying particulate microstructure across multiple length-scales concurrently.

Traditional continuum methods have provided the basis for understanding the dynamic fracture of

these materials, but cannot predict the initiation of dynamic fracture without accounting for the

material’s particulate nature. Direct numerical simulation (DNS) of deformation, intra-particle

cracking, and inter-particle-matrix/binder debonding atthe particle-scale is limited by current

computing power (even massively-parallel computing) to a small representative volume element

(RVE) of the material, and usually must assume overly-restrictive boundary conditions (BCs) on

the RVE (e.g., fixed normal displacement).

Multiscale modeling techniques are clearly needed to accurately capture the response of bound

particulate materials in a way accounting simultaneously for effects of the microstructure at the

particle-scale and boundary conditions applied to the engineering structure of interest, at the

continuum-scale. The services of a scientist or engineer are required to develop the mathematical

theory and numerical methodology for multiscale modeling of bound particulate materials of

interest to the U.S. Army Research Laboratory (ARL).

3We use ‘particle’ and ‘grain’ interchangeably.
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The overall objective of the proposed research is to developa concurrent multi-scale

computational modeling approach that couples regions of continuum deformation to regions of

particle-matrix deformation, cracking, and debonding, while bridging the particle- to

continuum-scale mechanics to allow numerical adaptivity in modeling initiation of dynamic

fracture and degradation in bound particulate materials.

For computational efficiency, the solicited research will use DNS only in spatial regions of

interest, such as the initiation site of a crack and its tip during propagation, and a micromorphic

continuum approach will be used in the overlap and adjacent regions to provide proper BCs on

the DNS region, as well as an overlay continuum to which to project the underlying particle-scale

mechanical response (stress, internal state variables (ISVs)). The micromorphic continuum

constitutive model will account for the inherent length scale of damaged fracture zone at the

particle-scale, and, thus, includes the kinematics to enable the proper coupling with the fractured

DNS particle region. Outside of the DNS region, a micromorphic extension of existing

continuum model(s), with the particular model(s) to be determined based on ARL needs, of

material behavior will be used.

This SOW calls for development of the formulation and finite element implementation of a finite

strain micromorphic inelastic constitutive model to bridge particle-scale mechanics to the

continuum-scale. The desired result is formulation of sucha model, enabling a more complete

understanding of the role of microstructure-scale physicson the thermomechanical properties and

performance of heterogeneous materials of interest to ARL.These materials could include, but

are not limited to, the following: ceramic materials, energetic materials, geological materials,

and urban structural materials.

2.1.1 Specific Tasks

What follows is a list of specific tasks, and a summary of what was accomplished for each task.

1. Finite element implementation of finite strain micromorphic pressure-sensitive

elasto-plasticity model (Regueiro, J. Eng. Mech., 2009) inthe continuum mechanics code

Tahoesourceforge.net/projects/tahoe.

This implementation is ongoing, but has not been completed in time for this report.

2. Interact with ARL researchers in order to improve mutual understanding with regards to

dynamic fracture and material degradation in heterogeneous and particulate materials and

associated numerical modeling techniques.

7



Continue to interact with ARL researchers regarding their needs for this research problem.

3. Refine formulation of algorithm to couple finite strain micromorphic continuum finite

elements to DNS finite elements of bound particulate material through an overlapping

region.

This has been accomplished to some extent through the 1D overlap coupling problem

described in this report in sections 2.2, 2.3, and 2.4.

4. Implement coupling algorithm in using finite element code Tahoe (both for micromorphic

continuum and DNS). Extension can be made for coupling micromorphic model (Tahoe) to

DNS model (ARL or other finite element, or particle/meshfree, code).

The coupling algorithm has been implemented in a separate standalone code instead of

Tahoe. Future research will establish the coupling in Tahoe, as part of currently funded

research projects.

2.2 One-dimensional (1D) Micropolar Linear Isotropic Elasticity

This section (in section 2.2.1) briefly presents the three-dimensional (3D), small strain, linear

isotropic micropolar elasticity model and balance of linear and angular momentum equations

based on the work of (15), and then provides more details on the reduction to a 1D form(section

2.2.2) using Timoshenko beam kinematics with axial stretch(16). Finally, in section 2.2.3, the

1D form of the model is expressed in weak and Galerkin forms for finite element implementation,

a mixed 1D element is used to interpolate the fields, and a numerical example is presented to

demonstrate convergence of the FE implementation.

2.2.1 Three-dimensional (3D) Micropolar Linear IsotropicElasticity and Balance

Equations

The balance of linear and angular momentum, respectively, for a micropolar continuum are (15)

σlk,l + ρbk − ρük = 0 (1)

mlk,l + ekmnσmn + ρℓk − ρβ̇k = 0 (2)

whereσlk is the unsymmetric Cauchy stress tensor over bodyB, ρ is the mass density,bk is a body

force per unit mass,uk is the displacement vector,ük is the acceleration vector,mlk is the

unsymmetric couple stress,ekmn is the permutation operator,ℓk is the body couple per unit mass,

8



βk = jϕ̇k is the intrinsic spin per unit mass,j is the spin inertia for a spin-isotropic material (17),

ϕl is the micro-rotation vector, indicesk, l, · · · = 1, 2, 3, and(•),l = ∂(•)/∂xl denotes partial

differentiation with respect to the coordinatexl.

For a linear isotropic elastic micropolar solid, the constitutive equations are (15)

σkl = λǫrrδkl + (2µ+ κ)ǫkl + κeklm(rm − ϕm) (3)

mkl = αϕr,rδkl + βϕk,l + γϕl,k (4)

whereλ, µ, κ, α, β, andγ are isotropic elastic parameters, and the deformations are

ǫkl =
1

2
(uk,l + ul,k) (5)

rk =
1

2
eklmum,l (6)

rkl =
1

2
(uk,l − ul,k) = −eklmrm (7)

whereǫkl is the classical small strain tensor,rk the axial vector, andrkl the rotation tensor.

2.2.2 1D Timoshenko Beam Kinematics with Axial Stretch and Resulting 1D Micropolar

Linear Elasticity

We consider Timoshenko beam kinematics from (16), with superimposed axial stretch for small

deformations. The displacement vectoru and micro-rotation vectorϕ are

u =




u1

u2

u3


 =




u− x2θ

v

0


 , ϕ =




ϕ1

ϕ2

ϕ3


 =




0

0

θ


 (8)

whereu is the stretch in thex1 direction,θ is the rotation of the centroidal axis about thex3 axis,

v is the transverse displacement in thex2 direction, we ignore displacementw ≈ 0 in thex3

direction, and we assume the micro-rotationϕ3
def
= θ.
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Taking spatial derivatives, we have the following deformation measures:

[uk,l] =




∂u
∂x1

− x2
∂θ
∂x1

−θ 0
∂v
∂x1

0 0

0 0 0


 , [ǫk,l] =




∂u
∂x1

− x2
∂θ
∂x1

1
2

(
∂v
∂x1

− θ
)

0

1
2

(
∂v
∂x1

− θ
)

0 0

0 0 0


 (9)

[rk] =
1

2
[eklmum,l] =




0

0
1
2

(
∂v
∂x1

+ θ
)




[rkl] = −[eklmrm] =




0 −1
2

(
∂v
∂x1

+ θ
)

0

1
2

(
∂v
∂x1

+ θ
)

0 0

0 0 0


 (10)

[eklmϕm] =




0 θ 0

−θ 0 0

0 0 0


 (11)

The unsymmetric stress tensor components then result as

σ11 = (λ+ 2µ+ κ)ǫ11 (12)

σ22 = λǫ11 (13)

σ33 = λǫ11 (14)

σ12 = (2µ+ κ)ǫ12 − κr12 − κe12mϕm = (µ+ κ)(
∂v

∂x1
− θ) = (µ+ κ)γsh (15)

σ21 = (2µ+ κ)ǫ21 − κr21 − κe21mϕm = µγsh (16)

m13 = γ
∂θ

∂x1
(17)

m31 = β
∂θ

∂x1

(18)

whereγsh def
= ∂v

∂x1
− θ, σ23 = σ32 = σ13 = σ31 = 0, and

m11 = m22 = m33 = m12 = m21 = m23 = m32 = 0.

10



The balance of linear and angular momentum equations can likewise be reduced as

σ11,1 − ρü1 = 0 (19)

σ12,1 − ρü2 = 0 (20)

m13,1 + σ12 − σ21 − ρβ̇3 = 0 (21)

whereβ̇3 = jϕ̈3 = jθ̈, assuming spin-inertiaj is constant at small strains. However, to reach a

form amenable to a 1D mixed FE formulation, we express the weak form in terms of the reduced

kinematics. Consider the weak form in 3D as

∫

B

ρwkükdv +

∫

B

wk,lσlkdv =

∫

Γt

wktkda (22)
∫

B

ρηkβ̇kdv +

∫

B

ηk,lmlkdv −

∫

B

ηkekmnσmndv =

∫

Γr

ηkrkda (23)

where the tractiontk = σlknl, surface couple stressrk = mlknl, and the weighting functions are

[wk] =




w1

w2

0


 =




δu1

δu2

0


 =




δu− x2δθ

δv

0


 (24)

[ηk] =




0

0

η3


 =




0

0

δϕ3


 =




0

0

δθ


 (25)

whereδ(•) is used here as a variational operator. Likewise,ü1 = ü− x2θ̈ andü2 = v̈. We

analyze each term separately, such that the first term of equation 22 is

∫

B

ρwkükdv =

∫

B

ρ(w1ü1 + w2ü2)dv (26)

=

∫

B

ρ
[
δu(ü− x2θ̈) + δv(v̈) + δθ(−x2ü+ (x2)

2θ̈)
]
dv (27)

where we consider that all variables are functions only along the 1-D lengthx1 (which we will

simplify asx).
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Thus, when reducing the integral
∫
B
(•)dv =

∫
L

∫
A
(•)dadx, we have

∫

B

ρwkükdv =

∫

L

[
δu(ρAü− ρQθ̈) + δv(ρAv̈) + δθ(−ρQü+ ρIθ̈)

]
dx (28)

where, the first moment about thex1 axisQ and moment of inertia aboutx1 axisI are defined as

Q
def
=

∫

A

x2da , I
def
=

∫

A

(x2)
2da (29)

Likewise, the stress term is

∫

B

wk,lσlkdv =

∫

B

(w1,1σ11 + w2,1σ12)dv (30)

=

∫

L

[δu,x(λ+ 2µ+ κ)(Au,x −Qθ,x) + δv,x(µ+ κ)A(v,x − θ)

+δθ,x(λ+ 2µ+ κ)(−Qu,x + Iθ,x)] dx (31)

Considering that the traction acts in thex1 direction on thex1 face, then the unit normal toΓt is

n = [1 0 0]T , andt1 = σ11, t2 = σ12. Then,

∫

Γt

wktkda =

∫

A

(w1t1 + w2t2)da (32)

=

∫

A

δuσ11da−

∫

A

δθx2σ11da+

∫

A

δvσ12da (33)

where, if we consider the traction acts atx = L, then concentrated axial forceFL =
∫
A
σ11da, end

moment−ML =
∫
A
x2σ11da, and end shear forceVL =

∫
A
σ12dA, and, thus,

∫

Γt

wktkda = δuLFL + δθLML + δvLVL (34)

For the balance of angular momentum weak form, we have for themicro-inertia term

∫

B

ρηkβ̇kdv =

∫

L

δθ(ρAjθ̈)dx (35)
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and for the couple stress term

∫

B

ηk,lmlkdv =

∫

B

η3,1m13dv =

∫

L

δθ,x(γAθ,x)dx (36)

and the skew part of the stress

−

∫

B

ηkekmnσmndv =

∫

B

δθ(σ12 − σ21)dv =

∫

L

δθ [κA(θ − v,x)] dx (37)

where if the traction couple stress acts on thex1 face atx = L, then

∫

Γr

ηkrkda =

∫

A

δθm13da = δθLM
θ
L , Mθ

L =

∫

A

m13da (38)

Next, we put these equations in Finite Element (FE) matrix form.

2.2.3 Finite Element (FE) Implementation of 1D Micropolar Linear Elasticity

The Galerkin form of the reduced equations may be written as

∫

L

[
δuh(ρAüh − ρQθ̈h) + δvh(ρAv̈h) + δθh(−ρQüh + ρIθ̈h)

δuh
,x(λ+ 2µ+ κ)(Auh

,x −Qθh,x) + δvh,x(µ+ κ)A(vh,x − θh)

+δθh,x(λ+ 2µ+ κ)(−Quh
,x + Iθh,x)

]
dx = δuh

LFL + δθhLML + δvhLVL (39)∫

L

[
δθh(ρAjθ̈h) + δθh,x(γAθ

h
,x) + δθh

[
κA(θh − vh,x)

]]
dx = δθhLM

θ
L (40)
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The interpolations, and their spatial derivatives, for a mixed element shown in figure 3 are the

following

uh(ξ) =

2∑

a=1

Nu
a (ξ)d

e
x(a) =

[
Nu

1 Nu
2

] [ dex(1)
dex(2)

]
= Nu,ede

x

vh(ξ) =
2∑

a=1

Nv
a (ξ)d

e
y(a) =

[
Nv

1 Nv
2 Nv

3

]



dey(1)
dey(2)
dey(3)


 = N v,ede

y

θh(ξ) =

2∑

a=1

N θ
a (ξ)d

e
θ(a) =

[
N θ

1 N θ
2

] [ deθ(1)
deθ(2)

]
= N θ,ede

θ

δuh(ξ) = Nu,ecex

δvh(ξ) = N v,ecey

δθh(ξ) = N θ,eceθ

uh(ξ),x = Bu,ede
x , Bu,e =

[
Nu

1,x Nu
2,x

]

vh(ξ),x = Bv,ede
y , Bv,e =

[
Nv

1,x Nv
2,x Nv

3,x

]

θh(ξ),x = Bθ,ede
θ , Bθ,e =

[
N θ

1,x N θ
2,x

]

δuh(ξ),x = Bu,ecex

δvh(ξ),x = Bv,ecey

δθh(ξ),x = Bθ,eceθ

1 23

ξ

uhe

1

vh
e

1

θh
e

1

uhe

2

vh
e

2

θh
e

2

vh
e

3

he

Figure 3. Finite element degrees of freedom (dof) for mixed formulation Timoshenko beam with axial
stretch. The middle node 3 is at the center of the element, i.e., atξ = 0, whereξ is the natural coordinate
(3).
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We assignN θ,e = Nu,e andBθ,e = Bu,e, and the element dofs are




uhe

1

uhe

2

vh
e

1

vh
e

2

vh
e

3

θh
e

1

θh
e

2




= de =




dex(1)
dex(2)
dey(1)
dey(2)
dey(3)
deθ(1)
deθ(2)




=




de
x

de
y

de
θ


 (41)

Substituting these interpolations into the Galerkin form of balance of linear momentum in

equation 39, and grouping terms, we can define element mass and stiffness matrices as

nel

A
e=1

(cex)
T




(∫

ℓe
ρAe(Nu,e)TNu,edx

)

︸ ︷︷ ︸
muu,e

d̈
e

x −

(∫

ℓe
ρQe(Nu,e)TN θ,edx

)

︸ ︷︷ ︸
muθ,e

d̈
e

θ

+

(∫

ℓe
(λ+ 2µ+ κ)Ae(Bu,e)TBu,edx

)

︸ ︷︷ ︸
k

uu,e

de
x −

(∫

ℓe
(λ+ 2µ+ κ)Qe(Bu,e)TBθ,edx

)

︸ ︷︷ ︸
k

uθ,e

de
θ

= f e
F ] (42)

nel

A
e=1

(cey)
T




(∫

ℓe
ρAe(N v,e)TN v,edx

)

︸ ︷︷ ︸
mvv,e

d̈
e

y +

(∫

ℓe
(µ+ κ)Ae(Bv,e)TBv,edx

)

︸ ︷︷ ︸
k

vv,e

de
y

−

(∫

ℓe
(µ+ κ)Ae(Bv,e)TN θ,edx

)

︸ ︷︷ ︸
k

vθ,e

de
θ = f e

V




(43)

nel

A
e=1

(ceθ)
T


−

(∫

ℓe
ρQe(N θ,e)TNu,edx

)

︸ ︷︷ ︸
mθu,e

d̈
e

x +

(∫

ℓe
ρIe(N θ,e)TN θ,edx

)

︸ ︷︷ ︸
mθθ1,e

d̈
e

θ

−

(∫

ℓe
(λ+ 2µ+ κ)Qe(Bθ,e)TBu,edx

)

︸ ︷︷ ︸
k

θu,e

de
x +

(∫

ℓe
(λ+ 2µ+ κ)Ie(Bθ,e)TBθ,edx

)

︸ ︷︷ ︸
k

θθ1,e

de
θ

= f e
M ] (44)
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whereA is the element assembly operator,nel the number of elements, andℓe = he the length of

an elemente, where the equations can be written more concisely in matrixform as

nel

A
e=1

(cex)
T
[
muu,ed̈

e

x −muθ,ed̈
e

θ + kuu,ede
x − kuθ,ede

θ = f e
F

]
(45)

nel

A
e=1

(cey)
T
[
mvv,ed̈

e

y + kvv,ede
y − kvθ,ede

θ = f e
V

]
(46)

nel

A
e=1

(ceθ)
T
[
−mθu,ed̈

e

x +mθθ1,ed̈
e

θ − kθu,ede
x + kθθ1,ede

θ = f e
M

]
(47)

Likewise, when substituting the interpolations into the Galerkin form of balance of angular

momentum in equation 40, and grouping terms, we have

nel

A
e=1

(ceθ)
T




(∫

ℓe
ρje(N θ,e)TN θ,edx

)

︸ ︷︷ ︸
mθθ2,e

d̈
e

θ +

(∫

ℓe
γAe(Bθ,e)TBθ,edx

)

︸ ︷︷ ︸
k

θθ2,e

de
θ

+

(∫

ℓe
κAe(N θ,e)TN θ,edx

)

︸ ︷︷ ︸
k

θθ3,e

de
θ −

(∫

ℓe
κAe(N θ,e)TBv,edx

)

︸ ︷︷ ︸
k

θv,e

de
y = f e

Mθ




(48)

where, in summary, we have

nel

A
e=1

(ceθ)
T
[
mθθ2,ed̈

e

θ + kθθ2,ede
θ + kθθ3,ede

θ − kθv,ede
y = f e

Mθ

]
(49)

Adding equations 47 and 49 for the micro-rotation dofs, we have

nel

A
e=1

(ceθ)
T
[
−mθu,ed̈

e

x + (mθθ1,e +mθθ2,e)d̈
e

θ − kθu,ede
x + (kθθ1,e + kθθ2,e + kθθ3,e)de

θ

−kθv,ede
y = f e

M + f e
Mθ

]
(50)
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Accounting for essential boundary conditions (BCs), and assembling the global FE matrix

equations (3), we arrive at the coupled system of matrix FE equations to solve for the unknown

dofs as

MDD̈ +KDD = FD (51)

D =




dx

dy

dθ


 , D̈ =




d̈x

d̈y

d̈θ


 , FD =




F F

F V

FM + FMθ




MD =




Muu
0 −Muθ

0 M vv
0

−M θu
0 M θθ




KD =




Kuu
0 −Kuθ

0 Kvv −Kvθ

−Kθu −Kθv Kθθ




SinceN θ,e = Nu,e, thenM θu = Muθ andMD is symmetric, and sinceBθ,e = Bu,e then

Kθu = Kuθ, butKD is, in general, unsymmetric becauseµ > 0 which leads toKθv 6= Kvθ.

Given the mixed 1D Timoshenko beam micropolar elastic finiteelement with axial stretch in

figure 3, we can select specific shape functions, with resulting first spatial derivatives, as follows:

Nu,e =
1

2

[
1− ξ 1 + ξ

]
, Bu,e =

1

he

[
−1 1

]
(52)

N v,e =
[

1
2
ξ(ξ − 1) 1

2
ξ(ξ + 1) 1− ξ2

]
, Bv,e =

2

he

[
ξ − 1

2
ξ − 1

2
−2ξ

]
(53)

wherehe is the element length.
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With these element interpolation matricesN e and ‘strain-displacement’ matricesBe, and a bar

with circular cross-section such that the first momentQe = 0 (see section 2.2.4), we arrive at

specific forms of the element stiffness matrices as

kuu,e =
Ae

he
(λ+ 2µ+ κ)

[
1 −1

−1 1

]
, kuθ,e = kθu,e = 0 (54)

kvv,e =
2Ae

he
(µ+ κ)




7
6

1
6

−4
3

1
6

7
6

−4
3

−4
3

−4
3

8
3


 (55)

kvθ,e =
Ae

2
(µ+ κ)




−5
3

−1
3

1
3

5
3

4
3

−4
3


 , kθv,e =

Ae

2
κ

[
−5

3
1
3

4
3

−1
3

5
3

−4
3

]
(56)

kθθ1,e =
Ie

he
(λ+ 2µ+ κ)

[
1 −1

−1 1

]
, kθθ2,e =

Ae

he
γ

[
1 −1

−1 1

]
(57)

kθθ3,e =
Aehe

6
κ

[
2 1

1 2

]
(58)

We can similarly derive the element mass matrices, but sinceour simulations are currently limited

to quasi-static problems, we do not show all details for including the inertia terms. This is part of

future work.

2.2.4 Convergence of 1D Micropolar Linear Elastic FE

In this section, we take the FE formulation and implementation from the previous section and test

its convergence with regard to spatial discretization refinement (i.e.,he → 0). It is well known

that in the thin limit the Timoshenko beam formulation will do a poor job calculating transverse

displacement (16), because the classical equal interpolation (Nu,e = N v,e, andBu,e = Bv,e )

element “locks” as the transverse shear strain approaches zero in the thin limit. Thus, we use the

mixed formulation (Nu,e 6= N v,e, andBu,e 6= Bv,e ) in figure 3 and reduced integration to

alleviate this problem4 (16). Figure 4 shows the five-element mesh, and the force versus

displacement results for two-, five-, ten-, and twenty-element meshes. We can see that for the

axial force and displacement, the result is the same for all meshes (as expected for small strain

theory, where axial and transverse displacements are decoupled), whereas for the five-element

4We note that in our case the reduced integration gives us no added benefit, as the mixed formulation seems
sufficient to address any potential locking. See results in figure 4.
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mesh, for the transverse force and displacement, the results appear convergent. In the overlap

coupling simulations in section 2.4, we will use the five-element mesh.

Each mesh isL = 20cm in length, with rod circular cross-section with radiusR = 0.5cm, as

shown in figure 4. The applied forces areFEXT
x = 1kN, FEXT

y = 1kN. For the elastic

parameters, we use Young’s modulusE = 10GPa, Poisson’s ratioν = 0.3 (approximate for

quartz), and approximateλ andµ as

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(59)

even thoughλ andµ arenot the Lamé parameters. We approximateκ = 0.1µ, and

γ = (0.05)ℓ2µ, with elastic length scaleℓ = 1cm. The cross-sectional areaA = πR2 = 7.85e-5

m2, first moment about the x-axisQ = 0, and moment of inertia about the x-axis

I = 1
4
πR4 = 4.9e-10 m4.

20cmFEXT
x

FEXT
y

0 0.005 0.01 0.015 0.02
0
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f
x
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x
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Figure 4. (top) Five-element mesh. (bottom) Demonstrationof convergence of thin Timoshenko beam
mixed FE implementation in compression, bending, and shear. Axial force versus displacement of the left
end node is exact, whereas the two-element mesh may be too coarse, while the five-, ten-, and twenty-
element meshes give nearly the same transverse displacement upon an applied transverse forceFEXT

y .
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2.3 1D String of Hertzian Nonlinear Elastic Discrete Element (DE) Spheres

We refer to figure 5 for the kinematics and forces at contactǫ between two discrete element (DE)

spheresα andβ. From Hertz-Mindlin elastic contact theory between stiff spheres (11, 12, 18),

we have

f ǫ
x =

4

3
E0R

1/2
0 (δǫn)

3/2 (60)

E0 =
E

2(1− ν2)
, R0 = R/2 , δǫn = qαx − qβx

f ǫ
y =

4µa

2− ν
δǫt (61)

µ =
E

2(1 + ν)
, a = (δǫn)

1/2 , δǫt = qαy − qβy + R(ωα + ωβ)

whereE is the Young’s modulus,ν is the Poisson’s ratio, andR is the radius of a spherical

particle (particles are assumed to have equalR in this case). We can then assemble the internal

force vectorf INT,ǫ and local consistent tangent∂f INT,ǫ/∂qǫ associated with dof vectorqǫ at

contactǫ as follows:

f INT,ǫ =




f ǫ
x

f ǫ
y

f ǫ
ω

−f ǫ
x

−f ǫ
y

−f ǫ
ω




, qǫ =




qαx

qαy

ωα

qβx

qβy
ωβ




,
∂f INT,ǫ

∂qǫ
=




∂fǫ
x

∂qǫ

∂fǫ
y

∂qǫ

∂fǫ
ω

∂qǫ

− ∂fǫ
x

∂qǫ

−
∂fǫ

y

∂qǫ

− ∂fǫ
ω

∂qǫ




(62)

∂f ǫ
x

∂qǫ
= 2E0

√
R0

√
δǫn

∂δǫn
∂qǫ

,
∂δǫn
∂qǫ

=
[
1 0 0 −1 0 0

]
(63)

∂f ǫ
y

∂qǫ
=

4µ

2− ν

(
1

2
√
δǫn

∂δǫn
∂qǫ

+
√

δǫn
∂δǫt
∂qǫ

)
,
∂δǫt
∂qǫ

=
[
0 1 1 0 −1 1

]
(64)

∂f ǫ
ω

∂qǫ
= B

4µ

2− ν
R5/2∂(ω

α + ωβ)

∂qǫ
+R

∂f ǫ
y

∂qǫ
,
∂(ωα + ωβ)

∂qǫ
=
[
0 0 1 0 0 1

]
(65)
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where the contact momentf ǫ
ω is calculated by factoring a rotational stiffness with dimensionless

scalarB, such that

f ǫ
ω = B

4µ

2− ν
R5/2(ωα + ωβ) +Rf ǫ

y (66)

This is done to avoid a rank deficient local consistent tangent ∂f INT,ǫ/∂qǫ because of the linear

dependence ofRf ǫ
y onf ǫ

y.

α β

ǫ

qαx

qαy
f ǫ
x

f ǫ
yωα

δǫt

δǫn

Figure 5. Kinematics and forces of two DE spheresα andβ contacting at contactǫ.

These internal force and moment vectors are assembled into aglobal nonlinear internal force and

moment vectorF INT (q), that when combined with an external force and moment vectorF EXT ,

lead to a residual form of the balance of linear and angular momentum to solve using the

Newton-Raphson method,

R(q) = F INT (q)− F EXT = 0 (67)

F INT (q) =
ncontacts

A
ǫ=1

f INT,ǫ

For the external force and moment vectorFEXT , we will insert the boundary conditions directly

into the corresponding global dofs inF EXT . Simulations using the DE implementation will be

demonstrated in the context of the overlap coupling methodology discussed in the next section.
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2.4 Overlap Coupling Between 1D Micropolar FEs and a String of Spherical DEs

An aspect of the computational concurrent multiscale modeling approach is to couple regions of

material represented by particles, Discrete Element (DE),to regions of material represented by

continuum, Finite Element (FE). Another aspect is to bridgethe particle mechanics to a

continuum representation using finite strain micromorphicelasto-plasticity, whereas the small

strain micropolar continuum is a simple approximation of stiff particles with small frictional

sliding in the overlap region (we consider no sliding in the numerical examples in sections 2.4.3

and 2.4.4). The coupling implementation will allow arbitrarily overlapping particle and

continuum regions in a single “hand-shaking” or overlap region, such that fictitious forces and

wave reflections are minimized in the overlap region. In theory, for nearly homogeneous

deformation, if the particle and continuum regions share the same region (i.e., are completely

overlapped), the results should be the same as if the overlapregion is a subset of the overall

problem domain (cf. figure 6). This will serve as a benchmark problem for the numerical

implementation. The coupling implementation extends to particle mechanics and micropolar

continuum the “bridging scale decomposition” proposed by (19) and modifications thereof by

(13) (see references therein for further background on these methods).

2.4.1 3D Kinematics

Here, a summary of the kinematics of the coupled regions is given for general 3-D kinematics,

following the illustration shown in figure 6. It is assumed that the finite element mesh covers the

domain of the problem in which the material is behaving more solid-like, whereas in regions of

large relative particle motion (fluid-like), a particle mechanics representation can be used (in this

case, DE). In figure 6, discrete domains are defined, where thepurple background denotes the FE

overlap regionB̃h with underlying ghost particles, aqua blue the FE continuumregionB̄h with no

underlying particles, and white background (with brown particles) the free particle region

B̂h ∪ BDE . In summary, the finite element domainBh is the union of pure continuum FE domain

B̄h, overlapping FE domain with underlying ghost particlesB̃h, and overlapping FE domain with

underlying free particleŝBh, such thatBh = B̄h ∪ B̃h ∪ B̂h. The pure particle domain with no

overlapping FE domain (i.e., the ‘open-window’) is indicated byBDE . The goal is to have the

overlap regionB̂h ∪ B̃h as close to the region of interest (e.g., penetrator skin) asto minimize the

number of particles, and, thus, computational effort. Following some of the same notation

presented in (13), we define a generalized dof vectorQ̆ for particle displacements and rotations in

the system as

Q̆ = [qα, qβ , . . . , qγ,ωα,ωβ , . . . ,ωγ ]
T , α, β, . . . , γ ∈ Ă (68)
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continuum region (FE)

finite element nodes whose motion is prescribed 

by underlying particles

finite element nodes whose motion is unprescribed

free particles

ghost particles (particles whose motion is prescribed 

by continuum displacement and rotation fields)

overlap region

between particle

and continuum

particle region (DE)
Q

Q̂

D

D̂

B̄h

B̃h

B̂h

BDE

Figure 6. Two-dimensional illustration of the coupling between particle and continuum regions.

whereqα is the displacement vector of particleα, ωα its rotation vector, and̆A is the set of all

particles. Likewise, the finite element nodal displacements and rotations are written as

D̆ = [da,db, . . . ,dc, θd, θe, . . . , θf ]
T (69)

a, b, . . . , c ∈ N̆ , d, e, . . . , f ∈ M̆

whereda is the displacement vector of nodea, θd is the rotation vector of noded, N̆ is the set of

all nodes, andM̆ is the set of finite element nodes with rotational degrees of freedom, where

M̆ ⊂ N̆ . In order to satisfy the boundary conditions for both regions, the motion of the particles
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in the overlap region (referred to as “ghost particles,” cf.figure 6) is prescribed by the continuum

displacement and rotation fields, and written as

Q̂ = [qα, qβ, . . . , qγ ,ωα,ωβ, . . . ,ωγ]
T , α, β, . . . , γ ∈ Â , Â ∈ B̃h (70)

while the unprescribed (or free) particle displacements and rotations are

Q = [qδ, qǫ, . . . , qη,ωδ,ωǫ, . . . ,ωη]
T , δ, ǫ, . . . , η ∈ A , A ∈ B̂h ∪ BDE (71)

whereÂ ∪ A = Ă andÂ ∩ A = ∅. Likewise, the displacements and rotations of nodes

overlaying the particle region are prescribed by the particle motion and written as

D̂ = [da,db, . . . ,dc, θd, θe, . . . , θf ]
T (72)

a, b, . . . , c ∈ N̂ , d, e, . . . , f ∈ M̂

N̂ ,M̂ ∈ B̃h ∪ B̂h

while the unprescribed (or free) nodal displacements and rotations are

D = [dm,dn, . . . ,ds, θt, θu, . . . , θv]
T (73)

m,n, . . . , s ∈ N , t, u, . . . , v ∈ M

N ,M ∈ B̃h ∪ B̄h

whereN̂ ∪ N = N̆ , N̂ ∩ N = ∅, M̂ ∪M = M̆, andM̂ ∩M = ∅. Referring to figure 6, the

prescribed particle motionŝQ can be viewed as boundary constraints on the free particle region,

and likewise the prescribed finite element nodal displacements and rotationŝD can be viewed as

boundary constraints on the finite element mesh in the overlap region.

In general, the displacement vector of a particleα can be represented by the finite element

interpolation of the continuum macro-displacement fielduh evaluated at the particle centroidxα,

such that

uh(xα, t) =
∑

a∈N̆

Nu
a (xα)da(t) , α ∈ Ă (74)
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whereNu
a are the shape functions associated with the continuum displacement fielduh. Recall

thatNu
a have compact support and, thus, are only evaluated for particles with centroids that lie

within an element containing nodea in its domain. In DE, particle dofs (translations and

rotations) are tracked at the particle centroids, as are resultant forces and moments (from forces

acting at contacts). For example, we can write the prescribed displacement of ghost particleα as

qα(t) = uh(xα, t) =
∑

a∈N̆

Nu
a (xα)da(t) , α ∈ Â (75)

Likewise, particle rotation vectors can be represented by the finite element interpolation of the

continuum micro-rotation fieldϕh evaluated at the particle centroidxα, such that

ϕh(xα, t) =
∑

b∈M̆

Nϕ
b (xα)θb(t) , α ∈ Ă (76)

whereNϕ
b are the shape functions associated with the micro-rotationfield ϕh. For example, we

can write the prescribed rotation of ghost particleα as

ωα(t) = ϕh(xα, t) =
∑

b∈M̆

Nϕ
b (xα)θb(t) , α ∈ Â (77)

For all ghost particles (cf. figure 6), the interpolations can be written as

Q̂ = N Q̂D ·D +N Q̂D̂ · D̂ (78)

whereN Q̂D andN Q̂D̂ are shape function matrices containing individual nodal shape functions

Nu
a andNϕ

b , but for now these matrices will be kept general to increase our flexibility in choosing

interpolation/projection functions (such as those used inmeshfree methods). Overall, the particle

displacements and rotations may be written as

[
Q

Q̂

]
=

[
NQD NQD̂

N Q̂D N Q̂D̂

]
·

[
D

D̂

]
+

[
Q′

0

]
(79)

whereQ′ is introduced (13) as the error (or “fine-scale” (19)) in the interpolation of the free

particle displacements and rotationsQ, whose function space is not rich enough to represent the

true free particle motion. The shape function matricesN are, in general, not square because the
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number of free particles are not the same as free nodes and prescribed nodes, and the number of

ghost particles is not the same as prescribed and free nodes.A scalar measure of error in particle

displacements and rotations is defined as (13)

e = Q′ ·Q′ (80)

which may be minimized with respect to prescribed continuumnodal dofsD̂ to solve forD̂ in

terms of free particle and continuum nodal dofs as

D̂ = M−1

D̂D̂
NT

QD̂
(Q−NQDD) , M D̂D̂ = N T

QD̂
NQD̂ (81)

This is known as the “discretizedL2 projection” (13) of the free particle motionQ and free nodal

dofsD onto the prescribed nodals dofŝD. Upon substituting equation 81 into equation 78, we

may write the prescribed particle dofŝQ in terms of free particleQ and continuum nodalD dofs.

In summary, these relations are written as

Q̂ = BQ̂QQ+BQ̂DD (82)

D̂ = BD̂QQ+BD̂DD (83)

where

BQ̂Q = N Q̂D̂BD̂Q (84)

BQ̂D = N Q̂D +N Q̂D̂BD̂D (85)

BD̂Q = M−1

D̂D̂
NT

QD̂
(86)

BD̂D = −M−1

D̂D̂
NT

QD̂
NQD (87)

As shown in figure 6, for a finite element implementation of this dof coupling, we expect that free

particle dofsQ will not fall within the support of free continuum nodal dofsD, such that it can be

assumed thatNQD = 0 and

Q̂ = BQ̂QQ+BQ̂DD , D̂ = BD̂QQ (88)
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where

BQ̂Q = N Q̂D̂BD̂Q , BQ̂D = N Q̂D (89)

BD̂Q = M−1

D̂D̂
NT

QD̂
, BD̂D = 0 (90)

The assumptionNQD 6= 0 would be valid for a meshfree projection of the particle motions to the

FE nodal dofs, as in (13), where we could imagine that the domain of influence of the meshfree

projection could encompass a free particle centroid; the degree of encompassment would be

controlled by the chosen support size of the meshfree kernelfunction. The choice of meshfree

projection in (13) was not necessarily to allowQ be projected toD (and vice versa), but to

remove the computationally costly calculation of the inverseM−1

D̂D̂
in equations 82 and 83.

2.4.2 3D Kinetic and Potential Energy Partitioning and Coupling

For the particle DE equations, the kinetic energy isTQ, dissipation functionFQ, and potential

energyUQ, such that

TQ =
1

2
Q̇MQQ̇

FQ = aTQ (91)

UQ(Q) =

∫ Q

0

F INT,Q(S)dS

whereMQ is a mass and rotary inertia matrix (not given in section 2.3), andF INT,Q is provided

from equation 67. The dissipation functionFQ is written as a linear function of the kinetic

energyTQ with proportionality coefficienta, which falls within the class of damping called

“Rayleigh damping” (pg.130 of (20)). For the micropolar continuum FE equations,TD is the

kinetic energy,FD the dissipation function, andUD the potential energy, such that

TD =
1

2
ḊMDḊ

FD = 0 (92)

UD(D) =

∫ D

0

F INT,D(S)dS
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whereMD andF INT,D(S) = KDS come from equation 51. We assume the total kinetic and

potential energy and dissipation of the coupled particle-continuum system may be written as the

sum of the energies

T (Q̇, Ḋ) = TQ(Q̇,
˙̂
Q(Q̇, Ḋ)) + TD(Ḋ,

˙̂
D(Q̇)) (93)

U(Q,D) = UQ(Q, Q̂(Q,D)) + UD(D, D̂(Q)) (94)

F (Q̇, Ḋ) = FQ(Q̇,
˙̂
Q(Q̇, Ḋ)) (95)

where we have indicated the functional dependence of the prescribed particle motion and nodal

dofs solely upon the free particle motion and nodal dofsQ andD, respectively. Note that the

dissipation functionF = FQ only applies for the particle system, and only for static problems

(dynamic relaxation DE simulation). For purely dynamical problems,FQ = 0, and there is only

dissipation in the particle system if particles are allowedto slide frictionally, and the continuum

has plasticity or other inelastic constitutive response. Lagrange’s equations may then be stated as

d

dt

(
∂T

∂Q̇

)
−

∂T

∂Q
+

∂F

∂Q̇
+

∂U

∂Q
= FEXT,Q

d

dt

(
∂T

∂Ḋ

)
−

∂T

∂D
+

∂F

∂Ḋ
+

∂U

∂D
= F EXT,D (96)

which lead to a coupled system of governing equations (linear and angular momentum) for the

coupled particle-continuum mechanics. The derivatives are

∂T

∂Q̇
=

∂TQ

∂Q̇
+

∂TQ

∂
˙̂
Q

BQ̂Q +
∂TD

∂
˙̂
D

BD̂Q ,
∂T

∂Q
= 0 (97)

∂F

∂Q̇
=

∂FQ

∂Q̇
= a

(
∂TQ

∂Q̇
+

∂TQ

∂
˙̂
Q

BQ̂Q

)
(98)

∂U

∂Q
=

∂UQ

∂Q
+

∂UQ

∂Q̂
BQ̂Q +

∂UD

∂D̂
BD̂Q (99)

∂T

∂Ḋ
=

∂TD

∂Ḋ
+

∂TD

∂
˙̂
D

BD̂D +
∂TQ

∂
˙̂
Q

BQ̂D (100)

∂T

∂D
= 0 ,

∂F

∂Ḋ
= 0 (101)

∂U

∂D
=

∂UD

∂D
+

∂UD

∂D̂
BD̂D +

∂UQ

∂Q̂
BQ̂D (102)
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If the potential energyU is nonlinear with regard to particle frictional sliding andmicropolar (or

micromorphic) plasticity, then (96) may be integrated in time and linearized for solution by the

Newton-Raphson method. The benefit of this multiscale method, as pointed out by (19), is that

time steps are different for the DE and FE solutions. A multiscale time stepping scheme will

follow an approach similar to (19). To complete (96) and identify an approach to energy

partitioning, the individual derivatives may be written as

∂TQ

∂Q̇
= MQQ̇ ,

∂TQ

∂
˙̂
Q

= M Q̂ ˙̂
Q (103)

∂TD

∂Ḋ
= MDḊ ,

∂TD

∂
˙̂
D

= M D̂ ˙̂
D (104)

∂F

∂Q̇
= a

(
MQQ̇+BT

Q̂Q
M Q̂ ˙̂

Q
)

(105)

∂UQ

∂Q
= F INT,Q(Q) ,

∂UQ

∂Q̂
= F INT,Q̂(Q̂) (106)

∂UD

∂D
= F INT,D(D) ,

∂UD

∂D̂
= F INT,D̂(D̂) (107)

where superscriptQ denotes free particle motion and̂Q ghost particle motion, whereas

superscriptD denotes free nodal dofs and̂D prescribed nodal dofs. The energy partitioning will

be introduced through the definition of these terms below. First, substitute equations 103–107

into equation 96 to arrive at the coupled nonlinear equations in terms ofQ andD as

(
MQ +BT

Q̂Q
M Q̂BQ̂Q +BT

D̂Q
M D̂BD̂Q

)
Q̈

+
(
BT

Q̂Q
M Q̂BQ̂D +BT

D̂Q
M D̂BD̂D

)
D̈

+
(
CQ +BT

Q̂Q
CQ̂BQ̂Q

)
Q̇+BT

Q̂Q
CQ̂BQ̂DḊ

+F INT,Q(Q) +BT
Q̂Q

F INT,Q̂[BQ̂QQ+BQ̂DD]

+BT
D̂Q

F INT,D̂[BD̂QQ+BD̂DD] = F EXT,Q +BT
Q̂Q

F EXT,Q̂ (108)

(
BT

Q̂D
M Q̂BQ̂D +BT

D̂D
M D̂BD̂Q

)
Q̈

+
(
MD +BT

Q̂D
M Q̂BQ̂D +BT

D̂D
M D̂BD̂D

)
D̈

+BT
Q̂D

F INT,Q̂[BQ̂QQ+BQ̂DD] +BT
D̂D

F INT,D̂[BD̂QQ+BD̂DD]

+F INT,D(D) = F EXT,D +BT
D̂D

F EXT,D̂ (109)
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where an expression in brackets[•] denotes the functional dependence of the nonlinear internal

force and moment vector. Note the projections through theB matrices of the corresponding

mass, rotary inertia, and damping matrices, and forcing andmoment vectors. First, starting with

the mass and rotary inertia matrices for the particles, we partition the kinetic energy5 as follows:

M Q̂ = (1− r̂)A
α

mQ
α , α ∈ Â , xα ∈ B̃h (110)

MQ = MDE,Q + M̂
Q

(111)

MDE,Q =A
β

m
Q
β , β ∈ A , xβ ∈ BDE

M̂
Q
= (1− r̂)A

β

m
Q
β , β ∈ A , xβ ∈ B̂h

whereM Q̂ is the mass and rotary inertia matrix of ghost particles inB̃h, MDE,Q the mass and

rotary inertia matrix of free particles inBDE , M̂
Q

the mass and rotary inertia matrix of free

particles inB̂h, andr̂ is a weighting factor for the kinetic energy in the overlap region B̂h ∪ B̃h.

For no homogenized continuum contribution to the kinetic energy in the overlap region,̂r = 0,

and for full continuum homogenization of the underlying particle kinetic energy,̂r = 1. In our

case, we will consider the range0 ≤ r̂ ≤ 1. Given that the proposed multiscale modeling

framework is to be used in an adaptive fashion in the future, having an overlaying continuum

homogenization of the particle response is attractive whenparticle is converted to continuum

representation, and vice versa (in a statistical manner6). For the mass and rotary inertia matrices

associated with the micropolar continuum, we partition thekinetic energy as follows:

5and dissipation function through the mass-proportional damping for dynamic relaxation of a static DE analysis
6statistical, in the sense of generating a particle representation from a continuum one, where the underlying par-

ticle system does not exist; converting from particle to continuum representation is straightforward given the built-in
homogenization that the micropolar continuum possesses
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M D̂ = M̃
D̂
+ M̂

D̂
(112)

M̃
D̆
=

[
M̃

ŭ
0

0 M̃
ϕ̆

]

M̃
ŭ
= A

e∈B̃h

(r̂ 〈mu,e〉+ r̃emu,e)

M̃
ϕ̆
= A

e∈B̃h

(r̂ 〈mϕ,e〉+ r̃emϕ,e)

M̂
D̂
= r̂

[
M̂

û
0

0 M̂
ϕ̂

]
, M̂

û
= A

e∈B̂h

〈mu,e〉 , M̂
ϕ̂
= A

e∈B̂h

〈mϕ,e〉

MD = M̃
D
+ M̄

D
(113)

M̄
D
=

[
M̄

u
0

0 M̄
ϕ

]
, M̄

u
= A

e∈B̄h

mu,e , M̄
ϕ
= A

e∈B̄h

mϕ,e

whereM̃
D̂

is the continuum mass and rotary inertia matrix associated with prescribed nodal dofs

in B̃h, M̃
D

the continuum mass and rotary inertia matrix associated with free nodal dofs iñBh,

whereM̃
D̂

andM̃
D

are extracted from the total mass and rotary inertia matrixM̃
D̆

in B̃h, with

superscript(•)D̆ denoting the full mass and rotary inertia matrix associatedwith elements inB̃h,

〈•〉 is a homogenization operator,r̃e is the partitioning coefficient of continuum kinetic energy

associated with elementBe ⊂ B̃h. A simple choice is a volume fractioñre = Be,D/Be, where

Be,D = Be − Be,Q̂; Be,D is the non-overlapping continuum part of element volumeBe ⊂ B̃h, and

Be,Q̂ is the overlapped ghost particle volume in the element (cf. figure 6). For kinetic energy

partitioning, a volume fraction that directly relates to mass and rotary inertia partitioning seems

an appropriate choice.̂M
D̂

is the homogenized continuum mass and rotary inertia matrix

associated with prescribed nodal dofs inB̂h; where if r̂ = 0, there is no continuum

homogenization in̂Bh (i.e., all kinetic energy is due to underlying particles).̄MD is the

continuum mass and rotary inertia matrix associated with free nodal dofs in the pure continuum

FE domainB̄h.
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For the potential energy (internal force and moment) and external force partitioning in the particle

system, we write

F INT,Q̂ = (1− q̂)A
ǫ

f INT,Q
ǫ , xǫ ∈ B̃h (114)

F INT,Q = F INT,DE,Q + F̂
INT,Q

(115)

F INT,DE,Q =A
δ

f
INT,Q
δ , xδ ∈ BDE

F̂
INT,Q

= (1− q̂)A
δ

f
INT,Q
δ , xδ ∈ B̂h

FEXT,Q̂ = (1− q̂)A
ǫ

fEXT,Q
ǫ , xǫ ∈ B̃h (116)

FEXT,Q = FEXT,DE,Q + F̂
EXT,Q

(117)

FEXT,DE,Q =A
δ

f
EXT,Q
δ , xδ ∈ BDE

F̂
EXT,Q

= (1− q̂)A
δ

f
EXT,Q
δ , xδ ∈ B̂h

whereF INT,Q̂ is the internal force and moment vector associated with ghost particle contacts in

B̃h , F INT,DE,Q is the internal force and moment vector associated with freeparticle contacts in

BDE , F̂
INT,Q

is the internal force and moment vector associated with freeparticle contacts in̂Bh,

F EXT,Q̂ is the external force and moment vector associated with ghost particle contacts iñBh ,

F EXT,DE,Q is the external force and moment vector associated with freeparticle contacts inBDE ,

F̂
EXT,Q

is the external force and moment vector associated with freeparticle contacts in̂Bh, and

q̂ is a weighting factor for the potential energy in the overlapregionB̂h ∪ B̃h. For no

homogenized continuum contribution to the potential energy in the overlap region,̂q = 0, and for

full continuum homogenization of the underlying particle potential energy,̂q = 1. In our case,

we will consider the range0 ≤ q̂ ≤ 1. Note that in (13), they chosêq = 0. Their Cauchy-Born

elastic constitutive model acts like a homogenization operator on the underlying atomistic

response, but instead of keeping an overlain Cauchy-Born representation, the potential energy is

completely represented by the underlying atomistic response, except in the overlap regioñBh

where partitioning occurs. Note thatxǫ andxδ denote positions of particle contacts for

calculating internal force and moment vectors in equations114–118, whereasxα andxβ in

equations 110 and 111 denote particle centroids for calculating particle mass and rotary inertia

matrices.
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For the potential energy (internal force) partitioning in the continuum, we write

F INT,D = F̃
INT,D

+ F̄
INT,D (118)

F̄
INT,D

=

[
F̄

INT,u

F̄
INT,ϕ

]

F̄
INT,u

= A
e∈B̄h

f INT,u,e , F̄
INT,ϕ

= A
e∈B̄h

f INT,ϕ,e

and

F INT,D̂ = F̃
INT,D̂

+ F̂
INT,D̂

(119)

F̃
INT,D̆

=

[
F̃

INT,ŭ

F̃
INT,ϕ̆

]

F̃
INT,ŭ

= A
e∈B̃h

(
q̂
〈
f INT,u,e

〉
+ q̃ef INT,u,e

)

〈
f INT,u,e

〉
=

∫

Be

(Bu,e)T · 〈σ〉 dv

F̃
INT,ϕ̆

= A
e∈B̃h

(
q̂
〈
f INT,ϕ,e

〉
+ q̃ef INT,ϕ,e

)

F̂
INT,D̂

= q̂

[
F̂

INT,û

F̂
INT,ϕ̂

]

F̂
INT,û

= A
e∈B̂h

〈
f INT,u,e

〉
, F̂

INT,ϕ̂
= A

e∈B̂h

〈
f INT,ϕ,e

〉

whereF̃
INT,D

is the internal force and moment vector associated with freenodal dofs inB̃h,

F̃
INT,D̂

the internal force and moment vector associated with prescribed nodal dofs inB̃h, where

F̃
INT,D

andF̃
INT,D̂

are extracted from the full internal force and moment vectorF̃
INT,D̆

, with

superscript(•)D̆ denoting the full internal force and moment vector associated with elements in

B̃h, q̃e is the partitioning coefficient of continuum potential energy associated with element

Be ⊂ B̃h, and〈•〉 is a homogenization operator (to be defined later). A simple choice is a volume

fraction q̃e = r̃e. (13) considered a more sophisticated approach using an atomic bond density

function solved to reproduce a minimum potential energy state for homogeneous deformation.

The analogy here for particles would be a particle contact density for the potential energy terms

(internal force vectors). This will be considered further in future work. For now, we consider a
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volume fraction partitioning through̃qe, and a simple scaling through coefficientsq̄ (see 1D

numerical examples).̂F
INT,D̂

is the homogenized internal force vector associated with

prescribed nodal dofs in̂Bh, which has no contribution if̂q = 0, i.e., underlying particle contact

forces and moments provide full contribution in̂Bh. F̄
INT,D is the internal force vector

associated with free nodal dofs in the pure continuum domainB̄h. The external force and

moment vectors are written as

FEXT,D = F̃
EXT,D

+ F̄
EXT,D

(120)

F̄
EXT,D

=

[
F̄

EXT,u

F̄
EXT,ϕ

]

F̄
EXT,u

= F t + F u
g + A

e∈B̄h

f
EXT,u,e
b

F̄
EXT,ϕ

= F r + F ϕ
g + A

e∈B̄h

f
EXT,ϕ,e
ℓ

and

FEXT,D̂ = F̃
EXT,D̂

+ F̂
EXT,D̂

(121)

F̃
EXT,D̆

=

[
F̃

EXT,ŭ

F̃
EXT,ϕ̆

]

F̃
EXT,ŭ

= A
e∈B̃h

(
q̂
〈
f

EXT,u,e
b

〉
+ q̃efEXT,u,e

b

)

F̃
EXT,ϕ̆

= A
e∈B̃h

(
q̂
〈
f

EXT,ϕ,e
ℓ

〉
+ q̃efEXT,ϕ,e

ℓ

)

F̂
EXT,D̂

= q̂

[
F̂

EXT,û

F̂
EXT,ϕ̂

]

F̂
EXT,û

= A
e∈B̂h

〈
f

EXT,u,e
b

〉
, F̂

EXT,ϕ̂
= A

e∈B̂h

〈
f

EXT,ϕ,e
ℓ

〉

whereF̃
EXT,D

is the external body force and couple vector associated withfree nodal dofs inB̃h,

F̃
EXT,D̂

the external body force and couple vector associated with prescribed nodal dofs iñBh,

whereF̃
EXT,D

andF̃
EXT,D̂

are extracted from̃F
EXT,D̆

, the total external body force and couple

vector calculated iñBh. F̂
EXT,D̂

is the homogenized external body force and couple vector

associated with prescribed nodal dofs inB̂h, which has no contribution if̂q = 0, i.e., underlying

particle body forces and couples provide full contributionin B̂h. F̄
EXT,D

is the external force

and couple vector associated with free nodal dofs in the purecontinuum FE domain̄Bh.
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2.4.3 1D Full Overlap Coupling

Starting with equation 108, and referring to figure 7, we are able to arrive at a simplified set of

nonlinear equations to solve for a fully overlapped particle-continuum region.

FEXT
x

FEXT
y

Figure 7. Domain of full overlap coupling between a 1-D string of twenty-one glued, Hertzian nonlinear
elastic, spherical DEs, and a five-element 1-D micropolar linear elastic mesh.

We express the free dofs of a particleα in terms of the prescribed nodal dofs of an elemente, such

that

qαx = N u,e[ξ(xα)]d̂
e

x

qαy = N v,e[ξ(xα)]d̂
e

y

ωα = N θ,e[ξ(xα)]d̂
e

θ

qα = Nα
QD̂

d̂
e
, Nα

QD̂
=




Nu
1 0 0 0 Nu

2 0 0

0 Nv
1 0 Nv

3 0 Nv
2 0

0 0 N θ
1 0 0 0 N θ

2




NQD̂ =
nparticles

A
α=1

Nα
QD̂

M D̂D̂ = N T
QD̂

NQD̂

BD̂Q = M−1

D̂D̂
N T

QD̂

whereξ(xα) = (2/he)[xα − (xe
1 + xe

2)/2] , and the resulting nonlinear equations to solve forQ,

with D̂ = BD̂QQ andF INT,D̂(D̂) = KD(BD̂QQ), are

(1− q̂)F INT,Q(Q) + q̂BT
D̂Q

KD(BD̂QQ) = FEXT,Q (122)

The twenty-one 1-cm diameter DE spheres, and overlaying five-element micropolar elastic mesh

in figure 7 are used to demonstrate the overlap coupling procedure. The parameters are modified

slightly from the Timoshenko beam convergence example:FEXT
x = 10kN, FEXT

y = 10kN,

E = 29GPa,ν = 0.25, κ = 0.1µ, andγ = 400ℓ2µ, ℓ = 1cm,R = 5mm,B = 50, q̄u = 0.077,

q̄v = 5.5, q̄θ = 1.0. Notice the micropolar couple modulusγ is≈ 3 ∗ 400/0.05 = 24, 000 times
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larger than used for the results reported in figure 4. See morediscussion later.The differentq̄’s

indicate which equation they influence in the scaling of micropolar elastic FE stiffness (u for

axial,v for transverse, andθ for rotation). The axial loadFEXT
x is first applied to DE particle 1

(samex = 0 position as node 1 of FE mesh) to generate a transverse stiffness from the

Hertz-Mindlin nonlinear theory, and then the transverse loadingFEXT
y is applied while the axial

load is held fixed. The end moment atx = 0 is zero. It is cantilevered atx = L (zero axial and

transverse displacement, and zero rotation). The results in figure 8 demonstrate how the DE and

FE results can be nearly matched by scaling the micropolar elastic stiffness with thēq’s. The

rotations of the FE and DE do not match closely, and there is nocoupling between DE and FE.

This example demonstrates the scaling throughq̄ of the micropolar elastic FE stiffness. Also,

because of the relatively stiff transverse response of the nonlinear Hertzian DE spheres in contact

after 1-cm of compression (this is a large strain compression for a Hertzian theory, which is valid

only for small strains, but we use it to demonstrate the overlap coupling), the value of the

micropolar couple modulusγ was increased by a factor of≈ 3 ∗ 400/0.05 = 24, 000, thus the

large transverse displacement observed in figure 4 versus figure 8. We keep the parameters of the

Hertzian elastic contact model constant, and vary the micropolar elastic model parameters to

match the Hertzian model. This micropolar elastic parameter variation and energy scaling

through thēq’s take the place, for now, of the homogenization operator〈•〉 discussed in the

previous section on the overlap coupling method. This will be revisited in future work. Also, in

figure 8 we use 10 times the axial and transverse end forcesFEXT
x andFEXT

y when compared to

figure 4.

Using the same micropolar stiffness scaling coefficientsq̄’s, and equation 122, and with energy

factor coefficientŝqu = 0.65, q̂v = 0.5, q̂θ = 0.5, we get the results in figure 9. Notice that the

energy is factored between the DE particles and FE micropolar mesh. The DE particle rotations

oscillate about the FE nodal rotations. Notice that theparticle 1axial force≈ 6.3kN and the

particle 1 projected from rod node 1axial force≈ 3.6kN add up to theFEXT
x = 10kN through

equation 122. Likewise for the transverse force. This is theeffect of the energy factor

coefficientsq̂’s, whereas energy partitioning coefficientq̃ has no effect because there is no partial

overlap region (i.e.,̃Bh = ∅), only a full overlap region̂Bh (see figure 6).

If we set the energy factor coefficientsq̂u = 0, q̂v = 0, q̂θ = 0, we get the results in figure 10.

Notice that the micropolar FE mesh contributes no energy to the system. The particle DE

simulation provides all the energy, and in the rotations, they oscillate.
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Figure 8. Full overlap results with scaling coefficientsq̄’s on micropolar stiffness, but no coupling.
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Figure 9. Full overlap coupling results with energy factor coefficientsq̂u = 0.65, q̂v = 0.5, q̂θ = 0.5.
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Figure 10. Full overlap coupling results with energy factorcoefficientsq̂u = 0, q̂v = 0, q̂θ = 0.
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2.4.4 1D Partial Overlap Coupling with Partial Overlay 1D Mi cropolar FE

Referring to figure 11,NQD = 0 because there is no overlap between free particle dofs and free

continuum dofs. We need the additional interpolation matrices for particleα

Nα
Q̂D̂

=




0 0 0 0 Nu
1 0 0

0 0 0 0 0 Nv
1 0

0 0 0 0 0 0 N θ
1


 (123)

Nα
Q̂D

=




0 Nu
2 0 0

Nv
3 0 Nv

2 0

0 0 0 N θ
2


 (124)

where we can then relate prescribed dof to free dof through the projection operators as

NQD̂ =
nparticles

A
α=1

Nα
QD̂

N Q̂D̂ =
nparticles

A
α=1

Nα
Q̂D̂

N Q̂D =
nparticles

A
α=1

Nα
Q̂D

M D̂D̂ = NT
QD̂

NQD̂ , BD̂Q = M−1

D̂D̂
NT

QD̂

BQ̂Q = N Q̂D̂BD̂Q

BQ̂D = N Q̂D

Q̂ = BQ̂QQ+BQ̂DD

D̂ = BD̂QQ

where we solve the coupled system of nonlinear balance equations as (simplified from equations

108 and 109)

RQ(Q,D) = F INT,Q(Q) +BT
Q̂Q

F INT,Q̂(Q̂) +BT
D̂Q

F INT,D̂(D̂)− F EXT,Q = 0

(125)

RD(Q,D) = BT
Q̂D

F INT,Q̂(Q̂) + F INT,D(D)− F EXT,D = 0 (126)
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FEXT
x

FEXT
y

B̄hB̃hB̂hBDE

Figure 11. Domain of partial overlap coupling between a 1D string of 11 glued, Hertzian nonlinear elastic,
spherical DEs, and a 4 element 1D micropolar linear elastic mesh.

For volume average energy partitioning in the overlap region B̃h,

q̃ = (heAe − 2.5(4/3)πR3)/(heAe) = 0.583 because there are 2.5 particle volumes inB̃h. We

illustrate the performance of the overlap coupling algorithm in figures 12 and 13. We can see that

with scaling of micropolar elasticity through thēq coefficients, we can achieve a homogeneous

axial displacement gradient across the overlap coupling region B̃h, whereas the transverse

component cannot be made homogeneous. This can be observed because of the ratcheting of the

DE particle rotations, which the micropolar continuum FE can only represent if the element

lengthhe is chosen to be one DE particle diameter, which defeats the purpose of the overall

overlap coupling strategy. We believe that with more particles in 2D and 3D, as illustrated in

figure 6, the particle displacements and rotations will be smoothed and, thus, the overlap coupling

should work more effectively. In a sense, this 1D example assumes “too discrete” a 1D DE

particle string, that exhibits an oscillation/ratchetingbehavior upon transverse shear loading. The

axial component is handled without trouble.

We set the micropolar scaling coefficientsq̄u = 0.0195, q̄v = 0.8, q̄θ = 0.85 in

Bh = B̂h ∪ B̃h ∪ B̄h for 1D micropolar FE stiffness; energy factor coefficientsq̂u = 0, q̂v = 0,

q̂θ = 0 in B̂h ∪ B̃h; and energy partitioning coefficientq̃ = 0.583 in B̃h. The “not scaled” plots

indicate that̄qu = 1, q̄v = 1, q̄θ = 1. The results are shown in figure 12.

If we set the micropolar scaling coefficients the sameq̄u = 0.0195, q̄v = 0.8, q̄θ = 0.85, and

energy factor coefficientŝqu = 0, q̂v = 0, q̂θ = 0.9, then we have the result in figure 13. Notice

how factoring some of the DE rotational energy to the 1D micropolar FE mesh reduces the

oscillations of the DE particles in the transition/overlapregion.
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Figure 12. Partial overlap coupling results for energy factor coefficientŝqu = 0, q̂v = 0, q̂θ = 0.
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Figure 13. Partial overlap coupling results for energy factor coefficientŝqu = 0, q̂v = 0, q̂θ = 0.9.
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3. Summary

3.1 Results

The details of a 1-D overlap coupling between a micropolar linear isotropic elastic finite element

(FE) model and a 1D string of Hertzian (nonlinear) elastic-at-contact discrete element (DE)

spheres were presented. Numerical examples demonstrated various overlapping domains: (1)

full overlap coupling with fully-informed upscaled micropolar FE response from the underlying

DE response, and (2) partial overlap coupling with partially-informed upscaled micropolar FE

response (along partial length of domain) from the underlying DE response (also along partial

length of domain).

3.2 Conclusions

The simple 1D problem presented in this report provides an accessible model problem through

which to better understand how such coupling strategies should work for overlap coupling of

underlying DNS particulate models (in this case, DE), and overlying generalized continuum

models (in this case, micropolar elasticity). What makes this coupling strategy different than

those for atomistic continuum coupling methods (13, 19) is the rotational degrees of freedom of

the DE model, the open windowBDE region, and the additional degrees of freedom inherent in

the generalized continuum models—in this case a micropolarcontinuum (a subset of

micromorphic continuum).

3.3 Future Work

Future work will first involve extending the 1D formulation and implementation to include inertia

terms to study wave propagation (axial, transverse, and rotational) along the 1D domain.

Extending these concepts for the envisioned full 3D overlapcoupling problem and micromorphic

continuum as outlined in section 1.1 will come next.
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