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Abstract

Modeling fracture and fragmentation in geomaterials due to various loading and environmen-
tal conditions is a challenging problem and requires the latest in experimental, constitutive
modeling, and computational solution method technology. At Sandia, current geomaterial
constitutive models and computational methods are incapable of predictively modeling the
transition of continuous rock-like material to fragmented rock material within the context
of coupled solid-fluid-mechanical physics. To address this need, we proposed to develop a
physically-based geomaterial constitutive model and computational method that can predic-
tively model this transition.

Two problems that would be better understood with such a modeling capability are the
defeat of Hard and Deeply Buried Targets (HDBT) and the long term performance of deep
geologic nuclear waste repositories. It would be useful to be able to predict the behavior of
these buried structures when subjected to extreme dynamic loading conditions such as high
velocity penetration events, explosive blasts, or seismic events. At present, the mechanics
of rock penetration are poorly understood, and there are no empirical data that can be
used to forecast long term performance (over 1000s of years) of deep geologic nuclear waste
repositories. With the computational analysis tool developed by this and future projects to
evaluate potential failure scenarios of nuclear waste repositories, the Department of Energy’s
(DOE’s) efforts to obtain Nuclear Regulatory Commission (NRC) approval could become
easier. In addition to modeling the defeat of HDBT and the long term performance of nuclear
waste repositories, the resulting computational analysis tool will be useful for modeling
fracture and fragmentation in geomaterials such as concrete, rock, frozen soil, and heavily
overconsolidated clay encountered in foundation construction and performance, tunneling
construction, oil and natural gas production, and depleted reservoirs used for subsurface
sequestration of greenhouse gases.
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Chapter 1

Introduction

Authors: R.A. Regueiro, A.F. Fossum, R.P. Jensen

As a means of introduction, we provide an overview of the type of problem we are attempting
to solve, our approach to solving it, what we have achieved so far, what research is ongoing,
and what we determined during the project must be left for future work. All finite element
implementations have been carried out and are continuing to be developed in the open-
source, C++ software program Tahoe ( tahoe.ca.sandia.gov ), while all discrete element
implementations have been carried out in the Distinct Motion Code (DMC) developed at
Sandia [46].

1.1 Type of problem to solve

To destroy a hard underground structure such as a tunnel or cave, an explosive must be det-
onated beneath the ground surface with sufficient depth that the ensuing shock waves travel
through inhomogeneous and often anisotropic earth materials (that are fully or partially
saturated with fluid) to reach the target with sufficient amplitude to defeat it (cf. Fig.1.1).
Analyzing such an event requires the ability to predict a projectile’s penetration depth, the
shock wave propagation, and the shock-structure interaction once the shock wave reaches
the target. The solution of such a problem requires high performance computing (HPC),
state-of-the-art geomaterial models, coupled solid-fluid-mechanical governing equations, the
ability to model continua and discontinua, critical damage criteria, and a knowledge of the
in-situ statistical geomaterial properties. To be able to predict the long term peformance of
deep geologic nuclear waste repositories, a similar knowledge base and computational capa-
bility are required. There is concern that in the event of an earthquake, rockfall/rockburst
could impede the operations of the repository or damage the waste packages causing a system
failure.
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CHAPTER 1. INTRODUCTION

The sheer magnitude of such a research undertaking precludes obtaining all of the requisite
technology from a single project. Rather, we propose to focus on the issue of transitioning
from a continuous rock-like material to fragmented rock material within the context of cou-
pled solid-fluid-mechanical physics. That such an innovative modeling capability is necessary
has been made evident by three problems: 1) our inability to predict the path and depth of
penetration observed during penetrator field tests, 2) our inability to predict tunnel collapse
observed during shock wave interaction with a buried target, and 3) our inability to predict
rock failure during deep underground construction and potential seismic loading of nuclear
waste repositories.

nuclear waste repositories Hard and Deeply Buried Targets (HDBT)

Figure 1.1. Deep underground problems.

Modeling fracture and fragmentation in geomaterials for this class of geomechanical prob-
lems requires detailed experimental investigation of the underlying mechanisms of geoma-
terial fracture and fragmentation, an understanding of the coupled physics environment
and the geomaterial response within this environment, proper pre-fracture constitutive re-
sponse accounting for the transition from onset of localized deformation to macro-cracking,
an appropriate fracture/bifurcation criterion and post-bifurcation constitutive response, and
sophisticated numerical techniques to propagate (and branch) fracture surfaces leading to
fragmentation. To be predictive, constitutive models must be well-posed and physically
representative, and numerical simulations must be tractable and independent of spatial
discretization (refinement and alignment, i.e. mesh-independent). At the field scale (me-
ters to kilometers), two modeling approaches can be taken: 1) appropriate up-scaling of
laboratory-scale-motivated models to field-scale models (not addressed by this project), and
2) finite element meshing of field-scale inhomogeneities, such as strata and rock joints, along
with appropriate assignment of geomaterial properties. With a computational tool to sim-
ulate potential nuclear waste repository damage due to a seismic event and the defeat of
HDBTs, effects of various in-situ geologic characteristics can be analyzed, i.e. propagating
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potential uncertainties in our knowledge of in-situ characteristics via a deterministic simu-
lation tool. For example, the Yucca mountain repository site is very well characterized (
http://www.ocrwm.doe.gov/ymp/index.shtml ), whereas the geologic characteristics around
a HDBT are not.

1.2 Approach

Our approach to modeling the transition from continuous to discontinuous geomaterial de-
formation response may be summarized by the schematic given in Fig.1.2. We use a realistic
geomaterial constitutive model (the Sandia GeoModel [20]) to model stage 1 homogeneous
deformation up until onset of localized deformation is detected at stage 2. Experimentally,
the onset of localized deformation and ensuing post-bifurcation softening responses can be
studied by applying true triaxial compression stress conditions to parallelipipeds of rock (cf.
Fig.1.4) and sand (cf. Fig1.3). The GeoModel is formulated with strong and weak discon-
tinuity kinematics, deriving bifurcation criteria and post-bifurcation traction-displacement
relations. A strong discontinuity is a jump in displacement while a weak discontinuity is a
jump in displacement gradient (strain) [62]. To model propagation of a strong discontinuity,
a post-bifurcation model is implemented via an assumed enhanced strain variational formu-
lation, embedding the bifurcated response within the standard finite element response. To
handle the transition to stage 4, large crack displacements will be accounted for through
re-meshing and the introduction of contacting free surfaces along geometries determined by
the material model (work not yet done).

P

d

1

2
3

4

drained condition

1. homogeneous deformation

2. localized deformation

3. propagation of discontinuity

4. post-localization/fragmentation

Figure 1.2. Concept of modeling transition from continuous to discontinuous geomaterial defor-
mation response.

A coupled Discrete Element Method (DEM) and Finite Element Method (FEM) can then
model fragments cut by the re-mesh step, making the contact search between fragments more
computationally efficient than using solely an FEM approach. Details are given in Chapt.7.
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Figure 1.3. Shear banding in dense sand followed by reduction in load carrying capacity of sand
specimen [70, 69].

Note that for this project, DEM is used to model fragments discretely as opposed to being
used as a micromechanical geomaterial constitutive model, wherein the individual soil or
sandstone particles are modeled discretely. This concept is demonstrated in Fig.1.5. For the
nuclear waste repository example, a wave produced by a seismic event would propagate until
it passes through the tunnel that contains the nuclear waste containment vessel. If the wave
acceleration is high enough, it could cause rockfall/rockburst in the tunnel, whereby the
falling rock could puncture the containment vessel, leading to shorter safe storage life of the
spent nuclear material. Similarly, for the HDBT problem, if the shock wave produced by an
earth penetrator is high enough—depending on the depth of the target, its reinforcement or
lack thereof, in-situ geological conditions, etc.—rockfall/rockburst could occur in the HDBT.

1.2.1 Discussion of existing models and other potential approaches

Current computational capability for modeling fracture and fragmentation in geomaterials is
neither predictive nor independent of spatial discretization. For many Sandia finite element
failure analyses, elements are deleted whose stress has reached a specified failure criterion.
This deleted mesh volume decreases as the mesh is refined, and as a result the dissipated
energy likewise decreases. Mesh-dependent simulations like these have no useful approxi-
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Figure 1.4. Onset of cracking in Tennessee Marble [26].

mation capability. It is well-documented in the literature that mesh-dependence has two
causes: 1) ill-posed constitutive equations leading to ill-posed governing partial differen-
tial equations (PDE), and 2) inadequate numerical implementation techniques such as the
standard finite element method for post-failure response. There are numerous constitutive
models for modeling localized deformation leading to free surface formation in geomaterials
using nonlocal models and/or bifurcated response models. Nonlocal models for geomaterials
typically introduce material length scales to regularize the constitutive model in order to
have a well-posed governing PDE and hence mesh-independent simulations. These nonlocal
models include spatial gradients of internal state variables and their associated boundary
conditions, or they include weighting function integrals of certain internal state variables
over domains defined by the length scale. When modeling geomaterials at the laboratory
scale (centimeters), physically-based nonlocal models may be needed in order to calculate
accurately the onset of localized deformation and transition to macro-cracking. The onset
of localized deformation in geomaterials, when analyzed at the micrometer to millimeter
scale, can exhibit nonlocal effects such that the deformation at a material point depends
spatially on its neighboring material deformation. Local continuum models do not account
for these spatial/length-scale effects. It is possible at the field scale (meters to kilometers),
we may be able to ignore these nonlocal effects, but we have yet to confirm this assump-
tion. Nonlocal and generalized continuum inelasticity models for geomaterials need further
investigatation and are beyond the scope of this report. On that note, however, the start of
one such investigation has been supported by the project and is summarized in [39]. Besides

19



CHAPTER 1. INTRODUCTION

Rockfall due to seismic event at nuclear waste repository
DEM/FEMFEM

FEM

Penetration and shock wave interaction with HDBT

Figure 1.5. Concept of coupled DEM/FEM for modeling rockfall/rockburst for nuclear waste
repositories and HDBTs.

nonlocal models, some bifurcated response models also contain a material length scale, and
they assume a pre-bifurcation (pre-failure) material response using standard local contin-
uum constitutive models, a bifurcation criterion to determine onset of localized deformation
(and fracture), and a post-bifurcation traction-displacement constitutive relation to govern
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post-bifurcation response. Examples of such models are the cohesive zone approach [24] and
the strong discontinuity approach [62]. We have chosen to use a bifurcated response model
that is well-posed (and hence leads to nearly mesh-independent simulations), specifically the
Sandia Geomodel [20] formulated with strong and weak discontinuity kinematics.

Various computational techniques are available for implementing bifurcated response models.
Here, we summarize and compare a few techniques, including our approach, based on a
variational statement of equilibrium (i.e., finite element and meshfree methods).

• Our Approach (Strong Discontinuity Plasticity / Enhanced Strain Finite
Element / Re-Mesh Contacting Free Surfaces / Coupled DEM/FEM for
fragmentation): Rate-dependent, anisotropic, single-surface, geomaterial plasticity
model formulated with strong discontinuity kinematics; 3D assumed enhanced strain fi-
nite element implementation of strong discontinuity; adaptive re-meshing and insertion
of contacting free surfaces to account for large slip and crack-opening displacements;
coupled DEM/FEM for modeling fragments cut by re-meshing. Advantages: nearly
mesh-independent; computationally efficient; account for large crack displacements and
fragmentation. Disadvantages: crack displacement not continuous between elements
and does not resolve stress at crack tip.

• Strong Discontinuity Plasticity / Meshfree: Use meshfree method instead of
enhanced strain finite element method. Advantages: may not need to re-mesh as
early in deformation history since meshfree method allows for large distortion of the
underlying discretization grid. Disadvantages: relatively more expensive, but we
plan to consider this approach for future work.

• Cohesive Zone / Finite Element Method: use cohesive zone models and cohesive
surface elements along continuum element faces [31]. Advantages: no bifurcation
criterion needed since cohesive zone elements (with inherent cohesive strength) are in-
troduced at each element interface. Disadvantages: if elasto-plastic, mesh dependent
with regard to refinement and alignment and does not replicate continuous rock-like
materials. If rigid-plastic, some sensitivity to mesh alignment.

• Cohesive Zone / Meshfree: similar to Strong Discontinuity Plasticity / Meshfree
approach; we will consider this approach when considering meshfree methods [31].

• Extended Finite Element Method (X-FEM): embed linear elastic, analytical so-
lution at crack tip into X-FEM ([40] and references therein). Advantages: continuous
crack displacements across element edges potentially providing improved robustness;
resolve stress around crack tip. Disadvantages: requires analytical solution at crack
tip; more expensive because requires additional global degrees of freedom as crack
propagates. Extension to 3D requires level sets and potentially more computation
time than an embedded discontinuity approach.
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1.3 Accomplishments

Accomplishments that will be discussed in more detail in this report are briefly mentioned
here. For the reason of providing a potentially more robust bifurcation analysis, an im-
plicit integration of a simplified Sandia GeoModel was carried out [22] and is summarized
in Chapt.2. In order to determine loss of ellipticity of the acoustic tensor, a numerical 3D
bifurcation algorithm for small deformations was implemented in Tahoe and is discussed in
Chapt.3. Also in this chapter is a more extensive bifurcation analysis of the GeoModel.
With regard to a post-bifurcation, traction-displacement constitutive law, an elastic-plastic
and rigid-plastic cohesive zone model for geomaterials is described in Chapt.4, along with
its implementation using a cohesive surface element in Tahoe . For a similar rigid-plastic co-
hesive zone model, an enhanced strain, embedded discontinuity 3D element implementation
is discussed in Chapt.6. Chapter 7 describes the DEM/FEM coupling procedure, presenting
results for one way coupling.

1.4 Ongoing research

We are working on the discontinuity tracing algorithm for the embedded discontinuity el-
ement (EDE) in three dimensions. Bifurcation conditions for the Sandia GeoModel under
locally undrained conditions are being formulated. Also, a two-way DEM/FEM coupling
procedure is being developed.

1.5 Future work

Work that we plan to accomplish in the future (cf. Chapt.9):

1. Implement the rigid-plastic geomaterial cohesive zone model using Lagrange multipliers
rather than a penalty parameter.

2. Complete a two-way DEM/FEM coupled implementation.

3. Formulate and implement fully coupled solid-fluid mechanical governing equations with
strong and weak discontinuities in three-dimensions.

4. In terms of developing a universal bifurcation criterion for rate-sensitive and rate-
insensitive constitutive models, we will investigate the evaluation of cohesive zone
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yield criteria at various angles within a body. For rate-sensitive materials, bifurca-
tion to localized deformation is not determined by loss of ellipticity as viscous effects
regularize the governing equations (cf. Fig.3.7). Perhaps an embedded cohesive zone
yield criterion that is rate-sensitive can provide a universal bifurcation criterion for
rate-sensitive and rate-insensitive material models.

5. For materials and applications for which localized deformation zones require a weak
discontinuity representation (i.e., finite shear band thickness), the embedded weak dis-
continuity finite element implementation will be considered. Weak discontinuities are
more complicated because in order to achieve mesh-independent finite element simula-
tions, several cases must be considered. The element domain may lie completely within
the shear band, partially within the shear band, or the shear band may be completely
embedded within the finite element. On the other hand, strong discontinuities have
measure zero (i.e., have zero thickness, in theory), and hence the discontinuity may
always be embedded in a finite element.

6. A major goal of all future work is to extend all formulations and implementations to
finite deformations.

7. Of utmost importance is to coordinate our modeling with laboratory experiments and
field case studies in order to transfer the modeling and simulation technology to indus-
try users via Tahoe and DMC.
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Chapter 2

Overview of simplified Sandia
GeoModel and its implicit numerical
integration

Authors: C.D. Foster, R.A. Regueiro, A.F. Fossum, R.I. Borja

The Sandia GeoModel [20] is a constitutive model that we want to use to model homo-
geneous deformation of geologic materials up until the point of failure, at which time a
post-localization constitutive model and numerical method (such as Cohesive Surface Ele-
ment in Chapt. 5 and Embedded Discontinuity Element in Chapt. 6) will attempt to model
the propagation of cracks until the material is fragmented and then modeled using DEM as
discussed in Chapt. 7. Given numerical instabilities resulting from ill-posedness of the gov-
erning equation close to when loss of ellipticity is detected (cf. Chapt. 3), it is desirable to
have an implicit numerical integration of the constitutive model, which this chapter reports.
The contents of this chapter may also be found in the paper [22].

2.1 Introduction

The mechanical behavior of rocks and concrete can involve one or several interacting mi-
cromechanical processes. In low-porosity rocks, typically the macroscopic behavior is elastic,
followed by dilatancy and shear localization with loss of strength. The dilatational behavior
is associated with the onset of microcrack growth [17], [21]. Porous rocks exhibit more varied
behavior. At low mean stresses, they often exhibit compaction, followed by significant pre-
failure dilatation before shear failure. The dilatation can be a result of microcrack growth as
above, but also grain rotation and sliding. At higher mean stresses, the material undergoes
inelastic compaction resulting from pore collapse, accompanied by strain hardening. On
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continued loading, the material may still fail in shear.

To capture these behaviors, we will need fairly advanced constitutive models. Such models
can be computationally expensive to numerically integrate. Since yield surfaces and evolution
equations are not simple, the evaluations of these functions can be computationally intensive.
The ability to minimize the number of function evaluations can save significant run-time
costs.

Many of these materials, though certainly not all, are elastically isotropic or approximately
so. This restriction can be useful in reducing computation time. For models that also have an
isotropic yield function and are isotropically hardening, spectral decomposition can reduce
the number of function evaluations and the number of equations to be solved. Tamagnini et
al. [66] and Borja et al. [9] have recently used this approach for three-invariant models for
geomaterials. The algorithm is not new, however. Simo [58] [60] [59] used spectral directions
to enable a return-mapping algorithm for finite deformation plasticity.

The spectral decomposition involves the determination of the eigenvalues and eigenvectors
of the stress tensor, which we will refer to as the principal values and principal directions of
the tensor. Hence, the stress tensor can be written as

σ =

3∑

A=1

σAm(A) (2.1)

where σA are the eigenvalues of the stress tensor,

m(A) = n(A) ⊗ n(A)
(no sum) (2.2)

and n(A) are the corresponding eigenvectors.

For isotropic hardening and elasticity, the elastic strain, plastic strain rate, and stress tensors
are coaxial, i.e. they share the same principal directions. Hence the spectral decomposition
of the elastic strain tensor can be taken as an alternative to the spectral decomposition of
the stress tensor.

This decomposition can be put to use in two ways. First, for isotropically hardening models,
the trial stress σtr

n+1 and converged stress σn+1 at time tn+1 have the same principal direc-
tions. If we decompose the trial stress, we automatically know the principal directions of
the converged stress. Then there are only three unknowns, the principal values, needed to
determine the full stress state. This number is half the six unknowns needed to determine
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the stress tensor using traditional algorithms. Since typically we are dealing with relatively
complicated constitutive models with non-linear hardening, these can be solved for using a
Newton-Raphson iteration. By reducing the number of equations by three, this algorithm is
made more efficient.

Second, the spectral directions can be used to generate the consistent tangent with great
efficiency. This formulation relies on the coaxiality of the stress and plastic strain increment,
however, a property that is lost when we introduce kinematic hardening.

This paper presents an algorithm for the implicit numerical integration of models that
have kinematic hardening or combined isotropic and kinematic hardening using the spec-
tral decomposition of the relative stress (difference between the stress and a back stress; cf.
Eq.(2.29) ). To the authors’ knowledge, this algorithm is novel. Traditionally, these models
have been integrated implicitly without spectral decomposition [28] [52] [34] [33] [38] [19] [37]
[29] [36] [1], a potentially more computationally costly alternative to the algorithm presented
in this paper.

2.1.1 Notation

The summation convention, or Einstein’s notation, will be used throughout the paper where
not explicitly stated otherwise by the note (no sum). For example, σii = σ11 + σ22 + σ33. In
the previous section, Eq.(2.1) could be written without the summation symbol and still have
the same meaning. Equation (2.2) does not have an implied sum only because it is explicitly
indicated. Vector and tensor quantities will be written in symbolic form using boldface.
Scalar quantities will not be boldface. Vector and tensor products are defined as follows: 1)
The symbol ‘·’ implies the contraction over the inner index of two vectors or tensors. For
example, for vectors a and b, a · b = aibi, and for tensors α and β, (α · β)ij = αikβkj.
2) Similarly, the symbol ‘:’ represents the contraction of the innermost two indices of two
tensor quantities. For example, α : β = αijβij or (C : ε)ij = Cijklεkl. 3) The symbol symbol
‘⊗’ denotes an outer or tensor product, with no contraction on any of the indices, such that
(a ⊗ b)ij = aibj and (α ⊗ β)ijkl = αijβkl.

2.2 Infinitesimal Elastoplasticity

The geomaterial model is formulated within the framework of infinitesimal elastoplastic-
ity and hence is only valid when the displacements and rotations are small. Under these
conditions, the strain can be approximated by the infinitesimal strain tensor ε
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ε = ∇
su =

1

2
(∇u + (∇u)t) (2.3)

where u is the displacement vector, (•)t is the transpose operator, and (•)s denotes the
symmetric part of the tensor. We also assume an additive decomposition of the strain tensor
into elastic and plastic parts

ε = εe + εp (2.4)

Assuming that a Helmholtz free energy density function ψ(εe, ζ) for isothermal conditions
depends on the elastic strain εe and the vector of strain-like internal state variables ζ (which
will evolve with plastic flow), and following the standard thermodynamic arguments of Cole-
man and Noll [12] [11], the Clausius-Duhem inequality (dissipation density D) then reads

D := σ : ε̇p − q · ζ̇ ≥ 0 (2.5)

where the stress σ and vector of stress-like internal state variables q are determined by

σ = ρ
∂ψ

∂εe
; q := ρ

∂ψ

∂ζ
(2.6)

where ρ is the mass density. The variables σ and εe, and q and ζ, are thermodynamically
conjugate.

Assuming linear elasticity and linear dependence of q on ζ, the isothermal free energy func-
tion is written in quadratic form as

ρψ(εe, ζ) =
1

2
εe : ce : εe +

1

2
ζ · M · ζ , (2.7)

and the resulting constitutive equations in rate form are

σ̇ = ce : ε̇e = ce : (ε̇ − ε̇p) ; q̇ = M · ζ̇ (2.8)

where ce is a constant fourth-order elasticity tensor and M a constant hardening tensor.
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Based on the assumptions of the mathematical theory of plasticity, the behavior is elastic at
a given stress state if a given convex yield function, f(σ, q), is less than zero. Plastic flow
can only occur when f = 0, and values of σ and q that result in f > 0 are inadmissible. For
a given set of internal state variables, we refer to {σ : f(σ, q) = 0} as the yield surface.

We assume also the existence of a plastic potential function g that dictates the direction of
plastic flow via the equation

ε̇p = γ̇
∂g

∂σ
(2.9)

where γ̇ is the consistency parameter. If g = f , the model is associative in its plasticity.
We assume also that the evolution of the internal state variables is related to γ̇ via a set of
hardening functions

ζ̇ := γ̇h(σ, q) =⇒ q̇ = γ̇M · h(σ, q) = γ̇hq(σ, q) (2.10)

Using Eq.(2.10) and the consistency condition

0 = ḟ =
∂f

∂σ
: σ̇ +

∂f

∂q
· q̇ , (2.11)

we can solve for the consistency parameter

γ̇ =
(∂f/∂σ) : ce : ε̇

(∂f/∂σ) : ce : (∂g/∂σ) − (∂f/∂q) · hq =
1

χ

∂f

∂σ
: ce : ε̇ (2.12)

We substitute (2.12) into (2.9) and (2.8)1 to solve for the continuum tangent modulus as

σ̇ =

(

ce − 1

χ
ce :

∂g

∂σ
⊗ ∂f

∂σ
: ce
)

: ε̇ = cep : ε̇ (2.13)
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2.3 Stress Invariants

Since the model is isotropic in its elasticity, the yield function can be expressed in terms of
invariants. Using invariants guarantees that the material will behave in the same manner
regardless of loading direction. For a 3-by-3 symmetric matrix, there are three independent
invariants. The ones we will use are:

I1 = tr(σ) (2.14)

J2 =
1

2

(

σ − I1
3

1

)

:

(

σ − I1
3

1

)

=
1

2
s : s (2.15)

J3 = det(s) (2.16)

where tr(σ) = σii. Notice that I1 is simply three times the mean stress. J2 can be thought of
as a generalized measure of the shear stress acting on all planes, and J3 reflects the behavioral
feature in triaxial extension and triaxial compression. This last point will be discussed in
more detail in Section 2.4.2.

2.4 Geomaterial model

Moduli, yield and plastic potential functions, and hardening functions are defined in this
section to specify a geomaterial constitutive model. Limited physical motivation is presented
since this paper focuses on implicit numerical integration of the model. The reader is referred
to [21] [20] for further motivation of the model.

2.4.1 Constitutive equations

We assume the elastic response is isotropic, such that ce has the form

ce = λ1 ⊗ 1 + 2µI (2.17)

where 1 is the second order identity tensor, (1)ij = δij , I is the fourth-order symmetric
identity tensor, (I)ijkl = 1

2
(δikδjl + δilδjk), λ and µ are the Lamé constants, and δij is the

Kronecker delta.
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For the internal state variables we define

q :=

{
α

κ

}

; M :=

[
cαI 0
0 cκ

]

(2.18)

where α is the back stress associated with deviatoric plasticity and cyclic loading, κ the
isotropic stress-like internal state variable associated with compaction hardening, and cα

and cκ are hardening parameters for α and κ, respectively.

2.4.2 Yield function

The yield surface for the model has several components to capture the various behaviors
described in the introduction. At its core is an exponential shear failure function

Ff (I1) = A− C exp(BI1) − θI1 (2.19)

where A,B,C, and θ are all non-negative material parameters that are fit to the failure
data, more exactly to experimental peak stress for various confining pressures. This function
captures the pressure-dependence of the shear strength of these materials. The shear strength
increases with more compressive mean stresses (Fig. 2.1), without the linear dependence
associated with a simpler Mohr-Coulomb or Drucker-Prager approximation. These latter
two models tend to overpredict shear strength at high pressures. The parameter θ is the
asymptotic slope of this surface, recognizing that the pressure may still have some effect,
though lesser, at highly compressive mean stresses. The initial yield surface is offset from
the failure surface by a material parameter N , hence the first approximation of the yield
function can be written as

f1 =
√

J2 − (Ff −N) (2.20)

or

f̃1 = J2 − (Ff −N)2 (2.21)

These two functions are negative, zero, and positive in the same regions. For implementation
purposes, the second form will be easier and more efficient.
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θ

Ff

I1

A

0

Figure 2.1. Shear failure surface Ff .

The next step is to multiply the second term in Eq.(2.21) by an elliptical cap function to
account for yielding in compression.

f2 = J2 − Fc(Ff −N)2 (2.22)

where

Fc(I1) = 1 −H(κ− I1)

(
I1 − κ

X − κ

)2

(2.23)

X(κ) = κ− RFf(κ) (2.24)

and H(x) is the Heaviside function. The effect of this function is that at some value of the
mean stress, κ, the yield surface f2 begins to deviate from the shear yield surface, and as the
mean stress decreases (becomes more compressive/negative) the shear strength decreases,
until a point X is reached, where there is no shear strength (Fig. 2.2). Hence, a smooth cap
is created for the yield surface (Fig. 2.3). X is calculated such that the distance between
κ and X is proportional to Ff (κ), with the constant of proportionality being the material
parameter R. κ is an internal state variable and will be allowed to harden. X is also an
internal state variable, but is completely dependent on κ, which is the variable we will track.

Geomaterials also have a noticeably weaker strength in triaxial extension compared to triax-
ial compression. That is, at a given mean stress, the material will fail sooner if the principal
stress that is farthest from the mean stress is so in a tensile direction rather than a compres-
sive direction. To capture this effect, we use the Lode angle
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Figure 2.2. Cap function Fc.

β =
−1

3
sin−1

(

3
√

3J3

2(J2)3/2

)

(2.25)

We can now introduce the third-invariant modifying function Γ to account for this difference.

Γ(β) =
1

2

(

1 + sin 3β +
1

ψ
(1 − sin 3β)

)

(2.26)

=
1

2

(

1 − 3
√

3J3

2(J2)3/2
+

1

ψ

(

1 +
3
√

3J3

2(J2)3/2

))

(2.27)

where ψ is the ratio of triaxial extension strength to compression strength, a material con-
stant. Now

f3 = Γ2J2 − Fc(Ff −N)2 (2.28)
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Figure 2.3. Yield surface f2 in meridional stress space, along with the shear failure surface Ff and
the shear yield surface Ff −N .

This creates a smooth Mohr-Coulomb approximation in the π-plane (Fig. 2.4).

The final modification to the yield surface is the introduction of the back stress tensor α

to capture the Bauschinger effect for cyclic loading. We use a deviatoric, translational back
stress. From this we can define the relative stress

ξ = σ − α (2.29)

All the invariants will now be calculated from the relative stress, and we arrive at the final
form of our yield function

f = (Γξ)2Jξ2 − Fc(Ff −N)2 = 0 (2.30)

where the superscript ξ indicates that all quantities are computed from the relative stress
tensor, rather than the absolute stress tensor. The back stress tensor will be deviatoric,
hence quantities such as I1, Fc, and Ff will remain unchanged.
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σ2

σ3
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Figure 2.4. Yield surface in π-plane, for ψ = 1 and ψ = 0.8

Similarly, we introduce a plastic potential function g of the same form, but perhaps with
distinct material parameters, as

g = (Γξ)2Jξ2 − F g
c (F g

f −N)2 (2.31)

where

F g
f (I1) = A− C exp(LI1) − φI1 (2.32)

and

F g
c (I1) = 1 −H(κ− I1)

(
I1 − κ

Xg − κ

)2

(2.33)

Xg(κ) = κ−QF g
f (κ) (2.34)
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where if L = B, φ = θ, and Q = R, plastic flow is associative. Nonassociative plastic
flow has been observed for low-porosity rocks [44]. The frictional strength parameters B,
θ, and R typically overestimate the observed volumetric plastic deformation, warranting
a nonassociative model with L, φ, and Q determined from experimental measurements of
volumetric plastic deformation.

2.4.3 Hardening functions

The cap hardening parameter κ and deviatoric back stress α evolve with plastic deformation.
As one might expect, the evolution of κ is related to mean stress, and more directly to the
plastic volumetric strain, εpv, while the evolution of the back stress is related to the deviatoric
plastic strain, ep.

The evolution of the back stress takes the form [21] [20]

α̇ := cαGαėp = cαGα(ε̇p − 1

3
tr(ε̇p)1) = cαGαγ̇

(
∂g

∂σ
− 1

3

∂g

∂I1
1

)

(2.35)

where cα is a material parameter that controls the rate of hardening, and is the same as that
found in Eq.(2.18). Gα is a function which limits the growth of the back stress tensor as it
approaches the failure surface. It takes the form

Gα(α) = 1 −
√
Jα2
N

, Jα2 =
1

2
α : α (2.36)

As the yield surface meets the failure surface in stress space, Gα(α) = 0, and further devia-
toric loading leads to perfect plasticity.

To determine how the cap parameter evolves in Eq. (2.10), the following form for the plastic
volumetric strain is used [21]

εpv = W (exp {[D1 −D2(X(κ) −X0)](X(κ) −X0)} − 1) (2.37)

if Ẋ < 0 (i.e., cap hardening). X is not allowed to increase, as this would result in softening
of the cap, which appears to be unphysical behavior for these materials [55] [54]. κ̇ has the
same sign as Ẋ, and hence the same restriction applies. For the case where κ is decreasing
(cap hardening), we can calculate the change by noting
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ε̇pv = tr(ε̇p) = 3γ̇
∂g

∂I1
(2.38)

and

ε̇pv =
∂εpv
∂X

∂X

∂κ
κ̇ (2.39)

Equating Eqs.(2.38) and (2.39), the evolution equation for κ that results is

κ̇ = 3γ̇
∂g

∂I1

/(
∂εpv
∂X

∂X

∂κ

)

(2.40)

The evolution of the strain-like internal state variables can easily be back-figured from the
equations above. We define the hardening functions h for these variables as

ζ̇ = γ̇h(σ, q) ; h(σ, q) :=







Gα(α) (∂g/∂σ − (1/3)(∂g/∂I1)1)

3(∂g/∂I1)

/

[K(∂εpv/∂X)(∂X/∂κ)]






(2.41)

hq =

{
hα

hκ

}

= M · h(σ, q) (2.42)

where K = λ+2µ/3 is the bulk modulus, and cκ = K in Eq.(2.18). We could have chosen any
quantity with units of stress for cκ, but the bulk modulus seems natural given κ’s relationship
to volumetric strain.

The above equations describe the model used in this paper. However, it should be noted
that a localized deformation model is being formulated that would handle post-localization
response. Furthermore, the model has been extended to include the effects of nonlinear
elasticity, rate dependence, and transverse isotropy [20].
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2.5 Return mapping algorithm for implicit integration

We consider a strain-driven problem. Given a strain increment ∆ε and the values of the
stress and internal state variables at time tn, the goal is to solve for the values of these
variables at time tn+1, using the evolution equations in (2.8), (2.9), and (2.41). However,
simultaneous integration of these evolution equations is complicated. The typical solution
to this problem is to use an approximate numerical technique. Because of its simplicity and
unconditional stability, we integrate our equations using an implicit Euler scheme. While
this scheme has the above mentioned advantages, we should note that it has two drawbacks:
it is only first-order accurate in the time increment, and it is an implicit scheme. Using the
implicit Euler approximation, the discrete versions of (2.8), (2.9), and (2.41) become

∆σ = ce :

(

∆ε − ∆γ

(
∂g

∂σ

)

n+1

)

(2.43)

∆α = cαGα(αn+1)∆γ

(
∂g

∂σ
− 1

3

∂g

∂I1
1

)

n+1

(2.44)

∆κ = 3∆γ

(

∂g

∂I1

/(
∂εpv
∂X

∂X

∂κ

))

n+1

(2.45)

where ∆σ = σn+1 − σn, etc. Hence the solution of σn+1, αn+1, and κn+1 are trivial from
the above equations. Equation (2.43) is often conveniently rewritten as

σn+1 = σtr
n+1 − ∆γce :

(
∂g

∂σ

)

n+1

(2.46)

where σtr
n+1 is the trial predictor stress based on the assumption that the increment is elastic

σtr
n+1 = σn + ce : ∆ε (2.47)

It is convenient to rewrite this equation further as

σcorr := σn+1 − σtr
n+1 = −∆γce :

(
∂g

∂σ

)

n+1

(2.48)

where σcorr is the plastic corrector for the stress increment.
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In the plastic regime, the solution of these equations involves the introduction of an additional
variable, the incremental consistency parameter ∆γ. Hence we need an additional equation
to solve the system of equations, and that is the yield function evaluated at time tn+1

fn+1 = 0 (2.49)

To solve this system of equations, functions are evaluated at time tn+1. This system is
typically solved by a Newton-Raphson type iteration. Our vector of unknowns is

Z =
{
σ11 σ22 σ33 σ23 σ31 σ12 α11 α22 α23 α31 α12 κ ∆γ

}t
(2.50)

and our residual vector

R̂(Z) =







∆γce11kl(∂g/∂σkl) − σ11 + σtr
11

∆γce22kl(∂g/∂σkl) − σ22 + σtr
22

∆γce33kl(∂g/∂σkl) − σ33 + σtr
33

∆γce23kl(∂g/∂σkl) − σ23 + σtr
23

∆γce31kl(∂g/∂σkl) − σ31 + σtr
31

∆γce12kl(∂g/∂σkl) − σ12 + σtr
12

∆γ(hα)11 − α11 + (α11)n
∆γ(hα)22 − α22 + (α22)n
∆γ(hα)23 − α23 + (α23)n
∆γ(hα)31 − α31 + (α31)n
∆γ(hα)12 − α12 + (α12)n

∆γhκ − κ+ κn
f







= 0 (2.51)

where subscript n + 1 is left off to simplify notation. Here α33 = −(α11 + α22) can be
eliminated since the back stress is deviatoric. Even condensing out α33, we are left with 13
equations and 13 unknowns. The linear system has to be solved several times as we iterate
to find the solution.

We could save time in this algorithm if we could reduce the number of unknowns. Not
only would this reduce the size of the matrix to be inverted, but it would also reduce
the number of function evaluations, which is expensive given the complexity of the yield
function and evolution equations. Tamagnini et al. [66] and Borja et al. [9] have used
spectral decomposition to do this in the case of the isotropic hardening models. However,
these algorithms rely on the fact that the trial stress σtr

n+1 has the same spectral directions
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as ∂g/∂σ (and from this the converged stress also has the same spectral directions). This is
not in general true for kinematically hardening models. In fact, recall that for the relative
stress ξ = σ − α, we can see that

∂g

∂σ
=
∂g

∂ξ

∂ξ

∂σ
=
∂g

∂ξ
(2.52)

Since the plastic potential function g depends only on the invariants of the relative stress,
it is easy to show that ξ and ∂g/∂ξ have the same spectral directions. Clearly, the spectral
directions of the stress and relative stress may be different. The approach of spectrally
decomposing the relative stress, however, has promise. From Eq.(2.48), σcorr also will have
the same spectral directions as the relative stress since multiplication by an isotropic tensor
ce preserves spectral directions. From Eq.(2.44), since 1 is hydrostatic and can have any
spectral decomposition, ∆α also will have the same spectral directions as the relative stress.
Finally, the trial relative stress can be written as

ξtr
n+1 = σtr

n+1 − αn = ξn+1 − σcorr + ∆α (2.53)

such that it shares the same spectral directions as the converged relative stress ξn+1, plastic
corrector stress σcorr, and back stress increment ∆α. The trial relative stress ξtr

n+1 is the
critical quantity because it is known a priori.

We calculate the trial relative stress and spectrally decompose it using a Jacobi iteration.
While this method is slow for larger matrices, speed of convergence was good for these 3-by-3
matrices. The algorithm is described in [16] among many other places. We have chosen to
express the yield condition in terms of the principal relative stresses, so we use the trial
relative stresses to check yielding.

If there is yielding, we would like to put the spectral decomposition to good use. As we
have noted, however, the tensor unknowns for which we need to solve, the stress and back
stress, do not share the same spectral decomposition. To avoid this difficulty, we modify the
unknowns that we iterate. We can easily update the stress and back stress if we have σcorr

and ∆α. Since we already have the spectral directions for those tensors, we only need to
solve for the principal values.

Hence the vector of unknowns becomes

X =
{
σcorr
I σcorr

II σcorr
III ∆αI ∆αII ∆κ ∆γ

}t
(2.54)

40



2.5. RETURN MAPPING ALGORITHM FOR IMPLICIT INTEGRATION

Again, αIII is eliminated since the back stress is deviatoric.

Using a change of coordinates to the principal directions, the residual vector then becomes

R =







∆γae1A(∂g/∂ξA) + σcorr
I

∆γae2A(∂g/∂ξA) + σcorr
II

∆γae3A(∂g/∂ξA) + σcorr
III

∆γ(hα)I − ∆αI
∆γ(hα)II − ∆αII

∆γhκ − ∆κ
f







= 0 (2.55)

where subscript n+1 is left off, and the tensor ae is the elasticity tensor projected to principal
relative stress space,

ae =





λ+ 2µ λ λ
λ λ+ 2µ λ
λ λ λ+ 2µ



 (2.56)

Since the yield and hardening functions are expressed in terms of stress invariants, the easiest
way to calculate the derivatives is

∂(•)
∂ξA

=
∂(•)
∂I1

∂I1
∂ξA

+
∂(•)
∂Jξ2

∂Jξ2
∂ξA

+
∂(•)
∂Jξ3

∂Jξ3
∂ξA

(2.57)

=
∂(•)
∂I1

+
∂(•)
∂Jξ2

(

ξA − 1

3
I1

)

+
∂(•)
∂Jξ3

[(

ξA − 1

3
I1

)2

− 2

3
Jξ2

]

(2.58)

The smaller system can now be solved using a Newton-Raphson iteration

Xk+1
n+1 = Xk

n+1 −
[(

DR

DX

)k

n+1

]−1

Rk
n+1 (2.59)

where in practice the inverse is not explicitly computed, and the equations are solved using
an LU decomposition; k + 1 refers to the current iteration. Since the updates to the stress
and back stress may not have the same spectral decomposition as the stress and back stress
themselves, we update as follows
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σ = σtr +
3∑

A=1

σcorr
A m(A) (2.60)

α = αn +

2∑

B=1

∆αB(m(B) − m(III)) (2.61)

κ = κn + ∆κ (2.62)

where the subscript n + 1 is left off to simplify notation. Here the index B runs only from
1 to 2, since only two independent principal values of the evolution of the back stress are
calculated.

This algorithm is summarized in Box 1.

Box 1. Summary of stress-point algorithm

Step 1. Compute σtr
n+1 = σn + ce : ∆ε

Step 2. Spectrally decompose ξtr
n+1 = σtr

n+1 − αn =
∑3

A=1 ξ
tr
Am(A)

Step 3. Check yielding: is f > 0?
If no, set σn+1 = σtr

n+1 and exit.
Step 4. If yes, set X0 = 0 and iterate:

δXk =
[

(−DR/DX)k
]−1

R(Xk)

Xk+1 = Xk + δXk

until (Rσ/Rσ,max) < tolσ, (Rα/Rα,max) < tolα, (Rκ/Rκ,max) < tolκ,
(Rf/Rf,max) < tolf

Step 5. Update:
σn+1 = σtr

n+1 +
∑3

A=1 σ
corr
A m(A)

αn+1 = αn +
∑2

B=1 ∆αB(m(B) − m(III))
κn+1 = κn + ∆κ
γn+1 = γn + ∆γ

and exit.

Remark 1. The tolerances have to be treated carefully. Because the units of the yield
function, and hence the last element of the residual vector, are those of stress squared, the
value of that component may differ by several orders of magnitude from the other compo-
nents. Hence, convergence of the last component can mask lack of convergence by other
components, or lack of convergence of the last component may be masked by convergence of
the other components. Hence, we check that each component of the residual is converging.
Noting that the initial value of the first six components of the residual vector is zero, we
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must also ensure that the maximum values of the residual components are compared to as
we iterate.

Remark 2. Note that if, in addition to the yield function, the hardening functions depend
only on the relative stress, the number of variables in the local Newton-Raphson iteration
can be further reduced. If we examine

ξcorr = ξ − ξtr = σcorr − ∆α (2.63)

then we can form a residual based on the equation

(ξcorr)A = ∆γ

(

−aeAB
∂g

∂ξB
+ (hα)A

)

(2.64)

The corrections to the stress and back stress can then be calculated once the Newton-
Raphson iteration has converged. Unfortunately, this strategy cannot be employed for the
current model because one of the factors of hα is the function Gα(α) defined in Eq.(2.36)
whose evaluation requires the updated value of the back stress. Fortunately, however, this
equation only affects the evolution of α in a scalar fashion, and hence does not affect the
spectral directions of the back stress increment.

Remark 3. There is an additional strategy that can be employed to reduce the number of
equations. Notice that the last diagonal term of the matrix DR/DX, the term ∂f/∂∆γ,
is 0. This can be used to statically condense out the last variable as described in Simo and
Hughes [60] and Tamagnini et al. [66].

Remark 4. The algorithm summarized in Box 1 is applicable to isotropic-kinematic hard-
ening models for which elasticity is isotropic and for which the spectral directions of the
back stress rate α̇ in Eq.(2.35) are the same as those of the relative stress ξ. The algorithm
is not applicable to integrating models that do not share these features.

2.6 Consistent tangent

The consistent tangent modulus, also referred to as the algorithmic tangent modulus [60],
is an essential part of the finite element formulation for the implicit model. For isotropic
hardening, Tamagnini et al. [66] and Borja et al. [9] have used spectral directions to form
the consistent tangent in a highly efficient, closed-form fashion. However, this formulation
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relies on the fact that, for isotropic hardening, the stress and strain have the same spectral
directions. This coaxiality is lost in the kinematically hardening case. Recall

∆ε = ∆εe + ∆εp (2.65)

∆εe = (ce)−1∆σ (2.66)

∆εp = ∆γ
∂g

∂σ
(2.67)

Hence, the elastic strain shares spectral directions with the stress σ, and the plastic strain
increment shares spectral directions with the relative stress ξ, as we have seen. In most
cases, then, the total strain will share spectral directions with neither.

We form the consistent tangent in a traditional manner. For an implicit Euler scheme, we
start with the following system of equations:

0 =







(ce)−1σn+1 − εn+1 + εpn + ∆γ (∂g/∂σ)n+1

qn+1 − qn − ∆γ(hq)n+1

f
(
σn+1, qn+1

)






(2.68)

Differentiating the equations with respect to εn+1 and arranging the results, we can obtain
the matrix equations





I

0
0



 =







(ce)−1 + ∆γ
∂2g

∂σ∂σ
∆γ

∂2g

∂σ∂q
∂g/∂σ

−∆γ (∂hq/∂σ) 1 − ∆γ (∂hq/∂q) −hq

(∂f/∂σ)t (∂f/∂q)t 0







︸ ︷︷ ︸

A





∂σ/∂ε
∂q/∂ε

(∂∆γ/∂ε)t



 (2.69)

The n+ 1 subscripts have been omitted for simplicity. Clearly, then, the consistent tangent
cn+1 = (∂σ/∂ε)n+1 is the upper left 6-by-6 submatrix of A−1.

As with the integration point algorithm, notice that the system can be statically condensed
by taking advantage of the fact that the last diagonal entry is zero. Partitioning the last
row and column off the matrix A, the equations can be condensed in the same way as those
for the local iteration. After some manipulation, the equations become
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[
I

0

]

− 1

χ

{
∂g/∂σ
−hq

}{ (
∂f

∂σ

)t (
∂f

∂q

)t }

B−1

[
I

0

]

= B

[
∂σ/∂ε
∂q/∂ε

]

(2.70)

where

B =




(ce)−1 + ∆γ

∂2g

∂σ∂σ
∆γ

∂2g

∂σ∂q
−∆γ (∂hq/∂σ) 1 − ∆γ (∂hq/∂q)



 (2.71)

and

χ =

{
∂g/∂σ
−hq

}

B−1

{ (
∂f

∂σ

)t (
∂f

∂q

)t }

(2.72)

This can be rewritten as

[
∂σ/∂ε
∂q/∂ε

]

=

(

B−1 − 1

χ
B−1

{
∂g/∂σ
−hq

}

⊗ B−t

{
∂f/∂σ
∂f/∂q

})[
I

0

]

(2.73)

which is very similar to the formulation found in [60] and [4].

Finally, it should be noted that the quantities that populate the matrix A can be easily
obtained from quantities that have already been calculated. For example

∂f

∂σ
=

∂f

∂ξA

∂ξA
∂σ

=
∂f

∂ξA
m(A) (2.74)

and

∂2g

∂σ∂σ
=

∂2g

∂ξA∂ξB
m(A) ⊗ m(B) (2.75)
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2.7 Numerical examples

All the examples are run with the associative version of the model. Time step sizes are
chosen as large as possible in order to demonstrate reasonably smooth stress-strain curves.

The first example is a one element test with fully constrained degrees of freedom designed
to test the local return-mapping algorithm. The example consists of two loadings: uniaxial
strain in compression (prescribed displacements in the axial direction and zero displacement
in the other directions), followed by constrained shearing. A simple compression simulation
would not have adequately tested the ability of the implementation to operate when the
spectral directions are changing.

The material properties were fit to Salem Limestone data [20] and are shown in Box 2.

Box 2. Material Properties for Salem Limestone

Young’s Modulus E = 22547 MPa
Poisson’s Ratio ν = .2524 (dimensionless)
A = 689.2 MPa
B = 3.94e−4 1/MPa
C = 675.2 MPa
θ = 0.0 radians
R = 28.0 (dimensionless)
κ0 = −8.05 MPa
W = .08 (dimensionless)
D1 = 1.47e-3 1/MPa
D2 = 0.0 1/MPa2

cα = 1e5 MPa
ψ = 1.0 (dimensionless)

N = 6.0 MPa

The stress-strain response is shown in Fig. 2.5. During the first loading increment, the axial
response begins as elastic and then becomes plastic, while the shear stress and strain remain
zero. During the second phase, the shear response is plastic, and the axial stress drops. The
stress paths for the compression and shear phases are shown in Figs. 2.6 and 2.7 on the

√
J2

vs. I1 and

√

Jξ2 vs. I1 planes, respectively. Recall from Eq.(2.30) that the yield function

is a function of the invariants I1, J
ξ
2 , and Jξ3 . When plotting stress paths in the

√
J2 vs.

I1 plane, we expect the stress path to appear to deviate from the yield surface, whereas in
fact the stress path moves out of plane because the principal directions of ξ are changing.
We plot the stress path in the

√
J2 vs. I1 plane in order to show translation of the yield

46



2.7. NUMERICAL EXAMPLES

surface due to evolving α. Plotting the stress path in the

√

Jξ2 vs. I1 plane, however, we

expect the stress path to remain on the yield surface, assuming ψ = 1 (i.e., no dependence
on Jξ3), because even though the principal directions of ξ are changing, Jξ2 is invariant to
these changes.
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Negative axial stress vs. strain
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Figure 2.5. Stress-strain response for uniaxial strain in compression followed by constrained shear
test. Shaded face has prescribed compression displacement dc and shear displacement ds, while all
other faces are fixed except during shear. Letters A through D indicate the loading path. Note
that C and D on the compression curve appear on a vertical line since during the shear phase there
is no displacement in the compression direction, i.e. ∆dc = 0, although the axial stress drops.
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Figure 2.6. Stress path in meridional stress space
√
J2 vs. I1 for compression and shear phases of

uniaxial strain and constrained shear problem. Initial and final surfaces for compression and shear
phases shown. The letters indicate points on the stress path that correspond with points on the
stress-strain curve in Fig. 2.5.

Clearly, the post-localization model has not been implemented here, as the strain extends to
four percent. While the results are consistent with the model as implemented, they do not
capture the physical behavior of the material as it is deformed to larger strains. The results
underscore the need to add a localization capability to this implementation of the model.

We check the convergence of the algorithm both at the first plastic step and the first step of
the shear part of the test, where the spectral directions change. The resulting norm of the
residual vector for both cases is plotted in Fig. 2.8 and also shown in Table 2.1. Quadratic
convergence is observed. In this problem, quadratic convergence can be observed in each
component of the residual vector. As discussed earlier, because of the nature of the residual
vector, convergence of each component is checked. In some other problems not shown here,
one larger component may hamper the quadratic convergence of other components, but
overall quadratic convergence is still observed in all the examples we have run.

For the second example, we verify that the consistent tangent is calculated correctly such
that quadratic convergence is exhibited. To do this, we run the same problem we did
to verify the stress point algorithm in the first example, but allow free movement in the
orthogonal direction that does not have prescribed axial or shear displacements. Essentially,
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Figure 2.7. Stress path in meridional stress space

√

Jξ2 vs. I1 for compression and shear phases of
uniaxial strain and constrained shear problem. Initial and final yield surfaces shown. The letters
indicate points on the stress path that correspond with points on the stress-strain curve in Fig. 2.5.

this is a plane stress version of the uniaxial strain and constrained shear problem run for the
first example. This problem is run in a fully three-dimensional setting to give the problem
unconstrained degrees of freedom, as are all numerical examples in this paper. The stress-
strain response is shown in Fig. 2.9. The stress paths for compression and shear phases are

shown in Figs. 2.10 and 2.11 on the
√
J2 vs. I1 and

√

Jξ2 vs. I1 planes, respectively. Again,
the test has two parts, compression and shear, and we verify that the global residual vector
converges quadratically (cf. Fig. 2.12 and Table 2.2).

iteration number residual norm - compression step residual norm - shear step
1 4.127771E + 00 8.102731E + 01
2 1.088910E − 03 2.699950E − 01
3 3.771775E − 10 2.897466E − 06
4 5.911716E − 12 1.346052E − 10

Table 2.1. Convergence of integration point algorithm: norm of the residual vector.
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Figure 2.8. Residual norm per iteration for the first plastic step in both the compressive portion
and shear portion of the uniaxial strain test. Quadratic convergence is observed.

The third example is a comparison between the implicit implementation and an existing
explicit (forward Euler) implementation of the same model [21] [20]. The problem is a
plane strain, one-element, loading/unloading problem to 2.5% compressive strain. A 20
MPa confining pressure is applied. The explicit algorithm was run in 5000 steps to achieve
stability, while the implicit needed only 80 steps to achieve a smooth stress-strain curve. As
Fig. 2.13 shows, the results are comparable. The material properties are the same as for the
first example.

Next, we continue cycling this loading, from 0 to −2.5%, to verify that the model exhibits

iteration number residual norm - compression step residual norm - shear step
1 5.0010E + 00 5.2760E − 01
2 1.3852E + 00 4.0716E − 02
3 1.9048E − 01 2.7998E − 04
3 4.8349E − 03 1.3410E − 08
4 3.2879E − 06 4.4431E − 15
5 1.5667E − 12

Table 2.2. Convergence of gobal algorithm: norm of the global residual vector.
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Figure 2.9. Stress-strain response for element in plane stress compression and constrained shear.
Compression displacement dc and shear displacement ds applied to darker face, while the lighter
face is free. The unshaded faces have fixed normal displacements, except during shear. Letters A
through D indicate points on the stress-strain curve that correspond to letters on the stress paths
in Figs. 2.10 and 2.11. Note that C and D on the compression curve appear on a vertical line
since during the shear phase there is no displacement in the compression direction, i.e. ∆dc = 0,
although axial stress decreases.

a Bauschinger effect. The material data for this model suggests a Baushinger effect for this
Limestone, which is observed in Fig. 2.14. The stress path is shown in Figs. 2.15 and 2.16

on the
√
J2 vs. I1 and

√

Jξ2 vs. I1 planes, respectively.
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Figure 2.10. Stress path in meridional stress space
√
J2 vs. I1 for compression and shear phases

of plane stress problem. The letters indicate points on the stress path that correspond with points
on the stress-strain curve in Fig. 2.9. The stress path appears to deviate from the yield surface,
but it is actually moving out of plane from the

√
J2 vs. I1 plane as the principal directions of ξ

change. The dashed curve shows the initial yield surface and the solid curve the translated yield
surface, which at this stage is the same as the failure surface.

Finally, to capture the difference in triaxial extension strength versus triaxial compression
strength, new material properties are required. The material properties used in the previous
three examples were set for ψ = 1, indicating no difference in strength between triaxial
extension and compression. New material properties, also fit for a limestone are given in
Box 3.

Box 3. Material properties for limestone accounting for difference in triaxial extension vs.

compression strength.
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Figure 2.11. Stress path in meridional stress space

√

Jξ2 vs. I1 for compression and shear phases
of plane stress problem. The letters indicate points on the stress path that correspond with points
on the stress-strain curve in Fig. 2.9. The final yield surface is shown. As opposed to Fig.2.10,
in this figure the stress path remains on the yield surface because Jξ2 and I1 are the invariants in

the yield function. The relative stress ξ is embedded in Jξ2 , and so even as its principal directions

change, Jξ2 is invariant to these changes. The kink at point B along the stress path is due to the
backstress α increasing at a faster rate than the deviatoric stress s during the first plastic time
step, hence resulting in an apparent softer response at point B.

Young’s Modulus E = 22547 MPa
Poisson’s Ratio ν = .2524 (dimensionless)
A = 843.0 MPa
B = 2.73e-4 1/MPa
C = 822.0 MPa
θ = 0.0 radians
R = 28.0 (dimensionless)
κ0 = -8.05 MPa
W = .08 (dimensionless)
D1 = 1.47e-3 1/MPa
D2 = 0.0 1/MPa2

cα = 1e3 MPa
ψ = 0.8 (dimensionless)

N = 8.0 MPa
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Figure 2.12. Residual norm per iteration for the first plastic step in both the compression portion
and shear portion of the plane stress test for the global algorithm. Quadratic convergence is
observed.

These properties were used in two tests. Both tests were run at zero mean stress with the
stress tensor

σ =





σ 0 0
0 −σ/2 0
0 0 −σ/2



 (2.76)

For the triaxial extension test, σ is positive, while it is negative for the triaxial compression
test. The results in Fig. 2.17 show that the material yields sooner and undergoes more plastic
deformation in the triaxial extension case. Figures 2.18 and 2.19 show how the stress paths
in the π-plane meet and translate the yield surfaces for triaxial extension and compression
loadings.
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Figure 2.13. Comparison between implicit (this paper) and explicit [21] implementations of the
model. Plane strain compression and unloading with 20 MPa confining pressure. Compression
displacement dc applied to darker face, while confining pressure is applied to lighter faces. The
unshaded faces have fixed normal displacements.

2.8 Conclusions

The chapter reviewed a model for porous geomaterials such as limestones, sandstones, and
concrete, that includes both isotropic and kinematic hardening. The chapter presented an
algorithm for the implicit integration of models that have kinematic hardening or combined
isotropic and kinematic hardening using the spectral decomposition of the relative stress. To
our knowledge, the algorithm is novel. The local return mapping algorithm is an extension
of algorithms used for isotropically hardening models as shown in [58] [9] [66]. The spectral
decomposition technique reduces the number of function evaluations, which can be quite
costly for even moderately advanced constitutive models, as well as reduces the size of the
system of equations to be solved.

The consistent tangent has been implemented in a standard way [59] [4], noting that the
quantities needed to form the generalized compliance can be computed from the spectral
values without any additional function evaluations. However, the efficient methods used to
compute the consistent tangent in the isotropically hardening case [42] [9] [66] cannot be
used for the kinematically hardening case since the stress and strain are not coaxial.
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Figure 2.14. The Bauschinger, or Masing, effect captured by the model. Cyclic plane strain
compression with 20 MPa confining pressure. Compression displacement dc applied to darker
face, while confining pressure is applied to lighter faces. The unshaded faces have fixed normal
displacements. The letters on the stress-strain curve correspond with the stress paths in Figs. 2.15
and 2.16.

Numerical examples show that both the local and global iterations exhibit quadratic con-
vergence. Also, these examples show how the model can be used to capture some of the
behaviors common to geomatrials, including strain hardening, a Bauschinger effect, and
differences in triaxial extension versus compression strength.
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Figure 2.15. Stress path in meridional stress space
√
J2 vs. I1 for compression and shear phases

of plane stress problem. The letters indicate points on the stress path that correspond with points
on the stress-strain curve in Fig. 2.14. The stress path appears to deviate from the yield surface
at F along the stress path, but it is actually moving out of plane from the

√
J2 vs. I1 plane as the

principal directions of ξ change. The dashed curve is the initial yield surface and the solid curve
the final, translated yield surface. The initial kink in the stress path along A is due to simultaneous
application of confining pressure and compression displacement dc in the first time step.

57



CHAPTER 2. OVERVIEW OF SIMPLIFIED SANDIA GEOMODEL AND ITS
IMPLICIT NUMERICAL INTEGRATION

−500 −400 −300 −200 −100 0 100
0

10

20

30

40

50

60

70

H

G

F
E

D

C

B

A

I1, MPa

√

J
ξ 2
,
M

P
a

Figure 2.16. Stress path in meridional stress space

√

Jξ2 vs. I1 for compression and shear phases of
plane stress problem. The letters indicate points on the stress path that correspond with points on
the stress-strain curve in Fig. 2.14. As opposed to Fig.2.15, in this figure the stress path remains
on the yield surface because Jξ2 and I1 are invariants in the yield function, and Jξ2 is invariant to
changing principal directions of ξ.
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Figure 2.17. Comparison of material response in trixial extension vs triaxial compression at zero
mean stress. Axial stresses are the principal stresses largest in magnitude. The letters denote
points on the stress-strain curves that correspond to points on the stress paths in Figs. 2.18 and
2.19.
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Figure 2.18. Stress path in π-plane for triaxial extension showing intersection with initial yield
surface and stopping at final yield surface. The failure surface is shown for reference. The letters
denote points on the stress path that correspond with points on the stress-strain curve in Fig. 2.17.
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Figure 2.19. Stress path in π-plane for triaxial compression showing intersection with initial yield
surface and stopping at final yield surface. The failure surface is shown for reference. The letters
denote points on the stress path that correspond with points on the stress-strain curve in Fig. 2.17.
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Chapter 3

Bifurcation conditions for Sandia
GeoModel

Authors: R.A. Regueiro, C.D. Foster, A.F. Fossum, R.I. Borja

Portions of this chapter may be found in [48] and [49].

3.1 Introduction

Localized deformation such as shear bands, compaction bands, dilation bands, combined
shear-compaction or shear-dilation bands, fractures, and joint slippage are commonly found
in geomaterials. These localized deformations can be triggered by either material inhomo-
geneities such as joint sets in rocks, inhomogeneous stress resulting from boundary conditions
such as friction at end platens in a confined compression test, or by some microstructurally
driven material instability. We can account for material inhomogeneities by constitutive
modeling in conjunction with a numerical simulation method such as the finite element
method. Significant material inhomogeneities such as strata and joint sets can be meshed
discretely, assigning different material properties for each spatial region of the finite element
mesh, or they can be incorporated in an average sense into a continuum constitutive model
via directional structure/anisotropy tensors or the like. Either way, depending on bound-
ary and loading conditions, the material deformation response predicted by the constitutive
model could become mathematically unstable. This mathematical instability could be made
to coincide with the natural material instability observed in the field or laboratory. The
most straightforward way to do this is to endow the constitutive model with as much mate-
rial characterization and representative deformation response that is deemed significant for
the problem of interest. For example, if joint sets are plentiful and dominate the material
deformation response, they must be represented in the constitutive model. Depending on

63



CHAPTER 3. BIFURCATION CONDITIONS FOR SANDIA GEOMODEL

the boundary and loading conditions, the model must predict the onset of gross localized
deformation resulting from activity of certain critical joint sets. In essence, the ability of
a continuum constitutive model to predict material instability in the form of localized de-
formation is only as good as the model’s sophistication in terms of representing material
behavior. Some questions we should ask when choosing and developing constitutive models
for geomaterials are: Is the material isotropic or anisotropic elastically and/or plastically?
Is the material temperature and rate-sensitive? Are joint sets or other in-situ material inho-
mogeneities prominent?

Given a relatively sophisticated continuum constitutive model for geomaterials, this chapter
focuses on determining stress states at which the constitutive model predicts mathematical
instabilities. With regard to modeling material deformation response after an instability is
detected, such as transition of continuous rock-like material to fragmented rock material,
this instability will be referred to as a bifurcation in material response. Developing a post-
bifurcation constitutive model and numerical implementation, whether via the finite element
method or a meshfree method, is the next step in modeling material failure in geomaterials
and will be discussed in Chapters 4, 5, and 6.

The bifurcation analysis assumes strong (jump in displacement) and weak (jump in strain)
discontinuity kinematics for both rate insensitive and rate sensitive forms of the constitutive
model. For the rate insensitive form, different bifurcation conditions result for strong and
weak discontinuities as well as whether bifurcation is continuous or discontinuous. Contin-
uous bifurcation assumes that at the instant of bifurcation there is plastic loading outside
the discontinuity as well as within/on it [50]. Discontinuous bifurcation assumes there is
elastic unloading outside the discontinuity and plastic loading within/on the discontinuity.
Rice and Rudnicki [50] analyzed continuous and discontinuous bifurcation for weak discon-
tinuities in the context of rate insensitive non-associative plasticity. We will extend this
analysis to strong discontinuities and rate sensitivity and with future numerical examples
will address specifically the effects of the third invariant and backstress on bifurcation. For
weak discontinuity, we find there is a difference between continuous and discontinuous bi-
furcation conditions, whereas for strong discontinuity, there is no difference. We solve for
the unit normal n to a discontinuity interface that satisfies the loss of ellipticity condition,
the determinant of the acoustic tensor A is zero (detA = 0) [51], which results from the
condition that traction is continuous across the discontinuity. This bifurcation condition in
essence tells us that at a given stress state a discontinuity is admissible in our material body.
This condition is necessary but not sufficient for the discontinuity to appear. It is well known
in the literature that for rate sensitive plasticity, large positive values of viscosity preclude
loss of ellipticity (i.e., detA > 0), unless the viscosity is small enough such that the model is
nearly rate insensitive. Hence, loss of ellipticity is not a meaningful bifurcation condition for
a rate sensitive geomaterial model. This requires us to determine a physically meaningful
bifurcation condition for the rate sensitive form of the model since we know from laboratory
tests and field evidence that failure occurs for rate sensitive materials. In addition, we ques-
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tion whether detA = 0 for the rate insensitive form is a physically meaningful bifurcation
condition because it depends on a continuum constitutive model and on a fit of its material
parameters to data determined from homogeneously deforming experimental specimens. It
seems physically meaningful to have similar bifurcation criteria for both rate insensitive and
rate sensitive forms of the model. This chapter, however, focuses on bifurcation analysis of
rate insensitive and sensitive forms of a geomaterial constitutive model. Future work will
revisit this issue.

Throughout the chapter we assume small deformations and rotations. Symbolic notation is
used for clearer presentation, such as the inner product of two second order tensors (a·b)ik =
aijbjk, the contraction of two tensors a : b = aijbij , or the dyadic product (a⊗b)ijkl = aijbkl.
Tensor operators are used such as the trace operator tra = aii, deviatoric operator deva =
a − (tra/3)1, symmetric gradient (∇sv)ij = (vi,j + vj,i)/2, and divergence (∇ · a)i = aij,j.

3.2 Kinematics and governing equations for weak and

strong discontinuities

For weak discontinuities, we assume a planar band with thickness h, which is small relative
to the size of the body (0.1% or 1%), such that 1/h is a large number but remains bounded.
The strain rate assuming small strains is written as [5]

ε̇ =

{
ε̇1 = ε̇0 + 1

h
sym([[v]] ⊗ n) ∈ Bh

ε̇0 ∈ Ω\B̄h (3.1)

where ε̇ = ∇
sv, superscript 1 denotes just inside the band and 0 denotes just outside the

band (say, across Sh+), [[v]] = v+ − v− is the jump in velocity across the band, and n is the
unit normal to the band (cf. Fig.3.1).

The local form of quasi-static, isothermal equilibrium for a body Ω with weak discontinuity
is written as follows

∇ · σ + b = 0 in Ω (3.2)

σ · ν = tσ on Γt

u = g on Γg

[[σ]] · n+ = 0 across Sh+
[[σ]] · n− = 0 across Sh−
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Figure 3.1. Body Ω̄ with planar weak discontinuity Bh (Ω = Ω+ ∪ Ω− ∪ Bh , Γ = Γt ∪ Γg ∪ Sh− ∪
Sh+ , B̄h = Bh ∪ Γht ∪ Γhg ∪ Sh− ∪ Sh+ , Ω̄ = Ω ∪ Γ).

where σ is the Cauchy stress, b is the prescribed body force, ν is the unit normal to Γt,
n+ = n− = n is the unit normal to Sh+ and Sh− since the band is assumed planar, tσ is the
prescribed traction, g is the prescribed displacement, and [[σ]] denotes the jump in stress
across Sh+ or Sh− (i.e., [[σ]] = σ1 − σ0).

The variational form of quasi-static equilibrium, using the local form as a point of departure,
then may be written as follows

∫

Ω

∇
sη : σ dΩ =

∫

Ω

η · b dΩ +

∫

Γt

η · tσ dΓ

+

∫

Sh+

η · ([[σ]] · n) dΓ

+

∫

Sh
−

η · ([[σ]] · n) dΓ (3.3)

where η = δu is the weighting function and first variation of u. The traction continuity
condition [[σ]] ·n = 0 across Sh+ and Sh− for a body with weak discontinuities will be used to
determine bifurcation.

For strong discontinuities, a spatial jump in velocity [[v]] across S leads to a singular
strain rate at S as [62]

66



3.2. KINEMATICS AND GOVERNING EQUATIONS FOR WEAK AND STRONG
DISCONTINUITIES

ε̇ =

{
ε̇1 = ε̇0 + sym([[v]] ⊗ n) δS ∈ S

ε̇0 ∈ Ω\S (3.4)

where δS is the Dirac-delta function at the discontinuity surface S (cf. Fig.3.2).

Ω−

Ω+

n

tσ

g

ν

S

Γt

Γg

Figure 3.2. Body Ω̄ with planar strong discontinuity S (Ω = Ω+∪Ω− , Γ = Γt∪Γg∪S , Ω̄ = Ω∪Γ).

The local form of quasi-static, isothermal equilibrium for a body Ω with strong discontinuity
is written as follows

∇ · σ + b = 0 in Ω (3.5)

σ · ν = tσ on Γt

u = g on Γg

[[σ]] · n = 0 across S

where n is the unit normal to S and [[σ]] is the jump in stress across S.

The variational form of quasi-static equilibrium is then

∫

Ω

∇
sη : σ dΩ =

∫

Ω

η · b dΩ +

∫

Γt

η · tσ dΓ

+

∫

S

η · ([[σ]] · n) dΓ (3.6)
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weak discontinuity

η

n

m

Ω

ψ

h
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+ ([[u(x, t)]] ⊗ n(x)) δS(x)

Figure 3.3. Kinematics of weak and strong discontinuities.

As for weak discontinuities, the traction continuity condition [[σ]] · n = 0 for a body with
strong discontinuities will be used to determine bifurcation.

3.3 Summary of Sandia GeoModel for bifurcation anal-

ysis

Here, a brief summary is given of the three-invariant isotropic/kinematic hardening cap
plasticity model (Sandia GeoModel). For more details, refer to Chapt.2.

3.3.1 Rate insensitive model

For small strains, an additive decomposition of the strain rate into elastic and plastic parts
is assumed
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ε̇ := ε̇e + ε̇p (3.7)

Assuming linear isotropic elasticity, the constitutive equation for the stress rate is

σ̇ = ce : ε̇e , ce = λ1 ⊗ 1 + 2µI (3.8)

where λ and µ are the Lamé parameters.

The single yield surface f and plastic potential function g are written in terms of the invari-
ants as

f = Γ2(βξ)Jξ2 − [Fy(I1)]
2Fc(I1, κ) = 0 (3.9)

g = Γ2(βξ)Jξ2 − [F g
y (I1)]

2F g
c (I1, κ) (3.10)

where f is the yield function, βξ(Jξ2 , J
ξ
3) is the Lode angle, Γ is a function of βξ and Ψ (the

ratio of strength in triaxial extension versus triaxial compression, Ψ = 1 if no difference
in strength), N is the offset of the shear failure surface Ff(I1) from the initial shear yield

surface Fy(I1) = Ff (I1) − N , I1 = σii is the first stress invariant, Jξ2 = 1
2
ξ : ξ is the second

invariant of the deviatoric relative stress ξ = s − α, s is the deviatoric stress, α is the
deviatoric backstress associated with the Bauschinger effect, Jξ3 = 1

3
(ξ · ξ) : ξ is the third

invariant of the deviatoric relative stress, κ is the internal stress variable associated with
compaction hardening, F g

y (I1) = F g
f (I1)−N , and g is the plastic potential function allowing

for non-associative plastic flow. Material parameters for the shear failure surface Ff(I1) are
determined from peak stress experimental data. The purpose of the shear failure surface is
to limit the hardening of the backstress α. The effect of Fc(I1, κ) is to provide a smooth
elliptical cap. A non-associative flow rule is assumed for plastic flow as

ε̇p = γ̇
∂g

∂σ
= γ̇g (3.11)

The flow rule is associative if material parameters are chosen such that f = g. The evolution
of the internal variables is

α̇ = γ̇hα(α) ; hα(α) = cαGα(α) devg

κ̇ = γ̇hκ(κ) ; hκ(κ) = 3cκGκ(κ)∂g/∂I1
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To determine the consistency parameter γ̇, evaluate the consistency condition

ḟ =
∂f

∂σ
: σ̇ +

∂f

∂α
: α̇ +

∂f

∂κ
κ̇ = 0 (3.12)

then solve for γ̇

γ̇ =
1

χ
f : ce : ε̇ (3.13)

χ = f : ce : g − ∂f

∂α
: hα − ∂f

∂κ
hκ

where f = ∂f/∂σ. Substituting into the rate equation for stress gives

σ̇ =

(

ce − 1

χ
ce : g ⊗ f : ce

)

: ε̇ = cep : ε̇ (3.14)

where cep is the continuum elasto-plastic tangent.

3.3.2 Rate sensitive model

The rate sensitive form of the model involves a standard viscous regularization following
Perzyna [60], which can be expressed in generalized Duvaut-Lions form [18]. The consti-
tutive equations are similar to those of the rate insensitive model except that now there
is no consistency condition by which to calculate the plastic consistency parameter (hence,
regularizing the rate insensitive plasticity model).

Revisiting equations from the inviscid model, we now introduce a viscoplastic strain rate ε̇vp

such that the evolution equations are

ε̇ = ε̇e + ε̇vp

σ̇ = ce : ε̇e = ce : (ε̇ − ε̇vp)

ε̇vp = γ̇g

α̇ = γ̇hα

κ̇ = γ̇hκ

γ̇ =
< g >

η
(3.15)

70



3.3. SUMMARY OF SANDIA GEOMODEL FOR BIFURCATION ANALYSIS

where η is the viscosity coefficient with units (Pa)3s. These equations may be expressed in
generalized Duvaut-Lions form as

ε̇vp =
1

τ
(ce)−1 : (σ − σ̄)

α̇ =
−1

τ
(α − ᾱ)

κ̇ =
−1

τ
(κ− κ̄)

τ =
η

(2µ)3
(3.16)

where τ is the relaxation time, and σ̄, ᾱ, κ̄ are solutions to the inviscid problem. The
evolution equations can be written as

σ̇ +
1

τ
σ = ce : ε̇ +

1

τ
σ̄

α̇ +
1

τ
α =

1

τ
ᾱ

κ̇ +
1

τ
κ =

1

τ
κ̄

Since these are linear ODEs, the closed form solution may be found:

σ(t) = (σ(0) − σ̄) e−t/τ + σ̄

+ e−t/τce :

∫ t

0

es/τ ε̇(s)ds (3.17)

α(t) = (α(0) − ᾱ) e−t/τ + ᾱ (3.18)

κ(t) = (κ(0) − κ̄) e−t/τ + κ̄ (3.19)

To obtain the inviscid solution, τ → 0, and to obtain the elastic solution, τ → ∞.

For bifurcation analysis, it is useful to express the rate sensitive form of the model in incre-
mental form, given the inviscid solution determined from say an implicit numerical integra-
tion scheme like Backward Euler [22] discussed in Chapt.2. Approximating the integration
in Eq.(3.17) leads to [60]
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σn+1 = e−∆t/τσn + (1 − e−∆t/τ )σ̄n+1

+
τ

∆t
(1 − e−∆t/τ )ce : ∆ε (3.20)

∆t = tn+1 − tn

∆ε = εn+1 − εn

where tn+1 is the current time. Linearizing Eq.(3.20) leads to

δσ = (1 − e−∆t/τ )
(

δσ̄ +
τ

∆t
ce : δε

)

(3.21)

where Lσ = σo + δσ is the linearization operator [30].

3.4 Bifurcation analysis

The bifurcation analysis follows closely that conducted in [7]. As is well-reported in the liter-
ature (Sandler & Wright [56], Needleman [41], Sluys & de Borst [65]) viscous regularization
in the manner of Duvaut-Lions inhibits loss of strong ellipticity for strain-softening plastic-
ity models, assuming the viscosity is finite. For a nearly rate insensitive model (viscosity
η ≈ 0), however, loss of strong ellipticity via the underlying inviscid model is possible. The
first subsection is devoted to bifurcation analysis of the rate insensitive (inviscid) form of
the model, while the second addresses bifurcation of the rate sensitive model.

3.4.1 Rate insensitive model

We consider weak discontinuities first and then strong discontinuities, addressing both con-
tinuous and discontinuous bifurcation.

weak discontinuity

For continuous bifurcation, plastic loading occurs outside the planar band (f : ce : ε̇0 > 0)
and within the band (f : ce : ε̇1 > 0) at the instant of bifurcation. The plastic consistency
parameter is assumed to decompose as (and its two parts determined from the consistency
parameter derived in Eq.(3.13))
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γ̇ = ˙̄γ +
1

h
γ̇h (3.22)

˙̄γ =
1

χ
f : ce : ε̇0

γ̇h =
1

χ
f : ce : sym([[v]] ⊗ n)

Note that h is finite, and thus γ̇ is bounded. If h→ 0 to make γ̇ unbounded (and, as a result,
the stress-like internal state variables unbounded and the plastic dissipation undefined) then
a strong discontinuity bifurcation analysis is warranted.

At a material point, assume [[v]] is spatially-invariant such that

[[v(t)]] = ζ̇(t)m (3.23)

where ζ̇ is the jump rate magnitude and m its direction. Recall from Eq.(3.2) that for
traction to be continuous across the planar band with normal n, (σ̇1 − σ̇0) · n = 0 and

n · σ̇0 = n · σ̇1

n · cep : ε̇0 = n · cep :

(

ε̇0 +
1

h
sym([[v]] ⊗ n)

)

0 =
ζ̇

h
n · cep : a , a = sym(m ⊗ n)

0 = (n · cep · n) · m = A · m
=⇒ detA = 0 for m 6= 0 (3.24)

Equation (3.24) states that in order for there to be a nontrivial solution m 6= 0 to the
traction continuity condition, the determinant of the acoustic tensor A must be zero. For a
given stress state σ and state variables α and κ, we solve detA = 0 for the band normals n

and then A · m = 0 for the localized deformation directions.

For discontinuous bifurcation, there is elastic unloading outside the band (f : ce : ε̇0 < 0)
and plastic loading within the band ( f : ce : ε̇1 > 0). The consistency parameter is then

γ̇ =
1

h
γ̇h (3.25)

γ̇h =
1

χ
f : ce :

(
hε̇0 + sym([[v]] ⊗ n)

)
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Note that h is finite, and thus γ̇ is bounded. For traction to be continuous across the band,

n · σ̇0 = n · σ̇1

n · ce : ε̇0 = n ·
(

ce − 1

χ
ce : g ⊗ f : ce

)

:

(

ε̇0 +
1

h
sym([[v]] ⊗ n)

)

0 = (n · ce · n) · m − γ̇h

ζ̇
n · ce : g (3.26)

In order to determine bifurcation from Eq.(3.26), we need to assume a relation for γ̇h/ζ̇.
Assuming material within the band in the post-localization regime is governed by a simple
Mohr-Coulomb planar failure model, the ratio between the plastic consistency parameter γ̇h
and shear displacement ζ̇ is dependent upon the dilation/compaction angle ψ (cf. Fig. 3.4)
as

γ̇h

ζ̇
= cosψ = m · t (3.27)

n

t

m

ψ

Sh+

Figure 3.4. Band normal n, tangent t, and velocity jump direction m with dilation/compaction
angle ψ.

Then, for continuous traction across the band to be satisfied for discontinuous bifurcation,
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3.4. BIFURCATION ANALYSIS

0 = (n · ce · n) · m − (m · t)n · ce : g

0 = [n · ce · n − (n · ce : g) ⊗ t] · m
0 = Â · m

=⇒ detÂ = 0 for m 6= 0 (3.28)

Notice the bifurcation conditions for continuous and discontinuous bifurcation in Eqs.(3.24)
and (3.28), respectively, are different for the case of weak discontinuity, regardless of the as-
sumption made in Eq.(3.27). It is interesting to note that given the assumption in Eq.(3.27),
if we have a pure dilation/compaction band (i.e., m · t = 0), then discontinuous bifurcation
for weak discontinuity is not possible since ce is positive definite (see Eq. (3.28)).

We will show that for the case of strong discontinuity, the bifurcation conditions are the
same for continuous and discontinuous bifurcation.

bifurcation with strong discontinuity

Recall the planar surface is of zero measure, such that the velocity field is discontinuous across
S [62]. For continuous bifurcation, the plastic consistency parameter is decomposed as

γ̇ = ˙̄γ + γ̇δδS (3.29)

In order for the backstress and isotropic stress to be bounded (and the plastic dissipation to
be well-defined [62]), the hardening moduli cα and cκ bifurcate

(cα)−1 = (c̄α)−1 + (cαδ )
−1δS (3.30)

(cα)−1α̇ = Gαγ̇devg

α̇ = c̄αGα ˙̄γdevg = h̄
α ˙̄γ

α̇ = cαδG
αγ̇δdevg = hα

δ γ̇δ

(cκ)−1 = (c̄κ)−1 + (cκδ )
−1δS (3.31)

(cκ)−1κ̇ = Gκγ̇trg

κ̇ = c̄κGκ ˙̄γtrg = h̄κ ˙̄γ

κ̇ = cκδG
κγ̇δtrg = hκδ γ̇δ

Then, the consistency condition reads
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ḟ = f : ce : (ε̇0 + ζ̇a δS − ( ˙̄γ + γ̇δδS)g)

+
∂f

∂α
: h̄

α ˙̄γ +
∂f

∂κ
h̄κ ˙̄γ = 0 (3.32)

and for the regular and singular parts of the consistency condition to be satisfied,

˙̄γ =
1

χ̄
f : ce : ε̇0

χ̄ = f : ce : g − ∂f

∂α
: h̄

α − ∂f

∂κ
h̄κ

γ̇δ =
f : ce : sym([[v]] ⊗ n)

f : ce : g

Then the stress rate on the surface S, σ̇1, and outside the surface, σ̇0, read

σ̇1 =

(

ce − 1

χ̄
ce : g ⊗ f : ce

)

︸ ︷︷ ︸

c̄ep

: ε̇0

+ ζ̇

(

ce − ce : g ⊗ f : ce

f : ce : g

)

︸ ︷︷ ︸

c̃ep

: a δS (3.33)

σ̇0 = c̄ep : ε̇0 (3.34)

For continuous traction across the discontinuity surface

n · σ̇0 = n · σ̇1

n · c̄ep : ε̇0 = n · c̄ep : ε̇0 + ζ̇n · c̃ep : a δS

0 = (n · c̃ep · n) · m δS = Ã · m δS

=⇒ detÃ = 0 for m 6= 0 (3.35)

For discontinuous bifurcation, the consistency parameter is localized to the discontinuity
as

γ̇ = γ̇δδS (3.36)
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Again, the hardening moduli bifurcate in order to have well defined plastic dissipation. Then,
the consistency condition reads

ḟ = f : ce : (ε̇0 + ζ̇a δS − γ̇δgδS)

+
∂f

∂α
: hα

δ γ̇δ +
∂f

∂κ
hκδ γ̇δ = 0 (3.37)

and for the regular and singular parts of the consistency condition to be satisfied,

γ̇δ =
−f : ce : ε̇0

∂f
∂α : hα

δ + ∂f
∂κ
hκδ

=
ζ̇f : ce : a

f : ce : g
(3.38)

For continuous traction across the discontinuity surface S

n · σ̇0 = n · σ̇1

n · ce : ε̇0 = n · ce : ε̇0 + ζ̇n · c̃ep : a δS

0 = Ã · m δS

=⇒ detÃ = 0 for m 6= 0

Thus, the same bifurcation condition results for continuous and discontinuous bifurcation
for the case of strong discontinuity localized kinematics.

3.4.2 Rate sensitive model

weak discontinuity

For continuous bifurcation, from Eq.(3.17), the stress just outside and just inside the
band are, respectively,

σ0(t) = (σ0(0) − σ̄0) e−t/τ + σ̄0

+ e−t/τce :

∫ t

0

es/τ ε̇0(s)ds (3.39)

σ1(t) = (σ1(0) − σ̄1) e−t/τ + σ̄1

+ e−t/τce :

∫ t

0

es/τ ε̇1(s)ds (3.40)
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where, recall, σ̄ denotes inviscid stress, and we assume at time zero that the stresses just
inside and just outside the band are equal σ0(0) = σ1(0). Then, for continuous traction
across the band,

n · σ0(t) = n · σ1(t)

0 = n · (σ̄1 − σ̄0)(1 − e−t/τ ) (3.41)

+
1

h
e−t/τn · ce : a

∫ t

0

es/τ ζ̇(s)ds

τ → 0 =⇒ n · (σ̄1 − σ̄0) = 0

τ → ∞ =⇒ (n · ce · n) · m = 0

As expected, for τ → 0 we obtain the bifurcation condition for the inviscid case, and for
τ → ∞, we obtain the elastic solution and hence no loss of strong ellipticity (real, elastic
wave speeds, after Hadamard, cf. Hill [25]). The lower bound (τ → 0) on the viscous
bifurcation condition is useful in that if a geomaterial is nearly rate insensitive even when
loaded to high strain rates, its bifurcation will depend on an analysis of the inviscid model.
Then, the dynamic characteristics of the crack/shear band propagation and post-localization
constitutive response will be important even for a nearly rate insensitive geomaterial.

For a rate sensitive geomaterial, not so highly viscous to be elastic (τ > 0 is finite), there
should be no bifurcation to localized deformation mode; see Eq.(3.41). This should be made
clear by an analysis for the discrete form of the integrated equations, as in section 4.2.3.

For discontinous bifurcation, the analysis is the same as for continuous bifurcation, except
that the inviscid stress jump across the band interface such as Sh+, σ̄1 − σ̄0, is different.

σ̄0 = ce : ε0

σ̄1 =

∫ t

0

cep(s) : ε̇1(s)ds

σ̄1 − σ̄0 =
ζ(t)

h
ce : a

−
∫ t

0

f (s) : ce : ε̇0(s)

χ(s)
ce : g(s)ds

− 1

h

∫ t

0

ζ̇(s)f (s) : ce : a

χ(s)
ce : g(s)ds

so the inviscid case yields the bifurcation condition formulated for the rate insensitive model.
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strong discontinuity

For strong discontinuities, bifurcation analysis of the viscoplastic model is the same as for
weak discontinuities, except of course that the inviscid bifurcation analysis is different as
shown above in the analysis of the rate insensitive model.

discrete form of rate sensitive model

Bifurcation analysis of the discrete form of a rate sensitive model allows one to analyze
acoustic tensors to determine mathematical instability.

In linearized form, the incremental strain for weak discontinuity comes from Eq.(3.1).
For continuous bifurcation, from Eq.(3.14), the incremental stress for the inviscid solution is
given, and from Eq.(3.21), the incremental stress for the viscous solution is

δσ0 = (1 − e−∆t/τ )
(

cep +
τ

∆t
ce
)

︸ ︷︷ ︸

ĉep

: δε0 (3.42)

δσ1 = ĉep : δε1

Then for continuous traction,

n · δσ0 = n · δσ1

n · ĉep : δε0 = n · ĉep : δε0 +
δζ

h
n · ĉep : a

0 = (n · ĉep · n)m = Â · m
τ → 0 =⇒ ĉep = cep

τ → ∞ =⇒ ĉep = ce

and for finite τ > 0, ĉep should remain positive definite, i.e. detÂ > 0, but more analysis
is needed to determine this. For discontinuous bifurcation, the incremental form for the
inviscid solution along with the incremental viscous solution gives for continuous traction,
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n · δσ0 = n · δσ1

0 = −(1 − e−∆t/τ )

×
(

f : ce : δε0

χ

)

n · ce : g

+
δζ

h
n · ĉep : a

τ → 0 =⇒ inviscid

τ → ∞ =⇒ elastic

and for finite τ > 0, the analysis is inconclusive.

For strong discontinuity, the incremental strain from Eq.(3.4) is given. For continuous
bifurcation, the incremental form of the inviscid solution comes from Eqs.(3.33) and (3.34)
and then for continuous traction,

n · δσ0 = n · δσ1

0 = (n · ĉep · n) · m δS = Â · m δS

τ → 0 =⇒ ĉep = c̃ep

τ → ∞ =⇒ ĉep = ce

where here ĉep is a function of c̃ep rather than cep in Eq.(3.42). For finite τ > 0, ĉep should
remain positive definite, i.e. that detÂ > 0, but more analysis is needed. For discontinuous
bifurcation, the same bifurcation condition for τ → 0 results as for continuous bifurcaton
with strong discontinuity.

3.5 Numerical algorithm to detect loss of ellipticity for

3D stress states

The algorithm as described in [43] has been modified to account for non-symmetric tangents,
and the implementation may be found at
“ http://cvs.sourceforge.net/viewcvs.py/tahoe/tahoe/src/elements/continuum/
solid/materials/primitives/ ”
in the class DetCheckT, within the function DetCheck3D SS.
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Table 3.1. Parameters for Gosford Sandstone using Drucker-Prager model [47] for verifying and
testing 3D numerical algorithm in section 3.5

Symbol Value

E 15 GPa

ν 0.3

cohesion ᾱ 13 MPa

friction β 0.5

dilation b 0.35

hard./soft. mod. H -1 GPa

3.6 Numerical examples

The first numerical example is used to verify the numerical optimization algorithm for the
plane strain case, for which we have an analytical solution for the bifurcation condition
and slip line normal [43]. The second example demonstrates the ability of the algorithm
to determine bifurcation and slip surface normals for a three-dimensional boundary value
problem, corner shear. The third example demonstrates the algorithm for plane strain
compression using the GeoModel and tests the effect of viscosity on loss of ellipticity.

3.6.1 Plane strain verification

The numerical optimization algorithm is verified for a plane strain example (material pa-
rameters shown in Table 3.1), using eight trilinear hexahedral elements constrained in the
out-of-plane direction and loaded in confined compression similar to the example discussed in
[48]. The comparison of the two numerical solutions is reasonable and is shown in Table 3.2.

3.6.2 Corner shear

Using the parameters from Table 3.1, the second example tests the nonlinear optimization
algorithm for a three-dimensional corner shear problem shown in Fig. 3.5. A displacement
is prescribed at the corner node (1, 1, 1) with direction d/‖d‖ = [1,−1, 1]. The plot of
force versus magnitude of the displacement vector ‖d‖ is shown in Fig. 3.6 for the standard
plasticity solution only; no post-bifurcation numerical solution is shown. The Gauss point
closest to this corner node plastifies and localizes first. The resulting normals and slip
directions are shown in Table 3.3, one of which makes physical sense, n = [0.57, 0.59, 0.57].
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Table 3.2. Comparison of slip line and slip surface normals for 2D plane strain and 3D constrained
plane strain, respectively

2D plane strain 3D constrained plane strain

n







0.84

0.54

0













0.84

−0.54

0













0.82

0.57

0.0













0.84

−0.57

0.0







m







0.84

−0.54

0













−0.84

−0.54

0













0.82

−0.57

0.0













−0.82

−0.57

0.0







ψ 24.7◦ 21.1◦

1cm

1cm1cm

d

x1

x2

x3

Figure 3.5. Eight hexahedral element mesh with pinned corners and prescribed displacement d at
one corner.

Table 3.3. Slip surface normals for 3D corner shear.

3D corner shear

n







0.57

0.59

0.57













0.57

−0.6

0.57







m







0.6

−0.52

0.6













0.6

0.53

0.6







ψ 22.2◦ 21.5◦
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Figure 3.6. Plot of force versus displacement for corner shear simulation.

3.6.3 Choosing discontinuity plane normal n

For a general three-dimensional stress state, three unique normals n may be generated. An
algorithm must then be developed to test which normal to choose. Based on experience, we
found that the following test works best, for the various jump displacement directions m

and discontinuity surface normals n

maximize ∇u : m ⊗ n (3.43)

Attempts at finding the normal that maximized the dissipation, or the normal that minimized
detA, did not consistently work as well as this test.

3.6.4 Bifurcation for rate-sensitive Sandia Geomodel

Using parameters given in Box 2 for Salem Limestone, along with a relaxation time τ =
5 × 10−4 sec, loss of ellipticity is checked for 0.025/sec, 0.25/sec, and 2.5/sec strain rates.
As shown in Fig.3.7, loss of ellipticity is detected for the 0.025/sec and 0.25/sec strain rates,
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Figure 3.7. Plot of stress versus strain for bifurcation analysis of plane strain compression of
Salem Limestone using the Sandia Geomodel. One element 0.04m wide by 0.08m high is used for
the simulations.

while it is inhibited for the 2.5/sec strain rate, a result that is well documented in the
literature (cf. [41]).

3.7 Conclusions

For a rate insensitive model, bifurcation conditions under weak discontinuity for continuous
and discontinuous bifurcation are different whereas they are the same under strong discon-
tinuity. This result for strong discontinuity stems from bifurcation of the hardening moduli
that leads to an elastic-perfectly-plastic acoustic tensor [62]. For determining mathematical
instability for weak discontinuities, however, it was shown in [50] that continuous bifurcation
provides the lower bound for the range of discontinuous bifurcation, and thus is the more
critical condition. For a rate sensitive model, it is not surprising that for large viscosity,
mathematical stability is ensured even for strain-softening plasticity. For smaller values of
viscosity, bifurcation could occur, depending on the strain rate.

The 3D numerical bifurcation algorithm correctly predicted two unique slip normals for the
contrained out-of-plane case (plane strain), and a corner shear problem also predicted two
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unique normals, most likely as a result of the loading symmetry. For now, this bifurcation
algorithm will be used to trigger a post-bifurcation constitutive model. In the future, we
need to develop a universal bifurcation condition/strategy that works for both high and low
strain rates. In our modeling, we introduce viscous regularization to represent the viscosity
of the material, not to inhibit onset of localization. Therefore, we need a bifurcation criterion
that will predict onset of localization at high strain rates because that is what is observed
experimentally (cf., for example, [23]).
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Chapter 4

Post-bifurcation traction-displacement
constitutive models

Authors: R.A. Regueiro, M.T. Manzari

In this chapter, a general form of post-bifurcation traction-displacement models is presented,
along with some specific ones for geomaterials.

The general form of a post-bifurcation traction-displacement constitutive model is the fol-
lowing:

traction : T = [Tn Tt] ; Tn = n · σ · n ; Tt = t · σ · n (4.1)

displacement : [[u̇]] = γ̇δ∂G(T , q)/∂T (4.2)

yield function : F (T , q) = 0 (4.3)

evolution equations : q̇ = γ̇δh
q (4.4)

where T is the traction vector on S, t is the unit tangent vector, [[u̇]] = u̇tt + u̇nn = ζ̇m is
the rate of jump displacement, ζ̇ = ‖ [[u̇]] ‖ its magnitude, m = [[u̇]] /(‖ [[u̇]] ‖ ) its direction,
u̇ = du/dt, γ̇δ is an internal inelastic multiplier on S, G is an inelastic potential function,
F is an inelastic yield function, q is a vector of internal strength variables (e.g., χ tensile
strength, c cohesion, φ friction angle, ψ dilation angle), and hq is a vector of softening
functions.

87
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MODELS

4.1 Simple Mohr-Coulomb like traction-displacement

model

A simple, Mohr-Coulomb like traction-displacement model is summarized as

F = |Tt| − (c− T ∗
n tanφ) = 0

G = |Tt| − (c− T ∗
n tanψ)

c = cr + (cp − cr) exp (−αcγδ) ; γδ =

∫ t

0

γ̇δdt ; γ̇δ = cosψζ̇

φ = φr + (φp − φr) exp (−αφγδ)
ψ = ψp exp (−αψγδ)

where T ∗
n = (Tn − |Tn|)/2, and the vector of internal variables is

q =
[
c φ ψ

]T
(4.5)

with c cohesion, φ friction angle, and ψ dilation angle. Subscript (•)r refers to residual value,
and (•)p peak value. The material parameters αc, αφ, and αψ control the rate of softening
for each internal variable.

The implementation of this model using an Embedded Discontinuity Finite Element formu-
lation is discussed in Chapt. 6.

4.2 Geomaterial traction-displacement model

A more sophisticated traction-displacement model that models post-bifurcation softening,
including tensile softening, is written as
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F = T 2
t − (c− Tn tanφ)2 + (c− χ tanφ)2 = 0

G = T 2
t − (c− Tn tanψ)2

c = cr + (cp − cr) exp (−αcεps) ; εps =

∫ t

0

ε̇psdt ; ε̇ps =
sign(Tt)

GII
f

(|Tt| − |T ∗
n tanφ|)u̇t

χ = χr + (χp − χr) exp (−αχεpn) ; εpn =

∫ t

0

ε̇pndt ; ε̇pn =
1

GI
f

(〈Tn〉u̇n + Ttu̇t)

tanφ = tanφr + (tanφp − tanφr) exp (−αφεps)
tanψ = (tanψp) exp (−αψεps)

where 〈Tn〉 = (Tn + |Tn|)/2, T ∗
n = (Tn − |Tn|)/2, and the vector of internal variables is

q =
[
c χ φ ψ

]T
(4.6)

with c cohesion, χ tensile internal variable, φ friction angle, and ψ dilation angle. Subscript
(•)r refers to residual value, and (•)p peak value. GII

f is the fracture energy for mode II
(shear) fracture, and GI

f is the fracture energy for mode I (tension) fracture. The material
parameters αc, αχ, αφ, and αψ control the rate of softening for each internal variable.

The implementation of this model using a Cohesive Surface Element formulation is discussed
in Chapt. 5.
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Chapter 5

Cohesive surface element
implementation

Authors: M.T. Manzari, R.A. Regueiro

In this chapter, the implementation of an elasto-plastic and rigid-plastic traction-displacement
(or cohesive zone) model as presented in Section 4.2 is carried out using a Cohesive Surface
Element (CSE) [31].

We consider two formulations of a cohesive zone model for geomaterials, where the only
difference is that one includes elastic cohesive displacements (elasto-plastic cohesive zone
model), whereas the other does not (rigid-plastic cohesive zone model). The appeal of
the rigid-plastic model over the elasto-plastic one is that no fictitious elastic compliance
is introduced at the cohesive surface interface. This is particularly important if one is
to generate a finite element mesh with CSEs at each element interface, thus generating a
mesh-dependent result for an elastic solution, let alone a plastic one. We will use CSEs in
the future as adaptively embedded elements, so this problem will be avoided. On physical
grounds, however, we believe for geomaterials there is negligible, if any, elasticity within the
cohesive zone.

Two numerical examples will be used to test the numerical implementation of each model:
1) constrained shear, and 2) pure tension.

5.1 Variational equations

The weak form for elastostatics including the cohesive zone tractions becomes
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∫

B

∇w : σdv =

∫

B

b · wdv +

∫

Γt

tσ · wda+

∫

ΓT

T · [[w]] dS
︸ ︷︷ ︸

cohesive surface

(5.1)

where T is the vector of tractions on the cohesive surface ΓT , and [[w]] is the jump in
displacement variation or weighting function.

Upon linearizing Eq.5.1, we find we need the traction T and its Jacobian ∂T /∂ [[u]], where
[[u]] is the jump displacement, or cohesive surface displacement.

5.2 Implicit integration of elasto-plastic cohesive zone

model for geomaterials

For an elasto-plastic cohesive zone, the jump displacement is additively decomposed into
elastic and plastic parts as

[[u]] = [[ue]] + [[up]] (5.2)

The traction rate may be written as

Ṫ = Ke · [[u̇e]] = Ke · ([[u̇]] − [[u̇p]]) ; Ke =

[
En 0
0 Et

]

(5.3)

where En is the normal elastic modulus and Et the tangential elastic modulus along the
cohesive surface. The evolution equations for [[u̇p]] and the internal variables are written in
Section 4.2. For the softening functions, we write

hq = A · B · ∂G/∂T ; A =







A1 0
0 A2

0 A3

0 A4







; B =

[
B1 B2

0 B3

]

(5.4)
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FOR GEOMATERIALS

A1 = −αχ(χ− χr) B1 = 〈Tn〉 /GI
f (5.5)

A2 = −αc(c− cr) B2 = Tt/G
I
f (5.6)

A3 = −αφ(tanφ− tanφr) B3 =
sign(Tt)

GII
f

(|Tt| − |T ∗
n tanφ|) (5.7)

A4 = −αψ tanψ (5.8)

Given the loading and unloading (Kuhn-Tucker) conditions [60]

γ̇δ ≥ 0 , F ≤ 0 =⇒ γ̇δḞ = 0 (5.9)

we can solve for the inelastic multiplier

γ̇δ =
∂FT · Ke · [[u̇]]

H
; H = ∂FT · Ke · ∂GT − ∂Fq · hq (5.10)

where ∂FT = ∂F/∂T , ∂GT = ∂G/∂T , ∂Fq = ∂F/∂q. The continuum elasto-plastic tangent
is then

Kep = Ke − (Ke · ∂GT ) ⊗ (∂GT · Ke) /H (5.11)

For numerical integration, we use Backward Euler [60]. For simplicity of notation, we leave
off the current time step designator (•)n+1 and iteration number (•)k+1, where

∆(•) = (•)n+1 − (•)n ; ∆t = tn+1 − tn (5.12)

δ(•) = (•)k+1 − (•)k (5.13)

Integrating

T = T n + Ke · ∆([[u]] − [[up]]) (5.14)

∆ [[up]] = ∆γδ∂GT (5.15)

∆q = ∆γδh
q (5.16)
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or in residual form

R =





−∆ [[up]]
−∆q

F



+ ∆γδ





∂GT

hq

0



 = 0 (5.17)

These are 3 nonlinear equations for 3 unknowns [[up]], q, and γδ, so we linearize such that

R = Rk + δR = 0 (5.18)

where

δR =





(Ke)−1 · δT + ∆γδ (∂GT T · δT + ∂GT q · δq) + δγδ∂GT

−δq + ∆γδ
(
∂hq

T
· δT + ∂hq

q
· δq
)

+ δγδh
q

∂FT · δT + ∂Fq · δq



 (5.19)

Given that the third equation of Eq.(5.18) is independent of δγδ we can statically condense
out this equation to solve for δγδ as

δγδ =

F − [∂FT ∂Fq ] · D−1 ·
[

Ru

Rq

]

[∂FT ∂Fq ] · D−1 ·
[
∂GT

hq

] (5.20)

where

D =

[
(Ke)−1 + ∆γδ∂GT T ∆γδ∂GT q

∆γδ∂h
q
T

−1 + ∆γδ∂h
q
q

]

(5.21)

Then the increment of traction and internal variables may be calculated as

[
δT
δq

]

= −D−1 ·
[

Ru + δγδ∂GT

Rq + δγδh
q

]

(5.22)

and the increment of jump plastic displacement is updated as [[δup]] = −(Ke)−1 · δT . The
variables may then be updated
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([[up]])k+1 = ([[up]])k + [[δup]] (5.23)

qk+1 = qk + δq (5.24)

γk+1
δ = γkδ + δγδ (5.25)

Then check for convergence ‖Rk+1‖/‖R0‖ ≤ tol, where tol is a chosen tolerance value, and
if satisfied continue to next time step, otherwise iterate k = k + 1.

5.3 Implicit integration of rigid-plastic cohesive zone

model for geomaterials

For a rigid-plastic cohesive zone, the jump displacement is only plastic such that

[[u]] = [[up]] (5.26)

the consistency condition then leads to the inelastic multiplier

γ̇δ =
∂FT · Ṫ
Hp

; Hp = −∂Fq · hq (5.27)

where, when using the flow rule in Eq.(4.2), the rigid-plastic continuum tangent is

Ṫ = Kp · [[u̇p]] ; Kp = Hp (∂GT ⊗ ∂FT )−1 (5.28)

Similar to the elasto-plastic model, we integrate using Backward-Euler, and iterate to solve
for the jump displacment [[up]], internal variables q, and inelastic multiplier γδ.

Integrating

T = T n + Kp · ∆ [[up]] (5.29)

∆ [[up]] = ∆γδ∂GT (5.30)

∆q = ∆γδh
q (5.31)
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or in residual form

R =





−∆ [[up]]
−∆q

F



+ ∆γδ





∂GT

hq

0



 = 0 (5.32)

These are 3 nonlinear equations for 3 unknowns [[up]], q, and γδ, so we linearize such that

R = Rk + δR = 0 (5.33)

where

δR =





(Kp)−1 · δT + ∆γδ (∂GT T · δT + ∂GT q · δq) + δγδ∂GT

−δq + ∆γδ
(
∂hq

T
· δT + ∂hq

q
· δq
)

+ δγδh
q

∂FT · δT + ∂Fq · δq



 (5.34)

Given that the third equation of Eq.(5.18) is independent of δγδ we can statically condense
out this equation to solve for δγδ as

δγδ =

F − [∂FT ∂Fq ] · D−1 ·
[

Ru

Rq

]

[∂FT ∂Fq ] · D−1 ·
[
∂GT

hq

] (5.35)

where

D =

[
(Kp)−1 + ∆γδ∂GT T ∆γδ∂GT q

∆γδ∂h
q
T

−1 + ∆γδ∂h
q
q

]

(5.36)

Then the increment of traction and internal variables may be calculated as

[
δT
δq

]

= −D−1 ·
[

Ru + δγδ∂GT

Rq + δγδh
q

]

(5.37)
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and the increment of jump plastic displacement is updated as [[δup]] = (Kp)−1 · δT . The
variables may then be updated as in Eq.(5.25), where in addition now we update the traction
as T k+1 = T k + δT .

5.4 Numerical examples

To test the numerical implementations, constrained shear and pure tension simulations are
conducted. The FE and CSE meshes are shown in Fig.5.1. These tests involved two FEs
and one CSE in between the FEs.

Constrained Shear

FE

CSE

FE

FE

FE

CSE

7

3

65

8

21

4

21

3 4

7 8

5 6

Pure Tension

FE

FE

CSE

21

3 4

7 8

5 6

Figure 5.1. Numerical examples to test CSE implementation

5.4.1 Elasto-plastic examples

First, we’ll consider the elasto-plastic model. Fig.5.2 shows the stress path in the Tt vs Tn
plane, the left plot in Fig.5.3 shows the Tt vs. ut plot, while the right shows Tn vs. ut plot.

97



CHAPTER 5. COHESIVE SURFACE ELEMENT IMPLEMENTATION

Table 5.1. Parameters for CSE geomaterial examples

Symbol Value

En 1000

Et 1000

GIf 2

GIIf 1

χp 3

χr 0.1

cp 4.5

cr 0

φp 0.72

φr 0.58

ψp 0.72

αχ 100

αc 10

αφ 10

αψ 10

Recall for constrained shear the normal displacement is held fixed un = 0. The evolution of
internal variables for constrained shear are shown in Fig.5.4.

For the pure tension case, only normal Tn develops and softens, along with the internal
variable χ. All other variables are zero. The stress path in Fig.5.5 shows the pure tension
path in red, and the successively softening green yield surfaces. The path is such that the
normal traction Tn moves to the right until it encounters the outer yield surface in green,
and then moves to the left as it softens while staying on the yield surface. The Tn vs. un is
shown in Fig.5.6, and the evolution of χ in Fig.5.7.

5.4.2 Rigid-plastic example

For the rigid-plastic model, imagine the elastic moduli En → ∞ and Et → ∞, i.e. the
stiffnesses are infinite. From a computational standpoint, this would lead to an ill-conditioned
global stiffness matrix as the CSE stiffnesses would be much larger than the FE stiffness. If
choosing a penalty parameter type implementation for the rigid-plastic model, to essentially
hold the CSE interface together until yield is reached, we would expect difficulty converging
to a solution. This was our initial attempt at the implementation of the rigid-plastic model.
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Figure 5.2. Constrained shear stress paths in positive and negative shear. σ is used on the axes
in place of T for normal n and trangential t tractions. The red line represents the stress path, and
the green curves the successive yield surfaces.

Figure 5.3. Constrained shear stress versus tangential displacement ut in positive and negative
shear. Both the normal n and tangential t tractions are softening.

Work is underway to use a Lagrange multiplier, which we expect would be more stable
numerically [32]. Given the numerical instability associated with using a penalty approach,
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Figure 5.4. Internal variable evolution for positive and negative constrained shear simulation. Top
plot shows cohesion softening, middle shows friction angle softening, and bottom shows dilation
angle softening. The tension variable χ does not softening for constrained shear because the tension
side of the yield surface is not encountered.

we were only able to generate results for pure tension, and not constrained shear. The
traction softening result is shown in Fig.5.8.
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Figure 5.5. Pure tension stress path.

5.5 Conclusion

This chapter described the implicit integration and CSE implementation of a cohesive zone
(traction-displacement) model for geomaterials. We envision using such an implementation
after a discontinuity has been adaptively embedded in a finite element to avoid remeshing,
and when the element deformation is such that the element Jacobian approaches zero, the
element will be split into two or however many elements is required, and then a CSE is
inserted at the element interface. The next chapter describes the embedded discontinuity
formulation and implementation. Transition to remeshing and insertion of CSEs is left for
future work.
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Figure 5.6. Pure tension traction Tn vs un.
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Figure 5.7. Softening of internal variable χ for pure tension. It holds at its initial value until the
yield surface is reached.
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Figure 5.8. Normal traction Tn versus normal displacement un for pure rigid-plastic tension.
Notice there is no elastic region. The internal tension variable χ would softening similarly to the
traction curve shown here.
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Chapter 6

Embedded discontinuity finite
element implementation

Author: R.A. Regueiro

This chapter describes an embedded strong discontinuity finite element implementation using
an assumed enhanced strain method [64, 61]. We will start with the Petrov-Galerkin form
for the three-field variational equations, discuss an orthogonality condition and patch test,
describe the embedded discontinuity enhancement function for 3D, express the traction-
displacement relation in weak form using method of weighted residuals, linearize for iterative
solution, and present some numerical examples to demonstrate the implementation.

6.1 Petrov-Galerkin form for three-field variational equa-

tions

We start by writing the Petrov-Galerkin variational equations that are derived from the
three-field variational form [64, 63, 47]

∫

Ωh
∇w̃h : σhdv =

∫

Ωh
w̃h · bdv +

∫

Γht

w̃h · tσda (6.1)

∫

Ωhloc

γ̂h : σhdv = 0 (6.2)

where w̃h is the compatible part of the weighting function, σh the Cauchy stress, b the body
force, tσ the applied traction, Ωh

loc the domain in which elements have localized, and γ̂h the
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enhanced strain variation. Equation (6.1) is the standard balance of linear momentum, and
Eq.(6.2) is known as the orthogonality condition. We will use the orthogonality condition
when writing our traction-displacment model in weak form, and the patch test will need to
pass in order to ensure convergence.

6.1.1 Orthogonality condition

From [8], we assume an enhanced strain variation that must satisfy the orthogonality con-
dition

γ̂h = ηh
(
δSh

ASh
− 1

V h
loc

)

Ĥ
h

(6.3)

where ηh is a scalar weighting function, δSh is the Dirac-delta function at Sh, ASh is the

area of Sh, V h
loc is the localized volume, and Ĥ

h
is an arbitrary second order tensor that

will be chosen based on the choice of traction-displacement model [8]. Given Eq.(6.3), the
orthogonality condition reads

1

ASh

∫

Sh
ηhĤ

h
: σhda− 1

V h
loc

∫

Ωhloc

ηhĤ
h

: σhdv = 0 (6.4)

Note that 1/ASh and 1/V h
loc can be placed outside the integral because for small deformations

the current areas and volumes approximately equal the reference ones. For finite deforma-
tions, this would not be the case [61].

6.1.2 Patch test

In [67], the patch test essentially states that constant stress fields must be admissible in the
solution space. This means to say that if h → 0, as the finite elements reduce in size to a
point, the finite element solution must approach the exact solution of the partial differential
equation, which at a point has a constant stress value. Here, this can be stated as σh = σ0,
where σ0 is constant, and then the orthogonality condition reads [64, 61]

[
∫

Ωhloc

γ̂hdv

]

: σ0 = 0 (6.5)
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which is satisfied if

∫

Ωhloc

γ̂hdv = 0 (6.6)

which, when substituting Eq.(6.3), leads to

1

ASh

∫

Sh
ηhĤ

h
da− 1

V h
loc

∫

Ωhloc

ηhĤ
h
dv = 0 (6.7)

For constant ηh and Ĥ
h

within a localized element e, this condition would be satisfied
trivially, and then the patch test would pass. For generality, however, we leave this condition
as it is because in the future we would like to consider non-constant ζ on Sh and in Ωh

loc. For
most enhanced strain implementations of embedded strong discontinuities [62, 63, 2, 8, 47],
it is assumed these values are constant, and we will assume the same in this chapter. If not

treated as constant, Eq.(6.7) would be an additional constraint on ηh and Ĥ
h
.

6.2 Embedded discontinuity enhanced function

To complete the embedded strong discontinuity finite element formulation, the enhancement
function f eS for a 3D element must be determined. For linear tetrahedral and hexahedral
elements, various ways in which a planar strong discontinuity can cut the elements are de-
picted in Fig.6.1. The procedure for determining the active nodes, and thus the enhancement
function f eS is shown in Fig.6.2. With coordinates of a point xs on the discontinuity surface
Se for element e, and with the normal to the surface n, we can determine an active node by
the following: if n · (xA − xs) > 0 then node A is active where xA is the location of node
A. This procedure should work for higher order elements as well, although the procedure is
not tested in this chapter for higher order tetrahedral and hexahedral elements.

6.3 Treating strong discontinuity as contributing to en-

hanced strain

In order for the plastic dissipation to be defined and stress to remain regular (as opposed
to singular), certain conditions on the internal variables and stress result [62, 47]. For the
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Figure 6.1. Embedded strong discontinuity linear hexahedral and tetrahedral finite elements.

f eS(x) =

nactive∑

B=1

NB(x)

∇f eS(x) =

nactive∑

B=1

∇NB(x)

7

x1

x2

x3

x7

xs

n

Figure 6.2. Determination of active nodes and embedded strong discontinuity enhancement func-
tion f eS .

plastic dissipation to be defined, it turns out the inverse of the softening modulus (for strain
softening plasticity) must be singular, leading to a regular internal variable [62]. In turn, for
the stress σ to be regular, its singular part must be zero, which constrains the form of the
post-bifurcation, traction-displacement model [8, 47]. In the end, given the enhanced strain
field and that the compatible displacement ũh is treated as the total displacement at the
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nodes, the enhancement function appears in the stress evolution equation [62], which when
integrated is

σh = σtr − ce : (m ⊗ ∇f eS) 〈∆ζ〉 (6.8)

where σtr is the trial stress, ce is the fourth order, linear, isotropic elasticity tensor [60], 〈•〉
is the Macaulay bracket, ∆ζ = ζn+1 − ζn, and m is the direction of the jump displacement
as

m = sign(Tt) cosψt + sinψn (6.9)

6.4 Weak form of traction-displacement model

6.4.1 Implicit integration of traction-displacement model

For implementation by the embedded strong discontinuity element discussed in this chapter,
the traction-displacement model discussed in Sect. 4.1 is integrated here using a Backward
Euler scheme.

For cleaner presentation, variables at the current time step (•)n+1 do not have the subscript,
whereas those at the past time step (•)n do.

The vector of internal variables q is integrated as

q = qn + hq 〈∆ζ〉 (6.10)

where

hq =





hc
hφ
hψ



 =





−αc(cp − cr) exp[−αcγδ] cosψ
−αφ(φp − φr) exp[−αφγδ] cosψ

−αψψp exp[−αψγδ] cosψ



 (6.11)

and
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γδ = (γδ)n + cosψ 〈∆ζ〉 (6.12)

Note the Macaulay bracket on ∆ζ . It is possible numerically that, especially at the onset of
localization, just as bifurcation is detected, that during the numerical iteration process, the
value of ζ could oscillate slightly, and 〈∆ζ〉 ensures that ζ is always positive. Once ζ begins
to evolve along the discontinuity surface S, the oscillations no longer occur. The direction
of jump displacement [[u]] = ζm is handled by the direction m as defined in Eq.(6.9).

6.4.2 Method of Weighted Residuals

Taking the traction-displacement model in Sect. 4.1, we can rewrite the yield function as

F = (µφ ⊗ n) : σ − c = 0 (6.13)

µφ = sign(Tt)t + (tanφ)sign(T ∗
n )n (6.14)

where

sign(T ∗
n ) =

{
0 T ∗

n > 0 tension
1 T ∗

n < 0 compression
(6.15)

Applying the Method of Weight Residuals to Eq.(6.13), expressing in Galerkin form [27],
and dividing by ASh, we have

1

ASh

∫

Sh
ηh
[
(µφ ⊗ n) : σ − c

]
da = 0 (6.16)

If we choose Ĥ
h

= (µφ ⊗ n), and we assume ηh is constant over Sh (which will lead to a
constant jump displacement ζ over Sh [62]), we can write the weak form as

1

ASh

∫

Sh
Ĥ

h
: σda − c = 0 (6.17)

Recall the orthogonality condition with constant ηh
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1

ASh

∫

Sh
Ĥ

h
: σhda =

1

V h
loc

∫

Ωhloc

Ĥ
h

: σhdv (6.18)

which means we can write the weak form as an integration over the volume of the element,
allowing us to use the stresses evaluated at the Gauss points to calculate the traction T

along Sh.

In summary, the complete weak form written as residuals is

R(σ) =

∫

Ωh
∇w̃h : σhdv −

∫

Ωh
w̃h · bdv −

∫

Γht

w̃h · tσda = 0 (6.19)

r(σ, q) =
1

V h
loc

∫

Ωhloc

Ĥ
h

: σdv − c = 0 (6.20)

We will take advantage of the fact that ζ is discontinuous between elements, a result of the
assumed enhanced strain implementation, and condense out the Eq.(6.20) when solving for
the displacements at the nodes.

6.4.3 Yield check along Sh

We calculate the trial yield value along Sh by

F trial =
1

V h
loc

∫

Ωhloc

(Ĥ
h
)trial : σtrialdv − cn (6.21)

(Ĥ
h
)trial = (µφn ⊗ n) (6.22)

µφn = sign(T trial
t )t + (tanφn)sign[(T ∗

n )trial]n (6.23)

If F trial > 0 then there is yielding along Sh, and ζ will evolve. Otherwise, the internal
variables and ζ will be held fixed.

6.5 Linearization of finite element equations

Let’s first write Eq.(6.19) in finite element matrix form as
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R(σ) =

∫

Ωh
BT · σhdv −

∫

Ωh
NT · bdv −

∫

Γht

NT · tσda = 0 (6.24)

where B is the strain-displacement matrix and N the vector of nodal shape functions [27].
When linearizing the residuals in Eqs.(6.24,6.20) about an iteration state k, we have (leaving
off k + 1 for current iteration)

δR(σ) =
∂R

∂σ
· δσ = −Rk (6.25)

δr(σ, q) =
∂r

∂σ
· δσ +

∂r

∂q
· δq = −rk (6.26)

where

δσ =
∂σ

∂d
· δd +

∂σ

∂q
· δq +

∂σ

∂ζ
δζ (6.27)

δq =
∂hq

∂q
· δq 〈∆ζ〉 +

∂q

∂ζ
δζ (6.28)

where d is the vector of nodal displacements. When rearranging Eq.(6.28), we find

δq =
∂q

∂ζ
δζ (6.29)

∂q

∂ζ
=

(

1 − 〈∆ζ〉 ∂hq

∂q

)−1

·
(
∂hq

∂ζ
〈∆ζ〉 + hq 〈sign(∆ζ)〉

)

(6.30)

Skipping some steps, we end up with

∂R

∂d
· δd +

∂R

∂ζ
δζ = −Rk (6.31)

∂r

∂d
· δd +

∂r

∂ζ
δζ = −rk (6.32)
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where

∂R

∂d
=

∫

Ωh
BT · De · Bdv (6.33)

∂R

∂ζ
=

∫

Ωh
BT · ∂σ

∂ζ
dv (6.34)

∂r

∂d
=

1

V h
loc

∫

Ωhloc

(µφ ⊗ n) · De · Bdv (6.35)

∂r

∂ζ
=

1

V h
loc

∫

Ωhloc

(µφ ⊗ n) :
∂σ

∂ζ
dv +

∂r

∂q
· ∂q
∂ζ

(6.36)

and De is the matrix form of the elastic modulus tensor ce. Similar to Eq.(6.32),we can also
write as

Kdd · δd + Kdζδζ = −Rk (6.37)

Kζd · δd +Kζζδζ = −rk (6.38)

and when statically condensing out δζ , we have the following equation to solve for δd

(Kdd −K−1
ζζ Kdζ ⊗ Kζd) · δd = −Rk + (rk/Kζζ)Kdζ (6.39)

and with δd we can solve for δζ as

δζ = −(rk + Kζd · δd)/K−1
ζζ (6.40)

Using this linearization, we then iterate until we reach convergence ‖Rk+1‖/‖R0‖ < tolR
and |rk+1|/|r0| < tolr.

Here, more derivatives for the linearization are provided
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∂hq

∂q
=

[
∂hq

∂c

∂hq

∂φ

∂hq

∂ψ

]

=
[

0 0 ∂hq

∂ψ

]

(6.41)

∂hq

∂ψ
=
[

∂hc
∂ψ

∂hφ
∂ψ

∂hψ
∂ψ

]T

(6.42)

∂hc
∂ψ

= αc(cp − cr) sinψ exp(−αcγδ)(1 − αc cosψ 〈∆ζ〉) (6.43)

∂hφ
∂ψ

= αφ(φp − φr) sinψ exp(−αφγδ)(1 − αφ cosψ 〈∆ζ〉) (6.44)

∂hψ
∂ψ

= αψψp sinψ exp(−αψγδ)(1 − αψ cosψ 〈∆ζ〉) (6.45)

∂hq

∂ζ
=

[
∂hc
∂ζ

∂hφ
∂ζ

∂hψ
∂ζ

]T

(6.46)

∂hc
∂ζ

= (αc cosψ)2(cp − cr) exp(−αcγδ) 〈sign(∆ζ)〉) (6.47)

∂hφ
∂ζ

= (αφ cosψ)2(φp − φr) exp(−αφγδ) 〈sign(∆ζ)〉) (6.48)

∂hψ
∂ζ

= (αψ cosψ)2ψp exp(−αψγδ) 〈sign(∆ζ)〉) (6.49)

∂r

∂q
=

[
−1 P ∗

S sec2 φ 0
]T

(6.50)

P ∗
S =

1

V h
loc

∫

Ωhloc

T ∗
ndv (6.51)

∂σ

∂ζ
= −ce :

[(
∂m

∂q
· ∂q
∂ζ

〈∆ζ〉 + m 〈sign(∆ζ)〉
)

⊗ ∇f eS

]

(6.52)

∂m

∂q
=
[

∂m
∂c

∂m
∂φ

∂m
∂ψ

]
=
[

0 0 ∂m
∂ψ

]
(6.53)

∂m

∂ψ
= −sign(Tt) sinψt + cosψn (6.54)

6.5.1 Linear softening traction-displacement model

The discussion up to this point has been based on an exponential softening traction-displacement
model. Here, we present equations for a linear softening model.

The vector of internal variables q is integrated as
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q = qn + hq 〈∆ζ〉 (6.55)

where

hq =





hc
hφ
hψ



 =





−αc cosψ
−αφ cosψ
−αψ cosψ



 (6.56)

and

γδ = (γδ)n + cosψ 〈∆ζ〉 (6.57)

The derivatives for linearization then become

∂hq

∂q
=

[

0 0 ∂hq

∂ψ

]

(6.58)

∂hq

∂ψ
=
[

∂hc
∂ψ

∂hφ
∂ψ

∂hψ
∂ψ

]T

(6.59)

∂hc
∂ψ

= αc sinψ (6.60)

∂hφ
∂ψ

= αφ sinψ (6.61)

∂hψ
∂ψ

= αψ sinψ (6.62)

∂hq

∂ζ
= 0 (6.63)

Numerical examples will present the use of both exponential and linear softening models.

6.5.2 Continuous stress in time at bifurcation point

In order to ensure that the stress is continuous in time at the point of bifurcation, the peak
cohesion cp is calculated as
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Table 6.1. Parameters for plane strain compression: post-bifurcation, exponential softening model.
Note that the peak cohesion cp is calculated from Eq.(6.64) in order to ensure that the stress is
continuous in time at the point of bifurcation.

Symbol Value

cp calculated

cr 0 MPa

φp 0.5236 rad

φr 0.0 rad

ψp 0.087 rad

αc 1000 1/m

αφ 100 1/m

αψ 100 1/m

cp =
1

V e
loc

∫

Ωeloc

Ĥ
e

: σndv (6.64)

where V e
loc is the localized element volume, Ωe

loc its domain, Ĥ
e

its enhancement function
multiplier, and σn the converged stress from the past time step tn.

6.6 Numerical examples

Numerical examples include a 3D plane strain compression verification simulation (out-of-
plane displacements are fixed), and a 3D corner shear simulation. More complex simulations
will be attempted when the discontinuity tracing algorithm is implemented.

6.6.1 3D plane strain compression

To verify that the post-bifurcation model is working (although there is no analytical so-
lution to conduct a true verification), we reconsider the plane strain compression problem
as discussed in Sect. 3.6.4, but for rate-insensitivity τ = 0. Parameters for the exponen-
tial post-bifurcation traction-displacement model are given in Table 6.1, and for the linear
traction-displacement model in Table 6.2.
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Figure 6.3. Plot of stress versus strain for bifurcation and post-bifurcation analysis (exponential
softening) of plane strain compression of Salem Limestone using the Sandia Geomodel. One element
0.04m wide by 0.08m high is used for the simulations. Since there is no asymmetry or inhomogeneity
to determine which n to choose as the normal to the discontinuity surface S, we choose the negative
angle −θ.

Figure 6.3 demonstrates the post-bifurcation exponential softening for the embedded discon-
tinuity element. Figures 6.4, 6.5, and 6.6 show the cohesion, friction, and dilation exponential
softening.

Figure 6.7 demonstrates the post-bifurcation linear softening for the embedded discontinuity
element. Figures 6.8, 6.9, and 6.10 show the cohesion, friction, and dilation linear softening.

6.6.2 3D corner shear

For testing the true three-dimensional nature of the embedded discontinuity implementation
presented in this chapter, we reconsider the corner shear problem from Sect. 3.6.2. Post-
bifurcation, linear softening parameters are given in Table 6.3.

Figure 6.11 demonstrates the post-bifurcation softening for corner shear loading. In this
case, only the corner node enhancement function is activated, as indicated in Fig.6.1. This
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Figure 6.4. Plot of cohesion c versus jump displacement magnitude ζ for bifurcation and post-
bifurcation analysis (exponential softening) of plane strain compression of Salem Limestone using
the Sandia Geomodel.

Table 6.2. Parameters for plane strain compression: post-bifurcation, linear softening model.

Symbol Value

cp calculated

cr 0 MPa

φp 0.5236 rad

φr 0.0 rad

ψp 0.087 rad

αc 10,000 MPa/m

αφ 100 rad/m

αψ 100 rad/m
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Figure 6.5. Plot of friction angle φ versus jump displacement magnitude ζ for bifurcation and
post-bifurcation analysis (exponential softening) of plane strain compression of Salem Limestone
using the Sandia Geomodel.
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Figure 6.6. Plot of dilation angle ψ versus jump displacement magnitude ζ for bifurcation and
post-bifurcation analysis (exponential softening) of plane strain compression of Salem Limestone
using the Sandia Geomodel.
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Figure 6.7. Plot of stress versus strain for bifurcation and post-bifurcation analysis (linear soften-
ing) of plane strain compression of Salem Limestone using the Sandia Geomodel.

demonstrates a problem that cannot be solved using a 2D plane strain formulation [8].
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Figure 6.8. Plot of cohesion c versus jump displacement magnitude ζ for bifurcation and post-
bifurcation analysis (linear softening) of plane strain compression of Salem Limestone using the
Sandia Geomodel.

Table 6.3. Parameters for 3D corner shear: post-bifurcation, linear softening model.

Symbol Value

cp calculated

cr 0 MPa

φp 0.5236 rad

φr 0.0 rad

ψp 0.1 rad

αc 3e8 MPa/m

αφ 1e3 rad/m

αψ 1e3 rad/m
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Figure 6.9. Plot of friction angle φ versus jump displacement magnitude ζ for bifurcation and
post-bifurcation analysis (linear softening) of plane strain compression of Salem Limestone using
the Sandia Geomodel.
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Figure 6.10. Plot of dilation angle ψ versus jump displacement magnitude ζ for bifurcation and
post-bifurcation analysis (linear softening) of plane strain compression of Salem Limestone using
the Sandia Geomodel.
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Figure 6.11. Post peak softening in hex for corner shear.
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Chapter 7

Coupled DEM/FEM

Authors: R.P. Jensen, R.A. Regueiro

7.1 DEM Background

It is appropriate to begin this discussion on the coupling of the finite element method (FEM)
and the discrete element method (DEM) with a brief discussion on DEM. The FEM is a
well-established, widely utilized numerical simulation technique. In comparison, DEM is
not as well known. It is also a much younger numerical technique than FEM. Cundall and
Strack published the seminal paper in 1979 [15]. Since that time, DEM has attracted a
relatively small community of users. Because of the basic assumption of modeling material
using discrete entities, DEM has been widely used to model disaggregated media that occur
naturally such as sand, rocks and rock-falls, as well as for modeling material movement in
dynamic environments such as the mining industry[13, 46]. It has also been adapted for
the modeling of solid geomaterials [45]. The basic underlying assumption of DEM is that
material is modeled as an assemblage of distinct, separate bodies that interact through pre-
determined rules when the bodies come in contact. The bodies are generally assumed to be
rigid though there are situations where they can be modeled using deformable bodies. The
discrete bodies, often referred to as particles, are generally modeled as disks, in 2D, and as
spheres, in 3D, though they can also be modeled as ellipses and ellipsoids or as arbitrary
polygons and polyhedrons. When two particles come in contact, the contact interaction in
the normal direction is idealized as a spring and dashpot and in the transverse direction,
as a spring and dashpot that is active up to the point where sliding between the particles
occurs, as can be seen in Fig. 7.1. The particle motion is derived from Newtons law and is
as follows:
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Mẍ + f int = f ext (7.1)

Figure 7.1. Schematic showing the idealized contact between two Discrete Element particles.

where M is the mass of the particle, ẍ is the particle acceleration, f int are the internal forces
which include the contact forces, friction forces, attractive forces, viscous forces, etc., and
f ext are the external forces which include the particle weight and the far-field tractions. The
internal particle contact normal forces are computed as:

fn = Kδ + Cẋn (7.2)

where fn is the normal force, δ is the inter-particle penetration, C is the damping coefficient,
and ẋn is the relative normal velocity between two particles. The spring constant, K, which
derived from the Timoshenko and Goodier [68] relationship for two spheres coming in contact,
is defined by:

K = λ× 4

3

[
E1E2

(1 + ν2
1)E2 + (1 + ν2

2)E1

] [
R1R2

R1 +R2

]1/2

(7.3)

where K is the spring constant, λ is a constant, En are Youngs Moduli for each particle,
νn are Poissons ratio for each particle and Rn are the particle radii. The transverse forces,
ft, are proportional to the normal forces, fn, assuming Coulomb friction law to define the
friction relationship.
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ft ≤ µfn (7.4)

where µ is the coefficient of friction and ft is the upper limit of the transverse force.

DEM uses an explicit numerical integration scheme to march through time. Since it is an
explicit code, generally speaking, in order to maintain numerical stability, the time step must
be quite small. An estimate for the maximum, critical time step, ∆tcr, can be found by

∆tcr = 2

√

M

K
(7.5)

where M is the value for the mass of the smallest particle in the simulation and K is the
largest value spring constant found above. The critical time step is based on the estimation
of the natural frequency of two particles connected by a spring. However, since it is very
likely that a particle will be in contact with more than one particle during a time cycle, the
actual natural frequency of the particles would be higher which results in a lower critical
time step. Generally, an additional factor, on the order of 0.1, is included in the time step
estimation in order to account for this difference.

One cycle of computation is as follows. First, determine neighboring particles. Once neigh-
bors are determined, find if there is any contact between particles. This is the lengthiest step.
Next, for particles that are touching, compute the contact forces. From the contact forces,
the particle accelerations can be computed and the magnitudes of the particle velocities and
displacements can be integrated. Then the cycle repeats.

The basic particle-particle contact law is the spring/dashpot model that can be seen in Fig.
7.1. However, depending on the media that is trying to be modeled, the particle-particle
contact law can be modified. Simple tensile bonds can be implemented, more elaborate,
moment carrying bonds can be implemented, or any other type of internal force relationship
that can be numerically modeled can be implemented.

7.2 One-Way FE/DE Coupling

Because DEM uses discrete particles, it is able to naturally characterize materials that un-
dergo large deformations or even dis-aggregation. It is able to do this without any additional
or special treatments of the governing equations or controlling algorithms. Additionally, it
is very easy to include a high degree of heterogeneity by simply assigning different material
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properties to each particle. These are two areas in which continuum based FE modeling tech-
niques falter. However, because of the small critical time step as well as the large number
of degrees of freedom, running DEM simulations on any geomechanics problem at a realistic
scale would require vast amounts of computer resources and is simply not tractable.

There are two ways to look at FE/DE coupling. The first approach involves tracking material
movement, post-failure. As the material fails in one region of the FE mesh and as the material
dis-associates from the main body, it is very difficult to track the movement of the material
using FEs. The pieces of the mesh that break from the main mesh can easily either become
distorted or start out as distorted elements. Also checking all of the potential neighbors
and contacts using polygonal shaped objects can require more than one order of magnitude
greater computer speeds when compared to a circular or spherical elements. In addition, the
contact force calculation for separated polygonal shaped elements is far more complicated
than the calculation for circular or spherical discrete elements, in which forces are either
normal to or tangential to the element surface. By superimposing DEs over the area of
the mesh of the newly separated areas, tracking the movements of the new particle becomes
simpler as does checking for all of the potential neighbors and contacts. The second approach
calls for the far-field boundary to be modeled with finite elements while the near-field region
of interest, where extreme deformations and dis-aggregation are expected, is modeled with
discrete elements. During the course of this LDRD, both approaches where investigated.
The second approach was successfully accomplished. For the first approach, progress was
made but full integration was not achieved. However the major roadblock was related more
to database management issues as opposed to theoretical issues. For both cases a modified
version of the DEM code DMC (Distinct Motion Code) was used. DMC was developed at
Sandia [46].

As mentioned, for the second case, the coupling was not completed. Capability was written
in the code that allows for the identification of a separating finite element (FE) and then for
the creation of discrete element (DE) particles to be located within the region defined by the
boundaries of that FE. Then, the nodal velocities of the FE can be transferred to the newly
created DE particles based upon an interpolation of the continuum displacement field of the
FE. This interpolation is derived from the FE shape function as will be described shortly.
Once the transfer of nodal velocity data from the FE to the DEs, the FE is deleted. All
subsequent motions of the DEs are controlled strictly by their individual particle interactions
and contact relationships. DMC uses the ExodusII database [57]. One aspect of this database
is that it does not allow for an increase of the number of nodes or elements once a calculation
has been started. Therefore, in order to fully implement the coupling, described in this
second case, in a simulation, a new method for managing the FE/DE model data needs to
be implemented. This was not done. Figure 7.2 shows a schematic of what the results of
implementing this coupling scheme would look like.

The first approach to coupling FEs with DEs was successfully accomplished. In this ap-
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Figure 7.2. Schematic of newly created discrete elements within the boundaries of a newly separated
finite element.

proach, the near-field area of interest, where large dis-aggregations and/or extremely large
deformations are expected, is modeled with discrete elements. The far-field boundary condi-
tions are modeled using finite elements. Often, deleterious boundary effects can negatively
affect the results of a simulation if the boundaries of the simulation are too close to the area
of interest. In many geomechanics oriented simulations, the scale of the problem can be in
the hundreds of meters. With the present computing capabilities, it is impossible to model
such large problems using discrete elements if the area of interest is in the meter range or
less. Therefore, by coupling FEs with DEs, the ability to model problems with disparate
length scales can be accomplished. For this LDRD, a one-way coupling was accomplished.
The basic idea is to model the far-field with finite elements. In the region of interest, discrete
elements are modeled. Where the far-field regions interface with the near-field, a region of
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overlap is created. Within this region of overlap, discrete elements are super-imposed onto
the overlap region of finite elements. The contact/interaction between the super-imposed
DEs and the non-super-imposed DEs remains conventional. However, the displacements of
the super-imposed DEs are fully prescribed by the nodal displacements of the finite elements
occupying the same region. The DE displacements are interpolated from the continuum
displacement field of the finite elements. The DE displacement, u, can be defined by

u(x(α)) =
∑

N (a)(x(α)) u(a) (7.6)

where x(α) is the un-deformed position of the DE, N (a) are the shape functions of the finite
element and u(a) are the finite element nodal displacements [3]. This results in a one-way
coupling between the FE and DE method. The interaction forces between the super-imposed
discrete elements and the discrete elements outside the region are not transferred back into
the finite element mesh. In order to implement this capability, an explicit finite element
solver needed to be added to DMC. Therefore, a very simple, crude FE solver was added.
The basis for the solver was adapted from Cook, Malkus, and Plesha[14]. Figure 7.3 shows a
simple simulation to demonstrate the one-way coupling effects. The figures show the initial
configuration of a cantilevered beam, which has several discrete elements coupled at the end
of the beam. A point load is applied at the end of the beam causing it to deflect. As can
be seen in right figure of Figure 7.3, as the end of the beam deflects in response to the
applied load, the discrete elements accordingly also deflect. This is the expected and correct
response for a one-way DE/FE coupling.

To illustrate a potential problem in which this capability might be utilized, a quick sample
problem was created. The problem is a tunnel opening in a rock mass. The dimensions of
the problem are a rock mass measuring 200 meters by 200 meters. Within the rock mass is a
tunnel that is two meters wide by two meters high with an arched ceiling with a radius of one
meter. As can be seen in Figure 7.4, the main rock mass was modeled using finite element.
The region surrounding the tunnel was modeled using discrete elements. The thickness of the
discrete element region was 0.5 meters. The image on the far right of Figure 7.4 shows the
overlapping regions of DEs and FEs. This is the region in which the one-way DE/FE coupling
takes place. The finite element mesh employed linear elastic bi-linear quadrilateral elements.
Within the finite element mesh, there was no mechanism included for failure. For modeling
rock, this is probably not the best element to use, however the intent of the sample problem
was to demonstrate the coupling between finite elements and discrete elements. The rock
material properties were assumed to be similar to a granite with a Youngs modulus, E =75
GPa, Poissons ratio, ν = 0.29, and a unit weight of 2300 kg/m3. The DEs were modeled
with a simple tension bond. The additional material properties of the DEs are a tensile
strength of 150 MPa, a compressive strength of 175 MPa, and an internal friction angle of
35◦. These values are high and indicate that a better bonding model is needed. In addition,
Macro-Particles (see section 7.5) were used to model the DE region. The strength between
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Figure 7.3. Simple cantilever beam, loaded at one end. At the end of the beam, an assemblage of
discrete elements is attached. The FE/DE overlap region is highlighted. The arrow indicates the
location of the point load. In the right figure, the arrows indicate relative magnitude and direction
of the particle displacements.

two macro-particles were reduced by 60 percent. A triangular shaped pulse load was applied
to the top of the mass at selected nodes above the location of the tunnel. A horizontal stress
of 2.0 MPa was applied to the outer boundary of the model as in situ stresses. The pulse
load was applied to the finite element mesh by imposing a velocity profile on selected nodes.
The peak load was 16 m/s occurring 0.0005 seconds after initiation, with the velocity going
to zero at time 0.003 seconds after initiation. The results of the stress wave propagating past
the tunnel can be seen in the Figure 7.5. The image on the left is pre-failure and the image
on the right is post-failure. From the post-failure image, the rock can be seen to disaggregate
and to do so in manner that has been seen in actual tests. This qualitative behavior gives
some confidence that the technique has good potential for modeling post-failure behavior in
highly dynamic regions. As was mentioned, there are a number of modeling methodologies
and material properties that could be or should be used to improve the FE model such as
a better material model, however it is important to keep in mind that the purpose of the
simulation was to demonstrate the direct transfer of loads from the FE mesh to the DEs.

The application of one-way DE/FE coupling is fairly limited. The most appropriate applica-
tion is in the situations described for the second approach where the purpose of the coupling
is tracking particles post failure. In cases that are described for the first approach, there are
significant loads from the DEs that need to be applied back into the finite element mesh.
This is because for this case, the free boundary of the problem is not the finite element
boundary but the boundary of the discrete elements. Therefore a preliminary investigation
into two-way coupling was conducted to measure the potential for continuation of this work.
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Figure 7.4. This figure shows the coupled FE mesh and DE model used in the example problem.
The image on the left shows the entire domain that was modeled. The center image shows the
region modeled by the DEs. The image on the right illustrates the FE/DE overlap region.

Figure 7.5. These images illustrate the DE region before (image on left) and after (image on right)
the stress-wave propagates through the tunnel. The damage to the tunnel can be clearly seen in
the figure on the right with large volumes of DEs having separated.

7.3 Two-Way FE/DE Coupling

7.3.1 Overlapping FE/DE domains

The concept of two-way coupling of finite elements and discrete elements could be based on
the coupled atomistic-continuum simulation (CACS) approach using arbitrary overlapping
domains, developed by Zimmerman et al. [3]. This FE/DE coupling approach will assume
that there exists a domain, which includes both FEs and DEs, as seen in Fig. 7.6, where the
DE domain intersects the FE domain. The size of this domain will generally be assumed to
be only one element deep. Because this overlapping region is the boundary of the FEs but

134



7.3. TWO-WAY FE/DE COUPLING

not of the problem, it is important to transmit the loads stresses and strains in the DEs to
the FEs. Adapting the CACS approach to FE/DE should provide a straightforward means
of achieving this.

Figure 7.6. Schematic showing the relationship between a DE domain that overlaps a FE domain.

In the overlapping domain, the coupled equilibrium equation, in matrix form, is:

[
KQQ KQU

KUQ KUU

]{
δQ
δU

}

=

{
RQ

RQ

}

(7.7)

where Q is the domain that includes all of the DEs and U is the domain that includes all
of the FE nodes. Here, the symbol δ(•) is an incremental value within a linearized system
of equilibrium equations for solution by iterative algorithm (such as Newton-Raphson). A
more thorough treatment of the equilibrium equation can be seen in Zimmerman et al. [3].
The cross terms of the equilibrium equation naturally deals with the coupled influence in the
overlap region. In addition, a correction term is also used to account for the double counting
of the bond potentials of the DEs in the overlapping domain as well as the bond potentials
between DEs in the overlapping domain and DEs outside of the overlapping domain. The
force on a node in the overlapping domain is defined by

f (a) = f
(a)
Q + f

(a)
U (7.8)
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where,

f
(a)
Q = R(i)

∑

N (a)
(

X(β)
)

(7.9)

is the DE contribution to the nodal forces and

f
(a)
U =

1

V0
[R ⊗ R](i)

∫

ρ(i)
∂N (a)

∂X
dΩ (7.10)

is the continuum contribution to the nodal forces with N (a) being the shape functions of the
FE evaluated at the DE locations X (β), V0 is the initial element volume, Ω is the volume
of the domain, and ρ(i) is the penalty function based on the bond density potential with a
range, 0 ≤ ρ(i) ≤ 1. A domain with few DEs, few DE bonds, or bonds that are weak with
respect to the continuum, would have a ρ(i) that is close to zero.

7.3.2 Macroparticle DE/FE coupling

Another approach to two-way DE/FE coupling is using macroparticles. A macroparticle
DEM, grown from seed microparticles, can represent arbitrary polygonal shapes in two
dimensions (cf. Figs. 7.7 and 7.8) and arbitrary polyhedral shapes in three dimensions
[53]. The interparticle constitutive relations between the microparticles that compose the
macroparticle dictate the overall constitutive response of the macroparticle. Such macropar-
ticles could be grown once the continuum bifurcation model and finite element implementa-
tion predict fragment dimensions. In essence, the macroparticle composed of microparticles
(circles in 2D, and spheres in 3D) would replace the fragments determined by the finite
element solution. These macroparticles could then further fragment into sub-macroparticles
based on their microparticle interparticle strengths. This could be one approach to a two-
way coupled DEM/FEM approach, and potentially more computationally efficient than a
two-way approach that would treat each fragment as a discrete element meshed with finite
elements, thus relying on the continuum bifurcation model to further fragment a fragment.
For the macroparticle approach, choice of seed microparticle size is important, assuming
these particle radii are fictitious, i.e. not radii of the inherent microstructural particles that
possibly constitute the material (such as sand particles of a sandstone). Also important is
treating the contact condition when macroparticles will come into contact with finite ele-
ments. Most likely, this contact will be governed by an approach similar to that described
in the previous section.
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Figure 7.7. Cluster of macroparticles composed of microparticles.

Figure 7.8. Demonstrates the two-dimensional macroparticle algorithm implemented to grow
macroparticles from seed microparticles within a 2D shape, a circle.
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Chapter 8

Conclusions

The project set out to develop a computational modeling capability that could model the
transition from continuous to discontinuous deformation in geomaterials, all within a cou-
pled, transient solid-fluid mechanical formulation and 3D finite element implementation,
with coupled Discrete Element Method (DEM)/Finite Element Method (FEM) analysis
for fragmentation. First, we will summarize briefly what was achieved. The project pro-
duced an implicit numerical integration of a simplified version of the Sandia GeoModel [22],
a bifurcation analysis of the Sandia GeoModel [49], post-bifurcation geomaterial traction-
displacement (cohesive zone) models in Chapt. 4 and implemented using Cohesive Surface
Element (CSE) in Chapt. 5 and Embedded Discontinuity Element (EDE) in Chapt. 6,
and a strategy for two-way DEM/FEM coupling and implementation of one-way coupling
in Chapt. 7. Second, we will summarize briefly what was not achieved. The project did
not implement weak discontinuities (jump in strain field), formulate and implement cou-
pled solid-fluid mechanical governing equations with weak and strong discontinuities, nor
implement a two-way coupled DEM/FEM capability. Future work is discussed in the next
Chapter to address these needs.

The project was successful, however, in outlining and putting into motion a plan to achieve
the overall objective as stated in the first sentence of this Chapter. Certain incremental
objectives were achieved in the process, giving us confidence that if the overall objective is
finally achieved, a unique computational modeling capability will result.
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Chapter 9

Future work

Some of the original objectives were not achieved in the time frame of the project. Among
the more important ones are fully coupled, transient solid-fluid mechanical formulation and
3D finite element implementation with discontinuities, consideration of weak discontinuities
(e.g., shear bands), and two-way coupled DEM/FEM, all in three-dimensions. We generate
two lists of future work: 1) research that is ongoing and will most likely be achieved without
major additional funding, and 2) those research objectives that will require an additional
project and appropriate funding to complete.

1. Near-term research objectives: “low-hanging fruit”

(a) Embedded discontinuity tracing algorithm: Although more challenging to
implement in 3D than in 2D, an initial idea has been formulated, and portions of
Tahoe have been identified on which such coding can be based.

(b) Locally undrained bifurcation analysis of Sandia Geomodel: Following [6],
we will formulate the Sandia GeoModel for fully-saturated, locally undrained con-
ditions. This means volumetric deformation (elastic and inelastic) is constrained
for the constitutive model. An undrained condition implies that the loading is
fast enough and the permeability of the material low enough that outflow of pore
fluid is restrained [35]. In essence, the pore fluid does not have time to flow out
of the pore space, resulting in zero volumetric deformation as the compressibility
and dilatancy of the material depends on the ability of the pore volume to change.
A globally undrained condition means this condition is applied to the coupled,
transient solid-fluid mechanical governing equations, which currently we do not
have implemented to account for discontinuities. On the other hand, the locally
undrained condition means the volume constraint is applied at a material point at
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which the constitutive model governs, thus constraining volumetric deformation
for the constitutive model.

(c) Implement the rigid-plastic geomaterial cohesive zone model of Chapt. 5 using
Lagrange multipliers rather than a penalty parameter.

2. Longer-term research objectives:

(a) Coupled, transient solid-fluid mechanical governing equations with strong
(and/or weak) discontinuities and 3D finite element implementation:
The treatment of discontinuities within a coupled solid-fluid mechanical formu-
lation and the finite element implementation within a three-dimensional setting
is an objective that turned out to be beyond the scope of the project. It will be
proposed as a future project because the need for such a computational modeling
capability still exists.

(b) Universal bifurcation criterion: In terms of developing a universal bifurcation
criterion for rate-sensitive and insensitive constitutive models, we will investigate
the evaluation of cohesive zone yield criteria at various angles at a Gaussian in-
tegration point. For rate-sensitive materials, bifurcation to localized deformation
is not determined by loss of ellipticity as viscous effects regularize the governing
equations (cf. Fig.3.7). Perhaps an embedded cohesive zone yield criterion eval-
uated at each integration point within a finite element can provide a universal
bifurcation criterion for rate-sensitive and insensitive material models. Further
thought would need to be given for such a criterion for weak discontinuities. A
phenomenological nonlocal or physics-based generalized continuum inelasticity
model could serve this role, potentially [71, 10].

(c) Weak discontinuities and 3D finite element implementation: It turns out
that formulating and implementing hexahedral and tetrahedral finite elements
with embedded weak discontinuity leading to mesh independent simulations is a
more challenging objective than solely implementing strong discontinuities (which
the project ended up doing). The reason for this is that an element would need to
account for the weak discontinuity being completely embedded within the element
domain, partially embedded, or an element domain falling completely inside the
weak discontinuity. This objective is beyond the scope of the project, but will be
considered for a future project.

(d) Simulating defeat of HDBTs and Nuclear Waste Repository failure
scenarios: The eventual goal is to solve, in a mesh-independent manner, these
problems of interest to Sandia as described in Chapt. 1. Among solving other
geological and geotechnical engineering problems, this goal is of significant interest
to the authors and will be pursued as future projects dictate.
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