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Abstract

Localized deformation in the form of slip surfaces and shear bands occurs nat-
urally in geomaterials such as soil and rock. As a result, in order for the geotechnical
engineer or engineering geologist to make informed analysis and design decisions for
geomechanical structures in which localized deformation may develop, slip surfaces
and shear bands should be represented numerically by a finite element model. The
usefulness of a finite element model is realized when analyzing geomechanical struc-
tures with complex geometry and geomaterial behavior because for such problems an
analytical limit equilibrium solution is unwieldy.

Concurrent with the appearance of localized deformation is the loss of overall
strength of the geomaterial body. Thus, rate-independent, strain-softening plasticity
models have typically been used to represent this ‘softening behavior’ in geomaterials.
Rate-independent plasticity models, however, do not contain a material length scale
needed to define the width of a localized deformation zone, thus rendering finite
element solutions mesh-size dependent for softening plasticity problems. In addition,
the mesh alignment of standard finite elements has been shown to affect the simulated
localized deformation pattern. Therefore, a more sophisticated numerical tool to
represent the formation of slip surfaces and shear bands in geomaterials in a mesh-
independent manner is in order.

Many attempts have been made to numerically model localized deformation
using rate-independent, strain-softening plasticity models, but, in the absence of a
material ‘length scale’, adaptive remeshing, or other regularization technique, these
attempts typically do not satisfy two necessary criteria for a finite element solution to
be meaningful (i.e., mesh-independent): objectivity with respect to mesh refinement
and insensitivity to mesh alignment. A previously-developed model which meets these

two criteria without introducing a material length scale and without requiring special

v



mesh alignment strategies represents localized deformation as a strong discontinuity
(jump in displacement field). This model is adopted to formulate a non-associative,
rate-independent, strain-softening Drucker-Prager plasticity model in the context of
strong discontinuities and to implement this plasticity model along with an enhanced
quadrilateral element within the framework of an assumed enhanced strain finite el-
ement method. The formulation and implementation are carried out for small defor-
mations and rotations and for the drained condition, whereby the effect of pore-fluid
is neglected.

Numerical simulations of the load-displacement behavior of soft rock under
plane strain loading demonstrate the ability of the model to approximate, in a mesh-
independent manner, the experimentally observed failure surface orientation, stress
level at which onset of localization occurs, and post-localization overall ‘softening’
behavior. Numerical simulations of strain localization occurring in a slope and in an
excavation demonstrate near mesh-independence of finite element solutions resulting

from the strong discontinuity approach.
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Chapter 1

Introduction

1.1 Background and Motivation

The term ‘geomaterial’ refers to soil, rock, and concrete, but in this thesis only
the modeling of localized deformation occurring in soil and rock will be considered.
The motivation for this thesis will stem from background research material covering
evidence of localized deformation in soil and rock, the implications of rate-independent
strain softening plasticity, and numerical methods for modeling localized deformation.

Not all soil types will exhibit localized deformation. Consider the typical
stress-strain behavior of soil as described by ATKINSON [5] and shown in Figs. 1.1-
1.3. As an exception to the continuum mechanics convention adopted throughout

this thesis, compressive stress and strain are positive in Figs. 1.1-1.5.

The behavior of a soil at two different initial states is described. A ‘wet’ soil
refers to loose sand and normally consolidated or lightly overconsolidated clay. A
normally consolidated clay refers to a soil which is currently experiencing its greatest
state of stress. An overconsolidated clay is a soil which has experienced its greatest

state of stress in the past. For example, a clay would be overconsolidated if a building
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Figure 1.1. Typical stress-strain behavior for soil as described in [5].

which rested upon it was demolished, thus lowering the level of stress experienced by
the clay. A ‘wet’ soil is defined relative to the critical state (i.e., the state of a soil at
which further deformation produces no volume change) and is so named because when
sheared it reduces in volume. In other words, fluid in the voids would be expelled.
On the other hand, a ‘dry’ soil refers to dense sand and heavily overconsolidated clay.
In this case, the soil is dry of critical state because after initial contraction, the soil
dilates and will absorb fluid. The volumetric strain €., and void ratio e (where V}, is
the volume of voids and Vj is the volume of solids) behavior for these types of soils

are shown in Figs. 1.2 and 1.3, respectively.

Clearly, it is of interest to model strain localization occurring in ‘dry’ soils, as

evidenced by Fig. 1.1, which shows a plot of differential stress (o3 — o.) versus axial
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strain €, for typical soil behavior at the two different initial states. A ‘dry’ soil will
deform elastically (i.e., insignificant irrecoverable deformations develop) from point
A to point B, then dilate plastically (i.e., significant irrecoverable deformations are
developing) from point B to point C, and at peak load at point C develop localized
deformation which is followed by overall softening and a residual stress region as the
soil approaches its critical state at point D. Localized deformation in soil may take the
form of a slip surface or shear band. A “slip surface” is a zone of localized deformation
with negligible width, and a “shear band” is a zone of localized deformation with
finite width. A ‘wet’ soil will deform with monotonically increasing stress level as it

approaches its critical state and not exhibit localized deformation.

_ AV
Evol = T~
A
‘WET’
|_
s
|_
P
8
= €9

=
<
=
0 ‘DRY’

Figure 1.2. Typical volumetric strain vs. axial strain behavior for soil [5].

On the other hand, almost all rock types exhibit some form of localized defor-

mation. Consider the typical stress-strain behavior of rock as described by JAEGER
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Figure 1.3. Typical void ratio vs. axial strain behavior for soil [5].

& Cook [37] and shown in Figs. 1.4 and 1.5.

Figure 1.4 is a plot of differential stress (o0, — o.) versus axial strain e, for
typical rock behavior. The region from the origin O to the yield point B is considered
elastic (i.e., no significant irrecoverable deformation develops) where from O to A
the rock material reconstitutes itself as mircocracks close, and from A to B the rock
material behaves elastically, although not necessarily linear. In the region from B
to C significant irrecoverable deformations develop, and, as a result, this region may
be called the ‘plastic’ region. At peak differential stress at C, localized deformation
becomes prevalent. Thus, further loading from C to D (displacement driven) results
in an overall ‘softening’ behavior of the material, which is called the ‘post-localization’

region of the stress-strain curve.

Figure 1.5 is a plot of differential stress versus volumetric strain, where the
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Figure 1.4. Typical stress-strain behavior for rock as described in [37].

same regions OA, AB, BC, and CD dilineated in Fig. 1.4 are also shown. From O to

3(1—2v)

B the rock material contracts in accordance with linear elasticity (eyo = =

tr(o)
if the elasticity is in fact linear). As the rock material is loaded into the plastic region
from B to C, the rock material dilates with respect to the elastic contraction as a
result of the formation and extension of open microcracks within the rock specimen.
During post-localization from C to D, the rock material may continue to dilate and
actually increase in volume with respect to its initial volume. This is in contrast to

soil which will approach its critical state.
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Figure 1.5. Typical volumetric behavior for rock as described in [37].

1.1.1 Evidence of Localized Deformation in Soil and Rock

There have been numerous experimental studies of the physical phenomenon of local-
ized deformation in geomaterials such as soil and rock by VARDOULAKIS et al. [93],
VARDOULAKIS & GOLDSCHIEDER [94], HALLBAUER et al. [31], SANTARELLI &
BROWN [77], WAWERSIK et al. [98], ORD et al. [56], YUMLU & OzBAY [101], and
LABUZ et al. [41], to name a few (see READ & HEGEMIER [66] for a review). Many
of these studies have attempted to understand the connection between the micro-
scopic actions (e.g., micro-cracking in brittle rock, mineral particle rolling and sliding
in granular soil, and mineral particle rotation and translation in the cement ma-
trix of soft rock) and the macroscopic behavior (e.g., formation of slip surfaces and

shear bands and progressive loss of overall material body strength). A number of
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microscopic-based numerical models of localized deformation in granular materials
have been considered to attempt to establish this connection numerically CUNDALL
& STRrRACK [18], CUNDALL [19], BARDET & PROUBET [7], BOrJA & WREN [11],
and WREN & BORJA [99]. This thesis, on the other hand, discusses a macroscopic

approach to modeling localized deformation via the finite element method.

READ & HEGEMIER [66] provide a solid argument—with supporting data
provided by other researchers—that the strain softening observed in stress-strain or
load-displacement curves of experimental compression tests on soil, rock, and con-
crete is not a material property of a homogeneously deforming material body, but
rather a structural phenomenon in the form of inhomogeneous deformation. This
argument is not consistent with the use of traditional local continuum constitutive
models to represent strain softening behavior because these models assume homoge-
neous deformation and thus cannot adequately capture inhomogeneous deformation
like strain localization at the local continuum level. In addition to this argument,
rate-independent strain softening plasticity results in mesh-dependent finite element
solutions as a result of the governing equilibrium equations being ill-posed; this will

be elaborated upon in the next section.

Field evidence of localized deformation may take the form of faulting in rocks
(see AYDIN & JOHNSON [6]) and slip surfaces and shear bands in geotechnical struc-
tures such as excavations (see CHAN & MORGENSTERN [13], FINNO et al. [25], and
FINNO & NERBY [26]). As mentioned previously, a finite element method which
is capable of modeling localized deformation in geomaterials in a mesh-independent
manner is especially useful for simulating the behavior of actual field geomechanical

structures such as these because an analytical limit equilibrium solution is unwieldy.

It is noteworthy that fracture mechanics also has been used to model localized

deformation in soil (see PALMER & RICE [59] and RICE [68]) and rock (see COSTIN
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[15]). This thesis, however, concentrates on the use of plasticity models to represent

localized deformation.

1.1.2 Wave Propagation Analysis of Strain Softening Plas-
ticity - Brief Review

Why consider approaches for modeling strain softening phenomena in solids other
than the classical, rate-independent, continuum plasticity approach? Besides the
experimental evidence allying against such an approach (as described in [66]), the an-
swer lies with the analysis of wave propagation in a one-dimensional, rate-independent
strain softening bar. The following analysis is taken from similar treatments by READ
& HEGEMIER [66], NEEDLEMAN [54], LORET & PREVOST [46], and SLUYS & DE

BORST [85].

1.1.2.1 Wave Propagation in 1D Rate-Independent, Strain Softening Bar

Equilibrium is expressed as

Oy = PUst (11)

where o is the Cauchy stress, x is the coordinate along the bar, p is the mass density
of the material, v is the velocity (= dx/dt), t is time, and (e),, = d(e)/0z denotes the
partial differentiation of the quantity in (e) with respect to z. The rate-independent

constitutive relation for strain softening is

o= 1@ fey=29 <y 12)

where € is the plastic strain. Assuming linear softening (f’(¢”?) = H = constant), the

constitutive relation in rate form becomes
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o =He; H<O (1.3)

where # is the hardening/softening modulus (A > 0 for hardening plasticty, H < 0
for softening plasticity, and H = 0 for perfect plasticity). The total strain rate is
decomposed into elastic and plastic parts, with the elastic part expressed in terms of

the stress rate ¢ via Hooke’s Law as

~€

é:ée+ép- e = 14
; (1.4)

o
E
where F is the modulus of elasticity and é = v ,.

Substituting the expression for é* from Eq. (1.4) into Eq. (1.3) and the equilib-
rium equation Eq. (1.1), the following partial differential equation (PDE) governing
dynamic equilibrium results as

1 EH
z o = 0. 1.5
Vot p <E+H) v (1.5)

The method of characteristics may be used to determine the character of the wave
equation; refer to ACHENBACH [1] for a brief discussion of the method of charac-
teristics, and to COURANT & HILBERT [16] and PETROVsKII [61] for more details.
Take the derivatives of v, and v,, with respect to a new coordinate s (which is a

characteristic curve):

d (0v 82_1) ﬁ N 0%v d_:c
ot2ds Otox ds

ds \ ot
d (0v 0%v dt 0*vdx
a5 (%) = Peoids 97 ds (1.6)

Thus, the characteristic determinant becomes:
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b0 =5 (&)

2 2
dat  dz 0 = d_x — 1 EH ﬁ (1.7)
ds ds ds p\E+H ds
0 4 dx

ds ds

and the characteristics are

dz 1 EH
— == E(EH{) (1.8)

which are also the physical wave speeds. For strain softening the hardening/softening
modulus is negative (H < 0) which yields imaginary wave speeds and transforms the
PDE from hyperbolic to elliptic (no longer do waves propagate; they are ‘standing’
waves [1]). Elliptic initial value problems are ill-posed because initial disturbances
cannot propagate through the solid body. For perfect plasticity (H = 0) the PDE
becomes parabolic and is again not well-posed because initial disturbances cannot
travel through the solid body (see WU & FRUEND [100] for a description of this wave

phenomenon call ‘deformation trapping’).

1.1.2.2 Wave Propagation in 1D Rate-Dependent, Strain Softening Bar

One way to correct the ill-posedness of the PDE for a rate-independent, strain soft-

ening bar, is to introduce rate dependence:

o = f(e") + D™ (1.9)

where €”? is the viscoplastic strain (e”? = e—¢°), such as that defined in the manner of
PERZYNA [60], and D is a material constant representing the strain-rate sensitivity

of the material. Assuming linear softening, the rate form of Eq. (1.9) becomes
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& = HéP + De? (1.10)

where H is the softening modulus (% < 0). Using the decomposition of strain (e =
€® + €"P), equilibrium (o,, = pv,;), and Hooke’s Law (0 = E €°), the governing PDE

becomes

D E+H
pEvattt - Dvatww - Hv;ww +p ( E ) Vot = 0. (111)

Note that if D — 0, the rate-independent PDE in Eq. (1.5) is recovered. Considering
that the higher-order terms determine the character of the PDE [16], the derivatives
of v, and v,y with respect to the new coordinate s (which is a characteristic curve)

are

d (0%*v 3:*_1)@_’_ oAty dz
ot3 ds  Ot?0x ds

ds \ o2

d ( 0%v v dt v dx

— | — = — —. 1.12
ds (8158:16) 0z0t? ds i o0tox? ds (1.12)

Thus, the characteristic determinant becomes:
p % 0 =D 2 2
D (dx dt
it dz — = (¥) —p(& 1.1
ds ds 0 p E (d5> D (ds) ( 3)
d dz
0 & &

and the characteristics are

dx E
— = £+ /— 1.14
7 \/p (1.14)

which are the elastic wave speeds regardless of the choice of H. Thus, the PDE is

well-posed. In this case the characteristics do not represent the physical wave speed,
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except for the limiting case D — oo, whereby the second order terms drop out of
Eq. (1.11), and then the physical wave speed will be the elastic wave speed.

Because of this result, rate-dependent strain softening has been considered
as one approach to address the ill-posedness associated with the governing PDE for
rate-independent strain softening, SANDLER & WRIGHT [76]. Because there is no
loss of strong ellipticity (i.e., change of form of PDE, to be defined in the next sec-
tion) to detect onset of localization, material inhomogeneities are needed to trigger a
localization of deformation (see NEEDLEMAN [54]). This approach to finite element
analysis of strain localization is well documented by LORET & PREVOST [46] and
PREVOST & LORET [64].

Rate-dependent plasticity is not considered for the following reasons: 1) the
initial, boundary value problem is well-posed and thus does not need any special con-
sideration; 2) rate-dependent plasticity has already been implemented with respect
to modeling geomaterials [46], [64]; and 3) since, typically, a rate-independent geo-
material is of interest, the rate-independent limit of rate-dependent plasticity is used

[46], [64].

1.1.3 Strong Ellipticity Condition

The strong ellipticity condition as probably first put forth by HADAMARD [30] implies
that elastic wave speeds are real and nonzero. Consider the strong ellipticity condition

as stated by MARSDEN & HUGHES [50]:

(m®en):C:(men) > 8|m||n||; VB>0, (1.15)

where (m @ n) : C : (m @ n) = mn;Cijwmyny, C is the general fourth order
tangent modulus tensor constant in x (i.e., homogeneous), m and n are nonzero

vectors (m,n € R"™in) and @ is a real, nonzero number. The following three-
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dimensional wave propagation analysis proves that strong ellipticity implies real and

nonzero elastic wave speeds.

Ignoring body forces, dynamic equilibrium is written as

pt = V.o (1.16)

where p is the mass density, u is the displacement field, o is the Cauchy stress,
(8) = 0*(e)/0t?, and (V - ); = 0yj,;. The constitutive equation may be written in

rate form as
oc=C:¢; € =Vu (1.17)

where (o)® denotes the symmetric part, and (V°@);; = £ (t;,; + @;,). Assume a plane

traveling wave of the form

u(z,t) = f(x-n+ct)m (1.18)

where m is the propagation direction, m is the motion direction, and c is the wave
speed (see ACHENBACH [1]). Note that if n - m = 0 the wave is called a transverse
or shear wave, and if n = +m the wave is called a longitudinal or pressure wave.

Dynamic equilibrium in Eq. (1.16) now takes the form

pfm = A-m; A=n-C-n (1.19)

where A is commonly known as the ‘acoustic tensor.” Taking the dot product of both

sides of Eq. (1.19) by m, the wave speed may be calculated from the following:

. m-A-m:\/(m®n):C:(m®n) (1.20)
\ p p ' '

Thus, if m - A-m > 0, the wave speeds are real and nonzero. If m - A-m < 0,
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the wave speeds are imaginary or zero, and the governing equations become ill-posed
as discussed in the previous section concerning the 1D problem. If isotropic linear

elasticity is assumed, the tangent modulus tensor becomes

C =c =211+ 2il (1.21)

where X and /i are the Lamé parameters. Strong ellipticity then implies real, nonzero
elastic wave speeds. Note that strong ellipticity does not imply pointwise stability

(i.e., positive definiteness) of C (see [50]).

Loss of strong ellipticity in the sense of HADAMARD [30] (expounded upon by
HiLL [32]) refers to the formation of a ‘stationary discontinuity’ (or standing wave)

detected via the condition
detA = 0. (1.22)

RICE [69] called Eq. (1.22) the condition for onset of localization, using a discontin-

uous deformation gradient rate as a point of departure.

In this work, loss of strong ellipticity will occur when Eq. (1.15) is not satisfied,

and will specifically be the zero condition
(m@en):C:(m®n) =0 (1.23)

or

m-A-m = 0. (1.24)

Equation (1.24) is called the localization condition and arises naturally from the
equilibrium requirement that traction be continuous across a discontinuity surface S

(see Section 2.5.4).

It is important to note that Eq. (1.24) is only a necessary condition for the
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appearance of strain localization and for the detection of the bifurcation point. It
is not sufficient because the plasticity problem needs to be formulated with strain

localization in order for the strain localization to appear.

1.2 Methods for Numerical Modeling of Strain Lo-
calization

The motivation for rate-dependent strain softening approaches to modeling strain
localization in inelastic materials has been touched upon in the previous section, and
their finite element implementations were cited ([54], [46], [64], and [85]). Here in this
section, however, approaches based on rate-independent strain softening plasticity
models are only considered for the reasons stated at the end of Section 1.1.2.2.

Concurrent with the appearance of localized deformation is the loss of over-
all strength of the geomaterial body. Typically, rate-independent strain-softening
plasticity models have been used to represent this overall ‘softening’ behavior in ge-
omaterials like soil and rock [63]. It is well-known, however, that rate-independent
strain-softening plasticity models lead to mesh-dependent finite element solutions be-
cause such models do not contain a material length scale needed to define the width of
a localized deformation zone and because the associated governing partial differential
equation is ill-posed [76]. In addition, the mesh alignment of standard finite elements
has been shown to affect the simulated localized deformation pattern. Therefore,
a more sophisticated numerical tool to represent the formation of slip surfaces and
shear bands in geomaterials like soil and rock in a mesh-independent manner is in
order.

The phenomenon of localized deformation has been studied as a material in-

stability leading to a bifurcation in solution of the initial boundary value problem
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by HADAMARD [30], THOMAS [92], HILL [32], MANDEL [49], and RICE [69]. These
works laid the foundation for determining a localization condition which detects the
bifurcation point of solution, a condition used by many numerical modelers to de-
termine when to include enhancements to the finite element displacement or strain
interpolations. In this thesis, a model which leads to a bifurcated solution is used.
This model will be introduced after a brief discussion of other numerical models which

have been developed to simulate localized deformation.

Many attempts have been made to numerically model localized deformation
using rate-independent, strain-softening plasticity models, but, in the absence of a
material ‘length scale,” adaptive remeshing, or other regularization technique, these
attempts typically do not satisfy two necessary criteria for a finite element solution
to be meaningful (i.e., mesh-independent): objectivity with respect to mesh refine-
ment and insensitivity to mesh alignment. The length-scale approach for modeling
localized deformation in a manner independent of element size was considered by
PIETRUSZCZAK & MROZ [62], BAZANT & LiN [9], and OLIVER [55], among others.
The basic idea of incorporating a material length scale within the constitutive model
and/or at the finite element level is to fix the width of the localized deformation zone
since rate-independent plasticity models do not provide this information. Essentially,
the introduction of a material length scale precludes a causal a priori-defined length
scale of the associated mesh-size pathology; this a priori-defined length scale takes
the form of the finite element diameter. From a purely numerical perspective, the
adaptive remeshing approach for modeling localized deformation was considered by
ZIENKIEWICZ & HUANG [102] and ZIENKIEWICZ et al. [103], among others. This
approach does not consider local material instability but addresses the phenomenon
of localized deformation solely via adaptive mesh strategies. The difficulty with this

approach is that one needs to refine the mesh to the ‘fine scale’ of the physical man-
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ifestation of localized deformation in order to adequately represent the phenomenon.
It would thus be more attractive to incorporate this ‘fine scale’ into a ‘coarse scale’ like
a finite element mesh through a multiscale approach [36], [28]. The length-scale ap-
proach is multiscale but requires the ad hoc introduction of a material length scale and
also typically does not sharply capture the orientation of the localized deformation
pattern, unless combined with an enhanced finite element method like that of ORTIZ
et al. [57], BELYTSCHKO et al. [10], or LEROY & ORTIZ [45]. On the other hand, it
has been shown that rate-dependent plasticity models contain an implicit length scale
which regularizes the mesh pathology associated with the rate-independent limit [46],
[53], [54], [64], [76], [85]. Here, though, it is of interest to consider the rate-independent
case directly. Other models which contain an implicit length scale are the higher-order
gradient plasticity models [2], [21] and the micropolar continuum models [14], [20],
[52]. For a review of some numerical models of localized deformation, consult STEIN

et al. [87].

A previously-developed model which falls under the rubric of ‘multiscale ap-
proach’ represents localized deformation as a strong discontinuity (jump in displace-
ment field) and is called the strong discontinuity approach in this thesis. The strong
discontinuity approach referred to in this thesis is that developed by SiMO and co-
workers [3], [4], [27], [82], [83] and yields mesh-independent finite element solutions
without introducing a material length scale and without requiring special mesh align-
ment strategies. There have been other strong discontinuity approaches by WAN et
al. [96], LARSSON et al. [43], and LARSSON et al. [44] in the sense that displacement
jumps are treated directly rather than smeared into weak discontinuities (jump in
strain field; see [39]); in [96], however, the weak discontinuity formulation is adopted
to arrive at a localization condition. The strong discontinuity approach by Simo and

co-workers is adopted in this thesis to formulate a rate-independent, non-associated,



18 CHAPTER 1. INTRODUCTION

strain-softening Drucker-Prager plasticity model in the context of strong discontinu-
ities and to implement this plasticity model along with an enhanced quadrilateral
element within the framework of an assumed enhanced strain finite element method.
The formulation and implementation are carried out for small deformations and ro-
tations, and under drained condition (whereby the effect of pore-fluid influence is
neglected) and quasi-static loading.

A brief review of the expected results of the strong discontinuity approach

appears in Fig. 1.6 which is taken from the seminal paper by SiMO et al. [82]. This
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Figure 1.6. Results for 1D Problem taking Strong Discontinuity Approach (after SIMO et
al. [82])
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is a 1D shear problem showing the evolution of the jump in displacement u, the
overall softening of the stress 7, and the localized plastic flow 4. Mesh-independence
was observed. Note that the localized plastic flow in Fig. 1.6 is observable because
in [82] the jump in displacement is regularized (i.e., continuous displacement and
discontinuous strain over a ‘small’ width) as opposed to unregularized as in ARMERO
& GARIKIPATI [3]. In this thesis, the unregularized formulation is adopted because
it represents the actual jump in displacement and because it leads to a more robust

numerical method [27].
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1.3 Objectives

The objectives of this thesis are:

1. To formulate a non-associated, strain-softening Drucker-Prager plasticity model
in the context of strong discontinuities in the manner of SiMO et al. [82] and
ARMERO & GARIKIPATI [3] to be able to model, in a mesh-independent manner,

geomaterials exhibiting localized deformation.

2. To implement the aforementioned plasticity model along with an enhanced
quadrilateral element within the Assumed Enhanced Strain (AES) finite ele-
ment method in the manner of SIMO & RIFAI [79] and ARMERO & GARIKIPATI

3].

3. To demonstrate mesh-independence for enhanced finite element solutions of
softening plasticity, taking classical geotechnical problems under drained con-
dition (i.e., pore fluid influence has no effect) like slope stability and top-down

sequential excavation as numerical examples.

4. To simulate in a mesh-independent manner the occurence and effect of strain

localization in actual experimental test specimens of soft rock.

5. To essentially espouse and extend the continuum plasticity and finite element
framework developed in [3], [4], [27], [82], and [83] to be able to numerically sim-
ulate localized deformation in geomaterials in a mesh-independent manner, and
to use this framework to incorporate the following capabilities in the future:
modeling pore-fluid influence (see RUDNICKI [75] for background), modeling
nonlinear geometric effects for Drucker-Prager plasticity with strong disconti-
nuity, and modeling three-dimensional boundary value problems via implemen-

tation of an enhanced brick element.



Chapter 2

Non-associated, Infinitesimal,
Rate-Independent Plasticity with

Strong Discontinuity

2.1 Introduction

Geomaterials are predominantly frictional and dilatant in nature, with their friction
and dilation angles typically not being equal, leading to non-associated plasticity
models (see VERMEER & DE BORST [95]). Thus, in this chapter, a non-associated,
rate-independent plasticity model is presented and formulated within the context of
strong discontinuities in order to capture localized deformation at the local, material
level. This general, non-associated plasticity model is specialized to a non-associated

Drucker-Prager plasticity model.

21
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2.2 Governing Equations with Discontinuity

Consider a closed body Q C R"im (ng,, = 1, 2, or3) with smooth (i.e., C') internal
discontinuity surface S C R™im~! as shown in Fig. 2.1. Let = € € denote the location

of material particles « in ).

0,2

0.2

Figure 2.1. Body € with discontinuity S (2 = Q,UQ_, 9Q = §;QUJ,QUS, Q = QUIN).

The local (strong) form of the quasi-static, isothermal equilibrium equations
may be expressed as follows [35]: Given b : Q@ — RUim ¢t : 9,2 — R™im and
g : 0,0 = Run find u : Q x [0,T] — Rm (where [0,7] C R, is the time interval
of interest) such that

V:.o+b = 0 in Q
o-v = t on 0
u = g on 0,0

[e] -mn = [ts] = 0 across S (2.1)

where o is the Cauchy stress, b is the prescribed body force, v is the unit normal
to 0,2, m is the unit normal to S, ¢ is the prescribed traction, g is the prescribed
displacement, and [e] denotes the jump of a quantity across S (i.e., [o] =™ —0 7).

Refer to pg. 242 of MALVERN [48] for a brief discussion of discontinuity surfaces and
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their effect on the variational form of equilibrium. The expression “b : {2 — Rdim?”
states that for « in €2, b(x) is in R™im (the ng;, dimensional space of real numbers),
where  is the domain of b, and R™im is its range. The fourth equation of Eq. (2.1)
expresses the traction continuity across the discontinuity surface S.

The variational (weak) form of the quasi-static equilibrium equations, using
the strong form as a point of departure (or vice versa), may be expressed as follows
[35]: Given b: Q — RMim ¢ : 9,Q) — R"im and g : 0,02 — R™im_ find w € U such

that for all m € V,

/Vsn:adQ:/n-bdQ-l-/ n-tdF-l—/n-([[cr]]-n)dF (2.2)
Q Q 80 s
where 7 is the weighting function. The space of admissible weighting functions is
V= {n:Q— R ; n=0o0n09d,0}, (2.3)
and the space of admissible trial solutions is defined as
Uu = {u : Q — R%im ;. 4 =g on auQ} . (2.4)

Notice that in Eq. (2.2) traction continuity across the discontinuity surface S is re-

quired for equilibrium to be satisfied.

2.3 Kinematics of Strong Discontinuities

It was proven for rate-independent, infinitesimal, perfect plasticity that discontinuous
displacement fields are admissible solutions to the boundary value problem—as setup
in Section 2.2—and are contained within the bounded deformation (BD) space (see

MATTHIES et al. [51], TEMAM & STRANG [91], STRANG et al. [88], and SUQUET [89)]).
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The infinitesimal strains are singular distributions, which are contained within the
space of bounded measures because the integral of the Dirac-delta function is a finite
measurable quantity. This work by [51], [91], [88], and [89] was the motivation for
formulating the proper framework for softening plasticity with strong discontinuity in
SIMO et al. [82]. In Section 2.5.4, a localization condition is formulated which detects
the inception of such discontinuous displacements.

Define the discontinuous displacement field as follows

u(e,t) = u(z,t) + [ut)] Hs(z) (2.5)
—— ————
continuous discontinuous
where [u] = ut — u~ = (m is the jump in displacement across the discontinuity

surface § and is independent of x, { is the jump magnitude, m is the unit vector

designating the jump direction, and Hg(z) is the Heaviside function defined as

1 ifeeQy
Hs(x) = (2.6)
0 ifee_

It is possible for [u] to vary along the discontinuity S, but here it is considered
constant with respect to . Taking the symmetric gradient of the displacement field
in Eq. (2.5) and treating the Dirac-delta function as a distribution (see Appendix B),

the small strain tensor results

€ .= Viu = Vsl'u, + (|[u]] ®n)3(53 (27)
regular singular

where m is the unit normal to the discontinuity surface S pointing into Q2 (see
Fig. 2.1), and Js is the Dirac-delta function on S. Essentially, Appendix B yields
VHs = ndés. It is important that the Dirac-delta function be treated in the dis-
tributional framework throughout the formulation of a plasticity model with strong

discontinuity.
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2.4 Standard Infinitesimal Non-associated
Plasticity

Here, a standard non-associated plasticity model is formulated in the small strain
regime. Refer to SIMO & HUGHES [80] for a detailed discussion of the formulation
and numerical implementation of plasticity models.

Consider a convex elastic domain E defined by a smooth (i.e., C! continuous)

yield surface ¢ : S x R™ — R in the Cauchy stress space o : Q x [0,7] — S as

E = {(o,a) e SXxR" | ¢(0,x) < 0} (2.8)

where [0, T] is the time increment of interest, S is the space of symmetric second order
tensors, and a : 2x [0, 7] — R™ is the stress-like vector of plastic internal variables of
dimension m characterizing the hardening response of the material. The constitutive
equation is expressed in terms of a stored energy density function ¥(e® &) : S X
R™ — R, where €¢ : 2 — S is the elastic part of the infinitesimal strain tensor,
and &€ : 2 x [0,7] — R™ is the strain-like vector of plastic internal variables, which is
(energy) conjugate to a. The constitutive equations are then defined via consideration
of the First and Second Laws of Thermodynamics in the manner of LUBLINER [47]
as

_ ov (e, §) _ _8‘11(69,5)

Dee ) o = T . (29)

For the linearized theory (i.e., infinitesimal strains) the strain tensor is additively

decomposed into elastic and plastic parts:

€ = € + €. (2.10)

The plastic strain rate € : Q x [0, 7] — S is defined via the flow rule as
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. dy(o, a)
p _ d
e = A e (2.11)

where A : Q x [0,7] — R is the plastic consistency parameter, and ¢(o, ) : S X
R™ — R is the plastic potential function, which is not necessarily equal to ¢(o, ).
Associative plasticity results if 0g¢ = 0g¢ and associative hardening if 0g 0 = Oy P-
As mentioned previously, for frictional materials like soil and rock, plasticity models
are non-associative because the dilation angle is experimentally observed to be less
than the friction angle, making dg ¢ # 0g ¢ (as will be demonstrated in Section 2.6.1).
Non-associated plasticity models violate Drucker’s stability postulate [22], but make
physical sense with respect to a calculation of dissipation for a cohesionless, perfectly-

plastic material [95]. The evolution equations for € and £ are defined as

e dp . _ O
€ = ¢ /\80" §—Aaa. (2.12)

The classical Kuhn-Tucker complementary conditions for loading and unloading ap-
ply:

A>0; ¢lo,a) <0; Mo,a)=0 (2.13)
as well as the consistency condition
=0, A>0 (2.14)

which states that plastic flow must persist on the yield surface. Applying the chain

rule to the consistency condition in Eq. (2.14), the following results

9 .64+9 &0 (2.15)

(b:%' oo

Recall the constitutive equations from Eq. (2.9) and express them in rate form as
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c=C:¢; o =-H-¢ (2.16)

where

PUE,E) o PUEE

C= Geve T oeae

2.1
Oe¢0es (2.17)

are the symmetric Hessian tensors of W(e®, &) evaluated with respect to €® and &,
respectively. The fourth order tensor C is the tangential elastic modulus tensor,
and the second order tensor H is the tangential plastic modulus matrix. For linear
elasticity and linear hardening, C and H would be constant. Substituting Eq. (2.12)
into Eq. (2.16) and then Eq. (2.16) into Eq. (2.15) the plastic consistency parameter

is solved for:

aU¢C€

\ =

(2.18)

where

H=0aé- H-dap. (2.19)

The continuum elastic-plastic tangent modulus tensor may then be derived as

C:00p®050:C

C? = C - .
ao'qbcao'@-F/H

(2.20)

With the standard, non-associated plasticity model in place, the formulation of the

plasticity model in the context of strong discontinuituies will proceed.
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2.5 Non-associated Plasticity with Strong Discon-
tinuity

In this section, plastic dissipation, a stress-displacement relation, and a localization
condition will be formulated for a general, non-associated plasticity model with strong
discontinuity in the infinitesimal strain regime. In the next section the model will be

specialized for a Drucker-Prager plasticity model.

2.5.1 Localized Plastic Flow

For hardening, associative plasticity (H > 0 from Eq. (2.19)) A is regular, and the set-
ting for standard plasticity as outlined in Section 2.4 holds. For softening or perfect
plasticity (H < 0), however, it is possible for displacements to be discontinuous and
for A to be singular, as described in Section 2.3; note that—although not rigorously
proven in the manner of [51]—discontinuous displacements may be detected via the
localization condition for non-associative hardening plasticity. When discontinuous
displacements are present within a material body (detected via the localization con-
dition; see Eq. (2.45)), the strains are singular at the discontinuity S, plastic flow
is localized to the discontinuity S [82], and the plastic consistency parameter \ is a

singular distribution

A= A\0s. (2.21)

Equation (2.21) states that all further irrecoverable deformation occurs along the
discontinuity S as the body outside the discontinuity unloads elastically. Equation
(2.21) is the key to the remaining formulation of a non-associated plasticity model

with strong discontinuity.
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2.5.2 Plastic Dissipation

A derivation of plastic dissipation with strong discontinuity yields three important
results: 1) the stress rate ¢ must be regular, 2) the rate of the stress-like vector
of plastic internal variables & must be regular, and 3) a finite element analysis will
calculate mesh-independent dissipation for localized softening problems.

Recall the definition of plastic dissipation resulting from the Second Law of
Thermodynamics in the form of the Clausius-Duhem inequality for an isothermal

solid (LUBLINER [47], SIMO [84]):

D= o:é— V(e ¢E). (2.22)

See Appendix A for a discussion of plastic dissipation in one-dimension. The term
o : € is the stress power, and, for quasi-static problems, it is the total external power

input into the system

/a:édQ = /J:VsudQ = /b-udQ +/ t-udl. (2.23)
Q Q Q 8,0

From Eq. (2.7), the strain rate € has a singular part. If & also has a singular part, the
calculation of the stress power (and, in turn, the dissipation) would not be possible
since the product of two Dirac-delta functions is undefineable. Thus, it is required
that the stress rate be regular [82]. Decomposing the stress rate into its regular and

singular parts yields

where

C:Vu

Q-
I
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o5 = C:((J[u] ®n)° — X\sOa ) - (2.25)

A regular stress rate requires 5 = 0, which implies

o6 =0 =C:Vu (2.26)
and

([ul @n)* = Asdgep. (2.27)

Continuing with the calculation of plastic dissipation, the stored energy rate is ex-

pressed as follows
U(e,8) = o: & — Mo :0op + a-day). (2.28)
Thus, the rate of dissipation is
D = Mo:0o0p + a-0ap) = Dsbs (2.29)

since A\ = A\s0s. The rate of dissipation is a density quantity, and, as a result, the

total rate of dissipation over a region (2 is calculated as

Do = /DdQ = /Ag(azaa-go + a-dap)dl. (2.30)
Q s

Notice that the total rate of dissipation is calculated over a set of zero measure, the
discontinuity surface S.

Using a similar argument as that used for regularity of the stress o from
Eq. (2.24), in order for a calculation of dissipation in Eq. (2.29) to make sense, the
stress-like vector of plastic internal variables a must also be regular. From Eq. (2.16)

and Eq. (2.21), & may be written as

& = —H-£ = —\;H - 0o 005 (2.31)
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or

H' & = —)\0aqpis . (2.32)

A significant observation made in SIMO et al. [82] states that since & must be regular,

the inverse of the softening moduli matrix must itself be a singular distribution

H' = H;'5s (2.33)

which states that softening is localized to the discontinuity S. As a result of Eq. (2.33),

the following results

a = —)\JH(; : aago. (2.34)

Thus, as a result of A\ = A\;ds, the evolution of the internal variables is localized to
the discontinuity S. This result of the strong discontinuity approach could be viewed
as a rather ‘strong’ approximation for some materials (i.e., those which exhibit shear
bands of finite width), in the sense that irrecoverable deformation is most likely not
completely localized to a surface (except possibly for brittle rock, in which a clear
rupture surface is present [98]).

A finite element model which draws its constitutive behavior from a plasticity
model with strong discontinuity will calculate mesh-independent dissipation because
the total rate of dissipation is calculated over a set of zero measure and not over any

a priori defined element size.

2.5.3 Consistency Condition and Stress-Displacement Rela-

tion

The consistency condition ¢ = 0 must be satisfied pointwise, thus any singularities

which arise in ¢ must be eliminated. Recall Eq. (2.15)
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¢ = 0gp:0 + dad-& = 0. (2.35)

From Section 2.5.2 on plastic dissipation, note that o and < are regular distributions
in order for a calculation of plastic dissipation to be possible, which here also implies
that the consistency condition Eq. (2.15) is satisfied pointwise (i.e., contains no sin-
gularities). Substituting the regular expressions for & and & into Eq. (2.35), As is

solved as
Ns = H;'000:C: Vi (2.36)

where Hs = 0 - H - Oytp. Premultiply Eq. (2.27) by g ¢ : C to find an equivalent

expression for \s:

N — éagqﬁzC:(m@n)s
0 0o®:C :0gy

(2.37)

where [u] = (m. Equating Eq. (2.36) and Eq. (2.37) gives an expression for the

magnitude of the jump displacement rate:

_ (009 :C :00¢)(0a¢:C : Vu)
N Hs(0od: C: (M Qn)*)

(2.38)

Equation (2.38) may be simplified using results from the localization condition.

2.5.4 Localization Condition

Here, a condition which detects the presence of discontinuous displacements is derived
and called the localization condition. Equation (2.2) showed that for equilibrium to

be satisfied, the traction must be continuous across the discontinuity surface S:

[6] -n = [[ts]] = 0. (2.39)
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The discussion in Section 2.5.2 showed that the stress rate must be regular. Either of
these two conditions (the traction must be continuous, and the stress rate is regular)

require that the traction rate be regular. Write the traction rate as follows
t=06-n=C:(-Xgp) n = t+ tds (2.40)
where
t=C:V'u-n (2.41)
is the regular part, and
ts = (C”:(m®n) -n (2.42)
is the singular part (using As from Eq. (2.37)), with

_ C:00p®050:C

CcC? =C
0o :C :0gy

(2.43)

representing the elastic perfectly-plastic tangent modulus tensor. For the traction

rate to be regular

i =0 (2.44)
which leads to the localization condition
A-m=0; A=n-C?-n (2.45)

where A is the second order elastic perfectly-plastic acoustic tensor. The localization
condition requires that m lies in the nullspace of A, and likewise that m ® n lies in

the nullspace of C*’. Recall from Eq. (2.27) that

(m®n)® = Adge (2.46)

where A = )5/ ¢; A for this analysis can be any real number. It is straightforward to
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show that 0g ¢ lies in the nullspace of CP:

0o :C :0g¢p
Og¢:C :0g¢p

C?:00p = C:00p — C:0gyp =0. (2.47)

Note that C? is the elastic perfectly-plastic tangent modulus tensor, and thus a
derivation of a critical hardening modulus H,, similar to that derived by RUDNICKI
& RICE [73] is not possible. Also note that the trace of Eq. (2.46) leads to an
expression for the angle made by the jump rate vector [u] = Cm and the tangent to

the slip line S (see Fig. 2.2), called the jump dilation angle :

singy == m-n = Atr(dgy) . (2.48)
—09 —02
S
n Vo
0 o i o
n 1 ) 1
m n
G
S

Figure 2.2. Slip line orientation with respect to major principal stress axis for +6.

Equation (2.48) will be used to determine the orientation of m when the plastic
potential function ¢ is specified for a particular plasticity model; this will be done
for a Drucker-Prager plasticity model in Section 2.6. Thus, another way of writing

Eq. (2.38) for ¢, using Eq. (2.36) for \s and Eq. (2.48) to find ¢, is as follows

. tr(0g¢) .
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Equation (2.49) will be used to derive the stress-displacement relation for a Drucker-

Prager plasticity model in Section 2.6.2.2.

2.6 Drucker-Prager Plasticity with Strong Discon-
tinuity

The formulation of the preceding section is now specialized for a non-associated
Drucker-Prager plasticity model. First, the standard Drucker-Prager plasticity model

is described.

2.6.1 Standard Drucker-Prager Plasticity

A quadratic stored energy function (e &), which results in linear elasticity and

linear hardening, is defined as
1 1
V(e &) = 566 :c®: e’ + 55 -H - ¢ (2.50)

where ¢® and H are constant modulus tensors. Note that ¥(e¢, &) could be defined
such that nonlinear elasticity and/or hardening would result. The fourth order tensor

c? is the isotropic elastic tangent modulus tensor defined as

_ 1
¢ = K1®1+2:(I-3191) (2.51)

where K = X\ + %ﬂ is the elastic bulk modulus, A and i are the Lamé parameters,
(1);; = 0,5 is the Kronecker delta, and (I);jx = (6i0j1 + 0udjx)/2 is the fourth order
identity tensor.

Let the strain-like vector of plastic internal variables & : Q x [0, 7] — R? have

a volumetric component and deviatoric component:
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£ = (2.52)
where

2
P = tr(ef); €& = \/;Ilépll; el = & — (v"/3)1 (2.53)

and

T T
P = / oPdt; e = / el dt . (2.54)
0 0

The hardening/softening modulus matrix H is defined as
H = (2.55)

where K’ and H' are the bulk and shear hardening/softening moduli, respectively.

The stress-like vector of plastic internal variables a is defined as

aq

a = = —H-¢. (2.56)

(8%)

Note that the sign on a implies that, when added to the yield function ¢(o, a),
with hardening plasticity (K’ > 0, H' > 0) causes the yield surface to expand in

stress space.

A Drucker-Prager yield function [23] takes the form

¢lo, ) = \/gHSH + V3(k+pp) = 0 (2.57)

with derivatives
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b
%:\/gmil, % _ ) V3 (2.58)

oo V3 oo 1

where
1 .

p = gtr(a), s =0 —pl, n = s/|s| (2.59)

and
_ 1
Kk = —a + bay + %ag (2.60)

where ||s|| = ,/5;;5;;. Note that for the continuum mechanics convention used

throughout this work, compression implies p < 0. The material constants & and
(3 may be defined in terms of the cohesion ¢ and friction angle ¢ used to describe a

Mohr-Coulomb material [58]

_ 6¢ cos ¢ _ _ 6sin & o
“T V3(3+ Asing) b= V3(3 + Asing)’ 1<A<T, (2.61)

The value A = —1 coincides with a cone that circumscribes the Mohr-Coulomb
envelope—passing through its outer apexes—in three-dimensional stress space, and
A = 1 coincides with a cone that passes through the inner apexes of the Mohr-
Coulomb envelope. Because of the form of « in Eq. (2.60), standard bulk and shear
hardening/softening through «; and «as cause the size of the yield cone to change,
and not its shape. Incorporating additional hardening/softening through  would
allow frictional hardening/softening which is appropriate for modeling a cohesionless
granular material like sand, and thus the change of slope of the yield cone would be
possible.

A plastic potential function (o, ) is defined similarly to the yield function
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¢(o, o) [65] as

plo,a) = \/g||s|| + V3(k + bp) (2.62)

with derivatives

Oy \/§A 1 dp V/3b
— e — | T = 2.
. 2n + \/§b ' g : (2.63)

where b is the material dilation constant. Refer to Appendix C for a derivation of the
material constants @ and (3 in Eq. (2.61) and for a description of the material dilation
angle ¢ for the plane strain condition (refer also to [5] for a discussion of dilation, a
concept probably first formally reported by REYNOLDS [67]). Notice that associated
plasticity results if 3 = b, but typically for soil and rock this is not the case. Usually,
B > b with b > 0 for a dilatant material and b < 0 for a contractant material. By
setting 3 = b = 0, the J2 flow (von Mises) plasticity model is recovered, which is
useful for modeling the undrained condition in a cohesive soil.

With the plastic potential function ¢(o, ) defined in Eq. (2.62), the evolution

of & then becomes

o0 _ ) VL (2.64)

€= 2"
oo 1

Note that the constants in front of oy and as in Eq. (2.60) are chosen so that

P
Zoe (2.65)
Ja P
where 97 and éP are defined in Eq. (2.53). Note that b now takes the form
)P
b= — (2.66)

= \/gep
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which is analogous to the dilatancy factor used by RupNicki & RICE [73] and Rubp-
NICKI [74].

Refer to Appendix D for numerical integration of —defined from Eqgs. (2.9),
(2.12)1, and (2.50)—and the form of the algorithmic (consistent) tangent operator

(see [80] for a more detailed discussion).

2.6.2 Drucker-Prager Plasticity with Strong Discontinuity

Here, the standard non-associated Drucker-Prager plasticity model presented in Sec-
tion 2.6.1 is placed within the framework of Section 2.5. In particular, the two
model-specific features which need to be derived are the localization condition and
stress-displacement relation.

2.6.2.1 Localization Condition

Recall from Section 2.5.4 the localization condition, which detects the presence of

discontinuous displacements
A-m=0; A=n-C?-n (2.67)

where for Drucker-Prager plasticity the elastic-perfectly-plastic tangent modulus ten-

sor is
_2n 3BbK?
C’e”=<K——M—ﬁ )1®1+2u1
3 X
61> 3V20iK
O g - BV (BA®1 + bl ® A) (2.68)
X X

where x = 3(iz + BbK). Note that C is the same as the continuum elastic-plastic
tangent modulus tensor ¢? if H from Eq. (2.19) is added to x in Eq. (2.68), where

H = 3b2K' + H'. The corresponding perfectly-plastic acoustic tensor is
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_ i 3BbK?
A:n.Cep.n:<K+§—ﬁX )n@n—i—ﬂl
12 20K
_6LN®N_ 3V2p (BN®n + in® N)
X X

(2.69)

where N = n -n = n-n. Note that neither C* nor A has major symmetry unless
B =b.
The localization condition A - m = 0 naturally yields the following form of

the localization condition:

m-A-m =0 (2.70)

which may be viewed as a loss of strong ellipticity of C? from Eq. (1.24). Recall

Eq. (2.46), which for Drucker-Prager plasticity yields

s 3. 1
(men)’ = A( 3 + %M) (2.71)
and
m-n = AV3b. (2.72)

Expand out m- A-m =0 as

(B + 5§ = 28) m-np + i— % (a: (men))’
- WER (54 b)(m-n) (2 : (m@n)) = 0. (2.73)

(2.74)
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Recall that A = \s/ C where \s > 0, C > (0. Thus, the solution of interest is

1
A= s (2.75)

As a result of Eq. (2.75), the jump dilation angle ¢ may be determined from the

following equation:

sing = m-n = ﬂ (2.76)

Ve
where b is determined from Eq. (2.66).

Consider a plane strain stress condition and calculate the localization condition
and slip line orientation. Refer to Appendix E for a general formulation in three-
dimensional stress space. It turns out that the localization condition is the same for
the plane strain and three-dimensional cases because the slip plane is found to be
perpendicular to the major-minor principal stress plane, as shown in Appendix E,
which results because the yield function and plastic potential function are isotropic
functions of stress, i.e. composed of stress invariants. Therefore, without loss of
generality the analysis is carried out in the principal stress space, where oy is the
minor principal stress (major compressive principal stress), oy is the major principal
stress, and o3 is the intermediate principal stress, such that 0 > o; > 03 > 09 and
lo1| < |os| < |ogf; refer to the Mohr’s circles in Fig. 2.3 (this ordering corresponds
to a plane strain stress condition in terms of aligning the principal stresses with the
coordinate axes, but is still general).

Refer to Fig. 2.2 to construct the unit vectors

cos @ cosn

n =« sinfd p; Mm=4q —sinp ¢g; n=090"-0-1. (2.77)
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g9 g3 (o]

Figure 2.3. Mohr’s circles for localization condition stress analysis in plane strain.

Recall from Eq. (2.71) the expression for the symmetric tensor product of m and n,

written now explicitly as

cosncosf  cosnsinf 0

—sinncosf —sinnsinf 0

0 0 0
\/§m + Lb 0 0
= L5 0 /3 + b 0 : (2.78)
0 0 \/§ﬁ3 + %b

For (m ® n)® to diagonalize, the following must hold
cosnsinf — sinncosf = sin(d—n) = 0 (2.79)

or
f—n =20—90°+1 = 0 (2.80)
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which implies

0 = +£(45° — ¥/2) (2.81)

where the + comes from Fig. 2.2. Which angle is chosen is determined in Appendix F.
Thus, Eq. (2.81) is the orientation of the normal to the slip line with respect to the
major principal stress axis (see Fig. 2.2). This result has also been reached by ROSCOE
(pg. 166) [71] and ATKINSON (pg. 217) [5] and refuted by VARDOULAKIS et al. [93].
For deviatoric plastic flow, b = 0 = 1 = 0, the orientation # = 45° is recovered.
Note that from Eq. (2.78), localized plastic flow € = A\sdg¢ = ((m ® n)® (where
€’ = €lds) for the plane strain condition does not have an out-of-plane component,

whereby the standard plastic strain rate would have an out-of-plane component.

To obtain a condition on the stress state at which localization is detected, take

the difference between the (1,1) and (2,2) components of Eq. (2.78), which yields

3 (s1—s2)/V2
3—0b? IE

cosncosf + sinnsinf = (2.82)

where

cosncosf + sinnsinf = cos’ + sin®f = 1. (2.83)

Thus, the localization condition may be expressed in terms of a deviator stress ratio

h defined as

AIsll 3

sl _
2r 3—b?

(2.84)

where 7 = (81 — $2)/2 = (01 — 02) /2.
The following analysis will determine the range of h, taking the principal stress
convention as shown in Fig. 2.3. Write out the second deviator stress invariant in

principal stress space as
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(01— 02)? + (01 —03)> + (03 —03)® = 3s:5 (2.85)
or
2 2 2 3
ut vt wt =g (2.86)
where
o1 — 09 01 — 03 03 — 02
u = , Vo= y w = . (2.87)
V2| s V2|s| V2|s|
Since u = v + w rewrite Eq. (2.86) as
2 2 2 3
flu,v) = v 4+ v* + (u—v)" — 5 = 0 (2.88)

Maximizing u with respect to v (i.e., du/0v = 0 and 0?u/dv? < 0), the critical value

VUer and maximum value uy,, result as
U
Vo = 5 = Umpax = 1. (2.89)

Note also that we = u/2. As a result, u is maximized when o3 = (01 + 02)/2, which
states that the intermediate principal stress is the average of the major and minor
principal stresses. Furthermore, by definition, the bound on v is 0 < v < u (as o3
approaches either o7 or 0y), which yields the minimum for u as Uy, = \/3/ 2. Thus,
the minimum of u corresponds to the biaxial stress condition: o3 = o1 or g3 = 0.

As a result, u is bounded by

? <u<1 (2.90)
or, since h = 1/u,
1 <h< 2 (2.91)
p— p— ﬁ -

which defines the range of the deviator stress ratio A in the localization condition
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Eq. (2.84). Note that Eq. (2.91) is consistent with the range of b. First, rewrite b

3 sin’
= ,/% (2.92)

where, since 0 < sin?t < 1, the range on b is

from Eq. (2.76) as

0<b<

o[%

(2.93)

Substituting the bounds of b from Eq. (2.93) into the localization condition Eq. (2.84)
yields Eq. (2.91). For sin?+ = 1, the jump dilation angle is 1y = 90°, which corre-
sponds to m||n and a normal splitting of the material, a case not of interest when
analyzing soil and rock.

It is expected that localization cannot occur in the (o7, 03) or (o9, 03) planes,

which may be verified by the following analysis. Recall the bound on v

0<wv<u (2.94)
or

1 1

- < - < o0. (2.95)

u v

The lower bound on 1/v corresponds to the biaxial stress condition o3 = 09, and thus

2 1
— < - < . 2.96
V3 T w (2.96)

Thus, if m and n were placed in the (z1,z3) plane for the plane strain condition

considered here, the resulting localization condition % = 3_3,)2 would never

be met, except for the extreme case of normal splitting, which is not of interest for
modeling frictional materials like soil and rock. This analysis likewise dictates that
localization would not occur in the (o9, 03) plane.

Thus, together with the result of Appendix E this analysis predicts that a
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slip plane is perpendicular to the major-minor principal stress plane for a general

three-dimensional stress condition.

2.6.2.2 Stress-Displacement Relation

The stress-displacement relation governs the evolution of plastic softening localized
to the discontinuity &. Upon the detection of discontinuous displacement fields via
the localization condition, plastic flow is localized to the discontinuity via A = As0s;
likewise, softening is localized to the discontinuity via H™' = H 5_155. Thus, the
stress-displacement relation becomes the constitutive equation for post-localization
plasticity. The standard plasticity equations no longer apply, except to provide the
framework in which the strong discontinuity is incorporated to produce the bifurcated
solution.

Recall the general form for the stress displacement relation from Eq. (2.49)

; (50'90)
where Hs = 3b> K5 + Hj,
[ K5 0 1
Hs; = (2.98)
o

and A = (3 —b2)~z. From Eq. (2.58), the following results

. 3s
dooio = |22 SL (2.99)

where it can be shown that

- (llsl?) - (2.100)

N | —
CL-|Q_

Define q to be the resolved deviatoric stress on the discontinuity & as



2.6. DRUCKER-PRAGER PLASTICITY WITH STRONG DISCONTINUITY 47

g:=m-s8-n=38:(MRn)° = \/gAHsH (2.101)

2 rq\2 2
2 _ 2 (2 — Z(a _p2\,2
Isl? = 5 (§) = 565 (2.102)
and
d 4 } 4 /3 .
3 (Isl?) = 3B —=0")gd = g\/;\/3—b2||s||q. (2.103)

Therefore, Eq. (2.99) takes the scalar form

dod:o = V3— b2 + V38p (2.104)

which when substituted into Eq. (2.97) produces the rate form of the stress-displacement

relation

3 s
i+ \/;[__izp = 375 (2.105)

Integrate Eq. (2.105) to yield the combined stress at time instant ¢, Q(t), as

QW = alt) + 2ty
_ V36 Hs
= 0(0) + 2000 + () (2.106)

where ¢ = 0 corresponds to the onset of localization and ((0) = 0, (i.e., there is
no jump displacement yet developed at the instant of localization). Here, H; is
constant for linear softening, thus Eq. (2.105) is easily integrated. Otherwise, for
nonlinear softening, the integration of Eq. (2.105) would depend on the form of H;({);

designating the localized softening modulus H;s to depend on the jump displacement
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¢ is a reasonable assumption (see [3]).

2.7 Summary

This chapter presented the formulation of a non-associated, rate-independent, strain-
softening plasticity model in the context of strong discontinuities and its specialization
to a non-associated, strain-softening Drucker-Prager plasticity model. Some notewor-
thy results of the analysis are that plastic dissipation is calculated over a set of zero
measure (i.e., slip surface in three dimensions and slip line in two dimensions) and
thus is independent of finite element size, a stress-displacement relation along the
discontinuity governs post-localization behavior, and the localization condition and
discontinuity orientation are both explicitly determined (i.e., not numerically calcu-
lated). A finite element implementation of this Drucker-Prager plasticity model with

strong discontinuity will now proceed.



Chapter 3

Finite Element Implementation

3.1 Introduction

The finite element implementation of the strong discontinuity approach has previously
been conducted within the Assumed Enhanced Strain (AES) method formalized by
SIMO & RIFAI [79]; refer to ARMERO & GARIKIPATI [3] for the implementation of a
J2 flow plasticity model and damage model based on the unregularized formulation.
To begin, the functions which motivate the form of the enhanced strains are developed
(the shape functions themselves are not enhanced—only the strains—because it is an
assumed enhanced strain method). The modified variational (weak) form of the quasi-
static, isothermal equilibrium equations which results from introducing an assumed
strain field into the standard variational equations is described. The nonlinear matrix
finite element equations along with the solution algorithm for a Newton-Raphson

method are then outlined.

49



20 CHAPTER 3. FINITE ELEMENT IMPLEMENTATION

3.2 Variational Form of Assumed Enhanced Strain

Method

The AES method is a logical choice as a framework for implementing the strong
discontinuity approach because it satisfies the two conditions necessary and sufficient
for convergence for a numerical method: 1) stability, and 2) consistency (i.e., the
patch test); these two conditions will be described later.

The AES method for the linearized theory stems from an additive decompo-

sition of the infinitesimal strain tensor into compatible and enhanced parts:

e = YViu € 3.1
Vou + & (3.1)
compatible enhanced

where the enhanced strain field may be derived from incompatible displacement fields
across element sides. The standard three-field variational equations emanating from
the Hu-Washizu principle for non-linear elasticity (see Chapter 13 of [97]) may be

written as
/5u-(V-a+b)dQ =0
Q
/(50’:(V5u—e)dQ =0
Q

/ Se: (—o +0el)d = 0 (3.2)

where u, o, and € are treated as independent variables, and du, do, and de are their
variations. Localizing the integrals of Eq. (3.2) (see pg. 38 of [29]) yields the governing
equations as expressed in Section 2.2. The equations in Eq. (3.2) result from the

stationary condition (i.e., at equilibrium, 6IT = 0) on the energy functional:

M(u,0,€) = /Q[‘Il(:c,e)—b-u—i—a':(Vsu—e)] dQ—/BQt-udF. (3.3)
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Introducing the newly defined strain field Eq. (3.1) into the energy functional Eq. (3.3)
and applying the stationary condition (6II = 0) yields the modified three-field varia-

tional form:

/Vs(éu):adQ = /5u-bdQ —|—/ du - tdl (3.4)
Q Q [s39]
/(5o-:édQ — 0 (3.5)
Q
/ 5¢ : (—o + 0eT)dQ = 0. (3.6)
Q

Because of the orthogonality condition on the stress and enhanced strain spaces in
Eq. (3.5), the stress field is eliminated from the variational equations and Eq. (3.6)
drops out.

Since the purpose of the enhanced strain field is to ‘enhance’ the compatible

strain field, it makes sense that their spaces have null intersection:

ENE =1 (3.7)
where the space for the compatible strains is
E ={e:Q—S8; e=Vu} (3.8)
and the space for the enhanced strains is
E = {e:Q—S; &isassumed} . (3.9)

It has been shown for the discrete problem that Eq. (3.7) leads to stability of the
AES method [79].

For the patch test to be satisfied—as revisited in TAYLOR et al. [90]—piecewise
constant stress functions must be admissible (i.e., as h — 0, where h is the element

diameter, the stress at a continuum point should be recovered). This condition will di-
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rectly affect the choice of the discrete enhanced strain variation §€". Rewrite Eq. (3.5)

as
/0':5?—:dQ =0 (3.10)
Q

because the spaces are orthogonal. Thus, piecewise constant stress functions oy will

require

/5édQ ~ 0 (3.11)
Q

which will be described in particular for singular enhanced strains in Section 3.4.

3.3 Reparameterization of the Displacement Field

The need for a reparameterized displacement field for adequately approximating the
jump displacement was recognized in SIMO et al. [82] for the 1D problem. In similar
fashion, the need for a reparameterized displacement field is motivated here from the
1D problem.

Consider the approximations of an actual discontinuous displacement field as
shown in Fig. 3.1. The deficiency associated with the approximation by an unaltered
discretized displacement field u”(z) is that the nodal displacements are the total
displacements, which already include the enhancement. Figure 3.1 clearly shows
the inadequacy of this approximation. Thus, the approach outlined by SiMO et
al. [82] is to contain the enhancement within the element boundaries. The resulting
reparameterized displacement field is clearly a better approximation as shown in

Fig. 3.1. The restrictions on this newly defined function Mgs(z) : Q¢ — R are

loc

1. compact support in Q"; i.e. Mg(x) = 0 for = outside of Q" and = € IQ", where

Qh = Qr U OOH
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Thus, the construction of Mg(x) is as follows:

Ms(z) = Hs(z) — f"(x)

where

. 1 atnode A € 90"
i) =
0 atnode A e 90"

93

(3.12)

(3.13)

Recall that the unit normal n to the discontinuity S points into Qi The reparame-

terized displacement field then becomes

u'(z,t) = @(z,t) + [[u"(t)]] Ms(z).

(3.14)

Figure 3.1. 1D motivation for the construction of Ms. @"(x) linearly interpolates the dis-
placement between nodes 1 and 2. Actual localized displacement field u(z) and incorrect
finite element interpolation, u(z) # 4"(x) + [u] Hs(z). Reparameterization of the displace-

ment field is then needed: u(zr) = @”(z) + [u] Ms(z).

Applying this same methodology to the two-dimensional problem, it is possible

to formulate these functions Mg for the two slip line cases for a quadrilateral element
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as shown in Fig. 3.2. The functions which result via the above construction are shown
in Fig. 3.3. The function f* for slip line type 1 in Fig. 3.3 is the shape function at
that node (node 4 in Fig. 3.3), and f" for type 2 is the sum of the shape functions
at node 1 and node 4. It is then straightforward to see how one would construct f”
for the four slip line types of a brick element (although more difficult to visualize).
Note that the functions in Fig. 3.3 appear similar to those in WAN et al. [96]. The
main difference between the quadrilateral element presented in this thesis and that
presented in [96] is that when a corner node is cut by the slip line, the quadrilateral
element is retained, rather than split into triangular elements such as that done in [96].
It is noted that this enhanced quadrilateral element was formulated independently

from [96], with motivation coming from the work by Simo and co-workers.
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type 2

Figure 3.2. Two slip line types in a quadrilateral element.

Mg =Hg — fh
4
v 3
1.0
2
1 h
T s
4 3
2

1

1.0:[ Hs
4 / 3

Figure 3.3. Slip line types 1 and 2. Motivation for enhanced strain interpolations via Mg.
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3.4 Finite Element Equations for Strong Disconti-

nuity Approach

With the displacement field now reparameterized as in Section 3.3, and the variational
form of the AES method in place from Section 3.2, it is possible to proceed with
formulating the nonlinear matrix finite element equations. A thorough analysis of the
weak form with strong discontinuity has been presented by SimO & OLIVER [83] for
the regularized formulation and by ARMERO & GARIKIPATI [3] for the unregularized
formulation. The framework of the unregularized formulation in [3] is adopted here

and modified to account for dilative plastic flow.

3.4.1 Variational Equations

h _

Let Q" = U<, QP be the finite element discretization of a closed region (), and Qff . =

UZ’;”f"CQI’gC,e be the finite element discretization of the localized region, where Q& C

Q" ng is the number of elements, and Neiloc 1S the number of localized elements which

is not a priori known. The resulting discretized weak form results as follows

/Vsnh:athz/ nh-bhd9+/ " - t"dl
Qh Qh 8

/ A e"dQ = 0 (3.15)
Qh

loc,e

where 7 = du and 4 = Jé€.
The rest of this presentation will concentrate on the formulation for an element
e with strong discontinuity. Recall the reparameterized displacement field written for

element e as

ub = at + [ul] M [[ul]) = c'm,. (3.16)

€ €
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where now

nt = oul =l + [[me]] M&,, [[t] = nim., (3.17)
and

ME = Hs, — I (3.18)

with f* defined in Fig. 3.3. Thus, the strain and strain variation become

e = Viul = vial + & (3.19)
where
& = ¢ (m.@ V) + ((me®n.) b, (3.20)
and
ve == Vini = Vol + ;. (3.21)

Recall that the choice of 4" is made such that Eq.(3.15), is satisfied for piecewise

constant stress fields o, or

/ AdQ = 0. (3.22)
(910

Equation (3.22) may be written independently from other localized elements because
the enhanced strains are discontinuous between elements (which is also a property of
the standard C° finite element theory, that strains are typically discontinuous between
elements; the C° theory, however, requires continuous displacements, which is not a
requirement of the functions which motivate the enhanced strains used in the AES

method). Considering Eq. (3.22), choose 4" to have the following form:
A = —nle. (me®@n)’ + 0t (Mm@ n.)’ds,; c. €R. (3.23)

Now, use Eq. (3.22) to solve for the constant c,:
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’yﬁ dQ) = 772” (m,® ne)s/ (—ce +ds,) dQ2
Qh

loc,e loc,e

= 7 (m.®n,)’ (_/Qh ced§2+/e dF) =0 (3.24)

loc,e

where

ls
= == 2
Ce A (3.25)

and g, is the length of the slip line within element e, and A, is the area of element

e. Thus, satisfaction of the patch test is ensured.

3.4.2 Matrix Finite Element Equations

The standard finite element interpolations in isoparametric coordinates & are as fol-

lows

Ninds Tinds
wl(§) = Y N4 ©d!; ni =Y NY&c! (3.26)

A=1 A=1
where 7,4, is the number of nodes of an element e, N4(¢) is the shape function
at node A, and dZ' and ¢ are the displacement vector and displacement variation
vector, respectively, at node A. It is convenient to write the expressions in Eq. (3.26)

in the following matrix form
ﬂg(ﬁ) = Ne(s) “de; 77]2 = Ne(g) " Ce (327)

where N (&) is the element shape function matrix, and d, and ¢, are the displacement
vector and displacement variation vector, respectively, for element e. Taking the

symmetric gradient of the expressions in Eq. (3.27) yields

Vg (€) = Be(§)-de; Vi, = Be(f)-c (3.28)
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where B,(£) is the element strain-displacement matrix. Likewise, write € and 4" in

matrix form as

e = -Gl + Fo(lds,; Ge= [(m.® V[ (3.29)
and
l
yi = —EFal + Falds; Fo = [(m.®n,)’ (3.30)

where [o] denotes matrix form of the tensor. Substituting the matrix expressions for
7t from Eq. (3.27), V7" from Eq. (3.28), and 4" from Eq. (3.30) into Eq. (3.15),
and assuming arbitrary values of ¢, and 7n”, the nonlinear finite element equations

expressed in residual form result as

Te = / BZath—/ NeTbth—/ N'thdl = 0
Qb Qb o2l

1
be = T Flo"d) — (¢ +m-mpl) = 0 (3.31)
e JQI

loc,e

where 7, is the standard residual for equilibrium within an element e associated

with the nodal degrees of freedom, b, is the residual expressing equilibrium along the

h

discontinuity S, associated with the jump displacement, o” is in vector form, and

n-m = /3b/\/3 — b2. Note that Eq. (3.31), imposes the following conditions
@5, = & m, - s" - n.dQ (3.32)

and

1
hoo_ h
Ps, = A /Qh tr(o™) dS2 (3.33)

loc,e

for the resolved stress values along the discontinuity S,. The next step is to linearize
the equations in Eq. (3.31) for solution by the Newton-Raphson method, but first

consider Eq. (3.31); more closely and then the numerical integration of the stress
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tensor.

Recall the integrated form of the stress-displacement relation from Eq. (2.106):

V38 V3p
gs, + ﬁpfi = G5, 1oc + ﬁpge,loc +

where the subscript (e) 1, designates the resolved stress value at onset of localization.

H
5b2 ¢ch (3.34)

Rewrite Eq. (3.34) for ¢% as

h \/_ﬁ h + 4 \/5/6 h +
qSe - \/_—bQPSe qSe,loc mpse,loc 3

Substituting Eq. (3.35) into Eq. (3.31), and using Eq. (3.33) yields

H
5b2 ch (3.35)

1 5 V303 s
e T U FT " Q - 5 T h h = .
b A Qﬁ)ce ea- d (QSE,IOC + \/3_—1)2p86,10(; + 3—62€e) 0 (3 36)
where
~h B
o' = &' + otr(e"){1}, (3.37)

and {1} is the vector form of 1. Thus, when linearizing the residual b, this new form
in Eq. (3.36) must be used.
Recall that the stress o” is regular, but with a reparameterization of the

displacement field in Eq. (3.16), the stress rate becomes
— D°. [ég . Geg'g] in Qb /S, (3.38)

where D¢ is the matrix form of ¢® and EZ = VS&Q. For subsequent derivations, the
discretization flag h is left off for certain terms for ease of presentation. Integrating

Eq. (3.38) yields
Opi1 = o — D°-G.A( in Qff /S, (3.39)

where o) = 0p + D¢ A€, A€, = €. i1 — €y Ale = Cepnt1 — Cepny and n 41 is the
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current time step. Integrating the stress-displacement relation in Eq. (2.105) yields

V30 V3p Hs
|Gsen+1] + ﬁp&e,n—kl = ¢s. toc| + ﬁpse,loc + 3 [Cent1] on Se

(3.40)
where Hs < 0, and H; is constant for linear softening along the discontinuity. Note
that if one were to change the sign convention from continuum mechanics convention
(e > 0 and o > 0 in tension for 1D) to soil mechanics convention (¢ > 0 and o > 0 in
compression), Eq. (3.40) would still be valid taking account of the appropriate change
in sign before the pressure term in the yield function in Eq. (2.57). Thus, the stress
update for a localized element e is fully defined by Egs. (3.39) and (3.40).

3.4.3 Newton-Raphson Iterative Solution Algorithm

A linearization of the (generally) nonlinear finite element equations in Eq. (3.31) for
solution by the Newton-Raphson method will now proceed; refer to [80]. Express the
residuals as

re(d;,(g) = 0

be(d;, 7)) = 0 (3.41)

€

where d; and ( exactly satisfy equilibrium. Approximate the displacements as

* k+1 . k
de ~ de,n—|—1 - de,n—|—1 + Ade

Gor Gl = e+ AG (3.42)

where k+1 is the current iteration, the current iteration increment is A(e) = (o)’g;il—

(o)fn +1» and n + 1 is the current time step. Thus, the residuals are expressed as

k+1 k+1 _
re(de,n—l—lﬂge,:—l—l) = 0
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be(derin, Cinte) = 0. (3.43)

Linearizing the residuals about the state (o) | and ignoring higher order terms yields

—r’;nﬂ = K- Ad. + Kj A

b = (K§+Kj)-Ade + (Kg + K§)AL (3.44)
where
0
K¢, = | BT ”"HB dQ
Qh a€n+1
oo
e _ T n—|—1
1 8
K¢ = — F’ U"“B dQ
Ae QZ,loc a€n+1
K; = —K7,; (for elastic unloading)
1 0o
K, = —— [ FT ""+1G )
A Jar,, © Oenp
¢ Hs
K¢ = Sl (3.45)

Since the strain due to the jump displacement is treated as an enhanced strain (see
Eq. (3.20)), the jump displacement (, is discontinuous between elements and thus may

be condensed out of the equations at the element level to form the reduced system

~k k 11k
re,n+1 = Te,n+1 - K;C(Kgg—i_Ke) be n+1

K, = K% — K& (K¢ + K§) (K + K§). (3.46)

From Eq. (3.39) and Eq. (3.37) it is possible derive the tangential moduli tensors as

~k
aan+1 ~ €

k
99n1 _ - D (3.47)

€.
’

k
Oer 11 O€ 41
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where D¢ and D° are the matrix forms of ¢¢ and ¢, respectively:

_ 1
¢ = K1e1+2i(I-3181)
e B =

C

1
= 5K1®1+2ﬂ(1_§1®1)‘

63

(3.48)

The elastic tangent D’ is not implemented in this fashion because if b = 0 for the

. . ~ € . . . ~ e
deviatoric case, D is undefined. First, write out D as

A+2p A

)

I

-

+

V)
=I

o o

(3.49)

where A = %(5\4— 2/1) — 2i. In vector form, F, from Eq. (3.30) and used in Eq. (3.45)

is as follows

ming
Fe - moTy

%(mlng + m2n1)

Taking the matrix product FeT .D° yields

(]\ + 2ﬂ)m1n1 =+ ]\ang
~ e

F;-D = | Amyn; + (A + 2i)many
%ﬂ(mlng + many)
Using m -n = \/gb/\/i*»——bz, the matrix product becomes
APY 2umang
FT.D° = | A%+ 2mmyn,
%ﬂ(mlng + many)

where

(3.50)

(3.51)

(3.52)
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/_\ﬂb — ﬂf{_gﬂ \/gb

V3 =12 V3=

Thus, the deviatoric case b = 0 is clearly defined. For monotonic plastic loading,

(3.53)

K =0, K= —37_*‘22 (3.54)
else for elastic unloading,
K; = —Kg,
K =0
Ky = K. (3.55)

The stress integration algorithm along the discontinuity in a localized element

with linear softening is summarized as follows:

1) compute the trial state by freezing localized plastic flow (i.e., use (. ) and incrementing

the total strain:

(k _ _
orlt = o+ et (@t e
tr,(k+1 1 tr, (k+1
prf+(1 )= gtr (anr+(1 ))
tr,(k+1) tr,(k+1) tr,(lc+1)1
n+1 - n+1 — Pp+1l
tr,(k+1 1 tr, (k+1
qsz,n+1) - A, /Qh me - 8nr+(1 ) ne do
loc,e
tr(k+1) 1 tr,(k+1)
pSe,n—l—l - 3A /h tr(an—l—l )dQ
€ Qloc,e
Qr - (k)] V3B tr k1)
Se qse,n+1 \/3_—b2p$e,n+1
V33 Hs
- (‘qse,loc| + \/37_—1)21786,@ + 32 |Cenl (3.56)

2) check for yielding along the discontinuity Se, and if yielding is detected, update stress:
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F (Q¥ > 0)! THEN

65

‘ k1 ‘ V3p phtl = | | + ﬁ + Ck+1 ‘
GSemt1| T 3 gal SeintL Aetocl T Bz Selee e
K5 = 0
H
k+1 4
Kce = —s1gn(qs (n+1 )Slgn(Ce_rt—Fl)—bQ
ELSE
k+1 tr,(k—|—1)
qSe,n—i—l Se,n+1
k+1 tr,(k—|—1)
Ps, nt1 Ps.n+1
k+1
Ce,—rlb——kl Ce,n
K¢ -K¢,
Kg 0
ENDIF

tEven for monotonic plastic loading, sometimes during an iteration sequence this check for yield-
ing on the discontinuity is not passed, although softening along the discontinuity should occur. Thus,

tr,(k+1)

another check like |gg 1}

| > |gs.,n| is necessary. What should be observed is that |g| and |p| are
decreasing for softemng along the discontinuity.



66 CHAPTER 3. FINITE ELEMENT IMPLEMENTATION

The following outlines the iterative Newton-Raphson algorithm:

1) initialize displacements (k = 0):
dlec,n—|—1 = de,n + 6de

k
Ce,n+1 = Ce,n

where dd, is the prescribed displacement increment for a strain-driven problem.

2) form residual and tangent:

~k Nl ~k
Tny1r — re,n—l—l
e=1
- Nep e
K = K44
e=1

3) then solve for Ad:

4) reform displacements for each element:

k+1 k

de,_;—f—l = de,n+1+Ade

k

Ce,j;jlq = C(Izc,n—f—l-l_ACe
where

-1

A = (B e + (KGq + K - Ad )

K¢+ K¢
5) reform residual and check for convergence:

IF ||7~'flﬁ | < ro THEN converged, and GOTO step 6

ELSE k =k + 1 and iterate, GOTO step 2

6) update displacements and continue with next load step:
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_ k+1
d€7n+1 - de,n—l—l

_ k+1
Ce,n—l—l - Ce,n—l—l

For the numerical simulations in Chapter 4, r**! = 1 x 10710,

3.5 Summary

In this chapter, a Drucker-Prager plasticity model with strong discontinuity was
implemented—along with an enhanced quadrilateral element—within the AES method,
which ensures that enhanced finite element solutions are convergent. The nonlinear
matrix finite element equations were formed, and a Newton-Raphson iterative solution
scheme was outlined. The numerical integration of the stress at a Gauss point and the

resolved stress along the discontinuity (within a localized element) were delineated.
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Chapter 4

Numerical Simulations

4.1 Introduction

Numerical simulations conducted in plane strain are presented to demonstrate objec-
tivity with respect to mesh refinement and insensitivity to mesh alignment of finite
element solutions employing a Drucker-Prager plasticity model with strong disconti-
nuity. Objectivity with respect to mesh refinement is shown by the load-displacement
curves having similar slopes during softening for the enhanced finite element solutions;
the standard finite element solutions show different slopes during softening (i.e., dissi-
pation due to plastic softening varies with a varying softening slope; see Appendix A).
Insensitivity to mesh alignment is evident by slip lines orienting sharply in the mesh
without element sides being aligned with the expected slip line orientation and by the
slip lines having similar orientation and location for each mesh refinement. All meshes
(except the first example, simple shear) shown here are unstructured in the sense that

no attempt is made to align element sides with an expected slip line orientation.

All analyses are drained analyses, for which either the water table is deeper

than the problem geometry considered, or enough time has passed such that excess
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hydrostatic pore pressures have dissipated (thus, the effect of fluid flow is neglected).
All analyses are run using a modified version of the finite element code SPIN2D writ-
ten by BOrRJA [12]. The modified version is called SPIN2D-LOC and contains the

localization element and material subroutines written by the author.

The standard elements used are linear or quadratic quadrilateral elements with
standard numerical integration (i.e., 2 x 2 for linear quad and 3 x 3 for quadratic quad)
for dilative plastic flow and the B-method [33] for deviatoric plastic flow to address
the problem of mesh locking for incompressible plasticity in the infinitesimal strain

regime.

The numerical implementation of the localization condition in Eq. (2.84),

checked at each Gauss point, is as follows:

[[8n 1]l 3 ! :
IF — —\— ht at a Gauss point
V27 -0 T ’
THEN  the element has localized (4.1)

where A = 1 x 10~°® unless otherwise noted.

A note on post-processing for deformed meshes for enhanced solutions (i.e.,
with localized elements). Because the strong discontinuity approach is implemented
within the assumed enhanced strain method, the strains within the localized finite
elements are enhanced accordingly, and not the shape functions themselves. Thus,
localized elements are shaded, as opposed to tracing the actual slip line through the
meshes (which is what determines, by the way, which enhanced strain function to

choose; refer again to Figs. 3.2 and 3.3).
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4.2 Simple Examples

First, some simple numerical examples are presented to demonstrate the attributes
of the strong discontinuity approach. The value A'' = 1 x 107° is used along with

linear quadrilateral elements.

4.2.1 Simple Shear: von Mises Plasticity

Material properties are displayed in Table 4.1, and boundary conditions are shown
in Fig. 4.1. The yield stress oy in an element at the middle of each mesh is lowered
by 25% to clearly define the initiation of the slip line and to cause localization of
deformation for the standard finite element solution. The yield stress in the middle

element could be lowered less than 25% (i.e., 1%; see section on Gosford sandstone).

E 20 MPa

v 0.4

oy 40 kPa
H'| 100 kPa
Hj | 200 kPa/m

Table 4.1. Material parameters for simple shear example.

0.1m d

1.0m

Figure 4.1. Plane strain simple shear. Boundary conditions and dimensions.

Note that the element sides are aligned with the expected slip line orientation
and that, as a result, the standard finite element meshes are able to accurately capture
the expected localized mode (see Fig. 4.2). This is a result of the standard C° theory of

continuum finite element analysis: displacement fields are continuous across element
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boundaries while strain fields are not (refer to HUGHEs [35]). Viewing the load-
displacement plots in Fig. 4.3, however, mesh-dependence is observed in the form of
decreasing plastic dissipation (considering dissipated energy as the area beneath the
curve or that considered in Appendix A) due to softening plastic flow being localized
to an element of smaller and smaller area as the mesh is refined. For the enhanced
solution curves, mesh-independence is observed by the slopes of the softening portions
of the curves being the same. In fact, because of the problem’s simple geometry and
nearly uniform stress state (which results in an overall linear slip line through the
mesh; refer to the slope stability problem in Section 4.6 and excavation problem in
Section 4.7 below for curved slip lines) the enhanced solution curves lie one on top of

the other.
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Figure

4.2. Plane strain simple shear. Deformed meshes.
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Plane strain simple shear. Load-displacement curves.

73



74 CHAPTER 4. NUMERICAL SIMULATIONS
4.2.2 Compression: Drucker-Prager

Material properties are displayed in Table 4.2, and boundary conditions are shown in
Fig. 4.4. The cohesion ¢ in an element at the middle of each mesh is lowered by 25%

to clearly define the initiation of the slip line.

20 MPa
0.4
20 kPa
30°
0.49487, 0.0
H' K'| -50KkPa
H(s, K()‘ -200 kPa/m

SR SUN I vy

Table 4.2. Material parameters for one-element-wide compression example.

0.1m v

1.0m

Figure 4.4. Plane strain one-element-wide compression example. Boundary conditions and
dimensions.

Note that the element sides are not aligned with the expected slip line ori-
entation and that, as a result, the standard finite element meshes are not able to
accurately capture the expected localized mode (see Figs. 4.5 and 4.7). In Fig. 4.5,
the 5-element mesh is too stiff and essentially represents a homogeneous deformation
pattern, while the 10-element mesh represents a squashing deformation pattern, and
the 20-element mesh a barreling deformation pattern. In Fig. 4.7, each mesh attempts
to represent a barreling deformation pattern diffusely.

Viewing the load-displacement plots in Figs. 4.6, 4.8, and 4.9, mesh-dependence
is again observed in the form of decreasing plastic dissipation due to softening plas-

tic flow being localized to elements of smaller and smaller total area as the mesh
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is refined. For the enhanced solution curves, mesh-independence is observed by the
slopes of the softening portions of the curves being similar. For associative, dilative
plastic flow (8 = b = 0.49487) in Fig. 4.6, the slope of the enhanced solution curve for
the 20-element mesh eventually reaches that of the curves for the 5 and 10-element
meshes, but the curve itself does not lie on top of the others as is the case for simple
shear in Fig. 4.3. This result will be elucidated in the section describing the un-
confined compression example, and essentially results from not all plastic flow being
localized to the discontinuity as dilation in the localized elements is causing adjacent
non-localized elements to develop continuing plastic deformation instead of unloading
elastically (this will be discussed in more detail in Section 4.3). Contour plots for the
unconfined compression example make this point clear. For non-associative, devia-
toric plastic flow (8 = 0.49487, b = 0.0) in Figs. 4.8 and 4.10, the enhanced solution

curves have similar slopes during the softening regime.
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T

Figure 4.5. Plane strain one-element-wide compression. Deformed meshes. Associative,
dilative plastic flow (8 = b = 0.49487).
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Figure 4.6. Plane strain one-element-wide compression. Load-displacement curves. Asso-
ciative, dilative plastic flow (8 = b = 0.49487).
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i 1 e

Figure 4.7. Plane strain one-element-wide compression. Deformed meshes. Non-associative,
deviatoric plastic flow (8 = 0.49487, b = 0.0).

-
6 -

e °f

P4

X

"

@) 4+

@

o

T

=z

Q 3+ 5 ELEMENTS — E

5 10 ELEMENTS -----

b3 20 ELEMENTS -

ul STANDARD ©
2 ENHANCED x i
1 |
O Il Il Il Il Il Il Il Il Il

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
PRESCRIBED DISPLACEMENT, m

Figure 4.8. Plane strain one-element-wide compression. Load-displacement curves. Non-
associative, deviatoric plastic flow (8 = 0.49487, b = 0.0).



78 CHAPTER 4. NUMERICAL SIMULATIONS

6 -

e °f

=2

X

uf

O 4t

@

o

[T

P4

] 3t 5 ELEMENTS — e

5 10 ELEMENTS -----

b4 20 ELEMENTS -

ul STANDARD ©
2 ,
1 ,
O Il Il Il Il Il Il Il Il Il

0 0.005 0.01 0.015 0.02 0.025 0.03 0.03 0.04 0.045 0.05
PRESCRIBED DISPLACEMENT, m

Figure 4.9. Plane strain one-element-wide compression. Load-displacement curves for stan-
dard solution. Non-associative, deviatoric plastic flow (8 = 0.49487, b = 0.0).
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Figure 4.10. Plane strain one-element-wide compression. Load-displacement curves for
enhanced solution. Non-associative, deviatoric plastic flow (5 = 0.49487, b = 0.0).
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4.3 Plane Strain Unconfined Compression

Problem

Consider a strain-driven unconfined compression problem as shown in Figure 4.11.
Three levels of mesh refinement are used to analyze the problem: 75-element mesh,
300-element mesh, and 1200-element mesh. Material properties are as summarized in
Table 4.3. Three cases are considered: b = 3 = 0.49487 (associative, dilative plastic
flow), b = 0.3 (non-associative, dilative plastic flow), and b = 0 (non-associative,
deviatoric plastic flow). The B-method [33] is employed to alleviate mesh locking
for incompressible plastic flow (b = 0). The geometry and boundary conditions are

shown in Fig. 4.11.

20 MPa
0.4
20 kPa
30°
0.49487, 0.3, 0.0
H K ~50 kPa
H5, K5 -2 MPa/m

SR SURYIRANEN vy |

Table 4.3. Material parameters for unconfined compression problem.

0.05m -~

0.15m

Figure 4.11. Plane strain unconfined compression problem with prescribed
displacement, d.
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In order to define the initiation of the slip line (i.e., first element to localize),
the uniform stress state is perturbed by lowering the cohesion in one side element (see
Fig. 4.12 for location of the weakened element for each mesh). A value of cohesion,

Cweak = 15 kPa, is arbitrarily chosen, which corresponds to a 25% imperfection.

Results are shown in Figs. 4.13 to 4.26, with Figs. 4.13 to 4.20 showing results
using an enhanced four-noded linear quadrilateral element for the three cases with
varying b, and Figs. 4.27 and 4.26 showing results using an enhanced nine-noded
quadratic quadrilateral element for the associative case. Note that the functions

displayed in Fig. 3.3 are applicable to any quadrilateral element, quadratic or linear.

Figures 4.12 and 4.13 show results for the associative case with ¢ = 30°,b =
B = 0.49487. Figure 4.13 is a plot of reaction force at the left-hand end of the mesh
versus the prescribed displacement at the right-hand end. Objectivity with respect
to mesh refinement is demonstrated by the eventual similar slopes of the enhanced
solution curves during softening; the slopes of the standard solution curves during
softening are different. Figure 4.12 demonstrates the bulging, diffuse deformation of
the standard solutions and the sharp slip line orientation through unstructured meshes
for the enhanced solutions. Figures 4.18 and 4.19 show results for non-associative,
dilative plastic flow (b = 0.3). The same comments made for the associative case
apply for this case as well. Figures 4.20 and 4.21 show results for non-associative,
deviatoric plastic flow (b = 0). For this case the slopes of the enhanced solution curves
during softening are similar earlier in the softening phase than for the two previous

cases, and the slopes of the standard solution curves are more variable.

To address the dissimilar initial slopes of the enhanced solution curves upon
softening as shown in Figs. 4.13 and 4.19, three different approaches were attempted.
At first, it was speculated that since the area of weak material varied between the

three meshes as a result of only one element in each mesh being weakened at the



4.3. PLANE STRAIN UNCONFINED COMPRESSION PROBLEM 81

same location, possibly having equal areas of weak material for each mesh would
alleviate these dissimilar initial slopes (i.e., one element for the 75-element mesh, four
for the 300-element mesh, and sixteen for the 1200-element mesh). Upon applying
this idea to the associative case, it was discovered that this approach did not address
the problem of dissimilar initial slopes. Actually, it was found that elements in this
weak area for the finer meshes, which had not been traced by the slip line and thus
did not include strain enhancement, continued to plastify even though the slip line
had fully propagated through the mesh, which signals that all plastic low should be
localized to the discontinuity. Second, it was considered that maybe the perturbation
was too great (originally chosen at 25%). The material was weakened by 1% instead
(cweax = 19.8kPa) for the associative case, but it was found that this did not make the
initial slopes of the enhanced solutions any more similar than that shown in Fig. 4.13.
This result was expected because by weakening the one side element less, it is expected
that the element’s Gauss points will only plastify later and thus also localize later
in the load history, as was observed. Finally, a p-type (higher order interpolation
polynomial) refinement as opposed to an h-type (more of the same order elements) for
the associative case was considered. This appeared to address the problem somewhat,
as shown by the curves in Fig. 4.27 (deformed meshes are shown in Fig. 4.26), but
still exhibited dissimilar initial slopes of the enhanced solution curves upon softening
for the non-associative, dilative case (b = 0.3) and for the non-associative, deviatoric
case (b = 0). The apparent oscillations in the latter portion of the enhanced solution
curves in Fig. 4.27 may be explained by the increasing tension stresses at some Gauss
points within certain localized elements because before these oscillations occured the

tension stresses were minimal or nonexistent in these elements.

Contours of effective plastic strain (¢’ = 1/2€” : €) help to explain the differ-

ent initial slopes of the enhanced solution curves shown in Fig. 4.12 for the associa-
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tive, dilative plastic flow case. Contours of effective plastic strain for standard and
enhanced solutions are shown in Figs. 4.14 and 4.15. Figure 4.14 shows the vary-
ing amounts of plastic strain which have accumulated in each mesh for the standard
solution, which verifies the mesh-dependence of the standard solution for softening
plasticity. Contours in Fig. 4.15 show plastic strain accumulating in elements ad-
jacent to the localized elements along the slip line, which contradicts the expected
result that all plastic flow be localized to the discontinuity. This non-localized plastic
flow is most likely due to the dilation of the localized elements because for the devi-
atoric case in Fig. 4.23, less non-localized plastic flow is observed, and the slopes of
the enhanced solution curves are similar throughout the loading history. Continuing
with the associative, dilative plastic flow case, varying amounts of non-localized plas-
tic flow are observed for each mesh which explains the different initial slopes of the
enhanced solution curves in Fig. 4.13. The slopes eventually become the same as the
accumulated non-localized plastic flow becomes constant, and the localized plastic
flow governs the overall softening. The apparent valleys in Fig. 4.15 are a result of
plastic flow being localized to the discontinuity within the localized elements. As
a result, the effective plastic strain at the Gauss points in the localized elements is

that which had accumulated before the localized elements had localized. Contours of

octahedral shear strain (Yot = $1/(e1 — €2)% + €1 + €3 for plane strain) for standard
and enhanced solutions are shown in Figs. 4.16 and 4.17 to illustrate the effect of the

enhanced strain due to the displacment jump.

For the non-associative, deviatoric plastic flow case, contour plots of effective
plastic strain for the standard and enhanced solutions are shown in Figs. 4.22 and
4.23. The slopes of the enhanced solution curves are the same in Fig. 4.21 because the
amount of non-localized plastic flow shown in Fig. 4.23 appears to be insignificant.

Contours of octahedral shear strain for standard and enhanced solutions are shown in
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Figs. 4.24 and 4.25 to illustrate the effect of the enhanced strain due to the displacment
jump.

For the associative, dilative plastic flow case with quadratic quadrilateral ele-
ments, contour plots of effective plastic strain for the standard and enhanced solutions
are shown in Figs. 4.28 and 4.29. In this case, non-localized plastic flow is signifi-
cant for the enhanced solution as shown in Fig. 4.29 but appears to occur in similar
amounts between the two meshes, which leads to similar slopes of the enhanced so-
lution curves in Fig. 4.27. Thus, the choice of base element interpolation—Ilinear or
quadratic—affects the performance of the enhanced solution. Contours of octahedral
shear strain for standard and enhanced solutions are shown in Figs. 4.30 and 4.31 to

illustrate the effect of the enhanced strain due to the displacment jump.
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Figure 4.12. Plane strain compression problem: Associative, dilative plastic flow (8 =b =
0.49487). Seventy-five, 300, and 1200 linear quadrilateral elements. Location of weakened
element indicated by black squares on the deformed meshes resulting from the standard
finite element solution. Localized elements are shaded. Slip lines trace sharply through
unstructured meshes for enhanced solution, while standard solution meshes exhibit diffuse
deformation.
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Figure 4.13. Plane strain compression problem: associative, dilative plastic flow (6 = b =
0.49487). h'°' = 0.005. Eventual similar slopes of enhanced solution curves demonstrate
objectivity with respect to mesh refinement.
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Figure 4.17. Contour plots of octahedral shear strain yoct (X 100 %) for enhanced solution
at end of loading: 75, 300, and 1200 linear quadrilateral elements. (3 = b = 0.49487).



90 CHAPTER 4. NUMERICAL SIMULATIONS

”T"T] -

i
|
i

mEEm|
A
|
LT
T

L

Figure 4.18. Plane strain compression problem: non-associative, dilative plastic flow (¢ =
30°,b = 0.3). Seventy-five, 300, and 1200 linear quadrilateral elements. Localized elements
are shaded. Slip lines trace sharply through unstructured meshes for enhanced solution,
while standard solution meshes exhibit diffuse deformation.
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Figure 4.19. Plane strain compression problem: non-associative, dilative plastic flow
(¢ = 30°,b = 0.3,ht°" = 0.002). Linear quadrilateral elements. Eventual similar slopes
of enhanced solution curves demonstrate objectivity with respect to mesh refinement.
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Figure 4.20. Plane strain compression problem: non-associative, deviatoric plastic flow
(B = 0.49487,b = 0.0). Seventy-five, 300, and 1200 linear quadrilateral elements with B.
Localized elements are shaded. Slip lines trace sharply through unstructured meshes for
enhanced solution, while standard solution meshes exhibit diffuse deformation.
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Figure 4.21. Plane strain compression problem: non-associative, deviatoric plastic flow
(B = 0.49487,b = 0.0). A% = 0.001. Linear quadrilaterals with B. Similar slopes of
enhanced solution curves demonstrate objectivity with respect to mesh refinement.
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Figure 4.22. Contour plots of effective plastic strain € (x 100 %) for standard solution at
end of loading: 75, 300, and 1200 linear quadrilateral elements. (8 = 0.49487,b = 0.0).
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Figure 4.23. Contour plots of effective plastic strain €® (x 100 %) for enhanced solution at
end of loading: 75, 300, and 1200 linear quadrilateral elements. (5 = 0.49487,b = 0.0).
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at end of loading: 75, 300, and 1200 linear quadrilateral elements. (3 = 0.49487,b = 0.0).

4.24. Contour plots of octahedral shear strain vo¢t (x100%) for standard solution
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Figure 4.25. Contour plots of octahedral shear strain voct (x100%) for enhanced solution
at end of loading: 75, 300, and 1200 linear quadrilateral elements. (8 = 0.49487,b = 0.0).
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Figure 4.26. Plane strain compression problem: associative, dilative plastic flow (6 = b =
0.49487). Seventy-five and 300 quadratic quadrilateral elements. Location of weakened
element indicated by black squares on the deformed meshes resulting from the standard
finite element solution. Localized elements are shaded. Slip lines trace sharply through

unstructured meshes for enhanced solution, while standard solution meshes exhibit diffuse
deformation.
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Figure 4.27. Plane strain compression problem: associative, dilative plastic flow (6 =b =
0.49487). h'°' = 0.005. Quadratic quadrilaterals. Slopes of enhanced curves, as well as the
curves themselves, are similar.
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Figure 4.28. Contour plots of effective plastic strain e (x 100 %) for standard solution at
end of loading: 75 and 300 quadratic quadrilateral elements. (8 = b = 0.49487).
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Figure 4.29. Contour plots of effective plastic strain e (x 100 %) for enhanced solution at
end of loading: 75 and 300 quadratic quadrilateral elements. (8 = b = 0.49487).
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Figure 4.30. Contour plots of octahedral shear strain 7, (x100%) for standard solution
at end of loading: 75 and 300 quadratic quadrilateral elements. (3 = b = 0.49487).
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Figure 4.31. Contour plots of octahedral shear strain voct (x100%) for enhanced solution
at end of loading: 75 and 300 quadratic quadrilateral elements. (8 = b = 0.49487).
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4.4 Plane Strain Compression Experiment on (Gos-

ford Sandstone

Here, the model is used to attempt to simulate the behavior of Gosford sandstone
under plane strain compression loading while demonstrating mesh independent finite
element solutions. The experimental setup and results for plane strain compression
experiments on Gosford sandstone are delineated by ORD et al. [56]. Refer to Fig. 4.32
for dimensions and boundary conditions of the experimental specimens. In particular,
consider the experiments labeled RA0O624, RA0629, RAO627, RAO640, and RAO636

for confining pressures of 5, 7.5, 10, 15, and 20 MPa, respectively.

i) 09
/. 01 = 0¢
weak element 4_
80 mm
P ' -
/
80 mm
€3 = 0
e = T
/ 40 mm
T3

Figure 4.32. Finite element model boundary conditions and dimensions for plane strain
compression of Gosford sandstone. Confining pressures are o, = 5, 7.5, 10, 15, and 20 MPa.
Prescribed displacement of top loading platen results in load P, from which o2 may be
calculated. Location of weakened element shaded black.
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A plane strain stress condition was achieved in the experimental setup by
preventing deformation from occurring in the out-of-plane direction via a stiff, passive
constraint. In addition, the lower platen was supported by steel rollers, thus allowing
lateral movement of the sample and development of shear bands. Further details of

the experimental setup can be found in [56].

F > 11.6, < 16.9 GPa
v 0.25

o 10.2 MPa

I} 0.46

b 0.35

H' > 8, <15 GPa

K’ 0 GPa

Hs | > -100, < -50 GPa/m
K 0 GPa/m

Table 4.4. Material parameters for Gosford sandstone simulation.

It was found that the values of modulus of elasticity E reported in [56] were low
and inconsistent with the initial tangent moduli of the stress-strain curves, and thus
E is calculated directly from the reported stress-strain curve assuming homogeneous,

linear elastic, plane strain behavior up until the yield point:

A(O’QQ — 0'11) _ 2/,1, (4 2)
A622 1—v )

where A(e) implies increment of a quantity, i = E/(2(1 + v)), subscript 2 is the di-
rection of compressive loading, and subscript 1 is the direction of confining pressure.
Using a value for Poisson’s ratio v = 0.25 (which is in the range of values reported by
ORD et al. [56]) in Eq. (4.2), the following values were found: E = 13.2, 16.3, 11.6,
16.9, and 15.2 GPa for confining pressures of 5, 7.5, 10, 15, and 20 MPa, respectively.
which fall near and within the range of 12.1 GPa to 18.3 GPa reported by ORD et

al. [56]. The confining pressure is applied to the sample’s sides as shown in Fig. 4.32.
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Other material parameters are reported in Table 4.4. The parameters a =10.2 MPa
and # = 0.46 are calculated from a linear regression of the observed experimental
yield points which are taken as the points on the experimental stress-strain curves
where the curves begin to deviate from a line drawn through the initial linear por-
tion. The material dilation constant b =0.35 was calculated from a reported average
dilation angle of 1) = 20°. The standard shear hardening/softening modulus (H') is
chosen to best represent the experimental deviatoric load-displacement curve up until
localization is detected, while the localized shear hardening/softening modulus (Hy)
is chosen to best represent the slope of the experimental deviatoric load-displacement
curve after failure surface formation at peak stress level (written per meter because
the Dirac-delta function has an implicit dimension of 1/length). See Table 4.5 for a

summary of these parameters.

o1 (MPa) | E (GPa) H' (GPa) H; (GPa/m)
) 13.2 15.0 -80.0
7.5 16.3 12.0 -100.0
10 11.6 8.0 -75.0
15 16.9 12.0 -100.0
20 15.2 9.0 -50.0

Table 4.5. Summary of moduli for Gosford sandstone simulation.

The sample measures 40 x 80 x 80mm (80 mm being the height of the sample
and also the out-of-plane thickness, with 40 mm as the width) and is discretized by
128, 512, and 2048 linear quadrilateral elements in order to demonstrate objectivity
with respect to mesh refinement. Frictionless boundaries are assumed (see Fig. 4.32),
and the top boundary is displaced downward at given increments, while measuring the
reaction forces at the bottom boundary to be able to plot load-displacement curves.
Load-displacement curves are plotted as opposed to stress-strain curves because upon

the development of localized deformation, stress and strain are nominal quantites and
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not those of a homogeneously deforming body. The cohesion parameter & of one side
element of each mesh is lowered by 1% to perturb the uniform stress state and to
clearly define where the slip line initiates; see Fig. 4.32 for location. Another approach
would be to include friction at the loading platens via contact elements to simulate an
inhomogeneity in the loading which would trigger a non-uniform stress state, where
the value of friction at the loading platens would be chosen arbitrarily since such
values were not provided in [56]. Another way to introduce an inhomogeneity to
produce a non-uniform stress field is to taper the mesh slightly at the midsection (see

SIMO & ARMERO [81]).

Deformed meshes are shown in Fig. 4.33 for a confining pressure of 20 MPa
(since b is constant for each confining pressure, the slip line orientation will be the
same for varying confining pressure) with corresponding deviatoric load-displacement
curves shown in Figs. 4.34-4.38. Mesh independence is observed as the slip line
propagates across elements without having element sides aligned with the expected
slip line orientation (elements through which the slip line has propagated are shaded

gray), and by the deviatoric load-displacement curves lying one on top of the other.

The linear elastic portion of the load-displacement curves proceeds up until
yielding, a plastic region follows up until peak load at which time localization is
detected, and then the slip line propagates through the mesh at peak load resulting
in subsequent linear softening along the discontinuity (i.e., the slip line). Note that
the slip line would propagate through the mesh over a wider range of displacement
prior to peak load if the stress state was more non-uniform (see the slope stability

problem and excavation problem presented in this chapter).

It is noteworthy that by solely choosing the moduli £, H', and Hs to create
a trilinear best fit of the experimental load-displacement curve, the stress levels at

which localization is detected are proximate to the experimentally observed values for
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each confining pressure case. In addition, the experimentally observed failure surface

orientation is closely represented by the simulation, as well as the post-localization

overall softening behavior.
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Figure 4.33. Deformed meshes for enhanced finite element solutions with 128, 512, 2048
linear quadrilateral elements at confining pressure of 0y = 20 MPa. Localized elements
are shaded. Insensitivity to mesh alignment demonstrated by the slip line tracing across
element sides. Actual failure surface orientation drawn as a solid line on the meshes.
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Figure 4.34. Enhanced finite element solutions with 128, 512, and 2048 linear quadrilateral

elements at confining pressure of o; = 20 MPa.

demonstrating objectivity with respect to mesh refinement.

Curves are one on top of the other,
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Figure 4.35. Enhanced finite element solutions with 128 and 512 linear quadrilateral ele-
ments at confining pressure of 03 = 5 MPa. Curves are one on top of the other, demon-
strating objectivity with respect to mesh refinement.
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Figure 4.36. Enhanced finite element solutions with 128 and 512 linear quadrilateral ele-
ments at confining pressure of 01 = 7.5 MPa. Curves are one on top of the other, demon-
strating objectivity with respect to mesh refinement.
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Figure 4.37. Enhanced finite element solutions with 128 and 512 linear quadrilateral ele-
ments at confining pressure of 0y = 10 MPa. Curves are one on top of the other, demon-
strating objectivity with respect to mesh refinement.
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Figure 4.38. Enhanced finite element solutions with 128 and 512 linear quadrilateral ele-
ments at confining pressure of oy = 15 MPa. Curves are one on top of the other, demon-
strating objectivity with respect to mesh refinement.
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4.5 Plane Strain Compression Experiment on Coal

Here, the model is used to attempt to simulate the behavior of coal under plane strain
compression loading while demonstrating mesh independent finite element solutions.
The experimental setup and results for plane strain compression experiments on the
coal specimens are outlined in YuMLU & OzBAY [101]. Refer to Fig. 4.39 for di-
mensions and boundary conditions of the experimental specimens. Four experiments

were conducted at confining pressures of 0, 3, 5, and 8 MPa.

weak element o1 = 0,

30 mm

v L

30 mm

7

6320

)

,//// 10 mm

Figure 4.39. Finite element model boundary conditions for plane strain compression of coal.
Confining pressures are o, = 0, 3, 5, and 8 MPa. Prescribed displacement of top loading
platen results in load P, from which o2 may be calculated. Location of weakened element
shaded black.

\j

T

Z3

A plane strain condition was achieved in the experimental setup by preventing

deformation from occurring in the out-of-plane direction via a stiff, passive constraint.
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E >4, < 4.75 GPa

v 0.19

19 20.2 MPa

I} 0.39

b 0.5

H' >0, <3 GPa

K’ 0 GPa

Hs | > 50, < -35 GPa/m
K5 0 GPa/m

Table 4.6. Material parameters for coal simulation.

Using a value for Poisson’s ratio v = 0.19 reported by YuMLU & OzBAY [101]
in Eq. (4.2), the following values for modulus of elasticity £ were found: 4.0, 4.0, 4.4,
and 4.75 GPa for confining pressures of 0, 3, 5, and 8 MPa, respectively, which are
close the value of £ = 4.2 GPa reported by YUMLU & OzBAY [101]. The confining
pressure is applied to the sample’s sides as shown in Fig. 4.39. Other material pa-
rameters are reported in Table 4.6. The parameters a =20.2 MPa and § = 0.39 are
calculated from a linear regression of the observed experimental yield points which are
taken as the points on the experimental stress-strain curves where the curves begin
to deviate from a line drawn through the initial linear portion. The material dilation
constant b =0.5 was calculated from an average shear band orientation of the four
specimens (¢ = 32°) via Eq. (2.92). The standard shear hardening/softening mod-
ulus (H') is chosen to best represent the experimental deviatoric load-displacement
curve up until localization is detected, while the localized shear hardening/softening
modulus (Hjy) is chosen to best represent the slope of the experimental deviatoric
load-displacement curve after failure surface formation at peak stress level (written
per meter because the Dirac-delta function has an implicit dimension of 1/length).

See Table 4.7 for a summary of these parameters.

The sample measures 10 x 30 x 30mm (30 mm being the height of the sample
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o1 (MPa) | E (GPa) H' (GPa) H,; (GPa/m)
0 4.0 0.0 -50.0
3 4.0 0.0 -35.0
3 4.4 3.0 -40.0
8 4.75 3.0 -45.0

Table 4.7. Summary of moduli for coal simulation.

and also the out-of-plane thickness, with 10 mm as the width) and is discretized by 75,
300, and 1200 linear quadrilateral elements in order to demonstrate objectivity with
respect to mesh refinement. Frictionless boundaries are assumed (see Fig. 4.39), and
the top boundary is displaced downward at given increments, while measuring the
reaction forces at the bottom boundary to be able to plot load-displacement curves.
Load-displacement curves are plotted as opposed to stress-strain curves because upon
the development of localized deformation, stress and strain are nominal quantities and
not those of a homogeneously deforming body. The cohesion parameter & of one side
element of each mesh is lowered by 1% to perturb the uniform stress state and to

clearly define where the slip line initiates; see Fig. 4.39 for location.

Deformed meshes are shown in Fig. 4.40 for a confining pressure of 3 MPa
(since b is constant for each confining pressure, the slip line orientation will be the
same for varying confining pressure) with corresponding deviatoric load-displacement
curves shown in Figs. 4.41-4.44. Mesh independence is observed as the slip line
propagates across elements without having element sides aligned with the expected
slip line orientation (elements through which the slip line has propagated are shaded

gray), and by the deviatoric load-displacement curves lying one on top of the other.

The linear elastic portion of the load-displacement curves proceeds up until
yielding, a plastic region follows up until peak load at which time localization is

detected, and then the slip line propagates through the mesh at peak load resulting
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in subsequent linear softening along the discontinuity (i.e., the slip line). Note that
the slip line would propagate through the mesh over a wider range of displacement
prior to peak load if the stress state was more non-uniform (see the slope stability
problem and excavation problem presented in this chapter).

As for the Gosford sandstone example of the previous section, it is noteworthy
that by solely choosing the moduli E, H', and H; to create a trilinear best fit of the ex-
perimental load-displacement curve, the stress levels at which localization is detected
are proximate to the experimentally observed values for each confining pressure case.
In addition, the experimentally observed failure surface orientation is closely repre-
sented by the simulation for the 5 MPa case, as well as the post-localization overall

softening behavior.
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Figure 4.40. Deformed meshes for enhanced finite element solutions with 75, 300, 1200
linear quadrilateral elements at confining pressure of 01 = 3 MPa. Localized elements
are shaded. Insensitivity to mesh alignment demonstrated by the slip line tracing across
element sides. Actual failure surface orientations for four confining pressures drawn as a
solid line on the meshes.
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Figure 4.41. Enhanced finite element solutions with 75, 300, and 1200 linear quadrilat-
eral elements at confining pressure of 01 = 3 MPa. Curves are one on top of the other,
demonstrating objectivity with respect to mesh refinement.
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Figure 4.42. Enhanced finite element solutions with 75 and 300 linear quadrilateral elements
at confining pressure of ;1 = 0 MPa. Curves are one on top of the other, demonstrating

objectivity with respect to mesh refinement.
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Figure 4.43. Enhanced finite element solutions with 75 and 300 linear quadrilateral elements
at confining pressure of o; = 5 MPa. Curves are one on top of the other, demonstrating

objectivity with respect to mesh refinement.
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Figure 4.44. Enhanced finite element solutions with 75 and 300 linear quadrilateral elements
at confining pressure of 01 = 8 MPa. Curves are one on top of the other, demonstrating
objectivity with respect to mesh refinement.



4.6. SLOPE STABILITY PROBLEM 119

4.6 Slope Stability Problem

A slope stability problem is now presented to demonstrate the capability of the model
to represent strain localization in a classic geotechnical structure, an embankment
(or slope). Material parameters are shown in Table 4.8 for three cases: associative
deviatoric plastic flow (J2 flow, or von Mises plasticity), non-associative deviatoric
plastic flow, and non-associative dilative plastic low. A gravity load is first applied,
the displacements are reset to zero, and a downward displacement is prescribed at the
middle of a rigid footing resting at the crest of the slope. The downward displacement
may represent the settlement due to a structure placed at the crest of the slope. It
is desirable to run a strain-driven problem like this one because otherwise an arc-
length method [70], [17] would be needed to advance the solution into and within the

softening regime.

E 10 MPa
v 0.4
c 50, 20, 20 kPa
¢ 0°, 30°, 30°
b 0.0, 0.0, 0.1895
H, K 0
Hg, K(; -200 kPa/m
v 20 kN/m?

Table 4.8. Material parameters for slope stability problem.

The dimensions and boundary conditions of the problem are designated in
Fig. 4.45. Like the excavation problem presented in the next section, this is a ficti-
tious example and not an attempt to model the behavior of an actual soil embank-
ment, although material parameters are chosen to approximate those of a real soil.
Two meshes with 400 and 1600 linear quadrilateral elements are used to analyze the

problem.
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Figure 4.45. Slope stability problem. Gravity load applied before footing displacement u
is prescribed.

Figure 4.46 shows deformed meshes at end of loading for the standard and
enhanced solutions for associative, deviatoric plastic flow. Note the diffuse deforma-
tion patterns for the standard solutions and the sharp localized deformation for the
enhanced solutions. Shaded elements are those through which the slip line has traced.
Insensitivity to mesh alignment is demonstrated by the slip line tracing across ele-
ments without element sides being aligned with the slip line orientation and by slip
lines having same orientation for the 400 and 1600-element meshes. The slip line
initiates in the element just to the right of the rigid footing corresponding with the
load at which the standard and enhanced solution curves begin to deviate from one
another as seen in Figs. 4.47, 4.49, and 4.51. The load at which the enhanced solu-
tion curve begins to soften corresponds with the load at which the slip line has fully

propagated through the mesh.

Load-displacement plots for associative, deviatoric plastic flow are shown in
Fig. 4.47. Similar slopes of the enhanced solution curves demonstrate near-objectivity

with respect to mesh refinement. The standard solution curves demonstrate the
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well-known mesh-dependence for perfect plasticity. Associative, deviatoric plastic
flow may be used to simulate the behavior of a saturated cohesive soil in undrained

condition (i.e., imcompressible for immediate loading).

Figure 4.48 shows deformed meshes at end of loading for the standard and
enhanced solutions for non-associative, deviatoric platic flow. Again, note the diffuse
deformation patterns for the standard solutions and the sharp localized deformation
for the enhanced solutions. Load-displacement plots for non-associative, deviatoric
plastic flow are shown in Fig. 4.49. Similar slopes of the enhanced solution curves
demonstrate near-objectivity with respect to mesh refinement. The standard solution

curves demonstrate the well-known mesh-dependence for perfect plasticity.

Figure 4.50 shows deformed meshes at end of loading for the standard and
enhanced solutions for non-associative, dilative plastic low. Again, note the diffuse
deformation patterns for the standard solutions and the sharp localized deformation
for the enhanced solutions. Also note the different slip lines in Figs. 4.48 and 4.50.
The slip lines in Fig. 4.50 have a larger radius of curvature than the slip lines in
Fig. 4.48. This is due to the different dilation constants used in each case. Load-
displacement plots for non-associative, dilative plastic flow are shown in Fig. 4.51.
Similar slopes of the enhanced solution curves demonstrate near-objectivity with re-
spect to mesh refinement. The standard solution curves demonstrate the well-known

mesh-dependence for perfect plasticity.

The effect of varying A'' is now considered. The material parameters used
to produce results shown in Figs. 4.50 and 4.51 are the same while now the results
for h**! =1 x 1073 are compared with those already presented in Figs. 4.51 and 4.50
for h*! = 5 x 107°. Results are shown in Figs. 4.52 and 4.53. Figure 4.53 compares
the load-displacement curves. They each have similar slopes in the softening regime

demonstrating that, although the choice of h*' should be kept as small as possible,
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it is not essential that h'®! be kept especially small. To use a very small value like
htol =1 x 1078, it is just a matter of refining the load steps to capture the bifurcation
point to that accuracy. Comparing Figs. 4.50 and 4.52 show that for different values
of h*! the orientation of the slip line is essentially the same. The enhanced solution
curves in Fig. 4.53 for h**! = 1 x 1072 appear to demonstrate near-objectivity with
respect to mesh refinement better than for A = 5x107°, but this is a result of a larger
‘drop’ in the enhanced solution curve for the 400-element mesh for A =1 x 1072 at

peak load where the slip line has fully propagated through the mesh.
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Figure 4.46. Slope stability problem. Deformed meshes for standard and enhanced solutions
with associative, deviatoric plastic flow: 8 = b = 0.0; 400 and 1600 linear quad elements
with B. Localized elements are shaded.
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Figure 4.47. Slope stability problem. Load-displacement plots for associative, deviatoric
plastic flow: = b = 0.0. k' =1 x 1075. Similar softening slopes of enhanced solution
curves demonstrate near-objectivity with respect to mesh refinement.
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Figure 4.49. Slope stability problem. Load-displacement plots for non-associative, devi-

atoric plastic flow: 8 = 0.49487,b = 0.0. h'! = 5 x 107°.
enhanced solution curves demonstrate near-objectivity with respect to mesh refinement.
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Figure 4.52. Slope stability problem. Deformed meshes for enhanced solutions with non-

linear quad elements. Localized elements are shaded.

associative, dilative plastic flow: [

plastic flow: 8 = 0.49487,b = 0.1895. Comparison of enhanced solutions for different At°!:

Figure 4.53. Slope stability problem. Load-displacement plots for non-associative, dilative
htoll =1 x 103, htol2 = 5 x 10~5.
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4.7 Excavation Problem

An excavation problem shown in Fig. 4.54 will be analyzed to demonstrate the ability
of the model to sharply capture slip line orientation in an unstructured mesh and to
represent increasing strut loads when strain localization is present. Fig. 4.54 (a) shows
a 2.5m deep layer of plastic soil atop a 1.5m deep layer of elastic rock. Fig. 4.54 (b)
shows the excavation of five soil layers down to the rock layer and the placement of
a rigid wall which allows the excavation of the fifth soil layer to converge. Removing
soil layers is a load-driven problem. Thus, without an arc-length method to advance
the solution, excavation of the fifth soil layer will not converge without the rigid
wall in place. A simple limit equilibrium analysis (see ATKINSON [5] and Fig. 7-4
of [24] which is borrowed from Fig. 3-1 of JANBU [38])" shows that an unsupported
vertical slope with the following material parameters will be unstable for a height
of 2.5m. The depth from the ground surface to the top of the rock layer is chosen
such that the soil may be excavated to a depth of 2.5m with the aid of the rigid wall
while avoiding basal heaving during wall movement leftward, which simulates bracing

system collapse.

Four levels of mesh refinement are used to analyze the problem: 80-element
mesh, 320-element mesh, 1280-element mesh, and 5120-element mesh. Linear quadri-
laterals were employed. Material properties are listed in Table 4.9. Different values
of 3 and b were chosen to obtain three cases (associative dilative plastic flow, non-
associative dilative plastic flow, and non-associative deviatoric plastic flow), to ensure

that the five layers of soil can be excavated for each mesh (i.e., soil not too weak; recall

tSuch an analysis assumes a circular failure surface and also does not account for the effect of
dilatancy. Thus, it is used here only to provide an approximate analytical verification of the observed
numerical result (i.e., that the load-driven problem will not converge for the removal of the fifth soil
layer without the rigid wall in place, assuming no special load-stepping procedure like an arc-length
method is used (see RIKs [70] and CRISFIELD [17])).
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Figure 4.54. Plane strain excavation problem: (a) Initial soil condition showing portion
of soil to be excavated. (b) Excavation sequence and placement of rigid wall showing wall
reaction, R. After five layers of soil have been excavated, rigid wall is moved leftward to
simulate bracing system collapse.

Soil
E 1 MPa
v 0.4
c 7.5 kPa
b 5°,10°, 15°
b 0.0978, 0.0978, 0.0
H' K' 0
H(;, K5 -10 kPa/m
0% 20 kN/m?
Rock
E 100 MPa
v 0.1
0% 30 kN/m?

Table 4.9. Material parameters for excavation problem.

that the excavation sequence is a load-driven problem), that slip lines may develop
during the excavation sequence (i.e., soil not too strong), and that calculated wall

reactions for the enhanced solutions remain positive (i.e., wall should not be allowed
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to pull the soil). The choice of material parameters is made only to demonstrate the
abilities of the model and not to attempt a strain localization finite element anal-
ysis of an actual excavation field case study. The B-method is again used for the

non-associative, deviatoric case to preclude mesh locking for incompressble plasticity.

The finite element analysis proceeds as follows: the gravity load is applied,
and the displacements are reset to zero; the five soil layers are removed sequentially
as numbered in Fig. 4.54 (b), with a rigid wall placed simultaneously as the second
soil layer is excavated. After the fifth soil layer is excavated, the rigid wall is moved
leftward to simulate bracing system collapse, which is motivated by the observance
of elements at the excavation base localizing during the fifth excavation step. To
simulate the rigid wall, adjacent nodes to the wall shown in Fig. 4.54 (b) have pre-
scribed horizontal displacement while their vertical displacment is left free (i.e., roller
supports). The relative vertical displacements between the nodes on the wall were
observed to be negligible, thus justifying using roller supports to simulate a rigid wall.
Rigid elements were also used to simulate a rigid wall, but demonstrated almost no

difference in solution to that obtained with roller supports.

The choice of the localization tolerance, A" = 0.001, is made to allow the
element at the base of the excavation to localize during the excavation of the fifth soil
layer. It is possible for the deviator stress ratio h for dilative plastic flow in Eq. (4.1)
to jump over the localization condition (1/3/(3 — b?)), in which case the load steps
(time steps for the quasi-static problem) must be refined in order to capture the point
of bifurcation accurately (as is done for all other numerical examples presented in this
chapter, which are strain-driven problems). For the excavation problem, however, it
is not possible to refine the load steps without altering the sequence of excavation
(during excavation, each load step corresponds to one soil layer being removed). Thus,

it is noticed that the localization condition in Eq. (4.1) is jumped over for the element
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at the base of the excavation during the excavation of the fifth soil layer, as well
as other elements at the base, for dilative plastic flow. For deviatoric plastic flow
(b = 0.0) the deviator stress ratio in Eq. (4.1) approaches the localization condition

at a minimum.

Upper slip lines may form during the excavation sequence. It is found that the
upper slip lines do not always fully propagate to the ground surface while the lower
slip line beginning at the excavation base does fully propagate to the ground surface
when it is the only slip line. The consequences of these upper slip lines forming
are that either they do not allow the lower slip line to fully propagate and thus do
not allow the solution to converge further, or that they do allow the lower slip line
to fully propagate but do not significantly alter the solution obtained if they had
not existed in the first place (i.e., if they had been restricted from forming). More
importantly, in order to produce comparisons between the different mesh refinement
solutions (different upper slip lines may form for different mesh refinements), only
one slip line is restricted to initiate at the excavation base for this example. Of
course, while simulating an actual field excavation the simulation would be allowed
to run unfettered. Furthermore, reports have shown that slip surfaces and/or shear
bands typically form due to material inhomogeneities (CHAN & MORGENSTERN [13],
FINNO et al. [25], and FINNO & NERBY [26]). This example, however, assumes a
homogeneous material, but because of the geometry which results as soil layers are
excavated, the stress field is non-uniform throughout the meshes (allowing certain
elements to localize earlier than others). With material inhomogeneities represented
throughout a mesh for an actual field excavation, the inception of slip surfaces and

shear bands would be clear.

Results for associative, dilative plastic flow (8 = b = 0.0978) are shown in

Figs. 4.55 to 4.58. Observe the similar initial slopes of the enhanced solution curves
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and the dramatic ramp up for the 1280-element mesh. This case will be examined
in more detail employing contour plots to attempt to understand the ramping-up
behavior for the enhanced solution curve of the 1280-element mesh shown in Fig. 4.55.
First, the slip lines for each mesh are compared in Fig. 4.59. As the mesh is refined,
the slip line develops a smaller radius of curvature and becomes more S-shaped. The
slip lines for each mesh at the end of excavation sequence and at full formation are
shown in Figs. 4.60, 4.61, and 4.62. Contour plots of mean stress p, octahedral
shear stress Toc;, octahedral shear strain .., and effective plastic strain € at end of
excavation sequence for standard solutions are shown in Figs. 4.63, 4.66, 4.69, and
4.72, respectively. The standard and enhanced solutions are the same at the end
of excavation sequence because it takes one load step after elements have localized
and traced in order for displacement jumps to develop along the slip line within the
localized elements. Contour plots for standard solutions at end of loading are shown
in Figs. 4.64, 4.67, 4.70, and 4.73, respectively. Contour plots for enhanced solutions
are shown in Figs. 4.65, 4.68, 4.71, and 4.74, respectively. Note in Fig. 4.65 the
tension that is occurring in the localized elements and in the elements at the ground
surface away from the excavated soil portion. It is possible that the slip line becomes
more S-shaped as the mesh is refined because more tension is observed at the ground
surface. To test this hypothesis the simulation was run for each mesh just up until
the slip lines had fully formed. The slip lines for each mesh at mid simulation—just
before the upper portion of the slip line forms beyond its inflection point—are shown
in Figs. 4.75, 4.76, and 4.77. Contour plots of mean stress p, octahedral shear stress
Toct, OCtahedral shear strain 7., and effective plastic strain é” at mid simulation for
enhanced solutions are shown in Figs. 4.78, 4.79, 4.80, and 4.81, respectively. Note
in Fig. 4.78 the tension that is occurring in the elements at the ground surface just

before the slip line has fully traced through each mesh. More tension is observed in



132 CHAPTER 4. NUMERICAL SIMULATIONS

the ground surface elements as the mesh is refined. It is not clear, though, whether
this tension is causing the ramping-up behavior for the enhanced solution curve of the
1280-element mesh shown in Fig. 4.55 because a ‘similar’ amount of tension is also
observed for the 320-element mesh, which does not demonstrate ramping-up behavior
for its enhanced solution curve.

Results for non-associative, dilative plastic flow (3 = 0.1895,b = 0.0978) are
shown in Figs. 4.82 to 4.86. For the 5120-element mesh, the enhanced solution curve
ramps up dramatically.

Results for non-associative, deviatoric plastic flow (8 = 0.275,b = 0.0) are
shown in Figs. 4.87 to 4.91. For the 5120-element mesh, the enhanced solution curve
ramps up dramatically.

For each case the enhanced solutions are clearly insensitive to mesh alignment
as seen by the slip line sharply tracing through unstructured meshes (i.e., element
sides not aligned with the slip line orientation).

From the perspective of the practicing geotechnical engineer, the fact that the
strut loads predicted by the enhanced finite element solution are greater than those
predicted by the standard finite element solution (see Figs. 4.55, 4.82, and 4.87)
indicates that the standard finite element solution underestimates the expected strut
loads and thus could produce an unsafe design for the bracing system when strain

localization is present.
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Figure 4.55. Plane strain excavation problem. Load-displacement plots for associative,
dilative plastic flow: 8 = b = 0.0978. A'°! = 0.0015. Enhanced solution curve for 1280-
element mesh (shown in Fig. 4.58) ramps up dramatically.
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Figure 4.56. Plane strain excavation problem. Deformed meshes for standard and enhanced solutions with associative, dilative

plastic flow: 8 = b= 0.0978. 80 linear quadrilateral elements. Localized elements are shaded.




Figure 4.57. Plane strain excavation problem. Deformed meshes for standard and enhanced solutions with associative, dilative
plastic flow: 8 =b=0.0978. 320 linear quadrilateral elements. Localized elements are shaded.
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Figure 4.58. Plane strain excavation problem. Deformed meshes for standard and enhanced solutions with associative, dilative

plastic flow: 8 =b = 0.0978. 1280 linear quadrilateral elements. Localized elements are shaded.
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Figure 4.59. Plane strain excavation problem. Slip lines for three meshes for enhanced
solutions with associative, dilative plastic flow: 8 = b = 0.0978.
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Figure 4.60. Plane strain excavation problem. Slip lines at end of excavation sequence and full formation of slip line for 80-element
mesh enhanced solution with associative, dilative plastic flow: 8 = b = 0.0978. Localized elements are shaded. Slip lines drawn
through localized elements.



Figure 4.61. Plane strain excavation problem. Slip lines at end of excavation sequence and full formation of slip line for 320-element
mesh enhanced solution with associative, dilative plastic flow: 8 = b = 0.0978. Localized elements are shaded. Slip lines drawn
through localized elements.
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Figure 4.62. Plane strain excavation problem. Slip lines at end of excavation sequence and full formation of slip line for 1280-
element mesh enhanced solution with associative, dilative plastic flow: 8 = b = 0.0978. Localized elements are shaded. Slip lines
drawn through localized elements.



4.7. EXCAVATION PROBLEM 141

150

100

50

L

<1

S ‘
SOOI
5

SIS G
IS S 9.0 I
S ;‘3“‘-‘-““"0
SOUSASCSS AN
S O SR RIS
SNSRI LSS
S SR SS XTSRS
SIS SRS IS OS CoSS
L R e
R T R
COSURSNS SOTRS IS SIS
CROSS SO SRS ST
SIS SIS
SRS
TS S
=S

%

-50

Figure 4.63. Contour plots of mean stress p (kPa) for standard solution at end of excavation
sequence (8 = b = 0.0978). Base contour plots on the right are of soil portion only (i.e.,
rock base is ignored) and of tension part only (p < 0 in these plots).
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Figure 4.64. Contour plots of mean stress p (kPa) for standard solution at end of simulation
(8 =b=0.0978). Base contour plots on the right are of soil portion only (i.e., rock base is
ignored) and of tension part only (p < 0 in these plots).
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Figure 4.65. Contour plots of mean stress p (kPa) for enhanced solution at end of simulation
(8 =b=0.0978). Base contour plots on the right are of soil portion only (i.e., rock base is
ignored) and of tension part only (p < 0 in these plots).
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Figure 4.66. Contour plots of octahedral shear stress 7,4 (kPa) for standard solution at
end of excavation sequence (8 = b = 0.0978). Base contour plots on the right are of soil
portion only (i.e., rock base is ignored).
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Figure 4.67. Contour plots of octahedral shear stress 7,4 (kPa) for standard solution at
end of simulation (3 = b = 0.0978). Base contour plots on the right are of soil portion only
(i.e., rock base is ignored).
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Figure 4.68. Contour plots of octahedral shear stress 7,¢; (kPa) for enhanced solution at
end of simulation (3 = b = 0.0978). Base contour plots on the right are of soil portion only
(i.e., rock base is ignored).
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Figure 4.69. Contour plots of octahedral shear strain y,c; (x100%) for standard solution
at end of excavation sequence (3 = b = 0.0978). Base contour plots on the right are of soil
portion only (i.e., rock base is ignored).
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Figure 4.70. Contour plots of octahedral shear strain 7, (x100%) for standard solution

at end of simulation (8 = b = 0.0978). Base contour plots on the right are of soil portion
only (i.e., rock base is ignored).
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Figure 4.71. Contour plots of octahedral shear strain 7,4 (x100%) for enhanced solution
at end of simulation (8 = b = 0.0978). Base contour plots on the right are of soil portion

only (i.e., rock base is ignored).
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Figure 4.72. Contour plots of effective plastic strain €” (x100%) for standard solution at
end of excavation sequence (8 = b = 0.0978). Base contour plots on the right are of soil
portion only (i.e., rock base is ignored).
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Figure 4.73. Contour plots of effective plastic strain €” (x100%) for standard solution at
end of simulation (8 = b = 0.0978). Base contour plots on the right are of soil portion only

(i.e., rock base is ignored).
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Figure 4.74. Contour plots of effective plastic strain é” (x100%) for enhanced solution at
end of simulation (8 = b = 0.0978). Base contour plots on the right are of soil portion only
(i.e., rock base is ignored).



Figure 4.75. Plane strain excavation problem. Slip line at mid simulation just before slip-line fully propagates through 80-
element mesh (Ad = 0.025m in Fig. 4.55). At right, deformed mesh for enhanced solution with associative, dilative plastic flow:
B =0b=0.0978. Localized elements are shaded. Slip line drawn through localized elements.

NWHTIOYd NOILLVAVOXH L%

eql



CHAPTER 4. NUMERICAL SIMULATIONS

154

Figure 4.76. Plane strain excavation problem. Slip line at mid simulation just before slip-line fully propagates through 320-
element mesh (Ad = 0.019m in Fig. 4.55). At right, deformed mesh for enhanced solution with associative, dilative plastic flow:

B =0b=0.0978. Localized elements are shaded. Slip line drawn through localized elements.
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Figure 4.77. Plane strain excavation problem. Slip line at mid simulation just before slip-line fully propagates through 1280-
element mesh (Ad = 0.005m in Fig. 4.55). At right, deformed mesh for enhanced solution with associative, dilative plastic flow:
B =0b=0.0978. Localized elements are shaded. Slip line drawn through localized elements.
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Figure 4.78. Contour plots of mean stress p (kPa) for enhanced solution at partial slip line
formation in Figs. 4.75,4.76,4.77 (8 = b = 0.0978). Base contour plots on the right are of
soil portion only (i.e., rock base is ignored) and of tension part only (p < 0 in these plots).
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Figure 4.79. Contour plots of octahedral shear stress 7,¢; (kPa) for enhanced solution at
partial slip line formation in Figs. 4.75,4.76,4.77 (8 = b = 0.0978). Base contour plots on
the right are of soil portion only (i.e., rock base is ignored).
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Figure 4.80. Contour plots of octahedral shear strain v,¢; (x100%) for enhanced solution
at partial slip line formation in Figs. 4.75,4.76,4.77 (8 = b = 0.0978). Base contour plots
on the right are of soil portion only (i.e., rock base is ignored).
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Figure 4.81. Contour plots of effective plastic strain €’ (x100%) for enhanced solution at
partial slip line formation in Figs. 4.75,4.76,4.77 (8 = b = 0.0978). Base contour plots on
the right are of soil portion only (i.e., rock base is ignored).
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Figure 4.82. Plane strain excavation problem. Load-displacement plots for non-associative,
dilative plastic flow: 8 = 0.1895,b = 0.0978. A'°! = 0.001. Enhanced solution curve for
5120-element mesh (shown in Fig. 4.86) ramps up dramatically.



Figure 4.83. Plane strain excavation problem. Deformed meshes for standard and enhanced solutions with non-associative, dilative

plastic flow: 8 = 0.1895,b = 0.0978. 80 linear quadrilateral elements. Localized elements are shaded.
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Figure 4.84. Plane strain excavation problem. Deformed meshes for standard and enhanced solutions with non-associative, dilative
plastic flow: 8 = 0.1895,b = 0.0978. 320 linear quadrilateral elements. Localized elements are shaded.
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Figure 4.85. Plane strain excavation problem. Deformed meshes for standard and enhanced solutions with non-associative, dilative
plastic flow: 8 = 0.1895,b = 0.0978. 1280 linear quadrilateral elements. Localized elements are shaded.
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Figure 4.86. Plane strain excavation problem. Deformed meshes for standard and enhanced solutions with non-associative, dilative
plastic flow: 8 = 0.1895,b = 0.0978. 5120 linear quadrilateral elements. Localized elements are shaded.
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Figure 4.87. Plane strain excavation problem. Load-displacement plots for non-associative,
deviatoric plastic flow: 8 = 0.275,b = 0.0. A'°! = 0.001. Enhanced solution curve for 5120-
element mesh (shown in Fig. 4.91) ramps up dramatically.
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Figure 4.88. Plane strain excavation problem. Deformed meshes for standard and enhanced solutions with non-associative, devi-

atoric plastic flow: 3 = 0.275,b = 0.0. 80 linear quadrilateral elements with B. Localized elements are shaded.




Figure 4.89. Plane strain excavation problem. Deformed meshes for standard and enhanced solutions with non-associative, devi-
atoric plastic flow: 8 = 0.275,b = 0.0. 320 linear quadrilateral elements with B. Localized elements are shaded.
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Figure 4.90. Plane strain excavation problem. Deformed meshes for standard and enhanced solutions with non-associative, devi-
atoric plastic flow: 8= 0.275,b = 0.0. 1280 linear quadrilateral elements with B. Localized elements are shaded.
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Figure 4.91. Plane strain excavation problem. Deformed meshes for standard and enhanced solutions with non-associative, devi-
atoric plastic flow: 8 = 0.275,b = 0.0. 5120 linear quadrilateral elements with B. Localized elements are shaded.
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4.8 Summary

In this chapter, numerical examples in plane strain demonstrated mesh-independence
of finite element solutions for a non-associated, strain-softening Drucker-Prager plas-
ticity model with strong discontinuity. The numerical simulations of plane strain
compression experiments on Gosford sandstone and coal demonstrated the ability
of the model to approximate the stress level at which onset of localization occurs,
failure surface orientation, and post-localization overall ‘softening’ behavior. Sim-
ulations of strain localization developing in classical geotechnical structures like a

slope/embankment and top-down sequential excavation were also presented.



Chapter 5

Conclusions and Future Work

A non-associated, rate-independent, strain-softening Drucker-Prager plasticity model
was formulated for small deformations and rotations within the context of strong
discontinuities. A noteworthy result is that the slip line orientation and localiza-
tion condition are determined explicity in closed form (i.e., not numerically) and are
functions solely of the material dilation constant b. The stress-displacement relation
governing the jump displacement evolution is pressure-dependent, as expected. This
Drucker-Prager plasticity model was implemented along with an enhanced quadri-
lateral element within the framework of an assumed enhanced strain method. The
enhanced strains and enhanced strain variations are dependent upon the material
dilation constant . The enhanced strain quadrilateral element allows a slip line to
cut and isolate one corner node or to cut two element sides, without having to reduce
to triangular elements. Numerical simulations in plane strain demonstrated mesh-
independence of finite element solutions for the simple model problem of uniform
compression, and near mesh-independence for more complex problems such as slope

stability and top-down sequential excavation.

The strong discontinuity approach developed by Simo and co-workers, ex-
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tended in this thesis for geomaterials, provides a model of strain localization which
leads to mesh-independent finite element solutions while representing the structural
phenomenon of localized deformation directly. The model is predictive to the extent
that it can approximate the experimentally observed stress level at which onset of
localization is detected, the failure surface orientation, and the post-localization over-
all ‘softening’ behavior solely by choosing the moduli E, H', and H; as demonstrated
for the plane strain Gosford sandstone and coal experiments. Note that the strength
parameters & and (# and material dilation constant b were the same for each confin-
ing pressure case in the simulations of these experiments. It is noted, however, that
for more complex model problems like slope stability and top-down sequential exca-
vation, enhanced finite element solutions are not completely mesh-independent. In
particular, the excavation problem exhibited a ramping-up of the enhanced solution
curves for those fine meshes with more S-shaped slip lines than their coarser mesh

counterparts.

The model will be extended for three dimensional analysis by implementing
an enhanced brick element. For three dimensions, the localization condition and
slip-surface orientation are the same as for the 2D problem, except that a numerical
eigenvalue problem would need to be solved to determine the directions of the prin-
cipal stresses. The influence of fluid flow on strain localization may be studied via
the strong discontinuity approach. The coupled pore fluid/solid problem would need
to be formulated in the context of strong discontinuities. A Drucker-Prager model
with strong discontinuity would be formulated in the finite deformation regime in
order to account for the possibility of large rotations and displacements occurring
in geomaterials such as for the slope stability and excavation problems. Nonlinear
slip lines could also be considered to increase the order of interpolation of the jump

displacements. This would require an extra strain term to account for the gradient of
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the displacement jump along the discontinuity surface. Nonlinear strain softening for
the Drucker-Prager model in the context of strong discontinuities could be formulated
and implemented with relative ease. An arc-length method would allow a load-driven

problem to proceed into the softening regime.
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Appendix A

1D Calculation of Dissipation

For clarification of the definition of plastic dissipation as discussed in Section 2.5.2
for the three-dimensional problem, it is helpful to consider a calculation of plastic

dissipation in one-dimension, where the plastic dissipation is defined as

D = oé — V(e €). (A.1)
Assume a quadratic stored energy function of the form
Lo e 1 2
U = 5E&e + §He” (A.2)

where F and H are the constant elastic and plastic moduli, respectively, for linear
elasticity and hardening, and ¢ = Fe® via Hooke’s Law and o = oy + HeP for linear
hardening, where oy is the yield stress. Thus, the stored energy rate may be expressed

as

U = gé — oyé® (A.3)

and the rate of dissipation as
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D = Jyép > 0]. (A4)

Four cases are considered to calculate the total dissipation over a given time interval:
1) hardening plasticity with elastic unloading to zero stress, Fig. A.l; 2) perfect
plasticity with elastic unloading to zero stress, Fig. A.2; 3) softening plasticity with
elastic unloading to zero stress, Fig. A.3; and 4) softening plasticity with softening to

zero stress, Fig. A.4. For each case, take the yield stress oy to be the same.

C

E

|
I
€l €+ P

Figure A.1. Case 1. Hardening plasticity with elastic unloading to zero stress. Arrows
denote loading path.

For case 1, the following calculates the total dissipation over the loading path

OABD:

D A B D
D, = Ddt:ay/ é”dt—i—ay/ é”dt-i—ay/ el dt
o o A B
P

= ov[(@—€&) + (& —é) + (&, — )]

= oy [(0—0) + (6 —=0) + (¢ — €]



185

It turns out that Eq. (A.5) holds for each case in Figs. A.2, A.3, and A.4. The
dissipated energy calculated in Eq. (A.5) is equivalent to Area(OACD), while the
internal energy due to plastic hardening is Area(ABC)= (05 —oy)e? = $HeP?. The

internal stored elastic energy in Fig. A.1 may be calculated from Area(DBE)= loe® =

1Fe?, and then the total stored energy is Area(DBE)+Area(ABC)= fOD Udt =0, =

1Ee®® + 1HeP?. The total energy in the system at the end of loading is D + ¥,.

o

Op=0B =0y -------

Figure A.2. Case 2. Perfect plasticity with elastic unloading to zero stress. Arrows denote
loading path.

For case 2 in Fig. A.2 for perfect plasticity with elastic unloading, there is
no internal energy due to plastic hardening/softening. Thus, the total energy in the
system at end of loading is calculated as D; + ¥; = oyef + %EGEZ.

For case 3 in Fig. A.3 for softening plasticity with elastic unloading, the stored
energy becomes U, = 2 Ee®® — 1 |H|e?> = 2ope® — S (oy —op)€P. Thus, the total energy
in the system D; + U, is the Area(OABD).

For case 4 in Fig. A.4 for softening plasticity, the total energy in the system
at the end of loading is D; + ¥y = oy’ — | H|e"? = Loyl

Thus, it is seen that the total dissipation over each loading cycle is calculated

from the same equation (D; = oy€?), although € may vary for each case, while the
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Figure A.3. Case 3. Softening plasticity with elastic unloading to zero stress. Arrows
denote loading path.

04 =0y A

Figure A.4. Case 4. Softening plasticity with softening to zero stress. Arrows denote
loading path.

area beneath the loading path—before elastic unloading—represents the total energy

in the system, as expected.



Appendix B

Gradient of Discontinuous

Displacement Field

A distribution needs to be defined before the gradient of a discontinuous displace-
ment field u(x) may be derived. This discussion follows from STAKGOLD [86] and
GARIKIPATI [27]. Refer also to KOLMOGOROV & FoMIN [40] and ROYDEN [72].

In an unbounded region  C R"im (see Fig. 2.1 but ignore the boundaries),
a distribution is a continuous linear functional on C*(2). To start, a functional is
defined.

View f as a “rule” which “associates” to each & in R™m a function f in R"dim

the value of f at . Now, instead of f at x, there is

/f-d)dQ, Ve ek (B.1)
Q

where IC is a class of “accessory” functions ¢. The choice of class K is secondary, and
the accessory function ¢ is just a means to describe f. Thus, view f as a functional
on K. In other words, f “is a rule which associates with each function ¢ in K the

real number”
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(. ) = /Q f-$do (B.2)

where (-, -) is a brief notational form for the functional f.

Define K as the class of smooth functions called test functions. A test function
¢ € R"™im ig a function which is infinitely differentiable on R™m and has compact
support in 2 (i.e. ¢ = 0 outside ). The space of test functions, C*°(Q2), is called

the “space of infinitely differentiable functions with compact support:”

¢ € C*(Q). (B.3)

Refer to STAKGOLD [86] for examples of test functions.

Next, consider the definition of a linear functional. The function f is a linear

functional on C*°(Q) if

(f, a1y + a2¢py) = a1 (f, ;) + az(f, Py)

Vai, as € R, and ¢, ¢, € C(Q). (B.4)

Now, consider the definition of a continuous linear functional. Given a sequence of
test functions {¢,, ..., @,,} that is a null sequence in C*(£2), a linear functional f is
said to be continuous when the sequence (f, ¢,,) approaches zero as m approaches

infinity:

m—00

lim (f,¢,) = lim [ f-¢,dQ2 = 0. (B.5)
m—r0o0 0

Equation (B.5) will become clear when a null sequence is defined. To define a null

sequence in C*®(S), first define a differential operator in three dimensions as
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o*
k ._ : Ndim - _
D= g R =kt kot ky (B.6)

for all nonnegative integers k1, ko, and k3. A sequence of test functions {¢,,} is then

a null sequence in C*() if the following two conditions hold:

1. ¢,, has compact support within a bounded region Q2 (i.e. ¢,, = 0 outside §2)

9. lim,, ..o D¥¢p, = 0O

m

Thus, {¢,,} and its derivatives {D*@,,} uniformly approach zero. See STAKGOLD
[86] for examples of null sequences. With a null sequence defined, the continuity
requirement on the linear functional f (lim,, o (f, ¢,,) = 0) becomes clear. There-
fore, it is now possible to say with confidence that a distribution is a continuous
linear functional on C*°(2), and it is possible to define the Heaviside function and
Dirac-delta function as distributions.

First, a regular distribution should be defined. A distribution is regular if the
function f(x) is locally integrable such that the integral vanishes over a set of zero
measure (see Theorem 6 and Problem 3a on pages 300, 301 in [40]). As an example

of a regular distribution, consider the Heaviside function:

1 ifxey
Hs(x) = (B.7)
0 ifeefl_.

The Heaviside function is locally integrable because of the following result:

ég/gzﬂs¢d9 = é:né/§2+¢d9 =0 (B.8)

where S is the discontinuity surface which is a set of zero measure. Thus, the Heav-
iside function is a reqular distribution. On the other hand, an example of a singular

distribution is the Dirac-delta function because it is not locally integrable:
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éﬂ/ﬂé@dg = /qudP £ 0. (B.9)

Note that the Dirac-delta function is a distribution because it is a continuous linear
functional on C*(f2), and is denoted a singular distribution because it is not locally
integrable, as demonstrated in Eq. (B.9). Therefore, in summary, the Dirac-delta

function dg(x) is a functional defined as

(0s, @) = /95505619- (B.10)

It is linear because

<55, a1, + 02¢2> = n <5s,¢1> + as <5s,¢2> (B-ll)

or

/55(@1(1)1 + G,2¢2) dQ) = 0,1/55¢1dQ =+ a2/65¢2dQ. (B12)
Q Q Q

Finally, the Dirac-delta function ds(x) is continuous because, given a null sequence

in C*(Q2), {¢,,}, the following holds

lim (s, ¢,) = lim [ 6s¢,,dQ2 = lim [ ¢, dI = 0O (B.13)

where, for example,
b = —P(x); P(x) = g()h (B.14)

and

1
eXPD \ 77 s 12 for = € Q
g(x) = (zzw) i (B.15)
0 forx € 002, and ¢ & 2 = QU O
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where h is a constant vector and 0f) defines a sphere of radius R and origin at = 0.

Now, use this framework of distributional theory to define the gradient of a
discontinuous displacement field. Consider the discontinuous function f(x) defined

f(z) = f(z) + [f] Hs() (B.16)

where f is the continuous part of f and [f] is the jump of f across S and is inde-
pendent of . With the definition of a singular distribution given above, it is possible

to determine V f.

Express V f as a functional:

/Vf-qbdQ = /Vf-¢d9 - /([[f]]@VHS)-d)dQ. (B.17)

Consider the second term of the right hand side of Eq. (B.17). Notice the following

result from the chain rule:

VHs-¢ = V- (Hsp) — HsV - ¢. (B.18)

Making use of the Divergence Theorem and the fact that Q is an open region (i.e.

without boundaries), the following holds:

/Q [F]V - (Hsg)d = / IV - (Hs6) 2 + [ [F1V - (s i

~ [ 1f1Hsp-nodr + [ (1 Hsp - ar
-0 (B.19)

where n_ = —n. The second part of the right hand side of Eq. (B.17) then becomes:
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/Q([[f]]®VHs)-¢dQ = —/Ql[f]]V-quSdQ
= - [ 11V -ga0
— -~ [1f1¢enar
= [1f16-near
- /Q (f]®n)- s dO. (B.20)

The last equation in Eq. (B.20) is reached by the definition of the Dirac-delta function

as a distribution. Thus, in total, Eq. (B.17) becomes:

/QVf-qbdQ = /Qvf-qsdsz + /Q([[f]]®n)-¢(5sd9. (B.21)

Localizing the integral in Eq. (B.21) (see page 38 of GURTIN [29]), the following

expression results for the gradient of a discontinuous function:

[195 - V7 — (flomid g0 = 0 (B.22)
and in local form,
Vf=Vf+ (flen)ss. (B.23)

Therefore, the symmetric gradient of a discontinuous displacement rate results in a

singular strain rate:

€ .= Vu = V'u + ([u]®@n)’ds. (B.24)

Throughout this work the Dirac-delta function appearing in the singular part of €

must be treated properly in the context of distributional theory.



Appendix C

Determination of Parameters for

Drucker-Prager Yield Function

C.1 Review of Mohr-Coulomb Yield Function

Consider the two Mohr’s circles at failure which define the classical Mohr-Coulomb
failure criterion of soil mechanics (see LAMBE & WHITMAN [42]) via the friction

angle ¢ and cohesion ¢ as shown in Fig. C.1.

The two circles represent the state of stress at peak load for a particular soil
loaded under compression (i.e. plane strain, true triaxial, or ‘triaxial’ stress condi-
tions) for two different confining pressures (hence, the noticeable frictional/pressure
dependence). The ‘cohesion’ ¢ (actually, just the intercept of the shear stress 7-axis
and not the true cohesion) and friction angle ¢ (not the interparticle friction angle)
are defined from a line drawn tangent to the two Mohr’s circles (it is preferrable to
use more Mohr’s circles to define ¢ and ¢, but for the purposes of this discussion, two

are sufficient). Choosing one Mohr’s circle defined via its major and minor principal

stresses, o1 and o3, respectively, the Mohr-Coulomb failure criterion may be written
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-
¢
C
S~
o
03 01
Figure C.1. Mohr-Coulomb failure criterion.
in terms of principal stress and a yield function f as
f = (01 —03) + (01 +03)sing — 2ccosd = 0. (C.1)

Equation (C.1) defines one yield plane of a hexagonal yield cone (see figures in [58]
and [95]).

C.2 Material Dilation Angle

It has been shown experimentally (see [95]) that an associative flow rule (€ = \Jg f)
overestimates the amount of plastic dilatation, and thus a plastic potential function

g, similar to f, is defined as [65], [95]

g = (01 —03) + (01 +03)sinp — 2¢cosp = 0 (C.2)

where 1) is the material dilation angle. The flow rule then becomes
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e’ = Aoy (C.3)
or
é 1 +sin
ék —1 + sin )
where it can be shown that
p | P
- € T €3
= C.5
sin v o (C.5)

which is valid for the planar problem [5]. Substituting Eq. (C.5) into Eq. (2.66) and

assuming é) = —¢§ ~ 0 for plane strain yields

| 3sin’¢

Equation (C.6) is the same as that derived for b in terms of the jump dilation angle
1 because the out-of-plane component of localized plastic flow is zero (i.e. 6.12), s =0).

Recall that the regularity of stress in Section 2.5.2 requires
& = Mgy = ((MOn)° (C.7)

where €’ = €;0s. Because m and m lie in the major-minor principal stress plane
via the analysis in Sections 2.6.2.1 and E, from Eq. (2.78) it turns out that (using
ég, s here as the intermediate principal localized plastic strain rate instead of ég,g in

Section 2.6.2.1)

& =0 (C.8)

which leads to the equivalence of Eq. (C.6) and Eq. (2.92).



196 APPENDIX C. DRUCKER-PRAGER YIELD FUNCTION

C.3 Parameters for Drucker-Prager Yield Func-
tion

The constants @ and 3 from Eq. (2.57) may be determined such that the Drucker-
Prager yield cone passes through the outer apexes of the Mohr-Coulomb yield surface
(A = —1 in Eq. (2.61)), and the inner apexes of the Mohr-Coulomb yield surface
(A =11n Eq. (2.61)) [58]. Refer to Fig. C.2 for a view of the yield surfaces on the

m—plane.

—03, —S53

—01, —S81

—02, —852

1

1

1

1

1
03,83

Figure C.2. m-plane showing Mohr-Coulomb (M-C) and Drucker-Prager (D-P) yield sur-
faces for ¢ = 30° and a given value of .

Notice that for high friction angles (¢ = 30° used to create the yield surfaces in

Fig. C.2), the Drucker-Prager yield cone with A = 1 or A = —1 becomes a gross
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approximation of the Mohr-Coulomb yield surface; thus, a value of A in between -1
and 1 (i.e. A =0) would be more appropriate.

To begin, recall Eq. (C.1)

(01 —03) + (01 +03)sing — 2Ecosp = 0. (C.9)

Solve for o7 and o3 (03 < 07 < 0) as

1—sing N 26¢0S ¢
[0 = e E——— g _—
! 1+sing s 1+ sin¢
1 +sin¢ 2¢ cos ¢

O3 = 74_ S%n? o)1 — 7000_8 qs— (C].O)
1 —sing¢ 1 —sin¢

or, with & = s + pl,

1 —sing 25sin ¢ n 2G cos ¢
S = — ) S — | — -
' 1+sin¢ ’ 1+sin¢ b 1+ sin¢

1+sin¢ 2sin ¢ 2¢ cos ¢
5 = (LFSmPY o, (289 ) 20c0s¢ (C.11)
1 —sing 1 —sin¢ 1 —sing¢
For an outer apex, s; = s, = —s3/2 (from tr(s)=0), and
4sin ¢ 4% cos ¢
o o (Aand ), s c12)
3 —sing 3 —sing
and for an inner apex, sy = s3 = —s;/2, and
4 sin ¢ 4Ecos ¢
= |\ + —. C.13
o (3+sin¢>p 3 +sin ¢ ( )

Recall the form of the Drucker-Prager yield cone ¢(o) for perfect-plasticity from
Eq. (2.57):

\/gHsH + V3(—a+08p) =0 (C.14)

which matching for an outer apex (s; = sy = —s3/2) takes the form
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3

5lssl + V3(=a+fp) = 0 (C.15)
where |s3| = —s3 since p < 0 and ¢ > 0, and for an inner apex takes the form

3 _

Slsil + V3(—a+fp) = 0 (C.16)

where |s;| = s;. Substituting Eq. (C.12) into Eq. (C.15) yields

__ 6ccos¢ _ 6 sin ¢

YT VBB —sing)’ 7= V3(3 — sin ¢) (C17
and substituting Eq. (C.13) into Eq. (C.16) yields

__ 6ccos¢ _ 6 sin ¢

“= V3(3 +sing)’ b= V/3(3 + sin @) (C.18)

which may be expressed in terms of the parameter A as in Eq. (2.61).



Appendix D

Numerical Integration of
Constitutive Law, and Derivation

of Algorithmic Tangent

Here, the stress rate o is numerically integrated according to the standard return
mapping algorithm (backward Euler; see HUGHES [34]), and the algorithmic (consis-
tent) elastic-plastic tangent operator Cﬂ]fﬂ) is derived [78]. The superscript £ + 1
denotes the current iteration within a Newton-Raphson solution algorithm, and the
subscript n + 1 denotes the current time step. The Newton-Raphson solution algo-
rithm will be discussed in Section 3.4.3, and for now the superscript £ + 1 will be
dropped. Keep in mind that whereever a subscript n + 1 appears, a superscript k£ + 1

would also be written.

Recall the constitutive relation describing the evolution of the Cauchy stress
o =c:(e — €). (D.1)
Integrating Eq. (D.1) over the time increment At = ¢, — t,, yields
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tntl tn+1 tnt1
/ odt = / ce:édt—/ ;& dt (D.2)
tn tn tn

and

tnt1
Opni1 — 0y = ¢ : Ae — ¢° :/ AOg o dt (D.3)
tn

where A€ = €,,1—¢€, is the prescribed strain increment for the strain driven problem.
Because the direction of plastic flow and the plastic consistency parameter vary over
the time increment At, the integration of the plastic strain rate is approximated by

an implicit (backward) Euler integration (HUGHES [34], SiMO & HUGHES [80]) as

€nt1 — € ~ MOo¥)nt1 (D.4)
and
tn+1 B
c’ :/ Agpdt = Ac®: (0g@)nt1 (D.5)
tn

where A = At),;1. Such an integration is unconditionally stable and first order
accurate. Typically, in the implementation of such integration, the trial deviatoric
direction of €/, (i.e. fu,r,; from Eq. (2.63)) is substituted. To show the equivalence

of these directions (A, ; = fi,41) in the 7-plane, consider the following analysis.

Rewrite the updated stress as

T

Oni1 = o5 — A : (0o ¢)nti - (D.6)
Decompose the stress into deviatoric and pressure terms as follows
Oni1 = Spi1 + Pui1l = ||Sni1l|Pons1 + Pral. (D.7)

Equation (D.6) may then be written as
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o T A tr 3—A 7%
I$nsillPinsr + Popal = |lsillfg + piy,1 — A [2\/;,Unn+1 + V3bK1| (D.8)
or
3 5\ tr \/_ 7\ ~tr
(I8n1ll + 24/ 580 Ponsr + (a1 = piiy + V3DEN 1 = ||Sn+1|| My - (D.9)
[\ ;6 vl ;6 >0

Since fu,41 and A, are orthogonal to 1 and the terms before them are positive, the

current and trial deviatoric stress directions are equal

Any1 = Ry (D.10)

and

3
Joweall = Nl — 2/ 25

Pn+1 = pfzr+1 — V3K ). (D.11)
Thus, Eq. (D.6) may be rewritten as

This equation is especially useful for implementation of the stress integration algo-
rithm in a computer code.
To determine the discrete plastic consistency parameter A, write out the dis-

crete form of the yield condition at time ¢,,, as

¢(Onsi1, 0n11) = \/g||3n+1|| + V3(=a+ Bppi1) + (V3b(1)ns1 + (@2)ns1) = 0
(D.13)
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where
(@)ns1 = (o) — V3BK'X

(@2)ns1 = (o)n — H')\. (D.14)

With ||8,,+1]| and p,,41 defined in Eq. (D.11), the discrete plastic consistency parameter

is solved for as

- tr
3= % (D.15)

where x = 3(1+3bK) and H = 3b’K'+ H'. Note that if Eq. (D.13) was nonlinear due
to nonlinear hardening/softening, it would be solved for A by a local Newton-Raphson
iteration scheme (see [80] for details).

To formulate the algorithmic elastic-plastic tangent modulus tensor, the deriva-

tive of the updated stress tensor needs to be taken:

80’) 0 ~ 3
c’, = (= = —|o", — A\ ! +V/3bK1
o (86 ntl 56[ o ( 2"l ]

= al®1 + 2T + 3N @Npy1 + 4 (b1 @ Ny + By 1 ® 1)

(D.16)
where
o 38bK? 3\ 3A°A
c1T = —
Xx+H x|
2\/7/1)\
Cy =
ll8hsall
—3/9 \/7)\
3 4/_112 /
X+H ||8n+1||
—3v2K [
o = V2K (D.17)

xX+H
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The numerical integration algorithm for the stress at each Gauss point is sum-
marized as follows:

1) compute the trial state by freezing plastic flow and incrementing the total strain:

on, = op+cf:le
tr 1 tr
Ppny1 = gtr(an+1)
Spy1 = on — Pl
%r+1 = ¢(U%r+1aan \/7|%+1|| + V3( @‘i‘ﬁpgﬂ)
+ (V3b(a)n + (a2

2) check for yielding, and if yielding is detected, update stress and stress-like plastic internal

variables:

IF (¢, < 0) THEN

n+1
Ont+l1 = U%r+1
(@)ny1 = (a1)n
(@2)n+1 = (2)n
return c®
ELSEIF (¢{,, > 0) THEN
8 1
A= x+H

3
n

(@)nt1 = (a1)n — VBLE'X
(a2)ni1 = (ag)n — H'X
return C'm_1

ENDIF



Appendix E

Localization in Three-Dimensional

Stress Space

Consider arbitrary orientations of m and n in principal stress space in Fig. E.1, where

09 < 03 < 01 < 0, as in Section 2.6.2.1,

cos @ cosn cos a cos 3
n = sin 6 OIS sin v : (E.1)
cosfsinny cos asin 3

Recall Eq. (2.71):

(men) = A ( g + %bl) (E.2)

and expand to get

cos acos Fcosfcosn cosacosFsinf cosacosFcosfsing
sin v cos f cos n sin asin sin acos fsinn

cos asin fcosfcosn cosasinfFsinf cosasin (3 cosfsinn
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—09

0
Figure E.1. Orientation of slip vectors in three-dimensions.
Va3 + b 0 0

= 2o 0 V3 + b 0 : (E.3)

0 0 V30 + b

In order for (m ® n)® to diagonalize, the following three equations must be satisfied

cosacos fsinf) + sinacosfcosn = 0
cosacos fcosfsinn 4+ cosasinFcosfcosn = 0
sinacosfsinn + cosasinfsinf = 0 (E.4)

But there are three equations and four unknown angles; thus, one more equation is

needed. Recall that m -n = sin® from Eq. (2.76). Thus, the fourth equation needed
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to solve for the angles is

m-n = cosfcosacos(n— ) + sinfsina = siny (E.5)

We see from Eq. (E.4); that

tan o cos 3

tanf cosn (E6)
Plugging this Eq. (E.6) into Eq. (E.4)3 produces
B=n (E.7)
which when substituted back into Eq. (E.6) produces
a = —§0. (E.8)

The vectors m and n now lie in a plane perpendicular to the (o, 03) plane. Equation
(E.4), then states that
0° for (01, 02) plane

p = (E.9)

90° for (09, 03) plane

where the (01,03) plane could result if § and 1 were placed in the (09, 03) plane
instead of the (o3, 03) plane to start with (see Fig. E.1). Thus, m and n must lie
in one of the principal planes. Finally, Eq. (E.5) produces the orientation of the slip

line normal as

0 = +£(45° — 1/2). (E.10)

The localization condition is the same as that derived in Section 2.5.4, where an
analysis of the range on the deviator stress ratio A requires that m and n must lie in

the major-minor principal stress plane. Thus, it is simply a matter of determining the



207

orientation of the principal stress axes from the eigenvalue problem on the general,
three-dimensional stress tensor o; for example, refer to BATHE [8] for a variety of

numerical solution algorithms for the eigenvalue problem.



Appendix F

Slip-Line Tracing Algorithm

The slip-line tracing algorithm is described in Fig. F.1. There are three cases. For
each case the element must have localized according to Eq. (4.1).

The cases are summarized as follows:

1. Element is first to localize. Slip-line is traced through element starting from
a given element side location and at an orientation of § = +(45° — 1/2) from

Eq. (2.81). Whether it is +(45° —1)/2) or —(45° —1)/2) will be discussed below.

2. Element is adjacent to a traced element. Slip-line is traced across the element
at orientation § = +(45° — 1/2) starting at the slip-line intersection of the

adjacent traced element.

3. Element is not adjacent to a traced element. Element is not traced.

It is possible to have multiple slip lines. In that case, there is more than one
start element, while the tracing algorithm is the same.

To trace a slip-line through an element, the orientation +(45°—1/2) or —(45°—
¥ /2) must be known. The simple shear case (¢ = 0°) shown in Fig. F.2 demonstrates

how the angle 6 is chosen.
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Clearly, the angle §# = —45° which produces n~ is the correct choice. The

following ensures that this correct choice is made for arbitrary element deformations:

IF (§|n+-d“| > %‘n_-d‘ﬂ) THEN
0= j:(4115" —1/2) "~

ELSE
0 = +(45° — ¢ /2)

ENDIF

Thus, according to this algorithm, a slip-line may be traced through a mesh

automatically.
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element localized

element first element adjacent NO
to localize? to a traced element?
YES *

trace slip-line from
slip-line intersection
of adjacent traced
element

trace slip-line from
given side location
at orientation {

.

traced

EXIT -
not traced

Figure F.1. Flow chart describing slip-line tracing algorithm.
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4
4 d 3 d’

S+

Figure F.2. Description of how to choose slip-line angle 8 = +(45° —4/2).



