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ABSTRACT
A three-dimensional finite element implementation of a simple nonassociative Drucker-Prager plas-

ticity model with strong discontinuity mode of localized deformation is formulated for small deforma-
tions. A strong discontinuity mode of localized deformation represents slip along a surface of zero
measure, whereas a weak discontinuity mode of localized deformation represents shear within a band
of finite thickness. A numerical algorithm that detects onset of localization for three-dimensional stress
states and the possible normals to slip planes within a three-dimensional finite element is demonstrated.
An enhanced strain hexahedral finite element accounting for the various slip-plane cutting conditions is
described. This model and finite element lead to mesh-independent solutions with regard to mesh refine-
ment and mesh alignment. A simple three dimensional numerical example demonstrates the numerical
algorithm for determining onset of localization.

Keywords: localized deformation, slip surfaces, pressure-sensitive materials, strong discon-
tinuity plasticity

INTRODUCTION
Localized deformation in the form of slip surfaces appears in rock (Wawersik et al. 1990)

and heavily overconsolidated clays (Hvorslev 1960, Atkinson 1993) for certain loading con-
ditions. Many modeling approaches such as fracture mechanics, plasticity, and damage have
been proposed to represent slip surfaces in geomaterials and the associated loss of material
strength. For geomaterials, “plasticity” implies phenomenological inelastic material behavior
due to granule rotation and translation within (or without) the matrix material, granule crush-
ing, clay platelet deformation and motion, and micro-cracking in rock, for instance, as opposed
to plasticity in polycrystalline materials (such as metals) that implies dislocation motion, stor-
age, and annihilation as well as possibly twinning. Given the scale of geomechanical problems
(meters to kilometers) as well as their significant in-situ material inhomogeneity, phenomeno-
logical (or statistically-averaged micromechanical) models are appropriate. On the other hand,
a phenomenological approach is not applicable to problems on the scale of microstructure (mi-
crometers to millimeters) such as microsystems deformation or onset of ductile fracture in
metals for which physically-based micromechanical nonlocal models are necessary.
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The strong discontinuity plasticity modeling approach was first put forth by Simo and co-
workers (Simo et al. 1993, Simo and Oliver 1994, Armero and Garikipati 1996, Oliver et al.
1999) and espoused by others. It was then extended to pressure-sensitive plasticity models
(Larsson et al. 1996, Armero and Callari 1999, Borja and Regueiro 2001, Regueiro and Borja
2001, Wells and Sluys 2001, Borja 2002).

This paper presents the three-dimensional extension of a previously developed small-strain,
two-dimensional model of pressure-sensitive plasticity with strong discontinuity (Borja and
Regueiro 2001, Regueiro and Borja 2001). Specifically, a numerical algorithm to detect onset
of localization is demonstrated and an enhanced strain hexahedron with slip plane is discussed.

MODEL
A brief description of the strong discontinuity modeling approach is described within the

context of a simple geomaterial constitutive model such as the small deformation, nonassocia-
tive, isotropic hardening/softening Drucker-Prager plasticity model.

The elegance of the strong discontinuity approach is that the plasticity model of inter-
est is formulated with strong discontinuity mode of deformation, and a bifurcation condi-
tion (for rate-independent plasticity) along with the form of a post-bifurcation traction-slip-
displacement relation result. Before continuing, we note that the mathematically-derived bi-
furcation condition lacks physical motivation because it is derived from the pre-bifurcation
plasticity model and thus depends on the choice of material parameters for this model, which
are typically determined from experimental data for homogeneously-deformed specimens of
material. Determination of a physically-motivated bifurcation condition requires better under-
standing of the underlying physical mechanisms associated with onset of localized deformation
in geomaterials, which is an ongoing area of interest for modelers and experimentalists at San-
dia (Olsson 2000, DiGiovanni et al. 2000) as well as other institutions. This is especially
relevant for rate-dependent plasticity models for which no bifurcation condition can be mathe-
matically formulated because there is no loss of strong ellipticity of the acoustic tensor (Sandler
and Wright 1984, Needleman 1988, Armero 1999, Wells et al. 2002).

Kinematics of strong discontinuity
The formulation of a plasticity model with strong discontinuity mode of deformation begins

with an additative decomposition of the velocity field into continuous and discontinuous parts
as (Simo et al. 1993)

_u(x; t) = _�u(x; t)| {z }
continuous

+ [[ _u(t)]]HS(x)| {z }
discontinuous

(1)

where _u(x; t) is the total velocity field,_�u(x; t) is the continuous part of the velocity field,
and [[ _u(t)]] is the discontinuous part of the velocity field, where it is assumed here that the
jump velocity [[ _u(t)]] = _u+(t) � _u�(t) = _�(t)m is spatially-invariant. The term_�(t) is the
magnitude of the jump velocity, andm is its direction.HS(x) is the Heaviside function at the
discontinuity (or slip) surfaceS. The singular strain rate then results as

_�(x; t) = r
s _�u(x; t) +rs [[ _u(t)]]| {z }

=0

HS(x)

| {z }
regular

+ ([[ _u(t)]]
 n(x))sÆS(x)| {z }
singular

(2)

where(�)s denotes symmetric part,n(x) is the normal to the slip surfaceS, andÆS(x) is the
Dirac-delta function atS. Given the resulting singular strain rate, mathematicians describe the
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discontinuous velocity as belonging to the Bounded Deformation (BD) space (Matthies et al.
1979, Strang et al. 1980)

_u(x; t) 2 BD (3)

which was the motivation for the seminal work by Simo et al. 1993. The term “bounded” refers
to the bounded integration of the displacement gradient.

Bifurcation condition
It is assumed that upon bifurcation of material response, plastic flow is localized to the slip

surfaceS, and as a result the plastic consistency parameter is written as a singular distribution

�(x; t) = �Æ(t) ÆS(x) (4)

where it can be shown that (Regueiro and Borja 2001)

�Æ(t) = cos (t) _�(t) (5)

where (t) is the angle the slip vectormmakes withS.
The bifurcation condition that allows a slip surface to form in a rate-insensitive plastically

deforming material results from the requirement that balance of linear momentum must be
satisfied, which in turn requires that the traction be continuous across the slip surfaceS

[[ _�]] � n =
��
_t
�
S

��
= 0 : (6)

This condition requires that the traction rate be regular, which leads to the bifurcation condition
expressed in standard form as

A �m = 0 =) detA = 0 for m 6= 0 (7)

whereA = n � cep � n is the second order elasticperfectly-plastic acoustic tensor. For general
three dimensional stress states this bifurcation conditiondetA = 0 may be solved numerically
by a nonlinear optimization procedure (Ortiz et al. 1987, Wells and Sluys 2001). This proce-
dure is used to determine the time of bifurcation, slip surface normaln, and slip directionm
for the simple numerical example presented in this paper.

ENHANCED STRAIN FINITE ELEMENT IMPLEMENTATION
Previous model formulations (Borja and Regueiro 2001, Regueiro and Borja 2001, Borja

2002) are applicable to two and three dimensional problems. For finite element implementa-
tion, however, previous implementations must now be upgraded to account for three dimen-
sional analysis. In particular, an enhanced strain hexahedron is formulated for implementation
of this model within an assumed enhanced strain finite element method. We note that this
strong discontinuity plasticity model is not restricted to this type of numerical implementation.
In fact, Wells et al. 2002 have used a partition of unity approach that requires slip displace-
ments be continuous across element faces, similar to the approach adopted by the Extended
Finite Element Method (X-FEM) community (cf. Moes et al. 1999). If the partition of unity
concept provides a more robust numerical algorithm, then it is clearly worth considering. Oth-
erwise, if it is not of interest to resolve the stress within the process zone around a crack tip
(i.e., for geomechanics scale problems), then the assumed enhanced strain method would seem
to be adequate. Meshfree methods also lend themselves well to analyzing localized deforma-
tion problems (Liu et al. 2000) because of the choice of large domain over which the weight
function may act.
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FIG. 1. Enhanced strain hexahedron with slip plane showing five possible slip-
plane cutting conditions.

Details aside (Borja and Regueiro 2001, Regueiro and Borja 2001), the Cauchy stress at
time tn+1 within a Newton-Raphson algorithm (iteration indexk) is written as

�
k+1
n+1 = �

trial
n+1 � D �Ge��e in 
e

loc=S
e (8)

whereD is the elasticity matrix, and the regular part of the enhanced strain displacement matrix
G

e is
G

e = [(me 
rf e)s] : (9)

Thus, for the enhanced strain hexahedron, it becomes a matter of determining how to construct
the enhancement functionf e. Figure 1 shows the five different cutting plane conditions for
the hexahedron. Figure 2 demonstrates how to determine whether a node is active in terms of
constructingf e, which then may be constructed as

f e(x) =

nactiveX

B=1

NB(x) ; rf e(x) =

nactiveX

B=1

rNB(x) (10)

whereNB(x) is the trilinear shape function at nodeB.

NUMERICAL EXAMPLES
One numerical example is used to verify the numerical optimization algorithm for the plane

strain case, for which we have an analytical solution for the bifurcation condition and slip line
normal. The second example demonstrates the ability of the algorithm to determine bifurcation
and slip surface normals for a three-dimensional boundary value problem.
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FIG. 2. Determining active nodes: if n � (xA�xs) > 0 then node A is active where
xA is the location of node A and xs is the location of a point on the slip plane
which has unit normal n.

TABLE 1. Parameters for model

Symbol Value

E 15 MPa

� 0.3

cohesion�� 13 kPa

friction � 0.5

dilation b 0.35

hard./soft. mod.H -1 MPa

Plane strain verification
The numerical optimization algorithm is verified for a plane strain example (material pa-

rameters shown in Table 1), using eight trilinear hexahedral elements constrained in the out-
of-plane direction and loaded in confined compression similar to the example discussed in
Regueiro and Borja 2001. The comparison of the two numerical solutions is reasonable and is
shown in Table 2.

Corner shear
The second example tests the nonlinear optimization algorithm for a three-dimensional

corner shear problem shown in Fig. 3. A displacement is prescribed at the corner node(1; 1; 1)
with directiond=kdk = [1;�1; 1]. The plot of force versus magnitude of the displacement
vector kdk is shown in Fig. 4 for the standard plasticity solution only; no post-bifurcation
numerical solution is shown. The Gauss point closest to this corner node plastifies and localizes
first. The resulting normals and slip directions are shown in Table 3, one of which makes
physical sense,n = [0:57; 0:59; 0:57].

CONCLUSIONS
A three-dimensional extension of a previously developed two-dimensional model of pres-

sure senstive plasticity with strong discontinuity was presented. Specifically, a numerical algo-
rithm to detect onset of localization was demonstrated, and an enhanced strain hexahedron with
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TABLE 2. Comparison of slip line and slip surface normals for 2D plane strain
and 3D constrained plane strain, respectively

2D plane strain 3D constrained plane strain

n

2
64

0:84

0:54

0

3
75

2
64

0:84

�0:54

0

3
75

2
64

0:82

0:57

0:0

3
75

2
64

0:84

�0:57

0:0

3
75

m

2
64

0:84

�0:54

0

3
75

2
64
�0:84

�0:54

0

3
75

2
64

0:82

�0:57

0:0

3
75

2
64
�0:82

�0:57

0:0

3
75
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FIG. 3. Eight hexahedral element mesh with pinned corners and prescribed dis-
placement d at one corner.

TABLE 3. Slip surface normals for 3D corner shear.

3D corner shear

n

2
64

0:57

0:59

0:57

3
75

2
64

0:57

�0:6

0:57

3
75

m

2
64

0:6

�0:52

0:6

3
75

2
64

0:6

0:53

0:6

3
75

 22:2Æ 21:5Æ

6



0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

F
O

R
C

E
  (

N
)

DISPLACEMENT  (mm)

corner Gauss 
point plastifies

corner Gauss 
point localizes

X

X

*simulation of post-localization
 response not shown; only standard
 plasticity solution shown

n

m

 

FIG. 4. Plot of force versus displacement for corner shear simulation.

slip plane was discussed. The bifurcation detection algorithm correctly predicted two unique
slip normals for the contrained out-of-plane case (plane strain), and a corner shear problem also
predicted two unique normals, most likely as a result of the loading symmetry. The next step
is to further study the bifurcation condition and to implement the enhanced strain hexahedron
in order to conduct simulations of post-bifurcation behavior.
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