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ABSTRACT: The paper presents a comparison between embedded stroongtdisity finite element implementation and elasto-
plastic (EP) and rigid-plastic (RP) cohesive surface fialeament (CSE) implementations of cracking/fracture irkrd¢ is shown
that care must be taken when choosing the elastic stiffedes¢the EP CSE model, if they are to act as penalty paramdatbesRP
CSE and EDE implementations obviate this choice. Formaraind implementation is restricted to small strains anatkiarts, and
numerical examples are conducted for two-dimensional (2&)e strain.

1. INTRODUCTION proach [15, 16]. The elasto-plastic formulation typ-
ically chooses large values of cohesive surface elas-
For clean rock fractures, or when the fracture apertic stiffnesses (normal and tangential directions) as
ture thickness is small relative to the boundary valuepenalty parameters. We will investigate this aspect as
problem spatial domain of interest, the interface beye|l. The embedded discontinuity approach defaults
tween two rock faces (or between a grain and its cetg j rigid-plastic cohesive surface model. Numerical
ment matrix) can be approximated as a strong disexamples will be presented in two dimensions.
continuity (jump in displacement across a surface of The advantage of the CSE approach over the AES
zero measure, i.e., a crack); a weak discontinuity is @ne is the ability to model microstructurally the
jump in strain across a shear or compaction band [6]mjcro-cracking in rock at grain/cement interfaces
Computationally, using the finite element method, it (two different materials: e.g., quartz silt grain embed-
is possible to model this strong discontinuity in var- ged in clay matrix, Fig.1), whereas the current AES
ious ways, some of which include the following: (1) formulation is limited to simulating strong disconti-
discrete representation of the fracture surface usingyities in a single material.
contact mechanics [1] or cohesive surface elements Throughout the paper we assume small deforma-

(CSE) [2]; or (2) embedded discontinuity approachestions and rotations. Symbolic notation is used for
such as the extended finite element method (X-FEM)learer presentation, such as the inner product of

[3, 4] or the assumed enhanced strain (AES) methogyo second order tensor - b);, = a;;bjr, the

[5,6,7,8,9,10]. This paper will focus on a compar- contraction of two tensora : b = a;;b;;, or the
ison between a discrete approach (CSE) and an enyyadic producta b)ijx = ai;by. TENSOr operators
bedded discontinuity approach (AES). For the CSE gre used such as the symmetric gradigvitv);; =
we will consider elasto-plastic and rigid-plastic for- (vi; +v;,)/2, and divergencéV - a); = a,; ;, where
mulations, where the rigid-plastic implementation is (e); = O(e)/0x; denotes a partial spatial derivative.

handled by an augmented-Lagrange multiplier ap-The symbole) = d(e)/0t denotes a time derivative.



Figure 1. A Scanning Electron Microscopy (SEM) image [12]

of quartz silt grain in porous clay matrix. Red finite element

mesh is for the grain, and blue for the clay. The interfacelcra
ing between the two would be modeled with CSEs.

2. KINEMATICS AND GOVERNING EQUA-
TIONS FOR STRONG DISCONTINUITIES

For strong discontinuities, the displacement field

contains a spatial jump in displacemdnt] across
S as [6]

u(x,t) = u(z,t) + [u(z,1)] Hs(x) (1)

wherew is the regular displacement field, ain} is
the Heaviside function along surfade(Fig.2). This
displacement field leads to a singular straiz V:u
atS as

€S
e NS

(2)

where superscript 1 denotes a quantity aléhgnd
superscript 0 a quantity outside wheree® is regular
ande! is singular.ds is the Dirac-delta function at the
discontinuity surfaces, andn is the unit normal to
S.

The local form of quasi-static, isothermal equilib-
rium for a body(2 with strong discontinuity is written
as follows

{ e = € + sym([u] ®n)ds
0
€

V:o+b = 0 in Q (3)
o-v = t° on I}
u = g only

[o] - n 0 across S

Figure 2. BodyQ with planar strong discontinuit$ (Q =
Q. uUQ_, I'=T,ur,us, Q=Qul).

whereo is the stress tensay, the body force vector,
v the unit normal td’;, ¢° the traction o, g the

prescribed displacement dfy, and[o] is the jump
in stress acrossS.

2.1. Weak form for embedded strong discontinuity

The weak form of 3D quasi-static equilibrium for
Embedded Discontinuity finite Element (EDE) im-
plementation is written as

/sz:adv = /w~bdv+ w - t’da
Q Q It
+/'w-([[0']]-n)da (4)
S

wherew = Jdu is the weighting function (or displace-
ment variation). The traction continuity condition
[e] - n = 0 for a body with strong discontinuities
will be used to determine bifurcation. The displace-
ment, and its weighting functiomw, are discretized

as compatible fields (see Sect.5.1), while embedding
the strong discontinuity jump in displacemdind].

2.2. Weak form for discrete strong discontinuity rep-
resented as cohesive surface

The weak form of 2D quasi-static equilibrium for
cohesize surface finite element implementation is
written as

/ Viw : oda
Q

/w-bda—l— w -t%ds
Q Iy

—/S[[w]] -Tds

where[w] is the jump in weighting function across
discontinuityS, implying that the jump displacement
[u] will be accounted for discretely in the Galerkin

(5)



and finite element equations, as opposed to being enassociated with inhomogeneous (localized) deforma-
bedded as in the AES method’ = o - n is the tion. This motivates a different approach for model-
traction vector on the discontinuity. ing fracture nucleation as noted in the Conclusions.

3. DETECTING BIFURCATION 3.2. Cohesive Surface Yield Function

Following [11], we write a Mohr-Coulomb-like

For the EDE, detecting bifurcation depends on IOSscohesive surface yield function with tension cap as

of ellipticity of the acoustic tensor for a small
strain nonassociative Drucker-Prager elastoplasticity
model (linear isotropic elasticity) with strong discon- F = \/Tf + (¢ — xtan ¢)?—(c—T, tan ¢) = 0 (9)
tinuity [7] (parameters for Gosford sandstone from

[9] used in the numerical example for EDE in Sect.7) WhereT; andT;, are the tangential and normal com-
and will only be briefly summarized here. For the Ponents of traction on the cohesive surfatec is
CSE, detecting bifurcation depends on satisfying acohesion,y tensile strengthg friction angle, and)
yield criterion on a pre-defined cohesive surface.  the dilation angle.

3.1. Bifurcation for EDE with strong discontinuity 4 POST-BIEURCATION CONSTITUTIVE
Assume the jump displacement is spatially constanMODELS
alongs and is written in terms of its magnitudeand

directionm as The general form of a post-bifurcation traction-
displacement constitutive model is the following:
[u()] = ¢(t) mi(t) (6) T =T, T
Note that its magnitude and direction can both vary 'Tn =n-o-n; T; = t-o-n
with time, because the dilation anglecan evolve [u”]] = 450G(T,q)/0T (10)
during p(_)st-bifurcati(_)n, and thus can also c_;ha_nge. F(T, q) =0 (11)
For continuous traction across the discontinuity sur- . ~
e o q =vh'(T,q) (12)
faceS, a condition for loss of ellipticity of the acous-

tic tensorA results as whereT is the traction vector o8 in the local dis-

detA = 0 for m+£0 (7) continuity frame,t is the unit tangent vector of,
. e [[ur]] is the rate of plastic jump displacement in the
A=n-c ce" o e local frame,; is the plastic multiplier onS, G is
c?P =’ — g—e the plastic potential functiont is the plastic yield
fietrg function, g is a vector of internal strength variables
f=0f/do; g=2099/00 (8) (e.g., tensile strengtly, cohesione, friction angle
¢, dilation angley), and h? is a vector of soften-
ing functions. Note that the post-bifurcation traction-
displacement yield function is the same as the bifur-
cation yield function for the CSE. For the EDE, the
ference in the loss of ellipticity condition is the use of bifurcation and post-bifurcation models are different.

. : . Similar to both EDE and CSE, the constitutive
the elastic-perfectly-plastic tangent modulus msteade uations are integrated using Backward Euler (im-
of the elastic-plastic tangent modulus [6]. The loss d g g

of ellipticity condition thus determines both the ori- plicit, first order accurate) time integration for quasi-

entation of the discontinuity surface, and the stressa%t)'_c(lszlgr}gféf?o of cracking in rock. Integrating
state at which it nucleates. The deficiency with this
approach is that the loss of ellipticity condition is ATl — Ams(9C1OT 13
based on the elastoplasticity model with parameters " @ li 75(0G/0T )ni1 (14)
typically determined from homogeneously deform- nt1 =0 (14)

ing geomaterial specimens. Cracking and fracture are Aq = Aysh) (15)

wherec® is the elastic modulus tensaf? is the con-
tinuum elastic-perfectly-plastic tangent modulus ten-
sor, f is the yield function, and is the plastic poten-
tial function. For strong discontinuity, the main dif-



whereA(e) = (o),.1 — (o), andn + 1 is the current

time step. ; ;
At the moment, the EDE post-bifurcation consti- £ = \/Tt +(c—xtang)? — (¢ — T, tan ¢) = 0
tutive model is a Mohr-Coulomb yield model with (18)

exponential softening, while the CSE model has the

_ 2 _ 2 _ (o —
modification to include also a tension cap to its yield G \/Tt (= xtany)? — (¢ — T, tany))

surface [11]. X =Xr + (Xp — Xr) exp[—a (€] + €7)]
c=¢ 4 (¢, — ¢;) exp[—ac(€el + €2)]
4.1. Evolution equations with no  for EDE tan ¢ = tan ¢, + (tan ¢, — tan ¢,) exp(—aye?)
A Mohr-Coulomb  traction-displacement model tant) = (tan,) exp(—aye?)
with exponential softening used for the EDE is sum- t t
marized as € = / edt; e = / €, dt
0 0
* . 1 * .
F = |L|~(c—T;tang) = 0 (16 & = g7 (1T + T tan g) |
G = [T~ (c—T;tany) /
P 1 " P
¢ = ¢+ (¢, —¢)exp (—awys) ‘= ar (T,) ar,
t f
o= [ st 5s = cosid (8] = 2, i)
0
¢ = ¢p+ (¢p — &) exp (—ays) where(T,,) = (T,,+17,|)/2 is the Macauley bracket,

positive in tension, otherwise zerce? is only ac-
tivated when the tangential traction magnitydg
whereT* = (T,,—|T,|)/2 is negative for compressive exceeds the frictional valu& tan¢ in compres-

normal traction and zero in tension, and the vector ofsion, whileé? is only activated when there is tension
internal state variables (ISVs) is T,, > 0. The tensile strength and cohesion can de-

grade both under tensile (normal) and shear (tangen-
tial) plastic jump displacement, while frictioran ¢
and dilationtan v only degrade under shear.

Y= 1y exp (—ays)

g=[c ¢ v] (17)

Notice 45 is a shear-like plastic multiplier, as it is
related to the plastic jump displacement rate magnio. EMBEDDED DISCONTINUITY FINITE ELE-
tude( throughcos ¥, which for zero dilation) = 0,  MENT (EDE)

cosy) = 1, ands; = (. Subscript(e),. refers to resid-
ual value, ande), peak value. The material param-
etersa, a,, anday, control the rate of softening for
each internal variable. The implementation of this
model using an EDE formulation is discussed briefly
in Sect.5, with more details in [10].

This section summarizes an Embedded Discontinu-
ity finite Element (EDE) implementation using an as-
sumed enhanced strain (AES) method [5]. Further
details on the hexahedral EDE implementation are
found in [10]. This hexahedral EDE is used in plane
strain compression simulations in the Numerical Ex-
amples section. The summary focusses on the kine-

. . matics of the enhanced EDE, the resulting Galerkin
The Mohr-Coulomb model in Sect.4.1 is extendedform’ the yield check along”, and satisfaction of

to include a tension cap, and in turn parameters fot.qntinuous traction in time.
Mode | (tension) and Il (shear) fracture ener

andGZ!, respectively, following [11]. The equations 5.1 Reparameterization of displacement u" by in-
are summarized here as troduction of enhancement function f§ for EDE

4.2. Evolution equations with y for CSE

In an EDE implementation, we want to interpolate
compatible displacements at the nodes, while embed-
ding the jump displacement within the element, such
that the discrete representation of displacement field
u” is reparameterized as [6]



u' = (" + [[ut]] f5) + [w'] (Hor = f5)
= a"+a" (19)
@ —a+ [u'] f5

w' = [[u"]] (Hon — f§)
Mgh == HS}L - f§

whereh is the spatial discretization parameter [13],
a" is the compatible displacement,” is the en-
hanced displacemenfs is a smooth enhancement
function within element to ensure tha&" is com-
patible andM . is zero at the nodes of the EDE. We
interpolate the compatible displacement using stan-

dard finite element shape functions as

TNen

@"(&,1) = > Na(€)da(t) (20)

where¢ is the vector of natural coordinates and Figure 3. Embedded strong discontinuity linear hexahedral
is the number of element nodes, afidare the nodal finite element.

displacements. To complete the EDE formulation,

the enhancement functioft for a hexahedral ele- to a constant jump displacemepbver S* [6]), we
ment must be determined. For a trilinear hexahedratan write the Galerkin form as

element, various ways in which a planar strong dis- 1
continuity can cut the element are depicted in Fig.3.
The procedure for determining the active nodes, and St Jsh

thus the enhancement functigij are discussed in g4 the orthogonality condition with constayft
[10] and not repeated here.

ﬁh:ada—czo (24)

5.2 Galerkin form of traction-displacement model 1 / " ohda — ih H" ohdu (25)
Ash Sh

h
loc J Q.

We rewrite the yield function in (16) as
s which means we can write the Galerkin form as an
F = (pon):o-c=0 (21) integration over the volume of the element, allowing
p? = sign(T)t + (tan ¢)sign(T;)n us to use the stresses evaluated at the Gauss points to
calculate the tractiol” alongS™.
In summary, the complete Galerkin form written in
0 Tr>0 tension residual form is

sign(Ty) = { 1 Ty <0 compression (

where

R(o) = Vw":e"dv— [ @" - bdv
Applying the method of weighted residuals to (21), Qh Qh

expressing in Galerkin form [13], and dividing by _ " t7da = 0 (26)
Agn, we have

1
Agn

Fh'
1 A
r(o,q) = V—h/ Hh:adv—c:O(27)
/ n" [(;ﬁ’ ®n):o— c} da=0 (23) loc J QY

Sh

We will take advantage of the fact thats discontin-

. ~_h .
If we assignH = (u?®mn), and we assume weight- uous between elements, a result of the assumed en-
ing functionn” is constant oves” (which will lead  hanced strain implementation, and condense out (27)




when solving for the compatible displacements at the

nodes. Linearization for solution by the Newton-
Raphson method is summarized in [10].

5.3 Yield check along S
We calculate the trial yield value aloi&f by

1

Vh

loc

(H')"
Qh

loc

Ftr

o%dv — ¢,

where
- h
(H )tr — (u¢7L ® n)
plr = sign(T{)t + (tan ¢, )sign[(TF)"|n

If F'* > 0 there is yielding alongs”, and ¢ will
evolve. Otherwise, the internal variables andiill
be held fixed.

5.4 Continuous stressin time at bifurcation point

In order to ensure that the stress is continuous in tim

at the point of bifurcation, the peak cohesignis
calculated from (27) within an elemengs

dv

(28)

10(: Q.

whereV, is the localized element volumeé) . its
domain,H" its enhancement function multiplier, and
o, the converged stress from the past time step
before bifurcation was detected in the element

6. ELASTO-PLASTIC (EP) AND
RIGID-PLASTIC (RP) COHESIVE SURFACE EL-
EMENTS (CSE)

The elasto-plastic (EP) CSE finite element imple-
mentation follows directly from the weak form in
(5), while the rigid-plastic (RP) CSE implementa-

tion requires modification to include a Lagrange mul-

tiplier to enforce a constraint (no additional slid-

ing/opening) cohesive surface when plasticity is not

active.

6.1 EP CSE implementation

Taking the Galerkin approximation of the weak
form in (5), and introducing finite element interpo-

F'"'(d) = F;+ F,— F_.(d) (29)
FY(d) = A | (BT - o(d)da
e=17Q
F;= A (N9)T - bda
Nel
F, = A N@ T tds
Nel,cse
F.. = A Ncse -T"ds
where is the element assembly operator

over number of elements,;, IN¢ is the bulk el-
ement shape function matrix3 the bulk strain-
displacement matrix, anty “*“ the CSE shape func-
tion matrix. The CSE traction vector in the global
coordlnate Cartesian fran¥®" is related to the local
érameT through the orthogonal rotation matrix,
such thatl” = AT . T". The EP CSE local traction
vectorT is related to the jump elastic displacement
in the local frame through an elastic modulus matrix
K°¢ as, written in rate form,

T =K [[w] = K- ([]] - [&])
(30)
K¢ = |i kO:t k,on :|

wherek; is the elastic tangential stiffness, ahdthe
elastic normal stiffness. This stress rate equation is
integrated using Backward Euler, similar to the plas-
ticity equations in (13)-(15). When the stress-rate
equation is combined with these equations, the re-
sulting nonlinear equations are solved.at; for T,

q, andA~; using a local Newton-Raphson algorithm
on the following residual

Tpir — T, + AysK© - 0G)OT 1
R=| Aq— Avyshy,, =0
Fn+1
(31)

whereT',,, = T, + K° - A[q] is the trial CSE
traction in the local frame. Likewise, a local con-
sistent tangen®T'/d [@] can be derived (refer to

lation functions for the bulk continuum elements and[14] for more details), which fits into the global
CSEs, we have the nonlinear matrix finite elementconsistent tangent used to solve (29) using Newton-

equations for EP CSE

Raphson. Section 7 will present numerical examples
that demonstrate the application of these algorithms.



~ ~ tr

6.2 RP CSE implementation Toir =T, — AyK®-0G/0T, 1 in F,yy =0
to provide the initial value\vs, and only in the first

For RP CSE, elastic jump displacement is zero _ _ : it
global iteration of the first plastic time step. The elas-

[a°] = 0, such that the total jump displacement ¥~ . . :
equals the plastic jump displacemdnt] — [@]. tic stiffness matrixK® is not used beyond the first

When the trial yield functio” < 0, a constraint plastic step and first global iteration. Subsequent it-

must be satisfied to hold the cohesive surface rigicETalions use equations (34) to solve for the variables,
until F > 0. F' is calculated from the cohesive 2 is demonstrated in the numerical examples.

traction vector used to constrain the cohesize sur-
faces. These traction vectors will be the Lagrange/- NUMERICAL EXAMPLES
multipliers enforcing the constraint. The weak form
(5) is modified to account for the constraint in the
Cartesian coordinates

2D plane strain compression examples demonstrate
the aforementioned models and EDE and CSE im-
plementations. The EDE element is hexahedral, but
run in plane strain condition to compare to the CSE

h=[ul,, —[u],=0 (32)  2p plane strain implementations.
as The linear isotropic elasticity parameters for each
model are Young’s modulug = 1.5¢7Pa and Pois-
/ Vw : oda +/ n- (A+rh)ds son’s ratiov = 0.3. The plasticity parameters used
Q e for the EDE, and EP and RP CSE models are listed

— / w-bda+ | w-t°ds— / [w] - T'ds in Table 1. You \(vill notice that two values are used
Q T S for the elastic stiffnessels and k,, for the EP CSE
B hds =0 (33) exarr?plle, and in turn two vglues for the softening
S, coefficientsa, anda,.. The different values for the
o elastic stiffnesses were chosen to show the difference
wheren = oh andB = oA are the weighting func- i force-displacement response in Fig.5, while it was
tions, with A the Lagrange multiplier (cohesive sur- ¢ ng that in order to converge, lesser softening co-
face tractions when constraift = 0 is satisfied).  efficients were also needed when the elastic stifiness
Equations (33) lead to a coupled system of finite ele-y the EP CSE was reduced.
m_ent_ equations to so!ve using Newton-Raphson (_de- The meshes used for EDE and CSE examples are
tails in [14, 15]). Aside from the Lagrange multi- shown in Fig.4, with boundary conditions showing
plier to enforce the constraint, the main difference yescrined axial displacement, and lateral confining
between RP and EP CSE implementations is that thg,ressure of 20kPa. One trilinear hexahedral element
local equations to solve &t for T', g, andAys Us-  (wijth out-of-plane faces constrained in normal dis-
ing a local Newton-Raphson algorithm are the plas'placement) is used for the EDE example, while two

ticity equations expressed in residual form as bulk elastic bilinear quadrilateral elements and one
Ala] - A%@G/@Tnﬂ linear CSE element arg used for the CSE ex.ample.s.

R=| Aq— Avyshi,, —0 (34) For the parametgrs in T{.;lblell, the result!ng axial

Fru force versus prescribed axial displacement is plotted

for each example in Fig.5. For the EDE example,
The challenge with this implementation is encoun-there is an increase in stress after plastic yielding
tered during the first plastic time step (WhEH > 0 (commonly observed for plane strain loading with
is first detected at an integration point; we use nodakoftening), and then bifurcation detected (det 0)
integration forS" andS") and first global iteration, at~ 3700N/m, followed by a pronounced exponen-
when Avys = 0, which leads to non-unique solu- tial softening and residual stress value. The deformed
tion of T', g, and A~vs. To circumvent this diffi-  mesh at end of loading is shown in Fig.6(left). Note
culty, we usef,,; = 0 to provide an initial value that the discrete crack is not observed in the EDE
for A~; in the first plastic step and first global iter- deformed mesh, but its effect of shearing down and
ation, which is then iterated to reach its final con-to the left is observed, along with the softening re-
verged value at time,,;. We use the elastic pre- sponse. This is why we call such methods “embed-
dictor, plastic corrector form for the traction vector



symbol EDE EP CSE RP CSE
ks 1e9, 1e8 Pa/m - ¢
kn, 1e9, 1e8 Pa/m -
G} le4 J/m le4 J/m 30 Q4
Gy le4 Jin le4 J/m
Xp 15680 Pa 15680 Pa
Xr 0 0
Cp calculated | 9053 Pa 9053 Pa
r 0 0 0 EDE 20 kPa
®p 0.5236 rad| 0.5236 rad 0.5236 rad
o 0 0 0
Yy 0.087 rad | 0.087 rad 0.087 rad
ay 2e3, 2e2 2e3
Q. 5e2 1/m 2e3, 2e2 2e3
g 5e21/m | 9e2 9e2 ) A%
Qw, 5e2 1/m | 9e2 9e2
Table 1. Parameters for plane strain compression: post- T

bifurcation, exponential softening plasticity models. tblthat
the peak cohesiog, for the EDE is calculated from (28) in or-
der to ensure that the stress is continuous in time at bifiorca
This same value is used fop andy, = c,cot¢, inthe CSE 7@
models.

ded discontinuity” because you do not explicitly see ou
the crack splitting a bulk continuum element, but its
effect is felt by the element. On the other hand, for
the CSE examples, the CSE orientation and position
is a-priori defined as shown in Fig.4. For this exam-
ple, its location and orientation were chosen to match
that predicted by det = 0 for the EDE element (its
location is through the center of the element, and for ¢
this loading there is no preference for the two dis-
continuity normal angles solved by det= 0, so one
was chosen arbitrarily). The deformed mesh for EP1
CSE (similar for RP CSE) is shown in Fig.6(right).

There are three axial force versus prescribed axial
displacement curves shown in Fig.5 for the CSE. The
open circle curve denotes the RP CSE result, whiclFigure 4. (top) mesh with one EDE, and (bottom) mesh with
follows the EDE elastic loading curve exactly until two elastic FEs and one elasto-plastic or rigid-plastic CSE
plastic CSE is activated by > 0. The EP CSE

casek, = k; = 1le9Pa/m is nearly the same as the conclusion that although implementing an EP CSE is
RP CSE case, with slight difference in the elasticeasier than a RP CSE, care must be taken in choos-
loading curve. For another (apparently) large valueing %, andk;, if these are penalty parameters (no ac-
of elastic stiffness along the CSE, for EP CSE caseual elastic stiffness associated with the CSE since it
k. = k; = 1e8Pa/m, the elastic loading curve is no- is zero thickness). It is preferable to use a RP CSE or
ticeably different than the more stiff EP CSE case, theEDE, where such penalty parameters are not needed.
RP CSE case, and the EDE case. This supports ourhe resulting internal state variable (ISV) evolution

20 kPa
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Figure 5. Axial force versus axial displacement for EDE, EP
CSE (two sets of elastic parameters), and RP CSE.

post-bifurcation is shown in Figs.7-9. The evolution
of the tensile strength variable is not shown be-
cause it is not used in the EDE model, and thus for
the moment full comparison cannot be made betweel
the models. The evolution of ISVs is the same for EP
and RP CSE implementations, assuming the same p:
rameters are chosen.

Figure 6. Deformed meshes (solid lines) for EDE (left) and EP
CSE (right). Dashed lines show undeformed meshes.
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Figure 7. Cohesiom versus magnitude of plastic jump dis-

placement| [u?] || for EDE, EP CSE (two sets of elastic pa-
rameters), and RP CSE.
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Figure 8. Friction angle versus magnitude of plastic jump

displacemen} [u?] || for EDE, EP CSE (two sets of elastic pa-
rameters), and RP CSE.

8. CONCLUSIONS

The paper set out to provide an initial comparison
of two different ways to model cracking/fracture in
rocks: (1) Embedded Discontinuity Element (EDE),
and (2) Elasto-Plastic (EP) and Rigid-Plastic (RP)
Cohesive Surface Element (CSE). The EDE is inher-
ently RP. To compare the implementations related to
the numerical examples presented, we provide this
list:

1. orientation of crack cohesive surface in EDE
determined by loss of ellipticity (dek = 0),
and its location is chosen at the center of the
element, while in CSE the surface orientation



| | | e the CSE approach can resolve cohesive sur-
— embedded discontinuity faces between dissimilar materials, such as a
0.08® ___CseEP: kn = kt =1e9 N/m || . - ) s
0 _cseEPik =k =168 N/m S|I_t grain embedded in a clay matrix in a shale
I (Fig.1), whereas AES (as currently formulated)
cannot

D
Y o cse RP
3

o

o

>
:

o

o

a
:

In the future, we plan to use the two approaches
simultaneously in a multiscale modeling method to
predict fracture in rock, using RP CSE to resolve in-
terfacial cohesive surface strengths between grains
and matrix materials, and the EDE as the macroscale
o ‘ ‘ ‘ ‘ ‘ model of fracture to which to upscale the grain-scale

O PLASTIC JUMP DISPLACEMENT MAGNITUDE (mm) _ prediction by RP CSE. It is desired to simulate these
problems as quasi-static, thus the formulations and

Figure 9. Dilation angles versus magnitude of plastic jump implementations in this paper were presented for
displacementf [u*] || for EDE, EP CSE (two sets of elastic pa- quasi-static loading, requiring consistent tangents,

o

o

K
:

DILATION ANGLE (rad)
o
P
@

rameters), and RP CSE. etc, provided for nonlinear Newton-Rapshon solu-
tion. Forthcoming papers will expound on the details
and location is predefined of the finite element implementations, and numerical

o , o ~ examples with application to realistic fracture prob-
2. activation of discontinuity surface plasticity iS |ems in rocks.

governed by vyield criterion”” = 0 for both

EDE and CSE (EP and RP) models 9. ACKNOWLEDGEMENTS
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