Concurrent multiscale computational modeling
for densedry granular materialsinterfacing
deformable solid bodies

Richard A. Regueiro and Beichuan Yan

Abstract A method for concurrent multiscale computational modetifimterfacial
mechanics between granular materials and deformablelsotieks is presented. It
involves two main features: (1) coupling discrete element laigher order contin-
uum finite element regions via an overlapping region; andr{@lementation of
a finite strain micromorphic pressure sensitive plastioigdel as the higher order
continuum model in the overlap region. The third main feat@daptivity, is not
currently addressed, but is considered for future workglgiphase (solid grains)
and dense conditions are limitations of the current modekixtensions to multiple
phases (solid grains, pore liquid and gas) are part of fulumd. Applications in-
clude fundamental grain-scale modeling of interfacial hagics between granular
soil and tire, tool, or penetrometer, while properly reprasg far field boundary
conditions for quasi-static and dynamic simulation.

1 Introduction

Granular materials are commonly found in nature and inghigbrocesses, and
are composites of three phases: solids, liquids, and gégedimit the modeling
currently to single phase (solid grains) and dense maseféslerage coordination
number~ 5). Examples include metallic powders (for powder metghir phar-
maceutical pills, agricultural grains (in silo flows), dmils (sand, silt, gravel), and
lunar and martian regolith (soil found on the surface of thmoland Mars), for in-
stance. We are interested primarily in modeling the graimaaro-continuum scale
response in the large shear deformation interface regitwea® a granular mate-
rial and deformable solid body. Such interface can be betaegranular soil (e.g.,
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sand, Fig.1(a)) and a tire(Fig.2(a)), tool (e.g., buckeg,Xb)), or cone penetrome-
ter (Fig.1(b)).

(a) image courtesy of Khalid Alshibli, (b) [1]
Louisiana State University

Fig. 1 (a) Sand grains at 15Q (b) Cone penetrometers.

Granular materials remain an unmastered class of materidgdgegard to mod-
eling their spectrum of mechanical behavior in a physiehlged manner across
several orders of magnitude in length-scale. They may itiansn an instant from
deforming like a solid to flowing like a fluid or gas and vice s&rExamples of such
physical transition are the flow of quartz grains around dtletip of a driven cone
penetrometer penetrating sand, the shoveling of sagulavelby a tractor bucket,
and the flow of agricultural grains from the bulk top regiorotigh the bottom chute
in a silo, for instance. These examples each involve mategéoons where relative
neighbor particle motion is ‘large’ (flowing like a fluid or glpand regions where
relative neighbor particle motion is ‘small’ (deformingédi a solid).

It is too computationally intensive to account for the gragale properties and
intergranular constitutive behavior within a physicsdxhsimulation (e.g., discrete
element (DE) model) to understand fundamentally the mackama large shear de-
formation interface region between deformable solid bedied granular materials.
Grain-scale properties include grain size, shape, sghenicorphology, stiffness,
strength, and surface friction, while intergranular c@ostve behavior accounts for
contact behavior and grain fracture/crushing, for instahtigh fidelity particle DE
computations that account for these features are expemsy@ring their applica-
tion be restricted to regions of large shearing at the iaterbetween granular media
and a solid body. Boundary effects on the outer simulatiamblaries of an assem-
bly of particles interacting with the solid body will rendéire computational re-
sults questionable, because fictitious forces and wavectiefites will occur at these
outer boundaries of the box of particles, thus influencing mumerically-artificial
manner the actual interface-region mechanics (see sectignTo resolve the issue
properly, it is necessary to introduce multiscale methbds ¢orrectly combine (1)
efficient finite element (FE) and/or meshfree based contmmethods used in re-
gions where phenomenological constitutive relationshigsaccurate, with (2) DE
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(a) Mars exploration rover: tire interaction with (b)rloader Bucket scooping gravel
Martian soil (photo source NASA) (www.dymaxinc.com)

Fig. 2 (a) Soil-tire, and (b) soil-tool interface problems.

models used in regions where granular physics must be epszbaccurately (e.g.,
in the granular soil-tool, soil-tire, or soil-track intade region). The use of multi-
scale methods offers immediate payoff because the feweredésparticles needed
to simulate the interaction, the faster physics-basedlaiious can be conducted.
As a result, more “what-if” scenarios can be simulated andemumcertainties in
grain-scale material parameters can be investigated bylaiion, providing “er-
ror bars” on the physics-based simulation results. To miagertultiscale approach
feasible for granular media, an open research question beuatidressed: how to
maintain a fundamental granular physics representatitimeitarge shear deforma-
tion interface region as the solid body shears through thaldar material. At the
heart of the question is how to achieve adaptability and lbogf the computa-
tional scheme to convert from continuum to particle repmétgon around the solid
body, as it shears through the granular material, and parfarticle to continuum
conversion in spatial regions where particles are lessretea have stopped flow-
ing, and thus a continuum representation is appropriate.

Therefore, the focus of the current research is to bridgane@ale properties
and mechanics to the macro-scale continuum behavior irga Erear deformation
interface region between a deformable solid body (e.g.ahsebop, rubber tire, or
metal track) and densecohesionless granular material (e.g., dry sand or grafel).
multiscale approach is presented to provide fundameniaipdrbased simulation
consisting of (i) FE or rigid body mechanics for the solid pqdcoop/tire/track)
and DE for the granular material in the large shear defoonatiterface region (cf.
Fig.3), and (ii) FE-DE for the representation of the granuhaterial in the tran-
sition/coupling region. The transition (overlap regiortlie Fig.3) provides proper
boundary conditions (BCs) on the physics-based computatitiscretization (i.e.,
proper BCs on the DE simulation region).

Ultimately, a fundamental understanding of granular ptg/gnteracting with a
solid body can lead to improved design of devices for granstdé-machine tool
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Fig. 3 lllustration of adaptivity and coupling. In (a), a defornhalbr rigid solid body approaches
the granular material, and in (b) it begins to shear/petestree granular material in the DE particle
region. In (c), the solid body has sheared the particle regimugh that the FE mesh is re-meshed
adaptively and the particle region is extended. Adaptigtgddressed in future work.

and soil-tire interaction, anthe interpretation of granular soil-penetrometer shear
resistance interaction

1.1 Motivation: artificial boundary effects

A penetration test is simulated quasi-statically to dertraies artificial boundary
effects on a DE simulation. Thegenetratoris modeled using a larger ellipsoidal
particle, and the boundaries are composed of fixed spheyardicles, shown in
Fig.4. Three different-sized containers are used, numbegoal-sizedparticles
being 2760, 4260 and 6088, respectivalith ellipsoidal particle radii 5 x 2.0 x
1.5mm Parameters for the DE simulation are shown in Table 1.

Table 1 Parameters of particles and numerical computation.

Young’s modulusE (Pa) 2.9x 107
Poisson'’s ratiov 0.25
specific gravityGs 2.65
interparticle coef. of frictioru 0.5
interparticle contact damping ratid 5%

particle radii (m) 0.0015~ 0.0025
background damping ratio dynamic relaxatiop
time step/At (sec) 50x10°°

The vertical force-displacement curves are plotted inK©.for thepenetratopar-
ticle. It can be found that theenetratoforce increases as penetration increases. For
a smaller container, the force has a larger value because dfdundary effect, as
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Fig. 4 Cross-sectional view of penetration, and force-displaa@nsurves.

expected. The question then becomes how to make the sh&fidgmain around
a deformable solid body as small as possible without intcodyartificial boundary
effects. This is the overall goal of the research.

An outline of the remainder of the chapter is as follows: isec? provides a
literature review; 3 a summary of balance equations for &iglarand micropolar
continuum representation of a granular material and treipting [2]; 4 a method
for coupling DE to FE facets [3] and numerical example; 5 amany; and 6 men-
tion of ongoing and future work.

2 Literature Review

The literature reviewbriefly covers work done on micromechanical modeling for
granular materials, and computational methods for cogpdarticle and continuum
representations of granular materials.

2.1 Micromechanical continuum models for dense dry granula
materials

Apparently Reynolds [4] was the first to study granular miaterat the grain
scale, and coined the term “dilatancy” in the process. Gtli@towed [5, 6] with

attempts to relate continuum concepts like stress andnstoaigrain-scale be-
havior. Conferences were held to focus on micromechanicaleling of granu-



6 Richard A. Regueiro and Beichuan Yan

lar materials (this is not a complete list) [7, 8, 9, 10, 11lheTdevelopment of
continuum relations like stress-strain equations basethimnomechanical mod-
els of granular materials has spanned nearly five decades@mntthues today

[12, 13, 14, 15, 16, 17, 18, 19, 20]. These micromechanidadised models at-
tempt to bridge the grain to continuum scale mechanics ofideat materials within

the framework of continuum mechanics and constitutive theeurthermore, it has
been proposed for granular materials composed of cohes®tiff particles (like

spherical glass beads) to enhance the continuum to acomupaéfticles displace-
ments and rotations (and couple stresses), in essencedegeyradient and mi-

cropolar continuum models of granular material based omggeale mechanics
[21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. Many of these aggres consider
only elastic deformation of particle assemblies (no breglof existing particle

contacts and slippage at contacts), small strain kines)atfherical particles, and
rotational degrees of freedom (i.e., micropolar; excegt 26, 28] who included

higher-gradient terms).

The micropolar theories applied to stiff, cohesionlesdipalate materials have
gained popularity based on the microstructural obsemdtiat in addition to par-
ticle translation and sliding, the particles may rotate amitl It is not sufficient
to limit the kinematics of the ‘microstructural view’ (reggentative volume) of a
single particle or cluster of particles to rigid rotationrépresentative microscopic
volume of granular material—whether the particles arelgemyid or deformable—
will exhibit not only micro-rotation but also micro-shearcamicro-stretch (micro-
dilatation and micro-compaction). Such additional degretfreedom within the
mathematical framework for micromorphic continuum thesrj32] give more re-
alistic bridging kinematics between deformable and rigidtigle mechanics and its
continuum representation than a micropolar theory woutdigle.

2.2 Computational particle/continuum coupling

As continuum micromechanical models were being developethy recognized
the role computers could play in simulating the discretdngsaale response of
granular materials. Such an approach has been called a®igtement Method or
Discrete Element Method (DEM) [33, 34, 35, 36, 37, 38, 39, @@}t a complete
list). Certain DEM approaches model directly the physicalmysize of the material,
while others approximate the continuum as an assembly titfes approximating
the continuum response discretely, wherein the particdes hrbitrary size and thus
provide an arbitrary internal length scale. Few approablags coupled DEM and
FEM for modeling deformation and flow of dense dry granulatarials accounting
for the physical particle size, i.e. truly micromechanligabupled models [41, 42,
43, 44]. These methods approach the coupling issue, hoyas/arcontact/interface
problem between discrete particles and finite element$a®d not as overlapping
regions of the same material, which an approach couplintickand continuum
representations of the same material should do. Examplkasobf approaches have
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been demonstrated for coupled atomistic-continuum regjd8, 46, 47]. Section
3.3 shows the extension of the approach by Klein and Zimme## to coupled

overlapping particle and continuum regions, wherein $igant differences have
mainly to do with the DE representation of particlegth rotation and frictional

sliding, as opposed to molecular dynamics for atoms) and inelastiomorphic

constitutive model for the continuum (and its associatedriRilementation). The
approach by Xiao and Belytschko [46] is also being considlengnich could be

somewhat simpler to implement.

Unit cell methods like that by Feyel and Chaboche [48] prevéadmethod to
up-scale underlying micromechanical simulations (suclDB} to a macro-scale
simulation (such as FE). Belytschko et al. [49] extendedntie¢hod to modeling
fracture. They recognized the complexities and limitaioh unit cell methods as
they are currently formulated, implemented, and applieyeF[50] stated that, in
addition to the periodicity assumption for the micro-strue (impossible to model
localized deformationthe mechanical response near boundaries was not modeled
properly.As a result, these methods are not well suited for modeliagriterfacial
mechanics of soil-tire, tool, or penetrometer interfacaditons. The overlaying
FE mesh would quickly become too distorted and require naotis remeshing,
aside from the fact that the grain-scale DE mechanics woelohftuenced by the
overlaying continuum mechanical response (through thtaiptng). The methods
are useful, however, in up-scaling fracture or shear banidia material, but not for
interfacial mechanics, as far as we can tell.

3 Particle and continuum representations and their coupling

The balance of linear and angular momentum equations aseed for particle
and continuum representations of a dense dry granular imlat&istrategy for cou-
pling these equations within an overlap region (Fig.6) imswarized in section 3.3.

3.1 Particle mechanics and Discrete Element Method

The balance of linear and angular momentum for a systestifbelasticparticles
in contact may be written as [33]
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whereMQ is the mass and rotary inertia matrix for a syster‘Nqn‘articles,m‘(sg is the
mass and rotary inertia matrix for partiade m; is the mass matrix for particlé,

| 5 is the rotary inertia matrix for particlé, Agzl is an assembly operator to obtain
the system matrices from the individual particle matriaes eontact vector&€® =
aM® the mass and rotary inertia proportional damping matrixitoportionality
constant (used in a dynamic relaxation solution method for quadiespaoblems,
but otherwise set to zerdf' N the internal force and moment vector associated
with n¢ particle contacts which is a nonlinear function of partiilgplacements and
rotations when particles slide with frictiori,'é'\”’Q the resultant internal force and

moment vector for particl®, f&° the internal force vector for partick® at contact

g, r£9 x 82 the internal moment vector at the centroid of partitiéue to force at
contacte with moment arnt€:3, FEXTQ the assembled external force and moment
vector, f 572 the external body force and moment vector for part|é=* % the

external body force vector at the centroid of partiﬁ:]&and£EXT’5 the external body
moment vector at the centroid of partideQ is the generalized degree of freedom
(dof) vector for particle displacements and rotations

Q:[q57q5a"'7qn765ae£7"'aer]]Ta 57*‘:,---7’76@7 (2)

whereq; is the displacement vector of partiad 8 its rotation vector, and? is
the set of free particles. In general, a supersd@tenotes a variable associated
with particle motion, whereas a supersciipwill denote a variable associated with
continuum deformation. Further details of assembling tlarices and vectors in
(1) from the individual particle and particle contact cdmitions are not given here,
as they are well established in the literature.

With regard to putting the particle mechanics and DE impletaitgon into a form
amenable to energy partitioning in the coupled particletiomum overlap region,
we consider an energy formulation of the balance equatisingjlLagrange’s equa-
tion of motion. It may be stated as

g(aT_Q) aTQ IFQ aUQ_FEXTQ
0Q Q" 9Q = 0Q

whereTQ is the kinetic energyk? the dissipation function, and® the potential
energy, such that

®3)
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Fig. 5 Material pointsP(X, =) and p(x, &,t) in reference and current configuration® and %,
respectively, centroids of macro-eleméhtand ¢ and micro-elemen€’ and ¢, relative micro-
element position vector& and &, differential macro-element volume#/ and dv and micro-
element volumesV’ anddv. Because of linear kinematics assumptiafy, ~ %, etc.

. . Q
TQ= %QMQQ, FR=aT?, u?Q) :/ FINTQ(g)ds (4)
Jo
The dissipation functioff Q is written as a linear function of the kinetic enefgy,
which falls within the class of damping called Rayleigh damgp(pg. 130 [51]).
Carrying out the derivation in (3), and using the Second omehtal Theorem of
Calculus fordU®/0Q, leads to (1).

3.2 Micropolar continuum and Finite Element Method

Following the formulation of Eringen [52], we present thédmee of linear and an-
gular momentum equations and finite element formulatioafmall strain microp-
olar continuum (i.e., stiff particles with small frictiohsliding in overlap region).
For clarity of presentation, index tensor notation is used Cartesian coordinates
are assumed.
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The kinematics are reviewed in Fig.5. A micro-element défeial volumedyv’
(anddV' in reference configuratidiis located by a relative position vectéy from
the centroidc of the macro-element material point with positinpin the current
configuration (and relative position vectak from the centroidC of the macro-
element material point with positioXx in the reference configuration). A micro-
deformation tensoxyk relates the reference to current relative position veasrs
&k = Xk (X,1) =k (summation of repeated indicisplied). For small strain microp-
olar kinematics, the micro-deformation tensor takes tmefo

Xkk = Ok + Exmk P 5)

where d is the Kronecker deltaggk is the permutation tensor, anjy, is the
micro-rotation vector in the reference configuration. Tite® micro-element rela-
tive position vector becomes

&k = Ak =k + &k Pm =k (6)

Because of linear kinematics, the reference and curreffigtoation micro-rotation
vectors are approximately equgl~ ®, where¢y is the micro-rotation vector in
the current configuration. Equation (6) states that a méteoaent relative position
vectoré at the deformed macro-element centroid denoter (@f. Fig.5), involves
a parallel translation o and rotation througi® x = (wherex is the vector cross
product). Refer to Eringen [52] for more details.

The balance equations for linear and angular momentum mayitien as

Oik| +pbx—pVk = 0 (7)
M| + EmnOm + Pl — PP = 0 8)

where gjk is the unsymmetric Cauchy stress tensor over batjyp is the mass
density,by is a body force per unit masg is the spatial velocity vectomyy is the

unsymmetric couple stressqm is the permutation operatdfy is the body couple
per unit massfk is the intrinsic spin per unit mass, indickd,--- = 1,2,3, and

(e)) =0d(e)/dx denotes partial differentiation with respect to the spatardinate
X . The micro-gyration vectow, for linear kinematics is written as

vi=o,v=4¢ ©)

Introducingwy andny as weighting functions for the macro-displacement vector
ux and micro-rotation vectogy, respectively, we apply the Method of Weighted
Residuals to formulate the partial differential equatiamg7) and (8) into weak
form [53]. The weak, or variational, equations then ressilt a

1 Because of the assumption of linear kinematics, smallimstatand strains, the reference and
current configurations are nearly the same.
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/ PWiVidv + / Wy Ojkdv = / pwWbydv + / witkda (10)
J % JB J % It

/ PNkBdv+ / N Mdv — / NkEknn O dV = / pnkbedv -+ / Nkreda
J B J % B B Jr
(11)

whereZ is the volume of the continuum body,= gjkn; is the applied traction on
the portion of the boundarfy with outward normal vectan, andr, = mn, is the
applied surface couple on the portion of the boundary

The weak equations (10) and (11) may be approximated in @alarm [53],
whereby the discretization parameteimplies a discrete apprOX|mat|on in this
case finite element discretization. Introducing shapetfans N} and Nb for the
macro- d|splacememﬂ2 and micro- rota‘uor'(lJk vectors, respectively, and assuming
the micro-inertia is approximately constant for smallisiseand rotations (microin-
ertia jjk is nearly constant, anﬂi‘ ~ j|k¢|h), we may write the interpolations and
derivatives as

Nkn Nén )

U =Y Nidka) . K= 5 Nidyq (12)
a=1 a=1
Nen Nen

Wi = > NaC) ; W, = > (N3),iCa (13)
a=1 a=1
ng’n ngn

o=y NS Qo) > B = > Ng Qo) (14)
b=1 b=1
né, nd,

=S N = (N 15

M= Noep)» M= (Ng) e (15)

b=1 b=1

wheredy,) is the displacement vector at noaeg y, is the rotation vector at node
b, cy(a) is the displacement weighting function vector at nadey, is the rotation
we|ght|ng function vector at nodg ng, is the number of element nodes associated
with interpolating the continuum macro- d|splacementuecandnen is the number
of element nodes associated with interpolating the contimmicro-rotation vector.
It is assumed that the shape functions and integrals aressgua in natural coor-
dinates for an isoparametric formulation, but such detaits omitted and can be
found in the textbook by Hughes [53]. Substituting theserapimations into the
Galerkin form, accounting for essential boundary condgicand recognizing that
the nodal weighting function values are arbitrary (excepére essential boundary
conditions are applied, and nodal weighting function valaie zero), we arrive at a
coupled matrix form of the linear and angular momentum bedaquations as

MUd+F'NTU(d, @) = Fp+Fy (16)
M?@+F'NT9(d, ) = F/+F, (17)
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where matrices and vectors are assembled from their elecoatributions using a
finite element assembly operator [53] as

Ne

MU= A m*, m* = p(N&YTNeUdy (18)
74
Ne|
M? = A me? ’ ms? — p(Ne*‘p)TjNe*‘Pdv (19)
s
e=1

Nel
FINTU(d, @) — A feINTU geINTu _ / (BeY)T g (d®, ¢°)dv (20)

(7S]
e=1 7z

Ng|
FINT.¢ (d, @) = A f§eINT.¢ (22)

e=1

fe,INT,dJ :/ (Be*¢)Tm(de7 q’e)dV— / (Ne’¢)T05(de, q’e)dV
K J e

Fb_AfeEXTu feEXTu_/ p(N&Y)Tbdv (22)
e—l
EXT, EXT, ' s
Fo= Afe 0 fOEXTO _ @ep(Ner‘P)Tédv (23)
ne| Ne| g ¢
Fi= (N8 Ttda, F, = N?)Trda 24
t A e r A Jr (N (24)

whereA”e' is the element assembly operatay, is the number of elementhly,
Ng’, i, By, o, d® ¢° Be, m, o€, b, ¢, t, andr are the element matrix and vector
forms of N3, Nﬁ’ Ji (N3).1s Giks diays Aoy (N) 1, Mk, EmGimn, bk, i, t, andry,
respectively.

Introducing a generalized nodal degree of freedom vedatdine coupled microp-
olar linear and angular momentum balance equations areewas

MDI':')+F|NT,D(D):FEXT,D (25)
MY 0 d
D _ —
v =[S wr| o=
FINTu Fp+Fi+F
INT,.D _ EXT,D _ b t
P {F'NW] s {FHFHLFH (26)

With regard to putting the continuum micropolar mechanieg finite element
implementation into a form amenable to energy partitionimniipe coupled particle-
continuum overlap region, we consider an energy formutatiothe balance equa-
tions using Lagrange’s equation of motion. It may be stated a
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(27)

d (912 oTP N oF® N ou® _ FEXTD
dt \ D ob oD Jb

whereTP is the kinetic energykP the dissipation function, andP the potential
energy, such that

. . D
TD:%DMDD, FP=o, UD(D):/O FINTP(s)ds (28)

Carrying out the derivation in (27) leads to (25), assumioigstant inertiaM®.

3.3 Coupling method

An aspect of the computational concurrent multiscale nindelpproach is to cou-
ple regions of material represented by particle DE to regafimaterial represented
by continuum FE. Another aspect is to bridge the particlelmaats to a continuum
representation using finite strain micromorphic plasti¢gee [54, 55]), whereas
the small strain micropolar continuum is a simple approxiomaof stiff particles
with small frictional sliding in the overlap region. The qaing implementation
will allow arbitrarily overlapping particle and continuuragions in a single “hand-
shaking” or overlap region such that fictitious forces angeuvaflections are mini-
mized in the overlap region. In theory, for nearly homogersedeformation, if the
particle and continuum regions share the same region g@re.completely over-
lapped), the results should be the same as if the overlaprrégia subset of the
overall problem domain (cf. Fig.6). This will serve as a fetbenchmark problem
for the numerical implementation. The coupling impleméntaextends to particle
mechanics and micropolar continuum the “bridging scaledgmsition” proposed
by Wagner and Liu [45] and modifications thereof by Klein anchzerman [47]
(see references therein for further background on thesmistic continuunmeth-
ods).

3.3.1 Kinematics

Here, a summary of the kinematics of the coupled regionsvisngifollowing the
illustration shown in Fig.6. It is assumed that the finitenedet mesh covers the do-
main of the problem in which the material is behaving morédslike, whereas in
regions of large relative particle motion (fluid-like), arflele mechanics represen-
tation is used (DE). In Fig.6, discrete domains are definech as the pure particle
domain (no overlapping FE mesh) &°F, the FE domain#" = 2"u %" U %",
where#" is the overlapping FE domain where nodal dofs are complgtelgcribed
by the underlying particle DE#" the overlapping FE domain where particle DE
motions and nodal dofs are prescribed and free nodal do$s, exid" the pure
continuum FE domain with no underlying particles. The gedbihave the overlap
region#" U %" as close to the region of interest (e.g., penetrometer bkicket,
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continuum region (FE)

partlcle region (DE)

Q o free particles

Q e ghost particles (particles whose motion is prescribed
by continuum displacement and rotation fields)

D e finite element nodes whose motion is unprescribed

6 O finite element nodes whose motion is prescribed
by underlying particles

Fig. 6 Two-dimensional illustration of the coupling between metand continuum regions. The
purple background denotes the FE overlap reg?ﬁhwnh underlying ghost particles, aqua blue
the FE continuum reglotﬁh with no underlying particles, and white background (witkoven
particles) the free particle regio®" U #PE. In summary, the finite element domaia” is the
union of pure continuum FE domais", overlapping FE domain with underlying ghost particles
%", and overlapping FE domain with underlying free particiy such thawz" = 2" U %" U 2",
The pure particle domain with no overlapping FE domain isdatid byZ°F.

or tire tread) as to minimize the number of particles, and tamputational effort.
Following some of the same notation presented in [47], wendefigeneralized dof
vectorQ for particle displacements and rotations in the system as

é: [qa7qﬁu"'7qyueaaeﬁ7"'79V]T7 auBu"'aye"J (29)

whereq,, is the displacement vector of partiale 8, its rotation vector, and” is
the set of all particles. Likewise, the finite element nodsppthicements and rotations
are written as

D=[dady,....dc,@q, P, ..., P5]" (30)

wherea,b,...,ce Jl;, de....fe //Z d, is the displacement vector of node
@, is the rotation vector of node, /" is the set of all nodes, and” is the set of
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finite element nodes with rotational degrees of freedom rethé C 4. In order
to satisfy the boundary conditions for both regions, theiomobf the particles in
the overlap region (referred to as “ghost particles,” c§.6) is prescribed by the
continuum displacement and rotation fields, and written as

6: [qavqﬁa"'7queaaeﬁ7"'7eV]T7 ava---aVE "Q?\? "Q/{\E {@h (31)
while the unprescribed (or free) particle displacementsratations are

Q=1(05.9;.....9,.05.0¢,....6,]" , S&,....ned, o cBUB" (32)

where 7 Uo7 = o and.«/ N« = 0. Likewise, the displacements and rotations
of nodes overlaying the particle region are prescribed leyphrticle motion and
written as

6 = [daadbv---adC7¢d7¢ev---a¢f]T (33)

wherea,b,...,ce J17\, de....fe /Z{\,J?\,///Z\e P U %", while the unprescribed
(or free) nodal displacements and rotations are

D:[dm,dn,...,ds,%,¢u,...,¢V]T (34)

wheremn,....s€ N tU,...NEMN , M E B VB, NVUN =N, VN
N =0, M0M =.4,and. 4N =0. Referring to Fig.6, the prescribed particle
motions@ can be viewed asonstrained boundary particles the free particle
region, and likewise the prescribed finite element nodalldeements and rotations
D can be viewed asonstrained boundary nodes the finite element mesh in the
overlap region.

In general, the displacement vector of a particlean be represented by the finite
element interpolation of the continuum macro-displacetfieid u" evaluated at the
particle centroiky, such that

WX, t) = 5 NY(Xa)da(t) e (35)

ac. N

whereN} are the shape functions associated with the continuumadispient field
u". Recall thatNY have compact support and thus are only evaluated for pesticl
with centroids that lie within an element containing nadm its domain. In DE,
particle dofs (translations and rotations) are tracketi@ptrticle centroids, as are
resultant forces and moments (from forces acting at cos)tefevr example, we can
write the prescribed displacement of ghost particias

Q) =U"(Xa,t) = T Ni(Xa)da(t) a €/ (36)
ac NV

Likewise, particle rotation vectors can be representedbyfihite element interpo-
lation of the continuum micro-rotation fiei" evaluated at the particle centroigl,

such that o 0 .
" (Xq,t) = ZVNb (Xa)Pp(t) aeof (37)
be.#
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whereNg’ are the shape functions associated with the micro-rotéitxoh ¢". For
example, we can write the prescribed rotation of ghost@ari as

0a(t) =9"(xa ) = 5 N (Xe)@, aE (38)
be.#
For all ghost particles (cf. Fig.6), the interpolations tenwritten as
Q= N@DD+N66D (39)

WhereNQD andNéﬁ are shape function matrices containing individual nodapgh

functionsN} and Ng’, but for now these matrices will be left general to increase
our flexibility in choosing interpolation/projection futiens (such as those used in
meshfree methods). Overall, the particle displacements@tations may be written

as
o)~ nanee) lo] (5]

{Q} lNQD N@s] ] |o “o
whereQ' is introduced [47] as the error (or “fine-scale” [45]) in thdrpolation
of the free particle displacements and rotati@ysvhose function space is not rich
enough to represent the true free particle motion. The shapgion matricedN
are in general not square because the number of free particenot the same
as free nodes and prescribed nodes, and number of ghostlgmribt the same
as prescribed and free nodes. A scalar measure of error ficlpatisplacements
and rotations is defined as [4&} Q’ -Q/, which may be minimized with respect
to prescribed continuum nodal ddBsto solve forD in terms of free particle and
continuum nodal dofs as

D=MgN{5(Q—NooD), Mgs=NisNys
This is known as the “discretized, projection” [47] of the free particle motio@
and free nodal dof® onto the prescribed nodals ddds Upon substituting (41)
into (39), we may write the prescribed particle d@sin terms of free particl®
and continuum noddD dofs. In summary, these relations are written as

(41)

Q= BgoQ+BgpD . D = By Q-+ BspD (42)
where

Bao = NanBoo+ Bap = Nap + NooBsp 43)

Boo =MppNos + Boo = ~MpsNosNer

As shown in Fig.6, for a finite element implementation of tdef coupling, we
expect that free particle dof@ will not fall within the support of free continuum
nodal dofsD, such that it can be assumed tNafp = 0. The assumptioNgp # 0
would be valid for a meshfree projection of the particle mo$to the FE nodal dofs,
as in [47], where we could imagine that the domain of influeoicthe meshfree
projection could encompass a free particle centroid; thigedeof encompassment
would be controlled by the chosen support size of the meslki&enel function. The
choice of meshfree projection in [47] was not necessarilglimy Q be projected
to D (and vice versa), but to remove the computationally cosdlgwdation of the
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inverseM =% in (42). Since we will also be using the Tahoe code tahoendia.gov
for the coupled multiscale particle-continuum impleméinta where the meshfree
projection has been implemented for atomistic-continuaupting [47], we will
also consider the meshfree projectinfuture implementations

3.3.2 Kinetic and potential energy partitioning and coupling

We assume the total kinetic and potential energy and dissipaf the coupled
particle-continuum system may be written as the sum of tleegies

T(QD) =TQ.QQ.D) +T°(D.D(Q)
U(Q,D) = U%(Q.Q(Q.D))+U®(D.D(Q))
F(QD) = FAQQ(Q D) (44)

where we have indicated the functional dependence of theepbed particle mo-
tion and nodal dofs solely upon the free particle motion aodah dofsQ andD,
respectively. Note that the dissipation functi®r= FQ only applies for the particle
system, and only for static problems (dynamic relaxatiorsipiilation). For purely
dynamical problemdsQ = 0, and there is only dissipation in the particle system if
particles are allowed to slide frictionally, and the cootim has plasticity or other
inelastic constitutive response. Lagrange’s equationsthen be stated as

d (oT\ 0T oF ou

SO )0 O O _pEXTQ

i (5) 70+ 56" 90

d (0T\ OT OF 0U _erp

it (ab) b ab D " (45)

which lead to a coupled system of governing equations (fiaea angular mo-
mentum) for the coupled particle-continuum mechanicshéf potential energy
is nonlinear with regard to particle frictional sliding amdcropolar (or micromor-
phic) plasticity, then (45) may be integrated in time an@éirized for solution by
the Newton-Raphson method. The benefit of this multiscalthok as pointed out
by Wagner and Liu [45], is that time steps are different fer BE and FE solutions.
A multiscale time stepping scheme will follow an approachikr to [45].

4 DE-FE facet coupling

This section describes a preliminary method for couplingtDEEE codes, in this
case through a single layer of ghost particles tied to FEt$addnis is a code com-
munication exercise, to ensure that ELLIP3D [3] can commate with Tahoe, the
DE and FE codes used in the coupling.
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4.1 DE-FE facet coupling method

A simple granular-continuum coupling scheme is used ihjtidlustrated in Fig.7.
The FE mesh does not cover the entire domain. Instead, thead-BB& regions only
overlap through a single layer of particles. This layer afigkes is embedded on the
surface of the FE domain with centroids constrained to FEt&aand deform with
FE mesh. We call these particles “ghost” particles, as domtdamistic-continuum
coupling methods. Theoretically, the ghost particles campmrise multiple layers
and extrude into/overlap with the FE mesh, but this is leftfidure work [2]. No
energy partitioning is currently considered. Only force &mematics are commu-
nicated between the FE and DE regions through the single &fyghost particles
constrained to follow the motion of the FE facets to whichythee tied.

free particles

‘ ‘ ghost particles

Fig. 7 Schematic illustration of granular-continuum coupling.

Depending on the FE type, the ghost particles may or may niottaia rotational
degree of freedom. Ideally, when a micropolar or micromarglontinuum model
is used within the FE region, the ghost particles will haveational degrees of
freedom. If conventional FEM is adopted (like in this segjiathe ghost particles
have constrained rotational degrees of freedom. Freecfemtin the DE domain
carry both translational and rotational degrees of freedom

The computational framework involves a two-way exchangafofmation: free
particles in the DE simulation contribute to the boundamgéoin the FE domain
through ghost particles, the FE domain provides infornmatieeded to compute the
boundary condition on the free particles through ghostgestas well. The gran-
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ular and continuum scales run simultaneously and exchaglgeant information
dynamically.

The ghost particles can be placed in such a manner that #rginogds are exactly
located on the surface FE facets. As ghost particles areatiisin space, the forces
are discrete in space as well. Each force acts like a poidtdoathe FE mesh, not
necessarily acting at a finite element node. When a poine®m@cts in the interior
(including boundary) of the element domain, the relatiotwleen the distributed
forceb(x) at pointx and the point force can be denoted mathematically as

b(x) = P5(x—a) (46)

whered(x — a) is the Dirac delta function arxl= a the location of force actioR.
The Dirac delta function has the property that for any veftioctiong(x)

_ [og(a),acQ
/Q g(x)0(x—a)dx = { 0, otherwise (47)

Thus the external nodal forces on an elenesatising from a point forc® ata can
be obtained by
e [ NeT _ [ NeT _ _ NeT(a)P, ac Q€
fe— /Qe NeT (x)b(x)dv = /Qe NeT (x)P3(x — a)dv = { 0 2 s (48)
whereN€ is the matrix of finite element shape functions for eleneefixtending it
to all finite elements over the entire domain we have

f=N"P (49)

When the FE mesh deforms, the ghost particles move as wetifaigng their cen-
troids on the surface of the FE mesh. Their centroid locatioeed to be mapped
from global coordinates to local element natural coordigatising a Newton-
Raphson iterative method. Once the natural coordinatedetsFmined, the loca-
tions of ghost particles can be evaluated using the follgwalationship Erlrough
shape functiondl 5, during the subsequent simulati(f@:: Ngp D, where(e) de-
notes prescribed particle dofs. The DE code ELLIP3D is wegpand integrated
into FE code Tahoe using object-oriented programming nuetlogy for the algo-
rithm implementation.

4.2 DE-FE facet coupling example

We revisit the penetration motivation example at the bagmof the chapter to
demonstrate the effect of having a layer of ghost particéekto FE facets.
4.2.1 Penetration with coupled FE facets

The particles from the penetration example with smallentamer” are combined
with a finite element domain, shown in Fig.8.
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(a) opaque view

Fig. 8 3D view of the DE and FE domains.

Richard A. Regueiro and Beichuan Yan

(b) cross-sectional view

As the penetrator particlés driven into the free particles, the ghost particles
are squeezed outwards toward the FE domain. Figure 9(ajtdepepenetrator
induced displacement field of all ghost particles (rotagifired because FE contin-
uum is non-polar). It is noteworthy that the “container’rfad by ghost particles
swells at lower part, similar to the influence region for gebinical pile excitation

problems.

S
——

N\

S o S e e M i e e S

(@)

S S,

=

e

===

== —————s

pile vertical force (N)

3.00E+004 —|

2.00E+004 —|

1.00E+004 —|

+ smaller container
© larger container
4 small container w/ coupling

0.06

002 004
pile penetration (m)

(b)

Fig. 9 (a) Penetrateinduced displacement field of ghost particles using fineshmé) Compari-

son of force-displacement curves.

To examine the effect of DE-FE coupling on force-displacenoarves of pen-
etration, the small container curve and large containerecur Fig.4(c) are plotted
again, together with the curve obtained from small contaivith DE-FE coupling,
shown in Fig.9(b). It is observed that thenetratoforce of the small container with
DE-FE coupling can be tuned to match the larger containér matcoupling, by ad-
justing the elastic compliance of the FE continuum surraumehe container. The
boundary effect difference shown in Fig.4(c) can be pdytiad completely elimi-
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nated by applying a more robust DE-FE coupling techniquetuaré work, similar
to the atomistic-continuum coupling methods, but accaountor differences with
granular materials (see Section 3.3). Such work is ongoing.

5 Summary

The chapter presented a concurrent multiscale compuégatinethod for modeling
at the grain-scale the interfacial mechanics between dénsgranular materials
and deformable solid bodies. Section 3 presented the fationlfor coupling par-
ticle and micropolar continuum mechanics regions of a deanuaterial, following
the lattice-structure-based approaches described ind[45,but extending to ro-
tational dofs, and consideration of free particle dom#iF with no overlain FE
mesh. For the case of large particle motion and frictionialirgy in the overlap
region#" U 4", a finite deformation micromorphic plasticity model is neddo
couple to the particle mechanics and is presented in [54,%5&gtion 4 presented
a preliminary DE-FE coupling via single ghost layer of paés tied to FE facets,
which demonstrates a code communication between the DE Bntbéles being
used in the research.

6 Ongoing and future work

Various aspects of the research on ongoing, while othersargidered for future
work. Ongoing research includes: (1) implementing the arwrphic elastoplas-
ticity model into Tahoe; (2) coupling the micromorphic FEthe DE code through
an overlapping region; and (3) testing the computationplémentations for a pen-
etration example and other granular soil-solid body istegfproblems.

Future research entails: (4) extend micromorphic pressemsitivity plasticity
to more advanced constitutive models, such as critica gtktsticity and includ-
ing particle breakage; (5) address adaptivity of the mealiss scheme to be able to
convert continuum to particle as a solid body shears threugtanular material, or
particle to continuum in particle regions that behave miteed continuum; and (6)
extend to multiphase mechanics (solid grains, pore ligoaigas).
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