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Chapter 1

Introduction

1.1 Importance of Nonlinear Finite Element Analysis

of Solids and Porous Media

Why do we need nonlinear finite element analysis (FEA) for solids and porous media? Be-

cause all “real” problems are nonlinear. They are difficult to solve numerically and nearly

impossible to solve analytically. Hence, we opt for the more tractable of the two: the numer-

ical solution. With that said, it is still useful to “verify” nonlinear solution methods against

analytical solutions of linear partial differential equations, which we will take advantage of

in this course.

The source of nonlinearity in FEA takes the following forms:

• Material: plasticity, nonlinear elasticity, failure (damage, fracture, shear banding, ...).

• Geometric: large deformations (including large strains and large rotations).

• Constraints: (1) kinematic (contact): impenetrability and traction equilibrium along

11



CHAPTER 1. INTRODUCTION

contacting free surfaces; (2) boundary conditions: displacement-dependent force, non-

linear pressure loading.

1.2 How This Course is Taught

We will cover the theory and numerical implementation of nonlinear solution methods, the

nonlinear finite element method (FEM), biphasic (solid-fluid) mixture poromechanics in the

small strain regime (notes provided, but time-permitting during the semester), and consti-

tutive modeling (elastoplasticity, viscoplasticity, viscoelasticity, elastodamage, and variants

thereof) at small strain. Full geometrically nonlinear constitutive modeling is covered in a

follow-on course, CVEN 7511, Computational Finite Inelasticity and Multiphase Mechanics.

We will learn how to verify nonlinear solution implementations in Python (or other pro-

gramming language of your choosing), and compare to similar continuum constitutive mod-

els built-in to the general purpose nonlinear continuum mechanics FEA software package

ABAQUS (refer to www.simulia.com). We will learn to use existing nonlinear constitu-

tive models built-in to ABAQUS to solve nonlinear engineering problems, and also how to

implement new ones via the UMAT.

For a limited discussion of the procedure of verification and validation (V&V), refer to

Oberkampf et al. [2004], Babuska and Oden [2004], Schwer [2007], TMS [2019]:

• verification: we check if the nonlinear governing equations are implemented correctly

in our finite element (FE) code. This typically involves a combination of compari-

son to an analytical solution (if one exists, even if analyzing a linear problem with

known analytical solution, with a nonlinear code) and/or to a separate numerical im-

plementation (such as in Python); we also consider time step and mesh size refinement

(convergence). In CVEN6511, we will do verification to some degree.
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1.2. HOW THIS COURSE IS TAUGHT

• validation: we check that the nonlinear governing equations are the correct ones to

solve; i.e., are the physics of the problem being represented correctly in the model?

This involves prediction of experimental data with quantified uncertainty. Validation

could be partly accomplished through your project, but for true validation, this is

beyond the scope of the course. Calibration is parameter-fitting, which is a step

toward validation, but is not validation itself. If you have experimental data, you will

likely conduct a calibration-exercise for your course project.
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Chapter 2

Numerical Solution of 1D Nonlinear

Axially-loaded Bar using the Finite

Element Method and Newton-like

Methods

2.1 Nonlinear Solution by Newton-like Methods

In this section, we introduce the Newton-Raphson method for solution of nonlinear equations,

and its modifications and extensions. In Section 2.2, we formulate the nonlinear vector

equations using the finite element method (FEM).

15



CHAPTER 2. OVERVIEW OF NONLINEAR FEM

2.1.1 Newton-Raphson Method

We start with a one degree-of-freedom (dof) example, as shown in Fig.2.1.

d

FEXT

F INT FEXT

F INT(d) = FEXT

e.g., F INT(d) = ad3 + bd2 + cd

Figure 2.1. One dof example for demonstrating the Newton-Raphson (NR) solution method, and

its modifications and extensions. Nonlinear internal force F INT(d) as a function of displacement d
represents the nonlinear spring, such as a nonlinear constitutive model (e.g., elastoplasticity).

The steps for solving for the unknown dof d given an applied external force FEXT and an

internal force F INT(d) representing a nonlinear spring, are as follows:

1. define residual r as a function of displacement d for static force equilibrium:

r(d) = FEXT − F INT(d) = 0 (2.1)

2. Consider the ‘exact’ solution d∗ (usually unknown, hence the need for Newton-Raphson

nonlinear solution) such that r(d∗) = 0 given the applied external force FEXT. Consider

the Taylor-series expansion about the past iteration value dk (where k+1 denotes the

current iteration):

d∗ = dk + δdk (2.2)

r(d∗) = r(dk) +
∂r(dk)

∂d
δdk +

1

2

∂2r(dk)

∂d2
(δdk)2 + h.o.t. = 0 (2.3)

3. “linearization:” We call ∂r(dk)/∂d the consistent tangent at iteration k, and drop the

16



2.1. NONLINEAR SOLUTION BY NEWTON-LIKE METHODS

quadratic and higher order terms (h.o.t.s), and thus d∗ ≈ dk+1.

r(dk) +
∂r(dk)

∂d
δdk ≈ 0 ; d∗ ≈ dk+1 = dk + δdk

4. solution method to update current iteration value dk+1 (see Fig.2.2 for illustration):

r(dk) = FEXT − F INT(dk) (2.4)

δdk =

(
∂r(dk)

∂d

)−1

[−r(dk)] =

(
∂F INT(dk)

∂d

)−1

r(dk) (2.5)

update dk+1

dk+1 = dk + δdk (2.6)

update r(dk+1)

5. check for convergence:

IF
|r(dk+1)|
|r(d0)|

< tol THEN d∗ = dk+1

ELSE iterate

where tol ≈ 1 × 10−10 (or 1e-10 in computer code) is a relative residual tolerance

(relative to the initial residual r(d0)), a value chosen based on user experience. Relative

convergence checks are usually programmed in order to avoid tolerances dependent

upon units (such as Newtons, Mega-Newtons, etc). Note, we do not see this choice in

Abaqus, which can be frustrating because we do not see how Abaqus is converging or

not. More later on convergence with respect to a nonlinear iterative solution method.
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CHAPTER 2. OVERVIEW OF NONLINEAR FEM

F INT(d)

FEXT

∂F INT(d0)
∂d

∂F INT(d1)
∂d

d
d0 = 0 d1 = d0 + δd0 d2 d∗ = d3

r(d0)

r(d1) = FEXT − F INT (d1)

δd0 = r(d0)/∂F
INT(d0)
∂d δd1

Figure 2.2. Illustration of Newton-Raphson (NR) method for solution of d, where we show iteration

k = 0, 1, 2, and convergence likely at iteration k = 3. Black curve is plot of F INT(d). d∗ denotes
converged value.
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2.1. NONLINEAR SOLUTION BY NEWTON-LIKE METHODS

6. Consider incremental loading, where ninc are the number of increments assuming equal

increments∗: ∆FEXT = FEXT/ninc is applied over one time increment ∆t = tn+1 − tn.

This is done because oftentimes the nonlinear equations cannot be solved for d∗ with

full application of FEXT in one step, or you require more resolution of the solution d as

the external force FEXT is applied. Refer to Fig.2.3 for an illustration of applying the

Newton-Raphson solution method over a force increment ∆FEXT. Note that ∆FEXT

could be variable with adaptive time stepping techniques.

Write the residual at current time tn+1, to solve for d∗n+1:

r(dkn+1) = FEXT
n+1 − F INT(dkn+1) (2.7)

δdk =

(
∂F INT(dkn+1)

∂d

)−1

r(dkn+1) ; dk+1
n+1 = dkn+1 + δdk (2.8)

Then check for convergence:

IF
|r(dk+1

n+1)|

|r(d0n+1)|
< tol THEN

d∗n+1 = dk+1
n+1 , n = n+ 1

ELSE k = k + 1, iterate

We do not apply the load in one step because typically the nonlinear equations are not

smooth enough to accommodate such loading. Also, for dynamic or transient problems,

the numerical integration (finite differencing in time) will provide a natural time step.

Thus, we typically increment the load: ∆FEXT = FEXT/ninc.

∗Most commercial finite element software packages employ some form of adaptive time stepping leading
to unequal loading increments.
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F INT(d)

FEXT

FEXT
n+1

FEXT
n ≈ F INT(d∗n)

∆FEXT

∂F INT(d0n+1)

∂d

d
d0n+1 = d∗n d1n+1

d∗n+1 d∗

Figure 2.3. Incremental solution using Newton-Raphson (NR) method for solving d∗n+1 at current
time tn+1.
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The Newton-Raphson solution method just illustrated for a single dof problem can be ex-

tended to multiple dof systems. In this case, the unknown variable is a vector d with

components dM , where M = 1, ..., ndof and ndof are the number of dofs in the system of

equations (N = 1, ..., ndof) to solve numerically. We will show in Sect.2.2 how d can be

the vector of unknown nodal displacements for a finite element solution. We summarize the

solution method as follows. We write the residual for the system of equations RN (d) as

RN(d) = FEXT
N − F INT

N (d) (2.9)

where upon linearization by Taylor series expansion, we can update the current iterate dk+1
N

by solving the linear system of equations,

∂RN (d
k)

∂dM
δdkM = −RN (d

k) ; dk+1
N = dkN + δdkN (2.10)

where ∂RN (d
k
)

∂dM
is the consistent tangent. We check for convergence

IF
‖R(d

k+1
)‖

‖R(d
0
)‖

< tol THEN d∗ = dk+1,

ELSE iterate

where recall the Euclidean norm ‖R‖ =
√
RNRN (sum over repeated indices N).

It should be noted that the Newton-Raphson method converges quadratically if linearized

properly (and if your initial guess is already close to the solution), meaning the relative

residual norm ‖R(d
k+1

)‖

‖R(d
0
)‖

should decrease quadratically, e.g., 1e0, 1e-1, 1e-2, 1e-4, 1e-8, 1e-16.

This is extremely attractive but comes with an associated cost: at each iteration a tangent

is calculated and a linear system of equations is solved (for this reason, the method is called

a ‘direct’ iterative solver). This can become prohibitively expensive for large problems.

We normally set the relative tolerance to a value, such as tol=1e-8, to provide a strict

convergence criterion, but not so strict that the algorithm does not converge. There is no
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guarantee for convergence of nonlinear solution methods. The initial conditions will play a

critical role in determining whether convergence is obtained or not.

There are a number of references that explain in more detail the Newton-Raphson method,

and its modifications which we will discuss next [Ortega and Rheinboldt, 1970, Dennis and

Moré, 1977, Matthies and Strang, 1979, Hughes and Ferencz, 1990, Crisfield, 1991, Ferencz

and Hughes, 1998, Belytschko et al., 2000, Anandarajah, 2010].

2.1.2 Modified Newton Method

The Modified Newton method is similar to the Newton-Raphson method, except that the

initial consistent tangent is used for each iteration rather than updated at each iteration,

which can be costly if solving multiple dof systems. The Modified Newton method will

typically converge linearly (e.g., relative residual norm is 1e0, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5,

...). Modified Newton is more efficient in terms of not updating a tangent at each iteration

(especially for large systems), but requires more iterations to converge. Also, for difficult-to-

converge problems such as failure mechanics with post-peak softening and/or buckling, not

updating the consistent tangent at each iteration may mean not converging to a solution.

Thus, there is a trade off.

The Modified Newton solution method can be summarized by the following equations, and

is illustrated in Fig.2.4. The residual for a one dof system is written the same as Newton-

Raphson,

r(dk) = FEXT − F INT(dk) (2.11)

whereas now the consistent tangent is held constant during the iteration process as

δdk =

(
∂r(d0)

∂d

)−1

[−r(dk)] =

(
∂F INT(d0)

∂d

)−1

r(dk) (2.12)
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2.1. NONLINEAR SOLUTION BY NEWTON-LIKE METHODS

dk+1 = dk + δdk (2.13)

We check for convergence as before:

IF
|r(dk+1)|
|r(d0)|

< tol THEN d∗ = dk+1

ELSE iterate

This will lead to more iterations to converge to the solution d∗, as illustrated in Fig.2.4,

because the tangent is not updated at each iteration.

F INT(d)

FEXT

∂F INT(d0)
∂d

∂F INT(d0)
∂d

d
d0 d1 d2 d∗

Figure 2.4. Modified Newton solution method.
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2.1.3 Quasi-Newton Methods

If the consistent tangent is intractable to find in a closed form manner that can in turn be pro-

grammed and updated either at each iteration of a time step (Newton-Raphson, (∂r/∂d)k+1
n+1)

or held constant for the time step (Modified Newton, (∂r/∂d)0n+1), then there are further

variants on the Newton-Raphson method, called Quasi-Newton methods. Quasi-Newton

methods approximate the consistent tangent numerically, such as one well-known method

called a ‘secant’-type method. We consider the one dof problem again as motivation, where

upon linearization we have,

K̄kδdk = −δrk =⇒ K̄k =
−δrk
δdk

=
F INT (dk+1)− F INT (dk)

(dk+1 − dk)
(2.14)

δdk+1 = (K̄k)−1r(dk+1) (2.15)

where K̄k is the secant tangent approximated from the current and previous iterations in

order to update the next iteration dk+2 as

dk+2 = dk+1 + δdk+1 (2.16)

The solution method is illustrated in Fig.2.5.

For multi-dof problems, we generalize the one dof case to multiple dofs in the form of the

Quasi-Newton equation:

K̄k
NMδd

k
M = −δRk

N (2.17)

We then attempt to find K̄
k
via a ‘secant’-type method. Note that this equation is a

constraint on K̄
k
and does not uniquely define it. The Quasi-Newton update δdk+1 can be

solved as,

δdk+1
M = (K̄k

NM)−1δRk+1
N ; dk+2

N = dk+1
N + δdk+1

N (2.18)
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F INT(d)

FEXT

F INT(dk+1)

F INT(dk)

−δrk

d

K̄k

dk dk+1 dk+2 d∗

r(dk+1) = FEXT − F INT(dk+1)

δdk+1

Figure 2.5. A Quasi-Newton solution method: ‘secant’-type.

We check for convergence as before. There are many Quasi-Newton updates, with BFGS

(Broyden, Fletcher, Goldfarb, Shanno) being one [Dennis and Moré, 1977]. Since we are

approximating the tangent, if a problem is highly nonlinear, the algorithm could have trouble

converging (e.g., generating noise and oscillations in the relative residual norm). For more

details, refer to Dennis and Moré [1977], Matthies and Strang [1979], Crisfield [1991].

2.1.4 Line-Search Methods

If there is difficulty in converging within a time step, there are methods to try to fix this

“lack of convergence,” also known as “divergence.” One such method is Line Search. It can
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be motivated for the linear case, minimizing the potential energy as,

Π(d) =
1

2
dNKNMdM − dNF

EXT
N ;

∂Π(d)

∂dN
= 0 =⇒ KNMdM = FEXT

N (2.19)

We introduce a line search parameter s in the update equation for an iterative solution as,

dk+1
N = dkN + skδdkN (2.20)

Then minimize the potential energy with respect to s as,

Π(dk+1) = Π(sk) =
1

2
(dkN + skδdkN)KNM(dkM + skδdkM)− (dkN + skδdkN)F

EXT
N (2.21)

∂Π(sk)

∂s
= 0 =⇒ δdkN [KNM (dkM + skδdkM)− FEXT

N ] = 0 (2.22)

where we assumed symmetric stiffness matrix KNM = KMN (not necessary for nonlinear

solution below). Solving, we obtain the line search parameter at iteration k as,

sk =
δdkNR

k
N

δdkNKNMδdkM
; Rk

N = FEXT
N −KNMd

k
M

︸ ︷︷ ︸

F INTN (d
k
)

(2.23)

Now consider the nonlinear case. Find sk such that

δdkNRN (d
k + skδdk) = 0 (2.24)

RN (d
k+1) = FEXT

N − F INT
N (dk + skδdk) (2.25)

The root is not found exactly, but sk ∈ (0, 1] is determined such that

|G(sk)|
|G(0)| < tol , G(sk) = δdkNRN(d

k + skδdk) (2.26)
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where tol = 0.5 is recommended. If tol is not satisfied, set sk = 1, which means no influence

of line search parameter during the iteration k.

Newton-Raphson will converge if ‘close’ to the solution (i.e., good initial guess) and if the

nonlinear equations are sufficiently smooth (i.e., well-conditioned tangent). Nonlinear prob-

lems, however, do not always have these qualities and thus are prone to ‘diverge’ from the

actual solution (i.e., residual grows). Thus, a line search algorithm is meant to help prevent

‘divergence’. A note on terminology: purests prefer to avoid the use of the word divergence

and instead use lack of convergence when a Newton-like nonlinear iteration procedure does

not converge.

2.1.5 Arc-Length Methods

A powerful modification to the Newton-Raphson method is a class of methods called “arc-

length” methods because the “arc” of the nonlinear solution curve is followed by the nonlinear

solution algorithm (see Fig.2.6). This is particularly useful for “load-driven” problems for

which there may be an instability (e.g., column buckling), or failure (e.g., soil slope failure

under gravity loading, or concrete dam failure under reservoir water loading). For more

details, refer to Crisfield [1991]. We will illustrate the method here, by motivating with a

one dof example from Hughes and Ferencz [1990].

First, introduce a dimensionless load control parameter λ(t), scalar arc-length function

f (which must be a norm) constrained by dimensionless arc-length increment ∆a (user-

defined), scaling parameter b (user-defined), and an auxiliary displacement solution d̃0 (to

nondimensionalize the displacement increment), where displacement increment ∆d = dn+1−

dn, load control parameter increment ∆λ = λn+1 − λn, and time increment ∆t = tn+1 − tn,
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such that,

at tn+1 : r(dn+1, λn+1) = F INT(dn+1)− λn+1F
EXT

︸ ︷︷ ︸

FEXT
n+1

= 0 (2.27)

f(∆d,∆λ)−∆a = 0 (2.28)

f(∆d,∆λ) :=

√

(1− b)

(
∆d

d̃0

)2

+ b(∆λ)2 (2.29)

d̃0 := K̃−1
0 FEXT (2.30)

b ∈ [0, 1] (2.31)

where b and ∆a are prescribed by the user, and FEXT is the total applied force. The

increments ∆d and ∆a are illustrated in Fig.2.6.

F INT(d)

∆FEXT = (∆λ)FEXT

∆d

∆a

d

Figure 2.6. Illustration of arc-length method with load control.
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We can visualize the arc-length constraint in Fig.2.7. Here, f = ∆a, and the ellipse plotted

for 1/2 < b < 1 indicates more load control. Recall the equation of an ellipse as,

x2

A2
+
y2

B2
= 1 (2.32)

We can express Eq.(2.29) for f = ∆a in the form of an equation of an ellipse as,

f 2

(∆a)2
= 1 =⇒ (∆d/d̃0)

2

(∆a/
√
1− b)2

+
(∆λ)2

(∆a/
√
b)2

= 1 (2.33)

where x = ∆d/d̃0, y = ∆λ, A = ∆a/
√
1− b, B = ∆a/

√
b, and thus Fig.2.7 results.

∆λ

∆d/d̃0

(dn/d̃0, λn)

∆a/
√
1− b

∆a/
√
b

pure displacement control: b = 0

∆λ

∆d/d̃0

(dn/d̃0, λn)

∆a

pure load control: b = 1

∆λ

∆d/d̃0

(dn/d̃0, λn)
∆a

Figure 2.7. Illustration of arc-length method with load control at converged time tn+1.
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We solve the nonlinear equations using Newton-Raphson (or modifications thereof) as before,

but with additional load-control parameter λ and constraint equation as,

r(dk+1
n+1, λ

k+1
n+1) = F INT(dk+1

n+1)− λk+1
n+1F

EXT = 0

f(∆dk+1,∆λk+1)−∆a = 0 (2.34)

These coupled equations are usually solved in a staggered manner, rather than monolithi-

cally. The dimensionless arc-length increment ∆a is usually varied each time step depending

on whether convergence is slow (make smaller) or fast (make larger). There are various

initialization strategies for the algorithm, which we will discuss shortly, with further reading

in Hughes and Ferencz [1990], Crisfield [1991]. Later, we will continue this line of thought

by generalizing to multi-DOF systems. We typically apply separate convergence criteria:

‖R(dk+1
n+1, λ

k+1
n+1)‖/‖R(d0

n+1, λ
0
n+1)‖ < tolR, (f

k+1
n+1 −∆a)/∆a < tolf . We note that in ABAQUS,

the arc-length method is called Static Riks procedure, after Riks, who was one of the first

to come up with the idea [Riks, 1979].

Here, we review the nonlinear solution method applied to Eqs.(2.34). We can apply Newton-

Raphson, or modification thereof. For illustration purposes, we will apply Newton-Raphson

to solve the equations. We note that ∆dk+1 = dk+1
n+1 − dn = dkn+1+ δdk− dn = ∆dk + δdk and

∆λk+1 = ∆λk + δλk. Linearizing Eqs.(2.34) about state (•)k, we have,

r(dk+1
n+1, λ

k+1
n+1) ≈ r(dkn+1, λ

k
n+1) +

[

∂F INT

∂d
−FEXT

]k

·






δdk

δλk




 = 0

f(∆dk+1,∆λk+1)−∆a ≈
(
f(∆dk,∆λk)−∆a

)
+

[

∂f
∂(∆d)

∂f
∂(∆λ)

]k

·






δdk

δλk




 = 0

(2.35)
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which leads to the coupled system of equations to solve for the iteration increments,






∂F INT

∂d
−FEXT

∂f
∂(∆d)

∂f
∂(∆λ)






k

·






δdk

δλk




 =






−rkn+1

∆a− fk




 (2.36)

The values at k + 1 are then updated as follows,

dk+1
n+1 = dkn+1 + δdk , λk+1

n+1 = λkn+1 + δλk (2.37)

∆dk+1 = ∆dk + δdk , ∆λk+1 = ∆λk + δλk (2.38)

Initialization of ∆d0 and ∆λ0 at the start of the iteration procedure: We will

describe two procedures used to initialize the increments of d and λ at k = 0 [Hughes and

Ferencz, 1990].

Procedure 1: (used also to initialize Procedure 2)

1.(a) Let d̃n = K̃−1
n FEXT , where, for example, K̃n = ∂F INT (dn)/∂d

1.(b) Let ∆d0 = ∆λ0
︸︷︷︸

solve for

d̃n

1.(c) Solve for magnitude of ∆λ0 as follows:

f(∆d0,∆λ0) = ∆a (2.39)

f(∆λ0d̃n,∆λ
0) = ∆a (2.40)

=⇒ |∆λ0| =
∆a

f(d̃n, 1)
(2.41)

1.(d) Determine sign of ∆λ0 with these conditions: (i) if sign[K̃n] = − sign[K̃n−1], and (ii)

if K̃n−1 to K̃n passes through 0 or ∞, then sign(∆λ0n+1) = − sign(∆λ0n), else sign(∆λ
0
n+1) =
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sign(∆λ0n). Then, ∆λ
0
n+1 = sign(∆λ0n+1)|∆λ0|, and ∆d0n+1 = ∆λ0n+1d̃n .

Procedure 2: extrapolate using Lagrange polynomials

*consider quadratic interpolation, followed by extrapolation to time tn+1 given an+1 and

previous values of arc-length a (insert figure)

Lagrange polynomials for quadratic interpolation (let an+1 = a) between states n− 2, n− 1,

and n, and then extrapolate to an+1 such that,

ℓ21(an+1) =
(an+1 − an−1)(an+1 − an)

(an−2 − an−1)(an−2 − an)
(2.42)

ℓ22(an+1) =
(an+1 − an−2)(an+1 − an)

(an−1 − an−2)(an−1 − an)
(2.43)

ℓ23(an+1) =
(an+1 − an−1)(an+1 − an−2)

(an − an−1)(an − an−2)
(2.44)

Using these Lagrange polynomials, extrapolate to time tn+1 to initialize λ and d, such that,

λ0n+1 = ℓ21(an+1)λn−2 + ℓ22(an+1)λn−1 + ℓ23(an+1)λn (2.45)

d0n+1 = ℓ21(an+1)dn−2 + ℓ22(an+1)dn−1 + ℓ23(an+1)dn (2.46)

Note that if the increments of arc-length a are constant, such that ∆a = an+1−an = an−an−1

and so forth, then the Lagrange polynomial coefficients are ℓ21(an+1) = 1, ℓ22(an+1) = −3,

and ℓ23(an+1) = 3. Now initialize ∆λ0n+1 = λ0n+1 − λn and ∆d0n+1 = d0n+1 − dn.

The advantage of Procedure 2 is that we do not need to determine the magnitude and sign

of ∆λ0n+1 separately, but we still need to use Procedure 1 for the first few time steps because

Procedure 2 requires three previous states to initialize.

Convergence Check: We have separate tolerances tolr and tolf for the balance equation
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residual and arc-length function, respectively, such that,

if
|r(dk+1

n+1, λ
k+1
n+1)|

|r(d0n+1, λ
0
n+1)|

< tolr

and
fk+1
n+1 −∆a

∆a
< tolf (2.47)

then converged, else iterate.

Multi-DOF Systems: Let us now generalize the previous discussion to multi-dof systems,

such as for nonlinear FE analysis. We write the balance equation residual and arc-length

function, respectively, as,

R(dk+1
n+1, λ

k+1
n+1) = F INT(dk+1

n+1)− λk+1
n+1F

EXT

︸ ︷︷ ︸

(F
EXT

)k+1
n+1

= 0

f(∆dk+1,∆λk+1)−∆a = 0 (2.48)

where the arc-length function is now,

f(∆dk+1,∆λk+1) =

[

(1− b)
(∆dk+1)T · diag(K̃0) ·∆dk+1

(d̃0)T · diag(K̃0) · d̃0

+ b(∆λk+1)2

] 1
2

(2.49)

where the auxiliary solution is d̃0 = K̃
−1

0 · F EXT.

Linearizing Eqs.(2.48) leads to the coupled system of equations to solve for the iteration

increments,





∂F
INT

∂d
−F EXT

∂f

∂(∆d)

∂f
∂(∆λ)






k

·






δdk

δλk




 =






−Rk
n+1

∆a− fk




 (2.50)
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where

∂f

∂(∆d)
=

(
(1− b)/f

(d̃0)T · diag(K̃0) · d̃0

)

(∆dk)T · diag(K̃0) (2.51)

∂f

∂(∆λ)
=

b

f
∆λk (2.52)

The values are then updated as follows,

dk+1
n+1 = dkn+1 + δdk , λk+1

n+1 = λkn+1 + δλk (2.53)

∆dk+1 = ∆dk + δdk , ∆λk+1 = ∆λk + δλk (2.54)

Initialization of ∆d0 and ∆λ0:

Procedure 1: (used also to initialize Procedure 2)

1.(a) Let d̃n = K̃
−1

n · F EXT, where K̃n = ∂F INT(dn)/∂d

1.(b) Let ∆d0 = ∆λ0d̃n.

1.(c) Solve for magnitude of ∆λ0:

f(∆d0,∆λ0) = ∆a (2.55)

f(∆λ0d̃n,∆λ
0) = ∆a (2.56)

|∆λ0| =
∆a

f(d̃n, 1)
(2.57)

1.(d) Determine sign of ∆λ0 with these conditions: (i) if sign[det K̃n] = − sign[det K̃n−1],

and (ii) if det K̃n−1 to det K̃n passes through 0 or ∞, then sign(∆λ0n+1) = − sign(∆λ0n),

else sign(∆λ0n+1) = sign(∆λ0n). Then, ∆λ
0
n+1 = sign(∆λ0n+1)|∆λ0|.
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Procedure 2: Using the Lagrange polynomials, extrapolate to time tn+1 to initialize, such

that,

λ
(0)
n+1 = ℓ21(an+1)λn−2 + ℓ22(an+1)λn−1 + ℓ23(an+1)λn (2.58)

d
(0)
n+1 = ℓ21(an+1)dn−2 + ℓ22(an+1)dn−1 + ℓ23(an+1)dn (2.59)

where if the increments of arc-length a are constant (as for the single dof discussion), then

ℓ21(an+1) = 1, ℓ22(an+1) = −3, and ℓ23(an+1) = 3. Now initialize ∆λ
(0)
n+1 = λ

(0)
n+1 − λn and

∆d
(0)
n+1 = d

(0)
n+1 − dn.

Convergence Check: We have separate tolerances tolR and tolf for the balance equation

residual and arc-length function, respectively, such that

if
‖R(dk+1

n+1, λ
k+1
n+1)‖

‖R(d0
n+1, λ

0
n+1)‖

< tolR

and
fk+1
n+1 −∆a

∆a
< tolf (2.60)

then converged, else iterate.

In summary, arc-length methods are used when pure load control cannot converge to the

actual force-displacement path (such as for buckling, or localized deformation and failure).

Pure displacement control is preferred for this reason, but if force or pressure is applied (or

gravity) and buckling or failure could occur, arc-length methods are used to continue the

solution.
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Arc-length algorithm for single dof problem: What follows is the outline of an al-

gorithm you can use to write your 1D code to solve a nonlinear single dof problem using

Newton-Raphson with Arc-Length control:

n=1

d(n)=0

lambda(n)=0

Fext=8

b=0.5

Delta a=0.1

while d(n) < 7

Ktilde=?

dtilde=Fext/Ktilde

f arc=? function of (dtilde,1)

k=1

(initialization)

if n<3

Delta lambda = Delta a / f arc

Delta d = (Delta lambda)*dtilde

lambda = lambda(n) + Delta lambda

d = d(n) + Delta d

else

lambda = lambda(n-2) - 3*lambda(n-1) + 3*lambda(n)

d = d(n-2) - 3*d(n-1) + 3*d(n)

Delta lambda = lambda - lambda(n)

Delta d = d - d(n)

end

Fint=?
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2.1. NONLINEAR SOLUTION BY NEWTON-LIKE METHODS

r=Fint-lambda*Fext

f arc=?

while (convergence criteria)

(put Newton-Raphson here to update d and lambda)

k=k+1

end

n=n+1

d(n)=d

lambda(n)=lambda

end
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2.1.6 Other Nonlinear Solution Algorithms

Here, we briefly introduce ‘matrix-free’ or ‘indirect-iterative’ nonlinear solution algorithms.

They are attractive—if not necessary—for very large problems because no tangent needs

to be calculated and no linear algebraic system of equations needs to be solved. They

are specifically used for quasi-static problems, whereas for dynamic problems explicit time

integrators are used (from which the Dynamic Relaxation algorithm is motivated).

1. Nonlinear Conjugate Gradient (CG): This algorithm entails minimizing the en-

ergy functional Π(d), where its gradient is negative the residual R(d). The method

is similar to linear CG except that we iteratively solve for the line search parameter

(or approximate it) and search directions are approximately orthogonal. Precondition-

ing becomes extremely important because many nonlinear problems are ill-conditioned

(i.e., large spread in the eigenvalues of the underlying tangent). We want the eigenval-

ues of the underlying tangent to be as closely clustered as possible, where the perfect

preconditioner is the inverse (i.e., consistent tangent) since the identity matrix has all

eigenvalues = 1. Refer to [CG-Method].

2. Dynamic Relaxation: Fictitious mass and damping are introduced to form the

dynamic problem which is then solved by an explicit time integrator, relaxing the

dynamic equations until the quasi-static solution is obtained. Refer to Key et al.

[1981], Underwood [1983] for more details.
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2.2. NONLINEAR ELASTOSTATICS OF AN AXIALLY-LOADED BAR

2.2 Nonlinear Elastostatics of an Axially-Loaded Bar

at Small Strain

Refer to Sects.3.2, 8.1, and 8.2 of Anandarajah [2010], among other references. This section

is meant to provide a brief introduction to the nonlinear finite element method (FEM),

formulating the Strong, Weak, Galerkin, and nonlinear finite element equations in residual

form for solution by the Newton-Raphson method. We assume geometric linearity (small

strain ǫ = du/dx), but material nonlinearity (axial stress σ(ǫ) is a nonlinear function of axial

strain ǫ). An example of a two-element discretization of an axially-loaded one-dimensional

(1D) bar is provided, with a nonlinear elastic constitutive relation for axial stress σ(ǫ). Refer

to CVEN 5511 notes (or other introductory FEM books or notes) for a review of the linear

FEM for an axially-loaded bar.

2.2.1 Strong Form

The strong form of the problem is a formal statement of the governing differential equation(s)

and boundary conditions. It is called “strong” because the differential equation is satisfied

pointwise, in this case at every point x in the domain Ω̄ (more below). Here, our governing

differential equation is the balance of linear momentum without inertia terms. For the

axially-loaded bar shown in Fig.2.8, the strong form (S) may be stated as,

Find u(x) : Ω̄ 7→ R such that

− d

dx
(σA) = f x ∈ Ω (2.61)

(σA)L = F x = L (2.62)

u = g x = 0 (2.63)
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where the internal axial force N(x) = σ(x)A(x) (see CVEN 5511 notes), the axial displace-

ment u(x) : Ω̄ 7→ R reads as “the domain of u(x) for x is Ω̄ = [0, L] or 0 ≤ x ≤ L, and the

range of u is the set of real numbers R,” and Ω = (0, L) where x ∈ Ω reads “x in Ω” or

0 < x < L. A natural (or Neumann) BC is applied at x = L, and an essential (or Dirichlet)

BC is applied at x = 0. Refer to Fig.2.8 for definition of terms in the Strong Form (S).

x

g

F

A, σ(ǫ)

f

L

Figure 2.8. Axially-loaded bar with cross-sectional area A (m2), length L (m), axial stress σ (Pa)
which may be a nonlinear function of axial strain ǫ = du/dx, axial displacement u(x), concentrated
force F (N) at x = L, distributed axial force f (N/m), and prescribed axial displacement g (m) at
x = 0.

2.2.2 Weak Form

To formulate the weak or variational form, we write the differential equation in residual form

using the Method of Weighted Residuals, such as,

∫ L

0

w

[
d

dx
(σA) + f

]

dx = 0 (2.64)

where w(x) is called the weighting function. We next integrate by parts, which will provide

us (i) a bilinear form (symmetry, typically), and (ii) provide the natural BC. After integrating
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2.2. NONLINEAR ELASTOSTATICS OF AN AXIALLY-LOADED BAR

by parts using the chain rule

d

dx
[w(σA)] =

dw

dx
(σA) + w

d(σA)

dx
(2.65)

and applying the Divergence Theorem, we have

∫ L

0

dw

dx
σAdx =

∫ L

0

wfdx+ w(L)F (2.66)

Recall that we integrate by parts to reach a bilinear form and also to provide the natural

BC [Hughes, 1987]. Thus, we can state the weak (or variational) form (W) as,

Find u(x) ∈ S such that
∫ L

0

dw

dx
σAdx =

∫ L

0

wfdx+ w(L)F (2.67)

holds for all w(x) ∈ V

where the trial solution space is S = {u(x) : Ω̄ 7→ R, u(0) = g} and weighting function space

is V = {w(x) : Ω̄ 7→ R, w(0) = 0}. It can be shown that the weak and strong forms are

equivalent [Hughes, 1987]. It is called the “weak” form because the differential equation is

satisfied in integral (or average) form.

2.2.3 Galerkin Form

The Galerkin form is a discrete approximation to the weak form, as demonstrated in Fig.2.9.

There are two traditional Galerkin methods [Hughes, 1987]: the Bubnov-Galerkin and

Petrov-Galerkin methods. The Bubnov-Galerkin method assumes the class of functions

for the weighting function and trial solution (displacement) are the same (e.g., linear shape

functions for both), whereas the Petrov-Galerkin method is more general and allows their
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function classes to be different. We will use the Bubnov-Galerkin method (which is normally

just called the “Galerkin” method). An advantage computationally to Bubnov-Galerkin is

that the tangent stiffness matrix is symmetric, if the material tangent matrix is symmetric.

This symmetry will break down for non-associative plasticity (used for most geomaterials)

as well as anisotropy due to fabric or texture effects.

The Galerkin form involves discretizing spatially the domain, in this case the bar of length L,

into discrete segments with characteristic length h. The discrete trial solution and weighting

function spaces Sh and Vh, respectively, in turn are finite dimensional subspaces of their

continuous counterparts: Sh ⊂ S, Vh ⊂ V. The Galerkin form (G) is a restatement of the

weak form in finite dimensional space as,

Find uh(x) ∈ S
h such that

∫

Ωh

dwh

dx
σ(ǫh)Adx =

∫

Ωh
whfdx+ wh(L)F (2.68)

holds for all wh(x) ∈ V
h

where axial strain ǫh = duh/dx, and h is the characteristic length of the finite element

(indicating that the variable is discrete). The finite dimensional trial solution space is Sh =

{uh(x) : Ω̄h 7→ R, uh(0) = g} and weighting function space is Vh = {wh(x) : Ω̄h 7→ R, wh(0) =

0}, where Ω̄h = [0, L]. For this 1D problem, Ω̄h = Ω̄, but this is usually not the case for 2D

and 3D problems, where Ω̄h ⊂ Ω̄, i.e., the mesh is an approximation (typically a sub-domain)

of the physical spatial (geometric) domain.
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h

L

Figure 2.9. Discretization of bar for Galerkin form, given discretization parameter h.

2.2.4 Finite Element Form

The next step in formulating the nonlinear finite element equations is to further discretize

the problem into finite elements, such that,

Ωh =
nel

A
e=1

Ωe (2.69)

where A
nel

e=1
is called the element assembly operator, Ωe = (xe1, x

e
2), nel is the number of

finite elements, and e indicates the element number. The domain of element e is shown in

Fig.2.10 for the global coordinate system x as well as the natural coordinate system ξ.

1 2
e

xe1 xe2

he

1 2

-1 +1

e

ξ

Figure 2.10. Linear 2-noded finite element in global coordinate x and natural coordinate ξ. Element
length he = xe2 − xe1. x

e
a is global coordinate of local node a, where a = 1, 2.

We will use an isoparametric formulation for the global coordinate x, weighting function w,
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and displacement u such that,

xh
e

(ξ) =
2∑

a=1

Na(ξ)x
e
a (2.70)

wh
e

(ξ) =
2∑

a=1

Na(ξ)c
e
a (2.71)

uh
e

(ξ) =
2∑

a=1

Na(ξ)d
e
a (2.72)

where the shape functions are shown in Fig.2.11, cea are the local nodal weighting function

values, and dea are the local nodal displacements shown in Fig.2.12. The formulation is called

“isoparametric” because the coordinate x and weighting function w and displacement u are

all interpolated with the same shape functions.

1 2

1
N1(ξ)

1 2

1
N2(ξ)

Figure 2.11. Linear shape functions for 2-noded element in natural coordinate ξ. N1 = (1− ξ)/2,
N2 = (1 + ξ)/2.

1 2e

ce1 ce2

1 2e

de1 de2

Figure 2.12. Nodal values of weighting function cea and displacement dea, local node a = 1, 2.
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To express in matrix-vector form, we carry out the summation and write,

xh
e

(ξ) =

[

N1 N2

]






xe1

xe2




 = N e(ξ) · xe (2.73)

wh
e

(ξ) =

[

N1 N2

]






ce1

ce2




 = N e(ξ) · ce = (ce)T · (N e)T (ξ) (2.74)

uh
e

(ξ) =

[

N1 N2

]






de1

de2




 = N e(ξ) · de (2.75)

When calculating the spatial derivatives of the weighting function and displacement field,

we use the Jacobian of coordinate transformation je:

dwh
e

(ξ)

dx
=

dN e(ξ)

dx
· ce = Be · ce = (ce)T · (Be)T (2.76)

Be =
dN e(ξ)

dx
=
dN e(ξ)

dξ

dξ

dx
(2.77)

je =
dxh

e

dξ
=
∂N1

∂ξ
xe1 +

∂N2

∂ξ
xe2 = −1

2
xe1 +

1

2
xe2 = he/2 (2.78)

=⇒ Be =
1

he

[

−1 1

]

(2.79)

We likewise transform the integration as,

∫

Ωe
(•)dx =

∫ 1

−1

(•)jedξ (2.80)

We rewrite the discrete variational equation in element form as

∫

Ωh

dwh

dx
σ(ǫh)Adx =

∫

Ωh
whfdx+ wh(L)F (2.81)

nel

A
e=1

{∫

Ωe

dwh
e

dx
σ(ǫh

e

)Adx =

∫

Ωe
wh

e

fdx+ wh
e

(L)F

}

(2.82)
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Substituting the shape functions, we have

nel

A
e=1

(ce)T ·







∫ 1

−1

(Be)Tσ(ǫh
e

)Ajedξ

︸ ︷︷ ︸

f
e,INT

(d
e
)

=

∫ 1

−1

(N e)Tfjedξ

︸ ︷︷ ︸

f
e

f

+f eF

︸ ︷︷ ︸

f
e,EXT







(2.83)

nel

A
e=1

(ce)T ·
{
f e,INT(de) = f e,EXT

}
(2.84)

where f e,INT(de) is the internal element force vector, and f e,EXT is the external element force

vector. After assembly and application of BCs, we have,

cT ·
[
F INT(d)− F EXT

]
= 0 (2.85)

which must hold for all c (all wh), which implies that c is arbitrary, except for nodes where

we have essential B.C.s, cA = 0 if dA = g at global node A. Thus, for equilibrium to be

satisfied after applying essential B.C.s, then the following equation must hold

F INT(d) = F EXT (2.86)

or in residual form

R(d) = F INT(d)− F EXT = 0 (2.87)

which is a system of nonlinear equations that can be solved by the Newton-Raphson method

we presented in Sect.2.1.
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2.2.5 Consistent Tangent

The main ingredient needed for a Newton-Raphson solution method is the consistent tangent.

In this case, the global consistent tangent is written as,

∂R

∂d
=
∂F INT(d)

∂d
=

nel

A
e=1

∂[f e(de)]INT

∂de
(2.88)

where, using ǫh
e

= duh
e

/dx = Be · de, and assuming the cross-sectional area A is not a

function of axial displacement,

∂[f e(de)]INT

∂de
=

∂

∂de

(∫ 1

−1

(Be)Tσ(ǫh
e

)Ajedξ

)

(2.89)

=

∫ 1

−1

(Be)T
∂σ(ǫh

e

)

∂de
Ajedξ (2.90)

where by the chain rule

∂σ(ǫh
e

)

∂de
=
∂σ(ǫh

e

)

∂ǫhe
∂ǫh

e

∂de
=
∂σ(ǫh

e

)

∂ǫhe
Be (2.91)

and

∂[f e(de)]INT

∂de
=

∫ 1

−1

(Be)TBe∂σ(ǫ
he)

∂ǫhe
Ajedξ (2.92)

where for a linear element with constant cross-sectional area A and constant axial strain ǫh
e

,

∂[f e(de)]INT

∂de
=
∂σ(ǫh

e

)

∂ǫhe
A

he






1 −1

−1 1




 (2.93)

If we assume linear elasticity with Young’s modulus E, σ(ǫh
e

) = Eǫh
e

and ∂σ/∂ǫh
e

= E, as

expected.

47



CHAPTER 2. OVERVIEW OF NONLINEAR FEM

2.2.6 Summary of the Newton-Raphson method for nonlinear elas-

tostatic finite element method

Here, the solution of the nonlinear FEM using the Newton-Raphson method is summarized.

0. initialize: k = 0, R(d0) = F INT(d0)− F EXT

1. solve for increment during iteration:

δdk =

(
∂R(dk)

∂d

)−1

· (−Rk) (2.94)

2. update:

dk+1 = dk + δdk (2.95)

R(dk+1) = F INT(dk+1)− F EXT (2.96)

3. check for convergence: tol = 1e-8, tol = 1e-16, ..., your choice

if
‖R(dk+1)‖
‖R(d0)‖ < tol, d∗ = dk+1, exit

else k = k + 1, iterate → step 1

2.2.7 Nonlinear elasticity

The form of material nonlinearity we will consider as a first example is nonlinear elasticity.

Later, elastoplasticity (and elastodamage) could be a source of material nonlinearity. Figure
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2.13 shows (a) linear elasticity and (b) one choice for nonlinear elasticity†:

linear σ(ǫ) = Eǫ =⇒ ∂σ

∂ǫ
= E (2.97)

exponential σ(ǫ) = σsat(1− exp[−Bǫ]) =⇒ ∂σ

∂ǫ
= Bσsat exp[−Bǫ] (2.98)

where B is a parameter controlling how quickly the saturated stress σsat is reached (like

approaching a perfectly-plastic limit but with no irrecoverable deformation).

E

σ

ǫ

σsat

σ

ǫ

Figure 2.13. (a) Hooke’s law. Linear elasticity. (b) Nonlinear elasticity.

2.2.8 Example

Let us consider a two linear element discretization of the axially loaded bar as shown in

Fig.2.14. We assume u = g = 0 at x = 0. The ‘external’ force f e,EXT at the element level is

the sum of the force due to a uniformly distributed force f and concentrated force F , such

†This model is contrived and not indicative of any real material behavior, except it does combine nonlinear
elasticity with perfect-plasticity-like behavior which will be useful when testing an arc-length method under
load control.
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that,

f e,EXT = f ef + f eF (2.99)

f 1
f = f2

f =

∫ 1

−1






(1− ξ)/2

(1 + ξ)/2




 f(h

e/2)dξ =
fhe

2






1

1




 (2.100)

f 1
F =






FR
1

0




 ; f 2

F =






0

F




 (2.101)

where FR
1 is the reaction force at dof d1 = 0.

1 2 21 3

L/2 L/2

d1 d2 d3

FR1

f

F

Figure 2.14. Two linear element discretization of bar.

For a simple 1D problem like this, the element assembly process for the external force F EXT

is straightforward:

F EXT =
fL

4









1

1

0









+
fL

4









0

1

1









+









FR
1

0

F









=
fL

4









1

2

1









+









FR
1

0

F









(2.102)
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The internal force for element e is calculated as

f e,INT(de) =

∫ 1

−1

(Be)Tσ(ǫh
e

)A(he/2) dξ (2.103)

(Be)T =






dN1/dx

dN2/dx




 =

1

he






−1

1




 (2.104)

f e,INT(de) = σ(de)A






−1

1




 (2.105)

After assembly, the internal force vector F INT is

F INT(d) = σ(d1)A









−1

1

0









+ σ(d2)A









0

−1

1









(2.106)

Note that the axial stresses in element 1 σ(d1) and element 2 σ(d2) may be different. Recall

the consistent tangent for a 2-noded linear element with constant cross-sectional area A,

such as

∂f e,INT

∂de
=
∂σ(de)

∂ǫhe
A

he






1 −1

−1 1




 (2.107)

Then, the assembly of the full consistent tangent is

∂R

∂d
=
∂σ(d1)

∂ǫhe
2A

L









1 −1 0

−1 1 0

0 0 0









+
∂σ(d2)

∂ǫhe
2A

L









0 0 0

0 1 −1

0 −1 1









(2.108)
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Recall the Galerkin form in vector form

cT ·
[
F INT(d)− F EXT

]
= cT ·R =

[

c1 c2 c3

]

·









R1

R2

R3









= 0 (2.109)

Since d1 = 0, then c1 = 0, and the first row of R is removed (but R1 will = 0 as a post

processing step such that FR
1 = F INT

1 (d)− fL/4 is the reaction force), and the first row and

column of ∂R/∂d are removed. The degrees of freedom left to be solved are d2 and d3.

What if u = g at x = L instead of a concentrated force F ? Then, c1 = c3 = 0, and reaction

force FR
3 takes the place of F in F EXT =

[

FR
1 0 FR

3

]T

, the first and third rows of R are

removed, along with the first and third rows and columns of ∂R/∂d. Note that for element

2, the local element displacement vector de=2 = [d2 d3]
T = [d2 g]

T . In this case, there is

only one degree of freedom to be solved, d2. Also, there are now two reaction forces (FR
1

and FR
3 ) that may be determined as a post-processing step as FR

1 = F INT
1 (d) − fL/4 and

FR
3 = F INT

3 (d)− fL/4 where d = [0 d2 g]
T such that d2 is the only unknown dof.

We will revisit this example in a problem set.
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2.3 Nonlinear Elastodynamics of an Axially Loaded

Bar at Small Strain

Refer to Hughes [1987] for details of the linear elastodynamic finite element method (FEM)

and Belytschko et al. [2000] for an overview of the nonlinear FEM. This section is meant to

serve as a brief introduction to the nonlinear elastodynamic FEM, formulating the Strong,

Weak, Galerkin, and nonlinear finite element equations in residual form after time integration

(using the Newmark and Runge-Kutta time integration methods) for solution by the Newton-

Raphson method (Runge-Kutta is explicit and thus does not require a nonlinear interative

solution). We assume geometric linearity (small strain ǫ(x, t) = ∂u(x, t)/∂x), but material

nonlinearity (axial stress σ(ǫ) is a nonlinear function of axial strain ǫ). Refer to CVEN 5511

notes (or other introductory FEM books) for a review of the linear FEM for a dynamic

axially-loaded bar.

2.3.1 Strong Form

The strong form of the problem is a formal statement of the governing partial differential

equation with boundary conditions and initial conditions. It is called “strong” because the

differential equation is satisfied pointwise, in this case at every point x in the domain Ω̄ (more

below). Here, our governing partial differential equation is the balance of linear momentum

with inertia terms. For the axially-loaded bar shown in Fig.2.15, the strong form (S) may

53



CHAPTER 2. OVERVIEW OF NONLINEAR FEM

be stated as follows,

Find u(x, t) : Ω̄× [0, T ] 7→ R such that

ρ(x)A(x)
∂2u(x, t)

∂t2
− ∂

∂x
[σ(ǫ)A] = f(x, t) x ∈ Ω t ∈ (0, T ) (2.110)

(σA)L = F (t) x = L t ∈ (0, T ) (2.111)

u(0, t) = g(t) x = 0 t ∈ (0, T ) (2.112)

u(x, 0) = u0(x) x ∈ (0, L) t = 0 (2.113)

u̇(x, 0) = u̇0(x) x ∈ (0, L) t = 0 (2.114)

where the internal axial force N(x, t) = σ(x, t)A(x) (see CVEN 5511 notes), the axial dis-

placement u(x, t) : Ω̄ × [0, T ] 7→ R reads “the domain of u(x, t) for x is Ω̄ = [0, L] and for

t is [0, T ], or 0 ≤ x ≤ L and 0 ≤ t ≤ T , and the range of u is the set of real numbers

R,” and Ω = (0, L) where x ∈ Ω reads “x in Ω” or 0 < x < L. A natural (or Neumann)

concentrated force boundary condition (BC) F (t) is applied at x = L, and an essential (or

Dirichlet) displacement BC g(t) is applied at x = 0. Note that the BCs may be functions of

time t. Initial displacement u0(x) and initial velocity u̇0(x) along the bar coordinate x are

applied at t = 0. Refer to Fig.2.15 for illustration of terms in the Strong Form (S).

2.3.2 Weak Form

To formulate the weak or variational form, we write the differential equation in residual form

using the Method of Weighted Residuals as,

∫ L

0

w(x)

[

−ρ(x)A(x)∂
2u(x, t)

∂t2
+

∂

∂x
[σ(ǫ(x, t))A(x)] + f(x, t)

]

dx = 0 (2.115)

where w(x) is the weighting function which is not a function of time t as it is arbitrary,

except where the essential BC is applied where it is zero. We next integrate by parts, which
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x

g(t)

F (t)

A(x), σ(ǫ(u(x, t))

f(x, t)

L

Figure 2.15. Axially-loaded bar with cross-sectional area A(x) (m2), length L (m), axial stress
σ(x, t) (Pa) which may be a nonlinear function of axial strain ǫ(x, t) = ∂u(x, t)/∂x, axial displace-
ment u(x, t), concentrated force F (t) (N) at x = L, distributed axial force f(x, t) (N/m), and
prescribed axial displacement g(t) (m) at x = 0.

will give us (i) a bilinear form (symmetry, typically), and (ii) provide the natural BC. After

integrating by parts using the chain rule,

∂

∂x
[w(σA)] =

∂w

∂x
(σA) + w

∂(σA)

∂x
(2.116)

and applying the Divergence Theorem, we have,

∫ L

0

[

w(x)ρ(x)A(x)
∂2u(x, t)

∂t2
+
∂w(x)

∂x
σ(ǫ(x, t))A(x)

]

dx =

∫ L

0

w(x)f(x, t)dx+ w(L)F (t)

(2.117)
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Recall that we integrate by parts to reach a bilinear form and also to provide the natural

BC [Hughes, 1987]. Thus, we can state the weak, or variational, form (W) as,

Find u(x, t) ∈ S such that
∫ L

0

[

w(x)ρ(x)A(x)
∂2u(x, t)

∂t2
+
∂w(x)

∂x
σ(ǫ(x, t))A(x)

]

dx = (2.118)

∫ L

0

w(x)f(x, t)dx+ w(L)F (t)

holds for all w(x) ∈ V

where the trial solution space is S = {u(x, t) : Ω̄× [0, T ] 7→ R, u(0, t) = g(t)} and weighting

function space is V = {w(x) : Ω̄ 7→ R, w(0) = 0}. It can be shown that the weak and

strong forms are equivalent [Hughes, 1987]. It is called the “weak” form because the partial

differential equation is satisfied in integral (or average) form.

2.3.3 Galerkin Form

The Galerkin form is a discrete approximation to the weak form, as demonstrated in Fig.2.9

for the elastostatic problem. As for elastostatics, similarly for elastodynamics we will use

the Bubnov-Galerkin formulation.

The Galerkin form involves discretizing spatially the domain, in this case the bar of length

L, into discrete length segments with characteristic length h. The discrete trial solution and

weighting function spaces Sh and Vh, respectively, in turn are finite dimensional subspaces

of their continuous counterparts: S
h ⊂ S, Vh ⊂ V. The Galerkin form (G) is a restatement
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of the weak form in finite dimensional space as,

Find uh(x, t) ∈ S
h such that

∫ L

0

[

wh(x)ρ(x)A(x)
∂2uh(x, t)

∂t2
+
∂wh(x)

∂x
σ(ǫh(x, t))A(x)

]

dx = (2.119)

∫ L

0

wh(x)f(x, t)dx+ wh(L)F (t)

holds for all wh(x) ∈ V
h

where axial strain ǫh(x, t) = ∂uh(x, t)/∂x, and h is the characteristic length of the finite

element (indicating that the variable is discrete). The finite dimensional trial solution space

is Sh = {uh(x, t) : Ω̄h 7→ R, uh(0, t) = g(t)} and weighting function space is Vh = {wh(x) :

Ω̄h 7→ R, wh(0) = 0}, where Ω̄h = [0, L]. For this 1D problem, Ω̄h = Ω̄, but this is usually

not the case for 2D and 3D problems, where Ω̄h ⊂ Ω̄, i.e., the mesh is an approximation

(typically a sub-domain) of the physical spatial (geometric) domain.

2.3.4 Finite Element Form

The next step in formulating the nonlinear finite element elastodynamic equations, is to

discretize the 1D bar into finite elements, such that,

Ωh =
nel

A
e=1

Ωe (2.120)

whereA
nel

e=1
is called the element assembly operator, Ωe = (xe1, x

e
2) is the element domain, nel

is the number of finite elements, and e denotes the element number. The domain of element

e is shown in Fig.2.10 for the global coordinate system x as well as the natural coordinate

system ξ.

We use an isoparametric formulation for the global coordinate x, weighting function w,
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displacement u, velocity u̇ (when include viscoelasticity or mass-proportional damping), and

acceleration ü such as,

xh
e

(ξ) =

2∑

a=1

Na(ξ)x
e
a (2.121)

wh
e

(ξ) =

2∑

a=1

Na(ξ)c
e
a (2.122)

uh
e

(ξ, t) =

2∑

a=1

Na(ξ)d
e
a(t) (2.123)

u̇h
e

(ξ, t) =

nen=2∑

a=1

Na(ξ)ḋ
e
a(t) (2.124)

üh
e

(ξ, t) =

nen=2∑

a=1

Na(ξ)d̈
e
a(t) (2.125)

where the shape functions are shown in Fig.2.11, cea are the local nodal weighting function

values, and dea(t) the local nodal displacements shown in Fig.2.12. ḋea(t) is the axial velocity

at local node a, and d̈ea(t) is the axial acceleration. Note that the time derivatives on axial

displacement uh
e

(ξ, t) to determine the axial velocity u̇h
e

(ξ, t) and axial acceleration üh
e

(ξ, t)

are applied to the nodal degree of freedom dea(t). The formulation is called “isoparametric”

because the coordinate x and weighting function and displacement are all interpolated with

the same shape functions.
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To place in vector form for nonlinear solution, we carry out the summation and write as,

xh
e

(ξ) =

[

N1 N2

]






xe1

xe2




 = N e(ξ) · xe (2.126)

wh
e

(ξ) =

[

N1 N2

]






ce1

ce2




 = N e(ξ) · ce = (ce)T · (N e)T (ξ) (2.127)

uh
e

(ξ, t) =

[

N1 N2

]






de1(t)

de2(t)




 = N e(ξ) · de(t) (2.128)

u̇h
e

(ξ, t) =

[

N1 N2

]






ḋe1(t)

ḋe2(t)




 = N e(ξ) · ḋe(t) (2.129)

üh
e

(ξ, t) =

[

N1 N2

]






d̈e1(t)

d̈e2(t)




 = N e(ξ) · d̈e(t) (2.130)

When calculating the spatial derivatives of the weighting function and displacement field (or

velocity field for viscoelasticity), we use the Jacobian of coordinate transformation je:

∂wh
e

(ξ)

∂x
=

∂N e(ξ)

∂x
· ce = Be · ce = (ce)T · (Be)T (2.131)

Be =
∂N e(ξ)

∂x
=
∂N e(ξ)

∂ξ

∂ξ

∂x
(2.132)

je =
dxh

e

dξ
=
∂N1

∂ξ
xe1 +

∂N2

∂ξ
xe2 = −1

2
xe1 +

1

2
xe2 = he/2(2.133)

=⇒ Be =
1

he

[

−1 1

]

(2.134)

ǫh
e

(ξ, t) =
∂uh

e

(ξ, t)

∂x
= Be · de(t) (2.135)

ǫ̇h
e

(ξ, t) =
∂u̇h

e

(ξ, t)

∂x
= Be · ḋe(t) (2.136)
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We likewise transform the spatial integration as,

∫

Ωe
(•)dx =

∫ 1

−1

(•)jedξ (2.137)

We rewrite the discrete variational equation in finite element form, first recalling the Galerkin

form as,

∫

Ωh

[

wh(x)ρA(x)
∂2uh(x, t)

∂t2
+
∂wh(x)

∂x
σ(ǫh(x, t))A(x)

]

dx =

∫

Ωh
wh(x)f(x, t)dx+ wh(L)F (t)

(2.138)

and leaving off the arguments (x, t),

nel

A
e=1

{∫

Ωe

[

wh
e

ρA
∂2uh

e

∂t2
+
∂wh

e

∂x
σ(ǫh

e

)A

]

dx =

∫

Ωe
wh

e

fdx+ wh
e

(L)F

}

(2.139)

Substituting the shape functions, we have,

nel

A
e=1

(ce)T ·













∫ 1

−1

(N e)TρAjeN edξ

︸ ︷︷ ︸

me







· d̈e(t) +
∫ 1

−1

(Be)Tσ(ǫh
e

)Ajedξ

︸ ︷︷ ︸

f
e,INT

(d
e
(t))

=

∫ 1

−1

(N e)Tfjedξ

︸ ︷︷ ︸

f
e

f
(t)

+f eF (t)

︸ ︷︷ ︸

f
e,EXT

(t)







(2.140)
nel

A
e=1

(ce)T ·
{

me · d̈e(t) + f e,INT(de(t)) = f e,EXT(t)
}

(2.141)

where me is the element mass matrix, f e,INT(de(t)) is the internal element force vector,

and f e,EXT(t) is the external element force vector which may be a function of time t. After

assembly and application of BCs, we have

cT ·
[

M · d̈(t) + F INT(d(t))− F EXT(t)
]

= 0 (2.142)
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which must hold for all c (all wh), which implies that c is arbitrary, except for nodes where

we have essential B.C.s, cA = 0 if dA(t) = g(t) at global node A. Thus, for equilibrium to be

satisfied after applying essential B.C.s with c arbitrary at all other nodal degrees of freedom,

then the following equation must hold:

M · d̈(t) + F INT(d(t)) = F EXT(t) (2.143)

Before placing in residual form for solution by the Newton-Raphson method (assuming an

implicit time integration scheme), we apply the Newmark time integration scheme [Hughes,

1987] by writing Eq.(2.143) at current time tn+1 = tn +∆t, where ∆t is the time increment,

such that,

M · d̈(tn+1) + F INT(d(tn+1)) = F EXT(tn+1) (2.144)

or

M · an+1 + F INT(dn+1) = F EXT
n+1 (2.145)

where the nodal acceleration vector an+1 = d̈(tn+1). For Newmark time integration, the

finite difference in time equations are,

dn+1 = dn +∆tvn +
∆t2

2
[(1− 2β)an + 2βan+1] (2.146)

vn+1 = vn +∆t [(1− γ)an + γan+1] (2.147)

where γ and β are integration parameters, vn+1 = ḋ(tn+1) is the velocity vector at time

tn+1, and values at previous time tn are known. We can substitute to solve for ak+1
n+1 using

Newton-Raphson (current iteration k + 1), and then update dk+1
n+1 and vk+1

n+1 during iteration

as follows. First, we introduce the “predictors” from known values at time tn as,

d̃n+1 = dn +∆tvn +
∆t2

2
(1− 2β)an (2.148)

ṽn+1 = vn +∆t(1− γ)an (2.149)
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such that the update during iteration becomes,

dk+1
n+1 = d̃n+1 + β∆t2ak+1

n+1 (2.150)

vk+1
n+1 = ṽn+1 + γ∆tak+1

n+1 (2.151)

To initialize time-stepping, we must solve for initial acceleration a0 from the FE equation,

M · a0 = F EXT
0 − F INT (d0) (2.152)

We rewrite in residual form, and solve via Newton-Raphson as,

R(ak+1
n+1) = M · ak+1

n+1 + F INT (dk+1
n+1)− F EXT

n+1 = 0 (2.153)

2.3.5 Consistent Tangent

To solve Eq.(2.153) via the Newton-Raphson solution method, we need the consistent tan-

gent. In this case, the global consistent tangent with respect to acceleration solution a is

(assuming evaluated at iteration k at time step n + 1),

∂R

∂a
= M +

∂F INT(d)

∂d

∂d

∂a
=

nel

A
e=1

[

me +
∂f e,INT(de)

∂de
(β∆t2)

]

(2.154)

where, using ǫh
e

= ∂uh
e

/∂x = Be · de, and assuming the cross-sectional area A is not a

function of axial displacement,

∂f e,INT(de)

∂de
=

∂

∂de

(∫ 1

−1

(Be)Tσ(ǫh
e

)Ajedξ

)

(2.155)

=

∫ 1

−1

(Be)T
∂σ(ǫh

e

)

∂de
Ajedξ (2.156)
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where by the chain rule

∂σ(ǫh
e

)

∂de
=
∂σ(ǫh

e

)

∂ǫhe
∂ǫh

e

∂de
=
∂σ(ǫh

e

)

∂ǫhe
Be (2.157)

and

∂f e,INT(de)

∂de
=

∫ 1

−1

(Be)TBe∂σ(ǫ
he)

∂ǫhe
Ajedξ (2.158)

where for a linear element with constant cross-sectional area A and constant axial strain ǫh
e

,

∂f e,INT(de)

∂de
=
∂σ(ǫh

e

)

∂ǫhe
A

he






1 −1

−1 1




 (2.159)

If we assume linear elasticity with Young’s modulus E, σ(ǫh
e

) = Eǫh
e

and ∂σ/∂ǫh
e

= E,

as expected, but we will leave the formulation general to be able to accomodate nonlinear

constitutive models.

2.3.6 Summary of the Newton-Raphson method for nonlinear elas-

todynamic finite element method

Here, the nonlinear solution using the Newton-Raphson method is summarized in the context

of our current discussion of nonlinear elastodynamic FEM (assuming all quantities evaluated

at time step n+ 1 unless otherwise indicated).

Determine the predictors:

d̃ = dn +∆tvn +
∆t2

2
(1− 2β)an

ṽ = vn +∆t(1− γ)an

0. initialize iteration: k = 0, R(a0) = M ·a0 +F INT(d0)−F EXT, where a0 = an and
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d0 = dn, and F EXT
n+1 and/or gn+1 are incremented to drive the solution (subscript n+1

implied in the equations).

1. solve for increment:
(
∂R(ak)

∂a

)

· δak = −Rk (2.160)

2. update:

ak+1 = ak + δak (2.161)

dk+1 = d̃+ β∆t2ak+1 (2.162)

vk+1 = ṽ + γ∆tak+1 (2.163)

R(ak+1) = M · ak+1 + F INT(dk+1)− F EXT (2.164)

3. check for convergence: tol = 1e-8, tol = 1e-16, ..., your choice

if
‖R(ak+1)‖
‖R(a0)‖ < tol, a∗ = ak+1, exit

else k = k + 1, iterate → step 1

We will consider a dynamic loading example in a future problem set, first with analytical

solution assuming linear elasticity (but with full nonlinear solution with Newmark time

integration), and then with nonlinear elasticity (and later inelasticity such as elastoplasticity,

elastodamage, etc.).
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2.3.7 Runge-Kutta adaptive time step integration for nonlinear

elastodynamic finite element method

Within the Newmark time integration scheme, when selecting the integration parameters

to be β = 0 and γ = 1/2 this leads to the well-known Central Difference time integration

method, which is explicit and thus conditionally stable on the selection of time increment

∆t. Explicit time integration schemes as applied to nonlinear elastodynamics, such as in

Eq.(2.143) in our case, do not require iterative nonlinear solution via Newton-Raphson or

other Newton-like method, and in turn do not require a linear matrix equation solution at

each iteration. This is appealing when time increment ∆t is required to be small to resolve

the physics, such as simulating a car crash for designing safer cars, or helmet-head impact

to design safer helmets and lessen the likelihood of Traumatic Brain Injury (TBI). How-

ever, for “slower” dynamic activities such as normal running and jumping, or earthquake

loading, implicit time integration schemes which are unconditionally stable such as New-

mark’s parameters β = 0.3025 and γ = 0.6 (with a small amount of algorithmic damping) or

Trapezoidal Rule β = 1/4 and γ = 1/2 (no algorithmic damping) are appealing, but require

Newton-Rapshon or other Newton-like method to iteratively solve the nonlinear equations.

Whether explicit or implicit time integration of nonlinear elastodynamics equations, having

an adaptive time-stepping procedure to increase ∆t when possible for faster solution and de-

crease ∆t when needed for stability is appealing. There are various adaptive time-stepping

procedures available for both explicit and implicit time integration schemes, and the purpose

of this section is not to provide a review of the various available procedures. We instead

focus on one adaptive time-stepping procedue for a higher-order explicit time integration

scheme, the well-known Runge-Kutta(RK)-Fehlberg scheme (cite?). The adaptivity stems

from error control based on fourth and fifth order accurate multi-stage RK methods. These

multi-stage methods are applied to first order ordinary differential equations (ODEs). Thus,
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Eq.(2.143) must be recast as a first order ODE in the following form:

ż = f (t, z) (2.165)

for unknown degree of freedom vector z with right hand side vector equation f (t, z). This

may be accomplished by setting,

z =






zd

zḋ




 =






d

ḋ




 (2.166)

which upon taking the time derivative becomes,

ż =






żd

żḋ




 =






ḋ

d̈




 (2.167)

where żd = zḋ, the first term in the left hand side of Eq.(2.165). To find the second term in

the left hand side of Eq.(2.165), we rearrange Eq.(2.143) to read as,

d̈ = M−1 ·
(
F EXT − F INT (d)

)
(2.168)

or rewritten in terms of z as,

żḋ = M−1 ·
(
F EXT − F INT (zd)

)
(2.169)

Equation (2.165) then becomes,






żd

żḋ




 =






zḋ

M−1 ·
(
F EXT − F INT (zd)

)




 (2.170)
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which is a first order ODE we can solve with an adaptive time-stepping multi-stage RK

method. If the mass matrix is lumped (such as through nodal integration Hughes [1987])

and in turn M becomes diagonal, then M−1 is trivial to evaluate.

enter more details here
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Chapter 3

One-Dimensional Constitutive

Modeling at Small Strain

Much of the material in this chapter is taken from Simo and Hughes [1998], Borja [2013].

This chapter will primarily focus on steps 1-5 of a typical modeling procedure if you are

developing your own inelastic constitutive model. We start with a simple form of inelas-

tic constitute model: small strain elastoplasticity with linear hardening. These steps are

outlined as follows:

1. kinematics: We assume small strains, such that an additive decomposition of axial

strain ǫ into elastic and plastic parts is appropriate:

ǫ = ǫe + ǫp

total strain ǫ = du/dx

elastic strain ǫe (recoverable deformation)

plastic strain ǫp (permanent/irrecoverable deformation)

(3.1)
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CHAPTER 3. 1D CONSTITUTIVE MODELING AT SMALL STRAIN

where ǫ̇p will be defined through a flow rule, from which ǫp can be integrated in time.

Then, given the total strain ǫ from the finite element calculation, we can calculate the

elastic strain as ǫe = ǫ − ǫp.∗ Consider Fig.3.1 for an elastic-perfectly-plastic model

(hardening modulus H = 0).

EE

σ

ǫ

σy

ǫpA ǫeA

ǫA

A

Figure 3.1. Linear elastic, perfectly plastic, stress-strain response showing additive decomposition
of strain at point A: ǫA = ǫeA + ǫpA.

2. balance equations and thermodynamics: These equations will involve derivation

of the following: (1) balance of mass (use for fluid flow, mixture theory, etc., not here),

(2) balance of linear momentum (solve for displacement), (3) balance of angular mo-

mentum (leads to symmetric stress for non-polar media), (4) balance of energy (first

law of thermodynamics; solve for temperature), (5) second law of thermodynamics

(constrains inelastic constitutive model formulation; requires non-negative energy dis-

∗At this time, I do not have a satisfactory solution to the challenge of using (1) roman font superscript e
to denote elastic strain ǫe, and (2) italic font superscript e to denote finite element quantity, such as element

characteristic length he, or element displacement vector de.
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sipation). We focus on (4) and (5) for constitutive modeling purposes in this chapter.

For further information, refer to continuum mechanics textbooks, such as Malvern

[1969], Holzapfel [2000].

3. constitutive equations: For elastoplasticity, we need constitutive equations for stress

(e.g., linear elasticity σ = Eǫe), a yield function f(σ, qζ) = 0 and plastic potential

function g(σ, qζ), internal state variable (ISV) evolution equations (e.g., hardening,

perfect, or softening plasticity) for a stress-like ISV vector qζ . Superscript ζ implies

that qζ is a stress-like ISV vector, as opposed to the heat flux vector q.

We ignore damage for now, which could degrade the elastic modulus and lead to

softening and/or fracture.

The ISVs attempt to represent phenomenologically the evolution of the underlying

microstructure as it relates to the experimentally-observed behavior (e.g., motion and

piling up of dislocations at obstacles in metals leading to hardening; compaction of pore

space in sand leading to reduced volume and increased shear strength and hardening;

shear bands in metals and particulate materials leading to post-peak softening and

failure, ...).

4. numerical integration in time: Certain constitutive equations will be expressed in

rate form (e.g., stress rate σ̇ = dσ/dt and plastic strain rate ǫ̇p) to account for evolution

of solid material properties over time due to deformation and load history. We must

integrate numerically in time before we can implement these equations into a nonlinear

finite element (FE) program. In rate form, the stress equation for constant Young’s

modulus reads,

σ̇ = Eǫ̇e (3.2)

ǫ̇e = ǫ̇− ǫ̇p
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CHAPTER 3. 1D CONSTITUTIVE MODELING AT SMALL STRAIN

where ǫ̇ is the strain rate provided by the FE program, leading to what we call a

“strain-driven” problem ǫ̇ ≈ ∆ǫ/∆t, where ∆ǫ = d(∆u)/dx and ∆t = tn+1 − tn is

the time increment. The evolution equations (rate form of constitutive equations) are

usually first order ordinary differential equations (ODEs) in time t, thus we may use a

generalized trapezoidal rule to integrate in time (e.g., Backward Euler, Forward Euler,

trapezoidal rule). If only plasticity is history dependent (i.e., no viscoelasticity), then

we can write σ = Eǫe, ǫe = ǫ− ǫp, ǫp =
∫ t1
t0
ǫ̇pdt.

5. FE implementation, consistent tangent: The axial 1D stress σ (and 3D stress

tensor σij) will be a nonlinear function of the element displacement: σ(de), where e

denotes element, NOT elastic. Then, the formulation of the consistent tangent for

Newton-Raphson solution can be more involved than for nonlinear elasticity:

∂f e,INT(de)

∂de
= . . . (3.3)

We will show such details after we present the 1D elastoplasticity theory, time integra-

tion, and local material consistent tangent ∂σh/∂ǫh.

6. verification: verify implemented model (compare to analytical closed-form solution, if

have one, or other numerical nonlinear solution) or ‘manufactured analytical solutions’

[Schwer, 2007].

7. calibrate constitutive parameters from laboratory experimental data

8. validation: attempt to validate model using FE simulation of more complex experi-

mental data (geotechnical centrifuge test, structural lab test, realistic component load-

ing, etc.) with quantified uncertainty; is your constitutive model predictive?

9. analyze problem of interest using FEA and constitutive model.
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3.1. EXPERIMENTAL EVIDENCE

3.1 Experimental Evidence

For a discussion of the stress-strain response of solid materials under tension and/or compres-

sion, refer to Ch.2 of Lubliner [1990] (pg71, here as Fig.3.2), or Ch.5 of Desai and Siriwardane

[1984] for geomaterials, as well as other papers and books on materials of interest to you.
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CHAPTER 3. 1D CONSTITUTIVE MODELING AT SMALL STRAIN

Figure 3.2. Example experimental curves demonstrating elasto-plasticity. Taken from Figure 2.1.1
of Lubliner [1990].
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3.2. BALANCE EQUATIONS AND THERMODYNAMICS

3.2 Balance Equations and Thermodynamics

We start by writing the balance of linear momentum in 3D and 1D (uniaxial stress) for

a single phase solid material as

3D ρüi = σij,j + ρbi (3.4)

1D (ρA)ü = (σA),x + f (3.5)

where, ρ = mass density (kg/m3), üi = acceleration vector (m/s2), σij,j = ∂σij/∂xj , σij =

symmetric stress (Pa), bi = body force vector per unit mass (N/kg = m/s2), (σA),x =

∂(σA)/∂x, ü = axial acceleration (m/s2), A = cross-sectional area of axially-loaded bar

(m2), f = distributed load along axially-loaded bar (N/m). The balance of angular

momentum for a non-polar medium leads to symmetry of the stress tensor as σij = σji.

We may state the balance of energy (first law of thermodynamics) for a body B in Fig.3.3,

in terms of its rate as

total energy rate = power input + heat input rate

Ėtotal = Pinput +Qinput (3.6)

where Etotal = K + U is the total energy of the system, K is the kinetic energy, U is the

potential energy, Pinput is the power input as a result of external tractions and body force,

and Qinput is the heat input rate due to heat conduction at the surface ∂B and distributed

internal heat source within the body B.

The power input term Pinput warrants more attention. Note that it is composed of a traction
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CHAPTER 3. 1D CONSTITUTIVE MODELING AT SMALL STRAIN

power term and body force power term as follows,

Pinput =

∫

∂B

tσi vida+

∫

B

ρbividv (3.7)

where the traction power term may be reformated as,

∫

∂B

tσi vida =

∫

∂B

(σijnj)vida =

∫

∂B

(σijvi)njda

=

∫

B

∂(σijvi)

∂xj
dv =

∫

B

(σij,jvi + σijvi,j)dv (3.8)

Recall from the balance of linear momentum,

σij,j = ρv̇i − ρbi (3.9)

and the small strain rate,

ǫ̇ij =
1

2
(vi,j + vj,i) (3.10)

Given the symmetry of the Cauchy stress, we may write,

σijvi,j = σij ǫ̇ij (3.11)

Substituting, recognizing that D(1
2
vivi)/Dt = v̇ivi, and using again the conservation of solid

phase mass Dρ0/Dt = 0 (recall dv = JdV and ρ0 = Jρ), we may write,

Pinput =

∫

B

ρv̇ividv −
∫

B

ρbividv +

∫

B

σij ǫ̇ijdv +

∫

B

ρbividv

=
D

Dt

∫

B

1

2
ρvividv +

∫

B

σij ǫ̇ijdv (3.12)
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3.2. BALANCE EQUATIONS AND THERMODYNAMICS

In summary, in integral form over the body B, we have,

Ėtotal =
D

Dt

∫

B

(
1

2
ρvivi + ρe

)

dv =
D

Dt

∫

B

1

2
ρvividv +

∫

B

ρėdv (3.13)

Pinput =
D

Dt

∫

B

1

2
ρvividv +

∫

B

σij ǫ̇ijdv (3.14)

Qinput =

∫

∂B

(−qini)da+
∫

B

ρrdv = −
∫

B

qi,idv +

∫

B

ρrdv (3.15)

where D(•)/Dt is the material time derivative with respect to the motion of the solid (refer

to Sect.2.3 of Holzapfel [2000]), we have employed the balance of mass of the solid (assuming

single phase material) Dρ0/Dt = 0, reference mass density ρ0 = Jρ, J is the Jacobian of

deformation, ρ is the mass density (kg/m3), vi is the velocity vector (m/s), e is the internal

energy per unit mass (J/kg)†, qi is the heat flux vector into B (W/m2), r is the internal

heat supply per unit mass (W/kg). Substituting, canceling terms, and localizing the integral

leads to the balance of energy equation as

3D ρė = σij ǫ̇ij + ρr − qi,i (3.16)

1D ρė = σǫ̇+ ρr − q,x (per unit volume) (3.17)

The second law of thermodynamics in 3D states that,

rate of entropy increase ≥ entropy input rate

D

Dt

∫

B

ρηdv ≥
∫

B

ρ
r

θ
dv −

∫

∂B

1

θ
qinida (3.18)

where η is the entropy per unit mass (J/(K.kg)), θ is the temperature (K), and ni is the unit

†yet another usage of italic e!
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n

B

∂B

x = x1

y = x2

z = x3

dv

Figure 3.3. Continuum body B with boundary ∂B.

normal vector to the surface ∂B. After localizing the integral, we have,

ρθη̇ ≥ ρr − qi,i +
1

θ
qiθ,i (3.19)

We assume the existence of a Helmholtz free energy function per unit mass ψ (important for

non-isothermal problems) as follows,

ψ = e− ηθ (3.20)

After substituting for ψ, and ρė from the first law (3.16) leads to the Clausius-Duhem

inequality (check the derivation yourself) as,

σij ǫ̇ij − ρψ̇ − ρηθ̇ − 1

θ
qiθ,i ≥ 0 (3.21)

For isothermal (θ̇ = 0) and homogeneous temperature (θ,i = 0) problems, the Clausius-
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3.3. CONSTITUTIVE EQUATIONS FOR 1D ELASTOPLASTICITY

Duhem inequality is written as

3D σij ǫ̇ij − ρψ̇ ≥ 0 (3.22)

1D σǫ̇− ρψ̇ ≥ 0 (per unit volume) (3.23)

3.3 Constitutive Equations for 1D Elastoplasticity

We outline the topic coverage for 1D classical (inviscid or rate-independent) elastoplasticity

as [Simo and Hughes, 1998, Anandarajah, 2010, Borja, 2013]

(i) Helmholtz free energy function

(ii) yield and plastic potential functions

(iii) evolution equations for ISVs

(iv) Kuhn-Tucker optimality conditions

(v) consistency condition

(vi) continuum elastoplastic tangent

(vii) isotropic/kinematic hardening

(viii) convexity of yield surface

(ix) uniqueness (Hill’s stability postulate, softening plasticity)

In more detail, we have
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CHAPTER 3. 1D CONSTITUTIVE MODELING AT SMALL STRAIN

(i) Helmholtz free energy function: The Helmholtz free energy function ψ per unit

mass is additively decomposed (“energy separable” processes, which is a constitutive

assumption in and of itself) into elastic e and plastic p parts as,

ρψ(ǫe, ζ) = ρψe(ǫe) + ρψp(ζ) (3.24)

where ǫe is the elastic strain, and ζ is a strain-like ISV, not necessarily the plastic

strain, although in our case for 1D elastoplasticity it will end up being the magnitude

of the axial plastic strain |ǫp|. Taking the material time derivative (refer to Sect.2.3 of

Holzapfel [2000], and we will discuss more when we discuss mixture theory), we have

from the chain rule,

D(ρψ)

Dt
= ρ̇ψ + ρψ̇ (3.25)

where ρ̇ ≈ 0 for a single phase solid material deformed at small strain. This will not

be the case for multiphase materials treated by mixture theory (we will discuss later),

and also for finite strain conditions. Then, we see that,

ρψ̇ =
D(ρψ)

Dt
=
∂(ρψ)

∂ǫe
ǫ̇e +

∂(ρψ)

∂ζ
ζ̇ (3.26)

We substitute this into the Clausius-Duhem inequality and rearrange terms to obtain

the following,
(

σ − ∂(ρψ)

∂ǫe

)

ǫ̇e + σǫ̇p − ∂(ρψ)

∂ζ
ζ̇ ≥ 0 (3.27)

Coleman and Noll [1963], Coleman and Gurtin [1967] argued that the elastic strain

rate ǫ̇e can be an independent process from the plastic strain rate ǫ̇p and ISV rate ζ̇,

thus for (3.27) to hold, we have an equation for the stress σ as,

σ − ∂(ρψ)

∂ǫe
= 0 =⇒ σ =

∂(ρψ)

∂ǫe
(3.28)
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3.3. CONSTITUTIVE EQUATIONS FOR 1D ELASTOPLASTICITY

If (3.28) holds, such that the stress σ is derived from a Helmholtz free energy function,

then the constitutive model is said to be “hyperelastic.” Also, a thermodynamically-

conjugate stress-like ISV κ can be defined as

κ :=
∂(ρψ)

∂ζ
(3.29)

(which is related to the yield stress) such that the reduced dissipation inequality D

becomes the difference between plastic power per unit volume (which when integrated

over time leads to plastic work) and rate of stored work of plastic ISV evolution as,

D := σǫ̇p − κζ̇ ≥ 0 (3.30)

We make a constitutive assumption for the Helmholtz free energy function ψ

(per unit mass) that leads to linear elasticity and linear hardening/softening as,

ρψ(ǫe, ζ) =
1

2
E(ǫe)2 +

1

2
Hκζ2 (3.31)

Then, assuming mass density ρ is constant, we have

σ =
∂(ρψ)

∂ǫe
= Eǫe (3.32)

κ =
∂(ρψ)

∂ζ
= Hκζ (3.33)

Assuming constant elastic modulus E and constant hardening/softening modulus Hκ,

we express the stress equations in rate form as

σ̇ = Eǫ̇e = E(ǫ̇− ǫ̇p) (3.34)

κ̇ = Hκζ̇ (3.35)
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CHAPTER 3. 1D CONSTITUTIVE MODELING AT SMALL STRAIN

The axial strain rate ǫ̇ will be provided numerically by the finite element solution,

and thus we need evolution equations for ǫ̇p and ζ̇, as well as yield and plastic

potential functions, in order to calculate stress σ and stress-like ISV κ.

(ii) yield and plastic potential functions: We define a yield function f to determine

when the stress reaches plastic yielding along the stress-strain curve, where we have,

f(σ, κ) = |σ| − κ ≤ 0 (3.36)

f < 0 elastic

f = 0 plastic

We can define the initial value of the stress-like ISV κ to be the initial yield stress in

compression or tension of the 1D axially loaded bar, such that κ0 = κ(t = 0) = σy0. We

can look at the yield surface in 1D in Fig.3.4. In 1D, the elastic region is the portion

of the real number line where the axial stress σ lies between the values of κ in positive

(tension) and negative (compression) directions. In 1D, the plastic region is the value

of stress that equals the stress-like ISV, such as |σ| = κ. In Fig.3.4, the initial position

of the yield surface is shown.

compression
0

tension

plastic

  f=0

plastic

  f=0

elastic region

−σy0 = −κ0 σy0 = κ0
σ ∈ R

Figure 3.4. Yield surface in 1D, where the axial stress is in the set of real numbers: σ ∈ R. We
will discuss the stress-path using this figure and a stress-strain plot.

A plastic potential function g is defined similar to the yield function f , but is used

to govern the plastic flow, or plastic strain rate, where the yield function f is used to

govern the admissible stress state (whether elastic or elastoplastic loading). There are
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3.3. CONSTITUTIVE EQUATIONS FOR 1D ELASTOPLASTICITY

two choices for the plastic potential function g: (1) if g = f , then we have associative

plastic flow; (2) if g 6= f , then we have non-associative plastic flow (typical

for geomaterials and concrete based on plastic volume change predicted by ∂g/∂σ;

discussed in Chapter 5).

(iii) evolution equations: Now we define the evolution equations starting with the plastic

flow rule. We assume associative flow g = f for 1D plasticity (and 3D isochoric

plasticity, later) for now, such that

ǫ̇p = γ̇
∂g

∂σ
=⇒ σ̇ = E

(

ǫ̇− γ̇
∂g

∂σ

)

(3.37)

g = f = |σ| − κ (3.38)

∂g

∂σ
=
∂|σ|
∂σ

= sign(σ) (3.39)

=⇒ ǫ̇p = γ̇ sign(σ) (3.40)

where γ̇ is the plastic multiplier or consistency parameter. Notice that γ̇ = |ǫ̇p| > 0,

where plastic flow (deformation or strain) is in the direction of stress, which in 1D

is sign(σ) (i.e., “+” for tension, and “−” for compression). We likewise define an

evolution equation for the strain-like ISV, such as

ζ̇ = γ̇h(σ, κ) =⇒ κ̇ = Hκγ̇h(σ, κ) (3.41)

where h(σ, κ) is the hardening function. For simplicity, we assume h(σ, κ) = − ∂g
∂κ

=

1 =⇒ ζ̇ = γ̇ = |ǫ̇p|. We will show later that h(σ, κ) = −∂f
∂κ

results from satisfying

the principle of maximum plastic dissipation, where also associative plasticity g = f

likewise results. It is important to recognize that the principle of maximum plastic

dissipation is NOT the same as the second law of thermodynamics, which we will not

violate. However, for geomaterials, experimental data dictate non-associative plasticity,

which violates the principle of maximum plastic dissipation, but not the second law of
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CHAPTER 3. 1D CONSTITUTIVE MODELING AT SMALL STRAIN

thermodynamics. More later.

We summarize the constitutive and evolution equations as

σ̇ = Eǫ̇e = E (ǫ̇− ǫ̇p) (3.42)

ǫ̇p = γ̇ sign(σ) (3.43)

κ̇ = Hκ|ǫ̇p| = Hκγ̇ (3.44)

where hardening, softening, and perfect plasticity for κ are shown in Fig.3.5. Note that

the abscissa in Fig.3.5 is the plastic strain magnitude |ǫp|, and not the total strain ǫ.

We will solve for γ̇ from the consistency condition.

hardening, H>0

softening, H<0

perfect, H=0

κ

κ0

|ǫp|

Hκ

Figure 3.5. Evolution of ISV κ for linear hardening/softening with hardening/softening modulus
Hκ.

(iv) Kuhn-Tucker optimality conditions: We know the following conditions separately:

(a) γ̇ ≥ 0, that the plastic multiplier is positive (γ̇ > 0, plastic loading) or zero (γ̇ = 0,

elastic loading/unloading); and (b) f ≤ 0, the yield function is negative (f < 0,

elastic loading/unloading) or zero (f = 0, plastic loading). Then, together, these two
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3.3. CONSTITUTIVE EQUATIONS FOR 1D ELASTOPLASTICITY

conditions are combined as γ̇f = 0, such that if γ̇ > 0 then f = 0 and we have plastic

loading, where then the stress state is on the yield surface in Fig.3.6.

E E

A H=0

0
plastic

  f=0

A

−κ

ǫ

σ

σ

σA = κ

σA = κ

Figure 3.6. Stress state is plastic, said to be “plastic loading” at σA = κ.

If f < 0 then γ̇ = 0, then we have elastic loading/unloading as shown in Fig.3.7.

E E

B

H=0

0
elastic

B
κ

κ

−κ

ǫ

σ

σ

σB
σB

Figure 3.7. Stress state is elastic, said to be “elastic loading or unloading” at σB .

These conditions are called the Kuhn-Tucker optimality conditions written as

γ̇ ≥ 0 , f ≤ 0 , γ̇f = 0 (3.45)

(v) consistency condition: When loading plastically‡, f = 0, or in rate form ḟ = 0

(stress state persists on yield surface). When loading or unloading elastically, f < 0, or

in rate form ḟ < 0 (or ḟ > 0). Combined, these conditions read as (i) plastic loading:

‡Strictly speaking, the loading is always elastoplastic because the elasticity and plasticity are coupled as
the stress is calculated from the elastic strain as σ = Eǫe = E(ǫ− ǫp).
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γ̇ > 0 implies ḟ = 0; (ii) elastic unloading/loading: ḟ < 0 (or ḟ > 0) implies γ̇ = 0.

Then, together, these two conditions are combined into the consistency condition:

γ̇ḟ = 0 (3.46)

oftentimes written for plastic loading (γ̇ > 0) as simply ḟ = 0. We solve for γ̇ from

the consistency condition during plastic loading (γ̇ > 0 and ḟ = 0). Using the

chain rule

ḟ(σ, κ) =
∂f

∂σ
σ̇ +

∂f

∂κ
κ̇ = 0 (3.47)

and substituting evolution equations leads to the solution for γ̇ as

∂f

∂σ
E

(

ǫ̇− γ̇
∂g

∂σ

)

+
∂f

∂κ
Hκh(σ, κ)γ̇ = 0 (3.48)

γ̇ =
∂f
∂σ
Eǫ̇

∂f
∂σ
E ∂g
∂σ

− ∂f
∂κ
Hκh

(3.49)

For our example, as we will see, the plastic multiplier becomes,

γ̇ =
Eǫ̇[sign(σ)]

E +Hκ
(3.50)

(vi) continuum elastoplastic tangent: Substituting the solution for γ̇ back into the

stress evolution equation, we obtain an expression for the continuum elastoplastic

tangent Eep, which relates the total stress rate σ̇ to the total strain rate ǫ̇ as

σ̇ = E

(

ǫ̇− γ̇
∂g

∂σ

)

(3.51)

=

(

E − E ∂g
∂σ

∂f
∂σ
E

∂f
∂σ
E ∂g
∂σ

− ∂f
∂κ
Hh

)

︸ ︷︷ ︸

Eep

ǫ̇ (3.52)

= Eepǫ̇ (3.53)
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For our example,

∂f

∂σ
=
∂g

∂σ
= sign(σ) (3.54)

∂f

∂κ
= −1 (3.55)

h(σ, κ) = 1 (3.56)

then, we have

σ̇ = Eepǫ̇ , Eep =
EHκ

E +Hκ
(3.57)

For bilinear hardening/softening (which we have assumed), the stress-strain response

is illustrated in Fig.3.8.

H>0

H<0

H=0

EE

σ

ǫ

σy

ǫpA ǫeA

ǫA

A

Eep

Figure 3.8. Linear elastic, hardening/perfect/softening plastic, stress-strain response showing
additive decomposition of strain at point A: ǫA = ǫeA + ǫpA. The slope of the plastic loading curve
is the elasto-plastic modulus Eep.

(vii) combined isotropic and kinematic hardening: Until now, we considered only
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isotropic hardening through stress-like ISV κ, such as in Fig.3.9.

E E

H>0

0

0

A

A

B

BC

C

σ

σ

ǫ

κ0

κ0

κ1

κ1

−κ0−κ1

−κ1

Figure 3.9. Linear elastic, hardening plasticity response showing evolution of isotropic ISV κ from
κ0 to κ1 on stress-strain curve and yield surface stress space σ. This is isotropic hardening.

As shown in Fig.3.9, if κ increases or decreases, the elastic domain increases or de-

creases symmetrically about the stress origin (Fig.3.9 shows an increase in the elastic

domain). But certain experimental data have shown that upon unloading and reverse

loading, yielding is not symmetric, which is called the Bauschinger effect, as illustrated

in Fig.3.10.

Thus, we introduce a backstress α into the thermodynamics and yield function to ac-

count for unsymmetric yield about the stress origin, which is called kinematic hard-

ening.

The Helmholtz free energy function ψ (per unit mass) is modified to include two other
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E

E

H=0

Bauschinger effect

σ

ǫ

κ0

−κ0

|σy| < κ0

Figure 3.10. Linear elastic, perfectly-plastic response showing Bauschinger effect upon unloading
and reloading where |σy| < κ0. This experimentally-observed phenomenon motivates kinematic

hardening.

ISVs (ζα and α) associated with kinematic hardening as

ρψ(ǫe, ζ) :=
1

2
E(ǫe)2 +

1

2
ζ ·H · ζ (3.58)

ζ =






ζκ

ζα




 , H =






Hκ 0

0 Hα




 (3.59)

where ζ is now a vector of strain-like ISVs, and H is the hardening matrix. From the

Clausius-Duhem inequality, we have an energy-conjugate vector qζ of stress-like ISVs

as

qζ =
∂(ρψ)

∂ζ
=






κ

α




 = H · ζ (3.60)

q̇ζ = H · ζ̇ (3.61)
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We introduce the backstress α into the yield function as follows

f(σ, qζ) = |σ − α| − κ ≤ 0 (3.62)

When we analyze initial yield stress σy0 = α0 + κ0sign(σ − α0), we can see in Fig.3.11

the effect of the backstress α in shifting the yield surface. Think of the yield surface

as translated (“kinematic”) in stress space, in this case along the real number line as

shown in Fig.3.11, where the elastic domain is centered about σ = α.

0

E

E

Bauschinger effect

σ

σ

ǫ

α0 + κ0

α0 + κ0α0 − κ0

α0 − κ0

2κ0

α0

α0

Hκ = Hα = 0

Figure 3.11. Linear elastic, perfectly-plastic response showing translated position of center of yield
surface by backstress α0. The size of the yield surface is still controlled by κ0, where the size is 2κ0.
This is kinematic hardening when the backstress α evolves and the yield surface translates.

If κ remains constant (Hκ = 0, κ = κ0), but α is increasing by hardening (Hα > 0),

then the yield surface translates in stress space (σ ∈ R), but does not grow or reduce

in size as shown in Fig.3.12. We can confirm that the yield surface just translates in

stress space without changing size by the following calculation:

(α0 + κ0)− (α0 − κ0) = 2κ0

(α1 + κ0)− (α1 − κ0) = 2κ0

(3.63)
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0

σ
α0 + κ0α0 − κ0

α1 + κ0α1 − κ0

2κ0

2κ0

α0

α1

Figure 3.12. Kinematic hardening (Hα > 0), but isotropic perfectly plastic (Hκ = 0), showing
translated position of center of yield surface by backstress α0 to hardened value α1. The size of the
yield surface is still controlled by κ0, where the size is 2κ0 because Hκ = 0. In class: we will draw

a stress-path with corresponding stress-strain curve to illustrate this concept.

We can write the evolution equation for the strain-like ISV vector ζ as

ζ̇ = γ̇h(σ, qζ) =⇒ q̇ζ = γ̇H · h(σ, qζ) (3.64)

For simplicity, let h(σ, qζ) = −∂g/∂qζ and g = f , such that

− ∂g

∂qζ
= −






∂g
∂κ

∂g
∂α




 =






1

sign(σ − α)




 =⇒

κ̇ = Hκγ̇

α̇ = Hαsign(σ − α)γ̇
(3.65)

ζ̇ =






ζ̇κ

ζ̇α




 = γ̇






1

sign(σ − α)




 (3.66)

We revisit the consistency condition:

ḟ =
∂f

∂σ
σ̇ +

∂f

∂qζ
· q̇ζ = 0 (3.67)

Upon substituting the evolution equations into the consistency condition equation leads
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to the solution of the plastic multiplier γ̇ as follows,

∂f

∂σ
E

(

ǫ̇− γ̇
∂g

∂σ

)

+
∂f

∂qζ
·H · hγ̇ = 0 (3.68)

γ̇ =
∂f
∂σ
Eǫ̇

∂f
∂σ
E ∂g
∂σ

− ∂f
∂qζ ·H · h

(3.69)

More specifically, for our example of linear elasticity and linear hardening, we have

∂f

∂qζ
=






−1

−sign(σ − α)




 (3.70)

− ∂f

∂qζ
·H · h = Hκ +Hα (3.71)

Then, the continuum elastoplastic tangent results as (show the derivation yourself)

Eep =
E(Hκ +Hα)

E +Hκ +Hα
(3.72)

(viii) convexity of yield surface: Convexity of the elastic domain in stress space (Fig.3.13)

is required for proper formulation of an elastoplasticity model [Simo and Hughes, 1998].

In Fig.3.13, convex and non-convex yield surfaces are illustrated in principal stress

space, where the two options are summarized: convex implies that all possible stress

states lie within the elastic domain (f < 0), or on the yield surface (f = 0), whereas

non-convex implies that it is possible for a stress state to lie outside the elastic

domain (which is impossible for rate-independent plasticity because this violates one

of the Kuhn-Tucker conditions, f ≤ 0).

Mathematically, this can be proven as follows [Simo and Hughes, 1998]. Consider an

elastic domain bounded by a yield surface

Eσ =
{
σ ∈ R, qζ ∈ R

2, f(σ, qζ) ≤ 0
}

(3.73)
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Convex Non-convex

f=0

yield surface

elastic domain

f=0

yield surface

elastic domain

σ1σ1

σ2σ2

σ∗σ∗

σ1σ1

σ2σ2

σ3σ3

Figure 3.13. Illustration of convex (left) and non-convex (right) yield surfaces in 3D principal
stress space. The concept is that for any two elastic stress states σ1 and σ2, a third elastic stress
state can lie along a straight line in between, which we call σ∗. If σ∗ falls within the elastic domain,
then the yield surface is convex, otherwise it is not. A mathematical proof is given in the notes.

We want to ensure convexity of f , thus we need to show that

f [σ∗, (qζ)∗] ≤ ηf(σ1, q
ζ
1) + (1− η)f(σ2, q

ζ
2) ∀η ∈ [0, 1] (3.74)

σ∗ = ησ1 + (1− η)σ2 (linear interpolation) (3.75)

(qζ)∗ = ηqζ1 + (1− η)qζ2 (3.76)

We can check this by applying the triangle inequality, |a+ b| ≤ |a|+ |b|, such that

f [σ∗, (qζ)∗] = |σ∗ − α∗| − κ∗ (3.77)

= |ησ1 + (1− η)σ2 − ηα1 − (1− η)α2| − ηκ1 − (1− η)κ2 (3.78)

≤ (η|σ1 − α1| − ηκ1) + ((1− η)|σ2 − α2| − (1− η)κ2) (3.79)

= ηf(σ1, q
ζ
1) + (1− η)f(σ2, q

ζ
2) (3.80)

q.e.d
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Therefore, f(σ, qζ) is convex for our simple 1D combined isotropic-kinematic hardening

elastoplasticity model.

(ix) uniqueness (Hill’s stability postulate and softening plasticity): Let us revisit

the analysis of uniqueness for elastoplasticity on pg53 of Hill [1950]. Consider an

elastoplastic bar in static equilibrium, with constant cross-sectional area A

σ,x = 0 for x ∈ (0, L)

σA = F at x = L

u = g at x = 0

(3.81)

Consider two possible distinct stress increments σ̇ and σ̇∗ resulting from two distinct

strain increments ǫ̇ and ǫ̇∗, where

σ̇ = Eepǫ̇, ǫ̇ = u̇,x

σ̇∗ = Eepǫ̇∗, ǫ̇∗ = u̇∗,x

(3.82)

The BCs are the same, where σ̇,x = 0 and σ̇∗
,x = 0 for static equilibrium without a body

force. Consider the derivative

∂

∂x
[(σ̇ − σ̇∗)(u̇− u̇∗)] =

∂(σ̇ − σ̇∗)

∂x
(u̇− u̇∗) + (σ̇ − σ̇∗)

∂(u̇− u̇∗)

∂x
(3.83)

Then, integrating over the length L of the bar (to provide a strain energy difference),

we have

∫ L

0

(σ̇−σ̇∗)(ǫ̇− ǫ̇∗)dx =

∫ L

0

∂

∂x
[(σ̇ − σ̇∗)(u̇− u̇∗)] dx−

∫ L

0

∂(σ̇ − σ̇∗)

∂x
(u̇−u̇∗)dx (3.84)

Let us analyze each term separately on the r.h.s. Using Green’s theorem, and because

the BCs are the same for each solution (i.e., the stresses at x = L and displacements
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at x = 0 are the same), we have

∫ L

0

∂

∂x
[(σ̇ − σ̇∗)(u̇− u̇∗)] dx = [(σ̇ − σ̇∗)(u̇− u̇∗)]L0 = 0 (3.85)

Also, because σ̇,x = 0 and σ̇∗
,x = 0 for x ∈ (0, L), we have

∫ L

0

∂(σ̇ − σ̇∗)

∂x
(u̇− u̇∗)dx = 0 (3.86)

Then, we are left with

∫ L

0

(σ̇ − σ̇∗)(ǫ̇− ǫ̇∗)dx = 0 (3.87)

∫ L

0

Eep(ǫ̇− ǫ̇∗)2dx = 0 (3.88)

which leads to the following uniqueness conditions:

elasticity =⇒ Eep = E > 0 =⇒ ǫ̇ = ǫ̇∗ unique

hardening plasticity =⇒ Eep > 0 =⇒ ǫ̇ = ǫ̇∗ unique

perfect plasticity =⇒ Eep = 0 =⇒ ǫ̇ , ǫ̇∗ arbitrary , not unique

(3.89)

We need another analysis for rate-independent softening plasticity (which is also non-

unique).

For uniqueness and stability analysis of strain-softening, small strain elasto-

plasticity theory, refer to Sandler and Wright [1976], Read and Hegemier [1984],

Needleman [1988], Loret and Prevost [1991], Sluys and de Borst [1992]. Recall the

balance of linear momentum in 1D for elastodynamics (without body force) as

σ,x = ρv,t (3.90)
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where the axial velocity v = u,t = du/dt. For isotropic hardening or softening, we have

σ̇ = Eepǫ̇ = Eepu,xt = Eepv,x (3.91)

Take the time derivative of the balance equation as,

σ,xt = ρv,tt (3.92)

Eepv,xx = ρv,tt (3.93)

v,tt −
Eep

ρ
v,xx = 0 (3.94)

which is a form of thewave equation and is hyperbolic. We analyze characteristics of

the partial differential equation (PDE) by introducing a new coordinate s (characteristic

curve), such that,

d

ds

(
∂v

∂t

)

=
∂2v

∂t2
dt

ds
+

∂2v

∂t∂x

dx

ds
= 0 (3.95)

d

ds

(
∂v

∂x

)

=
∂2v

∂t∂x

dt

ds
+
∂2v

∂x2
dx

ds
= 0 (3.96)

The characteristic determinant of (3.94)-(3.96) is then

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 −Eep

ρ

dt
ds

dx
ds

0

0 dt
ds

dx
ds

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

(
dx

ds

)2

− Eep

ρ

(
dt

ds

)2

= 0 (3.97)

where the characteristics are dx
dt

= ±
√

Eep

ρ
, which are the physical wave speeds. Con-

sider the following three cases:

(a) hardening plasticity (Hκ > 0): Eep > 0 =⇒ wave speeds are real, and PDE is

well-posed.

(b) perfect plasticity (Hκ = 0): Eep = 0 =⇒ wave speeds = 0, and PDE trans-
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forms from hyperbolic to parabolic; ill-posed because initial disturbances cannot

propagate through the body.

(c) softening plasticity (Hκ < 0): Eep < 0 =⇒ imaginary wave speeds, and PDE

transforms from hyperbolic to elliptic; ill-posed because initial disturbances cannot

propagate through the body.

Rate-dependent plasticity (viscoplasticity) ‘regularizes’ the PDEs for softening plastic-

ity such that the governing equation is well-posed (we will discuss in Sect.3.7).

3.4 Numerical Integration in Time of 1D Elastoplas-

ticity

Refer to Simo and Hughes [1998]. We integrate in time the stress rate, evolution equations,

and consistency condition, written together as,

σ̇ = Eǫ̇e = E(ǫ̇− ǫ̇p) = E

(

ǫ̇− γ̇
∂g

∂σ

)

,
∂g

∂σ
= sign(σ − α) (3.98)

κ̇ = Hκγ̇ (3.99)

α̇ = Hαsign(σ − α)γ̇ (3.100)

γ̇ḟ = 0 (3.101)

There are 4 first-order ODEs, and 4 unknowns (σ, κ, α, γ). We use Backward Euler inte-

gration (implicit, first order accurate), which can be shown to be equivalent to the “return

mapping algorithm” for certain constitutive models. Consider an example (“f” is a generic
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function):

ẏ = f(y, t) , y(0) = y0 (3.102)
∫ tn+1

tn

ẏdt =

∫ tn+1

tn

f(y, t)dt (3.103)

yn+1 − yn = ∆tf(yn+1, tn+1) (3.104)

yn+1 = yn +∆tf(yn+1, tn+1) (3.105)

Now, apply Backward Euler to our 4 ODEs as follows

σn+1 = σn + E (∆ǫ−∆γ sign(σn+1 − αn+1))

∆ǫ = ǫn+1 − ǫn

∆γ = ∆tγ̇n+1 = γn+1 − γn

σn+1 = σtr
n+1 − E∆γ sign(σn+1 − αn+1) (3.106)

σtr
n+1 = σn + E∆ǫ

κn+1 = κn +Hκ∆γ (3.107)

αn+1 = αn +Hα∆γ sign(σn+1 − αn+1) (3.108)

γ̇n+1fn+1 − γ̇nfn = 0 =⇒ γ̇n+1fn+1 = 0 =⇒ fn+1 = 0 (3.109)

where σtr
n+1 is the trial stress, and if there is elastoplastic loading at times tn and tn+1 then

γ̇n > 0, fn = 0, γ̇n+1 > 0, fn+1 = 0, else if elastic at time tn and elastoplastic at time

tn+1, then γ̇n = 0, fn < 0, γ̇n+1 > 0, fn+1 = 0. Note that to reach the integrated form in

Eq.(3.109), we apply the chain rule (with u = γ̇, v = f , a = tn, b = tn+1) and Backward
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Euler as follows:

d(uv)

dt
=

du

dt
v + u

dv

dt
∫ a

b

d(uv)

dt
dt =

∫ a

b

du

dt
vdt+

∫ a

b

u
dv

dt
dt

(γ̇f)|tn+1

tn
= ∆t

dγ̇n+1

dt
fn+1 +

∫ tn+1

tn

γ̇ḟ
︸︷︷︸

=0

dt

γ̇n+1fn+1 − γ̇nfn = 0

where we used the consistency condition γ̇ḟ = 0, and for a plastic state fn+1 = 0 or an

elastic state γ̇n+1 = 0.

Because these equations are linear, we may substitute the 3 evolution equations into fn+1 = 0

to solve for ∆γ as follows,

fn+1 = |σn+1 − αn+1| − κn+1 = 0 (3.110)

=⇒ sign(σn+1 − αn+1)
[
σtr
n+1 − E∆γ sign(σn+1 − αn+1)− αn

−Hα∆γ sign(σn+1 − αn+1)]− κn −Hκ∆γ = 0

=⇒ sign(σn+1 − αn+1)[σ
tr
n+1 − αn]−∆γ(E +Hκ +Hα)− κn = 0

We can show that sign(σn+1 − αn+1) = sign(σtr
n+1 − αn).

§ For example, assume perfect

§The “radial return” approximation would assume sign(σn+1 − αn+1) ≈ sign(σtr
n+1 − αn).
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plasticity for α, Hα = 0, such that,

σn+1 − αn+1 = σtr
n+1 − E∆γ sign(σn+1 − αn+1)− αn

= (σtr
n+1 − αn)− E∆γ sign(σn+1 − αn+1)

|σn+1 − αn+1| = sign(σn+1 − αn+1)(σ
tr
n+1 − αn)− E∆γ

|σn+1 − αn+1|
︸ ︷︷ ︸

>0

= sign(σn+1 − αn+1)sign(σ
tr
n+1 − αn)

︸ ︷︷ ︸

must be >0

|σtr
n+1 − αn|

︸ ︷︷ ︸

≥0

−E∆γ
︸ ︷︷ ︸

>0

=⇒ sign(σn+1 − αn+1) = sign(σtr
n+1 − αn)

Then, we have the incremental plastic multiplier as,

∆γ =
|σtr
n+1 − αn| − κn
E +Hκ +Hα

=
f tr
n+1

E +Hκ +Hα
(3.111)

Let us summarize the return mapping algorithm: given ∆ǫ over a time step (from the

nonlinear finite element solution), and σn, κn, αn, γn from the past time step (you do not need

to update γn+1 = γn+∆γ, but it is useful for plotting an effective plastic strain magnitude),

we follow these steps

1. compute trial stress: σtr
n+1 = σn + E∆ǫ

2. check for yielding: trial yield function f tr
n+1 = |σtr

n+1 − αn| − κn

if f tr
n+1 > 0 plastic go to step 3

else f tr
n+1 < 0 elastic : σn+1 = σtr

n+1

αn+1 = αn

κn+1 = κn

γn+1 = γn

(3.112)
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3. compute ∆γ =
ftrn+1

E+Hκ+Hα , and update:

σn+1 = σtr
n+1 −E∆γ sign(σtr

n+1 − αn)

αn+1 = αn +Hα∆γ sign(σtr
n+1 − αn)

κn+1 = κn +Hκ∆γ

γn+1 = γn +∆γ

(3.113)

We can visualize this algorithm in Fig.3.14 for the case of hardening. This strain increment

∆ǫ loads the 1D elastoplastic bar from an elastic stress state at σn to an elastoplastic stress

state at σn+1.

E

return to hardened

stress-strain curve

σ

σn + E∆ǫ = σtr
n+1

σn

σn+1

σy

E∆γ

ǫǫn ǫn+1

∆ǫ

Eep

Figure 3.14. Illustration of return mapping algorithm (Backward Euler time integration) for
hardening elastoplasticity.
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3.5 Consistent Tangent for 1D Elastoplasticity

Recall the element level consistent tangent for the nonlinear axially-loaded bar as follows

∂f e,INT(de)

∂de
=

∫ 1

−1

(Be)TBe∂σ
he

∂ǫhe
Ajedξ (3.114)

Recall the stress evolution equation, and recognize that ∆ǫk+1 = ǫk+1
n+1 − ǫn, such that at a

Gauss point in an element e, we have

σk+1
n+1 = (σk+1

n+1)
tr − E∆γk+1 sign

[
(σk+1

n+1)
tr − αn

]
(3.115)

(σk+1
n+1)

tr = σn + E∆ǫk+1 (3.116)

∆γk+1 =
(fk+1
n+1)

tr

E +Hκ +Hα
(3.117)

or, without (•)k+1
n+1,

σ = σtr − E∆γ sign
[
σtr − αn

]
(3.118)

σtr = σn + E∆ǫ (3.119)

∆γ =
f tr

E +Hκ +Hα
(3.120)

Then, the material consistent tangent may be calculated as

(
∂σh

e

∂ǫhe

)k+1

n+1

=
∂σtr

∂ǫ
−E

∂∆γ

∂ǫ
sign

[
σtr − αn

]
(3.121)

∂σtr

∂ǫ
= E ,

∂∆γ

∂ǫ
=
Esign [σtr − αn]

E +Hκ +Hα
(3.122)

(
∂σh

e

∂ǫhe

)k+1

n+1

=
E(Hκ +Hα)

E +Hκ +Hα
(3.123)

Note: for simple 1D elastoplasticity, the continuum elastoplastic tangent Eep and material

consistent tangent
(
∂σh

e

/∂ǫh
e)k+1

n+1
are the SAME. This will NOT be the case for higher
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dimensional plasticity (2D and 3D).

3.6 Constitutive Equations for 1D Viscoelasticity

See Chp.10 of Simo and Hughes [1998]. 1D linear viscoelasticity will be similar to viscoplas-

ticity (Sect.3.7), except that the relaxed solution is elastic as opposed to inviscid elasto-

plastic. We begin with the kinematics: ǫe = ǫes+ ǫve is the elastic strain for a standard linear

solid, where the elastic-spring strain is ǫes, and the viscoelastic strain is ǫve (Fig.3.15).

σ σ
ηeE

E∞

ǫes ǫve

ǫe

Figure 3.15. Illustration of 1D linear viscoelasticity.

The initial elastic modulus is E0 = E + E∞, the long term elastic modulus is E∞, and the

elastic viscosity is ηe (Pa.s). The total axial stress is σ = E∞ǫ
e+σv, where the viscous stress

is σv = ηeǫ̇ve = Eǫes = E(ǫe − ǫve), which leads to the ODE,

ǫ̇ve +
1

τ e
ǫve =

1

τ e
ǫe (3.124)
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where the elastic relaxation time constant is τ e = ηe/E (s). We solve analytically¶ for ǫve(t)

to solve for stress σ(t). The solution of ǫve(t) can be obtained by using an integration factor

exp(t/τ e) (check the derivation yourself), such that,

exp(t/τ e)ǫ̇ve +
1

τ e
exp(t/τ e)ǫve =

1

τ e
exp(t/τ e)ǫe (3.125)

∫ t

−∞

d

ds
[exp(s/τ e)ǫve(s)] ds =

∫ t

−∞

1

τ e
exp(s/τ e)ǫe(s)ds (3.126)

exp(t/τ e)ǫve(t) =
1

τ e

∫ t

−∞

exp(s/τ)ǫe(s)ds (3.127)

ǫve(t) =

∫ t

−∞

1

τ e
exp((s− t)/τ e)ǫe(s)ds (3.128)

d

ds
[exp((s− t)/τ e)ǫ(s)] =

1

τ e
exp((s− t)/τ e)ǫe(s) + exp((s− t)/τ e)ǫ̇e(s)

ǫve(t) =

∫ t

−∞

d

ds
[exp((s− t)/τ e)ǫe(s)] ds

︸ ︷︷ ︸

ǫe(t)

−
∫ t

−∞

exp((s− t)/τ e)ǫ̇e(s)ds (3.129)

Then, the stress becomes

σ(t) = E∞ǫ
e(t) + E

∫ t

−∞

exp((s− t)/τ e)ǫ̇e(s)ds (3.130)

=

∫ t

−∞

G(t− s)ǫ̇e(s)ds (3.131)

G(t− s) = E∞ + E exp(−(t− s)/τ e) (3.132)

where G(t−s) is the relaxation function. Note in this formulation there is no plastic strain

(ǫp = 0), such that the total strain is the elastic strain, ǫ = ǫe+ǫp = ǫe. Analytically, consider

two loading conditions (numerically, we can consider more general loading conditions):

(i) stress relaxation: a step function for the total strain ǫ(t) = ǫ0H(t) is introduced,

such that ǫ̇(t) = ǫ0δ(t) (Fig.3.16), where H(t) is the Heaviside function, and δ(t) is the

¶In Sect.3.6.1 we will solve these equations numerically.
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Dirac-Delta function. We see that,

σ(t) =

∫ t

−∞

G(t− s)ǫ0δ(s)ds = ǫ0G(t) (3.133)

G(t) = E∞ + E exp(−t/τ e) (3.134)

We could also represent a generalized relaxation model with multiple spring-dashpots

in parallel to provide a Prony series for G(t) [Simo and Hughes, 1998].

σ

t t

ǫ

ǫ0

E0ǫ0

E∞ǫ0

Figure 3.16. Illustration of stress relaxation under constant applied total strain ǫ0 for 1D linear
viscoelasticity.

(ii) creep: Alternatively, we can write the solution in terms of a creep function J(t)

(derive yourself), such that,

ǫ(t) =

∫ t

−∞

J(t− s)σ̇(s)ds (3.135)

J(t) =
1

E∞

[

1− E

E0

exp

(−E∞t

E0τ e

)]

(3.136)

For example, consider a creep strain, where there is a step function for total stress

σ(t) = σ0H(t), σ̇(t) = σ0δ(t) (Fig.3.17), such that,

ǫ(t) =

∫ t

−∞

J(t− s)σ0 δ(s)ds = σ0J(t) (3.137)

Oftentimes, for viscoelastic response, you are provided data in the frequency domain,
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ǫ

t t

σ

σ0

σ0/E∞

σ0
E∞

[

1− E
E0

]

Figure 3.17. Illustration of strain creep under constant applied stress σ0 for 1D linear viscoelasticity.

thus we must transform the equations from time to frequency domain. Consider an applied

harmonic total strain, such as,

ǫ(t) = ǫ0 exp(iωt) , i =
√
−1 (3.138)

ǫ̇(t) = ǫ0iω exp(iωt) (3.139)

where ω is the frequency, and i is the imaginary number. Then, the stress becomes

σ(t) = E∞ǫ0 exp(iωt) + E

∫ t

−∞

exp((s− t)/τ e)ǫ0iω exp(iωs)ds (3.140)

= G∗(ω)ǫ(t) (3.141)

G∗(ω) = Gs(ω) + iGl(ω) (3.142)

Gs(ω) = E∞ +
E(ωτ e)2

1 + (ωτ e)2
(3.143)

Gl(ω) =
Eωτ e

1 + (ωτ e)2
(3.144)

loss factor =
Gl

Gs
(3.145)

3.6.1 Numerical time integration of 1D viscoelasticity

enter here
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3.7 Constitutive Equations for 1D Viscoplasticity

Refer to Simo and Hughes [1998] and Fig.3.18 for the kinematics of a 1D rheological elasto-

plastic model: ǫ = ǫe + ǫvp, where ǫ = du/dx is the total strain, ǫe is the elastic strain, ǫvp is

the viscoplastic strain, and ηp is the plastic viscosity (Pa.s).

σ σ

ǫ

ǫe ǫvp

E
ηp

κ

Figure 3.18. One degree of freedom illustration of viscoplasticity, where the total strain is additively
decomposed into elastic and viscoplastic parts as ǫ = ǫe + ǫvp. Viscosity ηp introduces the viscous
effect into the plasticity, where κ is the stress-like ISV.

The Helmholtz free energy function per unit mass is the same as for rate-independent (in-

viscid) elastoplasticity: ρψ(ǫe, ζ) = 1
2
E(ǫe)2 + 1

2
Hζ2, such that σ̇ = Eǫ̇e = E(ǫ̇ − ǫ̇vp) and

κ̇ = Hζ̇. The yield function is now replaced by a loading function: f(σ, κ) = |σ| − κ. The

evolution equation for viscoplastic strain is then written as,

if f < 0 ǫ̇vp = 0

if f ≥ 0 ǫ̇vp = f
ηp
sign(σ)

(3.146)

We define an “extra stress” σextra that is the portion of the stress above the ‘frictional’

plastic-mechanism-governing ISV κ, that acts on the dashpot: σextra = ηpǫ̇vp (check units).

For example, consider the 1D stress line for f > 0 in Fig.3.19.
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compression
0

tension

elastic region

relax backrelax back

σ ≤ −κ σ ≥ κ σ

σextra σextra

κ−κ

Figure 3.19. Illustration of viscoplasticity, with relaxation of stress state from σextra to inviscid
yield surface at σ = κ.

We see that

σ > κ, σextra = σ − κ

σ ≤ −κ, σextra = σ − (−κ)







= (|σ| − κ)sign(σ) = fsign(σ) (3.147)

and thus σextra = fsign(σ) = ηpǫ̇vp =⇒ ǫ̇vp = f
ηp
sign(σ). Generalizing for all stress states

(elastic, and elasto-visco-plastic), we have

ǫ̇vp =
〈f〉
η

sign(σ) (3.148)

〈f〉 = (f + |f |)/2 (3.149)

For hardening, κ̇ = Hζ̇ = H|ǫ̇vp| = H 〈f〉 /ηp, where 〈•〉 is the Macaulay bracket. This is

called the Perzyna-type viscoplasticity model.

Alternatively, introduce a relaxation time constant τ = ηp/E, where

ǫ̇vp =
1

τpE
(|σ| − κ)sign(σ) (3.150)

=
1

τpE
(σ − κ sign(σ))
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Recall that,

σ̇ = Eǫ̇e = E(ǫ̇− ǫ̇vp) (3.151)

= E

(

ǫ̇− 1

τpE
(σ − κ sign(σ))

)

σ̇ +
1

τp
σ = Eǫ̇+

1

τp
κ sign(σ) (3.152)

For hardening (considering plastic loading), we have

κ̇ =
H

τpE
〈f〉 = − H

τpE
(κ− |σ|) (3.153)

κ̇+
H

τpE
κ =

H

τpE
|σ| (3.154)

This is the Duvaut-Lions form of viscoplasticity. Furthermore, consider that as t/τp →

∞ (t → ∞ or τp → 0), the viscoplastic solution approaches the rate-independent (inviscid)

solution (f = 0 for plastic loading), such that we can rewrite the Duvaut-Lions form as

σ̇ +
1

τp
σ = Eǫ̇+

1

τp
σinv (3.155)

κ̇+
H

τpE
κ =

H

τpE
κinv (3.156)

where σinv and κinv are the inviscid solution. We note the following about theDuvaut-Lions

form of viscoplasticity: Kuhn-Tucker conditions (there are none); consistency condition

(there is none); continuum elastoplastic tangent (none, because no consistency condition);

isotropic/kinematic hardening (we will stick with isotropic, but can generalize for combined

isotropic-kinematic hardening); convexity of yield surface (there is no yield surface); and

for a uniqueness and stability analysis, consider the numerically integrated form using

109



CHAPTER 3. 1D CONSTITUTIVE MODELING AT SMALL STRAIN

Backward Euler as

σn+1 − σn
∆t

+
1

τp
σn+1 = E

∆ǫ

∆t
+

1

τp
σinv (3.157)

σn+1

(

1 +
∆t

τp

)

= σn + E∆ǫ
︸ ︷︷ ︸

σtrn+1

+
∆t

τp
σinv (3.158)

We analyze the consistent tangent as,

∂σn+1

∂ǫn+1
=

1

1 + ∆t
τp

(

E +
∆t

τp
EHκ

E +Hκ

)

(3.159)

∂σn+1

∂ǫn+1

=
E

1 + ∆t
τp

(

1 +
∆t

τp
Hκ

E +Hκ

)

(3.160)

1 +
∆t

τp
Hκ

E +Hκ
= 1 +∆t

Eep

ηp
> 0 for

∂σn+1

∂ǫn+1

> 0 (3.161)

∆t
Eep

ηp
> −1 (3.162)

0 < ∆t < − ηp

Eep
if Eep < 0 (3.163)

where Eep = EHκ/(E + Hκ) is the consistent (and continuum) elasto-plastic tangent

for 1D inviscid isotropic hardening elastoplasticity. Thus, if we choose a time increment

small enough, the numerical solution will remain stable for softening viscoplasticity. Note:

viscous-regularization is just one approach to regularization of a strain-softening inviscid

plasticity model. Other approaches include nonlocal plasticity (e.g., [Bazant and Jirasek,

2003]), strain-gradient plasticity (e.g., [R. de Borst and H. Mühlhaus, 1992]), and discrete

fracture (e.g., cohesive zone models [Ortiz and Pandolfi, 1999]), etc.

3.8 Constitutive Equations for 1D Elastodamage

need content
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3.9 Constitutive Equations for 1D Thermoelasticity

need content
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Chapter 4

3D Isochoric (Deviatoric)

Rate-Independent Plasticity at Small

Strain

Much of the material in this chapter is taken from Simo and Hughes [1998], Borja [2013].

This chapter will primarily focus on steps 1-5 of a typical modeling procedure if you are

developing your own elastoplastic constitutive model (refer also to Ch.3 for more discussion

in terms of 1D elastoplasticity). These steps are outlined as follows (same steps as for 1D

elastoplasticity):
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CHAPTER 4. 3D J2 FLOW PLASTICITY AT SMALL STRAIN

1. kinematics: We assume small strains, such that an additive decomposition of strain

tensor ǫ is appropriate:

ǫ = ǫe + ǫp

total strain ǫ = 1
2

[
∂u
∂x +

(
∂u
∂x

)T
]

=









ǫ11 ǫ12 ǫ13

ǫ12 ǫ22 ǫ23

ǫ13 ǫ23 ǫ33









ǫij =
1
2
[ui,j + uj,i]

elastic strain ǫe (recoverable deformation)

plastic strain ǫp (permanent deformation)

(4.1)

where ǫ̇p will be defined through a flow rule, from which ǫp can be integrated. Then,

given the total strain tensor ǫ from the finite element solution, we can calculate the

elastic strain as ǫe = ǫ− ǫp.

2. balance equations and thermodynamics: We will revisit the balance equations

and thermodynamics for a 3D solid continuum body at small strain: (1) balance of mass

(use for fluid flow, mixture theory, etc.; not needed in this section), (2) balance of linear

momentum (solve for displacement), (3) balance of angular momentum (leads to sym-

metric stress for non-polar media), (4) balance of energy (first law of thermodynamics;

solve for temperature), (5) second law of thermodynamics (constrains elastoplastic-

ity formulation; requires non-negative energy dissipation). We focus on (4) and (5)

for constitutive modeling purposes in this Chapter. For further information, refer to

continuum mechanics textbooks, such as Malvern [1969], Holzapfel [2000].

3. constitutive equations: We need constitutive equations for stress (e.g., linear isotropic

elasticity σ = ce : ǫe, or σij = ceijklǫ
e
kl), where c

e
ijkl is the 4th order elastic modulus ten-

sor, a yield function f(σ, qζ) = 0 and plastic potential function g(σ, qζ), internal state

variable (ISV) evolution equations (e.g., hardening, perfect, or softening plasticity)
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for a stress-like ISV vector qζ . As for 1D elastoplasticity, the ISVs attempt to rep-

resent phenomenologically the evolution of the underlying microstructure as it relates

to the experimentally-observed behavior (e.g., motion and piling up of dislocations at

obstacles in metals leading to hardening; compaction of pore space in sand leading

to reduced volume and increased shear strength, hardening; shear-banding leading to

post-peak softening and failure, ...).

4. numerical integration in time: Constitutive equations are expressed in rate form

(e.g., σ̇ = Dσ/Dt) to account for evolution of the solid material over time due to

deformation and load history. We must integrate numerically in time before we can

implement these equations in a nonlinear FE program. In rate form, the stress equation

reads, assuming constant elastic modulus tensor ce,

σ̇ = ce : ǫ̇e (4.2)

ǫ̇e = ǫ̇− ǫ̇p

where ǫ̇ is the prescribed strain rate tensor by the FE program, leading to what we

call a “strain-driven” problem ǫ̇ ≈ ∆ǫ/∆t, where ∆t is the time increment. The

evolution equations (rate form of constitutive equations) are usually first order ordinary

differential equations (ODEs) in time t, thus we may use a generalized trapezoidal rule

to integrate in time (e.g., Backward Euler, Forward Euler, trapezoidal rule).

5. FE implementation, consistent tangent: The 3D stress tensor σij will be a non-

linear function of the element displacement: σ(de), where e denotes element, NOT

elastic. Then, the formulation of the consistent tangent for Newton-Raphson solution

will follow as,

∂f e,INT(de)

∂de
= . . . (4.3)

We will show details after we present the 3D elastoplasticity theory, time integration,
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CHAPTER 4. 3D J2 FLOW PLASTICITY AT SMALL STRAIN

and local material consistent tangent ∂σhe/∂ǫh
e

at a Gauss point in element e.

4.1 Balance Equations and Thermodynamics

The balance of linear momentum in 3D for a single phase solid material is

ρüi = σij,j + ρbi (4.4)

where the divergence of the stress tensor is σij,j = ∂σij/∂xj , ρ is the mass density (kg/m3),

üi is the acceleration vector (m/s2), σij is the symmetric stress tensor (Pa), bi is the body

force vector per unit mass (N/kg = m/s2). The balance of angular momentum for a

non-polar solid leads to symmetry of the stress tensor as σij = σji.

Using the result from 1D elastoplasticity discussion in Ch.3, we may write the balance of

energy pointwise for a body B in Fig.3.3 as

ρė = σij ǫ̇ij + ρr − qi,i (4.5)

Likewise, for the second law of thermodynamics in 3D, we may write (from the result in 1D

elastoplasticity)

ρθη̇ ≥ ρr − qi,i +
1

θ
qiθ,i (4.6)

Recall we assume the existence of a Helmholtz free energy function per unit mass ψ (impor-

tant for non-isothermal problems) as follows,

ψ = e− ηθ (4.7)
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After substituting for ψ, and ρė from the first law leads to the Clausius-Duhem inequality

(check the derivation yourself)

σij ǫ̇ij − ρψ̇ − ρηθ̇ − 1

θ
qiθ,i ≥ 0 (4.8)

For isothermal (θ̇ = 0) and homogeneous temperature (θ,i = 0) problems, the Clausius-

Duhem inequality is written as

σij ǫ̇ij − ρψ̇ ≥ 0 (4.9)

4.2 Constitutive Equations for 3D Elastoplasticity

We outline the topic coverage for 3D classical (inviscid, rate-independent) elastoplasticity as

[Simo and Hughes, 1998, Anandarajah, 2010, Borja, 2013]

(i) Helmholtz free energy function

(ii) yield and plastic potential functions

(iii) evolution equations

(iv) Kuhn-Tucker optimality conditions

(v) consistency condition

(vi) continuum elastoplastic tangent

(vii) isotropic/kinematic hardening

(viii) convexity of yield surface

(ix) uniqueness (Hill’s stability postulate, softening plasticity)
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In more detail, we have

(i) Helmholtz free energy function: The Helmholtz free energy function ψ per unit

mass is additively decomposed (“energy separable” processes, which is a constitutive

assumption) into elastic e and plastic p parts as,

ρψ(ǫe, ζ) = ρψe(ǫe) + ρψp(ζ) (4.10)

where ǫe is the elastic strain tensor, and ζ is a strain-like ISV vector, not necessarily

the plastic strain. Taking the material time derivative (refer to Sect.2.3 of Holzapfel

[2000]), we have

D(ρψ)

Dt
= ρ̇ψ + ρψ̇ (4.11)

where ρ̇ ≈ 0 (conservation of mass) for a single phase solid material deformed at small

strain. This will not be the case for multiphase materials treated by mixture theory

(we will discuss later), and also for finite strain conditions. Then, we see that

ρψ̇ =
D(ρψ)

Dt
=
∂(ρψ)

∂ǫe
: ǫ̇e +

∂(ρψ)

∂ζ
· ζ̇ (4.12)

We substitute this into the Clausius-Duhem inequality and rearrange terms to obtain

the following
(

σ − ∂(ρψ)

∂ǫe

)

: ǫ̇e + σ : ǫ̇p − ∂(ρψ)

∂ζ
· ζ̇ ≥ 0 (4.13)

Coleman and Noll [1963], Coleman and Gurtin [1967] argued that the elastic strain rate

tensor ǫ̇e could be an independent process from the plastic strain rate tensor ǫ̇p and

ISV rate vector ζ̇. Thus for (4.13) to hold, we must have an equation for the stress σ

as,

σ − ∂(ρψ)

∂ǫe
= 0 =⇒ σ =

∂(ρψ)

∂ǫe
(4.14)

If (4.14) holds, such that the stress tensor σ is derived from a Helmholtz free energy
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function, then the constitutive model is said to be “hyperelastic.” Also, a thermodynamically-

conjugate stress-like ISV vector qζ can be defined as

qζ :=
∂(ρψ)

∂ζ
(4.15)

(which is related to the isotropic stress-like ISV κ and backstress α) such that the

reduced dissipation inequality D results as the difference between plastic power

per unit volume (which when integrated over time leads to plastic work per unit volume)

and rate of stored work of plastic ISV evolution as,

D := σ : ǫ̇p − qζ · ζ̇ ≥ 0 , σij ǫ̇
p
ij − qζAζ̇A ≥ 0 (4.16)

where A = 1, . . . , number of ISV components. We make a constitutive assumption

for the Helmholtz free energy function ψ (per unit mass) that leads to linear

isotropic elasticity and linear hardening/softening as

ρψ(ǫe, ζ) =
1

2
ǫe : ce : ǫe +

1

2
ζ ·H · ζ =

1

2
ǫeijc

e
ijklǫ

e
kl +

1

2
ζAHABζB (4.17)

Then, we have

σ =
∂(ρψ)

∂ǫe
= ce : ǫe (4.18)

ce = λ1⊗ 1+ 2µI (4.19)

ceijkl = λδijδkl + µ(δikδjl + δilδjk) (4.20)

(1)ij = δij , (I)ijkl =
1

2
(δikδjl + δilδjk) (4.21)

qζ =
∂(ρψ)

∂ζ
= H · ζ (4.22)

where ce is the isotropic elastic modulus, λ and µ are the Lamé parameters, 1 is the 2nd

order identity tensor, I the 4th order identity tensor, δij the Kronecker-delta operator,
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and H is the hardening modulus matrix. Assuming constant moduli, we express the

stress equations in rate form as

σ̇ = ce : ǫ̇e = ce : (ǫ̇− ǫ̇p) (4.23)

q̇ζ = H · ζ̇ (4.24)

The strain rate tensor ǫ̇ will be provided numerically (in incremental form) by the finite

element solution, and thus we need evolution equations for ǫ̇p and ζ̇, as well as yield

and plastic potential functions, in order to calculate stress σ and stress-like ISV

qζ .

(ii) yield and plastic potential functions (for isotropic plasticity): We define a

yield function f to indicate the transition from elastic to elastoplastic response as,

f(σ, κ) = ‖s‖ − κ ≤ 0 (4.25)

f < 0 elastic

f = 0 elastoplastic

which is known as “J2” or “von Mises” plasticity, because the J2 stress is defined as

J2 = 1
2
‖s‖2, and the von Mises stress =

√
3
2
‖s‖ =

√
3J2, where ‖s‖ =

√
sijsij is the

L2 norm of the deviatoric stress tensor s = σ− 1
3
tr(σ)1 or sij = σij − pδij , with mean

stress p = σkk/3; note that s is traceless, i.e., trs = sii = σii − 3p = 0. In terms of

principal stresses, the yield function becomes

f(σ1, σ2, σ3, κ) =
1√
3

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2
]1/2 − κ ≤ 0 (4.26)

We typically visualize the yield surface f = 0 in the π-plane (σ1 + σ2 + σ3 = 0) in

principal stress space (Fig.4.1). Note that the yield function is independent of the mean
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stress p (and thus independent of changes in hydrostatic stress state σ1 = σ2 = σ3),

i.e., it is deviatoric. The elastic domain is written as

Eσ = {(σ, κ) ∈ S× R, f(σ, κ) ≤ 0} (4.27)

where S is the space of symmetric second order tensors, and R is the space of real

numbers. We may plot the yield surface f = 0 in principal stress space as in Fig.4.1.

plastic

  f=0

hydrostatic

axis

σ1

σ2

σ3

σ1 = σ2 = σ3

Eσ

κ

∂f
∂σ

∂f
∂σ

Figure 4.1. Yield surface in 3D: (left) π-plane, and (right), 3D principal stress space.

We define the initial value of the stress-like ISV κ to be the initial yield stress in the π-

plane. For example, consider axial stress loading (‘triaxial’ or unconfined compression

or tension). In (i) triaxial compression (Fig.4.2, assuming frictionless top and bottom

boundaries, which experimentally is not possible even when attempted with grease or

other lubricant), the axial stress σ3 = σa < 0, and radial stress σ1 = σ2 = σr < 0; the

radial stress is the confining stress. For (ii) uniaxial stress in tension σ2 = σ3 = σr = 0,

σ1 = σa > 0, then the initial value of κ can be solved from (4.26) as

κ0 =

√

2

3
|σa − σr|y (4.28)

which is the radius of the yield surface in the π-plane in Fig.4.1, where |σa − σr|y is

taken at yield from an experimentally-determined stress-strain curve.
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σa, ǫa

σr, ǫr σr, ǫr

Figure 4.2. Cylindrical specimen (metal, soil, rock, concrete, foam, ...) in compression or tension.

The plastic potential function g can be defined such that if g = f , we have associative

plastic flow, whereas if g 6= f , then we have non-associative plastic flow (typical for

geomaterials and concrete, i.e., frictional strength defined differently than volumetric

plastic strain). Here, for J2 flow, we will assume associative plastic flow, g = f . Chapter

5 considers non-associative plastic flow constitutive models for geomaterials.

(iii) evolution equations (in rate form): Now, we define the evolution equations, start-

ing with the plastic flow rule. We assume associative flow g = f for 3D isochoric

plasticity, such that

ǫ̇p = γ̇
∂g

∂σ
=⇒ σ̇ = ce :

(

ǫ̇− γ̇
∂g

∂σ

)

(4.29)

∂g

∂σ
=
∂‖s‖
∂σ

(4.30)

where γ̇ is the plastic multiplier or consistency parameter. To find ∂g/∂σ, we carry
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out the stress derivative in index notation as follows

∂g

∂σij
=

∂
√
sabsab
∂σij

=
1/2

‖s‖

(

2
∂sab
∂σij

sab

)

(4.31)

sab = σab −
1

3
σkkδab (4.32)

∂sab
∂σij

=
∂σab
∂σij

− 1

3

∂σkk
∂σij

δab = δaiδbj −
1

3
δijδab (4.33)

=⇒ ∂sab
∂σij

sab = sij (4.34)

=⇒ ǫ̇pij = γ̇
sij
‖s‖ = γ̇n̂ij (4.35)

where n̂ is the direction of plastic flow. Note that for deviatoric plastic flow, the

volumetric plastic flow is zero (Fig.4.1): ǫ̇pv = ǫ̇pii = γ̇ sii
‖s‖ = 0. Note that the plastic

multiplier is the magnitude of the plastic strain rate tensor: γ̇ = ‖ǫ̇p‖ > 0, and plastic

flow is in the direction of deviatoric stress n̂.

For the strain-like ISV ζ , we let

ζ̇ = γ̇h(σ, κ) =⇒ κ̇ = Hκγ̇h(σ, κ) (4.36)

where h(σ, κ) is the hardening function, and for simplicity, we assume h(σ, κ) = − ∂g
∂κ

=

1 =⇒ ζ̇ = γ̇. Thus, for a summary of the evolution equations, we have

σ̇ = ce : ǫ̇e = ce : (ǫ̇− ǫ̇p) (4.37)

ǫ̇p = γ̇
s

‖s‖ = γ̇n̂ (4.38)

κ̇ = Hκγ̇ (4.39)

(iv) Kuhn-Tucker optimality conditions: The Kuhn-Tucker optimality conditions

are written the same as for 1D elastoplasticity as,

γ̇ ≥ 0 , f ≤ 0 , γ̇f = 0 (4.40)
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(v) consistency condition: The consistency condition is the same as for 1D elasto-

plasticity,

γ̇ḟ = 0 (4.41)

oftentimes written for plastic loading (γ̇ > 0) as simply ḟ = 0. We solve for γ̇ from

the consistency condition during plastic loading (γ̇ > 0 and ḟ = 0). Using the

chain rule

ḟ =
∂f

∂σ
: σ̇ +

∂f

∂κ
κ̇ = 0 (4.42)

and substituting the evolution equations leads to solution of the plastic multiplier γ̇ as

∂f

∂σ
: ce :

(

ǫ̇− γ̇
∂g

∂σ

)

+
∂f

∂κ
Hκh(σ, κ)γ̇ = 0 (4.43)

γ̇ =
∂f
∂σ : ce : ǫ̇

∂f
∂σ : ce : ∂g

∂σ − ∂f
∂κ
Hκh

=
1

χ

∂f

∂σ
: ce : ǫ̇ (4.44)

(vi) continuum elastoplastic tangent cep: The derivation of the continuum elastoplas-

tic tangent is a little more involved than for 1D elastoplasticity (because we work in

tensor notation for 3D elastoplasticity here) whereby substituting the solution for γ̇

back into the stress evolution equation, we obtain an expression for the continuum

elastoplastic tangent cep, which relates the total stress rate σ̇ to the total strain

rate ǫ̇ as

σ̇ = ce :

(

ǫ̇− 1

χ

[
∂f

∂σ
: ce : ǫ̇

]
∂g

∂σ

)

(4.45)

σ̇ij = ceijkl

(

ǫ̇kl −
1

χ

[
∂f

∂σab
ceabcdǫ̇cd

]
∂g

∂σkl

)

(4.46)

σ̇ij = ceijklǫ̇kl −
1

χ
ceijkl

∂g

∂σkl

∂f

∂σab
ceabcdǫ̇cd (4.47)

σ̇ij =

(

ceijcd −
1

χ
ceijkl

∂g

∂σkl

∂f

∂σab
ceabcd

)

ǫ̇cd (4.48)

σ̇ =

(

ce − 1

χ
ce :

∂g

∂σ
⊗ ∂f

∂σ
: ce
)

: ǫ̇ (4.49)

σ̇ = cep : ǫ̇ (4.50)
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where recall that repeated indices are dummy indices, such that we sum over them.

The free indices determine the order of the tensor (i.e, 1 free index denotes a 1st order

tensor or vector, 2 free indices denote a 2nd order tensor or matrix, 3 free indices denote

a 3rd order tensor, ...). For our example, (rederive these steps yourself)

∂f

∂σ
=
∂g

∂σ
=

s

‖s‖ = n̂ (4.51)

∂f

∂κ
= −1 (4.52)

h(σ, κ) = 1 (4.53)

∂f

∂σ
: ce :

∂g

∂σ
= 2µn̂ : n̂ = 2µ (4.54)

χ =
∂f

∂σ
: ce :

∂g

∂σ
− ∂f

∂κ
Hκh(σ, κ) = 2µ+Hκ (4.55)

then, we have

cep = ce − (2µ)2

2µ+Hκ
n̂⊗ n̂ (4.56)

(vii) combined isotropic/kinematic hardening: The Helmholtz free energy function

ψ (per unit mass) is modified to include two other ISVs (ζα and α) associated with

kinematic hardening as

ρψ(ǫe, ζ) =
1

2
ǫe : ce : ǫe +

1

2
ζ ·H · ζ (4.57)

where the linear isotropic elastic modulus is ce, andH is the hardening modulus matrix,
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where we have

σ =
∂(ρψ)

∂ǫe
= ce : ǫe (4.58)

qζ =
∂(ρψ)

∂ζ
=






κ

α




 = H · ζ (4.59)

H =






Hκ 0T

0 Hα1




 (4.60)

We introduce the backstress α into the yield function as follows

f(σ, qζ) = ‖ξ‖ − κ = 0 (4.61)

where ξ = s−α is the deviatoric “relative” stress; or sometimes ξ = s− 2
3
α is defined

as the deviatoric relative stress, wherein the 2/3 factor is introduced to allow the 3D

model to reduce to a 1D uniaxial stress form as in Ch.3. Let us visualize the shifted

yield surface in the π-plane in Fig.4.3, where the elastic domain is centered about α,

which is defined as

Eσ = {(σ,α, κ) ∈ S× S× R, f(σ,α, κ) ≤ 0} (4.62)

Note that the radius of the yield surface is still controlled by κ, such that for plasticity

f = 0 =⇒ ‖ξ‖ = κ.

126



4.2. CONSTITUTIVE EQUATIONS FOR 3D ELASTOPLASTICITY

plastic

  f=0

X

σ1

σ2

σ3

s
ξ

κ

∂f
∂σ

α

Eσ

Figure 4.3. Yield surface in π-plane, centered about α.
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Evolution equations:

For the plastic strain evolution, we have

ǫ̇p = γ̇
∂g

∂σ
= γ̇

ξ

‖ξ‖ = γ̇n̂ (4.63)

and the evolution of the strain-like ISV vector is

ζ̇ = γ̇h(σ, qζ) =⇒ q̇ζ = H · ζ̇ = γ̇H · h(σ, qζ) (4.64)

For simplicity, let h(σ, qζ) = −∂g/∂qζ and g = f , such that

− ∂g

∂qζ
= −






∂g
∂κ

∂g
∂α




 =






1

n̂




 =⇒

κ̇ = Hκγ̇

α̇ = Hαγ̇n̂
(4.65)

ζ̇ =






ζ̇κ

ζ̇
α




 = γ̇






1

n̂




 =






‖ǫ̇p‖

ǫ̇p




 (4.66)

We revisit the consistency condition as,

ḟ =
∂f

∂σ
: σ̇ +

∂f

∂qζ
· q̇ζ = 0 (4.67)

where substituting the evolution equations leads to a solution for the plastic multiplier

γ̇ as

∂f

∂σ
: ce :

(

ǫ̇− γ̇
∂g

∂σ

)

+
∂f

∂qζ
·H · hγ̇ = 0 (4.68)

γ̇ =
∂f
∂σ : ce : ǫ̇

∂f
∂σ : ce : ∂g

∂σ − ∂f
∂qζ ·H · h

(4.69)
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For our example, we have

∂f

∂qζ
=






−1

− ξ
‖ξ‖




 =






−1

−n̂




 (4.70)

− ∂f

∂qζ
·H · h = Hκ +Hα (4.71)

Then, the continuum elastoplastic tangent becomes

cep = ce − (2µ)2

2µ+Hα +Hκ
n̂⊗ n̂ (4.72)

(viii) convexity of yield surface: Convexity of the elastic domain in stress space (Fig.3.13)

is required for proper formulation of an elastoplasticity model [Simo and Hughes, 1998].

Mathematically, this can be proven as follows [Simo and Hughes, 1998]. Consider an

elastic domain bounded by a yield surface

Eσ = {(σ,α, κ) ∈ S× S× R, f(σ,α, κ) ≤ 0} (4.73)

To ensure convexity of f , we need to show that

f [σ∗, (qζ)∗] ≤ ηf(σ1, q
ζ
1) + (1− η)f(σ2, q

ζ
2) ∀η ∈ [0, 1] (4.74)

σ∗ = ησ1 + (1− η)σ2 (4.75)

(qζ)∗ = ηqζ1 + (1− η)qζ2 (4.76)
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We apply the triangle inequality, ‖a+ b‖ ≤ ‖a‖+ ‖b‖, such that

f [σ∗, (qζ)∗] = ‖ξ∗‖ − κ∗ = ‖s∗ −α∗‖ − κ∗ (4.77)

≤ η‖s1 −α1‖ − ηκ1 + (1− η)‖s2 −α2‖ − (1− η)κ2 (4.78)

= ηf(σ1, q
ζ
1) + (1− η)f(σ2, q

ζ
2) (4.79)

q.e.d

Therefore, f(σ, qζ) is convex.

(ix) uniqueness (Hill’s stability postulate) and the principle of maximum plastic

dissipation: Recall the reduced dissipation inequality as,

D = σ : ǫ̇p − qζ · ζ̇ ≥ 0 (4.80)

where D is the dissipation function.

Statement of the Principle of Maximum Plastic Dissipation: of all possible

stress states σ∗ and (qζ)∗ that satisfy f(σ∗, (qζ)∗) = 0, the one state that maximizes

the dissipation function D is the physical state (σ, qζ), such that

D(σ, qζ) ≥ D(σ∗, (qζ)∗) (4.81)

We can restate this rule as a constrained minimization problem with constraint f(σ∗, (qζ)∗) =

0 (yield function = 0) and multiplier γ̇ (the plastic multiplier), where we define a “La-

grangian” as

L := −D(σ∗, (qζ)∗) + γ̇f(σ∗, (qζ)∗) (4.82)

where the “−” sign makes it a minimization problem. For minimization, we apply the

130



4.2. CONSTITUTIVE EQUATIONS FOR 3D ELASTOPLASTICITY

stationarity condition, such that

δL =
∂L

∂σ∗
: δσ∗ +

∂L

∂(qζ)∗
· δ(qζ)∗ + ∂L

∂γ̇
δγ̇ = 0 (4.83)

Thus, for arbitrary δσ∗, δ(qζ)∗, and δγ̇, we have three conditions,

∂L

∂σ∗
= 0 ,

∂L

∂(qζ)∗
= 0 ,

∂L

∂γ̇
= 0 (4.84)

Thus, for the actual state (σ, qζ), we have

∂L

∂σ∗
= − ∂D

∂σ∗
︸︷︷︸

ǫ̇p

+γ̇
∂f

∂σ∗
= 0 (4.85)

=⇒ ǫ̇p = γ̇
∂f

∂σ
(4.86)

∂L

∂(qζ)∗
= − ∂D

∂(qζ)∗
︸ ︷︷ ︸

˙ζ

+γ̇
∂f

∂(qζ)∗
= 0 (4.87)

=⇒ ζ̇ = −γ̇ ∂f
∂qζ

(4.88)

∂L

∂γ̇
= f(σ∗, (qζ)∗) = 0 (4.89)

=⇒ f(σ, qζ) = 0 (4.90)

If we assume the constraint is f(σ∗, (qζ)∗) ≤ 0 rather than f(σ∗, (qζ)∗) = 0, then after

constrained minimization, f(σ, qζ) ≤ 0, and the Kuhn-Tucker conditions result as

γ̇ ≥ 0 , f ≤ 0 , γ̇f = 0 (4.91)

Let us revisit convexity. The principle of maximum plastic dissipation states that

D(σ, qζ) ≥ D(σ∗, (qζ)∗) (4.92)
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which can be rewritten as

(σ∗ − σ) : ǫ̇p − ((qζ)∗ − qζ) · ζ̇ ≤ 0 (4.93)

where after substituting the results, we have

(σ∗ − σ) :
∂f

∂σ
+ ((qζ)∗ − qζ) · ∂f

∂qζ
≤ 0 (4.94)

This is an alternate statement of convexity by considering perfect plasticity

(qζ)∗ = qζ , and the stress vectors in Fig.4.4.

Convex Non-convex

f=0

yield surface

elastic domain

f=0

yield surface

elastic domainelastic domain

σ

σ

σ∗
σ∗

σ∗ − σ
σ∗ − σ

∂f
∂σ

∂f
∂σ

(σ∗ − σ) : ∂f∂σ > 0
(σ∗ − σ) : ∂f∂σ < 0

Figure 4.4. Convexity of the yield surface implies that the principle of maximum plastic dissipation
is satisfied, assuming also that plasticity is associative, i.e., g = f .

Thus, the principle of maximum plastic dissipation results in the following:

(a) associative plastic flow and hardening

(b) Kuhn-Tucker loading/unloading conditions

(c) convexity of Eσ

For geomaterials, we usually do not satisfy condition (a) and thus use non-associative
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plastic flow g 6= f . It is possible to trigger loss of ellipticity (non-uniqueness) with

non-associative plastic flow, but it is not always the case. Not satisfying the princi-

ple of maximum plastic dissipation DOES NOT MEAN that the reduced dissipation

inequality (and in turn the second law of thermodynamics) is not satisfied. Thus,

non-associativity plastic flow rules must still satisfy the reduced dissipation inequality.

4.3 Numerical Integration in Time of 3D Elasto-

plasticity

Refer to Simo and Hughes [1998]. We integrate in time the stress tensor rate, evolution

equations, and consistency condition, written together as

σ̇ = ce : ǫ̇e = ce : (ǫ̇− ǫ̇p) = ce :







ǫ̇− γ̇

ξ

‖ξ‖
︸︷︷︸

n̂








(4.95)

κ̇ = Hκγ̇ (4.96)

α̇ = Hαγ̇
ξ

‖ξ‖
︸︷︷︸

n̂

(4.97)

γ̇ḟ = 0 (4.98)

There are 4 first-order ODEs, and 4 unknowns (σ, κ,α, γ). We use Backward Euler

integration (implicit, first order accurate), which can be shown to be equivalent to the

“return mapping algorithm” for certain constitutive models, including this one. Apply
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Backward Euler to the 4 ODEs (check the math), such that

σn+1 = σn + ce :

(

∆ǫ−∆γ

[
ξ

‖ξ‖

]

n+1

)

∆ǫ = ǫn+1 − ǫn , ∆γ = ∆tγ̇n+1

ce : ξ = λtr(ξ)1 + 2µξ = 2µξ

σn+1 = σtr
n+1 − 2µ∆γ

[
ξ

‖ξ‖

]

n+1

(4.99)

σtr
n+1 = σn + ce : ∆ǫ

tr(σn+1) = tr(σtr
n+1) =⇒ pn+1 =

1

3
tr(σn+1) =

1

3
tr(σtr

n+1)

sn+1 = strn+1 − 2µ∆γ

[
ξ

‖ξ‖

]

n+1

(4.100)

κn+1 = κn +Hκ∆γ (4.101)

αn+1 = αn +Hα∆γ

[
ξ

‖ξ‖

]

n+1

(4.102)

fn+1 = ‖ξn+1‖ − κn+1 = 0 (4.103)

We now analyze the direction of plastic flow
[
ξ

‖ξ‖

]

n+1
as

ξn+1 = sn+1 −αn+1 = strn+1 −αn
︸ ︷︷ ︸

ξ
tr

n+1

−∆γ(2µ+Hα)
ξn+1

‖ξn+1‖
(4.104)

(

1 +
∆γ(2µ+Hα)

‖ξn+1‖

)

︸ ︷︷ ︸

>0

ξn+1 = ξtrn+1 (4.105)

=⇒ ξn+1

‖ξn+1‖
=

ξtr
n+1

‖ξtr
n+1‖

(4.106)

=⇒ ξn+1 =

(

1− ∆γ(2µ+Hα)

‖ξtrn+1‖

)

ξtr
n+1 (4.107)

‖ξn+1‖ = ‖ξtrn+1‖ −∆γ(2µ+Hα) (4.108)

Thus, the current and trial directions of plastic flow are the same n̂n+1 = n̂tr, making

Backward Euler equivalent to the return mapping algorithm for small strain

J2 plasticity. Because these equations are linear, we may substitute ‖ξn+1‖ and κn+1
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into fn+1 = 0 to solve for ∆γ, such that

‖ξtr
n+1‖ −∆γ(2µ+Hα)− κn −Hκ∆γ = 0 (4.109)

=⇒ ∆γ =
‖ξtrn+1‖ − κn

2µ+Hα +Hκ
=

f tr
n+1

2µ+Hα +Hκ
(4.110)

We summarize the return mapping algorithm as follows: given ∆ǫ over the time

increment, and σn, κn, αn, γn from the converged past time step, we have

(a) compute trial stress: σtr
n+1 = σn+ ce : ∆ǫ, and pn+1 =

1
3
tr(σtr

n+1), s
tr
n+1 = σtr

n+1 −

pn+11, ξ
tr
n+1 = strn+1 −αn, n̂

tr = ξtr
n+1/‖ξtrn+1‖

(b) check for yielding: trial yield function f tr
n+1 = ‖ξtr

n+1‖ − κn

if f tr
n+1 > 0 plastic go to step 3

else f tr
n+1 < 0 elastic : σn+1 = σtr

n+1

αn+1 = αn

κn+1 = κn

γn+1 = γn

(4.111)

(c) compute: ∆γ =
ftrn+1

2µ+Hα+Hκ , and update:

sn+1 = strn+1 − 2µ∆γn̂tr

αn+1 = αn +Hα∆γn̂tr

κn+1 = κn +Hκ∆γ

γn+1 = γn +∆γ

(4.112)

We can visualize the return mapping algorithm in the π-plane, with Hκ = 0 (i.e.,

κn+1 = κn) and Hα > 0, as shown in Figs.4.5-4.7. Note the trial direction of plastic

flow is n̂tr = ξtr
n+1/‖ξtrn+1‖.
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X

σ1

σ2

σ3

sn

ξn

κn

fn = 0
αn

dev(ce : ∆ǫ)

strn+1 = sn+ dev(ce : ∆ǫ)

Figure 4.5. Yield surface in π-plane, centered about αn at time tn, with incremental stress
dev(ce : ∆ǫ) (red arrow) applied to calculate trial deviatoric stress strn+1 (red arrow).
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X

σ1

σ2

σ3

sn

ξn

κn

fn = 0
αn

dev(ce : ∆ǫ)

strn+1 = sn+ dev(ce : ∆ǫ)

n̂tr = ξtr
n+1/‖ξtrn+1‖

ξtrn+1 = strn+1 −αn

Figure 4.6. Yield surface in π-plane, centered about αn at time tn, showing calculation of relative

trial stress ξtrn+1 (red arrow) and the direction of plastic flow n̂tr (as short blue arrow).
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X

X

σ1

σ2

σ3

sn

sn+1 = strn+1 − 2µ∆γn̂tr

2µ∆γn̂tr

ξn
ξn+1

κn

fn = 0

fn+1 = 0

αn

αn+1

dev(ce : ∆ǫ)

strn+1 = sn+ dev(ce : ∆ǫ)

n̂tr = ξtr
n+1/‖ξtrn+1‖

ξtrn+1 = strn+1 −αn

Figure 4.7. Yield surface in π-plane, centered about αn at time tn, that is translated to center

αn+1 = αn +Hα(∆γ) n̂tr at tn+1 through kinematic hardening.
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4.4 Consistent Tangent for 3D Elastoplasticity

Recall the element level consistent tangent for a 3D finite element as follows

∂f e,INT(de)

∂de
=

∫ 1

−1

∫ 1

−1

∫ 1

−1

(Be)T · ∂σ
∂ǫ

·Bejedξdηdζ (4.113)

We first derive the material consistent tangent ∂σ
∂ǫ in tensor form (4th order), then we

convert into a 6 × 6 matrix form for FE implementation. Recall the stress evolution

equation, and recognize that ∆ǫk+1 = ǫk+1
n+1 − ǫn, such that

σk+1
n+1 = (σk+1

n+1)
tr − 2µ∆γk+1

(

ξk+1
n+1

‖ξk+1
n+1‖

)tr

(4.114)

(σk+1
n+1)

tr = σn + ce : ∆ǫk+1 (4.115)

(pk+1
n+1)

tr =
1

3
tr(σk+1

n+1)
tr (4.116)

(sk+1
n+1)

tr = (σk+1
n+1)

tr − (pk+1
n+1)

tr1 (4.117)

(ξk+1
n+1)

tr = (sk+1
n+1)

tr −αn (4.118)

For ease of notation, leave off the subscript and superscript (•)k+1
n+1, such that

σ = σtr − 2µ∆γn̂tr (4.119)

σtr = σn + ce : ∆ǫ (4.120)

ptr =
1

3
trσtr (4.121)

str = σtr − ptr1 (4.122)

ξtr = str −αn (4.123)
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Then, the material consistent tangent may be calculated as (check the math)

∂σ

∂ǫ
=

∂σtr

∂ǫ
− 2µn̂tr ⊗ ∂∆γ

∂ǫ
− 2µ∆γ

∂n̂tr

∂ǫ
(4.124)

∂∆γ

∂ǫ
=

1

2µ+Hα +Hκ

∂‖ξtr‖
∂ǫ

︸ ︷︷ ︸

n̂tr
:
∂ξ

tr

∂ǫ =2µn̂tr

(4.125)

∂ξtr

∂ǫ
=
∂str

∂ǫ
=
∂σtr

∂ǫ
− 1⊗ ∂ptr

∂ǫ
∂σtr

∂ǫ
= ce

(
∂ptr

∂ǫ

)

kl

=
1

3
ceiikl =

1

3
(3λδkl + µ(δikδil + δilδik)) = (λ+

2

3
µ)δkl

= Kδkl

∂ξtr

∂ǫ
= λ1⊗ 1+ 2µI − (λ+

2

3
µ)1⊗ 1 = 2µ(I − 1

3
1⊗ 1) (4.126)

example : aij(Iijkl −
1

3
δijδkl) = dev[symm(a)]kl

=⇒ ∂∆γ

∂ǫ
=

2µ

2µ+Hα +Hκ
n̂tr (4.127)

where K is the bulk modulus, and

∂n̂tr

∂ǫ
= ξtr ⊗ ∂

∂ǫ

(
1

‖ξtr‖

)

+
1

‖ξtr‖
∂ξtr

∂ǫ
(4.128)

∂

∂ǫ

(
1

‖ξtr‖

)

=
−1

‖ξtr‖(ξtr : ξtr)
ξtr :

∂ξtr

∂ǫ
︸ ︷︷ ︸

2µξ
tr

=
−1

ξtr : ξtr2µn̂
tr

=
−2µ

ξtr : ξtr
ξtr ⊗ n̂tr +

2µ

‖ξtr‖(I − 1

3
1⊗ 1)

=
2µ

‖ξtr‖

(

I − 1

3
1⊗ 1− n̂tr ⊗ n̂tr

)

(4.129)
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Then the material consistent elastoplastic tangent is

∂σ

∂ǫ
= ce − 2µ

(
2µ

2µ+Hα +Hκ

)

n̂tr ⊗ n̂tr

−2µ∆γ
2µ

‖ξtr‖

(

I − 1

3
1⊗ 1− n̂tr ⊗ n̂tr

)

(4.130)

Recall the continuum elasto-plastic tangent as

cep = ce − 1

χ
ce :

∂g

∂σ
⊗ ∂f

∂σ
: ce (4.131)

∂f

∂σ
=
∂g

∂σ
=

ξ

‖ξ‖ = n̂ = n̂tr (4.132)

ce : n̂tr = 2µn̂tr (4.133)

∂f

∂σ
: ce :

∂g

∂σ
= 2µn̂tr : n̂tr = 2µ (4.134)

χ =
∂f

∂σ
: ce :

∂g

∂σ
− ∂f

∂qζ
·H · h(σ, qζ) = 2µ+Hα +Hκ (4.135)

cep = ce − (2µ)2

2µ+Hα +Hκ
n̂tr ⊗ n̂tr (4.136)

Then, we can rewrite the consistent tangent as

∂σ

∂ǫ
= cep −∆γ

(2µ)2

‖ξtr‖

(

I − 1

3
1⊗ 1− n̂tr ⊗ n̂tr

)

(4.137)

For small time steps, ∆t→ 0 =⇒ ∆γ → 0, such that in the limit, we have

lim∆γ→0

(
∂σ

∂ǫ

)k+1

n+1

= cep (4.138)

Note: the continuum elastoplastic tangent cep and material consistent tangent (∂σ/∂ǫ)k+1
n+1

are, in general, NOT the same. The advantage of the consistent tangent is that it will al-

low your Newton-Raphson algorithm to demonstrate quadratic convergence (and, pos-

sibly, convergence versus non-convergence if the problem is highly nonlinear), whereas

the continuum tangent usually only provides linear convergence.
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Chapter 5

3D Pressure-Sensitive Plasticity at

Small Strain

Much of the material in this chapter is taken from Borja [2013]. Following on Chapter 4,

we focus this chapter on the differences in constitutive modeling for pressure-sensitive plas-

ticity for geomaterials like soil, rock, and concrete, and other particulate materials. We

motivate first the need for pressure-sensitive plasticity with some experimentally-observed

behavior, and then focus our attention on the different non-associative plasticity models,

with various definitions of yield function f and plastic potential function g, starting with

Mohr-Coulomb (M-C) plasticity [Vermeer and de Borst, 1984]. Note that MC plasticity,

and its follow-on variations such as Drucker-Prager (DP) plasticity, are “strength” models

suitable for modeling small elastic deformations and failure in stiff geomaterials such as heav-

ily overconsolidated clays, dense sands, rocks, and concrete. Whereas for softer soils such

normally-consolidated clays, other constitutive models such as Modified Cam-Clay elasto-

plasticity are better suited for modeling both deformation and failure [Borja, 2013].

With this in mind, we summarize traditional laboratory mechanical testing of geomaterials
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CHAPTER 5. 3D PRESSURE-SENSITIVE PLASTICITY AT SMALL STRAIN

(soil, rock) and other pressure-sensitive materials (e.g., concrete) for constitutive model

development of failure (peak load) and parameter determination. Assumptions made are the

following for these examples: (1) drained condition (all stresses are “effective” with respect

to the effective stress principle [Terzaghi, 1943]); (2) solid mechanics sign convention: σ > 0

tension, σ < 0 compression; and (3) compressive principal stresses: 0 ≥ σ1 ≥ σ2 ≥ σ3. Figure

5.1 illustrates the various mechanical loading conditions typical for testing geomaterials in the

laboratory, which are pressure-sensitive, thus control of the mean effective stress is important

for calibrating material constitutive parameters.

σa, ǫa

σr, ǫr σr, ǫr

• “triaxial” compression (TC):
σ3 = σa, σ1 = σ2 = σr, 0 ≥ σr ≥ σa,
|σa| ≥ |σr|

• “triaxial” extension (TE):
σ1 = σa, σ2 = σ3 = σr, 0 ≥ σa ≥ σr,
|σr| ≥ |σa|

• uniaxial stress (unconfined) compres-
sion:
σa < 0, σr = 0

• uniaxial strain (oedometer) compres-
sion:
σa < 0, σr < 0, ǫr = 0

σ11

σ22

σ33, ǫ33

• true triaxial compression: σ11 6= σ22 6=
σ33

• plane strain (biaxial) compression:
σ11 6= σ22 6= σ33, ǫ33 = 0

• plane stress compression:
σ11 6= σ22, σ33 = 0, ǫ33 6= 0

• isotropic (hydrostatic) compression:
σ11 = σ22 = σ33 = σ

Figure 5.1. Different experimental conditions for laboratory testing of geomaterials.
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In Fig.5.2, we illustrate the typical stress-strain behavior of soil [Atkinson, 1993]. ‘WET’

and ‘DRY’ refer to the critical state of a soil, which is the state at which upon continuous

shearing there is no more volumetric strain (or change in void ratio). For example, for a

water-saturated soil, if ‘WET’ of critical state, its void ratio e = Vv/Vs will contract and

water will be pressed out of the void space (assuming drained condition). If ‘DRY’ of critical

state, its void ratio will initially contract and then begin to dilate and take in more water

into its void space as its volume increases. ecr is the void ratio at critical state.
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Figure 5.2. Typical stress-strain behavior of soil [Atkinson, 1993].
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In Fig.5.3, we see shear banding in a dense sand [Vardoulakis et al., 1978, Vardoulakis and

Goldschieder, 1981] with clear peak load and post-peak softening associated with develop-

ment of the shear band.

Figure 5.3. Shear banding in dense sand [Vardoulakis et al., 1978, Vardoulakis and Goldschieder,
1981].
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In Fig.5.4, we illustrate the typical stress-strain behavior of rock [Jaeger and Cook, 1976].

Rocks do not exhibit a critical state as do certain soils. The main difference between soil

and rock is that soil is particulate in nature allowing grains to slide over and past each other

and fluid to occupy its voids, whereas rock is typically composed of a strongly cemented

aggregate of crystals and amorphous grains not allowing grain sliding or easy occupation of

the pore space by a fluid. The dilatancy observed in rock is due to opening of microcracks,

forming and extending.
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Figure 5.4. Typical stress-strain behavior of rock [Jaeger and Cook, 1976].
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As an example, consider the failure of Tennesse marble observed in Fig.5.5 (courtesy of David

Holcomb, Sandia National Laboratories).
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Figure 5.5. Rock failure: Tennesse marble (courtesy of D. Holcomb, Sandia).
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5.1. MOHR-COULOMB (MC) PLASTICITY

5.1 Mohr-Coulomb (MC) plasticity

For Mohr-Coulomb (MC) plasticity, we recall the MC yield (or failure) criterion as

τy = c− σy tanφ (5.1)

where τy is the shear stress at yield on the failure plane, σy is the normal stress at yield on

the failure plane, c is the cohesion (Pa), and φ is the friction angle (rad). Let us consider a

sequence of Mohr-Circles at yield for various confining pressures with center C = (σ1+σ3)/2

and radius R = (σ1 − σ3)/2, in Fig.5.6.

Figure 5.6. Plot of MC yield criterion.

Note that sinφ = (σy − C)/R and cosφ = τy/R. Substituting into the MC yield criterion,
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we have

τy = c− σy tanφ (5.2)

cosφ(σ1 − σ3)/2 = c− tanφ(σ1 + σ3)/2− (sin2 φ/ cosφ)(σ1 − σ3)/2 (5.3)

(σ1 − σ3) = 2c cosφ− (σ1 + σ3) sinφ (5.4)

f(σ1, σ3) = (σ1 − σ3)− 2c cosφ+ (σ1 + σ3) sinφ = 0 (5.5)

Figure 5.7. Stress path for conventional triaxial compression (TC).

Now, generalizing for 3D, we can write (at yield)

f(σ1, σ2, σ3) = |σA − σB| − 2c cosφ+ (σA + σB) sinφ = 0 (5.6)

where A,B = 1, 2, 3, A 6= B, and for triaxial compression (TC), σ1 = σ2 = σr, σ3 = σa

(decreases, increases in magnitude; see Fig.5.7), such that

|σ1 − σ3| = 2c cosφ− (σ1 + σ3) sinφ (5.7)

|σ2 − σ3| = 2c cosφ− (σ2 + σ3) sinφ (5.8)
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5.1. MOHR-COULOMB (MC) PLASTICITY

For triaxial extension (TE), we have σ1 = σa, σ2 = σ3 = σr (decreases, increases in magni-

tude), such that

|σ3 − σ1| = 2c cosφ− (σ3 + σ1) sinφ (5.9)

|σ2 − σ1| = 2c cosφ− (σ2 + σ1) sinφ (5.10)

Figure 5.8 shows the two stress paths for TC and TE, and the difference in yield strength

for these two loading conditions (if plotted on the same octahedral plane). Note that at the

vertices, ∂f
∂σ (or ∂g

∂σ ) will be undefined (analytically). See Fig.5.9 for an illustration of the

“Koiter fan.”

Figure 5.8. Stress path for conventional triaxial compression (TC) and triaxial extension (TE) for
MC yield surface.
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Figure 5.9. “Koiter fan” at vertex of MC yield surface. In theory, there are an infinite number of
plastic flow directions at the vertices. For numerics, one gets chosen based on numerical precision.
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5.1. MOHR-COULOMB (MC) PLASTICITY

We define a plastic potential function g as,

g(σ1, σ2, σ3) = |σA − σB| − 2c cosψ + (σA + σB) sinψ (5.11)

where A,B = 1, 2, 3, A 6= B, and ψ < φ, where ψ is the dilation angle. Note that g 6= f for

non-associative plastic flow such that ǫ̇p = γ̇ ∂g
∂σ , and

∂g

∂σA
= sign(σA − σB) + sinψ ,

∂g

∂σB
= −sign(σA − σB) + sinψ ,

∂g

∂σC
= 0 (5.12)

where then

ǫ̇pv = tr(ǫ̇p) = 2γ̇ sinψ > 0 for ψ > 0 (5.13)

and

ǫ̇pA = γ̇
∂g

∂σA
, ǫ̇pB = γ̇

∂g

∂σB
(5.14)

shear =⇒ γ̇ =
(ǫ̇pA − ǫ̇pB)/2

sign(σA − σB)
= |ǫ̇pA − ǫ̇pB|/2 (5.15)

=⇒ sinψ =
ǫ̇pv
2γ̇

=
ǫ̇pv

|ǫ̇pA − ǫ̇pB|
> 0 (5.16)

This is shear-induced dilation, illustrated in Fig.5.10.

Figure 5.10. Demonstration of shear-induced dilatation for dense sand.
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Now consider a constraint by the 2nd law of thermodynamics on the dilation angle ψ assum-

ing perfect plasticity. The dissipation function D is written as,

D = σ : ǫ̇p = γ̇

3∑

A=1

σA
∂g

∂σA
(5.17)

= γ̇ [|σA − σB|+ (σA + σB) sinψ] ≥ 0 (5.18)

where for f = 0, |σA − σB| = 2c cosφ− (σA + σB) sinφ. Then

γ̇ [2c cosφ+ (σA + σB)(sinψ − sinφ)] ≥ 0 (5.19)

where the Kuhn-Tucker conditions tell us γ̇ ≥ 0, and for argument sake, assume cohesionless

soil (e.g., sand, gravel) c = 0, then

(σA + σB)
︸ ︷︷ ︸

<0

(sinψ − sinφ) ≥ 0 (5.20)

For positive plastic dissipation D ≥ 0, we have

sinψ − sinφ ≤ 0 =⇒ sinψ ≤ sinφ =⇒ ψ ≤ φ (5.21)

The dilation angle ψ must be less than or equal to the friction angle φ to satisfy the Clausius-

Duhem inequality (and second law of thermodynamics); the principle of maximum plastic

dissipation is not satisfied by non-associative plasticity, but the plastic dissipation is positive,

and the 2nd law is still satisfied.
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5.2. MATSUOKA-NAKAI (MN) PLASTICITY

5.2 Matsuoka-Nakai (MN) plasticity

We refer to Matsuoka and Nakai [1974], Borja et al. [2003] for a discussion of the Matsuoka-

Nakai (MN) smooth yield surface approximation to the MC yield surface with vertices. The

smooth approximation can make plasticity integration algorithms easier, not being concerned

with vertices or the “Koiter fan” [Hughes, 1984] (i.e., infinite number of plastic flow directions

at the vertex, in theory).

First, we define a stress σ̄ = σ − α1, where α = c cotφ. Consider a spectral decomposition

into principal stress directions nA as

σ̄ =

3∑

A=1

σ̄Am
A (5.22)

σ̄A = σA − α (5.23)

mA = nA ⊗ nA (5.24)

where σ̄A is the eigenvalue, nA the eigenvector, and mA the spectral direction. Then the 3

stress invariants of σ̄ are

Ī1 = σ̄1 + σ̄2 + σ̄3 (5.25)

Ī2 = σ̄1σ̄2 + σ̄2σ̄3 + σ̄1σ̄3 (5.26)

Ī3 = σ̄1σ̄2σ̄3 (5.27)
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These are used in formulating a yield function as (plotted by hand in Fig.5.11)

f = (βĪ3)
1/3 − (Ī1Ī2)

1/3 ≤ 0 , β =
9− sin2 φ

1− sin2 φ
(5.28)

where the plastic potential function g = (bĪ3)
1/3 − (Ī1Ī2)

1/3, and b = 9−sin2 ψ
1−sin2 ψ

, where b ≤ β.

Figure 5.11. MN yield function smooth fit of MC yield surface vertices.
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5.3 Drucker-Prager (DP) plasticity

Within the context of the MN yield function discussion in the previous section, we can write

the yield function for Drucker-Prager (DP) plasticity [Drucker and Prager, 1952] which is

also a smooth approximation to the MC yield surface as,

f = −(βĪ2)
1/2 − Ī1 ≤ 0 (5.29)

β =
(3 + sin φ)2

3 + 2 sinφ− sin2 φ
TE corner (5.30)

β =
(3− sinφ)2

3− 2 sinφ− sin2 φ
TC corner (5.31)

See Fig.5.12 for a plot of f = 0 at the TE corner and TC corner.

Figure 5.12. DP yield function smooth fit of MC yield surface vertices.
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But we usually express the DP yield function differently as

f = ‖s‖ − (Aφc−Bφp) ≤ 0 (5.32)

Aφ =
2
√
6 cosφ

3 + β sinφ
, Bφ =

2
√
6 sinφ

3 + β sin φ
, −1 ≤ β ≤ 1 (5.33)

β = 1 =⇒ TE corner (5.34)

β = −1 =⇒ TC corner (5.35)

and for non-associative plastic flow (dilation angle ψ ≤ friction angle φ):

g = ‖s‖ − (Aψc− Bψp) (5.36)

Aψ =
2
√
6 cosψ

3 + β sinψ
, Bψ =

2
√
6 sinψ

3 + β sinψ
, −1 ≤ β ≤ 1 (5.37)

If φ = ψ = 0, we recover a form similar to J2 plasticity.

We will continue in more depth a presentation of the DP constitutive model equations,

following the progression as presented for J2 plasticity.

The Helmholtz free energy function is written as

ρψ(ǫe, ζ) =
1

2
ǫe : ce : ǫe +

1

2
ζ ·H · ζ (5.38)
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where then

σ =
∂(ρψ)

∂ǫe
= ce : ǫe (5.39)

qζ =
∂(ρψ)

∂ζ
= H · ζ =












c

φ

ψ

α












(5.40)

H =












Hc

Hφ

Hψ

Hα1












(5.41)

The yield and plastic potential functions are written as

f(σ, qζ) = ‖ξ‖ − (Aφc− Bφp) ≤ 0 (5.42)

g(σ, qζ) = ‖ξ‖ − (Aψc−Bψp) (5.43)

where then the plastic flow rule becomes

ǫ̇p = γ̇
∂g

∂σ
= γ̇

(
∂‖ξ‖
∂σ

+Bψ ∂p

∂σ

)

(5.44)

= γ̇

(

n̂+
1

3
Bψ1

)

(5.45)

ǫ̇pv = trǫ̇p = γ̇Bψ (5.46)

159



CHAPTER 5. 3D PRESSURE-SENSITIVE PLASTICITY AT SMALL STRAIN

Figure 5.13. DP yield and plastic potential functions and non-associativity.

The ISV evolution equations are written as

ζ̇ = γ̇h(σ, qζ) = γ̇












hc(σ, q
ζ)

hφ(σ, q
ζ)

hψ(σ, q
ζ)

hα(σ, q
ζ)












(5.47)

q̇ζ = γ̇H · h(σ, qζ) (5.48)

Recall the principle of maximum plastic dissipation that states h = − ∂f
∂qζ . Because

∂f
∂ψ

= 0,

we can make the modification hψ = − ∂g
∂ψ

, then

h =












−∂f
∂c

−∂f
∂φ

− ∂g
∂ψ

− ∂f
∂α












=












Aφ

∂Aφ

∂φ
c− ∂Bφ

∂φ
p

∂Aψ

∂ψ
c− ∂Bψ

∂ψ
p

n̂












, q̇ζ = γ̇












HcAφ

Hφ
(
∂Aφ

∂φ
c− ∂Bφ

∂φ
p
)

Hψ
(
∂Aψ

∂ψ
c− ∂Bψ

∂ψ
p
)

Hαn̂












︸ ︷︷ ︸

h
q
(σ,qζ)

(5.49)
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We can then write the consistency condition ḟ = 0 as

γ̇ =
1

χ

∂f

∂σ
: ce : ǫ̇ (5.50)

χ =
∂f

∂σ
: ce :

∂g

∂σ
− ∂f

∂qζ
·H · h (5.51)

cep = ce − 1

χ
ce :

∂g

∂σ
⊗ ∂f

∂σ
: ce (5.52)

For numerical integration and implementation, it turns out that the system of ODEs to solve

using Backward Euler would be nonlinear, requiring Newton-Raphson to solve (we will show

later how to setup this nonlinear solution algorithm). In order to simplify the formulation

further to demonstrate the numerical integration, we can consider perfect plasticity for fric-

tion and dilation angles, such that Hφ = Hψ = 0. This leads to the following evolution

equations to solve using Backward Euler:

σ̇ = ce :

(

ǫ̇− γ̇
∂g

∂σ

)

(5.53)

∂g

∂σ
= n̂+

1

3
Bψ1

ċ = γ̇HcAφ (5.54)

α̇ = γ̇Hαn̂ (5.55)

ḟ = 0 (5.56)

There are 4 first-order ODEs, and 4 unknowns (σ, c,α, γ) to solve. Using Backward Euler
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integration (implicit, first order accurate) to numerically integrate in time, we have

σn+1 = σtr
n+1 −∆γ

(
KBψ1+ 2µn̂n+1

)
(5.57)

σtr
n+1 = σn + ce : ∆ǫ

pn+1 = ptrn+1 −KBψ∆γ

sn+1 = strn+1 − 2µ∆γn̂n+1 (5.58)

cn+1 = cn + AφHc∆γ (5.59)

αn+1 = αn +Hα∆γn̂n+1 (5.60)

fn+1 = ‖ξn+1‖ − (Aφcn+1 − Bφpn+1) = 0 (5.61)

Again, it is possible to show that n̂n+1 = n̂tr
n+1 (show yourself).

We summarize the return mapping algorithm as follows: given ∆ǫ over a time step, and

σn, cn, αn, γn from the past coverged time tn, we have

1. compute trial stress σtr
n+1 = σn+ce : ∆ǫ, and ptrn+1 =

1
3
tr(σtr

n+1), s
tr
n+1 = σtr

n+1−ptrn+11,

ξtr
n+1 = strn+1 −αn, n̂

tr = ξtr
n+1/‖ξtrn+1‖

2. check for yielding: trial yield function f tr
n+1 = ‖ξtr

n+1‖ − (Aφcn −Bφptrn+1)

if f tr
n+1 > 0 plastic go to step 3

else f tr
n+1 < 0 elastic : σn+1 = σtr

n+1

αn+1 = αn

cn+1 = cn

γn+1 = γn

(5.62)
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5.3. DRUCKER-PRAGER (DP) PLASTICITY

3. compute ∆γ =
ftrn+1

2µ+KBφBψ+Hα+Hc(Aφ)2
, and update:

pn+1 = ptrn+1 −KBψ∆γ

sn+1 = strn+1 − 2µ∆γn̂tr

αn+1 = αn +Hα∆γn̂tr

cn+1 = cn +HcAφ∆γ

γn+1 = γn +∆γ

(5.63)

Now, the material consistent tangent can be derived as follows,

σ = σtr −∆γ(KBψ1+ 2µn̂tr) (5.64)

∂σ

∂ǫ
=

∂σtr

∂ǫ
− (KBψ1+ 2µn̂tr)
︸ ︷︷ ︸

(m̂ψ
)tr

⊗∂∆γ
∂ǫ

− 2µ∆γ
∂n̂tr

∂ǫ
(5.65)

∂∆γ

∂ǫ
=

1

χ

(
∂‖ξtr‖
∂ǫ

+Bφ∂p
tr

∂ǫ

)

=
1

χ
(m̂φ)tr (5.66)

χ = 2µ+KBφBψ +Hα +Hc(Aφ)2 (5.67)

∂‖ξtr‖
∂ǫ

= 2µn̂tr ,
∂ptr

∂ǫ
= K1

∂n̂tr

∂ǫ
=

2µ

‖ξtr‖

(

I − 1

3
1⊗ 1− n̂tr ⊗ n̂tr

)

(5.68)

∂σ

∂ǫ
= ce − 1

χ
(m̂ψ)tr ⊗ (m̂φ)tr

−(2µ)2∆γ

‖ξtr‖

(

I − 1

3
1⊗ 1− n̂tr ⊗ n̂tr

)

(5.69)
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Recall the continuum elastoplastic tangent as

cep = ce − 1

χ
ce :

∂g

∂σ
⊗ ∂f

∂σ
: ce (5.70)

∂f

∂σ
=

1

3
Bφ1+ n̂ ,

∂g

∂σ
=

1

3
Bψ1+ n̂ (5.71)

∂f

∂σ
: ce = (m̂φ)tr , ce :

∂g

∂σ
= (m̂ψ)tr (5.72)

∂f

∂σ
: ce :

∂g

∂σ
= KBφBψ + 2µ (5.73)

χ =
∂f

∂σ
: ce :

∂g

∂σ
− ∂f

∂qζ
·H · h(σ, qζ) = 2µ+KBφBψ +Hα +Hc(Aφ)2

cep = ce − 1

χ
(m̂ψ)tr ⊗ (m̂φ)tr (5.74)

Then, we can rewrite the consistent tangent as

∂σ

∂ǫ
= cep −∆γ

(2µ)2

‖ξtr‖

(

I − 1

3
1⊗ 1− n̂tr ⊗ n̂tr

)

(5.75)
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5.4. NONLINEAR DRUCKER-PRAGER (DP) PLASTICITY

5.4 Nonlinear Drucker-Prager (DP) plasticity

Here, we consider the case of the fully nonlinear form of the Drucker-Prager (DP) plasticity

model, where each ISV could be dependent upon the other. To start, recall the Backward

Euler integrated evolution equations for the stress and ISVs, written in residual form, leaving

off the n + 1 subscript, as

R(X) = 0 , X =









σ

qζ

∆γ









(5.76)

R =









Rσ

Rq

Rγ









=









σ − σn − ce : ∆ǫ +∆γce : ∂g
∂σ

−qζ + qζn +∆γhq

f









= 0 (5.77)

We then linearize for solution by the Newton-Raphson method for the unknown variable X

(which contains the stress σ, ISVs qζ, and increment of plastic multiplier ∆γ) as

Rk+1 = Rk +
∂R

∂X

∣
∣
∣
∣
k

· δX ≈ 0 (5.78)

∂R

∂X
=









∂R
σ

∂σ
∂R

σ

∂qζ
∂R

σ

∂∆γ

∂R
q

∂σ
∂R

q

∂qζ
∂R

q

∂∆γ

∂Rγ

∂σ
∂Rγ

∂qζ
∂Rγ

∂∆γ









(5.79)

=









I +∆γce : ∂2g
∂σ∂σ ∆γce : ∂2g

∂σ∂qζ ce : ∂g
∂σ

∆γ ∂h
q

∂σ −1+∆γ ∂h
q

∂qζ hq

∂f
∂σ

∂f
∂qζ 0









(5.80)
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For iteration k, we rewrite the first two equations as






Rσ

Rq




+D ·






δσ

δqζ




+ δ(∆γ)






ce : ∂g
∂σ

hq




 = 0 (5.81)

and then multiply by D−1 to obtain,

D−1 ·






Rσ

Rq




+






δσ

δqζ




+ δ(∆γ)D−1 ·






ce : ∂g
∂σ

hq




 = 0 (5.82)

δ(∆γ)D−1 ·






ce : ∂g
∂σ

hq




 = −D−1 ·






Rσ

Rq




−






δσ

δqζ




 (5.83)

Then, multiply by

[

∂f
∂σ

∂f
∂qζ

]

to obtain

δ(∆γ)

[

∂f
∂σ

∂f
∂qζ

]

·D−1 ·






ce : ∂g
∂σ

hq




 =

−
[

∂f
∂σ

∂f

∂qζ

]

·D−1 ·






Rσ

Rq




−

[

∂f
∂σ

∂f

∂qζ

]

·






δσ

δqζ






︸ ︷︷ ︸

−f

(5.84)
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We solve for the iteration increment of the time increment of the plastic mulitiplier δ(∆γ)

as

δ(∆γ) =

f −
[

∂f
∂σ

∂f
∂qζ

]

·D−1 ·






Rσ

Rq






[

∂f
∂σ

∂f
∂qζ

]

·D−1 ·






ce : ∂g
∂σ

hq






(5.85)

Then substitute back in to update the stress σ and ISVs qζ as






δσ

δqζ




 = −D ·






Rσ + δ(∆γ)ce : ∂g
∂σ

Rq + δ(∆γ)hq




 (5.86)

Then check for convergence.

Now, we show how to calculate the material consistent tangent ∂σ
∂ǫ . Recall the residual

form of the integrated equations, but pre-multiplying by (ce)−1 as









(ce)−1 : σ − (ce)−1 : σn −∆ǫ +∆γ ∂g
∂σ

−qζ + qζn +∆γhq

f









= 0 (5.87)
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Take derivatives w.r.t. ǫ at iteration k + 1 and time tn+1 to obtain









(ce)−1 : ∂σ
∂ǫ − I + ∂g

∂σ ⊗ ∂∆γ
∂ǫ +∆γ( ∂2g

∂σ∂qζ ·
∂qζ
∂ǫ + ∂2g

∂σ∂σ : ∂σ
∂ǫ )

−∂qζ
∂ǫ + hq ⊗ ∂∆γ

∂ǫ +∆γ(∂h
q

∂qζ ·
∂qζ
∂ǫ + ∂h

q

∂σ : ∂σ
∂ǫ )

∂f

∂qζ ·
∂qζ
∂ǫ + ∂f

∂σ : ∂σ
∂ǫ









= 0









(ce)−1 +∆γ ∂2g
∂σ∂σ ∆γ ∂2g

∂σ∂qζ
∂g
∂σ

∆γ ∂h
q

∂σ −1+∆γ ∂h
q

∂qζ hq

∂f
∂σ

∂f

∂qζ 0









·









∂σ
∂ǫ

∂qζ
∂ǫ

(∂∆γ
∂ǫ )T









=









I

0

0









(5.88)

We assign the following notation

B =






(ce)−1 +∆γ ∂2g
∂σ∂σ ∆γ ∂2g

∂σ∂qζ

∆γ ∂h
q

∂σ −1+∆γ ∂h
q

∂qζ




 (5.89)

and then,

B ·






∂σ
∂ǫ

∂qζ
∂ǫ




+






∂g
∂σ

hq




 ·
(
∂∆γ

∂ǫ

)T

=






I

0




 (5.90)

[

∂f
∂σ

∂f
∂qζ

]

·






∂σ
∂ǫ

∂qζ
∂ǫ




 = 0 (5.91)
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We multiply by B−1 and

[

∂f
∂σ

∂f
∂qζ

]

to obtain

[

∂f
∂σ

∂f
∂qζ

]

·






∂σ
∂ǫ

∂qζ
∂ǫ






︸ ︷︷ ︸

=0

+

[

∂f
∂σ

∂f
∂qζ

]

·B−1 ·






∂g
∂σ

hq






︸ ︷︷ ︸

e

·(∂∆γ
∂ǫ

)T =

[

∂f
∂σ

∂f

∂qζ

]

·B−1 ·






I

0




 (5.92)

=⇒ (
∂∆γ

∂ǫ
)T =

1

e

[

∂f
∂σ

∂f
∂qζ

]

·B−1 ·






I

0




 (5.93)

We then substitute and solve for ∂σ
∂ǫ as






∂σ
∂ǫ

∂qζ
∂ǫ




 = B−1 ·






I

0




−

1

e
·B−1 ·






∂g
∂σ

hq




 ·
[

∂f
∂σ

∂f
∂qζ

]

·B−1 ·






I

0




 (5.94)

We then take the upper 6× 6 matrix for the 3D ∂σ
∂ǫ , after putting in vector-matrix form.
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Chapter 6

Mixture Theory, Poromechanics, and

FE Implementation at Small Strain

Much of the content in this chapter is taken from Borja [2004], Li et al. [2004], de Boer

[2005], Regueiro and Ebrahimi [2010], Regueiro et al. [2014].

We assume geometric linearity (i.e., small strains and small rotations). However, for discus-

sion purposes, it is meaningful to introduce some nonlinear continuum mechanics concepts

[Holzapfel, 2000].

An outline of the remaining sections is as follows:

1. formulate differential form of coupled balance of mass and linear momentum, and apply

boundary conditions (BCs) to provide the Strong Form (S).

2. formulate coupled, variational, Weak Form (W).

3. state coupled, discrete, Galerkin Form (G).
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4. formulate coupled, Finite Element (FE), Matrix-Vector form in 2D plane strain, using

mixed quadrilateral element.

5. provide example of element assembly to obtain Global Matrix form, assuming linear

isotropic elasticity and no dependence of porosity on solid skeleton volumetric strain

ǫv.

6. conduct time integration using generalized trapezoidal rule.

7. include nonlinearity: porosity dependence on solid skeleton deformation (small strain),

and nonlinear material constitutive model.

8. introduce inertia terms for dynamic mixture theory and FE implementation, and so-

lution by Newmark time integration and Newton-Raphson.
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6.1. COUPLED STRONG FORM (S)

6.1 Coupled balance of mass and linear momentum,

Strong Form (S)

The concept of volume fraction for a solid and fluid mixture (porous solid skeleton saturated

with a pore fluid) is shown in Fig.6.1.

fluid

solid

Bs

dv

dvs

dvf

*theory of porous media assumes con-

trol space is that of the solid phase

B = Bs

nα(x, t) = dvα/dv
∑

α

nα = 1 , nf + ns = 1

dv =
∑

α

dvα

• nα(x, t) = volume fraction of constituent α in dv ⊂ B,
where B = Bs

• dvα = differential volume of constituent α in dv

mα =

∫

Bα

dmα =

∫

Bα

ραRdvα =

∫

B

ραRnαdv =

∫

B

ραdv

ραR(x, t) = dmα/dvα

ρα(x, t) = dmα/dv = ραR(x, t)nα(x, t)

• dmα = differential mass of constituent α

• ραR(x, t) = real mass density of constituent α

• ρα(x, t) = partial mass density of constituent α

Figure 6.1. Concept of volume fraction for biphasic (solid-fluid) mixture theory, showing solid
skeleton composed of contacting grains. Mixture theory is a continuum assumption.
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The kinematics of biphasic solid-fluid mixture theory are shown in Fig.6.2.

B
s
0

Bf
0

Bs

Bf

Xs

Xf

Xs, Xf

Yf

Yf

Xs

X f

Y f x

vs

vf

χs(Xs)

χf(Xf)

χf(Yf)

B0

B
f
0

B

Bf

X

Xf

X , Xf

Yf

Yf

X

X f

Y f x

v
vf

χ(X)

χf(Xf)

χf(Yf)

• x = spatial position vector, which is
simultaneously occupied by all con-
stituent material points Xs,Xf of the
mixture (homogenized, or smeared)

x = χf(X f , t) = χs(Xs, t)

• drop the s designation since control
space is that of the solid skeleton

x = χf(X f , t) = χ(X, t)

Figure 6.2. Kinematics of a biphasic (solid-fluid) mixture theory, showing solid skeleton composed
of contacting grains. The continuum assumption of mixture theory is evident in the assumption
that solid and fluid constituents coexist at the current position x.
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Likewise, the volumetric deformation of a solid-fluid mixture, that is smeared in the current

configuration at spatial position vector x, is shown in Fig.6.3.

solid

fluid

mixture

dVf

dVs

dvJf

Js

Figure 6.3. Volumetric deformation of solid and fluid constituents in a biphasic mixture (solid
skeleton composed of contacting solid grains). Because the respective deformation gradients F s (or
just F ) and F f map material points Xs (with differential volume dVs, or dV ) and Yf (with differ-
ential volume dVf) to current position x (with differential volume dv), the volumetric deformations
through the Jacobians Js (normally called J because in theory of porous media, one follows the
motion of the solid skeleton) and Jf smear the two constituents under volume change to the current

differential volume dv at position x.

The Jacobian of deformation for the two constituents is written as

Js = detF s > 0 ; Jf = detF f > 0 (6.1)

dv = JsdVs = JfdVf (6.2)

dvα = nαdv = nαJαdVα (6.3)

dVf ⊂ B
f
0 , dVs ⊂ B

s
0 (6.4)

where we will typically drop the s superscripts and subscripts because the theory of porous
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media assumes we follow the motion of the solid skeleton.

We can similarly reshow the three figures demonstrating the concept of volume fraction and

kinematics for a biphasic solid-fluid mixture, but for the solid skeleton composed of alveolar

tissue which makes up the lung parenchyma, Figs.6.4-6.6.

fluid-filled

pores

solid

alveolar

tissue

Bs

dv

dvs

dvf

*theory of porous media assumes con-

trol space is that of the solid phase

B = Bs

nα(x, t) = dvα/dv
∑

α

nα = 1 , nf + ns = 1

dv =
∑

α

dvα

• nα(x, t) = volume fraction of constituent α in dv ⊂ B,
where B = Bs

• dvα = differential volume of constituent α in dv

mα =

∫

Bα

ραRdvα =

∫

B

ραRnαdv =

∫

B

ραdv

ραR(x, t) = dmα/dvα

ρα(x, t) = dmα/dv = ραR(x, t)nα(x, t)

• dmα = differential mass of constituent α

• ραR(x, t) = real mass density of constituent α

• ρα(x, t) = partial mass density of constituent α

Figure 6.4. Concept of volume fraction for biphasic (solid-fluid) mixture theory, showing solid
skeleton composed of alveolar tissue.
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Bs
0

Bf
0

Bs

Bf

Xs

Xf

Xs, Xf

Yf

Yf

Xs

X f

Y f x

vs

vf

χs(Xs)

χf(Xf)

χf(Yf)

B0

Bf
0

B

Bf

X

Xf

X , Xf

Yf

Yf

X

X f

Y f x

v
vf

χ(X)

χf(Xf)

χf(Yf)

• x = spatial position vector, which is
simultaneously occupied by all con-
stituent material points Xs,Xf of the
mixture (homogenized, or smeared)

x = χf(X f , t) = χs(Xs, t) (6.5)

*material pointXs is mapped from ref-
erence position Xs to current position
x through mapping χs

*can define inverse map Xα =
χ−1
α (x, t), assuming smoothly differen-

tiable fields

• deformation gradient:

F α =
∂χα
∂Xα

, F−1
α =

∂Xα

∂x

• drop the s designation since control
space is that of the solid skeleton: x =
χf(X f , t) = χ(X, t)

Figure 6.5. Kinematics of a biphasic (solid-fluid) mixture theory, showing solid skeleton composed
of alveolar tissue. The continuum assumption of mixture theory is evident in the assumption that
solid and fluid constituents coexist at the current position x.
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solid

fluid

mixture

dVf

dVs

dvJf

Js

Figure 6.6. Volumetric deformation of solid and fluid constituents in a biphasic mixture (solid
skeleton composed of alveolar tissue of the lung parenchyma).

178



6.1. COUPLED STRONG FORM (S)

Material time derivative of scalar spatial field ψ(x, t), referring to Holzapfel [2000],

de Boer [2005], is written following the solid skeleton motion as,

Dsψ(χs(Xs, t), t)

Dt
=
∂ψ(x, t)

∂t
+
∂ψ(x, t)

∂x

∂χs

∂t
=
∂ψ

∂t
+ gradψ · vs (6.6)

where we will drop the s designation because we follow the motion of the solid skeleton.

Following the pore fluid motion, it is written as,

Dfψ(χf(X f , t), t)

Dt
=
∂ψ(x, t)

∂t
+
∂ψ(x, t)

∂x

∂χf

∂t
=
∂ψ

∂t
+ gradψ · vf (6.7)

For the balance of mass of the mixture, we write separately the balance of mass of each

constituent, solid and fluid, expressing all material time derivatives in terms of the solid

skeleton motion, and then add the two equations together to obtain the balance of mass of

the mixture. The total mass of constituent α in B is written as

mα =

∫

B

ραdv =

∫

Bα0

ραJαdVα (6.8)

Taking the material time derivative of this spatial field with respect to the motion of con-

stituent α, we can express the balance of mass of constituent α as

Dαmα

Dt
=

∫

Bα0

Dα(ραJα)

Dt
dVα = 0 (6.9)

where we currently ignore sources and sinks for now, and ignore chemical reaction between

constituents (i.e., no mass exchange between constituents, such as dissolving solid into fluid,

or precipitating fluid into solid). We can find that DαJα/Dt = Jαdivvα [Holzapfel, 2000,

de Boer, 2005] from,

DαJα
Dt

=
Dα(detF α)

Dt
= JαF

−T
α :

DαF α

Dt
= Jα

∂XI(α)

∂xi

∂vi(α)(Xα, t)

∂XI(α)

= Jαdivvα (6.10)
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We have

Dαmα

Dt
=

∫

B

(
Dαρα

Dt
+ ραdivvα

)

dv = 0 (6.11)

and localizing the integral,

Dαρα

Dt
+ ραdivvα = 0 (6.12)

Then, for each solid and fluid constituent, the balance of mass is written as,

Dsρs

Dt
+ ρsdivvs = 0 , or

Dρs

Dt
+ ρsdivv = 0 (6.13)

Dfρf

Dt
+ ρfdivvf = 0 (6.14)

where v (or vs) is the velocity of the solid skeleton, and vf is the velocity of the pore fluid. For

eventual Lagrangian finite element implementation, where the mesh deforms with the solid

skeleton deformation (tracked by solid skeleton displacement u), we would like to express

the material time derivatives solely in terms of the solid skeleton motion, and we recognize

the following:

Dfρf

Dt
=

Dsρf

Dt
+ gradρf · ṽf (6.15)

ṽf = vf − vs = vf − v (6.16)

where ṽf is the relative velocity vector of the fluid with respect to the solid skeleton motion.

Then the balance of mass for each constituent solid and fluid can be written with respect to
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the solid skeleton motion as

Dsρs

Dt
+ ρsdivv = 0 (6.17)

Dsρf

Dt
+ ρfdivv = −div(ρf ṽf) (6.18)

where div(ρf ṽf) is the net mass flux of fluid through the solid skeleton (by the Divergence

theorem). Using ρ = ρs + ρf , then the balance of mass for the mixture (summing each

constituent balance of mass equation) is

Dsρ

Dt
+ ρdivv = −div(ρf ṽf) (6.19)

This is general for deformable constituents. However, oftentimes the constituents themselves

are nearly incompressible with respect to the compressibility of the solid skeleton; e.g., a sand

saturated with water, where water and the sand grains themselves are nearly incompressible

as compared to the compressibility of the sand skeleton. This rationale can also apply to

spongy soft biological tissues such as the brain and the lung parenchyma, wherein the satu-

rating fluid is water and/or air, and the collagenous solid constituent is nearly incompressible

when compared to the compressibility of the solid skeleton collagenous matrix (sometimes

called the extracellular matrix (ECM)). Thus, we can consider a simpler case for which the

solid and fluid constituents are incompressible. We start by substituting ρs = nsρsR and

ρf = nfρfR into the separate constituent balance of mass equations,

∂(nsρsR)

∂t
+ div(nsρsRv) = 0 (6.20)

∂(nfρfR)

∂t
+ div(nfρfRv) = −div(nfρfRṽf) (6.21)

We assume the solid and fluid constituents are incompressible (for saturated soils, or soft

biological tissues), such that the real mass densities ρsR and ρfR are constant with respect to
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time and space:

ρsR
∂ns

∂t
+ ρsRdiv(nsv) = 0 (6.22)

ρfR
∂nf

∂t
+ ρfRdiv(nfv) = −ρfRdiv(nf ṽf) (6.23)

Recall the volume fraction relation ns = 1− nf , where we then have

−∂n
f

∂t
+ div((1− nf)v) = 0 (6.24)

∂nf

∂t
+ div(nfv) = −div(nf ṽf) (6.25)

Summing these two balance equations leads to the balance of mass for a mixture composed

of incompressible solid and fluid constituents as

divv + div(nf ṽf) = 0 (6.26)

where v = u̇ = Du/Dt is the velocity of the solid skeleton following the solid skeleton

motion, and nf ṽf = ṽ
Darcy
f is the superficial (Darcy seepage) fluid velocity. The balance

of mass can be rewritten (assuming no interconversion of solid to fluid or fluid to solid

constituents, i.e., ignore chemical reactions) as

divṽDarcy
f = −divu̇ (6.27)

We can physically interpret this equation in various ways:

1. locally undrained: zero solid skeleton volumetric deformation with zero fluid flux

divṽDarcy
f = −divu̇ = 0 (6.28)
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2. rate of fluid storage (in flow) equals rate of solid skeleton dilatation:

divṽDarcy
f < 0 flow in , divu̇ > 0 dilate (6.29)

3. rate of fluid depletion (out flow) equals rate of solid skeleton compaction:

divṽDarcy
f > 0 flow out , divu̇ < 0 compact (6.30)

Next, the balance of linear momentum of the biphasic solid-fluid mixture is derived.

The balance of linear momentum for constituent α (α =s,f), ignoring inertia terms, may be

written as:

divσα + ραbα + hα = 0 (6.31)

where σα is the partial stress for the α phase, such that σ = σs +σf , ρα is the partial mass

density such that ρ = ρs+ρf , bα is the body force per unit mass on constituent α (we assume

the same body force for each constituent, such as acceleration of gravity, bα = b = g), and

hα is the internal body force drag of other constituents on constituent α. We note that

the internal body forces due to drag between constituents sum to zero (equal and opposite;

Newton’s third law of motion), and thus do not affect the mixture as a whole:

hs + hf = 0 (6.32)

where hs is the body force drag of pore fluid on the solid skeleton, and hf is the body force

drag of the solid skeleton on the pore fluid. Thus, when summing the individual balance of

linear momentum equations for solid and fluid constituents, we have the balance of linear

momentum equation for the mixture:

divσ + ρg = 0 (6.33)
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This looks the same as a single constituent/phase medium, but we recognize the additive

decomposition of the stress and mass density into its respective components for each con-

stituent. The balance of angular momentum for non-polar constituents states that the

respective partial stresses (and, in turn, the total stress) are symmetric: σα = (σα)T .

It is now relevant to discuss a principle that allows us to distinguish stress acting on the solid

skeleton, and the pressure acting on the pore fluid (assuming the fluid is nearly inviscid, such

as water). We apply the effective stress principle (assuming Biot coefficient B = 1), which

can be credited to Terzaghi [1943] (pg12) (among others), that states,

σ = σ′ − pf1 (6.34)

where the real (Cauchy) pore fluid pressure pf =
1
nf

(
−1
3
tr(σf)

)
is positive in compression,

and the mean effective stress is positive in tension p′ = 1
3
tr(σ′), where σ′ is the effective

stress, or the stress acting on the solid skeleton, for which we will apply our solid skeleton

constitutive equations. We assume a nearly inviscid (no shear stress) isotropic fluid (e.g.,

water), where then,

σf = pf1 =⇒ pf =
1

nf
(−pf) (6.35)

and

σs = σ′ + pf
(

1

nf
− 1

)

1 (6.36)

Thus, we note that the partial solid stress σs is NOT equal to the effective stress σ′, σs 6= σ′,

unless the pore fluid pressure pf = 0. The effective stress principle is useful for introducing

constitutive equations for the solid skeleton separate from the pore fluid, but it requires more

study for application to materials other than soils or rocks, such as soft biological tissues.

For rocks, we introduce the Biot coefficient B, recognizing that the stiffness of the rock solid

skeleton is on the same order of magnitude as the rock solid constituent; for soils, foams,

and soft biological tissues, B ≈ 1.
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Thus, we may state the coupled Strong Form (balance of mass and linear momentum) for

the solid-fluid mixture with incompressible constituents, ignoring inertia terms, as

(S)







Find ui(x, t) : Ω̄× [0, T ] 7→ R
nsd,

and pf(x, t) : Ω̄× [0, T ] 7→ R, such that

σij,j + ρbi = 0 ∈ Ω

ui = gui on Γu

σ′
ijnj = tσ

′

i on Γt

ui(x, 0) = u0i ∈ Ω

u̇i,i + ṽDarcy
i(f),i = 0 ∈ Ωf

pf = r on Γr (and Γt)

−niṽDarcy
i(f) = s on Γs

pf(x, 0) = pf0 ∈ Ωf

(6.37)

where the BCs on a mixture body are shown in Fig.6.7.

Constitutive Equations:

Before we introduce constitutive equations, we present the thermodynamics (Clausius-Duhem

inequality) for a biphasic mixture. The balance of energy for constituent α in the current

configuration B is written as

ρα
Dαeα

Dt
− σα : ǫ̇α + divqα − ραrα (6.38)

= êα + γα
(
1

2
vα · vα − eα

)

− vα · hα (6.39)

where eα is the internal energy per unit mass of constituent α, qα is the heat flux of con-

stituent α, rα is the heat input per unit mass of constituent α, and êα is the energy den-

sity rate for constituent α supplied by all other constituents. Then, skipping details, the

Clausius-Duhem inequality, assuming existence of a Helmholtz free energy func-
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dx

dy

Γt

Γu

ΓrΓs

tσ
′

s r

n

gu

Ω

Ωf b

x = x1

y = x2

da

Figure 6.7. A body Ω that can have a saturated region Ωf , with associated BCs: gu is the

prescribed displacement on Γu, t
σ′ is the prescribed traction on Γt, r is the prescribed pore fluid

pressure on Γr, and s is the prescribed fluid flux across Γs (positive into the body). We will consider
only bodies that are fully saturated, where Ωf = Ω.

tion per unit mass ψα for constituent α is written as

êα + γα
(

θαηα +
1

2
vα · vα − eα

)

− vα · hα − ρα
Dαψα

Dt
+ σα : ǫ̇α (6.40)

≥ ραηα
Dαθα

Dt
+

1

θα
(gradθα) · qα (6.41)

Summing over the constituents α =s,f, the resulting constitutive equations follow from

arguments by Coleman and Noll [1963], Coleman and Gurtin [1967] for independence of rate

processes, where we assume inter-constituent mass exchange γα = 0, we use the effective
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stress principle, the constituents are incompressible, and we have

ηs = −∂(ρ
sψs)

∂θs
, ηf = −∂(ρ

fψf)

∂θf
(6.42)

σ′ =
∂(ρsψs)

∂ǫs
(6.43)

The reduced dissipation inequality, assuming at a local mixture continuum point the

temperature θs = θf = θ and q = qs + qf , we have,

−(ρfψf)divvf −
[
∂pf
∂x

+ ρfR(af − bf)

]

· (nf ṽf)−
1

θ

∂θ

∂x
· q ≥ 0 (6.44)

For non-negative dissipation, we arrive at the generalized Darcy’s law for seepage velocity

(nf ṽf), and the Fourier’s law for mixture heat flux q, as follows

(nf ṽf) ∝ −
[
∂pf
∂x

+ ρfR(af − bf)

]

=⇒ (nf ṽf) = −k̂
[
∂pf
∂x

+ ρfR(af − bf)

]

(6.45)

q ∝ −1

θ

∂θ

∂x
=⇒ q = −kθ 1

θ

∂θ

∂x
(6.46)

where hydraulic conductivity k̂ and thermal conductivity kθ = nfkθ
f

+ nskθ
s

are proportion-

ality parameters. Thus, a generalized form of Darcy’s law and Fourier’s law result from

the second law of thermodynamics. We will assume isothermal (θ̇ = 0) and homogeneous

temperature (∂θ/∂x = 0) for now. We assume the body force per unit mass on the fluid is

a result of gravity, bf = g.

Assuming a quadratic form of the Helmholtz free energy function for the solid skeleton ρsψs,
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we arrive at a linear elasticity model, which we further assume is isotropic, such that

ρsψs(ǫs) =
1

2
ǫs : c : ǫs (6.47)

σ′ =
∂(ρsψs)

∂ǫs
= c : ǫ , ǫ = ǫs (6.48)

σ′
ij = cijklǫkl (6.49)

c = λ1⊗ 1+ 2µI (6.50)

cijkl = λδijδkl + 2µIijkl (6.51)

Iijkl =
1

2
(δikδjl + δilδjk) (6.52)

We could generalize the constitutive equation for the effective stress governing the response

of the solid skeleton by including plasticity, or viscoelasticity, or viscoplasticity, etc.

Constitutively, based on the thermodynamics resulting in Eq.(6.45), we can assume Darcy’s

law for the superficial (Darcy) seepage fluid velocity. Refer to Coussy [2004] (pg45) for more

details. Recall from undergraduate soil mechanics (if you ever took such a course) the 1D

Darcy experiment illustrated in Fig.6.8.

We can generalize Eq.(6.45) further by considering anisotropic hydraulic conductivity, but

for now we stick to the isotropic assumption that a hydraulic conductivity tensor k̂ = k̂1.

If we ignore inertia terms (af ≈ 0), assume the body force on the fluid is that of gravity

(bf = g), then we have the simplified version of the generalized Darcy’s law as

ṽ
Darcy
f = −k̂

[
∇pf − ρfRg

]
(6.53)

where g is the gravitational vector. From Coussy [2004] (pg46), we find that the hydraulic
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datum

in flow

out flow

L

h1

h2
i

ṽDarcy
f

Figure 6.8. An illustration of Darcy’s classic seepage experiment to measure hydraulic conductivity

k of a porous medium. The 1D equation for the superficial Darcy seepage velocity is ṽDarcy
f = −ki,

and the hydraulic gradient i = (h1 − h2)/L, ignoring body force and velocity head.

conductivity may be a function of porosity n (n = nf for fluid-saturated porous medium)

k̂(nf) =
κ

ηf

F(nf)

F(nf
0)

(6.54)

F(nf) =
(nf)3

1− (nf)2
(6.55)

where for fine sand, the intrinsic permeability κ ≈ 1×10−12m2 [Coussy, 2004] (Table3.1,pg47),

for lung parenchyma κ ≈ 2 × 10−12m2 ∗ [Lande and Mitzner, 2006] and at 20◦ C, for water

the viscosity is ηf = 10−3Pa.s. Note that k = γf k̂, and the unit weight of fluid is γf = ρfRg,

g = 9.81m/s2. Equation (6.55) is the Kozeny-Carman formula [Coussy, 2004]. Assuming

small strain kinematics, we can relate the rate of change of the fluid volume fraction (the

∗calculated from provided hydraulic conductivity of air through the lung parenchyma, and viscosity of
air at 20◦ C ηf = 1.83× 10−5Pa.s
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porosity) to the solid skeleton volumetric strain as,

ṅf = (1− nf)ǫ̇v (6.56)

nf
n+1 =

nf
n +∆ǫv
1 + ∆ǫv

(6.57)

∆ǫv = tr(∆ǫ) (6.58)

This will introduce nonlinearity into the governing equations, requiring a nonlinear Newton-

Raphson finite element solution; more details to follow.

6.2 Coupled, Variational, Weak Form (W)

The first step in obtaining the finite element coupled equations to solve for coupled porome-

chanics (pore fluid flow coupled to solid skeleton deformation), we must formulate the Weak

Form (W) starting from the Strong Form (S). We introduce a weighting function wi(x) that

is used in formulating the weak form of balance of linear momentum for a 2D porous medium

with domain Ω, such that
∫

Ω

wi(σij,j + ρgi)da = 0 (6.59)

We introduce a weighting function η(x) to be used in formulating the weak form of balance

of mass as follows (we assume saturated porous medium Ωf = Ω),

∫

Ω

η
[

u̇i,i + ṽDarcy
i(f),i

]

da = 0 (6.60)
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After integration by parts, and assuming a two-dimensional domain Ω, the coupled weak

form is written as,

(W )







Find ui(x, t) ∈ S u and pf(x, t) ∈ S p such that
∫

Ω
wi,j(σ

′
ij − pfδij)da =

∫

Ω
ρwigida+

∫

Γt
wit

σ′

i ds−
∫

Γt
winipfds

∫

Ω
ηu̇i,ida−

∫

Ω
η,iṽ

Darcy
i(f) da =

∫

Γs
ηsds

holds ∀wi(x) ∈ V u and η(x) ∈ V p

S u = {ui : Ω× [0, T ] 7→ R
2, ui ∈ H1, ui(t) = gui (t) onΓu, ui(x, 0) = ui0(x)}

S p = {pf : Ω× [0, T ] 7→ R, pf ∈ H1, pf(t) = r(t) onΓr,Γt, pf(x, 0) = pf0(x)}

V u = {wi : Ω 7→ R
2, wi ∈ H1, wi = 0 onΓu}

V p = {η : Ω 7→ R, η ∈ H1, η = 0 onΓr}
(6.61)

where tσ
′

i is the effective traction vector acting on the solid skeleton, ni is the unit normal

vector to the surface Γt, S u is the trial solution space for solid skeleton displacement vector

ui, S
p is the trial solution space for pore fluid pressure pf , V

u is the variational space for

weighting function vector wi, and V p is the variational space for weighting function η.

6.3 Coupled, Discrete, Galerkin Form (G)

Details aside (refer to [Hughes, 1987]), the discrete, Bubnov-Galerkin form is expressed as

follows:

(S u)h ⊂ S u , (S p)h ⊂ S p

(V u)h ⊂ V u , (V p)h ⊂ V p

uhi (x, t) ∈ (S u)h , phf (x, t) ∈ (S p)h

whi (x) ∈ (V u)h , ηh(x) ∈ (V p)h

(6.62)

where h implies a discretization parameter, typically related to the finite element “diame-

ter” (i.e., diameter of circle that circumscribes a 2D element, or diameter of a sphere that
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circumscribes a 3D element).

6.4 Coupled, Finite Element (FE), Matrix Form

To illustrate the coupled finite element (FE) implementation of solid-fluid saturated porome-

chanics at small strain, ignoring inertia terms and chemical reaction of constituents, we start

with a mixed quadrilateral finite element shown in Fig.6.9.

Ωe

Ωh

uh
e

i

ph
e

f

1

2

3

4

x

y

7

8 9

5

6

Ωe

η

ξ

Figure 6.9. A mixed quadrilateral element (Q9P4, 9 nodes for biquadratic interpolation of dis-

placement uh
e

i , and 4 nodes for bilinear interpolation of pore fluid pressure ph
e

f ), that is shown
to be convergent with respect to spatial discretization [Hughes, 1987]. Ωe is the element domain,
and the overall discrete domain subdivided into finite element domains from which it is assembled:
Ωh =A

nel

e=1 Ω
e.
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We then interpolate as follows:

uh
e

(ξ, t) =
9∑

a=1

Nu
a (ξ)d

e
a(t) = N e,u(ξ)

︸ ︷︷ ︸

2×(2∗9)

· de(t)
︸ ︷︷ ︸

(2∗9)×1

(6.63)

=

[

Nu
1 . . . Nu

9

]

·









de1
...

de9









(6.64)

Nu
a =






Nu
a 0

0 Nu
a




 , dea =






dex(a)

dey(a)




 (6.65)

whe(ξ) = N e,u(ξ) · ce (6.66)

ph
e

f (ξ, t) =

4∑

b=1

Np
b (ξ)θ

e
b(t) = N e,p

︸︷︷︸

1×(1∗4)

· θe
︸︷︷︸

(1∗4)×1

(6.67)

=

[

Np
1 Np

2 Np
3 Np

4

]

·












θe1

θe2

θe3

θe4












(6.68)

ηh
e

= N e,p ·αe (6.69)
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where the derivatives are

u̇h
e

i,i(ξ, t) =

9∑

a=1

[

∂Nu
a

∂x
∂Nu

a

∂y

]

·






ḋex(a)

ḋey(a)




 (6.70)

=

[

B̃
u

1 . . . B̃
u

9

]

·









ḋ
e

1

...

ḋ
e

9









= B̃
e,u · ḋe (6.71)

ηh
e

,i (ξ) =
4∑

b=1

∂Np
b (ξ)

∂xi
αeb =

4∑

b=1






∂Np
b
(ξ)

∂x

∂Np
b
(ξ)

∂y




α

e
b (6.72)

=
4∑

b=1

B
p
bα

e
b =

[

B
p
1 B

p
2 B

p
3 B

p
4

]

·












αe1

αe2

αe3

αe4












(6.73)

∇ηh
e

= Be,p ·αe (6.74)

∇ph
e

f = Be,p · θe (6.75)

Currently, our equations are nonlinear because the porosity nf(u) is a nonlinear function of

displacement u. To simplify the formulation initially, we will ignore the change in porosity

due to volumetric deformation of the solid skeleton. This assumption may be appropriate for

certain rocks and hard biological tissues like bone, but is NOT appropriate for soils and soft

biological tissues (a full finite deformation formulation is actually needed, which is beyond

the scope of this course; refer to Li et al. [2004], de Boer [2005], Regueiro and Ebrahimi

[2010], Regueiro et al. [2014], etc.). Recall that

ρ = ρs + ρf = nsρsR + nfρfR (6.76)

= ρsR + nf(ρfR − ρsR) (6.77)

ρ(d) = ρsR + nf(d)(ρfR − ρsR) (6.78)
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Thus, since the porosity nf(d) is a nonlinear function of displacement, then so is the mixture

mass density ρ(d). We will ignore this nonlinearity for now, and revisit later.

The coupled FE equations are written then as:

nel

A
e=1

(ce)T ·









(∫

Ωe
(Be,u)T ·Delastic ·Be,uda

)

︸ ︷︷ ︸

k
e,dd

·de −
(∫

Ωe
(B̃

e,u
)T ·N e,pda

)

︸ ︷︷ ︸

k
e,dθ

·θe

=

∫

Ωe
ρ(N e,u)T · bda

︸ ︷︷ ︸

f
e,d

f

+

∫

Γet

(N e,u)T · tσ′ds
︸ ︷︷ ︸

f
e,d

t

−
∫

Γet

(N e,u)T · nphef ds
︸ ︷︷ ︸

f
e,d

p










(6.79)

nel

A
e=1

(αe)T ·









(∫

Ωe
(N e,p)T · B̃e,u

da

)

︸ ︷︷ ︸

(k
e,dθ

)T

·ḋe +
(∫

Ωe
(Be,p)T · k ·Be,pda

)

︸ ︷︷ ︸

k
e,θθ

·θe

=

∫

Ωe
ρfR(Be,p)T · k · gda+

∫

Γes

(N e,p)T sds

︸ ︷︷ ︸

f
e,θ










(6.80)

and in more compact form

nel

A
e=1

(ce)T ·
[

ke,dd · de − ke,dθ · θe = f
e,d
f + f

e,d
t − f e,dp

]

(6.81)

nel

A
e=1

(αe)T ·
[

(ke,dθ)T · ḋe + ke,θθ · θe = f e,θ
]

(6.82)

After element assembly, we have the coupled parabolic PDEs to solve using generalized
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trapezoidal integration in time as,

C · Ḋ +K ·D = F (6.83)

Ḋ =






ḋ

θ̇




 , D =






d

θ




 (6.84)

C =






0 0

(Kdθ)T 0




 , K =






Kdd −Kdθ

0 Kθθ




 (6.85)

F =






F d

F θ




 (6.86)

but we must assemble the global stiffness K and “damping” C matrices. An example will

show such assembly process.

But before we do this, we summarize the generalized trapezoidal rule to integrate in time

Eq.(6.83).

6.5 Time Integration using Generalized Trapezoidal Rule

Refer to Hughes [1987] for more details. First, evaluate the FE coupled balance of mass and

linear momentum equations at time tn+1, and introduce difference formulas for Dn+1 and

V n+1, where α is the time integration parameter

C · V n+1 + K ·Dn+1 = F n+1 (6.87)

Dn+1 = Dn +∆tV n+α (6.88)

V n+α = (1− α)V n + αV n+1 (6.89)

where the classical choices for α are:
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α method type

0 forward Euler explicit (if C is diagonal, which it is not)

1/2 trapezoidal rule implicit

1 backward Euler implicit

The code implementation follows this approach:

1. initialize: given initial displacement and pore pressure D0, solve for V 0

C · V 0 = F 0 −K ·D0 (6.90)

2. predictor:

D̃n+1 = Dn + (1− α)∆tV n (6.91)

3. solution: for V n+1

(C + α∆tK) · V n+1 = F n+1 −K · D̃n+1 (6.92)

4. corrector:

Dn+1 = D̃n+1 + α∆tV n+1 (6.93)

5. stability: we will choose an unconditionally-stable method: α = 1 (Backward Euler)
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6.6 Example of Element Assembly to obtain Global

Matrix form

We consider as an example of the coupled pore fluid and solid skeleton deformation, a

3 element plane strain consolidation problem, with parameters λ = 29e6Pa, µ = 7e6Pa,

tσ
′

= 4e4Pa, k =1e-6(m3s)/kg, ns0 = 0.58, nf0 = 0.42, ρsR = 2700kg/m3, ρfR = 1000kg/m3,

ρ0 = ns0ρsR + nf0ρfR = 1566+ 420 = 1986kg/m3. Refer to Fig.6.10 for geometry of the mesh

and the IEN array [Hughes, 1987] that relates the local node numbers per element to the

global node numbers.

1 2 3

4

7 8 9

5 6

normal displacements fixed

at sides and bottom

10

16

151413

1211

212019

1817

1m

3m

1

3

2

y

x

tσ
′

phf = 0

• analytical small strain solution of settle-
ment at end of consolidation: ∆H =
H0t

σ′/(λ+ 2µ) = 2.8mm

• IEN array:

e

a

e1 e2 e3
1 7 13 19
2 9 15 21
3 3 9 15
4 1 7 13
5 8 14 20
6 6 12 18
7 2 8 14
8 4 10 16
9 5 11 17

Figure 6.10. 3 element plane strain mesh example.
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We continue with the ID array [Hughes, 1987] that relates the global dof numbers to the

global node numbers and local dof, as follows

global node number

local nodal dof 1 2 3 4 5 6 7 8 9 10 11 12

1 0 2 0 0 6 0 0 10 0 0 14 0

2 1 3 4 5 7 8 9 11 12 13 15 16

3 0 0 0 0 0 0 26 0 27 0 0 0

d.o.f.

13 14 15 16 17 18 19 20 21

0 18 0 0 22 0 0 25 0

17 19 20 21 23 24 0 0 0

28 0 29 0 0 0 30 0 31

d.o.f.
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Combining the ID array with the IEN array [Hughes, 1987], we obtain the Location Matrix

(LM) that we will use in our element assembly process:

local node # nodal dof e1 e2 e3

1







1

2

0

9

0

17

0

0

2







1

2

0

12

0

20

0

0

3







1

2

0

4

0

12

0

20

4







1

2

0

1

0

9

0

17

5







1

2

10

11

18

19

25

0

6







1

2

0

8

0

16

0

24

7







1

2

2

3

10

11

18

19

8







1

2

0

5

0

13

0

21

9







1

2

6

7

14

15

22

23

1 {3 26 28 30

2 {3 27 29 31

3 {3 0 27 29

4 {3 0 26 28
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Continuing with the example, we show the details of calculating the various element matrices

and vectors, starting with the element stiffness matrix for displacement dof:

ke,dd =

∫

Ωe
(Be,u)T ·Delastic ·Be,uda (6.94)

=

∫ 1

−1

∫ 1

−1

(Be,u)T ·Delastic ·Be,ujedξdη (6.95)

Be,u =

[

Bu
1 Bu

2 . . . Bu
9

]

(6.96)

Bu
a =









∂Nu
a

∂x
0

0 ∂Nu
a

∂y

∂Nu
a

∂y
∂Nu

a

∂x









(6.97)

where for plane strain, linear isotropic elasticity, we have

Delastic =









λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ









(6.98)

where recall µ = E
2(1+ν)

, λ = 2µν
(1−2ν

, and we ignore currently the calculation of the out-of-plane

stress (which becomes important for pressure-sensitive materials like geomaterials). Recall

that we interpolate the displacement field uh
e

using quadratic shape functions, as shown in

Fig.6.11.
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4

1

3

25

8

9 6

7

ξ

η Nu
1 (ξ, η) =

1

4
ξη(ξ − 1)(η − 1)

Nu
2 (ξ, η) =

1

4
ξη(ξ + 1)(η − 1)

Nu
3 (ξ, η) =

1

4
ξη(ξ + 1)(η + 1)

Nu
4 (ξ, η) =

1

4
ξη(ξ − 1)(η + 1)

Nu
5 (ξ, η) =

1

2
η(1− ξ2)(η − 1)

Nu
6 (ξ, η) =

1

2
ξ(ξ + 1)(1− η2)

Nu
7 (ξ, η) =

1

2
η(η + 1)(1− ξ2)

Nu
8 (ξ, η) =

1

2
ξ(ξ − 1)(1− η2)

Nu
9 (ξ, η) = (1− ξ2)(1− η2)

Figure 6.11. Biquadratic shape functions for quadrilateral.
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With these shape functions, we need to transform global (x, y) to local coordinates (ξ, η),

such that coordinate transformation of the shape function derivatives are:






∂Nu
a

∂x

∂Nu
a

∂y




 =

1

je






∂y
∂η

−∂y
∂ξ

−∂x
∂η

∂x
∂ξ






he 




∂Nu
a

∂ξ

∂Nu
a

∂η




 (6.99)

je = xh
e

,ξ y
he

,η − yh
e

,ξ x
he

,η (6.100)

where the coordinate derivatives are (leaving off superscript he on x and y)

xh
e

,ξ =
9∑

a=1

∂Nu
a

∂ξ
xea , x

he

,η =
9∑

a=1

∂Nu
a

∂η
xea (6.101)

yh
e

,ξ =
9∑

a=1

∂Nu
a

∂ξ
yea , y

he

,η =
9∑

a=1

∂Nu
a

∂η
yea (6.102)

Once the coordinate transformation is complete, we can take advantage of spatial Gaussian

integration [Hughes, 1987], in this case for integrating ke,dd, we use 3× 3 Gauss integration,

as shown in Fig.6.12.

X

XX

X

X X

X

X

X1

4 7 3

698

25

ξ

η
a =

√

3/5, b = 25/81, c = 40/81, d = 64/81

i.p. ξ̃ η̃ W
1 −a −a b
2 a −a b
3 a a b
4 −a a b
5 0 −a c
6 a 0 c
7 0 a c
8 −a 0 c
9 0 0 d

Figure 6.12. 3× 3 Gauss integration.
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For the coupling element matrix, we may likewise use 3× 3 Gauss integration, such that

ke,dθ =

∫

Ωe
(B̃

e,u
)T ·N e,pda (6.103)

=

∫ 1

−1

∫ 1

−1

(B̃
e,u
)T ·N e,pjedξdη (6.104)

B̃
e,u

=

[

B̃
u

1 B̃
u

2 . . . B̃
u

9

]

(6.105)

B̃
u

a =

[

∂Nu
a

∂x
∂Nu

a

∂y

]

(6.106)

N e,p =

[

Np
1 Np

2 Np
3 Np

4

]

(6.107)

Np
1 =

1

4
(1− ξ)(1− η) (6.108)

Np
2 =

1

4
(1 + ξ)(1− η) (6.109)

Np
3 =

1

4
(1 + ξ)(1 + η) (6.110)

Np
4 =

1

4
(1− ξ)(1 + η) (6.111)

We may use 3× 3 Gauss integration to integrate the element body force vector as

f
e,d
f =

∫

Ωe
ρ(N e,u)T · gda (6.112)

=

∫ 1

−1

∫ 1

−1

ρ(N e,u)T · gjedξdη (6.113)

g =






0

−g




 , g = 9.8m/s2 (6.114)

N e,u =

[

Nu
1 Nu

2 . . . Nu
9

]

(6.115)

Nu
a =






Nu
a 0

0 Nu
a




 (6.116)

For element 1, e = 1, we have a nonzero traction force vector, but for elements e = 2, 3,
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f
e,d
t = 0. Thus for element 1, we have,

f
e,d
t =

∫

Γet

(N e,u)T · tσ′ds (6.117)

=

∫ 1

−1

[N e,u(η = 1)]T · tσ′(0.5)dξ (6.118)

tσ
′

=






0

−tσ′




 (6.119)

N e,u(η = 1) =

[

0 0 Nu
3 N u

4 0 0 Nu
7 0 0

]

(6.120)

=






0 0 0 0 1
2
ξ(ξ + 1) 0 1

2
ξ(ξ − 1) 0

0 0 0 0 0 1
2
ξ(ξ + 1) 0 1

2
ξ(ξ − 1)

0 0 0 0 1− ξ2 0 0 0 0 0

0 0 0 0 0 1− ξ2 0 0 0 0




 (6.121)

where we will use 3pt Gauss integration along ξ. Recall that ds =
√

dx2 + dy2 = dξ
√

(∂x
∂ξ
)2 + (∂y

∂ξ
)2

along an element edge. Given the element node numbering, the top surface of element 1 where

the traction tσ
′

is applied in Fig.6.10 is η = 1, then xh
e

(ξ) = Nu
3 (ξ, η = 1)(1m) +Nu

4 (ξ, η =

1)(0m) + Nu
7 (ξ, η = 1)(0.5m), yh

e

(ξ) = Nu
3 (ξ, η = 1)(3m) + Nu

4 (ξ, η = 1)(3m) + Nu
7 (ξ, η =

1)(3m) = 3m, where ∂xh
e

∂ξ
= 0.5m and ∂yh

e

∂ξ
= 0.0m, then ds = dξ

√

(0.5m)2 + (0.0m)2 =

(0.5)dξ.
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For the boundary force vector due to pore fluid pressure phf acting on the boundary where

traction is applied, we have

f e,dp =

∫

Γet

(N e,u)T · n phef ds (6.122)

=

∫ 1

−1

[N e,u(η = 1)]T · n phef (0.5)dξ (6.123)

n =






0

1




 (6.124)

N e,u(η = 1) =

[

0 0 Nu
3 N u

4 0 0 Nu
7 0 0

]

(6.125)

=






0 0 0 0 1
2
ξ(ξ + 1) 0 1

2
ξ(ξ − 1) 0

0 0 0 0 0 1
2
ξ(ξ + 1) 0 1

2
ξ(ξ − 1)

0 0 0 0 1− ξ2 0 0 0 0 0

0 0 0 0 0 1− ξ2 0 0 0 0




 (6.126)

where for element 1, ph
e

f = 0 on Γet . The element matrix for pore pressure dof is

ke,θθ =

∫

Ωe
(Be,p)T · k ·Be,pda (6.127)

=

∫ 1

−1

∫ 1

−1

(Be,p)T · k ·Be,pjedξdη (6.128)

Be,p =

[

B
p
1 B

p
2 B

p
3 B

p
4

]

(6.129)

B
p
b =






∂Np
b

∂x

∂Np
b

∂y




 (6.130)

where we may use 2× 2 Gauss integration to integrate.
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For the fluid forcing vector, we assume the flux s = 0 is zero on Γhs , then

f e,θ =

∫

Ωe
ρfR(Be,p)T · k · gda (6.131)

=

∫ 1

−1

∫ 1

−1

ρfR(Be,p)T · k · gjedξdη (6.132)

where we may use 2× 2 Gauss integration to integrate.

We then insert these individual contributions into coupled element matrices and

a forcing vector:

Ke =






ke,dd −ke,dθ

0 ke,θθ




 (6.133)

Ce =






0 0

(ke,dθ)T 0




 (6.134)

F e =






f
e,d
f + f

e,d
t − f e,dp

f e,θ




 (6.135)

We must then use the LM matrix to assemble the individual 22×22 and 22×1 contributions

to the global “coupling” matrix, stiffness matrix, and forcing vector, and then use generalized

trapezoidal integration to solve the transient matrix equations.
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6.7 Nonlinearity: Porosity Dependence on Solid Skele-

ton Deformation

Now assume that the solid skeleton effective stress σ′ can be governed by a nonlinear con-

stitutive model (e.g., elastoplasticity), and that the density and hydraulic conductivity are

functions of porosity nf , and porosity is a function of the solid skeleton volumetric strain ǫv.

The coupled FE equations are written then as:

nel

A
e=1

(ce)T ·









(∫

Ωe
(Be,u)T · σ′(de)da

)

︸ ︷︷ ︸

f
e,d,INT

(d
e
)

−
(∫

Ωe
(B̃

e,u
)T ·N e,pda

)

︸ ︷︷ ︸

k
e,dθ

·θe

=

∫

Ωe
ρ(de)(N e,u)T · gda+

∫

Γet

(N e,u)T · tσ′ds−
∫

Γet

(N e,u)T · n phef ds

︸ ︷︷ ︸

f
e,d,EXT

(d
e
)










(6.136)

nel

A
e=1

(αe)T ·










(∫

Ωe
(N e,p)T · B̃e,u

da

)

︸ ︷︷ ︸

(k
e,dθ

)T

·ḋe −
(∫

Ωe
(Be,p)T · ṽDarcy

f (de, θe)da

)

︸ ︷︷ ︸

f
e,θ,INT

(d
e
,θ
e
)

=

∫

Γes

(N e,p)T sds

︸ ︷︷ ︸

f
e,θ,EXT










and

nel

A
e=1

(ce)T ·
[
f e,d,INT (de)− ke,dθ · θe = f e,d,EXT (de)

]
(6.137)

nel

A
e=1

(αe)T ·
[

(ke,dθ)T · ḋe − f e,θ,INT (de, θe) = f e,θ,EXT
]

(6.138)

After element assembly, we have the coupled nonlinear parabolic PDEs to solve using gener-

alized trapezoidal integration in time, and the Newton-Raphson method, assuming the time
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integration method is implicit. These equations are

F d,INT (d)−Kdθ · θ = F d,EXT (d) (6.139)

(Kdθ)T · ḋ− F θ,INT (d, θ) = F θ,EXT (6.140)

which we may rewrite as,

C · Ḋ + F INT (D) = FEXT (D) (6.141)

Ḋ =






ḋ

θ̇




 , D =






d

θ




 (6.142)

C =






0 0

(Kdθ)T 0




 , F INT (D) =






F d,INT (d)−Kdθ · θ

−F θ,INT (d, θ)




 (6.143)

F EXT (D) =






F d,EXT (d)

F θ,EXT




 (6.144)

Recall the generalized trapezoidal integration:

C · V n+1 + F INT (Dn+1) = FEXT (Dn+1) (6.145)

Dn+1 = D̃n+1 + α∆tV n+1 (6.146)
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and express in residual form, solving for V k+1
n+1 in a Newton-Raphson iteration algorithm:

R(V k+1
n+1) = C · V k+1

n+1 + F INT (Dk+1
n+1)− FEXT (Dk+1

n+1) = 0 (6.147)

= Rk +
∂Rk

∂V
· δV = 0 (6.148)

=⇒ δV = −
(
∂Rk

∂V

)−1

·Rk (6.149)

V k+1
n+1 = V k

n+1 + δV (6.150)

Dk+1
n+1 = D̃n+1 + α∆tV k+1

n+1 (6.151)

We then have the consistent tangent:

∂R

∂V
= C +

∂F INT

∂D
· ∂D
∂V

− ∂F EXT

∂D
· ∂D
∂V

(6.152)

∂D

∂V
= α∆t (6.153)

∂F INT

∂D
=

[

∂F
INT

∂d
∂F

INT

∂θ

]

(6.154)

∂F INT

∂d
=






∂F
d,INT

∂d

−∂F
θ,INT

∂d




 (6.155)

∂F INT

∂θ
=






−Kdθ

−∂F
θ,INT

∂θ




 (6.156)

∂F EXT

∂D
=

[

∂F
EXT

∂d
∂F

EXT

∂θ

]

(6.157)

∂F EXT

∂d
=






∂F
d,EXT

∂d

0




 (6.158)

∂F EXT

∂θ
=






0

0




 (6.159)
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where:

∂F d,INT

∂d
=

nel

A
e=1

∂f e,d,INT

∂de
=

nel

A
e=1

∫

Ωe
(Be,u)T · ∂σ

′

∂ǫ
·Be,uda (6.160)

∂F θ,INT

∂d
=

nel

A
e=1

∂f e,θ,INT

∂de
=

nel

A
e=1

∫

Ωe
(Be,p)T · ∂ṽ

Darcy
f

∂de
da (6.161)

∂ṽDarcy
f

∂de
= −

[
∇ph

e

f − ρfRg
]
⊗ ∂k̂

∂nf

∂nf

∂de
(6.162)

∂k̂

∂nf
= k̂

[
3− (nf)2

nf(1− (nf)2)

]

(6.163)

∂nf

∂de
=

(
1− nf

1 + ∆ǫv

)

B̃
e,u

(6.164)

∂F θ,INT

∂θ
=

nel

A
e=1

∂f e,θ,INT

∂θe
=

nel

A
e=1

∫

Ωe
(Be,p)T · ∂ṽ

Darcy
f

∂θe
da (6.165)

∂ṽDarcy
f

∂θe
= −k̂ ·Be,p (6.166)

k̂ = k̂






1 0

0 1




 (6.167)

∂F d,EXT

∂d
=

nel

A
e=1

∂f e,d,EXT

∂de
=

nel

A
e=1

∫

Ωe
(N e,u)T · g ⊗ ∂ρ

∂de
da (6.168)

∂ρ

∂de
= (ρfR − ρsR)

∂nf

∂de
= (ρfR − ρsR)

(
1− nf

1 + ∆ǫv

)

B̃
e,u
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6.8 Dynamic Mixture Theory and FE Implementation

For ‘long’ period motions such as earthquakes, or human exercise activity (jumping, running;

i.e., NOT high impact such as during a car crash, etc.), to simplify the formulation we assume

fluid and solid accelerations are equal: af ≈ a. Then, the coupled balance equations in FE

matrix form after assembly, but now with inertia terms (acceleration) are:

M dd(d) · d̈+ F d,INT (d)−Kdθ · θ = F d,EXT (d) (6.169)

(Kdθ)T · ḋ− F θ,INT (d̈,d, θ) = F θ,EXT (6.170)

where the mass matrix for the mixture is

M dd =
nel

A
e=1

∫

Ωe
ρ(N e,u)T ·N e,uda (6.171)

Also, the generalized Darcy’s law including acceleration [Coussy, 2004] (pg.45):

ṽ
Darcy
f = −k̂

[
∇pf − ρfR(g − a)

]
(6.172)

ah
e

(ξ, t) = N e,u(ξ) · d̈e(t) (6.173)

Then, we can rewrite as

M · D̈ +C · Ḋ + F INT (D̈,D) = F EXT (D) (6.174)

D̈ =






d̈

θ̈




 , M =






M dd 0

0 0




 (6.175)

F INT (D̈,D) =






F d,INT (d)−Kdθ · θ

−F θ,INT (d̈,d, θ)




 (6.176)

F θ,INT (d̈,d, θ) =
nel

A
e=1

f e,θ,INT (d̈
e
,de, θe) =

nel

A
e=1

∫

Ωe
(Be,p)T · ṽDarcy

f (d̈
e
,de, θe)da
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These equations are integrated in time using Newmark’s method and solved by the Newton-

Raphson method. To summarize:

1. given Dn, V n, and An from the previous time step, solve for Dn+1, V n+1, and An+1

at the current time

M ·An+1 +C · V n+1 + F INT (An+1,Dn+1) = F EXT (Dn+1) (6.177)

Dn+1 = Dn +∆tV n +
∆t2

2
[(1− 2β)An + 2βAn+1] (6.178)

V n+1 = V n +∆t [(1− γ)An + γAn+1] (6.179)

where γ, β are integration parameters; can substitute to solve for Ak+1
n+1 using Newton-

Raphson, and then update Dk+1
n+1 and V k+1

n+1 during iteration

2. introduce “predictors” from known values

D̃n+1 = Dn +∆tV n +
∆t2

2
(1− 2β)An (6.180)

Ṽ n+1 = V n +∆t(1− γ)An (6.181)

such that

Dk+1
n+1 = D̃n+1 + β∆t2Ak+1

n+1 (6.182)

V k+1
n+1 = Ṽ n+1 + γ∆tAk+1

n+1 (6.183)

3. to initialize time-stepping, we must solve for initial solid skeleton acceleration a0 from

the first coupled FE equation

M dd · a0 = F d,EXT (d0)− F d,INT (d0) +Kdθ · θ0 (6.184)
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CHAPTER 6. POROMECHANICS AT SMALL STRAIN

4. assume θ̈0 = 0

5. rewrite in residual form, and solve via Newton-Raphson (many of the derivatives for

consistent tangent already are given for the nonlinear consolidation problem without

inertia terms)

R(Ak+1
n+1) = M ·Ak+1

n+1 +C · V k+1
n+1 + F INT (Ak+1

n+1,D
k+1
n+1)− FEXT (Dk+1

n+1) = 0 (6.185)
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