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Chapter 1

Introduction

1.1 Background on the Finite Element Method (FEM)

1.1.1 What is the Finite Element Method (FEM)?

Possible answers from various perspectives:

• Mathematician: variational, numerical method to solve a partial differential equation

(PDE) or system of coupled PDEs (linear or nonlinear)

• Engineer: computational method to analyze various design scenarios in order to reduce

wasteful prototyping and to understand potential failure scenarios

• Scientist: computational method to better understand physical processes in the observ-

able world

• Physician: computer software to analyze various surgical and prosthetic implantation

strategies in order to optimize a surgerys effectiveness

11



CHAPTER 1. INTRODUCTION

1.1.2 Why conduct Finite Element Analysis (FEA)?

Possible answers:

• To model continuous solid body problems, using plate, shell, or continuum finite ele-

ments.

• Beside solids, to solve other field problems, such as fluid flow, heat transfer, and the

coupling of various field problems (e.g., solid-fluid interaction, solid-thermomechanical

deformation, chemo-electrical, solid-fluid porous flow and deformation ).

• To solve nonlinear problems computationally, with complex geometries, that would oth-

erwise be impossible with analytical or other numerical methods.

• To make as few assumptions as possible with regard to boundary conditions, potential

failure modes, etc.

1.1.3 Strengths and Weaknesses of FEM

Strengths:

1. Arbitrary element size, shape, and interpolation: quadrilaterals, triangles versus squares/rectangles

in finite difference; linear, quadratic, or other polynomial shape function

2. Variational: reduced order of PDE and required continuity; integral formulation allows

embedded discontinuities (phase transitions, cracks, shock fronts, )

3. Element-based: formulate general finite element that is then assembled for various

geometries and boundary conditions

4. Lagrangian representation: resolve interface conditions (contact)
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1.1. BACKGROUND ON THE FEM

Weaknesses:

1. Arbitrary element size, shape, and interpolation: it can be difficult to mesh complex

geometries

2. Lagrangian representation: it is difficult to resolve interface conditions (contact); for

large deformations, need re-meshing to avoid high aspect ratio elements; not always

well-suited for fluid mechanics, hence the need for Eulerian formulations, or particle

methods like ...

1.1.4 How to conduct a Finite Element Analysis (FEA)

We will try our own, but here is the general outline:

1. Build a model:

(a) create the geometry

(b) add material properties and boundary conditions

(c) create the solution type (e.g., elastostatics, heat transfer, ...)

(d) select element type, and generate a mesh

2. Solve the problem for the “field” variable (e.g., displacement, temperature, ...):

(a) possibly choose solution parameters

(b) check for convergence (if solving nonlinearly; or if using an iterative linear equation

solver such as conjugate gradient)

3. Evaluate the results (e.g., stress, heat flux, ...):

(a) plot variables of interest for making design decision

13



CHAPTER 1. INTRODUCTION

(b) check quality of analysis versus known analytical solutions (verification) and/or

experimental results (validation)

1.2 How This Course is Taught

• Covers the mathematical foundations, basics of FEM, in detail on the “board” and in

notes

• Covers both theory and application, but emphasize theory and understanding of FEA

• You may feel there is too much math in this course, but it is balanced with practical

FEA using Abaqus, and a project that allows further analysis using Abaqus or another

software of your choosing, or programming your own FEA code

• Also, CVEN 5511 will have additional problems on problem sets and exams; grading

also different from CVEN 4511

• If you just want to learn to run FEA, and not the theory behind it, then you will likely

learn more from a software training course than from this course.

For a limited discussion of the procedure of verification and validation (V&V), refer to

Oberkampf et al. [2004], Babuska and Oden [2004], Schwer [2007]:

• verification: we check if the nonlinear governing equations are implemented correctly

in our finite element (FE) code. This typically involves a combination of comparison

to an analytical solution (if one exists) and/or to a separate numerical implementation

(such as in Python); we also consider time step and mesh size refinement (temporal

and spatial convergence). In CVEN 5511, we will do verification to some degree.

14



1.2. HOW THIS COURSE IS TAUGHT

• validation: we check that the nonlinear governing equations are the correct ones to

solve; i.e., are the physics of the problem being represented correctly in the model? This

involves prediction of blind experimental data. Validation could be partly accomplished

through your project, but for true validation, this is beyond the scope of the course.

Calibration is a technique to estimate parameters from experimental data, and is not

to be mistaken for validation, although it is the first step toward validation. If you

have experimental data, you will likely conduct a calibration-exercise.
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Chapter 2

Linear FEM for Axially-Loaded Bar

For the 1D linear FEM, we assume linearity in the form of small strain, linear elasticity.

We take an axially-loaded bar as our example problem [Pinsky, 2001]. Topics covered in

remaining sections include the following:

(1) formulate differential form and apply boundary conditions (BCs) to give Strong Form

(S) of elastostatic bar;

(2) formulate variational, Weak Form (W);

(3) formulate discrete, Galerkin Form (G);

(4) formulate Finite Element (FE), Matrix form;

(5) introduce natural coordinates, and isoparametric formulation;

(6) element assembly to obtain Global Matrix form;

(7) numerical integration using Gaussian quadrature;

(8) convergence of FEM (compatibility and completeness), and introduce Bernoulli-Euler

beam;

(9) elastodynamics: modal analysis, Newmark’s method for time integration.
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CHAPTER 2. 1D LINEAR FEM

2.1 Differential equation and Strong Form (S)

2.1.1 Linearity assumptions

Our linearity assumptions are the following:

(1) Assume linear elasticity: Hooke’s law σ = Eǫ, where σ is the axial stress (Pa), E

the modulus of elasticity (Pa), ǫ the axial strain (m/m).

(2) Assume small deformations: (refer to Fig.2.1) where Cauchy stress σ = F/A, nom-

inal stress P = F/A0, strain increment dǫ = dL/L, deformed length L = L0 + u, and

total axial strain ǫ =
∫ L

L0
dL/L = ln(L/L0) = ln(1 + u/L0). Assume a series expansion:

ln(1 + u/L0) = u
L0

− 1
2

(
u
L0

)2
+ 1

3

(
u
L0

)3
− h.o.t.’s, where if u is small, u

L0
≪ 1 =⇒ ǫ =

ln(1 + u/L0) ≈ u
L0
, and if area A ≈ A0, then we have the small strain assumption:

ǫ ≈ u/L0, σ ≈ F/A0, and we write ǫ = du/dx as our small strain as the spatial derivative of

the axial displacement u.

L

L0

A

A0
F

u

x

Figure 2.1. Axially-loaded bar assuming small deformations.
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2.1. DIFFERENTIAL EQUATION AND STRONG FORM (S)

2.1.2 Differential equation and Strong Form (S)

We can derive the differential equation for balance of linear momentum of elastostatics. Refer

to Fig.2.2 for the 1D bar with applied loads and BCs, where we have a concentrated force

F at x = L (N), distributed force f(x) along bar (N/m), and displacement g at x = 0 (m).

L

E(x), A(x)F

f(x)

g

x

Figure 2.2. Axially-loaded bar with BCs.

We consider an axial displacement u(x) of differential line segment dx at x, with internal

axial force N(x) in Fig.2.3.

F

f(x)

g

dx

dx+ du
dx
dx = dx(1 + du

dx
) ≈ dx

N(x) N(x) + dN
dx
dx

u(x) + du
dx
dxu(x)

Figure 2.3. Differential line segment dx of axially-loaded bar.

Summing the forces leads to balance of linear momentum for a static axially loaded

19



CHAPTER 2. 1D LINEAR FEM

bar:

∑

→+

Fx = 0 =⇒ −N(x) +N(x) +
dN(x)

dx
dx+ f(x)dx = 0 (2.1)

−dN(x)

dx
= f(x) (2.2)

Recall the small strain definition of stress and strain:

σ(x) =
N(x)

A(x)
= E(x)ǫ(x) (2.3)

ǫ(x) =
du(x)

dx
(2.4)

=⇒ N(x) = EA(x)
du(x)

dx
(2.5)

Thus, the differential equation can be written as (assuming linear elasticity, σ = Edu/dx):

− d

dx

(
EA(x)

du

dx

)
= f(x) x ∈ Ω = (0, L) (2.6)

where x ∈ Ω reads “x in the domain of Ω”, x ∈ Ω = (0, L) means 0 < x < L, and

x ∈ Ω̄ = [0, L] means 0 ≤ x ≤ L. We write the BCs as force BC at x = L, such that

N(L) = F or
(
EAdu

dx

)
L
= F , and displacement BC at x = 0, such that u(0) = g. If BCs

are properly prescribed, then the PDE (ODE here) is well-posed, such that there is a unique

solution.

Given the differential equation and BCs, we may state the Strong Form (S) as:

(S)





Find u(x) : Ω̄ 7→ R, Ω̄ = [0, L], such that

− d
dx

(
EA(x)du

dx

)
= f(x) x ∈ Ω

(
EAdu

dx

)
L

= F x = L

u(0) = g x = 0

(2.7)
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where u(x) : Ω̄ 7→ R reads “with x in Ω̄, u maps to the real number line R”, distributed

axial force f(x) is a body force, concentrated force F is a natural, or Neumann, BC, and

prescribed displacement g is an essential, or Dirichlet, BC.

2.2 Variational equation and Weak Form (W)

From the Strong Form, we apply the Method of Weighted Residuals to formulate the

Weak (or variational) Form (W). “Weak” implies that the balance equation is not

satisfied pointwise, but in an integral average sense. We can show equivalence between

Weak and Strong forms for smooth functions (i.e., nothing lost by Weak form, assuming

smoothness of functions); refer to Hughes [1987]. When we discretize the domain Ω for

the Galerkin form (i.e., Ωh ⊂ Ω), approximations (meshes) are generated. We assume an

arbitrary weighting function w(x), which can be thought of as a “variation” of displacement

u(x) =⇒ w(x) = δu(x), where δ(•) is the variation operator from variational calculus (refer

to Lanczos [1949], Washizu [1982]), or you can think of it as a virtual displacement. We

apply the Method of Weighted Residuals to the differential equation (not satisfied

pointwise, but in an integral, average sense) such that,

∫ L

0

w(x)

[
d

dx

(
EA(x)

du

dx

)
+ f(x)

]
dx = 0 (2.8)

where we integrate by parts using the chain rule as d(ab)
dx

= da
dx
b+ db

dx
a, and apply the

Divergence theorem in 1D such that
∫ L

0
dG
dx
dx = G|L0 = G(L)−G(0). We apply the chain

rule as d
dx

[
w(x)EA(x)du

dx

]
= dw(x)

dx

[
EA(x)du

dx

]
+ w(x) d

dx

[
EA(x)du

dx

]
. We substitute into the

weighted residual and apply the Divergence theorem as,

(
wEA

du

dx

)L

0

−
∫ L

0

dw

dx
EA

du

dx
dx+

∫ L

0

wfdx = 0 (2.9)
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Note on notation: we sometimes simplify du/dx = u,x. Recall BCs u(0) = g and
(
EAdu

dx

)
L
=

F , and note that the variation of a known field (or constant) is zero: =⇒ w(0) = δu(0) =

δg = 0. Then the variational, or integral form, results as,

∫ L

0

(
dw

dx
EA

du

dx

)
dx

︸ ︷︷ ︸
related to internal strain energy

=

∫ L

0

wfdx+ w(L)F

︸ ︷︷ ︸
related to energy of external loads

(2.10)

The Weak Form (W) can then be stated as,

(W )





Find u(x) ∈ S = {u : Ω 7→ R, u ∈ H1, u(0) = g}, such that
∫ L

0

(
dw
dx
EAdu

dx

)
dx =

∫ L

0
wfdx+ w(L)F

holds ∀w(x) ∈ V = {w : Ω 7→ R, w ∈ H1, w(0) = 0}

(2.11)

where ∀ reads “for all,” S is the space of admissible trial functions, V is the space of

weighting functions, H1 is the first Sobolev space, such that the H1 norm is finite: i.e.,

‖u‖1 =
(∫ L

0
(u2 + u2,x)dx

)1/2
< ∞, ‖u‖1 is called the “natural” norm, u ∈ H1 essentially

states that the first spatial derivative u,x CANNOT be a Dirac-Delta function, but can be a

Heaviside function (i.e., discontinuous).

We consider here an alternate method for formulating the variational equation: the Princi-

ple of Minimum Potential Energy (PMPE) for Elasticity; limitation: this variational

principle is only applicable to those physical systems that lend themselves to a “functional” or

“potential energy” representation; e.g., certain multiphysics problems do not generally lend

themselves to such representation. We define a potential energy Π(u) in terms of internal

strain energy U(u) and potential energy of loads V (u) as (see Lanczos [1949]),

Π(u) = U(u)− V (u) (2.12)

where the PMPE states that the exact solution u minimizes Π, and thus the system is in
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2.2. VARIATIONAL EQUATION AND WEAK FORM (W)

equilibrium. We apply the stationarity condition on Π, such that δΠ = 0. The applica-

tion of the variation operator δ(•) can be thought of acting like a time derivative d(•)/dt,

although it is not a time derivative. Recall the stress-strain curve for linear elasticity in

Fig.2.4, where the stored elastic strain energy density e = 1
2
σǫ, the total elastic strain energy

U =
∫ L

0

∫
A
(e)dAdx =

∫ L

0
(1
2
σAǫ)dx = 1

2

∫ L

0
EA(x)

(
du
dx

)2
dx, and the potential energy of the

external loads, V =
∫ L

0
ufdx+ u(L)F .

σ

E

ǫ

1
2
σǫ

Figure 2.4. Stored strain energy for linear elasticity.

We then apply the stationarity condition as δΠ = δU−δV = 0, such that, (fill in blanks

yourself)

δΠ = δU + δV = 0 (2.13)

δU = (2.14)

δV = (2.15)

and the variational equation for the Weak Form results as before by the Method of Weighted

Residuals as, ∫ L

0

(
dw

dx
EA

du

dx

)
dx =

∫ L

0

wfdx+ w(L)F (2.16)
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2.3 Discretization and Galerkin Form (G)

We now make a subtle step in order to discretize the Weak Form by something called the

Galerkin Form (G) [Hughes, 1987]. We find the approximate solution uh(x) ≈ u(x), where

h is the discretization parameter, or characteristic length of the mesh. We consider our 1D

axially loaded bar with length L, and discretize with straight line elements of length

h (that may not all be equal), where if equal then h = L/nel, and nel is the number of

elements (see Fig.2.5).

physical bar

node
element

FE mesh

h

L

Figure 2.5. Discretized 1D bar.

For 1D, we see that Ωh = (0, L) = Ω, but for 2D and 3D (consider meshing a circle with

straight edge linear elements), Ωh ⊂ Ω (i.e., discrete mesh Ωh is a subset of physical domain

Ω ). We then rewrite the Weak form in discrete, Galerkin form as

(G)





Find uh(x) ∈ S h = {uh : Ωh 7→ R, uh ∈ H1, uh(0) = g}, such that
∫ L

0

(
dwh

dx
EAduh

dx

)
dx =

∫ L

0
whfdx+ wh(L)F

holds ∀wh(x) ∈ V h = {wh : Ωh 7→ R, wh ∈ H1, wh(0) = 0}

(2.17)

where S h ⊂ S is the discrete space of admissible trial functions, V h ⊂ V is the discrete

space of weighting functions, (G) ≈ (W ), and note that even though uh and wh are discrete

approximations to u and w, respectively, they must still satisfy restrictions on the spaces

(in order to ensure convergence: i.e., limh→0 u
h = u). Note that the essential BC is satisfied

exactly, uh(0) = g. Next, we treat these discrete line elements as finite elements with
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appropriate interpolation functions, etc.

2.4 Finite Element (FE) Matrix-Vector Form

Starting with the Galerkin Form (G), we now discretize the 1D bar into nel elements with

nodal degrees of freedom (dofs). From the global perspective (Fig.2.6, the whole mesh),

we consider uh(x) =
∑nnp

A=1NA(x)dA over Ωh = (0, L), nnp is the number of global nodal

points, and NA(x) is the shape (interpolation) function at global node A.

1 2 21 3 .... nelnel-1 nnpnnp-1nnp-2

g

f(x) F

dnnpd1 d2 d3

Figure 2.6. Discretized 1D bar into nel finite elements.

From the element perspective consider an element e (Fig.2.7). This is one of the

strengths of the FEM, the fact that element calculations can be generalized for a length

he, area Ae, and elasticity modulus Ee.

1 2
e

de1 de2

xe1 xe2

he

Figure 2.7. Single linear element.

The element length is he = xe2 − xe1, element domain Ωe = (xe1, x
e
2), total discrete domain

Ωh = A
nel
e=1Ω

e, and A
nel

e=1
is the element assembly operator that must be programmed

(more on this later).
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Let us consider a 2-noded element with linear shape functions (interpolations, Fig.2.8).

1 2

1
N e

1

he
1 2

1
N e

2

he

Figure 2.8. Linear shape functions.

The shape function at node 1 of element e is N e
1 (x) = (xe2−x)/he, where the Kronecker-Delta

property of shape functions is satisfied as N e
1 (x

e
1) = 1, N e

1 (x
e
2) = 0. The shape function at

node 2 of element e is N e
2 (x) = (x− xe1)/h

e, where likewise the Kronecker-Delta property of

shape functions is satisfied as N e
2 (x

e
1) = 0, N e

2 (x
e
2) = 1.

Consider the element interpolation for displacement as,

uh
e

(x) =
nen∑

a=1

N e
a(x)d

e
a = N e

1 (x)d
e
1 +N e

2 (x)d
e
2 (2.18)

=

[
N e

1 N e
2

]


de1

de2


 (2.19)

= N e(x) · de (2.20)

where we note that uh
e

(xe1) = N e
1 (x

e
1)d

e
1+N

e
2 (x

e
1)d

e
2 = de1 and nen is number of element nodes,

where nen = 2 for linear 2-node element. N e
a(x) is the shape function of local element node
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a. Likewise, the element interpolation for the weighting function is

whe

(x) =
nen∑

a=1

N e
a(x)c

e
a = N e

1 (x)c
e
1 +N e

2 (x)c
e
2 (2.21)

=

[
N e

1 N e
2

]


ce1

ce2


 (2.22)

= N e(x) · ce (2.23)

where ce is the vector of nodal weighting function values (which are arbitrary since the

weak form must hold “∀w(x),” except at an essential BC). We choose to use the same shape

(interpolation) functions for uh
e

and whe

, which will lead to a symmetric stiffness matrix;

when they are the same, it is called Bubnov-Galerkin; when they are different, it is called

Petrov-Galerkin, for assumed enhanced strain methods, for example [Hughes, 1987].

We rewrite the Galerkin form in terms of finite elements,

nel

A
e=1

∫

Ωe

(
dwhe

dx
EA

duh
e

dx

)
dx =

nel

A
e=1

[∫

Ωe

whe

f(x)dx

]
+ wh(L)F (2.24)

Taking spatial derivatives, we have

duh
e

dx
=
dN e

dx
· de = Be · de =⇒ Be =

[
dNe

1

dx

dNe
2

dx

]
(2.25)

where Be is called the element strain-displacement matrix. Likewise, dwhe

dx
= Be · ce =

(ce)T · (Be)T , since dwhe

/dx is a scalar. We now substitute these expressions into the

Galerkin form as,

nel

A
e=1

(ce)T ·
{∫

Ωe

(Be)T ·BeEAdx

}

︸ ︷︷ ︸
k

e

·de =
nel

A
e=1

(ce)T ·
{∫

Ωe

(N e)Tf(x)dx

}

︸ ︷︷ ︸
f

e

f

+wh(L)F (2.26)

where ke is the element stiffness matrix, f e
f is the element distributed load vector, and vector
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product (Be)T ·Be =




dNe
1

dx

dNe
2

dx


·
[

dNe
1

dx

dNe
2

dx

]
is a 2×2 matrix. Note that wh(L) = cnnp = cnel

2 ,

such that

wh(L)F =

[
cnel
1 cnel

2

]
·




0

F


 = (cnel)T · fnel

F (2.27)

All other f e
F = 0 for e 6= nel, so we write wh(L)F =A

nel

e=1
(ce)T · f e

F , and

nel

A
e=1

(ce)T ·
{
ke · de = f e

f + f e
F

}
(2.28)

Before we learn how to assemble these individual finite element matrices and vectors into

a global matrix form, we will consider a powerful change of coordinates for shape functions

and numerical integration that makes finite element programs much easier to write and thus

more efficient to run.

2.5 Natural coordinates and Isoparametric Formula-

tion

We apply a change of variables from the global coordinate x to the natural coordinate ξ that

is local to the element (Fig.2.9), where,

ξ =





−1 at local node 1

0 at the center

1 at local node 2

(2.29)
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1 2

-1 +1ξ

Figure 2.9. Local, or natural coordinate ξ.

The linear shape functions may then be re-written as,

N1(ξ) =
1

2
(1− ξ) , N2(ξ) =

1

2
(1 + ξ) (2.30)

Na(ξ) =
1

2
(1 + ξaξ) (2.31)

where ξa is the natural coordinate of node a (i.e., for a = 1, ξ1 = −1, and for a = 2, ξ2 = 1),

and the Na(ξ) retain the Kronecker-Delta property, such that,

Na(ξb) =





1 for b = a

0 for b 6= a
(2.32)

The element displacement and weighting function can then be written as,

uh
e

(ξ) = N e(ξ) · de , whe

(ξ) = N e(ξ) · ce (2.33)

Likewise, the global coordinate x and natural coordinate ξ are related by the mapping as,

xh
e

(ξ) =
nen∑

a=1

Na(ξ)x
e
a = N1(ξ)x

e
1 +N2(ξ)x

e
2 (2.34)

=

[
N1(ξ) N2(ξ)

]


xe1

xe2


 (2.35)

= N e(ξ) · xe (2.36)

Therefore, this formulation is called isoparametric because the same shape functions are
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used to interpolate displacements and global coordinates (‘iso’ means same). This is how

curved element boundary geometries are generated, using higher-order shape functions to

interpolate the global coordinates (for 2D and 3D geometries). We define the Jacobian of

element coordinate transformation je as,

je(ξ) :=
dxh

e

(ξ)

dξ
=

dN e(ξ)

dξ
· xe (2.37)

=

[
−1

2
1
2

]


xe1

xe2


 (2.38)

=
1

2
(xe2 − xe1) =

he

2
(2.39)

where the symbol “:=” means a definition. This implies the differential map between coor-

dinates as dx = jedξ = (he/2)dξ, where,

duh
e

(ξ)

dx
=
dN e(ξ)

dx
· de =

dN e(ξ)

dξ

dξ

dx
· de =

1

je
dN e(ξ)

dξ
· de = Be · de (2.40)

Consider an example: a quadratic equation in x with constant coefficients a and b, and

global nodal coordinates for a linear 2-node 1D finite element as,

ψ(x) = a+ bx2 ,
xe1 = 4

xe2 = 6





=⇒ he = 2 , je = 1 (2.41)

Then, the map from x to ξ occurs as follows,

xh
e

(ξ) = N e(ξ) · xe =
1

2
(1− ξ)4 +

1

2
(1 + ξ)6 = 5 + ξ (2.42)

ψ̂(ξ) = ψ(x(ξ)) = a+ b(5 + ξ)2 (2.43)
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Now, let us integrate over the element domain as follows,

∫ xe
2

xe
1

ψ(x)dx =

∫ 1

−1

ψ̂(ξ)je(ξ)dξ (2.44)

recalling dx = je(ξ)dξ (2.45)
∫ 6

4

(a+ bx2)dx =

∫ 1

−1

[
a + b(5 + ξ)2

]
(1)dξ (2.46)

For higher-order shape functions (quadratic, cubic, ...), transition elements (when we get to

2D), and for higher spatial dimensions (2D and 3D), isoparametric finite elements simplify

considerably the formulation and numerical integration of element matrices and vectors.

Now, recall the stiffness matrix for an element e, with mapping to natural coordinate ξ as,

ke =

∫ xe
2

xe
1

[Be(x)]TEA(x)Be(x)dx (2.47)

=

∫ xe
2

xe
1

EA(x)




−1
he

1
he



[

−1
he

1
he

]
dx =

1

(he)2

(∫ xe
2

xe
1

EA(x)dx

)


1 −1

−1 1




=
1

(he)2

(∫ 1

−1

ÊA(ξ)
he

2
dξ

)



1 −1

−1 1


 =

1

2he

(∫ 1

−1

ÊA(ξ)dξ

)



1 −1

−1 1


(2.48)

where EA(ξ) could vary along the element length (e.g., a tapered bar). Likewise, recall the

distributed load vector as,

f e
f =

∫ xe
2

xe
1

[N e(x)]T f(x)dx =

∫ 1

−1

[N e(ξ)]T f̂(ξ)
he

2
dξ (2.49)

=
he

4

∫ 1

−1




1− ξ

1 + ξ


 f̂(ξ)dξ (2.50)
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2.6 Assembly process for Global Matrix Form

Now, with individual element stiffness matrices and force vectors evaluated, how do we

obtain the global matrix system of FE equations to solve for the unknown displacements, to

then use to calculate strain and stress? Answer: we form the global matrix FE equations by

assembling the individual element matrices leading to the following matrix form as,

K · d = F g + F f + F F (2.51)

where K is the global stiffness matrix, F g is the global force vector due to applied dis-

placement BCs (for linear problems), F f is the global distributed force vector, and F F is

the global concentrated force vector. In an FE computer program, an ‘algorithm’ like the

assembly operator A
nel
e=1 usually takes the form of an array or matrix. This assembly process

will be different depending on the choice of the computer programmer and FE developer.

In this case, we will form a Location Matrix (LM). Consider the 2 element example in

Fig.2.10, where the LM is,

element #

local node #

1 2

1 1 2

2 2 3

global d.o.f.
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1 2

e

1 2

1

3

2

de1 de2

d1 d2 d3

d11 d12

d21

d22

Figure 2.10. Two element mesh example.
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2.6.1 Example 1

This example is taken from Pinsky [2001]. We will consider this example for demonstrating

the assembly process for the global finite element stiffness matrix and force vectors. Refer to

Fig.2.11, where R1 and R6 are the reaction forces at the nodes where the displacements are

prescribed. These forces can be calculated as a post-processing step after the displacements

are solved.

1.0 1.0 1.0 1.0 1.0

5.0 7.5

1.0 2.0 3.0 3.0

0.5

1.5 2.5

1 2 3 4 5 61 5432

u(0) = 0 u(5) = 0.25

L

EA

f(x)

d1 d2 d3 d4 d5 d6

R1 R6

(x2
− 2x + 2)

Figure 2.11. Example 1 for assembly procedure.

The bar of length L = 5 with variable EA(x) and distributed force f(x) shown in Fig.2.11 is

discretized into 5 finite elements (nel = 5), 6 nodes (n = 6), and 6 degrees of freedom (ndof =

6) as shown. Essential boundary conditions are u(0) = 0 and u(5) = 0.25. Concentrated

forces of 5.0 and 7.5 are applied at x = 1.0 and x = 3.0, respectively.
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In summary, for the essential B.C.s,

uh(0) = 0 =⇒ d1 = 0

uh(5) = 0.25 =⇒ d6 = 0.25

wh(0) = 0 =⇒ c1 = 0

wh(5) = 0 =⇒ c6 = 0

The concentrated forces can be lumped to one of the element degrees of freedom, or split

between two elements. We will split in half the concentrated forces between two elements,

but the end result is the same (they are added together at the nodal dofs during the assembly

process). The concentrated force vectors are written as,

f 1
F =



R1

2.5


 f 2

F =




2.5

0


 f 3

F =




0

3.75


 f 4

F =




3.75

0


 f5

F =




0

R6


 (2.52)

Recall the equation for the element distributed force vector as,

f e
f =

he

4

∫ 1

−1




1− ξ

1 + ξ


 f̂(ξ)dξ (2.53)

So for element 1, f̂(ξ) = 0.5, and then,

f 1
f =

1

4

∫ 1

−1




1− ξ

1 + ξ


 0.5dξ =




0.25

0.25


 (2.54)

and so for the other elements, we have,

f2
f =




0.25

0.25


 f 3

f =




0.75

0.75


 f 4

f =




0.75

0.75


 f5

f =




1.25

1.25


 (2.55)
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For calculating the element stiffness matrices, recall the equation for the individual

element stiffness matrix for an element e as,

ke =
1

2he

∫ 1

−1

ÊA(ξ)dξ




1 −1

−1 1


 (2.56)

Then for element 1, h1 = 1 and EA = 1, we have,

k1 =




1 −1

−1 1


 (2.57)

For element 2, EA(x) = x2 − 2x + 2, where recall x(ξ) = N e(ξ) · xe = (3 + ξ)/2, so

ÊA(ξ) = (1/4)ξ2 + (1/2)ξ + 5/4, then after integrating, we have,

k2 = (4/3)




1 −1

−1 1


 (2.58)

and so forth for the other elements as,

k3 = 2.0




1 −1

−1 1


 k4 = 3.0




1 −1

−1 1


 k5 = 3.0




1 −1

−1 1


 (2.59)

Assembly of global stiffness matrix and force vectors using the Location Matrix

(LM): How do we obtain the global stiffness matrix and force vector from these individual

element ones? Answer: we assemble them. For this example, the Location Matrix (LM) is

generated as,

element number
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local node number

1 2 3 4 5

1 1 2 3 4 5

2 2 3 4 5 6

d.o.f.

Then for element 1, the local stiffness matrix values and their corresponding global degrees

of freedom are tabulated from the LM as,

k1

1 2

1 1 -1

2 -1 1

And its contribution to the global stiffness matrix looks as follows,

K1

1 2 3 4 5 6

1 1 -1 0 0 0 0

2 -1 1 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

For element 2, the element local stiffness matrix and its corresponding global dofs are,

k2

2 3

2 4/3 -4/3

3 -4/3 4/3

which when placed in the global stiffness matrix, looks like,
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K2

1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 4/3 -4/3 0 0 0

3 0 -4/3 4/3 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

and so forth, such that,

K =
nel

A
e=1

ke =

nel∑

e=1

Ke =




1 −1 0 0 0 0

−1 7/3 −4/3 0 0 0

0 −4/3 10/3 −2 0 0

0 0 −2 5 −3 0

0 0 0 −3 6 −3

0 0 0 0 −3 3




(2.60)

Note that K = KT , i.e., it is symmetric, but it is also singular, meaning currently it is

not invertible and therefore there is no unique solution for the displacements. What will we

need? Answer: ESSENTIAL B.C.’S!

First, assemble the global force vectors in the same way as the stiffness matrix as,

F 1
f =




0.25

0.25

0

0

0

0




F 2
f =




0

0.25

0.25

0

0

0




. . .F f =
nel

A
e=1

f e
f =

nel∑

e=1

F e
f =




0.25

0.5

1

1.5

2

1.25




(2.61)
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and the concentrated force vector as,

F F =




R1

5

0

7.5

0

R6




(2.62)

Account for essential boundary conditions: The full finite element matrix equations

look like (including the pre-multiplication of the nodal weighting function vector c) as,

0 =

[
c1 c2 c3 c4 c5 c6

]
×








1 −1 0 0 0 0

−1 7/3 −4/3 0 0 0

0 −4/3 10/3 −2 0 0

0 0 −2 5 −3 0

0 0 0 −3 6 −3

0 0 0 0 −3 3







d1

d2

d3

d4

d5

d6




−




0.25

0.5

1

1.5

2

1.25




−




R1

5

0

7.5

0

R6








(2.63)

Recall that c1 = c6 = 0, which in effect cancels the 1st and 6th rows, and that d1 = 0 and
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d6 = 0.25. The equations are then reduced to,

0 =

[
c2 c3 c4 c5

]
×








7/3 −4/3 0 0

−4/3 10/3 −2 0

0 −2 5 −3

0 0 −3 6







d2

d3

d4

d5



+ 0.0




−1

0

0

0



+ 0.25




0

0

0

−3



−




0.5

1

1.5

2



−




5

0

7.5

0








(2.64)

Written in symbolic form, the reduced matrix equations look like,

0 = cT · (K · d− F g − F f − F F ) (2.65)

Arbitrary weighting function vector c: Recall the Galerkin form, which states that:

“Find uh ... for all wh ∈ V
h ” Then the weighting function nodal values in the vector c

must be arbitrary (except at essential BCs where they are 0), such that to satisfy the residual

equality in Eq.(2.65), we must satisfy the Finite Element Matrix equations as,

K · d = F g + F f + F F (2.66)

To summarize, the General Approach to Assembly of Global FE Equations:

1. discretize and assign node and element numbers

2. assign degrees of freedom (dofs) to each node

3. create LM and assemble

4. for dof with fixed displacement (u = 0), cancel those rows and columns of the global
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stiffness matrix and rows of the forcing vectors

5. for dof with prescribed displacement (u = g), cancel those rows of the global stiffness

matrix and forcing vectors, and multiply the corresponding columns of the stiffness

matrix to calculate the force vector F g associated with the prescribed displacements

6. now you have K and F , so solve K · d = F for the displacements d

7. do any post-processing to calculate stresses within the elements and/or forces at the

nodes (we will discuss via the examples)
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2.6.2 Example 2

This example is taken from Pinsky [2001]. The Young’s modulus and cross-sectional area

are constant: E = 8, A = 1. Consider the example in Fig.2.12.

4.0 2.0 2.0 2.0 2.0

7.0 12

1 2 3 4 5 61 5432

25

u(0) = 0 u(8) = 0 u(12) = 0

d1 d2 d3 d4 d5 d6

R1 R4 R6

Figure 2.12. Example 2 for assembly procedure.

For the essential B.C.s,

uh(0) = 0 =⇒ d1 = 0

uh(8) = 0 =⇒ d4 = 0

uh(12) = 0 =⇒ d6 = 0

wh(0) = 0 =⇒ c1 = 0

wh(8) = 0 =⇒ c4 = 0

wh(12) = 0 =⇒ c6 = 0

For the concentrated forces,

(F2)F = 7

(F3)F = 12

(F5)F = 25
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Recall the element stiffness matrix, which for constant EA is,

ke =
1

2he

(∫ 1

−1

ÊA(ξ)dξ

)



1 −1

−1 1


 =

EA

he




1 −1

−1 1


 (2.67)

where EA/he is the axial stiff of element e with constant EA. There is no distributed axial

force along the bar, so f e
f = 0 for all elements.

Generate the LM as,

element number

local node number

1 2 3 4 5

1 1 2 3 4 5

2 2 3 4 5 6

d.o.f.

For element 1, the local stiffness matrix is

k1

1 2

1 2 -2

2 -2 2

When placed in the global matrix, it becomes

K1

1 2 3 4 5 6

1 2 -2 0 0 0 0

2 -2 2 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0
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For element 2 (and all other elements), the local stiffness matrix is,

k2

2 3

2 4 -4

3 -4 4

And when placed in the global matrix, it becomes,

K2

1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 4 -4 0 0 0

3 0 -4 4 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

And so forth, such that

K =
nel

A
e=1

ke =

nel∑

e=1

Ke =




2 −2 0 0 0 0

−2 6 −4 0 0 0

0 −4 8 −4 0 0

0 0 −4 8 −4 0

0 0 0 −4 8 −4

0 0 0 0 −4 4




(2.68)

Assemble the global concentrated force vector in the same way as the stiffness matrix, or

just place the concentrated forces at the corresponding dofs (but make sure they do not add

44



2.6. ASSEMBLY PROCESS FOR GLOBAL MATRIX FORM

up to more than what is applied), such that,

F F =




R1

7

12

R4

25

R6




(2.69)

Now, strike out rows and columns of K associated with the fixed dofs, and rows of F with

fixed dof, such that,

K =




6 −4 0

−4 8 0

0 0 8




; F F =




7

12

25




(2.70)

and solve for d =

[
d2 d3 d5

]T
=

[
3.25 3.125 3.125

]T
. We post-process to calculate

the element axial stress σe as,

σe = Eǫe = EBe · de = E

[
−1
he

1
he

]
·



de1

de2


 (2.71)
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and for each element,

σ1 = E

[
−1
4

1
4

]
·




0

d2


 = 2d2 = 6.5 (2.72)

σ2 = E

[
−1
2

1
2

]
·



d2

d3


 = 4(d3 − d2) = −0.5 (2.73)

σ3 = −4d3 = −12.5 (2.74)

σ4 = 4d5 = 12.5 (2.75)

σ5 = −4d5 = −12.5 (2.76)

What do you notice about the stresses within the elements? Also, you can calculate the

internal element axial force N e = σeAe.

We can plot the displacement and stress solution along the bar as (plot by hand to visualize),

d =

[
0 3.25 3.125 0 3.125 0

]T
(2.77)

σ1 = 6.5 , σ2 = −0.5 , σ3 = −12.5 , σ4 = 12.5 , σ5 = −12.5 (2.78)

Note that the internal axial element forces N e do not equal the applied nodal forces at the

respective nodes. Let us try to understand why. We revisit the Galerkin form (recall E = 8

and A = 1, and body force f = 0), where,

∫ 12

0

wh
,xEAu

h
,xdx = wh(4)7 + wh(6)12 + wh(10)25 (2.79)

or since σh = Eǫh = Euh,x = 8uh,x, we have,

∫ 12

0

wh
,xσ

hdx = 7c2 + 12c3 + 25c5 (2.80)
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Should this equation hold? It better! We see that,

∫ 12

0

wh
,xσ

hdx =

[
c1 c2

] ∫ 4

0




−1
4

1
4


 6.5dx (2.81)

+

[
c2 c3

] ∫ 6

4




−1
2

1
2


 (−0.5)dx+

[
c3 c4

] ∫ 8

6




−1
2

1
2


 (−12.5)dx

+

[
c4 c5

] ∫ 10

8




−1
2

1
2


 12.5dx+

[
c5 c6

] ∫ 12

10




−1
2

1
2


 (−12.5)dx

= (6.5− (−0.5))c2 + (−0.5 + 12.5)c3 + (12.5− (−12.5))c5 = 7c2 + 12c3 + 25c5

OK, in an integral average sense, the nodally applied forces balance in the Galerkin form!

Recall that the Galerkin form is the discrete version of the Weak form.

2.6.3 Example 3

This example is taken from Pinsky [2001]. This example is the same as Example 2, except

we have prescribed displacements as shown in Fig.2.13.

4.0 2.0 2.0 2.0 2.0

7.0 12

1 2 3 4 5 61 5432

25

u(0) = 0.2 u(8) = −0.1 u(12) = 0

d1 d2 d3 d4 d5 d6

R1 R4 R6

Figure 2.13. Example 3 for assembly procedure.

47



CHAPTER 2. 1D LINEAR FEM

Recall the global stiffness matrix and force vector before applying essential BCs,

K =




2 −2 0 0 0 0

−2 6 −4 0 0 0

0 −4 8 −4 0 0

0 0 −4 8 −4 0

0 0 0 −4 8 −4

0 0 0 0 −4 4




; F F =




R1

7

12

R4

25

R6




(2.82)

Then, cancel rows and columns associated with fixed displacements (d6 = 0) as,

K =




2 −2 0 0 0

−2 6 −4 0 0

0 −4 8 −4 0

0 0 −4 8 −4

0 0 0 −4 8




; F F =




R1

7

12

R4

25




(2.83)

and cancel rows associated with prescribed displacements such that,

K =




−2 6 −4 0 0

0 −4 8 −4 0

0 0 0 −4 8




; F F =




7

12

25




(2.84)

and multiply corresponding columns of K by prescribed displacements to calculate F g as,

−F g = 0.2




−2

0

0



+ (−0.1)




0

−4

−4



=




−0.4

0.4

0.4




(2.85)
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The total force vector is then,

F = F F + F g =




7.4

11.6

24.6




(2.86)

The stiffness matrix is the same as the previous example, so the displacements can be

calculated as,

d =

[
d2 d3 d5

]T
=

[
3.3 3.1 3.075

]T
(2.87)

In order to calculate the reaction forces, once we have the displacements, we calculate as

follows,

d =

[
0.2 3.3 3.1 −0.1 3.075 0

]T
(2.88)




R1

R4

R6



=




2 −2 0 0 0 0

0 0 −4 8 −4 0

0 0 0 0 −4 4



·




d1

d2

d3

d4

d5

d6




=




−6.2

−25.5

−12.3




(2.89)
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2.7 Numerical integration - Gaussian Quadrature

It is not possible always to evaluate in closed-form the integral for an element stiffness

matrix or forcing vector. Thus, we resort to numerical integration (even if the integral can

be evaluated analytically for special cases: i.e., element shape, etc.); see Sect.3.8 of Hughes

[1987]. Consider our example in 1D as,

∫

Ωe

ψ(x)dx =

∫ 1

−1

ψ̂(ξ)je(ξ)dξ (2.90)

First, let us introduce an integration rule as follows,

∫ 1

−1

g(ξ)dξ =

(
nint∑

l=1

g(ξ̃l)Wl

)
+R ≈

nint∑

l=1

g(ξ̃l)Wl (2.91)

where nint is the number of integration points, ξ̃l is the natural coordinate of integration

point l, Wl is the ‘weight’ of the lth integration point, and R the remainder.

Examples of rules:

1. trapezoidal rule:

-1 +1
0

X X
i.p. i.p.

ξ

• nint = 2

• ξ̃1 = −1, ξ̃2 = 1

• Wl = 1 for l = 1, 2

• R = (−2/3)g,ξξ(ξ̃), ξ̃ ∈ [−1, 1]

This rule is 2nd order accurate since it can exactly integrate constants and linear poly-

nomials, but is approximate for higher order polynomials or non-polynomial functions.

2. Simpson’s rule:
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-1 +1
0

X X
i.p. i.p.

X

i.p.

ξ

• nint = 3

• ξ̃1 = −1, ξ̃2 = 0, ξ̃3 = 1

• W1 =W3 = 1/3, W2 = 4/3

• R = (−1/90)g,ξξξξ(ξ̃), ξ̃ ∈ [−1, 1]

This rule is 4th order accurate because it can integrate polynomials up to 3rd order

(cubic) exactly.

BUT there is an integration rule just as accurate that uses fewer i.p.’s, and thus is more

efficient computationally; it is called Gaussian quadrature.

Gaussian quadrature is exact only for polynomials, and approximate otherwise, but

we use it regardless because it is efficient computationally (stability considerations are beyond

the scope of this discussion; let us assume for the problems we are considering that Gaussian

quadrature remains stable, i.e., there are no oscillations of strain and stress spatially along

the Gauss points of an element).

1. 1pt (2nd order accurate):

-1 +1
0

X

i.p.

ξ

• nint = 1

• ξ̃1 = 0

• W1 = 2

• R = (1/3)g,ξξ(ξ̃), ξ̃ ∈ [−1, 1]

2. 2pt (4th order accurate):

51



CHAPTER 2. 1D LINEAR FEM

-1 +1
0

X
i.p.

X
i.p.

ξ

• nint = 2

• ξ̃1 = −1/
√
3, ξ̃2 = 1/

√
3

• W1 =W2 = 1

• R = (1/135)g,ξξξξ(ξ̃), ξ̃ ∈ [−1, 1]

3. 3pt (6th order accurate):

-1 +1
0

X XX

ξ

• nint = 3

• ξ̃1 = −
√

3/5, ξ̃2 = 0, ξ̃3 =
√
3/5

• W1 =W3 = 5/9, W2 = 8/9

• R = (1/15750)g,ξξξξξξ(ξ̃), ξ̃ ∈ [−1, 1]

Recall our example ψ̂(ξ) = a+ b(5 + ξ)2, where the analytical solution is,

∫ 1

−1

[
a+ b(5 + ξ)2

]
dξ = 2a+ (50 +

2

3
)b (2.92)

Let us try 1pt and 2pt Gaussian quadrature rules as follows,

1. 1pt: ∫ 1

−1

g(ξ)dξ ≈ 2g(0) = 2(a+ 25b) (2.93)

This is an approximate integration.

2. 2pt: ∫ 1

−1

g(ξ)dξ ≈ g

(−1√
3

)
+ g

(
1√
3

)
= 2a+ (50 +

2

3
)b (2.94)

This is exact integration!

52



2.8. CONVERGENCE OF FEM

2.8 Convergence of FEM

We only expect a convergent FE solution for well-posed partial differential equations

(PDEs). A PDE is well-posed if it has the following properties:

1. existence: there exists at least one solution u(x) satisfying the differential equation

and BCs.

2. uniqueness: there is at most one solution u(x) satisfying the differential equation and

BCs.

3. stability: the unique solution u(x) depends in a stable manner on the data of problem

(i.e., spatial domain, BCs, material properties, ..., any input). If there is a small change

in the data, there should be a small change in the solution u(x).

Convergence is of particular concern for computational failure mechanics simulations, where,

for example, classical strain softening plasticity leads to an ill-posed PDE regardless of

whether the FEM is convergent for strain hardening plasticity and elasticity.

For example, consider a plane strain compression test on dense sand [Vardoulakis et al.,

1978, Vardoulakis and Goldschieder, 1981] in Fig.2.14.

There is mesh-dependence associated with a classical, strain softening local plasticity model.

We observe a finer shear band width as the mesh is refined (function of element size) in

Fig.2.15.

We can replicate this result in Abaqus. We observe a softening curve approaching the force

axis upon further refinement in Fig.2.16.

53



CHAPTER 2. 1D LINEAR FEM

Figure 2.14. Shear banding in dense sand, and post-peak softening [Vardoulakis et al., 1978,
Vardoulakis and Goldschieder, 1981].

To obtain convergence, we expect that as the mesh is refined h→ 0, the discrete FE solution

approaches the exact solution of the PDE, such that,

limh→0u
h(x) = u(x) (2.95)

For convergence, we require two things: (I) compatibility of uh, and (II) completeness

of uh. For the purpose of discussion, consider (S), (W), and (G) of the Bernoulli-Euler beam

without derivation (see Chapter 3 and Pinsky [2001]). We assume a thin, long structure

experiencing transverse deflection (transverse shear deformation is negligible) as shown in

Fig.2.17, where v(x) is the transverse deflection, EI(x) is the flexural rigidity, f(x) is the

transverse distributed force, F is the transverse point load, andML is the moment at x = L.
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2.8. CONVERGENCE OF FEM

Figure 2.15. Plane strain compression with one element in each mesh (colored black) with lower
yield stress, and deformed meshes for hardening H > 0 and softening H < 0.

We write the Strong form (S) for the Bernoulli-Euler beam as,

(S)





Find v(x) : Ω̄ 7→ R, Ω̄ = [0, L], such that

d2

dx2

(
EI(x) d

2v
dx2

)
= f(x) x ∈ Ω

v = 0 x = 0

v,x = 0 x = 0

EIv,xx = ML x = L

−(EIv,xx),x = F x = L

(2.96)

where v is the transverse displacement, v,x is the ‘rotation’ (assuming small transverse de-

flections), EIv,xx is the internal bending moment, and −(EIv,xx),x is the internal shear

force.
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Figure 2.16. Force versus displacement plot for plane strain compression, showing less dissipation
for finer shear band mesh.

f(x)

L

v(x)

x

x

EI(x)

F

ML

Figure 2.17. Bernoulli-Euler beam for small deformations.

56



2.8. CONVERGENCE OF FEM

2.8.1 Compatibility

There is a general rule for BCs for a linear differential equation of order 2m such that,

essential





0

1

...

m− 1

natural





m

m+ 1

...

2m− 1

where m will be the order of the variational equation. Let us consider our two examples, a

(1) bar, and (2) beam:

(1) bar: 2m = 2 =⇒ m = 1

essential 0 u

natural 1 EAu,x

(2) beam: 2m = 4 =⇒ m = 2

essential





0 v

1 v,x

natural





2 EIv,xx

3 −(EIv,xx),x

The Weak form (integration by parts twice) for the B-E beam may be written as,

(W )





Find v(x) ∈ S = {v : Ω 7→ R, v ∈ H2, v(0) = 0, v,x(0) = 0}, such that
∫ L

0
w,xxEIv,xxdx =

∫ L

0
wfdx+ w(L)F + w,x(L)ML

holds ∀w(x) ∈ V = {w : Ω 7→ R, w ∈ H2, w(0) = 0, w,x(0) = 0}

(2.97)

where v and w are in H2 (2nd Sobolev space) so that the variational equation is defined (i.e.,
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the internal strain energy is finite), such that,

H2(Ω) =

(
v : Ω 7→ R,

∫

Ω

[
v2 + (v,x)

2 + (v,xx)
2
]
dx <∞

)
(2.98)

This means that v is continuous, v,x is continuous, and v,xx may be discontinuous; i.e., we

can define the square of a Heaviside function but NOT the square of a Dirac-Delta function,

such that,

∫

Ω

[H(x− a)]2 g(x)dx =

∫ L

a

g(x)dx (2.99)
∫

Ω

[δ(x− a)]2 g(x)dx = no definition (2.100)

Thought exercise: consider if v is continuous, v,x is discontinuous, and thus v,xx is a Delta

function. What would happen with the variational equation? Is it defined? Let us draw a

figure.

Recall the bar problem for which u ∈ H1(Ω) and,

H1(Ω) =

(
u : Ω 7→ R,

∫

Ω

[
u2 + (u,x)

2
]
dx <∞

)
(2.101)

Thus, u must be continuous, or S ⊂ C0(Ω), where C0(Ω) is the space of continuous func-

tions.

The Galerkin form for the B-E beam is written as follows,

(G)





Find vh(x) ∈ S h = {vh : Ωh 7→ R, vh ∈ H2, vh(0) = 0, vh,x(0) = 0}, such that
∫ L

0
wh

,xxEIv
h
,xxdx =

∫ L

0
whfdx+ wh(L)F + wh

,x(L)ML

holds ∀wh(x) ∈ V h = {wh : Ωh 7→ R, wh ∈ H2, wh(0) = 0, wh
,x(0) = 0}

(2.102)

Thus, this requires vh ∈ S h ⊂ C1(Ωh), or that vh and vh,x must be continuous at the
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2.8. CONVERGENCE OF FEM

nodes, or that there are 2 dofs per node: (i) transverse displacement vh, and (ii) rotation

vh,x. Thus, Compatibility states: uh(x) ∈ Cm−1(Ωh), or that

bar uh ∈ C0(Ωh) ; beam vh ∈ C1(Ωh)

2.8.2 Completeness

Completeness states that for the mth derivative in the variational equation, the FE ap-

proximation uh must represent up to an mth-order polynomial. For example:

• bar: m = 1 =⇒ 1st order polynomial

uh(x) = a0 + a1x+ h.o.t.s (2.103)

a0 = rigid body motion

a1 = constant axial strain

• beam: m = 2 =⇒ 2nd order polynomial

vh(x) = a0 + a1x+ a2x
2 + h.o.t.s (2.104)

a0 = rigid body translation

a1 = rigid body rotation

a2 = constant curvature

For isoparametric elements, completeness is satisfied automatically to 1st order such that,

1.
∑nen

a=1Na(ξ) = 1
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2. xh
e

(ξ) = N e(ξ) · xe

We consider as an example the 1D linear bar element as,

1.
∑nen

a=1Na(ξ) = N1 +N2 =
1
2
(1− ξ) + 1

2
(1 + ξ) = 1

2. xh
e

(ξ) = N e(ξ) · xe =
∑nen

a=1Na(ξ)x
e
a

Let dea = uh
e

(xea) = a0 + a1x
e
a, where then

uh
e

(ξ) = N e · de =

2∑

a=1

Na(ξ)d
e
a =

2∑

a=1

Na(ξ)(a0 + a1x
e
a) (2.105)

=

(
nen∑

a=1

Na

)
a0 +

(
nen∑

a=1

Nax
e
a

)
a1 (2.106)

= a0 + a1x (2.107)

Thus, it is complete to first order.

Generally speaking, the rate of convergence increases as h→ 0 depending on the order of

polynomial shape function used (2-node linear versus 3-node quadratic 1D element); for lin-

ear analysis, it is often preferred to use quadratic elements because the rate of convergence

is a factor of 2 more accurate than a linear element. For nonlinear analysis, other factors

may dominate (such as convergence of the iterative nonlinear solver, rather than convergence

of the mesh size).
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2.9 Elastodynamics

Refer to Chapters 7 and 9 of Hughes [1987].

include more details here: D’Alembert’s principle, and Hamilton’s principle

We now include inertia terms, where loading is no longer quasi-static, thus acceleration

and wave propagation become important. Reconsider the bar element, now with inertia

(Newton’s second law of motion):

∑

→+

Fx = mü , m =

∫

Ω

ρAdx (2.108)

where ρ (kg/m3) is the mass density. Also consider Rayleigh damping in two forms:

include equations from Rayleigh’s Theory of Sound, and scans of pages showing linear form?

1. mass proportional (like moving in a viscous fluid):

a

m u̇

=⇒ ρA(au̇) (2.109)

2. stiffness proportional (“viscoelasticity”; Kelvin-Voigt element):

E

b

ǫ
σ = E(ǫ+ bǫ̇) (2.110)

The stress is dependent on the axial “strain-

rate” of the bar, or how quickly it deforms.
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Given the differential form, BCs, and ICs, we may state the Strong Form as,

(S)





Find u(x, t) : Ω̄× [0, T ] 7→ R, Ω̄ = [0, L], such that

ρA
(

∂2u
∂t2

+ a∂u
∂t

)

− ∂
∂x

[
EA

(
∂u
∂x

+ b ∂2u
∂x∂t

)]
= f(x, t) x ∈ Ω, t ∈ (0, T )

u(0, t) = g(t) x = 0, t ∈ (0, T )

σ(t)A = F (t) x = L, t ∈ (0, T )

u(x, 0) = u0(x) x ∈ Ω, t = 0

u̇(x, 0) = u̇0(x) x ∈ Ω, t = 0

(2.111)

where u(x, t) : Ω̄ × [0, T ] 7→ R reads “with x in Ω̄, and t in [0, T ], u maps to the real

number line R,” distributed axial force f(x, t) is a body force that can be a function of

time t, concentrated force F (t) is a natural, or Neumann, BC, prescribed displacement g(t)

is an essential, or Dirichlet, BC, u0(x) and u̇0(x) are the initial displacement and velocity,

respectively, which can vary with x over the length of the bar.

Going through the derivation of the Weak form and Galerkin form as before, and recognizing

that the time derivatives of the finite element displacement uh
e

(ξ, t) are applied to the nodal

dofs as,

u̇h
e

(ξ, t) =

nen∑

a=1

Na(ξ)ḋ
e
a(t) , üh

e

(ξ, t) =

nen∑

a=1

Na(ξ)d̈
e
a(t)

u̇h
e

,x (ξ, t) =

nen∑

a=1

Na,x(ξ)ḋ
e
a(t) (2.112)

we have the FE matrix form before assembly as,

nel

A
e=1

(ce)T ·
{
me · d̈e

+ cedamp · ḋ
e
+ ke · de = f e

f + f e
F

}
(2.113)
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where the element mass and damping matrices are,

me =

∫

Ωe

ρA(N e)T ·N edx =

∫ 1

−1

ρA(N e)T ·N ejedξ , cedamp = ame + bke (2.114)

After element assembly, we have

M · d̈+C · ḋ+K · d = F f + F F + F g (2.115)

Before we integrate these FE equations discretely in time using Newmark’s method, let is

consider amodal analysis using the FE equations. We consider the geometry and properties

for 2 equal-length linear elements in Fig.2.18.

1 2 21 3

L

Figure 2.18. Two-element mesh for modal analysis example.

The length L = 15 and properties EA = 60, ρA = 1, a = b = 0 =⇒ cedamp = 0 (no damping),

and BC u(0, t) = 0. The stiffness matrices are,

k1 = k2 =




8 −8

−8 8


 (2.116)

and the mass matrices are,

me =

∫ 1

−1

ρA(N e)T ·N ejedξ , N e(ξ) =

[
N1(ξ) N2(ξ)

]
(2.117)

m1 = m2 =
5

4




2 1

1 2


 (2.118)
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During assembly, we account for the essential BC, d1 = c1 = 0, such that,

M =
5

4




2 1 0

1 4 1

0 1 2



, K =




8 −8 0

−8 16 −8

0 −8 8




(2.119)

But d(t) is still time dependent. Thus, we formulate an eigenvalue problem using the FE

matrix equations. For example, assume that,

d(t) = cos(ωt)φ =⇒ d̈(t) = −ω2 cos(ωt)φ (2.120)

where ω is the circular frequency (rad/s), and φ the mode shape (m). We have an eigenvalue

problem written as,

M · d̈+K · d = 0 =⇒ (K − λM) · φ = 0 (2.121)

where eigenvalue λ = ω2. We can solve in Mathematica or Python or other program that

has an eigensolver. The solution (only 2 modes because only 2 dofs) is as follows:

1 2 3

0.5774 0.8165

λ1 = 0.692

φ1 =

[
0.5774 0.8165

]T

analytical :λ1 = ω2
1 =

(π
2

)2 EA
ρL2

= 0.658

1 2 3

0.5774 0.8165

λ2 = 8.45

φ2 =

[
0.5774 −0.8165

]T

analytical :λ2 =

(
3π

2

)2
EA

ρL2
= 5.922

We note that the 2-element mesh is quite stiff, meaning the eigenvalues λ are higher than the
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analytical solution (i.e., the circular frequencies ω predicted by the modal FEA are higher

than the analytical solution). The first mode is reasonably close (0.866 vs 0.658), whereas

the second mode of the FE solution is much stiffer (10.563 vs 5.922).

To integrate in time the finite element equations, recall first the FE equations as,

M · d̈(t) +C · ḋ(t) +K · d(t) = F (t) (2.122)

F (t) = F f(t) + F F (t) + F g(t) (2.123)

We can solve using a finite differencing in time to obtain an approximate solution over

time, such as Newmark’s method [Hughes, 1987]. First, we introduce some notation and

terminology as follows,

time increment ∆t = tn+1 − tn

tn+1 = current time at step n+ 1

tn = past (known) time at step n

We solve for

displacement at time tn+1, dn+1 = d(tn+1)

velocity at time tn+1, vn+1 = ḋ(tn+1)

acceleration at time tn+1, an+1 = d̈(tn+1)

given

displacement at time tn, dn = d(tn)

velocity at time tn, vn = ḋ(tn)

acceleration at time tn, an = d̈(tn)
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The procedure is carried out as follows. We are given dn, vn, and an from the previous time

step, and we need to solve for dn+1, vn+1, and an+1 at the current time step, whereby,

M · an+1 +C · vn+1 +Kdn+1 = F n+1 (2.124)

dn+1 = dn +∆tvn +
∆t2

2
[(1− 2β)an + 2βan+1] (2.125)

vn+1 = vn +∆t [(1− γ)an + γan+1] (2.126)

where γ, β are integration parameters. We can substitute to solve for an+1, and then

dn+1 and vn+1. First, we introduce “predictors” from known values as,

d̃n+1 = dn +∆tvn +
∆t2

2
(1− 2β)an (2.127)

ṽn+1 = vn +∆t(1− γ)an (2.128)

such that

dn+1 = d̃n+1 + β∆t2an+1 (2.129)

vn+1 = ṽn+1 + γ∆tan+1 (2.130)

To initialize time-stepping, we must solve for the initial acceleration a0 from the FE equation

as,

M · a0 = F 0 −C · v0 −Kd0 (2.131)

Then we solve for an+1 as,

(
M + γ∆tC + β∆t2K

)
an+1 = F n+1 −Cṽn+1 −Kd̃n+1 (2.132)

and we can update dn+1 and vn+1 from the above equations.
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For linear problems, and symmetric matrices, the numerical stability regimes for choices of

integration parameters are (see pg.493 of Hughes [1987]):

unconditional, 2β ≥ γ ≥ 1/2; or

conditional, γ ≥ 1/2, β < γ/2;

and ωh∆t ≤ Ωcrit (undamped frequency ωh, critical sampling frequency Ωcrit), where,

Ωcrit =
ζ(γ − 1/2) +

[
γ
2
− β + ζ2(γ − 1/2)2

]1/2

(γ/2− β)
(2.133)

and ζ = (a/ω+ bω)/2 is the damping coefficient. This analysis assumes that the FE system

could be reduced to a single dof problem using modal decomposition (which will hold for

linear problems and Rayleigh damping), such that if γ = 1/2, damping has no effect on

stability, and if γ > 1/2, damping increases the critical time step. Thus, it is a conservative

estimate (if ζ is unknown) to assume the undamped (ζ = 0) critical sampling frequency as,

Ωcrit =
1√

γ/2− β
=⇒ ∆t ≤ Ωcrit

ωh
max

(2.134)

We will consider two choices of parameters leading to two classic time integrators for elas-

todynamics:

1. trapezoidal rule: implicit (requires solution of Ax = b), β = 1/4, γ = 1/2, uncon-

ditionally stable, order of accuracy = 2 (error O(∆t2))

2. central difference: explicit (no solution of Ax = b, assuming M and C are diago-

nalizable, or lumped), β = 0, γ = 1/2, Ωcrit = 2, order of accuracy = 2

For conditionally stable schemes, such as central difference, ωh
max will depend on the element

type. Consider the 2-node linear element, such that ωh
max =

√
λhmax = 2

√
3c/h, where h

is taken to be the smallest element length. Recall the bar wave velocity c =
√
E/ρ, then

∆t ≤ Ωcrit

ωh
max

= h
c
√
3
for 1D wave propagation using linear finite elements.
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Chapter 3

2D Linear Frame Analysis with FEM

For the 2D linear frame FEM, we assume linearity in the form of small strain, linear isotropic

elasticity. These notes are drawn from Pinsky [2001]. Topics covered in remaining sections

include the following:

(1) differential equation and Strong (S) form for Bernoulli-Euler beam;

(2) Weak form (W) for Bernoulli-Euler beam;

(3) Galerkin form (G) for Bernoulli-Euler beam;

(4) Finite Element (FE) matrix form for Bernoulli-Euler beam;

(5) Example of FE assembly for beam element;

(6) 2D frame FE;

(7) 2D frame analysis examples.
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3.1 Differential equation and Strong (S) form for Bernoulli-

Euler beam

Bernoulli-Euler beam theory assumes a thin, long structure experiences transverse deflection

(transverse shear deformation is negligible), such as that shown in Fig.3.1, where,

v(x) = transverse deflection(m)

EI(x) = flexural rigidity(Nm2)

f(x) = transverse distributed load(N/m)

FL = transverse point load(N)

ML = moment at x = L(Nm)

f(x)

L

v(x)

x

x

EI(x)

FL

ML

Figure 3.1. Transversely loaded beam with BCs.

The differential beam “element” (NOT a finite element) is shown in Fig.3.2 with the following
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3.1. DIFFERENTIAL EQUATION AND STRONG (S) FORM FOR
BERNOULLI-EULER BEAM

shear force equilibrium as,

−V + fdx+ V +
dV

dx
dx = 0 (3.1)

=⇒ −dV
dx

= f (3.2)

and moment about 0 (ignore dx2 terms) as,

−M + fdx(
dx

2
) + (V +

dV

dx
dx)dx+M +

dM

dx
dx = 0 (3.3)

=⇒ −dM
dx

= V (3.4)

such that static equilibrium is written as,

d2M

dx2
= f (3.5)

O

f(x)

dx

VM

V + dV
dx
dx

M + dM
dx
dx

Figure 3.2. Differential beam “element” (not a finite element).

We use Hooke’s law to calculate the internal moment through the linear elastic constitutive

equation, where curvature κ ≈ d2v
dx2 for small transverse deflections, such that,

M(x) = EI(x)
d2v

dx2
(3.6)
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and

d2

dx2

(
EI(x)

d2v

dx2

)
= f (3.7)

Then, the Strong Form for the Bernoulli-Euler beam can be stated as,

(S)





Find v(x) : Ω̄ 7→ R, Ω̄ = [0, L], such that

d2

dx2

(
EI(x) d

2v
dx2

)
= f(x) x ∈ Ω

v = 0 x = 0

v,x = 0 x = 0

EIv,xx = ML x = L

−(EIv,xx),x = FL x = L

(3.8)

where v is the transverse displacement, v,x is the rotation (assuming small transverse deflec-

tions), EIv,xx is the internal bending moment, and −(EIv,xx),x is the internal shear force.

3.2 Weak (W) form for Bernoulli-Euler beam

We apply the apply method of weighted residuals with weighted residual statement as,

∫ L

0

w [(EIv,xx),xx − f ] dx = 0 (3.9)

and trial solution space as,

v ∈ S ⊂ C1(Ω) = {v : Ω → R|v(0) = 0, v,x(0) = 0} (3.10)

and weighting function space as,

w ∈ V ⊂ C1(Ω) = {w : Ω → R|w(0) = 0, w,x(0) = 0}. (3.11)
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3.2. WEAK (W) FORM FOR BERNOULLI-EULER BEAM

We apply integration by parts twice (use chain rule and divergence theorem) to balance

derivatives on w and u in the variational equation for the weak form as,

[w(EIv,xx),x],x = w,x(EIv,xx),x + w(EIv,xx),xx (3.12)

=⇒ w(EIv,xx),xx = [w(EIv,xx),x],x − w,x(EIv,xx),x (3.13)

(w,xEIv,xx),x = w,xxEIv,xx + w,x(EIv,xx),x (3.14)

=⇒ w,x(EIv,xx),x = (w,xEIv,xx),x − w,xxEIv,xx (3.15)

where,

0 =

∫ L

0

w [(EIv,xx),xx − f ] dx (3.16)

=

∫ L

0

[
[w(EIv,xx),x],x − w,x(EIv,xx),x

]
dx−

∫ L

0

wfdx (3.17)

= w(EIv,xx),x|L0 −
∫ L

0

[(w,xEIv,xx),x − w,xxEIv,xx] dx−
∫ L

0

wfdx (3.18)

= w(EIv,xx),x|L0 − w,xEIv,xx|L0 +

∫ L

0

w,xxEIv,xxdx−
∫ L

0

wfdx (3.19)

and ∫ L

0

w,xxEIv,xxdx =

∫ L

0

wfdx+ w(L)FL + w,x(L)ML (3.20)

We may then state the weak form as,

(W )





Find v(x) ∈ S ⊂ C1(Ω), such that
∫ L

0
w,xxEIv,xxdx =

∫ L

0
wfdx+ w(L)FL + w,x(L)ML

holds ∀w(x) ∈ V ⊂ C1(Ω)

(3.21)

where ∀ reads “for all;” S is the space of admissible trial functions, and v ∈ H2; V is

the space of weighting functions, and w ∈ H2; C1 is the space of functions with continuous

first derivatives; H2 is the second Sobolev space, such that the H2 norm is finite: i.e.,
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‖v‖2 =
(∫ L

0
(v2 + v2,x + v2,xx)dx

)1/2
<∞; ‖u‖2 is called the H2 norm; and v ∈ H2 essentially

states that second spatial derivatives v,xx CANNOT be Dirac Delta functions, but can be

Heaviside functions (discontinuous), which means that we must include dofs for v and

v,x at the nodes of a Bernoulli-Euler beam finite element to ensure that they are

continuous along the beam; we see this in the statement of the Galerkin form.

3.3 Discretization and Galerkin Form (G) for Bernoulli-

Euler beam

We state the Galerkin form as,

(G)





Find vh(x) ∈ S h ⊂ C1(Ωh), such that
∫ L

0
wh

,xxEIv
h
,xxdx =

∫ L

0
whfdx+ wh(L)FL + wh

,x(L)ML

holds ∀wh(x) ∈ V h ⊂ C1(Ωh)

(3.22)

where S
h ⊂ S is the discrete space of admissible trial functions; V

h ⊂ V is the discrete

space of weighting functions; to ensure S h ⊂ S and V h ⊂ V , two dofs are introduced

at the finite element nodes: (1) transverse displacement vh, and (2) rotation vh,x (for small

transverse deflections).

3.4 Finite Element (FE) Matrix Form for Bernoulli-

Euler beam

From the element perspective, consider an element e, with length he, moment of inertia Ie,

and elasticity modulus Ee as in Fig.3.3, where element length he = xe2 − xe1, element domain
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3.4. FINITE ELEMENT (FE) MATRIX FORM FOR BERNOULLI-EULER BEAM

Ωe = (xe1, x
e
2), discrete domain Ωh = A

nel
e=1Ω

e, A
nel
e=1 is the element assembly operator; and

the element is NOT isoparametric such that xh
e

(ξ) = N e(ξ) · xe, and vh
e

(ξ) = He(ξ) · de.

1 2
e

de1
de2

de3

de4xe1 xe2

he

Figure 3.3. Beam finite element.

The element dofs are,

de =





de1

de2

de3

de4





=





vh
e

(ξ = −1)

vh
e

,x (−1)

vh
e

(1)

vh
e

,x (1)





(3.23)

We introduce the Hermite cubic shape functions as,

vh
e

(ξ) =

[
He

1 jeHe
2 He

3 jeHe
4

]




de1

de2

de3

de4



= He(ξ) · de (3.24)

where we used je = dxh
e

/dξ = he/2, and dvh
e

dξ
= dvh

e

dx
dx
dξ
; likewise whe

(ξ) = He · ce =

(ce)T · (He)T .

For completeness, it is possible to show completeness to 2nd order for vh
e

(ξ), such that

vh
e

(ξ) = a0 + a1x+ a2x
2; use Eq.(3.23) when substituting for dea at the nodes; use xh

e

(ξ) =

N e(ξ) ·xe for the spatial coordinate interpolation. The ‘strain-displacement matrix’ Be
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is,

vh
e

,xx(ξ) =
d2He(ξ)

dx2
· de =

1

(je)2
d2He(ξ)

dξ2
· de = Be(ξ) · de (3.25)

where likewise whe

,xx(ξ) = Be · ce = (ce)T · (Be)T ; note that Mhe

(ξ) = ÊI(ξ)Be(ξ) · de, and

Be(ξ) =
1

(je)2

[
d2He

1

dξ2
je

d2He
2

dξ2
d2He

3

dξ2
je

d2He
4

dξ2

]
(3.26)

The Hermite cubic shape functions are shown in Fig.3.4.

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

-1 -0.5 0.5 1

0.05

0.1

0.15

0.2

0.25

0.3

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

-1 -0.5 0.5 1

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

He
1 = 1

4
(1− ξ)2(2 + ξ)

He
2 = 1

4
(1− ξ)2(1 + ξ)

He
3 = 1

4
(1 + ξ)2(2− ξ)

He
4 = 1

4
(1 + ξ)2(−1 + ξ)

Figure 3.4. Hermite cubic shape functions.
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The finite element (FE) form is then written as,

nel

A
e=1

(ce)T ·
{∫ 1

−1

(Be)T ·BeÊI(ξ)jedξ

}

︸ ︷︷ ︸
k

e

·de =

nel

A
e=1

(ce)T ·
{∫ 1

−1

(He)T f̂(ξ)jedξ

}

︸ ︷︷ ︸
f

e

f

+wh(L)FL + wh
,x(L)ML (3.27)

where ke is the element stiffness matrix, and f e
f is the element distributed shear force vector.

If EI and f are constant (not functions of coordinate x), then,

ke =
EI

(he)3




12 6he −12 6he

6he 4(he)2 −6he 2(he)2

−12 −6he 12 −6he

6he 2(he)2 −6he 4(he)2



, f e

f =
fhe

2




1

he/6

1

−he/6




(3.28)

Note the contribution of the natural BCs as,

wh(L)FL + wh
,x(L)ML =

nel

A
e=1

(ce)T · f e
F (3.29)

where

f
nel
F =




0

0

FL

ML



, f e

F = 0 for e 6= nel (3.30)

and then,
nel

A
e=1

(ce)T ·
{
ke · de = f e

f + f e
F

}
(3.31)

The assembly process is the same ... except for frame analysis we include axial stiffness,
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and the possible rotation of the element in space. But first, let us consider a beam

example.

3.5 FE assembly Example for Bernoulli-Euler beam

In Fig.3.5 is an example used to demonstrate the assembly process for a beam FE mesh.

The location matrix is as follows,

element number

local nodal dof

1 2 3

1 0 1 0

2 0 2 3

3 1 0 0

4 2 3 0

d.o.f.

1 2

21

43

3
d1

d2

d3

P f = P/L2P 2P

L L 2L

PLEI 2EI

Figure 3.5. Beam finite element assembly example.

78



3.5. FE ASSEMBLY EXAMPLE FOR BERNOULLI-EULER BEAM

The element stiffness matrices are,

k1 =
EI

L3




12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2



, K1 =

EI

L3




12 −6L 0

−6L 4L2 0

0 0 0




(3.32)

and

k2 =
EI

L3




24 12L −24 12L

12L 8L2 −12L 4L2

−24 −12L 24 −12L

12L 4L2 −12L 8L2



, K2 =

EI

L3




24 12L 12L

12L 8L2 4L2

12L 4L2 8L2




(3.33)

and

k3 =
EI

L3




12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2



, K3 =

EI

L3




0 0 0

0 0 0

0 0 4L2




(3.34)

and

K =

nel∑

e=1

Ke =
EI

L3




36 6L 12L

6L 12L2 4L2

12L 4L2 12L2




(3.35)

To handle the transverse point load within element 2, consider figure 3.6 which displays a

point load P applied mid-way along a beam element.

The forcing vector may then be written as,

f e
f =

∫

Ωe

HeTf(x)dx =

∫

Ωe

HeTPδ(x− a)dx = PHeT |x=a (3.36)
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1 2

de1
de2

de3

de4
xe1 xe2

P

x = a

Figure 3.6. Point load in mid-element section.

Thus, at the element center, with length L and load −2P , we have,

f e
f = −2PHeT |ξ=0 ; f2

f = f1
f = −2P




1
2

L
2
1
4

1
2

L
2
(−1

4
)



=




−P

−PL
4

−P
PL
4




(3.37)

F 1
f =




−P
PL
4

0




; F 2
f =




−P

−PL
4

PL
4




(3.38)

The nodal force vector accounting for distributed constant load f is written as,

f e
f = fhe




1
2

he

12

1
2

−he

12




; f3
f = (−P/L)2L




1
2

2L
12

1
2

−2L
12



=




−P

−PL
3

−P
PL
3




(3.39)

F 3
f =




0

0

−PL
3




(3.40)
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where the total distributed nodal load vector, and concentrated load vector are,

F f =

nel∑

e=1

F e
f =




−2P

0

−PL
12




; F F =




−P

PL

0




(3.41)

We then solve for unknown dofs d as,

K · d = F f + F F ; d =
PL2

3024EI




−398L

366

253




(3.42)

We can go back and solve for reaction forces and moments like we did for the axially-loaded

bar problem (for reaction forces), as well as calculate moment and shear within a finite

element.

3.6 2D FE Frame Analysis

Consider a 2D frame element in Fig.3.7.

1 2e

de1

de2

de3 de4

de5

de6

he

Figure 3.7. 2D frame element.
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If Ee, Ae, and Ie are constant, then,

ke
axial =

EeAe

he




1 −1

−1 1


 (3.43)

ke
flexural =

EeIe

(he)3




12 6he −12 6he

6he 4(he)2 −6he 2(he)2

−12 −6he 12 −6he

6he 2(he)2 −6he 4(he)2




(3.44)

We can combine (superimpose; assumes GEOMETRIC LINEARITY! i.e., no coupling be-

tween axial and transverse displacements) the axial and flexure element stiffness matrices to

obtain the frame stiffness matrix as,

ke
frame = ke

axial + ke
flexural (3.45)

=
EeIe

(he)3




Ae(he)2

Ie
0 0 −Ae(he)2

Ie
0 0

0 12 6he 0 −12 6he

0 6he 4(he)2 0 −6he 2(he)2

−Ae(he)2

Ie
0 0 Ae(he)2

Ie
0 0

0 −12 −6he 0 12 −6he

0 6he 2(he)2 0 −6he 4(he)2




The distributed force vector, if distributed transverse ft and axial fa loads are constant, may
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be written as,

f e
f =

he

2




fa

ft

fth
e/6

fa

ft

−fthe/6




But frame elements are usually not horizontal. They can be at various angles. Thus, consider

the relation between global and local 2D frame element degrees of freedom (dof)

in Fig.3.8 where,

cosαe =
Xe

2 −Xe
1

he
; sinαe =

Y e
2 − Y e

1

he
(3.46)

1

2

e e

1

2

de1de2

de3

de4
de5

de6

αe

xe
ye

ze
De

1

De
2

De
3

De
4

De
5

De
6

X

Y

Z

Figure 3.8. Local to global 2D frame element degrees of freedom (dof).

83



CHAPTER 3. 2D LINEAR FRAME FEM

Thus, we transform the dofs through a rotation matrix Λe as,

de = Λe ·De (3.47)


de1

de2

de3

de4

de5

de6




=




cosαe sinαe 0 0 0 0

− sinαe cosαe 0 0 0 0

0 0 1 0 0 0

0 0 0 cosαe sinαe 0

0 0 0 − sinαe cosαe 0

0 0 0 0 0 1







De
1

De
2

De
3

De
4

De
5

De
6




(3.48)

Note that the nodal weighting function values similarly transform as ce = Λe · Ce. Recall

the FE form before assembly as,

nel

A
e=1

(ce)T ·
{
ke · de = f e

f + f e
F

}
(3.49)

and introduce transformations as,

nel

A
e=1

(Ce)T ·
{
(Λe)T · ke ·Λe ·De = (Λe)T · f e

f + (Λe)T · f e
F

}
(3.50)

Let us consider an example.
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3.6.1 2D FE Frame Analysis: Example 1

Consider the 2D frame meshed with two frame elements in Fig.3.9, with Location Matrix

(LM) as,

element number

local nodal dof

1 2

1 0 1

2 0 2

3 0 3

4 1 0

5 2 0

6 3 4

d.o.f.

1

2

21

3

45
-45

D1

D2

D3

D4

ft
faE, A, I, L

Figure 3.9. 2D frame mesh for Example 1.
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The element stiffness matrices are the same in local coordinates as,

k1 = k2 =
EI

L3




AL2

I
0 0 −AL2

I
0 0

0 12 6L 0 −12 6L

0 6L 4L2 0 −6L 2L2

−AL2

I
0 0 AL2

I
0 0

0 −12 −6L 0 12 −6L

0 6L 2L2 0 −6L 4L2




(3.51)

Ke = (Λe)T · ke ·Λe (3.52)

with rotation matrices,

Λ1 =




√
2
2

√
2
2

0 0 0 0

−
√
2
2

√
2
2

0 0 0 0

0 0 1 0 0 0

0 0 0
√
2
2

√
2
2

0

0 0 0 −
√
2
2

√
2
2

0

0 0 0 0 0 1




, Λ2 =




√
2
2

−
√
2
2

0 0 0 0
√
2
2

√
2
2

0 0 0 0

0 0 1 0 0 0

0 0 0
√
2
2

−
√
2
2

0

0 0 0
√
2
2

√
2
2

0

0 0 0 0 0 1




(3.53)

The forcing vectors for distributed loading (there are no concentrated forces or moments,

such that F F = 0) are as follows,

f1
f =

L

2




0

−ft
−ftL

6

0

−ft
ftL
6




; f 2
f =

L

2




fa

0

0

fa

0

0




(3.54)

F e
f = (Λe)T · f e

f (3.55)
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3.6. 2D FE FRAME ANALYSIS

For the element assembly for element 1, we cancel rows and columns 1-3; for element 2,

we cancel rows and columns 4,5 (where K is symmetric), such that,

K =




K1
44 +K2

11 K1
45 +K2

12 K1
46 +K2

13 K2
16

· K1
55 +K2

22 K1
56 +K2

23 K2
26

· · K1
66 +K2

33 K2
36

· · · K2
66




; F =




F 1
f4 + F 2

f1

F 1
f5 + F 2

f2

F 1
f6 + F 2

f3

F 2
f6




(3.56)

and then solve for the unknown dofs from the linear system of equations as,

K ·D = F (3.57)

3.6.2 2D FE Frame Analysis: Example 2

Consider the 2D frame meshed without and with flexural release (a hinge) in Fig.3.10, with

Location Matrices (LM) as follows,

element number

local nodal dof

1 2 3

1 0 1 4

2 0 2 5

3 0 3 6

4 1 4 0

5 2 5 0

6 3 6 0

element number

1 2 3 4

1 0 1 4 8

2 0 2 5 9

3 0 3 7 10

4 1 4 8 0

5 2 5 9 0

6 3 6 10 0

d.o.f.

Note that to introduce a hinge, all we have to do is change the Location Matrix (LM) to

include separate, global, rotational degrees of freedom D6 and D7 on each side of the joint.
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1

2
2

1

3

4

3

D1

D2

D3

D4

D5

D6

E, A, I

1

2
2

1

4

5

4

3

3
D1

D2

D3

D4

D5

D6 D7

D8

D9

D10

E, A, I

Figure 3.10. 2D frame mesh for example 2 showing without and with flexure release.
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Chapter 4

2D Linear Heat Conduction

For the 2D linear heat conduction FEM, we assume linearity in the form of a rigid material

and Fourier’s law. These notes are drawn from Hughes [1987]. Topics covered in the remain-

ing sections include the following:

(1) linearity in the form of Fourier’s law;

(2) differential form and boundary conditions (BCs) for Strong Form (S) of 2D heat conduc-

tion;

(3) review of tensor notation in index form;

(4) variational, Weak Form (W);

(5) discrete, Galerkin Form (G);

(6) Finite Element (FE), Matrix form;

(7) bilinear, quadrilateral shape functions in natural coordinates (ξ, η);

(8) triangular element shape functions (time permitting);

(9) element assembly to obtain Global Matrix form;

(10) convergence: (i) compatibility, and (ii) completeness;

(11) numerical integration using 2D Gaussian quadrature;

(12) taking advantage of symmetry for boundary value problems (BVPs);
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CHAPTER 4. 2D LINEAR HEAT CONDUCTION

(13) transient heat conduction, numerical time integration (parabolic matrix ODE);

(14) analogy to saturated ground water flow in rigid soil or rock;

(15) higher order 2D elements, and construction of transition elements.

4.1 Differential equation and Strong (S) form for Static,

steady-state heat conduction

Assume steady-state conditions, such that the total heat change is zero. In 2D (assuming

region is 1m thick into page), the heat flux vector is q = [ qx qy ]
T (W/m2), heat source is

f(x, y) (W/m3), and prescribed temperature gθ (
◦C) on Γθ, and prescribed heat flux q on Γq

(in-flow positive), where total domain with boundaries Ω̄ = Ω∪Γθ ∪Γq. Refer to Fig.4.1 for

applied BCs and deriving the differential equation for balance of energy.

dx

dyf

Γθ

Γq

qΓ = −qn

n

θ = gθ

Ω

x = x1

y = x2

dx

d
y

qy(x, y) +
∂qy
∂y
dy

qy(x, y)

qx(x, y) +
∂qx
∂x
dxqx(x, y)

f(x, y)

Figure 4.1. Body Ω and differential element dx, dy for applying balance of energy (first law of
thermodynamics).
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4.1. DIFFERENTIAL EQUATION AND STRONG (S) FORM

We sum the heat fluxes to obtain the balance of energy as,

(dy)(1)(qx)− (dy)

(
qx +

∂qx
∂x

dx

)
+ (dx)(1)(qy)− (dx)(1)

(
qy +

∂qy
∂y

dy

)
+ f(dx)(dy)(1) = 0

(4.1)

To derive the heat equation, we introduce Fourier’s law as our constitutive equation,



qx

qy


 = −



κxx κxy

κyx κyy







∂θ
∂x

∂θ
∂y


 (4.2)

q = −κ · ∂θ
∂x

(4.3)

where the units for heat flux q are W/m2, and for thermal conductivity κ are W/(m ◦C).

Consider a brief review of tensor notation in index form as,

• coordinate vector x = [ x y ]T = [ x1 x2 ]
T

• heat flux vector q = [ qx qy ]
T = [ q1 q2 ]

T

• sum over repeated indices: q = qiei = q1e1 + q2e2

• thermal conductivity matrix: κ =



κ11 κ12

κ21 κ22


 = κijei ⊗ ej

• vector or dyadic product ⊗

• isotropic thermal conductivity: κ = κ




1 0

0 1


, or κij = κδij

• Fourier’s law in index notation: qi = −κij ∂θ
∂xj

• heat equation (balance of energy, first law of thermodynamics): ∂qi
∂xi

= f , or qi,i = f
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CHAPTER 4. 2D LINEAR HEAT CONDUCTION

We may then state the Strong form (S) as,

(S)





Find θ(x, y) : Ω̄ 7→ R, such that

qi,i = f ∈ Ω

θ = gθ on Γθ

−qini = q on Γq

(4.4)

where θ(x, y) : Ω̄ 7→ R reads “with (x, y) in Ω̄ and θ maps to the real number line R,”

the heat source is f(x, y), the heat flux q is a positive in-flux natural, Neumann BC, and

prescribed temperature gθ is an essential, or Dirichlet, BC.

4.2 Weak form (W) by Method of Weighted Residuals

For the Method of Weighted Residuals as applied to the balance of energy, we introduce a

weighting function w(x, y), which if a variational principle can be established (which it can

for heat conduction), then it is thought of as a variation of temperature w = δθ. Put the

balance equation in residual form, multiply by w, and integrate over Ω as,

∫

Ω

w(qi,i − f)da = 0 (4.5)

where da = dxdy = dx1dx2. Apply the chain rule as,

∂

∂xi
(wqi) =

∂w

∂xi
qi + w

∂qi
∂xi

(4.6)

where then, ∫

Ω

wqi,ida =

∫

Ω

[(wqi),i − w,iqi] da (4.7)
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4.3. DISCRETE, GALERKIN FORM (G)

Recall the divergence theorem,

∫

Ω

(wqi),ida =

∫

Γ

(wqi)nids (4.8)

and w = 0 on Γθ, and −qini = q on Γq, such that

∫

Γ

(wqi)nids =

∫

Γθ

wqinids+

∫

Γq

wqinids

= −
∫

Γq

wqds

We substitute to get,

−
∫

Ω

w,iqida−
∫

Ω

wfda−
∫

Γq

wqds = 0 (4.9)

Then, using Fourier’s law (qi = −κijθ,j), we state the Weak form (W) as,

(W )





Find θ(x, y) ∈ S = {θ : Ω 7→ R, θ ∈ H1, θ = gθ on Γθ}, such that
∫
Ω
w,iκijθ,jda =

∫
Ω
wfda+

∫
Γq
wqds

holds ∀w(x, y) ∈ V = {w : Ω 7→ R, w ∈ H1, w = 0 onΓθ}

(4.10)

where ∀ reads “for all,” S is the space of admissible trial functions, V is the space of

weighting functions, H1 is the first Sobolev space, such that the H1 norm is finite: i.e.,

‖θ‖1 =
(∫

Ω
(θ2 + (θ,i)

2) dx
)1/2

< ∞, where ‖θ‖1 is called the natural norm, and θ ∈ H1

essentially says that first spatial derivatives θ,i CANNOT be Dirac-Delta functions, but

can be Heaviside functions (discontinuous) which leads to a “C0 theory” for linear heat

conduction (as we had for the 1D axially-loaded bar problem).
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h

Ωh

Γh

Figure 4.2. Discrete body Ωh ⊂ Ω, Ω̄h = Ωh ∪ Γh.

4.3 Discrete, Galerkin form (G)

Referring to Fig.4.2, we may rewrite the Weak form in discrete, Galerkin form as,

(G)





Find θh(x, y) ∈ S h = {θh : Ωh 7→ R, θh ∈ H1, θh = gθ onΓ
h
θ}, such that

∫
Ωh w

h
,iκijθ

h
,jda =

∫
Ωh w

hfda+
∫
Γh
q
whqds

holds ∀wh(x, y) ∈ V h = {wh : Ωh 7→ R, wh ∈ H1, wh = 0 onΓh
θ}

(4.11)

where S
h ⊂ S is the discrete subspace of admissible trial functions, V

h ⊂ V is the discrete

subspace of weighting functions, and (G) ≈ (W ), where note that even though θh and wh

are discrete approximations to θ and w, respectively, they must still satisfy restrictions on

the spaces (in order to ensure convergence, i.e., limh→0 θ
h = θ).

4.4 Finite Element (FE), Matrix form

Discretize the 2D body into finite elements (quadrilaterals or triangles), such as in Fig.4.3.

Now, consider a bilinear quadrilateral in Fig.4.4.
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4.4. FINITE ELEMENT (FE), MATRIX FORM

1

2

3

Γh
θ

Γh
q

qΓh = −qn

n

θh = gθ

Ωh

d1 = gθ

d2

d3

d4

d5

d6d7

Figure 4.3. Global perspective on FE mesh with θh(x, y) =
∑nnp

A=1 NA(x, y)dA, nnp is the number
of nodal points, and NA(x, y) is the shape function at global node A.

1

2

3

4

x

y
de1

de2

de3
de4

(xe1, y
e
1)

Ωe

Figure 4.4. Element perspective on FE mesh with local element nodal dof dea = θh
e
(xea, y

e
a),

element domain Ωe, discrete domain Ωh =A
nel
e=1Ω

e, and A
nel
e=1 is the element assembly operator.

The next step is to discretize the Galerkin integral equation into finite elements as,

nel

A
e=1

[∫

Ωe

whe

,i κijθ
he

,j da =

∫

Ωe

whe

fda+

∫

Γe
q

whe

qds

]
(4.12)

95
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and write the interpolations and their derivatives as,

θh
e

(x) =
nen∑

a=1

Na(x)d
e
a = N e

︸︷︷︸
1×nen

· de
︸︷︷︸
nen×1

(4.13)

whe

(x) =
nen∑

a=1

Na(x)c
e
a = N e · ce (4.14)

[
θh

e

,i (x)
]
=

nen∑

a=1

[
∂Na(x)

∂xi

]
dea = Be

︸︷︷︸
nsd×nen

· de
︸︷︷︸
nen×1

(4.15)

[
whe

,i (x)
]
=

nen∑

a=1

[
∂Na(x)

∂xi

]
cea = Be · ce (4.16)

where nen is the number of element nodes, and nsd = 2 is the number of spatial dimensions.

Let κ = D be the matrix form of the thermal conductivity tensor, and then,

nel

A
e=1

(ce)T ·




(∫

Ωe

(Be)T ·D ·Beda

)

︸ ︷︷ ︸
k

e

·de =

∫

Ωe

(N e)Tfda

︸ ︷︷ ︸
f

e

f

+

∫

Γe
q

(N e)T qds

︸ ︷︷ ︸
f

e

q




(4.17)

and
nel

A
e=1

(ce)T ·
[
ke · de = f e

f + f e
q

]
(4.18)

Before assembling, let’s introduce the bilinear, quadrilateral element in natural coordinates.
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4.5. BILINEAR QUADRILATERAL ELEMENT

4.5 Bilinear quadrilateral element

For the bilinear quadrilateral element, (pg.164 F&B, pg.112 Hughes), in natural coordinates,

refer to Fig.4.5.

1

2

3

4

x

y

(-1,-1)

1

4 3

2

(1,-1)

(1,1)(-1,1)

parent domain
global domain

(xe1, y
e
1)

(xe2, y
e
2)

(xe3, y
e
3)

(xe4, y
e
4)

ξ =

[
ξ
η

]

η

η

ξ
ξ

x =

[
x
y

]

Ωe

Figure 4.5. In natural coordinates, note the isoparametric mapping, xhe
(ξ) =

∑4
a=1 Na(ξ)x

e
a, and

bilinear shape functions, Na(ξ, η) =
1
4(1 + ξaξ)(1 + ηaη).

We then interpolate in terms of ξ as,

θh
e

(ξ) =

4∑

a=1

Na(ξ)d
e
a (4.19)

whe

(ξ) =

4∑

a=1

Na(ξ)c
e
a (4.20)

The bilinear shape functions Na(ξ, η) =
1
4
(1 + ξaξ)(1 + ηaη) may be visualized in Fig.4.6.

To take spatial derivatives in 2D, we need the Jacobian matrix of coordinate transformation
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-1
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0

0.5

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

0

0.25

0.5

0.75

1

-1

-0.5

0

0.5

N1(ξ, η) N2(ξ, η)

N3(ξ, η)N4(ξ, η)

Figure 4.6. bilinear shape functions Na(ξ, η) =
1
4(1 + ξaξ)(1 + ηaη).

J e as,

dx =
∂x

∂ξ
· dξ = J e · dξ (4.21)



dx

dy


 =




∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η






∂ξ

∂η


 (4.22)

da = dxdy = jedξdη (4.23)

je = detJ e (4.24)

The ‘strain-displacement’ matrix (to calculate temperature gradient from temperature) is
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4.5. BILINEAR QUADRILATERAL ELEMENT

then Be = [B1B2B3B4 ] where,

Ba =




∂Na

∂x

∂Na

∂y


 , BT

a =

[
∂Na

∂x
∂Na

∂y

]
=
∂Na

∂x

BT
a =

∂Na

∂x
=
∂Na

∂ξ
· ∂ξ
∂x

=

[
∂Na

∂ξ
∂Na

∂η

]



∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y


 =

∂Na

∂ξ
· (Je)−1

Ba = (J e)−T ·
(
∂Na

∂ξ

)T

(J e)−1 =
1

je




y,η −x,η
−y,ξ x,ξ




Let’s consider an example shown in Fig.4.7.

1

2

3

4

(0,0)

(4,-1)

(3.5,2)

(1,3)

Ωe

Figure 4.7. Example for calculating je.

We have ∂Na

∂ξ
= 1

4
ξa(1 + ηaη),

∂Na

∂η
= 1

4
ηa(1 + ξaξ),

xh
e

,ξ =
∑4

a=1
∂Na

∂ξ
xea = 1.625− 0.375η,

xh
e

,η =
∑4

a=1
∂Na

∂η
xea = 0.125− 0.375ξ,

yh
e

,ξ =
∑4

a=1
∂Na

∂ξ
yea = −0.5,

yh
e

,η =
∑4

a=1
∂Na

∂η
yea = 1.5,

and je = x,ξy,η − x,ηy,ξ = 2.5− 0.1875ξ − 0.5625η.
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Recall that (J e)−1 = 1
je




y,η −x,η
−y,ξ x,ξ


, and Ba = (Je)−T ·

(
∂Na

∂ξ

)T
. Thus, the integrand

of the conductivity matrix is not a polynomial (it is a rational function). We will use Gauss

quadrature to approximate finite element integration (this is what finite element programs

like ABAQUS do).

Thus, we can evaluate the thermal conductivity matrix and heat source vector in the parent

domain using Gaussian quadrature (introduce later) as,

ke =

∫ 1

−1

∫ 1

−1

[Be(ξ)]T ·D ·Be(ξ)jedξdη (4.25)

f e
f =

∫ 1

−1

∫ 1

−1

[N e(ξ)]T f̂(ξ)jedξdη (4.26)

But what about the heat flux vector at the element boundary Γe (if the element is on the

boundary Γh
q )?

f e
q =

∫

Γe
q

(N e)T qds (4.27)

Let’s look at the surface of integration in Fig.4.8.

y

x

ξ

η

Γh
q

Γq

ds =
√

dx2 + dy2

Figure 4.8. Integration over boundary Γe of element e. dx = x,ξdξ+x,ηdη and dy = y,ξdξ+ y,ηdη.

Along ds, η = 1 =⇒ dη = 0, and note that ds =
√
x2,ξ + y2,ξdξ.
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4.6. TRIANGULAR ELEMENT

4.6 Triangular element

For the triangular element formulation, see attached handwritten notes.
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4.7 Element assembly process

Consider the Element assembly process for the example on pg.71 of Hughes 1987. We use the

IEN and ID “arrays” to obtain the Location Matrix (LM). For the element nodes array,

IEN(a, e) = A, where a is the local element node number, e the element number, and A

the global node number. The ID array relates global node numbers A to global equation

numbers (dofs). The location matrix (LM) can then be determined from the IEN and ID

as LM(a, e) =ID(IEN(a, e)) to return the global dof given local element node number a and

element number e. Refer to Fig.4.9.

4

1

3

6

4

2

5

1 2(1)

5(4)

3(2)

6(3)

7 8 9

10 11 12

d 

d!d"

d#d$

d%d&

d'

• ID array:

global node number
1 2 3 4 5 6 7 8 9 10 11 12
0 1 2 0 3 4 0 5 6 0 7 8

d.o.f.

• IEN array:

e

a

1 2 3 4 5 6
1 1 2 4 5 7 8
2 2 3 5 6 8 9
3 5 6 8 9 11 12
4 4 5 7 8 10 11

Figure 4.9. Location matrix example.

Then the LM(a, e) =ID(IEN(a, e)), which is populated with global d.o.f. as,

e

a

1 2 3 4 5 6

1 0 1 0 3 0 5

2 1 2 3 4 5 6

3 3 4 5 6 7 8

4 0 3 0 5 0 7
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4.7. ELEMENT ASSEMBLY PROCESS

Let’s look at element 1, where recall the element conductivity matrix as,

ke =




ke11 ke12 ke13 ke14

ke12 ke22 ke23 ke24

ke13 ke23 ke33 ke34

ke14 ke24 ke34 ke44




(4.28)

Now, recall the element assembly operation:

nel

A
e=1

(ce)T ·
[
ke · de = f e

f + f e
q

]
(4.29)

K · d = F = F q + F f + F g (4.30)

After placing individual conductivity and flux contributions into the global matrix/vector

form, we can sum up the element contributions as,

K =

nel∑

e=1

Ke , F q =

nel∑

e=1

F e
q , F f =

nel∑

e=1

F e
f , F g =

nel∑

e=1

F e
g (4.31)

and then solve for d such that for element 1:

K1 =




k122 · k123 . . .

· · · . . .

k123 · k133 . . .

...
...

...
... . . .



, F 1

g =




k112gθ(1) + k124gθ(4)

·

k113gθ(1) + k134gθ(4)
...




(4.32)

and so on for other elements and for F q and F f .
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CHAPTER 4. 2D LINEAR HEAT CONDUCTION

4.8 Convergence

Recall that for convergence, we need compatibility and completeness. These lead to 3

conditions that we will satisfy for linear heat conduction finite elements:

(i) compatibility:

(1) θh
e

smooth on Ωe,

(2) θh
e

continuous across element boundaries Γe;

(ii) completeness:

(3) represent constant temperature θh
e

and constant temperature flux θh
e

,i .

For (1) smoothness, use the bilinear quadrilateral element in Fig.4.10 as an example. We

require the interior angles to be < 180◦, or that je = detJe > 0; this checks for input error

in local element node numbering, and whether an element is extremely distorted for large

deformation analysis (small strain analysis doesn’t care if the element is highly distorted or

not because the element Jacobian and coordinates are not updated).

>180

=180

Figure 4.10. Problems with bilinear quadrilaterals.

For (2) continuity across Γe, it is automatically satisfied by the shape functions Na(ξ), as

shown in Fig.4.11.

For (3) completeness, we need to represent constant temperature θh
e

and constant temper-

ature flux θh
e

,i , needing at a minimum a linear polynomial for θh
e

; with first order completeness
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4.8. CONVERGENCE

A

1

Ωe

Γe

Figure 4.11. Continuity of four bilinear quadrilaterals.

required. The interpolations are,

θh
e

(ξ) =
nen∑

a=1

Na(ξ)d
e
a (4.33)

xhe

(ξ) =

nen∑

a=1

Na(ξ)x
e
a (4.34)

and then let dea = c0 + c1x
e
a + c2y

e
a, and substitute into θh

e

where,

θh
e

(ξ) =

(
nen∑

a=1

Na

)
c0 +

(
nen∑

a=1

Nax
e
a

)
c1 +

(
nen∑

a=1

Nay
e
a

)
c2 (4.35)

= c0 + c1x+ c2y (4.36)

Thus, the bilinear quadrilateral element is complete to first order by virtue of the isopara-

metric formulation.
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CHAPTER 4. 2D LINEAR HEAT CONDUCTION

4.9 Gaussian quadrature

The Gaussian quadrature for a square parent domain (quadrilateral element) is presented

on pg.178 F&B, pg.143 Hughes. Gaussian quadrature in higher dimensions (2D and 3D)

essentially involves applying the Gaussian quadrature rule in 1D to each direction in 2D

(i.e., the ξ and η directions) such as,

∫ 1

−1

∫ 1

−1

g(ξ, η)dξdη ≈
∫ 1

−1

(∑

m

g(ξ̃m, η)Wm

)
dη

≈
∑

m

∑

n

g(ξ̃m, η̃n)WmWn =

nint∑

l=1

g(ξ̃l, η̃l)Wl (4.37)

Figure 4.12 shows 1pt (2nd order accurate), 4pt (4th order accurate), 9pt (6th

order accurate) rules.

X
ξ

η

• nint = 1

• ξ̃1 = η̃1 = 0

• W1 = 2 ∗ 2 = 4

X

XX

X

ξ

η

• nint = 4

• ξ̃1 = −1/
√
3, η̃1 =

−1/
√
3, ...

• W1 = W2 = W3 = W4 =
1

X

XX

X

X X

X

X

X

ξ

η

• nint = 9

• ξ̃1 = −
√

3/5, η̃1 =

−
√

3/5, ...

• W1 = (5/9)(5/9), ...

Figure 4.12. Gaussian quadrature rules for 1× 1, 2× 2, and 3× 3 integration points.
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4.10. SYMMETRY IN BOUNDARY VALUE PROBLEMS (BVPS)

4.10 Symmetry in Boundary Value Problems (BVPs)

Consider the examples in Fig.4.13. Can we take advantage of symmetry or not for problems

when using FEA?

L

L

y

x
g1

q = 0

q = 0

q = 0

L

L

y

x
g1

g2

q = 0

q = 0

L

L

y

x
g1

g2

g2

q = 0

Figure 4.13. Examples for symmetry BCs.
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4.11 Transient Heat Conduction

We introduce the specific heat c (J/(kg ◦C)), and temperature rate ∂θ
∂t
, with I.C. on θ. The

Strong Form is re-stated as,

(S)





Find θ(x, y) : Ω̄× [0, T ] 7→ R, such that

ρcθ,t + qi,i = f ∈ Ω×]0, T [

θ = gθ on Γθ×]0, T [

−qini = q on Γq×]0, T [

θ(x, 0) = θ0(x) x ∈ Ω

(4.38)

Assume Fourier’s law for heat flux, qi = −κijθ,j, and interpolate as before:

θh
e

(ξ, t) =
nen∑

a=1

Na(ξ)d
e
a(t) = N e · de (4.39)

θ̇h
e

= N e · ḋe
(4.40)

After deriving the Weak form, and stating the Galerkin form (both not shown), we have,

nel

A
e=1

(ce)T ·
[
me · ḋe

+ ke · de = f e
f + f e

q

]
(4.41)

me =

∫

Ωe

ρc[N e]T ·N eda (4.42)

=

∫ 1

−1

∫ 1

−1

ρc[N e(ξ)]T ·N e(ξ)jedξdη (4.43)

After element assembly, we have,

M · ḋ+K · d = F (4.44)
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4.11. TRANSIENT HEAT CONDUCTION

which is a parabolic matrix ODE. We use the generalized trapezoidal rule to integrate in

time.

Evaluate the FE balance of energy equation at time tn+1, and introduce difference formulas

for dn+1 and vn+1, where α is the time integration parameter,

M · vn+1 + K · dn+1 = F n+1 (4.45)

dn+1 = dn +∆tvn+α (4.46)

vn+α = (1− α)vn + αvn+1 (4.47)

Common examples for choice of α are,

α method type

0 forward Euler explicit (if M diagonal)

1/2 trapezoidal rule implicit

1 backward Euler implicit

The Implementation steps in a code are as follows:

• initialize: given initial temperature d0, solve for v0

M · v0 = F 0 −K · d0 (4.48)

• predictor:

d̃n+1 = dn + (1− α)∆tvn (4.49)

• solution:

(M + α∆tK)vn+1 = F n+1 −Kd̃n+1 (4.50)
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CHAPTER 4. 2D LINEAR HEAT CONDUCTION

• corrector:

dn+1 = d̃n+1 + α∆tvn+1 (4.51)

• stability:

– unconditional: α ≥ 1/2

– conditional: α < 1/2; ∆t < 2
(1−2α)λh

max
*for 1D heat transfer: λhmax = (ωh

max)
2,

ωh
max =

2
√
3
√
k

h
, k = κ

ρc

*then, ∆t < h2

6(1−2α)k

*for 2D and 3D, this critical time step is approximate (and also for nonlinear

problems)

4.12 Analogy to saturated groundwater flow

Early versions of ground water flow (rigid soil and rock) FE codes essentially used transient

heat conduction codes and applied a change of variables and parameters. The correspond-

ing terms and equations are,

heat conduction groundwater flow

temperature θ (◦C) total head h = pw
γw

+ he (m)

thermal conductivity κ (W/(m ◦C)) hydraulic conductivity κ (m/s)

Fourier’s law q = −κ ·∇θ Darcy’s law vw = −κ ·∇h

heat capacity ρc (J/(m3 ◦C)) specific storage Sc (1/m)

heat source f (W/m3) fluid mass production η (kg/(s m3))

where pw is the pore water pressure, γw = ρwg the unit weight of water (ρw = 1000 kg/m3,

g = 9.8m/s2), he the elevation head, and vw is the superficial (or Darcy) velocity of the

water. Refer to Fig.4.14 for an illustration of Bernoulli’s equation.
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4.12. ANALOGY TO SATURATED GROUNDWATER FLOW

datum

confined

(sand)

aquifer

h
pw
γw

he

Figure 4.14. Illustration of Bernoulli’s equation.

The Strong form is then written as,

(S)





Find h(x, y) : Ω̄× [0, T ] 7→ R, such that

Sch,t + vwi,i = η
ρw

∈ Ω×]0, T [

h = r onΓr×]0, T [

−vwi ni = s on Γs×]0, T [

h(x, 0) = h0(x) x ∈ Ω

(4.52)

where r is the prescribed total head on Γr, s the prescribed fluid flux into the body across

Γs, and h0 the initial total head within the body.

For a steady-state analysis, consider the Concrete Gravity Dam (assumed rigid solid concrete

skeleton) in Fig.4.15.

Or an embankment dam or levee (in Fig.4.16) with rising water level (again, assuming rigid

solid skeleton, which is not valid here, but still used for estimating pore water pressures).
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CHAPTER 4. 2D LINEAR HEAT CONDUCTION

Figure 4.15. Concrete gravity dam analysis.

initialize to

soil

soil

solve for phreatic

surface

h(t) = r1(t)

h = r0

r0

r0(x)

s = 0

x

y

Γs, Γr Γs, Γr

Figure 4.16. Embankment dam pore water flow analysis assuming soil is rigid.
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4.13. LAGRANGE POLYNOMIALS

4.13 Lagrange polynomials for higher order element

formulation

A description of Lagrange polynomials used to formulate higher order polynomial-based

finite elements is provided starting on pg.126 of Hughes. The formula for a Lagrange

polynomial is,

ℓ(nen−1)
a (ξ) =

∏nen

b=1,b6=a(ξ − ξb)∏nen

b=1,b6=a(ξa − ξb)
(4.53)

where,

nen − 1 = order of polynomial

a = node number

∏
= product operator

such that for 1D, 2D, and 3D, we have,

1D : Na(ξ) = ℓ(nen−1)
a (ξ)

2D : Na(ξ, η) = ℓ
(nen−1)ξ
b (ξ)ℓ(nen−1)η

c (η)

3D : Na(ξ, η, ζ) = ℓ
(nen−1)ξ
b (ξ)ℓ(nen−1)η

c (η)ℓ
(nen−1)ζ
d (ζ)
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CHAPTER 4. 2D LINEAR HEAT CONDUCTION

We consider some 1D examples. The 2-node, linear 1D element is formulated in Fig.4.17.

1 2

-1 +1
ξ

nen = 2 =⇒
nen − 1 = 1

N1(ξ) = ℓ11(ξ) =
ξ − ξ2
ξ1 − ξ2

=
ξ − 1

−1 − 1
= (1− ξ)/2

N2(ξ) = ℓ12(ξ) =
ξ − ξ1
ξ2 − ξ1

=
ξ − (−1)

1− (−1)
= (1 + ξ)/2

Figure 4.17. 2-node, linear FE interpolation functions formulated from Lagrange polynomials.

The 3-node, quadratic 1D element is formulated in Fig.4.18.

1 23

-1 +1
0 ξ

nen = 3 =⇒
nen − 1 = 2

N1(ξ) = ℓ21(ξ) =
(ξ − ξ2)(ξ − ξ3)

(ξ1 − ξ2)(ξ1 − ξ3)
=

(ξ − 1)ξ

(−1− 1)(−1)
= ξ(ξ − 1)/2

N2(ξ) = ℓ22(ξ) =
(ξ − ξ1)(ξ − ξ3)

(ξ2 − ξ1)(ξ2 − ξ3)
=

(ξ − (−1))ξ

(1− (−1))(1)
= ξ(ξ + 1)/2

N3(ξ) = ℓ23(ξ) =
(ξ − ξ1)(ξ − ξ2)

(ξ3 − ξ1)(ξ3 − ξ2)
=

(ξ + 1)(ξ − 1)

(1)(−1)
= 1− ξ2

Figure 4.18. 3-node, quadratic FE interpolation functions formulated from Lagrange polynomials.

In two dimensions (2D), consider the 4 node, bilinear quadrilateral element in Fig.4.19

with shape functions:

Na(ξ, η) = ℓ1b(ξ)ℓ
1
c(η)

N1(ξ, η) = ℓ11(ξ)ℓ
1
1(η) = (1− ξ)/2(1− η)/2 = (1− ξ)(1− η)/4

N2(ξ, η) = ℓ12(ξ)ℓ
1
1(η) = (1 + ξ)/2(1− η)/2 = (1 + ξ)(1− η)/4

N3(ξ, η) = ℓ12(ξ)ℓ
1
2(η) = (1 + ξ)/2(1 + η)/2 = (1 + ξ)(1 + η)/4

N4(ξ, η) = ℓ11(ξ)ℓ
1
2(η) = (1− ξ)/2(1 + η)/2 = (1− ξ)(1 + η)/4

Consider the 9 node, bilquadratic quadrilateral element in Fig.4.20 with shape func-
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4

1

3

2

= X

1

1 2

2

ξξ

ηη

(nen)ξ = 2, (nen)η = 2 =⇒ nen − 1 = 1

a b c

1 1 1
2 2 1
3 2 2
4 1 2

Figure 4.19. 4-node, bilinear quadrilateral FE interpolation functions formulated from Lagrange
polynomials.

tions:

Na(ξ, η) = ℓ2b(ξ)ℓ
2
c(η)

corner node N1(ξ, η) = ℓ21(ξ)ℓ
2
1(η) =

1

2
ξ(ξ − 1)

1

2
η(η − 1) =

1

4
ξη(ξ − 1)(η − 1)

midside node N5(ξ, η) = ℓ23(ξ)ℓ
2
1(η) = (1− ξ2)

1

2
η(η − 1) =

1

2
η(1− ξ2)(η − 1)

middle node N9(ξ, η) = ℓ23(ξ)ℓ
2
3(η) = (1− ξ2)(1− η2)
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4

1

3

2

= X

1

1 2

2

3
3

5

8
9 6

7

ξξ

ηη

(nen)ξ = 3, (nen)η = 3 =⇒ nen − 1 = 2

a b c

1 1 1
2 2 1
3 2 2
4 1 2
5 3 1
6 2 3
7 3 2
8 1 3
9 3 3
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0.5

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

0

0.25

0.5

0.75

1

-1

-0.5

0

0.5

N1(ξ, η) N5(ξ, η) N9(ξ, η)

Figure 4.20. 9-node, biquadratic quadrilateral FE interpolation functions formulated from La-
grange polynomials.
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Transition elements: Consider the mesh in Fig.4.21.

Figure 4.21. Linear to quadratic quadrilateral transition elements.

A 5-node quadrilateral transition element (Fig.4.22) may be formulated to address the proper

compatibility requirement in the mesh in Fig.4.21. Start with the bilinear quadrilateral shape

functions and introduce a 5th node along one of the element edges to make that edge have

quadratic interpolation, while the 3 other edges have linear interpolation. Correction of

adjacent nodal shape functions N1 and N2 is needed, as shown in Fig.4.22.
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4

1

3

25

ξ

η

Na(ξ, η) =
1

4
(1 + ξaξ)(1 + ηaη) , a = 1, ..., 4

N5(ξ, η) = ℓ23(ξ)ℓ
1
1(η) =

1

2
(1− ξ2)(1− η)

need N5(ξa, ηa) =

{
1 a = 5
0 a 6= 5

correction N1 = N1 −
1

2
N5

N2 = N2 −
1

2
N5

-1
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0

0.5

1
-1

-0.5

0

0.5

1

0

0.25

0.5

0.75

1

-1

-0.5

0

0.5

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

0

0.25

0.5

0.75

1

-1

-0.5

0

0.5

N1(ξ, η)N5(ξ, η)

Figure 4.22. 5-node linear to quadratic interpolation transition quadrilateral element.
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Chapter 5

3D Linear Elastostatics and

Elastodynamics

For the 3D linear elastostatic and elastodynamic FEM, we assume linearity in the form of

linear isotropic elasticity. These notes are drawn from Hughes [1987]. Topics covered in the

remaining sections include the following:

(1) linear isotropic elasticity; small strains and small rotations (examples for small and fi-

nite); small strain versus large strain tensors;

(2) differential form and boundary conditions (BCs) to provide Strong Form (S) of 3D elas-

tostatics;

(3) variational, Weak Form (W); re-write in vector-matrix form;

(4) review of plane elasticity: plane stress, plane strain, and axisymmetry;

(5) review of von Mises stress;

(6) discrete, Galerkin Form (G);

(7) Finite Element (FE), Matrix form in 3D;

(8) trilinear, hexhedral shape functions in natural coordinates (ξ, η, ζ) via Lagrange polyno-

mials;
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CHAPTER 5. 3D LINEAR ELASTOSTATICS AND ELASTODYNAMICS

(9) 2D FE matrix form for linear elastostatics;

(10) element assembly to obtain Global Matrix form;

(11) convergence: (1) compatibility (satisfied by shape functions), and (2) completeness

(consider an “engineering version” called the Patch Test);

(12) incompressibility constraint and mesh-locking; mixed formulation, selective reduced in-

tegration;

(13) linear elastodynamics.

5.1 3D linear isotropic elasticity

We assume linearity in the form of small strains and rotations (geometric, deformation)

as,

ǫ =
1

2

(
∇u+ (∇u)T

)
(5.1)

ǫij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(5.2)

and linear isotropic elasticity (material, constitutive equation) as,

σ = c : ǫ (5.3)

σij = cijklǫkl (5.4)

where the fourth order isotropic elasticity tensor cijkl has two types of symmetry:

(i) major: cijkl = cklij,

(ii) minor: cijkl = cjikl = cjilk = cijlk.
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5.1. 3D LINEAR ISOTROPIC ELASTICITY

We can write as,

c = λ1⊗ 1+ 2µI (5.5)

cijkl = λδijδkl + 2µIijkl (5.6)

Iijkl =
1

2
(δikδjl + δilδjk) (5.7)

The Lamé parameters are,

µ =
E

2(1 + ν)
, λ =

2µν

1− 2ν
(5.8)

with bulk modulus K = λ + 2
3
µ = E

3(1−2ν)
. For incompressible elasticity (e.g., rubber

materials), then ν → 0.5 =⇒ K → ∞ where thermodynamically admissible values of

Poisson’s ratio are −1 < ν < 0.5.
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CHAPTER 5. 3D LINEAR ELASTOSTATICS AND ELASTODYNAMICS

5.2 Examples of small and finite strain and rotations

An example of both small strain and rotation is an I-beam experiencing design live and

dead loads as in Fig.5.1.

Figure 5.1. An I-beam experiencing design live and dead loads, and thus small strains and small
rotations.
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5.2. SMALL AND FINITE STRAIN

An example of large strain with small rotation is a car tire at constant angular velocity

(no rotation of deformed part with respect to reference frame) as shown in Fig.5.2.

Figure 5.2. A car tire under constant angular velocity, and thus no rotation of deformed part with
respect to reference frame (simulia.com).

An example of large strain and large rotation is a slope stability failure simulation as

shown in Fig.5.3.

Figure 5.3. FEA simulation of slope failure, demonstrating large strain and large rotation.
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For comparison of small strain and finite strain (Lagrangian) tensors, refer to pg.17 of

Lubliner [1990].

Consider a finite rotation θ and small shear strain |γ| ≪ 1 as shown in Fig.5.4.

θ

θ − γ

X1

X2

Figure 5.4. Block undergoing small shear strain γ and large rotation θ.

Assuming homogeneous deformation, we can write the displacements as,

u1 = (cos θ − 1)X1 − (sin θ − γ cos θ)X2 (5.9)

u2 = sin θX1 − (1− cos θ − γ sin θ)X2 (5.10)
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5.2. SMALL AND FINITE STRAIN

where we can evaluate the small strain tensor (assume xi = XI) as,

ǫ11 =
∂u1
∂x1

= cos θ − 1 (5.11)

ǫ22 =
∂u2
∂x2

= cos θ + γ sin θ − 1 (5.12)

ǫ12 = ǫ21 =
1

2

(
∂u1
∂x2

+
∂u2
∂x1

)
=

1

2
γ cos θ (5.13)

ǫ =




cos θ − 1 1
2
γ cos θ 0

1
2
γ cos θ cos θ + γ sin θ − 1 0

0 0 0




(5.14)

But strain should be independent of rotation θ, correct? If θ ≈ 0, then ǫ yields the simple

shear, small strain tensor we expect, but here θ is finite, so what do we do?

Consider the Lagrangian finite strain tensor E (there are more than one finite strain

tensor, but only one small strain tensor) as,

EIJ =
1

2

(
∂uI
∂XJ

+
∂uJ
∂XI

+
∂ui
∂XI

∂ui
∂XJ

)
(5.15)

and evaluate (xi 6= XI) as,

E11 =
1

2

(
2
∂u1
∂X1

+
∂ui
∂X1

∂ui
∂X1

)
= cos θ − 1 + 1− cos θ = 0 (5.16)

E22 =
1

2

(
2
∂u2
∂X2

+
∂ui
∂X2

∂ui
∂X2

)
=

1

2
γ2 ≈ 0 (5.17)

E12 = E21 =
1

2

(
∂u1
∂X2

+
∂u2
∂X1

+
∂ui
∂X1

∂ui
∂X2

)
=

1

2
γ (5.18)

E =




0 1
2
γ 0

1
2
γ 0 0

0 0 0




(5.19)

Thus, the Lagrangian strain tensor is independent of rotation θ, showing simple shear, small

125



CHAPTER 5. 3D LINEAR ELASTOSTATICS AND ELASTODYNAMICS

strain tensor as we expected, even for finite rotation θ.

5.3 Strong form for 3D elastostatics

For 3D elastostatics, the second order Cauchy stress tensor σ (Pa), body force vector f

(N/m3), prescribed displacement vector gu (m) on Γu, prescribed traction vector tσ on Γt

with unit normal vector n, Ω̄ = Ω ∪ Γu ∪ Γt are shown in Fig.5.5.

dx

dy

dz

Γt

Γu

tσ

n

gu

Ω
f

x = x1

y = x2

z = x3

dv

σ11

σ21

σ31

σ11 +
∂σ11

∂x1
dx1

σ21 +
∂σ21

∂x2
dx2

σ31 +
∂σ31

∂x3
dx3

f1

dx1

d
x
2

dx3

Figure 5.5. The body Ω with BCs, and differential volume dv for satisfying balance of linear
momentum.

The sum of the forces in the x1 direction for static equilibrium,

(
σ21 +

∂σ21
∂x2

dx2

)
dx1dx3 − σ21dx1dx3

+

(
σ31 +

∂σ31
∂x3

dx3

)
dx1dx2 − σ31dx1dx2

+

(
σ11 +

∂σ11
∂x1

dx1

)
dx2dx3 − σ11dx2dx3

+ f1dx1dx2dx3 = 0 (5.20)
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Divide by dv = dx1dx2dx3 to obtain the balance of linear momentum in the x1 direction,

∂σ11
∂x1

+
∂σ21
∂x2

+
∂σ31
∂x3

+ f1 = 0 (5.21)

We do the same in x2 and x3 directions, such that,

∂σ12
∂x1

+
∂σ22
∂x2

+
∂σ32
∂x3

+ f2 = 0 (5.22)

∂σ13
∂x1

+
∂σ23
∂x2

+
∂σ33
∂x3

+ f3 = 0 (5.23)

For non-polar materials (i.e., no couple stresses), the balance of angular momen-

tum leads to a symmetric stress tensor: σij = σji, thus we may write the balance of

linear momentum in compact, index notation as,

∂σij
∂xj

+ fi = 0 (5.24)

σij,j + fi = 0 (5.25)

Thus, the Strong form is written as,

(S)





Find ui(x) : Ω̄ 7→ Rnsd , such that

σij,j + fi = 0 ∈ Ω

ui = gui on Γu

σijnj = tσi onΓt

(5.26)

where

• ui(x) : Ω̄ 7→ Rnsd reads “with x in Ω̄, ui maps to the real number space Rnsd of number

of spatial dimensions nsd”

• for 3D, nsd = 3, and for 2D, nsd = 2
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• body force vector fi(x)

• traction vector tσi is natural, or Neumann, BC

• prescribed displacement vector gui is essential, or Dirichlet, BC

5.4 Weak form for 3D elastostatics

We apply the Method of Weighted Residuals to derive the Weak Form of the balance

of linear momentum. The weighting function wi, which if a variational principle can be

established (which it can for elastostatics), can be thought of as a “variation of displacement”

wi = δui. We write the balance equation in residual form, multiply by wi, and then integrate

over domain Ω, such that, ∫

Ω

wi(σij,j + fi)dv = 0 (5.27)

We apply the chain rule as,

∂

∂xj
(wiσij) =

∂wi

∂xj
σij + wi

∂σij
∂xj

(5.28)

Then, ∫

Ω

wiσij,jdv =

∫

Ω

[(wiσij),j − wi,jσij ] dv (5.29)

Applying the divergence theorem,

∫

Ω

(wiσij),jdv =

∫

Γ

(wiσij)njda (5.30)
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5.4. WEAK FORM FOR 3D ELASTOSTATICS

and recall that wi = 0 on Γu, and σijnj = tσi on Γt, such that,

∫

Γ

(wiσij)njda =

∫

Γu

(wiσij)njda +

∫

Γt

(wiσij)njda

=

Substitute to obtain, ∫

Ω

wi,jσijdv =

∫

Ω

wifidv +

∫

Γt

wit
σ
i da (5.31)

Using linear isotropic elasticity (and its minor symmetry) (σij = cijklǫkl = cijkluk,l), state

Weak form (W) as,

(W )





Find ui(x) ∈ S = {ui : Ω 7→ Rnsd , ui ∈ H1, ui = gui onΓu}, such that
∫
Ω
wi,jcijkluk,ldv =

∫
Ω
wifidv +

∫
Γt
wit

σ
i da

holds ∀wi(x) ∈ V = {wi : Ω 7→ Rnsd , wi ∈ H1, wi = 0 onΓu}

(5.32)

where

• ∀ reads “for all”

• S is the space of admissible trial functions

• V is the space of weighting functions

• H1 is the first Sobolev space, such that the H1 norm is finite:

i.e., ‖u‖1 =
[∫

Ω
(uiui + ui,jui,j)dx

]1/2
<∞

• ‖u‖1 is called the natural norm

• ui ∈ H1 essentially says that first spatial derivatives ui,j CANNOT be Dirac Delta

functions, but can be Heaviside functions (discontinuous)

• ... leads to a “C0 theory” for linear elastostatics (as we had for the 1D axially-loaded

bar and 2D linear heat conduction)
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Now, we rewrite the variational, weak form in vector-matrix form. Consider the potential

energy term in the weak form where,

∫

Ω

wi,jcijkluk,ldv =

∫

Ω

{wi,j}I [cijkl]IJ {uk,l}J dv

=

∫

Ω

ǫI(w)DIJǫJ(u)dv

=

∫

Ω

ǫT (w) ·D · ǫ(u)dv

By accounting for major and minor symmetries of cijkl, and for nsd = 3, I, J = 1, . . . , 6, we

can write,

ǫI(w) = {wi,j}I =





w1,1

w2,2

w3,3

w2,3 + w3,2

w1,3 + w3,1

w1,2 + w2,1





, ǫJ (u) = {ui,j}J =





u1,1

u2,2

u3,3

u2,3 + u3,2

u1,3 + u3,1

u1,2 + u2,1





(5.33)

And for the isotropic elasticity matrix,

DIJ = [cijkl]IJ =




2µ+ λ λ λ 0 0 0

λ 2µ+ λ λ 0 0 0

λ λ 2µ+ λ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ




(5.34)

It is possible to generate tables to make this rewrite more transparent for 3D as,
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5.4. WEAK FORM FOR 3D ELASTOSTATICS

I/J i/k j/l

1 1 1

2 2 2

3 3 3

4 2 3

4 3 2

5 1 3

5 3 1

6 1 2

6 2 1

such that,

D11 = c1111

D14 = c1123 = c1132

D55 = c1313 = c1331 = c3131 = c3113

131



CHAPTER 5. 3D LINEAR ELASTOSTATICS AND ELASTODYNAMICS

5.5 Review of plane elasticity: plane stress, plane strain,

and axisymmetric

For plane stress, consider a thin plate or beam in Fig.5.6.

L

L

tx1

x2

x3

• t≪ L

• σ33 ≈ 0, σ13 ≈ 0, σ23 ≈ 0

Figure 5.6. Plane stress elasticity.

The linear isotropic elasticity equation is then written as,

σ = D · ǫ (5.35)


σ11

σ22

σ12




=
E

1− ν2




1 ν 0

ν 1 0

0 0 1
2
(1− ν)







ǫ11

ǫ22

2ǫ12




(5.36)

For plane strain, consider a long, thick solid like a retaining wall loaded in plane as in

Fig.5.7.

L

B

H

x1

x2

x3

• B,H ≪ L

• ǫ33 ≈ 0, ǫ13 ≈ 0, ǫ23 ≈ 0

• σ33 6= 0, σ13 ≈ 0, σ23 ≈ 0

Figure 5.7. Plane strain elasticity.
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5.5. REVIEW OF PLANE ELASTICITY

The linear isotropic elastic constitutive relation becomes,




σ11

σ22

σ12




=




λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ







ǫ11

ǫ22

2ǫ12




(5.37)

σ33 = λ(ǫ11 + ǫ22) (5.38)

For torsionless, column compression with centric loading, in cylindrical coordinates, we have

axisymmetric elasticity as shown in Fig.5.8.

dA

r

r

rdθ

z

θ

x1

x2

x3

• independent of θ

• coordinates:
radial r
axial z
circumferential θ

Figure 5.8. Linear isotropic, axisymmetric elasticity.

For spatial integration, dv = rdθdA = rdθdrdz, where,

∫

Ω

(•)dv =
∫ 2π

0

∫

A

(•)rdAdθ = 2π

∫

A

(•)rdrdz (5.39)

The displacements are radial ur, axial uz, circumferential uθ. For strain, assume uθ = 0,

such that ǫrθ = ǫzθ = 0, but there is hoop strain due to radial displacement ǫθθ =
ur

r
.

For stresses, σrθ = σzθ = 0; hoop stress σθθ 6= 0, such that the linear isotropic elastic,
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axisymmetric stress-strain relation is,




σrr

σzz

σrz

σθθ



=




λ+ 2µ λ 0 λ

λ λ+ 2µ 0 λ

0 0 µ 0

λ λ 0 λ+ 2µ







ǫrr

ǫzz

2ǫrz

ǫθθ




(5.40)

5.6 von Mises stress

The definition of the von Mises (VM) stress is =
√

3
2
J2, where the second invariant of

the deviatoric stress J2 = sijsij. The deviatoric stress sij = σij − 1
3
σkkδij (it is traceless).

Consider a compression or tension specimen loaded axially, with potential confining stress if

geomaterial (soil, rock, concrete) such that,

σ =




σa 0 0

0 σr 0

0 0 σr




(5.41)

s = σ − 1

3
σii1 (5.42)

= (σa − σr)/3




2 0 0

0 −1 0

0 0 −1




(5.43)

Then, J2 =
2
3
(σa−σr)2, and VM =

√
3
2
J2 = |σa−σr| (= q in soil mechanics). For zero radial

stress, σr = 0, then VM = |σa|, which can be determined experimentally and compared the

VM value when conducting a 3D FEA for elasticity, even if you do not invoke a nonlinear

constitutive relation like elastoplasticity.
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5.7 Discrete, Galerkin form (G)

Find the approximate solution uhi (x) ≈ ui(x), where h is the discretization parameter, or

characteristic length of the mesh. Consider the 3D solid body with domain Ω, and discretize

with ‘elements’ of characteristic length h (may not all be equal), such as in Fig.5.9.

h
Ωh

Γh

• Ωh ⊂ Ω, Ω̄h = Ωh ∪ Γh

Figure 5.9. Discretization of domain Ω into ‘mesh’ Ωh.

We may rewrite the Weak form in discrete, Galerkin form as,

(G)





Find uhi (x) ∈ S h = {uhi : Ωh 7→ Rnsd , uhi ∈ H1, uhi = gui on Γ
h
u}, such that

∫
Ωh w

h
i,jcijklu

h
k,ldv =

∫
Ωh w

h
i fidv +

∫
Γh
t
wh

i t
σ
i da

holds ∀wh
i (x) ∈ V h = {wh

i : Ωh 7→ Rnsd , wh
i ∈ H1, wh

i = 0 onΓh
u}

(5.44)

where

• S h ⊂ S is the discrete space of admissible trial functions

• V h ⊂ V is the discrete space of weighting functions

• (G) ≈ (W ): note that even though uhi and wh
i are discrete approximations to ui and

wi, respectively, they must still satisfy restrictions on the spaces (in order to ensure

convergence: i.e., limh→0 u
h
i (x) = ui(x))
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5.8 Finite Element (FE) Matrix form

Discretize the 3D body into nel elements. For the global perspective, consider Fig.5.10.

e

Γh

Ωh

dx(A)

dy(A)

dz(A)

• uhi (x) =
∑nnp

A=1NA(x)di(A)

• global dofs: d1 = dx(A), d2 = dy(A), d3 =
dz(A), ...

• nnp is the number of nodal points

• NA(x) is the shape function at global node A

Figure 5.10. Global perspective

For the element perspective, consider an element e in Fig.5.11.

1

2

3

4

x

y

z

8 7

65

dex(3)

dey(3)

dez(3)

(xe1, y
e
1, z

e
1)

Ωe • local element nodal dof dei(a) = uhi (x
e
a, y

e
a, z

e
a)

• element domain Ωe

• discrete domain Ωh =A
nel

e=1
Ωe

• A
nel
e=1 is the element assembly operator

Figure 5.11. Element perspective.

Discretize the Galerkin integral equation into finite elements, such that,

nel

A
e=1

[∫

Ωe

whe

i,jcijklu
he

k,ldv =

∫

Ωe

whe

i fidv +

∫

Γe
t

whe

i t
σ
i da

]
(5.45)
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and write the interpolations as,

uh
e

k (x) =
nen∑

a=1

Na(x)d
e
k(a) =



 N e

︸︷︷︸
nsd×(nen∗nsd)

· de
︸︷︷︸

(nen∗nsd)×1





k

(5.46)

N a =




Na 0 0

0 Na 0

0 0 Na




(5.47)

uhe

=

[
N 1 N 2 . . . Nnen

]




de
1

de
2

...

de
nen



= N e · de (5.48)

whe

i (x) =
nen∑

a=1

Na(x)c
e
i(a) = {N e · ce}i (5.49)

where nen is number of element nodes, nsd = 3 is number of spatial dimensions for 3D.

Their spatial derivatives are written as,

uh
e

k,l(x) =

nen∑

a=1

∂Na(x)

∂xl
dek(a) (5.50)

whe

i,j(x) =

nen∑

a=1

∂Na(x)

∂xj
cei(a) (5.51)
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Recall that we re-wrote in matrix-vector form, such that for strain ǫh
e

(u) = Be · de:

ǫh
e

(u) =





uh
e

1,1

uh
e

2,2

uh
e

3,3

uh
e

2,3 + uh
e

3,2

uh
e

1,3 + uh
e

3,1

uh
e

1,2 + uh
e

2,1





=

nen∑

a=1




Na,1 0 0

0 Na,2 0

0 0 Na,3

0 Na,3 Na,2

Na,3 0 Na,1

Na,2 Na,1 0








de1(a)

de2(a)

de3(a)





=
nen∑

a=1

Ba · de
a =

[
B1 B2 . . . Bnen

]




de
1

de
2

...

de
nen




= Be
︸︷︷︸

6×(nen∗nsd)

· de
︸︷︷︸

(nen∗nsd)×1

(5.52)

Recall the coordinate transformation and use of the Jacobian:

∂Na

∂x
=

∂Na

∂ξ
· ∂ξ
∂x

=

[
∂Na

∂ξ
∂Na

∂η
∂Na

∂ζ

]



∂ξ
∂x

∂ξ
∂y

∂ξ
∂z

∂η
∂x

∂η
∂y

∂η
∂z

∂ζ
∂x

∂ζ
∂y

∂ζ
∂z




=
∂Na

∂ξ
· (Je)−1

and map (x, y, z) to (ξ, η, ζ).

Let D be the matrix form of the 4th order elastic modulus tensor, and then,

nel

A
e=1

(ce)T ·




(∫

Ωe

(Be)T ·D ·Bedv

)

︸ ︷︷ ︸
k

e

·de =

∫

Ωe

(N e)T · fdv
︸ ︷︷ ︸

f
e

f

+

∫

Γe
t

(N e)T · tσda
︸ ︷︷ ︸

f
e

t




(5.53)
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and,
nel

A
e=1

(ce)T ·
[
ke · de = f e

f + f e
t

]
(5.54)

After element assembly, we have,

K · d = F f + F t + F g (5.55)

But before assembling, let’s introduce the trilinear, hexahedral element in natural coordi-

nates.

5.9 Trilinear hexahedral element

Refer to pg.123 of Hughes [1987]. For coordinate mapping, refer to Fig.5.12.

x

y

1

4
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2
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

ξ
η
ζ




η

ξ

ζ

x =



x
y
z




Ωe

Figure 5.12. Trilinear hexahedral element in natural coordinates.

Recall the isoparametric mapping, xhe

(ξ) =
∑8

a=1Na(ξ)x
e
a, and trilinear shape functions,
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Na(ξ, η, ζ) =
1
8
(1 + ξaξ)(1 + ηaη)(1 + ζaζ). We then interpolate in terms of ξ as,

uh
e

i (ξ) =
8∑

a=1

Na(ξ)d
e
i(a) (5.56)

whe

i (ξ) =
8∑

a=1

Na(ξ)c
e
i(a) (5.57)

Then, we can evaluate the stiffness matrix and body force vector in the parent domain using

Gaussian quadrature as,

ke =

∫ 1

−1

∫ 1

−1

∫ 1

−1

[Be(ξ)]T ·D ·Be(ξ)jedξdηdζ (5.58)

f e
f =

∫ 1

−1

∫ 1

−1

∫ 1

−1

[N e(ξ)]T f̂(ξ)jedξdηdζ (5.59)

Similar to the heat flux BC in 2D, the traction vector BC at the element boundary Γe (if

the element is on the boundary Γh
t ) needs to be evaluated,

f e
t =

∫

Γe
t

(N e)T · tσda (5.60)

This evaluation is more involved in 3D, and will not be covered here.

5.10 Element assembly process

Refer to pg.92 of Hughes [1987].

• use IEN and ID “arrays” to obtain LM

• element nodes array, IEN(a, e) = A, where a is the local element node number, e

the element number, and A the global node number
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• the ID array relates global node numbers A and local dofs i to global equation numbers

(dofs)

• the location matrix (LM) can then be determined from the IEN and ID as LM(i, a, e) =ID(i,

IEN(a, e)) to return the global dof given local element nodal dof i, node number a and

element number e

Consider the example from pg.92 of Hughes [1987] in Fig.5.13,5.14.

Figure 5.13. Element assembly example [Hughes, 1987].
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Figure 5.14. Element assembly example [Hughes, 1987].
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5.11 Patch test

The patch test is an engineering version of the completeness condition, and is a

good check to see that a new finite element has been implemented correctly (with regard to

verification). We require an arbitrary patch of elements to satisfy exactly the following: (1)

rigid body motion without strain, and (2) constant strain in x and y directions (for 2D).

Consider the example in Fig.5.15: prescribe displacements at the boundary nodes, and solve

for displacement at node 5. The patch test passes if (1) the solution at node 5 is exact (takes

on values in the table), and (2) stresses and strains are exact at the Gauss points.

node x y

1 0 0

2 1 0

3 2 0

4 0 0.75

5 1.2 1.25

6 2 1

7 0 2

8 0.8 2

9 2 2

1 2

1

3

4

5

8
7

6

2

43

9

x

y

patch tests

test dex(a) dey(a)

1 1 0
2 0 1
3 xe

a 0
4 0 xe

a
5 ye

a 0
6 0 ye

a

Figure 5.15. Patch test.

5.12 Incompressibility Constraint

Refer to Chapter 4 of Hughes [1987].

(I) incompressible linear elasticity, ν → 0.5 (rubber-like materials).

σij = cijklǫkl = λǫkkδij + 2µǫij
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where the mean stress p related to bulk modulus K is,

p =
1

3
σii = Kǫvol ; K = λ+

2

3
µ =

E

3(1− 2ν)

To maintain constant pressure p for nearly incompressible elastic material, volumetric strain

ǫii = 0 as,

ν → 0.5 , K → ∞ =⇒ ǫvol = ǫii = 0

(II) metal plasticity, it is typically incompressible (isochoric) even with compressible elas-

ticity (e.g., ν = 0.3). The large isochoric plastic deformation can dominate the response and

lead to mesh locking in FE solutions.

(III) undrained, saturated soil plasticity: in soil with low hydraulic conductivity (per-

meability), for transient loading (during and immediately after construction), soil can behave

in an undrained condition, such that its plasticity is isochoric for a total stress analysis. Then

this becomes the same problem as metal plasticity for FE solutions (total stress analysis).

Consider the example on pg.207 of Hughes [1987].

As an example of mesh locking in Fig.5.16, consider the mesh composed of constant strain

triangles, where uhi,i = ǫhii = 0 holds pointwise since interpolation is linear.

For element 1: e = 1, de
2 = de

3 = 0,

ǫhvol = uhx,x + uhy,y = N1,xd
e
x(1) +N1,yd

e
y(1)

=
1

2(Area)

[
(ye2 − ye3)d

e
x(1) + (xe3 − xe2)d

e
y(1)

]

=⇒ dey(1) = 0

Thus, dex(1), or dx(A), is the free dof, and dy(A) = 0.
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A
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=
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=

1
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[
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]

dN3
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=

1

2(Area)

[
ye1 − ye2 xe2 − xe1

]

Figure 5.16. Example of mesh locking.

For element 2: e = 2, de
1 = de

3 = 0,

ǫhvol = uhx,x + uhy,y = N2,xd
e
x(2) +N2,yd

e
y(2)

=
1

2(Area)

[
(ye3 − ye1)d

e
x(2) + (xe1 − xe3)d

e
y(2)

]

=⇒ dex(2) = 0

Thus, dey(2), or dy(A), is the free dof, and dx(A) = 0. Therefore, there are no dofs at node A:

dx(A) = dy(A) = 0; so the mesh will lock! There is NO meaningful approximation ability of

this mesh using this element type (linear triangle). The linear triangle is a particularly poor

element to use for elastostatics, but there are better elements and methods to handle the

incompressiblity constraint:

• Reduced and Selective Integration: ‘Soften’ stiffness matrix by underintegrating. Full
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reduced integration leads to rank deficient stiffness matrix (i.e., singular) and thus

instability, whereas selective reduced integration only underintegrates the dilatational

part of stiffness matrix and maintains stability, Hughes 1987.

• Mixed Methods : Introduce pressure degrees of freedom to solve compressible and in-

compressible problems, Hughes 1987. Passing the Babus̆ka-Brezzi (LBB) condition

ensures convergence, Oden & Carey 1983.

• B̄-method : Split strain-displacement matrix B into deviatoric and dilatational parts,

then relax the incompressibility constraint on the dilatational part. For finite defor-

mations does NOT pass the LBB condition, Hughes 1980. Can be classified as an

Assumed Enhanced Strain Method.

• Assumed Enhanced Strain Method : Formulate variational equations of equilibrium

with enhanced strain or enhanced deformation gradient to relax the incompressibility

constraint, and embed this enhancement within the individual finite element domain

for efficient numerical solutions, Simo & Hughes 1986, Simo & Rifai 1990, Simo et

al. 1993.

• Hourglass Control : Uniform strain hexahedral element with additional nodal ‘hour-

glass’ forces applied to control spurious hourglass modes which result from full reduced

integration, Flanagan & Belytschko 1981.

146



5.12. INCOMPRESSIBILITY CONSTRAINT

Recall for plane strain,

D =




λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ



= D̄ +D (5.61)

D̄ =




2µ 0 0

0 2µ 0

0 0 µ




; D =




λ λ 0

λ λ 0

0 0 0




(5.62)

and the stiffness matrix:

ke =

∫

Ωe

[Be]T ·D ·Beda =

∫

Ωe

[Be]T · (D̄ +D) ·Beda (5.63)

= k̄
e
+ k

e
(5.64)

We use normal Gauss integration for shear stiffness matrix k̄
e
, and reduced integration

for volumetric stiffness k
e
. This is called “selective reduced integration” to keep the stiff-

ness matrix invertible. Note that selective reduced integration is limited to isotropy; for

anisotropy (and nonlinear formulations) we need something different, such as (1) B̄-method

(small strain), (2) mixed formulation, or (3) enhanced strain elements.

The LBB condition must be satisfied for convergence; in Fig.5.17 are discontinuous pressure

elements as examples.

With analogy with selective reduced integration schemes for small strain in Fig.5.18.

For continuous pressure elements, consider Fig.5.19.
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Figure 5.17. Examples of discontinuous pressure elements [Hughes, 1987].
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Figure 5.18. Analogy between selective reduced integration and mixed formulations [Hughes, 1987].
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Figure 5.19. Continuous pressure mixed formulation element [Hughes, 1987].
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5.13 Linear Elastodynamics

Refer to pg.423 of Hughes [1987]. Similar to the elastodynamic bar problem, ignoring damp-

ing for now, the Strong Form is,

(S)





Find ui(x, t) : Ω̄× [0, T ] 7→ Rnsd , such that

ρui,tt − σij,j = fi x ∈ Ω×]0, T [

ui(x, t) = gui (t) x ∈ Γu×]0, T [

σij(x, t)nj(x) = tσi (t) x ∈ Γt×]0, T [

ui(x, 0) = u0i(x) x ∈ Ω

ui,t(x, 0) = u0i,t(x) x ∈ Ω

(5.65)

with initial displacement u0i(x) and velocity u0i,t(x).

The Weak Form (derivation excluded) may be written as,

(W )





Find ui(x, t) ∈ S , such that

S = {ui : Ω 7→ Rnsd , t ∈ [0, T ], ui ∈ H1, ui(t) = gui (t) on Γu×]0, T [}
∫
Ω
(ρwiui,tt + wi,jcijkluk,l) dv =

∫
Ω
wifidv +

∫
Γt
wit

σ
i da

∫
Ω
wiui(x, 0)dv =

∫
Ω
wiu0i(x)dv

∫
Ω
wiui,t(x, 0)dv =

∫
Ω
wiu0i,t(x)dv

holds ∀wi(x) ∈ V = {wi : Ω 7→ Rnsd , wi ∈ H1, wi = 0 onΓu}

(5.66)

where the weak form is written for initial conditions, in case the initial displacement or

velocity is some function over the domain (i.e., not homogeneous).

Assume for the Galerkin form, (G) = (W h).

151



CHAPTER 5. 3D LINEAR ELASTOSTATICS AND ELASTODYNAMICS

For the Finite Element Matrix Form, the isoparametric formulation is,

xh
e

i (x) =
nen∑

a=1

Na(x)x
e
i(a) (5.67)

uh
e

i (x, t) =
nen∑

a=1

Na(x)d
e
i(a)(t) = {N e · de}i (5.68)

uh
e

i,t(x, t) =
nen∑

a=1

Na(x)ḋ
e
i(a)(t) =

{
N e · ḋe

}
i

(5.69)

uh
e

i,tt(x, t) =

nen∑

a=1

Na(x)d̈
e
i(a)(t) =

{
N e · d̈e

}
i

(5.70)

whe

i (x) =

nen∑

a=1

Na(x)c
e
i(a) = {N e · ce}i (5.71)

Then, the element form is,

nel

A
e=1

(ce)T ·




(∫

Ωe

ρ(N e)T ·N edv

)

︸ ︷︷ ︸
me

·d̈e
+

(∫

Ωe

(Be)T ·D ·Bedv

)

︸ ︷︷ ︸
k

e

·de

=

∫

Ωe

(N e)T · fdv
︸ ︷︷ ︸

f
e

f

+

∫

Γe
t

(N e)T · tσda
︸ ︷︷ ︸

f
e

t




(5.72)

and

nel

A
e=1

(ce)T ·




(∫

Ωe

(N e)T ·N edv

)

︸ ︷︷ ︸
me/ρ

·de(0) =

(∫

Ωe

(N e)T · u0(x)dv

)

︸ ︷︷ ︸
ue

0


 (5.73)

nel

A
e=1

(ce)T ·




(∫

Ωe

(N e)T ·N edv

)

︸ ︷︷ ︸
me/ρ

·ḋe
(0) =

(∫

Ωe

(N e)T · u̇0(x)dv

)

︸ ︷︷ ︸
u̇e

0


 (5.74)

and
nel

A
e=1

(ce)T ·
[
me · d̈e

+ ke · de = f e
f + f e

t

]
(5.75)
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nel

A
e=1

(ce)T ·
[
1

ρ
me · de(0) = ue

0

]
(5.76)

nel

A
e=1

(ce)T ·
[
1

ρ
me · ḋe

(0) = u̇e
0

]
(5.77)

After element assembly, and accounting for essential BCs, we have,

M · d̈+K · d = F f + F t + F g (5.78)

d(0) = ρM−1 ·U 0 (5.79)

ḋ(0) = ρM−1 · U̇ 0 (5.80)

Assume Rayleigh (proportional) damping as C = aM + bK , such that after assembly,

M · d̈+C · ḋ+K · d = F f + F t + F g (5.81)

Use the Newmark family of time integration schemes to integrate the hyperbolic ODE, as

we did before for the 1D elastodynamic bar.
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