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Chapter 1

Introduction

1.1 Background on the Finite Element Method (FEM)

1.1.1 What is the Finite Element Method (FEM)?

Possible answers from various perspectives:

� Mathematician: variational, numerical method to solve a partial di�erential equation

(PDE) or system of coupled PDEs (linear or nonlinear)

� Engineer:computational method to analyze various design scenarios in orderto reduce

wasteful prototyping and to understand potential failure scenarios

� Scientist: computational method to better understand physical processes in the observ-

able world

� Physician: computer software to analyze various surgical and prosthetic implantation

strategies in order to optimize a surgerys e�ectiveness
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CHAPTER 1. INTRODUCTION

1.1.2 Why conduct Finite Element Analysis (FEA)?

Possible answers:

� To model continuous solid body problems, using plate, shell, or continuum �nite ele-

ments.

� Beside solids, to solve other �eld problems, such as uid ow, heat transfer, and the

coupling of various �eld problems (e.g., solid-uid interaction, solid-thermomechanical

deformation, chemo-electrical, solid-uid porous ow and deformation ).

� To solve nonlinear problems computationally, with complex geometries, that would oth-

erwise be impossible with analytical or other numerical methods.

� To make as few assumptions as possiblewith regard to boundary conditions, potential

failure modes, etc.

1.1.3 Strengths and Weaknesses of FEM

Strengths:

1. Arbitrary element size, shape, and interpolation:quadrilaterals, triangles versus squares/rectangles

in �nite di�erence; linear, quadratic, or other polynomial shape function

2. Variational: reduced order of PDE and required continuity; integral formulation allows

embedded discontinuities (phase transitions, cracks, shock fronts, )

3. Element-based:formulate general �nite element that is then assembled for various

geometries and boundary conditions

4. Lagrangian representation:resolve interface conditions (contact)
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1.1. BACKGROUND ON THE FEM

Weaknesses:

1. Arbitrary element size, shape, and interpolation:it can be di�cult to mesh complex

geometries

2. Lagrangian representation:it is di�cult to resolve interface conditions (contact); for

large deformations, need re-meshing to avoid high aspect ratio elements; not always

well-suited for uid mechanics, hence the need for Eulerian formulations, or particle

methodslike ...

1.1.4 How to conduct a Finite Element Analysis (FEA)

We will try our own, but here is the general outline:

1. Build a model:

(a) create the geometry

(b) add material properties and boundary conditions

(c) create the solution type (e.g., elastostatics, heat transfer,...)

(d) select element type, and generate a mesh

2. Solve the problem for the \�eld" variable (e.g., displacement, temperature, ...):

(a) possibly choose solution parameters

(b) check for convergence (if solving nonlinearly; or if using an iterative linear equation

solver such as conjugate gradient)

3. Evaluate the results (e.g., stress, heat ux, ...):

(a) plot variables of interest for making design decision

13



CHAPTER 1. INTRODUCTION

(b) check quality of analysis versus known analytical solutions (veri�cation) and/or

experimental results (validation)

1.2 How This Course is Taught

� Covers the mathematical foundations, basics of FEM, in detail on the \board" and in

notes

� Covers both theory and application, but emphasize theory and understanding of FEA

� You may feel there is too much math in this course, but it is balanced with practical

FEA using Abaqus, and a project that allows further analysis using Abaqus or another

software of your choosing, or programming your own FEA code

� Also, CVEN 5511 will have additional problems on problem sets and exams; grading

also di�erent from CVEN 4511

� If you just want to learn to run FEA, and not the theory behind it, t hen you will likely

learn more from a software training course than from this course.

For a limited discussion of the procedure ofveri�cation and validation (V&V) , refer to

Oberkampf et al. [2004], Babuska and Oden [2004], Schwer [2007]:

� veri�cation: we check if the nonlinear governing equations are implemented correctly

in our �nite element (FE) code. This typically involves a combination of comparison

to an analytical solution (if one exists) and/or to a separate numerical implementation

(such as in Python); we also consider time step and mesh size re�nement (temporal

and spatial convergence). In CVEN 5511, we will do veri�cation to some degree.

14



1.2. HOW THIS COURSE IS TAUGHT

� validation: we check that the nonlinear governing equations are the correct ones to

solve; i.e., are the physics of the problem being represented correctly in the model? This

involves prediction of blind experimental data. Validation could be partly accomplished

through your project, but for true validation, this is beyond the scope of the course.

Calibration is a technique to estimate parameters from experimental data, and is not

to be mistaken forvalidation , although it is the �rst step toward validation. If you

have experimental data, you will likely conduct a calibration-exercise.
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Chapter 2

Linear FEM for Axially-Loaded Bar

For the 1D linear FEM, we assume linearity in the form of small strain, linear elasticity.

We take an axially-loaded bar as our example problem [Pinsky, 2001]. Topics covered in

remaining sections include the following:

(1) formulate di�erential form and apply boundary conditions (BCs) to give Strong Form

(S) of elastostatic bar;

(2) formulate variational, Weak Form (W);

(3) formulate discrete, Galerkin Form (G);

(4) formulate Finite Element (FE), Matrix form;

(5) introduce natural coordinates, and isoparametric formulation;

(6) element assembly to obtain Global Matrix form;

(7) numerical integration using Gaussian quadrature;

(8) convergence of FEM (compatibility and completeness), and introduce Bernoulli-Euler

beam;

(9) elastodynamics: modal analysis, Newmark's method for time integration.

17



CHAPTER 2. 1D LINEAR FEM

2.1 Di�erential equation and Strong Form (S)

2.1.1 Linearity assumptions

Our linearity assumptions are the following:

(1) Assume linear elasticity: Hooke's law� = E� , where � is the axial stress (Pa),E

the modulus of elasticity (Pa),� the axial strain (m/m).

(2) Assume small deformations: (refer to Fig.2.1) where Cauchy stress� = F=A, nom-

inal stress P = F=A0, strain increment d� = dL=L, deformed lengthL = L0 + u, and

total axial strain � =
RL

L 0
dL=L = ln(L=L 0) = ln(1 + u=L0). Assume a series expansion:

ln(1 + u=L0) = u
L 0

� 1
2

�
u

L 0

� 2
+ 1

3

�
u

L 0

� 3
� h.o.t.'s, where if u is small, u

L 0
� 1 =) � =

ln(1 + u=L0) � u
L 0

, and if area A � A0, then we have thesmall strain assumption :

� � u=L0, � � F=A0, and we write � = du=dx as our small strain as the spatial derivative of

the axial displacementu.

L

L0

A

A0
F

u

x

Figure 2.1. Axially-loaded bar assuming small deformations.
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2.1. DIFFERENTIAL EQUATION AND STRONG FORM (S)

2.1.2 Di�erential equation and Strong Form (S)

We can derive the di�erential equation for balance of linear momentum of elastostatics. Refer

to Fig.2.2 for the 1D bar with applied loads and BCs, where we have a concentrated force

F at x = L (N), distributed force f (x) along bar (N/m), and displacementg at x = 0 (m).

L

E(x), A(x)F

f (x)

g

x

Figure 2.2. Axially-loaded bar with BCs.

We consider an axial displacementu(x) of di�erential line segment dx at x, with internal

axial forceN (x) in Fig.2.3.

F

f (x)

g

dx

dx + du
dx dx = dx(1 + du

dx ) � dx

N (x) N (x) + dN
dx dx

u(x) + du
dx dxu(x)

Figure 2.3. Di�erential line segment dx of axially-loaded bar.

Summing the forces leads tobalance of linear momentum for a static axially loaded

19



CHAPTER 2. 1D LINEAR FEM

bar :

X

! +

Fx = 0 =) � N (x) + N (x) +
dN(x)

dx
dx + f (x)dx = 0 (2.1)

�
dN(x)

dx
= f (x) (2.2)

Recall thesmall strain de�nition of stress and strain :

� (x) =
N (x)
A(x)

= E(x)� (x) (2.3)

� (x) =
du(x)

dx
(2.4)

=) N (x) = EA(x)
du(x)

dx
(2.5)

Thus, the di�erential equation can be written as (assuming linear elasticity,� = Edu=dx):

�
d

dx

�
EA(x)

du
dx

�
= f (x) x 2 
 = (0 ; L) (2.6)

where x 2 
 reads \ x in the domain of 
", x 2 
 = (0 ; L) means 0 < x < L , and

x 2 �
 = [0 ; L] means 0� x � L. We write the BCs asforce BC at x = L, such that

N (L) = F or
�
EA du

dx

�
L

= F , and displacement BC at x = 0, such that u(0) = g. If BCs

are properly prescribed, then the PDE (ODE here) is well-posed, such that there is a unique

solution.

Given the di�erential equation and BCs , we may state theStrong Form (S) as:

(S)

8
>>>>>>><

>>>>>>>:

Find u(x) : �
 7! R; �
 = [0 ; L]; such that

� d
dx

�
EA(x) du

dx

�
= f (x) x 2 


�
EA du

dx

�
L

= F x = L

u(0) = g x = 0

(2.7)
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2.2. VARIATIONAL EQUATION AND WEAK FORM (W)

where u(x) : �
 7! R reads \with x in �
, u maps to the real number lineR", distributed

axial force f (x) is a body force, concentrated forceF is a natural, or Neumann, BC, and

prescribed displacementg is an essential, or Dirichlet, BC.

2.2 Variational equation and Weak Form (W)

From the Strong Form, we apply theMethod of Weighted Residuals to formulate the

Weak (or variational) Form (W) . \Weak" implies that the balance equation is not

satis�ed pointwise, but in an integral average sense. We can show equivalence between

Weak and Strong forms for smooth functions (i.e., nothing lost by Weak form, assuming

smoothness of functions); refer to Hughes [1987]. When we discretize the domain 
 for

the Galerkin form (i.e., 
 h � 
), approximations (meshes) are generated. We assume an

arbitrary weighting function w(x), which can be thought of as a \variation" of displacement

u(x) =) w(x) = �u (x), where � (� ) is the variation operator from variational calculus (refer

to Lanczos [1949], Washizu [1982]), or you can think of it as a virtual displacement. We

apply the Method of Weighted Residuals to the di�erential eq uation (not satis�ed

pointwise, but in an integral, average sense) such that,

Z L

0
w(x)

�
d

dx

�
EA(x)

du
dx

�
+ f (x)

�
dx = 0 (2.8)

where weintegrate by parts using the chain rule as d(ab)
dx = da

dx b+ db
dx a, and apply the

Divergence theorem in 1D such that
RL

0
dG
dx dx = GjL0 = G(L) � G(0). We apply the chain

rule as d
dx

�
w(x)EA(x) du

dx

�
= dw(x)

dx

�
EA(x) du

dx

�
+ w(x) d

dx

�
EA(x) du

dx

�
. We substitute into the

weighted residual and apply the Divergence theorem as,

�
wEA

du
dx

� L

0

�
Z L

0

dw
dx

EA
du
dx

dx +
Z L

0
wfdx = 0 (2.9)
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Note on notation: we sometimes simplifydu=dx= u;x . Recall BCsu(0) = g and
�
EA du

dx

�
L

=

F , and note that the variation of a known �eld (or constant) is zero:=) w(0) = �u (0) =

�g = 0. Then the variational, or integral form, results as,

Z L

0

�
dw
dx

EA
du
dx

�
dx

| {z }
related to internal strain energy

=
Z L

0
wfdx + w(L)F

| {z }
related to energy of external loads

(2.10)

The Weak Form (W) can then be stated as,

(W)

8
>>>><

>>>>:

Find u(x) 2 S = f u : 
 7! R; u 2 H 1; u(0) = gg; such that
RL

0

�
dw
dx EA du

dx

�
dx =

RL
0 wfdx + w(L)F

holds8w(x) 2 V = f w : 
 7! R; w 2 H 1; w(0) = 0 g

(2.11)

where 8 reads \for all," S is the space of admissible trial functions,V is the space of

weighting functions, H 1 is the �rst Sobolev space, such that theH 1 norm is �nite: i.e.,

kuk1 =
� RL

0 (u2 + u2
;x )dx

� 1=2
< 1 , kuk1 is called the \natural" norm, u 2 H 1 essentially

states that the �rst spatial derivative u;x CANNOT be a Dirac-Delta function, but can be a

Heaviside function (i.e., discontinuous).

We consider here an alternate method for formulating the variational equation: thePrinci-

ple of Minimum Potential Energy (PMPE) for Elasticity ; limitation: this variational

principle is only applicable to those physical systems thatlend themselves to a \functional" or

\potential energy" representation; e.g., certain multiphysics problems do not generally lend

themselves to such representation. We de�ne a potential energy �( u) in terms of internal

strain energyU(u) and potential energy of loadsV(u) as (see Lanczos [1949]),

�( u) = U(u) � V(u) (2.12)

where the PMPE states that the exact solutionu minimizes �, and thus the system is in
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2.2. VARIATIONAL EQUATION AND WEAK FORM (W)

equilibrium. We apply the stationarity condition on �, such that � � = 0. The applica-

tion of the variation operator � (� ) can be thought of acting like a time derivatived(� )=dt,

although it is not a time derivative. Recall the stress-strain curve for linear elasticity in

Fig.2.4, where the stored elastic strain energy densitye = 1
2 �� , the total elastic strain energy

U =
RL

0

R
A (e)dAdx =

RL
0 ( 1

2 �A� )dx = 1
2

RL
0 EA(x)

�
du
dx

� 2
dx, and the potential energy of the

external loads,V =
RL

0 ufdx + u(L)F .

�

E

�

1
2 ��

Figure 2.4. Stored strain energy for linear elasticity.

We then apply the stationarity condition as� � = �U � �V = 0, such that, (�ll in blanks

yourself)

� � = �U + �V = 0 (2.13)

�U = (2.14)

�V = (2.15)

and the variational equation for the Weak Form results as before by the Method of Weighted

Residuals as,
Z L

0

�
dw
dx

EA
du
dx

�
dx =

Z L

0
wfdx + w(L)F (2.16)
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2.3 Discretization and Galerkin Form (G)

We now make a subtle step in order to discretize the Weak Form by something called the

Galerkin Form (G) [Hughes, 1987]. We �nd the approximate solutionuh(x) � u(x), where

h is the discretization parameter, or characteristic length of the mesh. We consider our 1D

axially loaded bar with length L, and discretize with straight line elements of length

h (that may not all be equal), where if equal thenh = L=nel, and nel is the number of

elements (see Fig.2.5).

physical bar

node element

FE mesh
h

L

Figure 2.5. Discretized 1D bar.

For 1D, we see that 
h = (0 ; L) = 
, but for 2D and 3D (consider meshing a circle with

straight edge linear elements), 
h � 
 (i.e., discrete mesh 
 h is a subset of physical domain


 ). We then rewrite the Weak form in discrete, Galerkin form as

(G)

8
>>>><

>>>>:

Find uh(x) 2 S h = f uh : 
 h 7! R; uh 2 H 1; uh(0) = gg; such that
RL

0

�
dwh

dx EA duh

dx

�
dx =

RL
0 whfdx + wh(L)F

holds8wh(x) 2 V h = f wh : 
 h 7! R; wh 2 H 1; wh(0) = 0 g

(2.17)

where S h � S is the discrete space of admissible trial functions,V h � V is the discrete

space of weighting functions, (G) � (W), and note that even thoughuh and wh are discrete

approximations to u and w, respectively, they must still satisfy restrictions on the spaces

(in order to ensure convergence: i.e., limh! 0 uh = u). Note that the essential BC is satis�ed

exactly, uh(0) = g. Next, we treat these discrete line elements as�nite elements with
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2.4. FINITE ELEMENT (FE) MATRIX-VECTOR FORM

appropriate interpolation functions, etc.

2.4 Finite Element (FE) Matrix-Vector Form

Starting with the Galerkin Form (G), we now discretize the 1D bar intonel elements with

nodal degrees of freedom (dofs). From theglobal perspective (Fig.2.6, the whole mesh),

we consideruh(x) =
P nnp

A=1 NA (x)dA over 
 h = (0 ; L), nnp is the number of global nodal

points, and NA (x) is the shape (interpolation) function at global nodeA.

1 2 21 3 .... nelnel-1 nnpnnp-1nnp-2

g
f (x) F

dnnpd1 d2 d3

Figure 2.6. Discretized 1D bar into nel �nite elements.

From the element perspective consider an elemente (Fig.2.7). This is one of the

strengths of the FEM , the fact that element calculations can be generalized for a length

he, areaAe, and elasticity modulusE e.

1 2e

de
1 de

2

xe
1 xe

2

he

Figure 2.7. Single linear element.

The element length ishe = xe
2 � xe

1, element domain 
e = ( xe
1; xe

2), total discrete domain


 h = Anel
e=1 
 e, and A nel

e=1
is the element assembly operator that must be programmed

(more on this later).
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Let us consider a 2-noded element with linear shape functions (interpolations, Fig.2.8).

1 2

1
N e

1

he 1 2

1
N e

2

he

Figure 2.8. Linear shape functions.

The shape function at node 1 of elemente is N e
1 (x) = ( xe

2 � x)=he, where the Kronecker-Delta

property of shape functions is satis�ed asN e
1 (xe

1) = 1, N e
1 (xe

2) = 0. The shape function at

node 2 of elemente is N e
2 (x) = ( x � xe

1)=he, where likewise the Kronecker-Delta property of

shape functions is satis�ed asN e
2 (xe

1) = 0, N e
2 (xe

2) = 1.

Consider theelement interpolation for displacement as,

uhe
(x) =

nenX

a=1

N e
a (x)de

a = N e
1 (x)de

1 + N e
2 (x)de

2 (2.18)

=
�

N e
1 N e

2

�
2

6
4

de
1

de
2

3

7
5 (2.19)

= N e(x) � de (2.20)

where we note thatuhe
(xe

1) = N e
1 (xe

1)de
1 + N e

2 (xe
1)de

2 = de
1 and nen is number of element nodes,

wherenen = 2 for linear 2-node element.N e
a (x) is the shape function of local element node
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a. Likewise, theelement interpolation for the weighting function is

whe
(x) =

nenX

a=1

N e
a (x)ce

a = N e
1 (x)ce

1 + N e
2 (x)ce

2 (2.21)

=
�

N e
1 N e

2

�
2

6
4

ce
1

ce
2

3

7
5 (2.22)

= N e(x) � ce (2.23)

where ce is the vector of nodal weighting function values (which are arbitrary since the

weak form must hold \8w(x)," except at an essential BC).We choose to use the same shape

(interpolation) functions for uhe
and whe

, which will lead to a symmetric sti�ness matrix;

when they are the same, it is calledBubnov-Galerkin ; when they are di�erent, it is called

Petrov-Galerkin , for assumed enhanced strain methods, for example [Hughes,1987].

We rewrite the Galerkin form in terms of �nite elements,

nel

A
e=1

Z


 e

�
dwhe

dx
EA

duhe

dx

�
dx =

nel

A
e=1

� Z


 e
whe

f (x)dx
�

+ wh(L)F (2.24)

Taking spatial derivatives, we have

duhe

dx
=

dN e

dx
� de = B e � de =) B e =

�
dN e

1
dx

dN e
2

dx

�
(2.25)

where B e is called the element strain-displacement matrix. Likewise, dwh e

dx = B e � ce =

(ce)T � (B e)T , since dwhe
=dx is a scalar. We now substitute these expressions into the

Galerkin form as,

nel

A
e=1

(ce)T �
� Z


 e
(B e)T � B eEAdx

�

| {z }
k e

�de =
nel

A
e=1

(ce)T �
� Z


 e
(N e)T f (x)dx

�

| {z }
f e

f

+ wh(L)F (2.26)

wherek e is the element sti�ness matrix,f e
f is the element distributed load vector, and vector
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product (B e)T �B e =

2

6
4

dN e
1

dx

dN e
2

dx

3

7
5 �

�
dN e

1
dx

dN e
2

dx

�
is a 2� 2 matrix. Note that wh(L) = cnnp = cnel

2 ,

such that

wh(L)F =
�

cnel
1 cnel

2

�
�

2

6
4

0

F

3

7
5 = ( cnel )T � f nel

F (2.27)

All other f e
F = 0 for e 6= nel, so we writewh(L)F = A nel

e=1
(ce)T � f e

F , and

nel

A
e=1

(ce)T �
�

k e � de = f e
f + f e

F

	
(2.28)

Before we learn how to assemble these individual �nite element matrices and vectors into

a global matrix form, we will consider a powerfulchange of coordinatesfor shape functions

and numerical integration that makes �nite element programs mucheasier to write and thus

more e�cient to run.

2.5 Natural coordinates and Isoparametric Formula-

tion

We apply achange of variablesfrom the global coordinatex to the natural coordinate� that

is local to the element (Fig.2.9), where,

� =

8
>>>><

>>>>:

� 1 at local node 1

0 at the center

1 at local node 2

(2.29)
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1 2

-1 +1�

Figure 2.9. Local, or natural coordinate � .

The linear shape functions may then be re-written as,

N1(� ) =
1
2

(1 � � ) ; N2(� ) =
1
2

(1 + � ) (2.30)

Na(� ) =
1
2

(1 + � a� ) (2.31)

where� a is the natural coordinate of nodea (i.e., for a = 1, � 1 = � 1, and fora = 2, � 2 = 1),

and the Na(� ) retain the Kronecker-Delta property, such that,

Na(� b) =

8
><

>:

1 forb= a

0 forb6= a
(2.32)

The element displacement and weighting function can then be writtenas,

uhe
(� ) = N e(� ) � de ; whe

(� ) = N e(� ) � ce (2.33)

Likewise, the global coordinatex and natural coordinate� are related by the mappingas,

xhe
(� ) =

nenX

a=1

Na(� )xe
a = N1(� )xe

1 + N2(� )xe
2 (2.34)

=
�

N1(� ) N2(� )

�
2

6
4

xe
1

xe
2

3

7
5 (2.35)

= N e(� ) � x e (2.36)

Therefore, this formulation is calledisoparametric because the same shape functions are
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used to interpolate displacementsand global coordinates (`iso' means same).This is how

curved element boundary geometries are generated, using higher-order shape functions to

interpolate the global coordinates (for 2D and 3D geometries). We de�ne the Jacobian of

element coordinate transformationj e as,

j e(� ) :=
dxhe

(� )
d�

=
dN e(� )

d�
� x e (2.37)

=
�

� 1
2

1
2

�
2

6
4

xe
1

xe
2

3

7
5 (2.38)

=
1
2

(xe
2 � xe

1) =
he

2
(2.39)

where the symbol \:=" means a de�nition. This implies the di�erential map between coor-

dinates asdx = j ed� = ( he=2)d� , where,

duhe
(� )

dx
=

dN e(� )
dx

� de =
dN e(� )

d�
d�
dx

� de =
1
j e

dN e(� )
d�

� de = B e � de (2.40)

Consider anexample: a quadratic equation in x with constant coe�cients a and b, and

global nodal coordinates for a linear 2-node 1D �nite element as,

 (x) = a + bx2 ;
xe

1 = 4

xe
2 = 6

9
>=

>;
=) he = 2 ; j e = 1 (2.41)

Then, the map fromx to � occurs as follows,

xhe
(� ) = N e(� ) � x e =

1
2

(1 � � )4 +
1
2

(1 + � )6 = 5 + � (2.42)

 ̂ (� ) =  (x(� )) = a + b(5 + � )2 (2.43)
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Now, let us integrate over the element domain as follows,

Z xe
2

xe
1

 (x)dx =
Z 1

� 1
 ̂ (� )j e(� )d� (2.44)

recalling dx = j e(� )d� (2.45)
Z 6

4
(a + bx2)dx =

Z 1

� 1

�
a + b(5 + � )2

�
(1)d� (2.46)

For higher-order shape functions (quadratic, cubic, ...), transition elements (when we get to

2D), and for higher spatial dimensions (2D and 3D), isoparametric �nite elements simplify

considerably the formulation and numerical integration of element matrices and vectors.

Now, recall the sti�ness matrix for an elemente, with mapping to natural coordinate � as,

k e =
Z xe

2

xe
1

[B e(x)]T EA(x)B e(x)dx (2.47)

=
Z xe

2

xe
1

EA(x)

2

6
4

� 1
he

1
he

3

7
5

�
� 1
he

1
he

�
dx =

1
(he)2

 Z xe
2

xe
1

EA(x)dx

!
2

6
4

1 � 1

� 1 1

3

7
5

=
1

(he)2

� Z 1

� 1

dEA(� )
he

2
d�

�
2

6
4

1 � 1

� 1 1

3

7
5 =

1
2he

� Z 1

� 1

dEA(� )d�
�

2

6
4

1 � 1

� 1 1

3

7
5(2.48)

whereEA(� ) could vary along the element length (e.g., a tapered bar). Likewise,recall the

distributed load vector as,

f e
f =

Z xe
2

xe
1

[N e(x)]T f (x)dx =
Z 1

� 1
[N e(� )]T f̂ (� )

he

2
d� (2.49)

=
he

4

Z 1

� 1

2

6
4

1 � �

1 + �

3

7
5 f̂ (� )d� (2.50)
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2.6 Assembly process for Global Matrix Form

Now, with individual element sti�ness matrices and force vectors evaluated, how do we

obtain the global matrix system of FE equations to solve for the unknown displacements, to

then use to calculate strain and stress? Answer: we form the global matrix FE equations by

assembling the individual element matrices leading to the following matrix form as,

K � d = F g + F f + F F (2.51)

where K is the global sti�ness matrix, F g is the global force vector due to applied dis-

placement BCs (for linear problems),F f is the global distributed force vector, andF F is

the global concentrated force vector. In an FE computer program, an `algorithm' like the

assembly operatorAnel
e=1 usually takes the form of an array or matrix. This assembly process

will be di�erent depending on the choice of the computer programmer and FE developer.

In this case, we will form aLocation Matrix (LM) . Consider the 2 element example in

Fig.2.10, where the LM is,

element #

local node #

1 2

1 1 2

2 2 3

global d.o.f.
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1 2

e

1 2

1

3

2

de
1 de

2

d1 d2 d3

d1
1 d1

2

d2
1

d2
2

Figure 2.10. Two element mesh example.
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2.6.1 Example 1

This example is taken from Pinsky [2001]. We will consider this example for demonstrating

the assembly process for the global �nite element sti�ness matrix and force vectors. Refer to

Fig.2.11, whereR1 and R6 are the reaction forces at the nodes where the displacements are

prescribed. These forces can be calculated as a post-processingstep after the displacements

are solved.

1.0 1.0 1.0 1.0 1.0

5.0 7.5

1.0 2.0 3.0 3.0

0.5
1.5 2.5

1 2 3 4 5 61 5432

u(0) = 0 u(5) = 0 :25

L

EA

f (x)

d1 d2 d3 d4 d5 d6

R1 R6

( x 2 � 2x + 2)

Figure 2.11. Example 1 for assembly procedure.

The bar of lengthL = 5 with variable EA(x) and distributed force f (x) shown in Fig.2.11 is

discretized into 5 �nite elements (nel = 5), 6 nodes (n = 6), and 6 degrees of freedom (ndof =

6) as shown. Essential boundary conditions areu(0) = 0 and u(5) = 0 :25. Concentrated

forces of 5.0 and 7.5 are applied atx = 1:0 and x = 3:0, respectively.
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In summary, for the essential B.C.s,

uh(0) = 0 = ) d1 = 0

uh(5) = 0 :25 =) d6 = 0:25

wh(0) = 0 = ) c1 = 0

wh(5) = 0 = ) c6 = 0

The concentrated forces can be lumped to one of the element degrees of freedom, or split

between two elements. We will split in half the concentrated forces between two elements,

but the end result is the same (they are added together at the nodal dofs during the assembly

process). The concentrated force vectors are written as,

f 1
F =

2

6
4

R1

2:5

3

7
5 f 2

F =

2

6
4

2:5

0

3

7
5 f 3

F =

2

6
4

0

3:75

3

7
5 f 4

F =

2

6
4

3:75

0

3

7
5 f 5

F =

2

6
4

0

R6

3

7
5 (2.52)

Recall the equation for the element distributed force vector as,

f e
f =

he

4

Z 1

� 1

2

6
4

1 � �

1 + �

3

7
5 bf (� )d� (2.53)

So for element 1,bf (� ) = 0 :5, and then,

f 1
f =

1
4

Z 1

� 1

2

6
4

1 � �

1 + �

3

7
5 0:5d� =

2

6
4

0:25

0:25

3

7
5 (2.54)

and so for the other elements, we have,

f 2
f =

2

6
4

0:25

0:25

3

7
5 f 3

f =

2

6
4

0:75

0:75

3

7
5 f 4

f =

2

6
4

0:75

0:75

3

7
5 f 5

f =

2

6
4

1:25

1:25

3

7
5 (2.55)
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For calculating the element sti�ness matrices , recall the equation for the individual

element sti�ness matrix for an elemente as,

k e =
1

2he

Z 1

� 1

dEA(� )d�

2

6
4

1 � 1

� 1 1

3

7
5 (2.56)

Then for element 1,h1 = 1 and EA = 1, we have,

k 1 =

2

6
4

1 � 1

� 1 1

3

7
5 (2.57)

For element 2, EA(x) = x2 � 2x + 2, where recall x(� ) = N e(� ) � x e = (3 + � )=2, so

dEA(� ) = (1 =4)� 2 + (1 =2)� + 5=4, then after integrating, we have,

k 2 = (4 =3)

2

6
4

1 � 1

� 1 1

3

7
5 (2.58)

and so forth for the other elements as,

k 3 = 2:0

2

6
4

1 � 1

� 1 1

3

7
5 k 4 = 3:0

2

6
4

1 � 1

� 1 1

3

7
5 k 5 = 3:0

2

6
4

1 � 1

� 1 1

3

7
5 (2.59)

Assembly of global sti�ness matrix and force vectors using t he Location Matrix

(LM): How do we obtain the global sti�ness matrix and force vector from these individual

element ones? Answer: we assemble them. For this example, the Location Matrix (LM) is

generated as,

element number
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local node number

1 2 3 4 5

1 1 2 3 4 5

2 2 3 4 5 6

d.o.f.

Then for element 1, the local sti�ness matrix values and their corresponding global degrees

of freedom are tabulated from the LM as,

k 1

1 2

1 1 -1

2 -1 1

And its contribution to the global sti�ness matrix looks as follows,

K 1

1 2 3 4 5 6

1 1 -1 0 0 0 0

2 -1 1 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

For element 2, the element local sti�ness matrix and its corresponding global dofs are,

k 2

2 3

2 4/3 -4/3

3 -4/3 4/3

which when placed in the global sti�ness matrix, looks like,
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K 2

1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 4/3 -4/3 0 0 0

3 0 -4/3 4/3 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

and so forth, such that,

K =
nel

A
e=1

k e =
nelX

e=1

K e =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 � 1 0 0 0 0

� 1 7=3 � 4=3 0 0 0

0 � 4=3 10=3 � 2 0 0

0 0 � 2 5 � 3 0

0 0 0 � 3 6 � 3

0 0 0 0 � 3 3

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(2.60)

Note that K = K T , i.e., it is symmetric, but it is also singular, meaning currently it is

not invertible and therefore there is no unique solution for the displacements. What will we

need? Answer: ESSENTIAL B.C.'S!

First, assemble the global force vectors in the same way as the sti�ness matrix as,

F 1
f =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0:25

0:25

0

0

0

0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

F 2
f =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0

0:25

0:25

0

0

0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: : : F f =
nel

A
e=1

f e
f =

nelX

e=1

F e
f =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0:25

0:5

1

1:5

2

1:25

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(2.61)
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and the concentrated force vector as,

F F =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

R1

5

0

7:5

0

R6

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(2.62)

Account for essential boundary conditions: The full �nite element matrix equations

look like (including the pre-multiplication of the nodal weighting function vector c) as,

0 =
�

c1 c2 c3 c4 c5 c6

�
�

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 � 1 0 0 0 0

� 1 7=3 � 4=3 0 0 0

0 � 4=3 10=3 � 2 0 0

0 0 � 2 5 � 3 0

0 0 0 � 3 6 � 3

0 0 0 0 � 3 3

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

d1

d2

d3

d4

d5

d6

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

�

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0:25

0:5

1

1:5

2

1:25

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

�

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

R1

5

0

7:5

0

R6

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

(2.63)

Recall that c1 = c6 = 0, which in e�ect cancels the 1st and 6th rows, and thatd1 = 0 and
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d6 = 0:25. The equations are then reduced to,

0 =
�

c2 c3 c4 c5

�
�

8
>>>>>>><

>>>>>>>:

2

6
6
6
6
6
6
6
4

7=3 � 4=3 0 0

� 4=3 10=3 � 2 0

0 � 2 5 � 3

0 0 � 3 6

3

7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
4

d2

d3

d4

d5

3

7
7
7
7
7
7
7
5

+ 0:0

2

6
6
6
6
6
6
6
4

� 1

0

0

0

3

7
7
7
7
7
7
7
5

+ 0:25

2

6
6
6
6
6
6
6
4

0

0

0

� 3

3

7
7
7
7
7
7
7
5

�

2

6
6
6
6
6
6
6
4

0:5

1

1:5

2

3

7
7
7
7
7
7
7
5

�

2

6
6
6
6
6
6
6
4

5

0

7:5

0

3

7
7
7
7
7
7
7
5

9
>>>>>>>=

>>>>>>>;

(2.64)

Written in symbolic form, the reduced matrix equations look like,

0 = cT � (K � d � F g � F f � F F ) (2.65)

Arbitrary weighting function vector c: Recall the Galerkin form, which states that:

\Find uh ... for all wh 2 Vh " Then the weighting function nodal values in the vectorc

must be arbitrary (except at essential BCs where they are 0), such that to satisfy the residual

equality in Eq.(2.65), we must satisfy the Finite Element Matrix equations as,

K � d = F g + F f + F F (2.66)

To summarize, theGeneral Approach to Assembly of Global FE Equations:

1. discretize and assign node and element numbers

2. assign degrees of freedom (dofs) to each node

3. create LM and assemble

4. for dof with �xed displacement (u = 0), cancel those rows and columns of the global
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sti�ness matrix and rows of the forcing vectors

5. for dof with prescribed displacement (u = g), cancel those rows of the global sti�ness

matrix and forcing vectors, and multiply the corresponding columnsof the sti�ness

matrix to calculate the force vectorF g associated with the prescribed displacements

6. now you haveK and F , so solveK � d = F for the displacementsd

7. do any post-processing to calculate stresses within the elements and/or forces at the

nodes (we will discuss via the examples)
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2.6.2 Example 2

This example is taken from Pinsky [2001]. The Young's modulus and cross-sectional area

are constant: E = 8, A = 1. Consider the example in Fig.2.12.

4.0 2.0 2.0 2.0 2.0

7.0 12

1 2 3 4 5 61 5432

25

u(0) = 0 u(8) = 0 u(12) = 0

d1 d2 d3 d4 d5 d6

R1 R4 R6

Figure 2.12. Example 2 for assembly procedure.

For the essential B.C.s,

uh(0) = 0 = ) d1 = 0

uh(8) = 0 = ) d4 = 0

uh(12) = 0 =) d6 = 0

wh(0) = 0 = ) c1 = 0

wh(8) = 0 = ) c4 = 0

wh(12) = 0 =) c6 = 0

For the concentrated forces,

(F2)F = 7

(F3)F = 12

(F5)F = 25
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Recall the element sti�ness matrix, which for constantEA is,

k e =
1

2he

� Z 1

� 1

dEA(� )d�
�

2

6
4

1 � 1

� 1 1

3

7
5 =

EA
he

2

6
4

1 � 1

� 1 1

3

7
5 (2.67)

whereEA=he is the axial sti� of element e with constant EA. There is no distributed axial

force along the bar, sof e
f = 0 for all elements.

Generate the LM as,

element number

local node number

1 2 3 4 5

1 1 2 3 4 5

2 2 3 4 5 6

d.o.f.

For element 1, the local sti�ness matrix is

k 1

1 2

1 2 -2

2 -2 2

When placed in the global matrix, it becomes

K 1

1 2 3 4 5 6

1 2 -2 0 0 0 0

2 -2 2 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0
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For element 2 (and all other elements), the local sti�ness matrix is,

k 2

2 3

2 4 -4

3 -4 4

And when placed in the global matrix, it becomes,

K 2

1 2 3 4 5 6

1 0 0 0 0 0 0

2 0 4 -4 0 0 0

3 0 -4 4 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

And so forth, such that

K =
nel

A
e=1

k e =
nelX

e=1

K e =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

2 � 2 0 0 0 0

� 2 6 � 4 0 0 0

0 � 4 8 � 4 0 0

0 0 � 4 8 � 4 0

0 0 0 � 4 8 � 4

0 0 0 0 � 4 4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(2.68)

Assemble the global concentrated force vector in the same way asthe sti�ness matrix, or

just place the concentrated forces at the corresponding dofs (but make sure they do not add
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up to more than what is applied), such that,

F F =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

R1

7

12

R4

25

R6

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(2.69)

Now, strike out rows and columns ofK associated with the �xed dofs, and rows ofF with

�xed dof, such that,

K =

2

6
6
6
6
4

6 � 4 0

� 4 8 0

0 0 8

3

7
7
7
7
5

; F F =

2

6
6
6
6
4

7

12

25

3

7
7
7
7
5

(2.70)

and solve ford =
�

d2 d3 d5

� T

=
�

3:25 3:125 3:125

� T

. We post-process to calculate

the element axial stress� e as,

� e = E� e = EB e � de = E
�

� 1
he

1
he

�
�

2

6
4

de
1

de
2

3

7
5 (2.71)
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and for each element,

� 1 = E
�

� 1
4

1
4

�
�

2

6
4

0

d2

3

7
5 = 2d2 = 6:5 (2.72)

� 2 = E
�

� 1
2

1
2

�
�

2

6
4

d2

d3

3

7
5 = 4( d3 � d2) = � 0:5 (2.73)

� 3 = � 4d3 = � 12:5 (2.74)

� 4 = 4d5 = 12:5 (2.75)

� 5 = � 4d5 = � 12:5 (2.76)

What do you notice about the stresses within the elements? Also, you can calculate the

internal element axial forceN e = � eAe.

We can plot the displacement and stress solution along the bar as (plot by hand to visualize),

d =
�

0 3:25 3:125 0 3:125 0

� T

(2.77)

� 1 = 6:5 ; � 2 = � 0:5 ; � 3 = � 12:5 ; � 4 = 12:5 ; � 5 = � 12:5 (2.78)

Note that the internal axial element forcesN e do not equal the applied nodal forces at the

respective nodes. Let us try to understand why. We revisit the Galerkin form (recall E = 8

and A = 1, and body forcef = 0), where,

Z 12

0
wh

;xEAu h
;xdx = wh(4)7 + wh(6)12 + wh(10)25 (2.79)

or since� h = E� h = Euh
;x = 8uh

;x , we have,

Z 12

0
wh

;x � hdx = 7c2 + 12c3 + 25c5 (2.80)
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Should this equation hold? It better! We see that,

Z 12

0
wh

;x � hdx =
�

c1 c2

� Z 4

0

2

6
4

� 1
4

1
4

3

7
5 6:5dx (2.81)

+
�

c2 c3

� Z 6

4

2

6
4

� 1
2

1
2

3

7
5 (� 0:5)dx +

�

c3 c4

� Z 8

6

2

6
4

� 1
2

1
2

3

7
5 (� 12:5)dx

+
�

c4 c5

� Z 10

8

2

6
4

� 1
2

1
2

3

7
5 12:5dx +

�

c5 c6

� Z 12

10

2

6
4

� 1
2

1
2

3

7
5 (� 12:5)dx

= (6 :5 � (� 0:5))c2 + ( � 0:5 + 12:5)c3 + (12:5 � (� 12:5))c5 = 7c2 + 12c3 + 25c5

OK, in an integral average sense, the nodally applied forces balancein the Galerkin form!

Recall that the Galerkin form is the discrete version of the Weak form.

2.6.3 Example 3

This example is taken from Pinsky [2001]. This example is the same as Example 2, except

we have prescribed displacements as shown in Fig.2.13.

4.0 2.0 2.0 2.0 2.0

7.0 12

1 2 3 4 5 61 5432

25

u(0) = 0 :2 u(8) = � 0:1 u(12) = 0

d1 d2 d3 d4 d5 d6

R1 R4 R6

Figure 2.13. Example 3 for assembly procedure.
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Recall the global sti�ness matrix and force vector before applyingessential BCs,

K =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

2 � 2 0 0 0 0

� 2 6 � 4 0 0 0

0 � 4 8 � 4 0 0

0 0 � 4 8 � 4 0

0 0 0 � 4 8 � 4

0 0 0 0 � 4 4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; F F =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

R1

7

12

R4

25

R6

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(2.82)

Then, cancel rows and columns associated with �xed displacements(d6 = 0) as,

K =

2

6
6
6
6
6
6
6
6
6
6
4

2 � 2 0 0 0

� 2 6 � 4 0 0

0 � 4 8 � 4 0

0 0 � 4 8 � 4

0 0 0 � 4 8

3

7
7
7
7
7
7
7
7
7
7
5

; F F =

2

6
6
6
6
6
6
6
6
6
6
4

R1

7

12

R4

25

3

7
7
7
7
7
7
7
7
7
7
5

(2.83)

and cancel rows associated with prescribed displacements such that,

K =

2

6
6
6
6
4

� 2 6 � 4 0 0

0 � 4 8 � 4 0

0 0 0 � 4 8

3

7
7
7
7
5

; F F =

2

6
6
6
6
4

7

12

25

3

7
7
7
7
5

(2.84)

and multiply corresponding columns ofK by prescribed displacements to calculateF g as,

� F g = 0:2

2

6
6
6
6
4

� 2

0

0

3

7
7
7
7
5

+ ( � 0:1)

2

6
6
6
6
4

0

� 4

� 4

3

7
7
7
7
5

=

2

6
6
6
6
4

� 0:4

0:4

0:4

3

7
7
7
7
5

(2.85)
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The total force vector is then,

F = F F + F g =

2

6
6
6
6
4

7:4

11:6

24:6

3

7
7
7
7
5

(2.86)

The sti�ness matrix is the same as the previous example, so the displacements can be

calculated as,

d =
�

d2 d3 d5

� T

=
�

3:3 3:1 3:075

� T

(2.87)

In order to calculate the reaction forces, once we have the displacements, we calculate as

follows,

d =
�

0:2 3:3 3:1 � 0:1 3:075 0

� T

(2.88)

2

6
6
6
6
4

R1

R4

R6

3

7
7
7
7
5

=

2

6
6
6
6
4

2 � 2 0 0 0 0

0 0 � 4 8 � 4 0

0 0 0 0 � 4 4

3

7
7
7
7
5

�

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

d1

d2

d3

d4

d5

d6

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

=

2

6
6
6
6
4

� 6:2

� 25:5

� 12:3

3

7
7
7
7
5

(2.89)
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2.7 Numerical integration - Gaussian Quadrature

It is not possible always to evaluate in closed-form the integral for an element sti�ness

matrix or forcing vector. Thus, we resort to numerical integration (even if the integral can

be evaluated analytically for special cases: i.e., element shape, etc.); see Sect.3.8 of Hughes

[1987]. Consider our example in 1D as,

Z


 e
 (x)dx =

Z 1

� 1
 ̂ (� )j e(� )d� (2.90)

First, let us introduce an integration rule as follows,

Z 1

� 1
g(� )d� =

 
n intX

l=1

g( ~� l )Wl

!

+ R �
n intX

l=1

g( ~� l )Wl (2.91)

where nint is the number of integration points, ~� l is the natural coordinate of integration

point l , Wl is the `weight' of thelth integration point, and R the remainder.

Examples of rules:

1. trapezoidal rule:

-1 +1
0

X X
i.p. i.p.

�

� nint = 2

� ~� 1 = � 1, ~� 2 = 1

� Wl = 1 for l = 1; 2

� R = ( � 2=3)g;�� ( ~� ), ~� 2 [� 1; 1]

This rule is 2nd order accurate since it can exactly integrate constants and linear poly-

nomials, but is approximate for higher order polynomials or non-polynomial functions.

2. Simpson's rule:
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-1 +1
0

X X
i.p. i.p.

X
i.p.

�

� nint = 3

� ~� 1 = � 1, ~� 2 = 0, ~� 3 = 1

� W1 = W3 = 1=3, W2 = 4=3

� R = ( � 1=90)g;���� ( ~� ), ~� 2 [� 1; 1]

This rule is 4th order accurate because it can integrate polynomials up to 3rd order

(cubic) exactly.

BUT there is an integration rule just as accurate that uses fewer i.p.'s, and thus is more

e�cient computationally; it is called Gaussian quadrature .

Gaussian quadrature is exact only for polynomials , and approximate otherwise, but

we use it regardless because it is e�cient computationally (stability considerations are beyond

the scope of this discussion; let us assume for the problems we are considering that Gaussian

quadrature remains stable, i.e., there are no oscillations of strain and stress spatially along

the Gauss points of an element).

1. 1pt (2nd order accurate):

-1 +1
0

X
i.p.

�

� nint = 1

� ~� 1 = 0

� W1 = 2

� R = (1 =3)g;�� ( ~� ), ~� 2 [� 1; 1]

2. 2pt (4th order accurate):
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-1 +1
0

X
i.p.

X
i.p.

�

� nint = 2

� ~� 1 = � 1=
p

3, ~� 2 = 1=
p

3

� W1 = W2 = 1

� R = (1 =135)g;���� ( ~� ), ~� 2 [� 1; 1]

3. 3pt (6th order accurate):

-1 +1
0

X XX
�

� nint = 3

� ~� 1 = �
p

3=5, ~� 2 = 0, ~� 3 =
p

3=5

� W1 = W3 = 5=9, W2 = 8=9

� R = (1 =15750)g;������ ( ~� ), ~� 2 [� 1; 1]

Recall our example ̂ (� ) = a + b(5 + � )2, where the analytical solution is,

Z 1

� 1

�
a + b(5 + � )2

�
d� = 2a + (50 +

2
3

)b (2.92)

Let us try 1pt and 2pt Gaussian quadrature rules as follows,

1. 1pt:
Z 1

� 1
g(� )d� � 2g(0) = 2( a + 25b) (2.93)

This is an approximate integration.

2. 2pt:
Z 1

� 1
g(� )d� � g

�
� 1
p

3

�
+ g

�
1

p
3

�
= 2a + (50 +

2
3

)b (2.94)

This is exact integration!
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2.8 Convergence of FEM

We only expect a convergent FE solution forwell-posed partial di�erential equations

(PDEs). A PDE is well-posed if it has the following properties:

1. existence : there existsat least one solutionu(x) satisfying the di�erential equation

and BCs.

2. uniqueness : there isat most one solutionu(x) satisfying the di�erential equation and

BCs.

3. stability : the unique solutionu(x) depends in a stable manner on the data of problem

(i.e., spatial domain, BCs, material properties, ..., any input). If there is a small change

in the data, there should be a small change in the solutionu(x).

Convergence is of particular concern forcomputational failure mechanics simulations, where,

for example, classical strain softening plasticity leads to anill-posed PDE regardless of

whether the FEM is convergent for strain hardening plasticity and elasticity.

For example, consider a plane strain compression test on dense sand [Vardoulakis et al.,

1978, Vardoulakis and Goldschieder, 1981] in Fig.2.14.

There is mesh-dependence associated with a classical, strain softening local plasticity model.

We observe a �ner shear band width as the mesh is re�ned (functionof element size) in

Fig.2.15.

We can replicate this result in Abaqus. We observe a softening curveapproaching the force

axis upon further re�nement in Fig.2.16.
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Figure 2.14. Shear banding in dense sand, and post-peak softening [Vardoulakis et al., 1978,
Vardoulakis and Goldschieder, 1981].

To obtain convergence, we expect that as the mesh is re�nedh ! 0, the discrete FE solution

approaches the exact solution of the PDE, such that,

limh! 0uh(x) = u(x) (2.95)

For convergence , we require two things: (I)compatibility of uh, and (II) completeness

of uh. For the purpose of discussion, consider (S), (W), and (G) of theBernoulli-Euler beam

without derivation (see Chapter 3 and Pinsky [2001]). We assume a thin, long structure

experiencing transverse deection (transverse shear deformation is negligible) as shown in

Fig.2.17, wherev(x) is the transverse deection,EI (x) is the exural rigidity, f (x) is the

transverse distributed force,F is the transverse point load, andML is the moment atx = L.
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2.8. CONVERGENCE OF FEM

Figure 2.15. Plane strain compression with one element in each mesh (colored black) with lower
yield stress, and deformed meshes for hardeningH > 0 and softeningH < 0.

We write the Strong form (S) for the Bernoulli-Euler beam as,

(S)

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Find v(x) : �
 7! R; �
 = [0 ; L]; such that

d2

dx2

�
EI (x) d2 v

dx2

�
= f (x) x 2 


v = 0 x = 0

v;x = 0 x = 0

EIv ;xx = ML x = L

� (EIv ;xx );x = F x = L

(2.96)

where v is the transverse displacement,v;x is the `rotation' (assuming small transverse de-

ections), EIv ;xx is the internal bending moment, and� (EIv ;xx );x is the internal shear

force.
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Figure 2.16. Force versus displacement plot for plane strain compression, showing less dissipation
for �ner shear band mesh.

f (x)

L

v(x)

x

x

EI (x)
F

ML

Figure 2.17. Bernoulli-Euler beam for small deformations.
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2.8. CONVERGENCE OF FEM

2.8.1 Compatibility

There is a general rule for BCs for a linear di�erential equation of order 2m such that,

essential

8
>>>>>>><

>>>>>>>:

0

1
...

m � 1

natural

8
>>>>>>><

>>>>>>>:

m

m + 1
...

2m � 1

wherem will be the order of the variational equation. Let us consider our two examples, a

(1) bar, and (2) beam:

(1) bar: 2m = 2 =) m = 1

essential 0 u

natural 1 EAu ;x

(2) beam: 2m = 4 =) m = 2

essential

8
><

>:

0 v

1 v;x

natural

8
><

>:

2 EIv ;xx

3 � (EIv ;xx );x

The Weak form (integration by parts twice) for the B-E beam may bewritten as,

(W)

8
>>>><

>>>>:

Find v(x) 2 S = f v : 
 7! R; v 2 H 2; v(0) = 0 ; v;x (0) = 0 g; such that
RL

0 w;xx EIv ;xx dx =
RL

0 wfdx + w(L)F + w;x (L)ML

holds8w(x) 2 V = f w : 
 7! R; w 2 H 2; w(0) = 0 ; w;x(0) = 0 g

(2.97)

wherev and w are in H 2 (2nd Sobolev space) so that the variational equation is de�ned (i.e.,
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CHAPTER 2. 1D LINEAR FEM

the internal strain energy is �nite), such that,

H 2(
) =
�

v : 
 7! R;
Z




�
v2 + ( v;x )2 + ( v;xx )2

�
dx < 1

�
(2.98)

This means that v is continuous,v;x is continuous, andv;xx may be discontinuous; i.e., we

can de�ne the square of a Heaviside function but NOT the square ofa Dirac-Delta function,

such that,

Z



[H (x � a)]2 g(x)dx =

Z L

a
g(x)dx (2.99)

Z



[� (x � a)]2 g(x)dx = no de�nition (2.100)

Thought exercise: consider ifv is continuous, v;x is discontinuous, and thusv;xx is a Delta

function. What would happen with the variational equation?Is it de�ned? Let us draw a

�gure.

Recall the bar problem for whichu 2 H 1(
) and,

H 1(
) =
�

u : 
 7! R;
Z




�
u2 + ( u;x )2

�
dx < 1

�
(2.101)

Thus, u must be continuous, orS � C0(
), where C0(
) is the space of continuous func-

tions.

The Galerkin form for the B-E beam is written as follows,

(G)

8
>>>><

>>>>:

Find vh(x) 2 S h = f vh : 
 h 7! R; vh 2 H 2; vh(0) = 0 ; vh
;x (0) = 0 g; such that

RL
0 wh

;xx EIv h
;xx dx =

RL
0 whfdx + wh(L)F + wh

;x (L)ML

holds8wh(x) 2 V h = f wh : 
 h 7! R; wh 2 H 2; wh(0) = 0 ; wh
;x (0) = 0 g

(2.102)

Thus, this requires vh 2 S h � C1(
 h), or that vh and vh
;x must be continuous at the
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2.8. CONVERGENCE OF FEM

nodes, or that there are 2 dofs per node: (i) transverse displacementvh, and (ii) rotation

vh
;x . Thus, Compatibility states: uh(x) 2 Cm� 1(
 h), or that

bar uh 2 C0(
 h) ; beamvh 2 C1(
 h)

2.8.2 Completeness

Completeness states that for the mth derivative in the variational equation, the FE ap-

proximation uh must represent up to anmth-order polynomial. For example:

� bar: m = 1 =) 1st order polynomial

uh(x) = a0 + a1x + h :o:t :s (2.103)

a0 = rigid body motion

a1 = constant axial strain

� beam: m = 2 =) 2nd order polynomial

vh(x) = a0 + a1x + a2x2 + h :o:t :s (2.104)

a0 = rigid body translation

a1 = rigid body rotation

a2 = constant curvature

For isoparametric elements , completeness is satis�ed automatically to 1st order such that,

1.
P nen

a=1 Na(� ) = 1
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2. xhe
(� ) = N e(� ) � x e

We consider as an example the 1D linear bar element as,

1.
P nen

a=1 Na(� ) = N1 + N2 = 1
2(1 � � ) + 1

2(1 + � ) = 1

2. xhe
(� ) = N e(� ) � x e =

P nen
a=1 Na(� )xe

a

Let de
a = uhe

(xe
a) = a0 + a1xe

a, where then

uhe
(� ) = N e � de =

2X

a=1

Na(� )de
a =

2X

a=1

Na(� )(a0 + a1xe
a) (2.105)

=

 
nenX

a=1

Na

!

a0 +

 
nenX

a=1

Naxe
a

!

a1 (2.106)

= a0 + a1x (2.107)

Thus, it is complete to �rst order.

Generally speaking, therate of convergence increases ash ! 0 depending on the order of

polynomial shape function used (2-node linear versus 3-node quadratic 1D element); for lin-

ear analysis , it is often preferred to use quadratic elements because the rateof convergence

is a factor of 2 more accurate than a linear element. For nonlinear analysis, other factors

may dominate (such as convergence of the iterative nonlinear solver, rather than convergence

of the mesh size).
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2.9. ELASTODYNAMICS

2.9 Elastodynamics

Refer to Chapters 7 and 9 of Hughes [1987].

include more details here: D'Alembert's principle, and Hamilton's principle

We now include inertia terms, where loading is no longer quasi-static, thus acceleration

and wave propagation become important. Reconsider the bar element, now with inertia

(Newton's second law of motion):

X

! +

Fx = m•u ; m =
Z



�Adx (2.108)

where � (kg/m 3) is the mass density. Also consider Rayleigh damping in two forms:

include equations from Rayleigh's Theory of Sound, and scans of pages showing linear form?

1. mass proportional (like moving in a viscous uid):

a

m _u

=) �A (a_u) (2.109)

2. sti�ness proportional (\viscoelasticity"; Kelvin-Voigt element):

E

b

�
� = E(� + b_� ) (2.110)

The stress is dependent on the axial \strain-

rate" of the bar, or how quickly it deforms.
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Given the di�erential form, BCs, and ICs, we may state the StrongForm as,

(S)

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

Find u(x; t ) : �
 � [0; T] 7! R; �
 = [0 ; L]; such that

�A
�

@2u
@t2 + a@u

@t

�

� @
@x

h
EA

�
@u
@x+ b@2u

@x@t

�i
= f (x; t ) x 2 
 ; t 2 (0; T)

u(0; t) = g(t) x = 0; t 2 (0; T)

� (t)A = F (t) x = L; t 2 (0; T)

u(x; 0) = u0(x) x 2 
 ; t = 0

_u(x; 0) = _u0(x) x 2 
 ; t = 0

(2.111)

where u(x; t ) : �
 � [0; T] 7! R reads \with x in �
, and t in [0; T], u maps to the real

number line R," distributed axial force f (x; t ) is a body force that can be a function of

time t, concentrated forceF (t) is a natural, or Neumann, BC, prescribed displacementg(t)

is an essential, or Dirichlet, BC,u0(x) and _u0(x) are the initial displacement and velocity,

respectively, which can vary withx over the length of the bar.

Going through the derivation of the Weak form and Galerkin form as before, and recognizing

that the time derivatives of the �nite element displacementuhe
(�; t ) are applied to the nodal

dofs as,

_uhe
(�; t ) =

nenX

a=1

Na(� ) _de
a(t) ; •uhe

(�; t ) =
nenX

a=1

Na(� ) •de
a(t)

_uhe

;x (�; t ) =
nenX

a=1

Na;x (� ) _de
a(t) (2.112)

we have the FE matrix form before assembly as,

nel

A
e=1

(ce)T �
n

m e � •d
e

+ ce
damp � _d

e
+ k e � de = f e

f + f e
F

o
(2.113)
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2.9. ELASTODYNAMICS

where the element mass and damping matrices are,

m e =
Z


 e
�A (N e)T � N edx =

Z 1

� 1
�A (N e)T � N ej ed� ; ce

damp = am e + bk e (2.114)

After element assembly, we have

M � •d + C � _d + K � d = F f + F F + F g (2.115)

Before we integrate these FE equations discretely in time using Newmark's method, let is

consider amodal analysis using the FE equations. We consider the geometry and properties

for 2 equal-length linear elements in Fig.2.18.

1 2 21 3

L

Figure 2.18. Two-element mesh for modal analysis example.

The length L = 15 and propertiesEA = 60, �A = 1, a = b= 0 =) ce
damp = 0 (no damping),

and BC u(0; t) = 0. The sti�ness matrices are,

k 1 = k 2 =

2

6
4

8 � 8

� 8 8

3

7
5 (2.116)

and the mass matrices are,

m e =
Z 1

� 1
�A (N e)T � N ej ed� ; N e(� ) =

�

N1(� ) N2(� )

�
(2.117)

m 1 = m 2 =
5
4

2

6
4

2 1

1 2

3

7
5 (2.118)
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During assembly, we account for the essential BC,d1 = c1 = 0, such that,

M =
5
4

2

6
6
6
6
4

2 1 0

1 4 1

0 1 2

3

7
7
7
7
5

; K =

2

6
6
6
6
4

8 � 8 0

� 8 16 � 8

0 � 8 8

3

7
7
7
7
5

(2.119)

But d(t) is still time dependent. Thus, we formulate aneigenvalue problem using the FE

matrix equations. For example, assume that,

d(t) = cos(!t )� =) •d(t) = � ! 2 cos(!t )� (2.120)

where! is the circular frequency (rad/s), and� the mode shape (m). We have an eigenvalue

problem written as,

M � •d + K � d = 0 =) (K � � M ) � � = 0 (2.121)

where eigenvalue� = ! 2. We can solve in Mathematica or Python or other program that

has an eigensolver. The solution (only 2 modes because only 2 dofs) isas follows:

1 2 3

0.5774 0.8165

� 1 = 0:692

� 1 =
�

0:5774 0:8165

� T

analytical : � 1 = ! 2
1 =

� �
2

� 2 EA
�L 2

= 0:658

1 2 3

0.5774 0.8165

� 2 = 8:45

� 2 =
�

0:5774 � 0:8165

� T

analytical : � 2 =
�

3�
2

� 2 EA
�L 2

= 5:922

We note that the 2-element mesh is quite sti�, meaning the eigenvalues � are higher than the
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2.9. ELASTODYNAMICS

analytical solution (i.e., the circular frequencies! predicted by the modal FEA are higher

than the analytical solution). The �rst mode is reasonably close (0.866 vs 0.658), whereas

the second mode of the FE solution is much sti�er (10.563 vs 5.922).

To integrate in time the �nite element equations , recall �rst the FE equations as,

M � •d(t) + C � _d(t) + K � d(t) = F (t) (2.122)

F (t) = F f (t) + F F (t) + F g(t) (2.123)

We can solve using a�nite di�erencing in time to obtain an approximate solution over

time, such as Newmark's method [Hughes, 1987]. First, we introducesome notation and

terminology as follows,

time increment � t = tn+1 � tn

tn+1 = current time at step n + 1

tn = past (known) time at step n

We solve for

displacement at timetn+1 ; dn+1 = d(tn+1 )

velocity at time tn+1 ; vn+1 = _d(tn+1 )

acceleration at timetn+1 ; an+1 = •d(tn+1 )

given

displacement at timetn ; dn = d(tn )

velocity at time tn ; vn = _d(tn )

acceleration at timetn ; an = •d(tn )
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The procedure is carried out as follows. We are givendn , vn , and an from the previous time

step, and we need to solve fordn+1 , vn+1 , and an+1 at the current time step, whereby,

M � an+1 + C � vn+1 + Kd n+1 = F n+1 (2.124)

dn+1 = dn + � tv n +
� t2

2
[(1 � 2� )an + 2� an+1 ] (2.125)

vn+1 = vn + � t [(1 �  )an +  an+1 ] (2.126)

where  , � are integration parameters . We can substitute to solve foran+1 , and then

dn+1 and vn+1 . First, we introduce \predictors" from known values as,

~dn+1 = dn + � tvn +
� t2

2
(1 � 2� )an (2.127)

~vn+1 = vn + � t(1 �  )an (2.128)

such that

dn+1 = ~dn+1 + � � t2an+1 (2.129)

vn+1 = ~vn+1 +  � tan+1 (2.130)

To initialize time-stepping, we must solve for the initial accelerationa0 from the FE equation

as,

M � a0 = F 0 � C � v0 � Kd 0 (2.131)

Then we solve foran+1 as,

�
M +  � tC + � � t2K

�
an+1 = F n+1 � C ~vn+1 � K ~dn+1 (2.132)

and we can updatedn+1 and vn+1 from the above equations.
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For linear problems, and symmetric matrices, the numerical stabilityregimes for choices of

integration parameters are (see pg.493 of Hughes [1987]):

unconditional, 2� �  � 1=2; or

conditional,  � 1=2, � < = 2;

and ! h� t � 
 crit (undamped frequency! h, critical sampling frequency 
crit ), where,


 crit =
� ( � 1=2) +

� 
2 � � + � 2( � 1=2)2

� 1=2

(= 2 � � )
(2.133)

and � = ( a=! + b! )=2 is the damping coe�cient. This analysis assumes that the FE system

could be reduced to a single dof problem using modal decomposition (which will hold for

linear problems and Rayleigh damping), such that if = 1=2, damping has no e�ect on

stability, and if  > 1=2, damping increases the critical time step. Thus, it is a conservative

estimate (if � is unknown) to assume the undamped (� = 0) critical sampling frequency as,


 crit =
1

p
= 2 � �

=) � t �

 crit

! h
max

(2.134)

We will consider two choices of parameters leading to two classic time integrators for elas-

todynamics:

1. trapezoidal rule: implicit (requires solution of Ax = b), � = 1=4,  = 1=2, uncon-

ditionally stable, order of accuracy = 2 (errorO(� t2))

2. central di�erence: explicit (no solution of Ax = b, assumingM and C are diago-

nalizable, or lumped),� = 0,  = 1=2, 
 crit = 2, order of accuracy = 2

For conditionally stable schemes, such as central di�erence,! h
max will depend on the element

type. Consider the 2-node linear element, such that! h
max =

p
� h

max = 2
p

3c=h, where h

is taken to be the smallest element length. Recall the bar wave velocity c =
p

E=� , then

� t � 
 crit
! h

max
= h

c
p

3
for 1D wave propagation using linear �nite elements.
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Chapter 3

2D Linear Frame Analysis with FEM

For the 2D linear frame FEM, we assume linearity in the form of small strain, linear isotropic

elasticity. These notes are drawn from Pinsky [2001]. Topics covered in remaining sections

include the following:

(1) di�erential equation and Strong (S) form for Bernoulli-Euler beam;

(2) Weak form (W) for Bernoulli-Euler beam;

(3) Galerkin form (G) for Bernoulli-Euler beam;

(4) Finite Element (FE) matrix form for Bernoulli-Euler beam;

(5) Example of FE assembly for beam element;

(6) 2D frame FE;

(7) 2D frame analysis examples.
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3.1 Di�erential equation and Strong (S) form for Bernoulli-

Euler beam

Bernoulli-Euler beam theory assumes a thin, long structure experiences transverse deection

(transverse shear deformation is negligible), such as that shown inFig.3.1, where,

v(x) = transverse deection(m)

EI (x) = exural rigidity( Nm2)

f (x) = transverse distributed load(N=m)

FL = transverse point load(N )

ML = moment at x = L(Nm)

f (x)

L

v(x)

x

x

EI (x)
FL

ML

Figure 3.1. Transversely loaded beam with BCs.

The di�erential beam \element" (NOT a �nite element) is shown in Fig.3.2 with the following
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3.1. DIFFERENTIAL EQUATION AND STRONG (S) FORM FOR
BERNOULLI-EULER BEAM

shear force equilibrium as,

� V + fdx + V +
dV
dx

dx = 0 (3.1)

=) �
dV
dx

= f (3.2)

and moment about 0 (ignoredx2 terms) as,

� M + fdx (
dx
2

) + ( V +
dV
dx

dx)dx + M +
dM
dx

dx = 0 (3.3)

=) �
dM
dx

= V (3.4)

such that static equilibrium is written as,

d2M
dx2

= f (3.5)

O

f (x)

dx

VM

V + dV
dx dx

M + dM
dx dx

Figure 3.2. Di�erential beam \element" (not a �nite element) .

We use Hooke's law to calculate the internal moment through the linear elastic constitutive

equation, where curvature� � d2v
dx2 for small transverse deections, such that,

M (x) = EI (x)
d2v
dx2

(3.6)
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and
d2

dx2

�
EI (x)

d2v
dx2

�
= f (3.7)

Then, the Strong Form for the Bernoulli-Euler beam can be stated as,

(S)

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Find v(x) : �
 7! R; �
 = [0 ; L]; such that

d2

dx2

�
EI (x) d2 v

dx2

�
= f (x) x 2 


v = 0 x = 0

v;x = 0 x = 0

EIv ;xx = ML x = L

� (EIv ;xx );x = FL x = L

(3.8)

wherev is the transverse displacement,v;x is the rotation (assuming small transverse deec-

tions), EIv ;xx is the internal bending moment, and� (EIv ;xx );x is the internal shear force.

3.2 Weak (W) form for Bernoulli-Euler beam

We apply the apply method of weighted residuals with weighted residual statement as,

Z L

0
w [(EIv ;xx );xx � f ] dx = 0 (3.9)

and trial solution space as,

v 2 S � C1(
) = f v : 
 ! Rjv(0) = 0 ; v;x (0) = 0 g (3.10)

and weighting function space as,

w 2 V � C1(
) = f w : 
 ! Rjw(0) = 0 ; w;x(0) = 0 g: (3.11)
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3.2. WEAK (W) FORM FOR BERNOULLI-EULER BEAM

We apply integration by parts twice (use chain rule and divergence theorem) to balance

derivatives onw and u in the variational equation for the weak form as,

[w(EIv ;xx );x ];x = w;x (EIv ;xx );x + w(EIv ;xx );xx (3.12)

=) w(EIv ;xx );xx = [ w(EIv ;xx );x ];x � w;x (EIv ;xx );x (3.13)

(w;xEIv ;xx );x = w;xx EIv ;xx + w;x (EIv ;xx );x (3.14)

=) w;x (EIv ;xx );x = ( w;xEIv ;xx );x � w;xx EIv ;xx (3.15)

where,

0 =
Z L

0
w [(EIv ;xx );xx � f ] dx (3.16)

=
Z L

0

h
[w(EIv ;xx );x ];x � w;x (EIv ;xx );x

i
dx �

Z L

0
wfdx (3.17)

= w(EIv ;xx );x jL0 �
Z L

0
[(w;xEIv ;xx );x � w;xx EIv ;xx ] dx �

Z L

0
wfdx (3.18)

= w(EIv ;xx );x jL0 � w;x EIv ;xx jL0 +
Z L

0
w;xx EIv ;xx dx �

Z L

0
wfdx (3.19)

and
Z L

0
w;xx EIv ;xx dx =

Z L

0
wfdx + w(L)FL + w;x (L)ML (3.20)

We may then state theweak form as,

(W)

8
>>>><

>>>>:

Find v(x) 2 S � C1(
) ; such that
RL

0 w;xx EIv ;xx dx =
RL

0 wfdx + w(L)FL + w;x (L)ML

holds8w(x) 2 V � C1(
)

(3.21)

where 8 reads \for all;" S is the space of admissible trial functions, andv 2 H 2; V is

the space of weighting functions, andw 2 H 2; C1 is the space of functions with continuous

�rst derivatives; H 2 is the second Sobolev space, such that theH 2 norm is �nite: i.e.,
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kvk2 =
� RL

0 (v2 + v2
;x + v2

;xx )dx
� 1=2

< 1 ; kuk2 is called theH 2 norm; and v 2 H 2 essentially

states that second spatial derivativesv;xx CANNOT be Dirac Delta functions, but can be

Heaviside functions (discontinuous),which means that we must include dofs for v and

v;x at the nodes of a Bernoulli-Euler beam �nite element to ensur e that they are

continuous along the beam; we see this in the statement of the Galerkin form .

3.3 Discretization and Galerkin Form (G) for Bernoulli-

Euler beam

We state the Galerkin form as,

(G)

8
>>>><

>>>>:

Find vh(x) 2 S h � C1(
 h); such that
RL

0 wh
;xx EIv h

;xx dx =
RL

0 whfdx + wh(L)FL + wh
;x (L)ML

holds8wh(x) 2 V h � C1(
 h)

(3.22)

where S h � S is the discrete space of admissible trial functions;V h � V is the discrete

space of weighting functions; to ensureS h � S and V h � V , two dofs are introduced

at the �nite element nodes: (1) transverse displacementvh, and (2) rotation vh
;x (for small

transverse deections).

3.4 Finite Element (FE) Matrix Form for Bernoulli-

Euler beam

From the element perspective , consider an elemente, with length he, moment of inertiaI e,

and elasticity modulusE e as in Fig.3.3, where element lengthhe = xe
2 � xe

1, element domain
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 e = ( xe
1; xe

2), discrete domain 
 h = Anel
e=1 
 e, Anel

e=1 is the element assembly operator; and

the element is NOT isoparametric such thatxhe
(� ) = N e(� ) � x e, and vhe

(� ) = H e(� ) � de.

1 2
e

de
1

de
2

de
3

de
4xe

1 xe
2

he

Figure 3.3. Beam �nite element.

The element dofs are,

de =

8
>>>>>>><

>>>>>>>:

de
1

de
2

de
3

de
4

9
>>>>>>>=

>>>>>>>;

=

8
>>>>>>><

>>>>>>>:

vhe
(� = � 1)

vhe

;x (� 1)

vhe
(1)

vhe

;x (1)

9
>>>>>>>=

>>>>>>>;

(3.23)

We introduce the Hermite cubic shape functions as,

vhe
(� ) =

�

H e
1 j eH e

2 H e
3 j eH e

4

�

2

6
6
6
6
6
6
6
4

de
1

de
2

de
3

de
4

3

7
7
7
7
7
7
7
5

= H e(� ) � de (3.24)

where we usedj e = dxhe
=d� = he=2, and dvh e

d� = dvh e

dx
dx
d� ; likewise whe

(� ) = H e � ce =

(ce)T � (H e)T .

For completeness , it is possible to show completeness to 2nd order forvhe
(� ), such that

vhe
(� ) = a0 + a1x + a2x2; use Eq.(3.23) when substituting forde

a at the nodes; usexhe
(� ) =

N e(� ) � x e for the spatial coordinate interpolation. The`strain-displacement matrix' B e
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is,

vhe

;xx (� ) =
d2H e(� )

dx2
� de =

1
(j e)2

d2H e(� )
d� 2

� de = B e(� ) � de (3.25)

where likewisewhe

;xx (� ) = B e � ce = ( ce)T � (B e)T ; note that M he
(� ) = \EI (� )B e(� ) � de, and

B e(� ) =
1

(j e)2

�
d2H e

1
d� 2 j e d2H e

2
d� 2

d2H e
3

d� 2 j ed2H e
4

d� 2

�
(3.26)

The Hermite cubic shape functions are shown in Fig.3.4.
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0.25

0.3

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

-1 -0.5 0.5 1

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

H e
1 = 1

4(1 � � )2(2 + � )

H e
2 = 1

4(1 � � )2(1 + � )

H e
3 = 1

4(1 + � )2(2 � � )

H e
4 = 1

4(1 + � )2(� 1 + � )

Figure 3.4. Hermite cubic shape functions.

76



3.4. FINITE ELEMENT (FE) MATRIX FORM FOR BERNOULLI-EULER BEA M

The �nite element (FE) form is then written as,

nel

A
e=1

(ce)T �
� Z 1

� 1
(B e)T � B e \EI (� )j ed�

�

| {z }
k e

�de =

nel

A
e=1

(ce)T �
� Z 1

� 1
(H e)T df (� )j ed�

�

| {z }
f e

f

+ wh(L)FL + wh
;x (L)ML (3.27)

wherek e is the element sti�ness matrix, andf e
f is the element distributed shear force vector.

If EI and f are constant (not functions of coordinatex), then,

k e =
EI

(he)3

2

6
6
6
6
6
6
6
4

12 6he � 12 6he

6he 4(he)2 � 6he 2(he)2

� 12 � 6he 12 � 6he

6he 2(he)2 � 6he 4(he)2

3

7
7
7
7
7
7
7
5

; f e
f =

fh e

2

2

6
6
6
6
6
6
6
4

1

he=6

1

� he=6

3

7
7
7
7
7
7
7
5

(3.28)

Note the contribution of the natural BCs as,

wh(L)FL + wh
;x (L)ML =

nel

A
e=1

(ce)T � f e
F (3.29)

where

f nel
F =

2

6
6
6
6
6
6
6
4

0

0

FL

ML

3

7
7
7
7
7
7
7
5

; f e
F = 0 for e 6= nel (3.30)

and then,
nel

A
e=1

(ce)T �
�

k e � de = f e
f + f e

F

	
(3.31)

The assembly process is the same ... exceptfor frame analysis we include axial sti�ness,
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CHAPTER 3. 2D LINEAR FRAME FEM

and the possible rotation of the element in space. But �rst, let us consider a beam

example.

3.5 FE assembly Example for Bernoulli-Euler beam

In Fig.3.5 is an example used to demonstrate the assembly process for a beam FE mesh.

The location matrix is as follows,

element number

local nodal dof

1 2 3

1 0 1 0

2 0 2 3

3 1 0 0

4 2 3 0

d.o.f.

1 2

21

43

3
d1

d2

d3

P f = P=L2P 2P

L L 2L

P LEI 2EI

Figure 3.5. Beam �nite element assembly example.
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3.5. FE ASSEMBLY EXAMPLE FOR BERNOULLI-EULER BEAM

The element sti�ness matrices are,

k 1 =
EI
L3

2

6
6
6
6
6
6
6
4

12 6L � 12 6L

6L 4L2 � 6L 2L2

� 12 � 6L 12 � 6L

6L 2L2 � 6L 4L2

3

7
7
7
7
7
7
7
5

; K 1 =
EI
L3

2

6
6
6
6
4

12 � 6L 0

� 6L 4L2 0

0 0 0

3

7
7
7
7
5

(3.32)

and

k 2 =
EI
L3

2

6
6
6
6
6
6
6
4

24 12L � 24 12L

12L 8L2 � 12L 4L2

� 24 � 12L 24 � 12L

12L 4L2 � 12L 8L2

3

7
7
7
7
7
7
7
5

; K 2 =
EI
L3

2

6
6
6
6
4

24 12L 12L

12L 8L2 4L2

12L 4L2 8L2

3

7
7
7
7
5

(3.33)

and

k 3 =
EI
L3

2

6
6
6
6
6
6
6
4

12 6L � 12 6L

6L 4L2 � 6L 2L2

� 12 � 6L 12 � 6L

6L 2L2 � 6L 4L2

3

7
7
7
7
7
7
7
5

; K 3 =
EI
L3

2

6
6
6
6
4

0 0 0

0 0 0

0 0 4L2

3

7
7
7
7
5

(3.34)

and

K =
nelX

e=1

K e =
EI
L3

2

6
6
6
6
4

36 6L 12L

6L 12L2 4L2

12L 4L2 12L2

3

7
7
7
7
5

(3.35)

To handle the transverse point load within element 2, consider �gure3.6 which displays a

point load P applied mid-way along a beam element.

The forcing vector may then be written as,

f e
f =

Z


 e
H eT f (x)dx =

Z


 e
H eT P � (x � a)dx = PH eT jx= a (3.36)
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1 2

de
1

de
2

de
3

de
4

xe
1 xe

2

P

x = a

Figure 3.6. Point load in mid-element section.

Thus, at the element center, with lengthL and load � 2P, we have,

f e
f = � 2PH eT j � =0 ; f 2

f = f 1
f = � 2P

2

6
6
6
6
6
6
6
4

1
2

L
2

1
4

1
2

L
2 (� 1

4)

3

7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
4

� P

� P L
4

� P

P L
4

3

7
7
7
7
7
7
7
5

(3.37)

F 1
f =

2

6
6
6
6
4

� P

P L
4

0

3

7
7
7
7
5

; F 2
f =

2

6
6
6
6
4

� P

� P L
4

P L
4

3

7
7
7
7
5

(3.38)

The nodal force vector accounting for distributed constant loadf is written as,

f e
f = fh e

2

6
6
6
6
6
6
6
4

1
2

he

12

1
2

� he

12

3

7
7
7
7
7
7
7
5

; f 3
f = ( � P=L)2L

2

6
6
6
6
6
6
6
4

1
2

2L
12

1
2

� 2L
12

3

7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
4

� P

� P L
3

� P

P L
3

3

7
7
7
7
7
7
7
5

(3.39)

F 3
f =

2

6
6
6
6
4

0

0

� P L
3

3

7
7
7
7
5

(3.40)
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where the total distributed nodal load vector, and concentrated load vector are,

F f =
nelX

e=1

F e
f =

2

6
6
6
6
4

� 2P

0

� P L
12

3

7
7
7
7
5

; F F =

2

6
6
6
6
4

� P

P L

0

3

7
7
7
7
5

(3.41)

We then solve for unknown dofsd as,

K � d = F f + F F ; d =
P L2

3024EI

2

6
6
6
6
4

� 398L

366

253

3

7
7
7
7
5

(3.42)

We can go back and solve for reaction forces and moments like we did for the axially-loaded

bar problem (for reaction forces), as well as calculate moment andshear within a �nite

element.

3.6 2D FE Frame Analysis

Consider a2D frame element in Fig.3.7.

1 2e

de
1

de
2

de
3 de

4

de
5

de
6

he

Figure 3.7. 2D frame element.
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If E e, Ae, and I e are constant, then,

k e
axial =

E eAe

he

2

6
4

1 � 1

� 1 1

3

7
5 (3.43)

k e
exural =

E eI e

(he)3

2

6
6
6
6
6
6
6
4

12 6he � 12 6he

6he 4(he)2 � 6he 2(he)2

� 12 � 6he 12 � 6he

6he 2(he)2 � 6he 4(he)2

3

7
7
7
7
7
7
7
5

(3.44)

We can combine (superimpose; assumes GEOMETRIC LINEARITY! i.e.,no coupling be-

tween axial and transverse displacements) the axial and exure element sti�ness matrices to

obtain the frame sti�ness matrix as,

k e
frame = k e

axial + k e
exural (3.45)

=
E eI e

(he)3

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

A e(he)2

I e 0 0 � A e(he)2

I e 0 0

0 12 6he 0 � 12 6he

0 6he 4(he)2 0 � 6he 2(he)2

� A e(he)2

I e 0 0 A e(he)2

I e 0 0

0 � 12 � 6he 0 12 � 6he

0 6he 2(he)2 0 � 6he 4(he)2

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

The distributed force vector, if distributed transversef t and axial f a loads are constant, may
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3.6. 2D FE FRAME ANALYSIS

be written as,

f e
f =

he

2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

f a

f t

f the=6

f a

f t

� f the=6

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

But frame elements are usually not horizontal. They can be at various angles. Thus, consider

the relation between global and local 2D frame element degrees o f freedom (dof)

in Fig.3.8 where,

cos� e =
X e

2 � X e
1

he
; sin� e =

Y e
2 � Y e

1

he
(3.46)

1

2

e e

1

2

de
1de

2

de
3

de
4

de
5

de
6

� e

xe
ye

ze D e
1

D e
2

D e
3

D e
4

D e
5

D e
6

X

Y

Z

Figure 3.8. Local to global 2D frame element degrees of freedom (dof).
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Thus, we transform the dofs through a rotation matrix � e as,

de = � e � D e (3.47)
2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

de
1

de
2

de
3

de
4

de
5

de
6

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

cos� e sin� e 0 0 0 0

� sin� e cos� e 0 0 0 0

0 0 1 0 0 0

0 0 0 cos� e sin� e 0

0 0 0 � sin� e cos� e 0

0 0 0 0 0 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

D e
1

D e
2

D e
3

D e
4

D e
5

D e
6

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(3.48)

Note that the nodal weighting function values similarly transform asce = � e � C e. Recall

the FE form before assembly as,

nel

A
e=1

(ce)T �
�

k e � de = f e
f + f e

F

	
(3.49)

and introduce transformations as,

nel

A
e=1

(C e)T �
�

(� e)T � k e � � e � D e = ( � e)T � f e
f + ( � e)T � f e

F

	
(3.50)

Let us consider an example.
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3.6. 2D FE FRAME ANALYSIS

3.6.1 2D FE Frame Analysis: Example 1

Consider the 2D frame meshed with two frame elements in Fig.3.9, with Location Matrix

(LM) as,

element number

local nodal dof

1 2

1 0 1

2 0 2

3 0 3

4 1 0

5 2 0

6 3 4

d.o.f.

1

2

21

3

45
-45

D1

D2

D3

D4

f t f aE, A, I , L

Figure 3.9. 2D frame mesh for Example 1.
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The element sti�ness matrices are the same in local coordinates as,

k 1 = k 2 =
EI
L3

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

AL 2

I 0 0 � AL 2

I 0 0

0 12 6L 0 � 12 6L

0 6L 4L2 0 � 6L 2L2

� AL 2

I 0 0 AL 2

I 0 0

0 � 12 � 6L 0 12 � 6L

0 6L 2L2 0 � 6L 4L2

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(3.51)

K e = ( � e)T � k e � � e (3.52)

with rotation matrices ,

� 1 =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

p
2

2

p
2

2 0 0 0 0

�
p

2
2

p
2

2 0 0 0 0

0 0 1 0 0 0

0 0 0
p

2
2

p
2

2 0

0 0 0 �
p

2
2

p
2

2 0

0 0 0 0 0 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; � 2 =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

p
2

2 �
p

2
2 0 0 0 0

p
2

2

p
2

2 0 0 0 0

0 0 1 0 0 0

0 0 0
p

2
2 �

p
2

2 0

0 0 0
p

2
2

p
2

2 0

0 0 0 0 0 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(3.53)

The forcing vectors for distributed loading (there are no concentrated forces or moments,

such that F F = 0) are as follows,

f 1
f =

L
2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0

� f t

� f t L
6

0

� f t

f t L
6

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; f 2
f =

L
2

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

f a

0

0

f a

0

0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(3.54)

F e
f = ( � e)T � f e

f (3.55)
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For the element assembly for element 1, we cancel rows and columns 1-3; for element 2,

we cancel rows and columns 4,5 (whereK is symmetric), such that,

K =

2

6
6
6
6
6
6
6
4

K 1
44 + K 2

11 K 1
45 + K 2

12 K 1
46 + K 2

13 K 2
16

� K 1
55 + K 2

22 K 1
56 + K 2

23 K 2
26

� � K 1
66 + K 2

33 K 2
36

� � � K 2
66

3

7
7
7
7
7
7
7
5

; F =

2

6
6
6
6
6
6
6
4

F 1
f 4 + F 2

f 1

F 1
f 5 + F 2

f 2

F 1
f 6 + F 2

f 3

F 2
f 6

3

7
7
7
7
7
7
7
5

(3.56)

and then solve for the unknown dofs from the linear system of equations as,

K � D = F (3.57)

3.6.2 2D FE Frame Analysis: Example 2

Consider the 2D frame meshed without and with exural release (a hinge) in Fig.3.10, with

Location Matrices (LM) as follows,

element number

local nodal dof

1 2 3

1 0 1 4

2 0 2 5

3 0 3 6

4 1 4 0

5 2 5 0

6 3 6 0

element number

1 2 3 4

1 0 1 4 8

2 0 2 5 9

3 0 3 7 10

4 1 4 8 0

5 2 5 9 0

6 3 6 10 0

d.o.f.

Note that to introduce a hinge, all we have to do is change the Location Matrix (LM) to

include separate, global, rotational degrees of freedomD6 and D7 on each side of the joint.
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1

2 2

1

3

4

3

D1

D2

D3

D4

D5

D6

E, A, I

1

2 2

1

4

5

4

3
3

D1

D2

D3

D4

D5

D6 D7

D8

D9

D10

E, A, I

Figure 3.10. 2D frame mesh for example 2 showing without and with exure release.
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Chapter 4

2D Linear Heat Conduction

For the 2D linear heat conduction FEM, we assume linearity in the formof a rigid material

and Fourier's law. These notes are drawn from Hughes [1987]. Topicscovered in the remain-

ing sections include the following:

(1) linearity in the form of Fourier's law;

(2) di�erential form and boundary conditions (BCs) for Strong Form (S) of 2D heat conduc-

tion;

(3) review of tensor notation in index form;

(4) variational, Weak Form (W);

(5) discrete, Galerkin Form (G);

(6) Finite Element (FE), Matrix form;

(7) bilinear, quadrilateral shape functions in natural coordinates(�; � );

(8) triangular element shape functions (time permitting);

(9) element assembly to obtain Global Matrix form;

(10) convergence: (i) compatibility, and (ii) completeness;

(11) numerical integration using 2D Gaussian quadrature;

(12) taking advantage of symmetry for boundary value problems (BVPs);
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CHAPTER 4. 2D LINEAR HEAT CONDUCTION

(13) transient heat conduction, numerical time integration (parabolic matrix ODE);

(14) analogy to saturated ground water ow in rigid soil or rock;

(15) higher order 2D elements, and construction of transition elements.

4.1 Di�erential equation and Strong (S) form for Static,

steady-state heat conduction

Assume steady-state conditions, such that the total heat change is zero. In 2D (assuming

region is 1m thick into page), the heat ux vector isq = [ qx qy ]T (W/m 2), heat source is

f (x; y) (W/m 3), and prescribed temperatureg� (� C) on � � , and prescribed heat uxq on � q

(in-ow positive), where total domain with boundaries �
 = 
 [ � � [ � q. Refer to Fig.4.1 for

applied BCs and deriving the di�erential equation for balance of energy.

dx

dyf

� �

� q

q� = � qn

n

� = g�




x = x1

y = x2

dx

dy

qy(x; y) + @qy
@ydy

qy(x; y)

qx (x; y) + @qx
@xdxqx (x; y)

f (x; y)

Figure 4.1. Body 
 and di�erential element dx; dy for applying balance of energy (�rst law of
thermodynamics).
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4.1. DIFFERENTIAL EQUATION AND STRONG (S) FORM

We sum the heat uxes to obtain thebalance of energy as,

(dy)(1)(qx) � (dy)
�

qx +
@qx
@x

dx
�

+ ( dx)(1)(qy) � (dx)(1)
�

qy +
@qy
@y

dy
�

+ f (dx)(dy)(1) = 0

(4.1)

To derive the heat equation , we introduce Fourier's law as our constitutive equation,

2

6
4

qx

qy

3

7
5 = �

2

6
4

� xx � xy

� yx � yy

3

7
5

2

6
4

@�
@x

@�
@y

3

7
5 (4.2)

q = � � �
@�
@x

(4.3)

where the units for heat ux q are W/m 2, and for thermal conductivity � are W/(m � C).

Consider a brief review oftensor notation in index form as,

� coordinate vectorx = [ x y ]T = [ x1 x2 ]T

� heat ux vector q = [ qx qy ]T = [ q1 q2 ]T

� sum over repeated indices:q = qi ei = q1e1 + q2e2

� thermal conductivity matrix: � =

2

6
4

� 11 � 12

� 21 � 22

3

7
5 = � ij ei 
 ej

� vector or dyadic product 


� isotropic thermal conductivity: � = �

2

6
4

1 0

0 1

3

7
5, or � ij = �� ij

� Fourier's law in index notation: qi = � � ij
@�
@xj

� heat equation (balance of energy, �rst law of thermodynamics):@qi
@xi

= f , or qi;i = f
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CHAPTER 4. 2D LINEAR HEAT CONDUCTION

We may then state the Strong form (S) as,

(S)

8
>>>>>>><

>>>>>>>:

Find � (x; y) : �
 7! R; such that

qi;i = f 2 


� = g� on � �

� qi ni = q on � q

(4.4)

where � (x; y) : �
 7! R reads \with (x; y) in �
 and � maps to the real number lineR,"

the heat source isf (x; y), the heat ux q is a positive in-ux natural, Neumann BC, and

prescribed temperatureg� is an essential, or Dirichlet, BC.

4.2 Weak form (W) by Method of Weighted Residuals

For the Method of Weighted Residuals as applied to the balance of energy, we introduce a

weighting function w(x; y), which if a variational principle can be established (which it can

for heat conduction), then it is thought of as a variation of temperature w = �� . Put the

balance equation in residual form, multiply byw, and integrate over 
 as,

Z



w(qi;i � f )da = 0 (4.5)

whereda = dxdy = dx1dx2. Apply the chain rule as,

@
@xi

(wqi ) =
@w
@xi

qi + w
@qi
@xi

(4.6)

where then,
Z



wqi;i da =

Z



[(wqi );i � w;i qi ] da (4.7)
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4.3. DISCRETE, GALERKIN FORM (G)

Recall the divergence theorem,

Z



(wqi );i da =

Z

�
(wqi )ni ds (4.8)

and w = 0 on � � , and � qi ni = q on � q, such that

Z

�
(wqi )ni ds =

Z

� �

wqi ni ds+
Z

� q

wqi ni ds

= �
Z

� q

wqds

We substitute to get,

�
Z



w;i qi da �

Z



wfda �

Z

� q

wqds= 0 (4.9)

Then, using Fourier's law (qi = � � ij � ;j ), we state the Weak form (W) as,

(W)

8
>>>><

>>>>:

Find � (x; y) 2 S = f � : 
 7! R; � 2 H 1; � = g� on � � g; such that
R


 w;i � ij � ;j da =
R


 wfda +
R

� q
wqds

holds8w(x; y) 2 V = f w : 
 7! R; w 2 H 1; w = 0 on � � g

(4.10)

where 8 reads \for all," S is the space of admissible trial functions,V is the space of

weighting functions, H 1 is the �rst Sobolev space, such that theH 1 norm is �nite: i.e.,

k� k1 =
�R


 (� 2 + ( � ;i )2) dx
� 1=2

< 1 , where k� k1 is called the natural norm, and� 2 H 1

essentially says that �rst spatial derivatives � ;i CANNOT be Dirac-Delta functions, but

can be Heaviside functions (discontinuous) which leads to a \C0 theory" for linear heat

conduction (as we had for the 1D axially-loaded bar problem).
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CHAPTER 4. 2D LINEAR HEAT CONDUCTION

h


 h

� h

Figure 4.2. Discrete body 
 h � 
, �
 h = 
 h [ � h.

4.3 Discrete, Galerkin form (G)

Referring to Fig.4.2, we may rewrite the Weak form in discrete, Galerkin form as,

(G)

8
>>>><

>>>>:

Find � h(x; y) 2 S h = f � h : 
 h 7! R; � h 2 H 1; � h = g� on � h
� g; such that

R

 h wh

;i � ij � h
;j da =

R

 h whfda +

R
� h

q
whqds

holds8wh(x; y) 2 V h = f wh : 
 h 7! R; wh 2 H 1; wh = 0 on � h
� g

(4.11)

whereS h � S is the discrete subspace of admissible trial functions,V h � V is the discrete

subspace of weighting functions, and (G) � (W), where note that even though� h and wh

are discrete approximations to� and w, respectively, they must still satisfy restrictions on

the spaces (in order to ensure convergence, i.e., limh! 0 � h = � ).

4.4 Finite Element (FE), Matrix form

Discretize the 2D body into �nite elements (quadrilaterals or triangles), such as in Fig.4.3.

Now, consider a bilinear quadrilateral in Fig.4.4.
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4.4. FINITE ELEMENT (FE), MATRIX FORM

1

2

3

� h
�

� h
q

q� h = � qn

n

� h = g�


 h

d1 = g�

d2

d3

d4

d5

d6d7

Figure 4.3. Global perspective on FE mesh with � h(x; y) =
P nnp

A=1 NA (x; y)dA , nnp is the number
of nodal points, and NA (x; y) is the shape function at global nodeA.

1

2

3
4

x

y
de

1

de
2

de
3

de
4

(xe
1; ye

1)


 e

Figure 4.4. Element perspective on FE mesh with local element nodal dofde
a = � he

(xe
a; ye

a),
element domain 
 e, discrete domain 
 h = Anel

e=1 
 e, and Anel
e=1 is the element assembly operator.

The next step is to discretize the Galerkin integral equation into �nite elements as,

nel

A
e=1

" Z


 e
whe

;i � ij � he

;j da =
Z


 e
whe

fda +
Z

� e
q

whe
qds

#

(4.12)
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and write the interpolations and their derivatives as,

� he
(x ) =

nenX

a=1

Na(x )de
a = N e

|{z}
1� nen

� de
|{z}
nen � 1

(4.13)

whe
(x ) =

nenX

a=1

Na(x )ce
a = N e � ce (4.14)

�
� he

;i (x )
�

=
nenX

a=1

�
@Na(x )

@xi

�
de

a = B e
|{z}

nsd � nen

� de
|{z}
nen � 1

(4.15)

�
whe

;i (x )
�

=
nenX

a=1

�
@Na(x )

@xi

�
ce

a = B e � ce (4.16)

wherenen is the number of element nodes, andnsd = 2 is the number of spatial dimensions.

Let � = D be the matrix form of the thermal conductivity tensor, and then,

nel

A
e=1

(ce)T �

2

6
6
6
6
6
4

� Z


 e
(B e)T � D � B eda

�

| {z }
k e

�de =
Z


 e
(N e)T fda

| {z }
f e

f

+
Z

� e
q

(N e)T qds

| {z }
f e

q

3

7
7
7
7
7
5

(4.17)

and
nel

A
e=1

(ce)T �
�
k e � de = f e

f + f e
q

�
(4.18)

Before assembling, let's introduce the bilinear, quadrilateral element in natural coordinates.
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4.5. BILINEAR QUADRILATERAL ELEMENT

4.5 Bilinear quadrilateral element

For the bilinear quadrilateral element, (pg.164 F&B, pg.112 Hughes), in natural coordinates,

refer to Fig.4.5.

1

2

3

4

x

y

(-1,-1)

1

4 3

2

(1,-1)

(1,1)(-1,1)

parent domain
global domain

(xe
1; ye

1)

(xe
2; ye

2)

(xe
3; ye

3)

(xe
4; ye

4)

� =
�

�
�

�

�

�

�
�

x =
�

x
y

�


 e

Figure 4.5. In natural coordinates, note the isoparametricmapping, x he
(� ) =

P 4
a=1 Na(� )x e

a, and
bilinear shape functions,Na(�; � ) = 1

4(1 + � a� )(1 + � a� ).

We then interpolate in terms of� as,

� he
(� ) =

4X

a=1

Na(� )de
a (4.19)

whe
(� ) =

4X

a=1

Na(� )ce
a (4.20)

The bilinear shape functionsNa(�; � ) = 1
4(1 + � a� )(1 + � a� ) may be visualized in Fig.4.6.

To take spatial derivatives in 2D, we need the Jacobian matrix of coordinate transformation
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Figure 4.6. bilinear shape functionsNa(�; � ) = 1
4(1 + � a� )(1 + � a� ).

J e as,

dx =
@x
@�

� d� = J e � d� (4.21)
2

6
4

dx

dy

3

7
5 =

2

6
4

@x
@�

@x
@�

@y
@�

@y
@�

3

7
5

2

6
4

@�

@�

3

7
5 (4.22)

da = dxdy = j ed�d� (4.23)

j e = det J e (4.24)

The `strain-displacement' matrix (to calculate temperature gradient from temperature) is
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4.5. BILINEAR QUADRILATERAL ELEMENT

then B e = [ B 1 B 2 B 3 B 4 ] where,

B a =

2

6
4

@Na
@x

@Na
@y

3

7
5 ; B T

a =
�

@Na
@x

@Na
@y

�
=

@Na
@x

B T
a =

@Na
@x

=
@Na
@�

�
@�
@x

=
�

@Na
@�

@Na
@�

�
2

6
4

@�
@x

@�
@y

@�
@x

@�
@y

3

7
5 =

@Na
@�

� (J e)� 1

B a = ( J e)� T �
�

@Na
@�

� T

(J e)� 1 =
1
j e

2

6
4

y;� � x;�

� y;� x;�

3

7
5

Let's consider an example shown in Fig.4.7.

1

2

3
4

(0,0)

(4,-1)

(3.5,2)

(1,3)


 e

Figure 4.7. Example for calculating j e.

We have @Na
@� = 1

4 � a(1 + � a� ), @Na
@� = 1

4 � a(1 + � a� ),

xhe

;� =
P 4

a=1
@Na
@� xe

a = 1:625� 0:375� ,

xhe

;� =
P 4

a=1
@Na
@� xe

a = 0:125� 0:375� ,

yhe

;� =
P 4

a=1
@Na
@� ye

a = � 0:5,

yhe

;� =
P 4

a=1
@Na
@� ye

a = 1:5,

and j e = x;� y;� � x;� y;� = 2:5 � 0:1875� � 0:5625� .
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Recall that (J e)� 1 = 1
j e

2

6
4

y;� � x;�

� y;� x;�

3

7
5, and B a = ( J e)� T �

�
@Na

@�

� T
. Thus, the integrand

of the conductivity matrix is not a polynomial (it is a rational function). We will use Gauss

quadrature to approximate �nite element integration (this is what �nite element programs

like ABAQUSdo).

Thus, we can evaluate the thermal conductivity matrix and heat source vector in the parent

domain using Gaussian quadrature (introduce later) as,

k e =
Z 1

� 1

Z 1

� 1
[B e(� )]T � D � B e(� )j ed�d� (4.25)

f e
f =

Z 1

� 1

Z 1

� 1
[N e(� )]T f̂ (� )j ed�d� (4.26)

But what about the heat ux vector at the element boundary � e (if the element is on the

boundary � h
q)?

f e
q =

Z

� e
q

(N e)T qds (4.27)

Let's look at the surface of integration in Fig.4.8.

y

x

�

�

� h
q

� q

ds =
p

dx2 + dy2

Figure 4.8. Integration over boundary � e of elemente. dx = x ;� d� + x ;� d� and dy = y;� d� + y;� d� .

Along ds, � = 1 = ) d� = 0, and note that ds =
q

x2
;� + y2

;� d� .
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4.6. TRIANGULAR ELEMENT

4.6 Triangular element

For the triangular element formulation, see attached handwrittennotes.
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4.7 Element assembly process

Consider the Element assembly process for the example on pg.71 of Hughes 1987. We use the

IEN and ID \arrays" to obtain the Location Matrix (LM). For the element nodes array ,

IEN(a; e) = A, where a is the local element node number,e the element number, andA

the global node number. TheID array relates global node numbersA to global equation

numbers (dofs). Thelocation matrix (LM) can then be determined from the IEN and ID

as LM(a; e) =ID(IEN( a; e)) to return the global dof given local element node numbera and

element numbere. Refer to Fig.4.9.

4

1

3

6

4

2

5

1 2(1)

5(4)

3(2)

6(3)

7 8 9

10 11 12

d 

d!d"

d#d$

d%d&

d'

� ID array :
global node number

1 2 3 4 5 6 7 8 9 10 11 12
0 1 2 0 3 4 0 5 6 0 7 8

d.o.f.

� IEN array :
e

a

1 2 3 4 5 6
1 1 2 4 5 7 8
2 2 3 5 6 8 9
3 5 6 8 9 11 12
4 4 5 7 8 10 11

Figure 4.9. Location matrix example.

Then the LM(a; e) =ID(IEN( a; e)), which is populated with global d.o.f. as,

e

a

1 2 3 4 5 6

1 0 1 0 3 0 5

2 1 2 3 4 5 6

3 3 4 5 6 7 8

4 0 3 0 5 0 7
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4.7. ELEMENT ASSEMBLY PROCESS

Let's look at element 1, where recall the element conductivity matrixas,

k e =

2

6
6
6
6
6
6
6
4

ke
11 ke

12 ke
13 ke

14

ke
12 ke

22 ke
23 ke

24

ke
13 ke

23 ke
33 ke

34

ke
14 ke

24 ke
34 ke

44

3

7
7
7
7
7
7
7
5

(4.28)

Now, recall the element assembly operation:

nel

A
e=1

(ce)T �
�
k e � de = f e

f + f e
q

�
(4.29)

K � d = F = F q + F f + F g (4.30)

After placing individual conductivity and ux contributions into the g lobal matrix/vector

form, we can sum up the element contributions as,

K =
nelX

e=1

K e ; F q =
nelX

e=1

F e
q ; F f =

nelX

e=1

F e
f ; F g =

nelX

e=1

F e
g (4.31)

and then solve ford such that for element 1:

K 1 =

2

6
6
6
6
6
6
6
4

k1
22 � k1

23 : : :

� � � : : :

k1
23 � k1

33 : : :
...

...
...

... : : :

3

7
7
7
7
7
7
7
5

; F 1
g =

2

6
6
6
6
6
6
6
4

k1
12g� (1) + k1

24g� (4)

�

k1
13g� (1) + k1

34g� (4)

...

3

7
7
7
7
7
7
7
5

(4.32)

and so on for other elements and forF q and F f .

103



CHAPTER 4. 2D LINEAR HEAT CONDUCTION

4.8 Convergence

Recall that for convergence , we needcompatibility and completeness . These lead to 3

conditions that we will satisfy for linear heat conduction �nite elements:

(i) compatibility :

(1) � he
smooth on 
 e,

(2) � he
continuous across element boundaries �e;

(ii) completeness :

(3) represent constant temperature� he
and constant temperature ux � he

;i .

For (1) smoothness , use the bilinear quadrilateral element in Fig.4.10 as an example. We

require the interior angles to be< 180� , or that j e = det J e > 0; this checks for input error

in local element node numbering, and whether an element is extremelydistorted for large

deformation analysis (small strain analysis doesn't care if the element is highly distorted or

not because the element Jacobian and coordinates are not updated).

>180

=180

Figure 4.10. Problems with bilinear quadrilaterals.

For (2) continuity across �e, it is automatically satis�ed by the shape functionsNa(� ), as

shown in Fig.4.11.

For (3) completeness , we need to represent constant temperature� he
and constant temper-

ature ux � he

;i , needing at a minimum a linear polynomial for� he
; with �rst order completeness
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4.8. CONVERGENCE

A

1


 e

� e

Figure 4.11. Continuity of four bilinear quadrilaterals.

required. The interpolations are,

� he
(� ) =

nenX

a=1

Na(� )de
a (4.33)

x he
(� ) =

nenX

a=1

Na(� )x e
a (4.34)

and then let de
a = c0 + c1xe

a + c2ye
a, and substitute into � he

where,

� he
(� ) =

 
nenX

a=1

Na

!

c0 +

 
nenX

a=1

Naxe
a

!

c1 +

 
nenX

a=1

Naye
a

!

c2 (4.35)

= c0 + c1x + c2y (4.36)

Thus, the bilinear quadrilateral element is complete to �rst order byvirtue of the isopara-

metric formulation.
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4.9 Gaussian quadrature

The Gaussian quadrature for a square parent domain (quadrilateral element) is presented

on pg.178 F&B, pg.143 Hughes. Gaussian quadrature in higher dimensions (2D and 3D)

essentially involves applying the Gaussian quadrature rule in 1D to each direction in 2D

(i.e., the � and � directions) such as,

Z 1

� 1

Z 1

� 1
g(�; � )d�d� �

Z 1

� 1

 
X

m

g( ~� m ; � )Wm

!

d�

�
X

m

X

n

g( ~� m ; ~� n)Wm Wn =
n intX

l=1

g( ~� l ; ~� l )Wl (4.37)

Figure 4.12 shows1pt (2nd order accurate), 4pt (4th order accurate), 9pt (6th

order accurate) rules.

X
�

�

� nint = 1

� ~� 1 = ~� 1 = 0

� W1 = 2 � 2 = 4

X

XX

X

�

�

� nint = 4

� ~� 1 = � 1=
p

3, ~� 1 =
� 1=

p
3, ...

� W1 = W2 = W3 = W4 =
1

X

XX

X

X X

X

X

X

�

�

� nint = 9

� ~� 1 = �
p

3=5, ~� 1 =
�

p
3=5, ...

� W1 = (5 =9)(5=9), ...

Figure 4.12. Gaussian quadrature rules for 1� 1, 2 � 2, and 3� 3 integration points.
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4.10. SYMMETRY IN BOUNDARY VALUE PROBLEMS (BVPS)

4.10 Symmetry in Boundary Value Problems (BVPs)

Consider the examples in Fig.4.13. Can we take advantage of symmetry or not for problems

when using FEA?

L

L

y

x
g1

q = 0

q = 0

q = 0

L

L

y

x
g1

g2

q = 0

q = 0

L

L

y

x
g1

g2

g2

q = 0

Figure 4.13. Examples for symmetry BCs.
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4.11 Transient Heat Conduction

We introduce the speci�c heatc (J/(kg � C)), and temperature rate @�
@t, with I.C. on � . The

Strong Form is re-stated as,

(S)

8
>>>>>>>>>><

>>>>>>>>>>:

Find � (x; y) : �
 � [0; T] 7! R; such that

�c� ;t + qi;i = f 2 
 � ]0; T[

� = g� on � � � ]0; T[

� qi ni = q on � q� ]0; T[

� (x ; 0) = � 0(x ) x 2 


(4.38)

Assume Fourier's law for heat ux,qi = � � ij � ;j , and interpolate as before:

� he
(� ; t) =

nenX

a=1

Na(� )de
a(t) = N e � de (4.39)

_� he
= N e � _d

e
(4.40)

After deriving the Weak form, and stating the Galerkin form (both not shown), we have,

nel

A
e=1

(ce)T �
h
m e � _d

e
+ k e � de = f e

f + f e
q

i
(4.41)

m e =
Z


 e
�c [N e]T � N eda (4.42)

=
Z 1

� 1

Z 1

� 1
�c [N e(� )]T � N e(� )j ed�d� (4.43)

After element assembly, we have,

M � _d + K � d = F (4.44)
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4.11. TRANSIENT HEAT CONDUCTION

which is a parabolic matrix ODE. We use the generalized trapezoidal rule to integrate in

time.

Evaluate the FE balance of energy equation at timetn+1 , and introduce di�erence formulas

for dn+1 and vn+1 , where� is the time integration parameter,

M � vn+1 + K � dn+1 = F n+1 (4.45)

dn+1 = dn + � tvn+ � (4.46)

vn+ � = (1 � � )vn + � vn+1 (4.47)

Common examples for choice of� are,

� method type

0 forward Euler explicit (if M diagonal)

1/2 trapezoidal rule implicit

1 backward Euler implicit

The Implementation steps in a code are as follows:

� initialize: given initial temperature d0, solve forv0

M � v0 = F 0 � K � d0 (4.48)

� predictor:

~dn+1 = dn + (1 � � )� tvn (4.49)

� solution:

(M + � � tK )vn+1 = F n+1 � K ~dn+1 (4.50)
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� corrector:

dn+1 = ~dn+1 + � � tv n+1 (4.51)

� stability:

{ unconditional: � � 1=2

{ conditional: � < 1=2; � t < 2
(1� 2� )� h

max
*for 1D heat transfer: � h

max = ( ! h
max )2,

! h
max = 2

p
3
p

k
h , k = �

�c

*then, � t < h2

6(1� 2� )k

*for 2D and 3D, this critical time step is approximate (and also for nonlinear

problems)

4.12 Analogy to saturated groundwater ow

Early versions of ground water ow (rigid soil and rock) FE codes essentially used transient

heat conduction codes and applied a change of variables and parameters. The correspond-

ing terms and equations are,

heat conduction groundwater ow

temperature � (� C) total head h = pw
 w

+ he (m)

thermal conductivity � (W/(m � C)) hydraulic conductivity � (m/s)

Fourier's law q = � � � r � Darcy's law vw = � � � r h

heat capacity �c (J/(m 3 � C)) speci�c storageSc (1/m)

heat sourcef (W/m 3) uid mass production � (kg/(s m 3))

wherepw is the pore water pressure, w = � wg the unit weight of water (� w = 1000 kg/m3,

g = 9:8m/s2), he the elevation head, andvw is the super�cial (or Darcy) velocity of the

water. Refer to Fig.4.14 for an illustration of Bernoulli's equation.
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datum

confined
(sand)
aquifer

h
pw
 w

he

Figure 4.14. Illustration of Bernoulli's equation.

The Strong form is then written as,

(S)

8
>>>>>>>>>><

>>>>>>>>>>:

Find h(x; y) : �
 � [0; T] 7! R; such that

Sch;t + vw
i;i = �

� w
2 
 � ]0; T[

h = r on � r � ]0; T[

� vw
i ni = s on � s� ]0; T[

h(x ; 0) = h0(x ) x 2 


(4.52)

where r is the prescribed total head on �r , s the prescribed uid ux into the body across

� s, and h0 the initial total head within the body.

For a steady-state analysis, consider the Concrete Gravity Dam (assumed rigid solid concrete

skeleton) in Fig.4.15.

Or an embankment dam or levee (in Fig.4.16) with rising water level (again, assuming rigid

solid skeleton, which is not valid here, but still used for estimating pore water pressures).
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Figure 4.15. Concrete gravity dam analysis.

initialize to

soil

soil

solve for phreatic
surface

h(t) = r1(t)

h = r0

r0

r0(x )

s = 0

x

y

� s, � r � s, � r

Figure 4.16. Embankment dam pore water ow analysis assuming soil is rigid.
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4.13. LAGRANGE POLYNOMIALS

4.13 Lagrange polynomials for higher order element

formulation

A description of Lagrange polynomials used to formulate higher order polynomial-based

�nite elements is provided starting on pg.126 of Hughes. Theformula for a Lagrange

polynomial is,

` (nen � 1)
a (� ) =

Q nen
b=1 ;b6= a(� � � b)

Q nen
b=1 ;b6= a(� a � � b)

(4.53)

where,

nen � 1 = order of polynomial

a = node number
Y

= product operator

such that for 1D, 2D, and 3D, we have,

1D : Na(� ) = ` (nen � 1)
a (� )

2D : Na(�; � ) = ` (nen � 1)�
b (� )` (nen � 1)�

c (� )

3D : Na(�; �; � ) = ` (nen � 1)�
b (� )` (nen � 1)�

c (� )` (nen � 1)�
d (� )
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We consider some 1D examples. The 2-node, linear 1D element is formulated in Fig.4.17.

1 2

-1 +1�

nen = 2 =)
nen � 1 = 1

N1(� ) = `1
1(� ) =

� � � 2

� 1 � � 2
=

� � 1
� 1 � 1

= (1 � � )=2

N2(� ) = `1
2(� ) =

� � � 1

� 2 � � 1
=

� � (� 1)
1 � (� 1)

= (1 + � )=2

Figure 4.17. 2-node, linear FE interpolation functions formulated from Lagrange polynomials.

The 3-node, quadratic 1D element is formulated in Fig.4.18.

1 23

-1 +1
0 �

nen = 3 =)
nen � 1 = 2

N1(� ) = `2
1(� ) =

(� � � 2)( � � � 3)
(� 1 � � 2)( � 1 � � 3)

=
(� � 1)�

(� 1 � 1)(� 1)
= � (� � 1)=2

N2(� ) = `2
2(� ) =

(� � � 1)( � � � 3)
(� 2 � � 1)( � 2 � � 3)

=
(� � (� 1))�

(1 � (� 1))(1)
= � (� + 1) =2

N3(� ) = `2
3(� ) =

(� � � 1)( � � � 2)
(� 3 � � 1)( � 3 � � 2)

=
(� + 1)( � � 1)

(1)(� 1)
= 1 � � 2

Figure 4.18. 3-node, quadratic FE interpolation functionsformulated from Lagrange polynomials.

In two dimensions (2D), consider the4 node, bilinear quadrilateral element in Fig.4.19

with shape functions:

Na(�; � ) = `1
b(� )`1

c(� )

N1(�; � ) = `1
1(� )`1

1(� ) = (1 � � )=2(1 � � )=2 = (1 � � )(1 � � )=4

N2(�; � ) = `1
2(� )`1

1(� ) = (1 + � )=2(1 � � )=2 = (1 + � )(1 � � )=4

N3(�; � ) = `1
2(� )`1

2(� ) = (1 + � )=2(1 + � )=2 = (1 + � )(1 + � )=4

N4(�; � ) = `1
1(� )`1

2(� ) = (1 � � )=2(1 + � )=2 = (1 � � )(1 + � )=4

Consider the9 node, bilquadratic quadrilateral element in Fig.4.20 with shape func-
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4

1

3

2

= X

1

1 2

2

��

��

(nen)� = 2; (nen)� = 2 =) nen � 1 = 1

a b c

1 1 1
2 2 1
3 2 2
4 1 2

Figure 4.19. 4-node, bilinear quadrilateral FE interpolation functions formulated from Lagrange
polynomials.

tions:

Na(�; � ) = `2
b(� )`2

c(� )

corner nodeN1(�; � ) = `2
1(� )`2

1(� ) =
1
2

� (� � 1)
1
2

� (� � 1) =
1
4

�� (� � 1)(� � 1)

midside nodeN5(�; � ) = `2
3(� )`2

1(� ) = (1 � � 2)
1
2

� (� � 1) =
1
2

� (1 � � 2)( � � 1)

middle nodeN9(�; � ) = `2
3(� )`2

3(� ) = (1 � � 2)(1 � � 2)
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4

1

3

2

= X

1

1 2

2

3
3

5

8
9 6

7

��

��

(nen)� = 3; (nen)� = 3 =) nen � 1 = 2

a b c
1 1 1
2 2 1
3 2 2
4 1 2
5 3 1
6 2 3
7 3 2
8 1 3
9 3 3
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Figure 4.20. 9-node, biquadratic quadrilateral FE interpolation functions formulated from La-
grange polynomials.
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Transition elements: Consider the mesh in Fig.4.21.

Figure 4.21. Linear to quadratic quadrilateral transition elements.

A 5-node quadrilateral transition element (Fig.4.22) may be formulated to address the proper

compatibility requirement in the mesh in Fig.4.21. Start with the bilinear quadrilateral shape

functions and introduce a 5th node along one of the element edges to make that edge have

quadratic interpolation, while the 3 other edges have linear interpolation. Correction of

adjacent nodal shape functionsN1 and N2 is needed, as shown in Fig.4.22.
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4

1

3

25

�

�
Na(�; � ) =

1
4

(1 + � a� )(1 + � a� ) ; a = 1; :::; 4

N5(�; � ) = `2
3(� )`1

1(� ) =
1
2

(1 � � 2)(1 � � )

needN5(� a; � a) =
�

1 a = 5
0 a 6= 5

correctionN1 = N1 �
1
2

N5

N2 = N2 �
1
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-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

0
0.25
0.5

0.75

1

-1

-0.5

0

0.5

-1

-0.5

0

0.5

1 -1

-0.5

0

0.5

1

0
0.25
0.5

0.75
1

-1

-0.5

0

0.5
N1(�; � )N5(�; � )

Figure 4.22. 5-node linear to quadratic interpolation transition quadrilateral element.
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Chapter 5

3D Linear Elastostatics and

Elastodynamics

For the 3D linear elastostatic and elastodynamic FEM, we assume linearity in the form of

linear isotropic elasticity. These notes are drawn from Hughes [1987]. Topics covered in the

remaining sections include the following:

(1) linear isotropic elasticity; small strainsand small rotations (examples for small and �-

nite); small strain versus large strain tensors;

(2) di�erential form and boundary conditions (BCs) to provide Strong Form (S) of 3D elas-

tostatics;

(3) variational, Weak Form (W); re-write in vector-matrix form;

(4) review of plane elasticity: plane stress, plane strain, and axisymmetry;

(5) review of von Mises stress;

(6) discrete, Galerkin Form (G);

(7) Finite Element (FE), Matrix form in 3D;

(8) trilinear, hexhedral shape functions in natural coordinates (�; �; � ) via Lagrange polyno-

mials;
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CHAPTER 5. 3D LINEAR ELASTOSTATICS AND ELASTODYNAMICS

(9) 2D FE matrix form for linear elastostatics;

(10) element assembly to obtain Global Matrix form;

(11) convergence: (1) compatibility (satis�ed by shape functions), and (2) completeness

(consider an \engineering version" called thePatch Test);

(12) incompressibility constraint and mesh-locking; mixed formulation, selective reduced in-

tegration;

(13) linear elastodynamics.

5.1 3D linear isotropic elasticity

We assume linearity in the form ofsmall strains and rotations (geometric, deformation)

as,

� =
1
2

�
r u + ( r u )T

�
(5.1)

� ij =
1
2

�
@ui
@xj

+
@uj
@xi

�
(5.2)

and linear isotropic elasticity (material, constitutive equation) as,

� = c : � (5.3)

� ij = cijkl � kl (5.4)

where the fourth order isotropic elasticity tensorcijkl has two types of symmetry:

(i) major: cijkl = cklij ,

(ii) minor: cijkl = cj ikl = cj ilk = cij lk .

120



5.1. 3D LINEAR ISOTROPIC ELASTICITY

We can write as,

c = � 1 
 1 + 2� I (5.5)

cijkl = �� ij � kl + 2�I ijkl (5.6)

I ijkl =
1
2

(� ik � j l + � il � jk ) (5.7)

The Lam�e parameters are,

� =
E

2(1 + � )
; � =

2��
1 � 2�

(5.8)

with bulk modulus K = � + 2
3 � = E

3(1� 2� ) . For incompressible elasticity (e.g., rubber

materials), then � ! 0:5 =) K ! 1 where thermodynamically admissible values of

Poisson's ratio are � 1 < � < 0:5.
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CHAPTER 5. 3D LINEAR ELASTOSTATICS AND ELASTODYNAMICS

5.2 Examples of small and �nite strain and rotations

An example of bothsmall strain and rotation is an I-beam experiencing design live and

dead loads as in Fig.5.1.

Figure 5.1. An I-beam experiencing design live and dead loads, and thus small strains and small
rotations.
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5.2. SMALL AND FINITE STRAIN

An example of large strain with small rotation is a car tire at constant angular velocity

(no rotation of deformed part with respect to reference frame)as shown in Fig.5.2.

Figure 5.2. A car tire under constant angular velocity, and thus no rotation of deformed part with
respect to reference frame (simulia.com).

An example of large strain and large rotation is a slope stability failure simulation as

shown in Fig.5.3.

Figure 5.3. FEA simulation of slope failure, demonstrating large strain and large rotation.
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CHAPTER 5. 3D LINEAR ELASTOSTATICS AND ELASTODYNAMICS

For comparison of small strain and �nite strain (Lagrangian) tensors, refer to pg.17 of

Lubliner [1990].

Consider a�nite rotation � and small shear strain j j � 1 as shown in Fig.5.4.

�

� � 

X 1

X 2

Figure 5.4. Block undergoing small shear strain and large rotation � .

Assuming homogeneous deformation , we can write the displacements as,

u1 = (cos � � 1)X 1 � (sin � �  cos� )X 2 (5.9)

u2 = sin �X 1 � (1 � cos� �  sin� )X 2 (5.10)
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5.2. SMALL AND FINITE STRAIN

where we canevaluate the small strain tensor (assumex i = X I ) as,

� 11 =
@u1
@x1

= cos� � 1 (5.11)

� 22 =
@u2
@x2

= cos� +  sin� � 1 (5.12)

� 12 = � 21 =
1
2

�
@u1
@x2

+
@u2
@x1

�
=

1
2

 cos� (5.13)

� =

2

6
6
6
6
4

cos� � 1 1
2  cos� 0

1
2  cos� cos� +  sin� � 1 0

0 0 0

3

7
7
7
7
5

(5.14)

But strain should be independent of rotation� , correct? If � � 0, then � yields the simple

shear, small strain tensor we expect, but here� is �nite, so what do we do?

Consider theLagrangian �nite strain tensor E (there are more than one �nite strain

tensor, but only one small strain tensor) as,

E IJ =
1
2

�
@uI
@XJ

+
@uJ
@XI

+
@ui
@XI

@ui
@XJ

�
(5.15)

and evaluate (x i 6= X I ) as,

E11 =
1
2

�
2

@u1
@X1

+
@ui
@X1

@ui
@X1

�
= cos� � 1 + 1 � cos� = 0 (5.16)

E22 =
1
2

�
2

@u2
@X2

+
@ui
@X2

@ui
@X2

�
=

1
2

 2 � 0 (5.17)

E12 = E21 =
1
2

�
@u1
@X2

+
@u2
@X1

+
@ui
@X1

@ui
@X2

�
=

1
2

 (5.18)

E =

2

6
6
6
6
4

0 1
2  0

1
2  0 0

0 0 0

3

7
7
7
7
5

(5.19)

Thus, the Lagrangian strain tensor is independent of rotation� , showing simple shear, small
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CHAPTER 5. 3D LINEAR ELASTOSTATICS AND ELASTODYNAMICS

strain tensor as we expected, even for �nite rotation� .

5.3 Strong form for 3D elastostatics

For 3D elastostatics , the second order Cauchy stress tensor� (Pa), body force vectorf

(N/m 3), prescribed displacement vectorgu (m) on � u, prescribed traction vectort � on � t

with unit normal vector n , �
 = 
 [ � u [ � t are shown in Fig.5.5.

dx

dy

dz

� t

� u

t �

n

gu



f

x = x1

y = x2

z = x3

dv

� 11

� 21

� 31

� 11 + @�11
@x1

dx1

� 21 + @�21
@x2

dx2

� 31 + @�31
@x3

dx3

f 1

dx1

dx
2

dx3

Figure 5.5. The body 
 with BCs, and di�erential volume dv for satisfying balance of linear
momentum.

The sum of the forces in thex1 direction for static equilibrium,

�
� 21 +

@�21

@x2
dx2

�
dx1dx3 � � 21dx1dx3

+
�

� 31 +
@�31

@x3
dx3

�
dx1dx2 � � 31dx1dx2

+
�

� 11 +
@�11

@x1
dx1

�
dx2dx3 � � 11dx2dx3

+ f 1dx1dx2dx3 = 0 (5.20)
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Divide by dv = dx1dx2dx3 to obtain the balance of linear momentum in thex1 direction,

@�11

@x1
+

@�21

@x2
+

@�31

@x3
+ f 1 = 0 (5.21)

We do the same inx2 and x3 directions, such that,

@�12

@x1
+

@�22

@x2
+

@�32

@x3
+ f 2 = 0 (5.22)

@�13

@x1
+

@�23

@x2
+

@�33

@x3
+ f 3 = 0 (5.23)

For non-polar materials (i.e., no couple stresses), the balanc e of angular momen-

tum leads to a symmetric stress tensor : � ij = � j i , thus we may write thebalance of

linear momentum in compact, index notation as,

@�ij
@xj

+ f i = 0 (5.24)

� ij;j + f i = 0 (5.25)

Thus, the Strong form is written as,

(S)

8
>>>>>>><

>>>>>>>:

Find ui (x ) : �
 7! Rnsd ; such that

� ij;j + f i = 0 2 


ui = gu
i on � u

� ij nj = t �
i on � t

(5.26)

where

� ui (x ) : �
 7! Rnsd reads \with x in �
, ui maps to the real number spaceRnsd of number

of spatial dimensionsnsd"

� for 3D, nsd = 3, and for 2D, nsd = 2
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� body force vectorf i (x )

� traction vector t �
i is natural, or Neumann, BC

� prescribed displacement vectorgu
i is essential, or Dirichlet, BC

5.4 Weak form for 3D elastostatics

We apply the Method of Weighted Residuals to derive the Weak Form of the balance

of linear momentum. The weighting functionwi , which if a variational principle can be

established (which it can for elastostatics), can be thought of as a\variation of displacement"

wi = �u i . We write the balance equation in residual form, multiply bywi , and then integrate

over domain 
, such that,
Z



wi (� ij;j + f i )dv = 0 (5.27)

We apply the chain rule as,

@
@xj

(wi � ij ) =
@wi
@xj

� ij + wi
@�ij
@xj

(5.28)

Then,
Z



wi � ij;j dv =

Z



[(wi � ij );j � wi;j � ij ] dv (5.29)

Applying the divergence theorem,

Z



(wi � ij );j dv =

Z

�
(wi � ij )nj da (5.30)
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and recall that wi = 0 on � u, and � ij nj = t �
i on � t , such that,

Z

�
(wi � ij )nj da =

Z

� u

(wi � ij )nj da+
Z

� t

(wi � ij )nj da

=

Substitute to obtain,
Z



wi;j � ij dv =

Z



wi f i dv +

Z

� t

wi t �
i da (5.31)

Using linear isotropic elasticity (and its minor symmetry) (� ij = cijkl � kl = cijkl uk;l ), state

Weak form (W) as,

(W)

8
>>>><

>>>>:

Find ui (x ) 2 S = f ui : 
 7! Rnsd ; ui 2 H 1; ui = gu
i on � ug; such that

R

 wi;j cijkl uk;l dv =

R

 wi f i dv +

R
� t

wi t �
i da

holds8wi (x ) 2 V = f wi : 
 7! Rnsd ; wi 2 H 1; wi = 0 on � ug

(5.32)

where

� 8 reads \for all"

� S is the space of admissible trial functions

� V is the space of weighting functions

� H 1 is the �rst Sobolev space, such that theH 1 norm is �nite:

i.e., kuk1 =
� R


 (ui ui + ui;j ui;j )dx
� 1=2

< 1

� k uk1 is called the natural norm

� ui 2 H 1 essentially says that �rst spatial derivativesui;j CANNOT be Dirac Delta

functions, but can be Heaviside functions (discontinuous)

� ... leads to a \C0 theory" for linear elastostatics (as we had for the 1D axially-loaded

bar and 2D linear heat conduction)
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Now, we rewrite the variational, weak form in vector-matrix form. Consider the potential

energy term in the weak form where,

Z



wi;j cijkl uk;l dv =

Z



f wi;j gI [cijkl ]IJ f uk;l gJ dv

=
Z



� I (w )D IJ � J (u )dv

=
Z



� T (w ) � D � � (u )dv

By accounting for major and minor symmetries ofcijkl , and for nsd = 3, I; J = 1; : : : ; 6, we

can write,

� I (w ) = f wi;j gI =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

w1;1

w2;2

w3;3

w2;3 + w3;2

w1;3 + w3;1

w1;2 + w2;1

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

; � J (u) = f ui;j gJ =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

u1;1

u2;2

u3;3

u2;3 + u3;2

u1;3 + u3;1

u1;2 + u2;1

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

(5.33)

And for the isotropic elasticity matrix,

D IJ = [ cijkl ]IJ =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

2� + � � � 0 0 0

� 2� + � � 0 0 0

� � 2� + � 0 0 0

0 0 0 � 0 0

0 0 0 0 � 0

0 0 0 0 0 �

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(5.34)

It is possible to generate tables to make this rewrite more transparent for 3D as,
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I=J i=k j=l

1 1 1

2 2 2

3 3 3

4 2 3

4 3 2

5 1 3

5 3 1

6 1 2

6 2 1

such that,

D11 = c1111

D14 = c1123 = c1132

D55 = c1313 = c1331 = c3131 = c3113
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5.5 Review of plane elasticity: plane stress, plane strain,

and axisymmetric

For plane stress , consider a thin plate or beam in Fig.5.6.

L

L

tx1

x2

x3

� t � L

� � 33 � 0, � 13 � 0, � 23 � 0

Figure 5.6. Plane stress elasticity.

The linear isotropic elasticity equation is then written as,

� = D � � (5.35)
2

6
6
6
6
4

� 11

� 22

� 12

3

7
7
7
7
5

=
E

1 � � 2

2

6
6
6
6
4

1 � 0

� 1 0

0 0 1
2(1 � � )

3

7
7
7
7
5

2

6
6
6
6
4

� 11

� 22

2� 12

3

7
7
7
7
5

(5.36)

For plane strain , consider a long, thick solid like a retaining wall loaded in plane as in

Fig.5.7.

L

B

H

x1

x2

x3

� B; H � L

� � 33 � 0, � 13 � 0, � 23 � 0

� � 33 6= 0, � 13 � 0, � 23 � 0

Figure 5.7. Plane strain elasticity.
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The linear isotropic elastic constitutive relation becomes,

2

6
6
6
6
4

� 11

� 22

� 12

3

7
7
7
7
5

=

2

6
6
6
6
4

� + 2� � 0

� � + 2 � 0

0 0 �

3

7
7
7
7
5

2

6
6
6
6
4

� 11

� 22

2� 12

3

7
7
7
7
5

(5.37)

� 33 = � (� 11 + � 22) (5.38)

For torsionless, column compression with centric loading, in cylindrical coordinates, we have

axisymmetric elasticity as shown in Fig.5.8.

dA

r

r

rd�

z

�

x1

x2

x3

� independent of�

� coordinates:
radial r
axial z
circumferential �

Figure 5.8. Linear isotropic, axisymmetric elasticity.

For spatial integration, dv = rd�dA = rd�drdz , where,

Z



(� )dv =

Z 2�

0

Z

A
(� )rdAd� = 2�

Z

A
(� )rdrdz (5.39)

The displacements are radialur , axial uz, circumferential u� . For strain, assumeu� = 0,

such that � r� = � z� = 0, but there is hoop strain due to radial displacement� �� = ur
r .

For stresses,� r� = � z� = 0; hoop stress� �� 6= 0, such that the linear isotropic elastic,
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axisymmetric stress-strain relation is,

2

6
6
6
6
6
6
6
4

� rr

� zz

� rz

� ��

3

7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
4

� + 2� � 0 �

� � + 2 � 0 �

0 0 � 0

� � 0 � + 2�

3

7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
4

� rr

� zz

2� rz

� ��

3

7
7
7
7
7
7
7
5

(5.40)

5.6 von Mises stress

The de�nition of the von Mises (VM) stress is =
q

3
2J2, where the second invariant of

the deviatoric stressJ2 = sij sij . The deviatoric stresssij = � ij � 1
3 � kk � ij (it is traceless).

Consider a compression or tension specimen loaded axially, with potential con�ning stress if

geomaterial (soil, rock, concrete) such that,

� =

2

6
6
6
6
4

� a 0 0

0 � r 0

0 0 � r

3

7
7
7
7
5

(5.41)

s = � �
1
3

� ii 1 (5.42)

= ( � a � � r )=3

2

6
6
6
6
4

2 0 0

0 � 1 0

0 0 � 1

3

7
7
7
7
5

(5.43)

Then, J2 = 2
3(� a � � r )2, and VM =

q
3
2J2 = j� a � � r j (= q in soil mechanics). For zero radial

stress,� r = 0, then VM = j� aj, which can be determined experimentally and compared the

VM value when conducting a 3D FEA for elasticity, even if you do not invoke a nonlinear

constitutive relation like elastoplasticity.
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5.7. GALERKIN FORM (G)

5.7 Discrete, Galerkin form (G)

Find the approximate solution uh
i (x ) � ui (x ), where h is the discretization parameter, or

characteristic length of the mesh. Consider the 3D solid body with domain 
, and discretize

with `elements' of characteristic lengthh (may not all be equal), such as in Fig.5.9.

h

 h

� h

� 
 h � 
, �
 h = 
 h [ � h

Figure 5.9. Discretization of domain 
 into `mesh' 
 h .

We may rewrite the Weak form in discrete, Galerkin form as,

(G)

8
>>>><

>>>>:

Find uh
i (x ) 2 S h = f uh

i : 
 h 7! Rnsd ; uh
i 2 H 1; uh

i = gu
i on � h

ug; such that
R


 h wh
i;j cijkl uh

k;l dv =
R


 h wh
i f i dv +

R
� h

t
wh

i t �
i da

holds8wh
i (x ) 2 V h = f wh

i : 
 h 7! Rnsd ; wh
i 2 H 1; wh

i = 0 on � h
ug

(5.44)

where

� S h � S is the discrete space of admissible trial functions

� V h � V is the discrete space of weighting functions

� (G) � (W): note that even thoughuh
i and wh

i are discrete approximations toui and

wi , respectively, they must still satisfy restrictions on the spaces (in order to ensure

convergence: i.e., limh! 0 uh
i (x ) = ui (x ))
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5.8 Finite Element (FE) Matrix form

Discretize the 3D body intonel elements. For theglobal perspective , consider Fig.5.10.

e

� h


 h

dx(A)

dy(A)

dz(A)
� uh

i (x ) =
P nnp

A=1 NA (x )di (A )

� global dofs: d1 = dx(A) , d2 = dy(A) , d3 =
dz(A) , ...

� nnp is the number of nodal points

� NA (x ) is the shape function at global nodeA

Figure 5.10. Global perspective

For the element perspective , consider an elemente in Fig.5.11.

1

2

3

4

x

y

z

8 7

65

de
x(3)

de
y(3)

de
z(3)

(xe
1; ye

1; ze
1)


 e � local element nodal dofde
i (a) = uh

i (xe
a; ye

a; ze
a)

� element domain 
e

� discrete domain 
h = A nel

e=1

 e

� Anel
e=1 is the element assembly operator

Figure 5.11. Element perspective.

Discretize the Galerkin integral equation into �nite elements, such that,

nel

A
e=1

" Z


 e
whe

i;j cijkl uhe

k;l dv =
Z


 e
whe

i f i dv +
Z

� e
t

whe

i t �
i da

#

(5.45)
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and write the interpolations as,

uhe

k (x ) =
nenX

a=1

Na(x )de
k(a) =

8
<

:
N e
|{z}

nsd � (nen � nsd )

� de
|{z}

(nen � nsd )� 1

9
=

;
k

(5.46)

N a =

2

6
6
6
6
4

Na 0 0

0 Na 0

0 0 Na

3

7
7
7
7
5

(5.47)

u he
=

�

N 1 N 2 : : : N nen

�

2

6
6
6
6
6
6
6
4

de
1

de
2

...

de
nen

3

7
7
7
7
7
7
7
5

= N e � de (5.48)

whe

i (x ) =
nenX

a=1

Na(x )ce
i (a) = f N e � cegi (5.49)

wherenen is number of element nodes,nsd = 3 is number of spatial dimensions for 3D.

Their spatial derivatives are written as,

uhe

k;l (x ) =
nenX

a=1

@Na(x )
@xl

de
k(a) (5.50)

whe

i;j (x ) =
nenX

a=1

@Na(x )
@xj

ce
i (a) (5.51)
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Recall that we re-wrote in matrix-vector form, such that for strain � he
(u ) = B e � de:

� he
(u ) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

uhe

1;1

uhe

2;2

uhe

3;3

uhe

2;3 + uhe

3;2

uhe

1;3 + uhe

3;1

uhe

1;2 + uhe

2;1

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

=
nenX

a=1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

Na;1 0 0

0 Na;2 0

0 0 Na;3

0 Na;3 Na;2

Na;3 0 Na;1

Na;2 Na;1 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

8
>>>><

>>>>:

de
1(a)

de
2(a)

de
3(a)

9
>>>>=

>>>>;

=
nenX

a=1

B a � de
a =

�

B 1 B 2 : : : B nen

�

2

6
6
6
6
6
6
6
4

de
1

de
2

...

de
nen

3

7
7
7
7
7
7
7
5

= B e
|{z}

6� (nen � nsd )

� de
|{z}

(nen � nsd )� 1

(5.52)

Recall the coordinate transformation and use of the Jacobian:

@Na
@x

=
@Na
@�

�
@�
@x

=
�

@Na
@�

@Na
@�

@Na
@�

�

2

6
6
6
6
4

@�
@x

@�
@y

@�
@z

@�
@x

@�
@y

@�
@z

@�
@x

@�
@y

@�
@z

3

7
7
7
7
5

=
@Na
@�

� (J e)� 1

and map (x; y; z) to ( �; �; � ).

Let D be the matrix form of the 4th order elastic modulus tensor, and then,

nel

A
e=1

(ce)T �

2

6
6
6
6
4

� Z


 e

(B e)T � D � B edv
�

| {z }
k e

�de =
Z


 e

(N e)T � f dv
| {z }

f e

f

+
Z

� e
t

(N e)T � t � da

| {z }
f e

t

3

7
7
7
7
5

(5.53)
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5.9. TRILINEAR HEXAHEDRAL ELEMENT

and,
nel

A
e=1

(ce)T �
�
k e � de = f e

f + f e
t

�
(5.54)

After element assembly, we have,

K � d = F f + F t + F g (5.55)

But before assembling, let's introduce the trilinear, hexahedral element in natural coordi-

nates.

5.9 Trilinear hexahedral element

Refer to pg.123 of Hughes [1987]. For coordinate mapping, refer toFig.5.12.

x

y

1

4
3

2

z

5

8 7

6

1 2

34

8
7
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5

� =

2

4
�
�
�

3

5
�

�

�

x =

2

4
x
y
z

3

5


 e

Figure 5.12. Trilinear hexahedral element in natural coordinates.

Recall the isoparametric mapping,x he
(� ) =

P 8
a=1 Na(� )x e

a, and trilinear shape functions,
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Na(�; �; � ) = 1
8(1 + � a� )(1 + � a� )(1 + � a� ). We then interpolate in terms of� as,

uhe

i (� ) =
8X

a=1

Na(� )de
i (a) (5.56)

whe

i (� ) =
8X

a=1

Na(� )ce
i (a) (5.57)

Then, we can evaluate the sti�ness matrix and body force vector inthe parent domain using

Gaussian quadrature as,

k e =
Z 1

� 1

Z 1

� 1

Z 1

� 1
[B e(� )]T � D � B e(� )j ed�d�d� (5.58)

f e
f =

Z 1

� 1

Z 1

� 1

Z 1

� 1
[N e(� )]T f̂ (� )j ed�d�d� (5.59)

Similar to the heat ux BC in 2D, the traction vector BC at the element boundary � e (if

the element is on the boundary �ht ) needs to be evaluated,

f e
t =

Z

� e
t

(N e)T � t � da (5.60)

This evaluation is more involved in 3D, and will not be covered here.

5.10 Element assembly process

Refer to pg.92 of Hughes [1987].

� use IEN and ID \arrays" to obtain LM

� element nodes array , IEN(a; e) = A, where a is the local element node number,e

the element number, andA the global node number
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5.10. ELEMENT ASSEMBLY PROCESS

� the ID array relates global node numbersA and local dofsi to global equation numbers

(dofs)

� the location matrix (LM) can then be determined from the IEN and ID as LM(i; a; e) =ID( i ,

IEN(a; e)) to return the global dof given local element nodal dofi , node numbera and

element numbere

Consider the example from pg.92 of Hughes [1987] in Fig.5.13,5.14.

Figure 5.13. Element assembly example [Hughes, 1987].
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Figure 5.14. Element assembly example [Hughes, 1987].
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5.11. PATCH TEST

5.11 Patch test

The patch test is an engineering version of the completeness condition , and is a

good check to see that a new �nite element has been implemented correctly (with regard to

veri�cation). We require an arbitrary patch of elements to satisfyexactly the following: (1)

rigid body motion without strain, and (2) constant strain in x and y directions (for 2D).

Consider the example in Fig.5.15: prescribe displacements at the boundary nodes, and solve

for displacement at node 5. The patch test passes if (1) the solution at node 5 is exact (takes

on values in the table), and (2) stresses and strains are exact at the Gauss points.

node x y

1 0 0

2 1 0

3 2 0

4 0 0.75

5 1.2 1.25

6 2 1

7 0 2

8 0.8 2

9 2 2

1 2

1

3

4

5

8
7

6

2

43

9

x

y

patch tests

test de
x ( a ) de

y ( a )
1 1 0
2 0 1
3 x e

a 0
4 0 x e

a
5 y e

a 0
6 0 y e

a

Figure 5.15. Patch test.

5.12 Incompressibility Constraint

Refer to Chapter 4 of Hughes [1987].

(I) incompressible linear elasticity , � ! 0:5 (rubber-like materials).

� ij = cijkl � kl = �� kk � ij + 2�� ij
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where the mean stressp related to bulk modulusK is,

p =
1
3

� ii = K� vol ; K = � +
2
3

� =
E

3(1 � 2� )

To maintain constant pressurep for nearly incompressible elastic material, volumetric strain

� ii = 0 as,

� ! 0:5 ; K ! 1 =) � vol = � ii = 0

(II) metal plasticity , it is typically incompressible (isochoric) even with compressible elas-

ticity (e.g., � = 0:3). The large isochoric plastic deformation can dominate the response and

lead to mesh locking in FE solutions.

(III) undrained, saturated soil plasticity : in soil with low hydraulic conductivity (per-

meability), for transient loading (during and immediately after construction), soil can behave

in an undrained condition, such that its plasticity is isochoric for a total stress analysis. Then

this becomes the same problem as metal plasticity for FE solutions (total stress analysis).

Consider the example on pg.207 of Hughes [1987].

As an example ofmesh locking in Fig.5.16, consider the mesh composed of constant strain

triangles, whereuh
i;i = � h

ii = 0 holds pointwise since interpolation is linear.

For element 1 : e = 1, de
2 = de

3 = 0,

� h
vol = uh

x;x + uh
y;y = N1;x de

x(1) + N1;yde
y(1)

=
1

2(Area)

�
(ye

2 � ye
3)de

x(1) + ( xe
3 � xe

2)de
y(1)

�

=) de
y(1) = 0

Thus, de
x(1) , or dx(A) , is the free dof, anddy(A) = 0.
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A

A

A

1

23
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1

2

1

1
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( x A ; y A )

dy ( A )

dx ( A )

dN1

dx
=

1
2(Area)

�
ye

2 � ye
3 xe

3 � xe
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�
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dN2

dx
=

1
2(Area)

�
ye

3 � ye
1 xe

1 � xe
3

�

dN3
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=

1
2(Area)

�
ye

1 � ye
2 xe

2 � xe
1

�

Figure 5.16. Example of mesh locking.

For element 2 : e = 2, de
1 = de

3 = 0,

� h
vol = uh

x;x + uh
y;y = N2;x de

x(2) + N2;yde
y(2)

=
1

2(Area)

�
(ye

3 � ye
1)de

x(2) + ( xe
1 � xe

3)de
y(2)

�

=) de
x(2) = 0

Thus, de
y(2) , or dy(A) , is the free dof, anddx(A) = 0. Therefore, there are no dofs at nodeA:

dx(A) = dy(A) = 0; so the mesh will lock! There is NO meaningful approximation ability of

this mesh using this element type (linear triangle). The linear triangle isa particularly poor

element to use for elastostatics, but there are better elements and methods to handle the

incompressiblity constraint:

� Reduced and Selective Integration: `Soften' sti�ness matrix by underintegrating. Full
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reduced integration leads to rank de�cient sti�ness matrix (i.e., singular) and thus

instability, whereas selective reduced integration only underintegrates the dilatational

part of sti�ness matrix and maintains stability, Hughes 1987.

� Mixed Methods: Introduce pressure degrees of freedom to solve compressible and in-

compressible problems,Hughes 1987. Passing the Babu�ska-Brezzi (LBB) condition

ensures convergence,Oden & Carey 1983.

� �B -method: Split strain-displacement matrix B into deviatoric and dilatational parts,

then relax the incompressibility constraint on the dilatational part. For �nite defor-

mations does NOT pass the LBB condition,Hughes 1980. Can be classi�ed as an

Assumed Enhanced Strain Method.

� Assumed Enhanced Strain Method: Formulate variational equations of equilibrium

with enhanced strain or enhanced deformation gradient to relax the incompressibility

constraint, and embed this enhancement within the individual �nite element domain

for e�cient numerical solutions, Simo & Hughes 1986, Simo & Rifai 1990, Simo et

al. 1993.

� Hourglass Control: Uniform strain hexahedral element with additional nodal `hour-

glass' forces applied to control spurious hourglass modes which result from full reduced

integration, Flanagan & Belytschko 1981.
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Recall for plane strain,

D =

2

6
6
6
6
4

� + 2� � 0

� � + 2 � 0

0 0 �

3

7
7
7
7
5

= �D + D (5.61)

�D =

2

6
6
6
6
4

2� 0 0

0 2� 0

0 0 �

3

7
7
7
7
5

; D =

2

6
6
6
6
4

� � 0

� � 0

0 0 0

3

7
7
7
7
5

(5.62)

and the sti�ness matrix:

k e =
Z


 e
[B e]T � D � B eda =

Z


 e
[B e]T � ( �D + D ) � B eda (5.63)

= �k e + k
e

(5.64)

We use normal Gauss integration for shear sti�ness matrix�k e, and reduced integration

for volumetric sti�ness k
e
. This is called \selective reduced integration" to keep the sti�-

ness matrix invertible. Note that selective reduced integration is limited to isotropy; for

anisotropy (and nonlinear formulations) we need something di�erent, such as (1) �B -method

(small strain), (2) mixed formulation, or (3) enhanced strain elements.

The LBB condition must be satis�ed for convergence; in Fig.5.17 are discontinuous pressure

elements as examples.

With analogy with selective reduced integration schemes for small strain in Fig.5.18.

For continuous pressure elements, consider Fig.5.19.
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Figure 5.17. Examples of discontinuous pressure elements [Hughes, 1987].
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Figure 5.18. Analogy between selective reduced integration and mixed formulations [Hughes, 1987].
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Figure 5.19. Continuous pressure mixed formulation element [Hughes, 1987].
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5.13. LINEAR ELASTODYNAMICS

5.13 Linear Elastodynamics

Refer to pg.423 of Hughes [1987]. Similar to the elastodynamic bar problem, ignoring damp-

ing for now, the Strong Form is,

(S)

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Find ui (x ; t) : �
 � [0; T] 7! Rnsd ; such that

�u i;tt � � ij;j = f i x 2 
 � ]0; T[

ui (x ; t) = gu
i (t) x 2 � u � ]0; T[

� ij (x ; t)nj (x ) = t �
i (t) x 2 � t � ]0; T[

ui (x ; 0) = u0i (x ) x 2 


ui;t (x ; 0) = u0i;t (x ) x 2 


(5.65)

with initial displacement u0i (x ) and velocity u0i;t (x ).

The Weak Form (derivation excluded) may be written as,

(W)

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Find ui (x ; t) 2 S ; such that

S = f ui : 
 7! Rnsd ; t 2 [0; T]; ui 2 H 1; ui (t) = gu
i (t) on � u � ]0; T[g

R

 (�w i ui;tt + wi;j cijkl uk;l ) dv =

R

 wi f i dv +

R
� t

wi t �
i da

R

 wi ui (x ; 0)dv =

R

 wi u0i (x )dv

R

 wi ui;t (x ; 0)dv =

R

 wi u0i;t (x )dv

holds8wi (x ) 2 V = f wi : 
 7! Rnsd ; wi 2 H 1; wi = 0 on � ug

(5.66)

where the weak form is written for initial conditions, in case the initialdisplacement or

velocity is some function over the domain (i.e., not homogeneous).

Assume for the Galerkin form, (G) = ( W h).
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For the Finite Element Matrix Form , the isoparametric formulation is,

xhe

i (x ) =
nenX

a=1

Na(x )xe
i (a) (5.67)

uhe

i (x ; t) =
nenX

a=1

Na(x )de
i (a)(t) = f N e � degi (5.68)

uhe

i;t (x ; t) =
nenX

a=1

Na(x ) _de
i (a)(t) =

n
N e � _d

e
o

i
(5.69)

uhe

i;tt (x ; t) =
nenX

a=1

Na(x ) •de
i (a)(t) =

n
N e � •d

e
o

i
(5.70)

whe

i (x ) =
nenX

a=1

Na(x )ce
i (a) = f N e � cegi (5.71)

Then, the element form is,

nel

A
e=1

(ce)T �

2

6
6
6
4

� Z


 e
� (N e)T � N edv

�

| {z }
m e

� •d
e

+
� Z


 e
(B e)T � D � B edv

�

| {z }
k e

�de

=
Z


 e
(N e)T � f dv

| {z }
f e

f

+
Z

� e
t

(N e)T � t � da

| {z }
f e

t

3

7
7
7
7
5

(5.72)

and

nel

A
e=1

(ce)T �

2

6
6
6
4

� Z


 e
(N e)T � N edv

�

| {z }
m e=�

�de(0) =
� Z


 e
(N e)T � u 0(x )dv

�

| {z }
u e

0

3

7
7
7
5

(5.73)

nel

A
e=1

(ce)T �

2

6
6
6
4

� Z


 e
(N e)T � N edv

�

| {z }
m e=�

� _d
e
(0) =

� Z


 e
(N e)T � _u 0(x )dv

�

| {z }
_u e

0

3

7
7
7
5

(5.74)

and
nel

A
e=1

(ce)T �
h
m e � •d

e
+ k e � de = f e

f + f e
t

i
(5.75)
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nel

A
e=1

(ce)T �
�

1
�

m e � de(0) = u e
0

�
(5.76)

nel

A
e=1

(ce)T �
�

1
�

m e � _d
e
(0) = _u e

0

�
(5.77)

After element assembly, and accounting for essential BCs, we have,

M � •d + K � d = F f + F t + F g (5.78)

d(0) = � M � 1 � U 0 (5.79)

_d(0) = � M � 1 � _U 0 (5.80)

Assume Rayleigh (proportional) damping asC = aM + bK , such that after assembly,

M � •d + C � _d + K � d = F f + F t + F g (5.81)

Use the Newmark family of time integration schemes to integrate thehyperbolic ODE, as

we did before for the 1D elastodynamic bar.
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