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ABSTRACT  
Nonlinear normal modes (NNMs) provide a useful tool for extending modal analysis to nonlinear 
systems and provide a foundation to obtain reduced order models. This paper employs two 
different approaches in identifying NNMs of a nonlinear structure using experimentally measured 
data. In the first approach, equivalent linear models associated with the nonlinear system are 
identified at different response amplitudes and using these models the NNMs are determined. The 
second method uses the fact that the deformed shape of a nonlinear system near its resonance 
frequency accurately represents it NNM. The later approach is capable of identifying the normal 
modes of complex structures with global nonlinearities and is particularly useful when defining 
an equivalent linear system is not an easy task or practically impossible. In an experimental case 
study a beam structure with frictional support boundary exhibiting micro-slip at its boundary is 
considered. The beam is excited using a harmonic force and its response is recorded for further 
process. NNMs are then obtained using the two described approaches and it is shown the results 
of two methods are similar.  However it is important to note that in the second approach no prior 
knowledge regarding the system nonlinearity is required and it can be used in identification of the 
nonlinear effects with high accuracy. 
 

1. INTRODUCTION 
A common approach in reducing the order of a nonlinear continuous or discrete model is to 
employ the mode shapes of a linear base structure. Provided the system under consideration is 
weakly nonlinear, and the damping effects (in linear or nonlinear form) are sufficiently small, the 
natural frequencies are well separated and the structure is in a resonant condition, the system can 
be regarded as a single degree of freedom system; the approach is known as single mode method. 
The reason for employing the mode shapes of the base linear system for reduction may be their 
simple calculation. Moreover, these modes are rather good approximations of the actual 
vibrational modes of structure in the resonant condition but they may not be adequately precise. 
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Comparison between the results of single mode method and that of numerical integration shows 
the single mode method may lead to considerable errors [1]. Consequently, employing techniques 
to improve the single mode method deficiencies and developing new concepts to solve these 
problems efficiently are inevitable. 

Rosenberg pioneered the development of NNMs concept and in his studies he introduced 
different methods of extracting them [2]. Szemptinska-Stupincka [3] revealed that the mode of 
vibration in resonance condition can be a good approximation of NNMs. She employed the Ritz 
method to calculate these modes analytically as a function of modal amplitude. The nonlinear 
eigen-value problem encountered in her proposed method to determine the modal parameters was 
solved by a numerical procedure. Jezequel [4] and Setio et al. [5, 6] developed a procedure to 
determine the modal parameters by curve fitting the forced responses in the neighborhood of a 
resonance point. Their method combines the theory introduced by Szemptinska-Stupincka and an 
equivalent linearization approach of Iwan [7]. Nayfeh et al. [8] applied the invariant manifold and 
multiple scales methods to study the nonlinear modes of one-dimensional continuous systems. 
Nobari et al. [9] used the sensitivity analysis for prediction of the NNMs. A comprehensive 
literature survey about NNMs has been presented by Vakakis [10]. The review of the recent 
contributions in this field can be found in [11, 12]. 

This paper employs the concept introduced by Szemptinska-Stupincka [3] and the equivalent 
linearization method [7] to identify the single nonlinear normal mode using experimental test 
data. The method assumes the nonlinear normal mode is a combination of the base linear system 
normal modes. By using the measured responses, the contribution of each linear mode shape in 
nonlinear normal mode is determined.  

In an experimental case study this paper considers the nonlinear behavior of a beam with 
frictional contact support. In the study a constant normal force is applied on the contact interface 
while the beam response level at the driving point is kept constant. This is achieved by 
controlling the excitation force in a small frequency bandwidth near the first natural frequency of 
the system. This procedure is then repeated for several vibration amplitudes. The increase in 
vibration amplitudes creates different behaviors in the contact interface ranging from sticking to 
micro-slips and finally macro-slips at higher response levels.  

The structure nonlinearity is local and it is a common approach to introduce an equivalent 
linear system for the structure. The measured FRFs reveal the natural frequencies of the 
equivalent linear system in different vibration amplitudes. The mode shapes of the equivalent 
linear system at each vibration amplitude is commonly regarded as the nonlinear normal modes. 
In this study the NNMs are identified using both the equivalent linear system approach and the 
proposed method of this paper and the results are compared with each other. 

The remaining of this paper is organized as followings. In the next section the proposed 
method of identifying NNMs is described. Next, an experimental case study is considered and 
linear and nonlinear FRFs of the test setup at different vibration levels are measured. By using 
the experimental results, the NNMs are identified using the two approaches mentioned above. 
Then, conclusions are drawn and references are presented.  
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2. NONLINEAR NORMAL MODE IDENTIFICATION 
The equation of motion of a continuous nonlinear vibrating system can be considered in the 
following form, 
 

( ) ( )
2

2 , ,w ( , ).L w x t N w x t f x t
t

∂
+ + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂

                                            (1) 

 
The operators L and N describe the linear and nonlinear parts of the equation of motion, 

respectively. The system can be subjected to general non-homogeneous boundary conditions; 
therefore, problems with nonlinear boundary effects can be inspected. In the present study, the 
external excitation force f (x,t) is considered to be a single harmonic force and the excitation 
frequency is chosen close to the natural frequencies of the base linear system which is obtained 
by neglecting the nonlinear part of equation (1). 

The mode of vibration in resonant condition is a good estimation of the nonlinear normal 
mode [3]. The idea in this paper is to construct the NNM by using appropriate number of mode 
shapes of the base linear system and employing measured time responses. The response of the 
system described by equation (1) can be expressed using its first n modes, φi(x) i=1,2,.., of the 
base linear system as, 
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In equation (2), qi (t) is the generalized coordinate. One may employ the above relation and 

define a direct relation between measured accelerations and the corresponding generalized 
coordinates. Logically, the number of mode shapes used in equation (2) may not exceed the 
number of independently measured vibration signals. It is possible to initially estimate the 
number of mode shapes contributing in the dynamic response of the structure and employ 
sufficient number of accelerometers in the measurement setup. The generalized coordinate vector 
can be calculated using the measured accelerations at j points, j n≥ , and the linear mode shape 
matrix as, 
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The superscript ()+ refers to pseudo inverse of the matrix. The excitation force is considered to 

be simple harmonic; therefore the response contains the same harmonic as the excitation force 
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and its multiples due to nonlinear effects in the structure. Considering that the excitation 
frequency is ω, a Fourier series of the following form can be fitted to every generalized 
acceleration signal, 
 

1 1
1

( ) ( ) ( ) ..., 1,2,3.
M

i mi mi i i
m

q t A sin m t A sin t iω ψ ω ψ
=

= + = + + =∑                                   (4)                          

  
where coefficients Ami and ψmi are obtained from data fitting (see [14] for more details). The 
nonlinear normal mode is regarded as the first harmonic response of the system. This is a valid 
assumption if the structure has well separated natural frequencies and the nonlinearity and 
damping characteristics are weak. In these circumstances the nonlinear mode shapes are almost 
real and the generalized coordinates are mono-phase. Therefore the subscript 'i' is omitted from 
ψ1i in equation (4). The validity of this assumption is shown later in this paper using experimental 
results. The generalized coordinated ( )iq t  can be obtained by integrating equation (4) twice which 
leads to: 
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The coefficient A0i is zero when the nonlinearity is odd [14]. Substituting equation (5) in equation 
(2) one may obtain the following, 
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And finally we define the nonlinear normal mode as follows, 
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where 1A  is the norm of vector formed by coefficients A1i and a is a measure of vibration 

level amplitude. Using mass normalized mode shapes of the base linear system, one may 
determine the normalized NNMs from equation (7). The concept which is used in definition of 
the NNMs in this paper is the same as that of Szemptinska-Stupincka [3] but the procedure used 
to obtain them is different. The nonlinear normal modes defined in equation (7) are functions of 
response amplitude 'a' because different values are obtained for coefficients A1i at different 
response amplitude levels (see equation (4)).  

In the next section an experimental case study is considered and the first nonlinear normal 
mode is obtained using the above described procedure. In order to validate the accuracy of the 
method presented in this paper, the NNM are also obtained by using the concept of equivalent 
linearized system.  
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3. EXPERIMENTAL CASE STUDY 
A steel beam of length L=600 mm, width b=40 mm and thickness h=5 mm clamped at one end 
and supported using a frictionally contact interface at the other end is employed in this 
experimental study. The frictionally contact boundary condition is provided by a pin welded to 
the beam end and is allowed to slip on a steel block as shown in figure 1. The pin has a radius of 
r=6mm and its length is equal to the beam width. A constant normal force is applied to the pin 
using suspended mass blocks. 

The contact interface exhibits different behaviors depending on the vibration amplitude level 
a. In low excitation amplitude levels the interface is in stick regime and behaves linearly. 
Nonlinear behavior arises due to micro and macro slippage as the excitation force level increases. 
In the followings the behavior of contact is investigated at different vibration amplitudes. 

The structure is excited using a B&K4200 mini shaker attached through a stinger to the 
structure at distance S=550 mm from the clamped end. A B&K8200 force transducer is placed 
between stinger and the structure. The structural responses are measured using three 
accelerometers mounted on the beam at locations x1=550 mm, x2=300 mm and x3=100 mm 
(measured from the beam clamped end). Figure 1 shows the transducer arrangement. 

Dynamic responses of the structure are measured while the contact interface is normally 
loaded with 15 kg mass blocks, i.e. the blocks are equivalent to 147.15N gravity force. Initially 
the structure is excited using a low level random force, ensuring the frictional contact interface is 
in stick regime, and the linear frequency response functions are measured. Figure 2 shows the 
driving point frequency response function recorded at low level of random excitation force. The 
corresponding natural frequencies are tabulated in table 1. The natural frequencies of Table 1 are 
used in this study to form the base linear system of the test structure. 

 
1ω  2ω  3ω  

52.85 164.00 330.25 

Table 1: Resonance frequencies at low level random excitations (Hz) 

 

Figure 1. The test set-up of frictionally supported beam 
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Figure 2. Driving point frequency responses at low level excitations  
 

Next we turn our attention to investigate the structural response when nonlinear mechanisms 
develop in the contact interface. There are two common approaches in experimentally 
determining the frequency response curves of a nonlinear structure, namely measuring the FRFs 
at constant force level or at constant response level [13]. In this paper, the later approach is used. 
The force and response signals are recorded at different excitation frequencies while the response 
amplitude level is kept constant. Having the excitation force and response signals measured the 
FRFs can be constructed. Keeping the response amplitude levels constant in a small frequency 
band near the first natural frequency insures that the nature of the nonlinear mechanisms do not 
change in different frequencies even if the nonlinearity is velocity or acceleration dependent. At 
each response amplitude level an equivalent linearized system is fitted on the measured FRFs as 
is shown in Figure 3. From these FRFs the natural frequency of the equivalent linearized system 
can be identified. The bandwidth of selected points in curve fitting around each resonance point 
is 1Hz. Figure 3 shows the fitted frequency response curves at the driving point in different 
response amplitudes. 
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Figure 3. Measured and fitted frequency responses at response amplitudes of 10 m/s2(circles), 20 
m/s2(squares), 30 m/s2(×),40 m/s2(points), 50 m/s2(+),60 m/s2(diamonds), and 70 m/s2(*). 
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The frequency responses shown in Figures 3 resemble the equivalent linearized behavior of 

the structure. This is due to the fact that the response amplitude levels are kept constant during 
measurement of each frequency responses. The frequency responses shown in figure 3 are used in 
next section and an equivalent linearized system is constructed at each response amplitude level.  

4. IDENTIFICATION OF NONLINEAR NORMAL MODES 
In this section the first nonlinear normal mode of the structure shown in figure 1 is obtained by 
using the approach described in this paper and the equivalent linearized system approach. First a 
mathematical representation of the structure needs to be defined. For this purpose, the dynamic 
behavior of a fixed-frictionally supported beam as shown in figure 4 is considered.  The structure 
is modeled using Euler-Bernoulli beam theory. The beam has a modulus of elasticity of E, cross 
sectional moment of inertia of I, mass density of ρ , cross sectional area of A, and length of L. 
The structure is excited using a concentrated force f(t) at a distance S measured from its fixed 
end. A normal constant force F is applied on the frictional support. The applied normal force is 
large enough to restrict the lateral movement of the beam at frictional support but rotation is 
allowed at this end. 
 

 

Figure 4. A slender beam with frictional contact boundary condition 
 

The lateral vibration of a uniform continuous beam is governed using a nonlinear partial 
differential equation as:  
 

4 2
'

4 2 ( ) ( ) ( ) ( )w wEI A f t x S N t x L
x t

ρ δ δ∂ ∂
+ = − − −

∂ ∂
                              (8) 

 
There is an offset r between neutral axis of the beam and the frictional force line of action 

which causes a bending moment at the boundary. So the nonlinear effects are included in the 
system via frictional contact moment N(t) at the boundary. This bending moment is applied to the 
beam model using  which is the spatial derivative of the Dirac delta function )(' xδ )(xδ  
commonly known as a spatial unit doublet [16]. The frictional moment N(t) takes into account the 
linear and non-linear characteristics of the contact interface. The nonlinear characteristics involve 
both nonlinearities in stiffness and damping.  

First, identification of the NNM by using the concept of equivalent linearized system is 
considered. The nonlinearity in the structure shown in figure 1 is local. Therefore it is possible to 
define a physical equivalent linearized system [9, 15] for the structure as: 
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The flexural spring is the equivalent stiffness of the frictional support at each vibration 
amplitude level. The mode shapes obtained from classical Euler-Bernoulli beam theory and 
boundary conditions defined in equations (9-10), will be used to construct the nonlinear normal 
modes of the system under consideration at different vibration amplitudes a. 

( )k aθ

In the measurements, the frequency responses near the first resonance point were recorded at 
different amplitudes. Using these measured responses one may identify the first natural frequency 
of the corresponding linear system. The natural frequencies are identified by curve fitting each 
frequency responses. The amplitude dependent natural frequencies obtained from the 
measurements are tabulated in table 2. In this table the corresponding flexural spring 
coefficients are also shown. The stiffness( )k aθ ( )k aθ at each amplitude level a is identified by 
solving the characteristic equation of linear problem defined in equations (9-10). In development 
of the characteristic equation, the beam is divided into four parts; first part spans between fixed 
end and the accelerometer three at x3, parts two and three are located between the three 
accelerometers, and part four is located between driving point and frictional support. The 
characteristic equation of the system is developed by considering the boundary conditions and the 
compatibility requirements at the interface of each two parts. In deriving the compatibility 
equations it is assumed that the displacements and slopes at the interface of each two parts are 
continuous but the shear forces and bending moments may abruptly change due to mass and 
inertia effects of the accelerometers and the force transducer.  
 

a, m/s2 ω1(a),Hz ( )k aθ , 
kN.m/rad 

Linear 52.85 197.4 
10 52.79 192.8 
20 52.30 167.1 
30 51.62 125.4 
40 50.63 73.6 
50 50.55 71.4 
60 50.30 65.7 
70 50.11 58.7 

Table 2: Changes of 1st natural frequency and the support stiffness with respect to the vibration 
amplitude 

 

The normal modes of the above identified equivalent linearized systems are different at 
different response amplitude levels. They can be considered as nonlinear normal modes [9]. The 
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amplitude dependent nonlinear normal modes ( ) ( ), ,i ia x aω φ  are compared with the first mode 
shape of the base linear system in figure 5. As it was stated in previous section, the linear natural 
frequencies tabulated in table 1 are used and the base linear system is constructed. We scaled the 
obtained mode shapes in order to be able to show all of nonlinear modes in one figure. The 
results presented in figure 5 indicate that by increasing response amplitude level the nonlinearity 
at the contact interface and hence the deviation of the nonlinear normal modes from linear normal 
modes increases. 
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Figure 5. Comparing NNMs obtained by equivalent linearized system (red) and the first mode of 
the base linear system (blue) 

  
Next identification of the NNMs by using the approach presented in this paper is considered. It 

is initially assumed only the first three normal modes of the base linear system contribute in the 
dynamic response as the structure has well separated modes and we have employed only three 
accelerometers in the measurement setup. Following this assumption is validated by showing that 
response is dominated only by the first two modes. Figure 6 shows the generalized coordinates 
qi(t) obtained from equation (3) at a=70m/s2. At this amplitude we expect higher modes to have 
the highest contributions in the response compared to other vibration amplitudes. As it can be 
seen in figure 6, the response is dominated by the first mode contribution, the effect of second 
mode in response is marginal, and the third mode contribution in the response is approximately 
zero. Also the phase differences between different generalized coordinates are negligible, i.e. less 
than 4° so our assumption which considered the mode shapes real is true.  

The response at the driving point is reconstructed using only the first two modes and is 
compared with the measured accelerations in figure 7. There is an excellent agreement between 
the measured and predicted responses ensuring the accuracy of the calculated generalized 
accelerations.  

The results shown in figure 7 indicate that two modes are sufficient to expand the response. 
Therefore, by setting n in equation (7) equal to 2, the first NNM in each amplitude level can be 
identified by using the proposed method in this paper. The mode shapes used in equation (7) 
belong to the base linear system and are obtained by updating the system described in equations 
(9-10) using the linear natural frequencies presented in table 1. Also the time domain responses 
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corresponding to resonant points of each FRFs are used in equation (4). Figure 8 compares the 
NNMs of figure 5 and the ones obtained by the method proposed in this paper. There is an 
excellent agreement between these two sets of results.  
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Figure 6. The generalized coordinates at a=70m/s2  
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Figure 7. Accelerations at the driving point, measured (solid line) and reconstructed (circles) 

5. CONCLUSION 
A method was presented for identification of the nonlinear normal modes. The method is based 
on the assumption that a nonlinear normal mode can be expanded by using the normal modes of 
the base linear system. By using the measured responses, the contribution of each linear mode 
shape in nonlinear normal mode was calculated. This approach is capable of identifying the 
normal modes of complex structures with global nonlinearities and is particularly useful when 
defining an equivalent linear system is not an easy task or practically impossible. Moreover, it is 
important to note that in this method no prior knowledge regarding the system nonlinearity is 
required and it can be used in identification of the nonlinear effects with high accuracy. An 
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experimental case study of a clamped-frictionally contact beam was considered. The 
experimental FRFs were measured at different response amplitude levels. Having the 
experimental FRFs, the nonlinear normal modes were identified at different response amplitudes 
by using the concept of equivalent linearized system. Also, the measured responses in time 
domain at excitation frequencies corresponding to resonant points of FRFs were used and the 
NNMs were identified using the method presented in this paper. The two sets of results showed 
an excellent agreement.  
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Figure 8. First NNMs: the equivalent linearized systems (blue), the method proposed in this paper 
(red) 
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