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Abstract

A deep learning framework is developed for multiscale characterization of poroelastic media from full waveform
data which is known as poroelastography. Special attention is paid to heterogeneous environments whose
multiphase properties may drastically change across several scales. Described in space-frequency, the data
takes the form of focal solid displacement and pore pressure fields in various neighborhoods furnished either
by reconstruction from remote data or direct measurements depending on the application. The objective
is to simultaneously recover the six hydromechanical properties germane to Biot equations and their spatial
distribution in a robust and efficient manner. Two major challenges impede direct application of existing state-
of-the-art techniques for this purpose: (i) the sought-for properties belong to vastly different and potentially
uncertain scales, and (ii) the loss function is multi-objective and multi-scale (both in terms of its individual
components and the total loss). To help bridge the gap, we propose the idea of network scaling where the
neural property maps are constructed by unit shape functions composed into a scaling layer. In this model, the
unknown network parameters (weights and biases) remain of O(1) during training. This forms the basis for
explicit scaling of the loss components and their derivatives with respect to the network parameters. Thereby,
we propose the physics-based dynamic scaling approach for adaptive loss balancing. The idea is first presented
in a generic form for multi-physics and multi-scale PDE systems, and then applied through a set of numerical
experiments to poroelastography. The results are presented along with reconstructions by way of gradient
normalization (GradNorm) and Softmax adaptive weights (SoftAdapt) for loss balancing. A comparative
analysis of the methods and corresponding results is provided. The case of multi-scale reconstructions from
noisy data is also numerically investigated.

Keywords: adaptive learning, multi-task learning, poroelastic characterization, full-waveform inversion,
multiphysics system identification

1. Introduction

Multiphasic processes are at the heart of many critical applications including renewable energy [1, 2],
carbon capture [3, 4], and medicine [5, 6]. For instance, engineered injection of fluids in the subsurface, known
as the stimulation process, has remarkably enhanced sustainable energy mining from geothermal reservoirs [7,
8] offering an important complement to other renewables with the potential of generating over 100 GWe5

of cost-competitive capacity by 2050 [9, 10]. Realizing this potential relies on smart stimulation schemes
that require real-time feedback on the subsurface hydromechanical evolution [11]. The latter is particularly
crucial in enhanced geothermal systems owing to their continuous demand for stimulation and recharge for
long-term production [9]. In magnetic resonance elastography [12], a medical imaging technique for in vivo
mechanical characterization of soft tissues, it is well known that single-phase elastodynamic models fail to10

capture the true behavior of live tissues with high water content. This has reportedly led to unstable and
unverifiable reconstructions of brain (and other organs) [13, 14, 15]. Recent developments highlight the utility

∗Corresponding author: tel. 303-492-2027, email fatemeh.pourahmadian@colorado.edu

Preprint submitted to Elsevier October 27, 2024



and importance of Biot’s poroelastodynamics theory [16, 17, 18] in capturing the fluid-solid interactions in live
tissues and is shown to result in more accurate and stable reconstructions [19, 20, 21]. In vivo hydrodynamical
characterization of biological materials could significantly aid differential diagnosis and progress monitoring15

of neurological disorders such as hydrocephalus and brain tumors [22].
Early poroelastograms referred to time sequences of effective Poisson’s ratio calculated from the evolving

ratio of radial to axial strains in poroelastic materials during quasi-static stress relaxation [23, 24]. This infor-
mation could then be used to quantify the specimen’s permeability. However, this approach involved major
simplifying assumptions on the physics of fluid motion and solid deformation in the sample. Recent advances20

in magnetic resonance motion sensing has enabled a more comprehensive characterization of biphasic materials
from volumetric time-harmonic displacement data (mainly in the low-frequency regime) where nonlinear mini-
mization is employed to reconstruct piece by piece the distribution of (a subset of) Biot parameters along with
the interstitial fluid pressure fields [13, 22, 19]. The remaining challenges in this vein include tardy reconstruc-
tions, and sensitivity of the results to the motion frequency, noise in data, and other (poroelastic) properties25

of the specimen which are not directly identified but estimated a priori using other methods. To help bridge
the gap, this study aims to carefully extend our recent work on ML-based elastography [25, 26] to poroelas-
todynamics in order to enable simultaneous reconstruction of all Biot parameters from full-field displacement
and pore pressure data in a target region of the subsurface. Special attention is paid to challenges related to
multi-scale and multi-physics full waveform inversion as well as reconstruction from noisy data. It should be30

mentioned that this study is particularly related and may contribute to sequential remote sensing [27] where
the subsurface is first (geometrically) imaged by way of inverse scattering solutions [28, 29] where subsurface
regions of interest e.g., process zones in geo-energy systems or anomalous parts in soft tissues are identified
for targeted hydromechanical characterization. Next, local (pore pressure and elastic displacement) fields
will be recovered in the identified zones of interest from remote measurements using recent developments in35

auto-focusing [30]. This may be accomplished by Marchenko-type integral equations where measurements on
the surface are deployed to generate focal fields at arbitrary points in a heterogeneous subsurface of unknown
properties [31]. Such focal fields yield components of the relevant Green’s function as in [30] (or its recent
variants [32, 33]) where the source location coincides with the targeted focus point. On repeating the algorithm
for a number of focal points, one may generate sufficient instances of local wavefields in a region of interest for40

multi-phase characterization. It should be noted that in some applications such as convection MRI [34, 35],
direct measurement of full poroelastic waveforms in the subsurface may also be an option. Given the above, the
primary objective of this investigation is the piece-wise reconstruction of Biot properties from full poroelastic
waveforms in a neighborhood of focal points.

The reconstruction entails multitask learning [36, 37] where the proposed multiscale neural network, model-45

ing poroelastic properties of the subsurface, minimizes the cumulative residual of a system of partial differential
equations (PDEs). More specifically, the loss function takes the form L = 1

N

∑N
i=1 ‖wi`i ‖

2 wherein `i denotes
a single-task objective with the associated weight wi, and the summations is over N PDEs. In multi-phase
systems, `is describe physical principles that involve spatial and temporal scales straddling multiple orders
of magnitude. Thus, careful tuning of the weights is paramount for a robust and successful reconstruction.50

In deep learning community, loss balancing for multitask learning goes beyond the limits of physics and has
been the subject of mounting interest in a wide range of applications. In computer vision, multitask learning
is leveraged to improve generalization capability of UberNet [38] and Mask R-CNN [39] through shared rep-
resentations for instance segmentation and object detection. Traditional methods of loss balancing typically
use static and/or manually-tuned weights. For example, sparse autoencoders employ a small, constant weight,55

known as the sparsity parameter, for the regularization term which is usually found by trial and error that can
be suboptimal and labor-intensive. Recent developments, however, have focused on optimizing the learning
process by adaptively balancing the loss contributions of different tasks i.e., wi = wi(t) where t indicates the
training step. Kendall et al. [40] introduced a method that calculates the weights based on the homoscedastic
uncertainty in each task. This approach has been shown to outperform static weight baselines and improve60

overall task performance. Building on this idea, GradNorm [41] was recently developed as a gradient normal-
ization algorithm that balances training by adjusting gradient magnitudes dynamically. GradNorm aims to
equalize the training rates of different tasks, ensuring that no single task dominates the learning process. This
method has been shown to improve accuracy and reduce overfitting across tasks for various network architec-
tures and datasets. Another approach is the so-called SoftAdapt [42] which uses a family of Softmax-inspired65
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methods to adaptively update the weights based on the live statistics of each subloss. This technique makes
use of the initial (or previous) iterations in each epoch to create a preconditioner matrix that normalizes the
partial gradients of the loss function in the parameter space. SoftAdapt can be easily integrated into existing
architectures, providing a flexible and efficient way to optimize multitask learning. GradNorm was recently
adopted by [43] for multiphysics characterization of the subsurface using physics-informed neural networks and70

reportedly resulted in unstable reconstructions. This inspired a new training logic based on splitting the PDE
system into parts dominated by distinct physics/scales. The latter will work in many situations but may pose
challenges in highly-heterogeneous systems where the nature of coupling between various physical phenomena
may rapidly change in a small neighborhood. In addition, proper decomposition of a PDE system may be
particularly complicated in dynamic problems with highly oscillatory data where training PINNs proved to be75

relatively slow and challenging even in systems governed by single-scale PDEs [25]. In general, in multiscale
and multiphysics systems, disparity in gradients exists and some features associated to small time and/or space
scales i.e., high frequencies and wave numbers may be less observable and more impacted by noise compared to
others. In light of this and given the errors that may be involved in network-estimated derivatives of data that
appear in the loss components, especially in initial epochs, it seems that loss balancing based on normalized80

gradients may lead to amplifying noise or suppressing the signal that may explain the observed instabilities in
recent works, and thus, may need to be revisited and adapted for such applications.

In our effort to extend ML-based elastography [25] to poroelastography, we encountered two major imped-
iments: (1) the sought-for material properties, i.e., the outputs of neural network, belong to several different
scales owing to their distinct physical nature; the scaling for some of the parameters may be known a priori but85

for others such as the permeability coefficient or porosity may be uncertain or vary on a set of scales, and (2)
various equations in the governing PDE system, i.e., the loss components, describe the balance and coupling
between physical phenomena at largely different scales so that the normalized equations remain multiscale,
both individually and as a system, such that for instance the leading order in one equation may be O(1),
while in the other is O(10−3). The first challenge remains true even after standard non-dimensionalization90

of the governing equations by introducing unit reference scales for relevant physical quantities. For instance,
after normalization, the shear modulus in a specimen may be of O(1) while the permeability coefficient is of
O(10−5). One solution is hardcoding via a change of variable so that all the PDE parameters are re-scaled to
O(1). This has been successfully implemented for instance in [43]. A caveat of this approach is that (a) it is
not applicable in heterogeneous environments where some of the unknowns such as porosity or permeability95

could span several scales, and (b) the exact scaling of each unknown quantity should be known a priori.
This work presents a few ideas that could potentially address the above challenges. This paper is organized

as the following. Section 2 introduces the proposed network scaling and scale-driven loss balancing in a generic
framework for multi-scale PDE systems. Section 3 describes the problem statement for poroelastography
and adapts the proposed approach for this application. In addition, the state-of-the-art GradNorm and100

SoftAdapt techniques for loss balancing are briefly introduced. This section also includes an analysis of the
proposed dynamic scaling and its relation to GradNorm and SoftAdapt. Section 4 provides an account of
numerical experiments where the reconstruction results from the three approaches are compared and the
case of reconstruction from noisy data is investigated. This is then followed by a detailed discussion of the
observations and conclusions.105

2. Proposed approach

Network scaling embeds a generic change of variable in the architecture of neural networks that map the
unknown physical properties of a system in space. In this approach a scaling layer is added right before
the output while other layers are normalized i.e., scaled to O(1). For instance, let us consider a multilayer
perceptron (MLP) as a property map where the input consists of a grid of neighborhoods in space ξ i, i =
1,2, . . . ,Nξ , while the output is the associated material properties (or PDE parameters) in each neighborhood
ϑi = (ϑ1,ϑ2, . . . ,ϑNϑ

)i where Nϑ is the number of PDE parameters. In this setting, every MLP layer except the
last one is defined by the standard map Υ` : x`−1→ x` ,

x` = Υ`
(
x`−1) := σ

(
W `x`−1+ b`

)
, ` = 1,2, . . . ,N` −1, (1)
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where W ` and b` respectively designate the `th layer’s weight and bias and σ = tanh, ReLU is the activation
function. The network is constructed by coherent composition of Υ` for ` = 1,2, . . . ,N` −1, wherein N` denotes
the number of layers. In the last layer, the scaling is applied as the following(

ϑ1,ϑ2, . . . ,ϑNξ

)
= diag

[
(s1,s2, . . . ,sNϑ

)1, . . . ,(s1,s2, . . . ,sNϑ
)Nξ

]
xN`−1, (2)

wherein (si)j denotes the scale of ϑi, i = 1, . . . ,Nϑ, in the jth neighborhood, j = 1, . . . ,Nξ , such that (ϑi)j =O
(
(si)j

)
.

In most physical systems, the majority of system’s properties vary in space but remain of the same scale i.e.,
(si)j = si,∀ j,i ∈ I ⊂ {1, . . . ,Nϑ} except for a small subset of quantities in which case the scaling factors may be
identified by a small set Si of relevant scales (indicating the likely range of scales that the associated property110

may assume), thereby the correct scaling factor in each neighborhood will be selected during the learning
process such that (si)j ∈ Si,∀ j,i ∈ {1, . . . ,Nϑ}\ I. For example, the scaling for permeability in rocks can assume
values from the set {10−5,10−6,10−7} and the exact factors in various neighborhoods will be picked from this set
during the optimization process. Note that in the proposed architecture, the network parameters i.e., weights
and biases remain of O(1) which aids their fast and robust identification, while the output is properly scaled115

by the last layer. Note that the scaling factors in this layer are either exactly determined by the nominal
values or preliminary experiments, or belong to a small set of scales specified based on the expected range of
variation for the associated physical quantities in the domain.

Given the system’s response v, over a set of neighborhoods, the objective is to learn the unknown parameters
of the property map ({W `,b`}, ` = 1,2, . . . ,N` −1, and (si)j ∈ Si,∀ j,i ∈ {1, . . . ,Nϑ}\ I) by minimizing the residual
of the system’s governing equations L = 1

N

∑N
i=1 ‖wi`i ‖

2. It should be mentioned that here we consider
data inversion in the frequency-domain i.e., v = v(x,ω) and since multiscale physical quantities are frequency-
dependent, we will focus on reconstructions at fixed frequencies. In presence of multi-frequency data, one may
conduct the inversion process at each frequency separately and uncover the PDE parameters as a function of
frequency (or their evolution in time by an inverse Fourier transform). We assume that each equation `i in
the PDE system can be expressed as a summation of separable operators in terms of data v and the unknown
parameters ϑ such that

`i =

N j∑
j=1

fi j(ϑ,ω)Di j(v), Di j(v) =

Nk∑
k=1

∂α
k
1 +α

k
2 +α

k
3

∂x
αk

1
1 ∂x

αk
2

2 ∂x
αk

3
3

hk
i j[v](x), αk = (αk

1 ,α
k
2 ,α

k
3 ), (3)

wherein fi j = fi j(ϑ,ω) and hi j = hk
i j(v) for i = 1, . . . ,N, j = 1, . . . ,Nj and k = 1, . . . ,Nk , are linear or nonlinear

functions of their arguments; Di j denotes a differential operator, and the multi-index notation αk ∈ N3 is used120

for partial differentiation with respect to x = (x1,x2,x3) [44].
In this setting, for loss balancing, by assuming that fi j is a Lipchitz function of network parameters (see

Remark 1), we propose to scale each loss component `i by a dynamic weight wi such that the average scale in
the normalized equation wi`i is O(1). For this purpose, at every epoch, the scale of every loss term in (3) is
determined as the following

ei j = round
(
log10[ fi j(ϑ,ω)]

)
+ round

(
log10[〈|Di j(v)|〉ξ]

)
, i = 1, . . . ,N, j = 1, . . . ,Nj, (4)

where round() maps its argument to the nearest integer and 〈| · |〉ξ denotes the mean of absolute value of its
argument over the support ξ . Note that the scale of fi j

(
ϑ,ω) is in part dictated by the last layer in the neural

property map and can also be determined by the network’s estimates for the PDE parameters ϑ. Here, ω
is the frequency of probing waves and a known (input) parameter. Moreover, the scale of Di j(v) is directly
computed from data using spectral methods for signal processing and differentiation [25, 26]. Given the above,
the average scale and affiliated weight for each loss component is specified as follows,

wi = 10−βi , βi =
1
Nj

N j∑
j=1

ei j, i = 1, . . . ,N . (5)

Here we assumed that 10 is an appropriate basis for separating the scales. One may replace 10 by 10η and
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Algorithm 1 Pseudocode for the method of dynamic scaling for loss balancing.

Require: (1) network-predicted scaling for unknown physical parameters ϑ, (2) loss components `i recast
according to (3), and (3) relevant field derivatives Di j(v) that appear in the loss

for t = 0 to epoch do

if fi j is Lipchitz continuous ∀i, j with respect to the network parameters then

Compute round
(
log10[ fi j(ϑ,ω)]

)
for i = 1, . . . ,N and j = 1, . . . ,Nj based on the network outputs

Compute ∀i, j, round
(
log10[〈|Di j(v)|〉ξ]

)
according to the loss

Compute the average scale of each loss component

βi =
1
Nj

N j∑
j=1

(
round

(
log10[ fi j(ϑ,ω)]

)
+ round

(
log10[〈|Di j(v)|〉ξ]

) )
. else

Compute round
(
log10[〈|Di j(v)|〉ξ]

)
for i = 1, . . . ,N and j = 1, . . . ,Nj according to the loss

Compute ∀i, j,n, round
(
log10

[
∂ fi j
∂ϑn
(ϑn,ω)

] )
, n = 1, . . . ,Nϑ, based on the network outputs

Compute ∀n, round
(
log10[ϑn]

)
, based on the network outputs

Compute the average scale of each loss component’s derivative with respect to a network parameter

βi =
1
Nj

N j∑
j=1

(
round

(
log10[〈|Di j(v)|〉ξ]

)
+

1
Nϑ

Nϑ∑
n=1

(
round

(
log10

[
∂ fi j
∂ϑn
(ϑn,ω)

] )
+ round

(
log10[ϑn]

) ))
. end if

Update weights wi = 10−βi

Update weighted loss L =
1
N

N∑
i=1
‖wi`i ‖

2

Optimize L

end for

gauge the basis as needed in their application of interest. The pseudocode for the proposed approach is
provided in Algorithm 1.

Remark 1. Let w be a network parameter, observe that if fi j is Lipchitz continuous with respect to w such that
the Lipchitz constant is of O

(
fi j

)
, thanks to the proposed architecture for property maps and their scaling, then

the proposed weights wi in (5) automatically normalize the gradient of weighted loss components with respect
to the network parameter w. This will be demonstrated in Section 3 within the context of poroelastography.
In other applications where fi j is not Lipchitz continuous, one may alternatively use the following weights for
gradient normalization based on scaling

w′i = 10−β
′
i , β′i =

1
Nj

N j∑
j=1

(
round

(
log10[〈|Di j(v)|〉ξ]

)
+

1
Nϑ

Nϑ∑
n=1

(
round

(
log10

[
∂ fi j
∂ϑn
(ϑn,ω)

] )
+ round

(
log10[ϑn]

) ))
,

(6)
where the scale of ϑn is governed by the last layer in the property network. Note that given the architecture of125

the latter, ∂ϑn

∂w =O(ϑn) for n = 1, . . . ,Nϑ.
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3. Model problem

This section implements the proposed approach for poroelastic characterization of rocks using elastic wave-
form and acoustic pore pressure data. In what follows, we begin with the problem statement and highlight its
multiscale nature that introduced many challenges in our early attempts for data inversion using the available130

techniques. This is followed by proper normalization and construction of the proposed neural architecture
with network scaling. For loss balancing, we provide a comparative analysis between the proposed dynamic
scaling and the current state-of-art methods, namely: the GradNorm and SoftAdapt, for multi-task learning.

3.1. Problem Statement

Consider a poroelastic domain B characterized by the drained Lamé parameters λ and µ, Biot modulus M,
total density ρ, fluid density ρ f , apparent mass density ρa, permeability coefficient κ, porosity φ, and the Biot
effective stress coefficient α. With reference to Fig. 1 (a), it is assumed that the plane-strain approximation
holds and that the system’s response to a fluid body force at x◦ = (x◦,y◦) is reconstructed from far-field data (or
directly measured using for example convection MRI [34, 35]) in the neighborhood B◦ of the source location
in terms of the solid displacement u = u(x,ω) and pore pressure p = p(x,ω). On recalling that ω denotes the
frequency of wave motion, Biot equations [18, 45, 28] may be used to describe [u,p](x,ω) for x ∈B◦ as

Π1[u,p;δ,ω] := ∇ · (C :∇u) − a∇p + ω2bu − f u(δ) = 0,

Π2[u,p;δ,ω] :=
c
ω2∇

2p + M−1p + a∇ · u +
c
ω2 f p(δ) = 0,

(7)

where C = λI2 ⊗ I2+2µI4 is the fourth-order drained elasticity tensor with Im(m = 2,4) representing mth-order
symmetric identity tensor, and

γ =
ρa

φ2 +
ρ f

φ
+

i
ωκ

, a = α −
ρ f

γ
, b = ρ −

ρ2
f

γ
, c =

1
γ
,

f u =
[
−
ρ f

γ
δ(x− x◦), 0

]
, f p = ∇ · δ(x− x◦), δ(x− x◦) = De−ς ‖x−x◦‖

2
,

(8)

wherein δ(x − x◦) is a time-harmonic fluid body source applied at x◦ characterized by its magnitude D and135

spatial decay rate ς. Given the response [u,p](x,ω) at a fixed frequency in the neighborhood B◦, the objective
is to reconstruct the domain’s hydromechanical properties i.e., {µ◦, λ◦, M◦, α◦, φ◦, κ◦} in the vicinity of source

Figure 1: Synthetic experiments simulating wave motion in the poroelastic domain B: (a) the model is harmonically excited at
frequency ω by a fluid body force δ(x − x◦) and the response is computed in a neighborhood of the source point x◦ i.e., in the
square B◦ of side 5`r , (b) the x component of effective body force f u in the first of Biot equations in (7), and (c) the fluid source
term f p in the generalized Darcy’s law i.e., the second of (7). Here, R and I respectively indicate the real and imaginary parts
of a complex-valued quantity.
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point x◦. It should be mentioned that the source terms f u and f p in (7) play a key role in breaking the
intrinsic symmetry in Biot equations and thus enable concurrent identification of all poroelastic parameters by
eliminating the null space in the governing PDE system for every x ∈B◦. Moreover, these terms locally enhance140

the observability of hydraulic transport in B◦ and thus improve the robustness when retrieving the permeability
coefficient. The main challenge in practice pertains to characterization of tight or low-permeability formations.
As such, here we assume that B is comprised of Pecos sandstone according to [45, 46]. It should be mentioned
that in our numerical experiments we assumed that the poroelastic properties are homogenized or constant
in the vicinity of each source i.e., focal point. In what follows, the reconstructions are performed in two focal145

areas whose affiliated properties are listed in Table 1.

3.2. Dimensional platform

To facilitate data processing, we normalize the system by choosing ρr = 103 kg/m3, `r = 0.14 m, and
µr = 5.85 GPA as the reference scales respectively for mass density, length, and stress. Note that here ρr is
identified by the fluid density, `r is the drained shear wavelength, and µr is the drained shear modulus. In150

this setting, all quantities are non-dimensionalized as reported in Table 1. Given the multiphasic nature of
the domain, the normal system retains its multiscale character and further processing is required to unify the
scale of all variables. This will be accomplished by the proposed network scaling in this study.

Table 1: Poroelastic properties of the domain B in the vicinity of two focal points.

property value in focal area i = 1,2 dimensionless values

first Lamé parameter (drained) λ′1 = λ
′
2 = 2.74 GPA λ1 = λ2 = 0.47

drained shear modulus µ′1 = µ
′
2 = 5.85 GPA µ1 = µ2 = 1

Biot modulus M ′1 = M ′2 = 9.71 GPA M1 = M2 = 1.66

total density ρ′1 = ρ
′
2 = 2270 kg/m3 ρ1 = ρ2 = 2.27

fluid density ρ′f1 = ρ
′
f2
= 1000 kg/m3 ρ f1 = ρ f2 = 1

apparent mass density ρ′a1 = ρ
′
a2 = 117 kg/m3 ρa1 = ρa2 = 0.117

permeability coefficient κ′1 = 503, κ′2 = 0.8 mm4/N κ1 = 1.5407 × 10−5, κ2 = 2.45 × 10−8

porosity φ1 = φ2 = 0.195 φ1 = φ2 = 0.195

Biot effective stress coefficient α1 = α2 = 0.83 α1 = α2 = 0.83

excitation frequency ω′ = 1.2 MHz ω = 391

source amplitude D′ = 8.36 × 104 m D = 5.97 × 105

source decay rate ς ′ = 9.57 × 104 m−2 ς = 187.52

3.3. Data inversion

In every focal area, given the frequency ω and the fluid body source δ(x− x◦) – and thus, f u(δ) and f p(δ)155

as in Fig. 1 – the hydromechanical response is obtained in terms of the two-dimensional solid displacement
u = (ux,uy) and pore pressure p as illustrated in Fig. 2. In this section, given the dataset [u

j
i ,p

j
i ;δi,ω] in two

focal regions i = 1,2 with j = 1, . . . ,Npi data points in each neighborhood, the objective is to recover the affiliated
hydromechanical properties {µi, λi, Mi, αi, φi, κi} in each region. For this purpose, the real and imaginary
parts of the Biot equations as well as every complex-valued quantity are separated such that (7) is transformed160

into a real-valued system of six PDEs. The real and imaginary parts of each quantity are denoted by R(·)

and I(·) respectively. The six PDE parameters in each neighborhood are mapped by a scaled MLP that is
identified by minimizing the weighted residuals of the Biot system. In what follows, the property map is
constructed and trained using three adaptive methods for balancing the six components of the loss function,
namely: the proposed dynamic scaling, GradNorm and SoftAdapt. Each method is briefly introduced followed165

by a comparative analysis of their logic and performance.
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Figure 2: Simulated poroelastic response to the excitation shown in Fig. 1 in focal area ξ1: real (top raw) and imaginary (bottom
row) of (a) solid displacement ux , (b) solid displacement uy , and (c) interstitial pore pressure p.

Scaled neural networks as property maps

In this work, the unknown hydromechanical properties in the designated focal areas are mapped by a
multilayer perceptron whose dense range allows for capturing arbitrary complex functions [47]. As depicted
in Fig. 3, the input consists of a set of neighborhoods {ξ i}, i = 1, . . . ,Nξ , here Nξ = 2, while the output denotes
the associated poroelastic properties. Every MLP layer (before the last one) is defined by (1), while the last
scaling layer is defined by(

ϑ?1 ,ϑ
?
2
)
=

(
{µ?1 , λ

?
1 , M?

1 , α
?
1 , φ

?
1 , κ

?
1 },{µ

?
2 , λ

?
2 , M?

2 , α
?
2 , φ

?
2 , κ

?
2 }

)
=

diag
[
1, 1, 1, 1, 0.1, s1

κ,1, 1, 1, 1, 0.1, s2
κ

]
xN`−1, siκ ∈ {10−5,10−6,10−7,10−8}, i = 1,2,

(9)

in this application based on the nominal (normalized) values for sandstone. The network is trained by mini-
mizing the loss function L as follows

L =

2∑
i=1

Npi∑
j=1

6∑
k=1

wi
k`k

(
u
j
i ,p

j
i ;δi,ω

��ϑ?i ,{Dkl}l=1,...,Nk

)2
, (10)

where ϑ?i = (µ
?
i , λ

?
i , M?

i , α
?
i , φ

?
i , κ

?
i ) is the set of network-predicted properties in each focal region ξ i;

Dkl ∈ {∂/∂x,∂/∂y,∂2/∂x2,∂2/∂y2,∂2/∂x∂y} is the set of differential operators according to (3), and each loss
component is

{`1, `2, `3, `4, `5, `6} =
{
R(Π1)x, I(Π1)x,R(Π1)y, I(Π1)y,R(Π2), I(Π2)

}
, (11)

wherein Π1 and Π2 are defined in (7). Thereby, `1 can be written as

`1 = µ

(
∂2R(ux)

∂x2 +
∂2R(ux)

∂y2 +
∂2R(ux)

∂x2 +
∂2R(uy)
∂x∂y

)
+ λ

(
∂2R(ux)

∂x2 +
∂2R(uy)
∂x∂y

)
−

−R(a)
∂R(p)
∂x

+ I(a)
∂I(p)
∂x

+ ω2
R(b)R(ux) − ω

2
I(b)I(ux) − R( f ux ),

(12)

and `2− `6 are provided in Appendix A for completeness.170

Adaptive weights for loss balancing

In this section, we briefly describe implementation of the proposed Dynamic Scaling for adaptive loss bal-
ancing, and provide an overview of the SoftAdapt and GradNorm methods. This is followed by a comparative
analysis of these approaches and reporting of the obtained results in Section 4.
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Figure 3: Application of the proposed approach for intelligent poroelastography: (a) mapping of the unknown hydromechanical
properties in each focal neighborhood ξi , i = 1, 2, by a multiscale MLP such that the network parameters (i.e., weights and biases)
remain of O(1) while the outputs are properly scaled by the last layer, (b) identifying the network by minimizing the multi-
objective loss function L comprised of weighted PDE residuals associated with the Biot equations, and (c) the training dataset
entailing the harmonic source function δi of frequency ω in each focal region and the associated displacement and pressure fields

[u
j
i , p

j
i ] at j = 1, . . . ,Npi points in the vicinity of each source along with their spatial derivatives Dkl .

Dynamic Scaling (DynScl)175

According to (3)-(5), this approach weights each task `k , k = 1, . . . ,6, such that the affiliated residue is
normalized by the average scale in `k . For example, the weight wi

1 associated with `1 in (12) in the ith

neighborhood is specified as follows,

wi
1 = 10−β

i
1 , βi1 =

1
7

7∑
l=1

round
(
log10

[
f1l

(
ϑ?i ,ω

) ] )
+ round

(
log10

[〈
|D1l[ux,uy,p; f u, f p](x j

i )|
〉
j

] )
, i = 1,2. (13)

Here, 〈| · |〉j indicates the mean of absolute value of its argument over j = 1, . . . ,Npi points in every focal region

ξ i, and x
j
i denotes the position vector affiliated with data point (u

j
i ,p

j
i ) where i = 1,2. Note that all derivatives

D1l[ux,uy,p; f u, f p], l = 1, . . . ,7, are computed by way of spectral differentiation in each neighborhood from the

set {(u
j
i ,p

j
i ,δi,ω)}j=1,...,Npi

. For completeness, the explicit form of operators f1l and D1l, l = 1, . . . ,7, according
to (3) is provided in the following.{

f11, f12, f13, f14, f15, f16, f17
}(
ϑ?i ,ω

)
=

{
µ?i , λ

?
i ,−R(a

?
i ),I(a

?
i ), ω

2
R(b?i ),−ω

2
I(b?i ), 1

}
,

a?i = a(α?i ,φ
?
i , κ

?
i ), b?i = b(φ?i , κ

?
i ), i = 1,2,

(14)

{D11, D12, D13, D14, D15, D16, D17}[ux,uy,p; f u, f p] ={(
∂2R(ux)

∂x2 +
∂2R(ux)

∂y2 +
∂2R(ux)

∂x2 +
∂2R(uy)
∂x∂y

)
,

(
∂2R(ux)

∂x2 +
∂2R(uy)
∂x∂y

)
,
∂R(p)
∂x

,
∂I(p)
∂x

,R(ux),I(ux),−R( f ux )

}
.

(15)

Similar factorizations can be formulated for `2−`6 in (A.1) to find wi
2−w

i
6 in (10) for every focal region ξ i,

i = 1,2.

Softmax adaptive weights (SoftAdapt)

In this approach, the weight of each loss component is calculated based on its live performance statistics.
More specifically, the rate of change of each objective function relative to others is used to gauge its visibility
to the minimizer such that the convergence of all loss components in the parameter space is approximately
isotropic [42]. To this end, recall that the sought-for poroelastic properties ϑ?i in each focal area ξ i, i = 1,2, is
a function of network parameters i.e., weights and biases {Wm,bm}m=1,2,...,Nm in Nm layers, which in turn are
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a function of iteration steps tn. Then, define the rate of change of the loss component `k = `k
(
ϑ?i (tn)

)
by

sik = `k
(
ϑ?i (tn)

)
− `k

(
ϑ?i (tn-1)

)
, k = 1, . . . ,6, i = 1,2, n = 1, . . . ,Nepoch, (16)

wherein Nepoch is the number of epochs. In this setting, the loss weights are defined by

wi
k =

eη (s
i
k
−max({sik }k=1, . . . ,6))∑6

k=1 eη (s
i
k
−max({sik }k=1, . . . ,6))

, i = 1,2, (17)

where η is a tunable hyper-parameter with default value of η = 0.1. SoftAdapt assigns larger weights to loss
components with slower convergence rate.180

Gradient normalization (GradNorm)

GradNorm balances the gradient of weighted loss components with respect to network parameters to ensure
that all objectives train at similar rates [41]. This method addresses the common issue of gradient imbalances by
penalizing tasks with excessively large or small gradients. Let w ⊂ {Wm,bm}m=1,2,...,Nm denote the parameters
of shared MLP layer(s) in the property map, see Fig. 3. GradNorm finds the optimal weights wi

k
(tn), at every

epoch tn, by minimizing the L1 difference between the actual and average norms of loss gradients with respect
to w as the following

L i
∇
=

6∑
k=1

�����∇wwi
k(tn)`k

(
ϑ?i (tn)

)
2 −

1
6

6∑
k=1
(rk(tn))η̃

∇wwi
k(tn)`k

(
ϑ?i (tn)

)
2

�����
1

, rk(tn) =
`k(tn)/`k(t1)∑6
k=1 `k(tn)/`k(t1)

, (18)

where η̃ is a tunable hyperparameter that determines the strength of the restoring force that aligns the loss
components to a common convergence rate. When loss components differ greatly in scale, causing significant
variations in the loss distribution during training, a higher value of η̃ is needed to enforce a balance. In
contrast, when the scale of loss component are more similar, a lower value of η̃ is suitable. Taking η̃ = 0 will185

assign equal weights to all components. Note that minimizing L i
∇

is repeated at every epoch while optimizing

L . Since wi
k

directly influences the gradient magnitudes for each loss component, L i
∇

is differentiated with

respect to wi
k
, and the resulting derivatives are used to update each weight wi

k
via standard gradient decent

approaches.

Comparative analysis190

The proposed approach based on dynamic scaling of the loss components is closely related to GradNorm.
To observe this, recall that the weights and biases remain of O(1) at every epoch in the property map and
thus

∂
(
ϑ?i

)
m

∂wn
= O ((sm)i), m = 1, . . . ,6, n = 1, . . . ,Nw, i = 1,2,

(
ϑ?i

)
m ∈ ϑ

?
i , wn ∈w, (19)

wherein (sm)i is the relevant scale in the MLP’s last layer. Whereby, it is straightforward from (13)-(15) to
prove that

∂wi
1(tn)`1

(
ϑ?i (tn)

)
∂wn

=

7∑
l=1

wi
1(tn)D1l[ux,uy,p; f u, f p]

∂ f1l(ϑ?i ,ω)
∂wn

=

=

7∑
l=1

wi
1(tn)D1l[ux,uy,p; f u, f p]∇ϑ?i f1l(ϑ?i ,ω)

∂ϑ?i
∂wn

= O(1), n = 1, . . . ,Nw, i = 1,2.

(20)

This remains the case for all other weighted components of the loss wi
k
(tn)`k

(
ϑ?i (tn)

)
, for k = 2, . . . ,6, as one

may prove that fkl(ϑ?i ,ω), corresponding to the factorization in (3) for the Biot system, are Lipchitz continuous
with respect to wn ∈w such that the Lipchitz constant is of O ( fkl). In other words,

∂ fkl
∂wn

= O ( fkl), k = 2, . . . ,6, n = 1, . . . ,Nw, i = 1,2. (21)
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Therefore, the Dynamic Scaling approach automatically achieves the GradNorm’s objective in (18) without
requiring a separate minimization procedure per epoch. This is accomplished by approximating, and thereby
normalizing, the scale of relevant derivatives instead of their explicit calculation which may involve signifi-
cant computational cost and complications during the optimization process. This solution is afforded by the
proposed architecture of the property network and its explicit scaling via the last layer. Note that in many195

physical systems given the frequency of wave motion and network-predicted physical properties, the scale of
spatial derivatives Dkl in the PDE system can be estimated without explicit differentiation. This will be
particularly helpful for verification and validation of the computed derivatives, especially in presence of noise
in data, and in certain scenarios can help expedite the loss balancing process.

Softmax adaptive weights carry the advantage of being computationally efficient and flexible so that they200

can be applied to a wide range of network architectures and multi-objective loss functions. There are two
caveats, however, when it comes to using SoftAdapt for balancing multi-physics PDE systems: (i) the heuristic
nature of the Softmax function that may not cater, in terms of its range, for systems that span several scales
in time-space, and (ii) this approach uniformly assigns larger weights to loss components with lower rate of
change. This is typically done without differentiating whether, for instance, the computed rate of change205

is large due to scaling or due to convergence. In physical systems, one objective may assume much larger
values compared to others and shows a significant decay rate without actually converging, while other loss
components could be fast converging but due to their smaller scale show much smaller decay rates. This could
lead to training instability, especially in presence of noise.

4. Implementation results210

4.1. Reconstruction from noiseless data

In this section, we report the reconstruction results related to two focal regions introduced in Section 3.
Here, the proposed network scaling is coupled with three different loss balancing techniques, described in
Section 3, namely: the proposed dynamic scaling (DS), GradNorm (GN), and SoftAdapt (SA). We compare
the performance of these methods based on accuracy and robustness of the associated results. In all cases, the
property maps are constructed by MLPs comprised of two parts; the first part is a single fully-connected tanh-
activated layer with thirty two neurons as a common trunk, while the second part involves six individual towers,
each of which composed of sixteen neurons whose output is separately scaled by the last layer to predict a
designated material parameter. This architecture is consistent with the schematic shown in Fig. 3. All models
are trained by the Adam optimizer, and the learning rate is tuned during the training process. We also
compare the results to those obtained without network scaling and/or loss balancing. The poroelastodynamic
simulations, germane to the configuration shown in Fig. 1 (a), are conducted using the FreeFem++ [48]
platform to generate the training data. In this vein, we built on an existing code that was recently developed
as part of [28] to model poroelastic wave motion in the subsurface. In what follows, the reported reconstruction
error is normalized according to

Ξ
(
(ϑ?i )n

)
=

��(ϑ?i )n − (ϑi)n��
|(ϑi)n |

, i = 1,2, n = 1, . . . ,Nϑ, ? = {EW, DS, GN, SA}, (22)

where (ϑ?i )n is the neural network prediction for a quantity whose true value is (ϑi)n. Note that (ϑi)n indicates

the nth component of the property vector ϑi in the ith focal region when i = 1,2 in this study. It should be
mentioned that in this section for clarity the superscript ? which indicates network prediction in Section 3 is
replaced by an abbreviation of the method used for training.215

The reconstruction results using the proposed dynamic scaling approach is shown in Figs. 4 and 5. Note that
here all data from both low-permeability and high-permeability neighborhoods {ξ i}, i = 1,2, is used for training
to simultaneously reconstruct the six unknown poroelastic parameters in each neighborhood leading to twelve
network outputs (ϑDS

1 ,ϑDS

2 ) = ({µ
DS

1 , λDS

1 , MDS

1 , αDS

1 , φDS

1 , κDS

1 },{µ
DS

2 , λDS

2 , MDS

2 , αDS

2 , φDS

2 , κDS

2 }). Our comparative
analysis with GradNorm and SoftAdapt predictions is however conducted in each neighborhood separately.220

This is motivated by the logical comparison of these approaches, provided at the end of Section 3, realizing
that SoftAdapt associates the variation of loss components only to their convergence behavior and may not
differentiate the impact of distinct physical scales on variation magnitudes of different objectives. Moreover,
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Figure 4: Network-predicted poroelastic properties vs. number of epochs Ne when the reconstruction is simultaneously conducted
in the focal regions {ξi }, i = 1, 2. The network is a scaled MLP and the loss is balanced using the proposed Dynamic Scaling (DS)
approach: (a, g) drained shear modulus µDS

i , (b, h) Biot modulus MDS
i , (c, i) porosity φDS

i , (d, j) drained first Lamé parameter
λDS
i , (e, k) Biot effective stress coefficient αDS

i , (f, l) permeability coefficient κDS
i .

Figure 5: Convergence plots i.e., loss vs. epoch corresponding to the results of Fig. 4 where the reconstruction is simultaneously
conducted in the focal regions {ξi }, i = 1, 2. The network is a scaled MLP and the loss is balanced using the proposed Dynamic
Scaling (DS) approach: (a) total loss log(L DS) trajectory against the number of epochs, (b) weighted loss components log( ‖wi

k
`k ‖)

with `k , k = 1, . . . , 6, denoting the kth loss component and wi
k

the associated weight in the ith focal region, (c) loss weights log(wk
i ).
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for computational efficiency, the GradNorm typically normalizes the gradients of weighted loss components
with respect to the parameters in a shared layer in the neural network (as opposed to all network parameters)225

which may create some stiffness in loss balancing depending on the network architecture and input/output.
Given this, it may be more insightful to compare the reconstruction results in each neighborhood separately.
This may also shine some light on the impact of permeability on the reconstruction results using different
methods.

Table 2 provides the reconstruction results and associated normal errors, with respect to the ground truth,
in the high-permeability neighborhood ξ1. Here, the property map is a scaled MLP as shown in Fig. 3. Four
loss balancing schemes are implemented, namely: DynScl (DS), GradNorm (GN), SoftAdapt (SA), and equal
weights (EW) or no balancing. The reconstruction results are then accordingly denoted by ϑDS

1 , ϑGN

1 , ϑSA

1 ,
and ϑEW

1 where
ϑ?1 = {µ

?
1 , λ

?
1 , M?

1 , α
?
1 , φ

?
1 , κ

?
1 }, ? = {EW, DS, GN, SA}.

In all cases, the training data and network architecture remains the same. DS, GN, and SA methods outperform230

the case of equal weights, highlighting the importance of loss balancing in identification of multiphysics and
multiscale systems. Note that the maximum normal error associated with EW, DS, GN, and SA reconstructions
respectively read 100%, 2.2%, 18.36%, and 9.8%. The largest error does not correspond to the same parameter
in different reconstructions. More specifically, the maximum error using equal weights and dynamic scaling is
related to the drained first Lamé parameter λEW

1 and λDS

1 , while in the case of GradNorm and SoftAdapt, the235

largest error pertains to porosity φGN

1 and Biot modulus MSA

1 respectively. The convergence plots along with
network predictions as a function of optimizer step Ne are shown in Figs 6, 7, 8 for reconstructions by way of
DynScl, GradNorm, and SoftAdapt respectively.

Table 3 reports the reconstruction results when the exercise in Table 2 is repeated without network scaling.
Here, the property map is an MLP without the scaling layer i.e., the scaling layer is replaced by an affine240

map with unknown parameters that is standard in MLP architectures. In this case, the reconstruction fails
regardless of the choice of loss balancing technique. This exercise highlights the importance of proper scaling
of the model in tandem with loss balancing for a successful data inversion. It is note worthy that the maximum
normalized error is first associated with the permeability coefficient κ?1 and next porosity φ?i both related to
the fluid dynamics in the interstitial pore space that is distinct (in terms of scale) from the physics of wave245

motion in the solid rock.
Table 4 presents the reconstruction results and affiliated normalized errors in the low-permeability neigh-

borhood ξ2. Similar to Table 2, the property map is a scaled MLP as in Fig. 3 and four loss balancing
techniques are deployed for training. Again, DS, GN, and SA methods outperform the case of equal weights.
The largest error using equal weights, dynamic scaling, GradNorm and SoftAdapt are respectively related250

to porosity φEW

2 , permeability coefficient κDS

2 , porosity φGN

2 and Biot modulus MSA

2 and read 71%, 20%, 35%,
and 40%. In the SoftAdapt reconstruction, there are multiple terms with large associated normal error. The
convergence plots along with network predictions as a function of the number of epochs Ne are shown in
Figs 9, 10, 11 for reconstructions by way of DynScl, GradNorm, and SoftAdapt respectively.

In both neighborhoods, dynamic scaling seems to stabilize the training process and improves the network255

predictions compared to GradNorm and SoftAdapt. This is in particular evident from Fig. 5 (b) where all
weighted loss components according to DynScl appear to converge at an approximately similar rates. This is
consistent with our analysis at the end of Section 3. SoftAdapt appears to be generally unstable. This may be
observed from the loss trajectory in Figs. 8 and 11 and the fact that the network prediction for porosity φSA

1 and
φSA

2 does not converge in both cases when the training process is apparently stalled. GradNorm demonstrates260

greater stability in terms of the loss behavior. This balancing scheme, however, runs the risk of diminishing
the loss sensitivity to a few model parameters. This, for instance, has led to the lack of convergence of porosity
φGN

1 in Fig. 10 (c), and Biot modulus MGN

2 in Fig. 7 (e).

4.2. Reconstruction from noisy data

This section aims to investigate the impact of noise in data on the poroelastic properties recovered by way
of the proposed approach for model scaling and loss balancing. In this vein, the field data in Section 4.1 in

13



Table 2: Reconstructed poroelastic properties in the high-permeability neighborhood ξ1. Network scaling is applied here.

ϑ1 µ1 λ1 M1 α1 φ1 κ1

ground truth (dimensionless value) 1 0.47 1.66 0.83 0.195 1.5407×10−5

Equal Weights (ϑEW

1 ) 1.0003 0.0005 1.4937 1.1618 0.0492 1.9866×10−5

DynScl (ϑDS

1 ) 1.0015 0.4599 1.6603 0.8307 0.1971 1.5667×10−5

GradNorm (ϑGN

1 ) 0.99995 0.4721 1.72156 0.8276 0.2308 1.5369×10−5

SoftAdapt (ϑSA

1 ) 0.9999 0.4665 1.4974 0.832 0.1861 1.5447×10−5

Ξ(ϑEW

1 ) 0.03% 100% 10% 40% 75% 29%

Ξ(ϑDS

1 ) 0.15% 2.2% 0.018% 0.084% 1.4% 1.7%

Ξ(ϑGN

1 ) 0.005% 0.45% 3.7% 0.29% 18.36% 0.25%

Ξ(ϑSA

1 ) 0.01% 0.74% 9.8% 0.24% 4.6% 0.26%

Table 3: Reconstructed poroelastic properties in the high-permeability neighborhood ξ1 without network scaling.

ϑ1 µ1 λ1 M1 α1 φ1 κ1

ground truth 1 0.47 1.66 0.83 0.195 1.5407×10−5

Equal Weights (ϑEW

1 ) 0.991 0.0006123 1.5014 1.1456 0.0214 2.0242

DynScl (ϑDS

1 ) 0.662 1.813 1.491 1.617 0.121 0.987

GradNorm (ϑGN

1 ) 0.9901 0.249 1.507 0.974 0.00056 1.938

SoftAdapt (ϑSA

1 ) 0.984 0.6187 1.3479 0.856 0.00003614 1.436

Ξ(ϑEW

1 ) 0.9% 99.86% 9.55% 38.02% 89.025641% 13138083%

Ξ(ϑDS

1 ) 33.8% 285.745% 10.181% 94.819% 37.949% 6406079%

Ξ(ϑGN

1 ) 0.990% 47% 9.217% 17.349% 99.713% 12578597%

Ξ(ϑSA

1 ) 1.6% 31.64% 18.801% 3.133% 99.981% 9320338%

Table 4: Reconstructed poroelastic properties in the low-permeability neighborhood ξ2. Network scaling is applied here.

ϑ2 µ2 λ2 M2 α2 φ2 κ2

ground truth 1 0.47 1.66 0.83 0.195 2.45×10−8

Equal Weights (ϑEW

2 ) 1.001 0.4456 1.6551 0.8395 0.0571 2.631×10−8

DynScl (ϑDS

2 ) 1.0036 0.4652 1.6596 0.8306 0.191 2.934×10−8

GradNorm (ϑGN

2 ) 1.002 0.4713 1.569 0.833 0.262 2.485×10−8

SoftAdapt (ϑSA

2 ) 0.9998 0.4702 2.3189 0.8297 0.2164 2.0235×10−8

Ξ(ϑEW

2 ) 0.001% 5.2% 0.3% 1.1% 71% 7.4%

Ξ(ϑDS

2 ) 0.36% 1% 0.024% 0.072% 2.1% 20%

Ξ(ϑGN

2 ) 0.02% 0.27% 5.5% 0.036% 35% 1.4%

Ξ(ϑSA

2 ) 0.02% 0.043% 40% 0.036% 11% 17%
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Figure 6: Network-predicted poroelastic properties vs. the number of epochs Ne when the reconstruction is conducted in the
high-permeability neighborhood ξ1. The network is a scaled MLP and the loss is balanced using the proposed Dynamic Scaling
(DS) approach: (a) drained shear modulus µDS

1 , (b) drained first Lamé parameter λDS
1 , (c) Biot modulus MDS

1 , (d) Biot effective
stress coefficient αDS

1 , (e) porosity φDS
1 , (f) permeability coefficient κDS

1 , (g) DS weights wDS
i , i = 1, . . . , 6, versus the minimizer step

Ne , (h) weighted total loss log(L DS
1 ) trajectory against the number of epochs.

Figure 7: Network-predicted poroelastic properties vs. the number of epochs Ne in the high-permeability neighborhood ξ1. The
network is a scaled MLP and the loss is balanced using the GradNorm (GN) approach: (a) drained shear modulus µGN

1 , (b) drained
first Lamé parameter λGN

1 , (c) Biot modulus MGN
1 , (d) Biot effective stress coefficient αGN

1 , (e) porosity φGN
1 , (f) permeability

coefficient κGN
1 , (g) GN weights wGN

i , i = 1, . . . , 6, versus the minimizer step Ne , (h) weighted total loss log(L GN
1 ) vs. epoch.

Figure 8: Network-predicted poroelastic properties vs. the number of epochs Ne in the high-permeability neighborhood ξ1. The
network is a scaled MLP and the loss is balanced using the SoftAdapt (SA) approach: (a) drained shear modulus µSA

1 , (b) drained
first Lamé parameter λSA

1 , (c) Biot modulus MSA
1 , (d) Biot effective stress coefficient αSA

1 , (e) porosity φSA
1 , (f) permeability

coefficient κSA
1 , (g) SA weights wSA

i , i = 1, . . . , 6, versus the minimizer step Ne , (h) weighted total loss log(L SA
1 ) vs. epoch.
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Figure 9: Network-predicted poroelastic properties vs. the number of epochs Ne when the reconstruction is conducted in the
low-permeability neighborhood ξ2. The network is a scaled MLP and the loss is balanced using the proposed Dynamic Scaling
(DS) approach: (a) drained shear modulus µDS

2 , (b) drained first Lamé parameter λDS
2 , (c) Biot modulus MDS

2 , (d) Biot effective
stress coefficient αDS

2 , (e) porosity φDS
2 , (f) permeability coefficient κDS

2 , (g) DS weights wDS
i , i = 1, . . . , 6, versus the minimizer step

Ne , (h) weighted total loss log(L DS
2 ) trajectory against the number of epochs.

Figure 10: Network-predicted poroelastic properties vs. the number of epochs Ne in the low-permeability neighborhood ξ2. The
network is a scaled MLP and the loss is balanced using the GradNorm (GN) approach: (a) drained shear modulus µGN

2 , (b) drained
first Lamé parameter λGN

2 , (c) Biot modulus MGN
2 , (d) Biot effective stress coefficient αGN

2 , (e) porosity φGN
2 , (f) permeability

coefficient κGN
2 , (g) GN weights wGN

i , i = 1, . . . , 6, versus the minimizer step Ne , (h) weighted total loss log(L GN
2 ) vs. epoch.

Figure 11: Network-predicted poroelastic properties vs. the number of epochs Ne in the low-permeability neighborhood ξ2. The
network is a scaled MLP and the loss is balanced using the SoftAdapt (SA) approach: (a) drained shear modulus µSA

2 , (b) drained
first Lamé parameter λSA

2 , (c) Biot modulus MSA
2 , (d) Biot effective stress coefficient αSA

2 , (e) porosity φSA
2 , (f) permeability

coefficient κSA
2 , (g) SA weights wSA

i , i = 1, . . . , 6, versus the minimizer step Ne , (h) weighted total loss log(L SA
2 ) vs. epoch.
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focal neighborhood ξ1 is perturbed by 5% noise as the following

Z̃ = Z + n max (|Z |)
(
INx×Ny + i INx×Ny

)
, n = 0.05,

Z(r,s) = z(xr ,ys), z = ux, uy, p, r = 1, . . . ,Nx, s = 1, . . . ,Ny,
(23)

where Nx and Ny are respectively the number of samples in x and y directions in the high-permeability
neighborhood ξ1. Note that introducing the noise as in (23) as a percentage of the signal range is consistent
with how measurement noise is quantified in practice. In multiscale systems, however, these perturbations are
not equally reflected on the real and imaginary parts of the field variables. This is shown in Fig. 12 where the
normal misfit between the noiseless and noisy fields are demonstrated for the decomposed solid displacement
ux and pressure p according to

Θ(Z̃) =

��Z̃ − Z
��

max (|Z |)
, Z(r,s) = z(xr ,ys), z = R(ux),I(ux),R(uy),I(uy),R(p),I(p),

r = 1, . . . ,Nx, s = 1, . . . ,Ny .

(24)

Observe that the misfit in the major components of ux and p, namely: I(ux) and I(p), reflects the added
5% noise. However, the normal difference for the minor components R(ux) and R(p) could surpass 50%. This
indicates that in multiscale systems, 5% noise in the signal (or data) could imply more than 50% of misfit
on certain components of the wave field. It is evident from (12) and (A.1) that all components of the field
variables and their spatial derivatives actively participate in the loss function (10) and depending on the
frequency of wave motion the contribution of highly distorted components by noise could be significant. Thus,
even moderate levels of noise could present a critical challenge in multiphysics system identification. This
issue is not as problematic in one-scale physical systems. For instance, it is illustrated in our recent study [25]
using both synthetic and experimental data that in elastography of composites i.e., when the PDE system is
the (one-scale) Navier equations, 5% noise in data can be easily addressed using the existing tools of signal

Figure 12: Normal misfit between the noiseless and noisy field components when the overall signal-to-noise ratio is 20: (a)
imaginary part of solid displacement in x direction, (b) imaginary part of pore pressure, (c) real part of solid displacement in
x direction, and (d) real part of pore pressure. In each column, top row is the noisy wave field, middle row is its noiseless
counterpart, and the bottom row is the normalized different according to (24).
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processing. To address this issue there are several options. For instance, one may switch to the weak (or other
energy) form of the governing equations and take advantage of inherent averaging and thus smoothing nature
of integral equations, e.g., see [44, 49, 50, 51] for this type of formulation that so far has been implemented
in the case of one-scale PDE systems. Here the choice of test functions and boundary contributions will be
the main questions. Another approach that is more consistent with the strong formulation of loss function,
which is adopted in this study, is to take advantage of signal averaging couple with spectral denoising and
FFT-based differentiation of the focal fields. The latter two methods are already deployed in the processing
of noiseless signals in Section 4.1 and a detailed description of them may be found in [25, 26]. For averaging,
we assume each test could be repeated NT times so that the noisy focal fields z̃t , t = 0, . . . ,NT can be averaged
and used for training in the following form

〈 z̃ 〉NT
=

1
NT

NT∑
t=1

z̃t, z̃t = R(ũxt ),I(ũxt ),R(ũyt ),I(ũyt ),R(p̃t ),I(p̃t ), (25)

In what follows, we set NT= 250,1500,2500. In laboratory experiments, signal averaging is typically set265

anywhere between 100 to 1000 averages in every experiment [25, 26]. We also selected a significantly larger
number of realizations at NT= 2500 to examine whether by using a sufficiently large ensemble, one could push
the reconstruction error arbitrary close to zero regardless of practical considerations.

Table 5 presents the reconstruction results from noisy data and associated normal errors, with respect to
the ground truth, in the high-permeability neighborhood ξ1. Here, the property map remains the scaled MLP
shown in Fig. 3. The proposed dynamic scaling for loss balancing is implemented. The reconstruction results
are then accordingly denoted by

ϑDS

<1>NT
= {µDS

1 , λDS

1 , MDS

1 , αDS

1 , φDS

1 , κDS

1 }<1>NT
, NT ∈ {250,1500,2500}.

In all cases, the network architecture remains the same. µDS

1 remains very close to the ground truth, with
minimal deviation across all NT values. The normal deviation of µDS

1 from the ground truth decreases from270

0.99% at 250 averages to 0.0795% at 2500 averages, indicating an improved accuracy with an increase in
averaging. λDS

1 shows a slight underestimation compared to its true value. The relative error of λDS

1 demon-
strates a significant reduction from 6.38% at 250 averages to 1.14% at 2500 averages, suggesting a substantial
enhancement in precision with larger ensembles. MDS

1 is close to the ground truth, with minor fluctuations.
The relative error of MDS

1 diminishes from 3.27% at 250 averages to 0.0881% at 2500 averages, reflecting a275

similar trend in the reconstructions. αDS

1 shows minor deviations from the ground truth. The relative error of
αDS

1 reduces significantly from 3.97% at 250 averages to 0.435% at 2500 averages. κDS

1 values are fairly close

to the ground truth at 1.5407× 10−5 with small variations. The relative error decreases from 33.7% at 250
averages to 2.55% at 2500 averages, showing a marked improvement in accuracy with increased sample size.
φDS

1 exhibits considerable variations from the ground truth, especially at lower NT. The relative error drops280

from 65.2% at 250 averages to 34.9% at 2500 averages. However, the true value was never recovered regardless
of the ensemble size. Overall, the analysis of Table 5 indicates that the accuracy of network estimates improves
with the increase in averaging coupled with signal denoising and FFT-based differentiation. However, these
measures do not fundamentally address the challenges of reconstructions from noisy data which could be the
subject of future studies. The convergence plots along with network predictions as a function of optimizer285

step Ne are shown in Figs 13, 14, 15 for the reconstructions reported in Table 5. Similar to reconstructions
from noiseless data, training by way of dynamic scaling shows stable trajectories for both loss and network
predictions.

4.3. Discussion

Section 4 showcases the capability of scaled neural networks in simultaneous reconstruction of poroelastic290

properties in distinct neighborhoods whose permeability coefficients differ by multiple orders of magnitude.
This is thanks to the last layer in the proposed architecture which allows the network predictions to straddle
a range of potential scales in heterogenous environments and does not require an exact a priori knowledge of
the scaling of unknown physical properties. The latter would be required if the scaling were to be hardcoded.
Note that in this model, the neural map is factorized into two operators; the first operator, which involves the295
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Figure 13: Network-predicted poroelastic properties vs. the number of epochs Ne in the high-permeability neighborhood ξ1. The
network is a scaled MLP and trained by noisy waveforms that are averaged NT = 250 times. The loss is balanced using the
dynamic scaling (DS) approach: (a) drained shear modulus µDS

1 , (b) drained first Lamé parameter λDS
1 , (c) Biot modulus MDS

1 ,
(d) Biot effective stress coefficient αDS

1 , (e) porosity φDS
1 , (f) permeability coefficient κDS

1 , (g) DS weights wDS
i , i = 1, . . . , 6, versus

the minimizer step Ne , (h) weighted total loss log(L DS
1 ) vs. epoch.

Figure 14: Network-predicted poroelastic properties vs. the number of epochs Ne in the high-permeability neighborhood ξ1. The
network is a scaled MLP and trained by noisy waveforms that are averaged NT = 1500 times. The loss is balanced using the
dynamic scaling (DS) approach: (a) drained shear modulus µDS

1 , (b) drained first Lamé parameter λDS
1 , (c) Biot modulus MDS

1 ,
(d) Biot effective stress coefficient αDS

1 , (e) porosity φDS
1 , (f) permeability coefficient κDS

1 , (g) DS weights wDS
i , i = 1, . . . , 6, versus

the minimizer step Ne , (h) weighted total loss log(L DS
1 ) vs. epoch.

Figure 15: Network-predicted poroelastic properties vs. the number of epochs Ne in the high-permeability neighborhood ξ1. The
network is a scaled MLP and trained by noisy waveforms that are averaged NT = 2500 times. The loss is balanced using the
dynamic scaling (DS) approach: (a) drained shear modulus µDS

1 , (b) drained first Lamé parameter λDS
1 , (c) Biot modulus MDS

1 ,
(d) Biot effective stress coefficient αDS

1 , (e) porosity φDS
1 , (f) permeability coefficient κDS

1 , (g) DS weights wDS
i , i = 1, . . . , 6, versus

the minimizer step Ne , (h) weighted total loss log(L DS
1 ) vs. epoch.
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Table 5: Reconstruction of poroelastic properties in the high-permeability neighborhood ξ1 from noisy data. The waveforms are
averaged NT ∈ {250, 1500, 2500} times. Network scaling is applied here.

ϑ1 µ1 λ1 M1 α1 φ1 κ1

ground truth 1 0.47 1.66 0.83 0.195 1.5407×10−5

DynScl (ϑDS
<1>250

) 1.00991 0.44 1.714 0.7971 0.06786 2.06×10−5

DynScl (ϑDS
<1>1500

) 1.00003 0.479 1.6696 0.8175 0.13199 1.6295×10−5

DynScl (ϑDS
<1>2500

) 0.9992 0.475 1.6614 0.8264 0.12678 1.5799×10−5

Ξ(ϑDS
<1>250

) 0.99% 6.38% 3.27% 3.97% 65.2% 33.7%

Ξ(ϑDS
<1>1500

) 0.00312% 1.98% 0.577% 1.51% 32.3% 5.76%

Ξ(ϑDS
<1>2500

) 0.0795% 1.14% 0.0881% 0.435% 34.9% 2.55%

unknown weights and biases, acts as a unit (or normal) shape function describing the spatial distribution of
each property, while the second operator magnifies the first operator’s output according to a pre-determined
set of likely scales for each physical property. It should be mentioned that in this formulation since the
scaling of output is isolated and transferred as a whole to the last layer, the unknown network parameters
(weights and biases) can be clamped at O(1) during the optimization process. This accelerate the training300

and paves the way toward a physics-based loss balancing approach through establishing explicit estimates for
the scale of each loss component and its gradients with respect to the model parameters. In the case of Biot
equations, used for poroelastography, we took advantage of this architecture to show that each weighted loss
component is a Lipchitz function of the network weights and the proposed dynamic scaling (DynScl) of the
loss – based on the average scale of each loss component – ensures that the Lipchitz constant remains of305

O(1) for all network parameters during training. This manifests itself in three advantages that we observed
in the reconstructions from noiseless data, especially when the results were compared with that of Softmax
adaptive weights (SoftAdapt) and gradient normalization (GradNorm). The first advantage is stability and
robustness; compared to both SoftAdapt and GradNorm, the training by DynScl weights is more stable in
that (a) all weighted loss components and the total loss converge with a unified rate, (b) the proper weight for310

each objective is quickly identified and remains stable throughout the optimization process, (c) the total loss
converges to zero, and (d) all the network-predicted properties show convergence to certain limits. (a) and (b)
remain the case in GradNorm, even though the estimated loss weights by the DynScl and GradNorm differ by
orders of magnitude. Keep in mind that GradNorm optimizes the weights in each epoch in order to unify the
rate of change of weighted loss components with respect to a shared layer in the neural network (not all the315

network parameters due to computational considerations). In Section 4, all GradNorm-estimated weights are
of O(1), in both focal regions, which could explain the remarkably large magnitude of the total loss and its
potential insensitivity to the physics at smaller scales. In this case, while the total loss uniformly decreases, we
observe that a few network-estimated parameters related to the physics of fluid flow in the pore space do not
converge i.e., (c) and (d) do not seem to hold in GradNorm-based balancing. Another point worth mentioning320

is the impact of noise in data on the loss balancing procedure. Note that DynScl only requires an estimated
scale for the field derivatives. While direct FFT-based differentiation of focal fields provides the best scaling
estimate, as implemented in this study, this is not generally required and an estimate on the scale of derivatives
can be obtained by an elementary FFT analysis of the measurements coupled with network-predicted scales for
the physical properties at every epoch. GradNorm relies on the estimated derivatives furnishes by automatic325

differentiation to optimize the loss weights at every epoch. The latter when combined with noisy or incomplete
data may lead to instability as reported by [43]. In this study, since the data is dense and the waveforms were
carefully processed prior to training for any of the loss balancing techniques, this problem was not observed.
SoftAdapt is generally unstable in the reconstructions of Section 4. We believe that this is due to the limited
range and sensitivity of the Softmax function for multiphysics objectives. Varying between zero and one,330

SoftAdapt weights are assigned such that objectives with small decay rates are more visible to the optimizer.
In multiphysics systems, the decay rates are largely influenced by the scale of each loss component such that a
fast converging task could assume a much smaller decay rate compared to a slow converging objective of larger
magnitude. This could confuse or mislead the optimizer to focus on the objectives that are already converging
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and reduce the loss sensitivity to certain outputs. This may explain the behavior observed in the SoftAdapt335

convergence plots wherein while the loss converges, some of the network-predicted properties are diverging.
The second advantage of the proposed approach is in its flexibility and efficiency. Network scaling is a quite
simple idea and can be applied to any architecture. Moreover, DynScl weights can be explicitly computed for
both Lipschitz and non-Lipschitz objectives (see Remark 1) and does not require a parallel optimization process
per epoch. In this respect, the computational cost of DynScl and SoftAdapt is similar. The third advantage340

of loss balancing by way of dynamic scaling is clarity. The DynScl weights are directly driven by the physics
of each objective such that each loss component represents the balance of physical quantities of O(1). In this
framework, the total loss converges to zero ensuing that all objectives are met. In reconstructions of Section 4,
the SoftAdapt and GradNorm weights are all of O(1) and do not seem to be cognizant of the physics of loss
components. This resulted in quite large-scale total losses that while significantly decrease by multiple orders345

during training, they do not converge to zero (or a near-zero value), causing an ambiguity in interpretation
of the results as to whether the global convergence is achieved and all objectives are sufficiently met. In the
reconstructions from noisy data, we showed that DynScl weights remain stable. We also implemented signal
averaging coupled with spectral denoising and FFT-based differentiation to improve the reconstructions. The
results suggest that while the proposed measures significantly enhance the accuracy of network predictions,350

they do not fully address the challenges involved in multiphysics system identification from noisy data. These
challenges seem to be more related to errors in the calculation of derivatives and the question of observability
of small-scale physics in presence of noise, rather than loss balancing which could be the subject of a future
work.

5. Conclusion355

An intelligent framework is established for identification of multiphysics systems from (reconstructed or
measured) local wave fields. As an application, we focused on comprehensive characterization of poroelastic
materials from solid displacement and pore pressure data. To this end, the neural maps, predicting the six
unknown parameters of Biot equations, are constructed by a normal map describing the spatial distribution of
each property that is composed into a scaling layer. This architecture allows its various outputs to assume a360

set of likely scales and does not require an exact knowledge of the scaling of unknown physical properties. In
this model the unknown network parameters in the normal map remain of O(1) during training. This forms
the basis for physics-based balancing of the loss function through the proposed dynamic scaling. The latter
is formulated separately for Lipschitz and non-Lipschitz objectives (with respect to the network’s weights and
biases) through establishing explicit estimates for the scale of each loss component and its gradients with365

respect to the model parameters. The proposed approach that integrates the idea of network scaling with
scale-driven loss balancing is then put to test by a set of numerical experiments. Special attention is paid to
tight formations (low-permeability regions) and simultaneous reconstruction of all PDE parameters in highly
heterogeneous environments were some unknown properties could straddle multiple scales in various neigh-
borhoods. We demonstrated that the proposed method is successful in addressing some of these challenges.370

A comparative analysis is conducted with two state-of-the-art techniques for loss balancing, namely: Grad-
Norm and SoftAdapt. We demonstrated both logically and computationally that scale-based modeling and
loss balancing offer three advantages in terms of stability, efficiency, and accuracy that may be particularly
relevant in multiphysics data processing. The proposed method is formulated in a generic platform so that its
application to other physical systems is straightforward.375

Acknowledgments

This study was funded by the National Science Foundation (Grant No. 1944812) and the University of
Colorado Boulder through Fatemeh Pourahmadian’s startup. This work deployed resources from the University
of Colorado Boulder Research Computing Group, which is supported by the National Science Foundation
(awards ACI-1532235 and ACI-1532236), the University of Colorado Boulder, and Colorado State University.380

Special thanks are due to Kevish Napal for facilitating the use of FreeFem++ code developed as part of [28]
for poroelastodynamic simulations.

21



Appendix A. Loss components

The expanded loss components `2 to `6 in (11) are listed in the following.

`2 = µ

(
∂2I(ux)

∂x2 +
∂2I(ux)

∂y2

)
+ (λ+ µ)

(
∂2I(ux)

∂x2 +
∂2I(uy)
∂x∂y

)
−

−R(a)
∂I(p)
∂x

− I(a)
∂R(p)
∂x

+ ω2
R(b)I(ux) + ω

2
I(b)R(ux) − I( f ux ),

`3 = µ

(
∂2R(uy)
∂x2 +

∂2R(uy)
∂y2

)
+ (λ+ µ)

(
∂2R(uy)
∂y2 +

∂2R(ux)

∂x∂y

)
−

−R(a)
∂R(p)
∂y

+ I(a)
∂I(p)
∂y

+ ω2
R(b)R(uy) − ω2

I(b)I(uy) − R( f uy ),

`4 = µ

(
∂2I(uy)
∂x2 +

∂2I(uy)
∂y2

)
+ (λ+ µ)

(
∂2I(uy)
∂y2 +

∂2I(ux)

∂x∂y

)
−

−R(a)
∂I(p)
∂y

− I(a)
∂R(p)
∂y

+ ω2
R(b)I(uy) + ω2

I(b)R(uy) − I( f uy ),

`5 = R(a)
(
∂R(ux)

∂x
+
∂R(uy)
∂y

)
− I(a)

(
∂I(ux)

∂x
+
∂I(uy)
∂y

)
+

+
R(c)
ω2

(
∂R(p)
∂x2 +

∂R(p)
∂y2

)
−
I(c)
ω2

(
∂I(p)
∂x2 +

∂I(p)
∂y2

)
+
R(p)

M
+ R(c)

R( f p)
ω2 − I(c)

I( f p)
ω2 ,

`6 = R(a)
(
∂I(ux)

∂x
+
∂I(uy)
∂y

)
+ I(a)

(
∂R(ux)

∂x
+
∂R(uy)
∂y

)
+

+
R(c)
ω2

(
∂I(p)
∂x2 +

∂I(p)
∂y2
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+
I(c)
ω2
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∂R(p)
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+
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+ R(c)

I( f p)
ω2 + I(c)

R( f p)
ω2 ,

(A.1)
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