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Figure 1. Set-up for the inverse scattering problem.

in [11, 18] and results from our previous method [10] can be combined to construct a closed-
form expression for this function. The numerical computation of the topological derivative
requires the calculation of a series. Therefore, the method is very simple to implement and
the overall time required by the algorithm to construct an image of the scatterers is only a few
seconds on current desktop processors.

The remaining part of this paper is organized as follows. Section 2 describes the forward
scattering model and gives a mathematical description of the inverse problem. The inverse
problem is posed using the mathematical framework of a constrained optimization problem.
The model for the interaction between the incident radiation and the scatterers constitutes
the constraint on the optimization problem. Then in section 3 we define and calculate the
shape derivative of the cost functional associated with the inverse problem. In section 4 the
topological derivative which is at the centre of the new reconstruction technique is formally
defined. To calculate this function, in section 5 we make use of an equivalent definition that
was first published in [18]. Section 6 presents the final expression of the topological derivative
for the scattering problem and the overall reconstruction algorithm is shown in section 7.
Reconstructions using synthetic data are presented in section 8. Conclusions and directions
for future work are discussed in section 9.

2. The forward and inverse scattering problems

We assume that the interaction between the medium, scatterers and the incident radiation given
by a plane wave uinc(x) = exp(ikx · d) with propagation direction d and wavenumber k is
described by the following model where the total wavefield u = uinc + us satisfies

∇2u + k2u = 0 in ! = R2\!o, (1)

∇u · n = 0 on "o, (2)

lim
r→∞

r1/2
(

∂us

∂r
− ikus

)
= 0. (3)

Figure 1 presents the setting for this problem where ! corresponds to a homogeneous
medium. The scatterers are represented by !o with boundary "o. "s is the boundary
where measurements of the scattering pattern are obtained and we will assume it is a circle of
radius Rs that encloses all the scatterers. Although this paper considers the case given by an
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Figure 1. Set-up for the inverse
scattering problem.

in [11, 18] and results
from our prev

ious method [10] can be combined to constru
ct a closed-

form
expressio

n for this function. The numerical computation of the topological derivative

requires the calculation of a series. Therefore, the method is very sim
ple to implement and

the overall tim
e required by the algorith

m to constru
ct an image of the scatterers is only a few

seconds on current desktop processo
rs.

The remaining part of this paper is organized as follows. Section 2 describes the forward

scattering model and gives a mathematical description of the inverse
problem. The inverse

problem is posed using the mathematical framework of a constra
ined optim

ization problem.

The model for the interaction between the incident radiation and the scatterers constit
utes

the constra
int on the optim

ization problem. Then in section 3 we define and calculate the

shape derivative of the cost functional asso
ciated with

the inverse
problem. In section 4 the

topological derivative which is at the centre
of the new

reconstru
ction technique is formally

defined. To calculate this function, in section 5 we make use of an equivalent definitio
n that

was first
publish

ed in [18]. Section 6 presents the final expressio
n of the topological derivative

for the scattering problem and the overall reconstru
ction algorith

m is shown in section 7.

Reconstru
ctions using synthetic

data are presented in section 8. Conclusions and directions

for future work are discusse
d in section 9.

2. The forward and inverse scattering problems

We assu
me that the interaction between the medium, scatterers and the incident radiation given

by a plane wave u inc(
x) = exp(ik

x · d) with
propagation direction d and wavenumber k is

described by the following model where the total wavefield u = u inc
+ us

satisfi
es

∇
2 u + k

2 u = 0

in
!

= R
2 \!o,

(1)

∇u · n
= 0

on
"o,

(2)

lim
r→

∞
r
1/2

( ∂us

∂r
− ikus

)
= 0.

(3)

Figure
1 presents the settin

g for this problem
where

!
corresponds to

a homogeneous

medium.
The scatterers are

represented by !o
with

boundary
"o.

" s
is the boundary

where measurements of the scattering pattern are obtained and we will assu
me it is a circle of

radius Rs
that encloses all the scatterers.

Although this paper considers the case given by an
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in [11, 18] and results from our previous method [10] can be combined to construct a closed-
form expression for this function. The numerical computation of the topological derivative
requires the calculation of a series. Therefore, the method is very simple to implement and
the overall time required by the algorithm to construct an image of the scatterers is only a few
seconds on current desktop processors.

The remaining part of this paper is organized as follows. Section 2 describes the forward
scattering model and gives a mathematical description of the inverse problem. The inverse
problem is posed using the mathematical framework of a constrained optimization problem.
The model for the interaction between the incident radiation and the scatterers constitutes
the constraint on the optimization problem. Then in section 3 we define and calculate the
shape derivative of the cost functional associated with the inverse problem. In section 4 the
topological derivative which is at the centre of the new reconstruction technique is formally
defined. To calculate this function, in section 5 we make use of an equivalent definition that
was first published in [18]. Section 6 presents the final expression of the topological derivative
for the scattering problem and the overall reconstruction algorithm is shown in section 7.
Reconstructions using synthetic data are presented in section 8. Conclusions and directions
for future work are discussed in section 9.

2. The forward and inverse scattering problems

We assume that the interaction between the medium, scatterers and the incident radiation given
by a plane wave uinc(x) = exp(ikx · d) with propagation direction d and wavenumber k is
described by the following model where the total wavefield u = uinc + us satisfies

∇2u + k2u = 0 in ! = R2\!o, (1)

∇u · n = 0 on "o, (2)

lim
r→∞

r1/2
(

∂us

∂r
− ikus

)
= 0. (3)

Figure 1 presents the setting for this problem where ! corresponds to a homogeneous
medium. The scatterers are represented by !o with boundary "o. "s is the boundary
where measurements of the scattering pattern are obtained and we will assume it is a circle of
radius Rs that encloses all the scatterers. Although this paper considers the case given by an
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in [11, 18] and results
from our prev

ious method [10] can be combined to constru
ct a closed-

form
expressio

n for this function. The numerical computation of the topological derivative

requires the calculation of a series. Therefore, the method is very sim
ple to implement and

the overall tim
e required by the algorith

m to constru
ct an image of the scatterers is only a few

seconds on current desktop processo
rs.

The remaining part of this paper is organized as follows. Section 2 describes the forward

scattering model and gives a mathematical description of the inverse
problem. The inverse

problem is posed using the mathematical framework of a constra
ined optim

ization problem.

The model for the interaction between the incident radiation and the scatterers constit
utes

the constra
int on the optim

ization problem. Then in section 3 we define and calculate the

shape derivative of the cost functional asso
ciated with

the inverse
problem. In section 4 the

topological derivative which is at the centre
of the new

reconstru
ction technique is formally

defined. To calculate this function, in section 5 we make use of an equivalent definitio
n that

was first
publish

ed in [18]. Section 6 presents the final expressio
n of the topological derivative

for the scattering problem and the overall reconstru
ction algorith

m is shown in section 7.

Reconstru
ctions using synthetic

data are presented in section 8. Conclusions and directions

for future work are discusse
d in section 9.

2. The forward and inverse scattering problems

We assu
me that the interaction between the medium, scatterers and the incident radiation given

by a plane wave u inc(
x) = exp(ik

x · d) with
propagation direction d and wavenumber k is

described by the following model where the total wavefield u = u inc
+ us

satisfi
es

∇
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2 u = 0

in
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(1)
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= 0
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"o,

(2)

lim
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∞
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1/2

( ∂us
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)
= 0.

(3)

Figure
1 presents the settin

g for this problem
where

!
corresponds to

a homogeneous

medium.
The scatterers are

represented by !o
with

boundary
"o.

" s
is the boundary

where measurements of the scattering pattern are obtained and we will assu
me it is a circle of

radius Rs
that encloses all the scatterers.

Although this paper considers the case given by an
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in [11, 18] and results from our previous method [10] can be combined to construct a closed-
form expression for this function. The numerical computation of the topological derivative
requires the calculation of a series. Therefore, the method is very simple to implement and
the overall time required by the algorithm to construct an image of the scatterers is only a few
seconds on current desktop processors.

The remaining part of this paper is organized as follows. Section 2 describes the forward
scattering model and gives a mathematical description of the inverse problem. The inverse
problem is posed using the mathematical framework of a constrained optimization problem.
The model for the interaction between the incident radiation and the scatterers constitutes
the constraint on the optimization problem. Then in section 3 we define and calculate the
shape derivative of the cost functional associated with the inverse problem. In section 4 the
topological derivative which is at the centre of the new reconstruction technique is formally
defined. To calculate this function, in section 5 we make use of an equivalent definition that
was first published in [18]. Section 6 presents the final expression of the topological derivative
for the scattering problem and the overall reconstruction algorithm is shown in section 7.
Reconstructions using synthetic data are presented in section 8. Conclusions and directions
for future work are discussed in section 9.

2. The forward and inverse scattering problems

We assume that the interaction between the medium, scatterers and the incident radiation given
by a plane wave uinc(x) = exp(ikx · d) with propagation direction d and wavenumber k is
described by the following model where the total wavefield u = uinc + us satisfies

∇2u + k2u = 0 in ! = R2\!o, (1)

∇u · n = 0 on "o, (2)

lim
r→∞

r1/2
(

∂us

∂r
− ikus

)
= 0. (3)

Figure 1 presents the setting for this problem where ! corresponds to a homogeneous
medium. The scatterers are represented by !o with boundary "o. "s is the boundary
where measurements of the scattering pattern are obtained and we will assume it is a circle of
radius Rs that encloses all the scatterers. Although this paper considers the case given by an

A
ne

w
m

et
ho

d
in

in
ve

rs
e

sc
at

te
ri

ng
ba

se
d

on
th

e
to

po
lo

gi
ca

ld
er

iv
at

iv
e

18
21

d

Γ
o

Γ
RΓ
s

Ω
Ω

o

n

Fi
gu

re
1.

Se
t-

up
fo

rt
he

in
ve

rs
e

sc
at

te
ri

ng
pr

ob
le

m
.

in
[1

1,
18

]a
nd

re
su

lts
fr

om
ou

rp
re

vi
ou

s
m

et
ho

d
[1

0]
ca

n
be

co
m

bi
ne

d
to

co
ns

tr
uc

ta
cl

os
ed

-
fo

rm
ex

pr
es

si
on

fo
r

th
is

fu
nc

tio
n.

T
he

nu
m

er
ic

al
co

m
pu

ta
tio

n
of

th
e

to
po

lo
gi

ca
l

de
riv

at
iv

e
re

qu
ir

es
th

e
ca

lc
ul

at
io

n
of

a
se

ri
es

.
T

he
re

fo
re

,t
he

m
et

ho
d

is
ve

ry
si

m
pl

e
to

im
pl

em
en

ta
nd

th
e

ov
er

al
lt

im
e

re
qu

ir
ed

by
th

e
al

go
ri

th
m

to
co

ns
tr

uc
ta

n
im

ag
e

of
th

e
sc

at
te

re
rs

is
on

ly
a

fe
w

se
co

nd
s

on
cu

rr
en

td
es

kt
op

pr
oc

es
so

rs
.

T
he

re
m

ai
ni

ng
pa

rt
of

th
is

pa
pe

ri
s

or
ga

ni
ze

d
as

fo
llo

w
s.

Se
ct

io
n

2
de

sc
ri

be
s

th
e

fo
rw

ar
d

sc
at

te
ri

ng
m

od
el

an
d

gi
ve

s
a

m
at

he
m

at
ic

al
de

sc
ri

pt
io

n
of

th
e

in
ve

rs
e

pr
ob

le
m

.
T

he
in

ve
rs

e
pr

ob
le

m
is

po
se

d
us

in
g

th
e

m
at

he
m

at
ic

al
fr

am
ew

or
k

of
a

co
ns

tr
ai

ne
d

op
tim

iz
at

io
n

pr
ob

le
m

.
T

he
m

od
el

fo
r

th
e

in
te

ra
ct

io
n

be
tw

ee
n

th
e

in
ci

de
nt

ra
di

at
io

n
an

d
th

e
sc

at
te

re
rs

co
ns

tit
ut

es
th

e
co

ns
tr

ai
nt

on
th

e
op

tim
iz

at
io

n
pr

ob
le

m
.

T
he

n
in

se
ct

io
n

3
w

e
de

fin
e

an
d

ca
lc

ul
at

e
th

e
sh

ap
e

de
riv

at
iv

e
of

th
e

co
st

fu
nc

tio
na

la
ss

oc
ia

te
d

w
ith

th
e

in
ve

rs
e

pr
ob

le
m

.
In

se
ct

io
n

4
th

e
to

po
lo

gi
ca

ld
er

iv
at

iv
e

w
hi

ch
is

at
th

e
ce

nt
re

of
th

e
ne

w
re

co
ns

tr
uc

tio
n

te
ch

ni
qu

e
is

fo
rm

al
ly

de
fin

ed
.

To
ca

lc
ul

at
e

th
is

fu
nc

tio
n,

in
se

ct
io

n
5

w
e

m
ak

e
us

e
of

an
eq

ui
va

le
nt

de
fin

iti
on

th
at

w
as

fir
st

pu
bl

is
he

d
in

[1
8]

.
Se

ct
io

n
6

pr
es

en
ts

th
e

fin
al

ex
pr

es
si

on
of

th
e

to
po

lo
gi

ca
ld

er
iv

at
iv

e
fo

r
th

e
sc

at
te

ri
ng

pr
ob

le
m

an
d

th
e

ov
er

al
l

re
co

ns
tr

uc
tio

n
al

go
ri

th
m

is
sh

ow
n

in
se

ct
io

n
7.

R
ec

on
st

ru
ct

io
ns

us
in

g
sy

nt
he

tic
da

ta
ar

e
pr

es
en

te
d

in
se

ct
io

n
8.

C
on

cl
us

io
ns

an
d

di
re

ct
io

ns
fo

rf
ut

ur
e

w
or

k
ar

e
di

sc
us

se
d

in
se

ct
io

n
9.

2.
T

he
fo

rw
ar

d
an

d
in

ve
rs

e
sc

at
te

ri
ng

pr
ob

le
m

s

W
e

as
su

m
e

th
at

th
e

in
te

ra
ct

io
n

be
tw

ee
n

th
e

m
ed

iu
m

,s
ca

tte
re

rs
an

d
th

e
in

ci
de

nt
ra

di
at

io
n

gi
ve

n
by

a
pl

an
e

w
av

e
u

in
c(

x
)

=
ex

p(
ik

x
·d

)
w

ith
pr

op
ag

at
io

n
di

re
ct

io
n

d
an

d
w

av
en

um
be

r
k

is
de

sc
ri

be
d

by
th

e
fo

llo
w

in
g

m
od

el
w

he
re

th
e

to
ta

lw
av

efi
el

d
u

=
u

in
c

+
u

s
sa

tis
fie

s

∇
2 u

+
k

2 u
=

0
in

!
=

R
2 \

!
o
,

(1
)

∇
u

·n
=

0
on

"
o
,

(2
)

lim r→
∞

r1/
2
(

∂
u

s

∂
r

−
ik

u
s

)
=

0.
(3

)

Fi
gu

re
1

pr
es

en
ts

th
e

se
tti

ng
fo

r
th

is
pr

ob
le

m
w

he
re

!
co

rr
es

po
nd

s
to

a
ho

m
og

en
eo

us
m

ed
iu

m
.

T
he

sc
at

te
re

rs
ar

e
re

pr
es

en
te

d
by

!
o

w
ith

bo
un

da
ry

"
o
.

"
s

is
th

e
bo

un
da

ry
w

he
re

m
ea

su
re

m
en

ts
of

th
e

sc
at

te
ri

ng
pa

tte
rn

ar
e

ob
ta

in
ed

an
d

w
e

w
ill

as
su

m
e

it
is

a
ci

rc
le

of
ra

di
us

R
s

th
at

en
cl

os
es

al
lt

he
sc

at
te

re
rs

.
A

lth
ou

gh
th

is
pa

pe
r

co
ns

id
er

s
th

e
ca

se
gi

ve
n

by
an

A new
method in inverse

scattering based on the topological derivative

1821

d

Γo

ΓR

Γs

Ω
Ωo

n

Figure 1. Set-up for the inverse
scattering problem.

in [11, 18] and results
from our prev

ious method [10] can be combined to constru
ct a closed-

form
expressio

n for this function. The numerical computation of the topological derivative

requires the calculation of a series. Therefore, the method is very sim
ple to implement and

the overall tim
e required by the algorith

m to constru
ct an image of the scatterers is only a few

seconds on current desktop processo
rs.

The remaining part of this paper is organized as follows. Section 2 describes the forward

scattering model and gives a mathematical description of the inverse
problem. The inverse

problem is posed using the mathematical framework of a constra
ined optim

ization problem.

The model for the interaction between the incident radiation and the scatterers constit
utes

the constra
int on the optim

ization problem. Then in section 3 we define and calculate the

shape derivative of the cost functional asso
ciated with

the inverse
problem. In section 4 the

topological derivative which is at the centre
of the new

reconstru
ction technique is formally

defined. To calculate this function, in section 5 we make use of an equivalent definitio
n that

was first
publish

ed in [18]. Section 6 presents the final expressio
n of the topological derivative

for the scattering problem and the overall reconstru
ction algorith

m is shown in section 7.

Reconstru
ctions using synthetic

data are presented in section 8. Conclusions and directions

for future work are discusse
d in section 9.

2. The forward and inverse scattering problems

We assu
me that the interaction between the medium, scatterers and the incident radiation given

by a plane wave u inc(
x) = exp(ik

x · d) with
propagation direction d and wavenumber k is

described by the following model where the total wavefield u = u inc
+ us

satisfi
es

∇
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2 u = 0

in
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(1)
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= 0

on
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(2)

lim
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1/2
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)
= 0.

(3)

Figure
1 presents the settin

g for this problem
where

!
corresponds to

a homogeneous

medium.
The scatterers are

represented by !o
with

boundary
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where measurements of the scattering pattern are obtained and we will assu
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(a) (b) (c)

(d) (e) (f)

Figure 16. Topological derivative and first five iterations.

(a) (b)

Figure 17. Convergence of the parameters λi and αi when the exact geometry of the obstacles is
unknown and approximated by the domains represented in figure 16. The true values are λ1

i = 1
and α1

i = 0.85 in the left-most obstacle #1
i and λ2

i = 1.25 and α2
i = 0.7 in the right-most obstacle

#2
i .

objects with four iterations for the parameter λi . Alternating one actualization of the domain
with one of the parameter, we find a similar approximation at a higher cost.

In our last example we try to recover both λi and αi . We consider the geometry studied
in figure 9, but now λi and αi are unknown and take different constant values inside each
obstacle. The true values are λi = 1 and αi = 0.85 in the left-most object and λi = 1.25 and
αi = 0.7 in the right-most one. The exterior medium is homogeneous with constant values
λe = 2 and αe = 1. Note that for both obstacles λi ̸= λe and αi ̸= αe. Now we alternate
one iteration to update the objects with five iterations to update the parameters. Figures 16
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Figure 8: Cylindrical shell, single experiment: identification of a double crack
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Figure 9: Infinitesimal elliptical crack: reconstruction S0.8 for several choices of the elastic

moment tensor

6 CONCLUSION

A non-iterative global qualitative crack identification approach exploiting transient elastody-
namic data and based on the concept of topological derivative has been formulated. Its feasi-
bility and usefulness have been demonstrated on numerical experiments. Some technical issues,
such as practical procedures for computing relevant elastic moment tensors, have been addressed
along the way. The proposed adjoint-based formulation requires solving two transient elastody-
namic problems defined on the crack-free configuration, and therefore entails a computational
cost equivalent to that of one single evaluation of the cost functional and its gradient in a
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namic data and based on the concept of topological derivative has been formulated. Its feasi-
bility and usefulness have been demonstrated on numerical experiments. Some technical issues,
such as practical procedures for computing relevant elastic moment tensors, have been addressed
along the way. The proposed adjoint-based formulation requires solving two transient elastody-
namic problems defined on the crack-free configuration, and therefore entails a computational
cost equivalent to that of one single evaluation of the cost functional and its gradient in a
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(a) (b)

(c) (d)

Figure 8. Reconstructions of the F15 and B2 profiles shown in figure 6 using L
l ≈ 17. Figures on

the right show the object profile (white curve) superimposed over the topological derivative (TD)
field. (a) Reconstruction of F15. (b) Object profile superimposed on TD. (c) Reconstruction of
B2. (d) Object profile superimposed on TD.

D

(a) (b) (c)

Figure 9. Reconstruction of multiple scatterers. (a) D
l ≈ 1, (b) D

l ≈ 2, (c) true scatterers.

First, white Gaussian noise is added to the scattering patterns computed at l = π
6 u in

the previous example. Figures 10(a), (b) and (c) show reconstructions for values of the
signal-to-noise ratio (SNR) of 20 dB, 10 dB and 5 dB, respectively. The difference in the
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l ≈ 2, (c) true scatterers.

First, white Gaussian noise is added to the scattering patterns computed at l = π
6 u in

the previous example. Figures 10(a), (b) and (c) show reconstructions for values of the
signal-to-noise ratio (SNR) of 20 dB, 10 dB and 5 dB, respectively. The difference in the
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Figure 2: Three-dimensional motion sensing via laser Doppler vibrometer (LDV) system.

Further, to improve the signal-to-noise ratio of thus captured motion records, the backscattering of
laser beams from the surface of the plate was enhanced via small pieces of retroreflective tape glued
at the location of each scan point.

3.2. Boundary conditions for the plate
Given the lack of precise knowledge regarding i) the nature of the support conditions provided by the
slotted “legs” and ii) that of the shear and normal tractions applied to the plate via the piezoceramic
transducer in Fig. ??c, the reference domain ⌦ conveniently taken as

⌦ = ⌃ � ⌃
legs

,

where ⌃ is the square `⇥ ` domain (` = 99.3 cm), and ⌃legs is the portion of ⌃ braced by the legs. In
this setting, the boundary @⌦ can be split into its traction-free Neumann part and a Dirichlet part
such that

n·�[u](⇠, t) = 0 on SN ⇥
T

,

u(⇠, t) = u

? on SD ⇥
T

, SD = @⌦ \ SN = Spiezo [ Slegs,
(24)

where Spiezo denotes the transducer-plate interface; S legs is the dual “L”-shaped contact between
@⌦ and the legs, and u

? is conveniently measured (during the experiment) via the LDV system by
focusing the triplet of laser beams on Spiezo and Slegs as shown in Fig. ??d.

Typical LDV systems produce laser spots that are less than a millimeter in diameter (approxi-
mately 220 µm at 3 m stand-o↵ distance for PSV-400-3D), thus allowing for relatively small uncer-
tainties in the positioning of a target. This implies that the measurement of surface motion at each
scan point in the immediate vicinity of Sobs⇢ SN can, for practical purposes, be taken as that of a
single point on the boundary of the domain. To cater for such acquired experimental measurements,
the finite element (FE) mesh of the reference domain ⌦ can be conveniently constructed such that the
positions of its relevant boundary nodes coincide with those of the LDV scan points on Sobs ⇢ @⌦.
In situations where the LDV sensing grid on Sobs is coarser than its FE counterpart (as is the case
in this study), the values of u

obs at the remaining FE nodes can be computed by interpolation. To
reduce the error brought about by the latter, the distance between the adjacent scan points should
be notably smaller than the dominant Rayleigh wavelength, �

R

, of elastic waves propagating in the
plate. Given the maximum “center” frequency used in this study, f

max

= 40 kHz, one finds with
reference to (??) that �

S

= c
S

/f
max

⇡ 7.8 cm. On the basis of such argument, the arrangement of the
scan points on SD (used to specify the boundary value problem) and Sobs⇢ SN (used to reconstruct

9
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Figure 2: Three-dimensional motion sensing via laser Doppler vibrometer (LDV) system.

Further, to improve the signal-to-noise ratio of thus captured motion records, the backscattering of
laser beams from the surface of the plate was enhanced via small pieces of retroreflective tape glued
at the location of each scan point.

3.2. Boundary conditions for the plate
Given the lack of precise knowledge regarding i) the nature of the support conditions provided by the
slotted “legs” and ii) that of the shear and normal tractions applied to the plate via the piezoceramic
transducer in Fig. ??c, the reference domain ⌦ conveniently taken as

⌦ = ⌃ � ⌃
legs

,

where ⌃ is the square `⇥ ` domain (` = 99.3 cm), and ⌃legs is the portion of ⌃ braced by the legs. In
this setting, the boundary @⌦ can be split into its traction-free Neumann part and a Dirichlet part
such that

n·�[u](⇠, t) = 0 on SN ⇥
T

,

u(⇠, t) = u

? on SD ⇥
T

, SD = @⌦ \ SN = Spiezo [ Slegs,
(24)

where Spiezo denotes the transducer-plate interface; S legs is the dual “L”-shaped contact between
@⌦ and the legs, and u

? is conveniently measured (during the experiment) via the LDV system by
focusing the triplet of laser beams on Spiezo and Slegs as shown in Fig. ??d.

Typical LDV systems produce laser spots that are less than a millimeter in diameter (approxi-
mately 220 µm at 3 m stand-o↵ distance for PSV-400-3D), thus allowing for relatively small uncer-
tainties in the positioning of a target. This implies that the measurement of surface motion at each
scan point in the immediate vicinity of Sobs⇢ SN can, for practical purposes, be taken as that of a
single point on the boundary of the domain. To cater for such acquired experimental measurements,
the finite element (FE) mesh of the reference domain ⌦ can be conveniently constructed such that the
positions of its relevant boundary nodes coincide with those of the LDV scan points on Sobs ⇢ @⌦.
In situations where the LDV sensing grid on Sobs is coarser than its FE counterpart (as is the case
in this study), the values of u

obs at the remaining FE nodes can be computed by interpolation. To
reduce the error brought about by the latter, the distance between the adjacent scan points should
be notably smaller than the dominant Rayleigh wavelength, �

R

, of elastic waves propagating in the
plate. Given the maximum “center” frequency used in this study, f

max

= 40 kHz, one finds with
reference to (??) that �

S

= c
S

/f
max

⇡ 7.8 cm. On the basis of such argument, the arrangement of the
scan points on SD (used to specify the boundary value problem) and Sobs⇢ SN (used to reconstruct
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to be di⇥erentiable with respect to the real and imaginary parts of its first argument. In many applicatioons,
⇧ commonly takes the weighted least-squares format

⇧(v(�), u(�), �) = 1
2

�
v(�)�u(�)

⇥ �
v(�)�u(�)

⇥
, (3) phi:def

that will be assumed hereon.

2.3. Green’s function

For further reference, let

G(�,x; k) =
e�ikr

4⌅r
, G,n(�,x, k) := n·⇧G(�,x, k) = � e�ikr

4⌅r2
(1+ikr) r,n, (4) gdef

where r = |� � x| and ⇧G signifies the gradient of G with respect to the first argument, denote the
fundamental solution for the free space with wavenumber k, so that

⇧2G(�,x, k) + k2 G(�,x, k) + ⇤(� � x) = 0, � ⇤ R3. (5) green

3. Generalized Topological Sensitivity
sec3

As shown in [], the formula for topological sensitivity can be written as

T(xo,�, ⇥) =

⇧

�obs

Re

⇤
 ⇧

 v

�
ui(�), u(�), �

⇥ ⌃
(1��)⇧ui(xo)·A·⇧G(xo, �, k)

� (1��⇥2) k2 ui(xo)G(xo, �, k)
⌥⌅

d��, xo ⇤ B1, (6) td22

where  ⇧/ v denotes the partial derivative of ⇧ with respect to its first argument, and B1 contains the
region that is sampled for obstacles. To expose the nature of (6), one may conveniently assume the least-
squares-type cost functional (3) for which

 ⇧

 v
(ui(�), u(�), �) =

�
ui(�)�u(�)

⇥
,

ui ũ
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a dipole term involving the mass density contrast. For generality, the proposed developments are also cast
within the adjoint-field formulation, an alternative framework allowing e⌅cient computation of the material-
topological sensitivity in an arbitrary (infinite or finite, homogeneous or heterogeneous) background acoustic
medium. Through numerical examples it is shown that the material-topological sensitivity can be used, in
the context of inverse scattering, as an e⇥ective obstacle indicator through an assembly of sampling points
where it attains pronounced negative values. On varying the material characteristics of a nucleating obstacle,
the proposed indicator is also shown to permit both preliminary geometric and material identification. The
latter result may be for instance useful in breast cancer detection wherein the mechanical characteristics of
a lesion, detected e.g. via ultrasound or magnetic resonance imaging, may allow one to di⇥erentiate between
malignant and benign growths [? ? ].

For generality, it is noted that the idea of (preliminary) obstacle reconstruction via spatial sampling
of a given indicator functional is shared by a diverse array of inverse scattering techniques, now commonly
referred to as the “sampling” or “probe” methods [? ], which notably include the linear sampling method,
e.g. [? ? ]. In this context, an interesting observation is that the linear sampling and topological sensitivity
methods both revolve around the evaluation of a probing functional that projects the relevant (background)
Green’s function onto a suitable function space synthesizing the experimental observations. However, these
two methods have distinct theoretical frameworks, and their relationship is very much an open research issue.
As one of the key distinctions relevant to this study, the derivation of material-topological sensitivity formulae
for a given cost functional requires an asymptotic expansion of the scattered field induced by the nucleating
penetrable obstacle. Although the related asymptotic expressions have been proposed elsewhere (e.g. [? ])
for inverse electromagnetic problems and penetrable scatterers, they have so far been utilized for the explicit
reconstruction of small inhomogeneities based on either i) treatment of the measurement residuals [? ? ?
], or ii) the reciprocity-gap approach [? ]. In contrast, the present approach, that makes use of the spatial
distribution of topological sensitivity as an indicator functional, aims at preliminary reconstruction of finite
obstacles and may broadly be categorized as a sampling technique exploiting asymptotic expansions.

2. Preliminaries
sec2

Consider the scattering of time-harmonic scalar waves by a convex (impenetrable or penetrable) obstacle
D�B1� R3 with smooth boundary S = ⌦D, where B1 is an open ball of radius R1 centered at the origin.
On denoting by ũ the scattered field generated by the action of an incident field ui on D, it is assumed that
the total field

u(�) := ui(�) + ũ(�), � ⇥ R3\D̄

is monitored over a closed measurement surface �obs = ⌦B2, where B2 is an open ball of radius R2 = ��1R1

(� < 1) centered at the origin, see Fig. 1. The reference background medium and the obstacle (when
penetrable) are each assumed to be homogeneous with wave speed and mass density (c, ⌅) and (c⇤, ⌅⇤),
respectively. Writing the germane time dependence as ei⇥t where ⇧ denotes the frequency of excitation, the
incident field is for simplicity assumed in the form of a plane wave, ui = e�ik�·d, where k = ⇧/c.

2.1. Dimensional platform

In what follows, all quantities are assumed to be dimensionless. This is accomplished by taking the radius
of the inner sphere, the mass density of the background medium, and the sound speed in the background
medium as the reference length, mass density and velocity. In this setting, one has

R1 = 1, R2 =
1

�
, (1) norma1

which will be useful in the ensuing analysis.

2.2. Cost functional

To facilitate the ensuing analysis, consider the cost functional

J(D ,⇥, ⇤) :=

�

�obs

⌃ (v(�), u(�), �) d��, (2) Jdef

where D , ⇥ = ⌅/⌅⇤ and ⇤ = c/c⇤ synthesize respectively the support and material characteristics of a trial
obstacle, v is the total field generated by the action of ui on D , and ⌃ is a distance function that is assumed
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⇢, c, R1Dimensional platform:

2

a dipole term involving the mass density contrast. For generality, the proposed developments are also cast
within the adjoint-field formulation, an alternative framework allowing e⌅cient computation of the material-
topological sensitivity in an arbitrary (infinite or finite, homogeneous or heterogeneous) background acoustic
medium. Through numerical examples it is shown that the material-topological sensitivity can be used, in
the context of inverse scattering, as an e⇥ective obstacle indicator through an assembly of sampling points
where it attains pronounced negative values. On varying the material characteristics of a nucleating obstacle,
the proposed indicator is also shown to permit both preliminary geometric and material identification. The
latter result may be for instance useful in breast cancer detection wherein the mechanical characteristics of
a lesion, detected e.g. via ultrasound or magnetic resonance imaging, may allow one to di⇥erentiate between
malignant and benign growths [? ? ].

For generality, it is noted that the idea of (preliminary) obstacle reconstruction via spatial sampling
of a given indicator functional is shared by a diverse array of inverse scattering techniques, now commonly
referred to as the “sampling” or “probe” methods [? ], which notably include the linear sampling method,
e.g. [? ? ]. In this context, an interesting observation is that the linear sampling and topological sensitivity
methods both revolve around the evaluation of a probing functional that projects the relevant (background)
Green’s function onto a suitable function space synthesizing the experimental observations. However, these
two methods have distinct theoretical frameworks, and their relationship is very much an open research issue.
As one of the key distinctions relevant to this study, the derivation of material-topological sensitivity formulae
for a given cost functional requires an asymptotic expansion of the scattered field induced by the nucleating
penetrable obstacle. Although the related asymptotic expressions have been proposed elsewhere (e.g. [? ])
for inverse electromagnetic problems and penetrable scatterers, they have so far been utilized for the explicit
reconstruction of small inhomogeneities based on either i) treatment of the measurement residuals [? ? ?
], or ii) the reciprocity-gap approach [? ]. In contrast, the present approach, that makes use of the spatial
distribution of topological sensitivity as an indicator functional, aims at preliminary reconstruction of finite
obstacles and may broadly be categorized as a sampling technique exploiting asymptotic expansions.

2. Preliminaries
sec2

Consider the scattering of time-harmonic scalar waves by a convex (impenetrable or penetrable) obstacle
D�B1� R3 with smooth boundary S = ⌦D, where B1 is an open ball of radius R1 centered at the origin.
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2.3. Green’s function
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where r = |� � x| and ⇧G signifies the gradient of G with respect to the first argument, denote the
fundamental solution for the free space with wavenumber k, so that

⇧2G(�,x, k) + k2 G(�,x, k) + ⇤(� � x) = 0, � ⇤ R3. (5) green

3. Generalized Topological Sensitivity
sec3

As shown in [], the formula for topological sensitivity can be written as

T(xo,�, ⇥) =

⇧

�obs

Re

⇤
 ⇧

 v

�
ui(�), u(�), �

⇥ ⌃
(1��)⇧ui(xo)·A·⇧G(xo, �, k)

� (1��⇥2) k2 ui(xo)G(xo, �, k)
⌥⌅

d��, xo ⇤ B1, (6) td22

where  ⇧/ v denotes the partial derivative of ⇧ with respect to its first argument, and B1 contains the
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4.1. The GG term

From (5), it follows that

⌥2G(⇥,xo, k) + k2 G(⇥,xo, k) + ⌅(⇥ � xo) = 0,

⌥2G(⇥, �, k) + k2 G(⇥, �, k) + ⌅(⇥ � �) = 0,
⇥ ⌅ R3. (9) 2green

On multiplying (9a) and (9b) respectively by G(⇥, �, k) and G(⇥,xo, k) and integrating by parts over B2,
one finds by virtue of the divergence theorem that

�

�obs

G,n(⇥,x
o, k)G(⇥, �, k) d�⇥ �

�

B2

⌥G(⇥,xo, k)·⌥G(⇥, �, k) dB⇥

+ k2
�

B2

G(⇥,xo, k)G(⇥, �, k) dB⇥ = �G(xo, �, k),

�

�obs

G,n(⇥, �, k)G(�,xo, k) d�⇥ �
�

B2

⌥G(⇥, �, k)·⌥G(⇥,xo, k) dB⇥

+ k2
�

B2

G(⇥, �, k)G(⇥,xo, k) dB⇥ = �G(�,xo, k),

(10) 2green2

By virtue of (4), the subtraction of (10b) from (10a) yields

�

�obs

G(⇥, �, k)G(⇥,xo, k)

⌃�
1 + ik|⇥ � xo|

⇥ |⇥ � xo|,n
|⇥ � xo| �

�
1� ik|⇥ � �|

⇥ |⇥ � �|,n
|⇥ � �|

⌥
d�⇥

= � 2i Im
�
G(xo, �, k)

⇥
, xo, � ⌅ B2, (11) 2green3

i.e.

�

�obs

G(⇥, �, k)G(⇥,xo, k)

� ⇥(⇥�xo)

|⇥ � xo| �
⇥(⇥��)

|⇥ � �|

 
·n(⇥) d�⇥

+ ik

�

�obs

G(⇥,xo, k)G(⇥, �, k)
⇤ ⇥(⇥�xo) + ⇥(⇥��)

⌅
·n(⇥) d�⇥

= � 2i Im
�
G(xo, �, k)

⇥
, xo, � ⌅ B2. (12) 2green4

where �x = x/|x|. From Fig. 1 and (1), it is clear that
⇧⇧⇧⇧⇧

� ⇥(⇥�xo)

|⇥ � xo| �
⇥(⇥��)

|⇥ � �|

 
·n(⇥)

⇧⇧⇧⇧⇧ <
2�2

(1� �2)
, ⇥ ⌅ �obs, xo, � ⌅ B1

+

+

+

�=
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Figure 1. Obstacle D � R3 lilluminated by plane waves.fig1

to be di⇥erentiable with respect to the real and imaginary parts of its first argument. In many applicatioons,
⇧ commonly takes the weighted least-squares format

⇧(v(�), u(�), �) = 1
2

�
v(�)�u(�)

⇥ �
v(�)�u(�)

⇥
, (3) phi:def

that will be assumed hereon.

2.3. Green’s function

For further reference, let

G(�,x; k) =
e�ikr

4⌅r
, G,n(�,x, k) := n·⇧G(�,x, k) = � e�ikr

4⌅r2
(1+ikr) r,n, (4) gdef

where r = |� � x| and ⇧G signifies the gradient of G with respect to the first argument, denote the
fundamental solution for the free space with wavenumber k, so that

⇧2G(�,x, k) + k2 G(�,x, k) + ⇤(� � x) = 0, � ⇤ R3. (5) green

3. Generalized Topological Sensitivity
sec3

As shown in [], the formula for topological sensitivity can be written as

T(xo,�, ⇥) =

⇧

�obs

Re

⇤
 ⇧

 v

�
ui(�), u(�), �

⇥ ⌃
(1��)⇧ui(xo)·A·⇧G(xo, �, k)

� (1��⇥2) k2 ui(xo)G(xo, �, k)
⌥⌅

d��, xo ⇤ B1, (6) td22

where  ⇧/ v denotes the partial derivative of ⇧ with respect to its first argument, and B1 contains the
region that is sampled for obstacles. To expose the nature of (6), one may conveniently assume the least-
squares-type cost functional (3) for which

 ⇧

 v
(ui(�), u(�), �) =

�
ui(�)�u(�)

⇥
,

⇠

⇣
x

o

5

and
2⌥

1 + �2
<

⇤ �(⇥�xo) + �(⇥��)
⌅
·n(⇥) � 2, ⇥ ⌅ �obs, xo, � ⌅ B1

where � = R1/R2 < 1 as postulated earlier. As a result, (13) can be rewritten by way of triangle inequality
as
�

�obs

G(⇥, �, k)G(⇥,xo, k)
⇤
1 +R(⇥,xo, �)

⌅
d�⇥ = � 1

k
Im

�
G(xo, �, k)

⇥
, xo, � ⌅ B1,

|R(⇥,xo, �)| <
�2

k(1��2)
+

�2

2
+O(�4). (13) 2green5

From (13), it follows that for k ⇥ O(1) (which includes the so-called resonance regime), one recovers the
Helmholtz-Kirchho⇥ identity

�

�obs

G(⇥, �, k)G(⇥,xo, k) d�⇥
�2

= � 1

k
Im

�
G(xo, �, k)

⇥
, xo, � ⌅ B1. (14) 2green6

where “
�n

=” indicates approximation with an O(�n) residual.

4.2. The G�G and �GG terms

On di⇥erentiating (13) with respect to xo, one obtains

�
�

�obs

G(⇥, �, k)�G(⇥,xo, k)
⇤
1 +R(⇥,xo, �)

⌅
d�⇥ +

�

�obs

G(⇥, �, k)G(⇥,xo, k)�xoR(⇥,xo, �) d�⇥

= � 1

k
Im

�
�G(xo, �, k)

⇥
, xo, � ⌅ B1, (15) 2green7

where �G implies di⇥erentiation with respect to the first argument as examined earlier. To expose the
magnitude of �xoR, it can be shown via the law of cosines that

⇧⇧⇧�xo �(⇥�xo)·n(⇥)
⇧⇧⇧ =

⇧⇧⇧⇧
1

|⇥ � xo|

 � �(⇥�xo)·n(⇥)
⇥ �(⇥�xo)� n(⇥)

⌦⇧⇧⇧⇧ <
�2

(1 + �2)
,

and
⇧⇧⇧⇧⇧�xo

⌃ �(⇥�xo)

|⇥ � xo|

⌥
·n(⇥)

⇧⇧⇧⇧⇧ =

⇧⇧⇧⇧
1

|⇥ � xo|2
 
2
� �(⇥�xo)·n(⇥)

⇥ �(⇥�xo)� n(⇥)
⌦⇧⇧⇧⇧ =

⇧⇧⇧⇧
1

|⇥ � xo|2

⇧⇧⇧⇧ <
�2

(1� �)2
,

whereby

⌃�xoR(⇥,xo, �)⌃ <
�2

2k(1� �)2
+

�2

2(1 + �2)
, ⇥ ⌅ �obs, xo, � ⌅ B1. (16) gradRnorm

As a result, (15) can be rewritten as
�

�obs

G(⇥, �, k)�G(⇥,xo, k) d�⇥
�2

= �
⌃
Re

�
G(xo, �, k)

⇥
+

1

kr
Im

�
G(xo, �, k)

⇥⌥ �(xo��), xo, � ⌅ B1, (17) 2green8

where r= |xo��|. In a similar fashion, the di⇥erentiation of (13) with respect to � yields
�

�obs

�G(⇥, �, k)G(⇥,xo, k) d�⇥
�2

=

⌃
Re

�
G(xo, �, k)

⇥
+

1

kr
Im

�
G(xo, �, k)

⇥⌥ �(xo��), xo, � ⌅ B1, (18) 2green9

4.3. The �G⇤�G term

To estimate the first component integral over �obs in (8), one may di⇥erentiate (15) with respect to � which
yields
�

�obs

�G(⇥,xo, k)⇤�G(⇥, �, k)
⇤
1 +R(⇥,xo, �)

⌅
d�⇥ �

�

�obs

G(⇥, �, k)�G(⇥,xo, k)⇤��R(⇥,xo, �) d�⇥

�
�

�obs

G(⇥,xo, k)�xoR(⇥,xo, �)⇤�G(⇥, �, k) d�⇥ =
1

k
Im

�
��G(xo, �, k)

⇥
, xo, � ⌅ B1, (19) 2green10
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<

⇤ �(⇥�xo) + �(⇥��)
⌅
·n(⇥) � 2, ⇥ ⌅ �obs, xo, � ⌅ B1

where � = R1/R2 < 1 as postulated earlier. As a result, (13) can be rewritten by way of triangle inequality
as
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G(⇥, �, k)G(⇥,xo, k)
⇤
1 +R(⇥,xo, �)

⌅
d�⇥ = � 1
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G(xo, �, k)

⇥
, xo, � ⌅ B1,

|R(⇥,xo, �)| <
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k(1��2)
+

�2

2
+O(�4). (13) 2green5

From (13), it follows that for k ⇥ O(1) (which includes the so-called resonance regime), one recovers the
Helmholtz-Kirchho⇥ identity
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�obs

G(⇥, �, k)G(⇥,xo, k) d�⇥
�2

= � 1

k
Im

�
G(xo, �, k)

⇥
, xo, � ⌅ B1. (14) 2green6

where “
�n

=” indicates approximation with an O(�n) residual.

4.2. The G�G and �GG terms

On di⇥erentiating (13) with respect to xo, one obtains

�
�

�obs

G(⇥, �, k)�G(⇥,xo, k)
⇤
1 +R(⇥,xo, �)

⌅
d�⇥ +
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�obs

G(⇥, �, k)G(⇥,xo, k)�xoR(⇥,xo, �) d�⇥

= � 1

k
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�
�G(xo, �, k)

⇥
, xo, � ⌅ B1, (15) 2green7

where �G implies di⇥erentiation with respect to the first argument as examined earlier. To expose the
magnitude of �xoR, it can be shown via the law of cosines that

⇧⇧⇧�xo �(⇥�xo)·n(⇥)
⇧⇧⇧ =

⇧⇧⇧⇧
1

|⇥ � xo|

 � �(⇥�xo)·n(⇥)
⇥ �(⇥�xo)� n(⇥)

⌦⇧⇧⇧⇧ <
�2

(1 + �2)
,

and
⇧⇧⇧⇧⇧�xo

⌃ �(⇥�xo)

|⇥ � xo|

⌥
·n(⇥)

⇧⇧⇧⇧⇧ =

⇧⇧⇧⇧
1

|⇥ � xo|2
 
2
� �(⇥�xo)·n(⇥)

⇥ �(⇥�xo)� n(⇥)
⌦⇧⇧⇧⇧ =

⇧⇧⇧⇧
1

|⇥ � xo|2

⇧⇧⇧⇧ <
�2

(1� �)2
,

whereby

⌃�xoR(⇥,xo, �)⌃ <
�2

2k(1� �)2
+

�2

2(1 + �2)
, ⇥ ⌅ �obs, xo, � ⌅ B1. (16) gradRnorm

As a result, (15) can be rewritten as
�

�obs

G(⇥, �, k)�G(⇥,xo, k) d�⇥
�2

= �
⌃
Re

�
G(xo, �, k)

⇥
+

1
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Im

�
G(xo, �, k)

⇥⌥ �(xo��), xo, � ⌅ B1, (17) 2green8

where r= |xo��|. In a similar fashion, the di⇥erentiation of (13) with respect to � yields
�

�obs

�G(⇥, �, k)G(⇥,xo, k) d�⇥
�2

=

⌃
Re

�
G(xo, �, k)

⇥
+

1

kr
Im

�
G(xo, �, k)

⇥⌥ �(xo��), xo, � ⌅ B1, (18) 2green9

4.3. The �G⇤�G term

To estimate the first component integral over �obs in (8), one may di⇥erentiate (15) with respect to � which
yields
�

�obs

�G(⇥,xo, k)⇤�G(⇥, �, k)
⇤
1 +R(⇥,xo, �)

⌅
d�⇥ �

�

�obs

G(⇥, �, k)�G(⇥,xo, k)⇤��R(⇥,xo, �) d�⇥

�
�

�obs

G(⇥,xo, k)�xoR(⇥,xo, �)⇤�G(⇥, �, k) d�⇥ =
1

k
Im

�
��G(xo, �, k)

⇥
, xo, � ⌅ B1, (19) 2green10

6

noting that ⌦�⌦xoR = 0 due to the structure of the residual which permits decomposition R(⇥,xo, �) =
R1(⇥,xo) +R2(⇥, �). On the basis of of (4), (13) and (16), (19) can be rewritten as

 

�obs

⌦G(⇥, �, k)⌅⌦G(⇥,xo, k) d�⌅
�2

=

1

r

⇧
3Re

�
G(xo, �, k)

⇥
+
⇤ 3

kr
� kr

⌅
Im

�
G(xo, �, k)

⇥⌃ �(xo��)⌅ �(xo��)

� 1

r

⇧
Re

�
G(xo, �, k)

⇥
+

1

kr
Im

�
G(xo, �, k)

⇥⌃
I, xo, � ⌃ B1, (20) 2green11

where r= |xo��| as before, and I is the second-order identity tensor. For completeness, it is also noted that
the trace of (19) simplifies as

 

�obs

⌦G(⇥, �, k)·⌦G(⇥,xo, k) d�⌅
�2

= � k Im
�
G(xo, �, k)

⇥
, xo, � ⌃ B1. (21) 2green12

5. High-frequency behavior of topological sensitivity
exex

Consider the scattering of a plane wave, ui = e�ikx·d, by a convex obstacle D. Next, let n signify the
outward normal on S = ⌦D; let Sf = {x ⌃ S : n(x) ·d < 0} be the “front” (i.e. illuminated) part of S,
and denote by Sb = {x ⌃ S : n(x) ·d ⇥ 0} its “back” side. To provide specificity for the analysis, the
wavenumber is assumed to be large in the sense that k⌘/(2⌅) ⇧ 1, where ⌘ is the smallest radius of curvature
on Sf and 2⌅/k signifies the wavelength of the incident field. In this setting, the aim is to evaluate the
high-frequency behavior of (8) when the sampling point xo straddles the region of interest (B1) excluding a
small neighborhood of Sf, namely

N⇥ := {x : x = � ± �n(�), � ⌃ Sf, 0 � � � ⇤}, (22) epsregion

where ⇤ > 0 is an O(2⌅/k) length scale to be specified later. Furthermore, the nucleating obstacle
underpinning the definition of topological sensitivity is for simplicity assumed to be ball-shaped, for which

A =
3

2 + �
I, (23) atensor

see [? ], where I is the second-order identity tensor.

5.1. Sound-soft (Dirichlet) obstacle
exex

When D is sound-soft and k⌘ ⇧ 1, the physical optics (Kirchho⇥) approximation [? ] states that

u = 0 on D, u,n =

⌥
2ui

,n on Sf

0 on Sb , (24) sso1

In this case, (8) reduces to

T(xo,�, ⇥) = 2Re

⌥
(1��)⌦ui(xo)·A·

 

Sf

ui
,n(�)

 

�obs

G(⇥, �, k)⌦G(⇥,xo, k) d�⌅ dS⇤

� (1��⇥2) k2 ui(xo)

 

Sf

ui
,n(�)

 

�obs

G(⇥, �, k)G(⇥,xo, k) d�⌅ dS⇤

�
. (25) bir2

On recalling that ui = e�ikx·d and substituting (14), (17), (23) into (25), one obtains

T(xo,�, ⇥) = 2k Im

⌥
(1��)⌦ui(xo)·A · J1 � (1��⇥2) k ui(xo)J2

�

= 2k2 Im

⌥
3(1��)

2 + �
(�ie�ikxo·d)J1 � (1��⇥2) (e�ikxo·d)J2

�
,

(26) bir3
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where J
1

= d J
1

, and

J
1

=

Z

S

f

eik⇣·d

Re

�
G(xo, ⇣, k)

�
+

1

kr
Im

�
G(xo, ⇣, k)

��
d·n(⇣) d· \(xo�⇣) dS

⇣

,

J
2

=

Z

S

f

eik⇣·d Im
�
G(xo, ⇣, k)

�
d·n(⇣) dS

⇣

.

(27) bir3b

To simplify (27), it is useful to recall that

Re
�
G(xo, ⇣, k)

�
=

1

8⇡r

�
eikr + e�ikr

�
, Im

�
G(xo, ⇣, k)

�
=

i

8⇡r

�
eikr � e�ikr

�
, (28) sincos

whereby

J
1

=

Z

S

f

d·n(⇣)

8⇡r

⇣
1 +

i

kr

⌘
d· \(xo�⇣) eik(⇣·d+r) dS

⇣

+

Z

S

f

d·n(⇣)

8⇡r

⇣
1 � i

kr

⌘
d· \(xo�⇣) eik(⇣·d�r) dS

⇣

,

J
2

= i

Z

S

f

d·n(⇣)

8⇡r
eik(⇣·d+r) dS

⇣

� i

Z

S

f

d·n(⇣)

8⇡r
eik(⇣·d�r) dS

⇣

, r = |xo�⇣|, xo /2 Sf.

(29) shint1

To evaluate (29), it is useful to consider the parametrization of Sf in terms of curvilinear surface
coordinates (⌘1, ⌘2) as

⇣ = ⇣(⌘1, ⌘2) 2 Sf, dS
⇣

=
p

detg
pq

dS
⌘

, dS
⌘

= d⌘1d⌘2, g
pq

=
@⇣

@⌘p

· @⇣

@⌘q

, p, q = 1, 2

where g
pq

are the covariant components of the metric tensor, and @⇣/@⌘p is the unit tangent vector on Sf

in the direction of ⌘p.

5.1.1. High frequency approximation. As examined in [? ], the leading-order asymptotic behavior of (29)
for large values of k is governed by the nature of the integrand in the neighborhood of three types of critical
points, namely: i) the stationary points on Sf where r

⌘

(⇣ ·d ± r) vanishes, ii) the points on Sf where the
integrand fails to be di↵erentiable, and iii) all points on the closed curve @Sf, the boundary of Sf. By the
premise made earlier, r > ✏>0, see (22), whereby the integrands in (29) are di↵erentiable everywhere. One
may also note that the latter vanish on @Sf due to the presence of the term d·n. Following the analysis in [?
], the leading contribution of such boundary points can be shown (via repeated integration by parts) to be
of order k�2 when k is large. On the other hand, contribution of a non-degenerate stationary point ⇣⇤ 2 Sf

to a two-dimensional Fourier integral
Z

S

f

f(⇣)eik(⇣·d± r) dS
⌘

, ⇣ = ⇣(⌘1, ⌘2), r = |⇣�xo| (30) sp1

can be computed to be O
�
k�1 f(⇣⇤)

�
as

2⇡

k

f(⇣⇤)p
| det A

pq

|
eik(⇣

⇤·d± r

⇤
)+ i(sgnApq)⇡/4 , r⇤ = |⇣⇤�xo|, (31) sp2

where

A
pq

=
@2(⇣ ·d ± r)

@⌘p@⌘q

����
⇣=⇣

⇤
, p, q = 1, 2

are the components of the Hessian matrix for ⇣ ·d ± r such that det A
pq

6= 0 (when the stationary point is
simple), and sgnA

pq

equals the di↵erence between the positive and negative eigenvalues of A
pq

. As a result
the leding asymptotic behavior of (29) can be computed, in situations where all stationary points are simple
and isolated, by summing the contributions of type (31).

5.1.2. Stationary points. To evaluate (29) via the method of stationary phase [? ? ], it is noted that

r
⌘

(⇣ ·d ± r) = 0 =)
⇥
d ± (\⇣�xo)

⇤
· @⇣

@⌘p

= 0, p = 1, 2. (32) crit1

e.g. Blackstock (2000), Garnier & Papanicolaou (2009)
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noting that r
⇣

r
x

oR = 0 due to the structure of the residual which permits decomposition R(⇠, xo, ⇣) =
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5. High-frequency behavior of topological sensitivity
exex

Consider the scattering of a plane wave, ui = e�ikx·d, by a convex obstacle D. Next, let n signify the
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on Sf and 2⇡/k signifies the wavelength of the incident field. In this setting, the aim is to evaluate the
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where r= |xo�⇣| as before, and I is the second-order identity tensor. For completeness, it is also noted that
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outward normal on S = @D; let Sf = {x 2 S : n(x) ·d < 0} be the “front” (i.e. illuminated) part of S,
and denote by Sb = {x 2 S : n(x) ·d > 0} its “back” side. To provide specificity for the analysis, the
wavenumber is assumed to be large in the sense that k`/(2⇡) � 1, where ` is the smallest radius of curvature
on Sf and 2⇡/k signifies the wavelength of the incident field. In this setting, the aim is to evaluate the
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A =
3

2 + �
I, (23) atensor
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5. High-frequency behavior of topological sensitivity
exex

Consider the scattering of a plane wave, ui = e�ikx·d, by a convex obstacle D. Next, let n signify the
outward normal on S = @D; let Sf = {x 2 S : n(x) ·d < 0} be the “front” (i.e. illuminated) part of S,
and denote by Sb = {x 2 S : n(x) ·d > 0} its “back” side. To provide specificity for the analysis, the
wavenumber is assumed to be large in the sense that k`/(2⇡) � 1, where ` is the smallest radius of curvature
on Sf and 2⇡/k signifies the wavelength of the incident field. In this setting, the aim is to evaluate the
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where r= |xo�⇣| as before, and I is the second-order identity tensor. For completeness, it is also noted that
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Z

�

obs

rG(⇠, ⇣, k)·rG(⇠, xo, k) d�
⇠

↵

2

= � k Im
�
G(xo, ⇣, k)

�
, x

o, ⇣ 2 B
1

. (21) 2green12

5. High-frequency behavior of topological sensitivity
exex

Consider the scattering of a plane wave, ui = e�ikx·d, by a convex obstacle D. Next, let n signify the
outward normal on S = @D; let Sf = {x 2 S : n(x) ·d < 0} be the “front” (i.e. illuminated) part of S,
and denote by Sb = {x 2 S : n(x) ·d > 0} its “back” side. To provide specificity for the analysis, the
wavenumber is assumed to be large in the sense that k`/(2⇡) � 1, where ` is the smallest radius of curvature
on Sf and 2⇡/k signifies the wavelength of the incident field. In this setting, the aim is to evaluate the
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5. High-frequency behavior of topological sensitivity
exex

Consider the scattering of a plane wave, ui = e�ikx·d, by a convex obstacle D. Next, let n signify the
outward normal on S = @D; let Sf = {x 2 S : n(x) ·d < 0} be the “front” (i.e. illuminated) part of S,
and denote by Sb = {x 2 S : n(x) ·d > 0} its “back” side. To provide specificity for the analysis, the
wavenumber is assumed to be large in the sense that k`/(2⇡) � 1, where ` is the smallest radius of curvature
on Sf and 2⇡/k signifies the wavelength of the incident field. In this setting, the aim is to evaluate the
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underpinning the definition of topological sensitivity is for simplicity assumed to be ball-shaped, for which
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where r= |xo�⇣| as before, and I is the second-order identity tensor. For completeness, it is also noted that
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5. High-frequency behavior of topological sensitivity
exex

Consider the scattering of a plane wave, ui = e�ikx·d, by a convex obstacle D. Next, let n signify the
outward normal on S = @D; let Sf = {x 2 S : n(x) ·d < 0} be the “front” (i.e. illuminated) part of S,
and denote by Sb = {x 2 S : n(x) ·d > 0} its “back” side. To provide specificity for the analysis, the
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where r= |xo�⇣| as before, and I is the second-order identity tensor. For completeness, it is also noted that
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5. High-frequency behavior of topological sensitivity
exex

Consider the scattering of a plane wave, ui = e�ikx·d, by a convex obstacle D. Next, let n signify the
outward normal on S = @D; let Sf = {x 2 S : n(x) ·d < 0} be the “front” (i.e. illuminated) part of S,
and denote by Sb = {x 2 S : n(x) ·d > 0} its “back” side. To provide specificity for the analysis, the
wavenumber is assumed to be large in the sense that k`/(2⇡) � 1, where ` is the smallest radius of curvature
on Sf and 2⇡/k signifies the wavelength of the incident field. In this setting, the aim is to evaluate the
high-frequency behavior of (8) when the sampling point x

o straddles the region of interest (B
1

) excluding a
small neighborhood of Sf, namely
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where ✏ > 0 is an O(2⇡/k) length scale to be specified later. Furthermore, the nucleating obstacle
underpinning the definition of topological sensitivity is for simplicity assumed to be ball-shaped, for which

A =
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see [? ], where I is the second-order identity tensor.
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When D is sound-soft and k` � 1, the physical optics (Kirchho↵) approximation [? ] states that
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where r= |xo�⇣| as before, and I is the second-order identity tensor. For completeness, it is also noted that
the trace of (19) simplifies as
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5. High-frequency behavior of topological sensitivity
exex

Consider the scattering of a plane wave, ui = e�ikx·d, by a convex obstacle D. Next, let n signify the
outward normal on S = @D; let Sf = {x 2 S : n(x) ·d < 0} be the “front” (i.e. illuminated) part of S,
and denote by Sb = {x 2 S : n(x) ·d > 0} its “back” side. To provide specificity for the analysis, the
wavenumber is assumed to be large in the sense that k`/(2⇡) � 1, where ` is the smallest radius of curvature
on Sf and 2⇡/k signifies the wavelength of the incident field. In this setting, the aim is to evaluate the
high-frequency behavior of (8) when the sampling point x

o straddles the region of interest (B
1

) excluding a
small neighborhood of Sf, namely
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✏

:= {x : x = ⇣ ± � n(⇣), ⇣ 2 Sf, 0 6 � 6 ✏}, (22) epsregion

where ✏ > 0 is an O(2⇡/k) length scale to be specified later. Furthermore, the nucleating obstacle
underpinning the definition of topological sensitivity is for simplicity assumed to be ball-shaped, for which

A =
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2 + �
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see [? ], where I is the second-order identity tensor.
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5. High-frequency behavior of topological sensitivity
exex

Consider the scattering of a plane wave, ui = e�ikx·d, by a convex obstacle D. Next, let n signify the
outward normal on S = @D; let Sf = {x 2 S : n(x) ·d < 0} be the “front” (i.e. illuminated) part of S,
and denote by Sb = {x 2 S : n(x) ·d > 0} its “back” side. To provide specificity for the analysis, the
wavenumber is assumed to be large in the sense that k`/(2⇡) � 1, where ` is the smallest radius of curvature
on Sf and 2⇡/k signifies the wavelength of the incident field. In this setting, the aim is to evaluate the
high-frequency behavior of (8) when the sampling point xo straddles the region of interest (B
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) excluding a
small neighborhood of Sf, namely
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:= {x : x = ⇣ ± � n(⇣), ⇣ 2 Sf, 0 6 � 6 ✏}, (22) epsregion

where ✏ > 0 is an O(2⇡/k) length scale to be specified later. Furthermore, the nucleating obstacle
underpinning the definition of topological sensitivity is for simplicity assumed to be ball-shaped, for which
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2 + �
I, (23) atensor

see [? ], where I is the second-order identity tensor.

5.1. Sound-soft (Dirichlet) obstacle
exex

When D is sound-soft and k` � 1, the physical optics (Kirchho↵) approximation [? ] states that
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To simplify (27), it is useful to recall that
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To evaluate (29), it is useful to consider the parametrization of Sf in terms of curvilinear surface
coordinates (⌘1, ⌘2) as
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in the direction of ⌘p.

5.1.1. High frequency approximation. As examined in [? ], the leading-order asymptotic behavior of (29)
for large values of k is governed by the nature of the integrand in the neighborhood of three types of critical
points, namely: i) the stationary points on Sf where r

⌘

(⇣ ·d ± r) vanishes, ii) the points on Sf where the
integrand fails to be di↵erentiable, and iii) all points on the closed curve @Sf, the boundary of Sf. By the
premise made earlier, r > ✏>0, see (22), whereby the integrands in (29) are di↵erentiable everywhere. One
may also note that the latter vanish on @Sf due to the presence of the term d·n. Following the analysis in [?
], the leading contribution of such boundary points can be shown (via repeated integration by parts) to be
of order k�2 when k is large. On the other hand, contribution of a non-degenerate stationary point ⇣⇤ 2 Sf
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. As a result
the leding asymptotic behavior of (29) can be computed, in situations where all stationary points are simple
and isolated, by summing the contributions of type (31).

5.1.2. Stationary points. To evaluate (29) via the method of stationary phase [? ? ], it is noted that
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where r= |xo�⇣| as before, and I is the second-order identity tensor. For completeness, it is also noted that
the trace of (19) simplifies as

Z

�

obs

rG(⇠, ⇣, k)·rG(⇠, xo, k) d�
⇠

↵

2

= � k Im
�
G(xo, ⇣, k)

�
, xo, ⇣ 2 B

1

. (21) 2green12

5. High-frequency behavior of topological sensitivity
exex

Consider the scattering of a plane wave, ui = e�ikx·d, by a convex obstacle D. Next, let n signify the
outward normal on S = @D; let Sf = {x 2 S : n(x) ·d < 0} be the “front” (i.e. illuminated) part of S,
and denote by Sb = {x 2 S : n(x) ·d > 0} its “back” side. To provide specificity for the analysis, the
wavenumber is assumed to be large in the sense that k`/(2⇡) � 1, where ` is the smallest radius of curvature
on Sf and 2⇡/k signifies the wavelength of the incident field. In this setting, the aim is to evaluate the
high-frequency behavior of (8) when the sampling point xo straddles the region of interest (B
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where ✏ > 0 is an O(2⇡/k) length scale to be specified later. Furthermore, the nucleating obstacle
underpinning the definition of topological sensitivity is for simplicity assumed to be ball-shaped, for which
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see [? ], where I is the second-order identity tensor.
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On recalling that ui = e�ikx·d and substituting (14), (17), (23) into (25), one obtains
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non-degenerate stationary point
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To simplify (27), it is useful to recall that
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To evaluate (29), it is useful to consider the parametrization of Sf in terms of curvilinear surface
coordinates (⌘1, ⌘2) as

⇣ = ⇣(⌘1, ⌘2) 2 Sf, dS
⇣

=
p

detg
pq

dS
⌘

, dS
⌘

= d⌘1d⌘2, g
pq

=
@⇣

@⌘p

· @⇣

@⌘q

, p, q = 1, 2

where g
pq

are the covariant components of the metric tensor, and @⇣/@⌘p is the unit tangent vector on Sf

in the direction of ⌘p.

5.1.1. High frequency approximation. As examined in [? ], the leading-order asymptotic behavior of (29)
for large values of k is governed by the nature of the integrand in the neighborhood of three types of critical
points, namely: i) the stationary points on Sf where r

⌘

(⇣ ·d ± r) vanishes, ii) the points on Sf where the
integrand fails to be di↵erentiable, and iii) all points on the closed curve @Sf, the boundary of Sf. By the
premise made earlier, r > ✏>0, see (22), whereby the integrands in (29) are di↵erentiable everywhere. One
may also note that the latter vanish on @Sf due to the presence of the term d·n. Following the analysis in [?
], the leading contribution of such boundary points can be shown (via repeated integration by parts) to be
of order k�2 when k is large. On the other hand, contribution of a non-degenerate stationary point ⇣

0
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to a two-dimensional Fourier integral
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simple), and sgnA

pq

equals the di↵erence between the positive and negative eigenvalues of A
pq

. As a result
the leding asymptotic behavior of (29) can be computed, in situations where all stationary points are simple
and isolated, by summing the contributions of type (31).

5.1.2. Stationary points. To evaluate (29) via the method of stationary phase [? ? ], it is noted that
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On denoting by ⇣± 2 Sf the stationary point of eik(⇣·d±r), this implies that d± ( \⇣±�xo) must either vanish
or be perpendicular to Sf. By way of inequality d ·n < 0, one accordingly finds from (32) that J
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and J
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To simplify (27), it is useful to recall that
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To evaluate (29), it is useful to consider the parametrization of Sf in terms of curvilinear surface
coordinates (⌘1, ⌘2) as

⇣ = ⇣(⌘1, ⌘2) 2 Sf, dS⇣ =
p

detgpq dS⌘, dS⌘ = d⌘1d⌘2, gpq =
@⇣

@⌘p
· @⇣

@⌘q
, p, q = 1, 2

where gpq are the covariant components of the metric tensor, and @⇣/@⌘p is the unit tangent vector on Sf

in the direction of ⌘p.

5.1.1. High frequency approximation. As examined in [? ], the leading-order asymptotic behavior of (29)
for large values of k is governed by the nature of the integrand in the neighborhood of three types of critical
points, namely: i) the stationary points on Sf where r⌘(⇣ ·d ± r) vanishes, ii) the points on Sf where the
integrand fails to be di↵erentiable, and iii) all points on the closed curve @Sf, the boundary of Sf. By the
premise made earlier, r > ✏>0, see (22), whereby the integrands in (29) are di↵erentiable everywhere. One
may also note that the latter vanish on @Sf due to the presence of the term d·n. Following the analysis in [?
], the leading contribution of such boundary points can be shown (via repeated integration by parts) to be
of order k�2 when k is large. On the other hand, contribution of a non-degenerate stationary point ⇣

0

2 Sf

to a two-dimensional Fourier integral
Z

Sf

f(⇣)eik(⇣·d± r) dS⌘, ⇣ = ⇣(⌘1, ⌘2), r = |⇣�xo| (30) sp1

can be computed to be O
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where

Hij =
@2(⇣ ·d ± r)

@⌘i@⌘j
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0

, p, q = 1, 2

are the components of the Hessian matrix for ⇣ ·d ± r such that det Apq 6= 0 (when the stationary point is
simple), and sgnHij equals the di↵erence between the positive and negative eigenvalues of Hij . As a result
the leding asymptotic behavior of (29) can be computed, in situations where all stationary points are simple
and isolated, by summing the contributions of type (31).

5.1.2. Stationary points. To evaluate (29) via the method of stationary phase [? ? ], it is noted that

r⌘(⇣ ·d ± r) = 0 =)
⇥
d ± (\⇣�xo)

⇤
· @⇣

@⌘p
= 0, p = 1, 2. (32) crit1

On denoting by ⇣± 2 Sf the stationary point of eik(⇣·d±r), this implies that d± ( \⇣±�xo) must either vanish
or be perpendicular to Sf. By way of inequality d ·n < 0, one accordingly finds from (32) that J

1

and J
2

feature two types of stationary points, namely

⇣±
I

= xo ⌥ rd,

⇣±
II

= xo ⌥ r
⇥
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.
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To simplify (27), it is useful to recall that
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To evaluate (29), it is useful to consider the parametrization of Sf in terms of curvilinear surface
coordinates (⇥1, ⇥2) as

� = �(⇥1, ⇥2) ⌅ Sf, dS� =
 

detgpq dS⇥, dS⇥ = d⇥1d⇥2, gpq =
⌅�

⌅⇥p
· ⌅�
⌅⇥q

, p, q = 1, 2

where gpq are the covariant components of the metric tensor, and ⌅�/⌅⇥p is the unit tangent vector on Sf

in the direction of ⇥p.

5.1.1. High frequency approximation. As examined in [? ], the leading-order asymptotic behavior of (29)
for large values of k is governed by the nature of the integrand in the neighborhood of three types of critical
points, namely: i) the stationary points on Sf where ⌃⇥(� ·d ± r) vanishes, ii) the points on Sf where the
integrand fails to be di�erentiable, and iii) all points on the closed curve ⌅Sf, the boundary of Sf. By the
premise made earlier, r> �>0, see (22), whereby the integrands in (29) are di�erentiable everywhere. One
may also note that the latter vanish on ⌅Sf due to the presence of the term d·n. Following the analysis in [?
], the leading contribution of such boundary points can be shown (via repeated integration by parts) to be
of order k�2 when k is large. On the other hand, contribution of a non-degenerate stationary point �0⌅ Sf

to a two-dimensional Fourier integral
�

Sf

f(�)eik(�·d± r)dS⇥, � = �(⇥1, ⇥2), r = |��xo| (30) sp1
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are the components of the Hessian matrix for � ·d ± r such that detApq ⇧= 0 (when the stationary point is
simple), and sgnHij equals the di�erence between the positive and negative eigenvalues of Hij . As a result
the leding asymptotic behavior of (29) can be computed, in situations where all stationary points are simple
and isolated, by summing the contributions of type (31).

5.1.2. Stationary points. To evaluate (29) via the method of stationary phase [? ? ], it is noted that

⌃⇥(� ·d± r) = 0 =⇤
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On denoting by �± ⌅ Sf the stationary point of eik(�·d±r), this implies that d± ( ��±�xo) must either vanish
or be perpendicular to Sf. By way of inequality d ·n < 0, one accordingly finds from (32) that J1 and J2
feature two types of stationary points, namely

�±
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�±
II = xo ⇥ r

⇤
d+ 2|d·n|n(�±

II )
⌅
.

(33) crit2

T(xo) =

Z

Sf

f(⇣) eik'(⇣) d⇣

Sf

x

o

⇣0

e.g. Blestein & Handelsman (1986)
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To simplify (27), it is useful to recall that
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To evaluate (29), it is useful to consider the parametrization of Sf in terms of curvilinear surface
coordinates (⌘1, ⌘2) as

⇣ = ⇣(⌘1, ⌘2) 2 Sf, dS⇣ =
p

detgpq dS⌘, dS⌘ = d⌘1d⌘2, gpq =
@⇣

@⌘p
· @⇣

@⌘q
, p, q = 1, 2

where gpq are the covariant components of the metric tensor, and @⇣/@⌘p is the unit tangent vector on Sf

in the direction of ⌘p.

5.1.1. High frequency approximation. As examined in [? ], the leading-order asymptotic behavior of (29)
for large values of k is governed by the nature of the integrand in the neighborhood of three types of critical
points, namely: i) the stationary points on Sf where r⌘(⇣ ·d ± r) vanishes, ii) the points on Sf where the
integrand fails to be di↵erentiable, and iii) all points on the closed curve @Sf, the boundary of Sf. By the
premise made earlier, r > ✏>0, see (22), whereby the integrands in (29) are di↵erentiable everywhere. One
may also note that the latter vanish on @Sf due to the presence of the term d·n. Following the analysis in [?
], the leading contribution of such boundary points can be shown (via repeated integration by parts) to be
of order k�2 when k is large. On the other hand, contribution of a non-degenerate stationary point ⇣

0

2 Sf

to a two-dimensional Fourier integral
Z

Sf

f(⇣)eik(⇣·d± r) dS⌘, ⇣ = ⇣(⌘1, ⌘2), r = |⇣�xo| (30) sp1
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, p, q = 1, 2

are the components of the Hessian matrix for ⇣ ·d ± r such that det Apq 6= 0 (when the stationary point is
simple), and sgnHij equals the di↵erence between the positive and negative eigenvalues of Hij . As a result
the leding asymptotic behavior of (29) can be computed, in situations where all stationary points are simple
and isolated, by summing the contributions of type (31).

5.1.2. Stationary points. To evaluate (29) via the method of stationary phase [? ? ], it is noted that

r⌘(⇣ ·d ± r) = 0 =)
⇥
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On denoting by ⇣± 2 Sf the stationary point of eik(⇣·d±r), this implies that d± ( \⇣±�xo) must either vanish
or be perpendicular to Sf. By way of inequality d ·n < 0, one accordingly finds from (32) that J
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and J
2

feature two types of stationary points, namely
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To simplify (27), it is useful to recall that
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To evaluate (29), it is useful to consider the parametrization of Sf in terms of curvilinear surface
coordinates (⌘1, ⌘2) as

⇣ = ⇣(⌘1, ⌘2) 2 Sf, dS⇣ =
p

detgpq dS⌘, dS⌘ = d⌘1d⌘2, gpq =
@⇣

@⌘p
· @⇣

@⌘q
, p, q = 1, 2

where gpq are the covariant components of the metric tensor, and @⇣/@⌘p is the unit tangent vector on Sf

in the direction of ⌘p.

5.1.1. High frequency approximation. As examined in [? ], the leading-order asymptotic behavior of (29)
for large values of k is governed by the nature of the integrand in the neighborhood of three types of critical
points, namely: i) the stationary points on Sf where r⌘(⇣ ·d ± r) vanishes, ii) the points on Sf where the
integrand fails to be di↵erentiable, and iii) all points on the closed curve @Sf, the boundary of Sf. By the
premise made earlier, r > ✏>0, see (22), whereby the integrands in (29) are di↵erentiable everywhere. One
may also note that the latter vanish on @Sf due to the presence of the term d·n. Following the analysis in [?
], the leading contribution of such boundary points can be shown (via repeated integration by parts) to be
of order k�2 when k is large. On the other hand, contribution of a non-degenerate stationary point ⇣

0

2 Sf

to a two-dimensional Fourier integral
Z

Sf

f(⇣)eik(⇣·d± r) dS⌘, ⇣ = ⇣(⌘1, ⌘2), r = |⇣�xo| (30) sp1
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where
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are the components of the Hessian matrix for ⇣ ·d ± r such that det Apq 6= 0 (when the stationary point is
simple), and sgnHij equals the di↵erence between the positive and negative eigenvalues of Hij . As a result
the leding asymptotic behavior of (29) can be computed, in situations where all stationary points are simple
and isolated, by summing the contributions of type (31).

5.1.2. Stationary points. To evaluate (29) via the method of stationary phase [? ? ], it is noted that
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On denoting by ⇣± 2 Sf the stationary point of eik(⇣·d±r), this implies that d± ( \⇣±�xo) must either vanish
or be perpendicular to Sf. By way of inequality d ·n < 0, one accordingly finds from (32) that J
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and J
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feature two types of stationary points, namely
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To simplify (27), it is useful to recall that
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To evaluate (29), it is useful to consider the parametrization of Sf in terms of curvilinear surface
coordinates (⌘1, ⌘2) as

⇣ = ⇣(⌘1, ⌘2) 2 Sf, dS⇣ =
p

detgpq dS⌘, dS⌘ = d⌘1d⌘2, gpq =
@⇣

@⌘p
· @⇣

@⌘q
, p, q = 1, 2

where gpq are the covariant components of the metric tensor, and @⇣/@⌘p is the unit tangent vector on Sf

in the direction of ⌘p.

5.1.1. High frequency approximation. As examined in [? ], the leading-order asymptotic behavior of (29)
for large values of k is governed by the nature of the integrand in the neighborhood of three types of critical
points, namely: i) the stationary points on Sf where r⌘(⇣ ·d ± r) vanishes, ii) the points on Sf where the
integrand fails to be di↵erentiable, and iii) all points on the closed curve @Sf, the boundary of Sf. By the
premise made earlier, r > ✏>0, see (22), whereby the integrands in (29) are di↵erentiable everywhere. One
may also note that the latter vanish on @Sf due to the presence of the term d·n. Following the analysis in [?
], the leading contribution of such boundary points can be shown (via repeated integration by parts) to be
of order k�2 when k is large. On the other hand, contribution of a non-degenerate stationary point ⇣

0
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to a two-dimensional Fourier integral
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| det Apq|

eik(⇣
0

·d± r
0

)+ i(sgnH)⇡/4 , r
0

= |⇣
0

�xo|, (31) sp2

where

Hij =
@2(⇣ ·d ± r)

@⌘i@⌘j

����
⇣=⇣

0

, p, q = 1, 2

are the components of the Hessian matrix for ⇣ ·d ± r such that det Apq 6= 0 (when the stationary point is
simple), and sgnHij equals the di↵erence between the positive and negative eigenvalues of Hij . As a result
the leding asymptotic behavior of (29) can be computed, in situations where all stationary points are simple
and isolated, by summing the contributions of type (31).

5.1.2. Stationary points. To evaluate (29) via the method of stationary phase [? ? ], it is noted that

r⌘(⇣ ·d ± r) = 0 =)
⇥
d ± (\⇣�xo)

⇤
· @⇣

@⌘p
= 0, p = 1, 2. (32) crit1

On denoting by ⇣± 2 Sf the stationary point of eik(⇣·d±r), this implies that d± ( \⇣±�xo) must either vanish
or be perpendicular to Sf. By way of inequality d ·n < 0, one accordingly finds from (32) that J

1

and J
2

feature two types of stationary points, namely

⇣±
I

= xo ⌥ rd,

⇣±
II

= xo ⌥ r
⇥
d + 2|d·n|n(⇣±

II

)
⇤
.

(33) crit2
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To simplify (27), it is useful to recall that

Re
�
G(xo, ⇣, k)

�
=

1

8⇡r

�
eikr + e�ikr

�
, Im

�
G(xo, ⇣, k)

�
=

i

8⇡r

�
eikr � e�ikr

�
, (28) sincos

whereby

J
1

=

Z

Sf

d·n(⇣)

8⇡r

⇣
1 +

i

kr

⌘
d· \(xo�⇣) eik(⇣·d+r) dS⇣ +

Z

Sf

d·n(⇣)

8⇡r

⇣
1 � i

kr

⌘
d· \(xo�⇣) eik(⇣·d�r) dS⇣ ,

J
2

= i

Z

Sf

d·n(⇣)

8⇡r
eik(⇣·d+r) dS⇣ � i

Z

Sf

d·n(⇣)

8⇡r
eik(⇣·d�r) dS⇣ , r = |xo�⇣|, xo /2 Sf.

(29) shint1

To evaluate (29), it is useful to consider the parametrization of Sf in terms of curvilinear surface
coordinates (⌘1, ⌘2) as

⇣ = ⇣(⌘1, ⌘2) 2 Sf, dS⇣ =
p

detgpq dS⌘, dS⌘ = d⌘1d⌘2, gpq =
@⇣

@⌘p
· @⇣

@⌘q
, p, q = 1, 2

where gpq are the covariant components of the metric tensor, and @⇣/@⌘p is the unit tangent vector on Sf

in the direction of ⌘p.

5.1.1. High frequency approximation. As examined in [? ], the leading-order asymptotic behavior of (29)
for large values of k is governed by the nature of the integrand in the neighborhood of three types of critical
points, namely: i) the stationary points on Sf where r⌘(⇣ ·d ± r) vanishes, ii) the points on Sf where the
integrand fails to be di↵erentiable, and iii) all points on the closed curve @Sf, the boundary of Sf. By the
premise made earlier, r > ✏>0, see (22), whereby the integrands in (29) are di↵erentiable everywhere. One
may also note that the latter vanish on @Sf due to the presence of the term d·n. Following the analysis in [?
], the leading contribution of such boundary points can be shown (via repeated integration by parts) to be
of order k�2 when k is large. On the other hand, contribution of a non-degenerate stationary point ⇣

0

2 Sf

to a two-dimensional Fourier integral
Z

Sf

f(⇣)eik(⇣·d± r) dS⌘, ⇣ = ⇣(⌘1, ⌘2), r = |⇣�xo| (30) sp1

can be computed to be O
�
k�1 f(⇣

0

)
�

as

2⇡

k

f(⇣
0

)p
| det Apq|

eik(⇣
0

·d± r
0

)+ i(sgnH)⇡/4 , r
0

= |⇣
0

�xo|, (31) sp2

where

Hij =
@2(⇣ ·d ± r)

@⌘i@⌘j

����
⇣=⇣

0

, p, q = 1, 2

are the components of the Hessian matrix for ⇣ ·d ± r such that det Apq 6= 0 (when the stationary point is
simple), and sgnHij equals the di↵erence between the positive and negative eigenvalues of Hij . As a result
the leding asymptotic behavior of (29) can be computed, in situations where all stationary points are simple
and isolated, by summing the contributions of type (31).

5.1.2. Stationary points. To evaluate (29) via the method of stationary phase [? ? ], it is noted that

r⌘(⇣ ·d ± r) = 0 =)
⇥
d ± (\⇣�xo)

⇤
· @⇣

@⌘p
= 0, p = 1, 2. (32) crit1

On denoting by ⇣± 2 Sf the stationary point of eik(⇣·d±r), this implies that d± ( \⇣±�xo) must either vanish
or be perpendicular to Sf. By way of inequality d ·n < 0, one accordingly finds from (32) that J

1

and J
2

feature two types of stationary points, namely

⇣±
I

= xo ⌥ rd,

⇣±
II

= xo ⌥ r
⇥
d + 2|d·n|n(⇣±

II

)
⇤
.

(33) crit2

8

For a given sampling point xo /2 N✏, the stationary point of type I exists only if

xo2 C + [ C �, C ± := {x /2 N✏ : x = ⇣ ± � d, ⇣ 2 Sf, 0 < � < 1}, (34) critc

and is uniquely determined by the the projection of xo along d on Sf. In light of the implicit specification
of ⇣±

II

, on the other hand, integrals J
1

and J
2

may have multiple stationary points of type II. To provide
further insight into (33), it is noted that

I± := {xo : xo = ⇣±
I

± rd, r > 0},
II± := {xo : xo = ⇣±

II

± r
⇥
d + 2|d·n|n(⇣±

II

)
⇤
, r > 0},

(35) crit3

denote the loci of the sampling points for which given boundary point ⇣ 2 Sf is the stationary point of (29).
This is illustrated in Fig. 2 which shows that the I� and II+ loci emanate from Sf toward the exterior of
D, while their I+ and II� counterparts extend (initially) from Sf toward the interior of D. One also may
note that at the “apex” of Sf, where n = �d, locus I� (resp. I+) coincides with locus II+ (resp. II�).
This coalescence, however, does not pose special problems in terms of the simplicity (i.e. the order) of the
stationary point when xo belongs to such loci, since each of the component integrals in (29) will have a
stationary point of either type I or type II that coincides with the apex of Sf.
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II
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Figure 2. Loci of the sampling points, xo, for which given boundary point ⇣ 2 S

f is the stationary point

of type I (solid lines) and type II (thick dashed lines). The normal on S

f is indicated by a thin dashed line.
On the right side of the diagram, also depicted is the unique critical point of type I and the nearest critical
point of type II for a sampling point x

o2 R3\D̄ that is close to S

f.criticalpt

In what follows, it is implicitly assumed that the sampling point is located at a su�cient distance away
from Sf in the sense that xo2 B

1

\N✏, where N✏ is the “thin shell” region given by (22).

5.1.3. Contribution of the stationary point of type I. As examined earlier, the asymptotic behaviors of J
1

and J
2

entail the contribution of no stationary points of type I when xo 2 B
1

\(C +[ C �), and that of a
unique stationary point, ⇣±

I

, when xo2 C ±. As shown in Section 6.1, one finds

det(Hij) =
(d·n)2

r2

> 0, sgn(H) = ±2, ⇣ = ⇣±
I

, xo2 I±, (36) spone1

when the curvilinear coordinates ⌘p (p=1, 2) in (30) are chosen so that their tangents at ⇣±
I

coincide with
the principal directions of Sf (in which case det gpq = 1). On the basis of (29), (31) and (36), one accordingly
finds the respective contributions of the stationary point ⇣±

I

to J
1

and J
2

to read

J I

±

1

= � i

4k

⇣
1 ± i

kr±
I

⌘
eikxo·d, J I

±

2

=
±1

4k
eikxo·d,

or
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For a given sampling point xo /2 N✏, the stationary point of type I exists only if

xo2 C + [ C �, C ± := {x /2 N✏ : x = ⇣ ± � d, ⇣ 2 Sf, 0 < � < 1}, (34) critc

and is uniquely determined by the the projection of xo along d on Sf. In light of the implicit specification
of ⇣±

II

, on the other hand, integrals J
1

and J
2

may have multiple stationary points of type II. To provide
further insight into (33), it is noted that

I± := {xo : xo = ⇣±
I

± rd, r > 0},
II± := {xo : xo = ⇣±

II

± r
⇥
d + 2|d·n|n(⇣±

II

)
⇤
, r > 0},

(35) crit3

denote the loci of the sampling points for which given boundary point ⇣ 2 Sf is the stationary point of (29).
This is illustrated in Fig. 2 which shows that the I� and II+ loci emanate from Sf toward the exterior of
D, while their I+ and II� counterparts extend (initially) from Sf toward the interior of D. One also may
note that at the “apex” of Sf, where n = �d, locus I� (resp. I+) coincides with locus II+ (resp. II�).
This coalescence, however, does not pose special problems in terms of the simplicity (i.e. the order) of the
stationary point when xo belongs to such loci, since each of the component integrals in (29) will have a
stationary point of either type I or type II that coincides with the apex of Sf.
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Figure 2. Loci of the sampling points, xo, for which given boundary point ⇣ 2 S

f is the stationary point

of type I (solid lines) and type II (thick dashed lines). The normal on S

f is indicated by a thin dashed line.
On the right side of the diagram, also depicted is the unique critical point of type I and the nearest critical
point of type II for a sampling point x

o2 R3\D̄ that is close to S

f.criticalpt

In what follows, it is implicitly assumed that the sampling point is located at a su�cient distance away
from Sf in the sense that xo2 B

1

\N✏, where N✏ is the “thin shell” region given by (22).

5.1.3. Contribution of the stationary point of type I. As examined earlier, the asymptotic behaviors of J
1

and J
2

entail the contribution of no stationary points of type I when xo 2 B
1

\(C +[ C �), and that of a
unique stationary point, ⇣±

I

, when xo2 C ±. As shown in Section 6.1, one finds

det(Hij) =
(d·n)2

r2

> 0, sgn(H) = ±2, ⇣ = ⇣±
I

, xo2 I±, (36) spone1

when the curvilinear coordinates ⌘p (p=1, 2) in (30) are chosen so that their tangents at ⇣±
I

coincide with
the principal directions of Sf (in which case det gpq = 1). On the basis of (29), (31) and (36), one accordingly
finds the respective contributions of the stationary point ⇣±

I

to J
1

and J
2

to read

J I

±

1

= � i

4k

⇣
1 ± i

kr±
I

⌘
eikxo·d, J I

±

2

=
±1

4k
eikxo·d,



Stationary points
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To simplify (27), it is useful to recall that

Re
�
G(xo, ⇣, k)

�
=

1

8⇡r

�
eikr + e�ikr

�
, Im

�
G(xo, ⇣, k)

�
=

i

8⇡r

�
eikr � e�ikr

�
, (28) sincos

whereby

J
1

=

Z

Sf

d·n(⇣)

8⇡r

⇣
1 +

i

kr

⌘
d· \(xo�⇣) eik(⇣·d+r) dS⇣ +

Z

Sf

d·n(⇣)

8⇡r

⇣
1 � i

kr

⌘
d· \(xo�⇣) eik(⇣·d�r) dS⇣ ,

J
2

= i

Z

Sf

d·n(⇣)

8⇡r
eik(⇣·d+r) dS⇣ � i

Z

Sf

d·n(⇣)

8⇡r
eik(⇣·d�r) dS⇣ , r = |xo�⇣|, xo /2 Sf.

(29) shint1

To evaluate (29), it is useful to consider the parametrization of Sf in terms of curvilinear surface
coordinates (⌘1, ⌘2) as

⇣ = ⇣(⌘1, ⌘2) 2 Sf, dS⇣ =
p

detgpq dS⌘, dS⌘ = d⌘1d⌘2, gpq =
@⇣

@⌘p
· @⇣

@⌘q
, p, q = 1, 2

where gpq are the covariant components of the metric tensor, and @⇣/@⌘p is the unit tangent vector on Sf

in the direction of ⌘p.

5.1.1. High frequency approximation. As examined in [? ], the leading-order asymptotic behavior of (29)
for large values of k is governed by the nature of the integrand in the neighborhood of three types of critical
points, namely: i) the stationary points on Sf where r⌘(⇣ ·d ± r) vanishes, ii) the points on Sf where the
integrand fails to be di↵erentiable, and iii) all points on the closed curve @Sf, the boundary of Sf. By the
premise made earlier, r > ✏>0, see (22), whereby the integrands in (29) are di↵erentiable everywhere. One
may also note that the latter vanish on @Sf due to the presence of the term d·n. Following the analysis in [?
], the leading contribution of such boundary points can be shown (via repeated integration by parts) to be
of order k�2 when k is large. On the other hand, contribution of a non-degenerate stationary point ⇣

0

2 Sf

to a two-dimensional Fourier integral
Z

Sf

f(⇣)eik(⇣·d± r) dS⌘, ⇣ = ⇣(⌘1, ⌘2), r = |⇣�xo| (30) sp1

can be computed to be O
�
k�1 f(⇣

0

)
�

as

2⇡

k

f(⇣
0

)p
| det Apq|

eik(⇣
0

·d± r
0

)+ i(sgnH)⇡/4 , r
0

= |⇣
0

�xo|, (31) sp2

where

Hij =
@2(⇣ ·d ± r)

@⌘i@⌘j

����
⇣=⇣

0

, p, q = 1, 2

are the components of the Hessian matrix for ⇣ ·d ± r such that det Apq 6= 0 (when the stationary point is
simple), and sgnHij equals the di↵erence between the positive and negative eigenvalues of Hij . As a result
the leding asymptotic behavior of (29) can be computed, in situations where all stationary points are simple
and isolated, by summing the contributions of type (31).

5.1.2. Stationary points. To evaluate (29) via the method of stationary phase [? ? ], it is noted that

r⌘(⇣ ·d ± r) = 0 =)
⇥
d ± (\⇣�xo)

⇤
· @⇣

@⌘p
= 0, p = 1, 2. (32) crit1

On denoting by ⇣± 2 Sf the stationary point of eik(⇣·d±r), this implies that d± ( \⇣±�xo) must either vanish
or be perpendicular to Sf. By way of inequality d ·n < 0, one accordingly finds from (32) that J

1

and J
2

feature two types of stationary points, namely

⇣±
I

= xo ⌥ rd,

⇣±
II

= xo ⌥ r
⇥
d + 2|d·n|n(⇣±

II

)
⇤
.

(33) crit2
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To simplify (27), it is useful to recall that
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�
=

1

8⇡r
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�
, Im

�
G(xo, ⇣, k)

�
=

i

8⇡r

�
eikr � e�ikr

�
, (28) sincos

whereby

J
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=

Z

Sf

d·n(⇣)

8⇡r

⇣
1 +

i
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⌘
d· \(xo�⇣) eik(⇣·d+r) dS⇣ +

Z
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d·n(⇣)

8⇡r

⇣
1 � i
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⌘
d· \(xo�⇣) eik(⇣·d�r) dS⇣ ,

J
2

= i

Z

Sf

d·n(⇣)
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eik(⇣·d+r) dS⇣ � i

Z

Sf

d·n(⇣)

8⇡r
eik(⇣·d�r) dS⇣ , r = |xo�⇣|, xo /2 Sf.

(29) shint1

To evaluate (29), it is useful to consider the parametrization of Sf in terms of curvilinear surface
coordinates (⌘1, ⌘2) as

⇣ = ⇣(⌘1, ⌘2) 2 Sf, dS⇣ =
p

detgpq dS⌘, dS⌘ = d⌘1d⌘2, gpq =
@⇣

@⌘p
· @⇣

@⌘q
, p, q = 1, 2

where gpq are the covariant components of the metric tensor, and @⇣/@⌘p is the unit tangent vector on Sf

in the direction of ⌘p.

5.1.1. High frequency approximation. As examined in [? ], the leading-order asymptotic behavior of (29)
for large values of k is governed by the nature of the integrand in the neighborhood of three types of critical
points, namely: i) the stationary points on Sf where r⌘(⇣ ·d ± r) vanishes, ii) the points on Sf where the
integrand fails to be di↵erentiable, and iii) all points on the closed curve @Sf, the boundary of Sf. By the
premise made earlier, r > ✏>0, see (22), whereby the integrands in (29) are di↵erentiable everywhere. One
may also note that the latter vanish on @Sf due to the presence of the term d·n. Following the analysis in [?
], the leading contribution of such boundary points can be shown (via repeated integration by parts) to be
of order k�2 when k is large. On the other hand, contribution of a non-degenerate stationary point ⇣

0

2 Sf

to a two-dimensional Fourier integral
Z

Sf

f(⇣)eik(⇣·d± r) dS⌘, ⇣ = ⇣(⌘1, ⌘2), r = |⇣�xo| (30) sp1

can be computed to be O
�
k�1 f(⇣

0

)
�

as

2⇡

k

f(⇣
0

)p
| det Apq|

eik(⇣
0

·d± r
0

)+ i(sgnH)⇡/4 , r
0

= |⇣
0

�xo|, (31) sp2

where

Hij =
@2(⇣ ·d ± r)

@⌘i@⌘j

����
⇣=⇣

0

, p, q = 1, 2

are the components of the Hessian matrix for ⇣ ·d ± r such that det Apq 6= 0 (when the stationary point is
simple), and sgnHij equals the di↵erence between the positive and negative eigenvalues of Hij . As a result
the leding asymptotic behavior of (29) can be computed, in situations where all stationary points are simple
and isolated, by summing the contributions of type (31).

5.1.2. Stationary points. To evaluate (29) via the method of stationary phase [? ? ], it is noted that

r⌘(⇣ ·d ± r) = 0 =)
⇥
d ± (\⇣�xo)

⇤
· @⇣

@⌘p
= 0, p = 1, 2. (32) crit1

On denoting by ⇣± 2 Sf the stationary point of eik(⇣·d±r), this implies that d± ( \⇣±�xo) must either vanish
or be perpendicular to Sf. By way of inequality d ·n < 0, one accordingly finds from (32) that J

1

and J
2

feature two types of stationary points, namely

⇣±
I

= xo ⌥ rd,

⇣±
II

= xo ⌥ r
⇥
d + 2|d·n|n(⇣±
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)
⇤
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8

For a given sampling point xo /2 N✏, the stationary point of type I exists only if

xo2 C + [ C �, C ± := {x /2 N✏ : x = ⇣ ± � d, ⇣ 2 Sf, 0 < � < 1}, (34) critc

and is uniquely determined by the the projection of xo along d on Sf. In light of the implicit specification
of ⇣±

II

, on the other hand, integrals J
1

and J
2

may have multiple stationary points of type II. To provide
further insight into (33), it is noted that

I± := {xo : xo = ⇣±
I

± rd, r > 0},
II± := {xo : xo = ⇣±
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± r
⇥
d + 2|d·n|n(⇣±

II

)
⇤
, r > 0},

(35) crit3

denote the loci of the sampling points for which given boundary point ⇣ 2 Sf is the stationary point of (29).
This is illustrated in Fig. 2 which shows that the I� and II+ loci emanate from Sf toward the exterior of
D, while their I+ and II� counterparts extend (initially) from Sf toward the interior of D. One also may
note that at the “apex” of Sf, where n = �d, locus I� (resp. I+) coincides with locus II+ (resp. II�).
This coalescence, however, does not pose special problems in terms of the simplicity (i.e. the order) of the
stationary point when xo belongs to such loci, since each of the component integrals in (29) will have a
stationary point of either type I or type II that coincides with the apex of Sf.
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Figure 2. Loci of the sampling points, xo, for which given boundary point ⇣ 2 S

f is the stationary point

of type I (solid lines) and type II (thick dashed lines). The normal on S

f is indicated by a thin dashed line.
On the right side of the diagram, also depicted is the unique critical point of type I and the nearest critical
point of type II for a sampling point x

o2 R3\D̄ that is close to S

f.criticalpt

In what follows, it is implicitly assumed that the sampling point is located at a su�cient distance away
from Sf in the sense that xo2 B

1

\N✏, where N✏ is the “thin shell” region given by (22).
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the principal directions of Sf (in which case det gpq = 1). On the basis of (29), (31) and (36), one accordingly
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Figure 2. Loci of the sampling points, xo, for which given boundary point ⇣ 2 S

f is the stationary point

of type I (solid lines) and type II (thick dashed lines). The normal on S
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inclusion takes spherical or ellipsoidal shape. The introduction of an adjoint solution further permits to
consider nucleation of arbitrarily-shaped inclusions in an infinite, semi-infinite or finite background medium.
To highlight the utility of proposed developments in dealing with inverse scattering problems, a set of
numerical results is included wherein hidden obstacles are exposed through regions where (closed-form)
topological sensitivity attains negative values. On varying the mass density of a nucleating obstacle, it is
also shown that the proposed methodology can be used in conjunction with long wavelengths (the so-called
resonance region) for both geometric and material identification.
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consider nucleation of arbitrarily-shaped inclusions in an infinite, semi-infinite or finite background medium.
To highlight the utility of proposed developments in dealing with inverse scattering problems, a set of
numerical results is included wherein hidden obstacles are exposed through regions where (closed-form)
topological sensitivity attains negative values. On varying the mass density of a nucleating obstacle, it is
also shown that the proposed methodology can be used in conjunction with long wavelengths (the so-called
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Physically, this infers that the stationary-phase approximation (48) applies for all sampling points along
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inclusion takes spherical or ellipsoidal shape. The introduction of an adjoint solution further permits to
consider nucleation of arbitrarily-shaped inclusions in an infinite, semi-infinite or finite background medium.
To highlight the utility of proposed developments in dealing with inverse scattering problems, a set of
numerical results is included wherein hidden obstacles are exposed through regions where (closed-form)
topological sensitivity attains negative values. On varying the mass density of a nucleating obstacle, it is
also shown that the proposed methodology can be used in conjunction with long wavelengths (the so-called
resonance region) for both geometric and material identification.
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inclusion takes spherical or ellipsoidal shape. The introduction of an adjoint solution further permits to
consider nucleation of arbitrarily-shaped inclusions in an infinite, semi-infinite or finite background medium.
To highlight the utility of proposed developments in dealing with inverse scattering problems, a set of
numerical results is included wherein hidden obstacles are exposed through regions where (closed-form)
topological sensitivity attains negative values. On varying the mass density of a nucleating obstacle, it is
also shown that the proposed methodology can be used in conjunction with long wavelengths (the so-called
resonance region) for both geometric and material identification.
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. The strict positivity of det(H) in (49) demonstrates that the stationary-phase
approximation (49) is valid for all sampling points along the I± loci (35a) emanating from the illuminated
surface Sf (see Fig. 2). The situation along the II± loci (35b) is, however, more complicated since

det(H) =
|d·n|
⇢
1

⇢
2

r2

h
4|d·n|r2 ± 2hr + ⇢

1

⇢
2

|d·n|
i
, ⇣ = ⇣±

II

, xo 2 II±,

h := ⇢
1

(1�(d·a
1

)2) + ⇢
2

((d·a
1

)2+(d·n)2) > 0.

(50) appen5

On denoting by

r
1/2

=
1

4|d·n|

h
h ±

p
h2 � 4(d·n)2⇢

1

⇢
2

i
(51) appen6
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inclusion takes spherical or ellipsoidal shape. The introduction of an adjoint solution further permits to
consider nucleation of arbitrarily-shaped inclusions in an infinite, semi-infinite or finite background medium.
To highlight the utility of proposed developments in dealing with inverse scattering problems, a set of
numerical results is included wherein hidden obstacles are exposed through regions where (closed-form)
topological sensitivity attains negative values. On varying the mass density of a nucleating obstacle, it is
also shown that the proposed methodology can be used in conjunction with long wavelengths (the so-called
resonance region) for both geometric and material identification.
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APPENDIX

6.1. Determinant of the Hessian matrix
Hessian

With reference to (29), the Hessian matrix of the featured exponents can be computed as

H
pq

(⇣) =

"
@2

�
⇣ ·d ± r

�

@⌘p@⌘q

#
, r = |⇣�xo| (46) appen1

H =

2

664

±1

r
[1 � (d·a

1

)2] +
2

⇢
1

|d·n| ⌥1

r
(d·a

1

)(d·a
2

)

⌥1

r
(d·a

1

)(d·a
2

) ±1

r
[1 � (d·a

1

)2)] +
2

⇢
2

|d·n|

3

775 ,
⇣ = ⇣±

I

⇣ = ⇣±
II

(47)

where r = |⇣�xo| > 0. On selecting the curvilinear coordinates (⌘1, ⌘2) so that their tangents coincide
with the principal directions of Sf at the stationary point of interest, the a�liated components of the first
fundamental form (the metric tensor) and the second fundamental form (the shape tensor) read

g
pq

:=
@⇣

@⌘p

· @⇣

@⌘q

= �
pq

, b
pq

:= �n· @2⇣

@⌘p@⌘q

=
�
pq

⇢
p

(no summation)

respectively, where n is the outward unit normal on S, and ⇢
1

> ⇢
2

> 0 are the principal radii of curvature
of Sf at the stationary point. Under such hypothesis, (??) reduces to

A
pq

(⇣) = ± 1

r

h
�
pq

� (d·a
p

)(d·a
q

)
i

+

(
0, ⇣ = ⇣±

I

2|d·n| �pq

⇢p
, ⇣ = ⇣±

II

(no summation)
, (48) appen3

where a
p

(p = 1, 2) are the principal directions at the stationary point, which form an orthonormal basis
(a

1

, a
2

, n). As a result, one finds that

det(A
pq

) =
(d·n)2

r2

> 0, sgn(A
pq

) = ±2, ⇣ = ⇣±
I

, xo 2 I±, (49) appen4

where the signature of the Hessian matrix, sgn(A
pq

), equals the di↵erence between the number of positive and
negative eigenvalues of A

pq

. The strict positivity of det(A
pq

) in (49) demonstrates that the stationary-phase
approximation (49) is valid for all sampling points along the I± loci (35a) emanating from the illuminated
surface Sf (see Fig. 2). The situation along the II± loci (35b) is, however, more complicated since

det(A
pq

) =
|d·n|
⇢
1

⇢
2

r2

h
4|d·n|r2 ± 2hr + ⇢

1

⇢
2

|d·n|
i
, ⇣ = ⇣±

II

, xo 2 II±,

h := ⇢
1

(1�(d·a
1

)2) + ⇢
2

((d·a
1

)2+(d·n)2) > 0.

(50) appen5

On denoting by

r
1/2

=
1

4|d·n|

h
h ±

p
h2 � 4(d·n)2⇢

1

⇢
2

i
(51) appen6
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the zeros of det(H) in terms of r when ⇣ =⇣�
II

, it can be shown from (50) that

det(H) > 0, sgn(H) = 2, ⇣ = ⇣+

II

, xo 2 II+,

det(H)

8
<

:

> 0, 0 < r < r
2

< 0, r
2

< r < r
1

> 0, r > r
1

, sgn(H) =

8
<

:

�2, 0 < r < r
2

0, r
2

< r < r
1

2, r > r
1

, ⇣ = ⇣�
II

, xo 2 II�.

(52) appen7

Physically, this infers that the stationary-phase approximation (49) applies for all sampling points along
the II+ locus, and those along the II� locus for which r = |⇣�

II

� xo| /2 {r
1

, r
2

}.

6.2. Nature of the roots r
1

and r
2

nature
In light of the facts that 0<⇢

2

6 ⇢
1

and (d·n)2 =1 � (d·a
1

)2 � (d·a
2

)2, one finds on the basis of (50) that
the disciminant in (51) is, for any given triplet {⇢

1

, ⇢
2

, d·a
1

}, a monotonically decreasing function of (d·n)2.
Acccordingly, the former is minimized by maximizing (d·n)2 i.e. setting d·a

2

=0, in which case

h2 � 4(d·n)2⇢
1

⇢
2

=
�
⇢
1

(d·n)2� ⇢
2

�
2 > 0.

From this result, it is clear that

h2 � 4(d·n)2⇢
1

⇢
2

⇢
= 0, d·a

2

= 0 and |d·n|2 = ⇢
2

/⇢
1

> 0, otherwise
(53) discr

whereby the roots r
1

and r
2

are real-valued, positive, and distinct unless d·a
2

= 0 and |d·n|2 = ⇢
2

/⇢
1

(in
which case r

1

= r
2

=
p

⇢
1

⇢
2

/2). In this setting, it is instructive to rewrite (52) as

det(H) =
4(d·n)2

⇢
1

⇢
2

r2

(r ± r
1

)(r ± r
2

), ⇣ = ⇣±
II

, xo 2 II±. (54) appen8

From (50), it is also seen that for fixed ⇢
1

, ⇢
2

and (d·n)2, h is a monotonically decreasing function of (d·a
1

)2.
As a result, the upper bounds on r

1

and r
2

can be obtained from (51) by setting (d·a
1

)2 respectively to zero
and 1 � (d·n)2 whereby

0 < r
2

6 ru

2

,

r`

1

6 r
1

6 ru

1

,
ru

2

=

8
><

>:

⇢
1

2
|d·n|, |d·n| 6

q
⇢

2

⇢

1

,

⇢
2

2|d·n| |d·n| >
q

⇢

2

⇢

1

9
>=

>;
, r`

1

=

8
><

>:

⇢
2

2|d·n| , |d·n| 6
q

⇢

2

⇢

1

⇢
1

2
|d·n| |d·n| >

q
⇢

2

⇢

1

, ru

1

=
⇢
1

2|d·n| .

(55) rbounds

Note that r`

1

is obtained by substituting the upper bound on r
2

into the identity r
1

r
2

= ⇢
1

⇢
2

/4. This result
is illustrated in Fig. 4 via the polar plots of ru

2

, r`

1

and ru

1

which demonstrate that, even as r
1

! 1, the
projection of the vector xo(r

1

)�⇣�
II

, xo 2 II� onto the plane perpendiucular to d is limited by ⇢
1

from above.
For completeness, it can be also shown that

lim
|d·n|!0

r
k

=

8
>><

>>:

⇢
1

� (⇢
1

�⇢
2

)(d·a
1

)2

2|d·n| , k = 1

⇢
1

⇢
2

|d·n|
2(⇢

1

� (⇢
1

�⇢
2

)(d·a
1

)2)
, k = 2

, lim
|d·n|!1

r
k

=

8
><

>:

⇢
1

2
, k = 1

⇢
2

2
, k = 2

,

which verifies that ru

1

represents the exact limiting behavior of r
1

as |d · n| ! 1 as inferred by Fig. 4.

6.3. Behavior of the Hessian for near-caustic sampling points
near-caustic

To help expose the contribution of a degenerate stationary point ⇣ = ⇣�
II

when r = r
k

(k = 1, 2), it is
instructive to examine the limiting behavior of (48) for sampling points xo along the germane locus II� such
that r = |xo �⇣�

II

| = r
k

+ ✏, ✏ ! 0. In this setting, consder first the situations when either d ·a
1

= 0 or
d·a

2

= 0, i.e. cases when the Hessian matrix (48) is diagonal in principal curvilinear coordinates.
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Figure 4. Schematics of the upper and lower bounds on r1 and r2. The example polar plots are computed
for ⇢2/⇢1 = 0.7.rbds

6.3.1. Case d ·a
1

= 0 (⇣ = ⇣�
II

). For this configuration, one finds from (48) and (51) that the mixed
derivative vanishes at the stationary point, i.e.

@2(⇣ ·d � r)

@⌘1@⌘2

= 0 (56)

for any r > 0, while

r = r
1

+ a )

8
>><

>>:

@2(⇣ ·d � r)

@(⌘1)2
=

4|d·n|2

⇢2

1

a + O(a2),

@2(⇣ ·d � r)

@(⌘2)2
= 2|d·n|

✓
1

⇢
2

� |d·n|2

⇢
1

◆
+

4|d·n|4

⇢2

1

a + O(a2),
(57)

and

r = r
2

+ a )

8
>><

>>:

@2(⇣ ·d � r)

@(⌘1)2
=

2

|d·n|

✓
|d·n|2

⇢
1

� 1

⇢
2

◆
+

4

|d·n|2⇢2

2

a + O(a2),

@2(⇣ ·d � r)

@(⌘2)2
=

4

⇢2

2

a + O(a2),
(58)

when a ! 0. From (64) and (58) it is clear that for sampling points xo (along locus II�) in the vicinity of
r = rk (k =1, 2), one “principal curvature” of the phase function vanishes while the other remains O(1) as
a!0, except in the case when |d·n|2 = ⇢

2

/⇢
1

= 1.

6.3.2. Case d·a
2

= 0 (⇣ =⇣�
II

). Under this restriction, one finds again that

@2(⇣ ·d � r)

@⌘1@⌘2

= 0, (59)

for any r > 0. On the other hand, it follows from (48) and (51) that

⇢
r = r

1

+ a, ⇢
2

< ⇢
1

|d·n|2
r = r

2

+ a, ⇢
2

> ⇢
1

|d·n|2
�

)

8
>><

>>:

@2(⇣ ·d � r)

@(⌘1)2
=

4

⇢2

1

a + O(a2),

@2(⇣ ·d � r)

@(⌘2)2
=

2

|d·n|

✓
|d·n|2

⇢
2

� 1

⇢
1

◆
+

4

|d·n|2⇢2

1

a + O(a2),
(60)

and

⇢
r = r

1

+ a, ⇢
2

> ⇢
1

|d·n|2
r = r

2

+ a, ⇢
2

< ⇢
1

|d·n|2
�

)

8
>><

>>:

@2(⇣ ·d � r)

@(⌘1)2
= 2|d·n|

✓
1

⇢
1

� |d·n|2

⇢
2

◆
+

4|d·n|4

⇢2

2

a + O(a2),

@2(⇣ ·d � r)

@(⌘2)2
=

4|d·n|2

⇢2

2

a + O(a2),
(61)

except when 
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where r±
I

is the distance between xo and ⇣±
I

. By virtue of (26), the a�liated components of the topological
sensitivity are

TI

±
= ⌥ 3(1��)

2(2+�)

1

r±
I

, xo2 I±, r±
I

= |xo� ⇣±
I

|. (37) spone2

Note that r±
I

in (37) is strictly positive due to the fact that C ± exclude the immediate neigborhood, (22),
of Sf.

5.1.4. Contribution of the stationary point of type II+. The results from Sections 6.1 and 6.4 demonstrate
that J

1

and J
2

feature no stationary points of type II+ when xo 2 C +, and a unique stationary point ⇣+

II

when xo2 B
1

\(C̄ + [ N✏). In this case, one finds from (54) that

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r + r
1

)(r + r
2

) > 0, sgn(Hij) = 2, ⇣ = ⇣+

II

, xo2 II+, (38) sptwo1

where the roots r
1/2

given by (51) are strictly positive, and the Hessian matrix is computed with respect to

the basis given by the principal directions at ⇣+

II

. By virtue of (29), (31) and (38), the contributions of the
stationary point ⇣+

II

to J
1

and J
2

can be computed as

J II

+

1

= � i

8k

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)

⇣
1 +

i

kr+

II

⌘�
1 � 2(d·n)2

�
eikxo·d+2ik(d·n)

2r+

II ,

J II

+

2

=
1

8k

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)
eikxo·d+2ik(d·n)

2r+

II ,

where n = n(⇣+

II

) and r+

II

is the distance between xo and ⇣+

II

. On substitution into (23), one finds

TII

+

= � 3(1��)

4(2+�)

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)

�
1�2(d·n)2

�
Im

⇢⇣
k +

i

r+

II

⌘
e2ik(d·n)

2r+

II

�

� 1���2

4

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)
k Im

⇢
e2ik(d·n)

2r+

II

�
, xo2 II+, r+

II

= |xo� ⇣+

II

|
(39) sptwo2

as the contribution of the stationary point ⇣+

II

to the topological sensitivity at sampling point xo.

5.1.5. Contribution of the stationary point of type II�.

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r�r
1

)(r�r
2

), sgn(Hij) =

8
<

:

�2, 0 < r < r
1

0, r
1

< r < r
2

2, r > r
2

, ⇣ = ⇣�
II

, xo2 II�, (40) sptwo3

TII

�
=

3(1��)

4(2+�)

p
⇢
1

⇢
2p

|(r�
II

� r
1

)(r�
II

� r
2

)|
�
1�2(d·n)2

�
Im

⇢⇣
k � i

r�
II

⌘
e�2ik(d·n)

2r�
II

+i(sgnHij�2)⇡/4

�

+
1���2

4

p
⇢
1

⇢
2p

|(r�
II

� r
1

)(r�
II

� r
2

)|
k Im

⇢
e�2ik(d·n)

2r�
II

+i(sgnHij�2)⇡/4

�
, xo2 II�, r�

II

= |xo� ⇣�
II

|.

(41) sptwo3

5.1.6. High-frequency formula for topological sensitivity. With reference to Fig. 3, one consequently finds
that

T(xo, �, �) =

(
TI

+

, xo2 B
1

\C +

TI

�
, xo2 B

1

\C �

)
+

�
TII

+

, xo2 B
1

\(C̄ +[ N✏)
 

+
X

m

TII

�
m , (42) sptwo4

where TI

±
, TII

+

and TII

�
are given respectively by (37), (39) and (41); the projections i.e. stationary points

⇣+

I

, ⇣�
I

and ⇣+

II

are unique (when they exist), and the summation in the last term is taken over the stationary
points ⇣�

II

, since the projection of the latter type is in general not unique.
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where r±
I

is the distance between xo and ⇣±
I

. By virtue of (26), the a�liated components of the topological
sensitivity are

TI

±
= ⌥ 3(1��)

2(2+�)

1

r±
I

, xo2 I±, r±
I

= |xo� ⇣±
I

|. (37) spone2

Note that r±
I

in (37) is strictly positive due to the fact that C ± exclude the immediate neigborhood, (22),
of Sf.

5.1.4. Contribution of the stationary point of type II+. The results from Sections 6.1 and 6.4 demonstrate
that J

1

and J
2

feature no stationary points of type II+ when xo 2 C +, and a unique stationary point ⇣+

II

when xo2 B
1

\(C̄ + [ N✏). In this case, one finds from (54) that

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r + r
1

)(r + r
2

) > 0, sgn(Hij) = 2, ⇣ = ⇣+

II

, xo2 II+, (38) sptwo1

where the roots r
1/2

given by (51) are strictly positive, and the Hessian matrix is computed with respect to

the basis given by the principal directions at ⇣+

II

. By virtue of (29), (31) and (38), the contributions of the
stationary point ⇣+

II

to J
1

and J
2

can be computed as

J II

+

1

= � i

8k

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)

⇣
1 +

i

kr+

II

⌘�
1 � 2(d·n)2

�
eikxo·d+2ik(d·n)

2r+

II ,

J II

+

2

=
1

8k

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)
eikxo·d+2ik(d·n)

2r+

II ,

where n = n(⇣+

II

) and r+

II

is the distance between xo and ⇣+

II

. On substitution into (23), one finds

TII

+

= � 3(1��)

4(2+�)

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)

�
1�2(d·n)2

�
Im

⇢⇣
k +

i

r+

II

⌘
e2ik(d·n)

2r+

II

�

� 1���2

4

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)
k Im

⇢
e2ik(d·n)

2r+

II

�
, xo2 II+, r+

II

= |xo� ⇣+

II

|
(39) sptwo2

as the contribution of the stationary point ⇣+

II

to the topological sensitivity at sampling point xo.

5.1.5. Contribution of the stationary point of type II�.

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r�r
1

)(r�r
2

), sgn(Hij) =

8
<

:

�2, 0 < r < r
1

0, r
1

< r < r
2

2, r > r
2

, ⇣ = ⇣�
II

, xo2 II�, (40) sptwo3

TII

�
=

3(1��)

4(2+�)

p
⇢
1

⇢
2p

|(r�
II

� r
1

)(r�
II

� r
2

)|
�
1�2(d·n)2

�
Im

⇢⇣
k � i

r�
II

⌘
e�2ik(d·n)

2r�
II

+i(sgnHij�2)⇡/4

�

+
1���2

4

p
⇢
1

⇢
2p

|(r�
II

� r
1

)(r�
II

� r
2

)|
k Im

⇢
e�2ik(d·n)

2r�
II

+i(sgnHij�2)⇡/4

�
, xo2 II�, r�

II

= |xo� ⇣�
II

|.

(41) sptwo3

5.1.6. High-frequency formula for topological sensitivity. With reference to Fig. 3, one consequently finds
that

T(xo, �, �) =

(
TI

+

, xo2 B
1

\C +

TI

�
, xo2 B

1

\C �

)
+

�
TII

+

, xo2 B
1

\(C̄ +[ N✏)
 

+
X

m

TII

�
m , (42) sptwo4

where TI

±
, TII

+

and TII

�
are given respectively by (37), (39) and (41); the projections i.e. stationary points

⇣+

I

, ⇣�
I

and ⇣+

II

are unique (when they exist), and the summation in the last term is taken over the stationary
points ⇣�

II

, since the projection of the latter type is in general not unique.
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where r±
I

is the distance between xo and ⇣±
I

. By virtue of (26), the a�liated components of the topological
sensitivity are

TI

±
= ⌥ 3(1��)

2(2+�)

1

r±
I

, xo2 I±, r±
I

= |xo� ⇣±
I

|. (37) spone2

Note that r±
I

in (37) is strictly positive due to the fact that C ± exclude the immediate neigborhood, (22),
of Sf.

5.1.4. Contribution of the stationary point of type II+. The results from Sections 6.1 and 6.4 demonstrate
that J

1

and J
2

feature no stationary points of type II+ when xo 2 C +, and a unique stationary point ⇣+

II

when xo2 B
1

\(C̄ + [ N✏). In this case, one finds from (54) that

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r + r
1

)(r + r
2

) > 0, sgn(Hij) = 2, ⇣ = ⇣+

II

, xo2 II+, (38) sptwo1

where the roots r
1/2

given by (51) are strictly positive, and the Hessian matrix is computed with respect to

the basis given by the principal directions at ⇣+

II

. By virtue of (29), (31) and (38), the contributions of the
stationary point ⇣+

II

to J
1

and J
2

can be computed as

J II

+

1

= � i

8k

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)

⇣
1 +

i

kr+

II

⌘�
1 � 2(d·n)2

�
eikxo·d+2ik(d·n)

2r+

II ,

J II

+

2

=
1

8k

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)
eikxo·d+2ik(d·n)

2r+

II ,

where n = n(⇣+

II

) and r+

II

is the distance between xo and ⇣+

II

. On substitution into (23), one finds

TII

+

= � 3(1��)

4(2+�)

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)

�
1�2(d·n)2

�
Im

⇢⇣
k +

i

r+

II

⌘
e2ik(d·n)

2r+

II

�

� 1���2

4

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)
k Im

⇢
e2ik(d·n)

2r+

II

�
, xo2 II+, r+

II

= |xo� ⇣+

II

|
(39) sptwo2

as the contribution of the stationary point ⇣+

II

to the topological sensitivity at sampling point xo.

5.1.5. Contribution of the stationary point of type II�.

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r�r
1

)(r�r
2

), sgn(Hij) =

8
<

:

�2, 0 < r < r
1

0, r
1

< r < r
2

2, r > r
2

, ⇣ = ⇣�
II

, xo2 II�, (40) sptwo3

TII

�
=

3(1��)

4(2+�)

p
⇢
1

⇢
2p

|(r�
II

� r
1

)(r�
II

� r
2

)|
�
1�2(d·n)2

�
Im

⇢⇣
k � i

r�
II

⌘
e�2ik(d·n)

2r�
II

+i(sgnH�2)⇡/4

�

+
1���2

4

p
⇢
1

⇢
2p

|(r�
II

� r
1

)(r�
II

� r
2

)|
k Im

⇢
e�2ik(d·n)

2r�
II

+i(sgnHij�2)⇡/4

�
, xo2 II�, r�

II

= |xo� ⇣�
II

|.

(41) sptwo3

5.1.6. High-frequency formula for topological sensitivity. With reference to Fig. 3, one consequently finds
that

T(xo, �, �) =

(
TI

+

, xo2 B
1

\C +

TI

�
, xo2 B

1

\C �

)
+

�
TII

+

, xo2 B
1

\(C̄ +[ N✏)
 

+
X

m

TII

�
m , (42) sptwo4

where TI

±
, TII

+

and TII

�
are given respectively by (37), (39) and (41); the projections i.e. stationary points

⇣+

I

, ⇣�
I

and ⇣+

II

are unique (when they exist), and the summation in the last term is taken over the stationary
points ⇣�

II

, since the projection of the latter type is in general not unique.
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For a given sampling point xo /2 N✏, the stationary point of type I exists only if

xo2 C + [ C �, C ± := {x /2 N✏ : x = ⇣ ± � d, ⇣ 2 Sf, 0 < � < 1}, (34) critc

and is uniquely determined by the the projection of xo along d on Sf. In light of the implicit specification
of ⇣±

II

, on the other hand, integrals J
1

and J
2

may have multiple stationary points of type II. To provide
further insight into (33), it is noted that

I± := {xo : xo = ⇣±
I

± rd, r > 0},
II± := {xo : xo = ⇣±

II

± r
⇥
d + 2|d·n|n(⇣±

II

)
⇤
, r > 0},

(35) crit3

denote the loci of the sampling points for which given boundary point ⇣ 2 Sf is the stationary point of (29).
This is illustrated in Fig. 2 which shows that the I� and II+ loci emanate from Sf toward the exterior of
D, while their I+ and II� counterparts extend (initially) from Sf toward the interior of D. One also may
note that at the “apex” of Sf, where n = �d, locus I� (resp. I+) coincides with locus II+ (resp. II�).
This coalescence, however, does not pose special problems in terms of the simplicity (i.e. the order) of the
stationary point when xo belongs to such loci, since each of the component integrals in (29) will have a
stationary point of either type I or type II that coincides with the apex of Sf.

Incident field

Boundary
point

d

I

�, II+

I

�

II

+

I

+

II

�

I

+, II�

xo

⇣�
I

⇣+
II

S f

cos

�1 |d·n|

cos

�1 |d·n|

Sb

⇣

Figure 2. Loci of the sampling points, xo, for which given boundary point ⇣ 2 S

f is the stationary point

of type I (solid lines) and type II (thick dashed lines). The normal on S

f is indicated by a thin dashed line.
On the right side of the diagram, also depicted is the unique critical point of type I and the nearest critical
point of type II for a sampling point x

o2 R3\D̄ that is close to S

f.criticalpt

In what follows, it is implicitly assumed that the sampling point is located at a su�cient distance away
from Sf in the sense that xo2 B

1

\N✏, where N✏ is the “thin shell” region given by (22).

5.1.3. Contribution of the stationary point of type I. As examined earlier, the asymptotic behaviors of J
1

and J
2

entail the contribution of no stationary points of type I when xo 2 B
1

\(C +[ C �), and that of a
unique stationary point, ⇣±

I

, when xo2 C ±. As shown in Section 6.1, one finds

det(Hij) =
(d·n)2

r2

> 0, sgn(H) = ±2, ⇣ = ⇣±
I

, xo2 I±, (36) spone1

when the curvilinear coordinates ⌘p (p=1, 2) in (30) are chosen so that their tangents at ⇣±
I

coincide with
the principal directions of Sf (in which case det gpq = 1). On the basis of (29), (31) and (36), one accordingly
finds the respective contributions of the stationary point ⇣±

I

to J
1

and J
2

to read

J I

±

1

= � i

4k

⇣
1 ± i

kr±
I

⌘
eikxo·d, J I

±

2

=
±1

4k
eikxo·d,

“outside”

“inside”



h.o.t.

Topological Sensitivity
Non-degenerate stationary pt
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where r±
I

is the distance between xo and ⇣±
I

. By virtue of (26), the a�liated components of the topological
sensitivity are

TI

±
= ⌥ 3(1��)

2(2+�)

1

r±
I

, xo2 I±, r±
I

= |xo� ⇣±
I

|. (37) spone2

Note that r±
I

in (37) is strictly positive due to the fact that C ± exclude the immediate neigborhood, (22),
of Sf.

5.1.4. Contribution of the stationary point of type II+. The results from Sections 6.1 and 6.4 demonstrate
that J

1

and J
2

feature no stationary points of type II+ when xo 2 C +, and a unique stationary point ⇣+

II

when xo2 B
1

\(C̄ + [ N✏). In this case, one finds from (54) that

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r + r
1

)(r + r
2

) > 0, sgn(Hij) = 2, ⇣ = ⇣+

II

, xo2 II+, (38) sptwo1

where the roots r
1/2

given by (51) are strictly positive, and the Hessian matrix is computed with respect to

the basis given by the principal directions at ⇣+

II

. By virtue of (29), (31) and (38), the contributions of the
stationary point ⇣+

II

to J
1

and J
2

can be computed as

J II

+

1

= � i

8k

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)

⇣
1 +

i

kr+

II

⌘�
1 � 2(d·n)2

�
eikxo·d+2ik(d·n)

2r+

II ,

J II

+

2

=
1

8k

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)
eikxo·d+2ik(d·n)

2r+

II ,

where n = n(⇣+

II

) and r+

II

is the distance between xo and ⇣+

II

. On substitution into (23), one finds

TII

+

= � 3(1��)

4(2+�)

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)

�
1�2(d·n)2

�
Im

⇢⇣
k +

i

r+

II

⌘
e2ik(d·n)

2r+

II

�

� 1���2

4

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)
k Im

⇢
e2ik(d·n)

2r+

II

�
, xo2 II+, r+

II

= |xo� ⇣+

II

|
(39) sptwo2

as the contribution of the stationary point ⇣+

II

to the topological sensitivity at sampling point xo.

5.1.5. Contribution of the stationary point of type II�.

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r�r
1

)(r�r
2

), sgn(Hij) =

8
<

:

�2, 0 < r < r
1

0, r
1

< r < r
2

2, r > r
2

, ⇣ = ⇣�
II

, xo2 II�, (40) sptwo3

TII

�
=

3(1��)

4(2+�)

p
⇢
1

⇢
2p

|(r�
II

� r
1

)(r�
II

� r
2

)|
�
1�2(d·n)2

�
Im

⇢⇣
k � i

r�
II

⌘
e�2ik(d·n)

2r�
II

+i(sgnHij�2)⇡/4

�

+
1���2

4

p
⇢
1

⇢
2p

|(r�
II

� r
1

)(r�
II

� r
2

)|
k Im

⇢
e�2ik(d·n)

2r�
II

+i(sgnHij�2)⇡/4

�
, xo2 II�, r�

II

= |xo� ⇣�
II

|.

(41) sptwo3

5.1.6. High-frequency formula for topological sensitivity. With reference to Fig. 3, one consequently finds
that

T(xo, �, �) =

(
TI

+

, xo2 B
1

\C +

TI

�
, xo2 B

1

\C �

)
+

�
TII

+

, xo2 B
1

\(C̄ +[ N✏)
 

+
X

m

TII

�
m , (42) sptwo4

where TI

±
, TII

+

and TII

�
are given respectively by (37), (39) and (41); the projections i.e. stationary points

⇣+

I

, ⇣�
I

and ⇣+

II

are unique (when they exist), and the summation in the last term is taken over the stationary
points ⇣�

II

, since the projection of the latter type is in general not unique.
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where r±
I

is the distance between xo and ⇣±
I

. By virtue of (26), the a�liated components of the topological
sensitivity are

TI

±
= ⌥ 3(1��)

2(2+�)

1

r±
I

, xo2 I±, r±
I

= |xo� ⇣±
I

|. (37) spone2

Note that r±
I

in (37) is strictly positive due to the fact that C ± exclude the immediate neigborhood, (22),
of Sf.

5.1.4. Contribution of the stationary point of type II+. The results from Sections 6.1 and 6.4 demonstrate
that J

1

and J
2

feature no stationary points of type II+ when xo 2 C +, and a unique stationary point ⇣+

II

when xo2 B
1

\(C̄ + [ N✏). In this case, one finds from (54) that

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r + r
1

)(r + r
2

) > 0, sgn(Hij) = 2, ⇣ = ⇣+

II

, xo2 II+, (38) sptwo1

where the roots r
1/2

given by (51) are strictly positive, and the Hessian matrix is computed with respect to

the basis given by the principal directions at ⇣+

II

. By virtue of (29), (31) and (38), the contributions of the
stationary point ⇣+

II

to J
1

and J
2

can be computed as

J II

+

1

= � i

8k

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)

⇣
1 +

i

kr+

II

⌘�
1 � 2(d·n)2

�
eikxo·d+2ik(d·n)

2r+

II ,

J II

+

2

=
1

8k

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)
eikxo·d+2ik(d·n)

2r+

II ,

where n = n(⇣+

II

) and r+

II

is the distance between xo and ⇣+

II

. On substitution into (23), one finds

TII

+

= � 3(1��)

4(2+�)

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)

�
1�2(d·n)2

�
Im

⇢⇣
k +

i

r+

II

⌘
e2ik(d·n)

2r+

II

�

� 1���2

4

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)
k Im

⇢
e2ik(d·n)

2r+

II

�
, xo2 II+, r+

II

= |xo� ⇣+

II

|
(39) sptwo2

as the contribution of the stationary point ⇣+

II

to the topological sensitivity at sampling point xo.

5.1.5. Contribution of the stationary point of type II�.

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r�r
1

)(r�r
2

), sgn(Hij) =

8
<

:

�2, 0 < r < r
1

0, r
1

< r < r
2

2, r > r
2

, ⇣ = ⇣�
II

, xo2 II�, (40) sptwo3

TII

�
=

3(1��)

4(2+�)

p
⇢
1

⇢
2p

|(r�
II

� r
1

)(r�
II

� r
2

)|
�
1�2(d·n)2

�
Im

⇢⇣
k � i

r�
II

⌘
e�2ik(d·n)

2r�
II

+i(sgnHij�2)⇡/4

�

+
1���2

4

p
⇢
1

⇢
2p

|(r�
II

� r
1

)(r�
II

� r
2

)|
k Im

⇢
e�2ik(d·n)

2r�
II

+i(sgnHij�2)⇡/4

�
, xo2 II�, r�

II

= |xo� ⇣�
II

|.

(41) sptwo3

5.1.6. High-frequency formula for topological sensitivity. With reference to Fig. 3, one consequently finds
that

T(xo, �, �) =

(
TI

+

, xo2 B
1

\C +

TI

�
, xo2 B

1

\C �

)
+

�
TII

+

, xo2 B
1

\(C̄ +[ N✏)
 

+
X

m

TII

�
m , (42) sptwo4

where TI

±
, TII

+

and TII

�
are given respectively by (37), (39) and (41); the projections i.e. stationary points

⇣+

I

, ⇣�
I

and ⇣+

II

are unique (when they exist), and the summation in the last term is taken over the stationary
points ⇣�

II

, since the projection of the latter type is in general not unique.
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where r±
I

is the distance between xo and ⇣±
I

. By virtue of (26), the a�liated components of the topological
sensitivity are

TI

±
= ⌥ 3(1��)

2(2+�)

1

r±
I

, xo2 I±, r±
I

= |xo� ⇣±
I

|. (37) spone2

Note that r±
I

in (37) is strictly positive due to the fact that C ± exclude the immediate neigborhood, (22),
of Sf.

5.1.4. Contribution of the stationary point of type II+. The results from Sections 6.1 and 6.4 demonstrate
that J

1

and J
2

feature no stationary points of type II+ when xo 2 C +, and a unique stationary point ⇣+

II

when xo2 B
1

\(C̄ + [ N✏). In this case, one finds from (54) that

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r + r
1

)(r + r
2

) > 0, sgn(Hij) = 2, ⇣ = ⇣+

II

, xo2 II+, (38) sptwo1

where the roots r
1/2

given by (51) are strictly positive, and the Hessian matrix is computed with respect to

the basis given by the principal directions at ⇣+

II

. By virtue of (29), (31) and (38), the contributions of the
stationary point ⇣+

II

to J
1

and J
2

can be computed as

J II

+

1

= � i
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⇢
2p
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⇣
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2
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1
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⇢
1

⇢
2p
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+ r
1

)(r+
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+ r
2

)
eikxo·d+2ik(d·n)

2r+

II ,

where n = n(⇣+

II

) and r+

II

is the distance between xo and ⇣+

II

. On substitution into (23), one finds
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⇢
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|
(39) sptwo2

as the contribution of the stationary point ⇣+

II

to the topological sensitivity at sampling point xo.

5.1.5. Contribution of the stationary point of type II�.
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⇢
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), sgn(Hij) =
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, xo2 II�, (40) sptwo3
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5.1.6. High-frequency formula for topological sensitivity. With reference to Fig. 3, one consequently finds
that

T(xo, �, �) =

(
TI

+

, xo2 B
1

\C +

TI

�
, xo2 B

1

\C �

)
+

�
TII

+

, xo2 B
1

\(C̄ +[ N✏)
 

+
X

m

TII

�
m , (42) sptwo4

where TI

±
, TII

+

and TII

�
are given respectively by (37), (39) and (41); the projections i.e. stationary points

⇣+

I

, ⇣�
I

and ⇣+

II

are unique (when they exist), and the summation in the last term is taken over the stationary
points ⇣�

II

, since the projection of the latter type is in general not unique.
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For a given sampling point xo /2 N✏, the stationary point of type I exists only if

xo2 C + [ C �, C ± := {x /2 N✏ : x = ⇣ ± � d, ⇣ 2 Sf, 0 < � < 1}, (34) critc

and is uniquely determined by the the projection of xo along d on Sf. In light of the implicit specification
of ⇣±

II

, on the other hand, integrals J
1

and J
2

may have multiple stationary points of type II. To provide
further insight into (33), it is noted that

I± := {xo : xo = ⇣±
I

± rd, r > 0},
II± := {xo : xo = ⇣±

II

± r
⇥
d + 2|d·n|n(⇣±

II

)
⇤
, r > 0},

(35) crit3

denote the loci of the sampling points for which given boundary point ⇣ 2 Sf is the stationary point of (29).
This is illustrated in Fig. 2 which shows that the I� and II+ loci emanate from Sf toward the exterior of
D, while their I+ and II� counterparts extend (initially) from Sf toward the interior of D. One also may
note that at the “apex” of Sf, where n = �d, locus I� (resp. I+) coincides with locus II+ (resp. II�).
This coalescence, however, does not pose special problems in terms of the simplicity (i.e. the order) of the
stationary point when xo belongs to such loci, since each of the component integrals in (29) will have a
stationary point of either type I or type II that coincides with the apex of Sf.

Incident field

Boundary
point

d

I

�, II+

I

�

II

+

I

+

II

�

I

+, II�

xo

⇣�
I

⇣+
II

S f

cos

�1 |d·n|

cos

�1 |d·n|

Sb

⇣

Figure 2. Loci of the sampling points, xo, for which given boundary point ⇣ 2 S

f is the stationary point

of type I (solid lines) and type II (thick dashed lines). The normal on S

f is indicated by a thin dashed line.
On the right side of the diagram, also depicted is the unique critical point of type I and the nearest critical
point of type II for a sampling point x

o2 R3\D̄ that is close to S

f.criticalpt

In what follows, it is implicitly assumed that the sampling point is located at a su�cient distance away
from Sf in the sense that xo2 B

1

\N✏, where N✏ is the “thin shell” region given by (22).

5.1.3. Contribution of the stationary point of type I. As examined earlier, the asymptotic behaviors of J
1

and J
2

entail the contribution of no stationary points of type I when xo 2 B
1

\(C +[ C �), and that of a
unique stationary point, ⇣±

I

, when xo2 C ±. As shown in Section 6.1, one finds

det(Hij) =
(d·n)2

r2

> 0, sgn(H) = ±2, ⇣ = ⇣±
I

, xo2 I±, (36) spone1

when the curvilinear coordinates ⌘p (p=1, 2) in (30) are chosen so that their tangents at ⇣±
I

coincide with
the principal directions of Sf (in which case det gpq = 1). On the basis of (29), (31) and (36), one accordingly
finds the respective contributions of the stationary point ⇣±

I

to J
1

and J
2

to read

J I

±

1

= � i

4k

⇣
1 ± i

kr±
I

⌘
eikxo·d, J I

±

2

=
±1

4k
eikxo·d,

“outside”

“inside”



h.o.t.
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where r±
I

is the distance between xo and ⇣±
I

. By virtue of (26), the a�liated components of the topological
sensitivity are

TI

±
= ⌥ 3(1��)

2(2+�)

1

r±
I

, xo2 I±, r±
I

= |xo� ⇣±
I

|. (37) spone2

Note that r±
I

in (37) is strictly positive due to the fact that C ± exclude the immediate neigborhood, (22),
of Sf.

5.1.4. Contribution of the stationary point of type II+. The results from Sections 6.1 and 6.4 demonstrate
that J

1

and J
2

feature no stationary points of type II+ when xo 2 C +, and a unique stationary point ⇣+

II

when xo2 B
1

\(C̄ + [ N✏). In this case, one finds from (54) that

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r + r
1

)(r + r
2

) > 0, sgn(Hij) = 2, ⇣ = ⇣+

II

, xo2 II+, (38) sptwo1

where the roots r
1/2

given by (51) are strictly positive, and the Hessian matrix is computed with respect to

the basis given by the principal directions at ⇣+

II

. By virtue of (29), (31) and (38), the contributions of the
stationary point ⇣+

II

to J
1

and J
2

can be computed as

J II

+

1

= � i

8k

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)

⇣
1 +

i

kr+

II

⌘�
1 � 2(d·n)2

�
eikxo·d+2ik(d·n)

2r+

II ,

J II

+

2

=
1

8k

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)
eikxo·d+2ik(d·n)

2r+

II ,

where n = n(⇣+

II

) and r+

II

is the distance between xo and ⇣+

II

. On substitution into (23), one finds

TII

+

= � 3(1��)

4(2+�)

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)

�
1�2(d·n)2

�
Im

⇢⇣
k +

i

r+

II

⌘
e2ik(d·n)

2r+

II

�

� 1���2

4

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)
k Im

⇢
e2ik(d·n)

2r+

II

�
, xo2 II+, r+

II

= |xo� ⇣+

II

|
(39) sptwo2

as the contribution of the stationary point ⇣+

II

to the topological sensitivity at sampling point xo.

5.1.5. Contribution of the stationary point of type II�.

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r�r
1

)(r�r
2

), sgn(Hij) =

8
<

:

�2, 0 < r < r
1

0, r
1

< r < r
2

2, r > r
2

, ⇣ = ⇣�
II

, xo2 II�, (40) sptwo3

TII

�
=

3(1��)

4(2+�)

p
⇢
1

⇢
2p

|(r�
II

� r
1

)(r�
II

� r
2

)|
�
1�2(d·n)2

�
Im

⇢⇣
k � i

r�
II

⌘
e�2ik(d·n)

2r�
II

+i(sgnHij�2)⇡/4

�

+
1���2

4

p
⇢
1

⇢
2p

|(r�
II

� r
1

)(r�
II

� r
2

)|
k Im

⇢
e�2ik(d·n)

2r�
II

+i(sgnHij�2)⇡/4

�
, xo2 II�, r�

II

= |xo� ⇣�
II

|.

(41) sptwo3

5.1.6. High-frequency formula for topological sensitivity. With reference to Fig. 3, one consequently finds
that

T(xo, �, �) =

(
TI

+

, xo2 B
1

\C +

TI

�
, xo2 B

1

\C �

)
+

�
TII

+

, xo2 B
1

\(C̄ +[ N✏)
 

+
X

m

TII

�
m , (42) sptwo4

where TI

±
, TII

+

and TII

�
are given respectively by (37), (39) and (41); the projections i.e. stationary points

⇣+

I

, ⇣�
I

and ⇣+

II

are unique (when they exist), and the summation in the last term is taken over the stationary
points ⇣�

II

, since the projection of the latter type is in general not unique.
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where r±
I

is the distance between xo and ⇣±
I

. By virtue of (26), the a�liated components of the topological
sensitivity are

TI

±
= ⌥ 3(1��)

2(2+�)

1

r±
I

, xo2 I±, r±
I

= |xo� ⇣±
I

|. (37) spone2

Note that r±
I

in (37) is strictly positive due to the fact that C ± exclude the immediate neigborhood, (22),
of Sf.

5.1.4. Contribution of the stationary point of type II+. The results from Sections 6.1 and 6.4 demonstrate
that J

1

and J
2

feature no stationary points of type II+ when xo 2 C +, and a unique stationary point ⇣+

II

when xo2 B
1

\(C̄ + [ N✏). In this case, one finds from (54) that

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r + r
1

)(r + r
2

) > 0, sgn(Hij) = 2, ⇣ = ⇣+

II

, xo2 II+, (38) sptwo1

where the roots r
1/2

given by (51) are strictly positive, and the Hessian matrix is computed with respect to

the basis given by the principal directions at ⇣+

II

. By virtue of (29), (31) and (38), the contributions of the
stationary point ⇣+

II

to J
1

and J
2

can be computed as

J II

+

1

= � i

8k

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)

⇣
1 +

i

kr+

II

⌘�
1 � 2(d·n)2

�
eikxo·d+2ik(d·n)

2r+

II ,

J II

+

2

=
1

8k

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)
eikxo·d+2ik(d·n)

2r+

II ,

where n = n(⇣+

II

) and r+

II

is the distance between xo and ⇣+

II

. On substitution into (23), one finds

TII

+

= � 3(1��)

4(2+�)

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)

�
1�2(d·n)2

�
Im

⇢⇣
k +

i

r+

II

⌘
e2ik(d·n)

2r+

II

�

� 1���2

4

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)
k Im

⇢
e2ik(d·n)

2r+

II

�
, xo2 II+, r+

II

= |xo� ⇣+

II

|
(39) sptwo2

as the contribution of the stationary point ⇣+

II

to the topological sensitivity at sampling point xo.

5.1.5. Contribution of the stationary point of type II�.

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r�r
1

)(r�r
2

), sgn(Hij) =

8
<

:

�2, 0 < r < r
1

0, r
1

< r < r
2

2, r > r
2

, ⇣ = ⇣�
II

, xo2 II�, (40) sptwo3

TII

�
=

3(1��)

4(2+�)

p
⇢
1

⇢
2p

|(r�
II

� r
1

)(r�
II

� r
2

)|
�
1�2(d·n)2

�
Im

⇢⇣
k � i

r�
II

⌘
e�2ik(d·n)

2r�
II

+i(sgnHij�2)⇡/4

�

+
1���2

4

p
⇢
1

⇢
2p

|(r�
II

� r
1

)(r�
II

� r
2

)|
k Im

⇢
e�2ik(d·n)

2r�
II

+i(sgnHij�2)⇡/4

�
, xo2 II�, r�

II

= |xo� ⇣�
II

|.

(41) sptwo3

5.1.6. High-frequency formula for topological sensitivity. With reference to Fig. 3, one consequently finds
that

T(xo, �, �) =

(
TI

+

, xo2 B
1

\C +

TI

�
, xo2 B

1

\C �

)
+

�
TII

+

, xo2 B
1

\(C̄ +[ N✏)
 

+
X

m

TII

�
m , (42) sptwo4

where TI

±
, TII

+

and TII

�
are given respectively by (37), (39) and (41); the projections i.e. stationary points

⇣+

I

, ⇣�
I

and ⇣+

II

are unique (when they exist), and the summation in the last term is taken over the stationary
points ⇣�

II

, since the projection of the latter type is in general not unique.
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where r±
I

is the distance between xo and ⇣±
I

. By virtue of (26), the a�liated components of the topological
sensitivity are

TI

±
= ⌥ 3(1��)

2(2+�)

1

r±
I

, xo2 I±, r±
I

= |xo� ⇣±
I

|. (37) spone2

Note that r±
I

in (37) is strictly positive due to the fact that C ± exclude the immediate neigborhood, (22),
of Sf.

5.1.4. Contribution of the stationary point of type II+. The results from Sections 6.1 and 6.4 demonstrate
that J

1

and J
2

feature no stationary points of type II+ when xo 2 C +, and a unique stationary point ⇣+

II

when xo2 B
1

\(C̄ + [ N✏). In this case, one finds from (54) that

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r + r
1

)(r + r
2

) > 0, sgn(Hij) = 2, ⇣ = ⇣+

II

, xo2 II+, (38) sptwo1

where the roots r
1/2

given by (51) are strictly positive, and the Hessian matrix is computed with respect to

the basis given by the principal directions at ⇣+

II

. By virtue of (29), (31) and (38), the contributions of the
stationary point ⇣+

II

to J
1

and J
2

can be computed as

J II

+

1

= � i

8k

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)

⇣
1 +

i

kr+

II

⌘�
1 � 2(d·n)2

�
eikxo·d+2ik(d·n)

2r+

II ,

J II

+

2

=
1

8k

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)
eikxo·d+2ik(d·n)

2r+

II ,

where n = n(⇣+

II

) and r+

II

is the distance between xo and ⇣+

II

. On substitution into (23), one finds

TII

+

= � 3(1��)

4(2+�)

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)

�
1�2(d·n)2

�
Im

⇢⇣
k +

i

r+

II

⌘
e2ik(d·n)

2r+

II

�

� 1���2

4

p
⇢
1

⇢
2p

(r+

II

+ r
1

)(r+

II

+ r
2

)
k Im

⇢
e2ik(d·n)

2r+

II

�
, xo2 II+, r+

II

= |xo� ⇣+

II

|
(39) sptwo2

as the contribution of the stationary point ⇣+

II

to the topological sensitivity at sampling point xo.

5.1.5. Contribution of the stationary point of type II�.

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2

(r�r
1

)(r�r
2

), sgn(Hij) =

8
<

:

�2, 0 < r < r
1

0, r
1

< r < r
2

2, r > r
2

, ⇣ = ⇣�
II

, xo2 II�, (40) sptwo3

TII

�
=

3(1��)

4(2+�)

p
⇢
1

⇢
2p

|(r�
II

� r
1

)(r�
II

� r
2

)|
�
1�2(d·n)2

�
Im

⇢⇣
k � i

r�
II

⌘
e�2ik(d·n)

2r�
II

+i(sgnH�2)⇡/4

�

+
1���2

4

p
⇢
1

⇢
2p

|(r�
II

� r
1

)(r�
II

� r
2

)|
k Im

⇢
e�2ik(d·n)

2r�
II

+i(sgnHij�2)⇡/4

�
, xo2 II�, r�

II

= |xo� ⇣�
II

|.

(41) sptwo3

5.1.6. High-frequency formula for topological sensitivity. With reference to Fig. 3, one consequently finds
that

T(xo, �, �) =

(
TI

+

, xo2 B
1

\C +

TI

�
, xo2 B

1

\C �

)
+

�
TII

+

, xo2 B
1

\(C̄ +[ N✏)
 

+
X

m

TII

�
m , (42) sptwo4

where TI

±
, TII

+

and TII

�
are given respectively by (37), (39) and (41); the projections i.e. stationary points

⇣+

I

, ⇣�
I

and ⇣+

II

are unique (when they exist), and the summation in the last term is taken over the stationary
points ⇣�

II

, since the projection of the latter type is in general not unique.
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For a given sampling point xo /2 N✏, the stationary point of type I exists only if

xo2 C + [ C �, C ± := {x /2 N✏ : x = ⇣ ± � d, ⇣ 2 Sf, 0 < � < 1}, (34) critc

and is uniquely determined by the the projection of xo along d on Sf. In light of the implicit specification
of ⇣±

II

, on the other hand, integrals J
1

and J
2

may have multiple stationary points of type II. To provide
further insight into (33), it is noted that

I± := {xo : xo = ⇣±
I

± rd, r > 0},
II± := {xo : xo = ⇣±

II

± r
⇥
d + 2|d·n|n(⇣±

II

)
⇤
, r > 0},

(35) crit3

denote the loci of the sampling points for which given boundary point ⇣ 2 Sf is the stationary point of (29).
This is illustrated in Fig. 2 which shows that the I� and II+ loci emanate from Sf toward the exterior of
D, while their I+ and II� counterparts extend (initially) from Sf toward the interior of D. One also may
note that at the “apex” of Sf, where n = �d, locus I� (resp. I+) coincides with locus II+ (resp. II�).
This coalescence, however, does not pose special problems in terms of the simplicity (i.e. the order) of the
stationary point when xo belongs to such loci, since each of the component integrals in (29) will have a
stationary point of either type I or type II that coincides with the apex of Sf.

Incident field

Boundary
point

d

I

�, II+

I

�

II

+

I

+

II

�

I

+, II�

xo

⇣�
I

⇣+
II

S f

cos

�1 |d·n|

cos

�1 |d·n|

Sb

⇣

Figure 2. Loci of the sampling points, xo, for which given boundary point ⇣ 2 S

f is the stationary point

of type I (solid lines) and type II (thick dashed lines). The normal on S

f is indicated by a thin dashed line.
On the right side of the diagram, also depicted is the unique critical point of type I and the nearest critical
point of type II for a sampling point x

o2 R3\D̄ that is close to S

f.criticalpt

In what follows, it is implicitly assumed that the sampling point is located at a su�cient distance away
from Sf in the sense that xo2 B

1

\N✏, where N✏ is the “thin shell” region given by (22).

5.1.3. Contribution of the stationary point of type I. As examined earlier, the asymptotic behaviors of J
1

and J
2

entail the contribution of no stationary points of type I when xo 2 B
1

\(C +[ C �), and that of a
unique stationary point, ⇣±

I

, when xo2 C ±. As shown in Section 6.1, one finds

det(Hij) =
(d·n)2

r2

> 0, sgn(H) = ±2, ⇣ = ⇣±
I

, xo2 I±, (36) spone1

when the curvilinear coordinates ⌘p (p=1, 2) in (30) are chosen so that their tangents at ⇣±
I

coincide with
the principal directions of Sf (in which case det gpq = 1). On the basis of (29), (31) and (36), one accordingly
finds the respective contributions of the stationary point ⇣±

I

to J
1

and J
2

to read

J I

±

1

= � i

4k

⇣
1 ± i

kr±
I

⌘
eikxo·d, J I

±

2

=
±1

4k
eikxo·d,

“outside”

“inside”



h.o.t.

TI±(xo) = O(1), TII±(xo) = O(k), k ` � 1

TI± ,TII± = O(1/r) as r ! 1
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where r±
I

is the distance between xo and ⇣±
I

. By virtue of (26), the a�liated components of the topological
sensitivity are

TI

±
= ⌥ 3(1��)

2(2+�)

1

r±
I

, xo2 I±, r±
I

= |xo� ⇣±
I

|. (37) spone2

Note that r±
I

in (37) is strictly positive due to the fact that C ± exclude the immediate neigborhood, (22),
of Sf.

5.1.4. Contribution of the stationary point of type II+. The results from Sections 6.1 and 6.4 demonstrate
that J

1

and J
2

feature no stationary points of type II+ when xo 2 C +, and a unique stationary point ⇣+

II

when xo2 B
1

\(C̄ + [ N✏). In this case, one finds from (54) that

det(Hij) =
4(d·n)2

⇢
1

⇢
2

r2
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5.1.6. High-frequency formula for topological sensitivity. With reference to Fig. 3, one consequently finds
that
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For a given sampling point xo /2 N✏, the stationary point of type I exists only if

xo2 C + [ C �, C ± := {x /2 N✏ : x = ⇣ ± � d, ⇣ 2 Sf, 0 < � < 1}, (34) critc

and is uniquely determined by the the projection of xo along d on Sf. In light of the implicit specification
of ⇣±

II

, on the other hand, integrals J
1

and J
2

may have multiple stationary points of type II. To provide
further insight into (33), it is noted that

I± := {xo : xo = ⇣±
I

± rd, r > 0},
II± := {xo : xo = ⇣±

II

± r
⇥
d + 2|d·n|n(⇣±

II

)
⇤
, r > 0},

(35) crit3

denote the loci of the sampling points for which given boundary point ⇣ 2 Sf is the stationary point of (29).
This is illustrated in Fig. 2 which shows that the I� and II+ loci emanate from Sf toward the exterior of
D, while their I+ and II� counterparts extend (initially) from Sf toward the interior of D. One also may
note that at the “apex” of Sf, where n = �d, locus I� (resp. I+) coincides with locus II+ (resp. II�).
This coalescence, however, does not pose special problems in terms of the simplicity (i.e. the order) of the
stationary point when xo belongs to such loci, since each of the component integrals in (29) will have a
stationary point of either type I or type II that coincides with the apex of Sf.

Incident field

Boundary
point

d

I

�, II+

I

�

II

+

I

+

II

�

I

+, II�

xo

⇣�
I

⇣+
II

S f

cos

�1 |d·n|

cos

�1 |d·n|

Sb

⇣

Figure 2. Loci of the sampling points, xo, for which given boundary point ⇣ 2 S

f is the stationary point

of type I (solid lines) and type II (thick dashed lines). The normal on S

f is indicated by a thin dashed line.
On the right side of the diagram, also depicted is the unique critical point of type I and the nearest critical
point of type II for a sampling point x

o2 R3\D̄ that is close to S

f.criticalpt

In what follows, it is implicitly assumed that the sampling point is located at a su�cient distance away
from Sf in the sense that xo2 B

1

\N✏, where N✏ is the “thin shell” region given by (22).

5.1.3. Contribution of the stationary point of type I. As examined earlier, the asymptotic behaviors of J
1

and J
2

entail the contribution of no stationary points of type I when xo 2 B
1

\(C +[ C �), and that of a
unique stationary point, ⇣±

I

, when xo2 C ±. As shown in Section 6.1, one finds

det(Hij) =
(d·n)2

r2

> 0, sgn(H) = ±2, ⇣ = ⇣±
I

, xo2 I±, (36) spone1

when the curvilinear coordinates ⌘p (p=1, 2) in (30) are chosen so that their tangents at ⇣±
I

coincide with
the principal directions of Sf (in which case det gpq = 1). On the basis of (29), (31) and (36), one accordingly
finds the respective contributions of the stationary point ⇣±

I

to J
1

and J
2

to read
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to be di⇥erentiable with respect to the real and imaginary parts of its first argument. In many applicatioons,
⇧ commonly takes the weighted least-squares format

⇧(v(�), u(�), �) = 1
2

�
v(�)�u(�)

⇥ �
v(�)�u(�)

⇥
, (3) phi:def

that will be assumed hereon.

2.3. Green’s function

For further reference, let

G(�,x; k) =
e�ikr

4⌅r
, G,n(�,x, k) := n·⇧G(�,x, k) = � e�ikr

4⌅r2
(1+ikr) r,n, (4) gdef

where r = |� � x| and ⇧G signifies the gradient of G with respect to the first argument, denote the
fundamental solution for the free space with wavenumber k, so that

⇧2G(�,x, k) + k2 G(�,x, k) + ⇤(� � x) = 0, � ⇤ R3. (5) green

3. Generalized Topological Sensitivity
sec3

As shown in [], the formula for topological sensitivity can be written as

T(xo,�, ⇥) =
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 v

�
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⌥⌅

d��, xo ⇤ B1, (6) td22

where  ⇧/ v denotes the partial derivative of ⇧ with respect to its first argument, and B1 contains the
region that is sampled for obstacles. To expose the nature of (6), one may conveniently assume the least-
squares-type cost functional (3) for which

 ⇧
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Near-caustic behavior
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Near-boundary behavior
Dirichlet
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To simplify (27), it is useful to recall that
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d·n(⇣)
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eik(⇣·d�r) dS

⇣

, r = |xo�⇣|, xo /2 Sf.

(29) shint1

To evaluate (29), it is useful to consider the parametrization of Sf in terms of curvilinear surface
coordinates (⌘1, ⌘2) as

⇣ = ⇣(⌘1, ⌘2) 2 Sf, dS
⇣

=
p

detg
pq

dS
⌘

, dS
⌘

= d⌘1d⌘2, g
pq

=
@⇣

@⌘p

· @⇣

@⌘q

, p, q = 1, 2

where g
pq

are the covariant components of the metric tensor, and @⇣/@⌘p is the unit tangent vector on Sf

in the direction of ⌘p.

5.1.1. High frequency approximation. As examined in [? ], the leading-order asymptotic behavior of (29)
for large values of k is governed by the nature of the integrand in the neighborhood of three types of critical
points, namely: i) the stationary points on Sf where r

⌘

(⇣ ·d ± r) vanishes, ii) the points on Sf where the
integrand fails to be di↵erentiable, and iii) all points on the closed curve @Sf, the boundary of Sf. By the
premise made earlier, r > ✏>0, see (22), whereby the integrands in (29) are di↵erentiable everywhere. One
may also note that the latter vanish on @Sf due to the presence of the term d·n. Following the analysis in [?
], the leading contribution of such boundary points can be shown (via repeated integration by parts) to be
of order k�2 when k is large. On the other hand, contribution of a non-degenerate stationary point ⇣⇤ 2 Sf

to a two-dimensional Fourier integral
Z

S

f

f(⇣)eik(⇣·d± r) dS
⌘

, ⇣ = ⇣(⌘1, ⌘2), r = |⇣�xo| (30) sp1

can be computed to be O
�
k�1 f(⇣⇤)

�
as

2⇡

k

f(⇣⇤)p
| det A

pq

|
eik(⇣

⇤·d± r

⇤
)+ i(sgnApq)⇡/4 , r⇤ = |⇣⇤�xo|, (31) sp2

where

A
pq

=
@2(⇣ ·d ± r)

@⌘p@⌘q

����
⇣=⇣

⇤
, p, q = 1, 2

are the components of the Hessian matrix for ⇣ ·d ± r such that det A
pq

6= 0 (when the stationary point is
simple), and sgnA

pq

equals the di↵erence between the positive and negative eigenvalues of A
pq

. As a result
the leding asymptotic behavior of (29) can be computed, in situations where all stationary points are simple
and isolated, by summing the contributions of type (31).

5.1.2. Stationary points. To evaluate (29) via the method of stationary phase [? ? ], it is noted that

r
⌘

(⇣ ·d ± r) = 0 =)
⇥
d ± (\⇣�xo)

⇤
· @⇣

@⌘p

= 0, p = 1, 2. (32) crit1

On denoting by ⇣± 2 Sf the stationary point of eik(⇣·d±r), this implies that d ± ( \⇣±�xo) must either vanish
or be perpendicular to Sf. By way of inequality d ·n < 0, one accordingly finds from (32) that J

1

and J
2

feature two types of stationary points, namely

⇣±
I

= xo ⌥ rd,

⇣±
II

= xo ⌥ r
⇥
d + 2|d·n|n(⇣±

II

)
⇤
.

(33) crit2

T(xo) =

Z

Sf

f(⇣) eik'(⇣) d⇣
“slow” “fast”
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for large values of k is governed by the nature of the integrand in the neighborhood of three types of critical
points, namely: i) the stationary points on Sf where r
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(⇣ ·d ± r) vanishes, ii) the points on Sf where the
integrand fails to be di↵erentiable, and iii) all points on the closed curve @Sf, the boundary of Sf. By the
premise made earlier, r > ✏>0, see (22), whereby the integrands in (29) are di↵erentiable everywhere. One
may also note that the latter vanish on @Sf due to the presence of the term d·n. Following the analysis in [?
], the leading contribution of such boundary points can be shown (via repeated integration by parts) to be
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To evaluate (29), it is useful to consider the parametrization of Sf in terms of curvilinear surface
coordinates (⌘1, ⌘2) as
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where g
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are the covariant components of the metric tensor, and @⇣/@⌘p is the unit tangent vector on Sf

in the direction of ⌘p.

5.1.1. High frequency approximation. As examined in [? ], the leading-order asymptotic behavior of (29)
for large values of k is governed by the nature of the integrand in the neighborhood of three types of critical
points, namely: i) the stationary points on Sf where r

⌘

(⇣ ·d ± r) vanishes, ii) the points on Sf where the
integrand fails to be di↵erentiable, and iii) all points on the closed curve @Sf, the boundary of Sf. By the
premise made earlier, r > ✏>0, see (22), whereby the integrands in (29) are di↵erentiable everywhere. One
may also note that the latter vanish on @Sf due to the presence of the term d·n. Following the analysis in [?
], the leading contribution of such boundary points can be shown (via repeated integration by parts) to be
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. As a result
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5.5. Imaging ability of the TS indicator function
TSdistD

From (5), it is seen that for x

o 2 B
1

the topological sensitivity stems from a bi-linear form entailing two regular
wavefields in the reference domain, namely the incident wave and the fundamental solution whose source is
strictly outside B

1

. As a result, the spatial distribution of TS is necessarily regular and generally characterized
by wave-like fluctuations whose characteristic wavelength is ⇡/k, i.e. half that of the illuminating wave. In
this setting, the key question is that of the conditions under which the most pronounced negative values of
TS are localized in a narrow region “about the boundary” [13] of an obstacle.

To provide an explicit platform for the analysis, the foregoing asymptotic developments can be
synthesized by writing

T(xo, �, �) = 1N✏(d)

(xo) T⇤(xo, �, �) +
�

1 � 1N✏(d)

(xo)
 ⇥

h

1
˜

B�
(xo, d) Tc(xo, �, �) + 1S(d)

(xo) TII

+

(xo, �, �)
i

+
X

TII

�
(xo, �, �), + o(k), x

o 2 B
1

(61) td-total

where 1
M

(m) is the characteristic set function equalling 1 for m 2 M and 0 otherwise; N
✏

is a thin-shell
neighborhood of Sf given by (24); B̃

�

�B
�

is a neighborhood of the bifurcation set where the non-uniform
approximation fails;

S(d) = {x 2 R3: x 6= ⇣ � �n(⇣), ⇣ 2 Sf(d), � > 0}

5.5.1. Single plane-wave incidence. From (60) it is readily seen that the near-boundary contribution is
T⇤ = O(k), i.e. of the same order as the non-uniform approximations (36) and (38), yet sub-par relative
to the asymptotic contribution of the di↵raction catastrophes listed in Table 1. Accordingly the high-
frequency distribution of topological sensitivity is, under the assumption of a single plane-wave incidence,
asymptotically dominated by the

Proposition 5.1 Reconstruction of a Dirichlet obstacle.recodiri

6. High-frequency reconstruction of a Neumann obstacle
exex

For a sound-hard obtacle, the physical optics approximation states

u =

⇢

2ui on Sf

0 on Sb

, u
,n

= 0 on D, (62) sho1

so that

T(xo, �, �) = � 2Re

⇢

(1��) rui(xo)·A·
Z

S

f

ui(⇣) n(⇣)·
Z

�
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rG(⇠, ⇣, k) ⌦ rG(⇠, xo, k) d�
⇠

dS
⇣

+ (1���2) k2 ui(xo)

Z

S

f

ui(⇣) n(⇣)·
Z

�
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rG(⇠, ⇣, k) G(⇠, xo, k) d�
⇠

dS
⇣

�

. (63) bir4n

By way of (12) and (15), one accordingly finds that

T(xo, �, �) = 2k Re
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3(1��)

2 + �
(ie�ikx

o·d)J
3
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(65) bir5n

and { = \(xo�⇣)⌦ \(xo�⇣) : d ⌦ n(⇣).
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frequency distribution of topological sensitivity is, under the assumption of a single plane-wave incidence,
asymptotically dominated by the

Proposition 5.1 Reconstruction of a Dirichlet obstacle.recodiri

6. High-frequency reconstruction of a Neumann obstacle
exex

For a sound-hard obtacle, the physical optics approximation states

u =

⇢
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, u
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so that
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By way of (12) and (15), one accordingly finds that
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and { = \(xo�⇣)⌦ \(xo�⇣) : d ⌦ n(⇣).
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Neumann obstacle, large k

kL� 1

6

noting that r
⇣

r
x

oR = 0 due to the structure of the residual which permits decomposition R(⇠, xo, ⇣) =
R

1

(⇠, xo) + R
2

(⇠, ⇣). On the basis of of (4), (13) and (16), (19) can be rewritten as
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where r= |xo�⇣| as before, and I is the second-order identity tensor. For completeness, it is also noted that
the trace of (19) simplifies as

Z

�

obs

rG(⇠, ⇣, k)·rG(⇠, xo, k) d�
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↵
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5. High-frequency behavior of topological sensitivity
exex

Consider the scattering of a plane wave, ui = e�ikx·d, by a convex obstacle D. Next, let n signify the
outward normal on S = @D; let Sf = {x 2 S : n(x) ·d < 0} be the “front” (i.e. illuminated) part of S,
and denote by Sb = {x 2 S : n(x) ·d > 0} its “back” side. To provide specificity for the analysis, the
wavenumber is assumed to be large in the sense that k`/(2⇡) � 1, where ` is the smallest radius of curvature
on Sf and 2⇡/k signifies the wavelength of the incident field. In this setting, the aim is to evaluate the
high-frequency behavior of (8) when the sampling point x

o straddles the region of interest (B
1

) excluding a
small neighborhood of Sf, namely

N
✏

:= {x : x = ⇣ ± � n(⇣), ⇣ 2 Sf, 0 6 � 6 ✏}, (22) epsregion

where ✏ > 0 is an O(2⇡/k) length scale to be specified later. Furthermore, the nucleating obstacle
underpinning the definition of topological sensitivity is for simplicity assumed to be ball-shaped, for which

A =
3

2 + �
I, (23) atensor

see [? ], where I is the second-order identity tensor.

5.1. Sound-soft (Dirichlet) obstacle
exex

When D is sound-soft and k` � 1, the physical optics (Kirchho↵) approximation [? ] states that

u = 0 on S = @D, u
,n

=

⇢
2ui

,n

on Sf

0 on Sb

, (24) sso1

In this case, (8) reduces to
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. (25) bir2

On recalling that ui = e�ikx·d and substituting (14), (17), (23) into (25), one obtains

T(xo, �, �) = 2k Im
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(1��) rui(xo)·A · J

1
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(26) bir3
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New heuristic

9

3.1. Physical excitation and motion sensing

In what follows, elastic waves in the aluminum plate are generated by a 32mm-diameter,
0.5MHz contact piezoceramic transducer (V101-RB by Olympus, Inc.) attached to its edge via
cyanoacrylate glue as in Fig. 1a. An e↵ort was made to align the transducer’s axis with the mid-
plane of the plate as shown in Fig. 1b in order to minimize the out-of-plane motion. This device,
commonly referred to as the longitudinal wave transducer, is excited by wavelets whose dominant
frequency fc ranges from 10 kHz to 40 kHz. To generate the wave motion of su�cient amplitude,
the output from the signal generator is intensified by high-voltage, 2 kW radio-frequency amplifier
with the flat gain spectrum from 9 kHz to 250 kHz.

The resulting in-plane motion is monitored in terms of particle velocity v

obs ⌘ u̇

obs in the
immediate vicinity of the plate’s edge, Sobs ⇢SN, via a scanning laser Doppler vibrometer (LDV)
system PSV-400-3D by Polytec, Inc. By deploying the principles of optical interferometry and
three independent scanning heads targeting a material point from di↵erent angles as shown in
Fig. 2, the system is capable of capturing the normal and in-plane velocity components of the
surface motion over a prescribed grid of scan points with the spatial resolution better than 0.1mm.
The data acquisition is performed using a built-in velocity decoder VD-03 with the sensitivity and
sampling frequency set respectively at 10 mm

s
/V and 2.56MHz. At these settings, the velocity

resolution of the LDV system is approximately 300µm
s

for frequencies below 100 kHz, and the
amplitude error is ±0.1 dB at 1 kHz. To minimize the e↵ect of random noise in the system (both
optical and mechanical), the measurements were averaged over an ensemble of 80 realizations at
each scan point. To avoid signal dropouts due to inherent surface roughness, signal enhancement
and speckle tracking were enabled during data acquisition. All internal filters, both analog and
digital, were disabled to minimize phase-related errors in the observed surface motion.

Figure 2. Three-dimensional motion sensing via laser Doppler vibrometer (LDV) system.

Particle velocity vs. displacement data. Due to the fact that the featured LDV system captures
in-plane particle velocity, v

obs = u̇

obs, while the TS formula (12) assumes the sensory data to be
in the form of displacement u

obs, the “raw” LDV data were suitably filtered and integrated (via
Matlab Digital Signal Processing toolbox) to obtain u

obs. Alternatively, the TS field (12) can be
shown (after straightforward manipulations) to permit the velocity-based representation

T(z) =
�

�[ǔ] ⇤ (A :�[v]) + ⇢ ˙̌
u ⇤ v̇

 

(z, T ), (23)

!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!10!kHz!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!20!kHz!

!!!!!! !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!30!kHz! ! ! ! ! ! !!!!!!!!!40!kHz!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Fig.) 2.! Reconstruction!of! a! circular!hole! and!a! “crack”! (thin! slit)! in! an! aluminum!plate!using! the!modified! TS!
formulation!that!incorporates!smoothing!windowing!function!!(!).!The!red!color!indicates!regions!where!the!
TS!attains!pronounced!negative!values.!Below!each!panel,!specified!is!the!dominant!frequency!of!the!wavelet!
used!to!“illuminate”!the!aluminum!plate.!!!Note!that,!in!contrast!to!the!images!presented!in!previous!reports,!
the!TS!maps!these!are!not&truncated.!This!is!made!possible!by!the!elevated!fidelity!of!TS!reconstruction!due!to!
the!use!of!the!windowing!function.!! ! ! !

! !
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Figure 4. Testing configuration: a) photograph of the damaged plate, and b) boundary conditions
and spatial arrangement of the LDV scan points for five individual source locations (Spiezo

k , k = 1, 5).

3.4. Reconstruction procedure

As shown in a number of previous studies by way of numerical simulations, the performance of
TS-based defect reconstruction is strongly a↵ected by the apertures of both source and observation
grids. In particular, each of the two grids should maximize the solid angle around the (expected)
damaged region to make the best use of a fixed number of experimental measurements. In this
vein, the testing configuration adopted in the present study is shown in Fig. 4b, consisting of five
dual-purpose (source/observation) segments Spiezo

k , k = 1, 5 and 22 “pure” observation segments
Sobs

j , j = 1, 22. For the kth source location, the induced elastodynamic wavefield is monitored
over 66 LDV scan points distributed over the left, upper, and right edge of the plate. Here the
measurements from scan points 1–4, 63–66, and the points belonging to Spiezo

k are used to impose
the Dirichlet data on SD= Spiezo

k [ S legs, while the remainder are deployed to provide the sensory
data u

obs on
Sobs = ([22

j=1S
obs

j ) [ ([5
l=1S

piezo

l ), l 6= k,

where each segment Sobs

j serves as a 2-scan-point motion sensor depicted in Fig. 3c. In the
experiment, the piezoceramic source transducer is first placed at Spiezo

1 to illuminate the damaged
area “from the left”; the LDV motion sensing is then performed at 66 scan points distributed over
the left, upper, and right edge of the plate. The data thus obtained (uobs) are then used to compute
the free and adjoint elastodynamic states [u,�[u]] and [û,�[û]], whose bilinear form (12) gives
the a�liated TS distribution. The source transducer is then moved to the second location Spiezo

2 ,
for which the testing and computational procedure are performed anew. In total, five source
locations were used, resulting in five respective TS maps. In what follows, the superposition of
these individual TS distributions is used as a tool to highlight the e↵ect of source aperture on the
quality of TS reconstruction. To facilitate the discussion, the set of excitation sources that is used
to compute any given TS map is denoted by S ✓ {1, 2, 3, 4, 5}.
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the a�liated TS distribution. The source transducer is then moved to the second location Spiezo

2 ,
for which the testing and computational procedure are performed anew. In total, five source
locations were used, resulting in five respective TS maps. In what follows, the superposition of
these individual TS distributions is used as a tool to highlight the e↵ect of source aperture on the
quality of TS reconstruction. To facilitate the discussion, the set of excitation sources that is used
to compute any given TS map is denoted by S ✓ {1, 2, 3, 4, 5}.

�/L = 1.1

x [m]

y
[m

]

x [m]

y
[m

]

Reconstruction

T(x
o

)



New heuristic
Theory Application

R3Helmholtz, 

Ref. domain: unbounded 

� ⌧ LHigh frequency:

Full aperture

R2Navier, 

Ref. domain: bounded 

� ' LInterm. frequency:

Partial aperture

30 kHz

+

+
-

12

a)

9 cm
10 cm

0.6 cm

Bhole

Bslit

SD

SN

1
4

18
19
20

67
64

13

14

1.5 cm

Spiezo
5

Spiezo
4Spiezo

3
Spiezo

2

Spiezo
1

1
4

13

14

63
66

b)

Sobs
5

Sobs ⇢SN

Figure 4. Testing configuration: a) photograph of the damaged plate, and b) boundary conditions
and spatial arrangement of the LDV scan points for five individual source locations (Spiezo

k , k = 1, 5).

3.4. Reconstruction procedure

As shown in a number of previous studies by way of numerical simulations, the performance of
TS-based defect reconstruction is strongly a↵ected by the apertures of both source and observation
grids. In particular, each of the two grids should maximize the solid angle around the (expected)
damaged region to make the best use of a fixed number of experimental measurements. In this
vein, the testing configuration adopted in the present study is shown in Fig. 4b, consisting of five
dual-purpose (source/observation) segments Spiezo

k , k = 1, 5 and 22 “pure” observation segments
Sobs

j , j = 1, 22. For the kth source location, the induced elastodynamic wavefield is monitored
over 66 LDV scan points distributed over the left, upper, and right edge of the plate. Here the
measurements from scan points 1–4, 63–66, and the points belonging to Spiezo

k are used to impose
the Dirichlet data on SD= Spiezo

k [ S legs, while the remainder are deployed to provide the sensory
data u

obs on
Sobs = ([22

j=1S
obs

j ) [ ([5
l=1S

piezo

l ), l 6= k,

where each segment Sobs

j serves as a 2-scan-point motion sensor depicted in Fig. 3c. In the
experiment, the piezoceramic source transducer is first placed at Spiezo

1 to illuminate the damaged
area “from the left”; the LDV motion sensing is then performed at 66 scan points distributed over
the left, upper, and right edge of the plate. The data thus obtained (uobs) are then used to compute
the free and adjoint elastodynamic states [u,�[u]] and [û,�[û]], whose bilinear form (12) gives
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(a) (b)

(c) (d)

Figure 8. Reconstructions of the F15 and B2 profiles shown in figure 6 using L
l ≈ 17. Figures on

the right show the object profile (white curve) superimposed over the topological derivative (TD)
field. (a) Reconstruction of F15. (b) Object profile superimposed on TD. (c) Reconstruction of
B2. (d) Object profile superimposed on TD.
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Figure 9. Reconstruction of multiple scatterers. (a) D
l ≈ 1, (b) D

l ≈ 2, (c) true scatterers.

First, white Gaussian noise is added to the scattering patterns computed at l = π
6 u in

the previous example. Figures 10(a), (b) and (c) show reconstructions for values of the
signal-to-noise ratio (SNR) of 20 dB, 10 dB and 5 dB, respectively. The difference in the
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