SYLLABUS

DESCRIPTION

Proper control of building energy systems is crucial for maintaining occupant comfort with minimal energy consumption. This course treats the design and analysis of building energy control systems from both theoretical and practical perspectives. Consideration of analog and digital control theory and building energy control hardware leads to specific applications for control of building energy systems.

LECTURES 8:00 – 9:15 Tuesday, Thursday

Room ECCR 1B08

INSTRUCTOR Michael J. Brandemuehl

ECCE 246A, 303.492.8594

(In Larson Lab offices, above CAD Lab) michael.brandemuehl@colorado.edu

Office Hours: 9:30 – 11:00 Tuesday (*Preliminary*)

1:30 – 3:00 Wednesday

TEXT Levermore, G.J. 2000. Building Energy Management Systems:

Application to Low-Energy HVAC and Natural Ventilation Control.

Longon: Taylor and Francis.

ADDITIONAL READING Underwood, C.P. 1999. HVAC Control Systems: Modeling, Analysis,

and Design. London: Taylor and Francis - Routledge.

Haines, R. W., and D.C. Hittle. 1993. *Control Systems for Heating, Ventilating and Air Conditioning, Fifth Edition*. New York: Chapman

& Hall.

American Society of Heating, Refrigerating and Air Conditioning Engineers, *ASHRAE Handbooks* - Fundamentals, 2005; HVAC Applications, 2003; HVAC Systems and Equipment, 2004.

WEB PAGE http://ceae.colorado.edu/~brandem/cven5010/

EVALUATION Exams 25%

Homework35%Project30%Participation10%

Final Presentations: Wednesday, May 7, 10:30 – 1:00 pm

GENERAL COURSE OUTLINE

Topic		Classes
HVAC Co	ntrol Systems	3
a.	Basics	
b.	Closed loop vs. supervisory control	
c.	HVAC processes and control subsystems	
d.	System configuration	
Modeling of Dynamic Processes		4
a.	Linear system modeling with Laplace transforms	
b.	Modeling of building components	
c.	Analog control representation	
Control Fu	ndamentals	2
a.	Objectives of control systems	
b.	Response of dynamic systems	
Stability Considerations		2
-	Feedback control	
b.	Stability tests	
c.	Tuning of control system parameters	
Discrete Sy	ystem Control	5
a.	Modeling with z-transform analysis	
b.	Stability issues and sampling rate	
c.	Controller design	
Exam		1
Building Control Hardware		4
_	Sensors	
b.	Control devices	
c.	Pneumatic controllers	
d.	Electric/Electronic controllers	
e.	Digital controllers	
Supervisory Control		3
a.	Ladder diagrams	
b.	EMCS structure and hardware	
c.	Minimizing energy use/cost through setpoint control	
Advanced	Topics	6
a.	Optimal supervisory control	
	Fuzzy logic control	
c.	Neural network based control	