Lecture Notes in:

Mechanics and Design of

REINFORCED CONCRETE

Victor E. Saouma
Dept. of Civil Environmental and Architectural Engineering
University of Colorado, Boulder, CO 80309-0428
Contents

1 INTRODUCTION ... 13
 1.1 Material .. 13
 1.1.1 Concrete ... 13
 1.1.1.1 Mix Design .. 13
 1.1.1.1.1 Constituents ... 13
 1.1.1.1.2 Preliminary Considerations 17
 1.1.1.1.3 Mix procedure .. 17
 1.1.1.1.4 Mix Design Example 20
 1.1.1.2 Mechanical Properties 22
 1.1.2 Reinforcing Steel ... 26
 1.2 Design Philosophy, USD ... 27
 1.3 Analysis vs Design ... 28
 1.4 Basic Relations and Assumptions 28
 1.5 ACI Code .. 29

2 FLEXURE ... 31
 2.1 Uncracked Section ... 31
 E 2-1 Uncracked Section .. 32
 2.2 Section Cracked, Stresses Elastic 33
 2.2.1 Basic Relations .. 33
 2.2.2 Working Stress Method .. 34
 E 2-2 Cracked Elastic Section ... 35
 E 2-3 Working Stress Design Method; Analysis 36
 E 2-4 Working Stress Design Method; Design 37
 2.3 Cracked Section, Ultimate Strength Design Method 38
 2.3.1 Whitney Stress Block ... 38
 2.3.2 Balanced Design .. 40
 2.3.3 Review .. 41
 2.3.4 Design ... 41
 2.4 Practical Design Considerations 42
 2.4.1 Minimum Depth .. 42
 2.4.2 Beam Sizes, Bar Spacing, Concrete Cover 43
 2.4.3 Design Aids ... 43
 2.5 USD Examples ... 45
 E 2-5 Ultimate Strength; Review 45
 E 2-6 Ultimate Strength; Design I 46
 E 2-7 Ultimate Strength; Design II 47
CONTENTS

6 SERVICEABILITY 103
 6.1 Control of Cracking ... 103
 E 6-1 Crack Width ... 105
 6.2 Deflections ... 105
 6.2.1 Short Term Deflection ... 106
 6.2.2 Long Term Deflection ... 107
 E 6-2 Deflections ... 109

7 APPROXIMATE FRAME ANALYSIS 111
 7.1 Vertical Loads ... 111
 7.2 Horizontal Loads .. 114
 7.2.1 Portal Method ... 114
 E 7-1 Approximate Analysis of a Frame subjected to Vertical and Horizontal Loads 116

8 COLUMNS 131

9 COLUMNS 133
 9.1 Introduction ... 133
 9.1.1 Types of Columns ... 133
 9.1.2 Possible Arrangement of Bars .. 134
 9.2 Short Columns .. 134
 9.2.1 Concentric Loading .. 134
 9.2.2 Eccentric Columns .. 134
 9.2.2.1 Balanced Condition ... 135
 9.2.2.2 Tension Failure .. 137
 9.2.2.3 Compression Failure ... 138
 9.2.3 ACI Provisions ... 139
 9.2.4 Interaction Diagrams ... 139
 9.2.5 Design Charts ... 139
 E 9-1 R/C Column, c known ... 139
 E 9-2 R/C Column, e known ... 141
 E 9-3 R/C Column, Using Design Charts 145
 9.2.6 Biaxial Bending ... 146
 E 9-4 Biaxially Loaded Column .. 149
 9.3 Long Columns .. 150
 9.3.1 Euler Elastic Buckling ... 150
 9.3.2 Effective Length ... 151
 9.3.3 Moment Magnification Factor; ACI Provisions 153
 E 9-5 Long R/C Column .. 155
 E 9-6 Design of Slender Column .. 157

10 PRESTRESSED CONCRETE 159
 10.1 Introduction .. 159
 10.1.1 Materials ... 159
 10.1.2 Prestressing Forces .. 162
 10.1.3 Assumptions .. 162
 10.1.4 Tendon Configuration ... 162
 10.1.5 Equivalent Load .. 162
List of Figures

1.1 Schematic Representation of Aggregate Gradation ... 14
1.2 MicroCracks in Concrete under Compression .. 23
1.3 Concrete Stress Strain Curve ... 23
1.4 Modulus of Rupture Test .. 24
1.5 Split Cylinder (Brazilian) Test ... 24
1.6 Biaxial Strength of Concrete .. 25
1.7 Time Dependent Strains in Concrete .. 26

2.1 Strain Diagram Uncracked Section ... 31
2.2 Transformed Section ... 32
2.3 Stress Diagram Cracked Elastic Section ... 33
2.4 Desired Stress Distribution; WSD Method ... 34
2.5 Cracked Section, Limit State ... 39
2.6 Whitney Stress Block ... 40
2.7 Bar Spacing ... 45
2.8 T Beams ... 50
2.9 T Beam as Rectangular Section .. 50
2.10 T Beam Strain and Stress Diagram ... 51
2.11 Decomposition of Steel Reinforcement for T Beams .. 51
2.12 Doubly Reinforced Beams; Strain and Stress Diagrams 56
2.13 Different Possibilities for Doubly Reinforced Concrete Beams 57
2.14 Strain Diagram, Doubly Reinforced Beam; is A_s Yielding? 57
2.15 Strain Diagram, Doubly Reinforced Beam; is A'_s Yielding? 58
2.16 Summary of Conditions for top and Bottom Steel Yielding 59
2.17 Bending of a Beam .. 64
2.18 Moment-Curvature Relation for a Beam ... 64
2.19 Bond and Development Length ... 65
2.20 Actual Bond Distribution .. 67
2.21 Splitting Along Reinforcement .. 67
2.22 Development Length ... 67
2.23 Development Length ... 68
2.24 Hooks .. 69
2.25 Bar cutoff requirements of the ACI code ... 71
2.26 Standard cutoff or bend points for bars in approximately equal spans with uniformly distributed load ... 72
2.27 Moment Capacity Diagram ... 73

3.1 Principal Stresses in Beam ... 75
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3</td>
<td>Possible Bar arrangements</td>
<td>134</td>
</tr>
<tr>
<td>9.4</td>
<td>Sources of Bending</td>
<td>135</td>
</tr>
<tr>
<td>9.5</td>
<td>Load Moment Interaction Diagram</td>
<td>135</td>
</tr>
<tr>
<td>9.6</td>
<td>Strain and Stress Diagram of a R/C Column</td>
<td>136</td>
</tr>
<tr>
<td>9.7</td>
<td>Column Interaction Diagram</td>
<td>140</td>
</tr>
<tr>
<td>9.8</td>
<td>Failure Surface of a Biaxially Loaded Column</td>
<td>146</td>
</tr>
<tr>
<td>9.9</td>
<td>Load Contour at Plane of Constant P_n, and Nondimensionalized Corresponding plots</td>
<td>147</td>
</tr>
<tr>
<td>9.10</td>
<td>Biaxial Bending Interaction Relations in terms of β</td>
<td>148</td>
</tr>
<tr>
<td>9.11</td>
<td>Bilinear Approximation for Load Contour Design of Biaxially Loaded Columns</td>
<td>148</td>
</tr>
<tr>
<td>9.12</td>
<td>Euler Column</td>
<td>150</td>
</tr>
<tr>
<td>9.13</td>
<td>Column Failures</td>
<td>151</td>
</tr>
<tr>
<td>9.14</td>
<td>Critical lengths of columns</td>
<td>152</td>
</tr>
<tr>
<td>9.15</td>
<td>Effective length Factors Ψ</td>
<td>153</td>
</tr>
<tr>
<td>9.16</td>
<td>Standard Alignment Chart (ACI)</td>
<td>154</td>
</tr>
<tr>
<td>9.17</td>
<td>Minimum Column Eccentricity</td>
<td>154</td>
</tr>
<tr>
<td>9.18</td>
<td>P-M Magnification Interaction Diagram</td>
<td>155</td>
</tr>
<tr>
<td>10.1</td>
<td>Pretensioned Prestressed Concrete Beam, (?)</td>
<td>160</td>
</tr>
<tr>
<td>10.2</td>
<td>Posttensioned Prestressed Concrete Beam, (?)</td>
<td>160</td>
</tr>
<tr>
<td>10.3</td>
<td>7 Wire Prestressing Tendon</td>
<td>161</td>
</tr>
<tr>
<td>10.4</td>
<td>Alternative Schemes for Prestressing a Rectangular Concrete Beam, (?)</td>
<td>163</td>
</tr>
<tr>
<td>10.5</td>
<td>Determination of Equivalent Loads</td>
<td>163</td>
</tr>
<tr>
<td>10.6</td>
<td>Load-Deflection Curve and Corresponding Internal Flexural Stresses for a Typical Prestressed Concrete Beam</td>
<td>163</td>
</tr>
<tr>
<td>10.7</td>
<td>Flexural Stress Distribution for a Beam with Variable Eccentricity; Maximum Moment Section and Support</td>
<td>163</td>
</tr>
<tr>
<td>10.8</td>
<td>Walnut Lane Bridge, Plan View</td>
<td>169</td>
</tr>
<tr>
<td>10.9</td>
<td>Walnut Lane Bridge, Cross Section</td>
<td>170</td>
</tr>
</tbody>
</table>
List of Tables

1.1 ASTM Sieve Designation’s Nominal Sizes Used for Concrete Aggregates 15
1.2 ASTM C33 Grading Limits for Coarse Concrete Aggregates 15
1.3 ASTM C33 Grading Limits for Fine Concrete Aggregates 15
1.4 Example of Fineness Modulus Determination for Fine Aggregate 17
1.5 Recommended Slumps (inches) for Various Types of Construction 18
1.6 Recommended Average Total Air Content as % of Different Nominal Maximum Sizes of Aggregates and
1.7 Approximate Mixing Water Requirements, lb/yd3 of Concrete For Different Slumps and Nominal Maximum Sizes of Aggregates and
1.8 Relationship Between Water/Cement Ratio and Compressive Strength 19
1.9 Volume of Dry-Rodded Coarse Aggregate per Unit Volume of Concrete for Different Fineness Moduli of Sand
1.10 Creep Coefficients ... 25
1.11 Properties of Reinforcing Bars 26
1.12 Strength Reduction Factors, Φ ... 27

2.1 Total areas for various numbers of reinforcing bars (inch2) 44
2.2 Minimum Width (inches) according to ACI Code 44

4.1 Building Structural Systems ... 93

5.1 Recommended Minimum Slab and Beam Depths 98

7.1 Columns Combined Approximate Vertical and Horizontal Loads 128
7.2 Girders Combined Approximate Vertical and Horizontal Loads 129
Chapter 1

INTRODUCTION

1.1 Material

1.1.1 Concrete

This section is adapted from Concrete by Mindess and Young, Prentice Hall, 1981

1.1.1.1 Mix Design

1.1.1.1.1 Constituents

Concrete is a mixture of Portland cement, water, and aggregates (usually sand and crushed stone).

Portland cement is a mixture of calcareous and argillaceous materials which are calcined in a kiln and then pulverized. When mixed with water, cement hardens through a process called hydration.

Ideal mixture is one in which:

1. A minimum amount of cement-water paste is used to fill the interstices between the particles of aggregates.

2. A minimum amount of water is provided to complete the chemical reaction with cement. Strictly speaking, a water/cement ratio of about 0.25 is needed to complete this reaction, but then the concrete will have a very low “workability”.

In such a mixture, about 3/4 of the volume is constituted by the aggregates, and the remaining 1/4 being the cement paste.

Smaller particles up to 1/4 in. in size are called fine aggregates, and the larger ones being coarse aggregates.

Portland Cement has the following ASTM designation

I Normal

II Moderate sulfate resistant, moderate heat of hydration

III High early strength (but releases too much heat)
Table 1.1: ASTM Sieve Designation’s Nominal Sizes Used for Concrete Aggregates

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing Each Sieve (Nominal Maximum Size)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2 in.</td>
<td>95-100 100 - -</td>
</tr>
<tr>
<td>1 in.</td>
<td>- 95-100 100 -</td>
</tr>
<tr>
<td>3/4 in.</td>
<td>35-70 - 90-100 100</td>
</tr>
<tr>
<td>1/2 in.</td>
<td>- 25-60 - 90-100</td>
</tr>
<tr>
<td>3/8 in.</td>
<td>10-30 - 20-55 40-70</td>
</tr>
<tr>
<td>No. 4</td>
<td>0-5 0-10 0-10 0-15</td>
</tr>
<tr>
<td>No. 8</td>
<td>- 0-5 0-5 0-5</td>
</tr>
</tbody>
</table>

Table 1.2: ASTM C33 Grading Limits for Coarse Concrete Aggregates

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4 in.</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>95-100</td>
</tr>
<tr>
<td>No. 8</td>
<td>80-100</td>
</tr>
<tr>
<td>No. 16</td>
<td>50-85</td>
</tr>
<tr>
<td>No. 30</td>
<td>25-60</td>
</tr>
<tr>
<td>No. 50</td>
<td>10-30</td>
</tr>
<tr>
<td>No. 100</td>
<td>2-10</td>
</tr>
</tbody>
</table>

Table 1.3: ASTM C33 Grading Limits for Fine Concrete Aggregates
Table 1.4: Example of Fineness Modulus Determination for Fine Aggregate

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Weight Retained (g)</th>
<th>Amount Retained (wt. %)</th>
<th>Cumulative Amount Retained (%)</th>
<th>Cumulative Amount Passing (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 4</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>No. 8</td>
<td>46</td>
<td>9</td>
<td>11</td>
<td>89</td>
</tr>
<tr>
<td>No. 16</td>
<td>97</td>
<td>19</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>No. 30</td>
<td>99</td>
<td>20</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>No. 50</td>
<td>120</td>
<td>24</td>
<td>74</td>
<td>26</td>
</tr>
<tr>
<td>No. 100</td>
<td>91</td>
<td>18</td>
<td>92</td>
<td>8</td>
</tr>
<tr>
<td>Sample Weight 500 g.</td>
<td></td>
<td></td>
<td>$\sum = 259$</td>
<td></td>
</tr>
<tr>
<td>Fineness modulus $= \frac{259}{100} = 2.59$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.1.1.1.3 Mix procedure

Before starting the mix design process, the following **material properties** should be determined:

1. Sieve analysis of both fine and coarse aggregates
2. Unit weight of the coarse aggregate
3. Bulk specific gravities
4. absorption capacities of the aggregates
Table 1.7: Approximate Mixing Water Requirements, lb/yd3 of Concrete For Different Slumps and Nominal Maximum Sizes of Aggregates

<table>
<thead>
<tr>
<th>Slump in.</th>
<th>Sizes of Aggregates</th>
<th>Non-Air-Entrained Concrete</th>
<th>Air-Entrained Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3/8 in.</td>
<td>1/2 in.</td>
<td>3/4 in.</td>
</tr>
<tr>
<td>1-2</td>
<td>350</td>
<td>335</td>
<td>315</td>
</tr>
<tr>
<td>3-4</td>
<td>385</td>
<td>365</td>
<td>340</td>
</tr>
<tr>
<td>6-7</td>
<td>410</td>
<td>385</td>
<td>360</td>
</tr>
</tbody>
</table>

Table 1.8: Relationship Between Water/Cement Ratio and Compressive Strength

<table>
<thead>
<tr>
<th>28 days f'_c</th>
<th>w/c Ratio by Weight</th>
<th>Non-air-entrained</th>
<th>Air-entrained</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,000</td>
<td>0.41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5,000</td>
<td>0.48</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>4,000</td>
<td>0.57</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td>0.68</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>2,000</td>
<td>0.82</td>
<td>0.74</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.8: Relationship Between Water/Cement Ratio and Compressive Strength
Fine Aggregates: Bulk specific gravity (SSD) = 2.65; absorption capacity = 1.3 %; Total moisture content=5.5%; fineness modulus = 2.70

The sieve analyses of both the coarse and fine aggregates fall within the specified limits. With this information, the mix design can proceed:

1. **Choice of slump** is consistent with Table 1.5.

2. **Maximum aggregate size** (3/4 in) is governed by reinforcing details.

3. Estimation of mixing **water:** Because water will be exposed to freeze and thaw, it must be air-entrained. From Table 1.6 the air content recommended for extreme exposure is 6.0%, and from Table 1.7 the water requirement is 280 lb/yd3.

4. From Table 1.8, the **water to cement ratio** estimate is 0.4.

5. **Cement content,** based on steps 4 and 5 is $280/0.4=700$ lb/yd3.

6. **Coarse aggregate content,** interpolating from Table 1.9 for the fineness modulus of the fine aggregate of 2.70, the volume of dry-rodded coarse aggregate per unit volume of concrete is 0.63. Therefore, the coarse aggregate will occupy $0.63 \times 27 = 17.01$ ft3/yd3. The OD weight of the coarse aggregate is 17.01 ft3/yd$^3 \times 100$ lbs/ft$^3=1,701$ lb. The SSD weight is $1,701 \times 1.01=1,718$ lb.

7. **Fine aggregate content** Knowing the weights and specific gravities of the water, cement, and coarse aggregate, and knowing the air volume, we can calculate the volume per yd3 occupied by the different ingredients.

 - Water: $280/62.4 = 4.49$ ft3
 - Cement: $700/(3.15)(62.4) = 3.56$ ft3
 - Coarse Aggregate (SSD): $1,718/(2.70)(62.4) = 1.62$ ft3
 - Air: $0.06(27) = 1.62$ ft3

 Hence, the fine aggregate must occupy a volume of $27.0 - 19.87 = 7.13$ ft3. The required SSD weight of the fine aggregate is 7.13 ft$^3 \times (2.65)/(62.4)$lb/ft$^3 = 1,179$ lbs lb.

8. **Adjustment for moisture** in the aggregate. Since the aggregate will be neither SSD or OD in the field, it is necessary to adjust the aggregate weights for the amount of water contained in the aggregate. Only surface water need be considered; absorbed water does not become part of the mix water. For the given moisture contents, the adjusted aggregate weights become:

 - Coarse aggregate (wet): $1,718(1.025-0.01) = 1,744$ lb/yd3 of dry coarse
 - Fine aggregate (wet): $1,179(1.055-0.013) = 1,229$ lb/yd3 of dry fine

 Surface moisture contributed by the coarse aggregate is $2.5-1.0 = 1.5$%; by the fine aggregate: $5.5-1.3 = 4.2$%; Hence we need to decrease water to $280-1,718(0.015)-1,179(0.042) = 205$ lb/yd3.

 Thus, the estimated batch weight per yd3 are
Chapter 2

FLEXURE

1. This is probably the longest chapter in the notes, we shall cover in great details flexural design/analysis of R/C beams starting with uncracked section to failure conditions.

1. Uncracked elastic (uneconomical)
2. Cracked elastic (service stage)
3. Ultimate (failure)

2.1 Uncracked Section

Assuming perfect bond between steel and concrete, we have $\varepsilon_s = \varepsilon_c$, Fig. 2.1

$$\varepsilon_s = \varepsilon_c \Rightarrow \frac{f_s}{E_s} = \frac{f_c}{E_c} \Rightarrow f_s = \frac{E_s}{E_c} f_c \Rightarrow f_s = n f_c$$ \hspace{1cm} (2.1)

where n is the modular ratio $n = \frac{E_s}{E_c}$

3. Tensile force in steel $T_s = A_s f_s = A_s n f_c$

4. Replace steel by an equivalent area of concrete, Fig. 2.2.

Figure 2.1: Strain Diagram Uncracked Section
2.2 Section Cracked, Stresses Elastic

This is important not only as an acceptable alternative ACI design method, but also for the later evaluation of crack width under service loads.

2.2.1 Basic Relations

If \(f_{ct} > f_r \), \(f_{cc} \approx 0.5f_c \) and \(f_s < f_y \) we will assume that the crack goes all the way to the N.A and we will use the transformed section, Fig. 2.3

\[
f_{ct} = \frac{Mc}{I} = \frac{(540,000) \text{ lb.in}(25 - 13.2) \text{ in}^4}{(14,722) \text{ in}^4} = 433 \text{ psi} < 475 \text{ psi} \quad (2.3-h)
\]

\[
f_s = n \frac{Mc}{I} = (8)\frac{(540,000)(23 - 13.2) \text{ in}^4}{(14,722)} = 2,876 \text{ psi} \quad (2.3-i)
\]

Figure 2.3: Stress Diagram Cracked Elastic Section

To locate N.A, tension force = compressive force (by def. NA) (Note, for linear stress distribution and with \(\Sigma F_x = 0 \); \(\sigma = by \) \(\Rightarrow \int bydA = 0 \), thus \(b \int ydA = 0 \) and \(\int ydA = \frac{\pi}{2}A = 0 \), by definition, gives the location of the neutral axis)

Note, N.A. location depends only on geometry & \(n \left(\frac{E_s}{E_c} \right) \)

Tensile and compressive forces are equal to \(C = \frac{bd}{2}f_c \) & \(T = A_s f_s \) and neutral axis is determined by equating the moment of the tension area to the moment of the compression area

\[
b(kd)\left(\frac{kd}{2}\right) = nA_s(d - kd) \quad 2^{nd} \text{ degree equation} \quad (2.4-a)
\]

\[
M = Tjd = A_s f_s jd \Rightarrow f_s = \frac{M}{A_s jd} \quad (2.4-b)
\]

\[
M = Cjd = \frac{bd}{2}f_c jd = \frac{bd^2}{2}k_j f_c \Rightarrow f_c = \frac{M}{\frac{bd^2}{2}k_j} \quad (2.4-c)
\]

where \(j = (1 - k/3) \).
2.2 Section Cracked, Stresses Elastic

Review Start by determining ρ,

- If $\rho < \rho_b$ steel reaches max. allowable value before concrete, and
 \[
 M = A_s f_s j d = A_s f_s j d \\
 \text{(2.9)}
 \]

- If $\rho > \rho_b$ concrete reaches max. allowable value before steel and
 \[
 M = f_c b k d = \frac{1}{2} f_c b k d \\
 \text{or}
 M = \frac{1}{2} f_c j k b d = R b d \\
 \text{(2.11)}
 \]

where

\[
\begin{align*}
 k &= \sqrt{2 \rho n + (\rho n)^2} - \rho n \\
 \end{align*}
 \]

Design We define

\[
R \overset{\text{def}}{=} \frac{1}{2} f_c k j
\]

where $k = \frac{n}{n + r}$, solve for $b d^2$ from

\[
bd^2 = \frac{M}{R} \\
\text{(2.13)}
\]

assume b and solve for d. Finally we can determine A_s from

\[
A_s = \rho b d \\
\text{(2.14)}
\]

Summary

<table>
<thead>
<tr>
<th>Review</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b, d, A_s \sqrt{M}$</td>
<td>$M \sqrt{b, d, A_s}$</td>
</tr>
<tr>
<td>$\rho = \frac{A_s}{b d}$</td>
<td>$k = \frac{n}{n + r}$</td>
</tr>
<tr>
<td>$k = \sqrt{2 \rho n + (\rho n)^2} - \rho n$</td>
<td>$j = 1 - \frac{k}{3}$</td>
</tr>
<tr>
<td>$r = \frac{f_c}{f_s}$</td>
<td>$r = \frac{f_c}{f_s}$</td>
</tr>
<tr>
<td>$\rho_b = \frac{n}{2r(n + r)}$</td>
<td>$R = \frac{1}{2} f_c k j$</td>
</tr>
<tr>
<td>$\rho < \rho_b$</td>
<td>$\rho_b = \frac{n}{2r(n + r)}$</td>
</tr>
<tr>
<td>$M = A_s f_s j d$</td>
<td>$bd^2 = \frac{M}{R}$</td>
</tr>
<tr>
<td>$\rho > \rho_b$</td>
<td>$A_s = \rho_b b d$ or $A_s = \frac{M}{f_s j d}$</td>
</tr>
</tbody>
</table>

Example 2-2: Cracked Elastic Section
Solution:

\[
\rho = \frac{A_s}{bd} = \frac{2.35}{(10)(23)} = .0102 \tag{2.16-a}
\]

\[f_s = 24 \text{ ksi} \tag{2.16-b}\]

\[f_c = (.45)(4,000) = 1,800 \text{ psi} \tag{2.16-c}\]

\[k = \sqrt{2pm + (pn)^2 - pm} = \sqrt{2(.0102)8 + (.0102)^2 - (8)(.0102)} = .331 \tag{2.16-d}\]

\[j = 1 - \frac{k}{3} = .889 \tag{2.16-e}\]

\[N.A. \at \left(.331\right)(23) = 7.61 \text{ in} \tag{2.16-f}\]

\[\rho_b = \frac{n}{2r(n + r)} = \frac{8}{(2)(13.33)(8 + 13.33)} = .014 > \rho \Rightarrow \text{Steel reaches elastic} \tag{2.16-g}\]

\[M = A_s f_s j d = (2.35)(24)(.889)(23) = \boxed{1,154 \text{ k.in} = 96 \text{ k.ft}} \tag{2.16-h}\]

Note, had we used the alternate equation for moment (wrong) we would have overestimated the design moment:

\[M = \frac{1}{2} f_c b k d^2 j \tag{2.17-a}\]

\[= \frac{1}{2} (1.8)(10)(0.33)(0.89)(23)^2 = 1,397 \text{ k.in} > 1,154 \text{ k.in} \tag{2.17-b}\]

If we define \(\alpha_c = f_c/1,500 \) and \(\alpha_s = f_s/24,000\), then as the load increases both \(\alpha_c\) and \(\alpha_s\) increase, but at different rates, one of them \(\alpha_s\) reaches 1 before the other.

\[\alpha_s \quad \alpha_c\]

\[\text{Load}\]

\[\boxed{\text{Example 2-4: Working Stress Design Method; Design}}\]

Design a beam to carry \(LL = 1.9 \text{ k/ft}, DL = 1.0 \text{ k/ft}\) with \(f'_c = 4,000 \text{ psi} \), \(f_y = 60,000 \text{ psi}\), \(L = 32 \text{ ft}\).
2.3 Cracked Section, Ultimate Strength Design Method

\[\alpha = \frac{f_{av}}{f'_c} \]
\[a = \beta_1 c \]

Thus

\[\gamma = \frac{\alpha}{\beta_1} \]

But the location of the resultant forces must be the same, hence

\[\beta_1 = 2\beta \]

From Experiments

<table>
<thead>
<tr>
<th>(f'_c) (psi)</th>
<th><4,000</th>
<th>5,000</th>
<th>6,000</th>
<th>7,000</th>
<th>8,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>.72</td>
<td>.68</td>
<td>.64</td>
<td>.60</td>
<td>.56</td>
</tr>
<tr>
<td>(\beta)</td>
<td>.425</td>
<td>.400</td>
<td>.375</td>
<td>.350</td>
<td>.325</td>
</tr>
<tr>
<td>(\beta_1 = 2\beta)</td>
<td>.85</td>
<td>.80</td>
<td>.75</td>
<td>.70</td>
<td>.65</td>
</tr>
<tr>
<td>(\gamma = \alpha/\beta_1)</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.86</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Thus we have, (ACI-318 10.2.7.3):

\[\beta_1 = .85 \]
\[= .85 - (.05)(f'_c - 4,000) \left\{ \begin{array}{ll} \frac{1}{1,000} & \text{if } f'_c \leq 4,000 \\ \frac{1}{f'_c - 4,000} & \text{if } 4,000 < f'_c < 8,000 \end{array} \right. \]

Failure can occur by either

yielding of steel: \(\varepsilon_s = \varepsilon_y \); Progressive

crushing of concrete: \(\varepsilon_c = .003 \); Sudden; (ACI 10.3.2).
2.3 Cracked Section, Ultimate Strength Design Method

Also we need to specify a minimum reinforcement ratio

\[
\rho_{\text{min}} \geq \frac{200}{f_y} \quad (\text{ACI 10.5.1})
\]

\[(2.29) \]

to account for temperature & shrinkage

Note, that \(\rho \) need not be as high as 0.75\(\rho_b \). If steel is relatively expensive, or deflection is of concern, can use lower \(\rho \).

As a rule of thumb, if \(\rho < 0.5\rho_b \), there is no need to check for deflection.

2.3.3 Review

Given, \(b, d, A_s, f'_c, f_y \), determine the moment capacity \(M \).

\[
\rho_{\text{act}} = \frac{A_s}{bd} \quad \rho_b = \frac{(0.85)\beta_1 f'_c}{f_y} \quad \frac{85}{87+f_y}
\]

\[(2.30) \]

- \(\rho_{\text{act}} < \rho_b \): Failure by yielding and

\[
\begin{align*}
\alpha &= \frac{A_s f_y}{0.85 f'_c} \\
M_d &= \phi A_s f_y \left(d - \frac{a}{2} \right) \quad \Sigma M = 0
\end{align*}
\]

\[(2.31) \]

- \(\rho_{\text{act}} > \rho_b \) is not allowed by code, in this case we have an extra unknown \(f_s \).

We now have one more unknown \(f_s \), and we will need an additional equation (from strain diagram).

\[
\begin{align*}
c &= \frac{A_s f_y}{0.85 f'_c} \\
\bar{c} &= \frac{0.003}{0.003 + \varepsilon_s} \\
M_d &= \phi A_s f_s (d - \frac{a}{2}) \quad \Sigma M = 0
\end{align*}
\]

\[(2.32) \]

We can solve by iteration, or substitution and solution of a quadratic equation.

2.3.4 Design

We consider two cases:

I. \(b, d \) and \(A_s \), unknown; \(M_d \) known; Since design failure is triggered by \(f_s = f_y \)

\[
\begin{align*}
\Sigma F_x &= 0 \\
\rho &= \frac{A_s f_y}{0.85 f'_c} \\
\begin{cases}
a = \frac{\rho f_y}{0.85 f'_c} \\
M_d = A_s f_y \left(d - \frac{a}{2} \right)
\end{cases}
\end{align*}
\]

\[(2.33-a) \]

where \(\rho \) is specified by the designer; or

\[
R = \rho f_y \left(1 - 0.59 \frac{f_y}{f'_c} \right)
\]

\[(2.34) \]
2.4 Practical Design Considerations

2.4.2 Beam Sizes, Bar Spacing, Concrete Cover

Beam sizes should be dimensioned as
1. Use whole inches for overall dimensions, except for slabs use $\frac{1}{2}$ inch increment.
2. Ideally, the overall depth to width ratio should be between 1.5 to 2.0 (most economical).
3. For T beams, flange thickness should be about 20% of overall depth.

Reinforcing bars
1. Minimum spacing between bars, and minimum covers are needed to
 (a) Prevent Honeycombing of concrete (air pockets)
 (b) Concrete (usually up to 3/4 in MSA) must pass through the reinforcement
 (c) Protect reinforcement against corrosion and fire
2. Use at least 2 bars for flexural reinforcement
3. Use bars #11 or smaller for beams.
4. Use no more than two bar sizes and no more than 2 standard sizes apart (i.e. #7 and #9 acceptable; #7 and #8 or #7 and #10 not).
5. Use no more than 5 or 6 bars in one layer.
6. Place longest bars in the layer nearest to face of beam.
7. Clear distance between parallel bars not less that d_b (to avoid splitting cracks) nor 1 in. (to allow concrete to pass through).
8. Clear distance between longitudinal bars in columns not less that $1.5d_b$ or 1.5 in.
9. Minimum cover of 1.5 in.
10. Summaries in Fig. 2.7 and Table 2.1, 2.2.

2.4.3 Design Aids

Basic equations developed in this section can be easily graphed.

Review Given $b \ d$ and known steel ratio ρ and material strength, ϕM_n can be readily obtained from $\phi M_n = \phi Rbd^2$

Design in this case
1. Set $M_d = \phi Rbd^2$
2. From tabulated values, select ρ_{max} and ρ_{min} often $0.5\rho_b$ is a good economical choice.
3. Select R from tabulated values of R in terms of f_y, f'_c and ρ. Solve for bd^2.
4. Select b and d to meet requirements. Usually depth is about 2 to 3 times the width.
5. Using tabulated values select the size and number of bars giving preference to larger bar sizes to reduce placement cost (careful about crack width!).
6. Check from tables that the selected beam width will provide room for the bars chosen with adequate cover and spacing.
2.5 USD Examples

Example 2-5: Ultimate Strength; Review

Determine the ultimate moment capacity of example 2.1 $f'_c = 4,000$ psi; $f'_t = 475$ psi; $f_y = 60,000$ psi; $A_s = 2.35\text{ in}^2$

Solution:

\[\rho_{act} = \frac{A_s}{bd} = \frac{2.35}{(10)(23)} = 0.0102 \] \hfill (2.39-a)

\[\rho_b = 0.85\beta_1 \frac{f'_c}{f_y} \frac{87}{87 + f_y} = (0.85)(0.85) \frac{4}{60} \frac{87}{87 + 60} = 0.0285 > \rho_{act} \sqrt{a} \] \hfill (2.39-b)

\[a = \frac{A_s f_y}{0.85 f'_t b} = \frac{(2.35)(60)}{(0.85)(4)(10)} = 4.15 \text{ in} \] \hfill (2.39-c)

\[M_n = A_s f_y \left(d - \frac{a}{2} \right) = (2.35)(60) \left(23 - \frac{4.15}{2} \right) = 2,950 \text{ k.in} \] \hfill (2.39-d)

\[M_d = \phi M_n = 0.9(2,950) = 2,660 \text{ k.in} \] \hfill (2.39-e)

Note:
Example 2-7: Ultimate Strength; Design II

Design a R/C beam for \(b = 11.5 \) in; \(d = 20 \) in; \(f'_c = 3 \) ksi; \(f_y = 40 \) ksi; \(M_d = 1,600 \) k.in

Solution:

Assume \(a = \frac{d}{5} = \frac{20}{5} = 4 \) in

\[
A_s = \frac{M_d}{\phi f_y (d - \frac{a}{3})} = \frac{(1,600)}{(0.9)(40)(20 - \frac{4}{3})} = 2.47 \text{ in}^2 \quad (2.42)
\]

Check assumption,

\[
a = \frac{A_s f_y}{(0.85)f'_c b} = \frac{(2.47)(40)}{(0.85)(3)(11.5)} = 3.38 \text{ in} \quad (2.43)
\]

Thus take \(a = 3.3 \) in.

\[
A_s = \frac{(1,600)}{(0.9)(40)(20 - \frac{3.3}{2})} = 2.42 \text{ in}^2 \quad (2.44-a)
\]

\[
\Rightarrow a = \frac{(2.42)(40)}{(0.85)(3)(11.5)} = 3.3 \text{ in} \quad (2.44-b)
\]

\[
\rho_{act} = \frac{2.42}{(11.5)(20)} = 0.011 \quad (2.44-c)
\]

\[
\rho_b = \frac{(0.85)(0.85)}{40} \frac{87}{87 + 40} = 0.037 \quad (2.44-d)
\]

\[
\rho_{max} = 0.75 \rho_b = 0.0278 > \rho_{act} \sqrt{ } \quad (2.44-e)
\]

Example 2-8: Exact Analysis

As an Engineer questioning the validity of the ACI equation for the ultimate flexural capacity of R/C beams, you determined experimentally the following stress strain curve for concrete:

\[
\sigma = \frac{2 f'_c}{\varepsilon_{max}} \frac{\varepsilon}{1 + \left(\frac{\varepsilon}{\varepsilon_{max}} \right)^2} \quad (2.45)
\]

where \(f'_c \) corresponds to \(\varepsilon_{max} \).

1. Determine the exact balanced steel ratio for a R/C beam with \(b = 10'' \), \(d = 23'' \), \(f'_c = 4,000 \) psi, \(f_y = 60 \) ksi, \(\varepsilon_{max} = 0.003 \).

(a) Determine the equation for the exact stress distribution on the section.

(b) Determine the total compressive force \(C \), and its location, in terms of the location of the neutral axis \(c \).
Chapter 3

SHEAR

3.1 Introduction

1. Beams are subjected to both flexural and shear stresses. Resulting principal stresses (or stress trajectory) are shown in Fig. 3.1.

![Diagram of principal stresses in beam](image)

Figure 3.1: Principal Stresses in Beam

2. Due to flexure, vertical flexural cracks develop from the bottom fibers.

3. As a result of the tensile principal stresses, two types of shear cracks may develop, Fig. 3.2:

![Diagram of shear cracks](image)

Figure 3.2: Types of Shear Cracks

Web shear cracks: Large V, small M. They initiate in the web & spread up & down at $\approx 45^\circ$.
3. Compute the principal stresses
4. Equate principal tensile stress to the tensile strength

Using a semi-analytical approach
1. Assume that f_c is directly proportional to steel stress

$$
\begin{align*}
 f_c &= \alpha \frac{f_s}{E_s} \\
 M_n &= A_s f_s j d \Rightarrow f_s = \frac{M_n}{A_s j d} \quad \left\{ \begin{array}{l}
 f_c = \alpha M_n \\
 \rho = \frac{A_s}{n j d}
\end{array} \right. \\
 f_c &= \alpha \frac{M_n}{n j p j b d^2} = F_1 \frac{M_n}{j p b d^2}
\end{align*}
$$

(3.1)

2. Shear stress

$$
 v_n = F_2 \frac{V_n}{b d}
$$

(3.2)

3. From Mohr’s circle, the tensile principal stress is

$$
 f_1 = \frac{f_c}{2} + \sqrt{\left(\frac{f_c}{2}\right)^2 + v_n^2}
$$

(3.3)

4. Set f_1 equal to the tensile strength

$$
 \begin{align*}
 f_1 &= f'_1
 V_n &= f'_1 \frac{V_n}{b d}
 V_n &= f'_1 \frac{V_n}{f'_1 b d}
 &= \frac{f'_1}{f'_1 b d}
\end{align*}
$$

(3.4-a, 3.4-b, 3.4-c)

Combining Eq. 3.1, 3.2, and 3.3

$$
\begin{align*}
 \frac{V_n}{b d} &= \frac{f'_1}{2} \left[\frac{F_1 E_c M_n}{E_s p V_n d} + \left(\frac{F_1 E_c M_n}{E_s p V_n d} \right)^2 \right]^{1/2}
\end{align*}
$$

(3.5)