REDOX HALF-REACTION REDUCTION POTENTIALS AND FREE ENERGIES¹

Redox Pair	Electron donor compound	E _O ' (volt)	ΔG_{O} ' (kJ/e ⁻)
(ox/red)			
CO ₂ /CH ₂ O	carbohydrate	-0.43	+41.5
CO ₂ /CH ₃ OH	methanol	-0.39	+37.5
CO ₂ /CH ₃ COCOO	pyruvate	-0.37	+35.8
CO ₂ /CH ₂ CHOHCOO	lactate	-0.34	+32.9
$CO_2/C_{16}H_{24}O_5N_4$	protein	-0.333	+32.2
$CO_2/C_{10}H_{19}O_3N$	domestic wastewater BOD	-0.33	+31.8
CO ₂ /CH ₃ CH ₂ OH	ethanol	-0.33	+31.8
CO ₂ /CH ₃ COO	acetate	-0.29	+28.0
$CO_2/C_2H_5COO^{-1}$	propionate	-0.29	+28.0
$CO_2/C_8H_{16}O$	Oil and Grease	-0.29	+28.0
CO ₂ /CH ₄	methane	-0.25	+24.1
SO ₄ ²⁻ /HS ⁻	sulfide	-0.217	+20.9
NO_3^-/NH_4^+	ammonium	+0.36	-34.7
NO_3^-/N_2	nitrogen	+0.75	-72.4
Fe ³⁺ / Fe ²⁺	ferrous iron	+0.77	-74.3
O_2/H_2O	water	+0.82	-79.1

Examples of use of redox energetic in biological processes

$$0.25\text{CO}_2 + \text{H}^+ + \text{e}^- \rightarrow 0.25\text{CH}_2\text{O} + 0.25\text{H}_2\text{O}$$
 $\Delta G_0' = 41.5$ (carbon fixation requires a lot of energy; carbohydrate oxidation yields energy)

$$0.2~\text{NO}_3^- + 1.2\text{H}^+ + \text{e}^- \rightarrow 0.1\text{N}_2 + 0.6\text{H}_2\text{O}$$
 $\Delta G_0^{'} = -72.4$ (denitrification yields energy, nitrogen oxidation consumes energy)

$$0.25O_2 + H^+ + e^- \rightarrow 0.5H_2O$$
 $\Delta G_O' = -79.1$ (reduction of oxygen, e.g., respiration, yields more energy than denitrification, while production of oxygen from water, e.g., photosynthesis, takes energy)

1. Values for pH=7, F = 96.5 kJ/volt, ΔG_0 ' sign convention for reduction half-reaction