## **IDEAL REACTORS**

Definition: a reactor is a system (volume) with boundaries. Mass may enter and leave across boundary.

Characteristics:

System:

- 1. Closed or intermittent: no mass enters or leaves during reaction(s) are **batch or semi-batch reactors**
- 2. Open (control volume): mass enters/leaves during reaction(s) are **continuous flow reactors**

Mixing:

- 1. Completely mixed: mass is homogeneous throughout system
  - Batch/semi-gatch
  - Continuous: Continuous stirred tank reactor (CSTR)
- 2. Completely segregated: mass does not mix, no dispersion with heterogeneous conditions
  - Plug flow reactor (PFR)

# NON-IDEAL REACTORS

Definition: reactors do not meet ideal conditions of flow and mixing due to:

- **Dispersion** deviates from ideal plug flow conditions
- Short-circuiting and dead spaces deviate from ideal mixing and plug flow conditions
- Filling and drawing deviate from ideal batch conditions

# MASS BALANCE

**Mass Inflow + Mass generated = Mass outflow + Mass accumulated** 

- Inflow and outflow terms are associated with mass crossing the system (reactor) boundary
- Generation term is associated with reactions (chemical or biological)
- Accumulation term is associated with the actual accumulation (or loss) of mass from the system resulting from combined effects of inflow, outflow and reaction.

### **APPLICATION OF MASS BALANCE**

**Ideal Batch Reactor**, volume = V, reactant concentration = C

mass balance with inflow = out flow = 0

$$\frac{\mathrm{d}(\mathrm{VC})}{\mathrm{dt}} = \mathrm{Vr}_{\mathrm{C}}$$



for constant volume

$$V \frac{dC}{dt} = Vr_{c}$$
$$\frac{dC}{dt} = r_{c}$$

$$\frac{dC}{dt} =$$

for a first-order reaction where C is consumed from an initial concentration of Co:

$$r_{\rm C} = -kC$$

and

$$\frac{dC}{dt} = -kC$$
$$\int_{C_0}^{C} \frac{dC}{C} = -k \int_{0}^{t} dt$$
$$C = C_0 exp(-kt)$$

Q,

#### **Ideal Continuous Stirred Tank Reactor (CSTR)**

 $Q = \text{fluid flowrate } (\text{m}^{3}/\text{d}) \qquad \qquad \overrightarrow{C_{0}} \\ V = \text{volume } (\text{m}^{3}) \\ C_{0} = \text{influent concentration of C } (\text{g/m}^{3}) \\ C = \text{reactor and effluent concentration of C } (\text{g/m}^{3}) \end{cases}$ 



Steady-flow of water conditions:  $Q_{in} = Q_{out} = Q$  and  $\frac{dV}{dt} = 0$ 

$$QC_O + Vr_C = QC + V\frac{dC}{dt}$$

÷Q

$$C_{O} - C + \frac{V}{Q}r_{C} = \frac{V}{Q}\frac{dC}{dt}$$

Quantity  $\frac{V}{Q}$  is defined as the hydraulic residence time (HRT) denoted with the symbol,  $\tau$ .

For a conservative tracer,  $r_C = 0$ 

Restate mass balance:

$$C_O - C = \tau \frac{dC}{dt}$$

Integrate for CSTR with a step input of tracer,  $C_0$  beginning at t = 0

$$\int_{0}^{C} \frac{dC}{(C_o - C)} = \frac{1}{\tau} \int_{0}^{t} dt$$
$$\ln\left(\frac{C_o - C}{C_o}\right) = -\frac{t}{\tau}$$
$$C = C_0(1 - \exp(-t/\tau))$$



Note asymptote, as  $t \rightarrow \infty$ ,  $C \rightarrow C_0$ , which is equivalent to  $dC/dt \rightarrow 0$ , which defines the steady state condition (accumulation = 0)

Example:

Calculate time to reach 95% of the steady-state condition in a CSTR:

$$C/C_0 = 0.95 = (1 - \exp(-t/\tau))$$
$$exp(-t/\tau) = 1 - 0.95$$
$$-t/\tau = \ln(0.05) = -3$$
$$t_{95\%} = 3\tau\Sigma$$

This is characteristic of CSTR flow, and also can be shown to be true in a CSTR with a reaction.

$$C = \frac{C_0}{(1+k\tau)} (1-exp(-\frac{t}{\tau}))$$



# CSTR with first order reaction and steady-state conditions:

$$C_0 - C + \tau(-kC) = 0$$
$$C_0 - C(1 + k\tau) = 0$$

$$C = \frac{C_0}{(1+k\tau)}$$