AREN 2110: Thermodynamics

Spring 2011

HOMEWORK 6: Due Friday, March 4, 6 PM (13 problems, 45 points possible)

1. (6 points: 1 per part) Refrigerant (R-134a) at a pressure of 1 MPa and $60^{\circ} \mathrm{C}$ flows into a well-insulated mixing chamber at a rate of $2 \mathrm{~kg} / \mathrm{s}$. Saturated liquid R-134a at the same pressure enters the mixer at a rate of $0.0008695 \mathrm{~m}^{3} / \mathrm{s}$. Assume steady flow conditions.

a) What is the temperature of the refrigerant at the mixer outlet?
b) What is the percent liquid in the refrigerant at the mixer outlet?
c) After mixing, the refrigerant enters an adiabatic throttling valve that reduces the pressure to 200 kPa . What is the specific enthalpy of the refrigerant at the throttling valve outlet?
d) What is the temperature of the refrigerant at the throttling valve outlet?
e) What percent of the $\mathrm{R}-134 \mathrm{a}$ is liquid at the throttling valve outlet?
e) Draw the throttling valve process on the $\mathrm{P}-\mathrm{v}$ diagram for refrigerant.

2. (3 points) Air is accelerated in an insulated nozzle from $30 \mathrm{~m} / \mathrm{s}$ to $180 \mathrm{~m} / \mathrm{s}$ under the following conditions:

Estimate the mass flow rate, the exit temperature, and the exit area of the nozzle.
3. (2 points) Air at a mass flow rate of $2.5 \mathrm{~kg} / \mathrm{s}$ is decelerated in a diffuser from $220 \mathrm{~m} / \mathrm{s}$, with $\mathrm{A}_{2} / \mathrm{A}_{1}=3$. The device loses 18 kW of heat during its steady state operations under the following conditions:

$$
\mathrm{T}_{1}=27 \mathrm{C}
$$

$$
\mathrm{T}_{2}=42 \mathrm{C}, 101 \mathrm{kPa}
$$

Determine the exit velocity and the inlet pressure of air.
4. (3 points) Steam expands in an insulated turbine at a flow rate of $1.2 \mathrm{~kg} / \mathrm{s}$. The change in kinetic energy, the power output, and the turbine inlet area are to be determined from the following conditions.

5. (2 points, 1 per part) Refrigerant-134a is compressed steadily by an insulated compressor at a mass flow rate of $1.2 \mathrm{~kg} / \mathrm{s}$. Determine the power input to the compressor and the volume flow rate of the refrigerant at the compressor inlet.

6. (3 points, one per part) Helium (He) enters a compressor at 100 kPa and $17^{\circ} \mathrm{C}$ at a steady flow rate of $0.1 \mathrm{~kg} / \mathrm{s}$. The inlet area is $50 \mathrm{~cm}^{2}$. Helium leaves the compressor at 500 kPa and $37^{\circ} \mathrm{C}$ through a $25 \mathrm{~cm}^{2}$ outlet. The compressor loses heat to the surroundings at a rate of $5 \mathrm{~kJ} / \mathrm{kg}$.
a) Calculate the volumetric flow rates of He at the inlet and outlet, in $\mathrm{m}^{3} / \mathrm{s}$?
b) Calculate the change in kinetic energy of the helium during compression, in kw.
c) What is the power required for compressing the helium, in kw? Use room temperature value for specific heat (300 K).

7. (2 points) During the throttling process, the temperature of a fluid drops from $30^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}(253 \mathrm{~K})$. Can this process occur adiabatically? Under what condition(s)?
8. (2 points) Steam enters an insulated nozzle at 200 kPa and $200^{\circ} \mathrm{C}$ and leaves at 150 kPa and $150^{\circ} \mathrm{C}$. The inlet-to-outlet diameter ratio for the nozzle, $\mathrm{D}_{1} / \mathrm{D}_{2}=1.80$. Find the inlet and outlet velocities of the steam.
9. (2 points, 1 per part) A glass bottle washing facility uses a well-mixed hot water bath at $55^{\circ} \mathrm{C}$. The bottles enter the washer at a rate of 800 per minute at an ambient temperature of $20^{\circ} \mathrm{C}$ and leave at the bath water temperature. Each bottle has a mass of 150 g and as it leaves the bath, takes 0.2 g water with it. Make up water with temperature of $15^{\circ} \mathrm{C}$ is used to keep the mass of water in the bath constant. Assuming no heat loss from the outer surface of the bath tank, calculate:
a) The rate at which water must be supplied to maintain a constant mass of water
b) The rate at which heat must be supplied to maintain steady operation
10. (4 points. 1 per part) A car is left with its windows closed on a summer day and the interior air reaches a temperature of $60^{\circ} \mathrm{C}$.
a) At what rate must heat be removed by an air conditioner in the car to bring the temperature to $22{ }^{\circ} \mathrm{C}$ in 5 minutes? Assume the windows remain closed during cooling. The volume of air in the car is $7 \mathrm{~m}^{3}$, and the air pressure $=100 \mathrm{kPa}$. Solar radiation heats the car at the rate of $10 \mathrm{~kJ} / \mathrm{min}$ and the air conditioner has a $100-\mathrm{w}$ fan.

The air conditioner uses R-134a refrigerant as a working fluid. The car air is cooled by blowing it across tubes in a heat exchanger. The R-134a enters the heat exchanger pipes as a saturated mixture at 320 kPa and quality $=0.3$ and exits the exchanger as saturated vapor at the same pressure.
b) What mass flow rate of refrigerant is required to cool the car interior as for part a?
c) After evaporation in the heat exchanger, the saturated $\mathrm{R}-134 \mathrm{a}$ vapor is compressed to a pressure of 1 MPa and temperature $=50^{\circ} \mathrm{C}$ in an adiabatic compressor. What is the power requirement for the compressor?
d) Graph the R-134a processes on a P-V diagram (below)

11. (7 points, 1 per part) A house kept at $20^{\circ} \mathrm{C}$ loses $600 \mathrm{~kJ} / \mathrm{min}$ heat during January when the average outside temperature is $5^{\circ} \mathrm{C}$. In addition, cold air infiltrates the house at a rate of 0.005 $\mathrm{m}^{3} / \mathrm{s}$. Since the mass of air in the house does not change, the house loses warm air to the outdoors at the same mass flow rate. Finally, appliances use 2 kw electricity which adds energy to the house.

a) What is the mass flow rate of infiltrating air?
b) At what rate must heat be added to keep the house at $20^{\circ} \mathrm{C}$?
12. (5 points, 1 per part) Heat for the house is provided from the condenser of a heat pump where heat is rejected as R-134a condenses at a constant pressure of 1 MPa from a vapor at 50 ${ }^{\circ} \mathrm{C}$ at the inlet to a saturated liquid at the outlet.
a) What is the temperature of the R-134a at the outlet?
b) What is the change in specific enthalpy ($\mathrm{kJ} / \mathrm{kg}$) of the $\mathrm{R}-134 \mathrm{a}$ during the condensation process?
c) Calculate the mass flow rate of $\mathrm{R}-134$ a required to keep the house at $20^{\circ} \mathrm{C}$.
d) The refrigerant leaves the condenser and enters a throttling valve where the pressure is reduced from 1 MPa to 200 kPa . What is the temperature of the R134a at the throttling valve outlet? Justify your answer.
e) What is the vapor content of the refrigerant at the throttling valve outlet?
13. (4 points, 2 per part) Hot water is cooled by air flow in a well-insulated heat exchanger. The hot water inlet temperature is $80^{\circ} \mathrm{C}$, and the outlet temperature is $30^{\circ} \mathrm{C}$. Air flows to the air inlet at $800 \mathrm{~m}^{3} / \mathrm{min}$ at a pressure of 100 kPa and a temperature of 27 ${ }^{\circ} \mathrm{C}$. The exit air pressure is 95 kPa and temperature $=60^{\circ} \mathrm{C}$.
a) Find the mass flow rate of water that satisfies the conditions given.
b) Find the volumetric air flow rate at the air outlet.

