Homework #2: Due Friday, Jan 28, 6 PM

- 1. What is the difference between a saturated liquid and a compressed liquid?
- 2. A mixture of liquid water and water vapor fills a rigid-wall tank. Heat is added until all the liquid is converted to saturated vapor. Will the temperature and pressure of the water change during the process.
- 3. Water is heated in a vertical piston-cylinder device. The piston has a mass of 20 kg and cross sectional area of 100 cm². The local atmospheric pressure is 100 kPa. At what temperature will the water begin to boil?

- 4. Determine the pressure exerted on a diver at 30 m below the free surface of the ocean. Assume the barometric pressure is 101 kPa and the specific gravity of seawater is 1.03.
- 5. The value for the gas constant, R, for an ideal gas is 0.4119 kJ/kg-K. What is the gas?
- 6. Does the amount of heat absorbed as 1 kg of saturated liquid water boils to saturated vapor have to the same as the heat released when 1 kg saturated water vapor condenses at 100 °C? Explain.
- 7. Complete the following table for H₂O

P (kPa)	T (°C)	$v (m^3/kg)$	phase
	50	4.16	
200			Saturated vapor
400	250		-
600	110		

8. Complete the following table for H_2O :

P (kPa)	T (°C)	h (kJ/kg)	X	phase
200			0.7	
	140	1800		
950			0.0	
500	80			
800		3162.2		

9. Complete the following table for the various substances

substance	P (kPa)	T (°C)	$v (m^3/kg)$	х*	phase
H_2O		150		0.4	
H_2O		150	0.4708		
R-134a		0	0.0500		
R-134a	400	0			

^{*} use "na" for "not applicable" where quality does not apply

- 10. A piston-cylinder device contains 0.85 kg of refrigerant 134a at -10 °C (263 K). The piston has a mass of 12 kg and a diameter of 25 cm. The local atmospheric pressure is 88 kPa. Now, heat is transferred to the refrigerant until the temperature is 15 °C. Determine:
 - a. The final pressure
 - b. The change in volume of the cylinder space
 - c. The change in enthalpy of the refrigerant
- 11. A rigid-wall tank with a volume of 2.5 m³ initially contains 15 kg of saturated liquid-vapor mixture of water at 75 °C. The water is slowly heated until all the water is saturated vapor.
 - d. What is the quality of the mixture at the initial state (before heating)?
 - e. Determine the temperature at with the liquid in the tank is completely vaporized to saturated vapor.
 - f. What is the pressure in the tank?
 - g. Show the process on the T-v diagram on the next page.

12. One kilogram (1 kg) of water vapor at 200 kPa fills the left chamber of a partitioned system shown below. The volume of this chamber is 1.1989 m³. The right chamber has twice the volume of the left chamber and is evacuated at the initial state.

1 kg water 200 kPa 1.1989 m ³	
--	--

Now the partition is removed and heat is transferred so that the temperature of the water is 3 °C.

- a. What is the initial temperature of the water (before the partition is removed)?
- b. What is the pressure of the water after the partition is removed and heat transferred?
- c. What is the quality of water at the final equilibrium state?