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ABSTRACT: Localized deformation such as shear bands, compactionshatidtion bands, combined shear/compaction or
shear/dilation bands, fractures, and joint slippage amnsonly found in rocks. Thus, modeling their inception, depenent
and propagation, and effect on stress response is imporfdns paper will focus on modeling the inception of thesealed
deformations—the onset of bifurcation to a localized mateleformation response—for a three-invariant, isotttfghematic hard-
ening cap plasticity model. Bifurcation analysis is thetfatep in developing a constitutive model for representimggttansition of
continuous rock-like material to fragmented rock materiaéveloping a post-bifurcation constitutive model and eudal imple-
mentation, whether via the finite element method or a meshirethod, is the next step and will not be discussed in thismot

is part of our ongoing research). Applications of a constitumodel for modeling localized deformation in geomadksriinclude
assessing the long term performance of nuclear waste tegesj designing tunneling construction, oil and natges production,
and depleted reservoirs used for subsurface sequestdditipaenhouse gases.

1. INTRODUCTION into a continuum constitutive model via directional
structure/anisotropy tensors or the like. Either way,
Localized deformation such as shear bands, comgepending on boundary and loading conditions, the
paction bands, dilation bands, combined shearmaterial deformation response predicted by the con-
compaction or shear-dilation bands, fractures, andtitutive model could become mathematically unsta-
joint slippage are commonly found in rocks. Theseple, This mathematical instability could be made
localized deformations can be triggered by either ma+g coincide with the natural material instability ob-
terial inhomogeneities such as joint sets in rocks,served in the field or laboratory. The most straight-
inhomogeneous stress resulting from boundary conforward way to do this is to endow the constitutive
ditions such as friction at end platens in a con-model with as much material characterization and
fined compression test, or by some microstructurallyrepresentative deformation response that is deemed
driven material instability. We can account for mate- significant for the problem of interest. For example,
rial inhomogeneities by constitutive modeling in con- if joint sets are plentiful and dominate the material
junCtion with a numerical simulation method such aSdeformation response, they must be represented in
the finite element method. Significant material in- the constitutive model. Depending on the boundary
homogeneities such as strata and joint sets can bgng |oading conditions, the model must predict the
meshed discretely, assigning different material prop-gnset of gross localized deformation resulting from
erties for each spatial region of the finite elementactivity of certain critical joint sets. In essence, the
mesh, or they can be incorporated in an average sensgility of a continuum constitutive model to predict



material instability in the form of localized deforma- that at a given stress state a discontinuity is admissi-
tion is only as good as the model’s sophisticationble in our material body. This condition is necessary
in terms of representing material behavior. Somebut not sufficient for the discontinuity to appear. It
questions we should ask when choosing and develis well known in the literature that for rate sensitive
oping constitutive models for geomaterials are: Isplasticity, large positive values of viscosity preclude
the material isotropic or anisotropic elastically and/orloss of ellipticity (i.e., deA > 0), unless the vis-
plastically? Is the material temperature and rate-cosity is small enough such that the model is nearly
sensitive? Are joint sets or other in-situ material in- rate insensitive. Hence, loss of ellipticity is not a
homogeneities prominent? meaningful bifurcation condition for a rate sensitive
geomaterial model. This requires us to determine a
Given a relatively sophisticated continuum constitu- physically meaningful bifurcation condition for the
tive model for geomaterials, this paper focuses omnrate sensitive form of the model since we know from
determining stress states at which the constitutivdaboratory tests and field evidence that failure occurs
model predicts mathematical instabilities. With re- for rate sensitive materials. In addition, we question
gard to modeling material deformation response aftewhether ded = 0 for the rate insensitive form is a
an instability is detected, such as transition of con-physically meaningful bifurcation condition because
tinuous rock-like material to fragmented rock mate- it depends on a continuum constitutive model and
rial, this instability will be referred to as a bifurcation on a fit of its material parameters to data determined
in material response. Developing a post-bifurcationfrom homogeneously deforming experimental speci-
constitutive model and numerical implementation, mens. It seems physically meaningful to have similar
whether via the finite element method or a meshfreebifurcation criteria for both rate insensitive and rate
method, is the next step in modeling material failure sensitive forms of the model. This paper, however,
in geomaterials and will not be discussed in this pa-focuses on bifurcation analysis of rate insensitive and
per. sensitive forms of a geomaterial constitutive model.
Future work will revisit this issue.
The bifurcation analysis assumes strong (jump in dis-
placement) and weak (jump in strain) discontinuity Throughout the paper we assume small deformations
kinematics for both rate insensitive and rate sensitiveand rotations. Symbolic notation is used for clearer
forms of the constitutive model. For the rate insen-presentation, such as the inner product of two second
sitive form, different bifurcation conditions result for order tensoréa-b);;, = a;;b;i, the contraction of two
strong and weak discontinuities as well as whethettensorsa : b = «a;;b;;, or the dyadic producta ®
bifurcation is continuous or discontinuous. Continu- b);;x;, = a;;b,;. Tensor operators are used such as the
ous bifurcation assumes that at the instant of bifurcatrace operator tt = a;;, deviatoric operator dev =
tion there is plastic loading outside the discontinuity a — (tra/3)1, symmetric gradientV*v);; = (v; ; +
as well as within/on it [1]. Discontinuous bifurcation v,;)/2, and divergencéV - a); = a;; ;.
assumes there is elastic unloading outside the discon-
tinuity and plastic loading within/on the discontinu- 2. KINEMATICS AND GOVERNING EQUA-

ity. Rice and Rudnicki [1] analyzed continuous and TIONS FOR WEAK AND STRONG DISCONTI-
discontinuous bifurcation for weak discontinuities in NUITIES

the context of rate insensitive hon-associative plas-

ticity. We will extend this analysis to strong discon- Forweak discontinuities, we assume a planar band
tinuities and rate sensitivity and with future numeri- with thicknessh, which is small relative to the size of
cal examples will address specifically the effects ofthe body (0.1% or 1%), such thath is a large num-
the third invariant and backstress on bifurcation. Forber but remains bounded. The strain rate assuming
weak discontinuity, we find there is a difference be- small strains is written as [3]

tween continuous and discontinuous bifurcation con- B .0 1 N

ditions, whereas for strong discontinuity, there is no ¢ — { € =€+ Eﬁqu”ﬂ ®n) € th (1)
difference. We solve for the unit normalto a dis- € € M\B
continuity interface that satisfies the loss of ellipticity \yneree — Vv, superscript 1 denotes just inside the

condition, the determinant of the acoustic tengbr  pand and 0 denotes just outside the band (say, across
is zero (detd = 0) [2], which results from the con- 8", [v] = v, — v_ is the jump in velocity across
dition that traction is continuous across the disconti-the hand, anch is the unit normal to the band (cf.

nuity. This bifurcation condition in essence tells us gjg 1),



Figure 1. Body( with planar weak discontinuity3” (Q =
Q,uQ uB", T =T, ur,ustush, B" =B"ur}u
rrustush, Q=qurn).

The local form of quasi-static, isothermal equilib-
rium for a body<) with weak discontinuity is written
as follows

V-o+b 0 in Q (2)
o-v = t° on I}
u = g only
[o] mn. = 0 across S"
[] - m. = 0 across S"
whereo is the Cauchy stress ;s the prescribed body
force, v is the unit normal td’;, n, = n_ = n

is the unit normal taS" and S" since the band is
assumed planat? is the prescribed tractiow, is the
prescribed displacement, afie] denotes the jump
in stress acrosS” or S” (i.e.,[o] = o' — 09).

The variational form of quasi-static equilibrium,

using the local form as a point of departure, then mayA‘

be written as follows
/Vsn:adQ - /n-bdQJr/n-t”dF
Q Q Iy

+/5 7 - ([o] - n) dT

h
+

+ [,n-(ol-m)ydr @

wheren = du is the weighting function and first
variation of u. The traction continuity condition
[o] - n = 0 acrossS” andS" for a body with weak
discontinuities will be used to determine bifurcation.

For strong discontinuities, a spatial jump in ve-
locity [v] acrossS leads to a singular strain rate&t
as [4]

e S

PU sygn([['v]] ®mn)is Sovs (@)

€

whereds is the Dirac-delta function at the disconti-
nuity surfaceS (cf. Fig.2).

Figure 2. BodyQ) with planar strong discontinuity (2 =
QuQ_, =T, uryus, Q=QUr).

The local form of quasi-static, isothermal equilib-
rium for a body(2 with strong discontinuity is written
as follows

V:o+b = 0 in Q (5)
oc-v = t° on I}
u = g on I,
[e] - m = 0 across S

wheren is the unit normal taS and[o] is the jump
in stress acrosS.

The variational form of quasi-static equilibrium is
then

/QVSn:adQ - /Qn-bd9+/rtn-tadr
+ [n-(le]-myar )

s for weak discontinuities, the traction continuity
condition[e] - n = 0 for a body with strong discon-
tinuities will be used to determine bifurcation.

3. THREE-INVARIANT ISOTROPIC KINE-
MATIC HARDENING PLASTICITY MODEL FOR
GEOMATERIALS

Here, a brief summary is given of a three-invariant
isotropic/kinematic hardening cap plasticity model.
For more details, refer to [5].

3.1. Rate insensitive model

For small strains, an additive decomposition of the
strain rate into elastic and plastic parts is assumed

(7)

Assuming linear isotropic elasticity, the constitutive
equation for the stress rate is

€= &+ &

o=c:€,c"=2N1®1+ 2ul (8)



where) andy are the Lamé parameters. wherec is the continuum elasto-plastic tangent.
The single yield surfacg and plastic potential .
functiong are written in terms of the invariants as 3.2. Rate sensitive model
The rate sensitive form of the model involves a stan-
fo= TXBJ5 = [F,(I)PF.(L, k) =0 (9 dard viscous regularization following Perzyna [6],
g = TXJ5 — [FA(L)PFY(L, k) (10)  which can be expressed in generalized Duvaut-Lions
form [7]. The constitutive equations are similar to
wheref is the yield function/3(J5, J5) is the Lode  those of the rate insensitive model except that now
angle, I' is a function of 3* and ¥ (the ratio of there is no consistency condition by which to calcu-
strength in triaxial extension versus triaxial compres-|ate the plastic consistency parameter (hence, regu-
sion,¥ = 1if no difference in strength)y isthe off-  |arizing the rate insensitive plasticity model).
set of the shear failure surfaég(1;) from the initial Revisiting equations from the inviscid model, we
shear yield surfacé, (I;) = Fy(I;) — N, I = 0;;  now introduce a viscoplastic strain rat& such that
is the first stress invariants = %5 : £ isthe second the evolution equations are
invariant of the deviatoric relative stre§s= s — «,

s is the deviatoric stressy is the deviatoric back- € = € +¢€%

stress associated with the Bauschinger effégt= 6 = c°:€ = c: (e — €7

%(5 -£€) : & is the third invariant of the deviatoricrel-  cop  _ 4g

ative stresss is the internal stress variable associated B

with compaction hardening;?(1;) = F{(l;) — N, . 7 p

and ¢ is the plastic potential function allowing for & = Vh

non-associative plastic flow. Material parameters for 5 = <9 (15)
the shear failure surfacg;(/;) are determined from N

peak stress experimental data. The purpose of thﬁ/heren is the viscosity coefficient with units (Ps)

shear failure surface is to limit the.hardenln.g of the rage equations may be expressed in generalized
backstressx. The effect off.(11, ) is to provide @ 5 aut-Lions form as

smooth elliptical cap. A non-associative flow rule is

assumed for plastic flow as e — l(ce)—l (0 — &)
-
. . dg : ~1
S (11) & = —(a-a)
The flow rule is associative if material parametersare . _ __1( Kk — R)
chosen such thgt = ¢g. The evolution of the internal Tﬁ
variables is T = 3 (16)
(2)
> = 7’2 (e); ’: (o) =c f K(a) devg wherer is the relaxation time, ané, &, & are so-
ko= Yh%(k); (k) = 3c¢"G"(k)0g/0L lutions to the inviscid problem. The evolution equa-

To determine the consistency paramejeevaluate tions can be written as

the consistency condition . 1 . . 1_
o+ -0 = cCc:€e+ —0O
. of . of . of. 1 ] !
f—a—o_.a—l—a—a.a—F%/f—O (12) d—i—;a = ;d
then solve for PR 1.
1 ' T T
T ;f e e (13) Since these are linear ODEs, the closed form solution
may be found:
X:f:ce:g—g:ho‘—gh“ Y
oo Ok oy _
ot) = (6(0)—a)e™ + &
wheref = Jf/Jo. Substituting into the rate equa- e [t e
tion for stress gives +e e 3/0 e*7€é(s)ds (17)

. .1, AN aft) = (a0)-a)e™"" + & (18)
UZ(C—;CZQ@]":C):G:C (€ (14) k() = (K(0)—R) eV + & (19)



To obtain the inviscid solutior; — 0, and to obtain
the elastic solutionr — oo.

For bifurcation analysis, it is useful to express the 4 = 5 + l% (22)
rate sensitive form of the model in incremental form, hl
given the inviscid solution determined from say an ¥ = —f:c:é
implicit numerical integration scheme like Backward Xl
Euler [8]. Approximating the integration in Eq.(17) A = —f ¢ sym([v] @n)
leads to [6] X

Note thath is finite, and thusy is bounded. Ifi — 0

—At/T —At/T\ =
Tntl = € T/ on + (L=e Mo to make+ unbounded (and, as a result, the stress-
+ Kt(l — e‘At/T)ce : Ae (20)  like internal state variables unbounded and the plas-
At =ty — t tic dissipation undefined) then a strong discontinuity
bifurcation analysis is warranted (see section 4.1.2).
Ae = €,11 — €,

At a material point, assumév] is spatially-

wheret,, . is the current time. Linearizing Eq.(20) invariant such that

leads to [o()] = {(tm (23)
—At/T — T . . .

do = (1—e2) (50 T A '56) (21) where( is the jump rate magnitude ana its di-

rection. Recall from Eq.(2) that for traction to be

whereLo = o° + do is the linearization operator continuous across the planar band with normal

[9]. (6' —6%) - n=0and
4. BIFURCATION ANALYSIS n-¢ = n-¢'
, : : n-ct: & = n-c?: (éo + lsym([['v]] ® n)>
The bifurcation analysis follows closely that con- h
ducted in [10]. As is well-reported in the literature ¢ o
(Sandler & Wright [11], Needleman [12], Sluys & 0 = pnoce-a,a= sym(m ® n)
de Borst [13]) viscous regularization in the manner 0 = n-c?-n)-m=A-m
of Duvaut-Lions inhibits loss of strong ellipticity for — detA=0 for m£0 (24)

strain-softening plasticity models, assuming the vis-

cosity is finite. For a nearly rate insensitive model gquation (24) states that in order for there to be a
(viscosity n ~ 0), however, loss of strong ellip-  nontrivial solutionm + 0 to the traction continuity

of the rate insensitive (inviscid) form of the model, | 3riaplesa andr, we solve deA = 0 for the band
while the second addresses bifurcation of the ratg,ormalsn and thenA - m = 0 for the localized

sensitive model. deformation directions.
4.1 Rate insensitive model Fordiscontinuous bifurcation, there is elastic un-

_ ) o ] loading outside the bangf(: c¢ : € < 0) and plastic
We consider weak discontinuities first and the“loading within the band (f : ¢ : € > 0). The

strong discontinuities, addressing both Continuou%onsistency parameter is then
and discontinuous bifurcation.

: L,
4.1.1. bifurcation with weak discontinuity Vo= 3 (25)
For continuous bifurcation, plastic loading occurs — ;  _ lf R (héo + sym([o] ® n>)
outside the planar bang'(: c¢ : € > 0) and within X

the band f : ¢° : €' > 0) at the instant of bifurca-

tion. The plastic consistency parameter is assumed tBIOte:[ thsth IS ft'.n'te’ and thusy:ﬁ bgunged. For trac-
decompose as (and its two parts determined from thZjon to be continuous across the band,
consistency parameter derived in Eq.(13))



We will show that for the case of strong disconti-
nuity, the bifurcation conditions are the same for con-
n-¢’ = n.o' tinuous and discontinuous bifurcation.

e - (&) 1 e e
n-c:e = n- (C - ;C g frc ) : 4.1.2. bifurcation with strong discontinuity
o 1 Recall the planar surface is of zero measure, such that
(6 + psym([v] ® n)) the velocity field is discontinuous acroSs[4]. For

B . An ¢ . a(26 continuous bifurcation, the plastic consistency pa-
0 = (n-c-n)-m-— ra 9(26)  rameter is decomposed as
In order to determine bifurcation from Eq.(26), we ¥ = 7 + ¥s0s (29)
need to assume a relation for/¢. Assuming ma-

terial within the band in the post-localization regime [N Order for the backstress and isotropic stress to
is governed by a simple Mohr-Coulomb planar fail- be bounded (and the plastic dissipation to be well-

ure model, the ratio between the plastic consistencyl€fined [4]), the hardening modulf and ¢” bifur-
parametery, and shear displacemefiis dependent €até

on the dilation/compaction an cf. Fig. 3) as
Up I I p I 919( lg ) (Ca)—l — (Ea)_l + (Cg«)—l(ss (30)
. a\—1 - _ o
’Y_.h = cos) = m -t (27) (C ) a = G Wd'evg .
¢ a = G“Ydevg = h'y
& = §Gdevg = h§ds

()™ = @)+ () s (31)
Kk = G"ytrg

k= &"G"ytrg = h"Y

K = Cg H")/(gtl'g = hg’)/(;

Then, the consistency condition reads

f= f:c: (e + {ads — (¥ + 4s0s)g)

0 o of - .
Oy L (32)
oo ok
Figure 3. Band normat, tangentt, and velocity jump direc-  @nd for the regular and singular parts of the consis-
tion m with dilation/compaction angle. tency condition to be satisfied,
Then, for continuous traction across the band to be 5 _ lf PR
satisfied for discontinuous bifurcation, X
- e . 8f LG af*n
0 = (n-ccn)m-(m-tyn-c:g X_f'c'g_ﬁ—a'h _%h
0 = n-c"n—(n-c:g)t]-m je = ficisym([v] @ n)
0 = A . m f : Ce : g
= detA=0 for m#0 (28)  Then the stress rate on the surfaer’, and outside

. . . " . the surfaceg’, read
Notice the bifurcation conditions for continuous and 7

discontinuous bifurcation in Egs.(24) and (28), re- ., .
spectively, are different for the case of weak disconti- 7 =
nuity, regardless of the assumption made in Eq.(27).

It is interesting to note that given the assumption in Ze L g® f:ct

Eq.(27), if we have a pure dilation/compaction band +¢ <c8 — g—g) cads  (33)
(i.e., m - t = 0), then discontinuous bifurcation for freig

weak discontinuity is not possible sinceis positive c”

definite (see Eq. (28)). o = ¢7:é (34)



For continuous traction across the discontinuity sur-

face
n- o’ n-o'
n-e¢?:.& = n-éep:éo—l—énfep:aég
0 = (n-&7-n)-mds = A-mds

— detA=0 for m#0 (35)

For discontinuous bifurcation, the consistency
parameter is localized to the discontinuity as

(36)

Again, the hardening moduli bifurcate in order to

i = Al

outside the band are equal!(0) = o*(0). Then, for
continuous traction across the band,

n-o’(t) = mn-o'(t)
0 n-(6'—a)(1—e¥") (41)
+ le_t/Tn c: a/t e*/7¢(s)ds
h 0
70 = n-(6'-a6") =0
T—o00 = (n-c®n)-m =20

As expected, forr — 0 we obtain the bifurcation
condition for the inviscid case, and for— oo, we
obtain the elastic solution and hence no loss of strong
ellipticity (real, elastic wave speeds, after Hadamard,

have well defined plastic dissipation. Then, the con-Cf- Hill [14]). The lower bound £ — 0) on the

sistency condition reads

f —

fict: (€ + (ads — 4590s)
6f_ of
T oa or 0

5V + A-hsvs = (37)

viscous bifurcation condition is useful in that if a ge-
omaterial is nearly rate insensitive even when loaded
to high strain rates, its bifurcation will depend on an
analysis of the inviscid model. Then, the dynamic
characteristics of the crack/shear band propagation
and post-localization constitutive response will be

and for the regular and singular parts of the consisimportant even for a nearly rate insensitive geoma-

tency condition to be satisfied,
) —f:c:é Cf:ce:a
Yo = - = (38)
oL hy+%ng  fico:g

For continuous traction across the discontinuity sur-

faceS
6 = n.o
n-c:e = n-c: +(n-é?: als
0 = Am(;‘g

— detA=0 for m+#0

Thus, the same bifurcation condition results for con-

terial.

For a rate sensitive geomaterial, not so highly vis-
cous to be elasticr( > 0 is finite), there should be
no bifurcation to localized deformation mode; see
Eq.(41). This should be made clear by an analysis
for the discrete form of the integrated equations, as
in section 4.2.3.

For discontinous bifurcation, the analysis is the
same as for continuous bifurcation, except that the
inviscid stress jump across the band interface such as
Sh, &t — a9, is different.

4.2.2 strong discontinuity

For strong discontinuities, bifurcation analysis of

tinuous and discontinuous bifurcation for the case ofthe viscoplastic model is the same as for weak dis-

strong discontinuity localized kinematics.

4.2. Rate sensitive model
4.2.1. weak discontinuity

Forcontinuous bifurcation, from Eq.(17), the stress

just outside and just inside the band are, respectiveI)J;D’

a’(t) = (6°0)-&%e V" + &°
¢
+e7Vmee :/ e*/TE%(s)ds (39)
0
ol(t) = (o%0)—a")e ™ + &!
¢
+e e :/ e*/Té (s)ds (40)
0

where, recallg denotes inviscid stress, and we as-

sume at time zero that the stresses just inside and just

continuities, except of course that the inviscid bi-
furcation analysis is different as shown above in the
analysis of the rate insensitive model.

4.2 .3 discrete form of rate sensitive model

ifurcation analysis of the discrete form of a rate sen-
sitive model allows one to analyze acoustic tensors to
determine mathematical instability.

In linearized form, the incremental strain foeak
discontinuity comes from Eq.(1). For continuous bi-
furcation, from Eq.(14), the incremental stress for the
inviscid solution is given, and from Eq.(21), the in-
cremental stress for the viscous solution is

5o’ (1 —e BT (cel’ + éce> . 0€”  (42)

c”?



So' = &7 : € 5. CONCLUSIONS

Then for continuous traction, One conclusion of this paper is that for a rate insen-
sitive model, bifurcation conditions under weak dis-
n-6c® = n-do! continuity for continuous and discontinuous bifurca-
n-e? -5 — m.eP 50 4+ 5_Cn 6P q tion are _differgnt _where_as they are the same unc_ier
h strong discontinuity. This result for strong disconti-
0 = (&P n)m=A-m nuity stems from bifurcation of the hardening mod-
) — &P — P uli that leads to an elastic-perfectly-plastic acoustic

tensor [4]. For determining mathematical instabil-
ity for weak discontinuities, however, it was shown

and for finiter > 0, & should remain positive def- in [1] that continuous bifurcation provides the lower
inite. i.e. defl > ’0 but more analysis is needed bound for the range of discontinuous bifurcation, and

to determine this. For discontinuous bifurcation, thethus is the more critical condition. For a rate sensi-

incremental form for the inviscid solution along with tive morcljel, It Is lunszrr_)rls_lng that fc(l)r Iarg$ viscos-
the incremental viscous solution gives for continuous'®’ ma_t ematha_ stability is ensured even for _straln-
softening plasticity. But for smaller values of viscos-

T—=00 = P = c¢°

traction, ; : . P .
ity, the bifurcation analysis is inconclusive whether
n-sc® = mn-so mathematical instability will occur or not. Future nu-
0 = —(1- 6_&/7) merical examples will address this question.
f:ct: o€
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