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ABSTRACT: Localized deformation such as shear bands, compaction bands, dilation bands, combined shear/compaction or
shear/dilation bands, fractures, and joint slippage are commonly found in rocks. Thus, modeling their inception, development
and propagation, and effect on stress response is important. This paper will focus on modeling the inception of these localized
deformations—the onset of bifurcation to a localized material deformation response—for a three-invariant, isotropic/kinematic hard-
ening cap plasticity model. Bifurcation analysis is the first step in developing a constitutive model for representing the transition of
continuous rock-like material to fragmented rock material. Developing a post-bifurcation constitutive model and numerical imple-
mentation, whether via the finite element method or a meshfree method, is the next step and will not be discussed in this paper (but
is part of our ongoing research). Applications of a constitutive model for modeling localized deformation in geomaterials include
assessing the long term performance of nuclear waste repositories, designing tunneling construction, oil and naturalgas production,
and depleted reservoirs used for subsurface sequestrationof greenhouse gases.

1. INTRODUCTION

Localized deformation such as shear bands, com-
paction bands, dilation bands, combined shear-
compaction or shear-dilation bands, fractures, and
joint slippage are commonly found in rocks. These
localized deformations can be triggered by either ma-
terial inhomogeneities such as joint sets in rocks,
inhomogeneous stress resulting from boundary con-
ditions such as friction at end platens in a con-
fined compression test, or by some microstructurally
driven material instability. We can account for mate-
rial inhomogeneities by constitutive modeling in con-
junction with a numerical simulation method such as
the finite element method. Significant material in-
homogeneities such as strata and joint sets can be
meshed discretely, assigning different material prop-
erties for each spatial region of the finite element
mesh, or they can be incorporated in an average sense

into a continuum constitutive model via directional
structure/anisotropy tensors or the like. Either way,
depending on boundary and loading conditions, the
material deformation response predicted by the con-
stitutive model could become mathematically unsta-
ble. This mathematical instability could be made
to coincide with the natural material instability ob-
served in the field or laboratory. The most straight-
forward way to do this is to endow the constitutive
model with as much material characterization and
representative deformation response that is deemed
significant for the problem of interest. For example,
if joint sets are plentiful and dominate the material
deformation response, they must be represented in
the constitutive model. Depending on the boundary
and loading conditions, the model must predict the
onset of gross localized deformation resulting from
activity of certain critical joint sets. In essence, the
ability of a continuum constitutive model to predict



material instability in the form of localized deforma-
tion is only as good as the model’s sophistication
in terms of representing material behavior. Some
questions we should ask when choosing and devel-
oping constitutive models for geomaterials are: Is
the material isotropic or anisotropic elastically and/or
plastically? Is the material temperature and rate-
sensitive? Are joint sets or other in-situ material in-
homogeneities prominent?

Given a relatively sophisticated continuum constitu-
tive model for geomaterials, this paper focuses on
determining stress states at which the constitutive
model predicts mathematical instabilities. With re-
gard to modeling material deformation response after
an instability is detected, such as transition of con-
tinuous rock-like material to fragmented rock mate-
rial, this instability will be referred to as a bifurcation
in material response. Developing a post-bifurcation
constitutive model and numerical implementation,
whether via the finite element method or a meshfree
method, is the next step in modeling material failure
in geomaterials and will not be discussed in this pa-
per.

The bifurcation analysis assumes strong (jump in dis-
placement) and weak (jump in strain) discontinuity
kinematics for both rate insensitive and rate sensitive
forms of the constitutive model. For the rate insen-
sitive form, different bifurcation conditions result for
strong and weak discontinuities as well as whether
bifurcation is continuous or discontinuous. Continu-
ous bifurcation assumes that at the instant of bifurca-
tion there is plastic loading outside the discontinuity
as well as within/on it [1]. Discontinuous bifurcation
assumes there is elastic unloading outside the discon-
tinuity and plastic loading within/on the discontinu-
ity. Rice and Rudnicki [1] analyzed continuous and
discontinuous bifurcation for weak discontinuities in
the context of rate insensitive non-associative plas-
ticity. We will extend this analysis to strong discon-
tinuities and rate sensitivity and with future numeri-
cal examples will address specifically the effects of
the third invariant and backstress on bifurcation. For
weak discontinuity, we find there is a difference be-
tween continuous and discontinuous bifurcation con-
ditions, whereas for strong discontinuity, there is no
difference. We solve for the unit normaln to a dis-
continuity interface that satisfies the loss of ellipticity
condition, the determinant of the acoustic tensorA

is zero (detA = 0) [2], which results from the con-
dition that traction is continuous across the disconti-
nuity. This bifurcation condition in essence tells us

that at a given stress state a discontinuity is admissi-
ble in our material body. This condition is necessary
but not sufficient for the discontinuity to appear. It
is well known in the literature that for rate sensitive
plasticity, large positive values of viscosity preclude
loss of ellipticity (i.e., detA > 0), unless the vis-
cosity is small enough such that the model is nearly
rate insensitive. Hence, loss of ellipticity is not a
meaningful bifurcation condition for a rate sensitive
geomaterial model. This requires us to determine a
physically meaningful bifurcation condition for the
rate sensitive form of the model since we know from
laboratory tests and field evidence that failure occurs
for rate sensitive materials. In addition, we question
whether detA = 0 for the rate insensitive form is a
physically meaningful bifurcation condition because
it depends on a continuum constitutive model and
on a fit of its material parameters to data determined
from homogeneously deforming experimental speci-
mens. It seems physically meaningful to have similar
bifurcation criteria for both rate insensitive and rate
sensitive forms of the model. This paper, however,
focuses on bifurcation analysis of rate insensitive and
sensitive forms of a geomaterial constitutive model.
Future work will revisit this issue.

Throughout the paper we assume small deformations
and rotations. Symbolic notation is used for clearer
presentation, such as the inner product of two second
order tensors(a·b)ik = aijbjk, the contraction of two
tensorsa : b = aijbij , or the dyadic product(a ⊗
b)ijkl = aijbkl. Tensor operators are used such as the
trace operator tra = aii, deviatoric operator deva =
a− (tra/3)1, symmetric gradient(∇sv)ij = (vi,j +
vj,i)/2, and divergence(∇ · a)i = aij,j.

2. KINEMATICS AND GOVERNING EQUA-
TIONS FOR WEAK AND STRONG DISCONTI-
NUITIES

For weak discontinuities, we assume a planar band
with thicknessh, which is small relative to the size of
the body (0.1% or 1%), such that1/h is a large num-
ber but remains bounded. The strain rate assuming
small strains is written as [3]

ǫ̇ =

{

ǫ̇1 = ǫ̇0 + 1

h
sym([[v]] ⊗ n) ∈ Bh

ǫ̇0 ∈ Ω\B̄h (1)

whereǫ̇ = ∇
sv, superscript 1 denotes just inside the

band and 0 denotes just outside the band (say, across
Sh

+), [[v]] = v+ − v− is the jump in velocity across
the band, andn is the unit normal to the band (cf.
Fig.1).
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The local form of quasi-static, isothermal equilib-
rium for a bodyΩ with weak discontinuity is written
as follows

∇ · σ + b = 0 in Ω (2)

σ · ν = tσ on Γt

u = g on Γg

[[σ]] · n+ = 0 across Sh
+

[[σ]] · n− = 0 across Sh
−

whereσ is the Cauchy stress,b is the prescribed body
force, ν is the unit normal toΓt, n+ = n− = n

is the unit normal toSh
+ andSh

−
since the band is

assumed planar,tσ is the prescribed traction,g is the
prescribed displacement, and[[σ]] denotes the jump
in stress acrossSh

+ or Sh
−

(i.e., [[σ]] = σ1 − σ0).
The variational form of quasi-static equilibrium,

using the local form as a point of departure, then may
be written as follows
∫

Ω

∇
sη : σ dΩ =

∫

Ω

η · b dΩ +
∫

Γt

η · tσ dΓ

+
∫

Sh
+

η · ([[σ]] · n) dΓ

+
∫

Sh
−

η · ([[σ]] · n) dΓ (3)

whereη = δu is the weighting function and first
variation of u. The traction continuity condition
[[σ]] · n = 0 acrossSh

+ andSh
−

for a body with weak
discontinuities will be used to determine bifurcation.

For strong discontinuities, a spatial jump in ve-
locity [[v]] acrossS leads to a singular strain rate atS
as [4]

ǫ̇ =

{

ǫ̇1 = ǫ̇0 + sym([[v]] ⊗ n) δS ∈ S
ǫ̇0 ∈ Ω\S

(4)

whereδS is the Dirac-delta function at the disconti-
nuity surfaceS (cf. Fig.2).
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Figure 2. BodyΩ̄ with planar strong discontinuityS (Ω =

Ω+ ∪ Ω
−
, Γ = Γt ∪ Γg ∪ S , Ω̄ = Ω ∪ Γ).

The local form of quasi-static, isothermal equilib-
rium for a bodyΩ with strong discontinuity is written
as follows

∇ · σ + b = 0 in Ω (5)

σ · ν = tσ on Γt

u = g on Γg

[[σ]] · n = 0 across S

wheren is the unit normal toS and[[σ]] is the jump
in stress acrossS.

The variational form of quasi-static equilibrium is
then
∫

Ω

∇
sη : σ dΩ =

∫

Ω

η · b dΩ +
∫

Γt

η · tσ dΓ

+
∫

S

η · ([[σ]] · n) dΓ (6)

As for weak discontinuities, the traction continuity
condition[[σ]] ·n = 0 for a body with strong discon-
tinuities will be used to determine bifurcation.

3. THREE-INVARIANT ISOTROPIC KINE-
MATIC HARDENING PLASTICITY MODEL FOR
GEOMATERIALS

Here, a brief summary is given of a three-invariant
isotropic/kinematic hardening cap plasticity model.
For more details, refer to [5].

3.1. Rate insensitive model

For small strains, an additive decomposition of the
strain rate into elastic and plastic parts is assumed

ǫ̇ := ǫ̇e + ǫ̇p (7)

Assuming linear isotropic elasticity, the constitutive
equation for the stress rate is

σ̇ = ce : ǫ̇e , ce = λ1 ⊗ 1 + 2µI (8)



whereλ andµ are the Lamé parameters.
The single yield surfacef and plastic potential

functiong are written in terms of the invariants as

f = Γ2(βξ)Jξ
2 − [Fy(I1)]

2Fc(I1, κ) = 0 (9)

g = Γ2(βξ)Jξ
2 − [F g

y (I1)]
2F g

c (I1, κ) (10)

wheref is the yield function,βξ(Jξ
2 , J

ξ
3 ) is the Lode

angle, Γ is a function ofβξ and Ψ (the ratio of
strength in triaxial extension versus triaxial compres-
sion,Ψ = 1 if no difference in strength),N is the off-
set of the shear failure surfaceFf(I1) from the initial
shear yield surfaceFy(I1) = Ff(I1) − N , I1 = σii

is the first stress invariant,Jξ
2 = 1

2
ξ : ξ is the second

invariant of the deviatoric relative stressξ = s − α,
s is the deviatoric stress,α is the deviatoric back-
stress associated with the Bauschinger effect,Jξ

3 =
1

3
(ξ · ξ) : ξ is the third invariant of the deviatoric rel-

ative stress,κ is the internal stress variable associated
with compaction hardening,F g

y (I1) = F g
f (I1) − N ,

and g is the plastic potential function allowing for
non-associative plastic flow. Material parameters for
the shear failure surfaceFf (I1) are determined from
peak stress experimental data. The purpose of the
shear failure surface is to limit the hardening of the
backstressα. The effect ofFc(I1, κ) is to provide a
smooth elliptical cap. A non-associative flow rule is
assumed for plastic flow as

ǫ̇p = γ̇
∂g

∂σ
= γ̇g (11)

The flow rule is associative if material parameters are
chosen such thatf = g. The evolution of the internal
variables is

α̇ = γ̇hα(α) ; hα(α) = cαGα(α) devg

κ̇ = γ̇hκ(κ) ; hκ(κ) = 3cκGκ(κ)∂g/∂I1

To determine the consistency parameterγ̇, evaluate
the consistency condition

ḟ =
∂f

∂σ
: σ̇ +

∂f

∂α
: α̇ +

∂f

∂κ
κ̇ = 0 (12)

then solve foṙγ

γ̇ =
1

χ
f : ce : ǫ̇ (13)

χ = f : ce : g −
∂f

∂α
: hα −

∂f

∂κ
hκ

wheref = ∂f/∂σ. Substituting into the rate equa-
tion for stress gives

σ̇ =

(

ce −
1

χ
ce : g ⊗ f : ce

)

: ǫ̇ = cep : ǫ̇ (14)

wherecep is the continuum elasto-plastic tangent.

3.2. Rate sensitive model

The rate sensitive form of the model involves a stan-
dard viscous regularization following Perzyna [6],
which can be expressed in generalized Duvaut-Lions
form [7]. The constitutive equations are similar to
those of the rate insensitive model except that now
there is no consistency condition by which to calcu-
late the plastic consistency parameter (hence, regu-
larizing the rate insensitive plasticity model).

Revisiting equations from the inviscid model, we
now introduce a viscoplastic strain rateǫ̇vp such that
the evolution equations are

ǫ̇ = ǫ̇e + ǫ̇vp

σ̇ = ce : ǫ̇e = ce : (ǫ̇ − ǫ̇vp)

ǫ̇vp = γ̇g

α̇ = γ̇hα

κ̇ = γ̇hκ

γ̇ =
< g >

η
(15)

whereη is the viscosity coefficient with units (Pa)3s.
These equations may be expressed in generalized
Duvaut-Lions form as

ǫ̇vp =
1

τ
(ce)−1 : (σ − σ̄)

α̇ =
−1

τ
(α − ᾱ)

κ̇ =
−1

τ
(κ− κ̄)

τ =
η

(2µ)3
(16)

whereτ is the relaxation time, and̄σ, ᾱ, κ̄ are so-
lutions to the inviscid problem. The evolution equa-
tions can be written as

σ̇ +
1

τ
σ = ce : ǫ̇ +

1

τ
σ̄

α̇ +
1

τ
α =

1

τ
ᾱ

κ̇ +
1

τ
κ =

1

τ
κ̄

Since these are linear ODEs, the closed form solution
may be found:

σ(t) = (σ(0) − σ̄) e−t/τ + σ̄

+ e−t/τce :
∫ t

0

es/τ ǫ̇(s)ds (17)

α(t) = (α(0) − ᾱ) e−t/τ + ᾱ (18)

κ(t) = (κ(0) − κ̄) e−t/τ + κ̄ (19)



To obtain the inviscid solution,τ → 0, and to obtain
the elastic solution,τ → ∞.

For bifurcation analysis, it is useful to express the
rate sensitive form of the model in incremental form,
given the inviscid solution determined from say an
implicit numerical integration scheme like Backward
Euler [8]. Approximating the integration in Eq.(17)
leads to [6]

σn+1 = e−∆t/τσn + (1 − e−∆t/τ )σ̄n+1

+
τ

∆t
(1 − e−∆t/τ )ce : ∆ǫ (20)

∆t = tn+1 − tn

∆ǫ = ǫn+1 − ǫn

wheretn+1 is the current time. Linearizing Eq.(20)
leads to

δσ = (1 − e−∆t/τ )
(

δσ̄ +
τ

∆t
ce : δǫ

)

(21)

whereLσ = σo + δσ is the linearization operator
[9].

4. BIFURCATION ANALYSIS

The bifurcation analysis follows closely that con-
ducted in [10]. As is well-reported in the literature
(Sandler & Wright [11], Needleman [12], Sluys &
de Borst [13]) viscous regularization in the manner
of Duvaut-Lions inhibits loss of strong ellipticity for
strain-softening plasticity models, assuming the vis-
cosity is finite. For a nearly rate insensitive model
(viscosity η ≈ 0), however, loss of strong ellip-
ticity via the underlying inviscid model is possible.
The first subsection is devoted to bifurcation analysis
of the rate insensitive (inviscid) form of the model,
while the second addresses bifurcation of the rate
sensitive model.

4.1. Rate insensitive model

We consider weak discontinuities first and then
strong discontinuities, addressing both continuous
and discontinuous bifurcation.

4.1.1. bifurcation with weak discontinuity

For continuous bifurcation, plastic loading occurs
outside the planar band (f : ce : ǫ̇0 > 0) and within
the band (f : ce : ǫ̇1 > 0) at the instant of bifurca-
tion. The plastic consistency parameter is assumed to
decompose as (and its two parts determined from the
consistency parameter derived in Eq.(13))

γ̇ = ˙̄γ +
1

h
γ̇h (22)

˙̄γ =
1

χ
f : ce : ǫ̇0

γ̇h =
1

χ
f : ce : sym([[v]] ⊗ n)

Note thath is finite, and thuṡγ is bounded. Ifh→ 0
to makeγ̇ unbounded (and, as a result, the stress-
like internal state variables unbounded and the plas-
tic dissipation undefined) then a strong discontinuity
bifurcation analysis is warranted (see section 4.1.2).

At a material point, assume[[v]] is spatially-
invariant such that

[[v(t)]] = ζ̇(t)m (23)

where ζ̇ is the jump rate magnitude andm its di-
rection. Recall from Eq.(2) that for traction to be
continuous across the planar band with normaln,
(σ̇1 − σ̇0) · n = 0 and

n · σ̇0 = n · σ̇1

n · cep : ǫ̇0 = n · cep :
(

ǫ̇0 +
1

h
sym([[v]] ⊗ n)

)

0 =
ζ̇

h
n · cep : a , a = sym(m ⊗ n)

0 = (n · cep · n) · m = A · m

=⇒ detA = 0 for m 6= 0 (24)

Equation (24) states that in order for there to be a
nontrivial solutionm 6= 0 to the traction continuity
condition, the determinant of the acoustic tensorA

must be zero. For a given stress stateσ and state
variablesα andκ, we solve detA = 0 for the band
normalsn and thenA · m = 0 for the localized
deformation directions.

Fordiscontinuous bifurcation, there is elastic un-
loading outside the band (f : ce : ǫ̇0 < 0) and plastic
loading within the band (f : ce : ǫ̇1 > 0). The
consistency parameter is then

γ̇ =
1

h
γ̇h (25)

γ̇h =
1

χ
f : ce :

(

hǫ̇0 + sym([[v]] ⊗ n)
)

Note thath is finite, and thuṡγ is bounded. For trac-
tion to be continuous across the band,



n · σ̇0 = n · σ̇1

n · ce : ǫ̇0 = n ·

(

ce −
1

χ
ce : g ⊗ f : ce

)

:

(

ǫ̇0 +
1

h
sym([[v]] ⊗ n)

)

0 = (n · ce · n) · m −
γ̇h

ζ̇
n · ce : g (26)

In order to determine bifurcation from Eq.(26), we
need to assume a relation forγ̇h/ζ̇. Assuming ma-
terial within the band in the post-localization regime
is governed by a simple Mohr-Coulomb planar fail-
ure model, the ratio between the plastic consistency
parameteṙγh and shear displacementζ̇ is dependent
upon the dilation/compaction angleψ (cf. Fig. 3) as

γ̇h

ζ̇
= cosψ = m · t (27)

n

t

m

ψ

Sh+

Figure 3. Band normaln, tangentt, and velocity jump direc-
tion m with dilation/compaction angleψ.

Then, for continuous traction across the band to be
satisfied for discontinuous bifurcation,

0 = (n · ce · n) · m − (m · t)n · ce : g

0 = [n · ce · n − (n · ce : g) ⊗ t] · m

0 = Â · m

=⇒ detÂ = 0 for m 6= 0 (28)

Notice the bifurcation conditions for continuous and
discontinuous bifurcation in Eqs.(24) and (28), re-
spectively, are different for the case of weak disconti-
nuity, regardless of the assumption made in Eq.(27).
It is interesting to note that given the assumption in
Eq.(27), if we have a pure dilation/compaction band
(i.e., m · t = 0), then discontinuous bifurcation for
weak discontinuity is not possible sincece is positive
definite (see Eq. (28)).

We will show that for the case of strong disconti-
nuity, the bifurcation conditions are the same for con-
tinuous and discontinuous bifurcation.

4.1.2. bifurcation with strong discontinuity

Recall the planar surface is of zero measure, such that
the velocity field is discontinuous acrossS [4]. For
continuous bifurcation, the plastic consistency pa-
rameter is decomposed as

γ̇ = ˙̄γ + γ̇δδS (29)

In order for the backstress and isotropic stress to
be bounded (and the plastic dissipation to be well-
defined [4]), the hardening modulicα and cκ bifur-
cate

(cα)−1 = (c̄α)−1 + (cαδ )−1δS (30)

(cα)−1α̇ = Gαγ̇devg

α̇ = c̄αGα ˙̄γdevg = h̄
α ˙̄γ

α̇ = cαδG
αγ̇δdevg = hα

δ γ̇δ

(cκ)−1 = (c̄κ)−1 + (cκδ )
−1δS (31)

(cκ)−1κ̇ = Gκγ̇trg

κ̇ = c̄κGκ ˙̄γtrg = h̄κ ˙̄γ

κ̇ = cκδG
κγ̇δtrg = hκ

δ γ̇δ

Then, the consistency condition reads

ḟ = f : ce : (ǫ̇0 + ζ̇a δS − ( ˙̄γ + γ̇δδS)g)

+
∂f

∂α
: h̄

α ˙̄γ +
∂f

∂κ
h̄κ ˙̄γ = 0 (32)

and for the regular and singular parts of the consis-
tency condition to be satisfied,

˙̄γ =
1

χ̄
f : ce : ǫ̇0

χ̄ = f : ce : g −
∂f

∂α
: h̄

α
−
∂f

∂κ
h̄κ

γ̇δ =
f : ce : sym([[v]] ⊗ n)

f : ce : g

Then the stress rate on the surfaceS, σ̇1, and outside
the surface,̇σ0, read

σ̇1 =

(

ce −
1

χ̄
ce : g ⊗ f : ce

)

︸ ︷︷ ︸

c̄ep

: ǫ̇0

+ ζ̇

(

ce −
ce : g ⊗ f : ce

f : ce : g

)

︸ ︷︷ ︸

c̃ep

: a δS (33)

σ̇0 = c̄ep : ǫ̇0 (34)



For continuous traction across the discontinuity sur-
face

n · σ̇0 = n · σ̇1

n · c̄ep : ǫ̇0 = n · c̄ep : ǫ̇0 + ζ̇n · c̃ep : a δS

0 = (n · c̃ep · n) · m δS = Ã · m δS

=⇒ detÃ = 0 for m 6= 0 (35)

For discontinuous bifurcation, the consistency
parameter is localized to the discontinuity as

γ̇ = γ̇δδS (36)

Again, the hardening moduli bifurcate in order to
have well defined plastic dissipation. Then, the con-
sistency condition reads

ḟ = f : ce : (ǫ̇0 + ζ̇a δS − γ̇δgδS)

+
∂f

∂α
: hα

δ γ̇δ +
∂f

∂κ
hκ

δ γ̇δ = 0 (37)

and for the regular and singular parts of the consis-
tency condition to be satisfied,

γ̇δ =
−f : ce : ǫ̇0

∂f
∂α : hα

δ + ∂f
∂κ
hκ

δ

=
ζ̇f : ce : a

f : ce : g
(38)

For continuous traction across the discontinuity sur-
faceS

n · σ̇0 = n · σ̇1

n · ce : ǫ̇0 = n · ce : ǫ̇0 + ζ̇n · c̃ep : a δS

0 = Ã · m δS

=⇒ detÃ = 0 for m 6= 0

Thus, the same bifurcation condition results for con-
tinuous and discontinuous bifurcation for the case of
strong discontinuity localized kinematics.

4.2. Rate sensitive model

4.2.1. weak discontinuity

Forcontinuous bifurcation, from Eq.(17), the stress
just outside and just inside the band are, respectively,

σ0(t) = (σ0(0) − σ̄0) e−t/τ + σ̄0

+ e−t/τce :
∫ t

0

es/τ ǫ̇0(s)ds (39)

σ1(t) = (σ1(0) − σ̄1) e−t/τ + σ̄1

+ e−t/τce :
∫ t

0

es/τ ǫ̇1(s)ds (40)

where, recall,σ̄ denotes inviscid stress, and we as-
sume at time zero that the stresses just inside and just

outside the band are equalσ0(0) = σ1(0). Then, for
continuous traction across the band,

n · σ0(t) = n · σ1(t)

0 = n · (σ̄1 − σ̄0)(1 − e−t/τ ) (41)

+
1

h
e−t/τn · ce : a

∫ t

0

es/τ ζ̇(s)ds

τ → 0 =⇒ n · (σ̄1 − σ̄0) = 0

τ → ∞ =⇒ (n · ce · n) · m = 0

As expected, forτ → 0 we obtain the bifurcation
condition for the inviscid case, and forτ → ∞, we
obtain the elastic solution and hence no loss of strong
ellipticity (real, elastic wave speeds, after Hadamard,
cf. Hill [14]). The lower bound (τ → 0) on the
viscous bifurcation condition is useful in that if a ge-
omaterial is nearly rate insensitive even when loaded
to high strain rates, its bifurcation will depend on an
analysis of the inviscid model. Then, the dynamic
characteristics of the crack/shear band propagation
and post-localization constitutive response will be
important even for a nearly rate insensitive geoma-
terial.

For a rate sensitive geomaterial, not so highly vis-
cous to be elastic (τ > 0 is finite), there should be
no bifurcation to localized deformation mode; see
Eq.(41). This should be made clear by an analysis
for the discrete form of the integrated equations, as
in section 4.2.3.

For discontinous bifurcation, the analysis is the
same as for continuous bifurcation, except that the
inviscid stress jump across the band interface such as
Sh

+, σ̄1 − σ̄0, is different.

4.2.2 strong discontinuity

For strong discontinuities, bifurcation analysis of
the viscoplastic model is the same as for weak dis-
continuities, except of course that the inviscid bi-
furcation analysis is different as shown above in the
analysis of the rate insensitive model.

4.2.3 discrete form of rate sensitive model

Bifurcation analysis of the discrete form of a rate sen-
sitive model allows one to analyze acoustic tensors to
determine mathematical instability.

In linearized form, the incremental strain forweak
discontinuity comes from Eq.(1). For continuous bi-
furcation, from Eq.(14), the incremental stress for the
inviscid solution is given, and from Eq.(21), the in-
cremental stress for the viscous solution is

δσ0 = (1 − e−∆t/τ )
(

cep +
τ

∆t
ce
)

︸ ︷︷ ︸

ĉep

: δǫ0 (42)



δσ1 = ĉep : δǫ1

Then for continuous traction,

n · δσ0 = n · δσ1

n · ĉep : δǫ0 = n · ĉep : δǫ0 +
δζ

h
n · ĉep : a

0 = (n · ĉep · n)m = Â · m

τ → 0 =⇒ ĉep = cep

τ → ∞ =⇒ ĉep = ce

and for finiteτ > 0, ĉep should remain positive def-
inite, i.e. det̂A > 0, but more analysis is needed
to determine this. For discontinuous bifurcation, the
incremental form for the inviscid solution along with
the incremental viscous solution gives for continuous
traction,

n · δσ0 = n · δσ1

0 = −(1 − e−∆t/τ )

×

(

f : ce : δǫ0

χ

)

n · ce : g

+
δζ

h
n · ĉep : a

τ → 0 =⇒ inviscid

τ → ∞ =⇒ elastic

and for finiteτ > 0, the analysis is inconclusive.
For strong discontinuity, the incremental strain

from Eq.(4) is given. For continuous bifurcation, the
incremental form of the inviscid solution comes from
Eqs.(33) and (34) and then for continuous traction,

n · δσ0 = n · δσ1

0 = (n · ĉep · n) · m δS = Â · m δS

τ → 0 =⇒ ĉep = c̃ep

τ → ∞ =⇒ ĉep = ce

where herêcep is a function ofc̃ep rather thancep in
Eq.(42). For finiteτ > 0, ĉep should remain posi-
tive definite, i.e. that det̂A > 0, but more analysis
is needed. For discontinuous bifurcation, the same
bifurcation condition forτ → 0 results as for contin-
uous bifurcaton with strong discontinuity.

4.3 Effects of third invariant and backstress

Effects of the third invariantJξ
3 and backstressα

on bifurcation are embedded within the tangentscep,
ĉep, andc̃ep.

Numerical examples are forthcoming that will
demonstrate the effect of the third invariant and back-
stress on bifurcation.

5. CONCLUSIONS

One conclusion of this paper is that for a rate insen-
sitive model, bifurcation conditions under weak dis-
continuity for continuous and discontinuous bifurca-
tion are different whereas they are the same under
strong discontinuity. This result for strong disconti-
nuity stems from bifurcation of the hardening mod-
uli that leads to an elastic-perfectly-plastic acoustic
tensor [4]. For determining mathematical instabil-
ity for weak discontinuities, however, it was shown
in [1] that continuous bifurcation provides the lower
bound for the range of discontinuous bifurcation, and
thus is the more critical condition. For a rate sensi-
tive model, it is unsurprising that for large viscos-
ity, mathematical stability is ensured even for strain-
softening plasticity. But for smaller values of viscos-
ity, the bifurcation analysis is inconclusive whether
mathematical instability will occur or not. Future nu-
merical examples will address this question.
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