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ABSTRACT
An elastoplasticity model is formulated and demonstrated

in one-dimension (1D) for modeling finite deformations in poly-
crystalline metals. Quasi-static to high strain rate effects as well
as temperature sensitivity are included. A multiplicativedecom-
position of the deformation gradient into elastic, plastic, and
thermal parts, that includes a volumetric/isochoric splitof the
elastic stretching tensor is assumed. The kinematics and ther-
modynamic formulation lead to constitutive equations, stresses,
and constraints on the evolution of the internal state variables.
The model accounts for (i) dislocation drag effects on flow stress,
and (ii) generation (hardening) and annihilation (recovery) of
statistically-stored dislocations (SSDs). The resultingmodel is
normalized to dimensionless form to allow dimensionless mate-
rial parameters fit for one metal to approximate the behaviorof
another metal of similar lattice structure, if data are limited. One
dimensional material parameter fitting is demonstrated fortwo
refractory metals, body centered cubic (bcc) Tantalum and Tung-
sten.

NOTATION
Boldface denotes vectors and tensors in symbolic notation.

Unless otherwise indicated, all vector and tensor productsin
symbolic form are assumed to be inner products, such asvv =

∗Address all correspondence to this author.

vivi, (ab)ik = aijbjk, anda : b = aijbij , where repeated in-
dices denote a sum over those indices. The symbol:= denotes a
definition. An overbar(•̄) designates a variable in the intermedi-
ate configuration̄B, and different symbols for the other interme-
diate configurations. Uppercase letters are for the most part re-
served for variables in the reference and intermediate configura-
tions, and lowercase letters for the most part designate variables
in the current configuration. Cartesian coordinates are assumed.
This convention applies to indices as well:SIJ is in the refer-
ence configurationB0, S̄ĪJ̄ in the intermediate configuration̄B,
andσij in the current configurationB. The symbol tr(•) is the
trace operator, such that tr(σ) = σii. The symbol dev(•) is the
deviatoric operator, such that dev(σ) = σ − 1

3 (trσ)1. The ac-
cent symboĺ• denotes an isochoric elastic deformation measure.
The symbol sym(•) denotes the symmetric part of a second order
tensor, such that sym(ℓ) = (ℓ + ℓT )/2, and skw(•) the skew-
symmetric part of the tensor, such that skw(ℓ) = (ℓ − ℓT )/2.
The symbol(•)T denotes transpose of a tensor. The symbol•̇ is
the material time derivative. The symbol‖ • ‖ is theL2 norm of
a vector or tensor, such that‖a‖ =

√
aijaij . The symbol1 is the

unity tensor, i.e.,(1)ij = δij , whereδij is the Kronecker delta.
The symbol(•̆) over a variable denotes that it is dimensionless.
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INTRODUCTION
Polycrystalline metals that undergo high strain rates—

possibly nearing the shock regime (> 104 1/s)—experience
a complex combination of deformation mechanisms, such as
thermally-activated dislocation motion and generation, disloca-
tion annihilation, dislocation drag, texture effects, recrystalliza-
tion and grain growth, void nucleation, growth, and coalescence,
infinitesimal isochoric elastic stretching, potentially large volu-
metric elastic stretching, and large rotations, for instance. The
elastoplasticity model described in this paper is a phenomeno-
logical description of the physical deformation mechanisms ob-
served at the dislocation length scale in polycrystalline metals. In
the literature, more complex constitutive models have beende-
veloped that include spatial gradients of internal state variables
[1–3] and free surface creation due to crack propagation [4],
among other deformation mechanisms and material processes
experienced by polycrystalline metals (e.g., recrystallization and
grain growth, phase transformations). We limit the model de-
scribed in this paper to temperature and rate-dependent isotropic
elastoplasticity. Damage and texture effects will be considered
in future papers.

The formulation of the model begins with a description of
the kinematics, through a multiplicative decomposition ofthe
deformation gradient. We formulate the constitutive equations
in the plastically deformed, elastically unloaded, intermediate
configurationB̄. Constitutive assumptions are made for the
Helmholtz free energy density reflecting infinitesimal isochoric
elastic deformations in polycrystalline metals, but potentially
large volumetric elastic deformation for an initially undamaged
metal loaded in the near shock strain-rate regime. A dimen-
sionless form of the model is presented in the current configu-
ration, and material parameter fitting for this dimensionless form
is demonstrated for two metals of similar lattice structure(body
centered cubic (bcc) Tantalum and Tungsten).

MODEL FORMULATION
The formulation of a thermodynamically-consistent, finite

strain, elastoplastic constitutive model for solids, in this case for
a polycrystalline metal, proceeds in the following order: (i) kine-
matics, (ii) thermodynamics, and (iii) constitutive equations with
parameter fitting.

Kinematics
For finite deformation elastoplastic constitutive modeling,

we assume a multiplicative decomposition of the deformation
gradient as [5–8]

F = F eF pF θ , FiI = F e
iĪF

p

ĪǏ
F θ
ǏI

(1)

wheree stands for elastic,p for plastic, andθ for the temper-
ature part ofF (Fig.1). The order of decomposition is not ar-
bitrary. The first mapF θ implies that there can be deformation
due to temperature change (thermal expansion) without elastic or
plastic deformation, where the plastic deformation for polycrys-
talline metals we consider to be primarily thermally-activated
dislocation motion (although dislocation drag at high rates can
occur). Macroscopic elastic deformation throughF e can be
unloaded from the current configurationB to the intermediate
configurationB̄. The intermediate configuration (plastically de-
formed)B̄ is a physically obtainable configuration by unloading
elastically.
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ĪǏ
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FIGURE 1. Multiplicative decomposition of the deformation gradient
F = Θ

e
F́

e
F

p
F

θ, FiI = Θe

iĨ
F́ e

ĨĪ
F p

ĪǏ
F θ

ǏI
. Note thatB̄ is an incompat-

ible configuration, but for the purpose of phenomenologicalelastoplas-
ticity modeling, the mappingF p will be treated as a smooth mapping
(i.e., no jump discontinuities or free surfaces at the dislocation scale are
considered).

One of two polar decompositions of the elastic part of the de-
formation gradientF e is F e = V eRe (F e

iĪ
= V e

iJ̃
Re

J̃ Ī
), where

V e is an elastic stretching tensor andRe is an elastic proper or-
thogonal tensor (cf. [9] for more discussion of these and other
finite deformation plasticity kinematics). The elastic stretch ten-
sor may be split into volumetric and isochoric parts as [10,11]

V e = Θ
eṼ

e
, V e

iJ̃
= Θe

iĨ
Ṽ e
ĨJ̃

(2)

Θe
iĨ

= (Je)1/3δiĨ , detΘe = Je = detV e (3)

Ṽ e
ĨJ̃

= (Je)−1/3 δaĨV
e
aJ̃
, detṼ

e
= 1 (4)

and then the elastic part of the deformation gradient is written as
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F e = Θ
eṼ

e
Re = Θ

eF́
e

(5)

F e
iĪ = Θe

iĨ
Ṽ e
ĨJ̃
Re

J̃ Ī
= Θe

iĨ
F́ e
ĨĪ

= (Je)1/3δiĨ F́
e
ĨĪ

= (Je)1/3F́ e
iĪ

The volumetric/isochoric split is appropriate for modeling metals
that experience strain rates within the shock regime (> 104 1/s),
where pressure and volumetric elastic deformation can be large
for an initially undamaged metal [6]. The isotropic volumetric
deformation due to change in temperatureθ is written as

F θ
ǏI

:= F θ(θ)δǏI = (Jθ)1/3δǏI , Jθ = detF θ = [F θ(θ)]3

(6)
whereF θ(θ) is a function of temperatureθ. The multiplicative
decomposition then becomes

F = Θ
eF́

e
F pF θ , FiI = Θe

iĨ
F́ e
ĨĪ
F p

ĪǏ
F θ
ǏI

= (JeJθ)1/3F́
e
F p , FiI = (JeJθ)1/3F́ e

iĪF
p

ĪI
(7)

whereF p

ĪI
= F p

ĪǏ
δǏI . When writing the left and right iso-

choric elastic Cauchy-Green tensors, the index formsF́ e
ĨĪ

and

F́ e
iĪ

will be used equivalently, given that configurationsB andB̃
map through an isotropic tensor,Θe (cf. Fig.1). We write the

right isochoric elastic Cauchy-Green tensor as´̄Ce = (F́
e
)T F́

e
,

where ´̄Ce
ĪJ̄

= F́ e
iĪ
F́ e
iJ̄

, with isochoric elastic Lagrangian strain
´̄Ee = ( ´̄Ce − 1̄)/2. Likewise, we write the left isochoric elastic
Cauchy-Green tensor aśb

e
= F́

e
(F́

e
)T , whereb́eij = F́ e

iĪ
F́ e
jĪ

.
Note that the Jacobian of deformation becomesJ = detF =
JeJθ, where plastic deformation (dislocation motion) is iso-
choric for metals, such thatJp = detF p = 1. The velocity
gradient in the current configurationB then takes the form

ℓ = Ḟ F−1

=
J̇e

3Je
1

︸ ︷︷ ︸

ℓΘe

+
˙́
F e(F́

e
)−1

︸ ︷︷ ︸

´ℓ
e

+ F́
e
L̄

p
(F́

e
)−1

︸ ︷︷ ︸

ℓp

+
Ḟ θ(θ)

F θ(θ)
1

︸ ︷︷ ︸

ℓθ

(8)

where J̇e = Je(be)−1 : ḃ
e
/2, be = F e(F e)T =

(Je)2/3F́
e
(F́

e
)T , andL̄

p
= Ḟ

p
(F p)−1. The symmetric and

skew-symmetric parts of the velocity gradient are the deforma-
tion rated := sym(ℓ) and spinw := skw(ℓ).

Thermodynamics
The Clausius-Duhem inequality may be written pointwise in

the current configurationB as

σ : ℓ− ρψ̇ − ρηθ̇ +
1

θ
q∇θ ≥ 0 (9)

and pointwise in the intermediate configurationB̄ as

Jeσ : ℓ− ρ̄ψ̇ − ρ̄ηθ̇ +
1

θ
Q̄(∇̄θ) ≥ 0 (10)

whereσ is the symmetric Cauchy stress for a non-polar solid,ρ
is the mass density for a single phase solid inB, ρ̄ = Jeρ, ψ
is the Helmholtz free energy per unit mass,η is the entropy per
unit mass,θ is the absolute temperature,Q̄ = Je(F e)−1q is the
heat flux inB̄ andq the heat flux inB. Assume the Helmholtz
free energy density in̄B may be additively decomposed (called
“energy separate”) as

ρ̄ψ := ρ̄ψΘe

(Je, θ)+ρ̄ψ́e( ´̄Ee, θ)+ρ̄ψp(ǭss, β̄, θ)+ρ̄g(θ) (11)

whereρ̄ψΘe

is the free energy density associated with volumetric
elastic deformationJe, ρ̄ψ́e is the free energy density associated

with isochoric elastic straiń̄Ee, ρ̄ψp is the free energy density as-
sociated with the presence of dislocation defectsǭss andβ̄, and
ρ̄g a free energy density that can be used to define entropy, where
all are functions of temperatureθ. ǭss is the lattice deformation
due to the presence of statistically-stored dislocations (SSDs),
andβ̄ is a strain-like internal state variable associated with the
Bauschinger effect (i.e., leads to the existence of a backstress for
modeling cyclic loading). The strain-like internal state variables
ǭss andβ̄ are defined in the plastically deformed configurationB̄
because their evolution equations assume a plastically deformed
state. Equation (11) demonstrates the view that plastic deforma-
tion is the motion of dislocations, and the state of the material is
a freezeframe of the deformed state, which is represented bythe
elastic lattice deformation due to the presence of defects (dislo-
cations) and due to external loading. We have ignored the con-
tinuum representation of geometrically necessary dislocations
(GNDs) leading to a physically-motivated backstress [1–3], in
order to simplify the formulation and finite element implemen-
tation. Eventually, the effect of GNDs will be included more
explicitly in the model.

Substituting Eqs.(8) and (11) into Eq.(10), and usingσ =

(Je)−1/3F́
e
S̄(F́

e
)T = s + p1 (S̄ is the Second Piola Kirch-

hoff stress inB̄), s = devσ, p = trσ/3, the Clausius-Duhem
inequality in the intermediate configuration̄B becomes
(

−∂(ρ̄ψ
Θe

)

∂Je
+ p

)

J̇e

︸ ︷︷ ︸

volumetric elasticity

+

(

−∂(ρ̄ψ́
e)

∂ ´̄Ee
+ (Je)2/3DevS̄

)

:
˙̄́
Ee

︸ ︷︷ ︸

isochoric elasticity

+

(

−
[
∂(ρ̄ψp)

∂ǭss
˙̄ǫss +

∂(ρ̄ψp)

∂β̄
: ˙̄β

]

+ (Je)2/3(DevS̄) : ( ´̄CeL̄
p
)

)

︸ ︷︷ ︸

plasticity

+

(

−∂(ρ̄ψ)
∂θ

−
(
ρ̄ψ

Jθ

)
∂Jθ

∂θ
− ρ̄η + 3fθJep

)

θ̇

︸ ︷︷ ︸

entropy

+
1

θ
Q̄(∇̄θ)
︸ ︷︷ ︸

heat

≥ 0

(12)
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where fθ = (F θ)−1∂F θ/∂θ, and DevS̄ := S̄ − ( ´̄Ce :

S̄/3)( ´̄Ce)−1. Following standard thermodynamic arguments

[12, 13] thatJ̇e,
˙̄́
Ee, andθ̇ can vary independently, in order for

Eq.(12) to be satisfied, constitutive equations for the stress and
entropy are

p =
∂(ρ̄ψΘe

)

∂Je
(13)

DevS̄ =
1

(Je)2/3
∂(ρ̄ψ́e)

∂ ´̄Ee
(14)

ρ̄η = −∂(ρ̄ψ)
∂θ

−
(
ρ̄ψ

Jθ

)
∂Jθ

∂θ
+ 3fθJep (15)

Defining internal stresses due to dislocation defects as

κ̄ :=
∂(ρ̄ψp)

∂ǭss
, ᾱ :=

∂(ρ̄ψp)

∂β̄
, (16)

the reduced dissipation inequality becomes

(Je)2/3(DevS̄) : ( ´̄CeL̄
p
)

︸ ︷︷ ︸

plastic dissipation

−
[

κ̄ ˙̄ǫss + ᾱ : ˙̄β
]

︸ ︷︷ ︸

stored work, dislocations

+

1

θ
Q̄(∇̄θ)
︸ ︷︷ ︸

heat

≥ 0 (17)

whereκ̄ is the internal stress due to the presence of SSDs energy
conjugate tȱǫss, andᾱ is a phenomenological backstress energy
conjugate to˙̄β. Because the deviatoric stressDevS̄ is energy

conjugate tó̄CeL̄
p
, we use this stress in formulating the plastic

evolution equations in thēB configuration [14]. We can account
for adiabatic heating as a result of high strain rate plasticdefor-
mation in metals, but we leave this for future inclusion intothe
model.

Constitutive Equations
The constitutive equations involve assumptions for func-

tional forms, based on experimental evidence, for the following
physical phenomena we consider in this short paper: (i) elas-
tic deformation, (ii) plastic deformation, and (iii) thermal expan-
sion.

Elastic Deformation Since isochoric elastic deforma-
tion is assumed to be infinitesimal and volumetric elastic defor-
mation could be large in the shock regime, a quadratic form ofthe
Helmholtz free energy density is chosen only for the isochoric
part. For the elastic part of the Helmholtz free energy density,
the volumetric and isochoric parts are defined as

ρ̄ψΘe

(Je, θ) := fΘe

(K(θ), Je)

=⇒ p =
∂fΘe

(K(θ), Je)

∂Je
(18)

ρ̄ψ́e( ´̄Ee, θ) := µ(θ) ´̄Ee : ´̄Ee

=⇒ DevS̄ = (Je)−2/32µ(θ) ´̄Ee (19)

where the temperature dependent elastic moduli are defined as

µ(θ) := µ0µ̆(θ) , µ̆(θ) := (1−mθ(θ − θ0)/θM )

K(θ) := K0K̆(θ) , K̆(θ) := (1− nθ(θ − θ0)/θM )

wheremθ, nθ are parameters determining the temperature de-
pendence of the elastic moduli,θM is the melt temperature,µ0

is the shear modulus at reference temperatureθ0, andK0 =
λ0 + 2µ0/3 is the bulk modulus at reference temperature. Note
thatfΘe

(K(θ), Je) can be a nonlinear function of the bulk mod-
ulusK(θ) and elastic JacobianJe, which results in a pressure
constitutive equation for an initially undamaged metal experi-
encing strain rates close to or within the shock regime (> 104/s)
[15]. It is possible also that the bulk modulus could be a function
of Je. We leavefΘe

undefined for the moment. An expres-
sion forp in Eq.(18) easily could be obtained from an equation
of state (EOS) model, but we will not discuss this aspect further
given the extensive literature on EOS models for polycrystalline
metals.

Recall that for polycrystalline metals, isochoric elasticde-
formation is infinitesimal, and thus we choose to linearize the
isochoric elastic stretch tensor as [9]Ṽ

e ≈ 1̃ + H̃, ‖H̃‖ < ε,
whereε≪ 1 is a small number. The implications of this assump-
tion are now demonstrated. Recall the isochoric elastic part of the
deformation gradient́F

e
= Ṽ

e
Re. Now, consider the right and

left isochoric elastic Cauchy-Green tensors, respectively,

´̄Ce = (F́
e
)T F́

e
= (Re)T (Ṽ

e
)T Ṽ

e
Re

= 1̄+ (Re)T (H̃ + H̃
T
)Re (20)

b́
e
= F́

e
(F́

e
)T = Ṽ

e
Re(Re)T (Ṽ

e
)T

= 1̃+ H̃ + H̃
T

(21)

where quadratic terms̃H(H̃)T are ignored with respect to the
linear termsH̃. Note, however, that̃H 6= 0, such that the iso-
choric elastic strain in̄B is

´̄Ee = ( ´̄Ce − 1̄)/2 = (Re)T (H̃ + H̃
T
)Re/2

As a result, the isochoric elastic strains are infinitesimal. In map-
ping constitutive equations from the intermediate configuration
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B̄ to the current configurationB, we will use this isochoric elas-
tic linearization. We consider volumetric elastic deformation Je

as finite, yet inB we will consider also linearized volumetric
elasticity to formulate a pressure equation for the case when the
loading rate is less than that of the shock regime.

Plasticity and Evolution Equations The part of the
free energy density accounting for elastic strain energy due to
the presence of dislocations is written as

ρ̄ψp(ǭss, β̄, θ) := cκµ(θ)ǭ
2
ss + cαµ(θ)β̄ : β̄ (22)

which results in the stress-like internal state variables

κ̄ = 2cκµ(θ)ǭss , ᾱ = 2cαµ(θ)β̄ (23)

wherecκ and cα are parameters usually set equal to 1. Later,
to mapκ̄ andᾱ to the current configurationB, we will use the
following relations

κ̄ =
√
3(Je)1/3κ/‖b́e‖ , ᾱ = (Je)1/3(F́

e
)−1α(F́

e
)−T

(24)

whereκ andα are the corresponding stress-like internal state
variables in the current configurationB. The mapping in
Eq.(24)1 was obtained by treatinḡκ = κ̄1̄ as an isotropic
stress inB̄, andκ = κ1 as an isotropic stress inB. Using
κ = (Je)−1/3F́

e
κ̄(F́

e
)T then Eq.(24)1 results. Becausēκ

andᾱ are stress-like internal state variables, they are treatedas
contravariant second-order tensors in terms of push-forward and
pull-back operations (see Holzapfel [16]). Refer also to Marin et
al. [17] for more discussion on these operations for this model.

The plastic velocity gradient in the intermediate configura-
tion B̄ is additively decomposed into symmetric̄D

p
and skew-

symmetricW̄
p

parts

´̄CeL̄
p
:= D̄

p
+ W̄

p
(25)

The evolution equations for̄D
p

andW̄
p

account for thermally-
activated dislocation motion and dislocation drag at high strain
rates [18, 19] as well as texture effects [20] (in a future paper).
The evolution equation for̄ǫss accounts for the generation and
annihilation of SSDs due to standard hardening and recovery
processes, while the evolution equation forβ̄ accounts for the
generation and annihilation of dislocations of one sign (GNDs)
leading to commonly known kinematic hardening.

For formulating an evolution equation forǭss, we relate this
strain-like internal state variable to the density of SSDsρ̄ss. Fol-
lowing the Taylor assumption [21], the lattice deformationdue to
the presence of SSDs̄ǫss can be defined as̄ǫss := b

√
ρ̄ss, where

b is the magnitude of the Burger’s vectorb̄ in the intermediate
configurationB̄ (b = ‖b̄‖). We definēǫss by its evolution with
respect to˙̄ρss as

˙̄ǫss =
b

2

1√
ρ̄ss

˙̄ρss (26)

Kocks & Mecking [22] and Estrin & Mecking [23] defined
an evolution equation for̄ρss representing thermally-activated
hardening and dynamic recovery (generation and annihilation of
SSDs) as

˙̄ρss := (c1
√
ρ̄ss − c2(θ)ρ̄ss) ˙̄ǫ

p,eff (27)

wherec1 is a constant,c2 is a function of temperature, and˙̄ǫp,eff

is the effective plastic strain rate in the intermediate configura-
tion. For thermal diffusion of dislocations, static recovery is de-
fined by Nes [24] as

˙̄ρss := − c3(θ)ρ̄ss sinh(c4(θ)
√
ρ̄ss) (28)

wherec3 andc4 are temperature dependent functions. Dynamic
and static recovery mechanisms are not decoupled physical pro-
cesses, but by superposing the two equations, this allows a re-
duction to Nes’s static recovery equation (i.e.,˙̄ǫp,eff = 0) while
combining the two recovery mechanisms:

˙̄ρss := (c1
√
ρ̄ss − c2(θ)ρ̄ss) ˙̄ǫ

p,eff − c3(θ)ρ̄ss sinh(c4(θ)
√
ρ̄ss)
(29)

Substituting Eq.(29) back into Eq.(26), and absorbing the1/2
in the constants results in the evolution equation for the lattice
deformation due to the presence of SSDs as

˙̄ǫss = [H − Rd(θ)ǭss] ˙̄ǫ
p,eff − Rs(θ)ǭss sinh(ǭss) (30)

H = c6

Rd(θ) = c5A(Q3, θ)

Rs(θ) = c7A(Q4, θ)

A(QL, θ) = exp [−QL/(Rθ)]

whereH is the hardening parameter,Rd(θ) the temperature-
dependent dynamic recovery function,Rs(θ) the temperature-
dependent static recovery function,A(QL, θ) is a standard Ar-
rhenius temperature dependence such that asθ → 0 thenA→ 0
and asθ → ∞ thenA → 1, QL denotes an activation energy
for a given mechanism, andR is the universal gas constant. The
parametersc5, c6, c7, Q3, andQ4 will be fit to monotonic load-
ing data. The evolution equation forβ̄ is defined in a traditional
hardening-minus-recovery form as [8,25]

˙̄β := hD̄
p − rd(θ) ˙̄ǫ

p,eff
√

2/3‖β̄‖ β̄ (31)

h = c4

rd(θ) = c3A(Q2, θ)

5 Copyright c© 2011 by ASME



where h is the hardening parameter,rd(θ) the temperature-
dependent dynamic recovery function, and parametersc3, c4,
andQ2 are fit to cyclic loading experimental data. The plas-
tic spin was determined from crystal plasticity for double planar
slip as [26]

W̄
p
:= λg(ĀD̄

p − D̄
p
Ā) (32)

whereλg is a geometry parameter dependent on slip system ori-
entation,Ā is the symmetric deviatoric structure tensor account-
ing for texture inB̄. This expression for the plastic spin̄W

p
has

been derived by others [27], along with the evolution ofĀ. For
isotropic plasticity, we choosēA = 1̄, leading to zero plastic
spinW̄

p
= 0 in this paper. The plastic deformation ratēD

p
is

defined separately by its magnitude and direction as

D̄
p
:= ‖D̄p‖ N̄p

(33)

N̄
p
:= sym

(
∂Φ̄p

∂DevS̄

)/∥
∥
∥
∥
sym

(
∂Φ̄p

∂DevS̄

)∥
∥
∥
∥

(34)

Φ̄p :=
√

2/3‖D̄p‖ := ˙̄ǫp,eff (35)

whereΦ̄p is the plastic potential function chosen to makeD̄
p

deviatoric inB̄. The flow rule (evolution of the effective plastic
strain rate) accounting for transition between thermally-activated
dislocation motion and dislocation drag is defined as [18,19]

˙̄ǫp,eff :=
ǫ̇1ǫ̇2
ǫ̇1 + ǫ̇2

(36)

where ǫ̇1 is the thermally-activated effective plastic strain rate
andǫ̇2 is the effective plastic strain rate for dislocation drag. The
thermally-activated effective plastic strain rateǫ̇1 is defined for
unified creep plasticity at low and high stresses [28] as

ǫ̇1 := f(θ)

[

sinh

(〈
Ξ̄eff

κ̄+ Ȳ (θ)
− 1

〉)]n(θ)

(37)

with its temperature-dependent functions defined as

f(θ) = c2A(Q1, θ)

Ȳ (θ) = 2µ0C̄8f
Y (θ) (38)

fY (θ) =
m1

1 +m2 exp(−m3/θ)
[1 + tanh(m4(m5 − θ))] /2

(39)

n(θ) = c9/θ + c1

wheref(θ) andn(θ) govern the rate-sensitivity of flow stress
(also known as the effective relative stressΞ̄eff in Eq.(37)),
andȲ (θ) is the quasi-static temperature-dependent initial yield
strength. The parametersQ1, c1, c2, and c9 are fit to rate-
sensitive, temperature-dependent flow stress data, while parame-
tersC̄8 andmi (i = 1, ..., 5) are fit to quasi-static yield strengths
at various temperatures. Note thatȲ has dimensions of stress

and is defined in the intermediate configurationB̄. The stress
dependent function in Eq.(37) is defined as

Ξ̄eff :=
√

3/2‖Ξ̄‖ ; Ξ̄ := DevS̄ − (2/3)ᾱ (40)

whereΞ̄eff is the effective relative stress. The effective plastic
strain rate for dislocation drag [18] is defined as

ǫ̇2 :=
1

B

(
Ξ̄eff

κ̄+ Ȳ (θ)

)

(41)

whereB is the viscous drag parameter. An illustration of Eq.(36)
and its components can be found in Fig.2. Semi-log and standard
plots demonstrate the transition from thermally-activated dislo-
cation motion to dislocation drag. Note the sharp increase in
flow stress when the effective plastic strain rate enters thedrag
regime, which is≈ 5.2×107/s given the drag coefficient chosen.
Note also that there is a transition region of1×107/s to6×107/s
strain rate, through which the flow stress is governed by a transi-
tion from thermally-activated dislocation motion to dislocation-
drag-dominated plastic flow. This transition region can be shifted
based on the choice of the drag coefficientB. A smallerB shifts
the drag regime to higher strain rates, while a larger value of B
shifts the drag regime to lower strain rates.
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FIGURE 2. Plots of flow stress̄Ξeff versus effective plastic strain rate
˙̄ǫp,eff for thermally-activated dislocation motioṅǫ1 and dislocation drag
ǫ̇2. A drag coefficient ofB = 1 × 10−7s was used, along with ma-
terial parameters for Tantalum in Tables 2,3. (a) semi-logarithmic, (b)
standard.

Remark 1: Note that the equation for thermally-activated
effective plastic strain rate and unified creep plasticity in Eq.(37),
ǫ̇1, can be inverted to determine a rate-dependent yield function
as

FY := Ξ̄eff− [κ̄+ Ȳ (θ)]
(

1 + sinh−1
[

(ǫ̇1/f(θ))
(1/n(θ))

])

= 0

(42)
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where a quasi-static yield function is obtained for low plastic
strain rates, i.e. wheṅǫ1 ≈ 0.

Deformation due to Thermal Expansion In [8], the
deformation due to thermal expansion is approximated linearly
as

F θ(θ) := (1 + β(θ)(θ − θ0))
1/3 (43)

β(θ) := β0 (1− bθ(θ − θ0)/θM )

such thatJθ = 1 + β(θ)(θ − θ0), whereβ0 is the coefficient of
thermal expansion at reference temperatureθ0. Then

fθ(θ) :=
1

F θ

∂F θ

∂θ
=
β(θ) + (∂β(θ)/∂θ)(θ − θ0)

3(1 + β(θ)(θ − θ0))
(44)

Map Constitutive Equations to Current Configuration
Recall that linearized isochoric elasticity for metals means

that the isochoric elastic deformation is infinitesimal, and the left
and right isochoric elastic Cauchy-Green tensors are linearized
in Eqs.(20) and (21). The volumetric elastic deformation, how-
ever, could be large, whereJe = J/(Jθ) for initially undamaged
metals loaded in the shock regime. Note that this assumptionwas
made in the choice of quadratic free energy function in Eq.(19),
leading to linear isochoric elasticity. In the following, details of
the map are outlined. In order to map the constitutive and evolu-
tion equations fromB̄ to B, note that‖b́e‖ ≈

√
3 and recall the

mappings

DevS̄ = (Je)1/3(F́
e
)−1s(F́

e
)−T

κ̄ = (Je)1/3κ

ᾱ = (Je)1/3(F́
e
)−1α(F́

e
)−T

D̄
p
= (F́

e
)TdpF́

e
, dp = sym(ℓp)

W̄
p
= (F́

e
)TwpF́

e
, wp = skw(ℓp)

‖D̄p‖ ≈ ‖dp‖ (45)

Substituting these expressions and expressing in rate form, the
rate constitutive equations for Cauchy stress,σ = s+ p1, are

◦

s := ṡ − ℓ́
e
s− s(ℓ́

e
)T

= (Je)−12µ(θ)d́
e
+
(

(3fθ + fµθ)θ̇ − tr(d)
)

s

ṗ =

(
∂2fΘe

∂θ∂Je

)

θ̇ +

(
∂2fΘe

∂Je∂Je

)

J̇e (46)

wherefµθ := (∂µ/∂θ)/µ(θ), and the following relations were
used

J̇ = Jdivv =⇒ J̇/J = trd

J̇/J = J̇e/Je + J̇θ/Jθ

The isochoric elastic velocity gradientℓ́
e

is additively decom-
posed into an isochoric elastic deformation rated́

e
and isochoric

elastic spinẃe as ℓ́
e
= d́

e
+ ẃe, where the isochoric elastic

deformation ratéd
e

is the difference between the deviatoric de-
formation rate dev(d) and the plastic deformation ratedp as

d́
e
= dev(d)− dp (47)

and the isochoric elastic spin tensorẃe is the difference between
the total spin tensorw and the plastic spinwp asẃe = w−wp,
where for isotropic plasticitywp = 0. The terms in Eq.(46)
naturally appear through the mappings of Eqs.(18) and (19) to

B and expressing in rate form. The objective stress rate
◦

(•) is
called an isochoric elastic Oldroyd rate (or Truesdell ratebecause
trd́

e
= 0) [16], or an isochoric elastic Lie time derivative as

◦

s= Le
v́(s) := F́

e




D
(

(F́
e
)−1s(F́

e
)−T

)

Dt



 (F́
e
)T (48)

Because isochoric elastic deformations are infinitesimal for met-
als, we can assume that‖s‖ ≪ µ(θ), and we ignore théd

e
s

terms on the left-hand-side with respect to theµ(θ)d́
e

term on
the right-hand-side of Eq.(46) such that

▽

s := ṡ− ẃes+ sẃe (49)

This stress rate can be viewed as an elastic Jaumann-Zaremba
rate and is used in place of the isochoric elastic Oldroyd rate for
Cauchy stress in Eq.(46)1. The rate evolution equations for the
internal stress variablesκ andα are

κ̇ = fµθJκ+ (cκµ
eH −Rd(θ)κ) ǫ̇

p,eff −Rs(θ)κ sinh (κ/(cκµ
e))

◦

α := α̇ − ℓ́
e
α−α(ℓ́

e
)T

= fµθJα+ cαµ
ehdp −

√

2/3
[
rd(θ)ǫ̇

p,eff/(cαµ
e)
]
‖α‖α

where
fµθJ :=

(

fµθ θ̇ − (J̇/J − J̇θ/Jθ)/3
)

µe := (Je)−1/32µ0µ̆(θ) (50)

and ǫ̇p,eff ≈ ˙̄ǫp,eff , except that all variables are evaluated in the
current configuration iṅǫp,eff . When writing the plastic flow rule
in the current configuration, the following mappings are needed
from B̄ toB

Ξ̄eff =
√

3/2Je‖ξ‖ , ξ = s− (2/3)(Je)−2/3α (51)

With the additional assumption that volumetric elastic deforma-
tion is infinitesimal (and thus linearized) for metals loaded at
strain rates less than the shock regime (< 104 /s), the elastic
Jacobian may be approximated asJe ≈ 1 + ǫev, where the volu-
metric elastic strainǫev is small relative to 1, such that|ǫev| < ε,
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whereε ≪ 1 is a small number. Then the volumetric elastic
strain rate becomes

ǫ̇ev ≈ J̇e/Je = trd− J̇θ/Jθ (52)

For linear volumetric elasticity, we choose the volumetricelastic
part of the Helmholtz free energy density as

ρ̄ψΘe

:= K(θ)(ǫev)
2/2 =⇒ p = K(θ)ǫev (53)

The resulting equations are summarized in Box 1.

Box 1. Summary of evolution equations for linearized volumet-
ric and isochoric elasticity inB.

▽

s = 2µ(θ)d́
e
+
(

(3fθ + fµθ)θ̇ − tr(d)
)

s

ṗ = (fKθθ̇)p+K(θ)ǫ̇ev , f
Kθ = (∂K/∂θ)/K(θ)

ǫ̇1 = f(θ)

[

sinh

(〈
ξeff

(κ+ y(θ))
− 1

〉)]n(θ)

ǫ̇2 =
1

B

ξeff

(κ+ y(θ))
, ξeff =

√

3/2‖ξ‖

ξ = s− (2/3)α

κ̇ = fµθJκ+ (cκ2µ(θ)H −Rd(θ)κ) ǫ̇
p,eff

−Rs(θ)κ sinh (c10κ/(cκ2µ(θ)))
◦

α = fµθJα+ cα2µ(θ)hd
p

−
√

2/3
[
rd(θ)ǫ̇

p,eff/(cα2µ(θ))
]
‖α‖α

fµθJ = fµθθ̇ − ǫ̇ev/3

Dimensionless Form and Plasticity Parameter Fitting
Frost & Ashby [29] recognized that the stress-strain re-

sponse of polycrystalline solids with similar lattice structure and
bonding (e.g., bcc metals), when normalized with appropriate
normalizing parameters, collapsed to a narrow band of curves.
They coined the phrase “isomechanical groups” to describe these
materials and their respective similar mechanical behavior when
their evolution equations are normalized. From a practicalen-
gineering perspective, taking advantage of such behavior is very
appealing when given experimental data at few temperaturesand
strain-rates used to characterize the mechanical responseof a
polycrystalline metal. We will demonstrate that dimensionless
parameters fit to data of one bcc metal (Tantalum) can be used to
approximate the response of another bcc metal (Tungsten). The
expectation is that by using such parameters fit for one metalto
approximate the behavior of another metal in the same isome-
chanical group, that extrapolating mechanical response beyond
available experimental data will be better informed than ifpa-
rameters are fit only to the limited data set. The normalizing
parameters are:

Burgers vector (length) b
melt temperature θM
2× shear modulus (dislocation internal variables) 2µ(θ̆)
characteristictime τ = b2/dM

whereb is the Burgers vector at reference temperatureθ0, dM =
d0 exp [−Qd/(RθM )] is the diffusivity at melt [29],d0 is the dif-
fusivity prefactor, andQd the diffusivity activation energy. The
dimensionless variables, parameters, and rates are summarized
in Table 1.

time t̆ = t/τ

differential time dt̆ = dt/τ

temperature θ̆ = θ/θM

mass density ρ̆0 = ρ0b
2/(2µ(θ̆)τ 2)

coefficient of thermal expansion β̆(θ̆) = θMβ(θ̆)

specific heat c̆v(θ̆) = cvτ
2θM/b

2

free energy per unit mass ψ̆ = ψτ 2/b2

time derivative
∗

(•) = τ ˙(•)

rate ˘(•) = τ (•)

deviatoric stress s̆ = s/(2µ(θ̆))

pressure p̆ = p/K(θ̆)

internal backstress ᾰ = α/(2µ(θ̆))

isotropic internal stress κ̆ = κ/(2µ(θ̆))

TABLE 1 . Dimensionless variables.

One-dimensional Uniaxial Stress Form of Model
For fitting plasticity parameters and testing the model formula-
tion, a one-dimensional uniaxial stress condition is assumed, for
which the plastic spinwp = 0 and spinw = 0. The formulation
is carried out for the dimensionless form of the model. Givenan

axial stress̆σ, axial strain rate
∗

ǫ, axial elastic strain rate
∗

ǫe, axial

plastic strain rate
∗

ǫp, and axial backstress̆α, the deformation rate
and stress tensors are written as

d̆
e
=

∗

ǫe





1 0 0
0 −ν 0
0 0 −ν



 , d̆
p
=

∗

ǫp





1 0 0
0 −1/2 0
0 0 −1/2





σ̆ =





σ̆ 0 0
0 0 0
0 0 0



 , s̆ = (σ̆/3)





2 0 0
0 −1 0
0 0 −1





ᾰ = ᾰ





1 0 0
0 −1/2 0
0 0 −1/2





ξ̆ = s̆− (2/3)ᾰ = (σ̆ − ᾰ)/3





2 0 0
0 −1 0
0 0 −1




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We evaluate some of the kinematic variables using the uniaxial
stress assumption, such that

d̆ = d̆
e
+ d̆

p
+ f θ̆

∗

θ̆ 1 (54)

trd̆ = (1− 2ν)
∗

ǫe +3f θ̆
∗

θ̆ (55)

˘́
de = dev(d̆)− d̆

p
= (1 + ν)

∗

ǫe /3





2 0 0
0 −1 0
0 0 −1



 (56)

For the 1D case, we must normalize the pressurep the same as
the deviatoric stresss in order to add them together to get the
total stress. In addition, we assume the temperature dependence
of the shear and bulk moduli are the same, i.e.mθ = nθ. Then,

p̆ =
K(θ̆)

2µ(θ̆)
ǫev =

1 + ν

3(1− 2ν)
ǫev

∗

p̆ =
1 + ν

3(1− 2ν)

∗

ǫ
e

v ,
∗

ǫ
e

v= trd̆
e
= (1− 2ν)

∗

ǫ
e

=⇒
∗

p̆= (1 + ν)
∗

ǫe /3 (57)

Note thatp̆ = σ̆/3. We then obtain the deviatoric stress rate

∗

s̆ =

[

(1 + ν)
∗

ǫe /3− (1− 2ν)
∗

ǫe (σ̆/3)

]




2 0 0
0 −1 0
0 0 −1



(58)

The total stress is
∗

σ̆=
∗

s̆ +
∗

p̆ 1, leading to

∗

σ̆





1 0 0
0 0 0
0 0 0



 = (1 + ν)
∗

ǫe





1 0 0
0 0 0
0 0 0





−[(1− 2ν)
∗

ǫe σ̆/3]





2 0 0
0 −1 0
0 0 −1



 (59)

As for the three-dimensional equations, the elastic strainpower

term
∗

ǫ
e
σ̆ can be shown to be small relative to the elastic

rate term
∗

ǫ
e

in Eq.(59). Similarly, we make this argument

for ignoring the terms
∗

ǫ
e
ᾰ and

∗

ǫ
e
κ̆ in the evolution equa-

tions for the internal stresses. Since‖ᾰ‖ =
√

3/2|ᾰ| and

‖d̆p‖ =
√

3/2 |
∗

ǫp |, the rest of the evolution equations are
determined. A summary of equations are listed in Box 2. We
will solve these equations to fit plasticity parameters next.

Box 2. Summary of dimensionless evolution equations for lin-
earized volumetric and isochoric elasticity inB under uniaxial
stress conditions.

∗

σ̆ = (1 + ν)
∗

ǫe

∗

ǫe =
∗

ǫ −
∗

ǫp −f θ̆
∗

θ̆

∗

ǫ
p
=

∗

ǫ1
∗

ǫ2
∗

ǫ1 +
∗

ǫ2

∗

ǫ1 = f̆(θ̆)

[

sinh

(〈

ξ̆eff

κ̆+ y̆(θ̆)
− 1

〉)]n(θ̆)

∗

ǫ2 =
1

B̆

ξ̆eff

κ̆+ y̆(θ̆)

∗

ᾰ =

(

cαh− rd(θ̆)

cα
sign(

∗

ǫp)|ᾰ|ᾰ
)

∗

ǫp

∗

κ̆ =
[

cκH −Rd(θ̆)κ̆
]

|
∗

ǫp | − R̆s(θ̆)κ̆ sinh

(
κ̆

cκ

)

ξ̆eff = |σ̆ − ᾰ|

Plasticity Parameter Fitting The process of plasticity
parameter fitting involves three steps: (1) obtain the physical
constants for your metal of interest in [29] (e.g., for Tantalum and
Tungsten in Table 2), (2) fit parametersmi in Eq.(39) for quasi-
static yield data, and (3) fit the remaining parameters to isother-
mal, uniaxial stress data for various temperatures and strain rates.
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(a)

m1 0.018
m2 9.0

m3 (K) 250.0
m4 (1/K) 9.2×10−4

m5 (K) 130.0
(b)

FIGURE 3. (a) Plot of fit of fY (θ) in Eq.(39) to quasi-static yield
data for Tantalum [30]. (b) Temperature dependent yield parameters fit
to quasi-static yield stress data for Tantalum.

Tantalum: The fit to quasi-static yield stress for Tantalum is
shown in Fig.3. Quasi-static yield stress is known only for
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R (J/(K mol)) 8.314

b (m) 2.86×10−10

θM (K) 3271

d0 (m2/s) 1.2×10−5

Qd (J/mol) 4.13×105

E0 (Pa) 16.8×1010

ν0 0.34

ρ (kg/m3) 16.6×103

cv (J/(K kg)) 142.0

B (s) 0

mθ 0.42

nθ 0.42

θ0 (K) 298

β0 (1/K) 6.5×10−6

κ0 (Pa) 0

α0 (Pa) 0

cα 1

cκ 1
(a)

R (J/(K mol)) 8.314

b (m) 2.74×10−10

θM (K) 3683

d0 (m2/s) 5.6×10−4

Qd (J/mol) 5.85×105

E0 (Pa) 41.0×1010

ν0 0.28

ρ (kg/m3) 19.3×103

cv (J/(K kg)) 138.0

B (s) 0

mθ 0.38

nθ 0.38

θ0 (K) 298

β0 (1/K) 4.5×10−6

κ0 (Pa) 0

α0 (Pa) 0

cα 1

cκ 1
(b)

TABLE 2 . Summary of physical,pre-determinedconstants for (a)
Tantalum and (b) Tungsten.
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FIGURE 4. Resulting fit of Tantalum uniaxial compression data [30].

temperatures 77K and 298K [30]. This involves fittingfY (θ)
in Eq.(38) to the normalized yield stressy(θ)/[2µ(θ)] at known
temperatures (i.e., 77K and 298K) for an undamaged current
configuration (or current configuration with known porosity)
and assumingc8 = 1. The resulting parameters are shown
in Fig.3(b). Figures 4 and 5 show the dimensionless fit for
various temperatures and strain rates for Tantalum isothermal,
uniaxial stress data in [30]. The resulting fitting parameters are
shown in Table 3(a). The fit bounds the data, but does a poor
job of fitting the 298K, 1300/s strain rate data; and a less than
satisfactory job of fitting the 77K data (low and high strain rates).

Tungsten:Given the physical constants in Table 2(b) for Tung-
sten and the dimensionless fitting parameters for Tantalum in Ta-
ble 3(a) (also a bcc metal, and specifically a refractory metal of
the same isomechanical group [29]), we expect an initial repre-
sentation of the Tungsten response to be reasonable. Figure6
shows an application of the dimensionless parameters for Tanta-
lum to the Tungsten data, using the Tungsten physical constants,
and shows that the initial fit is in the range of the data. The
fit to quasi-static yield stress for Tungsten is shown in Fig.7(a).
Quasi-static yield stress is known only for temperatures 77K and
298K [31]. The resulting parameters are shown in Fig.7(b). Fig-
ure 8 shows the fit to Tungsten uniaxial compression data with
the dimensionless parameters shown in Table 3(b). Clearly,this
re-calibration of Tungsten dimensionless fitting parameters does
a better job fitting the data in Fig.8 than using the dimensionless
Tantalum fitting parameters in Table 3(a), but the dimensionless
Tantalum fitting parameters at the very least provide a good ini-
tial guess to the fit.

CONCLUSIONS
The paper presented a finite strain, rate and temperature de-

pendent elasto-plastic constitutive model for polycrystalline met-
als. A multiplicative decomposition of the deformation gradient
into elastic, plastic, and thermal parts is employed, alongwith a
volumetric-isochoric split of the elastic deformation gradientF e.
Isochoric elastic deformations in metals are assumed infinitesi-
mal, whereas volumetric elastic deformation for initiallynearly
undamaged metals can be large at high strain rates. Generation
and annihilation of statistically-stored dislocations (SSDs) is ac-
counted for, along with dislocation drag at high strain rates. A
dimensionless form of the model is presented using the approach
of isomechanical groups by Frost and Ashby, demonstrating afit
of dimensionless plastic parameters for Tantalum, a body cen-
tered cubic (bcc) lattice structure refractory metal, and applying
them to Tungsten, another bcc refractory metal. The initialfit
of Tungsten data using Tantalum dimensionless plastic parame-
ters provides a reasonable initial guess for the fit, that is easily
refined, as demonstrated in the paper. Future work involves ex-
tending the model to include isotropic damage, texture effects,
adiabatic heating, and three-dimensional numerical examples.
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FIGURE 5. Resulting fit of Tantalum uniaxial compression data, sep-
arated into (a) low and (b) high temperature ranges for better viewing.
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