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ABSTRACT vV, (ab)ir = ai;bj,, anda : b = a;;b;;, where repeated in-
An elastoplasticity model is formulated and demonstrated dices denote a sum over those indices. The symbadlenotes a
in one-dimension (1D) for modeling finite deformations ifypo definition. An overbafe) designates a variable in the intermedi-

crystalline metals. Quasi-static to high strain rate effeas well ate configuration, and different symbols for the other interme-
as temperature sensitivity are included. A multiplicativ&om- diate configurations. Uppercase letters are for the mostrear
position of the deformation gradient into elastic, plastand served for variables in the reference and intermediate gorai
thermal parts, that includes a volumetric/isochoric spiftthe tions, and lowercase letters for the most part designatablas
elastic stretching tensor is assumed. The kinematics amd th  in the current configuration. Cartesian coordinates anernasd.
modynamic formulation lead to constitutive equationgsses, This convention applies to indices as wefl; ; is in the refer-
and constraints on the evolution of the internal state vialés. ence configuratioi,, S;; in the intermediate configuratias,
The model accounts for (i) dislocation drag effects on floesst, ando;; in the current configuratio8. The symbol tfe) is the
and (ii) generation (hardening) and annihilation (recoygiof trace operator, such that#r) = o;;. The symbol defe) is the
statistically-stored dislocations (SSDs). The resultngdel is deviatoric operator, such that dexy) = o — %(tro’)l. The ac-

normalized to dimensionless form to allow dimensionlestema cent symbok denotes an isochoric elastic deformation measure.
rial parameters fit for one metal to approximate the behawibr The symbol syrfe) denotes the symmetric part of a second order

another metal of similar lattice structure, if data are lied. One tensor, such that syff) = (£ + £7)/2, and skwe) the skew-
dimensional material parameter fitting is demonstratedtioo symmetric part of the tensor, such that gkyv= (£ — £7)/2.

refractory metals, body centered cubic (bcc) Tantalum amnahF The symbol(e)” denotes transpose of a tensor. The synetis!
sten. the material time derivative. The symips || is the L2 norm of

avector or tensor, such thig|| = , /a;;a;;. The symboll is the
unity tensor, i.e.(1),; = J;;, whered;; is the Kronecker delta.

NOTATION The symbol(s) over a variable denotes that it is dimensionless.
Boldface denotes vectors and tensors in symbolic notation.

Unless otherwise indicated, all vector and tensor prodircts
symbolic form are assumed to be inner products, sudwas

*Address all correspondence to this author.
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INTRODUCTION
Polycrystalline metals that undergo high strain rates—
possibly nearing the shock regime- (10* 1/s)—experience

wheree stands for elasticp for plastic, andd for the temper-
ature part ofF' (Fig.1). The order of decomposition is not ar-
bitrary. The first mapfF"’ implies that there can be deformation

a complex combination of deformation mechanisms, such as due to temperature change (thermal expansion) withouietas

thermally-activated dislocation motion and generatiaeloda-
tion annihilation, dislocation drag, texture effects,ryestalliza-
tion and grain growth, void nucleation, growth, and coatese,
infinitesimal isochoric elastic stretching, potentialyrde volu-
metric elastic stretching, and large rotations, for inseanThe
elastoplasticity model described in this paper is a phemame
logical description of the physical deformation mecharssh-
served at the dislocation length scale in polycrystallimgats. In
the literature, more complex constitutive models have len
veloped that include spatial gradients of internal statéaties
[1-3] and free surface creation due to crack propagation [4]

among other deformation mechanisms and material processes

experienced by polycrystalline metals (e.g., recrystation and
grain growth, phase transformations). We limit the model de
scribed in this paper to temperature and rate-dependerdfiso
elastoplasticity. Damage and texture effects will be cdersd

in future papers.

The formulation of the model begins with a description of
the kinematics, through a multiplicative decompositionttod
deformation gradient. We formulate the constitutive eipunest
in the plastically deformed, elastically unloaded, intediate
configuration3. Constitutive assumptions are made for the
Helmholtz free energy density reflecting infinitesimal isorc
elastic deformations in polycrystalline metals, but ptitdly
large volumetric elastic deformation for an initially unmdaged
metal loaded in the near shock strain-rate regime. A dimen-
sionless form of the model is presented in the current configu
ration, and material parameter fitting for this dimensisalrm
is demonstrated for two metals of similar lattice structflredy
centered cubic (bcc) Tantalum and Tungsten).

MODEL FORMULATION

The formulation of a thermodynamically-consistent, finite
strain, elastoplastic constitutive model for solids, iis ttase for
a polycrystalline metal, proceeds in the following ordérkine-
matics, (ii) thermodynamics, and (iii) constitutive eqaas with
parameter fitting.

Kinematics
For finite deformation elastoplastic constitutive modglin
we assume a multiplicative decomposition of the defornmatio
gradient as [5-8]
F = F°FPF’

Fir = F$FVF] )

111

plastic deformation, where the plastic deformation forypo}s-
talline metals we consider to be primarily thermally-aated
dislocation motion (although dislocation drag at high satan
occur). Macroscopic elastic deformation throu§i can be
unloaded from the current configurati¢hto the intermediate
configuration3. The intermediate configuration (plastically de-
formed)B is a physically obtainable configuration by unloading
elastically.
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FIGURE 1. Multiplicative decomposition of the deformation gradien

F =@°F FrF° F;; = O F4 FF.Ff,. Note that3 is an incompat-
ible configuration, but for the purpose of phenomenologitastoplas-
ticity modeling, the mappind”? will be treated as a smooth mapping
(i.e., no jump discontinuities or free surfaces at the dslimn scale are

considered).

One of two polar decompositions of the elastic part of the de-
formation gradient™ is F© = V'R (F; = VSRS;), where

V¢ is an elastic stretching tensor aRkf is an elastic proper or-
thogonal tensor (cf. [9] for more discussion of these anetioth
finite deformation plasticity kinematics). The elastiesth ten-
sor may be split into volumetric and isochoric parts as [10, 1

~_€

Vi=0ev, VG = 6Vi; (2)
05 = (J)V%,;, det®° =J =detV® (3)
o= (J)TY6, VG, detVE =1 (4)

and then the elastic part of the deformation gradient ig@mrias
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F*=O°V'R* = @°F° (5)
Ff7 = 05ViRG = 05 Ff = (J9) 26, P = (J)V° g

The volumetric/isochoric split is appropriate for modglimetals
that experience strain rates within the shock regime ¢* 1/s),
where pressure and volumetric elastic deformation canrige la
for an initially undamaged metal [6]. The isotropic volumet
deformation due to change in temperat@iie written as
Ffo=F0)5;, = (J")36;, . J° =detF’ = [F?(0)]®

(6)
whereF?(#) is a function of temperatur@ The multiplicative
decomposition then becomes

F; = ©°.F¢ FP.FY

_ e ¢ 0
F_QFFPF’ ol I IT1° 11

e 70 2N e 70 ald
=(JINPEFY . Fypo= (JU)PEGEE (D)
where FY, = F7.0;;. When writing the left and right iso-

choric elastic Cauchy-Green tensors, the index foﬁ‘;\js and

Ffj will be used equivalently, given that configuratiddsnd 3
map through an isotropic tens@® (cf. Fig.1). We write the

;s €

right isochoric elastic Cauchy-Green tensoGis= (F' )TFe,
vyhere(?}ij = FZ‘}Ffj with isochoric elastic Lagrangian strain
E° = (C° —1)/2. Likewise, we write the left isochoric elastic
Cauchy-Green tensor & = F“(F°)7, wherel; = EGES.
Note that the Jacobian of deformation beconies- detF =
JeJ?, where plastic deformation (dislocation motion) is iso-
choric for metals, such that? = detF? = 1. The velocity
gradient in the current configuratidghthen takes the form

L=FF!
e . 0
A FEY '+ FLP(F) ' + F9(9)1 (8)
3J¢ —_— —— F9(09)
W—’e e Vi ——
E@ f eﬂ
where J¢ = J¢(b%)"! b/2, b Fe(F)T =

(JO)2/BE(F)T, andL? = F"(F?)~!. The symmetric and
skew-symmetric parts of the velocity gradient are the dafor
tion rated := sym(£) and spinw := skw(¥£).

Thermodynamics
The Clausius-Duhem inequality may be written pointwise in
the current configuratioB8 as

. .1
U:E—pw—pnt?—l-éqVGzO 9

and pointwise in the intermediate configuratimas

Jeo : 0 — pip — pnb + %Q(W) >0 (10)

whereo is the symmetric Cauchy stress for a non-polar sglid,
is the mass density for a single phase solidSing = J¢p, ¢

is the Helmholtz free energy per unit magss the entropy per
unit massg is the absolute temperatu@,= J¢(F¢)~lq is the
heat flux in3 andq the heat flux in3. Assume the Helmholtz
free energy density il8 may be additively decomposed (called
“energy separate”) as

= O (J¢, 0)+ o (B, 0)+pu? (€ss, B, 0) +7g(6) (11)

wherepy®” is the free energy density associated with volumetric
elastic deformation’®, pi© is the free energy density associated

with isochoric elastic straif®, 51" is the free energy density as-
sociated with the presence of dislocation defegisand3, and
pg a free energy density that can be used to define entropy, where
all are functions of temperatufe €, is the lattice deformation
due to the presence of statistically-stored dislocati@80s),
andg is a strain-like internal state variable associated with th
Bauschinger effect (i.e., leads to the existence of a beedsstor
modeling cyclic loading). The strain-like internal stateiables

€ss and3 are defined in the plastically deformed configuraifon
because their evolution equations assume a plasticaltyrmed
state. Equation (11) demonstrates the view that plastioroef-

tion is the motion of dislocations, and the state of the niates

a freezeframe of the deformed state, which is representdiueby
elastic lattice deformation due to the presence of defelistof
cations) and due to external loading. We have ignored the con
tinuum representation of geometrically necessary disiocs
(GNDs) leading to a physically-motivated backstress [1-+#3]
order to simplify the formulation and finite element implame
tation. Eventually, the effect of GNDs will be included more
explicitly in the model.

Substituting Egs.(8) and (11) into Eq.(10), and using=
(JO)VBES(F)T = s + pl (S is the Second Piola Kirch-
hoff stress inB), s = deveo, p = tra /3, the Clausius-Duhem
inequality in the intermediate configuratihbecomes

_ e —Te )
(_3(P¢ ) —i—p) Je+ (_M T (Je)2/3m5> : B+
aJe oOE°

volumetric elasticity isochoric elasticity

(_ [653/)515);55 i a(ggp) B} + (J9)?/3(Devs) : (C',Eip)) N
plasticity
9(p o\ 9.J° o1
<_ ((;);zj) - (%}) 20 Mt 3f9Jep> 0+ %Q(VG) >0
entropy heat

(12)
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where f¢ = (F?)~10F%/960, and DevS = § — (C°
S/3)(C*)~1. Following standard thermodynamic arguments

[12,13] thatJ¢, E°, andé can vary independently, in order for

Eq.(12) to be satisfied, constitutive equations for thesstand ,m@"’(f, 0) == 1o (K(0),J°)
entropy are o e

p=2Pv”) 13) , e

e P 0) = 0) B B
Dovs = L __90) (1) — Devs = () 2u(0) B (19)
(273 e
) pp\ 9J° 0 e where the temperature dependent elastic moduli are defined a
=" ~\y7)og TP @)

fi(0) == ( mg(0 — 00)/0nr)

Defining internal stresses due to dislocation defects as
g (1 —»n9(9 90 /9A1

o opyr) - 9(pyP)

Fi=—F=, a:= - (16) wheremyg, ny are parameters determining the temperature de-
O¢ss op pendence of the elastic moduli; is the melt temperaturey
S _ is the shear modulus at reference temperafidreand K, =
the reduced dissipation inequality becomes Ao + 2u0/3 is the bulk modulus at reference temperature. Note
that f©° (K (6), J¢) can be a nonlinear function of the bulk mod-
(J9)*/3(Dev ) : (éeip) B [Réss L& B} n ulus K'(f) and elastic Jacobiad®, which results in a pressure
constitutive equation for an initially undamaged metal e
plastic dissipation stored work, dislocations encing strain rates close to or within the shock regime (*/s)
1. [15]. Itis possible also that the bulk modulus could be a fiomc
gQ(VG) >0 (17) of J¢. We leavef®" undefined for the moment. An expres-
——

sion forp in EQ.(18) easily could be obtained from an equation
of state (EOS) model, but we will not discuss this aspechimnt
wherer is the internal stress due to the presence of SSDs energy9iven the extensive literature on EOS models for polyctist
conjugate G, anda is a phenomenological backstress energy  Metals. , _ , ,

: < L — Recall that for polycrystalline metals, isochoric elastie
conjugate to3. Because the deviatoric streBgvS is energy SN .

' L p ) . i _ formation is infinitesimal, and thus we choose to linearize t
conjugate taC°L", we use this stress in formulating the plastic

) : ' ~ ; > isochoric elastic stretch tensor as @f ~1+H, ||ﬂ|| < g,
evolution equations in ths configuration [14]. We can account  herec « 1 is a small number. The implications of this assump-
for adiabatic heating as a result of high strain rate platgifor-

tion i tals. but | this for future inclusion it tion are now demonstrated. Recall the isochoric elastioqféne
mation in metais, but we leave this for fuluire InClusion ithe deformation gradienf”” = V°R°. Now, consider the right and

heat

model. leftisochoric elastic Cauchy-Green tensors, respegtivel
. . e ONT £° e\T x7\Tx7¢ pe

Constitutive Equations C°=F)F =(R)(V)VR

The constitutive equations involve assumptions for func- =1+ (R (H + I}T)Re (20)
tional forms, based on experimental evidence, for the fatig je e e ~e o oop e
physical phenomena we consider in this short paper: (i} elas b =F(F) =V R(R) (V)
tic deformation, (ii) plastic deformation, and (iii) theatrexpan- 14+ H+ " (21)
sion.

where quadratic term&l (H)” are ignored with respect to the
linear termsH. Note, however, thall +# 0, such that the iso-

Elastic Deformation Since isochoric elastic deforma- choric elastic strain if is

tion is assumed to be infinitesimal and volumetric elastiode
mation could be large in the shock regime, a quadratic fortheof B — (ée —1)/2=(R)T(H + ﬁT)RE/Q
Helmholtz free energy density is chosen only for the isohor

part. For the elastic part of the Helmholtz free energy dgnsi  As a result, the isochoric elastic strains are infinitesirramap-
the volumetric and isochoric parts are defined as ping constitutive equations from the intermediate configjon
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BB to the current configuratioBf, we will use this isochoric elas-
tic linearization. We consider volumetric elastic defotioa J¢
as finite, yet inB we will consider also linearized volumetric
elasticity to formulate a pressure equation for the casenvithe
loading rate is less than that of the shock regime.

Plasticity and Evolution Equations The part of the
free energy density accounting for elastic strain energy tiu
the presence of dislocations is written as

PYP (Ess; B, 0) = cup(B)Es, + cap(0)B:8 (22
which results in the stress-like internal state variables
R=2c.p(0)Ess , @ =2cou(h)B (23)

wherec,, andc,, are parameters usually set equal to 1. Later,

to mapk anda to the current configuratioff, we will use the
following relations
R= V3V PR/, a= () E) aE) T
(24)

wherex and a are the corresponding stress-like internal state

variables in the current configuratioR. The mapping in
Eq.(24, was obtained by treating = &1 as an isotropic
stress inB, andk = k1 as an isotropic stress i. Using
k = (JO)V3F R(F)T then Eq.(23, results. Because
anda are stress-like internal state variables, they are treaged
contravariant second-order tensors in terms of push-fahaad
pull-back operations (see Holzapfel [16]). Refer also taiat
al. [17] for more discussion on these operations for thisahod

The plastic velocity gradient in the intermediate configura
tion B is additively decomposed into symmetii2” and skew-
symmetricW” parts

c°L’ .= D"+ WwW" (25)

The evolution equations fab” andW?” account for thermally-
activated dislocation motion and dislocation drag at highis
rates [18, 19] as well as texture effects [20] (in a futuregrap
The evolution equation fof,, accounts for the generation and

- b 1 -
€ss = Z—F—Pss
2 \/Pss
Kocks & Mecking [22] and Estrin & Mecking [23] defined
an evolution equation fop,s representing thermally-activated

hardening and dynamic recovery (generation and annibilatf
SSDs) as

(26)

(Cl V ﬁss — C2 (o)pss)ép,cﬂ'

wherec, is a constantg; is a function of temperature, adt°®
is the effective plastic strain rate in the intermediateficnma-
tion. For thermal diffusion of dislocations, static recoves de-
fined by Nes [24] as

/;)ss = - 03(9)/355 Slnh(04(9)m)

wherecs andc, are temperature dependent functions. Dynamic
and static recovery mechanisms are not decoupled physwal p
cesses, but by superposing the two equations, this allowes a r
duction to Nes’s static recovery equation (i&:¢f = 0) while
combining the two recovery mechanisms:

(c1v/Pss — c2(0)pss) el — (0)pss sinh(ca(0)+/pss)

(29)
Substituting Eq.(29) back into Eq.(26), and absorbing 1i2
in the constants results in the evolution equation for thikck
deformation due to the presence of SSDs as

Dss 1= 27)

(28)

/L)ss =

oo = [H — Ryg(0)€ss] @°T — R,(0)é,s sinh(éss) (30)
H = Cg
R4(0) = c5A(Q3,0)
R,(0) = c1A(Q4,0)
A(QrL,0) = exp [-QL/(RO)]
where H is the hardening parameteR,(0) the temperature-
dependent dynamic recovery functioR,(#) the temperature-
dependent static recovery functioA(Q 1., 0) is a standard Ar-

rhenius temperature dependence such that-as) thenA — 0
and as? — oo thenA — 1, Q denotes an activation energy

annihilation of SSDs due to standard hardening and recovery ¢y, 5 given mechanism, and is the universal gas constant. The

processes, while the evolution equation fdraccounts for the
generation and annihilation of dislocations of one sign SN
leading to commonly known kinematic hardening.

For formulating an evolution equation fey,, we relate this
strain-like internal state variable to the density of S$as Fol-
lowing the Taylor assumption [21], the lattice deformatitue to
the presence of SSOg, can be defined a5, := b\/pss, Where
b is the magnitude of the Burger's vectbrin the intermediate
configuration3 (b = ||b]|). We definez,, by its evolution with
respect tg,, as

parameterss, cg, c7, @3, andQ4 will be fit to monotonic load-
ing data. The evolution equation f@ris defined in a traditional
hardening-minus-recovery form as [8, 25]

B:=hD" — rq(0)&"\/2/3)|8]| B

h = Cq
ra(0) = c3A(Q2,0)

(31)
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where h is the hardening parameter,(0) the temperature-
dependent dynamic recovery function, and parametgre,,
and Q. are fit to cyclic loading experimental data. The plas-
tic spin was determined from crystal plasticity for doublanar
slip as [26]

W? .= \,(AD" - D"A) (32)
where), is a geometry parameter dependent on slip system ori-
entation,A is the symmetric deviatoric structure tensor account-
ing for texture inB. This expression for the plastic spi” has
been derived by others [27], along with the evolutiondf For
isotropic plasticity, we choosd = 1, leading to zero plastic
spinW?” = 0 in this paper. The plastic deformation rd¥’ is
defined separately by its magnitude and direction as

D’ = ||D*|| N (33)
_ D HP

N = om (5s) /o (stes) | 09
dDev S 0DevS

o7 :=/2/3|D"|| := " (35)

where®” is the plastic potential function chosen to makeé
deviatoric in3. The flow rule (evolution of the effective plastic
strain rate) accounting for transition between thermatyivated
dislocation motion and dislocation drag is defined as [1B8, 19
epeeff . €1€2

36

€1+ €2 (36)
where¢; is the thermally-activated effective plastic strain rate
andé, is the effective plastic strain rate for dislocation drageT
thermally-activated effective plastic strain rateis defined for
unified creep plasticity at low and high stresses [28] as

o oo (-

€1

Sl e

with its temperature-dependent functions defined as

f(0) = c2A(Q1,0)
Y(6) = 2u0Cs £ (6) (38)
_ my _
Y (0) = TR Sr——— [1+ tanh(my(ms — 6))] /2
(39)
n(0) =cy/0+ 1

where f(0) andn(6) govern the rate-sensitivity of flow stress
(also known as the effective relative stres¢! in Eq.(37)),
andY (0) is the quasi-static temperature-dependent initial yield
strength. The parameter3;, ci, ¢z, andcg are fit to rate-
sensitive, temperature-dependent flow stress data, wénibempe-
tersCg andm; (i = 1, ..., 5) are fit to quasi-static yield strengths
at various temperatures. Note tHathas dimensions of stress

6

and is defined in the intermediate configurati®n The stress
dependent function in Eq.(37) is defined as

= V/3/2|Ell; (2/3)a

where=°" is the effective relative stress. The effective plastic
strain rate for dislocation drag [18] is defined as
—eff

1

B (m + }7(9))
whereB is the viscous drag parameter. An illustration of Eq.(36)
and its components can be found in Fig.2. Semi-log and stdnda
plots demonstrate the transition from thermally-actidadés|o-
cation motion to dislocation drag. Note the sharp increase i
flow stress when the effective plastic strain rate entergithg
regime, which isv 5.2 x 107/s given the drag coefficient chosen.
Note also that there is a transition regioniof 107/s to6 x 107/s
strain rate, through which the flow stress is governed byresira
tion from thermally-activated dislocation motion to diséion-
drag-dominated plastic flow. This transition region cantittexd
based on the choice of the drag coefficiBntA smaller B shifts
the drag regime to higher strain rates, while a larger vafuB o
shifts the drag regime to lower strain rates.

geff . = :=DevS — (40)

éQ =

(41)

90!

®
3
S

<
S
3

P.
@
3
S

@
3
3

FLOW STRESS (MPa)
FLOW STRESS (MPa)
5
8
8

— e‘j),eff
- €&
— 6.2

@
3
3

1e-101e-8 1e-6 1e-4 1e2 1 1e2 1e4 1e6 1e8 1
PLASTIC STRAIN RATE (1/s) PLASTIC STRAIN RATE (1/s)

(a) (b)

FIGURE 2. Plots of flow stres§° versus effective plastic strain rate
e for thermally-activated dislocation motién and dislocation drag
és. A drag coefficient ofB = 1 x 10~"s was used, along with ma-
terial parameters for Tantalum in Tables 2,3. (a) semi+itiyaic, (b)
standard.

2 3 4 5 6 7 8 9 10e7

Remark 1. Note that the equation for thermally-activated
effective plastic strain rate and unified creep plastigitiq.(37),
é1, can be inverted to determine a rate-dependent yield fomcti
as

[

FY = 2 54 Y(0)] (1 +sinh ™" [(ea/F(0) ")) = 0

(42)
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where a quasi-static yield function is obtained for low pitas
strain rates, i.e. wheqi ~ 0.

Deformation due to Thermal Expansion In [8], the
deformation due to thermal expansion is approximated tipea
as

FO(0) == (1+ B(0)(0 — 60))'/*

5(9) = ﬁo (1 - b@(e - 6‘0)/91\4)
such that/? = 1+ 3(8)(6 — 6y), whereg, is the coefficient of
thermal expansion at reference temperafgrel'hen

L OF®  B(0) + (98(6)/99)(0 — 6o)

£o9) = FO 90 — 3(1+B0)0—6))

(43)

(44)

Map Constitutive Equations to Current Configuration

Recall that linearized isochoric elasticity for metals mea
that the isochoric elastic deformation is infinitesimald éme left
and right isochoric elastic Cauchy-Green tensors are riineg
in Egs.(20) and (21). The volumetric elastic deformatiomyh
ever, could be large, wherg = J/(J?) for initially undamaged
metals loaded in the shock regime. Note that this assumptsn
made in the choice of quadratic free energy function in E3),(1
leading to linear isochoric elasticity. In the followingetdils of
the map are outlined. In order to map the constitutive antlevo
tion equations fronB to B, note that|b"|| ~ /3 and recall the

mappings
DevS = (JO)V3(E) 1 s(F) T
Ro=(J)3%k
a=(J)VPE)  aE)T
D’ = (F)TdPF° | d” = sym(¢)

WP = (F)TwPF" | w? = skw(€?)
|D"|| =~ ||| (45)

Substituting these expressions and expressing in rate, fiien
rate constitutive equations for Cauchy stress; s + pl1, are

si=5— L s—s(f )T
= () 2u(0)d + (31" + )0 — tr(d)) 5
) a2f(~)€ . an@e .
p= (aeaJe) o+ (aJeaJe) J (46)
where f#¢ .= (011/00)/u(6), and the following relations were
used

J=Jdive = J/J = trd
J)J=Jejie+ %) J°

The isochoric elastic velocity gradieﬁ? is additively decom-
posed into an isochoric elastic deformation rdteand isochoric
elastic spimv® asé” = d~ + w°, where the isochoric elastic
deformation ratel” is the difference between the deviatoric de-
formation rate defl) and the plastic deformation rat# as

d" = dev(d) — d” (47)

and the isochoric elastic spin tenspf is the difference between
the total spin tensaw and the plastic spiw? asw® = w — w?,
where for isotropic plasticityw? = 0. The terms in Eq.(46)
naturally appear through the mappings of Eqgs.(18) and @9) t

B and expressing in rate form. The objective stress (e}ds
called an isochoric elastic Oldroyd rate (or Truesdell beteause

trd” = 0) [16], or an isochoric elastic Lie time derivative as

D ((FE)—ls(FE)—T
Dt

;e

s=L5(s):=F

)] (F)T  (48)

Because isochoric elastic deformations are infinitesioahfet-
als, we can assume this|| < 1(6), and we ignore thel s
terms on the left-hand-side with respect to tk(@)de term on
the right-hand-side of Eq.(46) such that

v

s:=8—ws + sw° (49)

This stress rate can be viewed as an elastic Jaumann-Zaremba

rate and is used in place of the isochoric elastic Oldroyel fiat
Cauchy stress in Eq.(46 The rate evolution equations for the
internal stress variablesanda are

o= fP%7 k5 4 (cou®H — Ry(0)k) éPel —
a=ad&—a- a(ée)T

= % o + cquthdP —

Rs(0)rsinh (k/(cupn®))

V2/3 [ra(0)e " /(can®)] o] @

where
f,uHJ

(7206~ (J /g = J°/7%)/3)
pe = (J) " 2p0/1(0)

andéreff ~ éreff except that all variables are evaluated in the
current configuration ia? . When writing the plastic flow rule

in the current configuration, the following mappings aredest
from Bto B

= V3/2J°IIE]l, €

With the additional assumption that volumetric elasticodefa-
tion is infinitesimal (and thus linearized) for metals loddst
strain rates less than the shock regime 10* /s), the elastic
Jacobian may be approximated.&s~ 1 + ¢, where the volu-
metric elastic strain¢ is small relative to 1, such that®| < ¢,

(50)

=5—(2/3)(J)" 3 (51)
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wheree < 1 is a small number. Then the volumetric elastic Burgers vectorlength) b

strain rate becomes melttemperature 6, 5
e Gesqe 6,16 2x shear modulusdislocation internal variables) 2.(6)
€&~ JY I =trd = J7/J (52) characteristitime 7 = b2 /dy,

For linear volumetric elasticity, we choose the volumegiastic whereb is the Burgers vector at reference temperatdrel,;, =

part of the Helmholtz free energy density as do exp [—Qa/(R0Or)] is the diffusivity at melt [29]4, is the dif-

_ e e\2 o e fusivity prefactor, and), the diffusivity activation energy. The
=K(0 2 =K(0 53 . / . :
Py O)€)/2=» (O)e (53) dimensionless variables, parameters, and rates are sigethar

The resulting equations are summarized in Box 1. in Table 1.

time t=t/T
B_ox 1. _Summgry of e\_/o_lut_ion equations for linearized voltime differential time df = dt )7
ric and isochoric elasticity ifs. .
temperature 0=20/0nm
v € 0 o\ N v
s=2u(f)d + ((3f + )0 — tf(d)) s mass density Jo = pob?/(2u(0)72)
p=(f5%)p + K(9)e, X = (0K/0)/K(0) coefficient of thermal expansion  3(6) = 6:3(6)
off n(®) specific heat &o(6) = cor20ns /b?
¢ = f(0) [sinh (<75 - 1>)} P ()= cor 0]
(k+y(0)) free energy per unit mass W = Y12 /b
_ 1 e off time derivative (i) = 7(e)
= Sy & = VRl :
rate (o) = 7(o)
E=e fS)a deviatoric st 3=1s/(2u(0
o= 0Ty (en2u(6)H — Ra(6)x) epoeft eviatoric stress s=s/( M(v))
—Ry(0)r sinh (c1ok/(cn2u(0))) pressure p=p/K(0)
& = F107 oy ca2u(6)h &P internal backstress a=a/(2u(0))
e isotropic internal st k= r/(2u(0
—\/_[Td )b H/ (ca2(0 ))} ]| e isotropic internal stress E=r/(2u(0))
fHoT = frog ¢ /3 TABLE 1. Dimensionless variables.

One-dimensional Uniaxial Stress Form of Model
For fitting plasticity parameters and testing the model fadan
tion, a one-dimensional uniaxial stress condition is asslirfor
which the plastic spimv? = 0 and spinw = 0. The formulation
is carried out for the dimensionless form of the model Gigan

axial stressr, aX|aI strain rate axial elastic strain raté axial

Dimensionless Form and Plasticity Parameter Fitting

Frost & Ashby [29] recognized that the stress-strain re-
sponse of polycrystalline solids with similar lattice stiwre and
bonding (e.g., bcc metals), when normalized with appré@ria
normalizing parameters, collapsed to a narrow band of curve
They coined the phrase “isomechanical groups” to desdhnieset plastic strain ratep, and axial backstregs the deformation rate

materials and their respective similar mechanical bemavien and stress tensors are written as

their evolution equations are normalized. From a practcal . 110 0 . |1 0 0
gineering perspective, taking advantage of such behavigery d = |0-v 0 , d =e |0 -1/2 0
appealing when given experimental data at few temperatunes 00 —v 0 0 -1/2
strain-rates used to characterize the mechanical respinse 500 20 0
polycrystalline metal. We will demonstrate that dimensiss s=1000 5=(5/3)|0-1 0
parameters fit to data of one bcc metal (Tantalum) can be osed t 000 ’ 00 —1
approximate the response of another bcc metal (Tungstér®. T

expectation is that by using such parameters fit for one netal L0 0

approximate the behavior of another metal in the same isome- a=a|0-1/2 0

chanical group, that extrapolating mechanical respongerik 0 0 —1/2

available experimental data will be better informed thapat 20 0
rameters are fit only to the limited data set. The normalizing E=5—(2/3)a=(—-ad)/3]0-10
parameters are: 00 -1
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We evaluate some of the kinematic variables using the ualiaxi
stress assumption, such that

d=d +d +f01 (54)

trd = (1 — 2v) € +3f9 0 (55)

. o . 20 0

d°=dev(d)—d =(1+v)e /3|0-1 0 | (56)
00 -1

For the 1D case, we must normalize the presguitee same as
the deviatoric stress in order to add them together to get the
total stress. In addition, we assume the temperature depead
of the shear and bulk moduli are the same, .= ny. Then,

. K@), 1+v
p=—=€ = €
2u(0) 3(1-2v)
* 1+l/ *€ *€ ve e
D= ————— =trd =(1-2

=p=(1+v)e€ /3 (57)

Note thatp = /3. We then obtain the deviatoric stress rate

. . N 20 0
s=|14v)e /3—(1-2v)€(5/3)] |0—-1 0 [(58)
00 -1
The total stress i§=3s +]§ 1, leading to
L, 1100 100
1000 =(1+v)e |[000
000 000
. 20 0
—[(1—-2v)e*5/3]|0-1 0 (59)
00 -1

As for the three-dimensional equations, the elastic stpaimer
term ¢ &*ecan be shown to be small relative to the elastic
rate terme in Eq.(59). Similarly, we make this argument
for ignoring the terms & and¢ # in the evolution equa-
tions for the internal stresses. Sing&| = +/3/2|¢| and
1’| = /372 e |, the rest of the evolution equations are

determined. A summary of equations are listed in Box 2. We
will solve these equations to fit plasticity parameters next

Box 2. Summary of dimensionless evolution equations for lin
earized volumetric and isochoric elasticity Frunder uniaxial
stress conditions.

*

(1+v)e

Qe

*P €1€9
€ = .

€1 +—€2
N - geﬂ” n()
€1 = f(0) |sinh — —1

o A\

L1 gt
€ = — >3

B i+ y(0)
gv: (cah— al )51gn(e§’)|d|d> g”

Ca
%= [CHH - Rd(é)k} | €’ | — Ry(0)ksinh (i)
Ck

Plasticity Parameter Fitting The process of plasticity
parameter fitting involves three steps: (1) obtain the pafsi
constants for your metal of interestin [29] (e.qg., for Tdmaand
Tungsten in Table 2), (2) fit parameters in Eq.(39) for quasi-
static yield data, and (3) fit the remaining parameters tthexe
mal, uniaxial stress data for various temperatures anthsates.

0.009

0.008

0.007
— 0,006 mi 0.018
;’ 0.005 mo 9.0
= 0.004 ms (K) 250.0

0.003 ma (1K) | 9.2x107*

0.002 ms (K) 130.0

0.001 (b)

00 200 400 600 800 1000 1200 1400
TEMPERATURE (K)
(@)

FIGURE 3. (a) Plot of fit of f¥(9) in Eq.(39) to quasi-static yield

data for Tantalum [30]. (b) Temperature dependent yieldipaters fit
to quasi-static yield stress data for Tantalum.

Tantalum: The fit to quasi-static yield stress for Tantalum is
shown in Fig.3. Quasi-static yield stress is known only for

Copyright © 2011 by ASME



R (J/(K mol)) 8.314 R (J/(K mol)) 8.314
b (m) 2.86x107 10 b (m) 2.74x10710
O (K) 3271 O (K) 3683
do (m?/s) 1.2x107° do (M?/s) 5.6x10*
Qa4 (I/mol) 4.13x10° Qa (I/mol) 5.85x10°
Eo (Pa) 16.8x10'° Eo (Pa) 41.0x10%
Vo 0.34 Vo 0.28
p (kg/m?®) 16.6x10° p (kg/m®) 19.3x103
¢y (JI(K kg)) 142.0 cv (JI(K kg)) 138.0
B (s) 0 B (s) 0
me 0.42 my 0.38
ng 0.42 ng 0.38
0o (K) 298 0o (K) 298
Bo (LK) 6.5x107° Bo (LK) 4.5x107°
ko (Pa) 0 ko (Pa) 0
ag (Pa) 0 ag (Pa) 0
Ca 1 Ca 1
Cr 1 Cr 1
€Y (b)
TABLE 2. Summary of physicalpre-determinedconstants for (a)

Tantalum and (b) Tungsten.

x 10
o
—0.001 /s, 77K
1800 /s, 77K
8r - —— 0.001 /s, 298K
Mif:; - — -0.1/s,298K
S 1300 /s, 298K
% 7RX 2800 /s, 473K
T 2600 /s, 673K
o — — —2200 /s, 873K
= 6f 3900 /s, 1073K
0 —— 3000 /s, 1273K
2]
- X
P4 < x
5 x
(92}
=
L
=
a
1f
o ‘ ‘ ‘ ‘ ‘
0 0.5 1 15 2
STRAIN
FIGURE 4. Resulting fit of Tantalum uniaxial compression data [30].

25

temperatures 77K and 298K [30]. This involves fittifig (9)

in Eq.(38) to the normalized yield streg®)/[21(6)] at known
temperatures (i.e., 77K and 298K) for an undamaged current
configuration (or current configuration with known poroyity
and assumings = 1. The resulting parameters are shown
in Fig.3(b). Figures 4 and 5 show the dimensionless fit for
various temperatures and strain rates for Tantalum iswialer
uniaxial stress data in [30]. The resulting fitting parametee
shown in Table 3(a). The fit bounds the data, but does a poor
job of fitting the 298K, 1300/s strain rate data; and a less tha
satisfactory job of fitting the 77K data (low and high straates).

Tungsten:Given the physical constants in Table 2(b) for Tung-
sten and the dimensionless fitting parameters for Tantaiura-i

ble 3(a) (also a bcc metal, and specifically a refractory hudta
the same isomechanical group [29]), we expect an initialerep
sentation of the Tungsten response to be reasonable. Fégure
shows an application of the dimensionless parameters faaTa
lum to the Tungsten data, using the Tungsten physical cotssta
and shows that the initial fit is in the range of the data. The
fit to quasi-static yield stress for Tungsten is shown in Hig).
Quasi-static yield stress is known only for temperaturd¢ &id
298K [31]. The resulting parameters are shown in Fig.7(l)- F
ure 8 shows the fit to Tungsten uniaxial compression data with
the dimensionless parameters shown in Table 3(b). Cldaity,
re-calibration of Tungsten dimensionless fitting paramsatees

a better job fitting the data in Fig.8 than using the dimersiem
Tantalum fitting parameters in Table 3(a), but the dimerisgm
Tantalum fitting parameters at the very least provide a gobd i
tial guess to the fit.

CONCLUSIONS

The paper presented a finite strain, rate and temperature de-
pendent elasto-plastic constitutive model for polycristamet-
als. A multiplicative decomposition of the deformation djent
into elastic, plastic, and thermal parts is employed, alwitg a
volumetric-isochoric split of the elastic deformationdjentF°.
Isochoric elastic deformations in metals are assumed te$ii
mal, whereas volumetric elastic deformation for initiatigarly
undamaged metals can be large at high strain rates. Generati
and annihilation of statistically-stored dislocation$[%) is ac-
counted for, along with dislocation drag at high strain sat&
dimensionless form of the model is presented using the agpro
of isomechanical groups by Frost and Ashby, demonstratfitg a
of dimensionless plastic parameters for Tantalum, a body ce
tered cubic (bcc) lattice structure refractory metal, applyng
them to Tungsten, another bcc refractory metal. The inftial
of Tungsten data using Tantalum dimensionless plastiopara
ters provides a reasonable initial guess for the fit, thaaglye
refined, as demonstrated in the paper. Future work involves e
tending the model to include isotropic damage, texturecesfe
adiabatic heating, and three-dimensional numerical elesnp

Copyright © 2011 by ASME



——0.001 /s, 77K
1800 /s, 77K

——0.001 /s, 298K

---0.1/s, 298K
1300 /s, 298K

DIMENSIONLESS STRESS

25

STRAIN

(@)

]

0

o 3.5

[

(2]

1) 3

n

L

= 25

5

D 2 ——2800/s

z 2600 /s, 673K
s - - -2200/s, 873K
a

——3900 /s, 1073K
——3000 /s, 1273K

0 | | | | | | )
0.15 0.2 0.25 0.3 0.35

STRAIN

(b)

FIGURE 5. Resulting fit of Tantalum uniaxial compression data, sep-
arated into (a) low and (b) high temperature ranges for beitéving.
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——0.001/s, 77K
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FIGURE 6. Applying dimensionless fitting parameters for Tantalum
to Tungsten uniaxial compression data.
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FIGURE 7. (a) Plot of fit of f¥(9) in Eq.(39) to quasi-static yield

data for Tungsten. (b) Temperature dependent yield pasamét to
quasi-static yield stress data for Tungsten.
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