ABSTRACTI

Bifurcation of an elastoplastic dynamic saturated poroadiom has been shown
to be related to the underlying solid skeleton drained biehawly, in the small strain
regime [1]. Such analysis is extended to a simple non-agseeiDrucker-Prager
cap plasticity model at finite strain implemented in an imipldynamic saturated
biphasic (solid and fluid) three-dimensional finite elemgjt Formulation of
the plasticity model assumes a multiplicative decompasitof the deformation
gradient into elastic and plastic parts, and the model éoumtaire expressed in the
intermediate configuration.

INTRODUCTION

There are a number of engineering problems of interest tivatvie saturated
porous media, for which three-dimensional (3D), finite istralynamic finite ele-
ment (FE) analysis of inelastic deformation, effectivess, pore fluid pressure, and
bifurcation is important. Such problems include buildiogmdations resting on satu-
rated soils subjected to earthquake loading (in variolectons), embankment dams
subjected to earthquake loading, vertebral disks sulgjeictelynamic loads during
running, jJumping, or impact, etc.

This paper presents preliminaries of a 3D, finite strain aayic biphasic mixture
elastoplasticity model formulated for FE implementatiwith details left to other pa-
pers [2,3]. The main contribution of this paper is to preskeatbifurcation analysis of
strain localization (continuous bifurcation, weak distiouity [4]) for an elastoplas-
tic, saturated biphasic mixture, finite strain simple getamal. Previous analyses by
Loret and Prevost [1], Rudnicki [5], Callari and Armero [@Je shown that the un-
derlying solid skeleton drained material behavior govdaifigrcation, although can
be delayed for low permeability materials as the effectivess is influenced by the
evolving pore fluid pressure.

We use lower case letters for variables and coordinatesicuhrent configura-
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tion (such as differential volumev), capital letters for the reference configuration
(such as differential volumdV), and capital letters with an overbar for the interme-
diate configuration (such as differential volumid) when assuming a multiplicative
decomposition of the deformation gradient into elastic plastic parts. Bold-face
letters denote matrices, tensors and vectors; the synibdéhotes an inner product
of two vectors (e.g.a - b = ab'), or a single contraction of adjacent indices of two
tensors (e.gg-d = Cijdi); the symbol “” denotes an inner product of two second or-
der tensors (e.gc : d = ¢;jd'’), or a double contraction of adjacent indices of tensors
of rank two and higher (e.gD) : C = D,k .CKY); the symbol %" denotes dyadic
product of two tensors (e.ge,@ d = Gijdyg). “grad” and “div” represent the gradient
and divergence operators with respect to the current caafign, respectively;
“GRAD” and “DIV” represent the gradient and divergence a@ers with respect
to the reference configuration, respectively. Super-saipd sub-script indices
distinguish between contravariant and covariant tensapoments, respectively. We
will assume Cartesian coordinates for the reference arrémuconfigurations.

VOLUME FRACTION AND KINEMATICS

The volume fractiom? for constituentx is defined as
def
nY =dvg/dv, $n?=1, Ydvg =dv (1)
2=t 2

where a =s,f (solid and fluid constituents), differential mixturelume dv C B,
‘B = BS (the mixture control space is that of the solid phase; i.e.fallow the solid
phase motion), andvy is the differential volume of constitueat. Let Bg and BB
denote the reference configurations of the solid and fluid@harespectively. We
drop the s designation because the solid phase motion egpsabat of the mixture.
Plastic deformation for the solid skeleton is introduceatigh a multiplicative de-
composition of the solid skeleton deformation gradienfas F€FP [7]. Clayton et
al. [8] derived deformation measures associated with thiéiplicative decomposi-
tion of F' and the existence of a non-Euclidean intermediate contigar®. It was
shown that the covariant components of certain tensof® gontain the covariant
metric coefficient$S . The multiplicative decomposition is written as

F=F®. FP = F*FPK g, 0 GX @)

where GX are the contravariant basis vectorsBa, and g, the covariant basis
vectors inB. One choice for the covariant metric coefficients Bnare [8]

jectors |
Gy = Cr = FokauFeL

THERMODYNAMICS

The first and second laws of thermodynamics, upon introdutiie Helmholtz
free energy functiony® for constituenta, combine to give the Clausius-Duhem in-
equality for the biphasic mixture in the current configuwatB as [9] (eq.5.7)
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wherep? are the partial mass densiti€3? (e) /Dt are the material time derivatives
with respect to their constituent motion (no superscripplies solid motion),c?
are the constituent Cauchy stresgisthe velocity gradientsh the interconstituent
force on the fluid by the solid (as the fluid flows through theggdrandvs the relative
fluid velocity. Sparing details presented in [2], the redldssipation inequality
results as

+ob+o i b—h P >0 (3)
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wherepy is the pore fluid pressur@® the real fluid mass density; the fluid ac-
celerationp® = nfd; the Eulerian Darcy relative fluid veloc_itﬁ' the Second Piola-
Kirchhoff effective stress in the intermediate configuratin the plastic velocity
gradient in the intermediate configuratidp a vector of stress-like internal state vari-
ables (ISVs) and& a vector of strain-like ISVs iB. The conjugate terms will provide
the variables for the Darcy relative fluid velocity, pladeformation rate, and inter-
nal state variable evolution equations. Constitutive fofor the pore fluid pressure
and effective stress result as [2]
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CONSTITUTIVE EQUATIONS

Constitutive equations need to be defined for the Helmhod& énergy functions
for solid and fluid phases, including plastic evolution eures for the solid phase
skeleton Fluid phase: Assuming barotropic flow and constant fluid bulk modis
the Helmholtz free energy function for the fluid constitulerds to [2]p; = K¢Inp™R.

A constitutive equation for the Eulerian Darcy relative dlwielocity &' that is pro-
portional to the first term ir{4) ensures non-negative gasbn contribution by the
fluid constituent term in the dissipation inequality. Suotoastitutive equation was
proposed by Coussy [10] (Sect.3.3.1) where porosity-déganisotropic hydraulic
conductivity k(nf) is assumed. Furthermore, we will assume the relative fluid ac
celeration vector is approximately zero (appropriate feimediate to long period
motions like earthquakes and athletic activities), sue dlh = a. More details can
be found in [9,10].Solid phase: For the solid skeleton, we additively separate the
Helmholtz free energy function into elastic and plastidpas

F5(C®, Z) = §>(C°) + §°P(Z) (6)

We assume neo-Hookean compressible elasticity [11], suathite constitutive equa-
tion for effective Second Piola Kirchhoff stressknis

S = uG+ (AlInJ®—p)Cc®t 7)



whereA and pu are the Lamé constantd§® = detF®. For the plastic part of the
Helmholtz free energy function, we define it such that 2= H - Z, where H
is @ matrix of linear hardening/softening parameters. Normains to define evolu-
tion equations for the plastic velocity gradieb? and strain-like ISVZ in the solid
constituent contribution to the reduced dissipation iraityy With the covariant met-
ric coefficients defined iB, the covariant coefficients of the plastic velocity gradien
are

P _G-iPA_ce jpA [pA _EpApp-1K

Lice = Gral "L = CRal P, LP =FPRFPop (8)
We assume the plastic spin is zah$- = 0, such that the plastic deformation rate is
DID = Ep We define the plastic deformation rate as

— - 99
P _

Dk = yagKL
wherey is the plastic multiplier, an@(S Q) is a plastic potential function. Also
Z = yh Details of the plasticity model are presented in [2].

(9)

BIFURCATION ANALYSIS

A finite element bifurcation analysis typically involvestfollowing steps: (1) a
statement of the variational form of the mixture balanceirgdr momentum equa-
tions for kinematic discontinuities to identify jump terng) definition of kinematic
discontinuities, (3) formulation of bifurcation criterdeepending on the constitutive
model and kinematics, (4) implementation of such critanta & finite element code,
and (5) analysis of numerical examples for determining bokmcalized deforma-
tion for certain material parameters and boundary conutioSteps (1-3) will be
treated here. Steps (4,5) are left for future work.

X(X,t)

Figure 1. Biphasic porous body with weak discontinuity. €&ehce configuratioso mapped
to current configuratior with motion x (X ,t). Essential BCs are not shown.



(1) Variational form of the mixture balance of linear momentum: Referring to
Figurell, the variational form of the mixture balance of inenomentum with weak
discontinuity is

/ (poav oV ) av+ [ GRADw: PdV
Bo Bo

ot ot
+ GRADw:((V-I—V)@Q dv+/ V-l—V)DIVQ)
/w oy dV+/ w - TydA+ w-((v+f/f)®Qf)-N‘730dA
(0Bo)q
w- ([P]-N)dA+ / ([P]-N)dA (10)
(So)

wherew is the weighting functiongg is the total mixture reference mass densti{y,

the partial fluid reference mass densi¥y,the solid material velocity vectoiff the
relative fluid material velocity vectol the total mixture first Piola-Kirchhoff stress,
Q' the interstitial material fluid flow vectoy the gravitational acceleratioff}; the
traction in the current configuration with respect to therefce ared,P] the jump

in P across the discontinuity surfacl] the unit normal to the planar weak disconti-
nuity (at a material point), an&?2o the normal to the boundary. Note that the flux
Q' N is continuous across the band (this is not the case for sttisegntinuity). For
traction across the band to be continuous, the followinglgémn must hold across
the discontinuity surfacdP] - N = 0. This leads to the bifurcation condition, where
the total stress is composed of the partial stregsesPS+ P', and thus constitutive
equations for solid and fluid constituents must be accouiated

(2) Kinematics: Assuming a planar band of weak discontinuity with thicknéss
parameterized by (0 < n < /), the displacement becomes

u(X,t) = a(X,t)+n [u(X,1)] /lo (11)
whereu(X,t) is the compatible displacemeifjis( X, t)] the jump in displacement

across the discontinuity, and N the unit normal to(So)", and(8o)". This dis-
placement leads to a deformation gradi€hof the form

F =1+GRADa +GRAD([u])n/to+ ([u] @ N) /4o (12)

(3) Bifurcation criterion: We limit the analysis to weak discontinuity kinematics,
and express the traction continuity condition in rate fors[gP]] - N = 0 or
%(Pb — P° . FT.n =0 where “b” is within the band and “o” just outside the
band. We assume the eﬁectlve stress pore fluid pressuleglastic deformation
are continuous acro$§o) and(8o)" (i.e.,o’, pr, F© continuous). For continuous
bifurcation (plastic Ioadlng within and outside the banditircation), the plastic
multiplier is y = Y9+ y,/¢o. For a planar bandfu]] = {m, wherem is the
direction of jump displacement arfdits magnitude irB. Skipping many details, a
bifurcation condition results ad - m = 0, detA=0 for m # 0, whereA(o’, F€,Q)

is the acoustic tensor and not a function @f (although the effective stress is
influenced by the evolution of pore fluid pressure).



SUMMARY

The paper presented a thermodynamically consistent fitigenselastoplastic
biphasic mixture model including inertia terms [2]. Bifatmon analysis assuming
continuous bifurcation, weak discontinuity, led to a caiwi dependent on effective
stress, elastic deformation, and stress-like ISVs, butxpticet dependence on the

pore
fluid

fluid pressure. The effective stress will depend on tledugon of the pore
pressure during solution of the initial boundary valu®blem, even though

the bifurcation condition relies only on analysis of theidakeleton constitutive
equations. Numerical examples demonstrating the bifimcatondition will be

pres
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