
ABSTRACT

Bifurcation of an elastoplastic dynamic saturated porous medium has been shown
to be related to the underlying solid skeleton drained behavior only, in the small strain
regime [1]. Such analysis is extended to a simple non-associative Drucker-Prager
cap plasticity model at finite strain implemented in an implicit dynamic saturated
biphasic (solid and fluid) three-dimensional finite element[2]. Formulation of
the plasticity model assumes a multiplicative decomposition of the deformation
gradient into elastic and plastic parts, and the model equations are expressed in the
intermediate configuration.

INTRODUCTION

There are a number of engineering problems of interest that involve saturated
porous media, for which three-dimensional (3D), finite strain, dynamic finite ele-
ment (FE) analysis of inelastic deformation, effective stress, pore fluid pressure, and
bifurcation is important. Such problems include building foundations resting on satu-
rated soils subjected to earthquake loading (in various directions), embankment dams
subjected to earthquake loading, vertebral disks subjected to dynamic loads during
running, jumping, or impact, etc.

This paper presents preliminaries of a 3D, finite strain, dynamic biphasic mixture
elastoplasticity model formulated for FE implementation,with details left to other pa-
pers [2,3]. The main contribution of this paper is to presentthe bifurcation analysis of
strain localization (continuous bifurcation, weak discontinuity [4]) for an elastoplas-
tic, saturated biphasic mixture, finite strain simple geomaterial. Previous analyses by
Loret and Prevost [1], Rudnicki [5], Callari and Armero [6] have shown that the un-
derlying solid skeleton drained material behavior governsbifurcation, although can
be delayed for low permeability materials as the effective stress is influenced by the
evolving pore fluid pressure.

We use lower case letters for variables and coordinates in the current configura-
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tion (such as differential volumedv), capital letters for the reference configuration
(such as differential volumedV ), and capital letters with an overbar for the interme-
diate configuration (such as differential volumedV̄ ) when assuming a multiplicative
decomposition of the deformation gradient into elastic andplastic parts. Bold-face
letters denote matrices, tensors and vectors; the symbol “·” denotes an inner product
of two vectors (e.g.,a · b = aibi), or a single contraction of adjacent indices of two
tensors (e.g.,c ·d = ci jd

j
k); the symbol “:” denotes an inner product of two second or-

der tensors (e.g.,c : d = ci jdi j), or a double contraction of adjacent indices of tensors
of rank two and higher (e.g.,D : C = DIJKLCKL); the symbol “⊗” denotes dyadic
product of two tensors (e.g.,c⊗d = ci jdkl). “grad” and “div” represent the gradient
and divergence operators with respect to the current configuration, respectively;
“GRAD” and “DIV” represent the gradient and divergence operators with respect
to the reference configuration, respectively. Super-script and sub-script indices
distinguish between contravariant and covariant tensor components, respectively. We
will assume Cartesian coordinates for the reference and current configurations.

VOLUME FRACTION AND KINEMATICS

The volume fractionnα for constituentα is defined as

nα def
= dvα/dv , ∑

α
nα = 1 , ∑

α
dvα = dv (1)

where α =s,f (solid and fluid constituents), differential mixture volume dv ⊂ B,
B = Bs (the mixture control space is that of the solid phase; i.e., we follow the solid
phase motion), anddvα is the differential volume of constituentα. Let B0 andBf

0
denote the reference configurations of the solid and fluid phases, respectively. We
drop the s designation because the solid phase motion represents that of the mixture.
Plastic deformation for the solid skeleton is introduced through a multiplicative de-
composition of the solid skeleton deformation gradient asF = F eF p [7]. Clayton et
al. [8] derived deformation measures associated with the multiplicative decomposi-
tion of F and the existence of a non-Euclidean intermediate configuration B̄. It was
shown that the covariant components of certain tensors inB̄ contain the covariant
metric coefficientsḠK̄L̄. The multiplicative decomposition is written as

F = F e ·F p = Fek
·K̄F pK̄

·Kgk ⊗GK (2)

where GK are the contravariant basis vectors inB0, and gk the covariant basis
vectors in B. One choice for the covariant metric coefficients on̄B are [8]

ḠK̄L̄
def
= C̄e

K̄L̄ = Fek
·K̄gklFel

·L̄.

THERMODYNAMICS

The first and second laws of thermodynamics, upon introducing the Helmholtz
free energy functionψα for constituentα, combine to give the Clausius-Duhem in-
equality for the biphasic mixture in the current configurationB as [9] (eq.5.7)



−ρsDψs

Dt
−ρ f Dfψ f

Dt
+σs : `+σf : `f −hf · ṽf ≥ 0 (3)

whereρα are the partial mass densities,Dα(•)/Dt are the material time derivatives
with respect to their constituent motion (no superscript implies solid motion),σα

are the constituent Cauchy stresses,`α the velocity gradients,hf the interconstituent
force on the fluid by the solid (as the fluid flows through the pores), and ˜vf the relative
fluid velocity. Sparing details presented in [2], the reduced dissipation inequality
results as

−

∫

B

(

grad(pf)+ρ fR(af −g))
)

· ṽfdv+
∫

B̄

(

S̄
′ : (C̄

e
· L̄

p
)− Q̄ · ˙̄Z

)

dV̄ ≥ 0 (4)

wherepf is the pore fluid pressure,ρ fR the real fluid mass density,af the fluid ac-
celeration, ˜vf = nfṽf the Eulerian Darcy relative fluid velocity,̄S′ the Second Piola-
Kirchhoff effective stress in the intermediate configuration, L̄

p the plastic velocity
gradient in the intermediate configuration,Q̄ a vector of stress-like internal state vari-
ables (ISVs) and̄Z a vector of strain-like ISVs in̄B. The conjugate terms will provide
the variables for the Darcy relative fluid velocity, plasticdeformation rate, and inter-
nal state variable evolution equations. Constitutive forms for the pore fluid pressure
and effective stress result as [2]

pf = (ρ fR)2 ∂ψ f

∂ρ fR , S̄
′
= 2ρ̄s ∂ψ̄s

∂C̄
e (5)

CONSTITUTIVE EQUATIONS

Constitutive equations need to be defined for the Helmholtz free energy functions
for solid and fluid phases, including plastic evolution equations for the solid phase
skeleton.Fluid phase: Assuming barotropic flow and constant fluid bulk modulusKf,
the Helmholtz free energy function for the fluid constituentleads to [2]pf = Kf lnρ fR.
A constitutive equation for the Eulerian Darcy relative fluid velocity ṽf that is pro-
portional to the first term in (4) ensures non-negative dissipation contribution by the
fluid constituent term in the dissipation inequality. Such aconstitutive equation was
proposed by Coussy [10] (Sect.3.3.1) where porosity-dependent isotropic hydraulic
conductivityk(nf) is assumed. Furthermore, we will assume the relative fluid ac-
celeration vector is approximately zero (appropriate for intermediate to long period
motions like earthquakes and athletic activities), such that af = a. More details can
be found in [9,10].Solid phase: For the solid skeleton, we additively separate the
Helmholtz free energy function into elastic and plastic parts as

ψ̄s(C̄
e
,Z̄) = ψ̄s,e(C̄

e
)+ ψ̄s,p(Z̄) (6)

We assume neo-Hookean compressible elasticity [11], such that the constitutive equa-
tion for effective Second Piola Kirchhoff stress in̄B is

S̄
′
= µḠ+(λ lnJe −µ)C̄

e−1 (7)



whereλ and µ are the Lamé constants,Je = detF e. For the plastic part of the
Helmholtz free energy function, we define it such that [2]Q̄ = H̄ · Z̄, whereH̄

is a matrix of linear hardening/softening parameters. Now,it remains to define evolu-
tion equations for the plastic velocity gradientL̄

p and strain-like ISV˙̄Z in the solid
constituent contribution to the reduced dissipation inequality. With the covariant met-
ric coefficients defined in̄B, the covariant coefficients of the plastic velocity gradient
are

L̄p
K̄L̄ = ḠK̄ĀL̄pĀ

·L̄ = C̄e
K̄ĀL̄pĀ

·L̄ , L̄pĀ
·L̄ = Ḟ pĀ

·KF p−1K
·L̄ (8)

We assume the plastic spin is zerōW p
K̄L̄ = 0, such that the plastic deformation rate is

D̄p
K̄L̄

= L̄p
K̄L̄

. We define the plastic deformation rate as

D̄p
K̄L̄ = ˙̄γ

∂ Ḡ

∂ S̄′K̄L̄
(9)

where ˙̄γ is the plastic multiplier, and̄G(S̄
′
,Q̄) is a plastic potential function. Also

˙̄Z = ˙̄γh̄
Z. Details of the plasticity model are presented in [2].

BIFURCATION ANALYSIS

A finite element bifurcation analysis typically involves the following steps: (1) a
statement of the variational form of the mixture balance of linear momentum equa-
tions for kinematic discontinuities to identify jump terms, (2) definition of kinematic
discontinuities, (3) formulation of bifurcation criteriadepending on the constitutive
model and kinematics, (4) implementation of such criteria into a finite element code,
and (5) analysis of numerical examples for determining onset of localized deforma-
tion for certain material parameters and boundary conditions. Steps (1-3) will be
treated here. Steps (4,5) are left for future work.
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Figure 1. Biphasic porous body with weak discontinuity. Reference configurationB0 mapped
to current configurationB with motionχ(X, t). Essential BCs are not shown.



(1) Variational form of the mixture balance of linear momentum: Referring to
Figure 1, the variational form of the mixture balance of linear momentum with weak
discontinuity is

∫

B0

w ·

(

ρ0
∂V

∂ t
+ρ f

0
∂ Ṽ

f

∂ t

)

dV +
∫

B0

GRADw : P dV

+

∫

B0

GRADw :
(

(V + Ṽ
f
)⊗Qf

)

dV +

∫

B0

w ·
(

(V + Ṽ
f
)DIVQf

)

dV

=

∫

B0

w · (ρ0g)dV +

∫

(∂B0)t

w ·T tdA+

∫

(∂B0)q

w ·
(

(V + Ṽ
f
)⊗Qf

)

·N∂B0dA

+
∫

(S0)
`
+

w · ([[P ]] ·N)dA+
∫

(S0)
`
−

w · ([[P ]] ·N)dA (10)

wherew is the weighting function,ρ0 is the total mixture reference mass density,ρ f
0

the partial fluid reference mass density,V the solid material velocity vector,̃V
f

the
relative fluid material velocity vector,P the total mixture first Piola-Kirchhoff stress,
Qf the interstitial material fluid flow vector,g the gravitational acceleration,T t the
traction in the current configuration with respect to the reference area,[[P ]] the jump
in P across the discontinuity surface,N the unit normal to the planar weak disconti-
nuity (at a material point), andN ∂B0 the normal to the boundary. Note that the flux
Qf ·N is continuous across the band (this is not the case for strongdiscontinuity). For
traction across the band to be continuous, the following condition must hold across
the discontinuity surfaces[[P ]] ·N = 0. This leads to the bifurcation condition, where
the total stress is composed of the partial stressesP = P s+P f, and thus constitutive
equations for solid and fluid constituents must be accountedfor.
(2) Kinematics: Assuming a planar band of weak discontinuity with thickness`0

parameterized byη (0≤ η ≤ `0), the displacement becomes

u(X, t) = ũ(X, t)+η [[u(X, t)]]/`0 (11)

whereũ(X, t) is the compatible displacement,[[u(X, t)]] the jump in displacement
across the discontinuityB`

0, andN the unit normal to(S0)
`
+ and(S0)

`
−. This dis-

placement leads to a deformation gradientF of the form

F = 1+GRADũ+GRAD([[u]])η/`0+([[u]]⊗N)/`0 (12)

(3) Bifurcation criterion: We limit the analysis to weak discontinuity kinematics,
and express the traction continuity condition in rate form as

[[

Ṗ
]]

· N = 0 or
1
J (Ṗ

b
− Ṗ

o
) ·F T ·n = 0 where “b” is within the band and “o” just outside the

band. We assume the effective stress, pore fluid pressure, and elastic deformation
are continuous across(S0)

`
+ and(S0)

`
− (i.e.,σ′, pf, F e continuous). For continuous

bifurcation (plastic loading within and outside the band atbifurcation), the plastic
multiplier is ˙̄γ = ˙̄γ reg+ ˙̄γ`0/`0. For a planar band,[[u̇]] = ζ̇m, wherem is the
direction of jump displacement anḋζ its magnitude inB. Skipping many details, a
bifurcation condition results asA ·m = 0, detA=0 for m 6= 0, whereA(σ′,F e,Q̄)
is the acoustic tensor and not a function ofpf (although the effective stress is
influenced by the evolution of pore fluid pressure).



SUMMARY

The paper presented a thermodynamically consistent finite strain elastoplastic
biphasic mixture model including inertia terms [2]. Bifurcation analysis assuming
continuous bifurcation, weak discontinuity, led to a condition dependent on effective
stress, elastic deformation, and stress-like ISVs, but no explicit dependence on the
pore fluid pressure. The effective stress will depend on the evolution of the pore
fluid pressure during solution of the initial boundary valueproblem, even though
the bifurcation condition relies only on analysis of the solid skeleton constitutive
equations. Numerical examples demonstrating the bifurcation condition will be
presented in a future paper.
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