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ABSTRACT: Localized deformation such as shear bands, compaction bands, dilation bands, combined shear/compaction or
shear/dilation bands, fractures, and joint slippage are commonly found in rocks. Thus, modeling their inception, development
and propagation, and effect on stress response is importantwith regard to making informed engineering design decisions involving
these materials. Following a GulfRocks04 paper (ARMA/NARMS 04-520) that focused on modeling bifurcation to these localized
deformations, this paper focuses on modeling numerically the post-bifurcation regime, specifically strong discontinuities in rock
whose bulk response is governed by a three-invariant, isotropic/kinematic hardening cap plasticity model. We developa simple
post-bifurcation constitutive model and implement it using an enhanced strain finite element method, an approach used to embed dis-
continuities within the coarse scale finite element response. The post-bifurcation model takes the form of a simple Mohr-Coulomb
failure model along the discontinuity, but with internal variables cohesion, dilation/compaction, and friction allowed to degrade lin-
early or exponentially as a function of jump displacement across a discontinuity/crack. Because the dilation/compaction internal
variable evolves, the enhancement function for the enhanced strain finite element formulation evolves as well. A hexahedral Em-
bedded Discontinuity finite Element (EDE) is implemented tomodel three-dimensional strong discontinuities in rock. Numerical
examples will demonstrate the model.

1. INTRODUCTION

Localized deformation can be triggered either by ma-
terial inhomogeneities such as joint sets in rocks
and/or by inhomogeneous stresses resulting from
boundary conditions such as friction at end platens
in a confined compression test or from the geome-
try of a problem (such as an underground tunnel),
for instance. Localized deformation does not always
lead to immediate catastrophic failure, in that a shear
band or crack could be arrested, depending on the
loading conditions applied to the tunnel walls, for
example. Localized deformation could lead, how-
ever, to immediate catastrophic failure as a worst
case, and eventual failure of the tunnel over the life-
time of the structure. Thus, modeling the inception,
development and propagation of localized deforma-
tion, and its effect on stress response is important

with regard to making informed engineering design
decisions. In order to make informed decisions for
complex three-dimensional (3D) geometries, loading
conditions, and nonlinear material behavior, numer-
ical modeling of failure in rock is essential because
analytical solutions would be unworkable. With par-
allel computing becoming more commonplace, and
with the advent of molecular (and possibly even
quantum) computing becoming a reality in our life-
times, solving these complex 3D failure problems
with numerical models is feasible. Applications of
pre- and post-bifurcation constitutive models and a
computational framework for modeling localized de-
formation in rock include assessing the long term
performance of nuclear waste repositories, designing
tunnel construction, oil and natural gas production,
and depleted reservoirs used for subsurface seques-



tration of greenhouse gases.
Following a GulfRocks04 paper [1] that focused

on modeling the bifurcation to these localized defor-
mations, this paper focuses on modeling numerically
the post-bifurcation regime, specifically strong dis-
continuities in rock whose bulk response is governed
by a three-invariant, isotropic/kinematic hardening
cap plasticity model [2, 3]. A simple post-bifurcation
constitutive model is implemented using an enhanced
strain finite element method, an approach used to em-
bed discontinuities within the coarse scale finite ele-
ment response. The post-bifurcation model takes the
form of a simple Mohr-Coulomb failure model along
the discontinuity, but with internal variables cohe-
sion, dilation/compaction, and friction allowed to de-
grade linearly or exponentially as a function of jump
displacement across a discontinuity/crack. Because
the dilation/compaction internal variable evolves, the
enhancement function for the enhanced strain finite
element formulation evolves as well. A hexahe-
dral Embedded Discontinuity finite Element (EDE)
is implemented to model 3D strong discontinuities in
rock.

Throughout the paper we assume small deforma-
tions and rotations. Symbolic notation is used for
clearer presentation, such as the inner product of
two second order tensors(a · b)ik = aijbjk, the
contraction of two tensorsa : b = aijbij , or the
dyadic product(a⊗b)ijkl = aijbkl. Tensor operators
are used such as the symmetric gradient(∇sv)ij =
(vi,j + vj,i)/2, and divergence(∇ · a)i = aij,j. The
symbol(•̇) = ∂(•)/∂t denotes a time derivative.

2. KINEMATICS AND GOVERNING EQUA-
TIONS FOR STRONG DISCONTINUITIES

For strong discontinuities, the velocity field contains
a spatial jump in velocity[[v]] acrossS as [10]

v(x, t) = v̄(x, t) + [[v(x, t)]] HS(x) (1)

wherev̄ = ∂ū/∂t is the regular velocity field, and
HS is the Heaviside function along surfaceS (cf.
Fig.1). This velocity field leads to a singular strain
rateε̇ = ∇

sv atS as

ε̇ =

{
ε̇1 = ε̇0 + sym([[v]] ⊗ n) δS ∈ S

ε̇0 ∈ Ω\S
(2)

where superscript 1 denotes a quantity alongS and
superscript 0 a quantity outsideS, whereε̇0 is regular

andε̇1 is singular.δS is the Dirac-delta function at the
discontinuity surfaceS, andn is the unit normal to
S.
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Figure 1. BodyΩ̄ with planar strong discontinuityS (Ω =

Ω+ ∪ Ω− , Γ = Γt ∪ Γg ∪ S , Ω̄ = Ω ∪ Γ).

The local form of quasi-static, isothermal equilib-
rium for a bodyΩ with strong discontinuity is written
as follows

∇ · σ + b = 0 in Ω (3)

σ · ν = tσ on Γt

u = g on Γg

[[σ]] · n = 0 across S

whereσ is the stress tensor,b the body force vector,
ν the unit normal toΓt, tσ the traction onΓt, g the
prescribed displacement onΓg, and[[σ]] is the jump
in stress acrossS.

The variational form of quasi-static equilibrium
can then be written as
∫

Ω

∇
sη : σ dΩ =

∫

Ω

η · b dΩ +
∫

Γt

η · tσ dΓ

+
∫

S

η · ([[σ]] · n) dΓ (4)

whereη = δu is the weighting function (or displace-
ment variation). The traction continuity condition
[[σ]] · n = 0 for a body with strong discontinuities
will be used to determine bifurcation.

3. DETECTING BIFURCATION

The bifurcation analysis follows that conducted in
[1] and will only be briefly summarized here. As
reported in the literature (Sandler & Wright [4],
Needleman [5], Sluys & de Borst [6]), viscous reg-
ularization in the manner of Duvaut-Lions inhibits
loss of strong ellipticity for strain-softening plasticity



models, assuming the viscosity is finite. For a nearly
rate insensitive model (viscosityη ≈ 0), however,
loss of strong ellipticity via the underlying inviscid
model is possible. Bifurcation analysis of the rate
insensitive (inviscid) and rate sensitive forms of the
model is summarized.

3.1. Rate insensitive model and bifurcation with
strong discontinuity

Assume the jump velocity is spatially constant along
S and is written in terms of its magnitudėζ and di-
rectionm as

[[v(t)]] = ζ̇(t) m(t) (5)

Note that its magnitude and direction can both vary
with time, mainly that since the dilation/compaction
angle ψ (cf. Fig.2) can evolve during post-
bifurcation,m(t) can change.

n

t

m

ψ

S

Figure 2. Band normaln, tangentt, and velocity jump direc-
tion m with dilation/compaction angleψ.

For continuous traction across the discontinuity
surfaceS, a condition for loss of ellipticity of the
acoustic tensor̃A results as

detÃ = 0 for m 6= 0 (6)

Ã = n · c̃ep · n

c̃ep = ce −
ce : g ⊗ f : ce

f : ce : g

f = ∂f/∂σ ; g = ∂g/∂σ (7)

wherece is the elastic modulus tensor,c̃ep is the con-
tinuum elastic-perfectly-plastic tangent modulus ten-
sor, f is the yield function, andg is the plastic po-
tential function. It was shown in [1] that the same
bifurcation condition results for continuous and dis-
continuous bifurcation [7] for the case of strong dis-
continuity localized kinematics.

3.2. Discrete form of rate sensitive model

Bifurcation analysis of the discrete form of a rate sen-
sitive model allows one to analyze acoustic tensors to
determine mathematical instability of the underlying
constitutive model. To ensure continuous traction,
we have

Â · m = 0 (8)

Â = n · ĉep · n

ĉep = (1 − exp[−∆t/τ ]) (c̃ep + (τ/∆t)ce)

τ → 0 =⇒ ĉep = c̃ep

τ → ∞ =⇒ ĉep = ce

where∆t is the discrete time increment, andτ is
the relaxation time such thatτ → 0 leads to the in-
viscid solution andτ → ∞ to the elastic solution.
As shown in [1], the same bifurcation condition for
τ → 0 results for continuous and discontinuous bi-
furcaton with strong discontinuity. For finiteτ > 0,
ĉep could remain positive definite, i.e. that detÂ > 0,
depending on the strain rate. The following exam-
ple demonstrates the effect ofτ and the strain rate
on bifurcation. Using Sandia GeoModel parameters
given in Table 1 for Salem Limestone [2], along with
a relaxation timeτ =5e-4 sec, loss of ellipticity is
checked for 0.025/sec, 0.25/sec, and 2.5/sec strain
rates. As shown in Fig.3, loss of ellipticity is detected
for the 0.025/sec and 0.25/sec strain rates, while it is
inhibited for the 2.5/sec strain rate, a result that is
well documented in the literature (cf. [5]).

4. POST-BIFURCATION CONSTITUTIVE
MODEL

The general form of a post-bifurcation traction-
displacement constitutive model is the following:

T = [Tn Tt] (9)

Tn = n · σ · n ; Tt = t · σ · n

[[u̇]] = γ̇δ∂G(T , q)/∂T (10)

F (T , q) = 0 (11)

q̇ = γ̇δh
q (12)

whereT is the traction vector onS, t is the unit tan-
gent vector onS, [[u̇]] = ζ̇m is the rate of jump dis-
placement or jump velocity,̇γδ is an internal inelas-
tic multiplier onS, G is an inelastic potential func-
tion, F is an inelastic yield function,q is a vector



Symbol Value

E 22.5 GPa

ν 0.25 (dimensionless)

A 690 MPa

B 3.9e-4 1/MPa

C 675 MPa

θ 0.0 radians

R 28.0 (dimensionless)

κ0 −8.0 MPa

W 0.08 (dimensionless)

D1 1.5e-3 1/MPa

D2 0.0 1/MPa2

cα 1.0e5 MPa

ψ 1.0 (dimensionless)

N 6.0 MPa

Table 1. Sandia GeoModel Parameters for Salem Limestone.
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Figure 3. Plot of stress versus strain for bifurcation analysis of
plane strain compression of Salem Limestone using the Sandia
GeoModel. One trilinear hexahedral element 4cm wide by 8cm
high by 8cm deep (4 × 8 × 8 cm) is used for the plane strain
simulations.

of internal strength variables (e.g., cohesionc, fric-
tion angleφ, dilation/compaction angleψ), andhq is
a vector of softening functions. A Mohr-Coulomb
traction-displacement model with exponential soft-
ening is summarized as

F = |Tt| − (c− T ∗

n tanφ) = 0 (13)

G = |Tt| − (c− T ∗

n tanψ)

c = cr + (cp − cr) exp (−αcγδ)

γδ =
∫ t

0

γ̇δdt ; γ̇δ = cosψζ̇

φ = φr + (φp − φr) exp (−αφγδ)

ψ = ψp exp (−αψγδ)

whereT ∗

n = (Tn−|Tn|)/2 is negative for compressive
traction and zero in tension, and the vector of internal
variables is

q =
[
c φ ψ

]T
(14)

Subscript(•)r refers to residual value, and(•)p peak
value. The material parametersαc, αφ, andαψ con-
trol the rate of softening for each internal variable.
The implementation of this model using an EDE for-
mulation is discussed in the next section.

5. EMBEDDED DISCONTINUITY FINITE ELE-
MENT (EDE)

This section describes an Embedded Discontinuity
finite Element (EDE) implementation using an as-
sumed enhanced strain method [8, 10]. We will dis-
cuss a reparameterization of the displacement field
and introduction of an embedded discontinuity en-
hancement function for a hexahedral element, the
Petrov-Galerkin form for the three-field variational
equations, an orthogonality condition and patch
test, discrete time integration of stress and traction-
displacement model, the traction-displacement rela-
tion in weak form using method of weighted resid-
uals, how to determine yielding onS, linearization
for iterative solution, a linear softening model, and
how to ensure continuous stress in time from pre to
post-bifurcation.

5.1 Reparameterization of displacementuh by in-
troduction of enhancement functionf e

S
for EDE

Because we would like to interpolate compatible dis-
placements at the nodes, the jump displacement may
be embedded within the element, such that the dis-
crete representation of displacement is now reparam-
eterized as [10]

uh =
(
ūh +

[[
uh
]]
f eS
)

+
[[
uh
]]

(HSh − f eS)

= ũh + ûh (15)

ũh = ūh +
[[
uh
]]
f e
S

ûh =
[[
uh
]]

(HSh − f e
S
)

MSh = HSh − f e
S



whereh is the spatial discretization parameter [15],
ũh is the compatible displacement,̂uh is the en-
hanced displacement,f eS is a smooth enhancement
function within elemente to ensure that̃uh is com-
patible andMSh is zero at the nodes of the EDE.
Figure 4 illustrates this reparameterization for a one
dimensional (1D) linear finite element. The regular
displacement̄uh(x) interpolates linearly the incom-
patible displacement between nodes 1 and 2. The
compatible displacement̃uh(x) interpolates linearly
the compatible displacement between nodes 1 and 2
and is by definition compatible across elements. The
enhancement functionf eS is introduced to generate
MSh such that when multiplied by[[u]] and added to
the compatible displacementũh(x) yields the desired
displacement fielduh(x) in one dimension.
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Figure 4. 1D motivation for the construction ofMSh .

We will interpolate the compatible displacement
using standard finite element shape functionsNa as

ũh(ξ, t) =
nen∑

a=1

Na(ξ)da(t) (16)

whereξ is the vector of natural coordinates andnen

is the number of element nodes.
To complete the 3D EDE formulation, the en-

hancement functionf eS for a 3D element must be de-
termined. For a linear hexahedral element, various
ways in which a planar strong discontinuity can cut
the element are depicted in Fig.5. The procedure for
determining the active nodes, and thus the enhance-
ment functionf e

S
is shown in Fig.6, where the en-

hancement function is written as

f e
S
(ξ) =

nactive∑

b=1

Nb(ξ)

With coordinates of a pointxs on the discontinuity
surfaceSe for elemente, and with the normal to the

surfacen, we can determine an active node by the
following: if n · (xb − xs) > 0 then nodeb is active
wherexb is the coordinate vector of nodeb. This
procedure should work for higher order elements as
well, although the procedure has not been tested for
a higher order hexahedral element.
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Figure 5. Embedded strong discontinuity linear hexahedral
finite element.
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5.2 Petrov-Galerkin variational equations

The Petrov-Galerkin variational equations are de-
rived from the three-field variational form [8] leading
to the following equations
∫

Ωh
∇

sw̃h : σhdv =
∫

Ωh
w̃h · bdv +

∫

Γht

w̃h · tσda

∫

Ωh
loc

γ̂h : σhdv = 0 (17)

wherew̃h is the compatible weighting function,Ωh
loc

the domain in which elements have localized, andγ̂h

the enhanced strain variation. Equation (17)1 is the
standard balance of linear momentum, and Eq.(17)2

is known as the orthogonality condition. We will
use the orthogonality condition when writing our
traction-displacment model in weak form, and the
patch test will need to pass in order to ensure con-
vergence (i.e.,u = limh→0u

h ).
From [13], we assume an enhanced strain variation

that must satisfy the orthogonality condition

γ̂h = ηh
(
δSh

ASh

−
1

V h
loc

)
Ĥ

h
(18)

whereηh is a scalar weighting function,δSh is the
Dirac-delta function atSh, ASh is the area ofSh,

V h
loc is the localized volume, and̂H

h
is an arbitrary

second order tensor that will be chosen based on the
choice of traction-displacement model [13]. Given
Eq.(18), the orthogonality condition reads

1

ASh

∫

Sh
ηhĤ

h
: σhda−

1

V h
loc

∫

Ωh
loc

ηhĤ
h

: σhdv = 0

Note that1/ASh and1/V h
loc can be placed outside the

integral because for small deformations the current
areas and volumes approximately equal the reference
ones. For finite deformations, this would not be the
case [9].

5.3 Patch test

In [16], the patch test essentially states that constant
stress fields must be admissible in the solution space.
This means that as the mesh is refined, the finite el-
ements reduce in size to a point (h → 0), and the
finite element solution must approach the exact so-
lution of the partial differential equation, which at a
point has a constant stress value. Here, this can be

stated asσh = σ0, whereσ0 is constant, and then
the orthogonality condition Eq.(17)2 reads [8, 9]
[∫

Ωh
loc

γ̂hdv

]
: σ0 = 0 (19)

which is satisfied if
∫

Ωh
loc

γ̂hdv = 0 (20)

which, when substituting Eq.(18) into Eq.(20), leads
to

1

ASh

∫

Sh
ηhĤ

h
da =

1

V h
loc

∫

Ωh
loc

ηhĤ
h
dv (21)

For constantηh andĤ
h

within a localized element
e, this condition would be satisfied trivially, and then
the patch test would pass. For generality, however,
we leave this condition as is because in the future we
would like to consider spatially-varyingζ onSh and
in Ωh

loc. For most enhanced strain implementations
of embedded strong discontinuities [10, 11, 13, 14],
it is assumed these values are constant, and we will
assume the same here. If not treated as constant,
Eq.(21) would be an additional constraint onηh and

Ĥ
h
.

5.4 Stress integration

In order for the plastic dissipation to be defined and
stress to remain regular (as opposed to singular), cer-
tain conditions on the internal variables and stress re-
sult [10, 14]. For the plastic dissipation to be defined,
it turns out the inverse of the softening modulus (for
strain softening plasticity) must be singular, leading
to a regular internal variable [10]. In turn, for the
stressσ to be regular, its singular part must be zero,
which constrains the form of the post-bifurcation,
traction-displacement model [13, 14]. In the end,
given the enhanced strain field and the reparame-
terization of the displacement fielduh = ũh + ûh

in Eq.(15), the enhancement function appears in the
stress evolution equation [10], which when integrated
leads to

σh = σtr − ce : (m ⊗ ∇f e
S
) 〈∆ζ〉 (22)

where σtr is the trial stress,〈•〉 is the Macaulay
bracket,∆ζ = ζn+1 − ζn, andm is the direction
of the jump displacement

m = sign(Tt) cosψ t + sinψn (23)



5.5 Implicit integration of traction-displacement
model

For implementation by the EDE, the traction-
displacement model is integrated using a Backward
Euler scheme. For cleaner presentation, variables at
the current time step(•)n+1 do not have the subscript,
whereas those at the past time step(•)n do. The vec-
tor of internal variablesq is integrated as

q = qn + hq 〈∆ζ〉 (24)

wherehq = [ hc hφ hψ ]T ,



hc
hφ
hψ


 =




−αc(cp − cr) exp[−αcγδ] cosψ
−αφ(φp − φr) exp[−αφγδ] cosψ

−αψψp exp[−αψγδ] cosψ


(25)

and

γδ = (γδ)n + cosψ 〈∆ζ〉 (26)

Note the Macaulay bracket on∆ζ . It is possible nu-
merically, especially at the onset of localization (just
as bifurcation is detected), that during the iteration
process, the value ofζ could oscillate slightly, and
〈∆ζ〉 ensures thatζ is always positive. Onceζ be-
gins to evolve along the discontinuity surfaceS, the
oscillations no longer occur. The direction of jump
displacement[[u]] is handled by the directionm as
defined in Eq.(23), which is a function of the direc-
tion of the tangential component of traction onS,
sign(Tt).

5.6 Galerkin form of traction-displacement model

We can rewrite the yield function in Eq.(13) as

F = (µφ ⊗ n) : σ − c = 0 (27)

µφ = sign(Tt)t + (tanφ)sign(T ∗

n )n (28)

where

sign(T ∗

n ) =

{
0 T ∗

n > 0 tension
1 T ∗

n < 0 compression
(29)

Applying the method of weighted residuals to
Eq.(27), expressing in Galerkin form [15], and divid-
ing byASh, we have

1

ASh

∫

Sh
ηh
[
(µφ ⊗ n) : σ − c

]
da = 0 (30)

If we chooseĤ
h

= (µφ ⊗ n), and we assumeηh is
constant overSh (which will lead to a constant jump
displacementζ overSh [10]), we can write the weak
form as

1

ASh

∫

Sh
Ĥ

h
: σda − c = 0 (31)

Recall the orthogonality condition Eq.(21) with con-
stantηh

1

ASh

∫

Sh
Ĥ

h
: σhda =

1

V h
loc

∫

Ωh
loc

Ĥ
h

: σhdv (32)

which means we can write the weak form as an inte-
gration over the volume of the element, allowing us
to use the stresses evaluated at the Gauss points to
calculate the tractionT alongSh.

In summary, the complete Galerkin form written in
residual form is

R(σ) =
∫

Ωh
∇w̃h : σhdv −

∫

Ωh
w̃h · bdv

−
∫

Γht

w̃h · tσda = 0 (33)

r(σ, q) =
1

V h
loc

∫

Ωh
loc

Ĥ
h

: σdv − c = 0 (34)

We will take advantage of the fact thatζ is discon-
tinuous between elements, a result of the assumed
enhanced strain implementation, and condense out
Eq.(34) when solving for the compatible displace-
ments at the nodes.

5.7 Yield check alongSh

We calculate the trial yield value alongSh by

F tr =
1

V h
loc

∫

Ωh
loc

(Ĥ
h
)tr : σtrdv − cn

where

(Ĥ
h
)tr = (µφn ⊗ n)

µφn = sign(T tr
t )t + (tanφn)sign[(T ∗

n )tr]n

If F tr > 0 there is yielding alongSh, and ζ will
evolve. Otherwise, the internal variables andζ will
be held fixed.

5.8 Linearization of finite element equations

Let us first write Eq.(33) in finite element matrix
form as



R(σ) =
∫

Ωh
BT · σhdv −

∫

Ωh
NT · bdv

−
∫

Γht

NT · tσda = 0 (35)

whereB is the strain-displacement matrix, andN

is the vector of nodal shape functions. When lin-
earizing the residuals in Eqs.(35,34) about an itera-
tion statek, we have (leaving offk + 1 for current
iteration)

δR(σ) =
∂R

∂σ
· δσ = −Rk (36)

δr(σ, q) =
∂r

∂σ
· δσ +

∂r

∂q
· δq = −rk (37)

whereδ(•) = (•)k+1 − (•)k and

δσ =
∂σ

∂d
· δd +

∂σ

∂q
· δq +

∂σ

∂ζ
δζ (38)

δq =
∂hq

∂q
· δq 〈∆ζ〉 +

∂q

∂ζ
δζ (39)

whered is the vector of nodal displacements. When
rearranging Eq.(39), we find

δq =
∂̂q

∂ζ
δζ (40)

∂̂q

∂ζ
:=

(
1 − 〈∆ζ〉

∂hq

∂q

)−1

×

(
∂hq

∂ζ
〈∆ζ〉 + hq 〈sign(∆ζ)〉

)
(41)

Skipping some steps, we end up with

∂R

∂d
· δd +

∂R

∂ζ
δζ = −Rk

∂r

∂d
· δd +

∂r

∂ζ
δζ = −rk (42)

where

∂R

∂d
=

∫

Ωh
BT · De · Bdv

∂R

∂ζ
=

∫

Ωh
BT ·

∂σ

∂ζ
dv

∂r

∂d
=

1

V h
loc

∫

Ωh
loc

(µφ ⊗ n) · De · Bdv

∂r

∂ζ
=

1

V h
loc

∫

Ωh
loc

(µφ ⊗ n) :
∂σ

∂ζ
dv +

∂r

∂q
·
∂̂q

∂ζ

andDe is the matrix form of the elastic modulus ten-
sorce. Furthermore, we can write Eq.(42) as

Kdd · δd + Kdζδζ = −Rk

Kζd · δd +Kζζδζ = −rk

and when statically condensing outδζ , we have the
following equation to solve forδd

(Kdd −K−1
ζζ Kdζ ⊗ Kζd) · δd =

−Rk + (rk/Kζζ)Kdζ (43)

With δd solved from Eq.(43), we can solve forδζ

δζ = −(rk + Kζd · δd)/Kζζ (44)

Using this linearization, we then iterate until we
reach convergence‖Rk+1‖/‖R0‖ < tolR and
|rk+1|/|r0| < tolr.

5.9 Linear softening traction-displacement model

The discussion up to this point has been based on an
exponential softening traction-displacement model.
Here, we present equations for a linear softening
model. The vector of internal variablesq is inte-
grated as

q = qn + hq 〈∆ζ〉 (45)

where

hq =



hc
hφ
hψ


 =




−αc cosψ
−αφ cosψ
−αψ cosψ


 (46)

and

γδ = (γδ)n + cosψ 〈∆ζ〉 (47)

Numerical examples will present the use of both ex-
ponential and linear softening models.

5.10 Continuous stress in time at bifurcation point

In order to ensure that the stress is continuous in time
at the point of bifurcation, the peak cohesioncp is
calculated from Eq.(34) within an elemente as

cp =
1

V e
loc

∫

Ωe
loc

Ĥ
e

: σndv (48)

whereV e
loc is the localized element volume,Ωe

loc its
domain,Ĥ

e
its enhancement function multiplier, and

σn the converged stress from the past time steptn
before bifurcation was detected in the elemente.



6. NUMERICAL EXAMPLES

3D plane strain and corner shear examples demon-
strate the aforementioned models and EDE imple-
mentation.

6.1 Plane strain compression

To verify that the post-bifurcation model is work-
ing (although there is no analytical solution to con-
duct a true verification), we consider a plane strain
compression problem for rate-insensitivityτ = 0.
Parameters in Table 1 are used for the bulk mate-
rial (Salem Limestone). Parameters for the expo-
nential post-bifurcation traction-displacement model
are given in Table 2, and for the linear traction-
displacement model in Table 3.

Symbol Value

cp calculated

cr 10 MPa

φp 0.5236 rad

φr 0.1 rad

ψp 0.087 rad

αc 1e3 1/m

αφ 9e2 1/m

αψ 9e2 1/m

Table 2. Parameters for plane strain compression: post-
bifurcation, exponential softening model. Note that the peak
cohesioncp is calculated from Eq.(48) in order to ensure that
the stress is continuous in time at bifurcation.

Figure 7 demonstrates the post-bifurcation expo-
nential softening for the EDE. The darker shaded top
face of the element is displaced downward in the−x2

direction, the lighter shaded faces are traction free,
and the clear faces are fixed in displacement normal
to the face. Since there is no asymmetry or inhomo-
geneity to determine whichn to choose as the normal
to the discontinuity surfaceS, we choose the negative
angle−θ.

Figure 8 shows the deformed element looking per-
pendicular to thex-y plane. The left figure shows
the compatible displacementũh for the deformed el-
ement, while the right figure shows the total displace-
ment uh, reconstructed givenζ . Note that for the
right figure, the nodal displacements are the compat-
ible displacement̃uh. The solid circles are the de-
formed element nodes, while the open circles are the

undeformed element nodes. The dashed line shows
the undeformed element, while the solid line shows
the deformed element. Note that when viewing the
deformed mesh, the left figure would be observed,
which accounts for the jump displacement, while the
right figure was reconstructed givenζ .

Figures 9 and 10 show the cohesion, friction, and
dilation exponential softening, respectively.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

20

40

60

80

100

120

STRAIN

S
T

R
E

S
S

 (
M

P
a

)

post-bifurcation 

exponential softening

X
bifurcation 

detected

chosen

discontinuity surface

θ = −29◦

σ22

Figure 7. Plot of stress versus strain for bifurcation and post-
bifurcation analysis (exponential softening) of plane strain com-
pression of Salem Limestone using the Sandia GeoModel.

ũhũh

[[u]]
ũh uh

Figure 8. Deformed element at end of deformation in Fig.7
(≈6 % strain,ζ ≈ 4.5mm).

Figure 11 demonstrates the post-bifurcation linear
softening for the embedded discontinuity element.
Note the asymptotic behavior to a residual value.
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Figure 9. Plot of cohesionc versus jump displacement magni-
tudeζ for bifurcation and post-bifurcation analysis (exponential
softening) of plane strain compression of Salem Limestone us-
ing the Sandia GeoModel. Note the asymptotic behavior to the
residual valuecr =10 MPa.
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Figure 10. Plot of friction angleφ and dilation angleψ ver-
sus jump displacement magnitudeζ for bifurcation and post-
bifurcation analysis (exponential softening) of plane strain com-
pression of Salem Limestone using the Sandia GeoModel. Note
the asymptotic behavior to the residual valuesφr =0.1 and
ψr =0 radians.

There are two post-bifurcation slopes. The first is a
result of the combined cohesion, friction, and dilation
softening, and the second is a result of only friction
softening as the cohesion and dilation have reached
their residual values (cf. Figs. 12 and 13).

Figures 12 and 13 show the cohesion, friction, and
dilation linear softening, respectively.

Symbol Value

cp calculated

cr 10 MPa

φp 0.5236 rad

φr 0.1 rad

ψp 0.087 rad

αc 1e4 MPa/m

αφ 1e2 rad/m

αψ 1e2 rad/m

Table 3. Parameters for plane strain compression: post-
bifurcation, linear softening model.
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Figure 11. Plot of stress versus strain for bifurcation and post-
bifurcation analysis (linear softening) of plane strain compres-
sion of Salem Limestone using the Sandia GeoModel.

6.2 3D corner shear

For testing the true three-dimensional nature of the
EDE, we consider a corner shear problem using eight
trilinear hexahedral elements. Post-bifurcation, lin-
ear softening parameters are given in Table 4. A
Drucker-Prager strain-softening plasticity model was
used in place of the Sandia GeoModel because for
this particular example the Sandia GeoModel and its
parameters could not predict bifurcation.

Figure 14 demonstrates the post-bifurcation soft-
ening for corner shear loading. In this case, only the
corner node enhancement function is activated, as in-
dicated in Fig.6. This demonstrates a problem that
cannot be solved using a 2D plane strain formulation
[12, 13, 14].
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Figure 12. Plot of cohesionc versus jump displacement magni-
tudeζ for bifurcation and post-bifurcation analysis (linear soft-
ening) of plane strain compression of Salem Limestone using
the Sandia GeoModel. Note the cut-off at the residual value
cr =10 MPa.
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Figure 13. Plot of friction angleφ and dilation angleψ ver-
sus jump displacement magnitudeζ for bifurcation and post-
bifurcation analysis (linear softening) of plane strain compres-
sion of Salem Limestone using the Sandia GeoModel. Note the
cut-off at the residual valuesφr =0.1 andψr =0 radians.

7. CONCLUSIONS

The paper presented a 3D Embedded Discontinu-
ity finite Element (EDE) formulation and implemen-
tation, and demonstrated it using a simple Mohr-
Coulomb failure model with exponential and linear
softening. A corner shear example demonstrated the
true three-dimensionality of the new element. Fur-
ther work will present more complex boundary value

Symbol Value

cp calculated

cr 0 MPa

φp 0.5236 rad

φr 0.0 rad

ψp 0.1 rad

αc 3e8 MPa/m

αφ 1e3 rad/m

αψ 1e3 rad/m

Table 4. Parameters for 3D corner shear: post-bifurcation,lin-
ear softening model.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

0.02

0.04

0.06

0.08

0.1

0.12

DISPLACEMENT (mm)

F
O

R
C

E
 (

M
N

)

X

corner Gauss 

point plastifies

X

corner Gauss 

point localizes

and softens
n

m

ψ

Figure 14. Post-peak softening in corner element of eight tri-
linear hexahedral element mesh for corner shear.

problems of interest to geological engineering.
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