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ABSTRACT: Localized deformation such as shear bands, compactionsbatildtion bands, combined shear/compaction or
shear/dilation bands, fractures, and joint slippage aranconly found in rocks. Thus, modeling their inception, depenent
and propagation, and effect on stress response is impaevidmtegard to making informed engineering design decisiomolving
these materials. Following a GulfRocks04 paper (ARMA/NARI#4-520) that focused on modeling bifurcation to theseliped
deformations, this paper focuses on modeling numerichltypost-bifurcation regime, specifically strong discomities in rock
whose bulk response is governed by a three-invariant,opittkinematic hardening cap plasticity model. We devedogimple
post-bifurcation constitutive model and implement it gsém enhanced strain finite element method, an approachasetbied dis-
continuities within the coarse scale finite element respoiiie post-bifurcation model takes the form of a simple MBbulomb
failure model along the discontinuity, but with internatiadles cohesion, dilation/compaction, and friction a#al to degrade lin-
early or exponentially as a function of jump displacemembsg a discontinuity/crack. Because the dilation/compadhternal
variable evolves, the enhancement function for the entthstrain finite element formulation evolves as well. A hexdrlaéEm-
bedded Discontinuity finite Element (EDE) is implementedrtodel three-dimensional strong discontinuities in rockum¢rical
examples will demonstrate the model.

1. INTRODUCTION with regard to making informed engineering design
decisions. In order to make informed decisions for
Localized deformation can be triggered either by ma-complex three-dimensional (3D) geometries, loading
terial inhomogeneities such as joint sets in rocksconditions, and nonlinear material behavior, numer-
and/or by inhomogeneous stresses resulting fromcal modeling of failure in rock is essential because
boundary conditions such as friction at end platensanalytical solutions would be unworkable. With par-
in a confined compression test or from the geomey)g| computing becoming more commonplace, and
try of a problem (such as an underground tunnel)ith the advent of molecular (and possibly even
for instance. Localized deformation does not alwaysquantum) computing becoming a reality in our life-
lead to immediate catastrophic failure, in that a sheagjmes. solving these complex 3D failure problems
band or crack could be arrested, depending on th¢yith numerical models is feasible. Applications of
loading conditions applied to the tunnel walls, for pre- and post-bifurcation constitutive models and a
example. Localized deformation could lead, how- computational framework for modeling localized de-
ever, to immediate catastrophic failure as a worstigrmation in rock include assessing the long term
case, and eventual failure of the tunnel over the ”fe'performance of nuclear waste repositories, designing
time of the structure. Thus, modeling the inception, tynnel construction, oil and natural gas production,

development and propagation of localized deforma-agnd depleted reservoirs used for subsurface seques-
tion, and its effect on stress response is important



tration of greenhouse gases. andé! is singular.ds is the Dirac-delta function at the
Following a GulfRocks04 paper [1] that focused discontinuity surfaceS, andn is the unit normal to
on modeling the bifurcation to these localized defor-S.
mations, this paper focuses on modeling numerically
the post-bifurcation regime, specifically strong dis-
continuities in rock whose bulk response is governed
by a three-invariant, isotropic/kinematic hardening
cap plasticity model [2, 3]. A simple post-bifurcation
constitutive model is implemented using an enhanced
strain finite element method, an approach used to em-
bed discontinuities within the coarse scale finite ele-
ment response. The post-bifurcation model takes the
form of a simple Mohr-Coulomb failure model along
the discontinuity, but with internal variables cohe-
sion, dilation/compaction, and friction allowed to de- Figure 1. BodyQ with planar strong discontinuit§ (Q =
grade linearly or exponentially as a function of jump ¥+ UQ-, I =T:UT,US, @ =QUT).
displacement across a discontinuity/crack. Because
the dilation/compaction internal variable evolves, the The local form of quasi-static, isothermal equilib-
enhancement function for the enhanced strain finitgium for a body 2 with strong discontinuity is written
element formulation evolves as well. A hexahe- as follows
dral Embedded Discontinuity finite Element (EDE)

is implemented to model 3D strong discontinuitiesin V- +b = 0 in O 3
rock. oc-v = t° on I}
Throughout the paper we assume small deforma- u = g onT,

tions and rotations. Symbolic notation is used for [o] n = 0 across S

clearer presentation, such as the inner product of

two second order tensor@ - b)i. = ai;bjx, the  whereo is the stress tensab,the body force vector,
contraction of two tensore : b = a;by;, Or the the unit normal tdl, t° the traction o, g the
dyadic producta ©@b)i;x = a;;b. TENsor operators  prescribed displacement dty, and[o] is the jump

are used such as the symmetric gradi¥itv),; =  in stress across.
(vij +v;,)/2, and divergencéV - a); = a;;;. The The variational form of quasi-static equilibrium
symbol(e) = 0(e)/0t denotes a time derivative. can then be written as

2.  KINEMATICS AND GOVERNING EQUA- /QVSn:UdQ = /Qn-bdQ + /F n-t7dl
TIONS FOR STRONG DISCONTINUITIES !
+ [ el mar @

For strong discontinuities, the velocity field contains

a spatial jump in velocitfwv] acrossS as [10] wheren = du is the weighting function (or displace-
~ ment variation). The traction continuity condition
v(z,t) = v(x,t) + [v(z,1)] Hs(x) (1) [o] - n = 0 for a body with strong discontinuities

wherev = Ju/0t is the regular velocity field, and will be used to determine bifurcation.

Hs is the Heaviside function along surface (cf.
Fig.1). This velocity field leads to a singular strain
ratee = Vv atS as

3. DETECTING BIFURCATION

The bifurcation analysis follows that conducted in

e = & +sym(u]en)ds €8 [1] and will only be briefly summarized here. As

{ &0 cO\S (2 reported in the literature (Sandler & Wright [4],

Needleman [5], Sluys & de Borst [6]), viscous reg-

where superscript 1 denotes a quantity alshgnd  ularization in the manner of Duvaut-Lions inhibits
superscript 0 a quantity outside wheree® is regular  loss of strong ellipticity for strain-softening plastigit



models, assuming the viscosity is finite. For a nearly3.2. Discrete form of rate sensitive model

Irate mfsensmve ITO."?' (V!SC%S'W T}I OI),_hov_ve\{er,_ q Bifurcation analysis of the discrete form of a rate sen-
0ss of strong ellipticity via the underlying Inviscld ;e model allows one to analyze acoustic tensors to

model IS po,ss',ble,' Bifurcation anglyas of the rate determine mathematical instability of the underlying
insensitive (inviscid) and rate sensitive forms of theconstitutive model. To ensure continuous traction

model is summarized. we have

3.1. Rate insensitive model and bifurcation with .
strong discontinuity A-m=0 (8)

A—n-eP.
Assume the jump velocity is spatially constant along A=n-c"-n

S and is written in terms of its magnitudeand di- ¢ = (1 — exp[-At/7]) (e? + (7/At)c")
rectionm as )= &P — &P
[v()] = {(t) m(t) (5) T—o00=¢&%? = ¢

Note that its magnitude and direction can both varyWhere At is the discrete time increment, andis

with time, mainly that since the dilation/compaction the relaxation time such that — 0 leads to the in-
angle v (cf. Fig.2) can evolve during post- Viscid solution andr — oo to the elastic solution.

bifurcation,m(¢) can change. As shown in [1], the same bifurcation condition for
7 — 0 results for continuous and discontinuous bi-
furcaton with strong discontinuity. For finite > 0,

¢ could remain positive definite, i.e. that det> 0,
depending on the strain rate. The following exam-
ple demonstrates the effect ofand the strain rate
on bifurcation. Using Sandia GeoModel parameters
given in Table 1 for Salem Limestone [2], along with
a relaxation timer =5e-4 sec, loss of ellipticity is
checked for 0.025/sec, 0.25/sec, and 2.5/sec strain
rates. As shown in Fig.3, loss of ellipticity is detected
for the 0.025/sec and 0.25/sec strain rates, while it is
Figure 2. Band normat, tangentt, and velocity jump direc-  inhibited for the 2.5/sec strain rate, a result that is
tion m with dilation/compaction angle. well documented in the literature (cf. [5]).

For continuous traction across the discontinuity4_ POST-BIFURCATION CONSTITUTIVE
surfaceS, a condition for loss of ellipticity of the popEL

acoustic tensoA results as
The general form of a post-bifurcation traction-

detA = 0 for m#0 (6)  displacement constitutive model is the following:
A=n-¢?-n
o — 8_ce:g®f:c8 T =1[T,T)] (9)
f:co:g T,=n-o-n; Ti,=t-0-n
f=0f/00; g=0g/00 (7) [4] = 4s0G(T, q)/0T (10)
wherec® is the elastic modulus tens@f? is the con- F(T,q)=0 (11)

tinuum elastic-perfectly-plastic tangent modulus ten- q = ysh’ (12)
sor, f is the yield function, and is the plastic po-
tential function. It was shown in [1] that the same
bifurcation condition results for continuous and dis-
continuous bifurcation [7] for the case of strong dis-
continuity localized kinematics.

whereT is the traction vector o8, t is the unit tan-
gent vector orS, [&] = ¢(m is the rate of jump dis-
placement or jump velocityy; is an internal inelas-
tic multiplier on S, G is an inelastic potential func-
tion, F' is an inelastic yield functiong is a vector



Symbol Value

E 22.5 GPa

v 0.25 (dimensionless)
A 690 MPa

B 3.9e4 1/MPa

C 675 MPa

0 0.0 radians

R 28.0 (dimensionless)
Ko —8.0 MPa

W 0.08 (dimensionless)
Dy 1.5e-3 1/MPa

D, 0.0 1/MP&

c“ 1.0e5 MPa

) 1.0 (dimensionless)
N 6.0 MPa

Table 1. Sandia GeoModel Parameters for Salem Limestone.
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Figure 3. Plot of stress versus strain for bifurcation asialpf
plane strain compression of Salem Limestone using the 8&andi
GeoModel. One trilinear hexahedral element 4cm wide by 8cm
high by 8cm deep4(x 8 x 8 cm) is used for the plane strain
simulations.

of internal strength variables (e.g., cohesigriric-
tion angleg, dilation/compaction angle), andh? is
a vector of softening functions. A Mohr-Coulomb
traction-displacement model with exponential soft-

ening is summarized as
F = |T{| — (e—=T;tan¢) = 0 (13)
G = [T = (c— T, tantp)

& Cr + (Cp - Cr) €xp <_a075)

t .
Vs = /o Ysdt ;3 Ys = cosP(

¢ ¢+ (dp — &r) exp (—ays)
Vo= 1y exp (—ays)
whereT* = (T,,—|T,|)/2 is negative for compressive

traction and zero in tension, and the vector of internal
variables is
T
g=|c ¢ | (14)
Subscript(e), refers to residual value, arid), peak
value. The material parametets, «,,, anda,; con-
trol the rate of softening for each internal variable.

The implementation of this model using an EDE for-
mulation is discussed in the next section.

5. EMBEDDED DISCONTINUITY FINITE ELE-
MENT (EDE)

This section describes an Embedded Discontinuity
finite Element (EDE) implementation using an as-
sumed enhanced strain method [8, 10]. We will dis-
cuss a reparameterization of the displacement field
and introduction of an embedded discontinuity en-
hancement function for a hexahedral element, the
Petrov-Galerkin form for the three-field variational
equations, an orthogonality condition and patch
test, discrete time integration of stress and traction-
displacement model, the traction-displacement rela-
tion in weak form using method of weighted resid-
uals, how to determine yielding a8, linearization

for iterative solution, a linear softening model, and
how to ensure continuous stress in time from pre to
post-bifurcation.

5.1 Reparameterization of displacemeitt by in-
troduction of enhancement functigg for EDE

Because we would like to interpolate compatible dis-
placements at the nodes, the jump displacement may
be embedded within the element, such that the dis-
crete representation of displacement is now reparam-
eterized as [10]

u e

)+ [ut]) (Hse - £8)
(15)



whereh is the spatial discretization parameter [15], surfacen, we can determine an active node by the
@ is the compatible displacement,” is the en-  following: if n - (2 — =*) > 0 then nodé is active
hanced displacemenfs is a smooth enhancement wherex® is the coordinate vector of node This
function within element to ensure that" is com-  procedure should work for higher order elements as
patible andMg. is zero at the nodes of the EDE. well, although the procedure has not been tested for
Figure 4 illustrates this reparameterization for a onea higher order hexahedral element.

dimensional (1D) linear finite element. The regular
displacementi”(z) interpolates linearly the incom-
patible displacement between nodes 1 and 2. The
compatible displacemerit®(z) interpolates linearly
the compatible displacement between nodes 1 and 2
and is by definition compatible across elements. The
enhancement functioif$ is introduced to generate
Msr such that when multiplied bju] and added to
the compatible displacemeit(z) yields the desired
displacement field" () in one dimension.

a"(x) [u] Hon(z)

Figure 5. Embedded strong discontinuity linear hexahedral
finite element.

Figure 4. 1D motivation for the construction dfsn.
We will interpolate the compatible displacement
using standard finite element shape functidisas

Ten

w'(§1) = > Na(€)da(t) (16)

where¢ is the vector of natural coordinates ang
is the number of element nodes.

To complete the 3D EDE formulation, the en-
hancement functiori§ for a 3D element must be de-
termined. For a linear hexahedral element, various
ways in which a planar strong discontinuity can cut
the element are depicted in Fig.5. The procedure for
determining the active nodes, and thus the enhance-
ment functionfs is shown in Fig.6, where the en-
hancement function is written as

Figure 6. Determination of active nodes and embedded strong
Mactive discontinuity enhancement functigi§.

fs(&) = ; Ny(€)

With coordinates of a point® on the discontinuity
surfaceS® for elemente, and with the normal to the



5.2 Petrov-Galerkin variational equations stated agr" = o, whereo, is constant, and then

The Petrov-Galerkin variational equations are de-the orthogonality condition Eq.(17)eads [8, 9]

rived from the three-field variational form [8] leading [

to the following equations /h ’?hdvl rog =10 (19)
Q

loc

Qh

/ ﬁ/h cohdy =
Qh

loc

Viw" : ohdv = /Qh w" - bdv+ | w"-t°da which is satisfied if
0

re
(17) A'dv = 0 (20)

Qh

loc

which, when substituting Eq.(18) into Eq.(20), leads

wherew” is the compatible weighting functiof) . to

the domain in which elements have localized, afid
the enhanced strain variation. Equation (lig)the i/ hﬁhda _
standard balance of linear momentum, and Eqy(17) Asn Js*

is known as the orthogonality condition. We will o
use the orthogonality condition when writing our For constani® and H within a localized element
traction-displacment model in weak form, and thee, this condition would be satisfied trivially, and then
patch test will need to pass in order to ensure conthe patch test would pass. For generality, however,

= | W H dv 1)
Q

loc loc

vergence (i.ear = limy,_ou"). we leave this condition as is because in the future we
From [13], we assume an enhanced strain variatiorwould like to consider spatially-varyingon S and
that must satisfy the orthogonality condition in Qf... For most enhanced strain implementations
of embedded strong discontinuities [10, 11, 13, 14],
h o Osn 1\ ~h 18 it is assumed these values are constant, and we will
v <A—S, a @) (18)  assume the same here. If not treated as constant,

Eq.(21) would be an additional constraint ghand
wheren” is a scalar weighting functiorig: is the 7"
Dirac-delta function atS", Ag. is the area ofS”,

: . ih .
Vi is the localized volume, an#ll  is an arbitrary

second order tensor that will be chosen based on thin order for the plastic dissipation to be defined and
choice of traction-displacement model [13]. Given stress to remain regular (as opposed to singular), cer-

5.4 Stress integration

Eq.(18), the orthogonality condition reads tain conditions on the internal variables and stress re-
sult[10, 14]. For the plastic dissipation to be defined,
1 nhﬂh - oda — Lh/ nhﬂh coldy =0 1t turns out the inverge pf the softenir]g modulus (for
Agn Jsn Vioe /9. strain softening plasticity) must be singular, leading

. ) to a regular internal variable [10]. In turn, for the
Note thatl /As. and1/Vi;, can be placed outside the gyressy to be regular, its singular part must be zero,

integral because for small deformations the curreNtynich constrains the form of the post-bifurcation
areas and volumes approximately equal the referencﬁaction-displacement model [13, 14]. In the end,

ones. For finite deformations, this would not be thegiven the enhanced strain field and the reparame-
case [9]. terization of the displacement field" = " + 4"
5.3 Patch test in Eq.(15), the enhancement function appears in the

) stress evolution equation [10], which when integrated
In [16], the patch test essentially states that constant,4s to

stress fields must be admissible in the solution space.

This means that as the mesh is refined, the finite el- 0" = o — ¢* : (M ® V ££) (A() (22)

ements reduce in size to a poirit (~ 0), and the

finite element solution must approach the exact soWhere o' is the trial stress,e) is the Macaulay
lution of the partial differential equation, which at a Pracket, AC = ¢,41 — ¢, andm is the direction
point has a constant stress value. Here, this can b@f the jump displacement

m = sign(T}) cospt + sinyn (23)



5.5 Implicit integration of traction-displacement |f we choosef{h = (u® ® n), and we assumg” is
model constant ove” (which will lead to a constant jump
For implementation by the EDE, the traction- displacement overS” [10]), we can write the weak

displacement model is integrated using a Backward0rm as
Euler scheme. For cleaner presentation, variables at

~_h
the current time stef),,; do not have the subscript, 7= /Sh H :o0da —c =0 (31)
whereas those at the past time step, do. The vec-
tor of internal variableg is integrated as Recall the orthogonality condition Eq.(21) with con-
stantn”
q = q, + hy (AQ) (24) ' ,
~_h . _h o ~_h h
Wherehq — [hc h¢ hw]T, Ash /Sh H :0"da = ‘/igc /Qﬁ)c H :oc"dv (32)
he —ae(c, — ¢) exp[—aeys) cos 1 which means we can write the weak form as an inte-
he | = | —ag(d, — ¢,) exp[—agys) costp | (25)  gration over the volume of the element, allowing us
[ By { —auyy expl—ayys) cos P to use the stresses evaluated at the Gauss points to
calculate the tractio” alongS™.
and In summary, the complete Galerkin form written in
residual form is
Vs = (Y6)n + cos ¥ (AC) (26)
R(o) = Vo' :ohdv— | w"-bdv
Note the Macaulay bracket ai(. It is possible nu- ot ak
merically, especially at the onset of localization (just — | " -t°da=0 (33)
as bifurcation is detected), that during the iteration Ty
process, the value af could oscillate slightly, and (¢ q) = 1h / H'  odv — c=0 (34)
(A() ensures thaf is always positive. Oncé€ be- Vioe /a0,

gins to evolve along the discontinuity surfaSethe
oscillations no longer occur. The direction of jump
displacemenfu] is handled by the directiom as
defined in Eq.(23), which is a function of the direc-
tion of the tangential component of traction &h
sign(Tt).

We will take advantage of the fact thatis discon-
tinuous between elements, a result of the assumed
enhanced strain implementation, and condense out
Eq.(34) when solving for the compatible displace-
ments at the nodes.

5.7 Yield check along”
We calculate the trial yield value alo&f by

5.6 Galerkin form of traction-displacement model
We can rewrite the yield function in Eq.(13) as

r 1 ritr T
F = (uen):ioc—c=0 en  FT = g f, Hietd =
oc loc
pu® = sign(T})t + (tan ¢)sign(T*)n  (28)
where
where h
. (H)" = (u" ®@mn)
sign(y) = 0o >0 tension (29) pf" = sign(T{")t + (tan ¢, )sign[(T7)"]n
" 1 T; <0 compression

. , , If F** > 0 there is yielding alongS", and¢ will
Applying the m_eth_od of Welghted reS|duaIs_ _to evolve. Otherwise, the internal variables anaill
Eq.(27), expressing in Galerkin form [15], and divid- be held fixed.

ing by As», we have
5.8 Linearization of finite element equations

/Sh " [(Hd) ®n):o— C} da=0 (30)  Let us first write Eq.(33) in finite element matrix
form as

1
Agn




andD° is the matrix form of the elastic modulus ten-
sorc®. Furthermore, we can write Eq.(42) as

/BT-ahdv—/ NT - bdy
ar ar Ky 0d+ Kgo¢ = —RF

T o .
- F?N t7da =0 (35) K<d~(5d—|—K§§(SC = —Tk
and when statically condensing au, we have the

where B is the strain-displacement matrix, aid . )
following equation to solve fosd

is the vector of nodal shape functions. When lin-
earizing the residuals in Egs.(35,34) about an itera- (K — Kc_cleC ® Kcq) - od =

tion statek, we have (leaving oft: + 1 for current . .
iteration) —R"+ (r"/Keo) K (43)

With éd solved from Eq.(43), we can solve fo¢
SR(o) = Z—R .60 = —RF (36)
o or 6C=—(r* + K¢y - 0d) /K (44)
or(o,q) = ——-60+—-6q=—1" (37) . o : :
do oq Using this linearization, we then iterate until we
reach convergencé R"™||/||R’|| < tolg and
whered(e) = (o)1 — (o)* and 41| /1r9] < tol,.
So — gz 5d + Z_‘T 5q + _5< (38) 5.9 Linear softening traction-displacement model
oh q % The discussion up to this point has been based on an
dq = —L-5q(AC) + C (39)  exponential softening traction-displacement model.

dq 86

Here, we present equations for a linear softening
whered is the vector of nodal displacements. Whenmodel. The vector of internal variablegis inte-

rearranging Eq.(39), we find grated as
q=q, + hy(AQ) (45)
oq = 5§ (40)
8§ where
Zq <1 — (AQ) oh, ) he — Q. COS Y
¢ - oq h,=| hy | = | —agcos (46)
(G100 + by im(a0) ) 40 by ] | —oycosy
and
Skipping some steps, we end up with
) Vs = (Vs)n + cos ¥ (AQ) (47)
R
od od + C 5C = R Numerical examples will present the use of both ex-
or ponential and linear softening models.
k
o5 0d+ 5( = - (42) : o . . _
od ¢ 5.10 Continuous stress in time at bifurcation point
where In order to ensure that the stress is continuous in time
at the point of bifurcation, the peak cohesignis
gi; _ BT . D¢ . Bdv calculated from Eq.(34) within an elemenas
Qh
OR oo ol
b BT. =4 H :o0,dv (48)
8C Qh 8( v loc /leoc
or — 1h / (1’ @ n) - D - Bdv WherevlgC is the localized element volume), . its
od Vioe /9. domain,H " its enhancement function multiplier, and
or 1 8 Oo or Oq o, the converged stress from the past time gigp
ac = 7 /Q{L (> ®@mn): 8—Cdv + 9q ¢ before bifurcation was detected in the element



6. NUMERICAL EXAMPLES

undeformed element nodes. The dashed line shows

the undeformed element, while the solid line shows

3D plane strain and corner shear examples demonhe deformed element. Note that when viewing the
Strate the aforemen“oned m0d6|s and EDE |mp|e'def0rmed mesh’ the |eft figure WOUld be Observed,

mentation.

6.1 Plane strain compression

To verify that the post-bifurcation model is work-
ing (although there is no analytical solution to con-
duct a true verification), we consider a plane strain
compression problem for rate-insensitivity = 0.

Parameters in Table 1 are used for the bulk mate- o
Parameters for the expo-

rial (Salem Limestone).
nential post-bifurcation traction-displacement model
are given in Table 2, and for the linear traction-
displacement model in Table 3.

Symbol Value

Cp calculated
Cr 10 MPa
op 0.5236 rad
o 0.1rad

Uy 0.087 rad
Q, 1e3 1/m
Qg 9e2 1/m
Q) 9e2 1/m

Table 2.
bifurcation, exponential softening model. Note that thakpe
cohesiong, is calculated from Eq.(48) in order to ensure that
the stress is continuous in time at bifurcation.

Figure 7 demonstrates the post-bifurcation expo-
nential softening for the EDE. The darker shaded top

face of the elementis displaced downward inthe
direction, the lighter shaded faces are traction free

geneity to determine which to choose as the normal
to the discontinuity surfacg, we choose the negative
angle—46.

Figure 8 shows the deformed element looking per-
pendicular to ther-y plane. The left figure shows
the compatible displacemedt for the deformed el-
ement, while the right figure shows the total displace-
mentw”, reconstructed gived. Note that for the

Parameters for plane strain compression: post-

and the clear faces are fixed in displacement normal
to the face. Since there is no asymmetry or inhomo-

which accounts for the jump displacement, while the

right figure was reconstructed given
Figures 9 and 10 show the cohesion, friction, and
dilation exponential softening, respectively.
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Figure 7. Plot of stress versus strain for bifurcation anst{po
bifurcation analysis (exponential softening) of planaistcom-
pression of Salem Limestone using the Sandia GeoModel.

,&h £

,&h

Figure 8. Deformed element at end of deformation in Fig.7
(~6 % strain ~ 4.5mm).

right figure, the nodal displacements are the compat- Figyre 11 demonstrates the post-bifurcation linear

ible displacement:”. The solid circles are the de-

softening for the embedded discontinuity element.

formed element nodes, while the open circles are th@yote the asymptotic behavior to a residual value.



* Symbol Value
%0 1 Cp calculated
Cr 10 MPa
” 1 o 0.5236 rad
£ 5 | b 0.1rad
g vy 0.087 rad
5 1 Qe 1le4 MPa/m
0 | Qg le2 rad/m
Qy le2 rad/m
5| 1
Table 3. Parameters for plane strain compression: post-
O TTTos T s s 25 s a5 i a5 e bifurcation, linear softening model.
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bifurcation
detected

Figure 9. Plot of cohesioaversus jump displacement magni-
tude( for bifurcation and post-bifurcation analysis (exponahti 100
softening) of plane strain compression of Salem Limestaie u

ing the Sandia GeoModel. Note the asymptotic behavior to the _
residual value, =10 MPa.
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Figure 11. Plot of stress versus strain for bifurcation anstp
, bifurcation analysis (linear softening) of plane straimgoes-
sion of Salem Limestone using the Sandia GeoModel.
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ZETA (m) ¢ 6.2 3D cornershear

. - - For testing the true three-dimensional nature of the
Figure 10. Plot of friction angle and dilation angle) ver- . . .
sus jump displacement magnitudefor bifurcation and post- EDE, we consider a corner shear problem using eight
bifurcation analysis (exponential softening) of planaistcom-  trilinear hexahedral elements. Post-bifurcation, lin-
pression of Salem Limestone using the Sandia GeoModel. Noteear softening parameters are given in Table 4. A
the asymptotic behavior to the residual valygs =0.1 and  Drycker-Prager strain-softening plasticity model was
¥y =0 radians. used in place of the Sandia GeoModel because for

this particular example the Sandia GeoModel and its
There are two post-bifurcation slopes. The first is aparameters could not predict bifurcation.
result of the combined cohesion, friction, and dilation  Figure 14 demonstrates the post-bifurcation soft-
softening, and the second is a result of only friction ening for corner shear loading. In this case, only the
softening as the cohesion and dilation have reachedorner node enhancement function is activated, as in-
their residual values (cf. Figs. 12 and 13). dicated in Fig.6. This demonstrates a problem that
Figures 12 and 13 show the cohesion, friction, andcannot be solved using a 2D plane strain formulation
dilation linear softening, respectively. [12, 13, 14].



* Symbol Value
1 Cp calculated
Cr 0 MPa
| bp 0.5236 rad
n:i , O 0.0 rad
g vy 0.1 rad
§ i Qe 3e8 MPa/m
| Qg le3 rad/m
Qy le3 rad/m
sk i
Table 4. Parameters for 3D corner shear: post-bifurcaliion,
O TTTos T s s 25 s a5 i a5 e ear softening model.

0.12 T
corner Gauss
point plastifies

Figure 12. Plot of cohesionversus jump displacement magni-
tude( for bifurcation and post-bifurcation analysis (lineartsof 04l
ening) of plane strain compression of Salem Limestone using
the Sandia GeoModel. Note the cut-off at the residual value
¢ =10 MPa.
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Figure 14. Post-peak softening in corner element of eight tr

\ linear hexahedral element mesh for corner shear.

o o5 1 15 2 25 8 85 4 45 5 problems of interest to geological engineering.

ZETA (m)

o
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Figure 13. Plot of friction angle and dilation angle) ver- 8. ACKNOWLEDGEMENTS

sus jump displacement magnitudefor bifurcation and post-

bifurcation analysis (linear softening) of plane straimgoes- The author acknowledges C.D. Foster for im-

sion of Salem Limestone using the Sandia GeoModeI. Note theplementing the numerical algorithm in Tahoe (

cut-off at the residual values, =0.1 andy, =0 radians. tahoe.ca.sandia.gov ) for detecting loss of ellipticity
of the acoustic tensor for 3D stress states, and for

7. CONCLUSIONS implementing the Sandia GeoModel in Tahoe as dis-

) _cussedin [3].
The paper presented a 3D Embedded Discontinu-

ity finite Element (EDE) formulation and implemen-
tation, and demonstrated it using a simple Mohr-
Coulomb failure model with exponential and linear
softening. A corner shear example demonstrated the
true three-dimensionality of the new element. Fur-
ther work will present more complex boundary value
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