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ABSTRACT: The objective of the paper is to demonstrate thewtation of micromorphic continuum stress
measures based directly on three-dimensional (3D) eltip$discrete element (DE) simulations over represen-
tative volume elements (RVE) within the DE domain represgngranular media. We will demonstrate these
calculations for two simulations: (1) pile penetrationdd®) cavity expansion. All calculations are assumed
to be performed in the current configuration with respect arge deformation micromorphic continuum me-
chanics analysis. The micromorphic continuum stressdésdat¢he unsymmetric third order couple stress tensor
mi;k, Symmetric second order micro-stress tensgrand unsymmetric second order Cauchy stress tengor
The DE continuum stress measure due to Christoffersen €t%81) and Rothenburg & Selvadurai (1981), is
used as the symmetric “micro-element” stress temgofor micromorphic continuum mechanics (Eringen &
Suhubi 1964). The balance equations solved are the baldrirear and angular momenta for the DE sim-
ulations, whereas the micromorphic continuum stress measre only used to interpret the DE simulation
results, at the moment.

1 INTRODUCTION strain measures for future work. We focus on the mi-
cromorphic theory because of the additional kinemat-

To date. h ved " deli ¢ ics it provides, through not only the micro-rotation of
0 date, homogenized continuum modeling of gran-, imjierq_element volume (e.g., the Representative Vol-
ular materials has considered primarily traditional

ume Element (RVE) of a granular material), but also

cgﬂt!ntj%m mechtanllciggsl tge tﬁvergaylng fdrasm?w?j”?nicro-stretch and micro-shear. The micropolar theo-
(Christoffersen et al. , Rothenburg and Selvadugag \yere primarily motivated for granular materials

rai 1981, Chang et al. 1992, Borja and Wren 1995y ccause of the additional rotational de
.. grees of free-
Mahlhaus et al. 2000, Peters 2005, Andrade and Tom of the individual particles, but these theories miss

2009) or higher order methods like micropolar con-y,q apjjity to model clusters of particles that also shear
tinuum mechanics or enhanced continua with strain, o g compact/dilate

gradients (Chang and Gao 1995, Walsh and Torde- '
sillas 2004, Pasternak and Muhlhaus 2005, Gardiner

and Tordesillas 2006). These methods involve atq.1 Brief background on the kinematics of a

tempts to either replace the underlying discrete par- micromorphic continuum at finite strain

ticle mechanics with an equivalent continuum con-

stitutive model, or provide a continuum framework Figure 1 presents the mapping from the reference con-
to which to up-scale the discrete particle mechanicsiguration 5, to the current configuratio through
through underlying Discrete Element Method (DEM) the deformation gradient}. (dx, = FpxdX ) and
simulations (Cundall & Strack 1979) via hierarchical micro-deformation tensoy,x (£ = xkx=k)- Sk IS
up-scaling procedures. We are interested in both aghe relative position vector between the centraid
proaches, but follow here the spirit of the latter classof the macro-element differential voluna®” and the

of methods (hierarchical up-scaling), and we use micentroidC’ of the micro-element differential volume
cromorphic continuum mechanics as the overlayinglV’ in the reference configuratioly,. Similarly, &
continuum mechanics framework. In the paper, we fois the relative position vector between the centroid
cus only on the micromorphic continuum stress meaef the macro-element differential volunae and the
sures, and consider micromorphic deformation anatentroid¢ of the micro-element differential volume
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Figure 1: Kinematics of a micromorphic continuum at finite B2
strain. .

particle region (DE)

dv’ in the current configuratios. Position vectors of Q o free particles

these centroids are indicated in Fig.1. From these ba- @ e ghost particles (particles whose motion is prescribed
sic kinematics, new micromorphic balance equations by continuum displacement and rotation fields)
(including the balance of first moment of momen- D e finite element nodes whose motion is unprescribed

ﬁ O finite element nodes whose motion is prescribed

tum, which we use below) can be derived (Eringen b . .
y underlying particles

& Suhubi 1964, Eringen 1999, Regueiro 2011).

Figure 2: Two-dimensional illustration of the coupling ween
particle and continuum regions. The purple background @sno

TR : the FE overlap regiofs” with underlying ghost particles, aqua
1.2 Motivation in the context of overlap coupling blue the FE continuum regiof”" with no underlying particles,

methods and white background (with brown particles) the free pégtic
. . . _ regionB" U BPE,
Ongoing work involves direct overlap coupling be-

tween large deformation micromorphic continuum fi-

nite elements (FEs) with underlying DE particles forig yha hranch vector connecting the two particle cen-
a concurrent multl_scale computatlongl modellng P3roids with contact. We assume there afe total
proach for simulating large deformation analysis of \ ., “ber of contacts within the RVE volumé&VE at

granular materials in regions of interest, such as th?ne instant in time when the micro-element stre§s

interface with a tire, penetrometer, or buried explosiveg .0 jated. These RVE domains (with surface area
simulation (see Fig.2). The purpose of this multiscale rve and unit normals2" ) comprise an averaging

framework is to capture as much of the underlyingdomainQa\/g with surfacel'™ (see Fig.3). The center
DE particle kinematics and kinetics within the micro- J¢ 0avs is “genoted by poiroﬁz and the center of the
morphic continuum FE formulation, such that the DERVES by points’. The relati\c;é position vectd,, ex-
region can be minimized for computational efficiency, e nqs frome., to ¢ in the current configuration of the
and also to minimize or negate any artificial boundary,, v 3 (see Figs.1,3). Essentially, we substitute dis-
effects due to the overlap coupling of DE with micro- crete averaging do'mamavg for ma’croscopic differ-
morphic FE close to the interfacial mechanics regiorbntial volumedv, and discrete RVE domair?V Z for

(e.g., tire tread, penetrometer surface, etc). micro-element differential volumév’. It is assumed
that the macroscopic micromorphic continuum mea-
sures are calculated at poitover discrete averaging
domain(23¥9, for o = 1... nayg Wherenayis the num-
ber of averaging domains over the discrete continuum
body B" in the current configuration, where is a
discretization parameter representing a finite element
_ (FE), finite difference (FD), or meshfree approxima-
To start, we recall the symmetric part of the granu-jon to solve the micromorphic continuum governing
lar stress definition (we call this stress, in the contexXpquations. The advantage of this approach is to uti-
of a micromorphic continuum, the “micro-element” |ize an already well-established micromorphic contin-
stress (Eringen & Suhubi 1964)) as (Christoffersen,ym theory at finite strain (Eringen & Suhubi 1964,
etal. 1981, Rothenburg and Selvadurai 1981) Suhubi & Eringen 1964, Eringen 1999), and to focus
on an apparent criticism of the theory which is how
) 1 XM e to determine parameters for the higher order consti-
Ok = 5. RVE 21 (fib] + b f) (1)  tutive models (Forest & Sievert 2003, Regueiro 2009,

where f; is the interparticle force at contagtandby

2 HIERARCHICAL UP-SCALING FOR
MICROMORPHIC CONTINUUM STRESS
CALCULATIONS FROM 3D DEM
SIMULATIONS
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Figure 3: lllustration of averaging domaipi’® for micromor-
phic stress calculation, and smaller RVE volunde’ ” for sym-
metric ‘micro-element’ granular stress calculati®h

Regueiro 2010).

The question then becomes how to calculate the
micromorphic continuum unsymmetric Cauchy stress
o, at pointc,. Recall from the micromorphic contin-
uum theory (Eringen & Suhubi 1964) that the stresses
are defined as follows,

[ o (7)
dv

Smkdv
def
oumda = / oy nyda’ 8)
da

mlkmnlda d:ef / Ul/kgmn;da' (9)
da

Thus, the volume average definition fern (2) and

(5) is in line with micromorphic continuum theory in
(7), whereas the volume average definition farin

(3) and (6) is an assumption when compared to (9).

To continue in this direction, we define, based onl Ne unsymmetric Cauchy stress however, cannot

the previous discussion, a volume average for th@€ uniquely determined from (8), nor can it be esti-
symmetric micro-stress;, and unsymmetric couple Mated by a volume average of because this is the

stressmyy,, as

definition fors. Thus, we resort to the balance of first
moment of momentum to calculate

5, L/ o ! ) The balance of first moment of momentum of the
M Q8" Joae M micromorphic theory, integrated over the boByin
the current configuration, is written as (Eringen &
def 1 , , Suhubi 1964, Eringen 1999),
Milm = 02 /Q avgaklgmdv (3)

«

Before moving on, recall that balance equations ar
derived by localizing an integral over the body

a/ [Omk = Smk + Mikmy + P(Lem — Wim)| dv = 0 (10)
B

in the current configuration. We consider discreteWhere,? is the mass densitf/km the bodyfqrce gouple
approximations to these integrals (e.g., an eventudler unit mass, and,, is the micro-spin inertia. We
Gaussian quadrature rule), such that

TNavg

/B(o)dv =

Tavg

> / (o)dv' ~ ) (o), W92
am1 708"

can analyze each term separately, with in mind that
we want to solve for, at pointc,:

Navg

o1 / Orkdv D () a8 (11)
B a=1
OIS SO @
avg
Qa RVE Smrpdv & Z(Smk)anvg = Z Z o™
. . B _ _
where W39 and WHVE are the weights of integra- a=l a=LRVE
tion, which for now we assum@/29 = WEVE = 1
(later, these will take appropriate values in the context/ ,,,, 4y = Mygemmda
of a FE, FD, or meshfree numerical implementation)./s ’ oB
For example, the micromorphic continuum symmetric
micro-stresss,, at pointc, within averaging domain ravg
Q29 can be calculated as, ~Y Y ol Fa ™
a=1 RVE
1
(Skl)a - W Z U;ClURVE (5)
* RVE navg
. . . ) . Cemdv =2 ' & E
and likewise for the micromorphic continuum unsym- /Bp F ; };ﬂp 91
metric couple stressq,, as B
1 Navg
(Mgim)a = O Z U//glgmURVE (6) /pwkmdv ~ Z Z plaiﬁvaVE (22)
* RVE B a=1RVE



Table 1: Parameters for quartz sand/gravel. If there is angkc
number, it is associated with the cavity expansion simoihati

Young’s modulus® (Pa) 2.9 x 1010

Poisson’s ratio/ 0.25

specific gravityG 2.65

inter-particle coef. of friction 0.5 i
inter-particle contact damping ratip 5%, 30%

particle radii (m) 0.001 ~ 0.0025

viscous damping ratio 2.0/At, 0

time stepAt (sec) 5.0x 1075 5.0 x 10~ 7

where g, is the gravity acceleration vectar, is the
mass density of particles "' *, anda’, = ¢, is the
acceleration of the relative position vector which is
important for dynamics problems, as will be seen for
the cavity expansion problem in the Numerical Ex-
amples. We calculate’, based on the motion of the i i S i e i
relative pOSItIC?I‘l V.eCto‘f’f’ which tracks the C.entrOIdS Figure 4: Side view of pile penetration simulation, showawgr-
of the RVEs¢" with respect to the centroid of the aging domair22'? drawn by box in the initial penetration zone.
averaging domaim,,. In this case, the RVEs are as-
sumed to move with the particles, as for the cavity3 1 pijle penetration
expansion example in Section 3.2. Then, substitut-
ing (11)-(12) into (10), we can solve for the micro- This example is run quasi-statically, with the ‘pile’
morphic continuum unsymmetric Cauchy stregs represented as a large ellipsoidal particle for now
at pointc,. Note that as — 0, o, = s,, and the (see Fig.4). Further details are found in Yan et al.
Cauchy stress is symmetric (i.e., it is the same a§2010). The averaging domai?? is drawn by a
the symmetric micro-stress, and vice versa). Thushox in the initial penetration zone, and is divided into
for certain continuum mechanics problems of interesg x 2 x 2 = 8 RVEs. These RVEs are fixed. For com-
to geotechnical and geological engineers, the granysarison purposes, the mean couple stress and devia-
lar material can be treated as a classical continuurtoric couple stress are defined as follows,
such that the assumptign— 0 is valid. For specific def 1

. . coupl ae
problems of interest, however, the discrete nature of  (Py, Vo = g(maam)a (14)
the granular material from the perspective of a pen-
etrometer in sand, or tire rolling through gravglis
finite, and thus a generalized continuum theory like = pPe = /pPUPe. pourt
micromorphic continuum mechanics may provide ad-
ditional insight into the mechanics of granular media. coupl
At the very least, it will be relevant for overlap cou- deM(mum)a = (Mikm)a = (P )adi (15)
pling procedures, as shown in Fig.2, where the degree
of freedom (dof) mismatch between DEM and clas- octcouple \/ :
sical FEM in the overlap region is apparent, and the ~ o e = \/; (devim,,):(devm)

gddltlonal dof in the micromorphic continuum should 1pe plots of mean stress and octahedral shear stress

improve such procedures. are shown in Fig.5, calculated over the averaging do-
main{22"9as discussed in Section 2. They compare the

3 NUMERICAL EXAMPLES following six stress results: (i) symmetric micro-stress
S., (i) unsymmetric Cauchy stress,, (iii) unsym-

We demonstrate the hierarchical up-scaling procemMetric Cauchy strese, without micro-spin inertia

dure in Section 2 for calculating the three micromor-pw term in (10), (iv) unsymmetric Cauchy stress

phic continuum stresses(, s;;, m;;;.) by conducting without micro-spin inertigpw and body force couple

three-dimensional (3D) ellipsoidal DE simulations for #£ terms, (v) unsymmetric couple stress,, and (vi)

two examples: (1) pile penetration, and (2) cavity ex-unsymmetric granular stress’. It is observed that

pansion. Particle properties are indicated in Table 1. for each mean stress history in Fig.5, as the pile pen-

For comparison purposes in the results, we als@trates through the averaging domagi® (see box in

consider the unsymmetric granular stress definition Fig-4), the mean stress increases in compression (neg-
ative), and then begins to decrease as the pile passes

Al

1N through2'e (the depth of22"9 is 0.03m). Similarly,
oft — be fe (13) for octahedral shear stress in Fig.5, the shear stress
R ; (ifd) increases as the particles®3"? shear with respect to

each other during pile penetration. Now let us com-
whereN is the total number of contacts §2§"9. pare the various stress measures. For both mean and
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Figure 5: Mean and octahedral shear stress versus timedor thrigyre 6: Mean stress and octahedral shear stress versifotim
various stress measures of the pile penetration example. the various stress measures of the cavity expansion example

octahedral shear stress, the symmetric micro-sess the remaining particles (initially at rest under grav-
and unsymmetric granular stres$ are not equal, in- jty) upward in a box, that then settle down again by
dicating that the granular stress is unsymmetric. Theyravity (see Fig.7). The changing averaging domain
unsymmetric Cauchy stress,, as a result of account- (a9 js indicated by the box drawn at various times
ing for the couple terms in the balance of first mo-in Fig.7. This domain is in turn further divided into
ment of momentum in (10), (11)-(12), shows a re-4 » 4 x 3 = 48 RVEs. Figure 6 displays the com-
duced value when compared 49 ando® in Fig.5,  parison of the stress values over the simulation time
and the effect of acceleration and gravity force coufor mean and octahedral shear stresses. It is observed
ple termspw and p€ are negligible. Recall the units that as the cavity expands and pushes the particles up
of the couple stress, which are Pa.m. Thus, to com¢Fig.7(b)), all mean stress values approach 0 (Fig.6)
pare the couple stress values on the same plot, theecause there are few particle contacts. As the par-
mean and octahedral shear couple stresses are n@gles settle by gravity, the mean stress increases in
malized by the relative position vectgr which has  compression (negative), until they come to rest. Sim-
unit of length; also-p$**P*is plotted. Note, the main jlarly for the octahedral shear stress, as the particles
comparison is betwees), ando, to see the effect of reach their maximum height (and least number of
the length scale (i.e., the relative position vecf9r contacts) at 0.025s, the octahedral shear stress ap-
through the couple stress divergence term in the balroaches 0 (Fig.6). Upon settling, the octahedral shear
ance of first moment of momentum. Further work will stress increases again, and then decreases to a steady
consider various-sized averaging domains and RVEstate value when the particles come to rest. Here, the
to better understand this assumption of length scalgymmetric micro-stress, and unsymmetric granular
(i.e.,€), and its influence on the stresses (and in turnstresss* are equal, as there is little shearing of parti-
constitutive equations). cles as compared to the pile penetration problem. For
this dynamic example, the significance of the micro-
spin inertiapw and gravity force couplel are evident

32 Cavity expansion on the calculation of unsymmetric Cauchy stress

This example is run dynamically, where the cavity
expansion is started by a high initial outward veloc-
ity of an interior cluster of particles, that then pushes
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