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ABSTRACT: The objective of the paper is to demonstrate the calculation of micromorphic continuum stress
measures based directly on three-dimensional (3D) ellipsoidal discrete element (DE) simulations over represen-
tative volume elements (RVE) within the DE domain representing granular media. We will demonstrate these
calculations for two simulations: (1) pile penetration, and (2) cavity expansion. All calculations are assumed
to be performed in the current configuration with respect to alarge deformation micromorphic continuum me-
chanics analysis. The micromorphic continuum stresses include the unsymmetric third order couple stress tensor
mijk, symmetric second order micro-stress tensorsij, and unsymmetric second order Cauchy stress tensorσij .
The DE continuum stress measure due to Christoffersen et al.(1981) and Rothenburg & Selvadurai (1981), is
used as the symmetric “micro-element” stress tensorσ′

ij for micromorphic continuum mechanics (Eringen &
Suhubi 1964). The balance equations solved are the balance of linear and angular momenta for the DE sim-
ulations, whereas the micromorphic continuum stress measures are only used to interpret the DE simulation
results, at the moment.

1 INTRODUCTION

To date, homogenized continuum modeling of gran-
ular materials has considered primarily traditional
continuum mechanics as the overlaying framework
(Christoffersen et al. 1981, Rothenburg and Selvadu-
rai 1981, Chang et al. 1992, Borja and Wren 1995,
Mühlhaus et al. 2000, Peters 2005, Andrade and Tu
2009) or higher order methods like micropolar con-
tinuum mechanics or enhanced continua with strain
gradients (Chang and Gao 1995, Walsh and Torde-
sillas 2004, Pasternak and Muhlhaus 2005, Gardiner
and Tordesillas 2006). These methods involve at-
tempts to either replace the underlying discrete par-
ticle mechanics with an equivalent continuum con-
stitutive model, or provide a continuum framework
to which to up-scale the discrete particle mechanics
through underlying Discrete Element Method (DEM)
simulations (Cundall & Strack 1979) via hierarchical
up-scaling procedures. We are interested in both ap-
proaches, but follow here the spirit of the latter class
of methods (hierarchical up-scaling), and we use mi-
cromorphic continuum mechanics as the overlaying
continuum mechanics framework. In the paper, we fo-
cus only on the micromorphic continuum stress mea-
sures, and consider micromorphic deformation and

strain measures for future work. We focus on the mi-
cromorphic theory because of the additional kinemat-
ics it provides, through not only the micro-rotation of
a micro-element volume (e.g., the Representative Vol-
ume Element (RVE) of a granular material), but also
micro-stretch and micro-shear. The micropolar theo-
ries were primarily motivated for granular materials
because of the additional rotational degrees of free-
dom of the individual particles, but these theories miss
the ability to model clusters of particles that also shear
and compact/dilate.

1.1 Brief background on the kinematics of a
micromorphic continuum at finite strain

Figure 1 presents the mapping from the reference con-
figurationB0 to the current configurationB through
the deformation gradientFkK (dxk = FkKdXK) and
micro-deformation tensorχkK (ξk = χkKΞK). ΞK is
the relative position vector between the centroidC
of the macro-element differential volumedV and the
centroidC ′ of the micro-element differential volume
dV ′ in the reference configurationB0. Similarly, ξk
is the relative position vector between the centroidc
of the macro-element differential volumedv and the
centroidc′ of the micro-element differential volume
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Figure 1: Kinematics of a micromorphic continuum at finite
strain.

dv′ in the current configurationB. Position vectors of
these centroids are indicated in Fig.1. From these ba-
sic kinematics, new micromorphic balance equations
(including the balance of first moment of momen-
tum, which we use below) can be derived (Eringen
& Suhubi 1964, Eringen 1999, Regueiro 2011).

1.2 Motivation in the context of overlap coupling
methods

Ongoing work involves direct overlap coupling be-
tween large deformation micromorphic continuum fi-
nite elements (FEs) with underlying DE particles for
a concurrent multiscale computational modeling ap-
proach for simulating large deformation analysis of
granular materials in regions of interest, such as the
interface with a tire, penetrometer, or buried explosive
simulation (see Fig.2). The purpose of this multiscale
framework is to capture as much of the underlying
DE particle kinematics and kinetics within the micro-
morphic continuum FE formulation, such that the DE
region can be minimized for computational efficiency,
and also to minimize or negate any artificial boundary
effects due to the overlap coupling of DE with micro-
morphic FE close to the interfacial mechanics region
(e.g., tire tread, penetrometer surface, etc).

2 HIERARCHICAL UP-SCALING FOR
MICROMORPHIC CONTINUUM STRESS
CALCULATIONS FROM 3D DEM
SIMULATIONS

To start, we recall the symmetric part of the granu-
lar stress definition (we call this stress, in the context
of a micromorphic continuum, the “micro-element”
stress (Eringen & Suhubi 1964)) as (Christoffersen
et al. 1981, Rothenburg and Selvadurai 1981)
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Figure 2: Two-dimensional illustration of the coupling between
particle and continuum regions. The purple background denotes
the FE overlap regioñBh with underlying ghost particles, aqua
blue the FE continuum region̄Bh with no underlying particles,
and white background (with brown particles) the free particle
regionB̂h ∪BDE .

wheref ǫ
k is the interparticle force at contactǫ, andbǫl

is the branch vector connecting the two particle cen-
troids with contactǫ. We assume there areM total
number of contacts within the RVE volumevRV E at
the instant in time when the micro-element stressσ′

kl

is calculated. These RVE domains (with surface area
aRV E and unit normalsnRV E) comprise an averaging
domainΩavg

α with surfaceΓavg
α (see Fig.3). The center

of Ωavg
α is denoted by pointcα, and the center of the

RVEs by pointsc′. The relative position vectorξm ex-
tends fromcα to c′ in the current configuration of the
bodyB (see Figs.1,3). Essentially, we substitute dis-
crete averaging domainΩavg

α for macroscopic differ-
ential volumedv, and discrete RVE domainvRV E for
micro-element differential volumedv′. It is assumed
that the macroscopic micromorphic continuum mea-
sures are calculated at pointcα over discrete averaging
domainΩavg

α , for α= 1 . . . navg, wherenavg is the num-
ber of averaging domains over the discrete continuum
body Bh in the current configuration, whereh is a
discretization parameter representing a finite element
(FE), finite difference (FD), or meshfree approxima-
tion to solve the micromorphic continuum governing
equations. The advantage of this approach is to uti-
lize an already well-established micromorphic contin-
uum theory at finite strain (Eringen & Suhubi 1964,
Suhubi & Eringen 1964, Eringen 1999), and to focus
on an apparent criticism of the theory which is how
to determine parameters for the higher order consti-
tutive models (Forest & Sievert 2003, Regueiro 2009,
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Figure 3: Illustration of averaging domainΩavg
α for micromor-

phic stress calculation, and smaller RVE volumevRV E for sym-
metric ‘micro-element’ granular stress calculationσ′.

Regueiro 2010).
To continue in this direction, we define, based on

the previous discussion, a volume average for the
symmetric micro-stressskl and unsymmetric couple
stressmklm as
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Before moving on, recall that balance equations are
derived by localizing an integral over the bodyB
in the current configuration. We consider discrete
approximations to these integrals (e.g., an eventual
Gaussian quadrature rule), such that
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whereW avg andWRV E are the weights of integra-
tion, which for now we assumeW avg = WRV E = 1
(later, these will take appropriate values in the context
of a FE, FD, or meshfree numerical implementation).
For example, the micromorphic continuum symmetric
micro-stresssα at pointcα within averaging domain
Ωavg

α can be calculated as,
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and likewise for the micromorphic continuum unsym-
metric couple stressmα as
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The question then becomes how to calculate the
micromorphic continuum unsymmetric Cauchy stress
σα at pointcα. Recall from the micromorphic contin-
uum theory (Eringen & Suhubi 1964) that the stresses
are defined as follows,

smkdv
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=
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Thus, the volume average definition fors in (2) and
(5) is in line with micromorphic continuum theory in
(7), whereas the volume average definition form in
(3) and (6) is an assumption when compared to (9).
The unsymmetric Cauchy stressσ, however, cannot
be uniquely determined from (8), nor can it be esti-
mated by a volume average ofσ′ because this is the
definition fors. Thus, we resort to the balance of first
moment of momentum to calculateσ.

The balance of first moment of momentum of the
micromorphic theory, integrated over the bodyB in
the current configuration, is written as (Eringen &
Suhubi 1964, Eringen 1999),
∫

B

[σmk − smk +mlkm,l + ρ(ℓkm − ωkm)]dv = 0 (10)

whereρ is the mass density,ℓkm the body force couple
per unit mass, andωkm is the micro-spin inertia. We
can analyze each term separately, with in mind that
we want to solve forσα at pointcα:
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Table 1: Parameters for quartz sand/gravel. If there is a second
number, it is associated with the cavity expansion simulation.

Young’s modulusE (Pa) 2.9× 1010

Poisson’s ratioν 0.25
specific gravityGs 2.65
inter-particle coef. of frictionµ 0.5
inter-particle contact damping ratio 5%,30%
particle radii (m) 0.001∼ 0.0025
viscous damping ratio 2.0/∆t, 0
time step∆t (sec) 5.0× 10−6,5.0× 10−7

wheregk is the gravity acceleration vector,ρ′ is the
mass density of particles invRV E , andaξk = ξ̈k is the
acceleration of the relative position vector which is
important for dynamics problems, as will be seen for
the cavity expansion problem in the Numerical Ex-
amples. We calculateaξk based on the motion of the
relative position vectorξk, which tracks the centroids
of the RVEsc′ with respect to the centroid of the
averaging domaincα. In this case, the RVEs are as-
sumed to move with the particles, as for the cavity
expansion example in Section 3.2. Then, substitut-
ing (11)-(12) into (10), we can solve for the micro-
morphic continuum unsymmetric Cauchy stressσα

at point cα. Note that asξ → 0, σα = sα, and the
Cauchy stress is symmetric (i.e., it is the same as
the symmetric micro-stress, and vice versa). Thus,
for certain continuum mechanics problems of interest
to geotechnical and geological engineers, the granu-
lar material can be treated as a classical continuum
such that the assumptionξ → 0 is valid. For specific
problems of interest, however, the discrete nature of
the granular material from the perspective of a pen-
etrometer in sand, or tire rolling through gravel,ξ is
finite, and thus a generalized continuum theory like
micromorphic continuum mechanics may provide ad-
ditional insight into the mechanics of granular media.
At the very least, it will be relevant for overlap cou-
pling procedures, as shown in Fig.2, where the degree
of freedom (dof) mismatch between DEM and clas-
sical FEM in the overlap region is apparent, and the
additional dof in the micromorphic continuum should
improve such procedures.

3 NUMERICAL EXAMPLES

We demonstrate the hierarchical up-scaling proce-
dure in Section 2 for calculating the three micromor-
phic continuum stresses (σij , sij ,mijk) by conducting
three-dimensional (3D) ellipsoidal DE simulations for
two examples: (1) pile penetration, and (2) cavity ex-
pansion. Particle properties are indicated in Table 1.

For comparison purposes in the results, we also
consider the unsymmetric granular stress definition

σΩ

kl =
1

Ωavg
α

N∑

ǫ=1

(bǫlf
ǫ
k) (13)

whereN is the total number of contacts inΩavg
α .

Figure 4: Side view of pile penetration simulation, showingaver-
aging domainΩavg

α drawn by box in the initial penetration zone.

3.1 Pile penetration

This example is run quasi-statically, with the ‘pile’
represented as a large ellipsoidal particle for now
(see Fig.4). Further details are found in Yan et al.
(2010). The averaging domainΩavg

α is drawn by a
box in the initial penetration zone, and is divided into
2× 2× 2 = 8 RVEs. These RVEs are fixed. For com-
parison purposes, the mean couple stress and devia-
toric couple stress are defined as follows,

(pcouple
m )α
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3
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α =

√
p

couple
α · p

couple
α

dev(mlkm)α
def
= (mlkm)α − (pcouple

m )αδlk (15)

=⇒ τoct,couple
α =

√
1

3

√
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The plots of mean stress and octahedral shear stress
are shown in Fig.5, calculated over the averaging do-
mainΩavg

α as discussed in Section 2. They compare the
following six stress results: (i) symmetric micro-stress
sα, (ii) unsymmetric Cauchy stressσα, (iii) unsym-
metric Cauchy stressσα without micro-spin inertia
ρω term in (10), (iv) unsymmetric Cauchy stressσα

without micro-spin inertiaρω and body force couple
ρℓ terms, (v) unsymmetric couple stressmα, and (vi)
unsymmetric granular stressσΩ. It is observed that
for each mean stress history in Fig.5, as the pile pen-
etrates through the averaging domainΩavg

α (see box in
Fig.4), the mean stress increases in compression (neg-
ative), and then begins to decrease as the pile passes
throughΩavg

α (the depth ofΩavg
α is 0.03m). Similarly,

for octahedral shear stress in Fig.5, the shear stress
increases as the particles inΩavg

α shear with respect to
each other during pile penetration. Now let us com-
pare the various stress measures. For both mean and
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Figure 5: Mean and octahedral shear stress versus time for the
various stress measures of the pile penetration example.

octahedral shear stress, the symmetric micro-stresssα
and unsymmetric granular stressσΩ are not equal, in-
dicating that the granular stress is unsymmetric. The
unsymmetric Cauchy stressσα, as a result of account-
ing for the couple terms in the balance of first mo-
ment of momentum in (10), (11)-(12), shows a re-
duced value when compared tosα andσΩ in Fig.5,
and the effect of acceleration and gravity force cou-
ple termsρω andρℓ are negligible. Recall the units
of the couple stress, which are Pa.m. Thus, to com-
pare the couple stress values on the same plot, the
mean and octahedral shear couple stresses are nor-
malized by the relative position vectorξ, which has
unit of length; also,−pcouple

α is plotted. Note, the main
comparison is betweensα andσα to see the effect of
the length scale (i.e., the relative position vectorξ)
through the couple stress divergence term in the bal-
ance of first moment of momentum. Further work will
consider various-sized averaging domains and RVEs
to better understand this assumption of length scale
(i.e.,ξ), and its influence on the stresses (and in turn,
constitutive equations).

3.2 Cavity expansion

This example is run dynamically, where the cavity
expansion is started by a high initial outward veloc-
ity of an interior cluster of particles, that then pushes
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Figure 6: Mean stress and octahedral shear stress versus time for
the various stress measures of the cavity expansion example.

the remaining particles (initially at rest under grav-
ity) upward in a box, that then settle down again by
gravity (see Fig.7). The changing averaging domain
Ωavg

α is indicated by the box drawn at various times
in Fig.7. This domain is in turn further divided into
4 × 4 × 3 = 48 RVEs. Figure 6 displays the com-
parison of the stress values over the simulation time
for mean and octahedral shear stresses. It is observed
that as the cavity expands and pushes the particles up
(Fig.7(b)), all mean stress values approach 0 (Fig.6)
because there are few particle contacts. As the par-
ticles settle by gravity, the mean stress increases in
compression (negative), until they come to rest. Sim-
ilarly for the octahedral shear stress, as the particles
reach their maximum height (and least number of
contacts) at 0.025s, the octahedral shear stress ap-
proaches 0 (Fig.6). Upon settling, the octahedral shear
stress increases again, and then decreases to a steady
state value when the particles come to rest. Here, the
symmetric micro-stresssα and unsymmetric granular
stressσΩ are equal, as there is little shearing of parti-
cles as compared to the pile penetration problem. For
this dynamic example, the significance of the micro-
spin inertiaρω and gravity force coupleρℓ are evident
on the calculation of unsymmetric Cauchy stressσα.



(a) (b) (c)
Figure 7: Side view of cavity expansion simulation, showingav-
eraging domainΩavg

α drawn by box, moving with particles at dif-
ferent simulation times: (a) 0.000s, (b) 0.075s, and (c) 0.375s.

4 CONCLUSIONS

The paper focussed on deriving the equations to cal-
culate the three stresses within a micromorphic con-
tinuum theory, for an averaging domainΩavg

α using 3D
ellipsoidal DEM simulations: (1) symmetric micro-
stresssα, (2) unsymmetric Cauchy stressσα, and (3)
unsymmetric couple stressmα. The stressessα and
mα could be calculated directly from volume aver-
age definitions, whereasσα required evaluating the
balance of first moment of momentum. Stress results
for pile penetration and cavity expansion DEM simu-
lations were compared. It was observed that depend-
ing on the example, significant shearing can generate
an unsymmetric granular stressσΩ as well as Cauchy
stressσα (for pile penetration), and that for dynam-
ics (cavity expansion), the role of micro-spin inertia
and gravity couple force can significantly affect the
calculation of Cauchy stressσα.

Such a hierarchical multiscale framework for esti-
mating micromorphic stresses, when extended to in-
clude the calculation of micromorphic strains, can be
used to estimate material parameters of micromor-
phic constitutive models, as well as which parame-
ters may be set to zero, and also how to estimate the
length scale (directly related to the relative position
vectorξ in the micromorphic theory). This relies on
the DEM model (or other underlying discrete physics-
based model) to be physically relevant itself, and there
are open questions on that issue that are beyond the
scope of the paper (e.g., interparticle constitutive rela-
tions, particle shape/fracture, particle mineralogy and
crystallographic orientation effects, pore water and air
effects, ...).

Future work includes further investigation of the
size of the averaging domainΩavg

α and corresponding
RVE sizesvRV E within Ωavg

α , their relative position
vectorsξ, and resulting stress calculations.
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