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ABSTRACT

Interfacial mechanics between granular materials and deformable solid bodies
involve large shear deformation and grain motion at the interface. To resolve such
granular physics at the grain scale in contact with the deformable solid, but in a
computationally tractable manner, we present a concurrentmultiscale computational
method. As a simple problem to verify the method, a one-dimensional string of glued
elastic discrete elements is overlapped with a linear elastic micropolar continuum
finite element implementation. The overlap coupling is enabled by the bridging scale
decomposition method, but now with rotational degrees of freedom (dof) in addition to
axial and transverse displacements. The paper presents thepreliminaries of coupling
discrete element regions and micropolar finite element regions for eventual simulation
of granular soil-tire/tool/geosynthetic/penetrometer applications, wherein eventual
three-dimensional discrete element formulation and finitestrain micromorphic contin-
uum finite element is required.

INTRODUCTION

Granular materials are commonly found in geotechnical applications, and are
composites of three phases: solids, liquids, and gases. We limit the modeling cur-
rently to single phase (solid grains) and dense granular materials (average coordination
number≈ 5). We are interested primarily in modeling the grain to macro-continuum
scale response in the large shear deformation interface region between a granular ma-
terial and deformable solid body. Such interface can be between a granular soil (e.g.,
sand, Fig.1(a)) and a tire (Fig.2(a)), tool (e.g., bucket, Fig.2(b)), or cone penetrometer
(Fig.1(b)∗).

Granular materials are challenging to model their mechanical behavior across
several orders of magnitude in length-scale. An additionalmodeling challenge is that
they can transition from deforming like a solid to flowing like a fluid and vice versa.
Examples of such physical transition are the flow of quartz grains around and at the
tip of a driven cone penetrometer penetrating sand, and the shoveling of sand/gravel

∗http://geosystems.ce.gatech.edu/Faculty/Mayne/Research/devices/cpt.htm
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(a) image courtesy of Khalid Alshibli,
Louisiana State University.

(b) Cone penetrometers (see footnote∗ on previous page
for image reference).

Figure 1. (a) Sand grains at 150×. (b) Cone penetrometers.

by a tractor bucket, for instance. These examples each involve material regions where
relative neighbor particle motion is ‘large’ (flowing like afluid) and regions where
relative neighbor particle motion is ‘small’ (deforming like a solid).

Using solely “brute force” physics-based simulation methods (such as the dis-
crete element (DE) method [Cundall and Strack, 1979]), it istoo computationally in-
tensive to account for the grain-scale mechanical behaviorat the macro-scale of these
geotechnical engineering applications. Thus, we attempt to restrict the DE region to
only where we need it: at the interface of granular material and deformable solid body
(i.e., soil-penetrometer, soil-tool, soil-geosynthetic, or soil-tire interface). The compu-
tational mechanics modeling challenge is how to couple a DE region to a finite element
(FE) region representing the granular material as a continuum further from the interface
with the deformable solid, and to do this without introducing artificial boundary effects
on the DE region (that in turn contacts the deformable solid shearing through the gran-
ular material). We resort to a concurrent multiscale computational modeling approach
[Regueiro and Yan, 2010] that retains an “open window” computationally on the grain-
scale region adjacent to the deformable solid, while transitioning through an overlap
coupling region to a higher order continuum FE method (see Fig.3). The higher order
continuum in this paper is limited to a small strain linear isotropic elastic micropo-
lar continuum [Eringen, 1968], whereas a finite strain pressure-sensitive micromorphic
elastoplasticity model [Regueiro, 2009] would provide a more suitable higher order
continuum framework through which to couple to the DE region. The micropolar con-
tinuum is limited to micro-rotations, whereas the micromorphic continuum [Eringen,
1999] introduces also micro-shear and micro-dilation/compaction which are useful for
representing the mechanics ofmicro-clusters of grains in a granular material.

A realistic geotechnical engineering application of this multiscale approach is
to simulate, with grain-scale resolution, the initial boundary value problem (IBVP) of
cone penetrometer penetration (Fig.1(b)). This will allowa physics-based approach
to estimating the shear strength of a sandy soil, rather thanthe traditional empirical
approaches. During the penetration, particles can crush, displace and flow to accom-
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(a) Mars exploration rover: tire interaction with
Martian soil (photo source NASA).

(b) loader bucket scooping gravel
(www.dymaxinc.com).

Figure 2. (a) Soil-tire, and (b) soil-tool interface problems.

modate the cone penetrometer penetrating the sand. This is acomplex IBVP, whose
interpretation will benefit by a grain-scale computationalsimulation approach. The
multiscale approach will attempt to alleviate the artificial boundary effects [Yan et al.,
2010] on an assembly of discrete elements surrounding the cone penetrometer (like in
Fig.3). The various soil conditions will come in naturally through constitutive mod-
els that handle effects of moisture content, degree of saturation, percentage of clay
versus sand, etc. The difference is that the constitutive model is formulated within a
micromorphic continuum theory [Regueiro, 2009]. This is a good example of how the
multiscale method discussed in this paper can be used to minimize computational effort
by maintaining the DE particle region only at the interface with the cone penetrometer,
while the micromorphic continuum FE will provide the transition to the continuum re-
gion. The micromorphic continuum has more dofs than the standard continuum, but far
fewer than the DE region, so it will introduce computationalefficiency to the problem.

As a simplified version—for verification purposes—of the concurrent compu-
tational multiscale modeling approach presented in Regueiro and Yan [2010], we glue
a one-dimensional string of elastic spherical discrete elements, and simplify a microp-
olar continuum using one-dimensional (1D) Timoshenko beamkinematics with axial
stretch [Pinsky, 2001]. The coupling approach then overlaps these two representations
of 1D glued grains to test the computational multiscale method.

Bold-face letters denote matrices, tensors and vectors; the symbol “·” denotes
an inner product of two vectors (a ·b= aibi), or a single contraction of adjacent indices
of two tensors (c ·d = ci jd jk). Summation is implied on repeated indices. We will
assume Cartesian coordinates and small deformations.

1D GLUED DISCRETE ELEMENTS

Consider a one-dimensional string of glued elastic spherical particles (simpli-
fication of grains of a granular material). A particleα has axial displacementqα

x (m)
positive inx, transverse displacementqα

x (m) positive iny, and rotationωα (rad) posi-
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tive right hand rule about thez (out of page) axis. Consider two particlesα andβ glued
elastically at contactε, and particlesα and γ glued elastically at contactκ . Using
Hertz-Mindlin theory for two elastic spheres in contact [Mindlin, 1949], the nonlinear
matrix-vector form of balance of linear and angular momentum for particleα is

mα
· q̈α +f INT,α(qα ,qβ ,qγ) = fEXT,α (1)

mα =




m 0 0
0 m 0
0 0 mω


 , q̈α =




q̈α
x

q̈α
y

ω̈α


 , f INT,α =




f INT,α
x = f ε

x − f κ
x

f INT,α
y = f ε

y − f κ
y

f INT,α
ω = f ε

ω − f κ
ω




wherefEXT,α is the external force. Assembling (1) over all particles, wearrive at the
matrix-vector form of balance of linear and angular momentum for the whole 1D glued
assembly of spherical particles:

MQ
· Q̈+F INT,Q(Q) = F EXT,Q (2)

where superscriptQ implies a discrete element particle variable. These discrete particle
equations (2) can be written in energy form to make the partitioning of energy in the
overlap region more straightforward for the coupling method described later. For these
particle equations, we have

d
dt

(
∂T Q

∂Q̇

)
−

∂T Q

∂Q
+

∂UQ

∂Q
= F EXT,Q (3)

whereT Q is the kinetic energy andUQ the potential energy, such that

T Q =
1
2
Q̇MQQ̇ , UQ(Q) =

∫ Q

0
F INT,Q(S)dS (4)

Carrying out the derivatives in (3), and using the Second Fundamental Theorem of
Calculus for∂UQ/∂Q, leads to (2). Note that no dissipation function appears in (3)
because we ignore inter-particle damping for purely elastic particles.

2D LINEAR ELASTIC MICROPOLAR CONTINUUM

The balance equations for a small strain micropolar continuum are the balance
of linear and angular momentum, written as [Eringen, 1968]

σlk,l +ρbk −ρ v̇k = 0 (5)

mlk,l + ekmnσmn +ρℓk −ρβ̇k = 0 (6)

where

mlknlda
def
= eabk

∫

da
σ ′

lbξan′lda′ (7)

ρℓkdv
def
= eabk

∫

dv
ρ ′ f ′bξadv′ (8)

andσlk is the unsymmetric Cauchy stress tensor over bodyB, ρ is the mass density,bk

is a body force per unit mass,vk is the spatial velocity vector,mlk is the unsymmetric
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couple stress,ekmn is the permutation operator [Holzapfel, 2000],ℓk is the body couple
per unit mass,βk is the intrinsic spin per unit mass,σ ′

lb is the symmetric Cauchy stress
tensor in micro-element volumedv′, ρ ′ is the micro-element mass density overdv, f ′k is
a body force per unit mass indv′, indicesk, l, · · ·= 1,2,3, and(•),l = ∂ (•)/∂xl denotes
partial differentiation with respect to the spatial coordinatexl.

Introducingwk = δuk and ηk = δϕk as weighting functions for the macro-
displacement vectoruk and micro-rotation vectorϕk, respectively, we apply the Method
of Weighted Residuals to formulate the partial differential equations in (5) and (6) into
weak form [Hughes, 1987]. The weak, or variational, equations then result, ignoring
the body force termsbk = 0 andℓk = 0, as

∫

B

ρwkv̇kdv+
∫

B

wk,lσlkdv =
∫

Γt

wktkda (9)
∫

B

ρηkβ̇kdv+
∫

B

ηk,lmlkdv−
∫

B

ηkεkmnσmndv =
∫

ΓT

ηkTkda (10)

whereB is the volume of the continuum body,tk = σlknl is the applied traction on
the portion of the boundaryΓt with outward normal vectornl, andTk = mlknl is the
applied surface couple on the portion of the boundaryΓT . The linear isotropic elastic
micropolar constitutive equations are [Eringen, 1968]

σkl = λεrrδkl +(2µ +κ)εkl +κeklm(rm −ϕm) (11)

εkl = (uk,l +ul,k)/2, rm = emabub,a/2

mkl = αϕr,rδkl +βϕk,l + γϕl,k (12)

whereλ and µ are the Lame parameters, andκ , α, β , andγ are additional elastic
parameters. The next section simplifies this linear elasticmicropolar continuum for 1D
Timoshenko beam kinematics with axial stretch.

1D TIMOSHENKO BEAM KINEMATICS FOR 2D MICROPOLAR CONTIN-
UUM

Adapting the Timoshenko beam kinematics from Pinsky [2001]by adding an
axial stretch dofu, the small strain displacement vectoru and micro-rotation vectorϕ
are

u=




u1

u2
u3


=




u(x1)− x2θ(x1)
v(x1)

0


 , ϕ=




0
0

θ(x1)


 (13)

The small strain tensor then becomes

ǫ=




u,1− x2θ,1 γsh/2 0
γsh/2 0 0

0 0 0


 (14)

where(•),1 = ∂ (•)/∂x1 = ∂ (•)/∂x = (•),x, and shearingγsh = v,1−θ . It can then be
shown from (11,12) that the nonzero stress components are
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σ11= (λ +2µ+κ)ε11 , σ12= (µ+κ)γsh , σ21= µγsh , m13= γθ,1 , m31= βθ,1 (15)

whereσ22 = σ33 = σ23 = σ32 = σ13 = σ31 = 0 andm11 = m22 = m33 = m12 = m21 =
m23 = m32 = 0. The couple stressm13 is a moment acting on thex1 face in thex3
direction. Them31 stress does not appear in the final form of the balance equations.
The balance equations simplify to

σ11,1−ρ ü1 = 0 (16)

σ12,1−ρ ü2 = 0 (17)

m13,1+σ12−σ21−ρβ̇3 = 0 (18)

There are three equations and three unknowns:u, v, andθ . We substitute into the
coupled weak form (9,10), express in Galerkin form [Hughes,1987], and interpolate
the displacements and rotations as

uh(x, t) =N e,u(x) ·de
x(t) , vh(x, t) =N e,v(x) ·de

y(t) , θ h(x, t) =N e,θ (x) ·de
θ (t) (19)

where we use a mixed formulation for shape function matricesN e,u, N e,v, andN e,θ ,
ande implies element variable. The coupled finite element matrixform, after element
assembly and application of BCs, results as

MD
· D̈+F INT,D(D) = F EXT,D (20)

MD =




M uu
0 −M uθ

0 M vv
0

−Mθu
0 Mθθ


 D =




du

dv

dθ


 ,F INT,D =KD

·D

KD =




Kuu
0 −Kuθ

0 Kvv
−Kvθ

−Kθu
−Kθv Kθθ


 F EXT,D =




F F

FV

FM +FMθ




whereMD is symmetric, butKD is unsymmetric. The submatrices ofMD andKD

coupleu, v, andθ . These discrete FE equations (20) can be written in energy form to
make the partitioning of energy in the overlap region for coupling more straightforward.
For these FE equations, we have

d
dt

(
∂T D

∂Ḋ

)
−

∂T D

∂D
+

∂UD

∂D
= F EXT,D (21)

whereT D is the kinetic energy andUD the potential energy, such that

T D =
1
2
ḊMDḊ ,UD(D) =

∫ D

0
F INT,D(S)dS (22)

Carrying out the derivatives in (21), and using the Second Fundamental Theorem
of Calculus for∂UD/∂D, leads to (20). The next section presents the coupling
methodology for kinematics and energy.
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COUPLING

Following some of the same notation presented in Klein and Zimmerman [2006], we
define a generalized dof vectorQ̆ for particle displacements and rotations in the system
as

Q̆= [qα ,qβ , . . . ,qγ ,ωα ,ωβ , . . . ,ωγ ]
T , α,β , . . . ,γ ∈ Ă (23)

whereqα is the displacement vector of particleα, ωα its rotation, andĂ is the set of
all particles. Likewise, the finite element nodal displacements and rotations are written
as

D̆ = [da,db, . . . ,dc,dθ ,a,dθ ,b, . . . ,dθ ,c]
T , a,b, . . . ,c ∈ N̆ (24)

whereda is the displacement vector of nodea, dθ ,a is the rotation of nodea, N̆ is the set
of all nodes. In order to satisfy the boundary conditions forboth regions, the motion of
the particles in the overlap region (referred to as “ghost particles,” red particles in Fig.3)
is prescribed by the continuum displacement and rotation fields. Referring to Fig.3, the
prescribed particle motionŝQ can be viewed as constraints on the free particle region,
and likewise the prescribed finite element nodal displacements and rotationŝD can be
viewed as constraints on the finite element mesh in the overlap region.

prescribed finite element nodes

free finite element nodes

free particles

ghost particles

particle region (DE)

granular material

continuum FE region

deformable FE, 

or rigid solid
(a) (b) (c)

Q

Q̂

D

D̂

Figure 3. Illustration of adaptivity and coupling. In (a), adeformable or rigid solid body
approaches the granular material, and in (b) it begins to shear/penetrate the granular material in
the DE particle region. In (c), the solid body has sheared theparticle region enough that the FE
mesh is re-meshed adaptively and the particle region is extended. Adaptivity [Nie et al., 2010]
is a means to change the nodal coordinates of a mesh if the meshis highly distorted, in this
case to keep the DE particle region at the interface of the deformable solid while allowing the
elements not to distort too much.

In general, the displacement vector of a particleα can be represented by the
finite element interpolation of the continuum displacementfield uh evaluated at the
particle centroidxα , such that

uh(xα , t) = ∑
a∈N̆

Nu
a (xα)da(t) α ∈ Ă (25)
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whereNu
a are the shape functions associated with the continuum displacement field

uh. Recall thatNu
a have compact support and thus are only evaluated for particles with

centroids that lie within an element containing nodea in its domain. In DE, particle
dofs (translations and rotations) are tracked at the particle centroids. For example, we
can write the prescribed displacement of ghost particleα as

qα(t) = uh(xα , t) = ∑
a∈N̆

Nu
a (xα)da(t) α ∈ Â (26)

Likewise, particle rotation vectors can be represented by the finite element interpolation
of the continuum micro-rotation fieldθ h evaluated at the particle centroidxα . For all
ghost particles (Fig.3), the interpolations can be writtenas

Q̂=N Q̂D ·D+N Q̂D̂ · D̂ (27)

whereN Q̂D andN Q̂D̂ are shape function matrices containing individual nodal shape

functionsNu
a andNθ

b . We assume the total kinetic and potential energy of the coupled
particle-continuum system may be written as the sum of the energies

T (Q̇,Ḋ) = T Q(Q̇,
˙̂
Q(Q̇,Ḋ))+T D(Ḋ,

˙̂
D(Q̇)) (28)

U(Q,D) = UQ(Q,Q̂(Q,D))+UD(D,D̂(Q)) (29)

where we have indicated the functional dependence of the prescribed particle motion
and nodal dofs solely upon the free particle motion and nodaldofsQ andD, respec-
tively.

Q Q̂ D

D̂

B̄h
B̃h

B̂hBDE

Figure 4. 1D string of 11 elastic spheres overlapped partially by 4 1D micropolar continuum

FEs. Free particle dofs are indicated byQ, ghost particle dofs bŷQ, prescribed FE nodal dofs
by D̂, and free FE nodal dofs byD. BDE is the pure particle domain (no overlapping FE mesh),
B̂h the overlapping FE domain where nodal dofs are completely prescribed,B̃h the overlapping
FE domain where particle motions and nodal dofs are prescribed and free nodal dofs exist, and
B̄h the pure continuum FE domain with no underlying particles.

NUMERICAL EXAMPLES

The one-dimensional overlapped coupled domain in Fig.4 is compressed axi-
ally and sheared in the transverse direction as indicated inthe figure. The particles
are assumed to be isotropic elastic quartz (E =2.9e10 Pa,ν =0.25), and likewise for
corresponding parameters of the 1D micropolar continuum (the additional micropolar
elastic parameters are scaled to these parameters). Preliminary results of the coupling
response is shown in Fig.5. It can be seen that if the elastic stiffnesses of the 1D mi-
cropolar continuum rod finite element mesh are not scaled, the response is too stiff,
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and the partitioning of energy via a volume fraction in the overlapped regioñBh will
not lead to a smooth displacement field along the rod. When scaled, the homogeneous
axial displacement along the bar can be achieved, however, the transverse displacement
still demonstrates an artificial boundary effect for the transverse displacement and force
when the stiffnesses are scaled. These are preliminary results, and we are in the process
of rectifying the scaling for the transverse dof.
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Figure 5. (left) Axial displacement versus position along the 1D string of particles and FE
mesh. (right) Transverse displacement.

CONCLUSION

This short paper focussed on the formulation of the discreteparticle and microp-
olar FE balance equations simplified for linear elasticity and 1D Timoshenko beam
kinematics, and coupling methodology for concurrent multiscale computational ap-
proach for physics-based modeling of interfacial mechanics between deformable solids
and granular materials (dry and dense). Numerical examplesshowed preliminary re-
sults of the coupling method for addressing artificial boundary effects at the transition
between DE and FE regions.

Ultimately, a fundamental understanding of granular physics interacting with
a solid body can lead to improved design of devices for granular soil-machine tool,
soil-tire, soil-geosynthetic, and soil-penetrometer interaction. The practicing geotech-
nical engineer should be aware that such advanced modeling methods could reduce
uncertainty in the future when interpreting cone penetrometer results for estimating
shear strength in sand, or designing a new geosynthetic to reinforce a granular soil.
There is still a need to validate this multiscale modeling approach against experiment
data that bridges the grain-scale to the ‘small’ continuum scale, which is ongoing work
as part of a research collaboration with Professor Khalid Alshibli at Louisiana State
University through the NSF grant indicated in the Acknowledgements.
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