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ABSTRACT

Interfacial mechanics between granular materials androhefole solid bodies
involve large shear deformation and grain motion at therfate. To resolve such
granular physics at the grain scale in contact with the defire solid, but in a
computationally tractable manner, we present a concumentiscale computational
method. As a simple problem to verify the method, a one-dsiwral string of glued
elastic discrete elements is overlapped with a linear ielastcropolar continuum
finite element implementation. The overlap coupling is éedlby the bridging scale
decomposition method, but now with rotational degreesed#dom (dof) in addition to
axial and transverse displacements. The paper presengsdlm@inaries of coupling
discrete element regions and micropolar finite elementregior eventual simulation
of granular soil-tire/tool/geosynthetic/penetromet@placations, wherein eventual
three-dimensional discrete element formulation and fstitain micromorphic contin-
uum finite element is required.

INTRODUCTION

Granular materials are commonly found in geotechnicaliegfpbns, and are
composites of three phases: solids, liquids, and gases. irffitethe modeling cur-
rently to single phase (solid grains) and dense granulagniat (average coordination
numberx 5). We are interested primarily in modeling the grain to maoontinuum
scale response in the large shear deformation interfacenrégtween a granular ma-
terial and deformable solid body. Such interface can be éetva granular soil (e.g.,
sand, Fid.l1(a)) and a tire (Fig.2(a)), tool (e.g., buckag[&tb)), or cone penetrometer
(Fig(b}).

Granular materials are challenging to model their meclaiehavior across
several orders of magnitude in length-scale. An additiomadieling challenge is that
they can transition from deforming like a solid to flowingdik fluid and vice versa.
Examples of such physical transition are the flow of quartdrg around and at the
tip of a driven cone penetrometer penetrating sand, andhibweetng of sand/gravel

*http://geosystems.ce.gatech.edu/Faculty/Mayne/Research/devices/cpt.htm



(a) image courtesy of Khalid Alshibl{p) Cone penetrometers (see footriate previous page
Louisiana State University. for image reference).

Figure 1. (a) Sand grains at 150(b) Cone penetrometers.

by a tractor bucket, for instance. These examples eachvavoéterial regions where
relative neighbor particle motion is ‘large’ (flowing like fauid) and regions where
relative neighbor particle motion is ‘small’ (deformingd a solid).

Using solely “brute force” physics-based simulation meth¢such as the dis-
crete element (DE) method [Cundall and Strack, 1979)), ibéscomputationally in-
tensive to account for the grain-scale mechanical behatitite macro-scale of these
geotechnical engineering applications. Thus, we attempeédtrict the DE region to
only where we need it: at the interface of granular matendl @eformable solid body
(i.e., soil-penetrometer, soil-tool, soil-geosyntheticsoil-tire interface). The compu-
tational mechanics modeling challenge is how to couple adgjon to a finite element
(FE) region representing the granular material as a comtimfurrther from the interface
with the deformable solid, and to do this without introdugartificial boundary effects
on the DE region (that in turn contacts the deformable sél@hsing through the gran-
ular material). We resort to a concurrent multiscale comapomal modeling approach
[Regueiro and YAIJLLOJO] that retains an “open window” cotaponally on the grain-
scale region adjacent to the deformable solid, while tteorshng through an overlap
coupling region to a higher order continuum FE method (sg&F.i The higher order
continuum in this paper is limited to a small strain lineastispic elastic micropo-
lar continuum|[Erin @8], whereas a finite strain pressensitive micromorphic
elastoplasticity model [Regueiro, 2009] would provide arensuitable higher order
continuum framework through which to couple to the DE regibhe micropolar con-
tinuum is limited to micro-rotations, whereas the microptac continuum Mn,
@Sb] introduces also micro-shear and micro-dilation/paation which are useful for
representing the mechanicsraifcro-clusters of grains in a granular material.

A realistic geotechnical engineering application of thigltiscale approach is
to simulate, with grain-scale resolution, the initial bdary value problem (IBVP) of
cone penetrometer penetration (Eig.1(b)). This will allayphysics-based approach
to estimating the shear strength of a sandy soil, rather tivarraditional empirical
approaches. During the penetration, particles can crusplade and flow to accom-
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(a) Mars exploration rover: tire interaction with ~ (b) loader bucket scooping gravel
Martian soil (photo source NASA). (www .dymaxinc . com).

Figure 2. (@) Soil-tire, and (b) soil-tool interface prahble

modate the cone penetrometer penetrating the sand. Thisamplex IBVP, whose
interpretation will benefit by a grain-scale computatiogiahulation approach. The
multiscale approach will attempt to alleviate the artifitiaundary effecti[laT_el_bl.,
] on an assembly of discrete elements surrounding the genetrometer (like in
Fig[3). The various soil conditions will come in naturallyréugh constitutive mod-
els that handle effects of moisture content, degree of a@adu, percentage of clay
versus sand, etc. The difference is that the constitutivéehis formulated within a
micromorphic continuum theoriLLRﬁgu_éitQ,_ZDOQ]. This isomd example of how the
multiscale method discussed in this paper can be used tonmamcomputational effort
by maintaining the DE particle region only at the interfadgéhwhe cone penetrometer,
while the micromorphic continuum FE will provide the tratin to the continuum re-
gion. The micromorphic continuum has more dofs than thedstahcontinuum, but far
fewer than the DE region, so it will introduce computatioefficiency to the problem.

As a simplified version—for verification purposes—of the coment compu-
tational multiscale modeling approach presented in Regueid Yah|[2010], we glue
a one-dimensional string of elastic spherical discretmetds, and simplify a microp-
olar continuum using one-dimensional (1D) Timoshenko b&armamatics with axial
stretch mml]- The coupling approach then overthpse two representations
of 1D glued grains to test the computational multiscale meth

Bold-face letters denote matrices, tensors and vectoessytmbol “” denotes
an inner product of two vectora (b = a;b;), or a single contraction of adjacent indices
of two tensors ¢ - d = ¢j;dj). Summation is implied on repeated indices. We will
assume Cartesian coordinates and small deformations.

1D GLUED DISCRETE ELEMENTS
Consider a one-dimensional string of glued elastic sphkparticles (simpli-

fication of grains of a granular material). A partidehas axial displacemenf (m)
positive inx, transverse displacemegf (m) positive iny, and rotationw?® (rad) posi-
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tive right hand rule about thee(out of page) axis. Consider two particlesand glued
elastically at contact, and particlesa and y glued elastically at contaat. Using
Hertz-Mindlin theory for two elastic spheres in cont,], the nonlinear
matrix-vector form of balance of linear and angular momentar particlea is

m%- g%+ fINT9 (g% g q¥) = fEXT (1)
mo 0 G2 AU I

ma _ 0 m 0 , (-ja _ qg , leT,a _ f}l/NT,d _ fg . f)’f
0 0 my g folT o = fE — £K

where fEX7:9 js the external force. Assembling (1) over all particles,amve at the
matrix-vector form of balance of linear and angular momentar the whole 1D glued
assembly of spherical particles:

MQ-Q+F'NT(Q) = FEXTQ )
where superscrig implies a discrete element particle variable. These disgarticle
equations[(2) can be written in energy form to make the jpamtitg of energy in the
overlap region more straightforward for the coupling metdescribed later. For these
particle equations, we have

d (9T oT° N ou® _ FEXT.Q
dt \ 9Q oQ  0Q

whereTQ is the kinetic energy and? the potential energy, such that

3)

TO = %QmQQ LURQ) = /OQ FINT(s)ds (4)

Carrying out the derivatives inl(3), and using the SeconddBurental Theorem of
Calculus fordUQ/dQ, leads to[(R). Note that no dissipation function appear&)n (
because we ignore inter-particle damping for purely etgsdrticles.

2D LINEAR ELASTIC MICROPOLAR CONTINUUM

The balance equations for a small strain micropolar contimare the balance
of linear and angular momentum, written 968]

Okl +Pbk—p% = 0O )
M| +&mOm+Plk—pPBc = 0 (6)
where
mnda = e /d ] Ojp€anda’ (7)
ptdv & ey [ p'thEadv (®)

andagji is the unsymmetric Cauchy stress tensor over gy is the mass densitip,
is a body force per unit masg is the spatial velocity vectomy is the unsymmetric
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couple stres®m is the permutation operator [Holzapfel, 2004]js the body couple
per unit massf is the intrinsic spin per unit masgy, is the symmetric Cauchy stress
tensor in micro-element volun/, p’ is the micro-element mass density oder f, is

a body force per unit mass @v', indicesk,|,---=1,2,3, and(e) | = d(e) /0% denotes
partial differentiation with respect to the spatial cootex; .

Introducingwy = duk and nx = d¢x as weighting functions for the macro-
displacement vectas, and micro-rotation vectapy, respectively, we apply the Method
of Weighted Residuals to formulate the partial differergiguations in[(b) and_{6) into
weak form Mi_l—&é?]. The weak, or variational, equetithen result, ignoring
the body force termby = 0 and/, = 0, as

/ PWVidv + / W | Ojkdv = / witda (9)
B B r

/ PGV -+ / Nt Mdv — / NkEkmnOmndV = / Nk Tkda (10)
B B B rr

where B is the volume of the continuum bodly = ojxn is the applied traction on
the portion of the boundarly; with outward normal vecton;, and Ty = mn, is the
applied surface couple on the portion of the boundary The linear isotropic elastic

micropolar constitutive equations alELLQb%S]

Ok = A&rd+ (21U +K)&g + Kem(rm— Pm) (11)
& = (Uk1 + U x)/2, F'm = €mabUp,a/2
Mg = a@rrda+ B+ VP (12)

whereA and u are the Lame parameters, arkda, 3, andy are additional elastic
parameters. The next section simplifies this linear elasiicopolar continuum for 1D
Timoshenko beam kinematics with axial stretch.

1D TIMOSHENKO BEAM KINEMATICS FOR 2D MICROPOLAR CONTIN-
UUM

Adapting the Timoshenko beam kinematics fr@(lm]adding an
axial stretch dofi, the small strain displacement vectwand micro-rotation vectop

are
{ Up } [ U(X1) — X20(xq1) } [ 0 }
u=| U | = V(X1) , o= 0 (13)
Us 0 Q(Xl)

The small strain tensor then becomes

Ui—X201 y5h/2 0
€= y/2 0 0
0 0O O
where(e) 1 = d(e)/dx; = d(e)/dx = (o) x, and shearing®™ = v; — 0. It can then be
shown from[(1IL,12) that the nonzero stress components are

(14)
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o11=(A+2u+K)ew, o= (U+K)Y", oo1=py™", mz=y81, mg1 =61 (15)

wheregy; = 033 = 023 = 032 = 013 = 031 = 0 andmy; = M2 = Mgz = M2 = Mpy =
Mp3 = mg2 = 0. The couple stressyz is a moment acting on the, face in thexs
direction. Themg; stress does not appear in the final form of the balance easatio
The balance equations simplify to

o111—pl; = 0 (16)
O121—pPlz = 0 (17)
Miz1+012—021—pPz = 0 (18)

There are three equations and three unknowns:, and 6. We substitute into the

coupled weak form[{B,10), express in Galerkin fom 7], and interpolate
the displacements and rotations as

u(xt) = NoU(x) - d5(t) . V(xt) = N®Y(x) - dji(t) , 8"(xt) = N*O(x) - d§(t) (19)

where we use a mixed formulation for shape function matri¥és', NV, and N®?,
ande implies element variable. The coupled finite element mdtirm, after element
assembly and application of BCs, results as

MD . D+FINT7D(D> — FEXT7D (20)
MW 0 _Mue 7T dy
MP = o MY o0 D=|d, | FNT"P-KDP.pD
~M% 0 M9 de
Kuw 0 _Kue T Fr
KD _ 0 KW _KVQ FEXT,D _ FV
_Keu _KQV KQQ | Fy +FM6

where MP is symmetric, butk’® is unsymmetric. The submatrices M° and K°
coupleu, v, and6. These discrete FE equations](20) can be written in enermy fo
make the partitioning of energy in the overlap region forgowg more straightforward.
For these FE equations, we have

D D D
dt \ D oD 0D
whereTP is the kinetic energy andP the potential energy, such that
: : D
T° = 2DMPD UP(D) = [ FNTe(s)ds (22)

Carrying out the derivatives in_(21), and using the SeconddBmental Theorem
of Calculus fordUP /oD, leads to [(2D). The next section presents the coupling
methodology for kinematics and energy.



COUPLING
Following some of the same notation presented in Klein amehzérman![2006], we

define a generalized dof vectQrfor particle displacements and rotations in the system
as

-

Q=144.9p:--, 9y Vo, W, ..., @) ", A, B,...,y €A (23)

wheregq,, is the displacement vector of partiale wy its rotation, andi is the set of
all particles. Likewise, the finite element nodal displaeais and rotations are written
as

D = [da,dp, ...,dc,dg a,dgp, .- -,dod T, @b,...,.ceN (24)

whered, is the displacement vector of nodedg 5 is the rotation of noda, N is the set

of all nodes. In order to satisfy the boundary conditiongiath regions, the motion of
the particles in the overlap region (referred to as “ghodigas,” red particles in Figl3)

is prescribed by the continuum displacement and rotatidasfidReferring to Fidl3, the
prescribed particle motior@ can be viewed as constraints on the free particle region,
and likewise the prescribed finite element nodal displacesn@nd rotationd can be
viewed as constraints on the finite element mesh in the qveelgion.

Q o free particles
(C) Q © ghost particles
D @ free finite element nodes

deformable FE,
or rigid solid

(a)

D O prescribed finite element nodes

ranular mategial

continum FE [region

Figure 3. lllustration of adaptivity and coupling. In (a),daformable or rigid solid body
approaches the granular material, and in (b) it begins targbenetrate the granular material in
the DE particle region. In (c), the solid body has shearegé#rtcle region enough that the FE
mesh is re-meshed adaptively and the particle region isidgte Adaptivity mlmﬁ]
is a means to change the nodal coordinates of a mesh if the iméghly distorted, in this
case to keep the DE particle region at the interface of therdefble solid while allowing the
elements not to distort too much.

In general, the displacement vector of a partiglean be represented by the
finite element interpolation of the continuum displacemfitl «" evaluated at the
particle centroidk,, such that 5

u'(xa,t) = 5 Ni(xa)da(t) aeA (25)
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whereNj are the shape functions associated with the continuumatispient field
u". Recall thatNy have compact support and thus are only evaluated for pesticith
centroids that lie within an element containing nam its domain. In DE, particle
dofs (translations and rotations) are tracked at the partientroids. For example, we
can write the prescribed displacement of ghost particées

qa(t) = u"(a,t) = 3 Ni(Xa)da(t) a €A (26)
acN
Likewise, particle rotation vectors can be representedhbyihite element interpolation
of the continuum micro-rotation fiel@" evaluated at the particle centroig. For all
ghost particles (Fifl3), the interpolations can be writien
Q=Ng, D+ Ngg-D 27)

WhereN@D and Néﬁ are shape function matrices containing individual nodalpgh
functionsN} and Ng. We assume the total kinetic and potential energy of the ledup
particle-continuum system may be written as the sum of tleegees

T(Q.D) = T9Q.Q(Q.D)+T°(D.D(Q)) 28)
U(Q,D) = U%Q,Q(Q,D))+U°D,D(Q)) (29)

where we have indicated the functional dependence of treepbed particle motion
and nodal dofs solely upon the free particle motion and ndd& @@ and D, respec-
tively.

Figure 4. 1D string of 11 elastic spheres overlapped pbril 4 1D micropolar continuum
FEs. Free particle dofs are indicated @y ghost particle dofs b@, prescribed FE nodal dofs
byﬁ, and free FE nodal dofs b§p. BPE is the pure particle domain (no overlapping FE mesh),
BN the overlapping FE domain where nodal dofs are completeﬂyqnibedi%h the overlapping
FE domain where particle motions and nodal dofs are prestidnd free nodal dofs exist, and
BN the pure continuum FE domain with no underlying particles.

NUMERICAL EXAMPLES

The one-dimensional overlapped coupled domain ir(Fig.4mpressed axi-
ally and sheared in the transverse direction as indicateddrfigure. The particles
are assumed to be isotropic elastic quaBz{2.9e10 Pay =0.25), and likewise for
corresponding parameters of the 1D micropolar continutwa édditional micropolar
elastic parameters are scaled to these parameters). ipglymesults of the coupling
response is shown in Hig.5. It can be seen that if the elatfficesses of the 1D mi-
cropolar continuum rod finite element mesh are not scalexlygbponse is too stiff,
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and the patrtitioning of energy via a volume fraction in therapped regiorfsh will
not lead to a smooth displacement field along the rod. Whdedcthe homogeneous
axial displacement along the bar can be achieved, howéeetransverse displacement
still demonstrates an artificial boundary effect for theserse displacement and force
when the stiffnesses are scaled. These are preliminarggesnd we are in the process
of rectifying the scaling for the transverse dof.

—&—particle centroids — scaled 0.045 . . :
0.94 | =<—finite element nodes - scaled ) —5— particle centroids — scaled
. —— particle centroids — not scaled g 0.04r —<—finite element nodes - scaled
£038r : - = - finite element nodes — not scaled || i’ — particle centroids — not scaled
c 2 = 0.035¢ -0 finite element nodes — not scaled]
~ 0.7 w
G & 0.03]
S 06 g "
o} j 0.025}
Qos g o
T @
o 0.02r
g 0.4 W
%)
E:l 0.3 ﬁ 0.015¢
< >
< 0.2 2 0.01f
<
0.1 1 Eo0.005f
0
. S N I . | | ‘
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Figure 5. (left) Axial displacement versus position alohg LD string of particles and FE
mesh. (right) Transverse displacement.

CONCLUSION

This short paper focussed on the formulation of the disgatgcle and microp-
olar FE balance equations simplified for linear elasticityl 4D Timoshenko beam
kinematics, and coupling methodology for concurrent rsalile computational ap-
proach for physics-based modeling of interfacial mechab&tween deformable solids
and granular materials (dry and dense). Numerical exangbleaed preliminary re-
sults of the coupling method for addressing artificial baamgdeffects at the transition
between DE and FE regions.

Ultimately, a fundamental understanding of granular ptg/$nteracting with
a solid body can lead to improved design of devices for gemsibil-machine tool,
soil-tire, soil-geosynthetic, and soil-penetrometeeiattion. The practicing geotech-
nical engineer should be aware that such advanced modelatigoats could reduce
uncertainty in the future when interpreting cone penettemeesults for estimating
shear strength in sand, or designing a new geosynthetidriforee a granular soil.
There is still a need to validate this multiscale modelingrapch against experiment
data that bridges the grain-scale to the ‘small’ continuaales which is ongoing work
as part of a research collaboration with Professor Khalishflli at Louisiana State
University through the NSF grant indicated in the Acknovgenhents.
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