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ABSTRACT: This paper presents a continuum finite element analysis of strain localization in slopes.
The stability problem is viewed from the standpoint of strong discontinuity (jump in displacement field)
as opposed to weak discontinuity (jump in strain field). For this type of problem, an enhanced finite
element solution has previously been shown to be independent of mesh refinement and insensitive to mesh
alignment. Numerical simulations of a load-driven slope stability problem in infinitesimal plane strain
will demonstrate these characteristics, which are necessary for a finite element solution to be meaningful.

1 INTRODUCTION

Analytical limit equilibrium methods are currently
used to analyze slope stability problems where cer-
tain simplifying assumptions are made with regard
to soil material properties, problem geometry, and
shape of slip surface. For complex slope geometries
and soil constitutive models, however, analytical
limit equilibrium solutions are unwieldy, and the
assumption that limit is reached at the load at
which a standard finite element (FE) solution fails
to converge is unsound. Thus, the need for a more
sophisticated numerical tool is in order.

For a FE analysis to be meaningful, it must be
objective with respect to mesh refinement and in-
sensitive with respect to mesh alignment (i.e. ele-
ment sides need not be aligned with the slip surface
for the numerical solution to proceed). Both of
these characteristics have previously been demon-
strated in the context of strong discontinuities
(Simo et al. 1993, Simo & Oliver 1994, Armero
& Garikipati 1995, Garikipati 1996). A numerical
example presented in this paper will demonstrate
these attractive qualities of the model.

From the perspective of the practicing geotech-
nical engineer, post-limit behavior of geotechnical
structures is considered useless because the soil has
already failed, which is assumed manifest in the
formation of a slip surface and in a softening be-
havior of the soil. In reality, however, the geotech-

nical structure could contain a slip surface and
still be in a pre-limit (pre-collapse) state. Thus,
from an analysis standpoint, post-localization be-
havior should be represented in the model, as long
as it is pre-limit. This paper will demonstrate
the use of the FE method with strain enhance-
ments to accurately capture slip surfaces in slopes
and to predict post-localization behavior, which,
it turns out, occurs before the standard FE solu-
tion fails to converge for a load-driven problem.
The critical height of slope predicted by the stan-
dard and enhanced FE analyses agrees with that
predicted by a simple analytical limit equilibrium
analysis. With respect to settlement under a sur-
charge load at the slope crest, the standard FE
solution is shown to be unconservative because it
predicts a smaller settlement than the enhanced
FE solution. In addition, results of the enhanced
FE solution motivate the use of the geometrically
nonlinear theory. As mentioned above, the useful-
ness of the FE approximation can be fully realized
when conducting numerical slope stability analy-
ses of complex slope geometries and soil constitu-
tive models for which analytical limit equilibrium
solutions are unmanageable.

The FE strain enhancements arise naturally
from a treatment of classical continuum plastic-
ity with strong discontinuity. It is noteworthy to
recognize that the assumption of a discontinuous
displacement field leading to a singular strain field



is valid for soils because as a shear band forms
between two rigid soil masses sliding along one an-
other, the thickness of the band is negligible (the
band reduces to a surface), and the strain across
the band approaches infinity (see pictures in Var-
doulakis et al. 1978). Important results of the for-
mulation with strong discontinuity are the distri-
butional form of the hardening/softening modulus
H , the model-specific stress-displacement relation
along the slip surface, and the model-specific local-
ization condition (by “model-specific” it is meant
results specific to the classical continuum plastic-
ity model formulated in the context of strong dis-
continuities). Here, a J2 flow plasticity model is
formulated in the context of strong discontinuities.

2 J2 PLASTICITY WITH STRONG DISCON-
TINUITY

The following theory is essentially a re-working of
that developed by the late Professor Juan C. Simo
and his co-workers (Simo et al. 1993, Simo &
Oliver 1994, Armero & Garikipati 1995, Garikipati
1996). Also, to keep redundancy to a minimum,
reference will be made to the development already
given in Borja & Regueiro (1997).

2.1 Review of classical J2 plasticity

Before showing the results of the formulation of
J2 plasticity with strong discontinuities, it is ap-
propriate to review the classical theory. The yield
function F may be written as

F(σ) := J2
2D − κ2 = 0 (1)

where J2D =
√

1

2
σ′ : σ′ is the second invariant of

the deviatoric Cauchy stress tensor σ′, and κ is a
value constant in stress space used to express the
radius R =

√
2κ = ‖σ′‖ of the cylindrical yield

surface formed in stress space. An associative flow
rule is assumed as

ε̇p = λn̂ (2)

where λ is the plastic consistency parameter and
n̂ = σ′/‖σ′‖ is the unit normal to the yield surface
in stress space. The implication of the assumed as-
sociative form of the flow rule (i.e. the direction
of the plastic flow normal to the yield surface in
stress space) is that in order for there to be loss of
strong ellipticity of the acoustic tensor, the harden-
ing/softening modulus must be less than or equal

to zero (i.e. perfect of softening plasticity); other-
wise, for a nonassociative flow rule, this condition
is not necessary (Ortiz et al. 1987).

2.2 Model-specific stress-displacement relation

along discontinuity, and localization condition

From the form of the singular part of the plastic
consistency parameter, λδ, resulting from required
regularity (i.e. non-distributional or not singular)
of the yield function (Borja & Regueiro 1997), the
stress-displacement relation may be written as

ζ(t) = ψ−1σ′ : ce : symm(∇ ˙̄u) ;

ψ =
2
√

2

3
κHδ

[

σ′ : ce : symm(m ⊗ n)

σ′ : ce : n̂

]

(3)

where ζ(t) is the magnitude of the jump displace-
ment rate across the discontinuity as a function
of time t; ce is the fourth-order elastic modulus
tensor; ū is the regular part of the displacement
vector u(x, t); Hδ is the singular part of the hard-
ening/softening modulus; m is the unit vector de-
noting the direction of the jump displacement; and
n is the unit normal to the discontinuity surface.
This expression (3) may be further simplified using
results from the localization condition.

From a basic consideration of Newton’s third
law of motion, we see that the traction across the
discontinuity must be continuous (Malvern 1969);
also see the discussion by Simo & Oliver (1994)
for traction continuity demonstrated in the con-
text of the weak form (variational equation of equi-
librium). The model-specific localization condi-
tion arises from the satisfaction of this condition
that the traction rate be regular on the discontinu-
ity (Armero & Garikipati 1995, Borja & Regueiro
1997). For the case of plane strain this condition
may be written as

‖σ′‖√
2|r|

= 1 ; θ = ±45◦ (4)

where r = 1

2
(σ1 − σ2) = n · σ · m is the resolved

stress along the discontinuity; σ1 and σ2 are the
major and minor principal stresses (σ written in
principal stress space); and θ is the angle to the
discontinuity normal n from the major principal
stress axis. Note that there are two possible di-
rections of n (θ = ±45◦), a result accounted for
in the numerical implementation by choosing the
one which aligns the slip surface with the element
deformation.



Now, with the results of the localization condi-
tion, the model-specific stress-displacement rela-
tion (3) representing the softening along the dis-
continuity surface may be rewritten as

r(t) = r(0) +
1

3
Hδ α(t) ; Hδ ≤ 0 (5)

where r(0) is the resolved stress on the discontinu-
ity at the inception of localization (i.e. satisfaction
of (4)), and α(t) is the magnitude of the jump dis-
placement (α̇(t) = ζ(t), where ζ(t) is defined in
(3)).

3 NUMERICAL IMPLEMENTATION

The finite element formulation begins with a treat-
ment of the standard weak form with strong dis-
continuities in the context of the assumed en-
hanced strain method (Simo & Rifai 1990). The
discretized form is as follows (Simo & Oliver 1994)

∫

Ω
∇η̄h : σhdΩ =

∫

Ω
η̄h · f dΩ +

∫

Γt

η̄h · t dΓ
∫

Ωe,loc

γ̃h
e : σhdΩ = 0 (6)

where η̄h ∈ Vh is the regular part of the discretized
displacement variation in the space of admissible
discretized test functions Vh; f and t are the pre-
scribed body and traction forces, respectively; and
γ̃h

e ∈ Ẽh is the enhanced strain variation in the
space of admissible strain variations Ẽh over the lo-
calized element e with a form chosen to satisfy the
patch test (Simo & Rifai 1990). The superscript
h denotes finite element discretization. From (6),
with the choice of appropriate standard and en-
hanced shape functions (Borja & Regueiro 1997),
the following discretized governing finite element
equations result

R := f ext − AA
nel

e=1

∫

Ωe

BT
e σhdΩ = 0

be := −
∫

Ωe

GT
patch : σhdΩ +

∫

Se

rS dS = 0 (7)

where f ext is the standard external force vec-
tor, AA

nel

e=1 is the finite element assembly opera-
tor, Be is the standard strain-displacement ma-
trix for element e, Gpatch is the coupling matrix
chosen to ensure satisfaction of the patch test,
rS = (

∫

Ωe
n ·σh ·mdΩ)/Ae is the average resolved

stress on the discontinuity, and R and be are the
corresponding residuals. Note that the governing
equation of resolved stress on the discontinuity (7)2

is discontinuous from element to element, which is
consistent with the standard C0 finite element ap-
proximation (i.e. the displacements at most must
be continuous across element boundaries leading
to discontinuous strains). This characteristic of
the enhanced strain method is an attractive fea-
ture of the model from a numerical implementation
standpoint: static condensation of the jump dis-
placement for element e, αe, may occur at the ele-
ment level. Equation (7) is consistently linearized
to make the equations amenable to solution by the
Newton-Raphson method.

4 NUMERICAL EXAMPLE: LOAD-DRIVEN
SLOPE STABILITY PROBLEM

To demonstrate the model, a simple load-driven
slope stability analysis in infinitesimal plane strain
will be performed with the enhanced finite element
method discussed in Section 3 and the J2 plastic-
ity model with strong discontinuities discussed in
Section 2. With such a constitutive model (i.e.
deviatoric plastic flow) it is appropriate to model
an overconsolidated (significant elastic region) co-
hesive soil in undrained condition (friction angle
φ = 0, zero volumetric plastic flow). Material
properties are: modulus of elasticity E = 103 kPa,
Poisson’s ratio ν = 0.4, uniaxial yield strength
σ̄o = 40 kPa, standard hardening/softening mod-
ulus H̄ = 0, hardening/softening modulus along
slip surface, Hδ = 0, and saturated unit weight
of soil γ = 20 kN/m3. The assumed value of the
yield strength σ̄o may be interpreted as the failure
strength of a cohesive soil with undrained shear
strength cu = σ̄o/2 = 20 kPa. For a slope at an
angle of 63.43◦ with cu and γ as given, an ana-
lytical limit equilibrium analysis (Atkinson 1993)
predicts a critical height of Hcr ≈ 5 m. Thus, it
may be assumed that such a slope with height of
5 m is nearly unstable.

Consider the coarse and fine mesh discretiza-
tions of a 5 m high slope at angle 63.43◦ shown
in Figures 1 and 2. The coarse mesh depicted in
Figure 1 is composed of 151 nodes and 125 bilinear
quadrilateral elements, and the fine mesh consists
of 551 nodes and 500 elements. Each mesh is 20 m
wide by 10 m high with the crest of the slope at
the horizontal center of each mesh. Roller sup-
ports are assumed on the two vertical boundaries
of each mesh, while the bottom boundary is as-
sumed to be pinned to represent a firm base. The
elements were numerically integrated with the B̄-



method (2×2 deviatoric, 1-point volumetric) to al-
leviate mesh locking in the incompressible plastic
regime. Points A and B shown in Figure 1 are used
on each mesh to calculate the angle of rotation of
the slope as it deforms under the surcharge q.
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Figure 1. Coarse mesh showing surcharge load and
points A and B used to calculate angle of rotation.

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

Figure 2. Fine mesh showing surcharge load and
points A and B used to calculate angle of rotation
(labels left off here).

After application of the gravity load, a surcharge
of q = 14 kPa at the crest of the slope acting over
4 m is applied to perturb the problem; the small
value of q was chosen because at 15 kPa the stan-
dard FE solution failed to converge (a uniformly
distributed load of this magnitude is equivalent to
a 70 cm - thick layer of soil). Along with the re-
sult that elements at the slope base begin to lo-
calize at the start of surcharge loading, this non-
convergence of the standard FE problem at a small
surcharge confirms the critical height of 5 m pre-
dicted by the analytical limit equilibrium analysis.
In addition, when attempting to excavate the first
soil layer 1 m deep to the left of the continuous
slope line extending through the mesh from the
slope crest to the base, both the standard and en-
hanced FE solutions failed to converge.

Figures 3 and 4 show the deformed coarse mesh
at end of surcharge loading for the standard and

enhanced FE solutions, respectively, while Figures
5 and 6 show the same for the fine mesh (magni-
fication factor for displacements = 1.0). The slip
surfaces in Figures 4 and 6 are nearly toe circles,
which is the shape assumed by the analytical limit
equilibrium analysis, and have essentially the same
shape for both the coarse and fine meshes, which
demonstrates objectivity of the model with respect
to mesh refinement. The other characteristic of
the finite element model with strain enhancement
needed for a numerical analysis to be meaningful—
namely, insenstivity to mesh alignment—is easily
observed as the slip surface traces across elements
not in line with the elements’ sides. Note that the
elements that have been traced by the slip surface
in Figures 4 and 6 have localized according to (4)
and thus contain strain enhancement via the en-
hanced shape functions (Borja & Regueiro 1997)
and softening due to plastic flow localized to the
discontinuity (see (5) with Hδ = 0). The elements
not traced by the slip surface behave according
to the standard FE formulation and standard J2
plasticity model.

Figure 3. Standard FE solution: coarse mesh at end
of surcharge loading.

Figure 4. Enhanced FE solution: coarse mesh at end
of surcharge loading showing slip surface.

To further prove objectivity of the model be-
sides demonstrating similar slip surfaces, a plot
of applied surcharge load versus resulting average
downward displacement of the top surface of the



Figure 5. Standard FE solution: fine mesh at end of
surcharge loading.

Figure 6. Enhanced FE solution: fine mesh at end of
surcharge loading showing slip surface.

slope is shown in Figure 7 (Figure 8 is the same
plot with abscissa range reduced); and a plot of
applied surcharge load versus resulting angle of ro-
tation of point B relative to point A (see Figure
1) is shown in Figure 9 (Figure 10 is the same plot
with abscissa range reduced). Note that the dis-
placements and rotations due to the enhanced FE
solution for each mesh are in excess of those due
to the standard FE solution by approximately the
same amount for each load step, demonstrating
objectivity with respect to mesh refinement. An
already well-known result of the standard FE ap-
proximation, the fine mesh shows a softer response
than the coarse mesh. As the load steps progress,
the enhanced FE solution for both the coarse and
fine meshes shows displacements and rotations in-
creasing over those of the standard FE solution,
but especially for the fine mesh during the last
load step. Such large displacement and rotation at
56 kN/m for the fine mesh shown in Figure 6 moti-
vates the geometrically nonlinear theory (Armero
& Garikipati 1996b).

Since this is a load-driven problem, as the load
approaches an apparent limit close to 60 kN/m,
the FE solutions will eventually not be able to con-
verge, needing a numerical solution method such as
an arc-length method to advance the solution. A
displacement-driven problem is easier to perform

numerically for this reason, but for problems of in-
terest to the geotechnical engineer, the load-driven
problem is more appropriate. On this note, this
analysis differs from the one conducted by Armero
& Garikipati (1996a).
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Figure 7. Variation of average downward displace-
ment of top surface due to applied surcharge load.
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Figure 8. Variation of average downward displace-
ment of top surface due to applied surcharge load (re-
duced abscissa range).

5 SUMMARY

This paper has demonstrated the usefulness of an
enhanced FE method which meets two essential
criteria in order for a finite element analysis to
be meaningful: objectivity with respect to mesh
refinement and insensitivity to mesh alignment.
The enhanced FE method has been used to an-
alyze a simple load-driven slope stability problem
in order to make a comparison with an analytical
limit equilibrium method. The usefulness of the
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Figure 9. Variation of angle of rotation of point B

relative to point A (see Figure 1) due to applied sur-
charge load.
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Figure 10. Variation of angle of rotation of point
B relative to point A (see Figure 1) due to applied
surcharge load (reduced abscissa range).

model to the practicing geotechnical engineer can
be fully utilized when performing numerical slope
stability analyses of complex slope geometries in-
volving more complicated soil constitutive models.
Work is now in progress to test the model with
more appropriate soil constitutive models such as
Drucker-Prager and Modified Cam-Clay.
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