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Abstract A method for concurrent multiscale computational modelingof interfacial
mechanics between granular materials and deformable solidbodies is presented. It
involves two main features: (1) coupling discrete element and higher order contin-
uum finite element regions via an overlapping region; and (2)implementation of
a finite strain micromorphic pressure sensitive plasticitymodel as the higher order
continuum model in the overlap region. The third main feature, adaptivity, is not
currently addressed, but is considered for future work. Single phase (solid grains)
and dense conditions are limitations of the current modeling. Extensions to multiple
phases (solid grains, pore liquid and gas) are part of futurework. Applications in-
clude fundamental grain-scale modeling of interfacial mechanics between granular
soil and tire, tool, or penetrometer, while properly representing far field boundary
conditions for quasi-static and dynamic simulation.

1 Introduction

Granular materials are commonly found in nature and industrial processes, and
are composites of three phases: solids, liquids, and gases.We limit the modeling
currently to single phase (solid grains) and dense materials (average coordination
number≈ 5). Examples include metallic powders (for powder metallurgy), phar-
maceutical pills, agricultural grains (in silo flows), dry soils (sand, silt, gravel), and
lunar and martian regolith (soil found on the surface of the Moon and Mars), for in-
stance. We are interested primarily in modeling the grain tomacro-continuum scale
response in the large shear deformation interface region between a granular mate-
rial and deformable solid body. Such interface can be between a granular soil (e.g.,
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sand, Fig.1(a)) and a tire(Fig.2(a)), tool (e.g., bucket, Fig.2(b)), or cone penetrome-
ter (Fig.1(b)).

(a) image courtesy of Khalid Alshibli,
Louisiana State University

(b) [1]

Fig. 1 (a) Sand grains at 150×. (b) Cone penetrometers.

Granular materials remain an unmastered class of materialswith regard to mod-
eling their spectrum of mechanical behavior in a physically-based manner across
several orders of magnitude in length-scale. They may transition in an instant from
deforming like a solid to flowing like a fluid or gas and vice versa. Examples of such
physical transition are the flow of quartz grains around and at the tip of a driven cone
penetrometer penetrating sand, the shoveling of sandor gravelby a tractor bucket,
and the flow of agricultural grains from the bulk top region through the bottom chute
in a silo, for instance. These examples each involve material regions where relative
neighbor particle motion is ‘large’ (flowing like a fluid or gas) and regions where
relative neighbor particle motion is ‘small’ (deforming like a solid).

It is too computationally intensive to account for the grain-scale properties and
intergranular constitutive behavior within a physics-based simulation (e.g., discrete
element (DE) model) to understand fundamentally the mechanics in a large shear de-
formation interface region between deformable solid bodies and granular materials.
Grain-scale properties include grain size, shape, sphericity, morphology, stiffness,
strength, and surface friction, while intergranular constitutive behavior accounts for
contact behavior and grain fracture/crushing, for instance. High fidelity particle DE
computations that account for these features are expensive, requiring their applica-
tion be restricted to regions of large shearing at the interface between granular media
and a solid body. Boundary effects on the outer simulation boundaries of an assem-
bly of particles interacting with the solid body will renderthe computational re-
sults questionable, because fictitious forces and wave reflections will occur at these
outer boundaries of the box of particles, thus influencing ina numerically-artificial
manner the actual interface-region mechanics (see section1.1). To resolve the issue
properly, it is necessary to introduce multiscale methods that correctly combine (1)
efficient finite element (FE) and/or meshfree based continuum methods used in re-
gions where phenomenological constitutive relationshipsare accurate, with (2) DE
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(a) Mars exploration rover: tire interaction with
Martian soil (photo source NASA)

(b) loader bucket scooping gravel
(www.dymaxinc.com)

Fig. 2 (a) Soil-tire, and (b) soil-tool interface problems.

models used in regions where granular physics must be represented accurately (e.g.,
in the granular soil-tool, soil-tire, or soil-track interface region). The use of multi-
scale methods offers immediate payoff because the fewer discrete particles needed
to simulate the interaction, the faster physics-based simulations can be conducted.
As a result, more “what-if” scenarios can be simulated and more uncertainties in
grain-scale material parameters can be investigated by simulation, providing “er-
ror bars” on the physics-based simulation results. To make the multiscale approach
feasible for granular media, an open research question mustbe addressed: how to
maintain a fundamental granular physics representation inthe large shear deforma-
tion interface region as the solid body shears through the granular material. At the
heart of the question is how to achieve adaptability and coupling of the computa-
tional scheme to convert from continuum to particle representation around the solid
body, as it shears through the granular material, and perform particle to continuum
conversion in spatial regions where particles are less sheared or have stopped flow-
ing, and thus a continuum representation is appropriate.

Therefore, the focus of the current research is to bridge grain-scale properties
and mechanics to the macro-scale continuum behavior in a large shear deformation
interface region between a deformable solid body (e.g., metal scoop, rubber tire, or
metal track) and adensecohesionless granular material (e.g., dry sand or gravel).A
multiscale approach is presented to provide fundamental physics-based simulation
consisting of (i) FE or rigid body mechanics for the solid body (scoop/tire/track)
and DE for the granular material in the large shear deformation interface region (cf.
Fig.3), and (ii) FE-DE for the representation of the granular material in the tran-
sition/coupling region. The transition (overlap region inthe Fig.3) provides proper
boundary conditions (BCs) on the physics-based computational discretization (i.e.,
proper BCs on the DE simulation region).

Ultimately, a fundamental understanding of granular physics interacting with a
solid body can lead to improved design of devices for granular soil-machine tool
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Fig. 3 Illustration of adaptivity and coupling. In (a), a deformable or rigid solid body approaches
the granular material, and in (b) it begins to shear/penetrate the granular material in the DE particle
region. In (c), the solid body has sheared the particle region enough that the FE mesh is re-meshed
adaptively and the particle region is extended. Adaptivityis addressed in future work.

and soil-tire interaction, andthe interpretation of granular soil-penetrometer shear
resistance interaction.

1.1 Motivation: artificial boundary effects

A penetration test is simulated quasi-statically to demonstrate artificial boundary
effects on a DE simulation. Thepenetratoris modeled using a larger ellipsoidal
particle, and the boundaries are composed of fixed sphericalparticles, shown in
Fig.4. Three different-sized containers are used, number of equal-sizedparticles
being 2760, 4260 and 6088, respectively,with ellipsoidal particle radii 2.5×2.0×
1.5mm. Parameters for the DE simulation are shown in Table 1.

Table 1 Parameters of particles and numerical computation.

Young’s modulusE (Pa) 2.9×1010

Poisson’s ratioν 0.25
specific gravityGs 2.65
interparticle coef. of frictionµ 0.5
interparticle contact damping ratioξ 5%
particle radii (m) 0.0015∼ 0.0025
background damping ratio dynamic relaxation
time step△t (sec) 5.0×10−6

The vertical force-displacement curves are plotted in Fig.4(c) for thepenetratorpar-
ticle. It can be found that thepenetratorforce increases as penetration increases. For
a smaller container, the force has a larger value because of the boundary effect, as
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(a) 3D view (b) 2D view (c) force-displacement curves

Fig. 4 Cross-sectional view of penetration, and force-displacement curves.

expected. The question then becomes how to make the shearingDE domain around
a deformable solid body as small as possible without introducing artificial boundary
effects. This is the overall goal of the research.

An outline of the remainder of the chapter is as follows: section 2 provides a
literature review; 3 a summary of balance equations for a particle and micropolar
continuum representation of a granular material and their coupling [2]; 4 a method
for coupling DE to FE facets [3] and numerical example; 5 a summary; and 6 men-
tion of ongoing and future work.

2 Literature Review

The literature reviewbriefly covers work done on micromechanical modeling for
granular materials, and computational methods for coupling particle and continuum
representations of granular materials.

2.1 Micromechanical continuum models for dense dry granular
materials

Apparently Reynolds [4] was the first to study granular materials at the grain
scale, and coined the term “dilatancy” in the process. Others followed [5, 6] with
attempts to relate continuum concepts like stress and strain to grain-scale be-
havior. Conferences were held to focus on micromechanical modeling of granu-
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lar materials (this is not a complete list) [7, 8, 9, 10, 11]. The development of
continuum relations like stress-strain equations based onmicromechanical mod-
els of granular materials has spanned nearly five decades andcontinues today
[12, 13, 14, 15, 16, 17, 18, 19, 20]. These micromechanically-based models at-
tempt to bridge the grain to continuum scale mechanics of granular materials within
the framework of continuum mechanics and constitutive theory. Furthermore, it has
been proposed for granular materials composed of cohesionless, stiff particles (like
spherical glass beads) to enhance the continuum to account for particles displace-
ments and rotations (and couple stresses), in essence developing gradient and mi-
cropolar continuum models of granular material based on grain-scale mechanics
[21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. Many of these approaches consider
only elastic deformation of particle assemblies (no breaking of existing particle
contacts and slippage at contacts), small strain kinematics, spherical particles, and
rotational degrees of freedom (i.e., micropolar; except [24, 26, 28] who included
higher-gradient terms).

The micropolar theories applied to stiff, cohesionless particulate materials have
gained popularity based on the microstructural observation that in addition to par-
ticle translation and sliding, the particles may rotate androll. It is not sufficient
to limit the kinematics of the ‘microstructural view’ (representative volume) of a
single particle or cluster of particles to rigid rotation. Arepresentative microscopic
volume of granular material—whether the particles are nearly rigid or deformable—
will exhibit not only micro-rotation but also micro-shear and micro-stretch (micro-
dilatation and micro-compaction). Such additional degrees of freedom within the
mathematical framework for micromorphic continuum theories [32] give more re-
alistic bridging kinematics between deformable and rigid particle mechanics and its
continuum representation than a micropolar theory would provide.

2.2 Computational particle/continuum coupling

As continuum micromechanical models were being developed,many recognized
the role computers could play in simulating the discrete grain-scale response of
granular materials. Such an approach has been called a Distinct Element Method or
Discrete Element Method (DEM) [33, 34, 35, 36, 37, 38, 39, 40](not a complete
list). Certain DEM approaches model directly the physical grain size of the material,
while others approximate the continuum as an assembly of particles approximating
the continuum response discretely, wherein the particles have arbitrary size and thus
provide an arbitrary internal length scale. Few approacheshave coupled DEM and
FEM for modeling deformation and flow of dense dry granular materials accounting
for the physical particle size, i.e. truly micromechanically coupled models [41, 42,
43, 44]. These methods approach the coupling issue, however, as a contact/interface
problem between discrete particles and finite element facets and not as overlapping
regions of the same material, which an approach coupling particle and continuum
representations of the same material should do. Examples ofsuch approaches have
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been demonstrated for coupled atomistic-continuum regions [45, 46, 47]. Section
3.3 shows the extension of the approach by Klein and Zimmerman [47] to coupled
overlapping particle and continuum regions, wherein significant differences have
mainly to do with the DE representation of particles (with rotation and frictional
sliding, as opposed to molecular dynamics for atoms) and inelastic micromorphic
constitutive model for the continuum (and its associated FEimplementation). The
approach by Xiao and Belytschko [46] is also being considered, which could be
somewhat simpler to implement.

Unit cell methods like that by Feyel and Chaboche [48] provide a method to
up-scale underlying micromechanical simulations (such asDE) to a macro-scale
simulation (such as FE). Belytschko et al. [49] extended themethod to modeling
fracture. They recognized the complexities and limitations of unit cell methods as
they are currently formulated, implemented, and applied. Feyel [50] stated that, in
addition to the periodicity assumption for the micro-structure (impossible to model
localized deformation),the mechanical response near boundaries was not modeled
properly.As a result, these methods are not well suited for modeling the interfacial
mechanics of soil-tire, tool, or penetrometer interface conditions. The overlaying
FE mesh would quickly become too distorted and require continuous remeshing,
aside from the fact that the grain-scale DE mechanics would be influenced by the
overlaying continuum mechanical response (through their coupling). The methods
are useful, however, in up-scaling fracture or shear banding in a material, but not for
interfacial mechanics, as far as we can tell.

3 Particle and continuum representations and their coupling

The balance of linear and angular momentum equations are presented for particle
and continuum representations of a dense dry granular material. A strategy for cou-
pling these equations within an overlap region (Fig.6) is summarized in section 3.3.

3.1 Particle mechanics and Discrete Element Method

The balance of linear and angular momentum for a system ofstiff elasticparticles
in contact may be written as [33]
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MMMQQ̈QQ+CCCQQ̇QQ+FFF INT,Q(QQQ) = FFFEXT,Q (1)

MMMQ =
N

A
δ=1

mmmQ
δ ; mmmQ

δ =

[
mmmδ 000
000 IIIδ

]

FFF INT,Q =
N

A
δ=1

fff INT,Q
δ ; fff INT,Q

δ =
nc

∑
ε=1

[
fff ε,δ

rrrε,δ × fff ε,δ

]

FFFEXT,Q =
N

A
δ=1

fff EXT,Q
δ ; fff EXT,Q

δ =

[
fff EXT,δ

ℓℓℓEXT,δ

]

whereMMMQ is the mass and rotary inertia matrix for a system ofN particles,mmmQ
δ is the

mass and rotary inertia matrix for particleδ , mmmδ is the mass matrix for particleδ ,
IIIδ is the rotary inertia matrix for particleδ ,A

N
δ=1 is an assembly operator to obtain

the system matrices from the individual particle matrices and contact vectors,CCCQ =
aMMMQ the mass and rotary inertia proportional damping matrix with proportionality
constanta (used in a dynamic relaxation solution method for quasi-static problems,
but otherwise set to zero),FFF INT,Q the internal force and moment vector associated
with nc particle contacts which is a nonlinear function of particledisplacements and
rotations when particles slide with friction,fff INT,Q

δ the resultant internal force and

moment vector for particleδ , fff ε,δ the internal force vector for particleδ at contact
ε, rrrε,δ × fff ε,δ the internal moment vector at the centroid of particleδ due to force at
contactε with moment armrrrε,δ , FFFEXT,Q the assembled external force and moment
vector, fff EXT,Q

δ the external body force and moment vector for particleδ , fff EXT,δ the

external body force vector at the centroid of particleδ , andℓℓℓEXT,δ the external body
moment vector at the centroid of particleδ . QQQ is the generalized degree of freedom
(dof) vector for particle displacements and rotations

QQQ = [qqqδ ,qqqε , . . . ,qqqη ,θθθ δ ,θθθ ε , . . . ,θθθη ]
T , δ ,ε, . . . ,η ∈ A (2)

whereqqqδ is the displacement vector of particleδ , θθθδ its rotation vector, andA is
the set of free particles. In general, a superscriptQ denotes a variable associated
with particle motion, whereas a superscriptD will denote a variable associated with
continuum deformation. Further details of assembling the matrices and vectors in
(1) from the individual particle and particle contact contributions are not given here,
as they are well established in the literature.

With regard to putting the particle mechanics and DE implementation into a form
amenable to energy partitioning in the coupled particle-continuum overlap region,
we consider an energy formulation of the balance equations using Lagrange’s equa-
tion of motion. It may be stated as

d
dt

(
∂T Q

∂ Q̇QQ

)
−

∂T Q

∂QQQ
+

∂FQ

∂ Q̇QQ
+

∂UQ

∂QQQ
= FFFEXT,Q (3)

whereT Q is the kinetic energy,FQ the dissipation function, andUQ the potential
energy, such that
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Fig. 5 Material pointsP(XXX ,ΞΞΞ) and p(xxx,ξξξ , t) in reference and current configurationsB0 andB,
respectively, centroids of macro-elementC and c and micro-elementC′ and c′, relative micro-
element position vectorsΞΞΞ and ξξξ , differential macro-element volumesdV and dv and micro-
element volumesdV ′ anddv′. Because of linear kinematics assumption,B0 ≈ B, etc.

T Q =
1
2

Q̇QQMMMQQ̇QQ , FQ = aT Q , UQ(QQQ) =

∫ QQQ

000
FFF INT,Q(SSS)dSSS (4)

The dissipation functionFQ is written as a linear function of the kinetic energyT Q,
which falls within the class of damping called Rayleigh damping (pg. 130 [51]).
Carrying out the derivation in (3), and using the Second Fundamental Theorem of
Calculus for∂UQ/∂QQQ, leads to (1).

3.2 Micropolar continuum and Finite Element Method

Following the formulation of Eringen [52], we present the balance of linear and an-
gular momentum equations and finite element formulation fora small strain microp-
olar continuum (i.e., stiff particles with small frictional sliding in overlap region).
For clarity of presentation, index tensor notation is used,and Cartesian coordinates
are assumed.
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The kinematics are reviewed in Fig.5. A micro-element differential volumedv′

(anddV ′ in reference configuration1) is located by a relative position vectorξk from
the centroidc of the macro-element material point with positionxk in the current
configuration (and relative position vectorΞK from the centroidC of the macro-
element material point with positionXK in the reference configuration). A micro-
deformation tensorχkK relates the reference to current relative position vectorsas
ξk = χkK(XXX , t)ΞK (summation of repeated indicesimplied). For small strain microp-
olar kinematics, the micro-deformation tensor takes the form

χkK = δkK + εkMKΦM (5)

whereδkK is the Kronecker delta,εkMK is the permutation tensor, andΦM is the
micro-rotation vector in the reference configuration. Thenthe micro-element rela-
tive position vector becomes

ξk = δkKΞK + εkMKΦMΞK (6)

Because of linear kinematics, the reference and current configuration micro-rotation
vectors are approximately equalϕϕϕ ≈ ΦΦΦ, whereϕk is the micro-rotation vector in
the current configuration. Equation (6) states that a micro-element relative position
vectorξξξ at the deformed macro-element centroid denoted byxxx (cf. Fig.5), involves
a parallel translation ofΞΞΞ and rotation throughΦΦΦ×ΞΞΞ (where× is the vector cross
product). Refer to Eringen [52] for more details.

The balance equations for linear and angular momentum may bewritten as

σlk,l +ρbk −ρ v̇k = 0 (7)

mlk,l + εkmnσmn +ρℓk −ρβ̇k = 0 (8)

whereσlk is the unsymmetric Cauchy stress tensor over bodyB, ρ is the mass
density,bk is a body force per unit mass,vk is the spatial velocity vector,mlk is the
unsymmetric couple stress,εkmn is the permutation operator,ℓk is the body couple
per unit mass,βk is the intrinsic spin per unit mass, indicesk, l, · · · = 1,2,3, and
(•),l = ∂ (•)/∂xl denotes partial differentiation with respect to the spatial coordinate
xl . The micro-gyration vectorνl for linear kinematics is written as

νl = ϕ̇l , ν̇l = ϕ̈l (9)

Introducingwk andηk as weighting functions for the macro-displacement vector
uk and micro-rotation vectorϕk, respectively, we apply the Method of Weighted
Residuals to formulate the partial differential equationsin (7) and (8) into weak
form [53]. The weak, or variational, equations then result as

1 Because of the assumption of linear kinematics, small rotations and strains, the reference and
current configurations are nearly the same.
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∫

B

ρwkv̇kdv+
∫

B

wk,lσlkdv =
∫

B

ρwkbkdv+
∫

Γt

wktkda (10)
∫

B

ρηkβ̇kdv+
∫

B

ηk,lmlkdv−
∫

B

ηkεkmnσmndv =
∫

B

ρηkℓkdv+
∫

Γr

ηkrkda

(11)

whereB is the volume of the continuum body,tk = σlknl is the applied traction on
the portion of the boundaryΓt with outward normal vectornl , andrk = mlknl is the
applied surface couple on the portion of the boundaryΓr.

The weak equations (10) and (11) may be approximated in Galerkin form [53],
whereby the discretization parameterh implies a discrete approximation, in this
case finite element discretization. Introducing shape functions Nu

a andNϕ
b for the

macro-displacementuh
k and micro-rotationϕh

k vectors, respectively, and assuming
the micro-inertia is approximately constant for small strains and rotations (microin-
ertia jlk is nearly constant, anḋβ h

k ≈ jlkϕ̈h
l ), we may write the interpolations and

derivatives as

uh
k =

nu
en

∑
a=1

Nu
a dk(a) , v̇h

k =
nu

en

∑
a=1

Nu
a d̈k(a) (12)

wh
k =

nu
en

∑
a=1

Nu
a ck(a) , wh

k,l =
nu

en

∑
a=1

(Nu
a ),lck(a) (13)

ϕh
l =

nϕ
en

∑
b=1

Nϕ
b φl(b) , ϕ̈h

l =
nϕ

en

∑
b=1

Nϕ
b φ̈l(b) (14)

ηh
k =

nϕ
en

∑
b=1

Nϕ
b ek(b) , ηh

k,l =
nϕ

en

∑
b=1

(Nϕ
b ),lek(b) (15)

wheredk(a) is the displacement vector at nodea, φl(b) is the rotation vector at node
b, ck(a) is the displacement weighting function vector at nodea, ek(b) is the rotation
weighting function vector at nodeb, nu

en is the number of element nodes associated
with interpolating the continuum macro-displacement vector, andnϕ

en is the number
of element nodes associated with interpolating the continuum micro-rotation vector.
It is assumed that the shape functions and integrals are expressed in natural coor-
dinates for an isoparametric formulation, but such detailsare omitted and can be
found in the textbook by Hughes [53]. Substituting these approximations into the
Galerkin form, accounting for essential boundary conditions, and recognizing that
the nodal weighting function values are arbitrary (except where essential boundary
conditions are applied, and nodal weighting function values are zero), we arrive at a
coupled matrix form of the linear and angular momentum balance equations as

MMMud̈dd+FFF INT,u(ddd,φφφ) = FFFb +FFF t (16)

MMMϕ φ̈φφ +FFF INT,ϕ (ddd,φφφ) = FFFℓ+FFF r (17)
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where matrices and vectors are assembled from their elementcontributions using a
finite element assembly operator [53] as

MMMu =
nel

A
e=1

mmme,u , mmme,u =

∫

Be
ρ(NNNe,u)T NNNe,udv (18)

MMMϕ =
nel

A
e=1

mmme,ϕ , mmme,ϕ =

∫

Be
ρ(NNNe,ϕ )T jjjNNNe,ϕ dv (19)

FFF INT,u(ddd,φφφ) =
nel

A
e=1

fff e,INT,u , fff e,INT,u =

∫

Be
(BBBe,u)T σσσ(ddde,φφφ e)dv (20)

FFF INT,ϕ (ddd,φφφ ) =
nel

A
e=1

fff e,INT,ϕ (21)

fff e,INT,ϕ =

∫

Be
(BBBe,ϕ )T mmm(ddde,φφφ e)dv−

∫

Be
(NNNe,ϕ )T σσσ ε(ddde,φφφ e)dv

FFFb =
nel

A
e=1

fff e,EXT,u
b , fff e,EXT,u

b =

∫

Be
ρ(NNNe,u)T bbbdv (22)

FFFℓ =
nel

A
e=1

fff e,EXT,ϕ
ℓ , fff e,EXT,ϕ

ℓ =
∫

Be
ρ(NNNe,ϕ )T ℓℓℓdv (23)

FFF t =
nel

A
e=1

∫

Γ e
t

(NNNe,u)T tttda , FFFr =
nel

A
e=1

∫

Γ e
r

(NNNe,ϕ )T rrrda (24)

whereA
nel
e=1 is the element assembly operator,nel is the number of elements,NNNu

e ,
NNNϕ

e , jjj, BBBu
e , σσσ , ddde, φφφ e, BBBϕ

e , mmm, σσσ ε , bbb, ℓℓℓ, ttt, andrrr are the element matrix and vector
forms ofNu

a , Nϕ
b , jlk, (Nu

a ),l , σlk, dk(a), φl(b), (N
ϕ
b ),l , mlk, εkmnσmn, bk, ℓk, tk, andrk,

respectively.
Introducing a generalized nodal degree of freedom vectorDDD, the coupled microp-

olar linear and angular momentum balance equations are written as

MMMDD̈DD+FFF INT,D(DDD) = FFFEXT,D (25)

MMMD =

[
MMMu 000
000 MMMϕ

]
DDD =

[
ddd
φφφ

]

FFF INT,D =

[
FFF INT,u

FFF INT,ϕ

]
FFFEXT,D =

[
FFFb +FFF t +FFFu

g

FFFℓ+FFF r +FFFϕ
g

]
(26)

With regard to putting the continuum micropolar mechanics and finite element
implementation into a form amenable to energy partitioningin the coupled particle-
continuum overlap region, we consider an energy formulation of the balance equa-
tions using Lagrange’s equation of motion. It may be stated as
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d
dt

(
∂T D

∂ ḊDD

)
−

∂T D

∂DDD
+

∂FD

∂ ḊDD
+

∂UD

∂DDD
= FFFEXT,D (27)

whereT D is the kinetic energy,FD the dissipation function, andUD the potential
energy, such that

T D =
1
2

ḊDDMMMDḊDD , FD = 0 , UD(DDD) =

∫ DDD

000
FFF INT,D(SSS)dSSS (28)

Carrying out the derivation in (27) leads to (25), assuming constant inertiaMMMD.

3.3 Coupling method

An aspect of the computational concurrent multiscale modeling approach is to cou-
ple regions of material represented by particle DE to regions of material represented
by continuum FE. Another aspect is to bridge the particle mechanics to a continuum
representation using finite strain micromorphic plasticity (see [54, 55]), whereas
the small strain micropolar continuum is a simple approximation of stiff particles
with small frictional sliding in the overlap region. The coupling implementation
will allow arbitrarily overlapping particle and continuumregions in a single “hand-
shaking” or overlap region such that fictitious forces and wave reflections are mini-
mized in the overlap region. In theory, for nearly homogeneous deformation, if the
particle and continuum regions share the same region (i.e.,are completely over-
lapped), the results should be the same as if the overlap region is a subset of the
overall problem domain (cf. Fig.6). This will serve as a future benchmark problem
for the numerical implementation. The coupling implementation extends to particle
mechanics and micropolar continuum the “bridging scale decomposition” proposed
by Wagner and Liu [45] and modifications thereof by Klein and Zimmerman [47]
(see references therein for further background on theseatomistic continuummeth-
ods).

3.3.1 Kinematics

Here, a summary of the kinematics of the coupled regions is given, following the
illustration shown in Fig.6. It is assumed that the finite element mesh covers the do-
main of the problem in which the material is behaving more solid-like, whereas in
regions of large relative particle motion (fluid-like), a particle mechanics represen-
tation is used (DE). In Fig.6, discrete domains are defined, such as the pure particle
domain (no overlapping FE mesh) asBDE , the FE domainBh = B̂h ∪ B̃h ∪ B̄h,
whereB̂h is the overlapping FE domain where nodal dofs are completelyprescribed
by the underlying particle DE, B̃h the overlapping FE domain where particle DE
motions and nodal dofs are prescribed and free nodal dofs exist, andB̄h the pure
continuum FE domain with no underlying particles. The goal is to have the overlap
regionB̂h ∪ B̃h as close to the region of interest (e.g., penetrometer skin,bucket,
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continuum region (FE)

finite element nodes whose motion is prescribed 

by underlying particles

finite element nodes whose motion is unprescribed

free particles

ghost particles (particles whose motion is prescribed 

by continuum displacement and rotation fields)

overlap region

between particle

and continuum

particle region (DE)
QQQ
Q̂QQ

DDD

D̂DD

B̄h

B̃h

B̂h

BDE

Fig. 6 Two-dimensional illustration of the coupling between particle and continuum regions. The
purple background denotes the FE overlap regionB̃h with underlying ghost particles, aqua blue
the FE continuum regionB̄h with no underlying particles, and white background (with brown
particles) the free particle region̂Bh ∪BDE . In summary, the finite element domainBh is the
union of pure continuum FE domain̄Bh, overlapping FE domain with underlying ghost particles
B̃h, and overlapping FE domain with underlying free particlesB̂h, such thatBh = B̄h∪B̃h∪B̂h.
The pure particle domain with no overlapping FE domain is indicated byBDE .

or tire tread) as to minimize the number of particles, and thus computational effort.
Following some of the same notation presented in [47], we define a generalized dof
vectorQ̆QQ for particle displacements and rotations in the system as

Q̆QQ = [qqqα ,qqqβ , . . . ,qqqγ ,θθθ α ,θθθ β , . . . ,θθθ γ ]
T , α,β , . . . ,γ ∈ ˘A (29)

whereqqqα is the displacement vector of particleα, θθθα its rotation vector, and ˘A is
the set of all particles. Likewise, the finite element nodal displacements and rotations
are written as

D̆DD = [ddda,dddb, . . . ,dddc,φφφ d ,φφφ e, . . . ,φφφ f ]
T (30)

wherea,b, . . . ,c ∈ ˘N , d,e, . . . , f ∈ M̆ , ddda is the displacement vector of nodea,
φφφd is the rotation vector of noded, ˘N is the set of all nodes, andM̆ is the set of
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finite element nodes with rotational degrees of freedom, where M̆ ⊂ ˘N . In order
to satisfy the boundary conditions for both regions, the motion of the particles in
the overlap region (referred to as “ghost particles,” cf. Fig.6) is prescribed by the
continuum displacement and rotation fields, and written as

Q̂QQ = [qqqα ,qqqβ , . . . ,qqqγ ,θθθ α ,θθθβ , . . . ,θθθ γ ]
T , α,β , . . . ,γ ∈ Â , Â ∈ B̃

h (31)

while the unprescribed (or free) particle displacements and rotations are

QQQ = [qqqδ ,qqqε , . . . ,qqqη ,θθθδ ,θθθ ε , . . . ,θθθ η ]
T , δ ,ε, . . . ,η ∈ A , A ∈ B̂

h ∪B
DE (32)

whereÂ ∪A = ˘A and Â ∩A = /0. Likewise, the displacements and rotations
of nodes overlaying the particle region are prescribed by the particle motion and
written as

D̂DD = [ddda,dddb, . . . ,dddc,φφφd ,φφφ e, . . . ,φφφ f ]
T (33)

wherea,b, . . . ,c ∈ N̂ , d,e, . . . , f ∈ M̂ ,N̂ ,M̂ ∈ B̃h ∪ B̂h, while the unprescribed
(or free) nodal displacements and rotations are

DDD = [dddm,dddn, . . . ,ddds,φφφ t ,φφφu, . . . ,φφφ v]
T (34)

wherem,n, . . . ,s ∈ N , t,u, . . . ,v ∈ M ,N ,M ∈ B̃h ∪ B̄h, N̂ ∪N = ˘N , N̂ ∩

N = /0,M̂ ∪M = M̆ , andM̂ ∩M = /0. Referring to Fig.6, the prescribed particle
motionsQ̂QQ can be viewed asconstrained boundary particleson the free particle
region, and likewise the prescribed finite element nodal displacements and rotations
D̂DD can be viewed asconstrained boundary nodeson the finite element mesh in the
overlap region.

In general, the displacement vector of a particleα can be represented by the finite
element interpolation of the continuum macro-displacement field uuuh evaluated at the
particle centroidxxxα , such that

uuuh(xxxα , t) = ∑
a∈ ˘N

Nu
a (xxxα)ddda(t) α ∈ ˘A (35)

whereNu
a are the shape functions associated with the continuum displacement field

uuuh. Recall thatNu
a have compact support and thus are only evaluated for particles

with centroids that lie within an element containing nodea in its domain. In DE,
particle dofs (translations and rotations) are tracked at the particle centroids, as are
resultant forces and moments (from forces acting at contacts). For example, we can
write the prescribed displacement of ghost particleα as

qqqα(t) = uuuh(xxxα , t) = ∑
a∈ ˘N

Nu
a (xxxα)ddda(t) α ∈ Â (36)

Likewise, particle rotation vectors can be represented by the finite element interpo-
lation of the continuum micro-rotation fieldϕϕϕh evaluated at the particle centroidxxxα ,
such that

ϕϕϕh(xxxα , t) = ∑
b∈M̆

Nϕ
b (xxxα)φφφb(t) α ∈ ˘A (37)
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whereNϕ
b are the shape functions associated with the micro-rotationfield ϕϕϕh. For

example, we can write the prescribed rotation of ghost particleα as

θθθα(t) = ϕϕϕh(xxxα , t) = ∑
b∈M̆

Nϕ
b (xxxα)φφφb α ∈ Â (38)

For all ghost particles (cf. Fig.6), the interpolations canbe written as

Q̂QQ = NNNQ̂DDDD+NNNQ̂D̂D̂DD (39)

whereNNNQ̂D andNNNQ̂D̂ are shape function matrices containing individual nodal shape

functionsNu
a andNϕ

b , but for now these matrices will be left general to increase
our flexibility in choosing interpolation/projection functions (such as those used in
meshfree methods). Overall, the particle displacements and rotations may be written
as [

QQQ
Q̂QQ

]
=

[
NNNQD NNNQD̂
NNNQ̂D NNNQ̂D̂

]
·

[
DDD
D̂DD

]
+

[
QQQ′

000

]
(40)

whereQQQ′ is introduced [47] as the error (or “fine-scale” [45]) in the interpolation
of the free particle displacements and rotationsQQQ, whose function space is not rich
enough to represent the true free particle motion. The shapefunction matricesNNN
are in general not square because the number of free particles are not the same
as free nodes and prescribed nodes, and number of ghost particles not the same
as prescribed and free nodes. A scalar measure of error in particle displacements
and rotations is defined as [47]e = QQQ′ ·QQQ′, which may be minimized with respect
to prescribed continuum nodal dofŝDDD to solve forD̂DD in terms of free particle and
continuum nodal dofs as

D̂DD = MMM−1
D̂D̂

NNNT
QD̂

(QQQ−NNNQDDDD) , MMMD̂D̂ = NNNT
QD̂

NNNQD̂ (41)

This is known as the “discretizedL2 projection” [47] of the free particle motionQQQ
and free nodal dofsDDD onto the prescribed nodals dofŝDDD. Upon substituting (41)
into (39), we may write the prescribed particle dofsQ̂QQ in terms of free particleQQQ
and continuum nodalDDD dofs. In summary, these relations are written as

Q̂QQ = BBBQ̂QQQQ+BBBQ̂DDDD , D̂DD = BBBD̂QQQQ+BBBD̂DDDD (42)

where BBBQ̂Q = NNNQ̂D̂BBBD̂Q , BBBQ̂D = NNNQ̂D +NNNQ̂D̂BBBD̂D

BBBD̂Q = MMM−1
D̂D̂

NNNT
QD̂

, BBBD̂D =−MMM−1
D̂D̂

NNNT
QD̂

NNNQD
(43)

As shown in Fig.6, for a finite element implementation of thisdof coupling, we
expect that free particle dofsQQQ will not fall within the support of free continuum
nodal dofsDDD, such that it can be assumed thatNNNQD = 000. The assumptionNNNQD 6= 000
would be valid for a meshfree projection of the particle motions to the FE nodal dofs,
as in [47], where we could imagine that the domain of influenceof the meshfree
projection could encompass a free particle centroid; the degree of encompassment
would be controlled by the chosen support size of the meshfree kernel function. The
choice of meshfree projection in [47] was not necessarily toallow QQQ be projected
to DDD (and vice versa), but to remove the computationally costly calculation of the
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inverseMMM−1
D̂D̂

in (42). Since we will also be using the Tahoe code tahoe.ca.sandia.gov
for the coupled multiscale particle-continuum implementation, where the meshfree
projection has been implemented for atomistic-continuum coupling [47], we will
also consider the meshfree projectionin future implementations.

3.3.2 Kinetic and potential energy partitioning and coupling

We assume the total kinetic and potential energy and dissipation of the coupled
particle-continuum system may be written as the sum of the energies

T (Q̇QQ, ḊDD) = T Q(Q̇QQ,
˙̂QQQ(Q̇QQ, ḊDD))+TD(ḊDD,

˙̂DDD(Q̇QQ))

U(QQQ,DDD) = UQ(QQQ, Q̂QQ(QQQ,DDD))+UD(DDD, D̂DD(QQQ))

F(Q̇QQ, ḊDD) = FQ(Q̇QQ,
˙̂
QQQ(Q̇QQ, ḊDD)) (44)

where we have indicated the functional dependence of the prescribed particle mo-
tion and nodal dofs solely upon the free particle motion and nodal dofsQQQ andDDD,
respectively. Note that the dissipation functionF = FQ only applies for the particle
system, and only for static problems (dynamic relaxation DEsimulation). For purely
dynamical problems,FQ = 0, and there is only dissipation in the particle system if
particles are allowed to slide frictionally, and the continuum has plasticity or other
inelastic constitutive response. Lagrange’s equations may then be stated as

d
dt

(
∂T

∂ Q̇QQ

)
−

∂T
∂QQQ

+
∂F

∂ Q̇QQ
+

∂U
∂QQQ

= FFFEXT,Q

d
dt

(
∂T

∂ ḊDD

)
−

∂T
∂DDD

+
∂F

∂ ḊDD
+

∂U
∂DDD

= FFFEXT,D (45)

which lead to a coupled system of governing equations (linear and angular mo-
mentum) for the coupled particle-continuum mechanics. If the potential energyU
is nonlinear with regard to particle frictional sliding andmicropolar (or micromor-
phic) plasticity, then (45) may be integrated in time and linearized for solution by
the Newton-Raphson method. The benefit of this multiscale method, as pointed out
by Wagner and Liu [45], is that time steps are different for the DE and FE solutions.
A multiscale time stepping scheme will follow an approach similar to [45].

4 DE-FE facet coupling

This section describes a preliminary method for coupling DEto FE codes, in this
case through a single layer of ghost particles tied to FE facets. This is a code com-
munication exercise, to ensure that ELLIP3D [3] can communicate with Tahoe, the
DE and FE codes used in the coupling.
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4.1 DE-FE facet coupling method

A simple granular-continuum coupling scheme is used initially, illustrated in Fig.7.
The FE mesh does not cover the entire domain. Instead, the FE and DE regions only
overlap through a single layer of particles. This layer of particles is embedded on the
surface of the FE domain with centroids constrained to FE facets and deform with
FE mesh. We call these particles “ghost” particles, as done in atomistic-continuum
coupling methods. Theoretically, the ghost particles can comprise multiple layers
and extrude into/overlap with the FE mesh, but this is left for future work [2]. No
energy partitioning is currently considered. Only force and kinematics are commu-
nicated between the FE and DE regions through the single layer of ghost particles
constrained to follow the motion of the FE facets to which they are tied.

Fig. 7 Schematic illustration of granular-continuum coupling.

Depending on the FE type, the ghost particles may or may not maintain rotational
degree of freedom. Ideally, when a micropolar or micromorphic continuum model
is used within the FE region, the ghost particles will have rotational degrees of
freedom. If conventional FEM is adopted (like in this section), the ghost particles
have constrained rotational degrees of freedom. Free particles in the DE domain
carry both translational and rotational degrees of freedom.

The computational framework involves a two-way exchange ofinformation: free
particles in the DE simulation contribute to the boundary force in the FE domain
through ghost particles, the FE domain provides information needed to compute the
boundary condition on the free particles through ghost particles as well. The gran-
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ular and continuum scales run simultaneously and exchange relevant information
dynamically.

The ghost particles can be placed in such a manner that their centroids are exactly
located on the surface FE facets. As ghost particles are discrete in space, the forces
are discrete in space as well. Each force acts like a point load on the FE mesh, not
necessarily acting at a finite element node. When a point forcePPP acts in the interior
(including boundary) of the element domain, the relation between the distributed
forcebbb(xxx) at pointxxx and the point force can be denoted mathematically as

bbb(xxx) = PPPδ (xxx− aaa) (46)

whereδ (xxx− aaa) is the Dirac delta function andxxx = aaa the location of force actionPPP.
The Dirac delta function has the property that for any vectorfunctionggg(xxx)

∫

Ω
ggg(xxx)δ (xxx− aaa)dx =

{
ggg(aaa), aaa ∈ Ω
000, otherwise

(47)

Thus the external nodal forces on an elemente arising from a point forcePPP ataaa can
be obtained by

fff e =
∫

Ω e
NNNeT (xxx)bbb(xxx)dv =

∫

Ω e
NNNeT (xxx)PPPδ (xxx− aaa)dv =

{
NNNeT (aaa)PPP, aaa ∈ Ω e

000, otherwise
(48)

whereNNNe is the matrix of finite element shape functions for elemente. Extending it
to all finite elements over the entire domain we have

fff = NNNT PPP (49)

When the FE mesh deforms, the ghost particles move as well, maintaining their cen-
troids on the surface of the FE mesh. Their centroid locations need to be mapped
from global coordinates to local element natural coordinates using a Newton-
Raphson iterative method. Once the natural coordinates aredetermined, the loca-
tions of ghost particles can be evaluated using the following relationship through
shape functionsNNNQ̂D during the subsequent simulation:Q̂QQ = NNNQ̂DDDD, where(̂•) de-
notes prescribed particle dofs. The DE code ELLIP3D is wrapped and integrated
into FE code Tahoe using object-oriented programming methodology for the algo-
rithm implementation.

4.2 DE-FE facet coupling example

We revisit the penetration motivation example at the beginning of the chapter to
demonstrate the effect of having a layer of ghost particles tied to FE facets.

4.2.1 Penetration with coupled FE facets

The particles from the penetration example with smaller “container” are combined
with a finite element domain, shown in Fig.8.
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(a) opaque view (b) cross-sectional view

Fig. 8 3D view of the DE and FE domains.

As the penetrator particleis driven into the free particles, the ghost particles
are squeezed outwards toward the FE domain. Figure 9(a) depicts thepenetrator-
induced displacement field of all ghost particles (rotations fixed because FE contin-
uum is non-polar). It is noteworthy that the “container” formed by ghost particles
swells at lower part, similar to the influence region for geotechnical pile excitation
problems.

(a) (b)

Fig. 9 (a) Penetrator-induced displacement field of ghost particles using finer mesh. (b) Compari-
son of force-displacement curves.

To examine the effect of DE-FE coupling on force-displacement curves of pen-
etration, the small container curve and large container curve in Fig.4(c) are plotted
again, together with the curve obtained from small container with DE-FE coupling,
shown in Fig.9(b). It is observed that thepenetratorforce of the small container with
DE-FE coupling can be tuned to match the larger container with no coupling, by ad-
justing the elastic compliance of the FE continuum surrounding the container. The
boundary effect difference shown in Fig.4(c) can be partially or completely elimi-
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nated by applying a more robust DE-FE coupling technique in future work, similar
to the atomistic-continuum coupling methods, but accounting for differences with
granular materials (see Section 3.3). Such work is ongoing.

5 Summary

The chapter presented a concurrent multiscale computational method for modeling
at the grain-scale the interfacial mechanics between densedry granular materials
and deformable solid bodies. Section 3 presented the formulation for coupling par-
ticle and micropolar continuum mechanics regions of a granular material, following
the lattice-structure-based approaches described in [45,47], but extending to ro-
tational dofs, and consideration of free particle domainBDE with no overlain FE
mesh. For the case of large particle motion and frictional sliding in the overlap
regionB̂h ∪ B̃h, a finite deformation micromorphic plasticity model is needed to
couple to the particle mechanics and is presented in [54, 55]. Section 4 presented
a preliminary DE-FE coupling via single ghost layer of particles tied to FE facets,
which demonstrates a code communication between the DE and FE codes being
used in the research.

6 Ongoing and future work

Various aspects of the research on ongoing, while others areconsidered for future
work. Ongoing research includes: (1) implementing the micromorphic elastoplas-
ticity model into Tahoe; (2) coupling the micromorphic FE tothe DE code through
an overlapping region; and (3) testing the computational implementations for a pen-
etration example and other granular soil-solid body interface problems.

Future research entails: (4) extend micromorphic pressuresensitivity plasticity
to more advanced constitutive models, such as critical state plasticity and includ-
ing particle breakage; (5) address adaptivity of the multiscale scheme to be able to
convert continuum to particle as a solid body shears througha granular material, or
particle to continuum in particle regions that behave more like a continuum; and (6)
extend to multiphase mechanics (solid grains, pore liquid and gas).
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