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Abstract 
Deformation and strength behavior of geomaterials in the pre- and post-failure regimes 
are of significant interest in various geomechanics applications. To address the need for 
development of a realistic constitutive framework, which allows for an accurate 
simulation of pre-failure response as well as an objective and meaningful post-failure 
response, a strain gradient plasticity model is formulated by incorporating the gradients 
of volumetric and deviatoric plastic strains on the evolution of damage in geomaterials.  
The resulting constitutive equations along with the balance of linear momentum for the 
continuum are cast into a coupled system of equations, with displacements and plastic 
multiplier appearing as the primary unknowns in the final governing integral equations.  
A finite element discretization of the governing equations requires the use of C-1 
continuous elements, which are undesirable from an implementation point of view.  This 
issue is naturally resolved when a meshfree discretization is used.  Hence the developed 
model is formulated within the framework of a meshfree environment.   The new 
constitutive model allows a thorough analysis of grain size effects on strength and 
dilatancy of rocks. The role and effectiveness of the new gradient terms on regularizing 
the underlying boundary value problems of geomechanics beyond the initiation of strain 
localization can also be assessed. 
 
 
1.  Introduction 
 
With the ever-increasing speed of computers, significant advancements in numerical 
methods, and development of physically-based models of engineering materials in the 
past three decades, increasingly challenging problems of mechanics are now being 
tackled by the computational mechanics community.  Among these challenging 
problems, the unified modeling of pre-failure deformations and post-failure response 
remains to be a highly desirable goal.  As far as geomaterials are concerned, highly 
sophisticated and realistic constitutive models are now available. Many of these models 
are capable of providing accurate modeling of the pre-failure response.  In many cases, 
these constitutive models also include useful ingredients for modeling material softening.  
However, since the unstable nature of softening leads to localization of strain, the initially 
local response of the material ceases to exit in the post localization regime and this 
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requires an account of the localized response, which is not possible with a local 
constitutive model.  In the past few years, various techniques have been used to address 
this issue.  Three of the most prominent techniques are:  1) the weak discontinuity 
approach via an enhanced finite element (Ortiz et al., 1987), 2) the strong discontinuity 
approach which allows a finite element with displacement discontinuity (Simo et al., 
1993; Regueiro and Borja, 2001), and 3) a higher order continuum where nonlocal 
measures of stress or strain are used in the formulation of the constitutive law or a 
micropolar continuum that involves couple-stresses and rotations in addition to standard 
Cauchy stress tensor and the displacement vector.  The first method has been used by 
several investigators (Ortiz et al, 1987) and has shown limited success in geomechanics 
problems (Manzari and Nour, 2000).  The strong discontinuity approach has great 
potential in producing mesh-independent solutions and is being explored beyond classical 
constitutive models such as Von-Mises or Drucker-Prager plasticity models (Regueiro 
and Borja, 2001).  Among nonlocal approaches, micropolar theory (Cosserat and 
Cosserat, 1909; Mindlin and Tiersten, 1963; Mindlin, 1964) provides an excellent means 
for considering scale effects and has successfully been used in the analysis of 
geotechnical systems undergoing severe shear localization (e.g., Manzari, 2004).  
However the use of micropolar theory is limited to the cases in which shear is the 
dominated mode of failure. Since pioneering work of Aifantis (1987) the strain gradient 
plasticity approach has received significant attention in recent years and it is being 
pursued by researchers in several fields of engineering mechanics because of its 
versatility in handling post failure conditions, particularly when tensile failure is 
involved.  In addition to significant number of additional primary variables, another 
major drawback of the gradient plasticity approach is the need for C-1 continuity in the 
formulation of a finite element solution.  This has been a significant impediment to 
further development of the method for application in realistic engineering problems.  In a 
meshfree formulation, however, the C-1 continuity requirement does not pose a severe 
restriction on the shape functions as they naturally provide high order continuity.  This 
unique feature of the meshfree environment is employed in this work to develop a 
realistic strain gradient plasticity model for geomaterials. An outline of the model and the 
meshfree formulation are discussed in the following sections. 
 
2.  A Two-Parameter Gradient Elastoplastic Model 
 
2.1.  Motivation 
Pressure sensitivity and shear-induced dilatation are two important properties of soils, 
rocks, and almost all geomaterials and should carefully be addressed in a realistic 
constitutive model for geomaterials.  Hence, when formulating a plasticity constitutive 
model for soils and rocks, at a minimum, two stress-invariants (I and √J2) are required in 
the mathematical structure.  Moreover, while pressure sensitivity is a direct consequence 
of the presence of pore space (voids) in geomaterials, shear-induced dilatation is caused 
by interaction of grains over a characteristic length that is related to the average grain 
size.  In soils, the average size of voids is usually well correlated with the average grain 
size.  However in crystalline rocks, presence of pre-existing fissures, defects, and 
“foreign particles” inclusions may cause the overall compressibility to be identified with 
an average pore size (the pore size scale) that is different from the average grain size.  



While the pore size scale is expected to affect the compressibility of the material, grain 
size scale would significantly influence shear-induced dilatation. 
 
Motivated by the aforementioned difference between grain size scale and pore space 
scale and considering the difference between the volume change due to confining stress 
and the volume change due to shear, here we adopt a two-parameter gradient model for 
both elastic and plastic responses of the material.  The first parameter is to mimic the 
pore space length scale, which affects the volume change of the first type (lv

e, lv
p).  The 

second parameter is to model the grain size length scale and its effect on shear resistance 
and shear induced dilatation (ls

e, ls
p). 

 
2.2. Elastic Response 
Motivated by the gradient elasticity theory proposed by Vardoulakis et al. (1996), a two-
parameter gradient elasticity model is adopted here.  In soils, it has been observed that 
shear modulus varies with mean effective stress.  However, constant shear modulus is 
acceptable in rocks.  Here we adopt a constant bulk and shear modulus. 
 

         (1) 
2 2

2 2

( )

2 ( )

e e e
v v v
e e e

s

p K l

G l

ε ε= − ∇

= − ∇s e e
 
It may be useful to note that while in continuum mechanics the point value of a quantity 
is replaced by the value of its average over a representative volume, the gradient terms in 
Eqn. (1) naturally would appear when the variation of strain over a representative volume 
of the material is no longer constant or linear.  This is clearly shown in the analysis 
presented by Muhlhaus and Vardoulakis (1987).   
 
Equations (1) can be written as  
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in which 1 is the second order unit tensor and I is the fourth order unit tensor and 
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In the above equations, length scales and e

vl
e
sl  relate to the volumetric and shear response 

of the material, respectively.  This leads to a modified tensor of elastic moduli as shown 
in Eqn. 2. 
 



2.3. Yield Function 
Yield function is defined as 
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and q is a collection of four internal variables: χ , c, φ, and ψ which respectively 
represent tensile strength of the material, cohesion, friction angle, and  dilation angle. 
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2.4. Flow Rule 
Magnitude and direction of plastic deformations are described by a non-associative flow 
rule: 
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where λ  is known as plastic multiplier and Q is the plastic potential defined as follows: 
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2.5. Hardening laws 
The key feature of this constitutive model is the presence of gradient of plastic multiplier 
in the hardening law defining the evolution of internal variables, q. 
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where h and g are chosen to be of the following forms: 
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in which: 
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where rχ , , rc rφ are residual values of χ , c, φ as a steady state response is attained in 
shear loading.  Parameters χα , , cα φα , and ψα are model constants that allow the pace of 
variation of internal variables χ , c, φ, and ψ to be set as desired.  Variable B1 and 
matrices B2, B3, and , and B  are defined as: *
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in which I
fG  and II

fG  are the fracture energy corresponding to mode I (tensile) and Mode 
II (shear) failure, respectively. 
 
 
3. Integration of Constitutive Equations and its Relationship with Global Solution 
 
Given the presence of gradient of plastic multiplier ( ) in the hardening law (Eqn. 
11), the consistency condition ( ) leads to a differential equation in terms of plastic 
multiplier 

2λ∇
0f =

λ .  Hence a closed form solution for λ  does not exit and the consistency 
condition should be enforced in a weak sense and can be solved simultaneously with an 
integral form of the equation of linear momentum.  To this end, a variational form of the 
aforementioned equations at step n+1 (tn+1) of the incremental solution can be written as 
follows: 
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where w = δu and η = δλ, with the appropriate boundary conditions imposed on u and λ.  
It should be noted that defining appropriate boundary conditions for λ is still an open 
research problem.  To proceed further, we need to determine the stress tensor, σ , and the 



vector of internal variables, q, at tn+1.  This is achieved by using a backward Euler 
integration scheme.  Equations 2 and 9 can be combined to obtain 
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Now given the converged values of  and q from the previous time step (tσ n), we can 
write: 
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Equations (16) and (18) are used a two-step iterative solution leading to the determination 
of u and λ at the current time step and the update of stress tensor and internal variables.  
First, nonlinear equations (16) are solved for nodal values of u and λ.  Then using the 
nodal values of u and λ, updated values of σ  and q are determined from the backward 
Euler integration calculations conducted at each integration point. 
 
4. Meshfree Formulation 
 
In the meshfree formulation, we use the following interpolation functions for u and λ: 
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where  and  are, respectively, the number of nodal points that are used in 
interpolation of u and λ.  Using Equation (19) we find: 
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Substituting in the linearized form of Equations (16) leads to: 
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Summing over all particles, we find: 
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iteration k+1 is obtained as d d .  We will then check for convergence of the 
global solution by computing the residuals defined in Eqn. (16) and comparing them to a 
desirable tolerance. 
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Matrices and vectors in Eqn. (23) are given below: 
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The following matrices are used in Eqn. (24): 
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5. Concluding Remarks 
 
Based on the characteristic behavior of geomaterials, particularly rocks, it is argued that it 
is necessary to account for the distinct roles of pre-existing fissures, distributed pore 
space, and grain size in compressibility and shear-induced dilatation of geomaterials.  
Hence, a two-parameter gradient plasticity model for geomaterials is formulated.  This 



amounts to introduction of two different length scales: one for volume change behavior 
and one for shear deformations. Integration of the constitutive model and details of the 
global formulation in a meshfree environment are discussed.  The meshfree formulation 
is particularly suitable due to its flexibility in accommodating derivatives of higher order.  
Numerical simulations demonstrating the performance of the formulation presented in 
this paper are the subject of authors’ current research and will be the subject of 
forthcoming publications. 
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