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Abstract

Ethiopian agriculture and Nile River flows are heavily dependent upon the Kiremt

season (June-September) precipitation in the upper Blue Nile basin, as a means of 

irrigation and streamflow contribution, respectively.  Climate diagnostics suggest that the 

El Nino Southern Oscillation phenomenon is a main driver of interannual variability of 

seasonal precipitation in the basin.  One-season (March-May) lead predictors of the 

seasonal precipitation are identified from the large-scale ocean-atmosphere-land system, 

including sea-level pressures, sea-surface temperatures, geopotential height, air 

temperature, and the Palmer Drought Severity Index.  A nonparametric approach based 

on local polynomial regression is proposed for generating ensemble forecasts.  The 

method is data-driven, easy to implement, and provides a flexible framework able to 

capture any arbitrary features (linear or nonlinear) present in the data, as compared to 

traditional linear regression.  The best subset of predictors, as determined by the 

Generalized Cross Validation (GCV) criteria, is selected from the suite of potential large-

scale predictors.  A simple technique for disaggregating the seasonal precipitation 

forecasts into monthly forecasts is also provided. Cross-validated forecasts indicate 

significant skill in comparison to climatological forecasts, as currently utilized by the 

Ethiopian National Meteorological Services Agency.  This ensemble forecasting 

framework can serve as a useful tool for water resources planning and management 

within the basin.
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1. Introduction

Ethiopia is predominantly an agronomic society, and the success of seasonal crops 

has large implications, ranging from the state of the countrywide economy to the survival 

of the subsistence farmer.  As the vast majority of agriculture is rain-fed, precipitation 

plays a pivotal role in the country’s welfare.  Roughly 70 percent of annual precipitation 

in the upper Blue Nile basin of Ethiopia is delivered during the Kiremt season, composed 

of the June-September months (Conway, 2000); during this season, 85-95 percent of 

annual crops are produced (Degefu, 1987).  Precipitation also plays another equally 

important role in the Ethiopian highlands, feeding the headwaters of the Blue Nile 

(shown in Figure 1) and Atbara Rivers, which eventually supply the mighty Nile River.  

Runoff in these basins contributes almost 70 percent of the annual Nile flow into Egypt, 

with the vast majority occurring during the Kiremt season (Yates and Strzepek, 1998).  

Policy and planning tools, including water management, economic, hydropower, and 

irrigation models for Ethiopia and other downstream countries, rely heavily on 

precipitation and streamflow as key parameters.  

Therefore, understanding and predicting the year-to-year variability of the 

seasonal rainfall is of immense importance in mitigating potential disasters.  Presently, 

the Ethiopian National Meteorological Services Agency relies solely on climatology and 

persistence in forecasting seasonal precipitation (Gissila et al., 2004).  This motivates the 

current research to develop a robust framework for generating ensemble forecasts of the 

Kiremt season precipitation.

This paper begins with a description of the data sets utilized, followed by 

background on Ethiopian climatology and interannual variability. Potential predictors of 
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the seasonal precipitation are then identified.  Next, the proposed nonparametric approach 

for producing ensemble forecasts is presented, along with the traditional linear regression 

method.  Skill evaluation methods are subsequently described, followed by the results of 

the Kiremt seasonal precipitation forecast.  The paper concludes with a summary and 

discussion of the results.

2. Data Description 

Precipitation

The precipitation data utilized for this study is part of the CRU TS 2.0 dataset, 

obtained from the University of East Anglia, available at 

http://www.cru.uea.uk/~timm/grid/CRU_TS_2_0.html.  It consists of monthly rainfall 

data on a 0.5o x 0.5o grid for the period 1901-2000.  However, much of the data from 

1901-1960 is synthetic, and is obtained based on 1961-1990 averages and gridded 

anomalies.  This study, therefore, includes only 1961-2000, minimizing the synthetic data 

and reducing the likelihood of unwanted trends or potential persistence in the data.  

Additionally, since this study focuses on the Kiremt season, only the seasonal total for the 

June-September data are retained for each year.  The upper Blue Nile basin within 

Ethiopia constitutes 68 grid points.

As a result of the sparse and spotty precipitation gauges in the region, the upper 

Blue Nile basin precipitation data from the CRU set (1961-2000) was validated to ensure 

its spatial and temporal representation.  This was accomplished by comparison with two 

other global precipitation datasets: University of Delaware, a 0.5o x 0.5o gridded set of  

monthly precipitation values for the period 1950-1999, and the Climate Prediction 



5

Center’s merged analysis precipitation (CMAP) data, a 2.5o x 2.5o gridded set of monthly 

precipitation for 1979 to the present.

The CRU and University of Delaware data are highly correlated over the upper 

Blue Nile basin, exhibiting a correlation coefficient of 0.79 for the average Kiremt season 

precipitation.  This suggests that the two data sets are consistent.  In correlating the aerial 

average Kiremt season precipitation from CRU with the gridded CMAP data (Figure 2), 

high correlations over the region were again found.  These validations appear to certify 

the consistency of the CRU set.  To demonstrate the spatial homogeneity of the 

precipitation, a principal component analysis (von Storch and Zwiers, 1999) of seasonal 

precipitation at the 68 grid locations in the region was performed.  The first leading 

pattern captures approximately 58 percent of the spatial data variance.  The first spatial 

pattern (Figure 3) shows similar magnitude and sign across the region, indicating that the 

leading pattern of variability is spatially homogenous, confirming results from earlier 

studies (Eklundh and Pilesjo, 1990).  Furthermore, the first temporal pattern (i.e. 

principal component) is highly correlated (correlation coefficient of 0.98) with the aerial 

average seasonal precipitation (Figure 4).  As a result, the aerial average Kiremt season 

precipitation may be considered as an excellent representative of the seasonal rainfall in 

the upper Blue Nile basin, henceforth, referred to as the UBN.  

 

Large-scale Climate Variables

Global atmospheric and oceanic variables including, sea-surface temperature 

(SST), sea-level pressure (SLP), geopotential height, air temperature, and outgoing long-

wave radiation (OLR), were obtained from the National Oceanic and Atmospheric 



6

Administration’s (NOAA) climate diagnostics center (CDC) (http://www.cdc.noaa.gov), 

based on NCEP/NCAR re-analysis data (Kalnay et al., 1996).  These are monthly average 

values on a 2.5o x 2.5o grid for 1949 to the present.  Palmer Drought Severity Index 

(PDSI) values (Dai et al., 2004), also at monthly time scales and on a 2.5o x 2.5o grid, for 

1870-2003,  were provided by the National Center for Atmospheric Research’s Climate 

and Global Dynamics Division (http://www.cgd.ucar.edu/cas/catalog/climind/pdsi.html.)    

3. Large-scale climate and Kiremt season precipitation

Two main rainy seasons exist within Ethiopia: the Belg (“small rains”) and the 

Kiremt (“big rains”).  The Kiremt season is part of a larger east African monsoon season 

spurred on by the shifting of the Intertropical Convergence Zone (ITCZ) northward 

(Griffiths, 1972; Gamachu, 1977).  During the pre-monsoon season (March-May) the 

central African land is predominantly dry, resulting in a general warming of the regional 

land and atmosphere.  This solar heating and warming of the surface creates a low 

pressure, and pulls the ITCZ to the north from the equatorial region.  Figures 5 and 6 

illustrate this basic climatology.  Figure 5 presents PDSI and air temperatures patterns 

during the pre-monsoon season, indicating a dry and warm band spanning central Africa 

near 10-15 degrees north.  Figure 6 presents wind patterns during the pre-monsoon and 

monsoon season; the change in wind direction consistent with the ITCZ movement and 

warming of the Indian Ocean is evident.  The extent to which the ITCZ reaches is the 

dominant factor in controlling the timeliness and quantity of Kiremt rains.  Simultaneous 

to the shifting of the ITCZ, high-pressure systems in the South Atlantic and Indian 

Oceans, coupled with the Arabian and the Sudan thermal lows, allow for the influx of 
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moisture (NMSA, 1996; Seleshi and Zanke, 2004).  While the tropical easterly and 

Somali jets deliver precipitation to the eastern edge of the country due to the land-ocean 

gradient, the highlands and Blue Nile basin are predominantly fed by moisture advected 

over the Congo basin, transported via a southwesterly flow, and released due to 

orographic effects (see Figure 6b).  This pattern persists until September or October, 

when the jet stream in northeast Africa is reestablished, and the ITCZ shifts south.

Interannual variability of precipitation within the upper Blue Nile basin has been 

investigated by previous researchers (see e.g., Eklundh and Pilesjo, 1990; Seleshi and 

Demaree, 1995; Camberlin, 1995; Osman and Sauerborn, 2002; Conway, 2000).  Factors 

influencing the variability include the El Niño Southern Oscillation (ENSO) 

phenomenon, tropical depressions over the Indian Ocean, and periods of anomalous 

warming over the Indian Ocean.  Correlations of UBN boreal summer rains with ENSO 

have shown that warm ENSO periods (El Niño years) are typically associated with lower 

precipitation and drought years, while cold periods (La Nina years) are associated with 

higher precipitation quantities (Seleshi and Zanke, 2004; Ntale and Gan, 2004; Nicholson 

and Kim, 1997; Beltrando and Camberlin, 1993).  During warm ENSO events, the full 

migration of the ITCZ northward is inhibited, as the land and atmosphere have not 

sufficiently warmed to continue to draw the ITCZ to its full potential.  This occurrence 

blocks moist air from the south and moisture produced due to the convective nature of the 

ITCZ, often resulting in drought circumstances.  Along a separate vein, the Kiremt season 

rains in Ethiopia and pressure anomalies in Bombay, India, independent of ENSO, have 

also been found to be significantly correlated (Camberlin, 1995 and 1997). 
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A correlation map between the first principal component of UBN rainfall and 

simultaneous global sea-surface temperatures is shown in Figure 7.  The ENSO pattern is 

quite clear in the Pacific Ocean corroborating earlier studies, and giving further credence 

to ENSO being the leading factor of variability for the Kiremt season precipitation.  

Figure 7 also indicates regions of correlation in the Atlantic, which are well known to 

affect Sahelian precipitation (Palmer, 1986; Druyan and Koster, 1989; Cook, 1997), and 

may warrant further attention.  The realization that the ENSO phenomenon is one of the 

main drivers of seasonal rainfall in the region, and is both persistent and predictable, 

offers promise for improved forecasts of Kiremt season precipitation.

The effects of climate change on precipitation in the highlands of Ethiopia, as 

well as the whole of the Nile basin, have also been given attention recently.  While 

precipitation quantities and number of rainy days in most parts of Ethiopia have declined 

significantly since 1982, Seleshi and Zanke (2004) have found that no such trends are 

evident for the Ethiopian highlands during the period 1965-2002.  Potential climate 

change effects are not explicitly dealt with in this study, but merit further investigation. 

4. Identification of Predictors

Given the strong ENSO teleconnection that previous studies and this analysis 

(Figure 7) have identified with the UBN rainfall, a logical first step is to correlate UBN 

rainfall with standard ENSO indices of the preceding season (Table 1).  The table reveals 

some significant, yet relatively weak, correlations with the pre-monsoon ENSO indices.  

To identify potentially stronger predictors, the seasonal precipitation was correlated with 

large-scale ocean-atmosphere-land variables from the preceding season. This approach 
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for identification of predictors was used by Grantz et al. (2005) and Singhrattna et al. 

(2005) for skillful forecast of spring streamflow in the Truckee basin in the western USA 

and Thailand rainfall, respectively.  Figures 8 and 9 illustrate correlation maps of UBN 

rainfall with global SST and SLP, respectively.  The correlation patterns in these two 

figures again resemble ENSO features and are therefore consistent with the 

teleconnection identified previously.  Specific regions that exhibit substantial positive or 

negative correlations are indicated by circled sections.  The SST and SLP from the 

regions of high correlation are averaged over the region to form predictors.  Additionally, 

to further enhance the correlation, SST and SLP indices were created by subtracting the 

negatively correlated region from the positively correlated one.  Correlations with other 

variables, such as 500mb geopotential heights, OLR, air temperature and PDSI were also 

performed to capture regional aspects.  A negative correlation with geopotential height 

was noted off the southwestern coast of Africa, which is associated with the St. Helena 

high pressure system that influences wind flow patterns routed toward Ethiopia (see 

Figure 3).  The OLR also has regional influences effecting Kiremt season rains and acts 

as a proxy for the thermal conditions of the land and ocean, a key constituent in 

establishing African monsoon conditions.  The correlation map of OLR with seasonal 

precipitation (not shown) registered a strong negatively correlated region southwest of 

Somalia, in the Indian Ocean.  The preferred variable for the land-ocean thermal gradient 

and ITCZ migration extent would be soil moisture, but this data is non existent, so PDSI 

is utilized as a reasonable surrogate (Simms et al., 2002; Guttman et al., 1992).  A region 

covering the northern part of Ethiopia, just north of the basin, exhibited significant 

positive correlation during the pre-monsoon season with the UBN precipitation, and was 
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selected as a potential predictor.  Similarly, regions of high correlation with surface 

temperature were identified for potential inclusion (see Figure 10), and an air temperature 

index created.  All of these variables capture the important and varying features of the 

summer rainfall in the basin. The culmination of this effort was the identification of a 

suite of predictors of UBN rainfall, denoted in Table 2.  

5. Forecasting Framework

Previous studies have developed linear regression based forecast models for 

precipitation within Ethiopia (Gissila et al., 2004; Eklundh and Pilesjo, 1990; Haile, 

1987) but not specifically for the upper Blue Nile basin.  Gissila et al. grouped Ethiopia 

into four clusters and developed a linear regression model based on nine SST related 

predictors.  Eklundh and Pilesjo spatially divided Ethiopia into seven regions by a 

principal component analysis and created corresponding linear regression models based 

on elevation, latitude, and longitude.  Linear regression models based on large-scale 

climate predictors and a principal component analysis of predictors in Ethiopia and 

surrounding countries have also been created for prediction of Nile River flows (Eldaw et 

al., 2003).  These forecasting efforts serve as a good starting point, but suffer from two 

main drawbacks.  First, with limited data length and multicollinearity (i.e. correlations 

between predictors), skill scores may be artificially high; no apparent efforts were made 

in the above studies to address this issue.  Secondly, in a linear regression framework 

nonlinear relationships cannot be captured.  
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The motivation in this paper is to provide a robust and flexible framework that 

alleviates these drawbacks.  To this end, a nonparametric modeling approach based on a 

local polynomial method is offered.  

Generally, regression models take the simple form

Y = f(x) + e (1)

where x represents a vector of predictors, f is the function, Y the dependent variable and e 

is the error, often assumed to be normally distributed with a mean of zero and variance 

σ2.  Traditional linear regression involves fitting a linear function f to the entire data. If 

there are ‘p’ predictors then the linear regression model, expanding Equation (1), takes 

the form: 

yt = β0 + β1x1t + β2x2t + … + βpxpt + et t = 1 to N (2)

where yt is the response variable (seasonal precipitation in this paper), x1,…, xp are the 

predictor variables, βo,…, βp are the regression coefficients, et refers to the model error 

(difference between observed and estimated values), and N is the total number of 

observations. The coefficients are estimated by minimizing the sum of squares of the 

errors (also known as the ordinary least squares method).  Key assumptions of this 

traditional approach include normal distribution of the variables (or transformation to a 

normal distribution), and uncorrelated and normally distributed errors with a mean of 

zero.  Upon fitting the coefficients, estimation (or prediction) at a new point, ypred, for a 

new predictor vector xpred is obtained from the above equation.  Along with ypred, the 

standard deviation of the predictive error, σpe, may also be obtained from theory (Helsel 

and Hirsch, 1995).  Normal random deviates with mean zero and variance σ2
pe when 

added to ypred, provide an ensemble forecast.
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Linear regression approaches are widely used due to well developed theory and 

readily available software.  However, the methodology has several drawbacks: (i) the 

assumption of normality of variables, even through transformations, is often difficult to 

satisfy, (ii) regression coefficients are greatly influenced by a small number of outliers, 

often leading to a poor fit, (iii) nonlinear relationships between the dependent and 

independent variables cannot be captured, and (iv) if the linear model does not provide a 

good fit, few choices of higher order models exist, especially considering short dataset 

lengths.  

Local Polynomial Regression Model

Nonparametric methods provide an attractive alternative for addressing the 

drawbacks of traditional linear regression.  In the nonparametric approach, estimation of 

the function f is performed ‘locally’ at the point to be estimated.  This ‘local’ estimation 

provides the ability to capture features (i.e. nonlinearities) that might be present locally, 

without granting outliers any undue influence in the overall fit.  Several nonparametric 

methods for regression and probability density function estimation exist; for an overview 

of these methods and their applications to hydroclimatology, see Lall, 1995. 

In this work, the local polynomial based nonparametric approach (Loader, 1999) 

is proposed for its ease in understanding, implementation and successful past 

applications.  The methodology is described in the following algorithm.  (Subscript p

represents ‘predictive’, and l represents ‘local’).

For a point of interest where an estimation of the function is desired, say xpl:
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(i) K (= αN) nearest neighbors are identified in proximity to xpl.  The neighbors can be 

obtained using either the Euclidean or Mahalanobis distance.  The parameter α describes 

the size of the neighborhood and is within the (0,1] range.  Clearly, if α takes a value of 1, 

the number of neighbors selected includes all data points.

(ii) A polynomial of order P is fit to the K nearest neighbors, using a weighted least 

squares method.  The fitted polynomial is used to obtain the estimate of the dependent 

variable, ypl. The ‘local’ error standard deviation, σpl, can be obtained from regression 

theory. 

(iii) The K residuals from the fitted polynomial in (ii) can be re-sampled (Prairie et al., 

2005; Grantz et al., 2005) or bootstrapped and added to ypl to create an ensemble. 

Alternatively, random deviates from a normal distribution with mean zero and standard 

deviation of σpl can be generated and added to ypl to create an ensemble.  The later 

technique is implemented in this study. 

xpl may be an observed data point or a new point.  It is noteworthy to mention that for 

α=1 and P=1, this approach collapses to the traditional linear regression, thus making it a 

more general and flexible approach.

The optimal values of the two parameters K (or α) and P must be estimated from 

the data, and may be obtained using the Generalized Cross Validation (GCV) score 

function, given as:  
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where et is the model residual (difference between observed and model estimated values 

of the dependent variable), m the number of predictors in the fitted polynomial, and N the 

number of data points.  The GCV function penalizes over-fitting (large numbers of 

predictors) and is a very good estimate of the predictive risk (Craven and Wahba, 1979).  

For each combination of α and P, the model is fit, as described in the algorithm 

above, and the GCV score computed; the combination providing the minimum GCV 

score is selected as the optimal one.

 The GCV function can also be used to select the best subset from a suite of 

predictors.  This process involves including different combinations of predictors, along 

with varying α and P values, calculating the GCV, and selecting the combination of 

predictors, α, and P that provide the minimum GCV score as the best parameter 

combination.  The use of GCV for predictor subset selection is fairly recent (Regonda et 

al., 2005a; Regonda et al., 2005b) and has been shown to be quite effective.  GCV may 

also be used for predictor selection in a linear regression framework, in lieu of the 

common stepwise regression approach (Rao and Toutenburg, 1999; Walpole et al., 2002).  

Typically, the best subset of predictors selected by the GCV function contains no 

multicollinearities, but occasionally some remain, in which case one of the predictors is 

eliminated from the subset (Regonda et al., 2005a; Regonda et al., 2005b).  One means of 

eliminating multicollinearity entirely is to perform a principal component analysis on the 

predictor set and use the principal components (which are orthogonal by construction) in 

the subset selection. 

For the UBN seasonal rainfall with eight potential predictors from Tables 1 and 2, 

the GCV score function led to the optimal parameter values of α and P equal to one, and 
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a best subset of five predictors (indicated as bold in Table 2) comprising sea-level 

pressure index, sea-surface temperature index, geopotential height, air temperature index, 

and PDSI. 

6. Model Validation

The forecasts are validated in a cross-validation mode, in which data from a given 

year is dropped and an ensemble forecast is issued by the model fit on the remaining data 

points.  This is repeated for all 40 years (1961-2000), mimicking a prediction-type 

assessment.  Ideally, α and P would be checked and modified for each year in the cross-

validation mode, but dropping one year at a time proved to have little influence, so the 

parameters were held at 1, their optimal values based on the GCV for all years.  

The cross-validated ensemble forecasts are evaluated by two measures: (i) 

correlation coefficients between the median of the ensembles and the observed values, 

and (ii) Rank Probability Skill Scores (RPSS).

The RPSS (Wilks, 1995), a measure of the skill of ensemble forecasts, is a widely 

used probabilistic measure for comparison with prediction by climatology forecasts.  The 

general form of the rank probability score (RPS) equation for any year takes the form: 

∑
=

−=
R

m
mOmF CPCPRPS

1

2
,, )( (4)

where R is the number of categories, CPF,m is the cumulative predicted probability for the 

forecast ensemble (through category m), and CPO,m is the cumulative observed 

probability (also through category m).  This study incorporates three categories of equal 

size, such that the climatological probability of being in each category is 1/3; for the 
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category that was observed the probability is one, and zero elsewhere.   A perfect forecast 

results in RPS equaling zero.  The RPSS is then defined as:

YCLIMATOLOG

FORECAST

RPS
RPSRPSS −= 1 (5)

RPSS values range from +1 to -∞.  A value of +1 represents perfect skill, or a perfect 

forecast, while negative values represent poor skill; any value above zero represents an 

improved forecast over climatology. The RPSS is calculated for each year separately.

7. Results

Using the best set of predictors, cross-validated ensemble predictions of the 

Kiremt season UBN rainfall were generated from the local polynomial and linear 

regression forecast models, shown in  Figures 11 and 12, respectively.  The ensembles of 

each year are shown as box plots in the figures, with the box covering the 25th and 75th

percentile, the horizontal line inside the box representing the median, and whiskers 

extending to the 5th and 95th percentile of the ensembles.  Dotted horizontal lines are also 

included for the 5th, 25th, 50th, 75th, and 95th percentiles from the observed record.  The 

correlation between the median value of the ensemble prediction and the observed values 

are quite strong, at 0.67 and 0.69 for the local polynomial and linear approaches, 

respectively; however, the median RPSS for the 1961-2000 period are 0.39 and 0.25, 

respectively.  This suggests that on average, the local polynomial approach outperforms 

the linear regression approach.  The RPSS for the extreme wettest and driest years (ten 

each) from the local polynomial approach is 0.86 and 0.94, respectively, indicating that 

the ensemble forecast framework provides skilful ensemble forecasts in the extreme 

years, which are of great consequence in resource planning and management.
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The relationships between UBN rainfall and the predictors are largely linear, 

evident by optimal values of α and P equal to one, and similar skill scores between the 

two approaches.  However, subtle nonlinearities exist, apparent in Figure 13, which 

illustrates the relationship between the seasonal precipitation and two leading predictors: 

SST and SLP.  It is the capability of the local polynomial approach to capture such subtle 

features that makes it so attractive.  

The ensembles also provide the forecast of the Probability Density Functions 

(PDF).  Figure 14 demonstrates PDF from the nonparametric ensembles (dashed line) and 

from the observed data (i.e. climatological PDF, solid line) for two wet years (1978 and 

1982) and two dry years (1968 and 1974).  The observed UBN precipitation value for the 

year is indicated by the dotted vertical line.  The PDF are estimated using a 

nonparametric kernel density estimator (Bowman and Azzalini, 1997).  For the wet years, 

the PDF from the forecast ensembles are shifted to the right of the climatological PDF, 

indicative of increased precipitation.  The observed value in 1968 is in the center of the 

ensemble PDF, indicating an excellent fit, while in 1974 the rightward shift is clear but 

not perfect, as the observed value was relatively extreme. Inspection of the dry years 

leads to similar findings, as the PDF are shifted to the left of the climatological PDF, 

indicative of drier conditions. 

The ensembles and PDF provide a structure in which threshold exceedance 

probabilities may be obtained.  For demonstration, thresholds were selected at 1070mm 

(90th percentile) and 805mm (10th percentile) to represent flood and drought conditions, 

respectively.  This implies that climatologically, there is a 10% chance in any given year 

of having a flood or an equal chance of experiencing a drought.  By visual inspection, 
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Figure 14 clearly improves upon this prediction.  Table 3 presents the exceedance (for 

floods) and non-exceedance (for droughts) probabilities, which show considerably higher 

probabilities than climatology.  Note that seasonal precipitation for 1964, 1974, 1982 and 

1987 are outside their respective threshold limits, while 1968 and 1978 are not.  1964 and 

1987 are the wettest and driest seasons in the 1961-2000 record.

Such exceedance probability forecasts, if provided in advance of the Kiremt

season to water managers and decision-makers within the basin, is of tremendous value.  

It allows them to make educated judgments about reservoir operation, crop irrigation, 

conservation measures (droughts), potential emergency response measures (floods), or a 

number of other critical aspects.  Additionally, the value of ensemble forecasts also 

becomes evident for use in streamflow or water balance models, to describe the reaction 

of these systems from a probabilistic standpoint.

Although the skill scores of the seasonal model are good, numerous process 

models within the basin (e.g., water balance, economic, crop) require monthly inputs.  

One methodology to accomplish this involves applying the framework developed here for 

each month and obtaining an ensemble forecast for each month separately.  This can be 

computationally intensive and furthermore, the generated monthly ensemble forecasts 

might not capture the dependence between months.  A better approach is to disaggregate 

the seasonal forecast into monthly values.  To achieve this, K nearest neighbors to the 

seasonal forecast value, ypred, are identified (i.e., historical years that have a similar 

seasonal precipitation magnitude as the forecast value).  A probability metric is created 

by providing maximum weight to the nearest neighbor and least weight to the farthest 

neighbor (Lall and Sharma, 1996), as shown in the following equation:
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Using the metric, one of the K nearest neighbor is selected, say year J.  The monthly 

fractions of the seasonal precipitation in year J (proportion vector) are then multiplied by 

ypred to obtain the monthly disaggregated values.  Since the historical monthly fractions 

must sum to one, the disaggregated values must also sum to the seasonal forecast values.  

Repeating this for each ensemble forecast provides an ensemble of monthly forecasts. 

As a demonstration, Figure 15 illustrates box plots of the ensembles for each 

month of the 1975 Kiremt season, disaggregated using the method described above, with 

observed monthly values shown as dots.  The simulations capture the observed values 

quite well.  This technique is fairly rudimentary and easy to implement, but detailed 

validation is still required; these processes are underway.  Improved nonparametric 

disaggregation techniques (Prairie et al., 2005) can also be used to fully capture the 

correlation between the months.   

8. Summary and Discussion

A framework is proposed for ensemble forecast of Kiremt season (June-

September) precipitation for the upper Blue Nile basin within Ethiopia.  A suite of 

predictors from the land-ocean-atmosphere system are identified that capture various 

aspects of the summer rainfall, including movement of the ITCZ and the large-scale 

ENSO teleconnections.  A nonparametric approach based on local polynomial regression 

is adapted for generating ensemble forecasts.  This also includes use of the GCV function 

for selecting the best subset (five) of predictors out of a suite of eight potential predictors.  
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The ensemble forecasts are generated for each year in a cross-validated mode and skills 

evaluated using the RPSS probabilistic skill score measure.  The forecast ensembles 

demonstrate significant overall skill and very high skills during extreme wet and dry 

years compared to climatological forecast utilized by the Ethiopian National 

Meteorological Services Agency.  A simple nonparametric method for disaggregating the 

seasonal forecasts to monthly values was also outlined.

The nonparametric framework offers a flexible and attractive alternative to 

traditional linear regression.  The ‘local’ estimation method possesses the ability to 

capture any arbitrary relationship structure present in the data, without being required to 

satisfy normality of the variables or being overly influenced by a small number of 

outliers.  

The use of the GCV function for predictor selection is noteworthy.  While it is 

robust, several combinations of predictors provide similarly low GCV scores.  To 

alleviate potential ambiguity between similar models, a multi-model ensemble forecast 

approach could be adopted (Regonda et al., 2005a,b), in which the top few predictor sets 

(and corresponding models) are retained.  Forecast ensembles are then generated from the 

suite of models with similar GCV scores and optimally combined by a weighting scheme.  

This methodology may help to generally improve forecast skill, specifically by 

dampening poor forecasts (1962, 1989, and 1992).  

Other aspects also warrant attention for further study.  To ensure that 

multicollinearities between predictors have been entirely eliminated, a principal 

component analysis on the suite of predictors could be performed, with the ensuing 

principal components used as new predictors in the subset selection.  Along another vein, 
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cross-validated ensemble forecasts could be generated by means of dropping a set of 

years, as opposed to only one year, and assessed with the skill score measures.  This 

approach may prove insightful for predictive capabilities on a reduced dataset.
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Figure Captions

Figure 1: The Upper Blue Nile Basin, Ethiopia

Figure 2: Correlation of CRU and CMAP precipitation data

Figure 3: Contours of the first empirical orthogonal function of Kiremt precipitation data

Figure 4: Kiremt season precipitation and PC1 anomaly time-series

Figure 5: May Palmer Drought Severity Index (a) and March-May Air Temperature (b)

Figure 6: African wind patterns during the March-May (a) and Kiremt (b) seasons

Figure 7: Correlation map of the first principal component of UBN summer precipitation 

and global sea-surface temperatures (shaded region represents 90% significance level)

Figure 8: Correlation map of UBN summer precipitation with March-May sea-surface 

temperatures (shaded regions represent 90% significance level) 

Figure 9: Same as Figure 8 but with sea-level pressures 

Figure 10: Same as Figure 8 but with air temperature 

Figure 11: Local polynomial modeling approach forecast results.  Observed data shown 

as solid line; cross-validated model estimates shown as dashed line and boxes

(a) observed and cross-validated estimates (R2 = +0.67) with horizontal lines at 

percentiles from the observed  seasonal precipitation

(b) box plots of cross-validated ensembles(RPSS median = 0.39) with horizontal lines at 

percentiles from the observed  seasonal precipitation
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Figure 12: Linear modeling approach forecast results.  Observed data shown as solid line; 

cross-validated model estimates shown as dashed line and boxes

(a) observed and cross-validated estimates (R2 = +0.69) with horizontal lines at 

percentiles from the observed  seasonal precipitation

(b) box plots of cross-validated ensembles(RPSS median = 0.25) with horizontal lines at 

percentiles from the observed  seasonal precipitation

Figure 13: Surface plot of Kiremt season precipitation as a function of SST and SLP 

predictors.

Figure 14: PDF for wet (top) and dry (bottom) years.  Climatological PDF shown as solid 

line; ensemble forecast PDF shown as dashed line. The observed precipitation is shown 

as a dotted vertical line.

Figure 15: Box plots of disaggregated monthly forecasts of Kiremt seasonal ensemble 

forecast for 1975 
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Figure 1: The Upper Blue Nile Basin, Ethiopia
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Figure 2: Correlation of CRU and CMAP precipitation data
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Figure 3: Contours of the first empirical orthogonal function of Kiremt precipitation data
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Figure 4: Kiremt season precipitation and PC1 anomaly time-series
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(a) (b)
Figure 5:  May Palmer Drought Severity Index (a) and March-May Air Temperature (b)
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(a) (b)
Figure 6: African wind patterns during the March-May (a) and Kiremt (b) seasons
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Figure 7: Correlation map of the first principal component of UBN summer precipitation 
and global sea-surface temperatures (shaded region represents 90% significance level)
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Figure 8: Correlation map of UBN summer precipitation with March-May sea-surface 
temperatures (R2=+0.53, R2=-0.44, Index: R2=+0.56; shaded regions represent 90% 
significance level) 
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Figure 9: Same as Figure 8 but with sea-level pressures (R2=+0.57, R2=-0.52, Index: 
R2=+0.60)
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Figure 10: Same as Figure 8 but with air temperature (R2=+0.14, R2=-0.29, Index: 
R2=+0.45) 
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Figure 11: Local polynomial modeling approach forecast results.  Observed data shown 
as solid
line; cross-validated model estimates shown as dashed line and boxes
(a) observed and cross-validated estimates (R2 = +0.67) with horizontal lines at 

percentiles from the observed  seasonal precipitation
(b) box plots of cross-validated ensembles(RPSS median = 0.39) with horizontal lines at 

percentiles from the observed  seasonal precipitation
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Figure 12: Linear modeling approach forecast results.  Observed data shown as solid line; 
cross-validated model estimates shown as dashed line and boxes
(a) observed and cross-validated estimates (R2 = +0.69) with horizontal lines at 

percentiles from the observed  seasonal precipitation
(b) box plots of cross-validated ensembles(RPSS median = 0.25) with horizontal lines at 

percentiles from the observed  seasonal precipitation
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Figure 13: Surface plot of Kiremt season precipitation as a function of SST and SLP 
predictors.
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Figure 14: PDF for wet (top) and dry (bottom) years.  Climatological PDF shown as solid 
line; ensemble forecast PDF shown as dashed line. The observed precipitation is shown 
as a dotted vertical line.
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Figure 15: Box plots of disaggregated monthly forecasts of Kiremt seasonal ensemble 
forecast for 1975 
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Table Captions

Table 1: Correlation of Kiremt season precipitation and ENSO climate indices for varying 

sets of leading months; bold values are statistically significant at the 90% level (+ 0.26)

Table 2: Potential large-scale predictors of Kiremt season precipitation; bold represent 

optimal set

Table 3: Exceedance and non-exceedance probabilities for forecasting wet and dry years
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Tables

Table 1: Correlation of Kiremt season precipitation and ENSO climate indices for varying 
sets of leading months; bold values are statistically significant at the 90% level (+ 0.26)

Index JFM FMA MAM

Niño 1+2 -0.19 -0.23 -0.25

Niño 3 -0.19 -0.33 -0.39

SOI 0.22 0.29 0.38
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Table 2: Potential large-scale predictors of Kiremt season precipitation; bold represent 
optimal set

Potential Predictor Region Correlation Value

Sea-level pressure 20.0 - 27.5N, 122.5 - 130W + 0.57

Sea-level pressure 20.0 - 22.5N, 80.0 - 85.0E - 0.51

Sea-level pressure index + 0.60

Sea-surface temperature 25.7N, 155.6 - 157.5W + 0.53

Sea-surface temperature 16.2 – 20.0S, 110.5 – 120.0W - 0.44

Sea-surface temperature index + 0.56

Geopotential height (500mb) 30.0 – 35.0S, 10.0 – 25.0W - 0.48

Outgoing long-wave radiation 1.0 – 4.8S, 48.8 – 52.5E - 0.56

Air temperature 17.5N, 37.5 – 40.0E + 0.14

Air temperature 15.0N, 32.5 – 35.0E - 0.29

Air temperature index + 0.45

Palmer Drought Severity Index 13.75-16.25N, 41.25-43.75E + 0.33
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Table 3: Exceedance and non-exceedance probabilities for forecasting wet and dry years

Year Climatology Linear Approach Local Polynomial Approach

Exceedance (wet) / Non-exceedance (dry) Probability, %

1964(wet) 10.0 39.0 21.0

1968 (wet) 10.0 25.8 34.3

1974 (wet) 10.0 32.6 42.5

1987 (dry) 10.0 42.9 25.2

1978 (dry) 10.0 32.2 30.1

1982 (dry) 10.0 40.8 57.9


