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This chapter deals with methods to estimate parameters of 
linear parametric models using ordinary least squares (OLS). 
The univariate case is first reviewed along with equations for 
the uncertainty in the model estimates as well as in the model 
predictions. Several goodness-of-fit indices to evaluate the 
model fit are also discussed, and the assumptions inherent 
in OLS are highlighted. Next, multiple linear models are 
treated, and several notions specific to correlated regressors 
are presented. The insights which residual analysis provides 
are discussed, and different types of remedial actions to im-
proper model residuals are addressed. Other types of linear 
models such as splines and models with indicator variables 
are discussed. Finally, a real-world case study analysis which 
was meant to verify whether actual field tests supported the 
claim that a refrigerant additive improved chiller thermal 
performance is discussed.

5.1  Introduction

The analysis of observational data or data obtained from 
designed experiments often requires the identification of a 
statistical model or relationship which captures the underly-
ing structure of the system from which the sample data was 
drawn. A model is a relation between the variation of one 
variable (called the dependent or response variable) against 
that of other variables (called independent or regressor va-
riables). If observations (or data) are taken of both respon-
se and regressor variables under various sets of conditions, 
one can build a mathematical model from this information 
which can then be used as a predictive tool under different 
sets of conditions. How to analyze the relationships among 
variables and determine a (if not “the”) optimal relation, falls 
under the realm of regression model building or regression 
analysis.

Models, as stated in Sect. 1.1, can be of different forms, 
with mathematical models being of sole concern in this book. 
These can divided into:

(i)	 parameteric models which can be a single function (or a 
set of functions) capturing the variation of the response 
variable in terms of the regressors. The intent is to iden-
tify both the model function and determine the values of 
the parameters of the model along with some indication 
of their uncertainty; and

(ii)	 nonparametric models where the relationship between 
response and regressors is such that a mathematical mo-
del in the conventional sense is inadequate. Nonpara-
meteric models are treated in Sect. 9.3 in the framework 
of time series models and in Sect. 11.3.2 when dealing 
with artificial neural network models.

The parameters appearing in parametric models can be es-
timated in a number of ways, of which ordinary least squares 
(OLS) is the most common and historically the oldest. Other 
estimation techniques are described in Chap. 10. There is a 
direct link between how the model parameters are estima-
ted and the underlying joint probability distributions of the 
variables, which is discussed below and in Chap. 10. In this 
chapter, only models linear in the parameters are addressed 
which need not necessarily be linear models (see Sect. 1.2.4 
for relevant discussion). However, often, the former are loo-
sely referred to as linear parametric models.

5.2  Regression Analysis

5.2.1  Objective of Regression Analysis

The objectives of regression analysis are: (i) to identify the 
“best” model among several candidates in case the physics 
of the system does not provide an unique mechanistic rela-
tionship, and (ii) to determine the “best” values of the model 
parameters; with “best” being based on some criterion yet to 
be defined. Desirable properties of estimators, which are vie-
wed as random variables, have been described in Sect. 4.7.2, 
and most of these concepts apply to parameter estimation of 
regression models as well.
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5.2.2  Ordinary Least Squares

Once a set of data is available, what is the best model which 
can be fit to the data. Consider the (x, y) set of n data po-
ints shown in Fig. 5.1. The criterion for “best fit” should be 
objective, intuitively reasonable and relatively easy to im-
plement mathematically. One would like to minimize the 
deviations of the points from the prospective regression line. 
The method most often used is the method of least squares 
where, as the name implies, the “best fit” line is interpreted 
as one which minimizes the sum of the squares of the residu-
als. Since it is based on minimizing the squared deviations, 
it is also referred to as the Method of Moments Estimation 
(MME). The most common and widely used sub-class of 
least squares is the ordinary least squares (OLS) where, as 
shown in Fig. 5.1, squared sum of the vertical differences 
between the line and the observation points are minimized, 
i.e., min (D2

1 + D2
2 + · · · + D2

n) . Another criterion for de-
termining the best fit line could be to minimize the sum of 
the absolute deviations, i.e., min (|D1| + |D2| + · · · |Dn|). 
However, the mathematics to deal with absolute quanti-
ties becomes cumbersome and restrictive, and that is why 
historically, the method of least squares was proposed and 
developed. Inferential statistics plays an important part in 

regression model building because identification of the sys-
tem structure via a regression line from sample data has an 
obvious parallel to inferring population mean from sample 
data (discussed in Sect. 4.2.1). The intent of regression is to 
capture or “explain” via a model the variation in y for diffe-
rent x values. Taking a simple mean value of y (see Fig. 5.2a) 
leaves a lot of the variation in y unexplained. Once a model is 
fit, however, the unexplained variation is much reduced as the 
regression line accounts for some of the variation that is due 
to x (see Fig. 5.2b, c). Further, the assumption of normally 
distributed variables, often made in inferential theory, is also 
presumed for the distribution of the population of y values at 
each x value (see Fig. 5.3). Here, one notes that when slices 
of data are made at different values of x, the individual y dis-
tributions are close to normal with equal variance.

5.3  Simple OLS Regression

5.3.1  Traditional Simple Linear Regression

Let us consider a simple linear model with two parameters, 
a and b, given by:

� (5.1)

The parameter ‘a’ denotes the model intercept, i.e., the 
value of y at x = 0, while the parameter ‘b’ is the slope of the 
straight line represented by the simple model (see Fig. 5.4). 
The objective of the regression analysis is to determine the 
numerical values of the parameters a and b which result in 
the model given by Eq. 5.1 able to best explain the variation 
of y about its mean ȳ  as the numerical value of the regressor 
variable x changes. Note that the slope parameter b explains 
the variation in y due to that in x. It does not necessarily 
follow that this parameter accounts for more of the observed 
absolute magnitude in y than does the intercept parameter 
term a. For any y value, the total deviation can be partitioned 
into two pieces: explained and unexplained (recall the AN-
OVA approach presented in Sect. 4.3 which is based on the 
same conceptual approach). Mathematically,

y = a + b · x

Fig. 5.1  Ordinary Least Squares Regression (OLS) is based on finding 
the model parameters which minimize the squared sum of the vertical 
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Fig. 5.2  Conceptual illustration 
of how regression explains or 
reduces unexplained varia-
tion in the response variable. 
It is important to note that the 
variation in the response variable 
is taken in reference to its mean 
value. a total variation (before 
regression), b explained variation 
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� (5.2)

where
yi is the individual response at observation i,
ȳ  the mean value of yi of the n observations,
ŷi  �the value of y estimated from the regression model for 

observation i,
SST �= total sum of squares,
SSE �= error sum of squares or sum of the residuals which 

reflects the variation about the regression line (similar 
to Eq. 4.20 when dealing with ANOVA type of pro-
blems), and

SSR �= regression sum of squares which reflects the amount 
of variation in y explained by the model (similar to tre-
atment sum of squares of Eq. 4.19).

n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(yi − ŷi)2 +
n∑

i=1

(ŷi − ȳ)2

or SST = SSE + SSR

These quantities are conceptually illustrated in Fig. 5.4. 
The sum of squares minimization implies that one wishes to 
minimize SSE, i.e.

� (5.3)

where ε is called the model residuals or error.
From basic calculus, the model residuals are minimized 

when:

The above two equations lead to the following equations 
(called the normal equations):

� (5.4)

where n is the number of observations. This leads to the fol-
lowing expressions of the most “probable” OLS values of a 
and b:

� (5.5a)

� (5.5b)

where

�
(5.6)
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i=1
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Sxx =
n∑

i=1

(xi − x̄)2

Fig. 5.3  Illustration of normally distributed errors with equal variances 
at different discrete slices of the regressor variable values. Normally 
distributed errors is one of the basic assumptions in OLS regression 
analysis. (From Schenck 1969 by permission of McGraw-Hill)
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Fig. 5.4  The value of regression 
in reducing unexplained variation 
in the response variable as illus-
trated by using a single observed 
point. The total variation from 
the mean of the response variable 
is partitioned into two portions: 
one that is explained by the 
regression model and the other 
which is the unexplained devia-
tion, also referred to as model 
residual
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How the least squares regression model reduces the unex-
plained variation in the response variable is conceptually il-
lustrated in Fig. 5.4.

Example 5.3.1:1  Water pollution model between solids re-
duction and chemical oxygen demand
In an effort to determine a regression model between tanne-
ry waste (expressed as solids reduction) and water pollution 
(expressed as chemical oxygen demand), sample data (33 
observation sets) shown in Table 5.1 were collected. Estima-
te the parameters of a linear model.

The regression line is estimated by first calculating the 
following quantities:

Subsequently Eqs. 5.5a and b are used to compute:

1	 From Walpole et al. (1998) by © permission of Pearson Education.

33∑

i

xi = 1104,
33∑

i

yi = 1124,

33∑

i

xi · yi = 41, 355,
33∑

i

x2
i = 41, 086

b =
(33)(41, 355) − (1104)(1124)

(33)(41, 086) − (1104)2 = 0.9036

a =
1124 − (0.903643)(1104)

33
= 3.8296

Thus, the estimated regression line is:

The above data is plotted as a scatter plot in Fig. 5.5a. How 
well the regression model performs compared to the measu-
rements is conveniently assessed from the observed vs pre-
dicted plot such as Fig. 5.5b. Tighter scatter of the data points 
around the regression line indicates more accurate model fit.

The regression line can be used for prediction purposes. 
The value of y at, say, x = 50 is simply:

�


5.3.2  Model Evaluation

(a) The most widely used measure of model adequacy or 
goodness-of-fit is the coefficient of determination R2 where 
0 ≤ R2 ≤ 1:

� (5.7a)

ŷ = 3.8296 + 0.9036 · x

ŷ = 3.8296 + (0.9036)(50) = 49

R2 =
explained variation of y

total variation of y
=

SSR

SST

Table 5.1  Data table for Example 5.3.1
Solids reduc-
tion x (%)

Chemical oxygen 
demand, y (%)

Solids reduc-
tion x (%)

Chemical oxygen 
demand, y (%)

3 5 36 34

7 11 37 36

11 21 38 38

15 16 39 37

18 16 39 36

27 28 39 45

29 27 40 39

30 25 41 41

30 35 42 40

31 30 42 44

31 40 43 37

32 32 44 44

33 34 45 46

33 32 46 46

34 34 47 49

36 37 50 51

36 38

Fig. 5.5  a Scatter plot of data b Plot of observed versus OLS model 
predicted values of the y variable
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For a perfect fit R2 = 1, while R2 = 0 indicates that either the 
model is useless or that no relationship exists. For a univariate 
linear model, R2 is identical to the square of the Pearson corre-
lation coefficient r (see Sect. 3.4.2). R2 is a misleading statistic 
if models with different number of regressor variables are to 
be compared. The reason for this is that R2 does not account 
for the number of degrees of freedom, it cannot but increase 
as additional variables are included in the model even if these 
variables have very little explicative power.

(b) A more desirable goodness-of-fit measure is the cor-
rected or adjusted R̄2, computed as

� (5.7b)

where n is the total number of observation sets, and k is the 
number of model parameters (for a simple linear model, 
k = 2).

Since R̄2  concerns itself with variances and not variation, 
this eliminates the incentive to include additional variables in a 
model which have little or no explicative power. Thus, R̄2 is the 
right measure to use during identification of a parsimonious2 
model when multiple regressors are in contention. However, it 
should not be used to decide whether an intercept is to be added 
or not. For the intercept model, R̄2 is the proportion of varia-
bility measured by the sum of squares about the mean which 
is explained by the regression. Hence, for example, R̄2 = 0.92  
would imply that 92% of the variation in the dependent variable 
about its mean value is explained by the model.

(c) Another widely used estimate of the magnitude of the 
absolute error of the model is the root mean square error 
(RMSE), defined as follows:

� (5.8a)

where SSE is the sum of square error defined as

� (5.8b)

The RMSE is an absolute measure and its range is 
0 ≤ RMSE ≤ ∞. Its units are the same as those of the y variab-
le. It is also referred to as “standard error of the estimate”.

A normalized measure is often more appropriate: the co-
efficient of variation of the RMSE (or CVRMSE or simply 
CV), defined as:

� (5.8c)

Hence, a CV value of say 12% implies that the root mean 
value of the unexplained variation in the dependent variable 
y is 12% of the mean value of y.

2	 Parsimony in the context of regression model building is a term deno-
ting the most succinct model, i.e., one without any statistically super-
fluous regressors.

R̄2 = 1 − (1 − R2)
n − 1

n − k

RMSE =
(

SSE

n − k

)1/2

SSE =
∑

(yi − ŷi)
2 =

∑
(yi − a − b · xi)

2.

CV =
RMSE

ȳ

Note that the CV defined thus is based on absolute errors. 
Hence, it tends to place less emphasis on deviations between 
model predictions and observations which occur at lower nu-
merical values of y than at the high end. Consequently, the 
measure may inadequately represent the goodness of fit of the 
model over the entire range of variation under certain circums-
tances. An alternative definition of CV based on relative mean 
deviations is:

� (5.8d)

If CV and CV* indices differ appreciably for a particular 
model, this would suggest that the model may be inadequate 
at the extreme range of variation of the response variable. 
Specifically, if CV* > CV, this would indicate that the model 
deviates more at the lower range, and vice versa.

(d) The mean bias error (MBE) is defined as the mean 
difference between the actual data values and model predic-
ted values:

� (5.9a)

Note that when a model is identified by OLS, the model MBE 
of the original set of regressor variables used to identify the 
model should be zero (to within round-off errors of the com-
puter). Only when, say, the model identified from a first set of 
observations is used to predict the value of the response va-
riable under a second set of conditions will MBE be different 
than zero. Under such circumstances, the MBE is also called 
the mean simulation or prediction error. A normalized MBE 
(or NMBE) is often used, and is defined as the MBE given by 
Eq. 5.9a divided by the mean value ȳ:

� (5.9b)

Competing models can be evaluated based on the CV and the 
NMBE values; i.e., those that have low CV and NMBE values. 
Under certain circumstances, one model may be preferable to 
another in terms of one index but not the other. The analysts is 
then perplexed as to which index to pick as the primary one. 
In such cases, the specific intent of how the model is going 
to be subsequently applied should be considered which may 
suggest the model selection criterion.

While fitting regression models, there is the possibility of 
“overfitting”, i.e., the model fits part of the noise in the data 
along with the system behavior. In such cases, the model is 
likely to have poor predictive ability which often the analyst 
is unaware of. A statistical index is defined later (Eq. 5.42) 
which can be used to screen against this possibility. A better 

CV ∗ =





1

(n − k)

n∑

i=1

[
(yi − �

yi)

yi

]2





1/2

MBE =

n∑
i=1

(yi−ŷi)

n − k

NMBE =
MBE

ȳ

5.3  Simple OLS Regression
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way to minimize this effect is to randomly partition the data 
set into two (say, in proportion of 80/20), use the 80% por-
tion of the data to develop the model, calculate the internal 
predictive indices CV and NMBE (following Eqs. 5.8c and 
5.9b), use the 20% portion of the data and predict the y va-
lues using the already identified model, and finally calculate 
the external or simulation indices CV and NMBE. The com-
peting models can then be compared, and a selection made, 
based on both the internal and external predictive indices. 
The simulation indices will generally be poorer than the in-
ternal predictive indices; larger discrepancies are suggestive 
of greater over-fitting, and vice versa. This method of mo-
del evaluation which can avoid model over-fitting is referred 
to as holdout sample cross-validation or simply cross-vali-
dation. Note, however, that though the same equations are 
used to compute the CV and NMBE indices, the degrees of 
freedom (df) are different. While df = n - k for computing the 
internal predictive errors where n is the number of obser-
vations used for model building, df = m for computing the 
external indices where m is the number of observations in 
the cross-validation set.

(e) The mean absolute deviation (MAD) is defined as the 
mean absolute difference between the actual data values and 
model predicted values:

� (5.10)

Example 5.3.2:  Using the data from Example 5.3.1 repeat 
the exercise using your spreadsheet program. Calculate, R2, 
RMSE and CV values.

From Eq. 5.2, SSE = 323.3 and SSR = 3713.88. From this 
SST = SSE + SSR = 4037.2.

Then from Eq. 5.7a, R2 = 92.0%, while from Eq. 5.8a, 
RMSE = 3.2295, from which CV = 0.095 = 9.5%.� 

5.3.3 � Inferences on Regression Coefficients  
and Model Significance

Even after the overall regression model is found, one must 
guard against the fact that there may not be a significant rela-
tionship between the response and the regressor variables, in 
which case the entire identification process becomes suspect. 
The F-statistic, which tests for significance of the overall re-
gression model, is defined as:

� (5.11)

MAD =

n∑
i=1

|yi − ŷi|

n − k

F =
variance explained by the regression

variance not explained by the regression

=
SSR

SSE
·

n − k

k − 1

Thus, the smaller the value of F, the poorer the regression 
model. It will be noted that the F-statistic is directly related 
to R2 as follows:

� (5.12)

Hence, the F-statistic can alternatively be viewed as being a 
measure to test the R2 significance itself. In the case of uni-
variate regression, the F-test is really the same as a t-test for 
the significance of the slope coefficient. In the general case, 
the F-test allows one to test the joint hypothesis of whether 
all coefficients of the regressor variables are equal to zero 
or not.

Example 5.3.3:  Calculate the F-statistic for the model iden-
tified in Example 5.3.1. What can you conclude about the 
significance of the fitted model? From Eq. 5.11,

	     F =
(

3713.88

323.3

)
·
(

33 − 2

2 − 1

)
= 356 

which clearly indicates that the overall regression fit is sig-
nificant. The reader can verify that Eq. 5.12 also yields an 
identical value of F.� 

Note that the values of coefficients a and b based on the 
given sample of n observations are only estimates of the true 
model parameters α and β. If the experiment is repeated over 
and over again, the estimates of a and b are likely to vary 
from one set of experimental observations to another. OLS 
estimation assumes that the model residual ε is a random va-
riable with zero mean. Further, it is assumed that the residu-
als εi at specific values of x are randomly distributed, which 
is akin to saying that the distributions shown in Fig. 5.3 at 
specific values of x are normal and have equal variance.

After getting an overall picture of the regression model, it 
is useful to study the significance of each individual regres-
sor on the overall statistical fit in the presence of all other 
regressors. The student t-statistic is widely used for this pur-
pose and is applied to each regression parameter:

For the slope parameter:

� (5.13a)

where the estimated standard deviation of parameter “b” is 
sb = RMSE/

√
Sxx.

For the intercept parameter:

� (5.13b)

where the estimated standard deviation of parameter “a” is

 		  sa = RMSE.




n∑
i

xi
2

n.Sxx




1/2

F =
R2

(1−R2)
·

n − k

k − 1

t =
b − 1

sb

t =
a − 0

sa
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where b and a are the estimated slope and intercept coef-
ficients, β and α the hypothesized true values, and RMSE 
is given by Eq. 5.8a. Estimated standard deviations of the 
coefficients b and a, given by Eqs. 5.13a and b, are usually 
referred to as standard errors of the coefficients. Basically, 
the t-test as applied to regression model building is a for-
mal statistical test to determine how significantly different 
an individual coefficient is from zero in the presence of the 
remaining coefficients. Stated simply, it enables an answer 
to the following question: would the fit become poorer if the 
regressor variable in question is not used in the model at all?

The confidence intervals, assuming the model residuals to 
be normally distributed, are given by:

For the slope:

� (5.14a)

For the intercept:

�
(5.14b)

where tα/2 is the value of the t distribution with df = (n − 2) and 
S

xx
 is defined by Eq. 5.6.

Example 5.3.4:  In Example 5.3.1, the estimated value of 
b = 0.9036. Test the hypothesis that β  = 1.0 as against the al-
ternative that < 1.0.

H
0
: β = 1.0

H
1
: β <1.0

From Eq. 5.6a, S
xx

 = 4152.1. Using Eq. 5.13a, with 
RMSE = 3.2295

	   t =
0.9036 − 1.0

3.2295/
√

4152.18
= −1.92  

with n − 2 = 31 degrees of freedom.
From Table A.4, the one-sided critical t-value for 95% 

CL = 1.697. Since the computed t-value is greater than the 
critical value, one can reject the null hypothesis and conclu-
de that there is strong evidence to support β <1  at the 95% 
confidence level.� 

Example 5.3.5:  In Example 5.3.1, the estimated value of 
a = 3.8296. Test the hypothesis that α  = 0 as against the alter-
native that α  ≠ 0 at the 95% confidence level.

b −
tα/2 · RMSE

√
Sxx

< β < b +
tα/2 · RMSE

√
Sxx

a −
tα/2 · RMSE ·

√
n∑
i

xi
2

√
n · Sxx

< α <

a +
tα/2 · RMSE ·

√
n∑
i

xi
2

√
n · Sxx

H
0
: α = 0

H
1
: α  ≠ 0

Using Eq. 5.13b,

  
t =

3.8296 − 0

3.2295/
√

41, 086/(33)(4152.18)
= 2.17  

with n − 2 = 31 degrees of freedom.
Again, one can reject the null hypothesis, and conclude 

that α  ≠ 0 at 95% CL.� 

Example 5.3.6:  Find the 95% confidence interval for the 
slope term of the linear model identified in Example 5.3.1.

Assuming a two-tailed test, t
0.05/2

 = 2.045 for 31 degrees of 
freedom. Therefore, the 95% confidence interval for β given 
by Eq. 5.14a is:

�



Example 5.3.7:  Find the 95% confidence interval for the in-
tercept term of the linear model identified in Example 5.3.1.

Again, assuming a two-tailed test, and using Eq. 5.14b, 
the 95% confidence interval for α is:

�



5.3.4  Model Prediction Uncertainty

A regression equation can be used to predict future values of 
y provided the x value is within the domain of the original 
data from which the model was identified. One differentiates 
between the two types of predictions (similar to the confi-
dence limits of the mean treated in Sect. 4.2.1.b):

(a) mean response or standard error of regression where 
one would like to predict the mean value of y for a large 
number of repeated x

0
 values. The mean value is directly de-

duced from the regression equation while the variance is:

� (5.15)

Note that the first term within the brackets, namely (MSE/n) 
is the standard error of the mean (see Eq. 4.2) while the other 
term is a result of the standard error of the slope coefficient. 
The latter has the effect of widening the uncertainty bands at 
either end of the range of variation of x.

0.9036 −
(2.045)(3.2295)

(4152.18)1/2 < β < 0.9036 +
(2.045)(3.2295)

(4152.18)1/2

0.8011 < β < 1.0061

3.8296 −
(2.045)(3.2295)

√
41,086

[(33)(4152.18)]1/2 < α <

3.8296 +
(2.045)(3.2295)

√
41,086

[(33)(4152.18)]1/2

0.2131 < α < 7.4461

σ 2(ŷ0) = MSE ·
[

1

n
+

(x0 − x̄)2

Sxx

]

5.3  Simple OLS Regression
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(b) individual or specific response or standard error of 
prediction where one would like to predict the specific value 
of y for a specific value x

0
. This error is larger than the er-

ror in the mean response by an amount equal to the RMSE. 
Thus,

� (5.16)

Finally, the 95% CL for the individual response at level x
0
 

is:

� (5.17)

where t
0.05/2

 is the value of the t-student distribution at a sig-
nificance level of 0.05 for a two-tailed error distribution. It is 
obvious that the prediction intervals for individual responses 
are wider than those of the mean response called confidence 
levels (see Fig. 5.6). Note that Eqs. 5.16 and 5.17 strictly ap-
ply when the errors are normally distributed.

Some texts state that the data set should be at least five to 
eight times larger than the number of model parameters to be 
identified. In case of short data sets, OLS may not yield ro-
bust estimates of model uncertainty and resampling methods 
are advocated (see Sect. 10.6.2).

Example 5.3.8:  Calculate the 95% confidence limits (CL) 
for predicting the mean response for x = 20.

First, the regression model is used to calculate ŷ0  at 
x

0
 = 20:

Using Eq. 5.15, 

σ (ŷ0) = (3.2295)

[
1

33
+

(20 − 33.4545)2

4152.18

]1/2

= 0.87793

Further, from Table A.4, t
0.05/2

 = 2.04 for d.f. = 33–2 = 31. 
Using Eq. 5.15 yields the confidence interval for the mean 
response

σ 2(ŷ0) = MSE ·
[

1 +
1

n
+

(x0 − x̄)2

Sxx

]

y0 = ŷ0 ± t0.05/2 · σ (ŷ0)

ŷ0 = 3.8296 + (0.9036)(20) = 21.9025

�



 

Example 5.3.9:  Calculate the 95% prediction limits (PL) 
for predicting the individual response for x = 20.

Using Eq. 5.16,  

σ (ŷ0) = (3.2295)

[
1 +

1

33
+

(20 − 33.4545)2

4152.18

]1/2

= 3.3467

Further, t
0.05/2

 = 2.04. Using Eq. 5.17 yields

or�



5.4  Multiple OLS Regression

Regression models can be classified as:
(i)	 single variate or multivariate, depending on whether 

only one or several regressor variables are being consi-
dered;

(ii)	 single equation or multi-equation depending on whet-
her only one or several response variables are being 
considered; and

(iii)	 linear or non-linear, depending on whether the mo-
del is linear or non-linear in its function. Note that 
the distinction is with respect to the parameters (and 
not its variables). Thus, a regression equation such as 
y = a + b · x + c · x2 is said to be linear in its parameters 
{a, b, c} though it is non-linear in the regressor variable 

21.9025 − (2.04)(0.87793) < µ(ŷ20) < 21.9025

+ (2.04)(0.87793)

or,

20.112 < µ(ŷ20) < 23.693 at 95% CL.

21.9025 − (2.04)(3.3467) < ŷ20 <

21.9025 + (2.04)(3.3467)

or,

15.075 < ŷ20 < 28.730.

21.9025 − (2.04)(3.3467) < ŷ20 <

21.9025 + (2.04)(3.3467)

or,

15.075 < ŷ20 < 28.730.

Fig. 5.6  95% confidence inter-
vals and 95% prediction intervals 
about the regression line

Solids Reduction

0

10

20

30

40

50

60

O
xy

ge
n 

D
em

an
d

Confidence intervals

Prediction intervals

0 10 20 30 40 50 60

                        



149

x (see Sect. 1.2.3 for a discussion on classification of 
mathematical models).

Certain simple single variate equation models are shown 
in Fig. 5.7. Frame (a) depicts simple linear models (one with 
a positive slope and another with a negative slope), while (b) 
and (c) are higher order polynomial models which, though 
non-linear in the function, are models linear in their parame-
ters. The other figures depict non-linear models. Because of 
the relative ease in linear model building, data analysts often 
formulate a linear model even if the relationship of the data 
is not strictly linear. If a function such as that shown in frame 
(d) is globally non-linear, and if the domain of the experi-
ment is limited say to the right knee of the curve (bounded by 

points c and d), then a linear function in this region could be 
postulated. Models tend to be preferentially framed as linear 
ones largely due to the simplicity in the subsequent analysis 
and the prevalence of solution methods based on matrix al-
gebra.

5.4.1 � Higher Order Linear Models: Polynomial, 
Multivariate

When more than one regressor variable is known to influence 
the response variable, a multivariate model will explain more 
of the variation and provide better predictions than a single 

Fig. 5.7  General shape of re-
gression curves. (From Shannon 
1975 by © permission of Pearson 
Education)
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variate model. The parameters of such a model need to be 
identified using multiple regression techniques. This section 
will discuss certain important issues regarding multivariate, 
single-equation models linear in the parameters. For now, the 
treatment is limited to regressors which are uncorrelated or 
independent. Consider a data set of n readings that include k 
regressor variables. The corresponding form, called the ad-
ditive multiple linear regression model, is:

� (5.18a)

where ε is the error or unexplained variation in y. Note the 
lack of any interaction terms, and hence the term “additive”. 
The simple interpretation of the model parameters is that β

i
 

measures the unit influence of x
i
 on y (i.e., denotes the slope 

dy

dxi
). Note that this is strictly true only when the variables 

are really independent or uncorrelated, which, often, they are 
not.

The same model formulation is equally valid for a k-th 
degree polynomial regression model which is a special case 
of Eq. 5.18a with x

1
 = x, x

2
 = x2 …

� (5.19)

Let x
ij
 denote the ith observation of parameter j. Then Eq. 

5.18a can be re-written as

� (5.18b)

Often, it is most convenient to consider the “normal” trans-
formation where the regressor variables are expressed as a 
difference from the mean (the reason why this form is im-
portant will be discussed in Sect. 6.3 while dealing with 
experimental design methods). Specifically, Eq. 5.18a trans-
forms into

� (5.18c)

An important special case is the quadratic regression model 
when k = 2. The straight line is now replaced by parabolic 

y = β0 + β1x1 + β2x2 + · · · + βkxk + ε

y = β0 + β1x + β2x2 + · · · + βk xk + ε

yi = β0 + β1xi1 + β2xi2 + · · · + βk xik + εi

y =β0
′ + β1(x1 − x̄1) + β2(x2 − x̄2)

+ · · · + βk (xk − x̄k ) + ε

curves depending on the value of β (i.e., either positive or ne-
gative). Multivariate model development utilizes some of the 
same techniques as discussed in the single variable case. The 
first step is to identify all variables that can influence the re-
sponse as predictor variables. It is the analyst’s responsibility 
to identify these potential predictor variables based on his or 
her knowledge of the physical system. It is then possible to 
plot the response against all possible predictor variables in 
an effort to identify any obvious trends. The greatest sing-
le disadvantage to this approach is the sheer labor involved 
when the number of possible predictor variables is high.

A situation that arises in multivariate regression is the con-
cept of variable synergy, or commonly called interaction bet-
ween variables (this is a consideration in other problems; for 
example, when dealing with design of experiments). This oc-
curs when two or more variables interact and impact system 
response to a degree greater than when the variables operate 
independently. In such a case, the first-order linear model 
with two interacting regressor variables takes the form:

� (5.20)

How the interaction parameter affects the shape of the fa-
mily of curves is illustrated in Fig. 5.8 . The origin of this 
model function is easy to derive. The lines for different 
values of regressor x

1
 are essentially parallel, and so the 

slope terms for both models are equal. Let the model with 
the first regressor be: y = a′ + bx1,  while the intercept be 
given by: a′ = f (x2) = a + cx2.  Combining both equa-
tions results in: y = a + bx1 + cx2.  This corresponds 
to Fig. 5.8a. For the interaction case, both the slope and 
the intercept terms are function of x

2
. Hence, representing 

a′ = a + bx1 and b′ = c + dx1,  then:

which is identical in structure to Eq. 5.20.
Simple linear functions have been assumed above. It is 

straightforward to derive expressions for higher order mo-
dels by analogy. For example, the second-order (or quadra-
tic) model without interacting variables is:

y = β0 + β1x1 + β2x2 + β3x1 · x2 + ε

y = a + bx1 + (c + dx1)x2 = a + bx1 + cx2 + dx1x2

Fig. 5.8  Plots illustrating the 
effect of interaction among the 
regressor variables. a Non-inter-
acting. b Interacting
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� (5.21)

For a second order model with interacting terms, the corre-
sponding expression can be derived as follows:

Consider the linear polynomial model with one regressor:

� (5.22)

If the parameters {b
0
, b

1
, b

2
} can themselves be expressed 

as second-order polynomials of another regressor x
2
, the full 

model which has nine regression parameters is:
			                 

.

� (5.23)

The most general additive model, which imposes little struc-
ture to the relationship is given by:

� (5.24)

where the form of f
i 
( x

i
) are unspecified.

Note that synergistic behavior can result in two or more 
variables working together to “overpower” another variab-
le’s prediction capability. As a result, it is necessary to al-
ways check the importance (the relative value of either the 
t- or F-values) of each individual predictor variable while 
performing multivariate regression. Those variables with t- 
or F-values that are insignificant should be omitted from the 
model and the remaining predictors used to estimate the mo-
del parameters. The stepwise regression method described in 
Sect. 5.7.4 is based on this approach.

5.4.2  Matrix Formulation

When dealing with multiple regression, it is advantageous 
to resort to matrix algebra because of the compactness and 
ease of manipulation it offers without loss in clarity. Though 
the solution is conveniently provided by a computer, a basic 
understanding of matrix formulation is nonetheless useful. 
In matrix notation (with y’ denoting the transpose of y), the 
linear model given by Eq. 5.18 can be expressed as follows 
(with the matrix dimension shown in subscripted brackets):

� (5.25)

where p is the number of parameters in the model = k + 1 (for 
a linear model), n is the number of observations
and

y = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + ε

y = b0 + b1x1 + b2x1
2

y = b00 + b10x1 + b01x2 + b11x1x2

+ b20x
2
1 + b02x

2
2 + b21x

2
1x2

+ b12x1x
2
2 + b22x

2
1x2

2

y = β0 + f1(x1) + f2(x2) + · · · + fk(xk) + ε

Y(n,1) = X(n,p)β(p,1) + ε(n,1)

� (5.26a)

and

� (5.26b)

The descriptive measures applicable for a single variable can 
be extended to multivariables of order p (= k + 1), and written 
in compact matrix notation.

5.4.3  OLS Parameter Identification

The approach involving minimization of SSE for the uni-
variate case (Sect. 5.3.1) can be generalized to multivariate 
linear regression. Here, the parameter set β is to be identified 
such that the sum of squares function L is minimized:

� (5.27)

or,

� (5.28)

which leads to the system of normal equations

� (5.29)

From here,

� (5.30)

provided matrix X is not singular and where b is the least 
square estimator matrix of β.

Note that X’X is called the variance-covariance matrix 
of the estimated regression coefficients. It is a symmetrical 
matrix with the main diagonal elements being the sum of 
squares of the elements in the columns of X (i.e., the vari-
ances) and the off-diagonal elements being the sum of the 
cross-products (i.e., the covariances). Specifically,

x′x =





n
n∑

i=1
xi1 · · ·

n∑
i=1

xik

n∑
i=1

xi1

n∑
i=1

x2
i1 · · ·

n∑
i=1

xi1 · xik

· · · · · · · · · · · ·
n∑

i=1
xik

n∑
i=1

xik · xi1 · · ·
n∑

i=1
x2

ik





.

�

(5.31)

Y′ = [y1 y2 . . . yn], β ′ = [β0 β1 . . . βk],

ε′ = [ε1 ε2 . . . εn]

X =





1 x11 · · · x1k

1 x21 · · · · · ·
· · · · · · · · · · · ·
1 xn1 · · · xnk



 .

L =
n∑

i=1

ε2
i = ε′ε = (Y − Xβ)′(Y − Xβ)

∂L

∂β
= −2X′Y + 2X′Xβ = 0

X′Xb = X′Y.

b = (X′X)−1X′Y

5.4  Multiple OLS Regression
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Under OLS regression, b is an unbiased estimator of β with 
the variance-covariance matrix var(b) given by:

� (5.32)

where σ2 is the mean square error of the model error terms 

                   = (sum of square errors)/(n − p)� (5.33)

An unbiased estimator of σ2 is s2, where

� (5.34)

For predictions within the range of variation of the original 
data, the mean and individual response values are normally 
distributed with the variance given by the following:
(a)	 For the mean response at a specific set of x

0
 values, cal-

led the confidence level, under OLS

� (5.35)

(b)	 The variance of an individual prediction, called the pre-
diction level, is

�
(5.36)

where 1 is a column vector of unity.
Confidence limits at a significance level α are:

� (5.37)

Example 5.4.1:  Part load performance of fans (and pumps)
Part-load performance curves do not follow the idealized fan 
laws due to various irreversible losses. For example, decrea-
sing the flow rate by half of the rated flow does not result in a 
1/8th decrease in its rated power consumption. Hence, actual 
tests are performed for such equipment under different levels 
of loading. The performance tests of the flow rate and the 
power consumed are then normalized by the rated or 100% 
load conditions called part load ratio (PLR) and fractional 
full-load power (FFLP) respectively. Polynomial models can 
then be fit between these two quantities. Data assembled in 
Table 5.2 were obtained from laboratory tests on a variable 
speed drive (VSD) control which is a very energy efficient 
control option.
(a)	 What is the matrix X in this case if a second or-

der polynomial model is to be identified of the form 
y = β0 + β1x1 + β2x

2
1 ?

var(b) = σ 2(X′X)−1

s2 =
ε′ε

n − p
=

y′y − b′x′y

n − p
=

SSE

n − p

var(ŷ0) = s2 [
X0(X′X)−1X′

0

]

var(ŷ0) = s2
[
1 + X0(X′X)−1X′

0

]

y0 ± t(n − k, α/2) · var1/2(ŷ0)

(b)	 Using the data given in the table, identify the model and 
report relevant statistics on both parameters and overall 
model fit.

(c)	 Compute the confidence bands and the prediction bands 
at 0.05 significance level for the response at values of 
PLR = 0.2 and 1.00 (i.e., the extreme points).

Solution 
(a)	 The independent variable matrix X given by Eq. 5.26b is:

		  X =





1 0.2 0.05
1 0.3 0.11
1 0.4 0.19
1 0.5 0.28
1 0.6 0.39
1 0.7 0.51
1 0.8 0.68
1 0.9 0.84
1 1 1





(b)	 The results of the regression are shown below:

Analysis of Variance

Goodness-of-fit R2 = 99.9%, Adjusted R2 = 99.9%, RMSE = 
0.009246

Mean absolute error (MAD) = 0.00584. The equation of 
the fitted model is (with appropriate rounding)

Since the P-value in the ANOVA table is less than 0.05, the-
re is a statistically significant relationship between FFLP and 
PLR at the 95% confidence level. However, the p-value of the 
constant term is large, and a model without an intercept term 
is probably more appropriate; thus, such an analysis ought to 
be performed, and its results evaluated. The values shown are 
those provided by the software package. There are too many 
significant decimals, and so the analyst should round these off 
appropriately while reporting the results (as shown above).

(c) The 95% confidence and the prediction intervals are 
shown in Fig. 5.9. Because the fit is excellent, these are very 

FFLP = −0.0205 + 0.1792∗PLR + 0.8506∗PLR2

Table 5.2  Data table for Example 5.4.1

PLR 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FFLP 0.05 0.11 0.19 0.28 0.39 0.51 0.68 0.84 1.00

Parameter Estimate Standard error t-statistic P-value

CONSTANT − 0.0204762 − 0.0173104 − 1.18288 0.2816

PLR 0.179221 0.0643413 2.78547 0.0318

PLR^2 0.850649 0.0526868 16.1454 0.0000

Source Sum of squares Df Mean square F-ratio P-value

Model 0.886287 2 0.443144 5183.10 0.0000

Residual 0.000512987 6 0.0000854978

Total 
(Corr.)

0.8868 8
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narrow and close to each other. The predicted values as well 
as the 95% CL and PL for the two data points are given in 
the table below. Note that the uncertainty range is relatively 
much larger at the lower value than at the higher range.�



Example 5.4.2:  Table 5.3 gives the solubility of oxygen in 
water in (mg/L) at 1 atm pressure for different temperatures 
and different chloride concentrations in (mg/L).
(a)	 Plot the data and formulate two different models to be 

evaluated
(b)	 Evaluate both models and identify the better one. Give 

justification for your choice
(c)	 Report pertinent statistics for model parameters as well 

as overall model fit

(a)	 The above data is plotted in Fig. 5.10a. One notes that 
the series of plots are slightly non-linear but parallel 
suggesting a higher order model without interaction 
terms. Hence, first order and second order polynomial 
models without interaction are logical models to inves-
tigate.

(b1) Analysis results of the first order model without in-
teraction term:

R2 = 96.83%, Adjusted R2 = 96.57%, RMSE = 0.41318

Analysis of Variance

 

 

 

 

Parameter Estimate Standard error t-statistic P-value

CONSTANT 13.6111 0.175471 77.5686 0.0000

Chloride 
Concentration

− 0.000109857 0.000013968 − 7.86489 0.0000

Temperature − 0.206786 0.00780837 − 26.4826 0.0000

 

Source Sum of 
squares

Df Mean 
square

F-ratio P-value

Model 130.289 2 65.1445 381.59 0.0000

Residual 4.26795 25 0.170718

Total (Corr.) 134.557 27

 

 

Fig. 5.9  Plot of fitted model with 95% CL and 95% PL bands
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Predicted 95% Prediction Limits 95% Confidence Limits

x y Lower Upper Lower Upper

0.2 0.0493939 0.0202378 0.0785501 0.0310045 0.0677834

1.0 1.00939 0.980238 1.03855 0.991005 1.02778

Table 5.3  Solubility of oxygen in water (mg/L) with temperature and 
chloride concentration
Temperature (°C) Chloride concentration in water (mg/L)

0 5,000 10,000 15,000

0 14.62 13.73 12.89 12.10

5 12.77 12.02 11.32 10.66

10 11.29 10.66 10.06 9.49

15 10.08 9.54 9.03 8.54

20 9.09 8.62 8.17 7.75

25 8.26 7.85 7.46 7.08

30 7.56 7.19 6.85 6.51

            

Fig. 5.10  a Plot of data. b Residual pattern for the first order model. c 
Residual pattern for the second order model
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The equation of the fitted model is:
Solubility = 13.6111 − 0.000109857 * Chloride Concen-

tration − 0.206786 * Temperature
The model has excellent R2 with all coefficients being sta-

tistically significant, but the model residuals are very ill-be-
haved since a distinct pattern can be seen (Fig. 5.10b). This 
issue of how model residuals can provide diagnostic insights 
into model building will be explored in detail in Sect. 5.6.

(b2) Analysis results for the second order model without 
interaction term:

The OLS regression results in R2 = 99.26%, Adjus-
ted R2 = 99.13%, RMSE = 0.20864, Mean absolute er-
ror = 0.14367. This model is distinctly better with higher R2 
and lower RMSE. Except for one term (the square of the 
concentration), all parameters are statistically significant. 
The residual pattern is less distinct, but the residuals are still 
patterned (Fig. 5.10c). It would be advisable to investiga-
te other functional forms, probably non-linear or based on 
some mechanistic insights.

Analysis of Variance

5.4.4  Partial Correlation Coefficients�



The simple correlation coefficient between two variables has 
already been introduced previously (Sect. 3.4.2). Consider 
the multivariate linear regression (MLR) model given by 
Eq. 5.18. If the regressors are uncorrelated, then the simple 
correlation coefficients provide a direct indication of the in-
fluence of the individual regressors on the response variable. 
Since regressors are often “somewhat” correlated, the con-
cept of the simple correlation coefficient can be modified to 
handle such interactions. This leads to the concept of partial 
correlation coefficients. Assume a MLR model with only 
two regressors: x

1
 and x

2
. The procedure to compute the par-

tial correlation coefficient ryx1  between y and x
1
 will make 

the concept clear:
Step 1:	 Regress y vs x2 so as to identify a prediction model 

for ŷ

Step 2:	 Regress x1 vs x2 so as to identify a prediction model 
for x̂1

Step 3:	 Compute new variables (in essence, the model resi-
duals): y∗ = y − ŷ and x∗

1 = x1 − x̂1

Step 4:	 The partial correlation ryx1 between y and x1 is the 
simple correlation coefficient between y∗ and x1

∗

Note that the above procedure allows the linear influence 
of x

2
 to be removed from both y and x

1
, thereby enabling the 

partial correlation coefficient to describe only the effect of 
x

2
 on y which is not accounted for by the other variables in 

the model. This concept plays a major role in the process of 
stepwise model identification described in Sect. 5.7.4.

5.4.5  Beta Coefficients and Elasticity

Beta coefficients β* are occasionally used to make statements 
about the relative importance of the regressor variables in 
a multiple regression model (Pindyck and Rubinfeld 1981). 
These coefficients are the parameters of a linear regression 
model with each variable normalized by subtracting its mean 
and dividing by its standard deviation:

� (5.38)

or

The β* matrix can be directly deduced from the original slope 
parameter “b” of the un-normalized MLR model as:

� (5.39)

For example, the beta coefficient β* = 0.7 can be interpreted to 
mean that one standard deviation in the regressor variable le-
ads to a 0.7 standard deviation in the dependent variable. For 
a two-variable model, β* is the simple correlation between 
the two variables. The rescaling associated with the normal-
ized regression makes it possible to compare the individual 
values of β* directly, i.e., the relative importance of the diffe-
rent regressors can be directly evaluated against each other, 
provided the regressors are uncorrelated with each other. A 
variable with a high β* coefficient should account for more 
of the variance in the response variable (variance is not to be 
confused with contribution). The square of the β* weights are 
indicative of the relative effects of the respective variables on 
the variation of the response variable.

The beta coefficients indicate or represent the marginal 
effect of the standardized regressors on the standardized 
response variable. Often, one is interested in deducing the 
effect of a fractional (or percentage) change of a regressor j 
on the dependent variable. This is provided by the elasticity 

y − ȳ

σy

= β∗
1
x1 − x̄1

σx1
+ β∗

2
x2 − x̄2

σx2
+ · · · ε

y∗ = β∗
1 x1

∗ + β∗
2 x2

∗ + · · · ε

β∗ = b ·
σx

σy

Parameter Estimate Standard error t-statistic P-value

CONSTANT 14.1183 0.112448 125.554 0.0000

Temperature − 0.325 0.0142164 − 22.8609 0.0000

Chloride 
concentration

− 0.000118643 0.0000246866 − 4.80596 0.0001

Temperature^2 0.00394048 0.000455289 8.65489 0.0000

Chloride con-
centration^2

5.85714E-10 1.57717E-9 0.371371 0.7138

Source Sum of 
squares

Df Mean square F-ratio P-value

Model 133.556 4 33.3889 767.02 0.0000

Residual 1.0012 23 0.0435305

Total (Corr.) 134.557 27



155

of y with respect to say x
j 
which

 
is usually evaluated at their 

mean values as:

� (5.40)

Elasticities can take both positive or negative values. Large 
values of elasticity imply that the regressor variable is very 
responsive to changes in the regressor variables. For non-li-
near functions, elasticities can also be calculated at the point 
of interest rather than at the mean point. The interpretation 
of elasticities is straightforward. If E

j 
= 1.5, this implies that a 

1% increase in the mean of the regressor variable will result 
in a 1.5% increase in y.

Example 5.4.3:  Beta coefficients for ascertaining import-
ance of driving variables for chiller thermal performance

The thermal performance of a centrifugal chiller is cha-
racterized by the Coefficient of Performance (COP) which is 
the dimensionless ratio of the cooling thermal capacity (Q

ch
) 

and the compressor electric power (P
comp

) in consistent units. 
A commonly used performance model for the COP is one 
with three regressors, namely the cooling load Q

ch
, the con-

denser inlet temperature T
cdi

 and chiller leaving temperature 
T

cho
 (see Fig. 5.11). The condenser and evaporator tempera-

tures shown are those of the refrigerant as it changes phase.
A data set of 107 performance points from an actual 

chiller was obtained whose summary statistics are shown in 

Ej = bj ·
x̄j

ȳ
≈

∂y

ȳ

/∂xj

x̄j

the table below. An OLS regression yielded a model with 
R2 = 90.1% whose slope coefficients b

j
 are also shown in 

Table 5.4 along with the beta coefficients and the elasticity 
computed from Eqs. 5.39 and 5.40 respectively. One would 
conclude looking at the elasticity values that T

cdi
 has the most 

influence on COP followed by Q
ch

, while that of T
cho

 is very 
small. A 1% increase in Q

ch
 increases COP by 0.431% while 

a 1% increase in T
cdi

 would decrease COP by 0.603%. The 
beta coefficients, on the other hand, take into account the 
range of variation of the variables. For example, the load va-
riable Q

ch
 can change from 20 to 100% while T

cdi
 usually 

changes only by 15°C or so. Thus, beta coefficients express 
the change in the COP of 0.839 in terms of one standard de-
viation change in Q

ch
 (i.e., a load change of 88.1 kW) while a 

comparable one standard deviation change in T
cdi

 (of 4.28°C) 
would result in a decrease of 0.496 in COP.� 

Fig. 5.11  Sketch of a flooded-
type centrifugal chiller with two 
water loops showing the various 
regressors often used to develop 
the performance model for COP

Pcomp

Cooling water loop

condenser

evaporator compressor

Tcho Chilled water loop

Tcdi

Qch

Cond. temp

Evap. temp

orifice
plate

3

4

2

1

                        

Table 5.4  Associated statistics of the four variables, results of the OLS 
regression and beta coefficients

Response Regressors

COP Q
ch

 (kW) T
cdi

 (°C) T
cho

 (°C)

Mean 3.66 205.8  23.66   7.37

St. dev 0.806   88.09    4.283   2.298

Min 2.37   86  16.01   3.98

Max 4.98 361.4  29.95 10.94

Slope coeff. b     0.0077 − 0.0933   0.0354

beta_coeff. (Eq. 5.39)     0.839 − 0.496   0.101

Elasticity (Eq. 5.40)     0.431 − 0.603   0.071

5.4  Multiple OLS Regression
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5.5  Assumptions and Sources of Error During 
OLS Parameter Estimation

5.5.1  Assumptions

The ordinary least square (OLS) regression method:
(i)	 enables simple or multiple linear regression models to 

be identified from data, which can then be used for fu-
ture prediction of the response variable along with its 
uncertainty bands, and

(ii)	 allows statistical statements to be made about the esti-
mated model parameters.

No statistical assumptions are used to obtain the OLS es-
timators for the model coefficients. When nothing is known 
regarding measurement errors, OLS is often the best choice 
for estimating the parameters. However, in order to make sta-
tistical statements about these estimators and the model pre-
dictions, it is necessary to acquire information regarding the 
measurement errors. Ideally, one would like the error terms 
ε

i
 to be normally distributed, without serial correlation, with 

mean zero and constant variance. The implications of each of 
these four assumptions, as well as a few additional ones, will 
be briefly addressed below since some of these violations 
may lead to biased coefficient estimates as well as distorted 
estimates of the standard errors, confidence intervals, and 
statistical tests.
(a)	 Errors should have zero mean: If this is not true, the 

OLS estimator of the intercept will be biased. The im-
pact of this assumption not being correct is generally 
viewed as the least critical among the various assump-
tions. Mathematically, this implies that expected value 
E( εi) = 0.

(b)	 Errors should be normally distributed: If this is not true, 
statistical tests and confidence intervals are incorrect for 
small samples though the OLS coefficient estimates are 
unbiased. Figure 5.3 which illustrates this behavior has 
already been discussed. This problem can be avoided 
by having large samples, and verifying that the model is 
properly specified.

(c)	 Errors should have constant variance: This violation 
of the basic OLS assumption results in increasing the 
standard errors of the estimates and widening the model 
prediction confidence intervals (though the OLS esti-
mates themselves are unbiased). In this sense, there is 
a loss in statistical power. This condition is expressed 
mathematically as, var (y

i
) = σ2. This issue is discussed 

further in Sect. 5.6.3.
(d)	 Errors should not be serially correlated: This violation 

is equivalent to have less independent data, and also 
results in a loss in statistical power with the same con-
sequences as (c) above. Serial correlations may occur 
due to the manner in which the experiment is carried 

out. Extraneous factors, i.e., factors beyond our control 
(such as the weather, for example) may leave little or 
no choice as to how the experiments are executed. An 
example of a reversible experiment is the classic pipe-
friction experiment where the flow through a pipe is 
varied so as to cover both laminar and turbulent flows, 
and the associated friction drops are observed. Gradu-
ally increasing the flow one way (or decreasing it the 
other way) may introduce biases in the data which will 
subsequently also bias the model parameter estimates. 
In other circumstances, certain experiments are irrever-
sible. For example, the loading on a steel sample to pro-
duce a stress-strain plot has to be performed by gradu-
ally increasing the loading till the sample breaks, one 
cannot proceed in the other direction. Usually the biases 
brought about by the test sequence are small, and this 
may not be crucial. In mathematical terms, this condi‑ 
tion, for a first order case, can be written as E(εi .εi+1) = 0. 
This assumption, which is said to be hardest to verify, is 
further discussed in Sect. 5.6.4.

(e)	 Errors should be uncorrelated with the regressors: 
The consequences of this violation result in OLS co-
efficient estimates being biased and the predicted OLS 
confidence intervals understated, i.e., narrower. This 
violation is a very important one, and is often due to 
“mis-specification error” or underfitting. Omission of 
influential regressor variables and improper model for-
mulation (assuming a linear relationship when it is not) 
are likely causes. This issue is discussed at more length 
in Sect. 10.4.1.

(f)	 Regressors should not have any measurement error: 
Violation of this assumption in some (or all) regressors 
will result in biased OLS coefficient estimates for those 
(or all) regressors. The model can be used for prediction 
but the confidence limits will be understated. Strictly 
speaking, this assumption is hardly ever satisfied sin-
ce there is always some measurement error. However, 
in most engineering studies, measurement errors in the 
regressors are not large compared to the random errors 
in the response, and so this violation may not have im-
portant consequences. As a rough rule of thumb, this 
violation becomes important when the errors in x re-
ach about a fifth of the random errors in y, and when 
multi-collinearity is present. If the errors in x are 
known, there are procedures which allow unbiased co-
efficient estimates to be determined (see Sect. 10.4.2). 
Mathematically, this condition is expressed as  
var (x

i
) = 0.

(g)	 Regressor variables should be independent of each ot-
her: This violation applies to models identified by mul-
tiple regression when the regressor variables are corre-
lated among each other (called multicollinearity). This 
is true even if the model provides an excellent fit to the 
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data. Estimated regression coefficients, though unbia-
sed, will tend to be unstable (their values tend to change 
greatly when a data point is dropped or added), and the 
OLS standard errors and the prediction intervals will 
be understated. Multicollinearity is likely to be problem 
only when one (or more) of the correlation coefficients 
among the regressors exceeds 0.85 or so. Sect. 10.3 
deals with this issue at more length.

5.5.2  Sources of Errors During Regression

Perhaps the most crucial issue during parameter identificati-
on is the type of measurement inaccuracy present. This has a 
direct influence on the estimation method to be used. Though 
statistical theory has more or less neatly classified this beha-
vior into a finite number of groups, the data analyst is often 
stymied by data which does not fit into any one category. 
Remedial action advocated does not seem to entirely remove 
the adverse data conditioning. A certain amount of experien-
ce is required to surmount this type of adversity, which, furt-
her, is circumstance-specific. As discussed earlier, there can 
be two types of errors:
(a)	 measurement error. The following sub-cases can be 

identified depending on whether the error occurs:
(i)	 in the dependent variable, in which case the model 

form is:

� (5.41a)

(ii)	 in the regressor variable, in which case the model 
form is:

� (5.41b)

(iii)	 in both dependent and regressor variables:

� (5.41c)

	 Further, the errors δ and γ (which will be jointly repre-
sented by ε) can have an additive error, in which case, 
εi �= f (yi, xi),  or a multiplicative error: εi = f (yi, xi),  
or worst still, a combination of both. Section 10.4.1 di-
scusses this issue further.

(b)	 model misspecification error. How this would affect 
the model residuals ε

i
 is difficult to predict, and is ex-

tremely circumstance-specific. Misspecification could 
be due to several factors, for example, one or more im-
portant variables have been left out of the model, or the 
functional form of the model is incorrect. Even if the 
physics of the phenomenon or of the system is well un-
derstood and can be cast in mathematical terms, iden-
tifiability constraints may require that a simplified or 
macroscopic model be used for parameter identification 
rather than the detailed model (see Sect. 10.2). This is 
likely to introduce both bias and random noise in the 

yi + δi = β0 + β1xi

yi = β0 + β1(xi + γi)

yi + δi = β0 + β1(xi + γi)

parameter estimation process except when model R2 is 
very high (R2 > 0.9). This issue is further discussed in 
Sect. 5.6. Formal statistical procedures do not explicitly 
treat this case but limit themselves to type (a) errors and 
more specifically to case (i) assuming purely additive or 
multiplicative errors. The implicit assumptions in OLS 
and their implications, if violated, are described below.

5.6  Model Residual Analysis3

5.6.1 � Detection of Ill-Conditioned Model 
Residual Behavior

The availability of statistical software has resulted in routine 
and easy application of OLS to multiple linear models. Ho-
wever, there are several underlying assumptions that affect 
the individual parameter estimates of the model as well as 
the overall model itself. Once a model has been identified, 
the general tendency of the analyst is to hasten and use the 
model for whatever purpose intended. However, it is extre-
mely important (and this phase in often overlooked) that an 
assessment of the model be done to determine whether the 
OLS assumptions are met, otherwise the model is likely to 
be deficient or misspecified, and yield misleading results. In 
the last few decades, there has been much progress made on 
how to screen model residual behavior so as to provide dia-
gnostics insight into model deficiency or misspecification.

A few idealized plots illustrate some basic patterns of im-
proper residual behavior which are addressed in more detail 
in the later sections of this chapter. Figure 5.12 illustrates the 
effect of omitting an important dependence which suggests 
that an additional variable is to be introduced in the model 

3	 Herschel: “… almost all of the greatest discoveries in astronomy have 
resulted from the consideration of what … (was) termed residual phe-
nomena”.

Fig. 5.12  The residuals can be separated into two distinct groups 
(shown as crosses and dots) which suggest that the response variable 
is related to another regressor not considered in the regression model. 
This residual pattern can be overcome by reformulating the model by 
including this additional variable. One example of such a time-based 
event system change is shown in Fig. 9.15 of Chap. 9.

Model
Residuals

            
            

5.6  Model Residual Analysis
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which distinguishes between the two groups. The presence 
of outliers and the need for more robust regression schemes 
which are immune to such outliers is illustrated in Fig. 5.13. 
The presence of non-constant variance (or heteroscedastici-
ty) in the residuals is a very common violation and one of 
several possible manifestations is shown in Fig. 5.14. This 
particular residual behavior is likely to be remedied by using 
a log transform of the response variable instead of the variab-
le itself. Another approach is to use weighted least squares 
estimation procedures described later in this chapter. Though 
non-constant variance is easy to detect visually, its cause is 

difficult to identify. Figure 5.15 illustrates a typical behavior 
which arises when a linear function is used to model a qua-
dratic variation. The proper corrective action will increase 
the predictive accuracy of the model (RMSE will be lower), 
result in the estimated parameters being more efficient (i.e., 
lower standard errors), and most importantly, allow more 
sound and realistic interpretation of the model prediction un-
certainty bounds.

Figure 5.16 illustrates the occurrence of serial correlati-
ons in time series data which arises when the error terms are 
not independent. Such patterned residuals occur commonly 
during model development and provide useful insights into 
model deficiency. Serial correlation (or autocorrelation) has 
special pertinence to time series data (or data ordered in 
time) collected from in-situ performance of mechanical and 
thermal systems and equipment. Autocorrelation is present 
if adjacent model residuals, i.e., residuals show a trend or 
a pattern of clusters above or below the zero value that can 
be discerned visually. Such correlations can either suggest 
that additional variables have been left out of the model (mo-
del-misspecification error), or could be due to the nature of 
the process itself (called pure or “pseudo” autocorrelation). 
The latter is due to the fact that equipment loading over a 
day would follow an overall cyclic curve (as against random 
jumps from say full load to half load) consistent with the 
diurnal cycle and the way the system is operated. In such ca-
ses, positive residuals would tend to be followed by positive 
residuals, and vice versa. Time series data and models are 
treated further in Chap. 9.

Problems associated with model underfitting and overfit-
ting are usually the result of a failure to identify the non-ran-
dom pattern in time series data. Underfitting does not cap-
ture enough of the variation in the response variable which 
the corresponding set of regressor variables can possibly 
explain. For example, all four models fit to their respective 
sets of data as shown in Fig. 5.17, have identical R2 values 
and t-statistics but are distinctly different in how they capture 
the data variation. Only plot (a) can be described by a linear 
model. The data in (b) needs to be fitted by a higher order 

Fig. 5.13  Outliers indicated by crosses suggest that data should be che-
cked and/or robust regression used instead of OLS

Model
Residuals

 Outliers

                        

Fig. 5.14  Residuals with bow shape and increased variability (i.e., 
error increases as the response variable y increases) indicate that a log 
transformation of y is required

Model
Residuals

            

Fig. 5.15  Bow-shaped residuals suggest that a non-linear model, i.e. a 
model with a square term in the regressor variable to be evaluated

Model
Residuals

            

Fig. 5.16  Serial correlation is indicated by a pattern in the residuals 
when plotted in the sequence the data was collected, i.e., when plotted 
against time even though time may not be a regressor in the model

Model
Residuals
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model, while one data point in (c) and (d) distorts the entire 
model. Blind model fitting (i.e., relying only on model statis-
tics) is, thus, inadvisable.

Overfitting implies capturing randomness in the model, 
i.e., attempting to fit the noise in the data. A rather extreme 
example is when one attempts to fit a model with six parame-
ters to six data points which have some inherent experimen-
tal error. The model has zero degrees of freedom and the set 
of six equations can be solved without error (i.e., RMSE = 0). 
This is clearly unphysical because the model parameters 
have also “explained” the random noise in the observations 
in a deterministic manner.

Both underfitting and overfitting can be detected by per-
forming certain statistical tests on the residuals. The most 
commonly used test for white noise (i.e., uncorrelated re-
siduals) involving model residuals is the Durbin-Watson 
(DW) statistic defined by:

� (5.42)

where ε
i
 is the residual at time interval i, defined as 

ε
i
 ei = yi − ŷi.

If there is no serial or autocorrelation present, the expec-
ted value of DW is 2. If the model underfits, DW would be 
less than 2 while it would be greater than 2 for an overfitted 
model, the limiting range being 0–4. Tables are available for 
approximate significance tests with different numbers of re-
gressor variables and number of data points. Table A.13 as-
sembles lower and upper critical values of DW statistics to 
test autocorrelation. For example, if n = 20, and the model 
has three variables (p = 3), the null hypothesis that the corre-

DW =
n∑

i=2

(
εi − εi−1

)2/ n∑

i=1

εi
2

lation coefficient is equal to zero can be rejected at the 0.05 
significance level if its value is either below 1.00 or above 
1.68. Note that the critical values in the table are one-sided, 
i.e., apply to one tailed distributions.

It is important to note that the DW statistic is only sensi-
tive to correlated errors in adjacent observations, i.e., when 
only first-order autocorrelation is present. For example, if 
the time series has seasonal patterns, then higher autocorre-
lations may be present which the DW statistic will be unable 
to detect. More advanced concepts and modeling are discus-
sed in Sect. 9.5 while treating stochastic time series data.

5.6.2  Leverage and Influence Data Points

Most of the aspects discussed above relate to identifying ge-
neral patterns in the residuals of the entire data set. Anot-
her issue is the ability to identify subsets of data that have 
an unusual or disproportionate influence on the estimated 
model in terms of parameter estimation. Being able to flag 
such influential subsets of individual points allows one to 
investigate their validity, or to glean insights for better expe-
rimental design since they may contain the most interesting 
system behavioral information. Note that such points are not 
necessarily “bad” data points which should be omitted, but 
should be viewed as being “distinctive” observations in the 
overall data set. Scatter plots reveal such outliers easily for 
single regressor situations, but are inappropriate for multi-
variate cases. Hence, several statistical measures have been 
proposed to deal with multivariate situations, the influence 
and leverage indices being widely used (Belsley et al. 1980; 
Cook and Weisberg 1982).

Fig. 5.17  Plot of the data (x, y) 
with the fitted lines for four data 
sets. The models have identical 
R2 and t-statistics but only the 
first model is a realistic model. 
(From Chatterjee and Price 1991 
by permission of John Wiley and 
Sons)
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The leverage of a point quantifies the extent to which that 
point is “isolated” in the x-space, i.e., its distinctiveness in 
terms of the regressor variables. It has a large impact on the 
numerical values of the model parameters being estimated. 
Consider the following matrix (called the hat matrix):

� (5.43)

If one has a data set with two regressors, the order of the H ma-
trix would be (3 × 3), i.e, equal to the number of parameters in 
the model (constant plus the two regressor coefficients). The 
diagonal element p

ii
 can be related to the distance between x

i
 

and –x, and is defined as the leverage of the ith data point. Sin-
ce the diagonal elements have values between 0 and 1, their 
average value is equal to (p/n) where n is the number of obser-
vation sets. Points with p

ii
 > 3 (p/n) are regarded as points with 

high leverage (sometimes the threshold is taken as 2 (p/n).
Large residuals are traditionally used to highlight suspect 

data points or data points unduly affecting the regression mo-
del. Instead of looking at residuals ε

i
, it is more meaningful 

to study a normalized or scaled value, namely the standard-
ized residuals or R-student residuals, where

� (5.44)

Points with |R-student| > 3 can be said to be influence points 
which corresponds to a significance level of 0.01. Sometimes 
a less conservative value of 2 is used corresponding to the 
0.05 significance level, with the underlying assumption that 
residuals or errors are Gaussian.

A data point is said to be influential if its deletion, singly 
or in combination with a relatively few others, cause statis-

H = X(X′X)−1X′

R-student =
εi

RMSE · [1−pii]1/2

tically significant changes in the fitted model coefficients. 
See Sect. 3.5.3 for a discussion based on graphical conside-
rations of this concept. There are several measures used to 
describe influence, a common one is DFITS:

� (5.45)

where ε
i
 is the residual error of observation i, and s

i
 is the 

standard deviation of the residuals without considering the ith 
residual. Points with DFIT S ≥ 2[p/(n − p)]1/2  are flag-
ged as influential points.

Both the R-student statistic and the DFITS indices are of-
ten used to detect influence points. In summary, just because 
a point has high leverage does not make it influential. It is ad-
visable to identify points with high leverage, and, then, exa-
mine them to determine whether they are influential as well.

Influential observations can impact the final regression 
model in different ways (Hair et al. 1998). For example, in 
Fig. 5.18a, the model residuals are not significant and the two 
influential observations shown as filled dots reinforce the ge-
neral pattern in the model and lower the standard error of the 
parameters and of the model prediction. Thus, the two points 
would be considered to be leverage points which are benefi-
cial to our model building. Influential points which adversely 
impact model building are illustrated in Fig. 5.18b and c. In 
the former, the two influential points almost totally account 
for the observed relationship but would not have been identi-
fied as outlier points. In Fig. 5.18c, the two influential points 
have totally altered the model identified, and the actual data 
points would have shown up as points with large residuals 
which the analyst would probably have identified as spurious. 

DFITSi =
εi(pii)

1/2

si(1 − pii)
1/2

Fig. 5.18a–f  Common patterns 
of influential observations. (From 
Hair et al. 1998 by © permission 
of Pearson Education)
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The next frame (d) illustrates the instance when an influential 
point changes the intercept of the model but leaves the slope 
unaltered. The two final frames, Fig. 5.18e and f, illustrate 
two, hard to identify and rectify, cases when two influential 
points reinforce each other in altering both the slope and the 
intercept of the model though their relative positions are very 
much different. Note that data points that satisfy both these 
statistical criteria, i.e., are both influential and have high le-
verage, are the ones worthy of closer scrutiny. Most statisti-
cal programs have the ability to flag such points, and hence 
performing this analysis is fairly straightforward.

Thus, in conclusion, individual data points can be outliers, 
leverage or influential points. Outliers are relatively simple to 
detect and to interpret using the R-student statistic. Leverage 
of a point is a measure of how unusual the point lies in the x-
space. An influence point is one which has an important affect 
on the regression model when that particular point were to 
be removed from the data set. Influential points are the ones 
which need particular attention since they provide insights 
about the robustness of the fit. In any case, all three measures 
(leverage p

ii
, DFITS and R-student) provide indications as to 

the role played by different observations towards the over-
all model fit. Ultimately, the decision of deciding whether to 
retain or reject such points is somewhat based on judgment.

Example 5.6.1:  Example highlighting different characteris-
tic of outliers or residuals versus influence points.
Consider the following made-up data (Table 5.5) where x 
ranges from 1 to 10, and the model is y = 10 + 1.5 * x to which 
random normal noise ε = [0, σ = 1] has been added to give y 
(second column). The last observation has been intentionally 
corrupted to a value of 50 as shown.

How well a linear model fits the data is depicted in 
Fig. 5.19. The table of unusual residuals shown below lists 
all observations which have Studentized residuals grea-
ter than 2.0 in absolute value. Note that observation 10 is 

flagged as an unusual residual (not surprising since this was 
intentionally corrupted) and no observation has been iden-
tified as influential despite it being very much of an outlier 
(the studentized value is very large—recall that a value of 
3.0 would indicate a 99% CL). Thus, the error in one point 
seems to be overwhelmed by the well-behaved nature of the 
other nine points. This example serves to highlight the diffe-
rent characteristic of outliers versus influence points.� 

5.6.3 � Remedies for Non-uniform Model 
Residuals

Non-uniform model residuals or heteroscedasticity can be 
due to: (i) the nature of the process investigated, (ii) noise in 
the data, or (iii) the method of data collection from samples 
which are known to have different variances. Three possible 
generic remedies for non-constant variance are to (Chatterjee 
and Price 1991):
(a)	 introduce additional variables into the model and 

collect new data: The physics of the problem along 
with model residual behavior can shed light into whet-
her certain key variables, left out in the original fit, need 
to be introduced or not. This aspect is further discussed 
in Sect. 5.6.5;

(b)	 transform the dependent variable: This is appropria-
te when the errors in measuring the dependent variable 
may follow a probability distribution whose variance is 
a function of the mean of the distribution. In such ca-
ses, the model residuals are likely to exhibit heterosce-

Table 5.5  Data table for Example 5.6.1
x y[0,1] y1

1 11.69977 11.69977

2 12.72232 12.72232

3 16.24426 16.24426

4 19.27647 19.27647

5 21.19835 21.19835

6 23.73313 23.73313

7 21.81641 21.81641

8 25.76582 25.76582

9 29.09502 29.09502

10 28.9133 50

 

            

Fig. 5.19  a Observed vs predicted plot. b Residual plot versus regressor
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5.6  Model Residual Analysis

Row x y Predicted Studentized residual

y Residual

10 10.0 50.0 37.2572 12.743 11.43
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dasticity which can be removed by using exponential, 
Poisson or Binomial transformations. For example, a 
variable which is distributed Binomially with parame-
ters “n and p” has mean (n.p.) and variance [n.p.(1 − p)] 
(Sect. 2.4.2). For a Poisson variable, the mean and vari-
ance are equal. The transformations shown in Table 5.6 
will stabilize variance, and the distribution of the trans-
formed variable will be closer to the normal distribution.

The logarithmic transformation is also widely used in cer-
tain cases to transform a non-linear model into a linear one 
(see Sect. 9.5.1). When the variables have a large standard 
deviation compared to the mean, working with the data on 
a log scale often has the effect of dampening variability and 
reducing asymmetry. This is often an effective means of re-
moving heteroscedascity as well. However, this approach is 
valid only when the magnitude of the residuals increase (or 
decrease) with that of one of the variables.

Example 5.6.2:  Example of variable transformation to re-
medy improper residual behavior

The following example serves to illustrate the use of va-
riable transformation. Table 5.7 shows data from 27 depart-
ments in a university with y as the number of faculty and 
staff and x the number of students.

A simple linear regression yields a model with R-squa-
red = 77.6% and a RMSE = 21.7293. However, the residuals 
reveal an unacceptable behavior with a strong funnel behavi-
or (see Fig. 5.20a).

Instead of a linear model in y, a linear model in ln(y) is 
investigated. In this case, the model R-squared = 76.1% and 
RMSE =0.252396. However, these statistics should NOT be 
compared directly since the y variable is no longer the same 
(in one case, it is “y”; in the other “ln y”).

Let us not look into this aspect, but rather study the residu-
al behavior. Notice that a linear model does reduce some of 
the improper residual variance but the inverted u shape beha-
vior is indicative of model mis-specification (see Fig. 5.20b).

Finally, using a quadratic model along with the ln trans-
formation results in a model:

The residuals shown in Fig. 5.20c are now quite well beha-
ved as a result of such a transformation.� 

ln(y) = 2.8516 + 0.00311267∗x − 0.00000110226∗x2

Table 5.6.  Transformations in dependent variable y likely to stabilize 
non-uniform model variance

Variance of y in  
terms of its mean μ

Transformation

Poisson μ y1/2

Binomial μ(1−μ)/n sin−1(y)1/2

Table 5.7  Data table for Example 5.6.2

x y x y

1 294 30 15 615 100

2 247 32 16 999 109

3 267 37 17 1,022 114

4 358 44 18 1,015 117

5 423 47 19 700 106

6 311 49 20 850 128

7 450 56 21 980 130

8 534 62 22 1,025 160

9 438 68 23 1,021   97

10 697 78 24 1,200 180

11 688 80 25 1,250 112

12 630 84 26 1,500 210

13 709 88 27 1,650 135

14 627 97

Fig. 5.20  a Residual plot of linear model. b Residual plot of log trans-
formed linear model. c Residual plot of log transformed linear model
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(c) perform weighted least squares. This approach is 
more flexible and several variants exist (Chatterjee and Price 
1991). As described earlier, OLS model residual behavior 
can exhibit non-uniform variance (called heteroscedasticity) 
even if the model is structurally complete, i.e., the model 
is not mis-specified. This violates one of the standard OLS 
assumptions. In a multiple regression model, detection of he-
teroscedasticity may not be very straight-forward since only 
one or two variables may be the culprits. Examination of the 
residuals versus each variable in turn along with intuition 
and understanding of the physical phenomenon being mo-
deled can be of great help. Otherwise, the OLS estimates 
will lack precision, and the estimated standard errors of the 
model parameters will be wider. If this phenomenon occurs, 
the model identification should be redone with explicit re-
cognition of this fact.

During OLS, the sum of the model residuals of all points 
are minimized with no regard to the values of the individual 
points or to points from different domains of the range of 
variability of the regressors. The basic concept of weight-
ed least squares (WLS) is to simply assign different weights 
to different points according to a certain scheme. Thus, the 
general formulation of WLS is that the following function 
should be minimized:

�

� (5.46)

where w
i
 are the weights of individual points. These are for-

mulated differently depending on the weighting scheme se-
lected which, in turn, depends on prior knowledge about the 
process generating the data.

(c-i) Errors Are Proportional to x Resulting in Funnel-
Shaped Residuals  Consider the simple model y = α + βx + ε 
whose residuals ε have a standard deviation which increa-
ses as the regressor variable (resulting in the funnel-like 
shape in Fig. 5.21). Assuming a weighting scheme such as 

var(εi) = k2x2
i , transforms the model into:

� (5.47)

Note that the variance of ε′  is constant and equals k2. If the 
assumption about the weighting scheme is correct, the trans-
formed model will be homoscedastic, and the model para-
meters α and β will be efficiently estimated by OLS (i.e., the 
standard errors of the estimates will be optimal).

The above transformation is only valid when the model re-
siduals behave as shown in Fig. 5.21. If residuals behave dif-
ferently, then different transformations or weighting schemes 
will have to be explored. Whether a particular transformation 
is adequate or not can only be gauged by the behavior of the 
variance of the residuals. Note that the analyst has to perform 
two separate regressions: one an OLS regression in order to 

WLS function =
∑

wi

(
yi − β0 − β1x1i · · · − βpxpi

)2

y

x
=

α

x
+ β +

ε

x
or y′ = αx′ + β+ε′

determine the residual amounts of the individual data points, 
and then a WLS regression for final parameter identification. 
This is often referred to as two-stage estimation.

(c-ii) Replicated Measurements with Different Variance  It 
could happen, especially with models involving one re-
gressor variable only and when the data is obtained in the 
framework of a designed experimental study (as against ob-
servational or non-experimental data), that one obtains re-
plicated measurements on the response variable correspon-
ding to a set of fixed values of the explanatory variables. 
For example, consider the case when the regressor variable 
x takes several discrete values. If the physics of the phe-
nomenon cannot provide any theoretical basis on how to 
select a particular weighty scheme, then this has to be de-
termined experimentally from studying the data. If there is 
an increasing pattern in the heteroscedascity present in the 
data, this could be modeled either by a logarithmic trans-
form (as illustrated in Example 5.6.2) or a suitable variab-
le transformation. Here, another more versatile approach 
which can be applied to any pattern of the residuals is illus-
trated. Each observed residual ε

ij
 (where the index for di-

screte x values is i, and the number of observations at each 
discrete x value is j = 1, 2, … n

i
) is made up of two parts, 

i.e., ε
ij

Eij = (yij − ȳi) + (ȳi − ŷij) . The first part is referred to 
as pure error while the second part measures lack of fit. 
An assessment of heteroscedasticity is based on pure error. 

Thus, the WLS weight may be estimated as wi = 1/s2
i

 

where the mean square error is:

� (5.48)

Alternatively a model can be fit to the mean values of x and 
the s2

i
 values in order to smoothen out the weighting functi-

on, and this function used instead. Thus, this approach would 
also qualify as a two-stage estimation process. The following 
example illustrates this approach.

s2
i =

∑
(yij − ȳi)2

(ni − 1)

 
 

 

Fig. 5.21  Type of heteroscedastic model residual behavior which ari-
ses when errors are proportional to the magnitude of the x variable
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Example 5.6.3:4  Example of weighted regression for repli-
cate measurements

Consider the data given in Table 5.8 of replicate measure-
ments of y taken at different values of x (which vary slight-
ly).

A scatter plot of this data and the simple OLS linear mo-
del are shown in Fig. 5.22a. The regressed model is:

� (5.49a)

Note that the intercept term in the model is not statistically 
significant (p-value = 0.4 for the t-statistic), while the overall 
model fit given by the F-ratio is significant. The model resi-
duals of a simple OLS fit are shown in Fig. 5.22b.

Coefficients

Analysis of Variance

4	 From Draper and Smith (1981) by permission of John Wiley and 
Sons.

y = −0.578954 + 1.1354∗x with R2 = 0.841

and RMSE = 1.4566

The residuals of a simple linear OLS model shown in 
Fig. 5.22b reveal, as expected, marked heteroscadascity. 
Hence, the OLS model is bound to lead to misleading uncer-
tainty bands even if the model predictions themselves are not 
biased. The model residuals from the above model are also 
shown in the table. Subsequently, the mean and the mean 
square error s2

i
 are calculated following Eq. 5.48 to yield 

the following table:

Then, because of the pattern exhibited, a second order po-
lynomial OLS model is regressed to this data (see Fig. 5.22c):

�
� (5.49b)

The regression weights w
i
 can thus be deduced by using in-

dividual values of x
i
 instead of x̄  in the above equation. The 

values of the weights are also shown in the data table. Fi-
nally, a weighted regression is performed following Eq. 5.46 
(most statistical packages have this capability) resulting in:

�

� (5.49c)

s2
i = 1.887 − 0.8727.x̄ + 0.9967.x̄2 with R2 = 0.743%

y = −0.942228 + 1.16252∗x with R2 = 0.896

and RMSE = 1.2725.

Table 5.8  Measured data, OLS residuals deduced from Eq. 5.49a and the weights calculated from Eq. 5.49b

x y Residual ε
i

w
i

x y Residual ε
i

w
i

1.15 0.99 0.26329 0.9882 9.03 9.47 − 0.20366 0.4694

1.90 0.98 − 0.59826 1.7083 9.07 11.45 1.730922 0.4614

3.00 2.60 − 0.2272 6.1489 9.11 12.14 2.375506 0.4535

3.00 2.67 − 0.1572 6.1489 9.14 11.50 1.701444 0.4477

3.00 2.66 − 0.1672 6.1489 9.16 10.65 0.828736 0.4440

3.00 2.78 − 0.0472 6.1489 9.37 10.64 0.580302 0.4070

3.00 2.80 − 0.0272 6.1489 10.17 9.78 − 1.18802 0.3015

5.34 5.92 0.435964 15.2439 10.18 12.39 1.410628 0.3004

5.38 5.35 − 0.17945 13.6185 10.22 11.03 0.005212 0.2963

5.40 4.33 − 1.22216 12.9092 10.22 8.00 − 3.02479 0.2963

5.40 4.89 -0.66216 12.9092 10.22 11.90 0.875212 0.2963

5.45 5.21 − 0.39893 11.3767 10.18 8.68 − 2.29937 0.3004

7.70 7.68 − 0.48358 0.9318 10.50 7.25 − 4.0927 0.2696

7.80 9.81 1.53288 0.8768 10.23 13.46 2.423858 0.2953

7.81 6.52 − 1.76847 0.8716 10.03 10.19 − 0.61906 0.3167

7.85 9.71 1.37611 0.8512 10.23 9.93 − 1.10614 0.2953

7.87 9.82 1.463402 0.8413

7.91 9.81 1.407986 0.8219

7.94 8.50 0.063924 0.8078

Parameter Least squares 
estimate

Standard 
error

t-statistic P-value

Intercept − 0.578954 0.679186 − 0.852423 0.4001

Slope 1.1354 0.086218 13.169 0.0000

Source Sum of 
squares

Df Mean 
square

F-ratio P-value

Model 367.948 1 367.948 173.42 0.0000

Residual 70.0157 33 2.12169

Total (Corr.) 437.964 34

x̂ s2
i

3 0.0072

5.39 0.373

7.84 1.6482

9.15 0.8802

10.22 4.1152
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The residual plots are shown as Fig. 5.22d. Though the good-
ness of fit is only slightly better than the OLS model, the 
real advantage is that this model will have better prediction 
accuracy and realistic prediction errors.� 

(c-iii) Non-patterned Variance in the Residuals  A third type 
of non-constant residual variance is one when no pattern is di-
scerned with respect to the regressors which can be discrete or 
vary continuously. In this case, a practical approach is to look 
at a plot of the model residuals against the response variable, 
divide the range in the response variable into as many regions 
as seem to have different variances, and calculate the standard 
deviation of the residuals for each of these regions. In that 
sense, the general approach parallels the one adopted in case 
(c-ii) when dealing with replicated values with non-constant 
variance; however, now, no model such as 5.49b is needed. 
The general approach would involve the following steps:
•	 First, fit an OLS model to the data;
•	 Next, discretize the domain of the regressor variables into 

a finite number of groups and determine ε2
i  from which 

the weights w
i
 for each of these groups can be deduced;

•	 Finally, perform a WLS regression in order to estimate the 
efficient model parameters.
Though this two-stage estimation approach is conceptually 

easy and appealing for simple models, it may become rather 
complex for multivariate models, and moreover, there is no 
guarantee that heteroscedasticity will be removed entirely.

5.6.4  Serially Correlated Residuals

Another manifestation of improper residual behavior is se-
rial correlation (discussed in Sect. 5.6.1). As stated earlier, 
one should distinguish between the two different types of 
autocorrelation, namely pure autocorrelation and model-
misspecification, though often it is difficult to discern bet-
ween them. The latter is usually addressed using the weight 
matrix approach (Pindyck and Rubinfeld 1981) which is fair-
ly formal and general, but somewhat demanding. Pure auto-
correlation relates to the case of “pseudo” patterned residual 
behavior which arises because the regressor variables have 
strong serial correlation. This serial correlation behavior is 
subsequently transferred over to the model, and thence to its 
residuals, even when the regression model functional form is 
close to “perfect”. The remedial approach to be adopted is to 
transform the original data set prior to regression itself. The-
re are several techniques of doing so, and the widely-used 
Cochrane-Orcutt (CO) procedure is described. It involves the 
use of generalized differencing to alter the linear model into 
one in which the errors are independent. The two stage first-
order CO procedure involves:
(i)	 fitting an OLS model to the original variables;
(ii)	 computing the first-order serial correlation coefficient ρ 

of the model residuals;
(iii)	 transforming the original variables y and x into a new 

set of pseudo-variables:

� (5.50)yt
∗ = yt − ρ · yt−1 and xt

∗ = xt − ρ · xt−1

Fig. 5.22  a Data set and OLS regression line of observations with non-
constant variance and replicated observations in x. b Residuals of a 
simple linear OLS model fit (Eq. 5.49a). c Residuals of a second order 
polynomial OLS fit to the mean x and mean square error (MSE) of 
the replicate values (Eq. 5.49b). d Residuals of the weighted regression 
model (Eq. 5.49c)
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(iv)	 OLS regressing of the pseudo variables y* and x* to 
re-estimate the parameters of the model;

(v)	 Finally, obtaining the fitted regression model in the ori-
ginal variables by a back transformation of the pseudo 
regression coefficients:

� (5.51)

Though two estimation steps are involved, the entire pro-
cess is simple to implement. This approach, when originally 
proposed, advocated that this process be continued till the 
residuals become random (say, based on the Durbin-Watson 
test). However, the current recommendation is that alterna-
tive estimation methods should be attempted if one iteration 
proves inadequate. This approach can be used during para-
meter estimation of MLR models provided only one of the 
regressor variables is the cause of the pseudo-correlation. 
Also, a more sophisticated version of the CO method has 
been suggested by Hildreth and Lu (Chatterjee and Price 
1991) involving only one estimation process where the opti-
mal value of ρ is determined along with the parameters. This, 
however, requires non-linear estimation methods.

Example 5.6.4:  Using the Cochrane-Orcutt procedure to 
remove first-order autocorrelation

Consider the case when observed pre-retrofit data of ener-
gy consumption in a commercial building support a linear 
regression model as follows:

� (5.52)

where
T = daily average outdoor dry-bulb temperature,
Ei  = daily total energy use predicted by the model,
i = subscript representing a particular day, and,
ao and a1 are the least-square regression coefficients

How the above transformation yields a regression model 
different from OLS estimation is illustrated in Fig. 5.23 with 
year-long daily cooling energy use from a large institutional 
building in central Texas. The first-order autocorrelation co-
efficients of cooling energy and average daily temperature 
were both equal to 0.92, while that of the OLS residuals was 
0.60. The Durbin-Watson statistic for the OLS residuals (i.e. 
untransformed data) was DW = 3 indicating strong residual 
autocorrelation, while that of the CO transform was 1.89 in-
dicating little or no autocorrelation. Note that the CO trans-
form is inadequate in cases of model mis-specification and/
or seasonal operational changes.� 

5.6.5  Dealing with Misspecified Models

An important source of error during model identification is 
model misspecification error. This is unrelated to measure-
ment error, and arises when the functional form of the model 
is not appropriate. This can occur due to:

b0 = b0
∗/(1 − ρ) and b1 = b1

∗

Ei = ao + a1Ti

(i)	 inclusion of irrelevant variables: This does not bias the 
estimation of the intercept and slope parameters, but ge-
nerally reduces the efficiency of the slope parameters, 
i.e., their standard errors will be larger. This source of 
error can be eliminated by, say, step-wise regression or 
simple tests such as t-tests;

(ii)	 exclusion of an important variable: This case will result in 
the slope parameters being both biased and inconsistent.

(iii)	 assumption of a linear model: This arises when a linear 
model is erroneously assumed, and

(iv)	 incorrect model order: This corresponds to the case 
when one assumes a lower or higher model than what 
the data warrants.

The latter three sources of errors are very likely to mani-
fest themselves in improper residual behavior (the residuals 
will show sequential or non-constant variance behavior). The 
residual analysis may not identify the exact cause, and se-
veral attempts at model reformulations may be required to 
overcome this problem. Even if the physics of the pheno-
menon or of the system is well understood and can be cast 
in mathematical terms, experimental or identifiability cons-
traints may require that a simplified or macroscopic model 
be used for parameter identification rather than the detailed 
model. This could cause model misspecification, especially 
so if the model is poor.

Example 5.6.5:  Example to illustrate how inclusion of ad-
ditional regressors can remedy improper model residual be-
havior

Energy use in commercial buildings accounts for about 
18% of the total energy use in the United States and con-
sequently, it is a prime area of energy conservation efforts. 
For this purpose, the development of baseline models, i.e., 
models of energy use for a specific end-use before energy 
conservation measures are implemented, is an important mo-
deling activity for monitoring and verification studies.

Fig. 5.23  How serial correlation in the residuals affects model identi-
fication (Example 5.6.4)
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Let us illustrate the effect of improper selection of re-
gressor variables or model misspecification for modeling 
measured thermal cooling energy use of a large commer-
cial building operating 24 hours a day under a variable air 
volume HVAC system (Katipamula et al. 1998). Figure 5.24 
illustrates the residual pattern when hourly energy use is 
modeled with only the outdoor dry-bulb temperature ( T

o
). 

The residual pattern is blatantly poor exhibiting both non-
constant variance as well as systematic bias in the low range 
of the x-variable. Once the outdoor dew point temperature 
(T +

dp) 5, the global horizontal solar radiation (q
sol

) and the in-

5	 Actually the outdoor humidity impacts energy use only when the dew 
point temperature exceeds a certain threshold which many studies have 
identified to be about 55°F (this is related to how the HVAC is control-
led in response to human comfort). This type of conditional variable is 
indicated as a + superscript.

ternal building heat loads q
i
 (such as lights and equipment) 

are introduced in the model, the residual behavior improves 
significantly but the lower tail is still present. Finally, when 
additional terms involving indicator variables I to both inter-
cept ( T

o
) are introduced, (described in Sect. 5.7.2), an accep-

table residual behavior is achieved.� 

5.7  Other OLS Parameter Estimation Methods

5.7.1  Zero-Intercept Models

Sometimes the physics of the system dictates that the re-
gression line pass through the origin. For the linear case, the 
model assumes the form:

� (5.53)y = β1x + ε

Fig. 5.24  Improvement in 
residual behavior for a model of 
hourly energy use of a variable 
air volume HVAC system in a 
commercial building as influen-
tial regressors are incrementally 
added to the model. (From Kati-
pamula et al. 1998)
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The interpretation of R2 under such a case is not the same 
as for the model with an intercept, and this statistic cannot 
be used to compare the two types of models directly. Recall 
that the R2 value designated the percentage variation of the 
response variable about its mean explained by that of the 
regressor variable. For the no-intercept case, the R2 value ex-
plains the percentage variation of the response variable about 
the origin explained by that of the regressor variable. Thus, 
when comparing both models, one should decide on which is 
the better model based on their RMSE values.

5.7.2 � Indicator Variables for Local Piecewise 
Models—Spline Fits

Spline functions are an important class of functions, descri-
bed in numerical analysis textbooks in the framework of in-
terpolation, which allow distinct functions to be used over 
different ranges while maintaining continuity in the function. 
They are extremely flexible functions in that they allow a 
wide range of locally different behavior to be captured wit-
hin one elegant functional framework. Thus, a globally non-
linear function can be decomposed into simpler local pat-
terns. Two cases arise.
(a)	 The simpler case is one where it is known which points 

lie on which trend, i.e., when the physics of the system 
is such that the location of the structural break or “hinge 
point” x

c
 of the regressor is known. The simplest type 

is the piece-wise linear spline (as shown in Fig. 5.25), 
with higher order polynomial splines up to the third de-
gree being also used often to capture non-linear trends. 
The objective here is to formulate a linear model and 
identify its parameters which best describe data points 
in Fig. 5.25. One cannot simply divide the data into 
two, and fit each region with a separate linear model 
since the constraint that the model be continuous at the 
hinge point would be violated. A model of the following 
form would be acceptable:

� (5.54a)

	 where the indicator variable

� (5.54b)

	 Hence, for the region x ≤ xc,  , the model is:

� (5.55)

	 and for the region x >xc y = (β0 − β2xc) + (β1 + β2)x.

Thus, the slope of the model is β
1
 before the break and 

( β
1 
+

 
β

2
) afterwards. The intercept term changes as well 

from β
0
 before the break to (β0 − β2xc)  after the break. 

The logical extensions to linear spline models with two 
structural breaks or to higher order splines involving 
quadratic and cubic terms are fairly straightforward.

(b)	 The second case arises when the change point is not 
known. A simple approach is to look at the data, iden-
tify a “ball-park” range for the change point, perform 
numerous regression fits with the data set divided ac-
cording to each possible value of the change point in 
this ball-park range, and pick that value which yields 
the best overall R-square or RMSE. Alternatively, the 
more accurate but more complex approach is to cast 
the problem as a nonlinear estimation method with the 
change point variable as one of the parameters.

Example 5.7.1:  Change point models for building utility 
bill analysis

The theoretical basis of modeling monthly energy use in 
buildings is discussed in several papers (for example, Red-
dy et al. 1997). The interest in this particular time scale is 
obvious—such information is easily obtained from utility 
bills which are usually on a monthly time scale. The mo-
dels suitable for this application are similar to linear spli-
ne models, and are referred to as change point models by 
building energy analysts. A simple example is shown below 
to illustrate the above equations. Electricity utility bills of 
a residence in Houston, TX have been normalized by the 
number of days in the month and assembled in Table 5.9 
along with the corresponding month and monthly mean 
outdoor temperature values for Houston (the first three co-
lumns of the table). The intent is to use Eq. 5.54 to model 
this behavior.

The scatter plot and the trend lines drawn in Fig. 5.26 
suggest that the change point is in the range 17–19°C. Let us 
perform the calculation assuming a value of 17°C. Defining 
an indicator variable:

y = β0 + β1x + β2(x − xc)I

I =
{

1 if x >xc

0 otherwise

y = β0 + β1x

I =
{

1 if x > 17◦C
0 otherwise

Fig. 5.25  Piece-wise linear model or first-order spline fit with hinge 
point at x

c
. Such models are referred to as change point models in build-

ing energy modeling terminology
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Based on this assumption, the last two columns of the table 
have been generated to correspond to the two regressor va-
riables in Eq. 5.54. A linear multiple regression yields:

with all three parameters being significant. The reader can 
repeat this analysis assuming a different value for the chan-
ge point (say x

c
 = 18°C) in order to study the sensitivity of 

the model to the choice of the change point value. Though 
only three parameters are determined by regression, this is 
an example of a four parameter (or 4-P) model in building 
science terminology. The fourth parameter is the change 
point x

c
 which also needs to be determined. Software pro-

grams have been developed to determine the optimal value 
of x

c
 (i.e., that which results in minimum RMSE of different 

y = 0.1046 + 0.005904x + 0.00905(x − 17)I

with R2 = 0.996 and RMSE = 0.0055

possible choices of x
c
) following a numerical search process 

akin to the one described in this example.� 

5.7.3 � Indicator Variables for Categorical 
Regressor Models

The use of indicator (also called dummy) variables has been 
illustrated in the previous section when dealing with spline 
models. They are also used in cases when shifts in either the 
intercept or the slope are to be modeled with the condition 
of continuity now being relaxed. The majority of variables 
encountered in mechanistic models are quantitative, i.e., the 
variables are measured on a numerical scale. Some examples 
are temperature, pressure, distance, energy use and age. Oc-
casionally, the analyst comes across models involving quali-
tative variables, i.e., regressor data that belong in one of two 
(or more) possible categories. One would like to evaluate 
whether differences in intercept and slope between catego-
ries are significant enough to warrant two separate models or 
not. This concept is illustrated by the following example.

Whether the annual energy use of a regular commercial 
buildings is markedly higher than that of another certified as 
being energy efficient is to be determined. Data from several 
buildings which fall in each group is gathered to ascertain 
whether the presumption is supported by the actual data. 
Factors which affect the normalized energy use (variable y) 
of both experimental groups are conditioned floor area (va-
riable x

1
)

 
and outdoor temperature (variable x

2
). Suppose that 

a linear relationship can be assumed with the same intercept 
for both groups. One approach would be to separate the data 
into two groups: one for regular buildings and one for ef-
ficient buildings, and develop regression models for each 
group separately. Subsequently, one could perform a t-test 
to determine whether the slope terms of the two models are 
significantly different or not. However, the assumption of 
constant intercept term for both models may be erroneous, 
and this may confound the analysis. A better approach is to 
use the entire data and adopt a modeling approach involving 
indicator variables.

Let model 1 be for regular buildings: 

		    y = a + b
1
x

1
 + c

1
x

2

and, model 2 be for energy efficient buildings:

� (5.56)

The complete model (or model 3) would be formulated as:

� (5.57)

where I is an indicator variable such that

	    I =
{

1 for energy efficient buildings
0 for regular buildings

y = a + b2 x1 + c2 x2

y = a + b1 x1 + c1 x2 + b2(I · x1) + c2(I · x2)

Table 5.9  Measured monthly energy use data and calculation step for 
deducing the change point independent variable assuming a base value 
of 17°C
Month Mean outdoor 

temperature 
(°C) 

Monthly mean 
daily electric use 
(kWh/m2/day) 

x 
(°C) 

(x - 17°C) I
(°C) 

Jan 11 0.1669 11 0

Feb 13 0.1866 13 0

Mar 16 0.1988 16 0

Apr 21 0.2575 21 4

May 24 0.3152 24 7

Jun 27 0.3518 27 10

Jul 29 0.3898 29 12

Aug 29 0.3872 29 12

Sept 26 0.3315 26 9

Oct 22 0.2789 22 5

Nov 16 0.2051 16 0

Dec 13 0.1790 13 0

Fig. 5.26  Piece-wise linear regression lines for building electric use 
with outdoor temperature. The change point is the point of intersection 
of the two lines. The combined model is called a change point model, 
which, in this case, is a four parameter model given by Eq. 5.54
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Note that a basic assumption in formulating this model is 
that the intercept is unaffected by the building group. For-
mally, one would like to test the null hypothesis H: b

2 
=

 
c

2 
=

 
0. 

The hypothesis is tested by constructing an F statistic for the 
comparison of the two models. Note that model 3 is referred 
to as the full model (FM) or as the pooled model. Model 1, 
when the null hypothesis holds, is the reduced model (RM). 
The idea is to compare the goodness-of-fit of the FM and that 
of the RM. If the RM provides as good a fit as the FM, then 
the null hypothesis is valid. Let SSE(FM) and SSE(RM) be 
the corresponding model sum of square error or squared mo-
del residuals. Then, the following F-test statistic is defined:

� (5.58)

where n is the number of data sets, k is the number of para-
meters of the FM, and m the number of parameters of the 
RM. If the observed F value is larger than the tabulated value 
of F with (n - k) and (k - m) degrees of freedom at the pre-
specified significance level (provided by Table A.6), the RM 
is unsatisfactory and the full model has to be retained. As 
a cautionary note, this test is strictly valid only if the OLS 
assumptions for the model residuals hold.

Example 5.7.2:  Combined modeling of energy use in regu-
lar and energy efficient buildings

Consider the data assembled in Table 5.10. Let us desig-
nate the regular buildings by group (A) and the energy effi-
cient buildings by group (B), with the problem simplified by 
assuming both types of buildings to be located in the same 
geographic location. Hence, the model has only one regres-
sor variable involving floor area. The complete model with 
the indicator variable term given by Eq. 5.57 is used to verify 
whether group B buildings consume less energy than group 
A buildings.

The full model (FM) given by Eq. 5.57 reduces to the fol-
lowing form since only one regressor is involved:

F =
[SSE(RM) − SSE(FM)]/(k-m)

SSE(FM)/(n-k)

y = a + b
1
x

1 
+ b

2
I·x

2
 where the variable I is an indicator va-

riable such that it is 0 for group A and 1 for group B. The 
null hypothesis is that H

0
: b

2 
= 0. The reduced model (RM) 

is y = a + b
 ·
 x

1
.

The estimated model is y = 14.2762 + 0.14115 x
1
 − 

13.2802 (I·x
2
). The analysis of variance shows that the 

SSR(FM) = 7.7943 and SSR(RM) = 889.245. The F statistic 
in this case is:

One can thus safely reject the null hypothesis, and state with 
confidence that buildings built as energy-efficient ones con-
sume energy which is statistically lower than those which 
are not.

It is also possible to extend the analysis and test whether 
both slope and intercept are affected by the type of building. 
The FM in this case is y = a

1  
+ b

1
 x

1 
+ c(I) + d(I · x1)  where I 

is an indicator variable which is, say 0 for Building A and 
1 for Building B. The null hypothesis in this case is that 
c = d = 0. This is left for the interested reader to solve.� 

5.7.4 � Assuring Model Parsimony—Stepwise 
Regression

Perhaps the major problem with multivariate regression is 
that the “independent” variables are not really independent 
but collinear to some extent (how to deal with collinear 
regressors by transformation is discussed in Sect. 9.3). In 
multivariate regression, a thumb rule is that the number of 
variables should be less than four times the number of ob-
servations (Chatfield 1995). Hence, with n = 12, the number 
of variables should be at most 3 or less. Moreover, some aut-
hors go so far as stating that multivariate regression models 
with more than 4–5 variables are suspect. There is, thus, a 
big benefit in identifying models that are parsimonious. The 
more straightforward approach is to use the simpler (but for-
mal) methods to identify/construct the “best” model linear 
in the parameters if the comprehensive set of all feasible/
possible regressors of the model is known (Draper and Smith 
1981; Chatterjee and Price 1991):

(a) All possible regression models: This method involves: 
(i) constructing models of different basic forms (single va-
riate with various degrees of polynomials and multi-varia-
te), (ii) estimating parameters that correspond to all possible 
predictor variable combinations, and (iii) then selecting one 
considered most desirable based on some criterion. While 
this approach is thorough, the computational effort involved 
may be significant. For example, with p possible parameters, 
the number of model combinations would be p2. However, 
this may be moot if the statistical analysis program being 

F =
(889.245 − 7.7943)/1

7.7943/(20 − 3)
= 1922.5

Table 5.10  Data table for Example 5.7.2

Energy 
use (y)

Floor  
area (x

1
)

Bldg  
type

Energy 
use (y)

Floor 
area (x

1
)

Bldg  
type

45.44 225 A 32.13 224 B

42.03 200 A 35.47 251 B

50.1 250 A 33.49 232 B

48.75 245 A 32.29 216 B

47.92 235 A 33.5 224 B

47.79 237 A 31.23 212 B

52.26 265 A 37.52 248 B

50.52 259 A 37.13 260 B

45.58 221 A 34.7 243 B

44.78 218 A 33.92 238 B
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used contains such a capability. The only real drawback is 
that blind curve fitting may suggest a model with no physical 
justification which in certain applications may have unde-
sirable consequences. Further, it is advised that the cross-
validation scheme should be used to avoid overfitting (see 
Sect. 5.3.2-d).

In any case, one needs a statistical criterion to determine, 
if not the “best6” model, then, at least a subset of desirable 
models from which one can be chosen based on the physics 
of the problem. One could use the adjusted R-square given 
by Eq. 5.7b which includes the number of model parameters. 
Another criterion for model selection is the Mallows C

p
 sta-

tistic which gives a normalized estimate of the total expected 
estimation error for all observations in the data set and takes 
account of both bias and variance:

� (5.59)

where SSE is the sum of square errors (see Eq. 5.2), σ2 is the 
variance of the residuals with the full set of variables, n is the 
number of data points, and p is the number of parameters in 
the specific model. It can be shown that the expected value of 
C

p
 is p when there is no bias in the fitted equation containing 

p terms. Thus “good” or desirable model possibilities are 
those whose C

p
 values are close to the corresponding number 

of parameters of the model.
Another automatic selection approach to handling models 

with large number of possible parameters is the iterative ap-
proach which comes in three variants.

(b-1) Backward Elimination Method:  One begins with se-
lecting an initial model that includes the full set of possible 
predictor variables from the candidate pool, and then succes-
sively dropping one variable at a time on the basis of their 
contribution to the reduction of SSE. The OLS method is 
used to estimate all model parameters along with t-values 
for each model parameter. If all model parameters are statis-
tically significant, the model building process stops. If some 
model parameters are not significant, the model parameter 
of least significance (lowest t-value) is omitted from the 
regression equation, and the reduced model is refit. This pro-
cess continues until all parameters that remain in the model 
are statistically significant.

(b-2) Forward Selection Method:  One begins with an equati-
on containing no regressors (i.e., a constant model). The model 
is then augmented by including the regressor variable with the 
highest simple correlation with the response variable. If this 
regression coefficient is significantly different from zero, it is 
retained, and the search for a second variable is made. This 

6	 Actually, there is no “best” model since random variables are invol-
ved. A better term would be “most plausible” and should include me-
chanistic considerations, if appropriate.

Cp =
SSE

σ 2
+ (2p − n)

process of adding regressors one-by-one is terminated when 
the last variable entering the equation has an insignificant re-
gression coefficient or when all the variables are included in 
the model. Clearly, this approach involves fitting many more 
models than in the backward elimination method.

(b-3) Stepwise Regression Method:  This is one of the more 
powerful model building approaches and combines both the 
above procedures. Stepwise regression begins by computing 
correlation coefficients between the response and each pre-
dictor variable. The variable most highly correlated with the 
response is then allowed to “enter the regression equation”. 
The parameter for the single-variable regression equation is 
then estimated along with a measure of the goodness of fit. 
The next most highly correlated predictor variable is iden-
tified, given the current variable already in the regression 
equation. This variable is then allowed to enter the equation 
and the parameters re-estimated along with the goodness of 
fit. Following each parameter estimation, t-values for each 
parameter are calculated and compared to t-critical to deter-
mine whether all parameters are still statistically significant. 
Any parameter that is not statistically significant is removed 
from the regression equation. This process continues until no 
more variables “enter” or “leave” the regression equation. In 
general, it is best to select the model that yields a reasona-
bly high “goodness of fit” for the fewest parameters in the 
model (referred to as model parsimony). The final decision 
on model selection requires the judgment of the model buil-
der, and on mechanistic insights into the problem. Again, one 
has to guard against the danger of overfitting by performing 
a cross-validation check.

When a black-box model is used containing several re-
gressors, step-wise regression would improve the robustness 
of the model by reducing the number of regressors in the mo-
del, and thus hopefully reduce the adverse effects of multi-
collinearity between the remaining regressors. Many packa-
ges use the F-test indicative of the overall model instead of 
the t-test on individual parameters to perform the step-wise 
regression. A value of F = 4 is often chosen. It is suggested 
that step-wise regression not be used in case the regress-
ors are highly correlated since it may result in non-robust 
models. However, the backward procedure is said to better 
handle such situations than the forward selection procedure.

A note of caution is warranted in using stepwise regress-
ion for engineering models based on mechanistic conside-
rations. In certain cases, stepwise regression may omit a re-
gressor which ought to be influential when using a particular 
data set, while the regressor is picked up when another data 
set is used. This may be a dilemma when the model is to 
be used for subsequent predictions. In such cases, discretion 
based on physical considerations should trump purely statis-
tical model building.

5.7  Other OLS Parameter Estimation Methods
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Example 5.7.3:7  Proper model identification with multiva-
riate regression models

An example of multivariate regression is the development 
of model equations to characterize the performance of ref-
rigeration compressors. It is possible to regress compressor 
manufacturer’s tabular data of compressor performance using 
the following simple bi-quadratic formulation (see Fig. 5.11 
for nomenclature).

� (5.60)

where y represents either the compressor power (P
comp

) or the 
cooling capacity (Q

ch
).

OLS is then used to develop estimates of the six model 
parameters, C

0
–C

5
, based on the compressor manufacturer’s 

data. The biquadratic model was used to estimate the para-
meters for compressor cooling capacity (in Tons) for a screw 
compressor. The model and its corresponding parameter es-
timates are given below. Although the overall curve fit for the 
data was excellent ( R2 = 99.96%), the t-values of two para-
meter estimates ( C

2
 and C

4
) are clearly insignificant.

A second stage regression is done omitting these regress-
ors resulting in the following model and coefficient t-values 
shown in Table 5.11.

All of the parameters in the simplified model are significant 
and the overall model fit remains excellent: R2 = 99.5%. � 

5.8  Case Study Example: Effect of Refrigerant 
Additive on Chiller Performance8

The objective of this analysis was to verify the claim of 
a company which had developed a refrigerant additive to 
improve chiller COP. The performance of a chiller before 

7	  From ASHRAE (2005) © American Society of Heating, Refrigera-
ting and Air-conditioning Engineers, Inc., www.ashrae.org. 
8	 The monitored data was provided by Ken Gillespie for which we are 
grateful.

y = C0 + C1 · Tcho + C2 · Tcdi + C3 · T 2
cho

+ C4 · T 2
cdi + C5 · Tcho · Tcdi

y = C0 + C1 · Tcho + C3 · T 2
cho + C5 · Tcho · Tcdi

(called pre-retrofit period) and after (called post-retrofit 
period) addition of this additive was monitored for several 
months to determine whether the additive results in an im-
provement in chiller performance, and if so, by how much. 
The same four variables described in Example 5.4.3, name-
ly two temperatures (T

cho
 and T

cdi
), the chiller thermal co-

oling load (Q
ch

) and the electrical power consumed (P
comp

) 
were measured in intervals of 15 min. Note that the chiller 
COP can be deduced from the last two variables. Altoge-
ther, there were 4,607 and 5,078 data points for the pre-and 
post periods respectively.

Step 1: Perform Exploratory Data Analysis  At the onset, an 
exploratory data analysis should be performed to determine 
the spread of the variables, and their occurrence frequencies 
during the pre- and post-periods, i.e., before and after ad-
dition of the refrigerant additive. Further, it is important to 
ascertain whether the operating conditions during both peri-
ods are similar or not. The eight frames in Fig. 5.27 summa-
rize the spread and frequency of the important variables. It 
is noted that though the spreads in the operating conditions 
are similar, the frequencies are different during both peri-
ods especially in the condenser temperatures and the chiller 
load variables. Figure 5.28 suggests that COP

post
 > COP

pre
. An 

ANOVA test with results shown in Table 5.12 and Fig. 5.29 
also indicates that the mean of post-retrofit power use is sta-
tistically different at 95% confidence level as compared to 
the pre-retrofit power.

t Test to Compare Means 
Null hypothesis: mean (COPpost) = mean (COPpre)

Alternative hypothesis: mean (COPpost) ≠ mean (COPpre) 
assuming equal variances:

The null hypothesis is rejected at α = 0.05.
Of particular interest is the confidence interval for the 

difference between the means, which extends from 0.678 to 
0.750. Since the interval does not contain the value 0.0, the-
re is a statistically significant difference between the means 
of the two samples at the 95.0% confidence level. However, 
it would be incorrect to infer that COP

post
 > COP

pre
 since the 

operating conditions are different, and thus one should not 
use this approach to draw any conclusions. Hence, a regress-
ion model based approach is warranted.

Step 2: Use the Entire Pre-retrofit Data to Identify a 
Model  The GN chiller models (Gordon and Ng 2000) are 
described in Pr. 5.13. The monitored data is first used to 
compute the variables of the model given by the regression 
model Eqs. 5.70 and 5.71. Then, a linear regression is perfor-
med which is given below along with standard errors of the 
coefficients shown within parenthesis:

t = 38.8828, p-value = 0.0

Table 5.11  Results of the first and second stage model building

With all parameters With significant parameters 
only

Coefficient Value t-value Value t-value

C
0

152.50 6.27 114.80 73.91

C
1

3.71 36.14 3.91 11.17

C
2

− 0.335 − 0.62 – –

C
3

0.0279 52.35 0.027 14.82

C
4

− 0.000940 − 0.32 – –

C
5

− 0.00683 − 6.13 − 0.00892 − 2.34
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Fig. 5.27  Histograms depic-
ting the range of variation and 
frequency of the four important 
variables before and after the 
retrofit (pre = 4,607 data points, 
post = 5,078 data points). The 
condenser water temperature and 
the chiller load show much larger 
variability during the post period pe
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Fig. 5.28  Histogram plots of Coefficient of Performance (COP) of 
chiller before and after retrofit. Clearly, there are several instances 
when COP

post
 > COP

pre
 but that could be due to operating conditions. 

Hence, a regression modeling approach is clearly warranted
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Fig. 5.29  ANOVA test results in the form of box-and-whisker plots for 
chiller COP before and after addition of refrigerant additive
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�

�

(5.61)

This model is then re-transformed into a model for power 
using Eq. 5.76, and the error statistics using the pre-retro-
fit data are found to be: RMSE = 9.36 kW and CV = 2.24%. 
Figure 5.30 shows the x–y plot from which one can visual-
ly evaluate the goodness of fit of the model. Note that the 
mean power use = 418.7 kW while the mean model residu-
als = 0.017 kW (negligibly close to zero, as it should be. This 
step validates the fact that the spreadsheet cells have been 
coded correctly with the right formulas).

Step 3: Calculate Savings in Electrical Power  The above 
chiller model representative of thermal performance of the 
chiller without refrigerant additive is used to estimate savings 
by first predicting power use for each 15 min interval using 
the two operating temperatures and the load corresponding to 
the 5,078 post-retrofit data points. Subsequently, savings in 
chiller power are deduced for each of the 5,078 data points:

�

� (5.62)

y = −0.00187 · x1
(0.00163)

+261.2885 · x2
(15.925)

+0.022461 · x3
(0.000111)

with adjusted R2 = 0.998

Power savings = Model-predicted pre-retrof it use

− measured post-retrof it use

It is found that mean power savings = − 21.0 kW (i.e., an in-
crease in power use) or a decrease of 7.88% in the measured 
mean power use of 287.5 kW. Figure 5.31 visually illustrates 
the extent to which power use during the post-retrofit period 
has increased as compared to the pre-retrofit model. Over-
looking the few outliers, one notes that there are two pat-
terns: a larger number of data points indicating that post-re-
trofit electricity power use was much higher and a smaller set 
when the difference is little to nil. The reason for the onset of 
two distinct patterns in operation is worthy of a subsequent 
investigation.

Step 4: Calculate Uncertainty in Savings and Draw Conclu-
sions  The uncertainty arises from two sources: prediction 
model and power measurement errors. The latter are usually 
small, about 0.1% of the reading, which in this particular 
case is less than 1 kW. Hence, this contribution can be neg-
lected during an initial investigation such as this one. The 
model uncertainty is given by:

�

�

(5.63)

The t-value at 90% confidence level = 1.65 and RMSE of mo-
del (for pre-retrofit period) = 9.36 kW.

Hence the calculated increase in power due to refrigerant 
additive = −21.0 kW ± 15.44 kW at 90% CL. Thus, one 
would conclude that the refrigerant additive is actually pe-
nalizing chiller performance by 7.88% since electric power 
use is increased.

Note: The entire analysis was redone by cleaning the 
post-retrofit data so as to remove the dual sets of data (see 
Fig. 5.31). Even then, the same conclusion was reached.

absolute uncertainty in power use savings or reduction

= (t_value x RMSE)

Table 5.12  Results of the ANOVA Test of comparison of means at 
significance level of 0.05
95.0% confidence interval for 
mean of COP

post
:

8.573 ± 0.03142 = [8.542, 8.605]

95.0% confidence interval for 
mean of COP

pre
:

7.859 ± 0.01512 = [7.844, 7.874]

95.0% confidence interval for 
the difference between the means 
assuming equal variances:

0.714 ± 0.03599 = [0.678, 0.750]

Fig. 5.30  X–Y plot of chiller power during pre-retrofit period. The 
overall fit is excellent (RMSE = 9.36 kW and CV = 2.24%), and except 
for a few data points, the data seems well behaved. Total number of data 
points = 4,607
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Fig. 5.31  Difference in X–Y plots of chiller power indicating that post-
retrofit values are higher than those during pre-retrofit period (mean 
increase = 21 kW or 7.88%). One can clearly distinguish two operating 
patterns in the data suggesting some intrinsic behavioral change in chil-
ler operation. Entire data set for the post-period consisting of 5,078 
observations has been used in this analysis

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800

G
N

 M
o

d
el

 f
o

r 
P

re
 (

kW
)

Measured Post Data (kW)

Pre-Retrofit Chiller Power Model vs Post-Retrofit Measured                         



175

Problems

Pr. 5.1  Table 5.13 lists various properties of saturated water 
in the temperature range 0–100°C.
(a)	 Investigate first order and second-order polynomials 

that fit saturated vapor enthalpy to temperature in °C. 
Identify the better model by looking at R2, RMSE and 
CV values for both models. Predict the value of satura-
ted vapor enthalpy at 30°C along with 95% confidence 
intervals and 95% prediction intervals.

(b)	 Repeat the above analysis for specific volume but in-
vestigate third-order polynomial fits as well. Predict the 
value of specific volume at 30°C along with 95% confi-
dence intervals and 95% prediction intervals.

Pr. 5.2  Tensile tests on a steel specimen yielded the results 
shown in Table 5.14.
(a)	 Assuming the regression of y on x to be linear, estimate 

the parameters of the regression line and determine the 
95% confidence limits for x = 4.5

(b)	 Now regress x on y, and estimate the parameters of the 
regression line. For the same value of y predicted in (a) 
above, determine the value of x. Compare this value 
with the value of 4.5 assumed in (a). If different, discuss 
why.

(c)	 Compare the R2 and CV values of both models.
(d)	 Plot the residuals of both models
(e)	 Of the two models, which is preferable for OLS estima-

tion.

Pr.  5.3  The yield of a chemical process was measured at 
three temperatures (in °C), each with two concentrations of a 
particular reactant, as recorded in Table 5.15.
(a)	 Use OLS to find the best values of the coefficients a, b, 

and c in the equation: y = a + bt + cx.

(b)	 Calculate the R2, RMSE, and CV of the overall model 
as well as the SE of the parameters

(c)	 Using the β coefficient concept described in Sect. 5.4.5, 
determine the relative importance of the two indepen-
dent variables on the yield.

Pr. 5.4  Cost of electric power generation versus load factor 
and cost of coal

The cost to an electric utility of producing power (C
Ele

) 
in mills per kilowatt-hr ($10–3/kWh) is a function of the load 
factor (LF) in % and the cost of coal (C

coal
) in cents per mil-

lion Btu. Relevant data is assembled in Table 5.16.
(a)	 Investigate different models (first order and second or-

der with and without interaction terms) and identify the 
best model for predicting CEle vs LF and CCoal. Use step-
wise regression if appropriate. (Hint: plot the data and 
look for trends first).

(b)	 Perform residual analysis
(c)	 Calculate the R2, RMSE, and CV of the overall model 

as well as the SE of the parameters

Pr. 5.5  Modeling of cooling tower performance
Manufacturers of cooling towers often present catalog 

data showing outlet-water temperature T
co

 as a function of 
ambient air wet-bulb temperature (T

wb
) and range (which is 

the difference between inlet and outlet water temperatures). 
Table 5.17 assembles data for a specific cooling tower. Iden-
tify an appropriate model (investigate first order and second 
order polynomial models for T

co
) by looking at R2, RMSE and 

CV values, the individual t-values of the parameters as well as 
the behavior of the overall model residuals.

Pr.  5.6  Steady-state performance testing of solar thermal 
flat plate collector

Solar thermal collectors are devices which convert the ra-
diant energy from the sun into useful thermal energy that goes 
to heating, say, water for domestic or for industrial applica-
tions. Because of low collector time constants, heat capacity 
effects are usually small compared to the hourly time step 

Table 5.14  Data table for Problem 5.2

Tensile force x 1 2 3 4 5 6

Elongation y 15 35 41 63 77 84

Table 5.13  Data table for Problem 5.1
Temperature
t (°C)

0 10 20 30 40 50 60 70 80 90 100

Specific volume
v (m^3/kg)

206.3 106.4 57.84 32.93 19.55 12.05 7.679 5.046 3.409 2.361 1.673

Sat. vapor enthalpy
kJ/kg

2501.6 2519.9 2538.2 2556.4 2574.4 2592.2 2609.7 2626.9 2643.8 2660.1 2676

Table 5.15  Data table for Problem 5.3

Temperature, t 40 40 50 50 60 60

Concentration, x 0.2 0.4 0.2 0.4 0.2 0.4

Yield y 38 42 41 46 46 49

Table 5.16  Data table for Problem 5.4
LF 85 80 70 74 67 87 78 73 72 69 82 89

C
Coal

15 17 27 23 20 29 25 14 26 29 24 23

C
Ele

4.1 4.5 5.6 5.1 5.0 5.2 5.3 4.3 5.8 5.7 4.9 4.8

Problems
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used to drive the model. The steady-state useful energy q
C
 

delivered by a solar flat-plate collector of surface area A
C
 is 

given by the Hottel-Whillier-Bliss equation (Reddy 1987):

� (5.64)

where F
R
 is called the heat removal factor and is a measure 

of the solar collector performance as a heat exchanger (since 
it can be interpreted as the ratio of actual heat transfer to the 
maximum possible heat transfer); η

n
 is the optical efficiency 

or the product of the transmittance and absorptance of the 
cover and absorber of the collector at normal solar incidence; 
U

L
 is the overall heat loss coefficient of the collector which 

is dependent on collector design only, I
T
 is the radiation in-

tensity on the plane of the collector, T
ci
 is the temperature of 

the fluid entering the collector, and T
a
 is the ambient tempe-

rature. The + sign denotes that only positive values are to be 
used, which physically implies that the collector should not 
be operated if q

C
 is negative i.e., when the collector loses 

more heat than it can collect (which can happen under low 
radiation and high T

ci
 conditions).

Steady-state collector testing is the best manner for a ma-
nufacturer to rate his product. From an overall heat balance 
on the collector fluid and from Eq. 5.64, the expressions for 
the instantaneous collector efficiency η

c
 under normal solar 

incidence are:

� (5.65)

where m
c
 is the total fluid flow rate through the collectors, c

pc
 

is the specific heat of the fluid flowing through the collector, 
and T

ci
 and T

co
 are the inlet and exit temperatures of the fluid 

to the collector. Thus, measurements (of course done as per 
the standard protocol, ASHRAE 1978) of I

T
, T

ci
 and T

co
 are 

done under a pre-specified and controlled value of fluid flow 
rate. The test data are plotted as η

c
 against reduced tempera-

ture [(T
Ci

 − T
a
)/I

T
] as shown in Fig. 5.32. A linear fit is made 

to these data points by regression, from which the values of 
F

R
 η

n
 and F

R
 U

L 
are easily deduced.

If the same collector is testing during different days, 
slightly different numerical values are obtained for the two 

qc = AcFR

[
IT ηn − UL(TCi − Ta)

]+

ηC ≡
qC

ACIT

=
(mcp)

C
(TCo − TCi)

ACIT

=
[
FRηn − FRUL

(
TCi − Ta

IT

)]

parameters F
R
η

n
 and F

R
U

L
 which are often, but not always, 

within the uncertainty bands of the estimates. Model misspeci-
fication (i.e., the model is not perfect, for example, it is known 
that the collector heat losses are not strictly linear) is partly 
the cause of such variability. This is somewhat disconcerting 
to a manufacturer since this introduces ambiguity as to which 
values of the parameters to present in his product specification 
sheet.

The data points of Fig. 5.32 are assembled in Table 5.18. 
Assume that water is the working fluid.
(a)	 Perform OLS regression using Eq. 5.65 and identify the 

two parameters FRηn and FRUL along with their standard 
errors. Plot the model residuals, and study their behavior.

(b)	 Draw a straight line visually through the data points and 
determine the x-axis and y-axis intercepts. Estimate the 
F

R
η
n
 and F

R
U

L
 parameters and compare them with those 

determined from (a).
(c)	 Calculate the R2, RMSE and CV values of the model
(d)	 Calculate the F-statistic to test for overall model signifi-

cance of the model
(e)	 Perform t-tests on the individual model parameters
(f)	 Use the model to predict collector efficiency when 

I
T 
= 800 W/m2, T

ci 
= 35°C and T

a
 = 10°C

Table 5.17  Data table for Problem 5.5

T
wb

 (°C)

Range (°C) 20 21.5 23 23.5 26

10 25.89 26.65 27.49 27.78 29.38

13 26.40 27.11 27.90 28.18 29.75

16 26.99 27.64 28.38 28.66 30.18

19 27.65 28.24 28.94 29.20 30.69

22 28.38 28.92 29.58 29.83 31.28

Fig. 5.32  Test data points of thermal efficiency of a double glazed flat-
plate liquid collector with reduced temperature. The regression line of 
the model given by Eq. 5.65 is also shown. (From ASHRAE (1978) © 
American Society of Heating, Refrigerating and Air-conditioning Engi-
neers, Inc., www.ashrae.org)
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Table 5.18  Data table for Problem 5.6

x y (%) x y (%) x y (%) x y (%)

0.009 64 0.051 30 0.064 27 0.077 20

0.011 65 0.052 30 0.065 26 0.080 16

0.025 56 0.053 31 0.065 24 0.083 14

0.025 56 0.056 29 0.069 24 0.086 14

0.025 52.5 0.056 29 0.071 23 0.091 12

0.025 49 0.061 29 0.071 21 0.094 10

0.050 35 0.062 25 0.075 20
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(g)	 Determine the 95% CL intervals for the mean and indi-
vidual responses for (f) above.

(h)	 The steady-state model of the solar thermal collector 
assumes the heat loss term given by [UA( T

ci
 − T

a
] to be 

linear with the temperature difference between collec-
tor inlet temperature and the ambient temperature. One 
wishes to investigate whether the model improves if the 
loss term is to include an additional second order term:
(i)	 Derive the resulting expression for collector effi-

ciency analogous to Eq. 5.65?
	 (Hint: start with the fundamental heat balance 

equation—Eq. 5.64)
(ii)	 Does the data justify the use of such a model?

Pr. 5.79  Dimensionless model for fans or pumps
The performance of a fan or pump is characterized in terms 
of the head or the pressure rise across the device and the flow 
rate for a given shaft power. The use of dimensionless variab-
les simplifies and generalizes the model. Dimensional ana-
lysis (consistent with fan affinity laws for changes in speed, 
diameter and air density) suggests that the performance of a 
centrifugal fan can be expressed as a function of two dimen-
sionless groups representing flow coefficient and pressure 
head respectively:

� (5.66)

where SP is the static pressure, Pa; D the diameter of wheel, 
m; ω the rotative speed, rad/s; ρ the density, kg/m3 and Q the 
volume flow rate of air, m3/s.

For a fan operating at constant density, it should be possi-
ble to plot one curve � vs � that represents the performance 
at all speeds. The performance of a certain 0.3 m diameter 
fan is shown in Table 5.19.

9	 From Stoecker (1989) by permission of McGraw-Hill.

� =
SP

D2ω2ρ
and �=

Q

D3ω

(a)	 First, plot the data and formulate two or three promising 
functions.

(b)	 Identify the best function by looking at the R2, RMSE 
and CV values and also at the residuals.

Assume density of air at STP conditions to be 1.204 kg/m3

Pr.  5.8  Consider the data used in Example 5.6.3 meant to 
illustrate the use of weighted regression for replicate measu-
rements with non-constant variance. For the same data set, 
identify a model using the logarithmic transform approach 
similar to that shown in Example 5.6.2

Pr. 5.9  Spline models for solar radiation
This problem involves using splines for functions with ab-
rupt hinge points. Several studies have proposed correlations 
to predict different components of solar radiation from more 
routinely measured components. One such correlation relates 
the fraction of hourly diffuse solar radiation on a horizontal 
radiation (I

d
) and the global radiation on a horizontal surface 

(I) to a quantity known as the hourly atmospheric clearness 
index ( k

T
 = I/I

0
) where I

0
 is the extraterrestrial hourly radiation 

on a horizontal surface at the same latitude and time and day 
of the year (Reddy 1987). The latter is an astronomical quan-
tity and can be predicted almost exactly. Data has been gathe-
red (Table 5.20) from which a correlation between ( I

d
/I) = f( k

T
) 

needs to be identified.
(a)	 Plot the data and visually determine likely locations of 

hinge points. (Hint: there should be two points, one at 
either extreme).

(b)	 Previous studies have suggested the following three 
functional forms: a constant model for the lower ran-
ge, a second order for the middle range, and a cons-
tant model for the higher range. Evaluate with the data 
provided whether this functional form still holds, and 
report pertinent models and relevant goodness-of-fit 
indices.

Table 5.19  Data table for Problem 5.7

Rotation
ω (Rad/s)

Flow rate
Q (m3/s)

Static 
pressure
SP (Pa)

Rotation
ω (Rad/s)

Flow rate
Q (m3/s)

Static 
pressure
SP (Pa)

157 1.42 861 94 0.94 304

157 1.89 861 94 1.27 299

157 2.36 796 94 1.89 219

157 2.83 694 94 2.22 134

157 3.02 635 94 2.36 100

157 3.30 525 63 0.80 134

126 1.42 548 63 1.04 122

126 1.79 530 63 1.42   70

126 2.17 473 63 1.51   55

126 2.36 428

126 2.60 351

126 3.30 114

Table 5.20  Data table for Problem 5.9
k

T
(I

d
 /I) k

T
(I

d
 /I)

0.1 0.991 0.5 0.658

0.15 0.987 0.55 0.55

0.2 0.982 0.6 0.439

0.25 0.978 0.65 0.333

0.3 0.947 0.7 0.244

0.35 0.903 0.75 0.183

0.4 0.839 0.8 0.164

0.45 0.756 0.85 0.166

0.9 0.165

Problems
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Pr. 5.10  Modeling variable base degree-days with balance 
point temperature at a specific location

Degree-day methods provide a simple means of determin-
ing annual energy use in envelope-dominated buildings ope-
rated constantly and with simple HVAC systems which can 
be characterized by a constant efficiency. Such simple sing-
le-measure methods capture the severity of the climate in a 
particular location. The variable base degree day (VBDD) is 
conceptually similar to the simple degree-day method but is 
an improvement since it is based on the actual balance point 
of the house instead of the outdated default value of 65°F or 
18.3°C (ASHRAE 2009). Table 5.21 assembles the VBDD 
values for New York City, NY from actual climatic data over 
several years at this location.

Identify a suitable regression curve for VBDD versus ba-
lance point temperature for this location and report all perti-
nent statistics.

Pr. 5.11  Change point models of utility bills in variable occu-
pancy buildings

Example 5.7.1 illustrated the use of linear spline models 
to model monthly energy use in a commercial building ver-
sus outdoor dry-bulb temperature. Such models are useful for 
several purposes, one of which is for energy conservation. For 
example, the energy manager may wish to track the extent to 
which energy use has been increasing over the years, or the 
effect of a recently implemented energy conservation measu-
re (such as a new chiller). For such purposes, one would like 
to correct, or normalize, for any changes in weather since an 
abnormally hot summer could obscure the beneficial effects 
of a more efficient chiller. Hence, factors which change over 
the months or the years need to be considered explicitly in 
the model. Two common normalization factors include chan-

ges to the conditioned floor area (for example, an extension to 
an existing wing), or changes in the number of students in a 
school. A model regressing monthly utility energy use against 
outdoor temperature is appropriate for buildings with cons-
tant occupancy (such as residences) or even offices. However, 
buildings such as schools are practically closed during sum-
mer, and hence, the occupancy rate needs to be included as the 
second regressor. The functional form of the model, in such 
cases, is a multi-variate change point model given by:

� (5.67)

where x and y are the monthly mean outdoor temperature 
( T

o
) and the electricity use per square foot of the school (E) 

respectively, and f
oc

 =N
oc

/N
total

  represents the fraction of days 
in the month when the school is in session (N

oc
) to the total 

number of days in that particular month (N
total

). The factor 
f

oc
 can be determined from the school calendar. Clearly, the 

unoccupied fraction f
un

 = 1 − f
oc

.
The term I represents an indicator variable whose nume-

rical value is given by Eq. 5.54b. Note that the change point 
temperatures for occupied and unoccupied periods are as-
sumed to be identical since the monthly data does not allow 
this separation to be identified.

Consider the monthly data assembled (shown in Table 
5.22).
(a)	 Plot the data and look for change points in the data. 

Note that the model given by Eq. 5.67 has 7 parameters 
of which xc (the change point temperature) is the one 
which makes the estimation non-linear. By inspection 
of the scatter plot, you will assume a reasonable value 
for this variable, and proceed to perform a linear re-
gression as illustrated in Example 5.7.1. The search for 
the best value of xc (one with minimum RMSE) would 
require several OLS regressions assuming different va-
lues of the change point temperature.

y = β0,un + β0foc + β1,unx + β1focx

+ β2,un(x − xc)I + β2foc(x − xc)I

Table 5.21  Data table for Problem 5.10
Balance point  
temp. (°C)

25 20 15 10 5 0 −5

VBDD (°C-Days) 4,750 3,900 2,000 1,100 500 100 0

Table 5.22  Data table for Example 5.11

Year Month E (W/ft²) T
o
 (°F) f

oc
Year Month E (W/ft²) T

o
 (°F) f

oc

94 Aug 1.006 78.233 0.41 95 Aug 1.351 81.766 0.39

94 Sep 1.123 73.686 0.68 95 Sep 1.337 76.341 0.71

94 Oct 0.987 66.784 0.67 95 Oct 0.987 65.805 0.68

94 Nov 0.962 61.037 0.65 95 Nov 0.938 56.714 0.66

94 Dec 0.751 52.475 0.42 95 Dec 0.751 52.839 0.41

95 Jan 0.921 49.373 0.65 96 Jan 0.921 49.270 0.65

95 Feb 0.947 53.764 0.68 96 Feb 0.947 55.873 0.66

95 Mar 0.876 59.197 0.58 96 Mar 0.873 55.200 0.57

95 Apr 0.918 65.711 0.66 96 Apr 0.993 66.221 0.65

95 May 1.123 73.891 0.65 96 May 1.427 78.719 0.64

95 Jun 0.539 77.840 0 96 Jun 0.567 78.382 0.1

95 Jul 0.869 81.742 0 96 Jul 1.005 82.992 0.2
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(b)	 Identify the parsimonious model, and estimate the ap-
propriate parameters of the model. Note that of the six 
parameters appearing in Eq. 5.67, some of the parame-
ters may be statistically insignificant, and appropriate 
care should be exercised in this regard. Report appro-
priate model and parameter statistics.

(c)	 Perform a residual analysis and discuss results.

Pr. 5.12  Determining energy savings from monitoring and 
verification (M&V) projects
A crucial element in any energy conservation program is the 
ability to verify savings from measured energy use data—
this is referred to as monitoring and verification (M&V). 
Energy service companies (ESCOs) are required, in most 
cases, to perform this as part of their services. Figure 5.33 
depicts how energy savings are estimated. A common M&V 
protocol involves measuring the monthly total energy use 
at the facility for whole year before the retrofit (this is the 
baseline period or the pre-retrofit period) and a whole year 
after the retrofit (called the post-retrofit period). The time 
taken for implementing the energy saving measures (called 
the “construction period”) is neglected in this simple exam-
ple. One first identifies a baseline regression model of energy 
use against ambient dry-bulb temperature T

o
 during the pre-

retrofit period E
pre

 = f( T
o
). This model is then used to predict 

energy use during each month of the post-retrofit period by 
using the corresponding ambient temperature values. The 
difference between model predicted and measured monthly 
energy use is the energy savings during that month.

� (5.68)

The determination of the annual savings resulting from the 
energy retrofit and its uncertainty are finally determined. It 
is very important that the uncertainty associated with the sa-
vings estimates be determined as well for meaningful con-
clusions to be reached regarding the impact of the retrofit on 
energy use.

You are given monthly data of outdoor dry bulb tempera-
ture (T

o
) and area-normalized whole building electricity use 

WB
e
) for two years (Table 5.23). The first year is the pre-

retrofit period before a new energy management and control 
system (EMCS) for the building is installed, and the second 
is the post-retrofit period. Construction period, i.e., the peri-
od it takes to implement the conservation measures is taken 
to be negligible.
(a)	 Plot time series and x–y plots and see whether you can 

visually distinguish the change in energy use as a result 
of installing the EMCS (similar to Fig. 5.33);

(b)	 Evaluate at least two different models (with one of them 
being a model with indicator variables) for the pre-re-
trofit period, and select the better model;

Energy savings =Model-predicted pre-retrofit use

− measured post-retrofit use

(c)	 Use this baseline model to determine month-by-month 
energy use during the post-retrofit period representative 
of energy use had not the conservation measure been 
implemented;

(d)	 Determine the month-by-month as well as the annual 
energy savings (this is the “model-predicted pre-retrofit 
energy use” of Eq. 5.68);

(e)	 The ESCO which suggested and implemented the ECM 
claims a savings of 15%. You have been retained by the 
building owner as an independent M&V consultant to 
verify this claim. Prepare a short report describing your 
analysis methodology, results and conclusions. (Note: 
you should also calculate the 90% uncertainty in the 
savings estimated assuming zero measurement uncer-
tainty. Only the cumulative annual savings and their 
uncertainty are required, not month-by-month values).

Pr.  5.1310  Grey-box and black-box models of centrifugal 
chiller using field data

You are asked to evaluate two types of models: physical 
or gray-box models versus polynomial or black-box models. 
A brief overview of these is provided below.

(a) Gray-Box Models  The Universal Thermodynamic Mo-
del proposed by Gordon and Ng (2000) is to be used. The 
GN model is a simple, analytical, universal model for chil-
ler performance based on first principles of thermodynamics 
and linearized heat losses. The model predicts the dependent 
chiller COP (defined as the ratio of chiller (or evaporator) 
thermal cooling capacity Q

ch
 by the electrical power P

comp
 

consumed by the chiller (or compressor) with specially cho-
sen independent (and easily measurable) parameters such as 
the fluid (water or air) inlet temperature from the condenser 

10	Data for this problem is given in Appendix B.

Table 5.23  Data table for Problem 5.12
Pre-retrofit period Post-retrofit period

Month T
o
 (°F) WB

e
 

(W/ft²)
Month T

o
 (°F) WB

e
 

(W/ft²)

1994-Jul 84.04 3.289 1995-Jul 83.63 2.362

Aug 81.26 2.827 Aug 83.69 2.732

Sep 77.98 2.675 Sep 80.99 2.695

Oct 71.94 1.908 Oct 72.04 1.524

Nov 66.80 1.514 Nov 62.75 1.109

Dec 58.68 1.073 Dec 57.81 0.937

1995-Jan 56.57 1.237 1996-Jan 54.32 1.015

Feb 60.35 1.253 Feb 59.53 1.119

Mar 62.70 1.318 Mar 58.70 1.016

Apr 69.29 1.584 Apr 68.28 1.364

May 77.14 2.474 May 78.12 2.208

Jun 80.54 2.356 Jun 80.91 2.070

Problems
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T
cdi

, fluid temperature leaving the evaporator (or the chilled 
water return temperature from the building) T

cho
, and the 

thermal cooling capacity of the evaporator (similar to the fi-
gure for Example 5.4.3). The GN model is a three-parameter 
model which, for parameter identification, takes the follo-
wing form:

� (5.69)

where the temperatures are in absolute units, and the pa-
rameters of the model have physical meaning in terms of ir-
reversibilities:
a

1
 = ∆s, the total internal entropy production rate in the chil-
ler due to internal irreversibilities,

a
2
 = Q

leak
, the rate of heat losses (or gains) from (or in to) the 

chiller,

a3 = R =
1

(mCE)cond

+
1 − Eevap

(mCE)evap
 i.e., the total heat ex-

changer thermal resistance which represents the irreversi-
bility due to finite-rate heat exchanger, and m is the mass 
flow rate, C the specific heat of water, and E is the heat 
exchanger effectiveness.

The model applies both to unitary and large chillers ope-
rating under steady state conditions. Evaluations by several 
researchers have shown this model to be very accurate for 
a large number of chiller types and sizes. If one introduces:

�

�

(5.70)

(
1

COP
+ 1

)
Tcho

Tcdi

− 1

= a1
Tcho

Qch

+ a2
(Tcdi − Tcho)

TcdiQch

+ a3
(1/COP + 1)Qch

Tcdi

x1 =
Tcho

Qch

, x2 =
(Tcdi − Tcho)

TcdiQch

, x3 =
(1/COP + 1)Qch

Tcdi

and y =
(

1

COP
+ 1

)
Tcho

Tcdi

− 1

Eq. 5.69 assumes the following linear form:

� (5.71)

Although most commercial chillers are designed and in-
stalled to operate at constant coolant flow rates, variab-
le condenser water flow operation (as well as evaporator 
flow rate) is being increasingly used to improve overall 
cooling plant efficiency especially at low loads. In order 
to accurately correlate chiller model performance under 
variable condenser flow, an analytic model as follows was 
developed:

�

� (5.72)

If one introduces

and

� (5.73)

where V, ρ and c are the volumetric flow rate, the density and 
specific heat of the condenser water.

For the variable condenser flow rate, Eq. 5.72 becomes

� (5.74)

y = a1x1 + a2x2 + a3x3

Tcho(1 + 1/COP )

Tcdi

− 1 −
1

(VρC)cond

(1/COP + 1)Qch

Tcdi

= c1
Tcho

Qch

+ c2

(
Tcdi − Tcho

QchTcdi

)
+ c3

Qch(1 + 1/COP )

Tcdi

x1 =
Tcho

Qch

, x2 =
Tcdi − Tcho

QchTcdi

, x3 =
(1/COP + 1)Qch

Tcdi

y =
Tcho(1/COP + 1)

Tcdi

− 1

−
1

(VρC)cond

(1/COP + 1)Qch

Tcdi

y = c1x1 + c2x2 + c3x3

Fig. 5.33  Schematic represen-
tation of energy use prior to and 
after installing energy conserva-
tion measures (ECM) and of the 
resulting energy savings
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(b) Black-Box Models  Whereas the structure of a gray box 
model, like the GN model, is determined from the under-
lying physics, the black box model is characterized as ha-
ving no (or sparse) information about the physical problem 
incorporated in the model structure. The model is regarded 
as a black box and describes an empirical relationship bet-
ween input and output variables. The commercially available 
DOE-2 building energy simulation model (DOE-2 1993) re-
lies on the same parameters as those for the physical model, 
but uses a second order linear polynomial model instead. 
This “standard” empirical model (also called a multivariate 
polynomial linear model or MLR) has 10 coefficients which 
need to be identified from monitored data:

� (5.75)

These coefficients, unlike the three coefficients appearing 
in the GN model, have no physical meaning and their magni-
tude cannot be interpreted in physical terms. Collinearity in 
regressors and ill-behaved residual behavior are also proble-
matic issues. Usually one needs to retain in the model only 
those parameters which are statistically significant, and this 
is best done by step-wise regression.

Table B.3 in Appendix B assembles data consisting of 52 
sets of observations from a 387 ton centrifugal chiller with 
variable condenser flow data. A sample hold-out cross-valida-
tion scheme will be used to guard against over-fitting. Though 
this is a severe type of split, use the first 36 data points as 
training data and the rest (shown in italics) as testing data.
(a)	 You will use the three models described above 

(Eqs. 5.71, 5.74 and 5.75) to identify suitable regress-
ion models. Study residual behavior as well as collinea-
rity issues between regressors. Identify the best forms 
of the GN and the MLR model formulations.

(b)	 Evaluate which of these models is superior in terms of 
their external prediction accuracy The GN and MLR 
models have different y-values and so you cannot use 
the statistics provided by the regression package di-
rectly. You need to perform subsequent calculations in 
a spreadsheet using the power as the basis of compa-
ring model accuracy and reporting internal and external 
prediction accuracies. For the MLR model, this is easi-
ly deduced from the model predicted COP values. For 
the GN model with constant flow, rearranging terms of 
Eq. 5.71 yields the following expression for the chiller 
electric power P

ch
:

�

� (5.76)

COP = b0 + b1Tcdi + b2Tcho

+ b3Qch + b4Tcdi
2 + b5T

2
cho + b6Q

2
ch

+ b7TcdiTcho + b8TcdiQch + b9TchoQch

Pcomp =
Qch(Tcdi − Tcho) + a1TcdiTcho + a2(Tcdi − Tcho) + a3Q

2
ch

Tcho − a3Qch

(c)	 Report all pertinent steps performed in your analysis 
and present your results succinctly. 

Helpful tips:
(i)	 Convert temperatures into degrees Celsius, Qch into kW 

and volumetric flow rate V into L/s for unit consistency 
(work in SI units)

(ii)	 For the GN model, all temperatures should be in abso-
lute units

(iii)	 Degrees of freedom (d.f.) have to be estimated correctly 
in order to compute RMSE and CV. For internal predic-
tion, d.f. = n − p where n is the number of data points and 
p the number of model parameters. For external predic-
tion accuracy, d.f. = m where m is the number of data 
points.

Pr.  5.1411  Effect of tube cleaning in reducing chiller fou-
ling

A widespread problem with liquid-cooled chillers is con-
denser fouling which increases heat transfer resistance in the 
condenser and results in reduced chiller COP. A common re-
medy is to periodically (every year or so) brush-clean the in-
sides of the condenser tubes. Some practitioners question the 
efficacy of this process though this is widely adopted in the 
chiller service industry. In an effort to clarify this ambiguity, 
an actual large chiller (with refrigerant R11) was monitored 
during normal operation for 3 days before (9/11-9/13-2000) 
and 3 days after (1/17-1/19-2001) tube cleaning was done. 
Table B.4 (in Appendix B) assembles the entire data set of 
72 observations for each period. This chiller is similar to the 
figure for Example 5.4.3.

Analyze, using the GN model described in Pr. 5.13, the 
two data sets, and determine the extent to which the COP of 
the chiller has improved as a result of this action. Prepare a 
report describing your analysis methodology, your analysis 
results, the uncertainty in your results, your conclusions, and 
any suggestions for future analysis work.
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