CVEN 5768 Homework Assignment 7 Due Monday March 05, 2007

Problem 1:

Consider the geometry of the radial permeability test. Let p_1 and p_2 be the applied pressures on the inner and outer surfaces of the test sample with inner radius R_1 and outer radius R_2 . Let $\Delta p = p_2 - p_1$.

- a) Express $(p-p_1)/\Delta p$ in terms of r/R_1 and R_2/R_1 .
- b) What is the expression of the seepage body force for convergent and divergent flow conditions ?

Problem 2:

Consider a rock mass cut by a single joint set with average spacing S and average aperture b. The intact rock permeability is defined as K_m . The joint permeability is equal to $K_j = gb^2/12v$ where g is the acceleration due to gravity (9.81 m/s² or 32.2 ft/s²), b is the joint aperture, and v is the kinematic viscosity of the fluid (for water it is equal to 1.3 x 10⁻⁶ m²/s or 14 x 10⁻⁶ ft²/s at 20° C).

Show that the rock mass permeability is anisotropic with $K_{\perp} = K_m$ and $K_{\parallel} = K_m + K_i b/S \approx K_i b/S$.

Consider the following numerical example: b = 1 mm (0.04 in), $K_m = 10^{-5} \text{ cm/s}$ and S varies between 0.1 m and infinity. Show the variation of $K_{\parallel} / K_{\perp}$ as a function of the joint spacing S.