Due Monday March 19, 2007

As seen in class, the vertical stress, σ, in square pillars of width W_p separated by a distance W_o and located at a depth, z, is equal to

$$\sigma = \gamma z (1 + \frac{W_o}{W_p})^2$$ \hspace{1cm} (2)

The pillar stress must not exceed the pillar strength q. Let F be the safety factor against failure with $F=q/\sigma$. The strength q is defined using the Hoek and Brown failure criterion for rock mass strength, which under uniaxial condition reduces to

$$q = \sigma_c s^{1/2}$$ \hspace{1cm} (3)

where σ_c is the unconfined compressive strength of the intact rock and s is a reduction factor that ranges between 1.0 (for intact rock) and 0.0000... (for very fractured rock).

a) Combining equations (2) and (3), show that

$$\frac{W_o}{W_p} = \sqrt{\frac{\sigma_c s}{F \gamma z}} - 1$$ \hspace{1cm} (4)

The ratio W_o/W_p must always be positive. It is equal to zero (no mining possible) at a depth z_c equal to $(\sigma_c s)/(F \gamma)$.

b) The extraction ratio, R, is defined as the ratio between the mined area and the total area. Show that it is equal to

$$R = 1 - \frac{1}{(1 + \frac{W_o}{W_p})^2}$$ \hspace{1cm} (5)

c) As a numerical example, consider an iron ore with an intact compressive strength $\sigma_c = 75$ MPa, and a unit weight $\gamma = 0.027$ MPa/m. Show the variation of W_o/W_p and R with depth for depths less than 1000 m, for $F = 1.0, 1.5$ and 2.0 and for selected values of $s = \{0,1\}$. Conclude on the importance of rock mass fracturing on the mine design.