Homework Assignment 10 (Due Monday April 16, 2007)

1) Consider the geometry of Figure 1 b and two orthogonal joint sets with spacings S_{1} and S_{2} intersecting the vertical hole. Since the joint sets are orthogonal, their dip angles α_{1} and α_{2} are such that $\alpha_{1}+\alpha_{2}=\pi / 2$. What is the expression for the apparent fracture frequency along the borehole in terms of the true fracture frequencies $f_{1}=1 / S_{1}$ and $f_{2}=1 / S_{2}$? Assume that $S_{1}=S_{2}=S$, and $\alpha_{1}=\alpha$. Plot in a polar diagram the variation of F / f (where $f=1 / S$) with α as it varies between 0 and 2π.
2) Consider the shearing of a joint with the geometry of Figure 11. The joint surface is smooth with zero cohesion and a friction angle φ. Let i be the inclination angle of the joint surface with respect to the horizontal. Show that the shear strength of the inclined joint is equal to $\tau=\sigma_{\mathrm{n}} \tan (\varphi$ $+i$).
3) For the geometry of the plane shown in Figure $3 b$ derive the following two equations:

$$
\begin{aligned}
& \tan \psi_{a}=\tan \psi \cdot \cos \beta \\
& \tan \psi_{a}=\tan \psi \cdot \sin \alpha
\end{aligned}
$$

where ψ is the true dip of the plane and ψ_{a} is its apparent dip in a direction making a horizontal angle α with the strike direction (or β with the dip direction).
4) If the attitude of a plane is $\mathrm{N} 75^{\circ} \mathrm{W} 22^{\circ} \mathrm{NE}$, what is its apparent dip in the direction $\mathrm{N} 50^{\circ}$ E?
5) Two lines define a plane. From two apparent dips: (i) $\psi_{a 1}=10^{\circ}$ in the $\mathrm{N} 72^{\circ} \mathrm{W}$ direction, and (ii) $\psi_{\mathrm{a} 2}=25^{\circ}$ in the $\mathrm{N} 35^{\circ}$ E direction. Determine the strike and true dip angles of the plane.
6) A certain bed dips 40° due North. In what direction will its apparent dip be exactly half as great?

