Homework Assignment 8 (due Monday March 12, 2007)

1) A transversely isotropic rock has the following five elastic constants: E=40 GPa, E'=20 GPa, G'=8 GPa, v=0.25 and v' =0.2. Show the variation of the apparent Young's modulus E_y , and apparent Poisson's ratios, v_{yx} and v_{yz} defined in equation (27) with the angle θ of Figure 6.

2) A specimen of Indiana limestone was tested in uniaxial compression in the laboratory. The stress was applied in the x direction and normal strains were measured in the x, y and z directions. The measured stresses and strains are as follows:

Stress σ_x (psi)	Strain ε_x (10 ⁻³ in/in)	Strain ε _y (10 ⁻³ in/in)	Strain ε_z (10 ⁻³ in/in)
300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200	$\begin{array}{c} 0.5244\\ 0.7761\\ 0.8722\\ 0.9685\\ 1.0347\\ 1.1073\\ 1.1073\\ 1.1799\\ 1.2062\\ 1.2198\\ 1.2694\\ 1.3679\\ 1.3974\\ 1.4367\\ 1.4787\end{array}$	$\begin{array}{c} -0.0114 \\ -0.0039 \\ 0.0041 \\ -0.0584 \\ -0.0747 \\ -0.0705 \\ -0.0705 \\ -0.0767 \\ -0.0744 \\ -0.0867 \\ -0.0977 \\ -0.1098 \\ -0.1678 \\ -0.1899 \\ -0.2546 \end{array}$	$\begin{array}{c} -0.0172 \\ -0.0306 \\ -0.0216 \\ -0.0251 \\ -0.0318 \\ -0.0342 \\ -0.0273 \\ -0.0251 \\ -0.0741 \\ -0.1015 \\ -0.1161 \\ -0.1611 \\ -0.1933 \\ -0.2678 \end{array}$
4500	1.5727	-0.3113	-0.3333

Plot the normal stress-normal strain curves. Use the three methods shown in Figure 2 to determine the Young's modulus and Poisson's ratio of the rock.

3) Show that for an isotropic rock, the mean stress and strain σ_m and ϵ_m and the deviatoric stresses and strains s_{ij} and e_{ij} are related as follows

$$\sigma_m = 3K\varepsilon_m$$
; $s_{ij} = 2Ge_{ij}$

where K and G are the bulk and shear moduli, respectively. What is the advantage of using K and G instead of E and v in describing the rock deformability?