Homework Assignment 6: (Due Friday February 13, 2009)
(Problems taken from Computational Engineering Geology, by E. Derringh, 1998)

1. A force of $17,200 \mathrm{~N}$ is exerted perpendicularly against a surface of area $0.136 \mathrm{~m}^{2}$. Find the stress.
2. Minnesota quartzite has an unconfined compressive strength of 629 MPa , but the unconfined compressive strength of Utah quartzite is only 148 MPa . The diameter of the thinnest cylinder of Minnesota quartzite that supports a certain weight is 3.85 cm . Find the diameter of the thinnest cylinder of Utah quartzite that supports the same weight.
3. A tunnel 240 m long is built through a small mountain composed of rocks with density $2.21 \mathrm{~g} / \mathrm{cm}^{3}$. The tunnel is 3.80 m wide and 4.30 m high with a flat roof 134 m beneath the top of the mountain (see figure below). The roof is supported by a single row of posts, each with a diameter of 26.4 cm and made of material with an unconfined compressive strength of 412 MPa . Find the adjacent post spacing, center to center, in the tunnel to give a factor of safety against collapse of 1.25 . There is a post at each end.

4. A house of weight $W$ is built on a barrier island, where frequent ocean surges are expected (see figure below). The house is raised on $n$ piles, which penetrate the sand and transfer the load of the house to underlying bedrock. Assume that each pile has the same cross-sectional area $A$, and that each pile supports the same load. Show that, for a factor of safety $S F$ against collapse of the piles, the number of piles needed is given by

$$
n=\frac{(S F) W}{\sigma_{u} A}
$$

where $\sigma_{u}$ is the compressive strength of the pile material.

5. Explorers seeking a hidden underground tomb walk slowly along a secret tunnel that slopes downward at $25.8^{\circ}$, as shown in the figure below. The surrounding rock has a unit weight of $24.6 \mathrm{kN} / \mathrm{m}^{3}$ and unconfined compressive strength 33.7 MPa . The explorers have been warned not to go past the point where the vertical stress equals $25 \%$ of the unconfined compressive strength of the rocks. How far along the tunnel can the explorers walk before reaching this point?


