## Homework Assignment 10

Rock Slope Stability
(Problems taken from Computational Engineering Geology, by E. Derringh, 1998)
Due Wednesday March 11, 2009

1. A $17.0 \mathrm{~m}, 5.80 \mathrm{~m}, 2.40 \mathrm{~m}$ block with a density of $2600 \mathrm{~kg} / \mathrm{m}^{3}$ rests on an $18.0^{\circ}$-slope with its shortest dimension normal to the slope. The angle of friction between the block and the slope is $12.0^{\circ}$ and the cohesion equals 17.0 kPa . (a) Find the factor of safety against sliding. (b) Find the smallest extra driving force that will trigger sliding.
2. The slab shown in the figure below has a mass of $2.84 \times 10^{5} \mathrm{~kg}$, will drop if the vertical joint ruptures. The contact area is $38.0 \mathrm{~m}^{2}$. Between the slab and the cliff face, the coefficient of friction is 0.3 and the cohesion is equal to 73.3 kPa . To keep the slab from dropping, cables are installed. Each cable has an area of $8.42 \mathrm{~cm}^{2}$ and is tightened to a tension of 410 MPa . How many cables are needed to get a factor of safety of 1.50 ?

3. The figure below shows the cross section of a road cut into the side of a mountain. The line AA is a weak bedding plane along which sliding is possible. The block B, 18.6 m wide, directly above a stretch of the road is separated from uphill rock by a tension crack T normal to AA. The dip angle of the bedding plane is $19.2^{\circ}$ and the coefficient of friction between block B and the bedding plane is 0.39 . The density of the block is 2.88 $\mathrm{g} / \mathrm{cm}^{3}$. Ignore cohesion. (a). Show that the block does not slide. (b) Water seeps into the tension crack and freezes, exerting a driving force on the block. What value of this force will trigger a slide?

4. A slab of weight 28.0 MN sits on a $23.0^{\circ}$-incline. The angle of friction between the slab and the incline is $15.0^{\circ}$; cohesion equals zero. (a) How many tightened rock bolts are needed to get a factor of safety of at least 1.5 ? The bolt specifications are: shear strength 230 MPa ; area $5.80 \mathrm{~cm}^{2}$; tightened to tension 86.4 MPa . (b) Due to an oversight, only 20 of the needed bolts actually are tightened; what is the real factor of safety?
5. Which if any, of the rectangular blocks in the figure below will topple. Assume no sliding.

